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Abstract  
 
Synchronization of data stream processing has a significant impact on performance of 

systems where processing of long sequences of data items needs to be done 

simultaneously. In earlier works on stream processing, synchronization has been 

discussed to a limited extent or has been completely overlooked. This work describes a 

formal model of synchronization in a data stream processing network. We use a notation 

of data stream processing networks to identify circumstances that necessitate 

synchronization. We also express processing of groups of data items in terms of database 

transactions within a data stream processing network. A technique similar to timestamp 

ordering of database transactions is used to solve the problems. A solution is presented as 

a set of rules that govern processing of groups of data items. A proof of correctness has 

been provided for the strategy used to solve the problems. 
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         Chapter 1 

                                                   Introduction  

In a number of applications data arrives in the form of a long sequence of items spanned 

over a long period of time. Such sequences, also called data streams require new data 

processing techniques different from techniques developed over the last two decades for 

relational database systems. These streams require processing in an online manner (Rastogi 

2002) where the arrival of a new data item immediately triggers its processing. Data 

streams are generated in applications including sensor networks, satellite and traffic 

monitoring systems, security monitoring, financial services, weather measurements and 

many other real-time applications. In these applications, arrival rate of data is very high and 

rapid. 

Effective processing of data streams is a difficult problem. Traditional database 

management systems (DBMS’s) are incapable of efficient handling of data streams (Arsu et 

al. 2002) due to a lack of online data stream processing algorithms and architectures that 

prefer batch oriented data processing. Many fundamental assumptions that are basis of 

database systems are not valid for stream-oriented systems (Tian, F. and DeWitt, D. J. 

2003). The continuous arrival of data requires something more than a DBMS. As data 

arrives in a stream it needs to be analyzed.  The arrival rate of data is very high in a stream 

and storing all the data will result in loss of memory and time.  
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The debate in the data management research community is about developing a general 

purpose data stream management system (DSMS). Some researchers refer to DBMS as ill 

equipped (Babu, S. and Widom, J. 2001) for processing data streams. Few resist updating 

today’s DBMS in the presence of data streams. In that case, many aspects of DBMS need to 

be reconsidered for processing streaming data. Vossough, E. (2004), claims there are no 

methods for a DBMS to handle synchronized processing of data streams. 

The increase of streaming data will require a data management system that fulfills all the 

requirements for processing data streams. One of the main factors in the increase of 

streaming data is sensor technology. Sensor technology is decreasing in cost day by day 

and becoming more affordable. This will result in sensors embedded in almost every device 

and thereby generating more streaming data. For example when we have sensor’s 

embedded in our mobiles then just by running a simple query, we would be able to find the 

current location of someone instead of calling and asking.  

The concept of DSMS is of a dedicated system for processing a new class of data 

processing applications, called stream-based applications. The work done in regard of 

stream processing ranges from efficient algorithms for data streams to complete data stream 

management systems such as Borealis (Abadi D. et al. 2005), STREAM (Babcock, B. et al. 

2003), Aurora (Carney. et al. 2002 and Cherniack, M. et al. 2003), NiagaraCQ (Chan, J. 

2000), Telegraph (Chandrasekaran, S. et al. 2003), Tribeca (Sulliovan, M. et al. 1996) and 

few others. 

1.1   The Problem  

In a data stream processing network, if data items are processed one by one - i.e. 

sequentially - then this is not practical. The processing rate of data items will be extremely 
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slow. Even though sequential processing doesn’t have any problems regarding 

synchronization, it is not feasible to apply this technique to a data stream. On the other 

hand, if data items are processed at the same time - i.e. simultaneously - then this makes 

processing more effective. The processing gets started immediately as data items arrive. 

But simultaneous processing involves circumstances where processing needs to be 

synchronized, otherwise it may result in incorrect execution of data items. We use a 

notation of data stream processing networks to identify circumstances that necessitate 

synchronization.  

1.2   Strategy and Objectives 

The synchronization method proposed in this work is defined as a set of rules that govern 

the processing of groups of data items. The rules synchronize the processing of data items 

at circumstances identified by this work. To prove the correctness of our approach, we will 

express processing of data items in a data stream network in terms of database transactions. 

The method used to check the execution of transactions for correctness will then be applied 

to our results. 

The main objectives of this research project are: 

 To perform a literature review on related work done in the area of stream processing 

and study previously proposed synchronization techniques for data streams. 

 To propose a new class of networks for processing data items in a stream. 

 To identify circumstances which require synchronization while processing data 

items simultaneously. 
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 To propose a solution in order to synchronize processing of groups of data items in 

the network. 

 To prove the correctness of the solution. 

1.3   Outline of the Thesis 

Following is the brief description of the remaining chapters presented in this thesis: 

 Chapter 2   Background and Related Work  

This chapter presents a background on stream processing and also some related 

work in respect to data streams.  

 Chapter 3   Data Stream Processing Network 

This chapter proposes a new class of networks called data stream processing 

networks. It defines the basic structure of the network and also computations 

performed within the network. It describes an entity called windows, together with 

details regarding some operations. 

 Chapter 4   Synchronization Problems 

This chapter identifies circumstances that require synchronization in a data stream 

processing network. It describes motivating examples showing consequences of not 

synchronizing the processing. This chapter shows how processing of data items in a 

data stream network can be expressed in terms of database transactions and 

interprets the motivating examples in terms of transactions. 
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 Chapter 5   Synchronization Strategy and Correctness  

This chapter presents a solution as a set of rules to synchronize processing of data 

items in a data stream processing network. It provides description of a regulator and 

collector and applies the rules to the motivating examples of chapter 4. It also 

provides a proof of correctness for the rules. 
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         Chapter 2 

 Background and Related Work  

The following review of the literature relevant to synchronization of data stream 

processing, is divided into two parts. The first part consists of three sections i.e. section 2.1 

Data Stream Processing, section 2.2 Adaptive Query Processing and section 2.3 Continuous 

Query Processing. These sections review the background research relevant to processing of 

data streams.  

The second part section 2.4 Synchronization Techniques and Related Work, examines the 

relevance of the background research with reference to synchronization of data stream 

processing.  

2.1   Data Stream Processing (DSP) 

The two major areas that contribute towards DSP are adaptive query processing (Levy 

2000) and continuous query processing (Terry, D. B. et al. 1992). At the moment, 

numerous research works provide information on different aspects of DSP. A 

comprehensive review of major contributions is included in (Arsu, A. et al. 2002), 

(Babcock, B. et al. 2003), (Carney. et al. 2002), (Cranor, C. et al. 2003), (Das, A. et al. 

2003), (Stonebraker, M. et al. 2003), and (Tucker, P. A. et al. 2003). A review of recent 

work is described in (Babcock, B. et al. 2002) and (Golab and Özsu 2003).  
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The approach in data stream processing is to start execution as soon as data item arrives in 

a stream and to process the maximum amount of data items at the same time. According to 

(Getta and Vossough 2004), methods for DSP should be reactive, continuous, adaptable 

and efficient. Reactivity means that processing of a data item should start immediately as it 

arrives in a stream. Continuity concerns the time to time recomputations of applications in 

order to update according to the changing contents of the stream. Adaptability allows for 

dynamically modifying a processing plan in reply to external factors, for example rapid 

change in the frequency of a stream. Efficiency concerns dictate that data processing rate 

must be higher than the data propagation rate. 

