
University of Wollongong - Research Online
Thesis Collection

Title: Synchronizing data stream processing

Author: Mohammad Siddique Fawad Qureshi

Year: 2007

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

Synchronizing data stream processing

Mohammad Siddique Fawad Qureshi
University of Wollongong

Qureshi, Mohammad Siddique Fawad, Synchronizing data stream processing, M.Comp.Sc.-
Res. thesis, Information Technology and Computer Science, University of Wollongong, 2007.
http;//ro.uow.edu.au/theses/649

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/649

Synchronizing Data Stream Processing

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Computer Science (Research)

from

UNIVERSITY OF WOLLONGONG

by

M. S. Fawad Qureshi

B.Sc Computer Science – University of Sindh
M.Sc Computer Science – University of Sindh

SITACS
School of Information Technology and Computer Science

2007

ii

© Copyright 2007
by

M. S. Fawad Qureshi
All Rights Reserved

iii

 Certification

I, M. S. Fawad Qureshi, declare that this thesis, submitted in fulfillment of the

requirements for the award of Master of Computer Science, in the School of Information

Technology and Computer Science, University of Wollongong, is wholly my own work

unless otherwise referenced or acknowledged. The document has not been submitted for

qualifications at any other academic institution.

M. S. Fawad Qureshi

Date: 30 March 2007

iv

Table of Contents

Chapter 1

Introduction……………………………………………………………… 2

1.1 The Problem………………………………………………………… 3

1.2 Strategy and Objectives…………………...………………………… 4

1.3 Outline of the Thesis………………………………………………... 5

Chapter 2

Background and Related Work …………………….………………….. 7

2.1 Data Stream Processing……………………………………………... 7

2.2 Adaptive Query Processing…………………………………………. 11

2.3 Continuous Query Processing……………………………………….. 15

2.4 Synchronization Techniques………………………………………… 17

Chapter 3

Data Stream Processing Networks……………………………………... 21

3.1 Network Model……………………………………………………... 21

 3.1.1 Components...……………………………………………….. 22

 3.1.2 Computation………………………………………………… 23

 3.1.3 Operations…………………………………………………… 24

3.2 Windows ………………..…………………………………..………. 26

v

 3.2.1 Multiple Operations on a Window…...…………………….. 27

3.3 Visualization…………………………………………........................ 27

 3.3.1 Sample Networks……………..…………………………….. 27

 3.3.2 Translation………………………………………………….. 30

Chapter 4

Synchronization Problems……………………………………………… 32

4.1 Data Processing Techniques………………………………………… 32

4.2 Motivating Examples……………………………………………….. 33

 4.2.1 Example 1…………………………………………………..... 33

 4.2.2 Example 2….………………………………………………… 35

 4.2.3 Example 3…………………………………………………..... 35

4.3 Transactional Interpretation of Data Stream Network………………. 38

 4.3.1 Merge and Split ……………………………………………… 40

4.4 Revised Motivating Examples………………………….…………… 41

Chapter 5

Synchronization Strategy and Correctness……………………………. 44

5.1 Synchronization Assistants..………………………………………… 44

 5.1.1 Collector……………………………………………………... 44

 5.1.2 Regulator……………………………………………………... 45

5.2 Synchronization Rules……………………………………………..... 46

vi

5.3 Solution……………………………………………………………… 48

 5.3.1 Solution1…..…………………………………………………. 48

 5.3.2 Solution 2….…………………………………………………. 49

 5.3.3 Solution 3…….………………………………………………. 49

 5.3.4 Merge and Split...…..………………………………………… 50

5.4 Correctness………………………………………………………...... 50

 5.4.1 Transactional Interpretation of Rules………………………... 51

 5.4.2 Theorem……………………………………………………… 52

Chapter 6

Conclusion……………………………………………………………….. 55

References………………………………………………………………... 58

vii

List of Figures

Chapter 3

Figure 3.1: Upon arrival, a group of data items s is recorded to a window

over an input stream………………………………………………………..

 22

Figure 3.2: An edge from a writer to a window represents a write………... 23

Figure 3.3: An edge from a window to an operation represents a read…… 23

Figure 3.4: An operation with a group of data items as input and produces

groups of data items as output……………………………………………...

 24

Figure 3.5: A writer records contents of a data item into a window……..... 25

Figure 3.6: A situation where merge is performed on two groups of data

items………………………………………………………………..............

 26

Figure 3.7: A situation where many operations read from a window……... 27

Figure 3.8: A data stream processing network for relational algebra

expression [(r s) - t]……………………………………………………...

 28

Figure 3.9: A data stream processing network for an arithmetic expression

[(a + b) − (y + z)] ……………….………………………………………….

29

Chapter 4

Figure 4.1: Dataflow processing network for a relational algebra

expression of example 1……………….…………………………………...

 34

Figure 4.2: Dataflow processing network for an arithmetic expression of

viii

example 1……………….…………………………………………………. 34

Figure 4.3: Dataflow processing network for a relational algebra

expression of example 2……………….…………………………………...

36

Figure 4.4: Dataflow processing network for an arithmetic expression of

example 2……………….………………………………………………….

 36

Figure 4.5: Dataflow processing network for a relational algebra

expression of example 3……………….…………………………………...

 37

Figure 4.6: Dataflow processing network for an arithmetic expression of

example 3……………….………………………………………………….

 37

Figure 4.7: Dataflow processing network for a relational algebra

expression with sequences of transactional operations…………...………..

39

Figure 4.8: Dataflow processing network for an arithmetic expression

with sequences of transactional operations…………………………….…..

 39

Figure 4.9: A situation where a transaction splits into two sub

transactions…………………………………………………………………

40

Figure 4.10: Schedule for data stream processing network of figure

4.7…………………………………………………………………………..

41

Figure 4.11: Serialization graph for Ti and Tj, where Ti is accessed by Tj... 42

Figure 4.12: Serialization Graph for schedule of figure 4.10 contains a

cycle…………………………………………………………………..……

 43

ix

 List of Tables

x

 List of Publications

Publications arising from this thesis:

Qureshi, M. S. F. and Getta, J. R. (2007): Synchronizing Data Stream Processing. Proc.

IASTED International Conference on Parallel and Distributed Computing and Networks,

Innsbruck, Austria, 233 – 238.

Peer-reviewed proceedings of an international conference.

xi

 Abbreviations

AQP……………………………………………..Adaptive Query Processing

ART………………………………………………...Average Response Time

CQL……………………………………………Continuous Query Language

CQP…………………………………………..Continuous Query Processing

DBMS………………………………………Data Base Management System

DSMS…………………………………….Data Stream Management System

DSP….………………………………………………Data Stream Processing

DSPN….……………………………..……Data Stream Processing Network

MDR……………………………………………………Maximum Data Rate
PQP……………………………………………..Pipelined Query Processing
QoS………………………………………………………..Quality of Service
QP……………………………………………………….…..Query Processor
SPE……………………………………………..…Stream Processing Engine
STREAM……………………………………Stanford Stream Data Manager

SQL……………………………………………..Structured Query Language

TQL……………………………………………….Tapestry Query Language

XML……………………………………………Extended Markup Language

xii

.

 to my beloved father

Haji Muhammad Saleem Qureshi

xiii

Abstract

Synchronization of data stream processing has a significant impact on performance of

systems where processing of long sequences of data items needs to be done

simultaneously. In earlier works on stream processing, synchronization has been

discussed to a limited extent or has been completely overlooked. This work describes a

formal model of synchronization in a data stream processing network. We use a notation

of data stream processing networks to identify circumstances that necessitate

synchronization. We also express processing of groups of data items in terms of database

transactions within a data stream processing network. A technique similar to timestamp

ordering of database transactions is used to solve the problems. A solution is presented as

a set of rules that govern processing of groups of data items. A proof of correctness has

been provided for the strategy used to solve the problems.

xiv

 Acknowledgments

I would like to thank my supervisor Dr. Janusz R.Getta for his invaluable guidance,

support, and patience. He helped me in defining a suitable problem for my thesis, and

always provided productive suggestions in the course of the writing process.

My special thanks to Professor John Fulcher and Dr. Heather Jamieson for their

encouragement during the revision process.

I would like to thank my family and friends for their continuous support and help in the

best way possible.

 Synchronizing Data Stream Processing

 2

 Chapter 1

 Introduction

In a number of applications data arrives in the form of a long sequence of items spanned

over a long period of time. Such sequences, also called data streams require new data

processing techniques different from techniques developed over the last two decades for

relational database systems. These streams require processing in an online manner (Rastogi

2002) where the arrival of a new data item immediately triggers its processing. Data

streams are generated in applications including sensor networks, satellite and traffic

monitoring systems, security monitoring, financial services, weather measurements and

many other real-time applications. In these applications, arrival rate of data is very high and

rapid.

