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Abstract 
 
 

Real-time operating systems (RTOSes) are required to run for years, and never fail, 

without human intervention. Safety is the primary concern for RTOSes because they 

usually control physical equipment. One strand of real-time operating system (RTOS) 

research is looking at the question: can developing an RTOS in a safe language result in a 

system that an errant process can’t crash?  Choosing a good programming language can 

significantly improve the safety of the RTOS.  In this thesis, we examine the advantages 

and associated problems of writing RTOSes in a safe language, namely Java.   

 

We design an RTOS named JARTOS that schedules processes on a micro-controller 

called TINI. The code of the JARTOS system is mainly written in Java, since Java 

provides both static and dynamic safety. The Java compiler handles potentially unsafe 

operations rather than the programmer.  Also, Java includes run-time support to catch and 

handle run-time errors. 

 

JARTOS is designed to be a time-sharing system, where cooperative multiprocessing is 

used to schedule real-time processes. JARTOS switches processes on a timer interrupt. 

Each process is required to execute quickly and then give up the processor. Otherwise it 

will be timed out. To implement a timeout, JARTOS supports a timer interrupt that 

regularly updates a clock and checks for timeouts. To keep the number of interrupts to a 

minimum, input/output is done using polling where possible.  Also, interrupts code is 

designed to be transparent to the processes. An interrupt handler sets flags and values, 

and then returns to the process it interrupted. 

 

In the context of achieving real-time performance, we look at the issues of implementing 

our system design in Java. We introduce how we used Java constructs to implement the 

design of JARTOS, and how we solved the low-level issues.  
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RTOSes have to guarantee that real-time processes execute within specified time dead-

lines. Loss of synchronization can occur when deadlines are not met. Timing problems 

are often very difficult to find. In JARTOS, we designed a set of performance 

measurements to investigate timing problems. These performance measurements are 

carefully designed to provide the right information at minimal cost in performance. 

Performance of TINI and JARTOS are measured and discussed. 
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Chapter 1 
 
 

Introduction 
 

1.1   Background and Motivation 
Real-time software has much more stringent requirements than personal computer 

software [Laplante, 2004].  It must execute within strict time deadlines, it must be correct, 

and it must be robust.  Every modern car has an embedded computer controlling its 

engine.  It is expected to calculate the correct fuel/air mixture every time the accelerator 

is pressed.  Also, the computer is expected to run for years without crashing or having to 

perform software upgrades to fix bugs. 

 

The requirement that a real-time application will run for years, and never fail, with no 

human intervention places huge demands on the operating system that supports it.  Some 

embedded systems try to avoid this problem by not having an operating system, i.e. they 

are a single process.  The only advantage of that approach is that the programmer knows 

all the code.  The disadvantage is that the application programmer has to write all the 

code. 

 

One advantage of using an operating system is that the programmer is better able to focus 

on programming the real-time task because many of the low-level details are abstracted 

away by the operating system.  Another advantage is that the task can be decomposed 

into several interacting processes.  As each process is small relative to the task, the 

complexity of the code is reduced and its correctness increased. 

 

However, the programmer has to be able to rely on the operating system to execute every 

process reliably and in time.  Also, the operating system must provide the low-level 
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services the programmer requires to implement the task.  In addition, the increase in 

programmer productivity and system reliability should far outweigh the increase in 

execution time due to using an operating system. 

  

One strand of real-time operating system (RTOS) research is looking at the question: can 

developing an operating system in a safe language result in a system that an errant 

process cannot crash?  This question decomposes into two sub-questions.  First, if we 

write a process in a safe language can we guarantee that the process does not cause harm 

to other processes or to the operating system, because the compiler has removed all the 

unsafe statements? Second, can we develop an operating system that cannot be crashed if 

we use a safe language?  This goal raises a further question: are the algorithms commonly 

used in RTOSes safe?  Does writing these algorithms in a safe language make them safe 

or are there alternate algorithms that are safe because they are written in a safe language? 

 

A number of research projects have looked for answers to these questions.  The 

Burroughs B5000 does not have a memory management unit (MMU) so it relies on the 

Algol compiler to detect dangerous code [Tanenbaum, et. al., 2006].  XO/2 [Brega, 2002] 

is an RTOS developed at ETH in Zurich in Oberon to run on PowerPC embedded 

processors. Oberon is an object-oriented language developed by Nicholas Wirth to follow 

on from Modula-2 [Oberon, 2007]. A more recent project is the development of the 

Singularity operating system by Microsoft Research [Tanenbaum, et. al., 2006].  It is 

programmed in Sing#, a safe language based on C#.  All processes run in a single virtual-

address space, which is very efficient because it eliminates kernel traps to perform 

context switches.  The exclusion between processes is complete (without using an MMU 

for protection) with each process having its own code, data structures, runtime, libraries 

and garbage collector.  Processes communicate by sending strongly-typed messages to 

the operating system over point-to-point bi-directional channels. 

 

We have developed a simple RTOS named JARTOS in Java. Brega [Brega, 2002] claims 

that Java is a safe language suitable for embedded systems. One goal of this research is to 

investigate the advantages and disadvantages of developing an RTOS in Java. JARTOS 
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executes tasks on a microcontroller named TINI, which is to be mounted on our flying 

robot. The TINI platform [TINI, 2007] provides an extensible Java runtime environment.  

 

We want to take an approach to developing an RTOS that uses advances in computer 

science. So, we try to write JARTOS using the design and compile technology of Java. 

The code of the JARTOS system is mainly written in Java, since Java provides both static 

and dynamic safety. The Java compiler handles potentially unsafe operations rather than 

the programmer.  Also, Java includes run-time support to catch and handle run-time 

errors.  

 

1.2   Objectives 
Safety is the primary concern for RTOSes because they usually control physical 

equipment. Choosing a good programming language can significantly improve the safety 

of the RTOS.  In this thesis, we will examine the advantages and associated problems of 

writing real-time operating systems (RTOSes) in a safe language, namely Java.   

 

In this thesis, we will introduce the design of JARTOS that schedules tasks on TINI. 

JARTOS is small enough to run on TINI, which is to be mounted on our flying robot to 

do all the fast real-time processing. JARTOS is designed to be a time-sharing system, 

where cooperative multiprocessing is used to schedule real-time processes. We do not use 

priority preemptive scheduling because it is a cause of RTOS indeterminism. An interrupt 

can result in the scheduler transferring control of the processor from the current process 

to other processes for an undetermined period of time.   

 

JARTOS switches processes on a timer interrupt. Each process is required to execute 

quickly and then give up the processor. Otherwise it will be timed out. To implement a 

timeout, JARTOS supports a timer interrupt that regularly updates a clock and checks for 

timeouts. To keep the number of interrupts to a minimum, input/output will be done using 

polling where possible.  Also, interrupts code is designed to be transparent to the 

processes. An interrupt handler sets flags and values, and then returns to the process it 

interrupted. 



 15 

 

In the context of achieving real-time performance, we will look at the issues of 

implementing our system design in Java. We will introduce how we used Java constructs 

to implement the design of JARTOS, and how we solved the low-level issues. We will 

try to design a set of tests that will thoroughly test the flow of control, performance and 

reliability of the OS (Operating System). They will be extended and run every time any 

part of the OS is changed. Then we can say JARTOS has passed a given set of tests, and 

hence has been updated without the changes reducing the correctness, performance or 

reliability of the existing code. 

 

RTOSes have to guarantee that real-time processes execute within specified deadlines. 

Loss of synchronization can occur when deadlines are not met due to timing problems. 

Timing problems are often very difficult to find. In this thesis we try to design a set of 

performance measurements to investigate the timing problems. These performance 

measurements will be carefully designed to provide the right information at minimal cost 

in performance. Performance of TINI and JARTOS are measured and discussed. 

 

1.3   Outline of the Thesis 
• Chapter 2 introduces the definition and general concepts of RTOS.  

• Chapter 3 focuses on real-time programming languages. The features of a safe 

language are presented. Different real-time programming languages are discussed 

in this chapter. Examples of OS developed in a safe language are also introduced 

in this chapter.  

• Chapter 4 describes the design of JARTOS.  

• Chapter 5 presents the code design of JARTOS. TINI runtime environment is 

introduced in this chapter. 

• Chapter 6 introduces the issues of implementing our system design in Java.  

• Performance of TINI and JARTOS are measured and discussed in Chapter 7. 

• Conclusions are made in Chapter 8, where a summary of the work is given and 

future work is outlined. 
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Chapter 2 
 
 

Real-time Operating Systems 
 

A real-time operating system is an operating system designed for real-time applications, 

such as industrial robots, mobile phone and spacecraft. It must execute within strict time 

deadlines, it must be correct, and it must be robust [Purser and Jennings, 1975].  This 

chapter introduces the definition and general concepts of RTOS. Different concepts such 

as tasks, scheduling, timer, event handler, inter-process communication, memory 

management and networking will be presented.  

 

2.1   What is a RTOS?  
A real-time operating system is an operating system required to ensure that real time 

processes execute correctly within specified response-time constraints [Laplante, 2004]. 

RTOSes must guarantee that processes meet time deadlines. Anything that causes 

indeterminism in the execution time makes it harder to achieve that guarantee.  

 

There are two types of programs in RTOS: hard real-time program and soft real-time 

program [Liu, 2000]. A hard real-time program must guarantee to finish its execution 

before a time deadline.  A soft real-time program only has to meet its deadline on average. 

 

2.2   Basic Concepts of the RTOS 
2.2.1   Tasks 
A task is an independent activity performed by RTOS [Barrett and Park, 2005]. As shown 

in Figure 2.1, a task can be in one of five states: Dormant, Ready, Running, Waiting, or 

ISR (Interrupt Service Routine) [Labrosse, 1999].  

• Dormant: The task resides in memory but has not been available to the kernel. 
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• Ready: The task is waiting to execute but its priority is lower than the currently 

running task. 

• Running: The task has control of the CPU. 

• Waiting: The task has been delayed from execution since it requires the 

occurrence of an event 

• ISR: The task is in the ISR state when an interrupt has occurred and the CPU is 

servicing the interrupt. 

 

 

Figure 2.1 Task states 
 

Real-time tasks can be classified by their timing requirements as hard-real-time task, soft-

real-time task and non-real-time task [Brega, 2002]. A hard-real-time task must finish its 

execution correctly before a deadline. Missing the deadline will cause the task to fail. A 

soft-real-time task is desired to finish its execution before a deadline. The deadline is 

only a soft deadline that is not critical to the function of task. A soft real-time task should 

meet the deadline on average, where a hard real-time task must meet it every time. A 

non-real-time task is a task with no real-time requirements. 

 

Real-time tasks can be further classified, according to the predictability of their arrival, as 

periodic, aperiodic and sporadic [Krishna and Shin, 1997]. A periodic task is a task that is 

executed repetitively at regular intervals of time. It can be prescheduled since it is known 
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to the developer. An aperiodic task is a task whose execution time cannot be predicted 

because its occurrence depends on an event. A sporadic task is a periodic task with a 

bounded interval time. 

 

2.2.2   Design Architecture 
There are two kinds of basic design architecture in RTOS: event-triggered architecture 

and time-triggered architecture [Nissanke, 1997]. An event-triggered RTOS switches 

tasks as a response to an external event. A time-triggered RTOS switches tasks in 

accordance with a clock. It is often complex to model an event-triggered system because 

many interrupts and priorities may be present. The programmers need to pre-allocate the 

system’s time resources for a time-triggered system. [Brega, 2002]. Although these two 

design architectures have different concepts, they often exist at the same time in many 

RTOSes. 

 

2.2.3   Scheduling 
Scheduling is an essential function of an RTOS. The goal of scheduling is to guarantee 

that the performance of the system meets the time requirements [Krishna and Shin, 1997].  

 

Priority-based scheduling can be classified as preemptive scheduling or non-preemptive 

scheduling. Preemptive scheduling guarantees that “each task has a priority, and the 

highest-priority task runs first. If a task with a priority higher than the current task 

becomes ready to run, the kernel immediately saves the current task’s context in its Task 

Control Block (TCB) and switches to the higher-priority task. [Laplante, 2004]” A 

preemptive kernel guarantees that an interrupt is used to suspend the currently running 

task and invoke the kernel to decide which task will run next.  

 

Non-preemptive scheduling is also called "cooperative multiprocessing," because tasks 

must cooperate with each other to share the CPU in this environment. In non-preemptive 

kernels, the task must run quickly without any interruption and explicitly give up control 

of the CPU. Therefore, inter-process communication is very important in a non-
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preemptive kernel RTOS [Barrett and Park, 2005]. Exclusive access is allowed to shared 

resources in non-preemptive scheduling, thus the synchronization overhead is eliminated. 

 

The major difference between preemptive scheduling and non-preemptive scheduling is 

what controls the CPU. In a non-preemptive kernel, the task gives up control of the CPU 

back to the RTOS. In a preemptive kernel, the kernel decides which task will run next and 

whether the current task will be preempted [Barrett and Park, 2005]. The most important 

drawback of a non-preemptive kernel is responsiveness [Horton, 2000]. Compared to 

non-preemptive scheduling, preemptive scheduling has better system responsiveness. 

Hence, a preemptive kernel is used in responsiveness-critical systems.  

 

However, preemptive scheduling may be impossible or very expensive due to practical 

problems in RTOS scheduling [Horton, 2000]. It also can switch context at an 

inappropriate time. Priority-preemptive scheduling is a main cause of indeterminism in 

the execution time of real-time systems. Also, the design of a preemptive kernel is much 

more complicated than that of a non-preemptive kernel. Non-preemptive scheduling does 

not need to guard shared resources and data. Further, in a non-preemptive kernel, the 

interrupt latency is much lower than in a preemptive kernel.  

 

RTOS scheduling can be further classified as static scheduling or dynamic scheduling. In 

static scheduling, all priorities are assigned to tasks as constants at design time. The 

priority of a task remains fixed for the lifetime of the task [Brega, 2002]. A rate-

monotonic (RM) algorithm is a typical static scheduling algorithm in which a task is 

assigned a priority according to its execution time, so that a shorter period task is 

assigned a higher priority than a longer period task [Li, Potkonjak and Wolf, 1997]. In 

dynamic scheduling, priorities are assigned to tasks at run time. The priorities may be 

changed over time based on execution parameters of tasks [Brega, 2002]. Earliest-

deadline-first (EDF) is a well-known dynamic scheduling algorithm in RTOS. With EDF 

scheduling, the task with the earliest deadline will always be assigned the highest priority. 

 

The major disadvantage of dynamic scheduling is the higher run-time cost with respect to 
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static scheduling [Brega, 2002]. Undoubtedly, dynamic scheduling is more complicated 

than static scheduling because of extra computation for priority. However, compare with 

static scheduling, dynamic scheduling is more flexible and responsive in implementation.  

 

2.2.4   Polling and Interrupts 
Polling is a routine that continuously checks each device to see if the status of the device 

has been changed. In a polling-based program, the CPU keeps reading the status register 

of each device. If a device has completed the required task, the status of the device will 

be changed. Polling is simple to design. However, CPU has to waste its time to 

continuously check the devices over and over again. When the hardware is designed to 

support polled operation, the CPU does not have to or poll as often, reducing the time 

wasted on regular polling. 

 

An interrupt is a signal indicating that the processor should stop the current process and 

service the interrupt. The function of interrupt handling is [Purser and Jennings, 1975]: 

1. To identify the interrupt 

2. To call the appropriate process. 

3. To schedule.  

 

When an interrupt occurs, the processor saves the state of the current process, and then 

services the interrupt task. After completing the interrupt service routine, the processor 

restores the state of the current process and resumes the original process. Interrupts have 

two types of latency: the time from where the interrupt signalled until the interrupt 

handler starts execution, and the time to save system state. However, interrupts are a 

cause of indeterminism in process execution time because they cause the processor to 

stop what it is doing and service the interrupt.  They take the processor away from the 

running process for an indeterminate period of time.   