A brief summary of some of the related work done in the area of DSP is as follows: 

 Aurora is a DSMS built for a large distributed scale. It is a dataflow system that 

allows users to build query plans by arranging boxes (operators) and arrows 

(dataflow among operators). A box in a system accepts input streams and produces 

one or more output streams as arrows. Final outputs from boxes are streamed to 

other applications. The system represents a set of continuous queries as a loop-free 

directed graph of stream oriented operators. This is similar to the execution 

performed within our network.  

Aurora comprises operators such as a simple unary operator (Filter), a binary merge 

operator (Union), a mapping operator (Map), a time bound window sort (WSort), an 

aggregation operator (Tumble) and a join (Join). The users are allowed to define 

their own declarative queries in SQL and compile those queries into box and arrow 

model. 
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The main components of the Aurora system are the scheduler, storage manager and 

load shedder. The heart of the system is the scheduler that decides which operators 

to execute and in which order to execute them. It also gives special attention to 

issues like reducing operator scheduling and invocation overheads. The storage 

manager is designed for storing ordered queues of tuples and buffers the queues 

when main memory runs out.  The load shedder detects and handles overload 

situations. Load shedding (Tatbul, N. et al. 2003) is an important strategy for 

adapting to higher rates of data arrival. The input tuples are dropped based on some 

criterion such as quality of service (QoS) in Aurora. Each query in Aurora defines 

the processing requirements and QoS specifies query performance requirements. 

 QUAY (Lee, Ken C.K. et al 2004): QUAY (pronounced “key” meaning a platform 

over streams) is a data stream processing system that uses the chunking technique 

(Deshpande, A. et al. 1998 and Lee, Ken C.K. et al. 2002) for indexing queries. The 

chunking technique clusters and indexes both queries and data records in a unified 

way as chunks. This approach of indexing queries is different to approaches 

proposed in Eddy and NiagaraCQ. An adaptive selection-join arrangement for a 

huge number of selection-join queries is also proposed for processing window join 

operation from stream sources. The system architecture of QUAY consists of four 

cooperating modules, namely stream modules, a cross chunk join operation, a query 

registry and a set of programming interfaces. The stream module is for serving each 

individual data stream. The cross chunk join processor evaluates join queries. The 

query registry is a repository for query information. The set of programming 

interfaces is for providing access from stream applications.  
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 Borealis: A distributed stream processing engine and a successor to Aurora. 

Borealis is considered to be the first of the second generation stream processing 

engines (SPE’s), while the previously proposed SPE’s are assumed to be first 

generation. Borealis inherits the Aurora model (boxes and arrows) for specifying 

queries. An important addition to the Aurora query model is that Borealis has the 

capability of changing the semantics of a box on the fly. The boxes in Borealis are 

provided with special control lines. These lines carry control messages that contain 

revised box parameters and functions for changing box behaviour. 

The group of continuous queries submitted to Borealis can be seen as one big 

network of operators where processing is distributed to multiple sites. Each site runs 

a Borealis server where Query Processor (QP) - which is single site processor - 

forms the core piece for query execution to take place. The major run-time 

components of QP consist of the priority scheduler, box processors, storage 

manager and load shedder. The priority scheduler determines the order of box 

execution based on tuple priorities. The box processor changes the behaviour of the 

box, and each type of box is provided with one box processor. The storage manager 

is responsible for storage and retrieval of data. The load shedder discards low-

priority tuples when the node is overloaded. Xing, Y. et al (200) presents a 

correlation based load distribution algorithm for Borealis that aims at avoiding 

overload and minimizing end-to-end latency and maximizing load correlation. 

 STREAM: The STanford stREam datA Manager is a general purpose and a 

relation-based DSMS with an emphasis on memory management and approximate 
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query answering. The functionality and performance of STREAM is similar to a 

traditional DBMS but allows some or all data to be managed in the form of 

unbounded data streams. It supports CQL (i.e. continuous query language) as a 

declarative query language. The system operates in a manner that each operator 

works on a set of input data streams and produces an output stream. Data may be 

saved in a component called Scratch or may be discarded to the component called 

Throw. The current results are stored in the component called Store. The results 

may also be sent to output stream and are served as an input to other operators. The 

system uses a global scheduler that controls query execution operators. The 

scheduler uses a simple round-robin scheme for scheduling operators. The use of a 

scheduler not only minimizes total queue size of unpredictable streams but also 

reduces for example inaccuracy, latency and memory use. 

 Optimization of Data Steam Processing (Getta and Vossough 2004): This work 

describes a formal model for processing data streams and describes optimization 

techniques that can be applied to the model. One of the optimization techniques 

described is for efficient synchronization of elementary operations on data streams. 

Processing of data streams have been distinguished between logical and dataflow 

levels and is one of the main contributions of this work. This work considers using a 

scheduler for simultaneous processing of data streams. 

2.2   Adaptive Query Processing (AQP) 

Adaptive query processing allows for dynamically modifying a processing plan in reply to 

the external environment. The origins of AQP can be traced to the Telegraph Project. 
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Examples of this processing approach include Rivers (Arpaci–Dusseau, R. H. et al. 1999) 

and Eddies (Avnur, R. and Hellerstein, J. 2000). The key to telegraph is a continuously 

adaptive query processing engine. The engine gathers feedback from the environment and 

uses that feedback for determining its behaviour. A feedback to an adaptive system makes 

the processing more efficient. It allows the system to make better decisions by observing 

the results of multiple decisions. According to Babu, S. and Bizarro, P. (2005), adaptive 

query processing can be divided into the following three families: 

 Plan-based AQP Systems: AQP for traditional plan-based systems for example 

Tukwila (Ives, Z. et al. 1999). The Tukwila system supports AQP by performing 

dynamic data integration over autonomous data sources.  

 Continuous-Query –based AQP systems: AQP for long running continuous queries 

over data streams for example STREAM and NiagaraCQ.   

 Routing-based AQP systems: AQP for DBMS’s and continuous queries based on 

adaptive tuple routing where tuples are routed individually through operators for 

example Rivers and Eddies. 

A brief summary of some of the related work done in regard to AQP is as follows: 

 StreaMon: An Adaptive Engine for Stream Query Processing (Babu, S. and 

Widom, J. (2004)): It is the AQP engine of STREAM prototype data stream 

management system that uses CQL as the query language. The system consists of 

three generic components, an executor, a profiler and a reoptimizer. An executor 

runs query plans for producing results, a profiler collects and maintains statistics 

about the stream, and a reoptimizer ensures that the plans and memory usage are 
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most efficient for the current input. StreaMon also uses several techniques for 

supporting AQP including adaptive memory minimization, adaptive join ordering 

and adaptive caching for joins. Adaptive memory minimization reduces run-time 

memory requirements for continuous queries by exploiting stream data. Adaptive 

join ordering is used to pipeline multiway stream joins.  

