#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Synchronizing data stream processing
Author: Mohammad Siddique Fawad Qureshi
Year: 2007

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2007

Synchronizing data stream processing

Mohammad Siddique Fawad Qureshi
University of Wollongong

Qureshi, Mohammad Siddique Fawad, Synchronizing data stream processing, M.Comp.Sc.-
Res. thesis, Information Technology and Computer Science, University of Wollongong, 2007.
http;//ro.uow.edu.au/theses/649

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/649

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

Synchronizing Data Stream Processing

A thesis submitted in fulfillment of the requirements for the award of the degree

Master of Computer Science (Research)

from

UNIVERSITY OF WOLLONGONG
by

M. S. Fawad Qureshi

B.Sc Computer Science — University of Sindh
M.Sc Computer Science — University of Sindh

SITACS
School of Information Technology and Computer Science

2007

© Copyright 2007

by
M. S. Fawad Qureshi
All Rights Reserved

Certification

I, M. S. Fawad Qureshi, declare that this thesis, submitted in fulfillment of the
requirements for the award of Master of Computer Science, in the School of Information
Technology and Computer Science, University of Wollongong, is wholly my own work
unless otherwise referenced or acknowledged. The document has not been submitted for

qualifications at any other academic institution.

M. S. Fawad Qureshi

Date: 30 March 2007

Table of Contents

Chapter 1

Introduction..

I N I 0T = 0] o] =] 1 1 VT

1.2 Strategy and ODbJeCtiVES........o vt

1.3 Outline Of the ThESIS. ..o e e e e,

Chapter 2

Background and Related WOrKccooviiiiiiiiiiiiiic e

2.1 Data Stream ProCeSSING.....ovve e it it et e eee e e e e eeean,

2.2 Adaptive QUErY ProCeSSING......cueereit it ieieie i ee e aae e,

2.3 Continuous QUENY ProCeSSING......ueuueeie e ee et ieeeeniene e

2.4 Synchronization TeChNIQUES..........vuiiiiie e

Chapter 3

Data Stream Processing Networks..........covvviiiiiiiiiii e e

3.1 NetWOrk Model. e e e,

3.1 1 COMPONENTS. .ot ettt e et e e e e e e e e

3.1.2 ComMPUEALION. .. ettt e e e e e e

3.1.3 OPeratiONS. .. .ttt et et

3.2 Windows

11

15

17

21

21

22

23

24

26

3.2.1 Multiple Operations on a Window.............c.ccvveineinnnen,

3.3 VISUANZATION . .. oo e e e e e e e e e e

3.3.1 Sample Netwo

3.3.2 Translation....

Chapter 4

[T

Synchronization Problems...........ocooiiii i

4.1

4.2

4.3

4.4

Data Processing Techn

Motivating Examples..

0 1=

4.2.1 EXample L.

4.2.2 Example 2.......

4.2.3 EXamMpPle S..

Transactional Interpretation of Data Stream Network...................

4.3.1 Merge and Split

Revised Motivating EXamples..........coooo i

Chapter 5

Synchronization Strategy and Correctness..........ccvcvvvvevevinennnnn,

5.1

5.2

Synchronization ASSISTaNtS.........covevie e i

5.1.1 Collector........

5.1.2 RegUIALON... ...ttt e e e

Synchronization Rules

27
27
27

30

32
32
33
33
35
35
38
40

41

44
44
44
45

46

5.3 SOIULION . . e e

5.3.1
5.3.2
5.3.3

5.34

SOIULION L. . e e e e e,
SOIULION 2. e e e e,
SOIULION 3. e e e e e

Merge and Split........cooiiii i

oY 0] (=01 111

54.1

54.2

Transactional Interpretation of Rules..............................

TREOT M . .. e e e e e e e

Chapter 6

Conclusion

References

Vi

48
48
49
49
50
50
51

52

55

58

List of Figures

Chapter 3

Figure 3.1: Upon arrival, a group of data items s is recorded to a window

OVEr AN INPUL STrBAM . ..ottt e e e e e e e e e v e e e e aaeen,
Figure 3.2: An edge from a writer to a window represents a write............
Figure 3.3: An edge from a window to an operation represents a read......

Figure 3.4: An operation with a group of data items as input and produces

groups of data items as OULPUL.oviiiii e e,
Figure 3.5: A writer records contents of a data item into a window...........

Figure 3.6: A situation where merge is performed on two groups of data

Figure 3.7: A situation where many operations read from a window.........

Figure 3.8: A data stream processing network for relational algebra

eXPression [(Fe<S) = T e oo

Figure 3.9: A data stream processing network for an arithmetic expression
[(@4+D) = (Y Z2)] oo

Chapter 4

Figure 4.1: Dataflow processing network for a relational algebra

expression of example L.......oooiiii i,

Figure 4.2: Dataflow processing network for an arithmetic expression of

vii

22

23
23

24

25

26

27

28

29

34

BXAMPIE L. e

Figure 4.3. Dataflow processing network for a relational algebra

eXpression Of eXample 2.

Figure 4.4: Dataflow processing network for an arithmetic expression of

BXAMPIE 2.

Figure 4.5. Dataflow processing network for a relational algebra

expression of example 3.o

Figure 4.6: Dataflow processing network for an arithmetic expression of

BXAMPIE 3.

Figure 4.7: Dataflow processing network for a relational algebra

expression with sequences of transactional operations..........................

Figure 4.8: Dataflow processing network for an arithmetic expression

with sequences of transactional operations..............ccoovviiiiinininnnnnn

Figure 4.9: A situation where a transaction splits into two sub

L0 0 ES7 (o1 10 L
Figure 4.10: Schedule for data stream processing network of figure
AT e e e e e
Figure 4.11: Serialization graph for T; and T;j, where T; is accessed by T;...

Figure 4.12: Serialization Graph for schedule of figure 4.10 contains a

viii

34

36

36

37

37

39

39

40

41

42

43

List of Tables

List of Publications

Publications arising from this thesis:

Qureshi, M. S. F. and Getta, J. R. (2007): Synchronizing Data Stream Processing. Proc.
IASTED International Conference on Parallel and Distributed Computing and Networks,

Innsbruck, Austria, 233 — 238.

Peer-reviewed proceedings of an international conference.

Abbreviations

AQP . Adaptive Query Processing
AR T L Average Response Time
GO Continuous Query Language
COP e, Continuous Query Processing
DBMS... Data Base Management System
DSMS. . Data Stream Management System
DS P e Data Stream Processing
DSPN ..o Data Stream Processing Network
MDR .. Maximum Data Rate
POP Pipelined Query Processing
101 Quality of Service
0 Query Processor
SPE . Stream Processing Engine
STREAM... oo Stanford Stream Data Manager
SO Structured Query Language
T Tapestry Query Language
XML Extended Markup Language

Xi

to my beloved father

Haji Muhammad Saleem Qureshi

xii

Abstract

Synchronization of data stream processing has a significant impact on performance of
systems where processing of long sequences of data items needs to be done
simultaneously. In earlier works on stream processing, synchronization has been
discussed to a limited extent or has been completely overlooked. This work describes a
formal model of synchronization in a data stream processing network. We use a notation
of data stream processing networks to identify circumstances that necessitate
synchronization. We also express processing of groups of data items in terms of database
transactions within a data stream processing network. A technique similar to timestamp
ordering of database transactions is used to solve the problems. A solution is presented as
a set of rules that govern processing of groups of data items. A proof of correctness has

been provided for the strategy used to solve the problems.

Xiii

Acknowledgments

I would like to thank my supervisor Dr. Janusz R.Getta for his invaluable guidance,
support, and patience. He helped me in defining a suitable problem for my thesis, and
always provided productive suggestions in the course of the writing process.

My special thanks to Professor John Fulcher and Dr. Heather Jamieson for their
encouragement during the revision process.

I would like to thank my family and friends for their continuous support and help in the

best way possible.

Xiv

Synchronizing Data Stream Processing

Chapter 1

Introduction

In a number of applications data arrives in the form of a long sequence of items spanned
over a long period of time. Such sequences, also called data streams require new data
processing techniques different from techniques developed over the last two decades for
relational database systems. These streams require processing in an online manner (Rastogi
2002) where the arrival of a new data item immediately triggers its processing. Data
streams are generated in applications including sensor networks, satellite and traffic
monitoring systems, security monitoring, financial services, weather measurements and
many other real-time applications. In these applications, arrival rate of data is very high and

rapid.