 

2.2.5   Timer 
A timer is a tool for checking the elapsed time and the process switching. “Polling a timer 

is a wasteful use of processor cycles. The code must contain a subroutine that frequently 
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checks the timer. In most applications, the timer should be interrupt-driven [Ford and 

Topp, 1988].” A timer is generated by a hardware clock periodically. Its purpose is to 

update the clock, set the timer process to run and time out any processes that are taking 

too long. The timer interrupt allows processes to be suspended for integral number of 

ticks and sets timeouts when processes are waiting for an event to occur. It is also 

responsible for returning program counter (PC) to where it was prior to hardware service 

interrupt. Normally the timer does not have any interaction with any other process. 

 

2.2.6   Threads and Events 
A thread is a single sequence of program execution. Threads are used to split a program 

into multiple simultaneously running tasks. An event is a change in the state of the 

system, such as a mouse click, timer timeout. It requires the execution of a process to 

handle it.  An event handler is a program that is executed in response to events. The 

execution of the event handler is triggered by the reception of a hardware event or a 

software event.  

 

Threads and events can be both used in concurrent programming. Threads can execute 

the task efficiently.  Thread-based programs run faster on a computer system that has 

multiple CPUs. But as Lee points out, in an article on concurrent programming, threads 

result in non-determinism [Lee, 2006]. Worse, a programmer appears to have no way of 

knowing when this non-determinism is going to occur.  So it may not be possible to 

guarantee that a hard real-time process will meet a deadline, because we do not know 

when and how the language schedules threads.  Another issue is that threads must be 

coordinated with locks when trying to access shared data [Ousterhout, 1996].  If a lock is 

forgotten, it may cause corrupted data.  Writing data access synchronization can become 

difficult, because circular dependencies must be avoided.  

 

Events have better performance in managing concurrency than threads [Ousterhout, 

1996]. Events are successful enough to solve almost all problems instead of threads 

[Gustafsson, 2005]. An event-based program runs even faster than thread-based program 

on a single CPU.  There is no locking overheads and context switching in event-based 
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programs. Event-based programs reduce the complexity of programming and the overall 

usage of memory. Programming with events also makes debugging programs easier.  

 

2.2.7   Inter-process Communication 
Executing multiple processes to perform a single task requires those processes to share 

data [Richard, 1999]. Inter-process communication is a set of techniques supported by an 

RTOS that allows the flow of data between processes. Theses processes can be running 

on the same processor or on different processors connected by a network. Methods of 

doing this are common-data storage, message passing, and producer-consumer queues. 

The choice of inter-process communication method depends on the type of data being 

communicated and environment of communication.  

 

2.2.8   Memory Management 
Memory management has a significant impact on the security and reliability of the RTOS. 

Good memory management is essential in order to maintain the efficiency of the RTOS 

[Ethernut, 2007]. Improper memory allocation can destroy the system’s determinism, for 

example, buffer overflow or underflow. Garbage collection is a technology for automatic 

dynamic memory management. It is used to identify and release the memory that is no 

longer being used by processes. Garbage collection can avoid memory leaks that may 

cause an operating system to run out of memory and crash.  

 

2.2.9   Testing and Performance Measurement 
Debugging and rigorous testing of real-time embedded systems remains a difficult 

problem.  A network connection facilitates the development of better tools than a serial 

link [McKerrow et al., 2007].  Using a network, data collected on the embedded system 

can be analyzed on the host.  Also, the embedded system can be controlled from the host. 

Performance monitoring and debugging take time to execute and consequently they 

impact on the timing performance of the processes running on the embedded processor.  

A network connection enables a hybrid approach where small, fast probes collect data 

and put it onto a queue.  A soft real-time process takes the data from the queue and 
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outputs it to the host over the network.   All the calculation and analysis software runs on 

the host, moving most of the execution load to the host. 

 

2.2.10   Networking 
A Network processor is a programmable chip, which is optimised to support the 

implementation of network protocols at the high speed [Marwedel, 2003]. Most modern 

embedded RTOSes are connected to networks.  Many systems distribute processing to 

multiple processes over the network, for example sensor networks. Network processors 

provide the environment to assist with network establishment. 

 

However, networks can be a source of indeterminism that can cause a process to miss a 

deadline. For example, when process A sends a message to process B running on the 

same microprocessor, the CPU, memory and OS are common to both processes. So 

process A can continue confident that process B will get the message within a given time. 

While process B may be blocked waiting for the message, it receives it as soon as the OS 

schedules process B. 

 

By contrast, where process B is running on a separate microprocessor, process A sends 

the message and continues. A network fault or a higher priority process running on the 

second processor may result in process B waiting for an undefined period of time.  

Assuming that the network is functioning correctly may be valid within a robot, but such 

assumptions become increasingly less valid between robots as their physical separation 

increases. Adding protocol to the message passing to confirm to process A that process B 

gets the messages has a significant cost in performance, and increases code complexity. 
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Chapter 3 
 
 

RTOSes in a Safe Language  
 

Safety is the primary concern for RTOSes.  One strand of RTOS research is looking at 

the question: can developing an operating system in a safe language result in a system 

that an errant process cannot crash?  Choosing a good programming language can 

significantly improve the safety of the RTOS.  This chapter focuses on safe programming 

languages in RTOSes. Different real-time programming languages are discussed in this 

chapter. Some relevant research projects are also discussed. 

 

3.1   The Language Requirements of RTOSes 
The requirements of RTOSes call for language features that are not found in many 

programming languages. Low-level features are often removed from languages because 

they are not safe.  That is, when incorrectly used, they can crash other programs or the 

operating system.  If the language does not support low-level features then the language 

either has to be extended or it has to support calls to assembler routines.  The latter is 

very unsafe.  Rather than leaving these features out, Modula-2 places them in a system 

module, so that the programmer would explicitly recognize that the instructions are 

unsafe and use them with care. 

 

Low-level features include: 

• accessing specific memory locations, such as the address of a hardware input 

buffer; 

• treating the contents of memory as different types, such as loading in bytes 

from a serial input and then using them as an array of pixels in an image; 
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• setting bits in a register, such as changing the processor from user to system 

state; 

• changing the return-from-interrupt address, such as an interrupt handler 

returning to a  priority-preemptive scheduler which dispatches a different 

process to the one interrupted; 

• saving and restoring system state including register contents before and after 

handling an interrupt; 

• programming an interrupt handler, so that it is vectored to by the hardware 

and not called from software, and 

• an interrupt handler being able to transfer data to a user process, such as the 

interrupt handler reading a value and then storing it in a variable known to the 

process. 

 

These low-level constructs are machine dependent. The problem with them is that they 

lack the redundancy required by the compiler to check them for consistency with the rest 

of the program, and the compiler is not able to protect the programmer against errors.  

Also, the IDE must be able to add the appropriate header and create links to routines in 

the run-time support software in the embedded system, including its operating system. 

 

Choosing a good programming language can significantly improve the quality of the 

embedded software.  Reliability is the most important feature for real-time systems.  

Real-time programming languages should include run-time support to minimize run-time 

errors and to reduce the probability of programming errors. 

 

3.2   What is a Safe Language? 
The goal of a safe language is for the compiler to handle potentially unsafe operations 

rather than the programmer.  Also, a safe language includes run-time support to catch and 

handle run-time errors. The features that make a language safe [McKerrow, et. al., 2007] 

include: 
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• A safe language minimizes the damage due to programmer error by getting the 

compiler to handle dangerous functionality.  By catching more errors at compile 

time rather than at run time, it can also increase programmer productivity.  

• A safe language is type safe.  There is no mixing of types, so there are no errors 

due to numbers changing in value when assigned from a variable of one type to a 

variable of another type. Cast operations have to be explicit and justified.   

• A safe language has assertions to check conformance to design. Asserts can be 

used to catch incorrect usage of functions.  An assertion performs a calculation on 

input values to confirm that they are in the desired range and type. 

• There is no pointer arithmetic in a safe language. The compiler codes all address 

calculations, such as array indexing. Programming with references rather than 

with pointer arithmetic stops a program scribbling outside a program’s memory 

area.  As a consequence, it eliminates the need for memory management units as 

protection devices. 

• A safe language includes overflow and underflow checking in its run time support, 

so that buffer writes cannot corrupt code.  A common method of attacking the 

security of an operating system is to attempt to achieve a buffer overflow or 

underflow. 

• A safe language has real-time garbage collection, i.e. automatic memory 

management to avoid memory leaks which may cause an operating system to run 

out of memory and crash. 

• A safe language handles mathematical errors, such as divide by zero, which cause 

low-level hardware faults, with exceptions. 

 

3.3   Low-level Languages 
Machine code defines the capabilities of a processor and is directly executed by it.  

Instructions are represented with binary numbers that have a one-to-one mapping to a 

hardware function.  As people find lots of numbers difficult to remember, they program 

in assembly language, which uses mnemonics to represent the machine codes [Burn and 
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Wellings, 2001]. However, assembly language code is difficult to read and it is easy to 

produce errors. Therefore, although it is common, the use of assembly language is not 

encouraged in real-time systems [Gritzalis and Iliadis, 1998]. 

 

Programming in assembler is tedious and time consuming even though the programmer 

has total control over the machine.  Programmers soon realized that they were 

programming the same sequences of machine code over and over again.  By replacing 

these sequences with high-level language constructs they were able to program faster and 

their programs had less errors as well. 

 

3.4   High-level Languages 
High-level languages achieve three purposes: 

• They make the code easier for people to read. 

• They protect the program from dangerous constructs that human programmers 

produce both by accident and deliberately.  This protection is achieved by the 

compiler taking over the function. 

• They increase programmer productivity.  Programming is more enjoyable 

when you can focus on solving the problem and not be bogged down by run-

time errors. 

 

3.4.1   The C Programming Language 
The C programming language achieves the above three goals to a limited extent.  Firstly, 

the code is easier to read than assembler. Secondly, the compiler takes over the control of 

the register set so that the programmer can no longer select which register to use or 

explicitly change the content of a register.  This protects a program against the 

programmer using one register for two different purposes.  Also, in theory, it stops the 

programmer writing self-modifying code. 

 

C is the language most commonly used in embedded programming. However, it has a 

number of serious problems that may result in a system crash, some of which are listed 

below [McKerrow, et al., 2007]. 
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• C code is very difficult to read and understand.  It was designed prior to the 

research into human computer interface and its syntax is very poorly designed.  

Also, as it was developed before cut-and-paste editors, it has a cryptic syntax, 

making it easy to type but hard to read.  Additionally, it has no concept of 

graphics. 

• C has defined a couple of functions differently to how they are defined in 

mathematics which causes confusion. 

• It has weak typing, which results in programs with numeric errors.  By 

allowing statements that assign a float to an integer a program will truncate 

the value and give the wrong result. 

• Pointer arithmetic allows the code to write anywhere and if the arithmetic is 

wrong the code will write over other code or data [Holzmann, 2006].  A 

hardware solution (the memory management unit) was invented to protect 

against this software problem. 

• C does not support some low-level operations that are required to program an 

operating system.  To “overcome” this problem a massive hole was created: 

in-line assembler. C allows both the system and application programmers to 

include assembler code in their program, which is extremely dangerous.   

• As it has no support for exceptions [Rizk and Halsall, 1987], all errors have to 

be handled by the return of integers, which results in complex error handling 

code.  These integer values are treated as true and false, because C does not 

have a Boolean type. 

• It has no run-time environment so the programmer has to write all the memory 

management code.  Also, the programmer has to write the code to check for 

overflow and underflow of common data structures such as arrays. 

 

3.4.2   The Oberon-2 Programming Language 
The Oberon-2 programming language was designed to be a highly reliable programming 

language, featuring strong typing, object orientation, modularization, bounds checking 
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and garbage collection [Nikitin, 1997]. It is a successor of the Pascal programming 

language and the Modula-2 programming language, but simpler and safer. Many errors 

can be detected at compile time rather than run time. Memory leaks are prevented by 

Oberon’s runtime support of memory management.  “It compiles with our request for 

compile-time enforceable static safety and run-time support for dynamic safety, while 

being well suited for component software development [Brega, 2002].” According to 

Brega, the Java programming language is at the same level of safety as Oberon-2. 

 

3.4.3   The Java Programming Language 
The Java programming language is designed to be safe and robust. A reliable and secure 

platform is provided for developing an RTOS in Java. The Java programming language 

has the following features that make it safe and reliable.  

 

• Enforcing strict typing  

Java is a strongly-typed programming language.  It enforces strict typing with type 

conversion functions. The type of every variable and every expression are known at 

compile time. Casts are trusted in Java because Java’s strong typing ensures that 

every cast is checked at both compile time and runtime. “The Java language is 

designed to enforce type safety. This means that programs are prevented from 

accessing memory in inappropriate ways” [McGraw and Felton, 1999]. 

 

• Removing pointer arithmetic 

There is no pointer arithmetic in the Java language, which prevents the misuse of 

pointers. Although pointer arithmetic is a very powerful mechanism in programming, 

it is also a major source of RTOS crashes. All memory address calculations are 

handled in the reliable runtime environment. Java programmers must use object 

references instead of pointers to get access to any memory location. They cannot 

access memory directly by using pointers.  

 

• Run-time data structure bounds checking 
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Buffer overflow or underflow is a programming error that may result in a security 

attack to RTOS. In Java, buffer overflow or underflow errors never happen because 

data cannot be stored into unallocated memory. Java provides overflow and 

underflow checking in its run-time support. 

 

• Run-time support of memory management – garbage collection 

Java has real-time garbage collection. Memory leaks, which may cause an operating 

system to run out of memory and crash, are prevented by Java’s runtime support of 

memory management. Using a garbage collector not only eliminates code bugs, but 

also removes potential security dangers. In Java, the garbage collector also relieves 

programmers of the burden of performing manual memory management [Venners, 

1996].  

 

• Assertions for verifying that data conforms to design 

Java has asserts to check conformance to design. An assert performs a calculation on 

input values to confirm that they are in the desired range and type [Gosling, et al., 

1996]. An expected Boolean condition is declared in an assert statement. If the 

assertion is enabled when the program is running, then the condition is checked at 

runtime.  

 

• Object Oriented (OO)  

Java is an OO language with structured programming of methods. Objects cannot be 

manipulated directly by programmers, but only through the public interfaces. 

“Object-orientation and a modern memory model both turn out to have a positive 

impact on Java security” [McGraw and Felton, 1999].  

 

• Exceptions handling  

Exceptions are for handling of errors deep down in a procedure call sequence. 

Programmers can write a function to define which exception it can raise in Java. Both 

expected and unexpected errors can be handled by using the exception handling 

mechanism. 
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3.4.4   Issues with Using Java 
Java was designed to be a safe language and meets the criteria in Section 3.2.  Here we 

will look first at additional issues with Java and then examine how these issues are 

handled in the RTOSes programmed in Java. 

 

Java is designed to compile a program every time it is run.  Much work has gone into 

just-in-time compilers to compile the byte codes on the target machine so that 

performance is not reduced.  This approach makes sense in mobile phones and in applets 

on the web were the code is often downloaded and runs only once.  However, real-time 

systems are generally compiled once and run many times.  This difference in underlying 

philosophy means that Java compilers normally are not optimised for producing code for 

real-time systems. 

 

Much of the magic of Java is due to threads.  Programmers can produce small applets 

simply by overriding 4 routines, because the run-time event loop does most of the work 

for them.  However, all Java programmers have tried to find the size of a window in an 

instruction sequentially after the instruction to open the window, only to get a size of zero 

returned.  The reason, as it appears, is that Java started a separate thread to open the 

window and continued executing the constructor thread.  We are still looking for 

documentation on when the Java run-time starts additional threads and why. 

 

As Lee points out, in an article on concurrent programming, threads result in non-

determinism [Lee, 2006]. Worse, a programmer appears to have no way of knowing 

when this non-determinism is going to occur.  So it may not be possible to guarantee that 

a hard real-time process will meet a deadline, because we do not know when and how the 

language schedules threads.  Another issue is that threads must be coordinated with locks 

when trying to access shared data [Ousterhout, 1996].  Forgetting a lock may result in 

corrupted data. Writing data access synchronization is difficult, because circular 

dependencies must be avoided. 
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While some developers wish that Java did not have threads, others are trying to improve 

the Java threading model [Wellings, 2004] through the development of the Real-Time 

Specification for Java (RTSJ).  This approach forces a specific concurrency model on the 

design of the real-time system.  Another addition that is required is a real-time clock class 

to Java. 