Effective processing of data streams is a difficult problem. Traditional database

management systems (DBMS’s) are incapable of efficient handling of data streams (Arsu et

al. 2002) due to a lack of online data stream processing algorithms and architectures that

prefer batch oriented data processing. Many fundamental assumptions that are basis of

database systems are not valid for stream-oriented systems (Tian, F. and DeWitt, D. J.

2003). The continuous arrival of data requires something more than a DBMS. As data

arrives in a stream it needs to be analyzed. The arrival rate of data is very high in a stream

and storing all the data will result in loss of memory and time.

 3

The debate in the data management research community is about developing a general

purpose data stream management system (DSMS). Some researchers refer to DBMS as ill

equipped (Babu, S. and Widom, J. 2001) for processing data streams. Few resist updating

today’s DBMS in the presence of data streams. In that case, many aspects of DBMS need to

be reconsidered for processing streaming data. Vossough, E. (2004), claims there are no

methods for a DBMS to handle synchronized processing of data streams.

The increase of streaming data will require a data management system that fulfills all the

requirements for processing data streams. One of the main factors in the increase of

streaming data is sensor technology. Sensor technology is decreasing in cost day by day

and becoming more affordable. This will result in sensors embedded in almost every device

and thereby generating more streaming data. For example when we have sensor’s

embedded in our mobiles then just by running a simple query, we would be able to find the

current location of someone instead of calling and asking.

The concept of DSMS is of a dedicated system for processing a new class of data

processing applications, called stream-based applications. The work done in regard of

stream processing ranges from efficient algorithms for data streams to complete data stream

management systems such as Borealis (Abadi D. et al. 2005), STREAM (Babcock, B. et al.

2003), Aurora (Carney. et al. 2002 and Cherniack, M. et al. 2003), NiagaraCQ (Chan, J.

2000), Telegraph (Chandrasekaran, S. et al. 2003), Tribeca (Sulliovan, M. et al. 1996) and

few others.

1.1 The Problem

In a data stream processing network, if data items are processed one by one - i.e.

sequentially - then this is not practical. The processing rate of data items will be extremely

 4

slow. Even though sequential processing doesn’t have any problems regarding

synchronization, it is not feasible to apply this technique to a data stream. On the other

hand, if data items are processed at the same time - i.e. simultaneously - then this makes

processing more effective. The processing gets started immediately as data items arrive.

But simultaneous processing involves circumstances where processing needs to be

synchronized, otherwise it may result in incorrect execution of data items. We use a

notation of data stream processing networks to identify circumstances that necessitate

synchronization.

1.2 Strategy and Objectives

The synchronization method proposed in this work is defined as a set of rules that govern

the processing of groups of data items. The rules synchronize the processing of data items

at circumstances identified by this work. To prove the correctness of our approach, we will

express processing of data items in a data stream network in terms of database transactions.

The method used to check the execution of transactions for correctness will then be applied

to our results.

The main objectives of this research project are:

 To perform a literature review on related work done in the area of stream processing

and study previously proposed synchronization techniques for data streams.

 To propose a new class of networks for processing data items in a stream.

 To identify circumstances which require synchronization while processing data

items simultaneously.

 5

 To propose a solution in order to synchronize processing of groups of data items in

the network.

 To prove the correctness of the solution.

1.3 Outline of the Thesis

Following is the brief description of the remaining chapters presented in this thesis:

 Chapter 2 Background and Related Work

This chapter presents a background on stream processing and also some related

work in respect to data streams.

 Chapter 3 Data Stream Processing Network

This chapter proposes a new class of networks called data stream processing

networks. It defines the basic structure of the network and also computations

performed within the network. It describes an entity called windows, together with

details regarding some operations.

 Chapter 4 Synchronization Problems

This chapter identifies circumstances that require synchronization in a data stream

processing network. It describes motivating examples showing consequences of not

synchronizing the processing. This chapter shows how processing of data items in a

data stream network can be expressed in terms of database transactions and

interprets the motivating examples in terms of transactions.

 6

 Chapter 5 Synchronization Strategy and Correctness

This chapter presents a solution as a set of rules to synchronize processing of data

items in a data stream processing network. It provides description of a regulator and

collector and applies the rules to the motivating examples of chapter 4. It also

provides a proof of correctness for the rules.

 7

 Chapter 2

 Background and Related Work

The following review of the literature relevant to synchronization of data stream

processing, is divided into two parts. The first part consists of three sections i.e. section 2.1

Data Stream Processing, section 2.2 Adaptive Query Processing and section 2.3 Continuous

Query Processing. These sections review the background research relevant to processing of

data streams.

The second part section 2.4 Synchronization Techniques and Related Work, examines the

relevance of the background research with reference to synchronization of data stream

processing.

2.1 Data Stream Processing (DSP)

The two major areas that contribute towards DSP are adaptive query processing (Levy

2000) and continuous query processing (Terry, D. B. et al. 1992). At the moment,

numerous research works provide information on different aspects of DSP. A

comprehensive review of major contributions is included in (Arsu, A. et al. 2002),

(Babcock, B. et al. 2003), (Carney. et al. 2002), (Cranor, C. et al. 2003), (Das, A. et al.

2003), (Stonebraker, M. et al. 2003), and (Tucker, P. A. et al. 2003). A review of recent

work is described in (Babcock, B. et al. 2002) and (Golab and Özsu 2003).

 8

The approach in data stream processing is to start execution as soon as data item arrives in

a stream and to process the maximum amount of data items at the same time. According to

(Getta and Vossough 2004), methods for DSP should be reactive, continuous, adaptable

and efficient. Reactivity means that processing of a data item should start immediately as it

arrives in a stream. Continuity concerns the time to time recomputations of applications in

order to update according to the changing contents of the stream. Adaptability allows for

dynamically modifying a processing plan in reply to external factors, for example rapid

change in the frequency of a stream. Efficiency concerns dictate that data processing rate

must be higher than the data propagation rate.

A brief summary of some of the related work done in the area of DSP is as follows:

 Aurora is a DSMS built for a large distributed scale. It is a dataflow system that

allows users to build query plans by arranging boxes (operators) and arrows

(dataflow among operators). A box in a system accepts input streams and produces

one or more output streams as arrows. Final outputs from boxes are streamed to

other applications. The system represents a set of continuous queries as a loop-free

directed graph of stream oriented operators. This is similar to the execution

performed within our network.

Aurora comprises operators such as a simple unary operator (Filter), a binary merge

operator (Union), a mapping operator (Map), a time bound window sort (WSort), an

aggregation operator (Tumble) and a join (Join). The users are allowed to define

their own declarative queries in SQL and compile those queries into box and arrow

model.

 9

The main components of the Aurora system are the scheduler, storage manager and

load shedder. The heart of the system is the scheduler that decides which operators

to execute and in which order to execute them. It also gives special attention to

issues like reducing operator scheduling and invocation overheads. The storage

manager is designed for storing ordered queues of tuples and buffers the queues

when main memory runs out. The load shedder detects and handles overload

situations. Load shedding (Tatbul, N. et al. 2003) is an important strategy for

adapting to higher rates of data arrival. The input tuples are dropped based on some

criterion such as quality of service (QoS) in Aurora. Each query in Aurora defines

the processing requirements and QoS specifies query performance requirements.

 QUAY (Lee, Ken C.K. et al 2004): QUAY (pronounced “key” meaning a platform

over streams) is a data stream processing system that uses the chunking technique

(Deshpande, A. et al. 1998 and Lee, Ken C.K. et al. 2002) for indexing queries. The

chunking technique clusters and indexes both queries and data records in a unified

way as chunks. This approach of indexing queries is different to approaches

proposed in Eddy and NiagaraCQ. An adaptive selection-join arrangement for a

huge number of selection-join queries is also proposed for processing window join

operation from stream sources. The system architecture of QUAY consists of four

cooperating modules, namely stream modules, a cross chunk join operation, a query

registry and a set of programming interfaces. The stream module is for serving each

individual data stream. The cross chunk join processor evaluates join queries. The

query registry is a repository for query information. The set of programming

interfaces is for providing access from stream applications.

 10

 Borealis: A distributed stream processing engine and a successor to Aurora.