 Tuple Routing Strategies for Distributed Eddies (Tian, F. and DeWitt, D. J. 2003): 

Routing tuples between operators of a distributed stream query plan have been used 

in many DSMS’s as an adaptive query optimization technique. A routing policy can 

have a significant impact on the performance of a system. The original paper on 

Eddies introduced the idea of routing tuples between operators as a form of query 

optimization. This work extends the concept of an Eddy to a distributed 

environment. This work also proposes and evaluates some practical routing policies 

for a distributed stream management system. Two performance metrics - average 

response time (ART) and maximum data rate (MRD) - are defined for response time 

of a tuple when it enters and leaves operators and system throughput.  

Eddy is a query processing operator that dynamically chooses the order of tuples in 

a query plan by making independent routing decisions per tuple. The making of 

routing decisions per tuple may be too expensive. Deshpande, A. (2004) performs 

the initial study of the overheads of Eddies.  

 Adaptive Stream Resource Management Using Kalman Filters (Jain, A. et al 2004): 

This work perceives stream resource management as fundamentally a filtering 

problem and proposes Kalman Filters as a general and adaptive filtering solution for 

conserving resources. The Kalman Filter is a stochastic, recursive data filtering 
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algorithm that can be used in a large variety of data-streaming applications. It is 

capable of adapting to various stream characteristics, sensor noise and time 

variance. A significant boost in performance can be achieved as the method does 

caching of dynamic procedures that can predict data reliably at the server without 

user involvement.  

 Adaptive Ordering of Pipelined Stream Filters (Babu, S. et al. 2004): The focus of 

this work is on the problem of ordering the filters adaptively for minimizing 

processing cost in an environment where stream and filter characteristics may 

change considerably. This work proposes an algorithm called A-Greedy (for 

Adaptive Greedy) that converges to an ordering within a small constant factor of 

optimal. One of the main features of the algorithm is that it monitors and responds 

to selectivities that are correlated across non independent filters. This provides a 

strong quality guarantee but may result in run-time overhead.  This work also 

identifies a three-way tradeoff among provable convergence to good ordering, run-

time overhead and speed of adaptivity. A collection of different variants of A-

Greedy are also developed that lie at different points for the tradeoff spectrum. 

 Adaptive Filters for Continuous Queries Over Distributed Data Streams (Madden, 

S. et al. 2002): This method reduces the overhead of a centralized processor that 

monitors continuous queries in an environment where distributed data sources 

continuously cause stream updates. The filters installed at remote data sources adapt 

to changing conditions for minimizing stream rate while guaranteeing that all 

continuous queries receive the necessary updates for providing answers of adequate 

precision. This method enables an application to trade precision for communication 
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overhead at a fine granularity by individually adjusting the precision constraints of 

continuous queries over streams. This work also demonstrates the effectiveness of 

the method for achieving low communication overhead and compares the method 

with other similar methods. This method relies on the use of system schedulers. 

2.3   Continuous Query Processing (CQP) 

Continuous and one-time queries (Terry, D. B. et al. 1992) are two important types of 

queries that can be related to a data stream model. One-time queries are a class of queries 

that includes traditional DBMS queries. They are evaluated once over a point in time 

snapshot of the data set while providing answers to the user. In comparison, continuous 

queries are evaluated continuously as data streams continue to arrive. The answer of a 

continuous query always reflects the stream data seen so far and are stored or updated as 

new data arrives.  

A brief summary of some of the related work done in area of CQP is as follows: 

 Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al. 

2004): The “Dynamic Plan Migration” is about transforming from one query plan to 

a semantically similar but more effective plan.  An effective migration plan ensures 

that results have not been altered during or after the migration process. For solving 

problems dynamically during migration, two types of strategies i.e. moving state 

strategy and parallel track strategy have been proposed. The moving state strategy 

assures timestamp order preservation for the tuples. The parallel track strategy is 

used for having correct results without any changes. The problems defined are for 

example duplication of tuples and incorrect order of results.  
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 Data Stream Management for Historical XML Data (Bose, S. 2004): This work 

presents a framework for continuous querying of time-varying streamed XML data. 

The model defined differs from other data stream processing models in terms of 

query language and data processing. The query language used is XCQL, which 

works on multiple XML data streams and is able to correlate data. This framework 

considers input data from a wide variety of streaming data sources and has the 

ability to synchronize between streams by issuing coincidence queries. 

 Tapestry (Terry, D. B. et al. 1992): This system used continuous queries for 

content-based filtering over an append-only database. The database was created for 

email and bulletin board messages. A subset of SQL with some restrictions called 

Tapestry query language (TQL) was used to provide efficient evaluation and 

append-only query results. 

 Tribeca is one of the early special purpose systems developed for on-line traffic 

monitoring. It provided restricted querying capabilities over network packet streams 

with a simple query language. It supports windows and a set of operators adapted 

from relational algebra. 

 NiagaraCQ is a continuous query system that permits continuous XML queries 

to be presented over dynamic web content. It was built in regard to the Niagara 

Internet Query System (Naughton, J. F. et al. 2001). It considers continuous queries 

that transform a passive web page into an active environment that can support 

millions of queries. This model introduces predicate grouping and group 

optimization techniques for addressing scalability in terms of the number of queries. 
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Grouping queries shares common computations and can reduce input/output cost. 

NiagaraCQ uses an incremental group optimization strategy which dynamically 

regroups queries. If implemented in an internet environment NiagaraCQ uses a 

system of continuous query mangers, event detectors and data managers. The 

system performs well in an internet environment but can be very costly in a 

distributed environment because of the high volumes of data.  

2.4   Synchronization Techniques and Related Work  

Synchronization is a topic which still needs to be given more consideration in presence of 

data streams. In previous work on stream processing, synchronization has been discussed 

either to a limited extent or has been completely overlooked. Vossough, E. (2004), claims 

there are no methods for a DBMS to handle synchronized processing of data streams.  

As stream applications rely on shared data and computations, where data may be in a table 

is updated by one query and read by the other. This sharing may result in data 

inconsistencies. The uniqueness of this work is that mainly focus on synchronization and 

identifies circumstances where processing needs to be synchronized. 

After going through some of the major work performed for stream processing; now we 

examine the relevance of the background research with reference to synchronization of data 

stream processing: 

 In STREAM operators are scheduled for execution by a central scheduler. During 

execution, an operator reads data from its input queues and writes results to its 

output queues. The scheduler dynamically determines an execution period for an 
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operation. When the period expires the operator returns the control back to the 

scheduler. The period of execution may be based on time or number of tuples. A 

need for synchronization within operators while scheduling multiple query plans is 

discussed but overlooked in presence of other major issues like memory 

management.   

The heart of our solution is the regulator which is one of the synchronization 

assistants. The goals of using a regulator are to synchronize the processing and to 

remove any possibility that leads towards wrong results. The synchronization is 

performed in a way that an operation requests the regulator for executing at 

circumstances where processing needs to be synchronized. The regulator then 

performs certain checks in order to allow or stop a data item from executing further. 