Effective processing of data streams is a difficult problem. Traditional database
management systems (DBMS’s) are incapable of efficient handling of data streams (Arsu et
al. 2002) due to a lack of online data stream processing algorithms and architectures that
prefer batch oriented data processing. Many fundamental assumptions that are basis of
database systems are not valid for stream-oriented systems (Tian, F. and DeWitt, D. J.
2003). The continuous arrival of data requires something more than a DBMS. As data
arrives in a stream it needs to be analyzed. The arrival rate of data is very high in a stream

and storing all the data will result in loss of memory and time.

The debate in the data management research community is about developing a general
purpose data stream management system (DSMS). Some researchers refer to DBMS as ill
equipped (Babu, S. and Widom, J. 2001) for processing data streams. Few resist updating
today’s DBMS in the presence of data streams. In that case, many aspects of DBMS need to
be reconsidered for processing streaming data. Vossough, E. (2004), claims there are no

methods for a DBMS to handle synchronized processing of data streams.

The increase of streaming data will require a data management system that fulfills all the
requirements for processing data streams. One of the main factors in the increase of
streaming data is sensor technology. Sensor technology is decreasing in cost day by day
and becoming more affordable. This will result in sensors embedded in almost every device
and thereby generating more streaming data. For example when we have sensor’s
embedded in our mobiles then just by running a simple query, we would be able to find the

current location of someone instead of calling and asking.

The concept of DSMS is of a dedicated system for processing a new class of data
processing applications, called stream-based applications. The work done in regard of
stream processing ranges from efficient algorithms for data streams to complete data stream
management systems such as Borealis (Abadi D. et al. 2005), STREAM (Babcock, B. et al.
2003), Aurora (Carney. et al. 2002 and Cherniack, M. et al. 2003), NiagaraCQ (Chan, J.
2000), Telegraph (Chandrasekaran, S. et al. 2003), Tribeca (Sulliovan, M. et al. 1996) and

few others.

1.1 The Problem

In a data stream processing network, if data items are processed one by one - i.e.

sequentially - then this is not practical. The processing rate of data items will be extremely

3

slow. Even though sequential processing doesn’t have any problems regarding
synchronization, it is not feasible to apply this technique to a data stream. On the other
hand, if data items are processed at the same time - i.e. simultaneously - then this makes
processing more effective. The processing gets started immediately as data items arrive.
But simultaneous processing involves circumstances where processing needs to be
synchronized, otherwise it may result in incorrect execution of data items. We use a
notation of data stream processing networks to identify circumstances that necessitate

synchronization.
1.2 Strategy and Objectives

The synchronization method proposed in this work is defined as a set of rules that govern
the processing of groups of data items. The rules synchronize the processing of data items
at circumstances identified by this work. To prove the correctness of our approach, we will
express processing of data items in a data stream network in terms of database transactions.
The method used to check the execution of transactions for correctness will then be applied

to our results.
The main objectives of this research project are:

= To perform a literature review on related work done in the area of stream processing

and study previously proposed synchronization techniques for data streams.
» To propose a new class of networks for processing data items in a stream.

*» To identify circumstances which require synchronization while processing data

items simultaneously.

To propose a solution in order to synchronize processing of groups of data items in

the network.

To prove the correctness of the solution.

1.3 Outline of the Thesis

Following is the brief description of the remaining chapters presented in this thesis:

Chapter 2 Background and Related Work

This chapter presents a background on stream processing and also some related

work in respect to data streams.

Chapter 3 Data Stream Processing Network

This chapter proposes a new class of networks called data stream processing
networks. It defines the basic structure of the network and also computations
performed within the network. It describes an entity called windows, together with

details regarding some operations.

Chapter 4 Synchronization Problems

This chapter identifies circumstances that require synchronization in a data stream
processing network. It describes motivating examples showing consequences of not
synchronizing the processing. This chapter shows how processing of data items in a
data stream network can be expressed in terms of database transactions and

interprets the motivating examples in terms of transactions.

= Chapter 5 Synchronization Strategy and Correctness

This chapter presents a solution as a set of rules to synchronize processing of data
items in a data stream processing network. It provides description of a regulator and
collector and applies the rules to the motivating examples of chapter 4. It also

provides a proof of correctness for the rules.

Chapter 2

Background and Related Work

The following review of the literature relevant to synchronization of data stream
processing, is divided into two parts. The first part consists of three sections i.e. section 2.1
Data Stream Processing, section 2.2 Adaptive Query Processing and section 2.3 Continuous
Query Processing. These sections review the background research relevant to processing of

data streams.

The second part section 2.4 Synchronization Techniques and Related Work, examines the
relevance of the background research with reference to synchronization of data stream

processing.

2.1 Data Stream Processing (DSP)

The two major areas that contribute towards DSP are adaptive query processing (Levy
2000) and continuous query processing (Terry, D. B. et al. 1992). At the moment,
numerous research works provide information on different aspects of DSP. A
comprehensive review of major contributions is included in (Arsu, A. et al. 2002),
(Babcock, B. et al. 2003), (Carney. et al. 2002), (Cranor, C. et al. 2003), (Das, A. et al.
2003), (Stonebraker, M. et al. 2003), and (Tucker, P. A. et al. 2003). A review of recent

work is described in (Babcock, B. et al. 2002) and (Golab and Ozsu 2003).

The approach in data stream processing is to start execution as soon as data item arrives in
a stream and to process the maximum amount of data items at the same time. According to
(Getta and Vossough 2004), methods for DSP should be reactive, continuous, adaptable
and efficient. Reactivity means that processing of a data item should start immediately as it
arrives in a stream. Continuity concerns the time to time recomputations of applications in
order to update according to the changing contents of the stream. Adaptability allows for
dynamically modifying a processing plan in reply to external factors, for example rapid
change in the frequency of a stream. Efficiency concerns dictate that data processing rate

must be higher than the data propagation rate.
A brief summary of some of the related work done in the area of DSP is as follows:

= Aurora is a DSMS built for a large distributed scale. It is a dataflow system that

allows users to build query plans by arranging boxes (operators) and arrows
(dataflow among operators). A box in a system accepts input streams and produces
one or more output streams as arrows. Final outputs from boxes are streamed to
other applications. The system represents a set of continuous queries as a loop-free
directed graph of stream oriented operators. This is similar to the execution

performed within our network.

Aurora comprises operators such as a simple unary operator (Filter), a binary merge
operator (Union), a mapping operator (Map), a time bound window sort (WSort), an
aggregation operator (Tumble) and a join (Join). The users are allowed to define
their own declarative queries in SQL and compile those queries into box and arrow

model.

The main components of the Aurora system are the scheduler, storage manager and
load shedder. The heart of the system is the scheduler that decides which operators
to execute and in which order to execute them. It also gives special attention to
issues like reducing operator scheduling and invocation overheads. The storage
manager is designed for storing ordered queues of tuples and buffers the queues
when main memory runs out. The load shedder detects and handles overload
situations. Load shedding (Tatbul, N. et al. 2003) is an important strategy for
adapting to higher rates of data arrival. The input tuples are dropped based on some
criterion such as quality of service (QoS) in Aurora. Each query in Aurora defines

the processing requirements and QoS specifies query performance requirements.

QUAY (Lee, Ken C.K. et al 2004): QUAY (pronounced “key” meaning a platform

over streams) is a data stream processing system that uses the chunking technique
(Deshpande, A. et al. 1998 and Lee, Ken C.K. et al. 2002) for indexing queries. The
chunking technique clusters and indexes both queries and data records in a unified
way as chunks. This approach of indexing queries is different to approaches
proposed in Eddy and NiagaraCQ. An adaptive selection-join arrangement for a
huge number of selection-join queries is also proposed for processing window join
operation from stream sources. The system architecture of QUAY consists of four
cooperating modules, namely stream modules, a cross chunk join operation, a query
registry and a set of programming interfaces. The stream module is for serving each
individual data stream. The cross chunk join processor evaluates join queries. The
query registry is a repository for query information. The set of programming

interfaces is for providing access from stream applications.

Boreal is: A distributed stream processing engine and a successor to Aurora.

Borealis is considered to be the first of the second generation stream processing
engines (SPE’s), while the previously proposed SPE’s are assumed to be first
generation. Borealis inherits the Aurora model (boxes and arrows) for specifying
queries. An important addition to the Aurora query model is that Borealis has the
capability of changing the semantics of a box on the fly. The boxes in Borealis are
provided with special control lines. These lines carry control messages that contain

revised box parameters and functions for changing box behaviour.

The group of continuous queries submitted to Borealis can be seen as one big
network of operators where processing is distributed to multiple sites. Each site runs
a Borealis server where Query Processor (QP) - which is single site processor -
forms the core piece for query execution to take place. The major run-time
components of QP consist of the priority scheduler, box processors, storage
manager and load shedder. The priority scheduler determines the order of box
execution based on tuple priorities. The box processor changes the behaviour of the
box, and each type of box is provided with one box processor. The storage manager
is responsible for storage and retrieval of data. The load shedder discards low-
priority tuples when the node is overloaded. Xing, Y. et al (200) presents a
correlation based load distribution algorithm for Borealis that aims at avoiding

overload and minimizing end-to-end latency and maximizing load correlation.

