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Figure 5.24 SVET of bare Zinc-55 % Aluminium hot dip coated steel with deep
penetrating defect exposing underlying steel. Scan performed in DHS. Left: Current
density map after 12 min exposure. Right: current vector superimposed on optical

image after 12 min exposure.
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Figure 5.25 SVET of bare Zinc-55 % Aluminium hot dip coated steel with deep
penetrating defect exposing underlying steel. Scan performed in DHS. Left: Current
density map after 19 hours 48 min exposure. Right: current vector superimposed on

optical image after 19 hours 48 min exposure.

Figure 5.26 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTS containing a “shallow” artificial defect. Scan performed in

DHS after 2 min.

Figure 5.27 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTs containing a “shallow” artificial defect. Scan performed in

DHS after 11 min.

Figure 5.28 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTs containing a “shallow” artificial defect. Scan performed in

DHS after 20 hours 49 min.

Figure 5.29 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically

synthesised P3OP-pTS. Scan performed in DHS after 3 min

Figure 5.30 Current density distribution of coated Zinc-55 % Aluminium hot dip
coated steel electrochemically synthesised P3OP-pTS. Scan performed in DHS after

Left: 47 hours 38 min, Right: 68 hours 35 min.
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Figure 5.31 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS

after 14 min.

Figure 5.32 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS

after 2 hours 35 min.

Figure 5.33 SVET current density distribution and current vectors superimposed on
optical image of coated Zinc-55 % Aluminium hot dip coated steel electrochemically
synthesised P3OP-pTS containing a “deep” artificial defect. Scan performed in DHS

after 19 hours 49 min.

Figure 6.1 Raman spectroscopy of PAn/co-poly coated Pt. Dry and in-situ after

immersion in DHS with an OCP of 220 mV.

Figure 6.2 Raman spectroscopy of PAn/co-poly coated Pt immersed in DHS at OCP

for 24 hours under N, and ambient conditions.

Figure 6.3 Relative intensity ratio of bands at 1610 cm™/1590 cm™ as a function of

distance to a coating defect.

Figure 6.4 Raman spectra of PAn/co-poly on AA2024-T3 as a function of immersion

time in DHS performed under ambient conditions
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Figure 6.5 Optical image of scribed PAn/co-polymer coating on AA2024-T3 in DHS
after 15 min immersion using x10 magnification with area of Raman mapping are

superimposed.

Figure 6.6 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS
under ambient conditions with coating containing artificial defect. Spectra recorded
after 10 min immersion. Black: 250 um distance from defect, Red: At the very edge

of the coating, Blue: Point within the defect. Immersion time: 10 min.

Figure 6.7 In-situ Raman map of the peak area ratio of 1610 cm™/1590 cm™ of a
scribed PAn/co-poly on AA2024-T3 immersed in DHS. Peak area was obtained with
Gaussian peak fitting after intensity was normalised using the sum of the two peaks.
TL: 15 min, TR: 1 hour, ML: 1 hour 40 min, MR: 5 hours 25 min, BL: 6 hours, BR:

7 hours 30 min

Figure 6.8 Optical image of scribed PAn/co-poly coating on AA2024-T3 in DHS
after prior to immersion using x50 magnification with superimposed points were

Raman spectra was recorded.

Figure 6.9 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 relative to

an artificial defect recorded prior to immersion.

Figure 6.10 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS
under N, atmosphere with coating containing artificial defect. Spectra recorded after

15 min immersion.
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Figure 6.11 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS
under N, atmosphere with coating containing artificial defect. Spectra recorded after

60 min immersion.

Figure 6.12 In-situ Raman spectroscopy of PAn coated AA2024-T3 in DHS under N,
atmosphere with coating containing artificial defect. Spectra recorded after 3 hours

30 min immersion.

Figure 6.13 In-situ Raman spectroscopy of PAn/co-poly coated AA2024-T3 in DHS
under N, atmosphere with coating containing artificial defect. Spectra recorded after

7 hours immersion.
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ABSTRACT

Concern over the toxicity and environmental impact by use of chromate containing
coating coatings has fuelled efforts to find suitable replacements. One class of
materials considered as a potential replacement for chromate coatings are the
intrinsically conducting polymers (ICP’s). This thesis describes the synthesis and
characterization of a range of ICP materials with emphasis on producing processable
ICP and their use as corrosion protection coatings for aluminium alloy 2024-T3 and
Zn-55%Al- hot dipped coated steel, two substrates that commonly employ chromate
coatings for adequate protection. A general introduction to corrosion and ICP’s are
given in Chapter 1 with techniques employed to study corrosion inhibition detailed in

Chapter 2.

Processability of Polyaniline was afforded by making of composite material to
produce Polyaniline-HCSA/Poly(butyl acrylate-vinyl acetate) copolymer (PAn/co-
poly) possessing moderate conductivity and electroactivity (Chapter 3). PAn/co-poly
was highly soluble and could be applied as a coating to AA2024-T3 by airbrushing.
Polypyrrole was afforded processability by monomer substitution to produce soluble
Poly(3-octylpyrrole). Material synthesis was optimised to produce a maximum
conductivity for the soluble ICP that could be applied to a metal surface by
airbrushing or evaporative casting. Conductive, soluble P30OP was synthesised both

through electrochemical and chemical synthesis P3OP route
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Corrosion inhibition offered by ICP evaluated using Potentiodynamic polarisation
and Electrochemical Impedance spectroscopy (EIS) (Chapter 4) suggests an
interaction between the ICP coating and the underlying substrate. PAn/co-poly was
observed to provide an anodic shift to the OCP of coated AA2024-T3. Increasing R
and Ry during exposure suggested that the coating converted towards a less
conductive form. Exposure of conductive P30OP-ClO4 coated AA2024-T3 also

resulted in increasing R¢; overtime, ascribed to the formation of protective oxide.

Local corrosion behaviour within a coating defect was studied by SVET (Chapter 5).
SVET demonstrated that PAn/co-poly accelerated corrosion within a defect without
formation of protective oxide. Conductive fractions of P3OP exhibited decreasing
oxidation within coating defect overtime suggesting the formation of an oxidation
product that hinders further corrosion. Raman spectroscopy (Chapter 6) as well as
visual observations (Chapter 4 and 5) suggest that oxidation of the substrate was
promoted by the ICP that undergoes reduction. For P30OP this leads to lower
corrosion current density within surface a defect suggesting that P3OP does protect

against corrosion through anodic protection.
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