We use another synchronization assistant which is a container called collector. It is 

a special purpose container which collects timestamps of data items as a data item is 

allocated a timestamp. The checks are performed by the regulator on the collector. 

 The work by Getta and Vossough (2004) is geared towards optimizing stream 

processing where one of the optimizing techniques is regarding efficient 

synchronization of elementary operations on data streams. A scheduler is defined 

which can be considered as a formal model for concurrent processing of data 

streams and not as a hypothetical implementation. Running computations are 

represented in terms of a scheduling graph. The graph is dynamically maintained 

during the computations of dataflow expressions. Scheduling quality in the graph is 

measured by the total number of dashed edges. If the graph contains no edges then it 

implies no conflicts and no blocking of operations. 
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One of the similarities to our work is of showing computations on data streams 

implemented as flows of data items among the elementary operations. The concept 

of translating an expression into a data stream processing network is also similar to 

our work. The only difference is that we first translate an expression into a syntax 

tree and then to a network. This work derives data stream expressions from the 

syntax tree and then uses those expressions for creation of a network. 

 Routing Tuple is used in many DSMS’s as an adaptive query optimization 

technique for distributed stream query plan between operators. A model for 

distributed stream query plan is defined as a set of operators connected by a network 

where input tuples are added to a first-come first-served queue. This work describes 

a distributed symmetric join algorithm which implements a join operator with for 

two input streams – i.e. A  B.  First an input tuple from stream A is processed by 

an operator which maintains a sliding window for stream A, then the tuple is sent to 

the operator that joins the tuple with window of stream B. A three way join A  B 

 C was also defined. Two different joins were performed on the sliding window of 

stream B – the right side join of A  B and a left side join of B  C.  

Eddies relates to our work as it implements a network of simple operators for 

processing data streams. 

 In Aurora, the data flows through a loop-free system of boxes i.e. operators. The 

way data gets processed within the boxes is not clear. The output of the box may be 

shared by multiple queries or even a single query for merging intermediate 

computations. This is achieved through one of the boxes called WaitFor box. This 
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box buffers each tuple t on an input stream until a tuple arrives on the second input 

stream that with t satisfies P. The syntax of WaitFor is shown below: 

WaitFor (P: Predicate, T: Timeout) 

Incase of a read operation where a read must follow an update, the WaitFor buffers 

the read requests until a tuple output by the Update box indicates that read operation 

can proceed. Now in a situation where the Update box may not produce any results 

then the WaitFor box will wait forever. No strategies are defined for such kind of 

possibilities. 

 Adaptive caching for multiway joins avoids recomputations of intermediate result 

and is similar to one of the problems described by this work. One more similarity to 

our work is the use of sliding windows. 

 Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al. 

2004) is about transforming from one query plan to a semantically similar but more 

effective plan. They describe problems which are conceptually similar to the 

problems defined in our work but are in the context of dynamic plan migration. The 

problems defined are for example duplication of tuples and incorrect order of 

results. We use a technique similar to timestamp ordering of database transactions 

for solving the problems. A solution is presented as a set of rules that govern 

processing of individual data items. 
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        Chapter 3 

  Data Stream Processing Networks 

This chapter proposes a new class of networks called Data Stream Processing Networks 

(DSPN). The first section defines basic structure and the main components of the network. 

It also deals with computations performed within the network along with details regarding 

some operations. The second section describes an entity called windows. The third and last 

section provides visualization of sample networks.  

3.1 Network Model 

We define a formal model for processing of groups of data items in a DSPN. The network 

is defined as a directed graph with set of nodes and edges. The formal definition of the 

network is as follows:   

Definition: 

A data stream processing network is a directed graph G = (n,e) where n is a set of nodes - 

i.e. n = (w ∪ d ∪ m) and e is a set of edges – i.e. e = (e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5) where e1 ⊆ (w × 

w), e2 ⊆ (d × w), e3 ⊆ (w × d), e4 ⊆ (w × m), e5 ⊆ (m × w). 

In terms of nodes, node w represents a set of elementary operations, node d represents a set 

of windows and node m represents a set of merge points. In case of edges, e1 ⊆ (w × w) 
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Figure 3.1: Upon arrival, a group of data items s is recorded to a window over an  
                    input stream. 

 

represents flow of data between two operations, e2 ⊆ (d × w) represents flow of data from a 

window to an operation, e3 ⊆ (w × d) represents flow of data from an operation to a 

window, e4 ⊆ (w × m) represents flow of data from an operation to a merge point, e5 ⊆ (m × 

w) represents flow of data from a merge point to an operation. 

3.1.2   Components 

The network represents operations through rectangles and windows through parallelograms. 

A window d is an ordered sequence of a group of data items arriving at different times. 

Whenever a group of data item arrives in a stream, it is recorded to a window over an input 

stream as shown in figure 3.1. More details on windows are provided in section 3.2.   

The network also has two special operations called merge and write. Merge is represented 

through a black square called a merge point m whereas write is denoted by a large dot 

called a writer. A writer records contents of every group of data items into the windows. 

Section 3.1.4 provides more details on merge and write. 

Edges are used to represent data flows between operations, windows and merge points. For 

example when a writer records the contents of a data item into a window, then an edge 
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Figure 3.2: An edge from a writer to a window represents a write. 

 
 

 
 

 
 
 

Figure 3.3: An edge from a window to an operation represents a read. 
        

represents the data flow from that writer to the particular window as shown in figure 3.2. 

Similarly when an operation reads from a window then an edge represents the data flow 

from that window to the particular operation as shown in figure 3.3. 

3.1.3   Computation 

An operation in a data stream processing network accepts a group of data items as input and 

always produces output. The output from an operation is also a group of data items. The 

output from an operation becomes input for other operations. 
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Figure 3.4: An operation with a group of data items as input and produces groups of  

                   data items as output. 

This allows for parallel computation in the network as the output of an operation becomes 

an input for different operations at the same time. In circumstances where an operation 

produces an empty group of data items as output, the empty group is provided as an input 

to the rest of the operations in a sequence until the empty group gets recorded to the 

window containing the final results. 

3.1.4 Operations 

Figure 3.4 shows basic computation performed by an operation that accepts a group of data 

items r as input then reads from a window ws and produces a group of outputs. Every 

output contains two indicators. The first indicator specifies the starting of the output 

whereas the second specifies completion of an output. There can be circumstances where an 

operation produces an empty group of data items as output but still has the two indicators. 

The data stream processing network also contains the following two special operations: 
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Figure 3.5: A writer records contents of a group of data items into a window. 

 Write 

The contents of every group of data items are recorded into the windows by the special 

operation called write. Figure 3.5 shows an example where a group of data item [r] upon 

arrival is recorded to a window over an input stream by the writer. The insertion of a new 

group of data items - i.e. positive data items r+ - results in deletion of an old group of data 

items - i.e. negative data items r−. An operation in that sequence then processes a group of 

positive data items r+ and negative data items r−, which is basically a modification of the 

window caused by the arrival of new group of data items. 