STREAM: The STanford stREam datA Manager is a general purpose and a

relation-based DSMS with an emphasis on memory management and approximate

10

query answering. The functionality and performance of STREAM is similar to a
traditional DBMS but allows some or all data to be managed in the form of
unbounded data streams. It supports CQL (i.e. continuous query language) as a
declarative query language. The system operates in a manner that each operator
works on a set of input data streams and produces an output stream. Data may be
saved in a component called Scratch or may be discarded to the component called
Throw. The current results are stored in the component called Store. The results
may also be sent to output stream and are served as an input to other operators. The
system uses a global scheduler that controls query execution operators. The
scheduler uses a simple round-robin scheme for scheduling operators. The use of a
scheduler not only minimizes total queue size of unpredictable streams but also

reduces for example inaccuracy, latency and memory use.

* Optimization of Data Steam Processing (Getta and Vossough 2004): This work
describes a formal model for processing data streams and describes optimization
techniques that can be applied to the model. One of the optimization techniques
described is for efficient synchronization of elementary operations on data streams.
Processing of data streams have been distinguished between logical and dataflow
levels and is one of the main contributions of this work. This work considers using a

scheduler for simultaneous processing of data streams.

2.2 Adaptive Query Processing (AQP)

Adaptive query processing allows for dynamically modifying a processing plan in reply to

the external environment. The origins of AQP can be traced to the Telegraph Project.

11

Examples of this processing approach include Rivers (Arpaci—Dusseau, R. H. et al. 1999)

and Eddies (Avnur, R. and Hellerstein, J. 2000). The key to telegraph is a continuously

adaptive query processing engine. The engine gathers feedback from the environment and

uses that feedback for determining its behaviour. A feedback to an adaptive system makes

the processing more efficient. It allows the system to make better decisions by observing

the results of multiple decisions. According to Babu, S. and Bizarro, P. (2005), adaptive

query processing can be divided into the following three families:

Plan-based AQP Systems: AQP for traditional plan-based systems for example
Tukwila (Ives, Z. et al. 1999). The Tukwila system supports AQP by performing

dynamic data integration over autonomous data sources.

Continuous-Query —based AQP systems: AQP for long running continuous queries

over data streams for example STREAM and NiagaraCQ.

Routing-based AQP systems: AQP for DBMS’s and continuous queries based on
adaptive tuple routing where tuples are routed individually through operators for

example Rivers and Eddies.

A brief summary of some of the related work done in regard to AQP is as follows:

StreaMon: An Adaptive Engine for Stream Query Processing (Babu, S. and
Widom, J. (2004)): It is the AQP engine of STREAM prototype data stream
management system that uses CQL as the query language. The system consists of
three generic components, an executor, a profiler and a reoptimizer. An executor
runs query plans for producing results, a profiler collects and maintains statistics

about the stream, and a reoptimizer ensures that the plans and memory usage are

12

most efficient for the current input. StreaMon also uses several techniques for
supporting AQP including adaptive memory minimization, adaptive join ordering
and adaptive caching for joins. Adaptive memory minimization reduces run-time
memory requirements for continuous queries by exploiting stream data. Adaptive

join ordering is used to pipeline multiway stream joins.

Tuple Routing Strategies for Distributed Eddies (Tian, F. and DeWitt, D. J. 2003):
Routing tuples between operators of a distributed stream query plan have been used
in many DSMS’s as an adaptive query optimization technique. A routing policy can
have a significant impact on the performance of a system. The original paper on
Eddies introduced the idea of routing tuples between operators as a form of query
optimization. This work extends the concept of an Eddy to a distributed
environment. This work also proposes and evaluates some practical routing policies
for a distributed stream management system. Two performance metrics - average
response time (ART) and maximum data rate (MRD) - are defined for response time

of a tuple when it enters and leaves operators and system throughput.

Eddy is a query processing operator that dynamically chooses the order of tuples in
a query plan by making independent routing decisions per tuple. The making of
routing decisions per tuple may be too expensive. Deshpande, A. (2004) performs

the initial study of the overheads of Eddies.

Adaptive Stream Resource Management Using Kalman Filters (Jain, A. et al 2004):
This work perceives stream resource management as fundamentally a filtering
problem and proposes Kalman Filters as a general and adaptive filtering solution for

conserving resources. The Kalman Filter is a stochastic, recursive data filtering

13

algorithm that can be used in a large variety of data-streaming applications. It is
capable of adapting to various stream characteristics, sensor noise and time
variance. A significant boost in performance can be achieved as the method does
caching of dynamic procedures that can predict data reliably at the server without

user involvement.

Adaptive Ordering of Pipelined Stream Filters (Babu, S. et al. 2004): The focus of
this work is on the problem of ordering the filters adaptively for minimizing
processing cost in an environment where stream and filter characteristics may
change considerably. This work proposes an algorithm called A-Greedy (for
Adaptive Greedy) that converges to an ordering within a small constant factor of
optimal. One of the main features of the algorithm is that it monitors and responds
to selectivities that are correlated across non independent filters. This provides a
strong quality guarantee but may result in run-time overhead. This work also
identifies a three-way tradeoff among provable convergence to good ordering, run-
time overhead and speed of adaptivity. A collection of different variants of A-

Greedy are also developed that lie at different points for the tradeoff spectrum.

Adaptive Filters for Continuous Queries Over Distributed Data Streams (Madden,
S. et al. 2002): This method reduces the overhead of a centralized processor that
monitors continuous queries in an environment where distributed data sources
continuously cause stream updates. The filters installed at remote data sources adapt
to changing conditions for minimizing stream rate while guaranteeing that all
continuous queries receive the necessary updates for providing answers of adequate

precision. This method enables an application to trade precision for communication

14

overhead at a fine granularity by individually adjusting the precision constraints of
continuous queries over streams. This work also demonstrates the effectiveness of
the method for achieving low communication overhead and compares the method

with other similar methods. This method relies on the use of system schedulers.
2.3 Continuous Query Processing (CQP)

Continuous and one-time queries (Terry, D. B. et al. 1992) are two important types of
queries that can be related to a data stream model. One-time queries are a class of queries
that includes traditional DBMS queries. They are evaluated once over a point in time
snapshot of the data set while providing answers to the user. In comparison, continuous
queries are evaluated continuously as data streams continue to arrive. The answer of a
continuous query always reflects the stream data seen so far and are stored or updated as

new data arrives.

A brief summary of some of the related work done in area of CQP is as follows:

* Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al.
2004): The “Dynamic Plan Migration™ is about transforming from one query plan to
a semantically similar but more effective plan. An effective migration plan ensures
that results have not been altered during or after the migration process. For solving
problems dynamically during migration, two types of strategies i.e. moving state
strategy and parallel track strategy have been proposed. The moving state strategy
assures timestamp order preservation for the tuples. The parallel track strategy is
used for having correct results without any changes. The problems defined are for

example duplication of tuples and incorrect order of results.

15

Data Stream Management for Historical XML Data (Bose, S. 2004): This work
presents a framework for continuous querying of time-varying streamed XML data.
The model defined differs from other data stream processing models in terms of
query language and data processing. The query language used is XCQL, which
works on multiple XML data streams and is able to correlate data. This framework
considers input data from a wide variety of streaming data sources and has the

ability to synchronize between streams by issuing coincidence queries.

Tapestry (Terry, D. B. et al. 1992): This system used continuous queries for

content-based filtering over an append-only database. The database was created for
email and bulletin board messages. A subset of SQL with some restrictions called
Tapestry query language (TQL) was used to provide efficient evaluation and

append-only query results.

Tribeca is one of the early special purpose systems developed for on-line traffic

monitoring. It provided restricted querying capabilities over network packet streams
with a simple query language. It supports windows and a set of operators adapted

from relational algebra.

NiagaraCQ is a continuous query system that permits continuous XML queries

to be presented over dynamic web content. It was built in regard to the Niagara
Internet Query System (Naughton, J. F. et al. 2001). It considers continuous queries
that transform a passive web page into an active environment that can support
millions of queries. This model introduces predicate grouping and group

optimization techniques for addressing scalability in terms of the number of queries.

16

Grouping queries shares common computations and can reduce input/output cost.
NiagaraCQ uses an incremental group optimization strategy which dynamically
regroups queries. If implemented in an internet environment NiagaraCQ uses a
system of continuous query mangers, event detectors and data managers. The
system performs well in an internet environment but can be very costly in a

distributed environment because of the high volumes of data.