Borealis is considered to be the first of the second generation stream processing

engines (SPE’s), while the previously proposed SPE’s are assumed to be first

generation. Borealis inherits the Aurora model (boxes and arrows) for specifying

queries. An important addition to the Aurora query model is that Borealis has the

capability of changing the semantics of a box on the fly. The boxes in Borealis are

provided with special control lines. These lines carry control messages that contain

revised box parameters and functions for changing box behaviour.

The group of continuous queries submitted to Borealis can be seen as one big

network of operators where processing is distributed to multiple sites. Each site runs

a Borealis server where Query Processor (QP) - which is single site processor -

forms the core piece for query execution to take place. The major run-time

components of QP consist of the priority scheduler, box processors, storage

manager and load shedder. The priority scheduler determines the order of box

execution based on tuple priorities. The box processor changes the behaviour of the

box, and each type of box is provided with one box processor. The storage manager

is responsible for storage and retrieval of data. The load shedder discards low-

priority tuples when the node is overloaded. Xing, Y. et al (200) presents a

correlation based load distribution algorithm for Borealis that aims at avoiding

overload and minimizing end-to-end latency and maximizing load correlation.

 STREAM: The STanford stREam datA Manager is a general purpose and a

relation-based DSMS with an emphasis on memory management and approximate

 11

query answering. The functionality and performance of STREAM is similar to a

traditional DBMS but allows some or all data to be managed in the form of

unbounded data streams. It supports CQL (i.e. continuous query language) as a

declarative query language. The system operates in a manner that each operator

works on a set of input data streams and produces an output stream. Data may be

saved in a component called Scratch or may be discarded to the component called

Throw. The current results are stored in the component called Store. The results

may also be sent to output stream and are served as an input to other operators. The

system uses a global scheduler that controls query execution operators. The

scheduler uses a simple round-robin scheme for scheduling operators. The use of a

scheduler not only minimizes total queue size of unpredictable streams but also

reduces for example inaccuracy, latency and memory use.

 Optimization of Data Steam Processing (Getta and Vossough 2004): This work

describes a formal model for processing data streams and describes optimization

techniques that can be applied to the model. One of the optimization techniques

described is for efficient synchronization of elementary operations on data streams.

Processing of data streams have been distinguished between logical and dataflow

levels and is one of the main contributions of this work. This work considers using a

scheduler for simultaneous processing of data streams.

2.2 Adaptive Query Processing (AQP)

Adaptive query processing allows for dynamically modifying a processing plan in reply to

the external environment. The origins of AQP can be traced to the Telegraph Project.

 12

Examples of this processing approach include Rivers (Arpaci–Dusseau, R. H. et al. 1999)

and Eddies (Avnur, R. and Hellerstein, J. 2000). The key to telegraph is a continuously

adaptive query processing engine. The engine gathers feedback from the environment and

uses that feedback for determining its behaviour. A feedback to an adaptive system makes

the processing more efficient. It allows the system to make better decisions by observing

the results of multiple decisions. According to Babu, S. and Bizarro, P. (2005), adaptive

query processing can be divided into the following three families:

 Plan-based AQP Systems: AQP for traditional plan-based systems for example

Tukwila (Ives, Z. et al. 1999). The Tukwila system supports AQP by performing

dynamic data integration over autonomous data sources.

 Continuous-Query –based AQP systems: AQP for long running continuous queries

over data streams for example STREAM and NiagaraCQ.

 Routing-based AQP systems: AQP for DBMS’s and continuous queries based on

adaptive tuple routing where tuples are routed individually through operators for

example Rivers and Eddies.

A brief summary of some of the related work done in regard to AQP is as follows:

 StreaMon: An Adaptive Engine for Stream Query Processing (Babu, S. and

Widom, J. (2004)): It is the AQP engine of STREAM prototype data stream

management system that uses CQL as the query language. The system consists of

three generic components, an executor, a profiler and a reoptimizer. An executor

runs query plans for producing results, a profiler collects and maintains statistics

about the stream, and a reoptimizer ensures that the plans and memory usage are

 13

most efficient for the current input. StreaMon also uses several techniques for

supporting AQP including adaptive memory minimization, adaptive join ordering

and adaptive caching for joins. Adaptive memory minimization reduces run-time

memory requirements for continuous queries by exploiting stream data. Adaptive

join ordering is used to pipeline multiway stream joins.

 Tuple Routing Strategies for Distributed Eddies (Tian, F. and DeWitt, D. J. 2003):

Routing tuples between operators of a distributed stream query plan have been used

in many DSMS’s as an adaptive query optimization technique. A routing policy can

have a significant impact on the performance of a system. The original paper on

Eddies introduced the idea of routing tuples between operators as a form of query

optimization. This work extends the concept of an Eddy to a distributed

environment. This work also proposes and evaluates some practical routing policies

for a distributed stream management system. Two performance metrics - average

response time (ART) and maximum data rate (MRD) - are defined for response time

of a tuple when it enters and leaves operators and system throughput.

Eddy is a query processing operator that dynamically chooses the order of tuples in

a query plan by making independent routing decisions per tuple. The making of

routing decisions per tuple may be too expensive. Deshpande, A. (2004) performs

the initial study of the overheads of Eddies.

 Adaptive Stream Resource Management Using Kalman Filters (Jain, A. et al 2004):

This work perceives stream resource management as fundamentally a filtering

problem and proposes Kalman Filters as a general and adaptive filtering solution for

conserving resources. The Kalman Filter is a stochastic, recursive data filtering

 14

algorithm that can be used in a large variety of data-streaming applications. It is

capable of adapting to various stream characteristics, sensor noise and time

variance. A significant boost in performance can be achieved as the method does

caching of dynamic procedures that can predict data reliably at the server without

user involvement.

 Adaptive Ordering of Pipelined Stream Filters (Babu, S. et al. 2004): The focus of

this work is on the problem of ordering the filters adaptively for minimizing

processing cost in an environment where stream and filter characteristics may

change considerably. This work proposes an algorithm called A-Greedy (for

Adaptive Greedy) that converges to an ordering within a small constant factor of

optimal. One of the main features of the algorithm is that it monitors and responds

to selectivities that are correlated across non independent filters. This provides a

strong quality guarantee but may result in run-time overhead. This work also

identifies a three-way tradeoff among provable convergence to good ordering, run-

time overhead and speed of adaptivity. A collection of different variants of A-

Greedy are also developed that lie at different points for the tradeoff spectrum.

 Adaptive Filters for Continuous Queries Over Distributed Data Streams (Madden,

S. et al. 2002): This method reduces the overhead of a centralized processor that

monitors continuous queries in an environment where distributed data sources

continuously cause stream updates. The filters installed at remote data sources adapt

to changing conditions for minimizing stream rate while guaranteeing that all

continuous queries receive the necessary updates for providing answers of adequate

precision. This method enables an application to trade precision for communication

 15

overhead at a fine granularity by individually adjusting the precision constraints of

continuous queries over streams. This work also demonstrates the effectiveness of

the method for achieving low communication overhead and compares the method

with other similar methods. This method relies on the use of system schedulers.

2.3 Continuous Query Processing (CQP)

Continuous and one-time queries (Terry, D. B. et al. 1992) are two important types of

queries that can be related to a data stream model. One-time queries are a class of queries

that includes traditional DBMS queries. They are evaluated once over a point in time

snapshot of the data set while providing answers to the user. In comparison, continuous

queries are evaluated continuously as data streams continue to arrive. The answer of a

continuous query always reflects the stream data seen so far and are stored or updated as

new data arrives.

A brief summary of some of the related work done in area of CQP is as follows:

 Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al.

2004): The “Dynamic Plan Migration” is about transforming from one query plan to

a semantically similar but more effective plan. An effective migration plan ensures

that results have not been altered during or after the migration process. For solving

problems dynamically during migration, two types of strategies i.e. moving state

strategy and parallel track strategy have been proposed. The moving state strategy

assures timestamp order preservation for the tuples. The parallel track strategy is

used for having correct results without any changes. The problems defined are for

example duplication of tuples and incorrect order of results.

 16

 Data Stream Management for Historical XML Data (Bose, S. 2004): This work

presents a framework for continuous querying of time-varying streamed XML data.

The model defined differs from other data stream processing models in terms of

query language and data processing. The query language used is XCQL, which

works on multiple XML data streams and is able to correlate data. This framework

considers input data from a wide variety of streaming data sources and has the

ability to synchronize between streams by issuing coincidence queries.

 Tapestry (Terry, D. B. et al. 1992): This system used continuous queries for

content-based filtering over an append-only database. The database was created for

email and bulletin board messages. A subset of SQL with some restrictions called

Tapestry query language (TQL) was used to provide efficient evaluation and

append-only query results.