 Merge  

Merge is the only operation in the network which accepts more than one group of data 

items as input. Consider a situation where two groups of data items [r1] and [r2]   go through 

the merge point. After going through merge operation, the two groups are processed as [r1] 

[r2]. The order in which two groups arrived at merge point, the merging is done similar to 

 

 

[r] [r− ,r+]  
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Figure 3.6: A situation where merge is performed on two groups of data items. 

that order. Figure 3.6 shows [r1] and [r2] going through the merge point and then processed 

by operation α as [r1] [r2]. 

3.2   Windows  

An ordered sequence of a group of data items arriving at different times is called a window. 

The windows used in this work are sliding windows. These windows are of fixed length 

and are composed of two sliding end points. The window moves as a group of data items 

arrives and is appended to it. This movement results in the deletion of an old group of data 

items from the window. The new group is referred to as a positive group of data items 

whereas the deleted group is referred to as a negative group of data items.  

As soon as a group of data item arrives in a stream, it is recorded to a window over an input 

stream. There are also windows for intermediate and final results. For example if a group of 

data items arrives in stream r, it is recorded to the window for input data stream wr. The 

intermediate result of processing of that group of data items is recorded into window wtemp. 

The final result of the group of data items is recorded into window wout. 

α 
[r1][r2]

p 

[r1] 

[r2] 
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     Figure 3.7: A situation where many operations read from a window. 

3.2.1   Multiple Operations on a Window 

It is also possible that many operations read from a window at the same time. For example 

figure 3.7 shows the output of data item r1 is recorded to a window which is then read by 

data items r2, r3 and r4.  

3.3   Visualization of the Network 

Figure 3.8 and 3.9 provide visualizations of sample data stream processing networks. We 

get these networks by translating an expression into a data stream processing network. 

Section 3.3.2 describes the method which is used to translate an expression with two inputs 

and one output into a data stream processing network. 

3.3.1   Sample Networks 

For the sample networks we have taken into account relational algebra and arithmetic 

expressions. We consider a class of expressions where an operation in the expression 
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     Figure 3.8: A data stream processing network for a relational algebra expression  
 
                        [(r  s) − t]. 
 

accepts a maximum of two inputs and produces just one output. The two inputs include the 

input data item and the contents recorded in an output window.  

The expression used for figure 3.8 is [(r  s) − t], which is a relational algebra expression.  

This expression contains two operations i.e. join and minus and there are three operands r, s 

and t. Each operand in the expression is considered as a single stream. In terms of the 

sample network, group of data items arriving in stream r, s and t are termed as dr, ds and dt 

respectively. All these groups are recorded in their respective windows wr, ws and wt as 

soon as they arrive   

According to the expression there is a join between the operands r and s and then minus is 

used between the result of join and the operand t. When a group of data item dr arrives at  
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       Figure 3.9: A data stream processing network for an arithmetic expression  
 
                          [(a + b) − (y + z)]. 

stream r, join operation of dr obtains the contents of ds from ws and performs join. The 

result of the join is then recorded in window wtemp. Now the minus operation of dr obtains 

the contents of dt from wt and performs minus. The final result of the expression is recorded 

in window wout. The same procedure is repeated at stream s when a group of data items ds 

arrive and then final results of the expression are recorded to wout. When a group of data 

items dt arrive at stream t then minus operation of dt obtains the result of join of dr or ds 

from w temp and performs minus. The final result is then recorded in window wout. 

On the other hand, the expression used for figure 3.9 is an arithmetic expression [(a + b) − 

(y + z)]. It consists of three operations and four operands a, b, y and z. The three operations 

include two additions and one subtraction. The network constructed for this expression 

would be different to the sample network of figure 3.8, as the arithmetic expression for this 
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network contains an extra operand and operation. There will be two temporary windows 

used, the first will contain the result of (a + b) and the second will have the result of (y + z). 

According to the expression there are two plus signs between the operands r, s and 

operands y, z. The minus sign is then used between the results of two additions. When a 

group of data item da arrives at stream a, plus sign of da obtains the contents of db from wb 

and performs addition. The result of addition is then recorded in window wtemp. Now the 

minus sign of da obtains the result of (y + z) from wtemp and performs subtraction. The final 

result of the expression is then recorded in window wout. The same process is repeated 

when groups of data items db, dy and dz arrive at stream b, y and z respectively. 

In a data stream processing network, if processing of groups of data items is performed in a 

simultaneous manner then there are circumstances where processing needs to be 

synchronized for obtaining correct results. In the next chapter, we present examples that 

necessitate synchronization for processing groups of data items in a data stream processing 

network. 

3.3.2   Translation 

 The following method is used to translate an expression with two inputs and one output 

into a data stream processing network. Let e be an expression and Te be a syntax tree for 

that expression with nodes representing operators and leaf nodes representing operands for 

the operators.  

Each operand i.e. leaf node of Te is considered as a stream si where si ∈{s1, …, sn}. Also 

consider A1, … , An be a sequence of operations for every stream si from parent node to root 
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node of Te. The input data item of stream si is first processed by A1 operation from the 

sequence of operations and then rest of the operations in the sequence process the output of 

preceding operation.  

For every stream si, do the following: 

1. Add a writer and a window for the input data item di appended to the stream si. 

2. Provide operation A1 with (di, wsi +1) where di is the first argument and wsi +1 is the second 

argument. 

3. Add a writer for the out put of every operation A until root node operation of An and an 

intermediate window (wtemp) for arguments that contribute towards that window. 

4. For all other A’s i.e. A2 till root node An in the sequence provide A with ({wtemp}, wsi +n) 

where wtemp the previous output and wsi +n the other leaf node as the second argument. 

5. Add a writer and an output window (wout) for every data stream si after root node 

operation An. 

6. For step 1 and 2 place an edge from the writer towards the window at the input stream 

and again an edge from the writer towards the operatoin A1. Place edges from A1, … , An for 

every stream si showing data flow among operations. For step 3 place an edge from the 

writer of every si to the intermediate window wtemp. For any operation A1, … , An place an 

edge from window w to the operation if that operation reads from any window. For step 5 

place an edge from the writer to the window (wout). 
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         Chapter 4 

    Synchronization Problems 

This chapter identifies the circumstances that necessitate synchronization in data stream 

processing networks. The chapter starts with an overview of sequential and simultaneous 

processing of data items in a data stream processing network. The next section presents 

motivating examples. The chapter also shows how the processing of data items in a data 

stream processing network can be expressed in the terms of database transactions.  

4.1   Data Processing Techniques 

In the sequential technique, groups of data items are processed one at a time. A group of 

data item is processed only when its predecessor group completes processing. If groups of 

data items are processed one by one - i.e. sequentially then processing rate of groups of data 

items will be extremely slow. As there is no switching of processing between operations of 

different groups of data items, this is why serial processing does not have any problems 

regarding synchronization. 

On the other hand, the simultaneous technique involves processing all groups of data items 

at the same time. The processing of a group of data items starts as soon as it arrives in a 

stream. If simultaneous processing involves a single processor then the processor shares 

time between operations of different groups of data items. It switches processing from one 
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operation to the other of different groups of data items. In that case there are places where 

processing needs to be synchronized in order to get correct results.  