 

3.5   Low-level Issues of Developing an OS in a Safe High-level 

Language 
There are a number of problems when we are developing an operating system in a safe, 

high-level language [McKerrow, et al., 2007].  

 

• There are low-level operations that cannot be coded in the high-level language.  

This usually forces the person programming the operating system to program 

some operations in an unsafe language.  This code is often called “trusted” code 

because it is locked away inside the operating system so that the application’s 

programmers cannot access it.  To become trusted, it must be rigorously tested.  

Also, the smaller the amount of trusted code the less chance there should be of it 

causing problems. 

 

• A system clock is required to implement a deadline scheduler.  Typically, this 

clock will generate a hardware interrupt every n milliseconds.  If the language 

does not include a clock function, this real-time clock has to be written in 

assembler. 

 

• The clock is one example of an interrupt.  When an interrupt occurs, the processor 

stops the thread of execution of the current process at the end of the current 

instruction, saves the system state and vectors to an interrupt handling function.  

This requires a facility to store the address in the memory location from where the 

hardware fetches the vector. 

• When the interrupt handler completes servicing the interrupt it normally 

returns to the hardware, which restores the state and continues the thread of 
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execution of the current process.  This requires the ability to write a method 

that does not return to calling software but via the hardware to the 

interrupted process.  An interrupt handler function should finish with a 

return from interrupt instruction not a return from subroutine instruction.  

• In order to implement some operations in response to interrupts (for 

example a time out), interrupt handlers may have to change the return 

address of the process that it interrupts so that the operating system can take 

the processor away from that process. 

 

• All libraries used by the operating system and the applications must also be 

written in the safe language and compiled with the operating system or the 

application.  As C is an unsafe language, standard C libraries cannot be used 

unless they are guaranteed to be trusted. 

 

• Most modern embedded systems are connected to networks.  Many distribute 

processing to multiple processes over the network, for example sensor networks.  

When two processes communicate by passing a message, the receiving process 

often waits for the sending process.  When they are running on a single processor, 

the wait time is determined by the load on that processor and deadlines can be 

guaranteed to be met.  When they are running on separate processors it is much 

more difficult (and in many designs impossible) to guarantee that deadlines are 

met.  

 

3.6   Examples of OSes Developed in a Safe Language 
3.6.1   XO/2 
XO/2 [Brega, et al., 2000] is an object-oriented, hard-real-time system developed at ETH 

in Zurich to run on PowerPC embedded processors.  It is designed for safety, extensibility 

and abstraction using the Oberon-2 programming language. XO/2 is boot loaded from the 

host Macintosh and communicates to users via web pages running on the host network.   
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Brega points out that most embedded systems are written using languages that provide 

neither static nor dynamic safety.  This author summarizes a list of languages classified 

according to the degree of safety as follows [Brega, 2002].  

• Static and Dynamic Safety: Oberon, Oberon-2, garbage-collected versions of Ada, 

Java, Sather, Component Pascal. 

• Dynamic Safety Only: Smalltalk, Lisp. 

• Partial Static/Dynamic Safety: Pascal, Modula-2, Ada (using explicit 

deallocation). 

• Unsafe: C, C+. 

 

Oberon is an object-oriented language developed by Nicholas Wirth to follow on from 

Modula-2 [Oberon, 2007]. Oberon-2 is chosen as the programming language for the 

XO/2 system since it is statically and dynamically safe [Tomatis, et al., 2003]. Many 

errors can be detected at compile time rather than run time. Memory leaks are prevented 

by Oberon’s runtime support of memory management.  

 

The design architecture of XO/2 is time-triggered.  The CPU time and system resources 

are pre-allocated, which can lead to a waste of the system time and resources. In the 

XO/2 system, the developers devised a scheme for approximating worst-case execution 

time. To approximate a more realistic value of a task’s execution time, they use static 

analysis of the source code combined with task’s runtime information that is collected by 

the performance monitor. Tomatis [Tomatis, et. al., 2001] claims that this scheme can 

work well even for the tasks with a lot of dynamic cache usage. 

  

The XO/2 heap manager assigns a type to each allocated object, and a garbage collector 

is responsible for its reclamation [Tomatis, et. al., 2001]. This garbage collector provides 

good performance without any memory requirements at execution time, which is very 

important when it works in a low-memory condition. The developers claim very fast 

switching times between processes because the Memory Management Unit (MMU) is 

only needed for address translation and not for catching program errors.   
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One of the design principles is the separation of concerns [Tomatis, et. al., 2001]. The 

XO/2 system is structured in modules. The presence of safe dynamic loading and 

unloading of compiled units, along with short edit-compile-run cycles, is an important 

precondition for this principle. New modules can be safely tested without threatening the 

stability of the system.  

 

A static, EDF (Earliest Deadline First) algorithm, with admission testing, is adopted in 

the priority assignment of XO/2 [Tomatis, et al., 2001]. Tomatis claims that the improved 

modelling capabilities trade off for the increased processing time. A task is statically 

assigned a priority according to its deadline. This task will remain its priority, until its 

normal execution is completed, or when a task with an earlier deadline has been activated 

by the occurrence of an event. In the XO/2 system, non-real-time tasks are brought to the 

foreground only when no real-time task is waiting. The non-real-time tasks with the same 

priority are scheduled in round-robin algorithms, which assign the same time slice to each 

process. 

 

The XO/2 system has been used for many research projects and commercial products.  

Brega argues the XO/2 system has successfully implemented the software techniques 

addressing safety on a system-wide level [Brega, 2002]. Brega points out that the Java 

programming language has the same level of safety as Oberon-2. This is one of the 

motivations for us to develop an RTOS in Java. 

 

3.6.2   JX Operating System 
The JX operating system is a single address space operating system mainly written in 

Java [Golm et al., 2002]. Golm and colleagues believe that the features of Java raise the 

level of abstraction and help to develop more robust systems in less time.  Protection in 

JX is no longer based on MMU, but on the type-safety of the Java byte code instruction 

set. Therefore, there is no memory space switch caused by inter-process communication 

and system calls. To expand the address space, MMU support can be added. Typical Java 

security problems, such as native methods, execution of code of different trustworthiness 
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in the same thread, and a huge trusted class library, are avoided by JX. The code written 

in C and assembler is kept to minimal, which makes the system simple and robust.  

 

 

Figure 3.1 JX architecture 

 

The system architecture (Figure 3.1) is comprised of a number of components, which are 

loaded into domains, executing the JX kernel that is responsible for system initialisation, 

saving and restoring CPU state and low-level domain management [Golm et al., 2001]. 

All domains, except Domain Zero, are written in Java. All the native code of JX is stored 

in Domain Zero. Operating system code is completely isolated from application code, 

communicating via portals. A domain can only access other domains when it possesses a 

portal to a service of the other domain. The operations that can be performed with the 

portal are listed in the portal interface. Each domain is assigned its own heap with it own 

garbage collector. These garbage collectors can use different algorithms, running 

independently. Each domain has its own threads, which do not migrate during inter-

domain communication. The stacks and thread control blocks are assigned memory from 

the domain’s memory area. 

3.6.3   Singularity Operating System 
Singularity is an operating system developed by Microsoft Research [Tanenbaum et al., 

2006].  It uses advances in programming languages to develop an operating system that 

an errant process cannot crash [Hunt et al., 2005].  
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Singularity is programmed in Sing#, a new type-safe language based on C#. All 

processes run in a single virtual-address space, which is very efficient because it 

eliminates kernel traps to perform context switches.  The exclusion between processes is 

complete (without using an MMU for protection) with each process having its own code, 

data structures, runtime, libraries and garbage collector.  Processes communicate by 

sending strongly-typed messages to the operating system over point-to-point bi-

directional channels. 

 

 

Figure 3.2 Singularity Operating System 

 

Figure 3.2 shows the architecture of the Singularity Operating System. The microkernel 

provides the core functionality of Singularity, including process creation and termination, 

channel management, scheduling, I/O management and memory management. Most 

functionality and extensibility of the system exist in OS processes, not in the microkernel. 

Singularity is built on an extension model based on Software-Isolated Processes (SIPs) 

[Hunt et al., 2005]. SIPs are OS processes that provide strong interfaces, failure isolation 

and information hiding. Singularity uses SIPs for both extensibility and protection. 
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Chapter 4 
 
 

Design of JARTOS 
 

JARTOS is designed to be a time-sharing system, where cooperative multiprocessing is 

used to schedule real-time processes. JARTOS switches processes on a timer interrupt. In 

this chapter, real-time design issues are discussed. The components of JARTOS are 

introduced and discussed in detail. 

 

4.1   Real-time Design Issues 
RTOSes have to guarantee that processes meet time deadlines.  Anything that causes 

indeterminism in the execution time makes it harder to achieve that guarantee. In the 

design of the JARTOS system, the real-time design issues considered are discussed in the 

following sections. 

 

4.1.1   Interrupts 
Interrupts are one cause of indeterminism because they cause the processor to stop what it 

is doing and service the hardware.  They take the processor away from the running 

process.  For this reason interrupts should always service the hardware and then return to 

the interrupted process, so that they are transparent to the interrupted process.  

 

To keep the number of interrupts to a minimum, polling of input/output is preferred to 

interrupts.  However, the hardware designer may have reduced the amount of hardware 

by assuming that the software would respond to interrupts and the data request/available 

signal disappears too quickly to be detected by polling.  Design of real-time systems 

involves a trade off between what is done in hardware and what is done in software.  A 

poor decision by the hardware designer can result in the software taking much longer to 



 39 

execute than it would with a better design.  A better hardware design for real-time 

systems is a handshake design where the data available signal is not reset until the data is 

read and the data request signal stays valid until the data is written. 

 

4.1.2   Scheduling 
Priority preemptive scheduling is another cause of indeterminism. An interrupt can result 

in the scheduler transferring control of the processor from the current process to other 

processes for an undetermined period of time.  For this reason, many real-time systems 

use cooperative scheduling where the current process only gives up the processor when it 

is finished.  However, to guarantee that deadlines are met the application must be 

designed as a number of small, fast, interacting processes.  For example, instead of a 

single process having a loop whose execution time is determined by data values, the loop 

is divided into two processes that start one another.  Each time a process returns to the 

scheduler, other processes get a chance to run, where with a single process it may hog the 

processor. 

 

4.1.3   Inter-process Communication 
Executing multiple processes to perform a single task requires those processes to share 

data. Methods of doing this are common-data storage, message passing, and producer-

consumer queues.  One instance of a common data object has to be accessed by all 

processes.  Access to attributes in the common data object must be done via methods that 

enforce a protection protocol.  Only one process should be able to write to an attribute of 

the common data object.  By not allowing pre-emption, this can be enforced for processes 

without critical sections, because a write cannot be pre-empted by a higher-priority read.   

 

However, even if we had critical sections, interrupt handlers will ignore them, so care has 

to be exercised when they access common data to ensure that, at worst, access to a 

variable in common data can only result in a delay and not data corruption.  This is 

another reason to keep the number of interrupts to a minimum. A producer and a 

consumer that share a queue write to and read from different places, so the methods for 

this class can be written to avoid data corruption. 
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When message passing is used, the process wanting to read the message may have to wait 

for another process to send it.  So the process has to set its state to wait and return to the 

scheduler.  When the message is sent, the sending process has to enable the receiving 

process to be restarted by the scheduler. Programmers have to avoid creating deadlocks 

where processes are waiting on each other. 

 

4.1.4   Timeout 
With respect to the processor, a cooperative scheduling system must be able to timeout 

processes that are taking too long.  To implement a timeout, the real-time clock interrupt 

has to set a timeout flag to tell the scheduler to run a timeout process, and change the 

address that it will return to in the hogging process.  The new return address is to an 

instruction in the hogging process that exits to the scheduler. In this way the hogging 

process will exit normally, the scheduler will continue to schedule tasks, and a timeout 

process will be run to report on the timeout error.  Such hogging indicates either a 

software design fault or a hardware failure.  Both require human intervention to 

investigate and fix the problem. 

 

4.1.5   A Safe High-level Language -Java 
Hardware failures also cause interrupts.  As we commented before a mathematical error 

should cause an exception. The use of a safe language should guarantee that illegal 

instructions and invalid memory address errors do not occur due to data being written 

over code.  Missed interrupts are usually the result of the software taking too long to 

service the interrupt and require a hardware or software redesign.  Segmentation errors 

are only of concern when an embedded system uses virtual memory (which is unusual), 

and should be handled by the exception facility in the language. 

 

As discussed in Section 3.4.3, Java was designed to be a safe language and meets the 

criteria in Section 3.2. Therefore, the majority code of JARTOS is written in Java 

language. Assembly code is only allowed in the OS code. There is no calling of C 

libraries. 
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4.2   Components of JARTOS 
Figure 4.1 depicts the overall architecture of JARTOS. The Operating system (OS) is 

completely isolated from user applications. Splitting the responsibility in this way results 

in the application programmer being able to focus on the design and programming of the 

set of processes required to solve the application problem.  The OS part provides the 

main components of JARTOS, including OS Methods (Table 4.1), OS Processes (Table 

4.2), OS Tables (Table 4.3) and Supervisor Calls (Table 4.4).  

 
Figure 4.1 Overall architecture of JARTOS 

 
In JARTOS, a few method (Table 4.1) work together to provide the run-time kernel of 

the OS. Much of the work of the OS and all the work is done by applications. So the task 

of the OS kernel is to schedule processes. The Main method is called to start the OS 

kernel by enabling timer interrupts and then calling the scheduler to schedule the first 

process.  Performance probes are placed in the scheduler to measure process performance. 

 

Table 4.1 OS methods  
Name Description 

Main Initializes OS tables and processes, enables timer interrupt, enables 
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processes and calls scheduler to start OS 

Scheduler Decides which process is to run and dispatches it 

Enable timer interrupt Enables/disables timer interrupt 

Timer interrupt handler Sets flag to run timer process and handles time out 

Performance probe Collects performance data and places it onto a circular buffer 

Process A method of a process object that performs computation 

 

The OS processes (Table 4.2) do the work of the operating system apart from scheduling. 

The timer process, which scheduled in response to the timer interrupt, sets flags to tell the 

scheduler when to run time-triggered processes. The other processes in Table 4.2 handle 

common OS functionality. Note, the event monitor process is an application process not 

an OS process because the events are specified to each application. 

 

Table 4.2 OS processes 
Name Description 

Timer process Maintains the timer table and sets flags for processes to run 

Message Monitor process Checks for the arrival of messages 

Performance Analysis process Analyses data collected by performance probes 

Timeout Report process Reports on the timeout of a process 

Garbage Collector process Runs when time available to clean up heap 

Idle process Runs when no other process requires the CPU, enables the event 

monitor to run (and can simulate the timer interrupt) 

Terminate process Disables timer interrupt and resets tables to stop scheduler 

 

The scheduling of processes and other OS functionality requires a number of tables. 

These are given in Table 4.3. 

 

Table 4.3 OS tables 
Name Description 

OS table For OS variables  

Process table Dynamic part of process control block (process state) 

Scheduler table For scheduler variables 

Memory table For memory variables 

Event table For event variables 
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Message table For message variables 

Performance/testing data table For performance and testing data 

Circular Buffer table For producer/consumer separation of real-time concerns, and for 

performance analysis 

Common Data table For common data 

 

To request work by the OS, processes execute supervisor calls (Table 4.4). The calls 

allow a process to start and stop other processes, to communicate with other processes, 

and to respond to events. By restricting this functionality to supervisor calls, we stop 

poorly written application code corrupting the OS table. 