 Tribeca is one of the early special purpose systems developed for on-line traffic

monitoring. It provided restricted querying capabilities over network packet streams

with a simple query language. It supports windows and a set of operators adapted

from relational algebra.

 NiagaraCQ is a continuous query system that permits continuous XML queries

to be presented over dynamic web content. It was built in regard to the Niagara

Internet Query System (Naughton, J. F. et al. 2001). It considers continuous queries

that transform a passive web page into an active environment that can support

millions of queries. This model introduces predicate grouping and group

optimization techniques for addressing scalability in terms of the number of queries.

 17

Grouping queries shares common computations and can reduce input/output cost.

NiagaraCQ uses an incremental group optimization strategy which dynamically

regroups queries. If implemented in an internet environment NiagaraCQ uses a

system of continuous query mangers, event detectors and data managers. The

system performs well in an internet environment but can be very costly in a

distributed environment because of the high volumes of data.

2.4 Synchronization Techniques and Related Work

Synchronization is a topic which still needs to be given more consideration in presence of

data streams. In previous work on stream processing, synchronization has been discussed

either to a limited extent or has been completely overlooked. Vossough, E. (2004), claims

there are no methods for a DBMS to handle synchronized processing of data streams.

As stream applications rely on shared data and computations, where data may be in a table

is updated by one query and read by the other. This sharing may result in data

inconsistencies. The uniqueness of this work is that mainly focus on synchronization and

identifies circumstances where processing needs to be synchronized.

After going through some of the major work performed for stream processing; now we

examine the relevance of the background research with reference to synchronization of data

stream processing:

 In STREAM operators are scheduled for execution by a central scheduler. During

execution, an operator reads data from its input queues and writes results to its

output queues. The scheduler dynamically determines an execution period for an

 18

operation. When the period expires the operator returns the control back to the

scheduler. The period of execution may be based on time or number of tuples. A

need for synchronization within operators while scheduling multiple query plans is

discussed but overlooked in presence of other major issues like memory

management.

The heart of our solution is the regulator which is one of the synchronization

assistants. The goals of using a regulator are to synchronize the processing and to

remove any possibility that leads towards wrong results. The synchronization is

performed in a way that an operation requests the regulator for executing at

circumstances where processing needs to be synchronized. The regulator then

performs certain checks in order to allow or stop a data item from executing further.

We use another synchronization assistant which is a container called collector. It is

a special purpose container which collects timestamps of data items as a data item is

allocated a timestamp. The checks are performed by the regulator on the collector.

 The work by Getta and Vossough (2004) is geared towards optimizing stream

processing where one of the optimizing techniques is regarding efficient

synchronization of elementary operations on data streams. A scheduler is defined

which can be considered as a formal model for concurrent processing of data

streams and not as a hypothetical implementation. Running computations are

represented in terms of a scheduling graph. The graph is dynamically maintained

during the computations of dataflow expressions. Scheduling quality in the graph is

measured by the total number of dashed edges. If the graph contains no edges then it

implies no conflicts and no blocking of operations.

 19

One of the similarities to our work is of showing computations on data streams

implemented as flows of data items among the elementary operations. The concept

of translating an expression into a data stream processing network is also similar to

our work. The only difference is that we first translate an expression into a syntax

tree and then to a network. This work derives data stream expressions from the

syntax tree and then uses those expressions for creation of a network.

 Routing Tuple is used in many DSMS’s as an adaptive query optimization

technique for distributed stream query plan between operators. A model for

distributed stream query plan is defined as a set of operators connected by a network

where input tuples are added to a first-come first-served queue. This work describes

a distributed symmetric join algorithm which implements a join operator with for

two input streams – i.e. A B. First an input tuple from stream A is processed by

an operator which maintains a sliding window for stream A, then the tuple is sent to

the operator that joins the tuple with window of stream B. A three way join A B

 C was also defined. Two different joins were performed on the sliding window of

stream B – the right side join of A B and a left side join of B C.

Eddies relates to our work as it implements a network of simple operators for

processing data streams.

 In Aurora, the data flows through a loop-free system of boxes i.e. operators. The

way data gets processed within the boxes is not clear. The output of the box may be

shared by multiple queries or even a single query for merging intermediate

computations. This is achieved through one of the boxes called WaitFor box. This

 20

box buffers each tuple t on an input stream until a tuple arrives on the second input

stream that with t satisfies P. The syntax of WaitFor is shown below:

WaitFor (P: Predicate, T: Timeout)

Incase of a read operation where a read must follow an update, the WaitFor buffers

the read requests until a tuple output by the Update box indicates that read operation

can proceed. Now in a situation where the Update box may not produce any results

then the WaitFor box will wait forever. No strategies are defined for such kind of

possibilities.

 Adaptive caching for multiway joins avoids recomputations of intermediate result

and is similar to one of the problems described by this work. One more similarity to

our work is the use of sliding windows.

 Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al.

2004) is about transforming from one query plan to a semantically similar but more

effective plan. They describe problems which are conceptually similar to the

problems defined in our work but are in the context of dynamic plan migration. The

problems defined are for example duplication of tuples and incorrect order of

results. We use a technique similar to timestamp ordering of database transactions

for solving the problems. A solution is presented as a set of rules that govern

processing of individual data items.

 21

 Chapter 3

 Data Stream Processing Networks

This chapter proposes a new class of networks called Data Stream Processing Networks

(DSPN). The first section defines basic structure and the main components of the network.

It also deals with computations performed within the network along with details regarding

some operations. The second section describes an entity called windows. The third and last

section provides visualization of sample networks.

3.1 Network Model

We define a formal model for processing of groups of data items in a DSPN. The network

is defined as a directed graph with set of nodes and edges. The formal definition of the

network is as follows:

Definition:

A data stream processing network is a directed graph G = (n,e) where n is a set of nodes -

i.e. n = (w ∪ d ∪ m) and e is a set of edges – i.e. e = (e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5) where e1 ⊆ (w ×

w), e2 ⊆ (d × w), e3 ⊆ (w × d), e4 ⊆ (w × m), e5 ⊆ (m × w).

In terms of nodes, node w represents a set of elementary operations, node d represents a set

of windows and node m represents a set of merge points. In case of edges, e1 ⊆ (w × w)

 22

Figure 3.1: Upon arrival, a group of data items s is recorded to a window over an
 input stream.

represents flow of data between two operations, e2 ⊆ (d × w) represents flow of data from a

window to an operation, e3 ⊆ (w × d) represents flow of data from an operation to a

window, e4 ⊆ (w × m) represents flow of data from an operation to a merge point, e5 ⊆ (m ×

w) represents flow of data from a merge point to an operation.

3.1.2 Components

The network represents operations through rectangles and windows through parallelograms.

A window d is an ordered sequence of a group of data items arriving at different times.

Whenever a group of data item arrives in a stream, it is recorded to a window over an input

stream as shown in figure 3.1. More details on windows are provided in section 3.2.

The network also has two special operations called merge and write. Merge is represented

through a black square called a merge point m whereas write is denoted by a large dot

called a writer. A writer records contents of every group of data items into the windows.

Section 3.1.4 provides more details on merge and write.

Edges are used to represent data flows between operations, windows and merge points. For

example when a writer records the contents of a data item into a window, then an edge

α [s]

WS

 23

Figure 3.2: An edge from a writer to a window represents a write.

Figure 3.3: An edge from a window to an operation represents a read.

represents the data flow from that writer to the particular window as shown in figure 3.2.

Similarly when an operation reads from a window then an edge represents the data flow

from that window to the particular operation as shown in figure 3.3.

3.1.3 Computation

An operation in a data stream processing network accepts a group of data items as input and

always produces output. The output from an operation is also a group of data items. The

output from an operation becomes input for other operations.

WS

α

α

WS

 24

Figure 3.4: An operation with a group of data items as input and produces groups of

 data items as output.

This allows for parallel computation in the network as the output of an operation becomes

an input for different operations at the same time. In circumstances where an operation

produces an empty group of data items as output, the empty group is provided as an input

to the rest of the operations in a sequence until the empty group gets recorded to the

window containing the final results.

3.1.4 Operations

Figure 3.4 shows basic computation performed by an operation that accepts a group of data

items r as input then reads from a window ws and produces a group of outputs. Every

output contains two indicators. The first indicator specifies the starting of the output

whereas the second specifies completion of an output. There can be circumstances where an

operation produces an empty group of data items as output but still has the two indicators.

The data stream processing network also contains the following two special operations:

α

 WS

…
[r]

 [r1]

[rn]

 25

Figure 3.5: A writer records contents of a group of data items into a window.