2.4 Synchronization Techniques and Related Work

Synchronization is a topic which still needs to be given more consideration in presence of
data streams. In previous work on stream processing, synchronization has been discussed
either to a limited extent or has been completely overlooked. Vossough, E. (2004), claims

there are no methods for a DBMS to handle synchronized processing of data streams.

As stream applications rely on shared data and computations, where data may be in a table
is updated by one query and read by the other. This sharing may result in data
inconsistencies. The uniqueness of this work is that mainly focus on synchronization and

identifies circumstances where processing needs to be synchronized.

After going through some of the major work performed for stream processing; now we
examine the relevance of the background research with reference to synchronization of data

stream processing:

= In STREAM operators are scheduled for execution by a central scheduler. During
execution, an operator reads data from its input queues and writes results to its

output queues. The scheduler dynamically determines an execution period for an

17

operation. When the period expires the operator returns the control back to the
scheduler. The period of execution may be based on time or number of tuples. A
need for synchronization within operators while scheduling multiple query plans is
discussed but overlooked in presence of other major issues like memory

management.

The heart of our solution is the regulator which is one of the synchronization
assistants. The goals of using a regulator are to synchronize the processing and to
remove any possibility that leads towards wrong results. The synchronization is
performed in a way that an operation requests the regulator for executing at
circumstances where processing needs to be synchronized. The regulator then
performs certain checks in order to allow or stop a data item from executing further.
We use another synchronization assistant which is a container called collector. It is
a special purpose container which collects timestamps of data items as a data item is

allocated a timestamp. The checks are performed by the regulator on the collector.

The work by Getta and Vossough (2004) is geared towards optimizing stream
processing where one of the optimizing techniques is regarding efficient
synchronization of elementary operations on data streams. A scheduler is defined
which can be considered as a formal model for concurrent processing of data
streams and not as a hypothetical implementation. Running computations are
represented in terms of a scheduling graph. The graph is dynamically maintained
during the computations of dataflow expressions. Scheduling quality in the graph is
measured by the total number of dashed edges. If the graph contains no edges then it

implies no conflicts and no blocking of operations.

18

One of the similarities to our work is of showing computations on data streams
implemented as flows of data items among the elementary operations. The concept
of translating an expression into a data stream processing network is also similar to
our work. The only difference is that we first translate an expression into a syntax
tree and then to a network. This work derives data stream expressions from the

syntax tree and then uses those expressions for creation of a network.

Routing Tuple is used in many DSMS’s as an adaptive query optimization
technique for distributed stream query plan between operators. A model for
distributed stream query plan is defined as a set of operators connected by a network
where input tuples are added to a first-come first-served queue. This work describes
a distributed symmetric join algorithm which implements a join operator with for
two input streams — i.e. A < B. First an input tuple from stream A is processed by
an operator which maintains a sliding window for stream A, then the tuple is sent to
the operator that joins the tuple with window of stream B. A three way join A < B
>a C was also defined. Two different joins were performed on the sliding window of

stream B — the right side join of A >« B and a left side join of B s« C.

Eddies relates to our work as it implements a network of simple operators for

processing data streams.

In Aurora, the data flows through a loop-free system of boxes i.e. operators. The
way data gets processed within the boxes is not clear. The output of the box may be
shared by multiple queries or even a single query for merging intermediate

computations. This is achieved through one of the boxes called WaitFor box. This

19

box buffers each tuple ¢ on an input stream until a tuple arrives on the second input

stream that with ¢ satisfies P. The syntax of WaitFor is shown below:

WaitFor (P: Predicate, T: Timeout)

Incase of a read operation where a read must follow an update, the WaitFor buffers
the read requests until a tuple output by the Update box indicates that read operation
can proceed. Now in a situation where the Update box may not produce any results
then the WaitFor box will wait forever. No strategies are defined for such kind of

possibilities.

Adaptive caching for multiway joins avoids recomputations of intermediate result
and is similar to one of the problems described by this work. One more similarity to

our work is the use of sliding windows.

Dynamic Plan Migration for Continuous Queries Over Data Streams (Zhu, Y. et al.
2004) is about transforming from one query plan to a semantically similar but more
effective plan. They describe problems which are conceptually similar to the
problems defined in our work but are in the context of dynamic plan migration. The
problems defined are for example duplication of tuples and incorrect order of
results. We use a technique similar to timestamp ordering of database transactions
for solving the problems. A solution is presented as a set of rules that govern

processing of individual data items.

20

Chapter 3

Data Stream Processing Networks

This chapter proposes a new class of networks called Data Stream Processing Networks
(DSPN). The first section defines basic structure and the main components of the network.
It also deals with computations performed within the network along with details regarding
some operations. The second section describes an entity called windows. The third and last

section provides visualization of sample networks.
3.1 Network Model

We define a formal model for processing of groups of data items in a DSPN. The network
is defined as a directed graph with set of nodes and edges. The formal definition of the

network is as follows:
Definition:

A data stream processing network is a directed graph G = (n,e) where 7 is a set of nodes -
re.n=(wwudum)and e is a set of edges —i.e. e=(e,;U e, U e, U e, U e;) where e, < (w X

w),e.c(dxw),e,c(wxd),e.c(wxm),ec(mxw).

In terms of nodes, node w represents a set of elementary operations, node d represents a set

of windows and node m represents a set of merge points. In case of edges, e, = (w X w)

21

Figure 3.1: Upon arrival, a group of data items s is recorded to a window over an
input stream.

represents flow of data between two operations, e, = (d x w) represents flow of data from a
window to an operation, e; < (w X d) represents flow of data from an operation to a
window, e, < (w x m) represents flow of data from an operation to a merge point, e; = (m

w) represents flow of data from a merge point to an operation.

3.1.2 Components

The network represents operations through rectangles and windows through parallelograms.
A window d is an ordered sequence of a group of data items arriving at different times.
Whenever a group of data item arrives in a stream, it is recorded to a window over an input

stream as shown in figure 3.1. More details on windows are provided in section 3.2.

The network also has two special operations called merge and write. Merge is represented
through a black square called a merge point m whereas write is denoted by a large dot
called a writer. A writer records contents of every group of data items into the windows.

Section 3.1.4 provides more details on merge and write.

Edges are used to represent data flows between operations, windows and merge points. For

example when a writer records the contents of a data item into a window, then an edge

22

— L
[/

Figure 3.2: An edge from a writer to a window represents a write.

[/

Figure 3.3: An edge from a window to an operation represents a read.

represents the data flow from that writer to the particular window as shown in figure 3.2.
Similarly when an operation reads from a window then an edge represents the data flow

from that window to the particular operation as shown in figure 3.3.
3.1.3 Computation

An operation in a data stream processing network accepts a group of data items as input and
always produces output. The output from an operation is also a group of data items. The

output from an operation becomes input for other operations.

23

[7]

[7] >

[7.]

Figure 3.4: An operation with a group of data items as input and produces groups of

data items as output.

This allows for parallel computation in the network as the output of an operation becomes
an input for different operations at the same time. In circumstances where an operation
produces an empty group of data items as output, the empty group is provided as an input
to the rest of the operations in a sequence until the empty group gets recorded to the

window containing the final results.
3.1.4 Operations

Figure 3.4 shows basic computation performed by an operation that accepts a group of data
items » as input then reads from a window w, and produces a group of outputs. Every
output contains two indicators. The first indicator specifies the starting of the output
whereas the second specifies completion of an output. There can be circumstances where an

operation produces an empty group of data items as output but still has the two indicators.

The data stream processing network also contains the following two special operations:

24

[7] [r.r"]

[/

Figure 3.5: A writer records contents of a group of data items into a window.
= Write

The contents of every group of data items are recorded into the windows by the special
operation called write. Figure 3.5 shows an example where a group of data item [7] upon
arrival is recorded to a window over an input stream by the writer. The insertion of a new
group of data items - i.e. positive data items »* - results in deletion of an old group of data
items - i.e. negative data items 7. An operation in that sequence then processes a group of
positive data items " and negative data items 7~, which is basically a modification of the

window caused by the arrival of new group of data items.
= Merge

Merge is the only operation in the network which accepts more than one group of data
items as input. Consider a situation where two groups of data items [r,] and [.] go through
the merge point. After going through merge operation, the two groups are processed as [r]

[.]. The order in which two groups arrived at merge point, the merging is done similar to

25

7] % (1]
[7:] » O |— >

p

Figure 3.6: A situation where merge is performed on two groups of data items.

that order. Figure 3.6 shows [r,] and [r.] going through the merge point and then processed

by operation a as [r] [7-].