 

Table 4.4 OS supervisor calls  
Name Description 

Run Process  Sets the execute flag in the scheduler table for a process that has been 

loaded and enabled, so scheduler will run process 

Stop Process  Resets execute flag in the scheduler table 

Get Message Gets a message object – array of ints, floats or string 

Send Message Writes message into message buffer and sets available flag 

Receive Message If there will get message and reset available flag, else will return and set 

process up to waits for the message, giving up processor 

Release Message Returns message resource to OS 

Get circular list Creates a circular list object 

Add to Circular List  Adds values to a circular list 

Remove from Circular List Removes values from a circular list 

Write common data value Writes values to common data area 

Read common data value Reads values from common data area 

Wait Event Waits for an event 

Wait Goes into wait state for n clock ticks – a form of self scheduling 

Load Process Loads a process - set up OS tables using values in process control block 

Remove Process If process is running stops it and clears out OS tables 

Enable Process  Add a process to Scheduler table 

Disable Process  Removes a process from Scheduler table 

Change priority Changes the priority of user processes by moving them in process table 

Simulate event Switch from hardware event to software event simulator for testing 

Get OS Tables Copy the current value of all OS tables for use in debugging, testing and 
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performance measurement 

Library of event handlers A library of event handlers. 

 

Finally, the purpose of the OS is to run applications An application consists of several 

communicating processes. All applications are started by a Start Application process 

where responsibility is to set up the processes required to perform the application and 

schedule at least one to run. The purpose of the Stop Application process is to gracefully 

shut an application down. The event monitor process polls I/O to check for extend events 

and sets scheduler flags to start application processes to respond to the events. 

 

Table 4.5 Processes in a typical user application in priority order 
Name Description 

Event Monitor process Polls for I/O event 

Application specific process Application specific code 

…… …… 

Application specific process Application specific code 

Start Application process Sets up processes to get the application to be run by the OS 

Stop Application process Stops all processes in the current application 

 

The operating system is an instance of an OS class.  The JVM, JVM runtime (underlying 

thread mechanism), and hardware are considered to be the machine (unlike an assembler 

OS where only the hardware is the machine). JARTOS runs as a process on top of the 

JVM runtime (Figure 4.2).  

 

 

Figure 4.2 Runtime environment of JARTOS 

 
Getting the system running is the responsibility of the Main method, which starts the 

operating system, enables the Start Application process, and calls the scheduler loop. The 
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scheduler runs the Start Application process, which starts the processes to perform the 

user application.  The Main method (Algorithm 4.1) first declares an object of OS, calling 

the OS constructor. The constructor is responsible for declaring instances of all tables, 

initialising all table values to zero, and initialising the OS table. To correctly initialise the 

timer, the Main method sets the value of current time to the previous time. The Main 

method loads and enables the Timer process, Garbage Collector process, Timeout Report 

process, Performance Analysis process and Idle process. These processes are needed for 

OS house keeping. It also loads and enables the Start Application process, which starts 

the user application. The Main method sets the Start Application process and Idle process 

to run. If the Start Application process does nothing then the OS will run servicing timer 

events by calling the timer process on each clock tick. Then the Main method enables the 

timer interrupts and calls the scheduler method. 

 

 

Algorithm 4.1 Main method 

1 Declares an object of type OS – calls the OS constructor, which 

Declares instances of all tables 

Initialises all table values to zero 

Initialises the OS table 

2 Reads current time and sets to previous time to correctly initialise the timer 

3 Loads and enables the following processes, which are considered to be part of 

the OS: Timer, Garbage Collector, Timeout Report, Performance Analysis and 

Idle.   

4 Loads and enables the Start Application Process: to load, enable and run 

application processes. 

5 Sets the Start Application Process and the Idle process to run 

6 Enables timer interrupts 

7 Calls the scheduler method, which only returns to Main when terminate 

process is called.  Then Main should exit gracefully. 
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Figure 4.3 shows the timing control flow of JARTOS. The JARTOS system schedules 

processes on a timer interrupt, which we have simulated in the Idle process for much of 

our testing. There is an interrupt handler handling the timer interrupt (either hardware or 

simulated). It sets the execute flag of Timer process in Scheduler table, and execute the 

timeout function if any process in the Scheduler table has gone over time. 

 

 

Figure 4.3 Timing flow control in JARTOS 
 

 

 

4.3   Scheduler 
The scheduler runs at the completion of each process and should run at least every clock 

tick.  It is responsible for giving the CPU to the processes that want it, in priority order. 

The scheduler loop will only exit when a call to the terminate process resets all execute 

flags in scheduler table. The scheduler checks the flag of each process in the scheduler 

table. If the process is ready to run, the scheduler will reset its execute flag to false in the 

scheduler table.  The scheduler sets timeout counter and current process number in OS 

table. Then the scheduler will start the process and pass state to it. The process executes 

and returns to the scheduler. If the performance testing flag is set, the scheduler will call 

performance probe method before and after calling the process. 

 

Algorithm 4.2 Scheduler  

 i = 0 // set process number to zero – loop invariant i<= number of processes 

WHILE there is a process to run //last idle process is always ready to run 

        i = i + 1 //check next process 

        IF process i is ready to run //flag in scheduler table is true 
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                Reset process execute flag in scheduler table //something else has to set it 

                Set timeout counter in OS table 

                Set current process number in OS table 

                IF performance testing flag set in OS table THEN call probe method 

                CALL process //start process and pass state to it 

                //process executes and returns to here 

        ENDIF 

        IF performance testing flag set in OS table THEN call probe method 

                i = 0 //return to highest priority process 

                Set current process number in OS table //i = 0 is scheduler 

        ENDIF 

ENDWHILE 

 

NOTES 

1. When a process is timed out it is set to return to the scheduler as if it was a 

normal exit so that the scheduler does not have to clean the timed out process. 

2. By doing things (such as timing) with processes, the scheduler is simplified 

3. When a process goes into wait, it must call a method to set up the timer table 

values, then it must set its state values, then it returns to the scheduler. 

4. All processes must execute quickly and return to the scheduler. This requires a 

style of code writing where work is broken up into little bits, for example, a 

loop may execute one iteration and then return to the scheduler 

5. The scheduler is held in an infinite loop by the last process in the scheduler 

table (idle process) always being enabled to run. A call to the terminate process 

will reset all enable flags in the scheduler table and the scheduler will return to 

the Main method, whose task it is to exit gracefully. 

 

4.4   User Process Design 
A process object (Table 4.6) contains attributes and methods. Attributes include process 

control block, constants and variables. Process control block is a static part with initial 

values, which cannot be updated by OS. Methods includes process constructor, process 
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method, and private get and set methods. The process method, which must conform to 

design rules in Section 4.4.1, is called by the Scheduler method. 

 

Table 4.6 A process object 
Name Description 

Process control block Static part with initial values (cannot be updated by OS) 

Constants Process constants 

Attributes 

Variables Only part of user process that can be changes, local copy of 

state 

Constructor  Constructs a process 

Process Called by scheduler – must conform to design rules in 

Section 4.4.1 

Methods 

 

Private get and set methods Gets and sets process attributes 

 

4.4.1   Process Method Structure 
Process execution is intended to be short.  Long calculations involving loops should be 

rolled out so that one iteration is done each time the process is called.  This design uses 

cooperative multiprocessing where a process must release the CPU by returning to the 

scheduler.  If it does not, and timeouts are enabled, it will be timed out and stopped, 

because a time out is considered to be an error.   If timeouts are not enabled it will hang 

the system. 

 

A process is expected to enable timeouts when it starts and disable them when it ends.  

Having the process set and reset a timeout flag in the OS table means that there is no need 

to disable timer interrupts at any time.  It solves a difficult critical section problem.  Also, 

it means that trusted (i.e. tested) processes do not have to be protected by timeouts. 

 

Having to rely on the programmer of the process to include the timeout enable/disable is 

a weakness.  To overcome it, we would have to override the method call and return 

functions with ones modified to perform these operations.   
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A process can wait on an event, a message or a time period to finish. In each case it will 

set the wait state and return to the scheduler.  When the process executes again it is its 

responsibility to check why it was called.  Hence the ELSE IF structure in algorithm 4.1.  

The process need only test for those states that it is expecting.  For a simple process, there 

may be no tests, and for many processes there will only be one or two. 

 

A DEBUG flag in the OS table can be used to turn debugging code on and off (a 

compiler directive is a preferable alternative). 

 

Algorithm 4.3 Default process structure 

Process name (state) 

Enable timeouts for duration of process //set flag in OS table 

// so timer interrupt knows it is interrupting a process and not the scheduler 

IF waiting on event AND event occurred THEN 

         process event 

         //may disable event if asynchronous 

         IF DEBUG THEN //debug flag in OS Table 

                 execute debug code  

         ENDIF 

ELSE  IF want to wait on an event THEN//enable wait for event 

         EventNumber = WaitEvent (parameters) //when return to scheduler it will wait 

ENDIF 

IF waiting on a message AND message received THEN 

         ReceiveMessage(message number, message) 

         Process message 

         //may disable wait for message 

ELSE IF want to wait for a message THEN 

         MessageNumber = WaitMessage(parameters) 

ENDIF 

IF waiting on time AND time is up THEN 

         Time code 
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//may disable wait on time if asynchronous operation 

ELSE IF want to wait on time THEN 

         Call wait on time 

ENDIF 

common execution code 

exit Disable Timeouts //reset flag in OS table 

//timer interrupt returns to here on process time out 

RETURN – return to scheduler 

 

4.4.2   The Life of a Process 
A process is an instance of a process class.  The executable method is called by the 

scheduler. Thus a process is a piece of code that is compiled.  In the initial version it will 

be part of a single Java application that includes the scheduler, etc.  Thus, the code 

downloaded to the embedded system includes everything for an application to run.  This 

is appropriate for small real-time systems that do not have disk drives to load processes 

from.  Extension to include loads of applications is left for a later project. 

 

During its life time a process is (refer to Figure 4.4 and Figure 4.5): 

1. Compiled and loaded into memory with the OS, including its process control 

block 

2. Loaded by the load supervisor call – sets up OS tables from process control block 

3. Enabled by the Enable supervisor call – adds it to the scheduler table so that it can 

execute 

4. Set by the Run Process supervisor call – sets the run flag in the scheduler table 

5. Executed by the scheduler when it is the top priority process and resets its run flag 

6. Repeat 4 and 5 until process is Disabled – can also be Stoped or Timed out (error). 
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Figure 4.4 Asynchronous flow of control of scheduling a process 
 

 
Figure 4.5 Flow of control of scheduling a synchronous process 

 

4.4.3   Process Timing 
Synchronous – run every n clock ticks 

Time – number of clock ticks between executions 

Phase – which clock tick relative to first 

Asynchronous – called by events – time = 0 = run once 

 

 

Figure 4.6 Process timing 
 

p1: time = 1, phase = 1 

p2: time = 3, phase = 1 

p3: time = 2, phase = 1 

p4: time = 2, phase = 2 

    idle: rest of time – OS is checking for events etc. 

 

4.4.4   Events 
Events are changes in system state that require the execution of a task to handle them.  

Events are usually hardware changes such as timer timeout, analog to digital conversion 

complete, digital input set, and character arrived.  In this design, the hardware is expected 
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to make events easy to detect and handle by the software.  However, we realize that the 

hardware design is not always under the control of the software designer and there are 

times when interrupts are unavoidable. It is typical in the embedded system world to use 

cheap hardware at the cost of making the software more difficult to write. 

 

Preferably, events should be levels not edges, and should hang around for a while and not 

be fleeting.   Also, inputs should be buffered so that the software can read them within a 

given time and does not have to either respond immediately or consume CPU time 

waiting for them.  When a process blocks waiting on an event, we will store the time for 

testing purposes (a timeout may be added later). 

 

A software event is a software simulation of an event that one process can create to signal 

to another to run, etc.  It is commonly used to in simulations of hardware events during 

testing.  Only one entry should be in the event table for each event and an event should 

only start one process.  If other processes are required to run then they should be started 

by the process that waited on the event. 

 

Four types of events are to be handled: 

1. Level - the level of an input can be detected by polling inputs and reading its value, 

2. Edge - a change in an input can be detected either by an interrupt which vectors to 

an interrupt handler (e.g. timer) or by polling the input and comparing successive 

values, 

3. Handshake – output a level (or pulse) in response to an input event, and 

4. Software –a method call that simulates an event. 

 

While polled and interrupt events are enabled and detected in different ways, the response 

to all events involves the following steps: 

1. A process enables the event (and interrupt handler) and sets a process (can be itself) 

to wait for the event. 
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2. The event monitor process, or the interrupt handler, sets flags in the event table 

and process table to tell the OS that the event has occurred and sets the scheduler 

flag to run the application process that is waiting on the event.  

3. The application process executes in response to the event.  It clears the event 

occurred flags. It may also disable the event (and interrupt handler), depending on 

whether synchronous or asynchronous operation is required.  NOTE: when a 

process is disabled any events that it enabled must be disabled. 

 

Polled Events 

An event monitor process is a process in the user application that monitors events by 

polling hardware inputs.  It is called regularly by the scheduler.  When it detects an event 

it sets the execute flag in the scheduler table for the process waiting on the event.  Then 

this process is run by the scheduler.  The algorithm for the event monitor is given in 

Section 4.7.6. 

 

Interrupt Events 

A hardware interrupt causes the processor to vector to an interrupt handler.  The interrupt 

handler sets the execute flag of the process that is waiting on the event.  It may also read 

(write) an input (output) value and place it in (get it from) a circular list, a message or 

common data.  The goal is that the hard real-time part is done in the interrupt handler and 

the soft real-time part is done by the process. 

 

Algorithm 4.4 Interrupt handler  

IF event enabled in event table THEN 

        Read data into common data, circular list or message 

        IF process is enabled in scheduler table THEN 

               Set flags in event and process tables 

         Set execute flag in the scheduler table 

        ENDIF 

RETURN from Interrupt 

ENDIF 
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Enabling Events 

To enable or disable an event, an application process (such as start applications) calls 

EventNumber = WaitEvent(parameters) and passes in the parameters for the event.  The 

method finds the next available event in the event table and returns the event number to 

the process.  The process should then exit to the scheduler. 

 

Algorithm 4.5 Enabling event 

Find the next available entry in the event table. 

From the parameters passed in set up the event table entry for this event 

IF the process that is to wait on the event is not in the scheduler table THEN 

        Enable the process in the scheduler table with execute flag not set 

        Set the waiting on event flag and event number in the process table 

END 

IF the event is detected by an interrupt THEN 

        Enable the interrupt – pass in the event number to the handler 

Return the event number 

 

Disabling Events is done in reverse order to enabling events.  

 

4.4.5   Inter-process Communication 
A crucial feature of a real-time system is the flow of data between processes.  Typically, 

a fast process will read input data and make it available to other processes for 

calculations etc.  Normally, only one process can write a data value while several 

processes can read it.  The write of data does not have to be in a critical section because 

we are using co-operative scheduling not preemptive scheduling.  All data will consist of 

a value and a time stamp (when the data value was updated).  Three mechanisms will be 

used for inter-process communication, common data, circular buffers and messages 

(Section 2.2.7). 
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Common data is a set of variables defined at compile time in a common data object that 

can be read and written to using public get and set functions.  Each data object includes 

value, type, time updated, and number of updating process.  The additional data is useful 

for testing and debugging.  As shown in Figure 4.7, a process that reads sensors may save 

their values in common data for other processes to read. 

 

 

Figure 4.7 Flow of control of common data 
 

Circular buffers are used to separate slower calculation processes from very fast input or 

output processes.  Often used as a way of handling input data that comes in bursts where 

processing can be done at leisure. Also, useful for output data that has to be synchronized 

to real-time but can be calculated ahead of time. As shown in Figure 4.8, one process 

adds to the buffer and a second removes from it.  In this design, when the buffer is full, 

new data overwrites old, so that the most recent n data values are available.  A flag is set 

to indicate that data has been lost. 

  

 

Figure 4.8 Flow of control of circular buffer 
 

Messages require synchronization between processes.  They are used to pass data values 

between processes and the synchronization guarantees that a process does not proceed 

until it has the latest data values.  The messages are objects that are created at run time.  

We will store the time the process started waiting for use in testing (a timeout may be 

added later). Inter process communication over the network will be handled with 
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messages so that data can be shared between multiple processors.  These processors could 

be other Java machines, the host development machine, or web clients displaying data on 

a web page. 