Processing long sequences of data items in a sequential manner is not feasible as processing 

rate becomes extremely slow. Instead it should be done in simultaneous way which makes 

processing more effective by processing groups of data items at the same time. For the rest 

of the thesis we will focus on simultaneous processing. 

4.2   Motivating Examples 

In a data stream processing network, if processing of groups of data items is performed in a 

simultaneous manner then there are circumstances that require synchronization for 

obtaining correct results. In the following examples we present situations that occur if 

synchronization is not considered.  

4.2.1   Example 1 

Consider two groups of data items dr and ds appended in more or less the same period of 

time to the streams r and s. Firstly the two groups are recorded in the respective windows 

wr and ws. Then a join operation on dr and ws is executed at the same time as the join 

operation on ds and wr. If dr and ds were already recorded in windows wr and ws then this 

leads towards computing the results of join dr and ds twice as shown in figure 4.1.  

The same possibility may happen twice in figure 4.2 which contains four groups of data 

items including da, db, dy and dz. Groups of data items da and db are appended to streams a 

and b whereas groups of data items dy and dz are appended to streams y and z in more or  
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Figure 4.1: Data stream processing network for a relational algebra expression  
                    of example 1. 
 

 

Figure 4.2: Data stream processing network for an arithmetic expression of 
                    example 1. 
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less the same period of time. All groups of data items are recorded to their respective 

windows wa, wb, wy and wz.  

The first posibility may occur when join operation on da and wb is executed at the same 

time as the join operation on db and wa assuming da and db were already recorded in 

windows wa and wb. The second posibility may take place when join operation on dy and wz 

is executed at the same time as the join operation on dz and wy assuming dy and dz were 

already recorded in windows wy and wz. 

4.2.2   Example 2 

Consider a case where two groups of data items dr and ds are recorded in window wtemp 

after going through a sequence of operations. Now the order in which the two groups are 

recorded may not be in accordance with the stream arrival. The same possibility may also 

occur at wout, where the final result from each stream is recorded as shown in figure 4.3. 

In figure 4.4, both temporary windows wtemp and the window wout have the same risk where 

results may not be recorded in accordance with the stream arrival.  

4.2.3   Example 3 

Consider two groups of data items dr and ds are appended to streams r and s and start 

executing. As execution starts, one more group dt arrives and is appended to stream t. 

According to the expression [(r  s) − t], a join operation is performed on dr and ds, 

whereas dt requires reading the results of dr and ds after the join is performed. The result of 

the join gets recorded in wtemp, which is then read by dt. Now there is a possibility that the  
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Figure 4.3: Data stream processing network for a relational algebra expression              
                    of example 2. 
 

 

Figure 4.4: Data stream processing network for an arithmetic expression of     
                    example 2. 
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Figure 4.5: Data stream processing network for a relational algebra expression                 
                    of example 3. 
 

 

Figure 4.6: Data stream processing network for an arithmetic expression of     
                    example 3. 
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read operation of dt may read wtemp before the result of the join is recorded, as shown in 

figure 4.5. 

In figure 4.6, both temporary windows contain the same possibility. The temporary window 

where result of join between da and db is to be recorded - may be read by either dy or dz 

before the result of the join is recorded. The same can happen with the temporary window 

containing result of join between dy and dz that it may be read by either da or db before the 

result of join gets recorded. 

4.3    Transactional Interpretation of Data Stream Processing 

A database transaction is a collection of operations for performing a specific task 

(Bernstein et al. 1987). If a sequence of input data items is processed concurrently then 

synchronization of data streams is similar to the synchronization of database transactions.  

In our case, a body of transaction is sequence of reads and writes performed at different 

windows as shown in figure 4.7 and 4.8. A transaction starts when a group of data items 

gets appended to a stream and is recorded to a window on the input data stream. The group 

then goes through a sequence of reads and writes and finally gets recorded to the window 

with the final results. This becomes an end of a transaction. In some cases when an 

operation produces an empty group of data items then that empty group is provided as an 

input to the rest of the operations in that sequence. When the empty group of data items is 

recorded to the window containing final results, then in that case it becomes an end of the 

transaction. This transformation of execution of groups of data items to database 

transactions is called as transactional interpretation of data stream processing. 
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Figure 4.7: Data stream processing network for a relational algebra expression with  
                    sequences of transactional operations. 
 

 

Figure 4.8: Data stream processing network for an arithmetic expression with  
                    sequences of transactional operations. 
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         Figure 4.9: A situation where a transaction splits into two sub transactions. 

For example in figure 4.1, if a group of data items dr arrives, gets appended to stream r and 

is recorded into the window over the input queue then that’s where a transaction starts. 

According to the expression [(r  s) − t], a join is performed on dr and ws, but before that dr 

requires reading the contents of ws. After a join is performed, dr records the results into the 

temporary window and so on until dr comes to the resultant window wout. The moment dr 

records the final result in wout is where a transaction comes to an end. All the read and write 

operations on windows triggered by processing of dr constitute the body of transaction. 

This way processing of a group of data items in a stream is interpreted as a transaction.  

4.3.1   Merge and Split 

In terms of transactions, merge is a set of two individual transactions Ti and Tj. The two 

transactions perform their operations individually until they arrive at some point p. At point 

p these two transactions start performing their operations as TiTj. The merging is performed 

according to the order in which the two transactions arrived at point p.  

 Split case on the other side is of a single transaction which at some point splits into two 

sub transactions. Consider the transaction T of figure 4.9 with a sequence of read and write 
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Figure 4.10: Schedule for data stream processing network of figure 4.4. 

operations. The transaction splits into two sub transactions T1 and T2 after some processing. 

Each split transaction is given a special number to make them distinct from each other. The 

sub transactions run sequentially in some order and perform their operations. 

4.4   Revised Motivating Examples   

On the basis of information on how we get these transactions out of our network, we would 

now take the motivating examples from section 4.2 and explain them in terms of 

transactions. Consider each stream in figure 4.7 as a transaction; if all these transactions run 

simultaneously on a single processor then we will encounter the conflicts presented in the 

schedule of figure 4.10.  
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Figure 4.11: Serialization graph for Ti and Tj, where Ti is accessed by Tj. 

A schedule is used for showing the order in which transactions are processed. The schedule 

of figure 4.10 consists of three transactions T1, T2 and T3 for streams r, s and t respectively. 

As defined earlier, each transaction is a sequence of reads and writes where T1 consists of 

operations w1, r1, w2, r2, and w3, T2 consists of operations w4, r3, w5, r4, and w6 and T3 consists 

of operations w7, r5 and w8.  

A concurrent execution is considered to be correct if its schedule is serializable to a serial 

schedule i.e. running all transactions simultaneously will produce the same results as if 

these transactions would have been executed serially in some order. The serializability in a 

schedule can be evaluated by using a graph known as a serialization graph. In a 

serialization graph, each transaction of the schedule is represented as a node. An edge is 

created between two nodes when a data item is accessed by two different transactions, at 

least one of which is in write mode. The edge is directed towards the node representing the 

transaction which accessed the data item.  