3.2 Windows

An ordered sequence of a group of data items arriving at different times is called a window.
The windows used in this work are sliding windows. These windows are of fixed length
and are composed of two sliding end points. The window moves as a group of data items
arrives and is appended to it. This movement results in the deletion of an old group of data
items from the window. The new group is referred to as a positive group of data items

whereas the deleted group is referred to as a negative group of data items.

As soon as a group of data item arrives in a stream, it is recorded to a window over an input
stream. There are also windows for intermediate and final results. For example if a group of
data items arrives in stream r, it is recorded to the window for input data stream w,. The
intermediate result of processing of that group of data items is recorded into window Wie.

The final result of the group of data items is recorded into window w,,;.

26

Figure 3.7: A situation where many operations read from a window.

3.2.1 Multiple Operations on a Window

It is also possible that many operations read from a window at the same time. For example
figure 3.7 shows the output of data item 7, is recorded to a window which is then read by

data items r,, , and 7..

3.3 Visualization of the Network

Figure 3.8 and 3.9 provide visualizations of sample data stream processing networks. We
get these networks by translating an expression into a data stream processing network.
Section 3.3.2 describes the method which is used to translate an expression with two inputs

and one output into a data stream processing network.

3.3.1 Sample Networks

For the sample networks we have taken into account relational algebra and arithmetic

expressions. We consider a class of expressions where an operation in the expression

27

|
X
:
I
!

Wit

Figure 3.8: A data stream processing network for a relational algebra expression

[(reas) —t].

accepts a maximum of two inputs and produces just one output. The two inputs include the

input data item and the contents recorded in an output window.

The expression used for figure 3.8 is [(r > s) — #], which is a relational algebra expression.
This expression contains two operations i.e. join and minus and there are three operands 7, s
and ¢. Each operand in the expression is considered as a single stream. In terms of the
sample network, group of data items arriving in stream r, s and ¢ are termed as d,, d, and d,
respectively. All these groups are recorded in their respective windows w,, w, and w, as

soon as they arrive

According to the expression there is a join between the operands 7 and s and then minus is

used between the result of join and the operand ¢#. When a group of data item d, arrives at

28

4’-.

h 4

Woue ;

F 3

=]
¢

b—e 5]~ =1~
¢

r 3
- Wy
-—: W termp,
v
zZ — 09— -+ I—-—. — —

Figure 3.9: A data stream processing network for an arithmetic expression
[(@+b)—(y+2)]
stream 7, join operation of d, obtains the contents of d, from w, and performs join. The
result of the join is then recorded in window Wi,,,. Now the minus operation of d, obtains
the contents of d, from w, and performs minus. The final result of the expression is recorded
in window w,,,. The same procedure is repeated at stream s when a group of data items d;
arrive and then final results of the expression are recorded to w,,,. When a group of data
items d, arrive at stream ¢ then minus operation of d, obtains the result of join of d, or d;

from W ;enm, and performs minus. The final result is then recorded in window w,,.

On the other hand, the expression used for figure 3.9 is an arithmetic expression [(a + b) —
(y + 2)]. It consists of three operations and four operands a, b, y and z. The three operations
include two additions and one subtraction. The network constructed for this expression

would be different to the sample network of figure 3.8, as the arithmetic expression for this

29

network contains an extra operand and operation. There will be two temporary windows

used, the first will contain the result of (a + b) and the second will have the result of (y + z).

According to the expression there are two plus signs between the operands r, s and
operands y, z. The minus sign is then used between the results of two additions. When a
group of data item d, arrives at stream a, plus sign of d, obtains the contents of d, from w;
and performs addition. The result of addition is then recorded in window Wie,,,. Now the
minus sign of d, obtains the result of (y + z) from Wi, and performs subtraction. The final
result of the expression is then recorded in window w,,,. The same process is repeated

when groups of data items d,, d, and d. arrive at stream b, y and z respectively.

In a data stream processing network, if processing of groups of data items is performed in a
simultaneous manner then there are circumstances where processing needs to be
synchronized for obtaining correct results. In the next chapter, we present examples that
necessitate synchronization for processing groups of data items in a data stream processing

network.

3.3.2 Translation

The following method is used to translate an expression with two inputs and one output
into a data stream processing network. Let e be an expression and 7, be a syntax tree for
that expression with nodes representing operators and leaf nodes representing operands for

the operators.

Each operand i.e. leaf node of 7, is considered as a stream s; where s; €{s,, ..., s,}. Also

consider 4,, ... , 4, be a sequence of operations for every stream s; from parent node to root

30

node of 7,.. The input data item of stream s; is first processed by A4, operation from the
sequence of operations and then rest of the operations in the sequence process the output of

preceding operation.

For every stream s,, do the following:

1. Add a writer and a window for the input data item d; appended to the stream s,.

2. Provide operation A4, with (d;, ws;.;) where d; is the first argument and ws, ;, is the second

argument.

3. Add a writer for the out put of every operation A4 until root node operation of 4, and an

intermediate window (W) for arguments that contribute towards that window.

4. For all other A’s i.e. 4, till root node 4, in the sequence provide 4 with ({Wiemp}, Ws; 1)

where Wi, the previous output and ws; ., the other leaf node as the second argument.

5. Add a writer and an output window (w,,) for every data stream s; after root node

operation 4,.

6. For step 1 and 2 place an edge from the writer towards the window at the input stream
and again an edge from the writer towards the operatoin 4,. Place edges from 4,, ... , 4, for
every stream s, showing data flow among operations. For step 3 place an edge from the
writer of every s; to the intermediate window W.,,,. For any operation 4,, ... , 4, place an
edge from window w to the operation if that operation reads from any window. For step 5

place an edge from the writer to the window (w,,,).

31

Chapter 4

Synchronization Problems

This chapter identifies the circumstances that necessitate synchronization in data stream
processing networks. The chapter starts with an overview of sequential and simultaneous
processing of data items in a data stream processing network. The next section presents
motivating examples. The chapter also shows how the processing of data items in a data

stream processing network can be expressed in the terms of database transactions.
4.1 Data Processing Techniques

In the sequential technique, groups of data items are processed one at a time. A group of
data item is processed only when its predecessor group completes processing. If groups of
data items are processed one by one - i.e. sequentially then processing rate of groups of data
items will be extremely slow. As there is no switching of processing between operations of
different groups of data items, this is why serial processing does not have any problems

regarding synchronization.

On the other hand, the simultaneous technique involves processing all groups of data items
at the same time. The processing of a group of data items starts as soon as it arrives in a
stream. If simultaneous processing involves a single processor then the processor shares

time between operations of different groups of data items. It switches processing from one

32

operation to the other of different groups of data items. In that case there are places where

processing needs to be synchronized in order to get correct results.

Processing long sequences of data items in a sequential manner is not feasible as processing
rate becomes extremely slow. Instead it should be done in simultaneous way which makes
processing more effective by processing groups of data items at the same time. For the rest

of the thesis we will focus on simultaneous processing.

4.2 Motivating Examples

In a data stream processing network, if processing of groups of data items is performed in a
simultaneous manner then there are circumstances that require synchronization for
obtaining correct results. In the following examples we present situations that occur if

synchronization is not considered.

4.2.1 Examplel

Consider two groups of data items d, and ds appended in more or less the same period of
time to the streams » and s. Firstly the two groups are recorded in the respective windows
w, and w,. Then a join operation on d, and w; is executed at the same time as the join
operation on d; and w,. If d, and d, were already recorded in windows w, and w; then this

leads towards computing the results of join d, and d, twice as shown in figure 4.1.

The same possibility may happen twice in figure 4.2 which contains four groups of data
items including d,, ds, d, and d.. Groups of data items d, and d, are appended to streams a

and b whereas groups of data items d, and d. are appended to streams y and z in more or

33

"
T
X
l
8
|

Figure 4.1: Data stream processing network for a relational algebra expression
of example 1.

Figure 4.2: Data stream processing network for an arithmetic expression of
example 1.

34

less the same period of time. All groups of data items are recorded to their respective

windows w,, wp, W, and w..

The first posibility may occur when join operation on d, and w, is executed at the same
time as the join operation on d, and w, assuming d, and d, were already recorded in
windows w, and w;. The second posibility may take place when join operation on d, and w.
is executed at the same time as the join operation on d. and w, assuming d, and d. were

already recorded in windows w, and w..

4.2.2 Example 2

Consider a case where two groups of data items d, and d, are recorded in window Wiep,
after going through a sequence of operations. Now the order in which the two groups are
recorded may not be in accordance with the stream arrival. The same possibility may also

occur at w,,;, where the final result from each stream is recorded as shown in figure 4.3.