 

Steps for passing a message (Figure 4.9): 

1. Get Message – gets a message object – array of ints, floats or string 

2. Send Message – writes message into message buffer and sets available flag 

3. Receive Message – if there will get message and reset available flag, else will 

return and set process up to wait for the message, giving up the processor 

4. Release Message – returns message resource to O.S. 

 

 
Figure.4.9 Flow of control of passing a message 

 

4.5   Tables Design 
4.5.1   Process Control Block 
Process control block (Table 4.7) is located in a process object. It contains constants from 

which the process table is loaded, so it cannot be updated by OS. 

 

Table 4.7 Process control block 
Process name  

Synchronous wait time In ticks, where 0 = run once 

Synchronous wait phase < wait time 

Timeout In ticks – < wait time – 2 is the minimum 

Event1 Number of event, 0 = no event 
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Event2  

Message1  

Message2  

Process exit address Used to update rti on time out 

 

4.5.2   Configuration Constants 
OS methods must check the configuration constants (Table 4.8) for overflow/underflow 

when adding to or deleting from the tables. 

 

Table 4.8 Configuration constants 
Maximum number of processes e.g. n=32  

Size of memory blocks e.g. S=1K 

Number of memory blocks m * n 

Number of memory blocks per process M 

Number of messages p * n 

Number of messages per process P = 2 

Number of events per process 2 

Number of timers per process 1 

Number of memory blocks for common data 1 

Number of circular buffers 4 

 

4.5.3   OS Table 
The OS table (Table 4.9) contains the values of all the OS variables. The scheduler sets 

the timeout counter and current process number in the OS table. If the Enable 

Performance flag is set, the scheduler will call the performance probe before and after 

calling the process. 

 

Table 4.9 OS table 
Clock Enable 

Timeouts 

flag 

Enable DEBUG 

flag 
Timeout counter Timeout report 

flag 
Number of 

process timed 

out 
Enable 

perform 
Current Process Start of Memory Common data C lists address Previous Time 
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4.5.4   Process Table 
The Process table (Table 4.10) contains dynamic values instead of process control block, 

including process state.  Note, the number of entries changes when processes are added 

and removed so that n is always less than the configuration constant.  The OS is process 0. 

 

Table 4.10 Process table  
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4.5.5   Scheduler Table 
Processes in the scheduler table (Table 4.11) are in priority order.  Setting an execute flag 

will tell the scheduler to dispatch the process when the CPU is available. When tick count 

reaches 0, the timer process sets the execute flag in the scheduler table and resets the tick 

count to wait time. 

 

Table 4.11 Scheduler table 
Process 
number 

Execute flag Loaded flag Wait time Wait phase Tick count Waiting on event 
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4.5.6   Event Table 
The Event table (Table 4.12) contains all the values of events. Setting the Event occurred 

will tell the waiting process to run. There are four types of events: Level, Edge, 

Handshake and Software. 

 
Table 4.12 Event table 

Event 

number 

Event type: 

Level, edge, 

handshake, 

software 

Interrupt 

or polled 

Event 

enabled 

Event 

occurred 

Process 

waiting 

on event 

Reference  

to event  

method 

Reference to 

Interrupt 

handler 

        

 

4.5.7   Memory Table 
The Memory table (Table 4.13) contains all the values of memory. If memory has not 

been allocated, it could be allocated by process, message, circular list or common data. 

 

Table 4.13 Memory table 
Block number Allocated Process number Message number Circular  

list number 

Common data 

      

 

4.5.8   Message Table 
The Message table (Table 4.14) contains all the values of messages. Setting Message sent 

will tell the To Process that this message has been sent and can be read. 

 

Table 4.14 Message table 
Message 
Number 

Allocated From To Waiting 
for 
message 

Sent Reference Type Transaction 
number 

Sent 
time 

Over 
Flow 
flag 
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4.5.9   Circular Buffer Table 
Circular Buffer table (Table 4.15) contains circular buffer values for producer/consumer 

separation of real-time concerns, and performance analysis. One buffer is permanently 

allocated to the performance probe 

 

Table 4.15 Circular buffer table 
Buffer 

number 

Allocated Buffer 

reference 

Add 

process 

Remove 

process 

Overflow 

flag 

Add index Remove 

index 

        

 

4.5.10   Common Data Table 
Common Data table (Table 4.16) contains a set of variables defined at compile time in a 

common data object. The additional data is useful for testing and debugging. A process 

that reads sensors may save their values in common data for other processes to read. 

 

Table 4.16 Common data table 
Value Type Time Written Number of Writing Process Additional Data 

     

 

4.6   OS Methods 
The OS methods contain scheduler, timer interrupt handler, performance probe and 

enable interrupt. As discussed in section 4.3, the scheduler is responsible for giving the 

CPU to the processes that want it, in priority order. The scheduler loop will only exit 

when a call to the terminate process resets all execute flags in scheduler table (Section 

4.5.5). We will look at the timer interrupt handler, performance probe and enable 

interrupt as followed. 

 

4.6.1   Timer Interrupt Handler 
The purpose of the timer interrupt handler is to update the clock, set the timer process to 

run and timeout any process that is taking too long.  It is designed to be invisible to the 

rest of the system except on timeout.  Normally there is no interaction with any other 
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process. It returns the program counter (PC) to where it was prior to hardware servicing 

interrupt (only exception is timeout) 

 

The timer interrupt handler sets the values in the OS table and handles the timeout 

operation. The execution time of the timer interrupt handler is kept to be minimum, 

otherwise it will affect the execution of the processes. 

 

Algorithm 4.6 Timer interrupt handler 

Save state //implementation dependent e.g. registers used in this code 

Increment clock value in OS table //done here rather than in timer process for accuracy 

Set timer execute flag in scheduler table //work is done by timer process 

IF timeout enabled in OS table THEN // only timeout processes not scheduler 

        Decrement timeout counter in OS table 

        IF timeout counter is 0 THEN 

                Set timeout report flag and process number in OS table 

                Enable timeout report process to run in scheduler table 

                Clear timed out process’s execute flag in scheduler table 

                Reset process table to match process control block 

                Modify rti on stack to return to the exit point of timed out process  

        ENDIF 

ENDIF 

Restore state 

RETURN from interrupt 

 

4.6.2   Performance Probe 
This probe saves process number and time stamp in a circular list, from where it will be 

read by the performance analysis process. When full the circular list overwrites itself, so 

collected data may be lost, it will contain data on the execution of the last few processes. 
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4.6.3   Enable Interrupt 
This process enables/disables interrupts.  For example, the timer interrupt so that it calls 

the timer interrupt handler on each tick.  First it sets up the tick time etc. 

 

4.7   OS Processes 
As discussed in Section 4.2, getting the system running is the responsibility of the Main 

method, which starts the operating system, and the Start Application process, which starts 

the user application.  The Main method (Algorithm 4.1) loads and enables the Start 

Application process and other OS processes, which are needed for OS house keeping. 

Then it gets the Start Application process and Idle process to run. We will introduce what 

the OS processes do in this subsection. 

 

4.7.1   Start Application Process 
The task of the Start Application process is to set up the application.  It will load the 

processes into the process table, it will enable those processes that are to be executed 

initially in the scheduler table, and it will set one or more processes to run by setting the 

execute flag in the scheduler table.  It may also set processes to wait on events. If 

performance analysis is enabled, it sets the performance analysis process to run. 

 

Once started, the application will be performed by the choreography of the synchronous 

and asynchronous processes that it starts.  It loads, enables and sets the application 

processes to run.  When it finishes it returns to the scheduler and the application starts.  

 

This design allows for the possibility of dynamically changing the application processes 

to suit new operating conditions or to change the application.  Based on the current values 

of data, a process may load, enable and set to run another process.  Thus, a different 

process can be run in response to changes in operating conditions.  At a higher level, a 

process can load, execute and run a different Start Application to set up the system for a 

new application. 
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4.7.2   Stop Application Process 
This process stops the application by reversing the actions of Start Application and 

returns the system to the state of just the OS running.  First it disables any events that the 

Start Application process has enabled.  It calls Stop, Disable and Remove for each 

process in the application.  It is a low priority process so that it is called when the OS is 

going to idle.  Then it must either start a new process by setting a Start Application 

process to run or enable Terminate process to run so that next time the system is idle it 

will terminate the OS. 

 

4.7.3   Terminate Process 
This process shuts the OS down by reversing the actions of Main.  It disables the timer 

interrupt and then resets all execute flags in the scheduler table so that the scheduler stops.  

If log or error (e.g. timeout report) process flags are set, these processes should be run on 

exit to ensure all debugging information is available on termination. 

 

4.7.4   Idle Process 
This process enables the event monitor process to run so that during idle the system is 

checking for events. This improves response time to events on average. The Idle process 

must re-enable itself so that the scheduler keeps calling it, else the scheduler would exit 

and the operating system would stop.  Also, the idle process must check that the event 

monitor process has been enabled to run before setting its run flag in the scheduler table.   

When testing the OS, to simulate the timer interrupt, simulation code is added to the idle 

process. This code will simulate a timer interrupt by updating current time and setting the 

timer process to run. 

 

4.7.5   Timer Process 
This process maintains the timer table and sets processes to run. 

 

Algorithm 4.7 Timer process 

IF current time – previous time <> 1 tick THEN  

        log error  
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ENDIF  

Previous time = current time 

FOR each process in scheduler table DO 

 Decrement tick count 

 IF tick count <= 0 THEN 

  Sets execute flag in scheduler table 

  Resets tick count to wait time  

 ENDIF 

Resets its execute flag to false //flag set by timer interrupt 

END 

 

4.7.6   Event Monitor Process  
This process polls for I/O events by calling event methods 

 

Algorithm 4.8 Event Monitor process 

FOR each process in event table DO 

 Execute event method 

 IF event has occurred THEN 

  Set process execute flag in scheduler table 

 ENDIF 

ENDFOR 

 

4.7.7   Message Monitor Process 
This process checks for the arrival of messages and sets execute flags for the process that 

is waiting on the message. 

 

Algorithm 4.9 Message Monitor process 

FOR each process in message table DO 

 IF wait flag is set and message has been sent THEN 

  Set process execute flag in scheduler table 

 ENDIF 
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ENDFOR 

 

4.7.8   Garbage Collector Process 
This process runs when time available to clean up heap, so it is called by the idle process. 

The Garbage Collector process has not been designed in detail yet. JARTOS relies on the 

garbage collection provided by the JVM. 

 

4.7.9   Performance Analysis Process 
This process reads the performance data from the circular list and calculates execution 

times etc.  If it is not running, the circular list will contain the last n readings.  

 

The Performance Analysis Process will  

1. Allocate Circular Buffer;  

2. At a given time call performance probes by setting the performance testing flag; 

3. Sets itself to run every n msec at priority lower then processes being monitored; 

4. Reset performance testing flags at a later time (i.e. after a time interval); 

5. Read data from circular buffer and produce analysis trace on each run; 

6. Display results to and interact with user. 

 

4.7.10   Timeout Report Process 
If there is a timed out process, the timeout report process will print out the detailed 

timeout information. 

 

4.8   O.S. Supervisor calls 
Supervisor calls are methods provided by the OS class, which processes can call to get 

work done, such as getting and putting values in tables.  The first sets are for inter-

process communication (Table 4.6.8). The second sets are for event handling (Table 

4.6.6).  

 

4.8.1   Get Message 
Gets a message object for passing messages between two processes. 
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Steps for getting a message object: 

1. Searches message table to see if message is already allocated (message 1 or 

message 2).  If it is, return the message number and transaction number 

2. ELSE search message table for first unused message, simple algorithm – start at 

last used and use next - roll around at end of list (faster than for loop searching 

whole table) – if no unused message log error 

3. set allocated, from process (this one), to process, message type, transaction 

number 

4. Reset wait flag 

5. Get a memory block for the message and make it the correct type 

6. Save message number in process table for both processes 

7. Return message number 

 

4.8.2   Send Message 
Send message to other process and continue. 

Steps for sending a message: 

1. Get message number and transaction number 

2. Copy data into message 

3. Increment transaction number 

4. Set message available flag 

5. Set message sent flag and time 

6. Return 

 

4.8.3   Receive Message  
Process asks for message.  If it has been sent process reads it and continues. If not 

process sets message wait and exits. 

 

Algorithm 4.10 Receive message 

Get message number and transaction number 

IF message sent THEN get from message 

IF debug/test THEN calculate time for message to transfer 
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        Reset waiting for message flag  //done here and not in monitor to avoid race 

condition 

        Reset message sent flag in Message table 

        Reset local have to wait flag 

ELSE 

 Set waiting for message flag in Message Table 

 Set local have to wait flag 

Return (local have to wait) 

ENDIF 

 

Process should test local have to wait flag and exit if it has to wait 

 

4.8.4   Release Message  
Returns message resource to O.S. 

 

4.8.5   Add to Circular Buffer 
One process adds data to a circular buffer. When the circular buffer is full, new data 

overwrites old, so that the most recent n data values are available.  An overflow flag is set 

to indicate that data has been lost. 

 
Algorithm 4.11 Add to circular buffer 

Get add index 

Set allocated, buffer reference, time and add process number 

IF not overflow THEN 

        Reset add index & remove index 

        Reset overflow flag 

ENDIF 

IF overflow THEN 

        Reset add index & remove index 

        Reset overflow flag 

ENDIF 
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4.8.6   Remove from Circular Buffer 
One process removes data from a circular buffer. If there is no data in the circular buffer, 

it will log error information. 

 

Algorithm 4.12 Remove from circular buffer 

Get remove index 

IF Remove Index=0 THEN 

        Log error 

Return 

ENDIF 

Set allocated, buffer reference, time and remove process 

IF not overflow THEN 

        Set remove index 

ENDIF 

IF overflow THEN 

        Set remove index 

ENDIF 

 

4.8.7   Wait 
A form of self scheduling where a process is put into wait state for n clock ticks. Set the 

tick count for the process in the scheduler table for the given process. 

 

4.8.8   Wait Event 
Often we want a process to execute when an I/O event has occurred.  The method sets up 

the event table to enable this process to run when the event occurs.  Part of the 

initialization of the operating system is the setting up of the event table.  All the events 

are entered into the table with their disabled flags set. 

 

This method attaches a process to an event and enables the event.  It has to be called 

every time you want the process to wait for the event.  The time cost of doing this is 
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balanced by only events of interest are being monitored.  Attaching an event to a process 

permanently stops other processes using that event.  Attaching it for one event means that 

another process can register for that event at another time. 

 

Algorithm 4.13 Wait event 

IF event n is not enabled THEN //can wait on that event 

 Put process number into event table 

 Select event type 

 Enable event 

ELSE //another process is waiting on this event 

 Log error 

 Set flag for process to wait and try again 

ENDIF 

RETURN (event enabled)          

 

4.8.9   Others  
There are lots of other processes in Section 4.2 that are still to be designed. 

 

4.9   Library of Event Handlers 
These will depend on the I/O devices. 

 

 

 

 

 

 

 

 

 

 

 



 70 

 

 

Chapter 5 
 
 

Code Design of JARTOS  

  

In this chapter, the architecture of TINI is introduced. We provide an overview of how 

the code of JARTOS fits together. We look at the issues of implementing our system 

design in Java. Also, the design of testing is introduced.  In this chapter, we focus on the 

general code design of JARTOS. We will discuss the detailed implementation issues in 

Chapter 6. 

 

5.1   TINI Architecture 
A TINI (Tiny Internet Interface) is a microcontroller that runs a Java virtual machine 

(Figure 5.1). The TINI platform is a combination of the broad-based I/O, a full TCP/IP 

stack, and an extensible Java runtime environment that simplifies development of the 

network connected equipment [TINI, 2007].   

 

 

Figure 5.1 Maxim TINI from Dallas Semiconductor 

 
The Java program is downloaded using commands in Slush, not by a boot loader.  The 

documentation claims that Slush is only a command shell and that it is a Java application 
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running on TINI. As shown in Figure 5.2, the JVM is running under an operating system 

called the TINI OS.   