Consider a schedule with two transactions Ti and Tj, where Ti is accessed by Tj and at least 

one transaction in write mode. In the serialization graph an edge will be created from the 

node Ti towards node Tj as shown in figure 4.11.   

  Ti  Tj 
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        Figure 4.12: Serialization graph for schedule of figure 4.10 contains a cycle.  

Now if at some point Tj is accessed by Ti then an edge is placed from node of Tj towards 

the node of Ti. This results in creation of a cycle between the two nodes. If the serialization 

graph of a schedule contains a cycle then execution is not considered as serializable. More 

details on serializability and its related issues can be found in Bernstein et al. (1987). 

The serialization graph for the schedule of figure 4.10 is shown in figure 4.12. The first 

edge gets created when T2 reads contents of T1. When T1 reads T2 then we get a cycle in the 

serialization graph. We get more edges when T3 is accessed by T1 and T2. 
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         Chapter 5 

 Synchronization Strategy and Correctness 

This chapter presents a set of rules to synchronize processing of data items in a data stream 

processing network. The chapter starts with the description of a collector and a regulator. 

The next section defines a set of synchronization rules. A section applies the 

synchronization rules to motivating examples of chapter 4. The chapter concludes with a 

proof of correctness. 

5.1    Synchronization Assistants 

In order to synchronize execution of groups of data items in a data stream network, the 

concept of two assistants is introduced. These assistants comprise of a container called 

collector and a process called regulator.  

5.1.1   Collector 

A collector is a special purpose container which collects timestamps of data items. It is 

attached to windows and merge points. Initially a collector contains no timestamp. When a 

group of data items arrive and is allocated a timestamp, then that timestamp is also placed 

into collectors attached to windows. This includes windows with intermediate and final 

results where a group of data items is to be recorded. The timestamp is also placed into 

collectors attached to merge points from which that group of data items goes through. A 
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collector attached to a window or merge point keeps a timestamp of a group of data items 

until the output of that group is not recorded into that window or the group doesn’t go 

through that merge point.  

5.1.2   Regulator 

A regulator is a process that performs checks at temporary windows and at merge points. A 

check is performed before an operation reads a temporary window or when a group of data 

items reaches a merge point. The purpose of performing a check on a window is to make 

sure that a window is only read by an operation of a group of data items when all 

previously arrived groups with smaller timestamps have recorded their contents into that 

window. On the other side, a check is performed at a merge point to allow a group to pass 

through the merge point only when previously arrived groups with smaller timestamps have 

gone through that merge point. 

When a regulator receives a request by an operation to read the contents of a window then 

it takes the timestamp of the group of data items executing that operation and performs a 

check on the collector of the window which is to be read. Similar action is taken by the 

regulator on the collector at the merge point, when a group arrives at a merge point. By 

performing a check, the regulator searches for a smaller timestamp in the collector. A 

collector contains timestamps of already arrived groups which are still going through some 

processing. The timestamps in the collector are compared to the timestamp of a group 

which requires reading the contents of a window or timestamp of a group at the merge 

point.  
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At both places - i.e. at a window or a merge point - if evaluation of a check returns true then 

the regulator assumes that all groups of data items with smaller timestamps have been 

processed. The regulator then allows a group to read the contents of a window or a group to 

pass through the merge point. If evaluation of a check returns false then the regulator 

doesn’t allow a group to read the window or pass through the merge point.  

The regulator then puts the timestamp of that group in a separate queue named a waiting 

queue. A group of data items whose timestamp is placed into the waiting queue is resumed 

for processing by the regulator only when previously arrived groups with smaller 

timestamps have been processed. In such a case, the regulator takes the timestamp of the 

group out of the waiting queue and sends a request to the operation to resume its 

processing.  

The regulator also removes the timestamp of groups of data items from the collector. As 

soon as the contents of a group are recorded to a window, its timestamp is deleted by the 

regulator from the collector attached to that window. On the other hand, when a group of 

data items pass through a merge point, its timestamp is also deleted from the collector 

attached to that merge point.   

5.2    Synchronization Rules 

The following set of synchronization rules is proposed to synchronize processing of groups 

of data items:  
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Rule 1  

Upon arrival every group of data items is provided with a unique timestamp. The 

timestamp is a number assigned in an increasing sequence and remains same throughout the 

execution.  

Rule 2 

A group of data items can only “see” other groups of data items with smaller timestamps 

i.e. all previously arrived groups are visible to a group. For example if an operation reads 

from a window then it will always read groups with smaller timestamp than timestamp of 

the group performing the operation. 

Rule 3 

Every window and merge point is supplied with a collector and a regulator excluding 

windows at input data streams and windows with only write operations. 

Rule 4 

A group of data items is not released for processing until its timestamp gets recorded into 

the collectors attached to windows and merge points. This includes windows where 

contents of that group are to be recorded and include merge points which that group has to 

go through. 
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Rule 5 

The following are the checks performed by the regulator when an operation attempts to 

read a window or a group reaches at a merge point:- 

At a temporary window 

The following check is performed before execution of a read operation at a window:  

if there exists a timestamp in collector   <   timestamp of group reading window  

then put timestamp of the group in a waiting queue             

else execute read operation 

At a merge point: 

When a group of data items arrives at a merge point, the following check is performed:- 

if there exists a timestamp in collector   <   timestamp of group at merge point                

then put timestamp of the group in a waiting queue             

else allow group to pass through merge point 

5.3   Solution 

We apply the synchronization rules of section 5.2 to the motivating examples of chapter 4: 

5.3.1   Solution 1  

The situation described in the example of section 4.2.1, where results were computed twice, 

is eliminated because of rule 2. One of the groups from dr and ds that arrived earlier cannot 
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see the other group due to a higher timestamp. Because of this a join is performed on 

windows with different contents and no computation is performed twice. 

5.3.2 Solution 2  

In the example of section 4.2.2, the task was to arrange the order of the results recorded in 

intermediate or final windows according to stream arrival. This would be quite simple if the 

arrival time of the group of data items is known. This is already known because we use 

timestamps.  

For the situation described in section 4.2.2, results recorded in wtemp and wout are not 

according to stream arrival but can be easily reordered according to timestamps.  

5.3.3   Solution 3  

In order to solve the problem of section 4.2.3, the regulator refers to the appropriate 

collector to perform the check. If in the collector, the regulator finds smaller timestamps 

then this indicates that there are still groups of data items being processed and the read 

operation cannot execute at this moment. The regulator puts the group performing the read 

operation in a waiting queue and resumes processing only when all groups with smaller 

timestamp are recorded into the window.  

For the example in section 4.2.3, the regulator checks for smaller timestamps in the 

collectors of both dr and ds. If the regulator finds smaller timestamps then this means that 

results have not been recorded. The regulator puts dt in a waiting queue until the processing 

of both dr and ds gets completed and their values are recorded into the temporary window 

wtemp.  
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5.3.4   Merge and Split  

In section 4.3.1 of chapter 4, the merging was performed according to the order in which 

the two transactions arrived at a merge point. This instead should always be done according 

to the arrival order of the two transactions. This leads towards having no problems 

regarding synchronization. 