In figure 4.4, both temporary windows Wi, and the window w,,,; have the same risk where

results may not be recorded in accordance with the stream arrival.

4.2.3 Example 3

Consider two groups of data items d, and d; are appended to streams » and s and start
executing. As execution starts, one more group d, arrives and is appended to stream ¢.
According to the expression [(r >« 5) — #], a join operation is performed on d, and d;,
whereas d, requires reading the results of d, and d; after the join is performed. The result of

the join gets recorded in Wi, which is then read by d,. Now there is a possibility that the

35

r —-.—-4-.—- —_ B
A

T

s -[<] e

Y
Y
é

Wiemp . i

we

Figure 4.3: Data stream processing network for a relational algebra expression
of example 2.

a e 3] -e Sy
r 3

' Wa
S e f :
v i
b — + |—® : R E—
| J
Sl 4
PPy B < | I I
F 3 1
| s e
==w.-emp
A J

J
i
I

Zz —

Figure 4.4: Data stream processing network for an arithmetic expression of
example 2.

36

Figure 4.5: Data stream processing network for a relational algebra expression
of example 3.

- E 4
b — -+ [— i ~ | —
(3) "
— Lty
T A
y —h—.—p— . 3 i\\) - — |
F 9 2al Tl
— B
==w'°"‘p
v
Zz ——» + I—--. o — =

Figure 4.6: Data stream processing network for an arithmetic expression of
example 3.

37

read operation of d; may read wi., before the result of the join is recorded, as shown in

figure 4.5.

In figure 4.6, both temporary windows contain the same possibility. The temporary window
where result of join between d, and d is to be recorded - may be read by either d, or d.
before the result of the join is recorded. The same can happen with the temporary window
containing result of join between d, and d. that it may be read by either d, or d, before the

result of join gets recorded.

4.3 Transactional Interpretation of Data Stream Processing

A database transaction is a collection of operations for performing a specific task
(Bernstein et al. 1987). If a sequence of input data items is processed concurrently then

synchronization of data streams is similar to the synchronization of database transactions.

In our case, a body of transaction is sequence of reads and writes performed at different
windows as shown in figure 4.7 and 4.8. A transaction starts when a group of data items
gets appended to a stream and is recorded to a window on the input data stream. The group
then goes through a sequence of reads and writes and finally gets recorded to the window
with the final results. This becomes an end of a transaction. In some cases when an
operation produces an empty group of data items then that empty group is provided as an
input to the rest of the operations in that sequence. When the empty group of data items is
recorded to the window containing final results, then in that case it becomes an end of the
transaction. This transformation of execution of groups of data items to database

transactions is called as transactional interpretation of data stream processing.

38

Wr

S —»

Wa

W s We

Figure 4.7: Data stream processing network for a relational algebra expression with
sequences of transactional operations.

Wi m Wz rz W3
a—e — | + | e - —] -®
r Y T

[%
<
Y

WWemp
£ E
A J
zZ — 80— + I—u-. - — -
W rr W e Wiz

Figure 4.8: Data stream processing network for an arithmetic expression with
sequences of transactional operations.

v

T,

v

Figure 4.9: A situation where a transaction splits into two sub transactions.

For example in figure 4.1, if a group of data items d, arrives, gets appended to stream r and
is recorded into the window over the input queue then that’s where a transaction starts.
According to the expression [(7 > 5) —], a join is performed on d, and w;, but before that d,
requires reading the contents of w,. After a join is performed, d, records the results into the
temporary window and so on until d, comes to the resultant window w,,,. The moment d,
records the final result in w,,,, is where a transaction comes to an end. All the read and write
operations on windows triggered by processing of d, constitute the body of transaction.

This way processing of a group of data items in a stream is interpreted as a transaction.

4.3.1 Merge and Split

In terms of transactions, merge is a set of two individual transactions T; and T;. The two
transactions perform their operations individually until they arrive at some point p. At point
p these two transactions start performing their operations as T,T;. The merging is performed

according to the order in which the two transactions arrived at point p.

Split case on the other side is of a single transaction which at some point splits into two

sub transactions. Consider the transaction T of figure 4.9 with a sequence of read and write

40

T1 T2 Ta

Wy write (w)

w o write (w,)
W o write (w,)
ry: read (w,)

ry:read (w)

. - e)
Wyt write {wu,"m]

Wyl write {wm”m]

ry: read (w,)
ry n.:ud{wI]

Wyt v.-‘ntn;:{'.-.-'m”]

Wi 1u.-'ntn::l[w“m]

Wg l wrilte {wum]

Figure 4.10: Schedule for data stream processing network of figure 4.4.

operations. The transaction splits into two sub transactions T, and T, after some processing.
Each split transaction is given a special number to make them distinct from each other. The

sub transactions run sequentially in some order and perform their operations.
4.4 Revised Motivating Examples

On the basis of information on how we get these transactions out of our network, we would
now take the motivating examples from section 4.2 and explain them in terms of
transactions. Consider each stream in figure 4.7 as a transaction; if all these transactions run
simultaneously on a single processor then we will encounter the conflicts presented in the

schedule of figure 4.10.

41

Figure 4.11: Serialization graph for T, and T;, where T; is accessed by T;.

A schedule is used for showing the order in which transactions are processed. The schedule
of figure 4.10 consists of three transactions T,, T, and T, for streams r, s and ¢ respectively.
As defined earlier, each transaction is a sequence of reads and writes where T, consists of
operations w,, r;, w,, r,, and w;, T, consists of operations w,, 3, ws, r,, and w, and T; consists

of operations w;, rs and ws.

A concurrent execution is considered to be correct if its schedule is serializable to a serial
schedule i.e. running all transactions simultaneously will produce the same results as if
these transactions would have been executed serially in some order. The serializability in a
schedule can be evaluated by using a graph known as a serialization graph. In a
serialization graph, each transaction of the schedule is represented as a node. An edge is
created between two nodes when a data item is accessed by two different transactions, at
least one of which is in write mode. The edge is directed towards the node representing the

transaction which accessed the data item.

Consider a schedule with two transactions T, and T,, where T, is accessed by T;and at least
one transaction in write mode. In the serialization graph an edge will be created from the

node T, towards node T; as shown in figure 4.11.

42

T,

Figure 4.12: Serialization graph for schedule of figure 4.10 contains a cycle.

Now if at some point T; is accessed by T, then an edge is placed from node of T, towards
the node of T.. This results in creation of a cycle between the two nodes. If the serialization
graph of a schedule contains a cycle then execution is not considered as serializable. More

details on serializability and its related issues can be found in Bernstein et al. (1987).

The serialization graph for the schedule of figure 4.10 is shown in figure 4.12. The first
edge gets created when T, reads contents of T,. When T, reads T, then we get a cycle in the

serialization graph. We get more edges when Tj; is accessed by T, and T,

43

Chapter 5

Synchronization Strategy and Correctness

This chapter presents a set of rules to synchronize processing of data items in a data stream
processing network. The chapter starts with the description of a collector and a regulator.
The next section defines a set of synchronization rules. A section applies the
synchronization rules to motivating examples of chapter 4. The chapter concludes with a

proof of correctness.
5.1 Synchronization Assistants

In order to synchronize execution of groups of data items in a data stream network, the
concept of two assistants is introduced. These assistants comprise of a container called

collector and a process called regulator.
5.1.1 Collector

A collector is a special purpose container which collects timestamps of data items. It is
attached to windows and merge points. Initially a collector contains no timestamp. When a
group of data items arrive and is allocated a timestamp, then that timestamp is also placed
into collectors attached to windows. This includes windows with intermediate and final
results where a group of data items is to be recorded. The timestamp is also placed into

collectors attached to merge points from which that group of data items goes through. A

44

collector attached to a window or merge point keeps a timestamp of a group of data items
until the output of that group is not recorded into that window or the group doesn’t go

through that merge point.

5.1.2 Regulator

A regulator is a process that performs checks at temporary windows and at merge points. A
check is performed before an operation reads a temporary window or when a group of data
items reaches a merge point. The purpose of performing a check on a window is to make
sure that a window is only read by an operation of a group of data items when all
previously arrived groups with smaller timestamps have recorded their contents into that
window. On the other side, a check is performed at a merge point to allow a group to pass
through the merge point only when previously arrived groups with smaller timestamps have

gone through that merge point.

When a regulator receives a request by an operation to read the contents of a window then
it takes the timestamp of the group of data items executing that operation and performs a
check on the collector of the window which is to be read. Similar action is taken by the
regulator on the collector at the merge point, when a group arrives at a merge point. By
performing a check, the regulator searches for a smaller timestamp in the collector. A
collector contains timestamps of already arrived groups which are still going through some
processing. The timestamps in the collector are compared to the timestamp of a group
which requires reading the contents of a window or timestamp of a group at the merge

point.

