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synthesised P3OP-pTS containing a “shallow” artificial defect. Scan performed in 

DHS after 2 min. 

Figure 5.27 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTs containing a “shallow” artificial defect. Scan performed in 

DHS after 11 min. 

Figure 5.28 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTs containing a “shallow” artificial defect. Scan performed in 

DHS after 20 hours 49 min. 

Figure 5.29 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTS. Scan performed in DHS after 3 min 

Figure 5.30 Current density distribution of coated Zinc-55 % Aluminium hot dip 

coated steel electrochemically synthesised P3OP-pTS. Scan performed in DHS after 

Left: 47 hours 38 min, Right: 68 hours 35 min. 
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Figure 5.31 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS 

after 14 min. 

Figure 5.32 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS 

after 2 hours 35 min. 

Figure 5.33 SVET current density distribution and current vectors superimposed on 

optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically 

synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS 

after 19 hours 49 min. 

 

Figure 6.1 Raman spectroscopy of PAn/co-poly coated Pt. Dry and in-situ after 

immersion in DHS with an OCP of 220 mV. 

Figure 6.2 Raman spectroscopy of PAn/co-poly coated Pt immersed in DHS at OCP 

for 24 hours under N2 and ambient conditions. 

Figure 6.3 Relative intensity ratio of bands at 1610 cm-1/1590 cm-1 as a function of 

distance to a coating defect. 

Figure 6.4 Raman spectra of PAn/co-poly on AA2024-T3 as a function of immersion 

time in DHS performed under ambient conditions 
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Figure 6.5 Optical image of scribed PAn/co-polymer coating on AA2024-T3 in DHS 

after 15 min immersion using x10 magnification with area of Raman mapping are 

superimposed. 

Figure 6.6 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS 

under ambient conditions with coating containing artificial defect. Spectra recorded 

after 10 min immersion. Black: 250 μm distance from defect, Red: At the very edge 

of the coating, Blue: Point within the defect. Immersion time: 10 min. 

Figure 6.7 In-situ Raman map of the peak area ratio of 1610 cm-1/1590 cm-1 of a 

scribed PAn/co-poly on AA2024-T3 immersed in DHS. Peak area was obtained with 

Gaussian peak fitting after intensity was normalised using the sum of the two peaks. 

TL: 15 min, TR: 1 hour, ML: 1 hour 40 min, MR: 5 hours 25 min, BL: 6 hours, BR: 

7 hours 30 min 

Figure 6.8 Optical image of scribed PAn/co-poly coating on AA2024-T3 in DHS 

after prior to immersion using x50 magnification with superimposed points were 

Raman spectra was recorded. 

Figure 6.9 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 relative to 

an artificial defect recorded prior to immersion. 

Figure 6.10 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS 

under N2 atmosphere with coating containing artificial defect. Spectra recorded after 

15 min immersion. 
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Figure 6.11 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS 

under N2 atmosphere with coating containing artificial defect. Spectra recorded after 

60 min immersion. 

Figure 6.12 In-situ Raman spectroscopy of PAn coated AA2024-T3 in DHS under N2 

atmosphere with coating containing artificial defect. Spectra recorded after 3 hours 

30 min immersion. 

Figure 6.13 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS 

under N2 atmosphere with coating containing artificial defect. Spectra recorded after 

7 hours immersion. 
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ABSTRACT 

 

Concern over the toxicity and environmental impact by use of chromate containing 

coating coatings has fuelled efforts to find suitable replacements. One class of 

materials considered as a potential replacement for chromate coatings are the 

intrinsically conducting polymers (ICP’s). This thesis describes the synthesis and 

characterization of a range of ICP materials with emphasis on producing processable 

ICP and their use as corrosion protection coatings for aluminium alloy 2024-T3 and 

Zn-55%Al- hot dipped coated steel, two substrates that commonly employ chromate 

coatings for adequate protection. A general introduction to corrosion and ICP’s are 

given in Chapter 1 with techniques employed to study corrosion inhibition detailed in 

Chapter 2.  

 

Processability of Polyaniline was afforded by making of composite material to 

produce Polyaniline-HCSA/Poly(butyl acrylate-vinyl acetate) copolymer (PAn/co-

poly) possessing moderate conductivity and electroactivity (Chapter 3). PAn/co-poly 

was highly soluble and could be applied as a coating to AA2024-T3 by airbrushing. 

Polypyrrole was afforded processability by monomer substitution to produce soluble 

Poly(3-octylpyrrole). Material synthesis was optimised to produce a maximum 

conductivity for the soluble ICP that could be applied to a metal surface by 

airbrushing or evaporative casting. Conductive, soluble P3OP was synthesised both 

through electrochemical and chemical synthesis P3OP route 
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Corrosion inhibition offered by ICP evaluated using Potentiodynamic polarisation 

and Electrochemical Impedance spectroscopy (EIS) (Chapter 4) suggests an 

interaction between the ICP coating and the underlying substrate. PAn/co-poly was 

observed to provide an anodic shift to the OCP of coated AA2024-T3. Increasing Rc 

and Rct during exposure suggested that the coating converted towards a less 

conductive form. Exposure of conductive P3OP-ClO4 coated AA2024-T3 also 

resulted in increasing Rct overtime, ascribed to the formation of protective oxide.  

 

Local corrosion behaviour within a coating defect was studied by SVET (Chapter 5). 

SVET demonstrated that PAn/co-poly accelerated corrosion within a defect without 

formation of protective oxide. Conductive fractions of P3OP exhibited decreasing 

oxidation within coating defect overtime suggesting the formation of an oxidation 

product that hinders further corrosion. Raman spectroscopy (Chapter 6) as well as 

visual observations (Chapter 4 and 5) suggest that oxidation of the substrate was 

promoted by the ICP that undergoes reduction. For P3OP this leads to lower 

corrosion current density within surface a defect suggesting that P3OP does protect 

against corrosion through anodic protection.   
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