 Write

The contents of every group of data items are recorded into the windows by the special

operation called write. Figure 3.5 shows an example where a group of data item [r] upon

arrival is recorded to a window over an input stream by the writer. The insertion of a new

group of data items - i.e. positive data items r+ - results in deletion of an old group of data

items - i.e. negative data items r−. An operation in that sequence then processes a group of

positive data items r+ and negative data items r−, which is basically a modification of the

window caused by the arrival of new group of data items.

 Merge

Merge is the only operation in the network which accepts more than one group of data

items as input. Consider a situation where two groups of data items [r1] and [r2] go through

the merge point. After going through merge operation, the two groups are processed as [r1]

[r2]. The order in which two groups arrived at merge point, the merging is done similar to

[r] [r− ,r+]

Wr

 26

Figure 3.6: A situation where merge is performed on two groups of data items.

that order. Figure 3.6 shows [r1] and [r2] going through the merge point and then processed

by operation α as [r1] [r2].

3.2 Windows

An ordered sequence of a group of data items arriving at different times is called a window.

The windows used in this work are sliding windows. These windows are of fixed length

and are composed of two sliding end points. The window moves as a group of data items

arrives and is appended to it. This movement results in the deletion of an old group of data

items from the window. The new group is referred to as a positive group of data items

whereas the deleted group is referred to as a negative group of data items.

As soon as a group of data item arrives in a stream, it is recorded to a window over an input

stream. There are also windows for intermediate and final results. For example if a group of

data items arrives in stream r, it is recorded to the window for input data stream wr. The

intermediate result of processing of that group of data items is recorded into window wtemp.

The final result of the group of data items is recorded into window wout.

α
[r1][r2]

p

[r1]

[r2]

 27

 Figure 3.7: A situation where many operations read from a window.

3.2.1 Multiple Operations on a Window

It is also possible that many operations read from a window at the same time. For example

figure 3.7 shows the output of data item r1 is recorded to a window which is then read by

data items r2, r3 and r4.

3.3 Visualization of the Network

Figure 3.8 and 3.9 provide visualizations of sample data stream processing networks. We

get these networks by translating an expression into a data stream processing network.

Section 3.3.2 describes the method which is used to translate an expression with two inputs

and one output into a data stream processing network.

3.3.1 Sample Networks

For the sample networks we have taken into account relational algebra and arithmetic

expressions. We consider a class of expressions where an operation in the expression

α

α

α

α

wtemp

r2

r3

r4

r1

 28

 Figure 3.8: A data stream processing network for a relational algebra expression

 [(r s) − t].

accepts a maximum of two inputs and produces just one output. The two inputs include the

input data item and the contents recorded in an output window.

The expression used for figure 3.8 is [(r s) − t], which is a relational algebra expression.

This expression contains two operations i.e. join and minus and there are three operands r, s

and t. Each operand in the expression is considered as a single stream. In terms of the

sample network, group of data items arriving in stream r, s and t are termed as dr, ds and dt

respectively. All these groups are recorded in their respective windows wr, ws and wt as

soon as they arrive

According to the expression there is a join between the operands r and s and then minus is

used between the result of join and the operand t. When a group of data item dr arrives at

 29

 Figure 3.9: A data stream processing network for an arithmetic expression

 [(a + b) − (y + z)].

stream r, join operation of dr obtains the contents of ds from ws and performs join. The

result of the join is then recorded in window wtemp. Now the minus operation of dr obtains

the contents of dt from wt and performs minus. The final result of the expression is recorded

in window wout. The same procedure is repeated at stream s when a group of data items ds

arrive and then final results of the expression are recorded to wout. When a group of data

items dt arrive at stream t then minus operation of dt obtains the result of join of dr or ds

from w temp and performs minus. The final result is then recorded in window wout.

On the other hand, the expression used for figure 3.9 is an arithmetic expression [(a + b) −

(y + z)]. It consists of three operations and four operands a, b, y and z. The three operations

include two additions and one subtraction. The network constructed for this expression

would be different to the sample network of figure 3.8, as the arithmetic expression for this

 30

network contains an extra operand and operation. There will be two temporary windows

used, the first will contain the result of (a + b) and the second will have the result of (y + z).

According to the expression there are two plus signs between the operands r, s and

operands y, z. The minus sign is then used between the results of two additions. When a

group of data item da arrives at stream a, plus sign of da obtains the contents of db from wb

and performs addition. The result of addition is then recorded in window wtemp. Now the

minus sign of da obtains the result of (y + z) from wtemp and performs subtraction. The final

result of the expression is then recorded in window wout. The same process is repeated

when groups of data items db, dy and dz arrive at stream b, y and z respectively.

In a data stream processing network, if processing of groups of data items is performed in a

simultaneous manner then there are circumstances where processing needs to be

synchronized for obtaining correct results. In the next chapter, we present examples that

necessitate synchronization for processing groups of data items in a data stream processing

network.

3.3.2 Translation

 The following method is used to translate an expression with two inputs and one output

into a data stream processing network. Let e be an expression and Te be a syntax tree for

that expression with nodes representing operators and leaf nodes representing operands for

the operators.

Each operand i.e. leaf node of Te is considered as a stream si where si ∈{s1, …, sn}. Also

consider A1, … , An be a sequence of operations for every stream si from parent node to root

 31

node of Te. The input data item of stream si is first processed by A1 operation from the

sequence of operations and then rest of the operations in the sequence process the output of

preceding operation.

For every stream si, do the following:

1. Add a writer and a window for the input data item di appended to the stream si.

2. Provide operation A1 with (di, wsi +1) where di is the first argument and wsi +1 is the second

argument.

3. Add a writer for the out put of every operation A until root node operation of An and an

intermediate window (wtemp) for arguments that contribute towards that window.

4. For all other A’s i.e. A2 till root node An in the sequence provide A with ({wtemp}, wsi +n)

where wtemp the previous output and wsi +n the other leaf node as the second argument.

5. Add a writer and an output window (wout) for every data stream si after root node

operation An.

6. For step 1 and 2 place an edge from the writer towards the window at the input stream

and again an edge from the writer towards the operatoin A1. Place edges from A1, … , An for

every stream si showing data flow among operations. For step 3 place an edge from the

writer of every si to the intermediate window wtemp. For any operation A1, … , An place an

edge from window w to the operation if that operation reads from any window. For step 5

place an edge from the writer to the window (wout).

 32

 Chapter 4

 Synchronization Problems

This chapter identifies the circumstances that necessitate synchronization in data stream

processing networks. The chapter starts with an overview of sequential and simultaneous

processing of data items in a data stream processing network. The next section presents

motivating examples. The chapter also shows how the processing of data items in a data

stream processing network can be expressed in the terms of database transactions.

4.1 Data Processing Techniques

In the sequential technique, groups of data items are processed one at a time. A group of

data item is processed only when its predecessor group completes processing. If groups of

data items are processed one by one - i.e. sequentially then processing rate of groups of data

items will be extremely slow. As there is no switching of processing between operations of

different groups of data items, this is why serial processing does not have any problems

regarding synchronization.

On the other hand, the simultaneous technique involves processing all groups of data items

at the same time. The processing of a group of data items starts as soon as it arrives in a

stream. If simultaneous processing involves a single processor then the processor shares

time between operations of different groups of data items. It switches processing from one

 33

operation to the other of different groups of data items. In that case there are places where

processing needs to be synchronized in order to get correct results.

Processing long sequences of data items in a sequential manner is not feasible as processing

rate becomes extremely slow. Instead it should be done in simultaneous way which makes

processing more effective by processing groups of data items at the same time. For the rest

of the thesis we will focus on simultaneous processing.

4.2 Motivating Examples

In a data stream processing network, if processing of groups of data items is performed in a

simultaneous manner then there are circumstances that require synchronization for

obtaining correct results. In the following examples we present situations that occur if

synchronization is not considered.

4.2.1 Example 1

Consider two groups of data items dr and ds appended in more or less the same period of

time to the streams r and s. Firstly the two groups are recorded in the respective windows

wr and ws. Then a join operation on dr and ws is executed at the same time as the join

operation on ds and wr. If dr and ds were already recorded in windows wr and ws then this

leads towards computing the results of join dr and ds twice as shown in figure 4.1.

The same possibility may happen twice in figure 4.2 which contains four groups of data

items including da, db, dy and dz. Groups of data items da and db are appended to streams a

and b whereas groups of data items dy and dz are appended to streams y and z in more or

 34

Figure 4.1: Data stream processing network for a relational algebra expression
 of example 1.

Figure 4.2: Data stream processing network for an arithmetic expression of
 example 1.