 

 

Figure 5.2 Runtime environment of TINI 

 

TINI OS is at the lowest level of TINI runtime environment.  It consists of Process and 

Thread Schedulers, I/O Subsystem and Memory Subsystem.  A microcontroller timer is 

used to update a real-time clock every millisecond.  The thread scheduler runs every 2 

msec.  A round robin scheduler divides time between processes in 8 msec slices.  Round 

robin scheduling makes it very difficult to guarantee that any process running on TINI 

can meet a real-time deadline. A single process can utilize nearly all CPU on TINI. 

 

The JVM sits on top of TINI OS.  In between there is a native interface layer, so TINI OS 

is probably not written in Java. We can invoke assembly code functions to solve low-

level problems from Java applications using this native layer. The I/O library uses the 

native interface layer to call functions written in assembler to read inputs and write 
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outputs.  Applications programs written in Java sit on top of the JVM.  The JVM supports 

the Java API and libraries.   

 

We develop the software for JARTOS in XCode on a Macintosh and then download them 

into the TINI using the Slush command shell that runs on it.  In our research we are 

running JARTOS as a single application on top of the JVM.  We can also run it as an 

application in Mac OSX. Figure 5.3 shows the overall work flow of executing JARTOS 

on TINI. The number of application processes is twenty-two (this value can be changed 

by changing a content in the Process table). The maximum size of the OS.tini file is 512K, 

since TINI has a limited amount of RAM.  
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Figure 5.3 Activity diagram of running JARTOS on TINI 
 

TINI provides a class named Clock to access the TINI Real-Time clock in two ways 

[TINI, 2007].  The faster way is to directly use the values minute, second, hundredth-

second, etc.  The clock resolution is in hundredth-second called by the getHundredth() 

method. The other way is to use getTickCount() method returning the long value in 

milliseconds that have passed since midnight, 1st January, 1970. The getTickCount() 

method is slower, since the Clock class has to convert the clock values to an amount of 

milliseconds. Although getTickCount() returns times in millisecond, the clock resolution 
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is in hundredth-second, not in millisecond. Therefore we decided to adopt the first way 

instead of calling the getTickCount() method. 

 

5.2   Overview of Code Design 
Application code is separated from the OS code, so that: 

• the writer of the application only has to write application code and need make 

no changes to the OS.  With this approach, they are better able to focus on 

programming the real-time task because many of the low-level details are 

abstracted away by the OS; 

• the real-time task is decomposed into several interacting processes.  As each 

process is small relative to the task, the complexity of the code is reduced and 

its correctness increased; 

• the OS can run as a stand alone executable for testing (may be a test 

application). 

 

Figure 5.4 shows the overall class diagram of JARTOS. There are three java classes in 

our system: OS class, Process class and Application class. All OS tables are inner classes 

of the OS class. OS processes are mainly inner classes of the OS class, and inherit from 

the Process class. Event Monitor process, Start Application process, Stop Application 

process and all user application processes are inner classes of the Application class, and 

inherit from the Process class as well.  
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Figure 5.4 Overall class diagram of JARTOS 
 

The Main method in the OS class starts the running of OS.  The Main method constructs 

an instance of the OS class and an instance of the Application class. It constructs the OS 

processes, and sets their execute flag.  Then the Main method enables the timer interrupt 

and calls the scheduler. The scheduler executes in loop until the Terminate process runs. 

On the first loop, the scheduler runs OS processes and the Start Application process. Each 

process is defined by declaring an instance of the Process class, and overriding the 

process method with their process specific code. The Process class contains a standard 

template for process methods, and methods for working with processes. The Application 

class contains the code for a specific task.  This code includes Start Application process, 

application processes to carry out the task and Stop Application process. The amount of 

application processes is limited to 22 processes. This value can be changed by changing a 

content in the Process table (Table 4.10). 
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5.3   Can Java Implement the Design of JARTOS? 
The majority of JARTOS is written in Java. Java can implement all high-level functions 

in the design. The OS tables are stored as Java arrays and accessed by the methods of the 

relevant table class.  

 

Each process is written as a subclass of the Process class by using the inheritance of Java. 

Each OS process is constructed in the Main method by declaring an instance of its class.  

It is set to run according to the design of the JARTOS system. Each user process is 

constructed in the process method of the StartApplication class. It is loaded, enabled and 

set to run all in the process method of the StartApplication class. The loadProcess() 

method is a method of the ProcessTable class. The enableProcess method and the 

runProcess() method are methods of the Scheduler class.  

 

The schedulerInfiniteLoop() method is a method of the Scheduler class. It is called by the 

Main method of OS class. The schedulerInfiniteLoop() method calls the OS processes on 

the first loop, then the StartApplication process enables each user process to run. The 

scheduler loop algorithm is implemented by a WHILE statement. Every process executes 

quickly and returns to the scheduler, then the scheduler will run the next process. The 

number of processes determines the maximum number of iterations of the scheduler loop. 

The scheduler will call processes using Java Reflection. “Reflection gives your code 

access to internal information for classes loaded into the JVM and allows you to write 

code that works with classes selected during execution, not in the source code [Sosnoski, 

2003].” One of the ways of using reflection is to invoke a method of a specified name 

[McCluskey, 1998]. In the Process table (Table 4.10), the last column is called “reference 

to process method”. So, the scheduler can call the processes by their references.  

 

Inter-process communication and supervisor calls can be implemented in Java as well. 

Suppose we pass a message from process A to process B. In the processMethod() of the 

process A class, the getMessage() method is called to get a message object for passing a 

message between two processes. Then the sendMessage() method is called to write a 

message and set its available flag in the Message table. In the processMethod() of process 
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B class, the receiveMessage() method is called to ask for the message. Finally the 

message resource is returned to OS by calling the releaseMessage() method. The 

getMessage() method, the sendMessage() method, the receiveMessage() and the 

releaseMessage() method are all methods of the Message class. 

 

The circular list is read by calling the removeFromCircularList() method. It is written to 

by calling the addToCircularList() method. Both the removeFromCircularList() method 

and the addToCircularList() method are the methods of the CircularBuffer class. 

 

A common data value is written by calling the writeCommonDataValue() method of the 

CommonData class. It is read by calling the readCommonDataValue() method of the 

CommonData class. 

 

TINI (Section 5.1) supports I/O interfaces within its run-time environment including: 

Serial (RS232/485), SPI™, Parallel, I2C*, 1-Wire and CAN. Dallas Semiconductor 

provides several TINI classes to assist with I/O access [TINI, 2007].  

 

5.4   Low-level Issues 
The timer interrupt handler should be connected to the hardware interrupt of TINI. In 

initial testing of JARTOS, the timer interrupt is simulated in the Idle process. The 

interrupt updates the clock value every tick.  

 

When an interrupt occurs, the processor stops the thread of execution of the current 

process at the end of the current instruction, saves some system state and vectors to an 

interrupt handling function called timerInterruptHandler(). When the interrupt handler 

completes servicing the interrupt it normally returns to the hardware, which restores the 

state and continues the thread of execution of the current process. In order to implement 

some operations in response to interrupts (for example a time out), interrupt handlers may 

have to change the return address of the process that it interrupts so that JARTOS can 

take the processor away from that process.  
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As this type of operation is potentially dangerous and can cause failure to meet deadlines, 

the only time an interrupt handler is allowed to return to a different address is in a time 

out. When a time out occurs, the interrupt returns to the exit address of the interrupted 

process so that it returns to the scheduler in the normal way.  These low-level functions in 

the timerInterruptHandler() method cannot be written in Java. TINI provides TNI (TINI 

Native Interface) for programmers to call native code in Java code. Therefore, we 

implement low-level functions in assembly language supported in TNI. 

 

In TINI Native API, there is a function named System_SaveJavaThreadState used to save 

the Java state for the current thread. We have a native method called Native_SaveState() 

to call this function. When an interrupt occurs, the Native_SaveState() method will be 

called by the timerInterruptHandler() method to save the state of current running process.  

 

There is a function named System_RestoreJavaThreadState used to restore the Java state 

for the current thread. We have a native method called Native_RestoreState() to call this 

function. When the interrupt handler completes servicing the interrupt, the 

Native_RestoreState() method will be called by the timerInterruptHandler() method to 

restore the state and continue the thread of execution of the current process. 

 

We are still looking for the way to connect the timer interrupt handler to the hardware 

interrupt and change the return address to the exit address of the timed out process. We 

may write them in assembly language and save them as native methods called by the 

timerInterruptHandler() method.  

 

Note: 

During the period of time when the thesis was being examined, we designed ways to 

solve each of the low-level issues with Java language features. Specially, we found 

solutions to the timer interrupt handler and to the problem of cleanly killing a process in 

response to a timeout. 
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The timer interrupt is programmed as a single background thread by using the 

java.util.Timer and java.util.TimerTask classes. The timer interrupt is scheduled as a 

TimerTask object for repeated execution at regular intervals by a Timer. 

 

It is possible for one method to stop/kill the execution of another in Java when that 

method is packaged in a Thread. So, our implementation would involve three threads: 

Main thread, the Timer interrupt thread and the Process thread. The design of each of 

these threads follows. 

 

Timer Interrupt Thread  (as designed, now running as a thread) 

- handle timer interrupt 

- IF timeout THEN set flags, etc., stop Process thread 

 

Process Thread 

- the process method becomes the run method of a thread 

- as now it terminates, so when the method terminates the thread dies 

- another thread can kill it by calling the interrupt method 

 

Main Thread (i.e. current main) 

- initialise as now 

- Scheduler loop 

        - timing measurement etc. as now 

        - instead of call to process method, start Process Thread to call process’s run method 

        - join Process Thread (Main thread waits until Process Thread completes) 

        - Main thread resumes after Process thread dies 

        - rest of main as now – i.e. back around scheduler loop 

 

5.5 Design of Testing 
5.5.1   Test Harness 
Each class of JARTOS OS has a test harness. A test harness is a program for a class 

that  calls every function with test inputs, and then compares the outputs  of the function 
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to those expected for the given test inputs.  Test harnesses overcome a common problem. 

Often, the programmer thoroughly tests the code when it is written. But when it is 

modified, the programmer often does not run the same tests, so the quality of the code is 

reduced every time it is updated because the programmer does not run all the tests 

previously run. A test harness guarantees that all tests are run every time the code is 

updated. While test harnesses take time to write, they are easy to maintain and extend. 

These test harnesses are kept up to date and documented so that they can be run every 

time a change is made to a class, then we can say that the class passes a given set of tests.  

 

5.5.2   Test Application 
The JARTOS system has a set of the test applications (Appendix C) that are documented, 

extended and run every time any part of the OS is changed. These test applications carry 

out the following tests. 

1. Test that the OS runs, tests the scheduler, and runs a single application process that 

prints out the contents of all OS tables. 

2. Test each OS process (timer, etc) that they give expected results 

3. Test timeout (We cannot test timeout now, since we have not worked out the 

timeout function.) 

4. Test performance probes 

5. Test multiple processes, including process to print out tables 

6. Test Performance Analysis process 

 

5.5.3   Assertions  
The system has a set of assertions for checking conformance to design set out in the 

earlier phase of the development [Bartezko, 2001]. The purpose of assertions is to catch 

incorrect usage of functions, not to debug code. It is very helpful to program with 

assertions, as they are self documenting. We write assertions in any method with the IF-

ELSE statement, the SWITCH statement and the FOR statement. Figure 5.5 shows the 

code of the Timer process. The Timer process is to operate for each process in the 

Scheduler table. The maximum process number is 32 (this value can be changed by 
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changing a content in the Process table) in the Scheduler table (Table 4.11). We place an 

assertion at line 3380 to check the value of “i”(assert i<33), which is the process number.  

 

 

Figure 5.5 Example code with assertion 
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Chapter 6 
 
 

Code Implementation  
 

In this chapter, we describe how to write OS tables and processes in Java. We introduce 

how to avoid repetitive object creation in code implementation. Also, we discuss how to 

write a test harness for each class in JARTOS. 

 

6.1   Classes 
All classes in JARTOS are declared with the public modifier, so that we can pass objects 

by its reference. All the fields are declared with the private modifier, making each field 

accessible only within its own class. We have set and get methods with the public 

modifier to write and read the fields. Supervisor calls and system methods are stored in 

relevant classes. Detailed descriptions of each class and methods are listed in Appendix A. 

 

6.1.1   OS Tables 
All the attributes of the OS tables are stored in arrays, so we can call any value of tables 

directly within the OS. Figure 6.1 shows the declaration code for the Process table. 

 

 

Figure 6.1 The declaration code of Process table 
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6.1.2   Processes 
The Main method is responsible for enabling the Start Application process to be run by 

the scheduler (Figure 6.2) to enable the user application processes to be run as required.  

 

 

Figure 6.2 Code of Start Application process 

 

 
Figure 6.3 Code of sample Application process 

 

There are 2 steps to write and run an application process:  

1. As shown in Figure 6.3, the code of an application process is written in the 

processMethod() of the application process class which inherits from Process 

class. The processMethod() method of the application process class overrides the 

processMethod() method of the Process class with the specific code.  

2. We construct an instance of the application class in the processMethod() of the  

StartApplication class (Figure 6.2), then we call loadProcess(), enableProcess() 

and runProcess to set the application process to run.  
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6.2   Passing Object by Reference 
We pass the objects of public classes by reference in order to avoid repetitive object 

creation. If we construct an instance of a class every time we need to call its methods, the 

runtime data will be lost.  

  

When we call the methods of an object, we should pass the object reference to this object.  

There are three steps: 

1. We declare a reference to an object and define a method to pass the object 

reference;  

2. After constructing the object, we call the reference passing method;  

3. We call the method by the object reference.  

 

For example, we need to call getClock() and setEnablePerformProbes() of OS class in the 

processMethod() of the PerformanceAnalysis class. Firstly, we declare a reference named 

refToOS to OS object and define a method called passRef() to pass the object reference 

(Figure 6.4).  

 

 

Figure 6.4 Example code of passing object by reference (1) 

 

Secondly, we construct an instance of OS class, and then we call the reference passing 

method (Figure 6.5).  

 

 

Figure 6.5 Example code of passing object by reference (2) 
 

Thirdly, we call the methods, getClock() and setEnablePerformProbes(), by the object 

reference (Figure 6.6).  
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Figure 6.6 Example code of passing object by reference (3) 

 

6.3   Scheduling Processes 
The scheduler is supposed to call processes using Java reflection. When we wrote the 

code for the scheduler, we found that Java reflection is not supported in the runtime 

environment of TINI. So, we had to find another way for the scheduler to call processes. 

The scheduler calls the processMethod() of each process, based on the process number, 

using the switch statement. There are some limitations for the scheduler to call processes. 

Every time we change the number of application processes we have to change the code in 

the switch statement. Also, it costs the performance of JARTOS. Figure 6.7 shows part of 

the scheduler code. We expect that Java reflection is supported in the future version of 

TINI runtime environment. Then we can use the Java reflection instead of the switch 

statement. 

 

 

Figure 6.7 Part of the switch code in the scheduler 
 

6.4 Low-level Issues 
Due to the time and documentation limitation, we have not solved the low-level issues of 

JARTOS (Section 5.4). The timer interrupt is simulated in the Idle process, updating the 

clock value every tick. The timeout function has not been implemented. We will try to 

solve them in future work. 

 

6.5 Test Harnesses 
All the test harnesses are written in the OS class as public methods with no return type, 

and are called in the Main method of the OS class. We wrote a test harness as a method 
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named testClassName() for each class of our system. In each test harness (Algorithm 6.1), 

we call each method of a certain class with test inputs. If the output is equal to the 

expected output, it will display the correct information. Otherwise, it will display the 

error information.  

 

Algorithm 6.1 Test harness 

IF Output=Expected Output THEN  

        Correct 

ELSE 

        Error 

END 

 

 
Figure 6.8 A test harness for the CommonData class 

 

Figure 6.8 shows a section of code from the test harness for the CommonData class. It 

shows tests for the setupCommonData() and writeCommonData() methods. The tests in 

the IF-ELSE statements encode the correct values to compare the results of the methods 

to. 
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Chapter 7 
 
 

Performance Measurement  
  

RTOSes have to guarantee that real-time processes execute within specified deadlines. 

Loss of synchronization and disruptions in control can occur when deadlines are not met. 