In case of split of a transaction, we characterize the sub transactions with the main 

transaction as a parent-child relation. The scope of the child transactions remains within the 

parent transaction. After splitting the sub transactions run sequentially in some order and 

results in having no problems regarding synchronization. The order for the sub transactions 

does not really matter as they will have the same timestamp.  

5.4   Correctness 

In this section, we prove that applying synchronization rules always results in a correct 

execution. As in chapter 4 we interpreted processing of data items in a data stream network 

in terms of database transactions. Now we will use the method to check execution of 

transactions for their correctness and will apply it to the execution performed through 

synchronization rules.  

For correct execution of transactions, execution should always be conflict serializable i.e. in 

simultaneously running transactions the conflicting operations must be processed in the 

same order as they would have been processed in a serial execution. We will prove that set 

of synchronization rules will produce conflict serializable execution. 
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The synchronization rules proposed in section 5.2 are for synchronizing a data stream 

network, whereas the method we apply to check the correctness of the rules belongs to 

database transactions. In order to prove correctness for the rules, we modify the rules in 

accordance to database transactions. We then apply the synchronization rules to database 

transactions to witness the effect made on execution of transactions.  

5.4.1   Transactional Interpretation of Rules 

The synchronization rules from section 5.2 are translated in terms of transactions in order to 

synchronize processing of database transactions. There have been certain changes made to 

the rules in order to apply them on transactions. For instance, the rules made for 

synchronizing a data stream network had a concept of a window, used for storage of data 

items. In the rules for synchronizing processing of database transactions we use data 

containers for storage purpose. The concept of merge point is deleted as it is not valid for 

database transactions. Regulators and collectors will be placed only at data containers. 

Checks by regulators will only be performed at collectors attached to data containers. The 

following are the modified set of synchronization rules:  

Rule 1  

Every transaction is provided with a unique timestamp. The timestamp of a transaction 

remains the same throughout execution and is assigned in an increasing sequence. 

Rule 2 

A transaction can only “see” data items of other transactions with smaller timestamps i.e. 

data items of all the previously arrived transactions are visible to a transaction.  
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Rule 3 

Every data container will be supplied with a collector and a regulator excluding data 

containers with only write operations. 

Rule 4 

A transaction is not released for processing until its timestamp gets recorded into the 

collectors attached to data containers. This includes data containers where that transaction 

is to be recorded. 

Rule 5 

The following check is performed before execution of a read operation at a data container:  

if  there exists a timestamp in collector   <   timestamp of transaction reading container 

then put timestamp of transaction in a waiting queue             

else execute read operation 

5.4.2   Theorem 

The synchronization rules listed in section 5.4.1 always produces conflict serializable 

execution. 

Proof 

As mentioned in section 4.4 of chapter 4, if the serialization graph of a schedule contains a 

cycle then execution is not considered as serializable. In order to prove the above theorem 



 53

we have to show that there will be no cycles created in the serialization graph when the 

synchronization rules are applied to execution of a data stream processing network.  

Suppose T is a sequence of transaction which we get through transforming an execution of 

a group of data items in a data stream processing network  

i.e. T = T1, T2, T3, …. , Tn   

where the time stamps  t1 < t2 < t3 and so on 

We know that, an edge is formed in a serialization graph when a data item is accessed by 

two different transactions; at least one of transaction is in write mode (as mentioned in 

section 4.4 of chapter 4). If T2 reads the contents of T1 then an edge will be created from 

node T1 pointing towards node T2 and so on.  

 

Assume that the serialization graph for these transactions contains a cycle. Now for creation 

of a cycle there will be a moment when an edge goes from Tn to T1.  

 

Therefore, this contradicts rule 2 from the modified set of rules, which makes every 

transaction only able to see data items of previously arrived transactions. This rule means 

that edges can only be created from the node of a transaction with a smaller timestamp to a 

node with a larger timestamp.  

 

 T1  T2  T3 Tn,…, 

 T1  T2 Tn T3 ,…, T1
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Hence there will be no edges created from a node with a larger timestamp towards a node 

with a smaller timestamp. This results in having no cycles created in the serialization graph 

and proves that by using synchronization rules we get conflict serializable execution for 

groups of data items in a data stream processing network.                                ⁮ 

 

 

 

                                              

                                       

 

     

 
Transaction 
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timestamp 

 
Transaction 
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timestamp 
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                                             Chapter 6 

                                                         Conclusion 

Synchronization of data stream processing has a major impact on performance of systems 

where processing of data streams is executed simultaneously. This work contributes 

towards synchronization of data stream processing as it identified circumstances that 

necessitated synchronization. The processing of data items within those circumstances was 

then synchronized by applying a set of rules.  

A data stream processing network was defined for illustrating processing of data items. The 

network was constructed on the basis of a directed graph with a set of nodes and edges. The 

network provided visualization of how computations were performed in a data stream 

network. A method was provided for translating an expression into a data stream network 

and is one of the contributions of this work.  

An overview of sequential and simultaneous processing concluded with identifying that 

simultaneously processed data items required synchronization. Motivating examples were 

presented for showing consequences if synchronization was not considered. One of the 

examples presented a situation where a computation was performed twice leading towards 

wrong results. The other situation presented was the possibility that contents recorded to a 

window may not be recorded according to stream arrival order. The more complicated 
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situation presented through the example was where a window was read before results were 

recorded.  

In this thesis we presented the solution as a set of rules based on timestamp ordering. The 

rules were applied to the circumstances provided in the motivating examples. For 

synchronizing execution of data items, the concept of a container called collector and a 

process called regulator was introduced and used within the rules. The regulators and 

collectors are placed in such a way that if an operation required reading the contents from a 

window then it was to request the regulator placed at that window for reading the contents. 

The regulator after receiving a request is used to perform a check for knowing the current 

status of a collector. If the collector had no smaller timestamps than of the data item 

performing the operation, then it allowed the operation to read the contents, otherwise the 

request was rejected. This is how processing was efficiently synchronized and any 

possibility of wrong results was removed. 

One of the main contributions of this work is expressing the processing of data items in a 

data stream processing network in terms of database transactions. The method used to 

check execution of transactions for their correctness has been applied to our results, and we 

proved that using a set of rules will always produce conflict serializable executions. 

A summary of my contributions of this work towards “Synchronization of Data Stream 

Processing” include: 

1. A new class of networks called data stream processing networks is defined as a 

formal model for processing data items. 

2. A method is defined for translating an expression into a data stream network. 
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3. Processing of data items in a data stream processing network is expressed in terms 

of database transactions. 

4. Identification of circumstances that require synchronization. 

5. A solution is presented as a set of rules that govern processing of groups of data 

items. 

6. The concept of two synchronization assistants called the collector and the regulator 

is introduced. 

7. Proof of correctness is provided for the strategy used to solve the problems. 
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