 35

less the same period of time. All groups of data items are recorded to their respective

windows wa, wb, wy and wz.

The first posibility may occur when join operation on da and wb is executed at the same

time as the join operation on db and wa assuming da and db were already recorded in

windows wa and wb. The second posibility may take place when join operation on dy and wz

is executed at the same time as the join operation on dz and wy assuming dy and dz were

already recorded in windows wy and wz.

4.2.2 Example 2

Consider a case where two groups of data items dr and ds are recorded in window wtemp

after going through a sequence of operations. Now the order in which the two groups are

recorded may not be in accordance with the stream arrival. The same possibility may also

occur at wout, where the final result from each stream is recorded as shown in figure 4.3.

In figure 4.4, both temporary windows wtemp and the window wout have the same risk where

results may not be recorded in accordance with the stream arrival.

4.2.3 Example 3

Consider two groups of data items dr and ds are appended to streams r and s and start

executing. As execution starts, one more group dt arrives and is appended to stream t.

According to the expression [(r s) − t], a join operation is performed on dr and ds,

whereas dt requires reading the results of dr and ds after the join is performed. The result of

the join gets recorded in wtemp, which is then read by dt. Now there is a possibility that the

 36

Figure 4.3: Data stream processing network for a relational algebra expression
 of example 2.

Figure 4.4: Data stream processing network for an arithmetic expression of
 example 2.

 37

Figure 4.5: Data stream processing network for a relational algebra expression
 of example 3.

Figure 4.6: Data stream processing network for an arithmetic expression of
 example 3.

 38

read operation of dt may read wtemp before the result of the join is recorded, as shown in

figure 4.5.

In figure 4.6, both temporary windows contain the same possibility. The temporary window

where result of join between da and db is to be recorded - may be read by either dy or dz

before the result of the join is recorded. The same can happen with the temporary window

containing result of join between dy and dz that it may be read by either da or db before the

result of join gets recorded.

4.3 Transactional Interpretation of Data Stream Processing

A database transaction is a collection of operations for performing a specific task

(Bernstein et al. 1987). If a sequence of input data items is processed concurrently then

synchronization of data streams is similar to the synchronization of database transactions.

In our case, a body of transaction is sequence of reads and writes performed at different

windows as shown in figure 4.7 and 4.8. A transaction starts when a group of data items

gets appended to a stream and is recorded to a window on the input data stream. The group

then goes through a sequence of reads and writes and finally gets recorded to the window

with the final results. This becomes an end of a transaction. In some cases when an

operation produces an empty group of data items then that empty group is provided as an

input to the rest of the operations in that sequence. When the empty group of data items is

recorded to the window containing final results, then in that case it becomes an end of the

transaction. This transformation of execution of groups of data items to database

transactions is called as transactional interpretation of data stream processing.

 39

Figure 4.7: Data stream processing network for a relational algebra expression with
 sequences of transactional operations.

Figure 4.8: Data stream processing network for an arithmetic expression with
 sequences of transactional operations.

 40

α
T T1

T2

 Figure 4.9: A situation where a transaction splits into two sub transactions.

For example in figure 4.1, if a group of data items dr arrives, gets appended to stream r and

is recorded into the window over the input queue then that’s where a transaction starts.

According to the expression [(r s) − t], a join is performed on dr and ws, but before that dr

requires reading the contents of ws. After a join is performed, dr records the results into the

temporary window and so on until dr comes to the resultant window wout. The moment dr

records the final result in wout is where a transaction comes to an end. All the read and write

operations on windows triggered by processing of dr constitute the body of transaction.

This way processing of a group of data items in a stream is interpreted as a transaction.

4.3.1 Merge and Split

In terms of transactions, merge is a set of two individual transactions Ti and Tj. The two

transactions perform their operations individually until they arrive at some point p. At point

p these two transactions start performing their operations as TiTj. The merging is performed

according to the order in which the two transactions arrived at point p.

 Split case on the other side is of a single transaction which at some point splits into two

sub transactions. Consider the transaction T of figure 4.9 with a sequence of read and write

 41

Figure 4.10: Schedule for data stream processing network of figure 4.4.

operations. The transaction splits into two sub transactions T1 and T2 after some processing.

Each split transaction is given a special number to make them distinct from each other. The

sub transactions run sequentially in some order and perform their operations.

4.4 Revised Motivating Examples

On the basis of information on how we get these transactions out of our network, we would

now take the motivating examples from section 4.2 and explain them in terms of

transactions. Consider each stream in figure 4.7 as a transaction; if all these transactions run

simultaneously on a single processor then we will encounter the conflicts presented in the

schedule of figure 4.10.

 42

Figure 4.11: Serialization graph for Ti and Tj, where Ti is accessed by Tj.

A schedule is used for showing the order in which transactions are processed. The schedule

of figure 4.10 consists of three transactions T1, T2 and T3 for streams r, s and t respectively.

As defined earlier, each transaction is a sequence of reads and writes where T1 consists of

operations w1, r1, w2, r2, and w3, T2 consists of operations w4, r3, w5, r4, and w6 and T3 consists

of operations w7, r5 and w8.

A concurrent execution is considered to be correct if its schedule is serializable to a serial

schedule i.e. running all transactions simultaneously will produce the same results as if

these transactions would have been executed serially in some order. The serializability in a

schedule can be evaluated by using a graph known as a serialization graph. In a

serialization graph, each transaction of the schedule is represented as a node. An edge is

created between two nodes when a data item is accessed by two different transactions, at

least one of which is in write mode. The edge is directed towards the node representing the

transaction which accessed the data item.

Consider a schedule with two transactions Ti and Tj, where Ti is accessed by Tj and at least

one transaction in write mode. In the serialization graph an edge will be created from the

node Ti towards node Tj as shown in figure 4.11.

 Ti Tj

 43

 Figure 4.12: Serialization graph for schedule of figure 4.10 contains a cycle.

Now if at some point Tj is accessed by Ti then an edge is placed from node of Tj towards

the node of Ti. This results in creation of a cycle between the two nodes. If the serialization

graph of a schedule contains a cycle then execution is not considered as serializable. More

details on serializability and its related issues can be found in Bernstein et al. (1987).

The serialization graph for the schedule of figure 4.10 is shown in figure 4.12. The first

edge gets created when T2 reads contents of T1. When T1 reads T2 then we get a cycle in the

serialization graph. We get more edges when T3 is accessed by T1 and T2.

 T1

 T2

 T3

 44

 Chapter 5

 Synchronization Strategy and Correctness

This chapter presents a set of rules to synchronize processing of data items in a data stream

processing network. The chapter starts with the description of a collector and a regulator.

The next section defines a set of synchronization rules. A section applies the

synchronization rules to motivating examples of chapter 4. The chapter concludes with a

proof of correctness.

5.1 Synchronization Assistants

In order to synchronize execution of groups of data items in a data stream network, the

concept of two assistants is introduced. These assistants comprise of a container called

collector and a process called regulator.

5.1.1 Collector

A collector is a special purpose container which collects timestamps of data items. It is

attached to windows and merge points. Initially a collector contains no timestamp. When a

group of data items arrive and is allocated a timestamp, then that timestamp is also placed

into collectors attached to windows. This includes windows with intermediate and final

results where a group of data items is to be recorded. The timestamp is also placed into

collectors attached to merge points from which that group of data items goes through. A

 45

collector attached to a window or merge point keeps a timestamp of a group of data items

until the output of that group is not recorded into that window or the group doesn’t go

through that merge point.

5.1.2 Regulator

A regulator is a process that performs checks at temporary windows and at merge points. A

check is performed before an operation reads a temporary window or when a group of data

items reaches a merge point. The purpose of performing a check on a window is to make

sure that a window is only read by an operation of a group of data items when all

previously arrived groups with smaller timestamps have recorded their contents into that

window. On the other side, a check is performed at a merge point to allow a group to pass

through the merge point only when previously arrived groups with smaller timestamps have

gone through that merge point.

When a regulator receives a request by an operation to read the contents of a window then

it takes the timestamp of the group of data items executing that operation and performs a

check on the collector of the window which is to be read. Similar action is taken by the

regulator on the collector at the merge point, when a group arrives at a merge point. By

performing a check, the regulator searches for a smaller timestamp in the collector. A

collector contains timestamps of already arrived groups which are still going through some

processing. The timestamps in the collector are compared to the timestamp of a group

which requires reading the contents of a window or timestamp of a group at the merge

point.