Timing problems are often very difficult to find. In JARTOS the decision to use polling 

and an event monitor rather than interrupts, and cooperative multiprocessing rather than 

preemptive multiprocessing ensures that an application does not loose control of process 

execution but it may introduce timing problems. In this chapter, we introduce a set of 

performance measurements to investigate the timing problems. These performance 

measurements are carefully designed to provide the right information at minimal cost in 

performance. Performance of TINI and JARTOS are measured and discussed. 

 

7.1   Performance Measurement of Java Instructions Running on 
TINI 
Before measuring the performance of JARTOS, we wrote three TINI applications to 

measure the performance of Java instructions running on TINI, since JARTOS runs on 

top of the JVM of TINI. 

1. The getHundredth() method (Section 5.1), which is a method provided in TINI 

library, is used to access the real-time clock of TINI. We wrote a TINI application 

to measure the performance of getHundredth() reading the clock. 

2. We need to obtain the execution time of a WHILE loop and a fundamental 

instruction unit, which can give us an idea of the performance that we can expect. 

So we wrote a TINI application with a WHILE loop to measure them. 

3. The most common method of debugging is to add System.out.println(message) 

call to output a debugging message on the console. However, the time consumed 
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can seriously impact the performance of the RTOS. So we conducted tests to 

measure the time of this function call. 

 

7.1.1   Testing the getHundredth() 
We wrote a linear program (Figure 7.1) that calls getHundredth() 100 times and stores the 

values in an array. Then the TINI application prints the array out. 

 

 

Figure 7.1 A TINI application testing getHundredth() 
 

The following data sequence is part of the raw test data that we collected: 

…51,52,53,54,54,55,56,57,58,59,60,60… 

The values are in hundredths of milliseconds, so we calculated the average over the 100 

readings to get a time for the 2 function calls (c.getRTC() and c.getHundredth()).  From 

the above data, we calculated that it takes 8 milliseconds to read the clock.  This time is 

much longer than we expected, which alerted us to the fact that the performance of the 

TINI is poor.  So in the next section we set out to obtain the execution time of a 

fundamental instruction unit, to give us an idea of the performance that we can expect.  
 

7.1.2   Testing the WHILE loop 
As shown in Figure 7.2, we wrote a TINI application (Algorithm 7.1) that reads the clock 

before and after a WHILE loop. There is only one instruction “i=i+1” in the WHILE loop, 

which makes the WHILE loop run. The application was tested with different WHILE 

loop execution counts (100 times, 1000 times and 10000 times respectively).  
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Algorithm 7.1 Testing WHILE loop on TINI 

Reads clock 

WHILE i<100    (1000) (10,000) 

            i=i+1 

ENDWHILE 

Reads clock  

 

 

Figure 7.2 A TINI application testing a WHILE loop  

 

The raw test data we collected is listed in Table 7.1. As shown in Figure 7.3, the 

measurements do not match the line that we would expect based on the measurement of 

100 loops. 

 

Table 7.1 Result of testing WHILE loop on TINI without correction 
Loops Actual Time/msec 

100 20 

1000 140 

10000 1360 
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Figure 7.3 Result of testing WHILE loop without correction 
 

We found that the instructions calculating the start time (code line 7 in Figure 7.2) costs 

the extra time. In order to get more accurate test data, we write a linear program (Figure 

7.4) to calculate the time it takes, which is 7 msec (time=(s10-s1)/10≈7msec). 

 

 

Figure 7.4 A TINI application testing the calculation time 
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Table 7.2 lists the new test data after considering the execution time of the time to 

calculate the time. As shown in Figure 7.5, the data is fairly close to the data line we 

expected. From the data in Table 7.2, we calculated that it takes 0.13 msec to execute a 

WHILE loop on TINI.  

 

Table 7.2 Result of testing WHILE loop on TINI with correction 
Loops Actual time/msec Expected time/msec 

100 20-7=13  

1000 140-7=133 130 

10,000 1360-7=1353 1300 

 

 

Figure 7.5 Result of testing WHILE loop on TINI with correction 
 

We have defined “j=j+1” as a fundamental instruction unit in Java. The performance of a 

CPU is often defined as the execution time of a register to register add. We consider 

adding 1 to a variable to be a similar measure for Java. This measurement will provide a 

simple comparison when porting JARTOS to another embedded system (such as the Sun 

SPOT when they are available for purchase). Then, we can use it to scale all the other 

performance measurements reported here to predict the performance of JARTOS on the 

new hardware. 

 

As shown in Figure 7.6, we added the instruction “j=j+1” into the WHILE loop 

(Algorithm 7.2). We set the loop execution counts to 10000 times, since the execution 
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time is much less than one hundredth of a second. We measured an execution time of 

1990msec. Then we calculated the execution time of “j=j+1”. It takes 0.063msec (time = 

(1990-1360)/10000 = 0.063msec). 

 

Algorithm 7.2 Testing the fundamental instruction unit on TINI 

Read clock 

WHILE i<10000 

            i=i+1 

            j=j+1 

ENDWHILE 

Read clock 

 

 

Figure 7.6 Testing the fundamental instruction unit on TINI 

 

7.1.3   Testing the System.out.println() 
In performance testing, we often use the function “System.out.println()” to display test 

information. Its execution affects the accuracy of the testing result, since it costs time. So 

we wrote a linear program (Figure 7.7) to test the execution time of 

“System.out.println()”. 
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Figure 7.7 Testing System.out.println() 
 

The result of the above program is 50msec. It takes 7msec to read the clock (Section 

7.1.2). So, it actually takes 43msec to execute 10 instructions of “System.out.println()”. 

That is 4.3msec to execute a “System.out.println()” instruction. We also tested the 

instruction “System.out.println()” printing out 20 characters, which is 

“System.out.println(“we are testing print”)”. It takes 5.3msec to execute 

“System.out.println()” printing out 20 characters, i.e. an additional 0.05msec per 

character. 

 

Table 7.3 Testing result of running Java instructions on TINI 
Test Name Test Instruction Test Result 

TINI method 1 getHundredth() Takes 8msec to read the clock 

TINI method 2 Get time Takes 7msec to get the current time 

WHILE loop while Takes 0.13msec to run a WHILE 

loop 

Fundamental 

instruction unit 

j=j+1 Takes 0.063msec to execute 

Print System.out.println() Takes 4.3msec to execute 

Print System.out.println(within 20 characters) Takes 5.3msec to execute 
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Table 7.3 lists the test result of running Java instructions on TINI. The developers of 

TINI claims that each thread is assigned an 8 msec time slice on TINI [TINI, 2007]. The 

instruction “j=j+1” takes 0.063 msec on TINI. That is 126 fundamental instructions per 

slice, which means it will not do much in any slice. So we think the time slice used in 

TINI OS should be longer. 

 

7.2   Impact of JARTOS on Performance of Java instructions 
After measuring the performance of Java instructions running on TINI, we measured the 

performance of Java instructions running on JARTOS, since we wanted to check whether 

JARTOS has any impact on the performance of Java instructions. 

 

7.2.1   Testing the WHILE loop 

 

Figure 7.8 A Test process testing the WHILE loop on JARTOS 

 

We wrote a Test process (Figure 7.8) running a WHILE loop (Algorithm 7.1). The 

WHILE loop also runs 100 times, 1000 times and 10000 times respectively. As shown in 

Table 7.4, the test results are the same as the test result in Table 7.1. 
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Table 7.4 Results of testing the WHILE loop on JARTOS without correction 
Loops Actual Time/msec 

100 20 

1000 140 

10000 1360 

 

Then we tested the execution time of calling getCurrentTime() on JARTOS, which is a 

method getting the current time. We wrote a linear program in the Test process, which 

calls getCurrentTime() 10 times (Figure 7.9). Then we calculated the time from the test 

data that we collected. It takes 7msec (time = (s10-s1)/10 ≈ 7msec). Again, there has been 

no change. 

 

 

Figure 7.9 Testing the execution time of calling getCurrentTime() on JARTOS 

 

Table 7.5 shows the corrected test result of running WHILE loops on JARTOS. As 

shown in Figure 7.10, the data is fairly close to what we expected. From the test data of 

Table 7.5, we calculated the execution time of running a WHILE loop on JARTOS. It 

takes 0.13msec, which is the same as that in Table 7.2. 
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Table 7.5 Result of testing WHILE loop on JARTOS with correction 
Loops Actual time/msec Expected time/msec 

100 20-7=13  

1000 140-7=133 130 

10,000 1350-7=1343 1300 

 

 

Figure 7.10 Result of testing WHILE loop on JARTOS 
 

Then we also wrote the instruction “j=j+1” in the WHILE loop (Figure 7.11) to obtain the 

execution time of a fundamental instruction unit on JARTOS. It takes 0.063msec, which 

is the same as we measured previously (Section 7.1.2).  

 

 

Figure 7.11 Testing the fundamental instruction unit on JARTOS 



 97 

 

7.2.3   Testing the System.out.println() 
We wrote a Test process (Figure 7.12) that execute “System.out.println()” 10 times, 

which takes 50msec. The execution time of calling getCurrentTime() is 7msec. So it 

takes 43msec to execute 10 instructions of “System.out.println()”. That is 4.3msec to 

execute a “System.out.println()” instruction, which is same as running on TINI. 

 

 

Figure 7.12 Testing System.out.println() on JARTOS 

 

From the above tests, we claim that there is no impact of JARTOS on the performance of 

Java instructions. 

 

Note: 

During the process of thesis examination, we moved all the work to SunSPOT. The 

performance of SunSPOT is much better than TINI. The performance data of SunSPOT 

is listed in Table 7.5-1. 

 

Table 7.5-1 Updated performance data. 
Instruction TINI SunSPOT JARTOS on SunSPOT 

j=j+1 63microsec 0.47microsec 0.44microsec 
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while  130microsec 1.01microsec 1.02microsec 

get time 7millisec 5.80microsec 6.4microsecond 

 

 

7.3   Performance Measurement of JARTOS 
In this section, the performance of JARTOS is measured and discussed. We measure the 

execution time of clock simulation in the Idle process and of the timer interrupt handler, 

since we want to completely characterize the timing performance of JARTOS and 

evaluate what duration between clock ticks is appropriated on TINI. This duration sets 

the base for the performance of JARTOS, as it specifies the maximum frequency of any 

process. 

 

Then we test the flow of control of JARTOS. A test template is developed for the testing 

of flow of control. The test data produced by the test template application can be used to 

validate that the code achieves our system design. 

 

Finally, we developed a reliability test template to evaluate the reliability of JARTOS. 

We want to measure the ability of JARTOS working for a long time. The test template 

application runs 24 hours and produces a performance record. 

 

7.3.1   Testing Clock Simulation 
We wrote a test program (Figure 7.13) to calculate the time that clock simulation takes. 

Clock tick simulation code is in the Idle process (line 3581,3582 in Figure 7.13). We 

measured 30msec. It takes 7msec to get the current time (Section 7.2.1). So it takes 

23msec to simulate a clock tick.  
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Figure 7.13 Testing the clock simulation 

 

7.3.2   Testing the Timer Interrupt Handler 
We wrote a test program (Figure 7.14) in the Idle process to test the execution time of the 

timer interrupt handler. It takes 20msec. After subtracting the execution time of reading 

the clock (7msec), we calculated that it takes 13msec to execute the timer interrupt 

handler.  

 

 

Figure 7.14 Testing timer interrupt handler 
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7.3.3   Testing the Process Overhead Time 
 

 

Figure 7.15 Process time 

 
As shown in Figure 7.15, Process time consists of reading the clock time, code execution 

time and process overhead time. The read clock calls are to obtain the time data to 

measure the performance, so they represent the time overhead of performance probes. To 

measure the overhead time of calling a process, we wrote a Test process (Figure 7.16) 

without any code in the processMethod(). We measured that it takes 10msec to execute 

the Test process. After subtracting the execution time of reading clock (7msec), we 

worked out that the process overhead time is 3msec (10-7=3msec). 

 

 

Figure 7.16 Testing process time 
 

7.3.4   Testing the Flow of Control of JARTOS 
In this section we discuss the test of the flow of control in JARTOS. We can use the 

performance data to validate that the code achieves our system design. Three 

synchronous processes are required to run to maintain the JARTOS running. These are 

Timer process, Idle process and Test process. Test process is an application process on 

JARTOS, which we wrote for performance measurement. After running test process a 
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certain number of times, the scheduler runs the Performance Analysis process, which 

prints out the measured data. 

 

 

Figure 7.17 Performance evaluation template 
 

Figure 7.17 shows a template of the test system. This test template can be used to 

measure the performance of any application simply by running the application processes 

as the Test process. The Test process (Figure 7.18), which is set to run by Start 

Application process, runs every 2 clock ticks. We wrote many different test processes to 

test the flow of control of JARTOS. One of the test processes is a process that turns on or 

turns off a LED on the TINI. The clock is simulated in the Idle process, which is set to 

tick every 200msec. After 100 executions of the scheduler loop, the Stop Application 

process stops the Test process. In the scheduler loop, performance probes (Section 4.6.2) 

are called before and after the execution of each process to collect performance data. The 

performance probes put process number and current time onto a circular buffer. Then the 

scheduler runs Performance Analysis process (Section 4.7.9) to produce the performance 

trace, and finally the Terminate process to terminate the JARTOS system.  
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Figure 7.18 A Test process testing the flow of control of JARTOS 
 

As shown in Figure 7.19, a scheduler loop consists of scheduling time and the process 

time of a process. Scheduling time is the time that the scheduler takes to select which 

process is to run. Process time is the execution time of a process. The execution time of 

the start performance probe is included in the scheduling time, and the execution time of 

the finish performance probe is included in the process time. Previously we measured the 

probe time to be 7msec. In order to maintain consistency of data, we have left this 

overhead in the calculations in Table 7.6 and 7.7. Table 7.6 shows part of the raw test 

data that we collected. The first entry for each process is its start time, and the second 

entry is its finish time. 

                                             Process time=Finish
np -Start

np  

Schedule time=Start
1+np -Finish

np  

From the timing data (Column 3 in Table 7.5), we calculated the process time (Column 4) 

and scheduling time of each process execution (Column 5).  
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Figure 7.19 Scheduler loop 
 

Table 7.6 Part of test data collected by Performance Analysis process 
Process no. Process name Time/msec  Process time/msec Scheduling time/msec 

1         start Timer process 5600740   

1         finish Timer process 5600860 120  

6 Test process 5600880  20 

6 Test process 5600900 20  

31 Idle process 5600930  30 

31 Idle process 5600970 40  

31 Idle process 5601000  30 

31 Idle process 5601040 40  

1 Timer process 5601060  20 

1 Timer process 5601180 120  

31 Idle process 5601210  30 

31 Idle process 5601250 40  

31 Idle process 5601280  30 

31 Idle process 5601330 50  

1 Timer process 5601340  10 

1 Timer process 5601460 120  

6 Test process 5601480  20 

6 Test process 5601510 30  

31 Idle process 5601540  30 

31 Idle process 5601570 30  

31 Idle process 5601600  30 
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31 Idle process 5601650 50  

 

Table 7.7 lists the average process time and average schedule time for each process. 

These times are all constant to the precision of our time measurement. We found that a 

process always has the same scheduling time, and that the process execution time of a 

process is fairly consistent. We also note that scheduling time varies with process number, 

because the scheduler iterates down the scheduler table until it finds a process to run. 

Consequently, scheduling time increases with the process number.  

 

Table 7.7 Result of testing the flow of control of JARTOS 
Process no. Process name Process time/msec 

(medium ± max) 

Scheduling time/msec 

(medium ± max) 

1 Timer process 120±10 10±10 

6 Test process 30±10 20±10 

31 Idle process 40±20  30±10 

 

 

Figure 7.20 Flow of control with time on it 

 

Figure 7.20 shows the flow of control of JARTOS with the execution time of each 

process. We observe that performance data that we collected conforms to the design of 

JARTOS. 

 

From Table 7.7 we produced Figure 7.21, which shows the time relationships of the 

processes running on JARTOS in the test. The Timer process (p1) runs every clock tick, 

the Test process (p6) runs every 2 clock ticks, the Idle process (p31) runs the rest of time. 
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From the data in Table 7.6 we see that the Idle process runs twice every clock tick. Also, 

we see that when there are no processes to run, JARTOS runs the Idle process. 