45

At both places - 1.e. at a window or a merge point - if evaluation of a check returns true then
the regulator assumes that all groups of data items with smaller timestamps have been
processed. The regulator then allows a group to read the contents of a window or a group to
pass through the merge point. If evaluation of a check returns false then the regulator

doesn’t allow a group to read the window or pass through the merge point.

The regulator then puts the timestamp of that group in a separate queue named a waiting
queue. A group of data items whose timestamp is placed into the waiting queue is resumed
for processing by the regulator only when previously arrived groups with smaller
timestamps have been processed. In such a case, the regulator takes the timestamp of the
group out of the waiting queue and sends a request to the operation to resume its

processing.

The regulator also removes the timestamp of groups of data items from the collector. As
soon as the contents of a group are recorded to a window, its timestamp is deleted by the
regulator from the collector attached to that window. On the other hand, when a group of
data items pass through a merge point, its timestamp is also deleted from the collector

attached to that merge point.

5.2 Synchronization Rules

The following set of synchronization rules is proposed to synchronize processing of groups

of data items:

46

Rule 1

Upon arrival every group of data items is provided with a unique timestamp. The
timestamp is a number assigned in an increasing sequence and remains same throughout the

execution.

Rule 2

A group of data items can only “see” other groups of data items with smaller timestamps
i.e. all previously arrived groups are visible to a group. For example if an operation reads
from a window then it will always read groups with smaller timestamp than timestamp of

the group performing the operation.

Rule 3

Every window and merge point is supplied with a collector and a regulator excluding

windows at input data streams and windows with only write operations.

Rule 4

A group of data items is not released for processing until its timestamp gets recorded into
the collectors attached to windows and merge points. This includes windows where
contents of that group are to be recorded and include merge points which that group has to

go through.

47

Rule 5

The following are the checks performed by the regulator when an operation attempts to

read a window or a group reaches at a merge point:-

At a temporary window

The following check is performed before execution of a read operation at a window:

if there exists a timestamp in collector < timestamp of group reading window
then put timestamp of the group in a waiting queue

else execute read operation

At a merge point:

When a group of data items arrives at a merge point, the following check is performed:-

if there exists a timestamp in collector < timestamp of group at merge point
then put timestamp of the group in a waiting queue

else allow group to pass through merge point

5.3 Solution

We apply the synchronization rules of section 5.2 to the motivating examples of chapter 4:

5.3.1 Solution1

The situation described in the example of section 4.2.1, where results were computed twice,

is eliminated because of rule 2. One of the groups from d, and d, that arrived earlier cannot

48

see the other group due to a higher timestamp. Because of this a join is performed on

windows with different contents and no computation is performed twice.

5.3.2 Solution 2

In the example of section 4.2.2, the task was to arrange the order of the results recorded in
intermediate or final windows according to stream arrival. This would be quite simple if the
arrival time of the group of data items is known. This is already known because we use

timestamps.

For the situation described in section 4.2.2, results recorded in W, and wo, are not

according to stream arrival but can be easily reordered according to timestamps.

5.3.3 Solution 3

In order to solve the problem of section 4.2.3, the regulator refers to the appropriate
collector to perform the check. If in the collector, the regulator finds smaller timestamps
then this indicates that there are still groups of data items being processed and the read
operation cannot execute at this moment. The regulator puts the group performing the read
operation in a waiting queue and resumes processing only when all groups with smaller

timestamp are recorded into the window.

For the example in section 4.2.3, the regulator checks for smaller timestamps in the
collectors of both d, and d,. If the regulator finds smaller timestamps then this means that
results have not been recorded. The regulator puts d, in a waiting queue until the processing

of both d, and d; gets completed and their values are recorded into the temporary window

Wtemp .

49

5.3.4 Merge and Split

In section 4.3.1 of chapter 4, the merging was performed according to the order in which
the two transactions arrived at a merge point. This instead should always be done according
to the arrival order of the two transactions. This leads towards having no problems

regarding synchronization.

In case of split of a transaction, we characterize the sub transactions with the main
transaction as a parent-child relation. The scope of the child transactions remains within the
parent transaction. After splitting the sub transactions run sequentially in some order and
results in having no problems regarding synchronization. The order for the sub transactions

does not really matter as they will have the same timestamp.

5.4 Correctness

In this section, we prove that applying synchronization rules always results in a correct
execution. As in chapter 4 we interpreted processing of data items in a data stream network
in terms of database transactions. Now we will use the method to check execution of
transactions for their correctness and will apply it to the execution performed through

synchronization rules.

For correct execution of transactions, execution should always be conflict serializable i.e. in
simultaneously running transactions the conflicting operations must be processed in the
same order as they would have been processed in a serial execution. We will prove that set

of synchronization rules will produce conflict serializable execution.

50

The synchronization rules proposed in section 5.2 are for synchronizing a data stream
network, whereas the method we apply to check the correctness of the rules belongs to
database transactions. In order to prove correctness for the rules, we modify the rules in
accordance to database transactions. We then apply the synchronization rules to database

transactions to witness the effect made on execution of transactions.

5.4.1 Transactional Interpretation of Rules

The synchronization rules from section 5.2 are translated in terms of transactions in order to
synchronize processing of database transactions. There have been certain changes made to
the rules in order to apply them on transactions. For instance, the rules made for
synchronizing a data stream network had a concept of a window, used for storage of data
items. In the rules for synchronizing processing of database transactions we use data
containers for storage purpose. The concept of merge point is deleted as it is not valid for
database transactions. Regulators and collectors will be placed only at data containers.
Checks by regulators will only be performed at collectors attached to data containers. The

following are the modified set of synchronization rules:

Rule 1

Every transaction is provided with a unique timestamp. The timestamp of a transaction

remains the same throughout execution and is assigned in an increasing sequence.

Rule 2

A transaction can only “see” data items of other transactions with smaller timestamps 1i.e.

data items of all the previously arrived transactions are visible to a transaction.

51

Rule 3

Every data container will be supplied with a collector and a regulator excluding data

containers with only write operations.

Rule 4

A transaction is not released for processing until its timestamp gets recorded into the
collectors attached to data containers. This includes data containers where that transaction

is to be recorded.

Rule 5

The following check is performed before execution of a read operation at a data container:

if there exists a timestamp in collector < timestamp of transaction reading container
then put timestamp of transaction in a waiting queue

else execute read operation

5.4.2 Theorem

The synchronization rules listed in section 5.4.1 always produces conflict serializable

execution.

Proof

As mentioned in section 4.4 of chapter 4, if the serialization graph of a schedule contains a

cycle then execution is not considered as serializable. In order to prove the above theorem

52

we have to show that there will be no cycles created in the serialization graph when the

synchronization rules are applied to execution of a data stream processing network.

Suppose T is a sequence of transaction which we get through transforming an execution of

a group of data items in a data stream processing network
re. T= Tl, Tz, T3, ,Tn
where the time stamps t; < t,< t; and so on

We know that, an edge is formed in a serialization graph when a data item is accessed by
two different transactions; at least one of transaction is in write mode (as mentioned in
section 4.4 of chapter 4). If T, reads the contents of T, then an edge will be created from

node T, pointing towards node T, and so on.

GO o =)

Assume that the serialization graph for these transactions contains a cycle. Now for creation

of a cycle there will be a moment when an edge goes from T, to T,.

SaOLONEOLO

Therefore, this contradicts rule 2 from the modified set of rules, which makes every
transaction only able to see data items of previously arrived transactions. This rule means
that edges can only be created from the node of a transaction with a smaller timestamp to a

node with a larger timestamp.

53

Transaction Transaction

with larger
timestamp

with smaller
timestamp

Hence there will be no edges created from a node with a larger timestamp towards a node
with a smaller timestamp. This results in having no cycles created in the serialization graph
and proves that by using synchronization rules we get conflict serializable execution for

groups of data items in a data stream processing network. 0

54

Chapter 6

Conclusion

Synchronization of data stream processing has a major impact on performance of systems
where processing of data streams is executed simultaneously. This work contributes
towards synchronization of data stream processing as it identified circumstances that
necessitated synchronization. The processing of data items within those circumstances was

then synchronized by applying a set of rules.

A data stream processing network was defined for illustrating processing of data items. The
network was constructed on the basis of a directed graph with a set of nodes and edges. The
network provided visualization of how computations were performed in a data stream
network. A method was provided for translating an expression into a data stream network

and is one of the contributions of this work.