 46

At both places - i.e. at a window or a merge point - if evaluation of a check returns true then

the regulator assumes that all groups of data items with smaller timestamps have been

processed. The regulator then allows a group to read the contents of a window or a group to

pass through the merge point. If evaluation of a check returns false then the regulator

doesn’t allow a group to read the window or pass through the merge point.

The regulator then puts the timestamp of that group in a separate queue named a waiting

queue. A group of data items whose timestamp is placed into the waiting queue is resumed

for processing by the regulator only when previously arrived groups with smaller

timestamps have been processed. In such a case, the regulator takes the timestamp of the

group out of the waiting queue and sends a request to the operation to resume its

processing.

The regulator also removes the timestamp of groups of data items from the collector. As

soon as the contents of a group are recorded to a window, its timestamp is deleted by the

regulator from the collector attached to that window. On the other hand, when a group of

data items pass through a merge point, its timestamp is also deleted from the collector

attached to that merge point.

5.2 Synchronization Rules

The following set of synchronization rules is proposed to synchronize processing of groups

of data items:

 47

Rule 1

Upon arrival every group of data items is provided with a unique timestamp. The

timestamp is a number assigned in an increasing sequence and remains same throughout the

execution.

Rule 2

A group of data items can only “see” other groups of data items with smaller timestamps

i.e. all previously arrived groups are visible to a group. For example if an operation reads

from a window then it will always read groups with smaller timestamp than timestamp of

the group performing the operation.

Rule 3

Every window and merge point is supplied with a collector and a regulator excluding

windows at input data streams and windows with only write operations.

Rule 4

A group of data items is not released for processing until its timestamp gets recorded into

the collectors attached to windows and merge points. This includes windows where

contents of that group are to be recorded and include merge points which that group has to

go through.

 48

Rule 5

The following are the checks performed by the regulator when an operation attempts to

read a window or a group reaches at a merge point:-

At a temporary window

The following check is performed before execution of a read operation at a window:

if there exists a timestamp in collector < timestamp of group reading window

then put timestamp of the group in a waiting queue

else execute read operation

At a merge point:

When a group of data items arrives at a merge point, the following check is performed:-

if there exists a timestamp in collector < timestamp of group at merge point

then put timestamp of the group in a waiting queue

else allow group to pass through merge point

5.3 Solution

We apply the synchronization rules of section 5.2 to the motivating examples of chapter 4:

5.3.1 Solution 1

The situation described in the example of section 4.2.1, where results were computed twice,

is eliminated because of rule 2. One of the groups from dr and ds that arrived earlier cannot

 49

see the other group due to a higher timestamp. Because of this a join is performed on

windows with different contents and no computation is performed twice.

5.3.2 Solution 2

In the example of section 4.2.2, the task was to arrange the order of the results recorded in

intermediate or final windows according to stream arrival. This would be quite simple if the

arrival time of the group of data items is known. This is already known because we use

timestamps.

For the situation described in section 4.2.2, results recorded in wtemp and wout are not

according to stream arrival but can be easily reordered according to timestamps.

5.3.3 Solution 3

In order to solve the problem of section 4.2.3, the regulator refers to the appropriate

collector to perform the check. If in the collector, the regulator finds smaller timestamps

then this indicates that there are still groups of data items being processed and the read

operation cannot execute at this moment. The regulator puts the group performing the read

operation in a waiting queue and resumes processing only when all groups with smaller

timestamp are recorded into the window.

For the example in section 4.2.3, the regulator checks for smaller timestamps in the

collectors of both dr and ds. If the regulator finds smaller timestamps then this means that

results have not been recorded. The regulator puts dt in a waiting queue until the processing

of both dr and ds gets completed and their values are recorded into the temporary window

wtemp.

 50

5.3.4 Merge and Split

In section 4.3.1 of chapter 4, the merging was performed according to the order in which

the two transactions arrived at a merge point. This instead should always be done according

to the arrival order of the two transactions. This leads towards having no problems

regarding synchronization.

In case of split of a transaction, we characterize the sub transactions with the main

transaction as a parent-child relation. The scope of the child transactions remains within the

parent transaction. After splitting the sub transactions run sequentially in some order and

results in having no problems regarding synchronization. The order for the sub transactions

does not really matter as they will have the same timestamp.

5.4 Correctness

In this section, we prove that applying synchronization rules always results in a correct

execution. As in chapter 4 we interpreted processing of data items in a data stream network

in terms of database transactions. Now we will use the method to check execution of

transactions for their correctness and will apply it to the execution performed through

synchronization rules.

For correct execution of transactions, execution should always be conflict serializable i.e. in

simultaneously running transactions the conflicting operations must be processed in the

same order as they would have been processed in a serial execution. We will prove that set

of synchronization rules will produce conflict serializable execution.

 51

The synchronization rules proposed in section 5.2 are for synchronizing a data stream

network, whereas the method we apply to check the correctness of the rules belongs to

database transactions. In order to prove correctness for the rules, we modify the rules in

accordance to database transactions. We then apply the synchronization rules to database

transactions to witness the effect made on execution of transactions.

5.4.1 Transactional Interpretation of Rules

The synchronization rules from section 5.2 are translated in terms of transactions in order to

synchronize processing of database transactions. There have been certain changes made to

the rules in order to apply them on transactions. For instance, the rules made for

synchronizing a data stream network had a concept of a window, used for storage of data

items. In the rules for synchronizing processing of database transactions we use data

containers for storage purpose. The concept of merge point is deleted as it is not valid for

database transactions. Regulators and collectors will be placed only at data containers.

Checks by regulators will only be performed at collectors attached to data containers. The

following are the modified set of synchronization rules:

Rule 1

Every transaction is provided with a unique timestamp. The timestamp of a transaction

remains the same throughout execution and is assigned in an increasing sequence.

Rule 2

A transaction can only “see” data items of other transactions with smaller timestamps i.e.

data items of all the previously arrived transactions are visible to a transaction.

 52

Rule 3

Every data container will be supplied with a collector and a regulator excluding data

containers with only write operations.

Rule 4

A transaction is not released for processing until its timestamp gets recorded into the

collectors attached to data containers. This includes data containers where that transaction

is to be recorded.

Rule 5

The following check is performed before execution of a read operation at a data container:

if there exists a timestamp in collector < timestamp of transaction reading container

then put timestamp of transaction in a waiting queue

else execute read operation

5.4.2 Theorem

The synchronization rules listed in section 5.4.1 always produces conflict serializable

execution.

Proof

As mentioned in section 4.4 of chapter 4, if the serialization graph of a schedule contains a

cycle then execution is not considered as serializable. In order to prove the above theorem

 53

we have to show that there will be no cycles created in the serialization graph when the

synchronization rules are applied to execution of a data stream processing network.

Suppose T is a sequence of transaction which we get through transforming an execution of

a group of data items in a data stream processing network

i.e. T = T1, T2, T3, …. , Tn

where the time stamps t1 < t2 < t3 and so on

We know that, an edge is formed in a serialization graph when a data item is accessed by

two different transactions; at least one of transaction is in write mode (as mentioned in

section 4.4 of chapter 4). If T2 reads the contents of T1 then an edge will be created from

node T1 pointing towards node T2 and so on.

Assume that the serialization graph for these transactions contains a cycle. Now for creation

of a cycle there will be a moment when an edge goes from Tn to T1.

Therefore, this contradicts rule 2 from the modified set of rules, which makes every

transaction only able to see data items of previously arrived transactions. This rule means

that edges can only be created from the node of a transaction with a smaller timestamp to a

node with a larger timestamp.

 T1 T2 T3 Tn,…,

 T1 T2 Tn T3 ,…, T1

 54

Hence there will be no edges created from a node with a larger timestamp towards a node

with a smaller timestamp. This results in having no cycles created in the serialization graph

and proves that by using synchronization rules we get conflict serializable execution for

groups of data items in a data stream processing network. ⁮

Transaction
with larger
timestamp

Transaction
with smaller
timestamp

 55

 Chapter 6

 Conclusion

Synchronization of data stream processing has a major impact on performance of systems

where processing of data streams is executed simultaneously. This work contributes

towards synchronization of data stream processing as it identified circumstances that

necessitated synchronization. The processing of data items within those circumstances was

then synchronized by applying a set of rules.

A data stream processing network was defined for illustrating processing of data items. The

network was constructed on the basis of a directed graph with a set of nodes and edges. The

network provided visualization of how computations were performed in a data stream

network. A method was provided for translating an expression into a data stream network

and is one of the contributions of this work.

An overview of sequential and simultaneous processing concluded with identifying that

simultaneously processed data items required synchronization. Motivating examples were

presented for showing consequences if synchronization was not considered. One of the

examples presented a situation where a computation was performed twice leading towards

wrong results. The other situation presented was the possibility that contents recorded to a

window may not be recorded according to stream arrival order. The more complicated

 56

situation presented through the example was where a window was read before results were

recorded.

In this thesis we presented the solution as a set of rules based on timestamp ordering. The

rules were applied to the circumstances provided in the motivating examples. For

synchronizing execution of data items, the concept of a container called collector and a

process called regulator was introduced and used within the rules. The regulators and

collectors are placed in such a way that if an operation required reading the contents from a

window then it was to request the regulator placed at that window for reading the contents.

The regulator after receiving a request is used to perform a check for knowing the current

status of a collector. If the collector had no smaller timestamps than of the data item

performing the operation, then it allowed the operation to read the contents, otherwise the

request was rejected. This is how processing was efficiently synchronized and any

possibility of wrong results was removed.

One of the main contributions of this work is expressing the processing of data items in a

data stream processing network in terms of database transactions. The method used to

check execution of transactions for their correctness has been applied to our results, and we

proved that using a set of rules will always produce conflict serializable executions.

A summary of my contributions of this work towards “Synchronization of Data Stream

Processing” include:

1. A new class of networks called data stream processing networks is defined as a

formal model for processing data items.

2. A method is defined for translating an expression into a data stream network.

 57

3. Processing of data items in a data stream processing network is expressed in terms

of database transactions.

4. Identification of circumstances that require synchronization.

5. A solution is presented as a set of rules that govern processing of groups of data

items.

6. The concept of two synchronization assistants called the collector and the regulator

is introduced.

7. Proof of correctness is provided for the strategy used to solve the problems.

 58

 References

Abadi, D. et al. (2003): Aurora: A Data Stream Management System. Proc. ACM SIGMOD

International Conference on Management of data, 663 – 663.

Abadi, D. et al. (2005): The Design of the Borealis Stream Processing Engine. Proc. Of the

Second Biennial Conference on Innovative Data Systems Research (CIDR). Asilomar, CA.

Arpaci–Dusseau, R. H. et al. (1999): Cluster I/O with River: Making the fast case common.

In Sixth Workshop on I/O in Parallel and Distributed Systems, Atlanta, USA, 10 – 22.

Arsu, A. et al. (2002): Characterizing Memory Requirements for Queries Over Continuous

Data Streams. Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, 221-232.

Avnur, R. and Hellerstein, J. (2000): Eddies: Continuously Adaptive Query Processing.

Proc. ACM SIGMOD International Conference on Management of data, 261 – 272.

Babcock, B. et al. (2002): Models and Issues in Data Stream Systems. Proc. ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, 1-16.

 59

Babcock, B. et al. (2003): Maintaining Variance and K- Medians Over Data Stream

Window. Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, 234 – 243.

Babcock, B. et al. (2003): STREAM: The Stanford Stream Data Manager, IEEE Bulletin of

the Technical Committee on Data Engineering, 19 – 26.

Babu, S. et al. (2004): Adaptive Ordering of Pipelined Stream Filters. Proc. ACM SIGMOD

International Conference on Management of data, Paris, France.

Babu, S. and Bizarro, P. (2005): Adaptive Query Processing in the Looking Glass. Proc. Of

the Second Biennial Conference on Innovative Data Systems Research (CIDR). Asilomar,

CA.

Babu, S. and Widom, J. (2001): Continuous Queries Over Data Streams. Proc. ACM

SIGMOD Record, 30(3): 109 – 120.

Babu, S. and Widom, J. (2004): StreaMon: An Adaptive Engine for Stream Query

Processing. Proc. ACM SIGMOD International Conference on Management of data, Paris,

France.

Bernstein, P. A. et al. (1987): Concurrency control and recovery in database systems.

Serializability Theory. 25 – 45. Addison – Wesley Publishing Company.

Bose, S. (2004): Data Stream Management for Historical XML Data. Proc. ACM SIGMOD

International Conference on Management of data, Paris, France.

 60

Carney. et al. (2002): Monitoring Steams a New Class of Data Management Applications.

Proc. International Conference on Very Large Data Bases, Hong Kong, China.

Chan, J. (2000): NiagaraCQ: A Scalable Continuous Query System for Internet Databases.

Proc. ACM SIGMOD International Conference on Management of data, 379 – 390.

Chandrasekaran, S. et al. (2003): TelegrpahCQ: Continuous Dataflow Processing. Proc.

ACM SIGMOD International Conference on Management of data, 665 – 665.

Cherniack, M. et al. (2003): Scalable Distributed Stream Processing. Proc. Of the First

Biennial Conference on Innovative Data Systems Research (CIDR), Asilomar, CA.

Cranor, C. et al. (2003): The Gigascope Stream Database, IEEE Bulletin of the Technical

Committee on Data Engineering, 27 – 32.

Das, A. et al. (2003): Approximate Join Processing Over Data Streams. Proc. ACM

SIGMOD International Conference on Management of data, 40 – 51.

Deshpande, A. (2004): An Initial Study of Overheads of Eddies. Proc. ACM SIGMOD

Record, 33(1).

Deshpande, A. et al. (1998): Caching Multidimensional Queries using Chunks. Proc. ACM

SIGMOD International Conference on Management of data, 259 – 270.

Getta, J. R. and Vossough, E. (2004): Optimization of Data Stream Processing. Proc. ACM

SIGMOD Record, 33(3): 34 – 39.

 61

Golab L. and Özsu M. T. (2003): Issues in Data Stream Management. ACM SIGMOD

Record, 32(2): 5 – 14.

Ives, Z. et al. (1999): An Adaptive Query Execution System for Data Integration. Proc.

ACM SIGMOD International Conference on Management of data, 299 – 310.

Jain, A. et al (2004): Adaptive Stream Resource Management Using Kalman Filters. Proc.

ACM SIGMOD International Conference on Management of data, Paris, France.

Lee, Ken C.K. et al. (2004): QUAY: A Data Stream Processing System using Chunking.

Proc. of International Database Engineering and Applications Symposium.

Lee, Ken C.K. et al. (2002): Semantic Database Broadcast for a Mobile Environment and

Adaptive Chunking. IEEE Trans. on Computers, 51(10): 1253 – 1268.

Levy, A. (2000): Special Issue on Adaptive Query Processing. IEEE Bulletin of the

Technical Committee on Data Engineering, 23(2): 2.

Madden, S. et al. (2002): Continuously Adaptive Continuous Queries Over Streams. Proc.

ACM SIGMOD International Conference on Management of data, Madison, Wisconsin, 49

– 60.

Naughton, J. F. et al. (2001): The Niagara Internet Query System. IEEE Data Engineering

Bulletin, 24(2): 27 – 33.

Rastogi R. (2002): Special Section on Online Analysis and Querying of Continuous Data

Streams. IEEE Transactions on Knowledge and Data Engineering, 15(3): 513 – 514.

 62

Sulliovan, M. et al. (1996): Tribeca: A Stream Database Manager for Network Traffic

Analysis, Proc. International Conference on Very Large Data Bases, 594.

Stonebraker, M. et al. (2003): The Aurora and Medusa Projects, IEEE Bulletin of the

Technical Committee on Data Engineering, 3 – 10.

Tatbul, N. et al. (2003): Load Shedding in a Data Stream Manager. Proc. International

Conference on Very Large Data Bases, Berlin, Germany.

Terry, D. B. et al. (1992): Continuous Queries Over Append-Only Databases. Proc. ACM

SIGMOD International Conference on Management of data, San Diego, USA, 321 – 330.

Tian, F. and DeWitt, D. J. (2003): Tuple Routing Strategies for Distributed Eddies. Proc.

International Conference on Very Large Data Bases, Berlin, Germany.

Tucker, P. A. et al. (2003): Applying Punctuation Schemes to Queries Over Data Streams.

IEEE Bulletin of the Technical Committee on Data Engineering, 33 – 40.

Vossough, E. (2004): Processing of Continuous Queries Over Infinite Data Streams. Ph.D.

thesis. University of Wollongong.

Xing, Y. et al (2005): Dynamic Load Distribution in the Borealis Stream Processor. IEEE

Proc. of 21st International Conference on Data Engineering.

Zhu, Y. et al. (2004): Dynamic Plan Migration for Continuous Queries Over Data Streams.

Proc. ACM SIGMOD International Conference on Management of data, 431 – 442.

	University of Wollongong - Research Online
	Cover
	Copyright warning
	Title page
	Certification
	Table of contents
	List of figures
	List of tables
	List of publications
	Abbreviations
	Abstract
	Acknowledgments
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	References