An overview of sequential and simultaneous processing concluded with identifying that
simultaneously processed data items required synchronization. Motivating examples were
presented for showing consequences if synchronization was not considered. One of the
examples presented a situation where a computation was performed twice leading towards
wrong results. The other situation presented was the possibility that contents recorded to a

window may not be recorded according to stream arrival order. The more complicated

55

situation presented through the example was where a window was read before results were

recorded.

In this thesis we presented the solution as a set of rules based on timestamp ordering. The
rules were applied to the circumstances provided in the motivating examples. For
synchronizing execution of data items, the concept of a container called collector and a
process called regulator was introduced and used within the rules. The regulators and
collectors are placed in such a way that if an operation required reading the contents from a
window then it was to request the regulator placed at that window for reading the contents.
The regulator after receiving a request is used to perform a check for knowing the current
status of a collector. If the collector had no smaller timestamps than of the data item
performing the operation, then it allowed the operation to read the contents, otherwise the
request was rejected. This is how processing was efficiently synchronized and any

possibility of wrong results was removed.

One of the main contributions of this work is expressing the processing of data items in a
data stream processing network in terms of database transactions. The method used to
check execution of transactions for their correctness has been applied to our results, and we

proved that using a set of rules will always produce conflict serializable executions.

A summary of my contributions of this work towards “Synchronization of Data Stream

Processing” include:

1. A new class of networks called data stream processing networks is defined as a
formal model for processing data items.

2. A method is defined for translating an expression into a data stream network.

56

Processing of data items in a data stream processing network is expressed in terms
of database transactions.

Identification of circumstances that require synchronization.

A solution is presented as a set of rules that govern processing of groups of data
items.

The concept of two synchronization assistants called the collector and the regulator
is introduced.

Proof of correctness is provided for the strategy used to solve the problems.

57

References

Abadi, D. et al. (2003): Aurora: A Data Stream Management System. Proc. ACM SIGMOD

International Conference on Management of data, 663 — 663.

Abadi, D. et al. (2005): The Design of the Borealis Stream Processing Engine. Proc. Of the

Second Biennial Conference on Innovative Data Systems Research (CIDR). Asilomar, CA.

Arpaci—Dusseau, R. H. et al. (1999): Cluster I/O with River: Making the fast case common.

In Sixth Workshop on 1/O in Parallel and Distributed Systems, Atlanta, USA, 10 — 22.

Arsu, A. et al. (2002): Characterizing Memory Requirements for Queries Over Continuous
Data Streams. Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, 221-232.

Avnur, R. and Hellerstein, J. (2000): Eddies: Continuously Adaptive Query Processing.

Proc. ACM SIGMOD International Conference on Management of data, 261 —272.

Babcock, B. et al. (2002): Models and Issues in Data Stream Systems. Proc. ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, 1-16.

58

Babcock, B. et al. (2003): Maintaining Variance and K- Medians Over Data Stream
Window. Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, 234 — 243.

Babcock, B. et al. (2003): STREAM: The Stanford Stream Data Manager, /EEE Bulletin of

the Technical Committee on Data Engineering, 19 — 26.

Babu, S. et al. (2004): Adaptive Ordering of Pipelined Stream Filters. Proc. ACM SIGMOD

International Conference on Management of data, Paris, France.

Babu, S. and Bizarro, P. (2005): Adaptive Query Processing in the Looking Glass. Proc. Of
the Second Biennial Conference on Innovative Data Systems Research (CIDR). Asilomar,

CA.

Babu, S. and Widom, J. (2001): Continuous Queries Over Data Streams. Proc. ACM

SIGMOD Record, 30(3): 109 — 120.

Babu, S. and Widom, J. (2004): StreaMon: An Adaptive Engine for Stream Query
Processing. Proc. ACM SIGMOD International Conference on Management of data, Paris,

France.

Bernstein, P. A. et al. (1987): Concurrency control and recovery in database systems.

Serializability Theory. 25 —45. Addison — Wesley Publishing Company.

Bose, S. (2004): Data Stream Management for Historical XML Data. Proc. ACM SIGMOD

International Conference on Management of data, Paris, France.

59

Carney. et al. (2002): Monitoring Steams a New Class of Data Management Applications.

Proc. International Conference on Very Large Data Bases, Hong Kong, China.

Chan, J. (2000): NiagaraCQ: A Scalable Continuous Query System for Internet Databases.

Proc. ACM SIGMOD International Conference on Management of data, 379 — 390.

Chandrasekaran, S. et al. (2003): TelegrpahCQ: Continuous Dataflow Processing. Proc.

ACM SIGMOD International Conference on Management of data, 665 — 665.

Cherniack, M. et al. (2003): Scalable Distributed Stream Processing. Proc. Of the First

Biennial Conference on Innovative Data Systems Research (CIDR), Asilomar, CA.

Cranor, C. et al. (2003): The Gigascope Stream Database, /EEE Bulletin of the Technical

Committee on Data Engineering, 27 — 32.

Das, A. et al. (2003): Approximate Join Processing Over Data Streams. Proc. ACM

SIGMOD International Conference on Management of data, 40 — 51.

Deshpande, A. (2004): An Initial Study of Overheads of Eddies. Proc. ACM SIGMOD

Record, 33(1).

Deshpande, A. et al. (1998): Caching Multidimensional Queries using Chunks. Proc. ACM

SIGMOD International Conference on Management of data, 259 —270.

Getta, J. R. and Vossough, E. (2004): Optimization of Data Stream Processing. Proc. ACM

SIGMOD Record, 33(3): 34 — 39.

60

Golab L. and Ozsu M. T. (2003): Issues in Data Stream Management. ACM SIGMOD

Record, 32(2): 5 — 14.

Ives, Z. et al. (1999): An Adaptive Query Execution System for Data Integration. Proc.

ACM SIGMOD International Conference on Management of data, 299 — 310.

Jain, A. et al (2004): Adaptive Stream Resource Management Using Kalman Filters. Proc.

ACM SIGMOD International Conference on Management of data, Paris, France.

Lee, Ken C.K. et al. (2004): QUAY: A Data Stream Processing System using Chunking.

Proc. of International Database Engineering and Applications Symposium.

Lee, Ken C.K. et al. (2002): Semantic Database Broadcast for a Mobile Environment and

Adaptive Chunking. /IEEE Trans. on Computers, 51(10): 1253 — 1268.

Levy, A. (2000): Special Issue on Adaptive Query Processing. /[EEE Bulletin of the

Technical Committee on Data Engineering, 23(2): 2.

Madden, S. et al. (2002): Continuously Adaptive Continuous Queries Over Streams. Proc.
ACM SIGMOD International Conference on Management of data, Madison, Wisconsin, 49

- 60.

Naughton, J. F. et al. (2001): The Niagara Internet Query System. /[EEE Data Engineering

Bulletin, 24(2): 27 — 33.

Rastogi R. (2002): Special Section on Online Analysis and Querying of Continuous Data

Streams. IEEE Transactions on Knowledge and Data Engineering, 15(3): 513 — 514.

61

Sulliovan, M. et al. (1996): Tribeca: A Stream Database Manager for Network Traffic

Analysis, Proc. International Conference on Very Large Data Bases, 594.

Stonebraker, M. et al. (2003): The Aurora and Medusa Projects, I[EEE Bulletin of the

Technical Committee on Data Engineering, 3 — 10.

Tatbul, N. et al. (2003): Load Shedding in a Data Stream Manager. Proc. International

Conference on Very Large Data Bases, Berlin, Germany.

Terry, D. B. et al. (1992): Continuous Queries Over Append-Only Databases. Proc. ACM

SIGMOD International Conference on Management of data, San Diego, USA, 321 — 330.

Tian, F. and DeWitt, D. J. (2003): Tuple Routing Strategies for Distributed Eddies. Proc.

International Conference on Very Large Data Bases, Berlin, Germany.

Tucker, P. A. et al. (2003): Applying Punctuation Schemes to Queries Over Data Streams.

IEEE Bulletin of the Technical Committee on Data Engineering, 33 — 40.

Vossough, E. (2004): Processing of Continuous Queries Over Infinite Data Streams. Ph.D.

thesis. University of Wollongong.

Xing, Y. et al (2005): Dynamic Load Distribution in the Borealis Stream Processor. IEEE

Proc. of 21" International Conference on Data Engineering.

Zhu, Y. et al. (2004): Dynamic Plan Migration for Continuous Queries Over Data Streams.

Proc. ACM SIGMOD International Conference on Management of data, 431 — 442.

62

	University of Wollongong - Research Online
	Cover
	Copyright warning
	Title page
	Certification
	Table of contents
	List of figures
	List of tables
	List of publications
	Abbreviations
	Abstract
	Acknowledgments
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	References