 

                                      p1: Time = 1, Phase = 1 

                                      p2: Time = 2, Phase = 2 

                                     idle: rest of time – OS is checking for events etc. 

Time means the number of clock ticks between executions. Phase is the clock tick 

relative to first. 

 

 

Figure 7.21 Time relationships of process in the test 
 

7.3.5   How Long should the Clock Tick be? 
A significant design parameter in JARTOS is the time between clock ticks, whether the 

clock is simulated or a hardware interrupt. We chose a target, based on the 20/80 rule, 

that JARTOS spends 20% of time performing OS tasks including running the Timer 

process, leaving 80% of time for applications (Figure 7.22).  

 

 

Figure 7.22 How long should the clock tick be? 
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We have obtained that the timer interrupt simulation and the timer interrupt handler take 

23msec, process scheduling takes 20msec, and the Timer process and one performance 

probe take 120msec (Table 7.8).  

OS tasks overhead = 163msec 

 

Table 7.8 The time of performing OS tasks 
OS tasks Time/msec 

Timer interrupt simulation+ Timer interrupt handler 23 

Process scheduling 20 

Timer process+ One performance probe 120 

 

On these basis, the time between clock ticks should be  

Duration=overhead/20%=815msec =>800msec 

leaving 637msec (Duration-overhead=800-163=637msec) for application to run.                               

 

When using the simulated clock tick, the Idle process has to run to simulate the clock. To 

get a regular tick, we should allow sufficient application time for an integral number of 

ticks.  

Number of ticks=application time/Idle process time=637/40=16 

So the duration is sufficient to allow multiple checking for clock tick even when running 

a number of processes. 

 

 

7.3.6   Reliability Testing of JARTOS 
Finally, we evaluate the reliability of JARTOS working for a long time. Figure 7.23 

depicts a template for reliability testing.  
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Figure 7.23 Reliability testing template 

 

To maintain the JARTOS running, four synchronous processes are required to run, which 

are Timer process, Idle process, Test process (Figure 7.18), and Workload process 

(Algorithm 7.3). Test process and Workload process are set to run every 2 clock ticks. A 

simple Test process is a process that turns on or turns off the LED on the TINI. The 

Workload process counts the executions of itself, not them of the Test process. The Test 

process simply provides a workload to exercise OS functions and is not modified. To 

count the execution of the Test process it would have to be modified. 

 

In the Workload process, counters and execution parameters of the Workload process are 

maintained. These counters include the number of execution of the Workload process. 

The parameters include the average, minimum and maximum times between executions 

of the Test process. If JARTOS runs for the full test time, the scheduler will set the Stop 

Application process, the Workload Analysis process (Algorithm 7.4) and the Terminate 

process to run. The Workload Analysis process is a process that prints out the run time, 

execute count and timing parameters. 

 

Algorithm 7.3 Workload process 

Execute count=Execute count+1 

Average time=Run time/Execute count 

IF time>Maximum time //time is the time between execution of the Test process 
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             Maximum time=time 

     ENDIF 

     IF time<Minimum time 

          

        Minimum time=time 

ENDIF 

IF Run time>Test time THEN 

        Set Stop Application process to run 

        Set Workload Analysis process to run 

        Set Terminate process to run 

ENDIF 

 

Algorithm 7.4 Work Analysis process 

Print out the Run time 

Print out the Execution count 

Print out the Average time 

 

In Section 7.3.5, we suggested that the clock tick should be 800msec. However, we ran a 

test with a 200msec clock tick to learn whether the reliability test would confirm that 

there is a problem. We set the Test process and Workload process to run every 2 clock 

ticks or 400msec. 

 

We set the test time to 24 hours. That is 86,400,000msec. After running 24hours, we 

obtained the test result of the reliability test. The measured runtime is 86,400,070msec, 

and the execution count is 157,596. The average time between executions of the 

Workload process is 548msec, which is 37% longer than the expected 400msec. 

 

As shown in Table 7.9, the total execution time is 265msec per clock tick with a 200msec 

clock tick or a 32.5% time overload. Therefore, we show that the 37% longer execution 

time is due to overload. If we set the clock tick to 400msec or 800msec, the total time per 

clock tick is less than the clock tick time.  
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Table 7.9 Analysis of the problem in the reliability testing 
 200msed/tick 400msec/tick 800msec/tick 

Scheduling time 10msec 10msec 10msec Timer process 

Timer process 120msec 120msec 120msec 

Scheduling time 30msec 30msec 30msec Simulated timer 

interrupt Idle process 40msec 40msec 40msec 

Scheduling time 10msec (20/2) 20msec 40msec (20*2) Test process 

Test process 15msec (30/2) 30msec 60msec (30*2) 

Scheduling time 10msec (20/2) 20msec 40msec (20*2) Workload process 

Workload process 30msec (60/2) 60msec 120msec (60*2) 

Total Time 265msec 

(>200msec) 

310msec 

(<400msec) 

460msec 

(<<800msec) 

 

So reliability testing showed a problem and analysis showed the cause. The good news is 

that overloading JARTOS did not cause it to crash, the executive overload simply caused 

it to run late, i.e. it slowed down gracefully even though it failed to meet the deadlines. 
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Chapter 8 
 
 

Conclusion and Future Work 
 

The work performed during this thesis has showed that an RTOS named JARTOS has 

been developed in a safe language, Java. The thesis examined the advantages (Section 

3.4.4) and associated problems (Section 3.4.4) of writing real-time operating systems 

(RTOSes) in a safe language, namely Java.   

 

The design of JARTOS is a time-sharing design switching tasks on a timer interrupt. The 

scheduling of JARTOS is cooperative multiprocessing. Each application task is 

decomposed into several interacting processes to run on JARTOS.  As each process is 

small relative to the task, the complexity of the code is reduced and its reliability is 

increased. A user process executes quickly and gives up the processor. Otherwise it will 

be timed out. To implement a timeout, JARTOS supports a timer interrupt handler that 

regularly updates a clock and checks for timeouts. There is a small-fast event monitor 

that polls I/O and sets event flags to tell the scheduler to run another process to respond 

to the event. To keep the number of interrupts to a minimum, input/output is done using 

polling where possible.  Also, interrupt code is designed to be transparent to the processes. 

An interrupt handler sets flags and values, and then returns to the process it interrupted. 

 

We introduced how we used Java constructs to implement the design of JARTOS. The 

majority of JARTOS is written in Java. Java can implement all high-level functions in the 

design. However, there are some low-level operations that cannot be coded in Java.  The 

interrupt handler cannot be connected to hardware interrupt in Java.  Also, the return 

address of the timed out process cannot be changed in Java.  These can only be coded in 
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assembly language. We did not solve the low-level issues of JARTOS. We are still doing 

research on TINI hardware and TINI Native Interface.   

 

In JARTOS, application code is separated from the OS code, so that the programmer of 

the application only has to write application code and make no changes to the OS. Thus, 

they can focus on programming the real-time task because many of the low-level details 

are abstracted away by the OS. JARTOS has passed a given set of test applications, 

which are documented, extended and run every time any part of the OS is changed. Test 

harnesses and assertions are also used to test JARTOS. 

 

The final stage of the work was the performance measurement of JARTOS. We 

investigated the timing problems by a set of performance measurements. Performance on 

the TINI and JARTOS are measured and discussed. We note that the performance data 

we collected conforms to the design of JARTOS.  

 

One surprise was how poor the performance of the TINI JVM is. The developers of TINI 

claim that each thread is assigned an 8 msec time slice on TINI [TINI, 2007]. The test 

data shows that it takes 0.063 msec to execute a fundamental instruction unit on TINI. 

That is 126 fundamental instructions per slice, which means it will not do much in any 

slice. So we think the time slice used in TINI OS should be longer. Also, the performance 

data of TINI shows that the speed of TINI is much slower than we expected. 

 

As a safe language, Java is suitable for coding a safety-critical RTOS. The Java compiler 

handles potentially unsafe operations rather than the programmer.  Also, Java includes 

run-time support to catch and handle run-time errors. However, the low-level operations 

cannot be coded in Java, which is a main problem of writing an RTOS in Java. We can 

only rely on the native interface provided by the JVM. So, the relevant documentation 

should be sufficient for the developers to study.  

 

The documentation of TINI is poor, which is inconvenient for doing research on the TINI 

board. Also, there are some omissions in the TINI API, such as reflection [TINI, 2007].  
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These hampered the development of JARTOS. So, we conclude that TINI is better suited 

to developing stand alone programs than to developing an RTOS. 

 

8.1   Future Work 
8.1.1   Low-level issues 
During the period when the thesis was being examined, we ported JARTOS to the 

SunSPOT and designed ways to solve the remaining low-level issues (Section 5.4). We 

will implement our new design on the SunSPOT and finish all the performance testing of 

JARTOS running on the SunSPOT in future research.  

 

8.1.2   Network 
We plan that JARTOS will run on a multiple processors connected by a network. For 

example, the control of a mobile robot may be decomposed into motion control, 

ultrasonic sensing, vision and task planning, each running on a separate processor. The 

application design will distribute processing to multiple processes over the network, for 

example on sensor networks.   

 

8.1.3   Sun SPOT 
During the process of the thesis examination, we moved JARTOS from TINI to Sun 

SPOT embedded microcontrollers. As discussed in Section 7.1, the design of TINI has 

some problems, for example, each process is only assigned an 8msec time slice, which is 

too short for running a process to completion. Also, TINI provides poor documentation, 

which is not convenient for research. The performance data of SunSPOT is much better 

than TINI (Chapter 7).  

 
There are two questions of interest in our future research. Does the design of the Sun 

SPOT enable the use of an RTOS or is it best suited to stand alone programs? What 

performance can be achieved by an RTOS running on a Sun SPOT? 

 

With the release of the Sun SPOT in April 2007, Sun [SPOT, 2007] claims to have 

achieved their goal of Java being the language of choice for small real-time computers 
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embedded into sensors, robots, instruments, machines and consumer devices.  A Sun 

SPOT is a small Java machine with I/O that can be used stand alone or in sensor 

networks.  It communicates with other Sun SPOTs using IEEE802.25.4 wireless links.  

As shown in Figure 8.1, the left part is the suite creator that runs on the host, and the right 

part is the architecture of the embedded device. 

 

 
 

Figure 8.1 Sun SPOT 
 

Sun is tackling the issues of using Java to program embedded systems with the Squawk 

virtual machine (VM) [Simon, 2006].  It is a small JVM with a split architecture (Figure 

8.1).  On the host machine the Java byte code is transformed into a more compact 

execution format and packaged in a suite file for downloading.  The VM on the SPOT 

interprets the suite file.  To overcome the problem that Java is interpreted not compiled, 

parts of the onboard VM and run time (e.g. the garbage collector) are translated from 

Java to C and to machine code, improving performance and removing the need for just-

in-time compilation [Shaylor, et. al., 2003].  

 

Applications are represented as objects that are instances of the Isolate class to isolate 

them from one another.  Sun [SPOT, 2007] claims that the SPOT has no operating system, 

but that operating system functionality is built into Squawk. It implements green threads, 

which emulate a multi-threaded environment without relying on an underlying operating 
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system. Green threads implement cooperative multiprocessing. When waiting on 

something a thread is blocked on an event queue that is polled by the scheduler.   

 

Interrupts are handled by assembler routines that set bits in an interrupt status word.  The 

scheduler checks the interrupt status word and resumes the thread for the device driver 

for that interrupt.  Thus, many of the features required for real-time programming appear 

to be available in Squawk, which seems to be more appropriate for our future research on 

JARTOS.  
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Appendix A 
 
 

System Library  
 

Class OS  

public class OS 

In the OS class, there are main method, constructor, OS tables, OS methods, OS 

processes and supervisor calls. OS class is responsible for maintaining the system 

running. The operating system is an instance of an OS class. The operating system is 

started by running the main() method.   
Field Summary 

int Clock 

The clock tick of the OS. 

boolean enableTimeoutsFlag 

Timeout flag. 

boolean enableDebugFlag 

Debug flag. 

int timeoutCounter 

Timeout counter. 

boolean timeoutReportFlag 

Timeout report flag. 

int numberOfProcTimeout 

Total number of process that is timed out. 

boolean enablePerformProbes 

Perform probes flag. 

int currentProcessNumber 

The current running process number on OS. 

int startOfMemoryBlocks 

The start address of memory blocks. 

long commonDataAddress 
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The common data address. 

long circularListsAddress 

The circular list address. 

long previousTime 

The previous time. 

long currentTime 

The current time of OS. 

 

 
Method Summary 

void setClock(int clock) 

Sets the clock value of OS with the given clock. 

int getClock() 

Gets the clock value of OS. 

void setEnableTimeoutsFlag(boolean flag) 

Enables or disables timeouts flag. 

boolean getEnableTimeoutsFlag() 

Gets enable timeouts flag value. 

void setEnableDegugFlag(boolean flag) 

Enables or disables debug flag. 

boolean getEnableDegugFlag() 

Gets enable debug flag value. 

void setTimeoutCounter(int t) 

Sets timeout counter for the process. 

int getTimeoutCounter() 

Gets timeout counter. 

void setTimeoutReportFlag(boolean flag) 

Sets timeout report flag. 

boolean getTimeoutReportFlag() 

Gets timeout report flag. 

void setNumberOfProcessTimeout(int n) 

Sets the total number of processes that are timed out. 

int getNumberOfProcessTimeout() 

Gets the total number of processes that are timed out. 

void setEnablePerformProbes(boolean is) 

Enables or disable performance probes. 
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boolean getEnablePerformProbes() 

Gets enable performance probes value. 

void setCurrentProcessNumber(int procNum) 

Sets the process number of current running process. 

int getCurrentProcessNumber() 

Gets the process number of current running process. 

void setStartOfMemoryBlocks(int addr) 

Sets the start address of memory blocks. 

int getStartOfMemoryBlocks() 

Gets the start address of memory blocks. 

void setCommonDataAddress(long commonDataAddress) 

Sets the address of common data. 

long getCommonDataAddress() 

Gets the address of common data. 

void setCListsAddress(long address) 

Sets the address of circular list. 

long getCListsAddress() 

Gets the address of circular list. 

void setPreviousTime(long p) 

Sets the previous time. 

long getPrevousTime() 

Gets the previous time. 

void setCurrentTime(long c) 

Sets the current time of OS. 

long getCurrentTime() 

Gets the current time of OS. 

void setupOSTable (int clock, boolean enableTimeoutFlag, boolean enableDebugFlag, int 

timeoutCounter, boolean timeoutReportFlag, int numberOfProcTimeout, boolean 

enablePerformProbes, int currentProcessNumber,int startOfMemoryBlocks, long 

commonDataAddress, long CListAddress, long previousTime) 

Sets up OS table. 

void addToOSTable(Process proc) 

Adds a process to OS table. 

void getOSTable() 

Returns OS table. 

void waitState(int n) 

Goes into wait state for n clock ticks. 
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void changePriority() 

Changes the priority of user processes by moving them in process table. 

void simulateEvent() 

Switches from hardware event to software event simulator for testing. 

void getOSTables() 

Returns the current value of all OS tables for use in debugging, testing and performance 

measurement. 

void libraryOfEventHandlers() 

Provides the library of event handlers. 

void timerInterruptHandler() 

Sets flag to run timer process and handles time out. 

void enableTimerInterrupt(boolean is) 

Enables or disables the timer interrupt. 

void performanceProbe() 

Collects performance data. 

void testOS() 

A test harness for OS class 

void testProcessTable() 

A test harness for ProcessTable class 

void testScheduler() 

A test harness for Scheduler class 

void testEvent() 

A test harness for Event class 

void testMessage() 

A test harness for Message class 

void testCircularBuffer() 

A test harness for CircularBuffer class 

void testCommonData() 

A test harness for CommonData class 

public 

static void 

main(String[] args) 

Enables timer interrupt, sets up OS tables and call scheduler to start OS. 
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Class ProcessTable (Inner class of OS class) 

ProcessTable class is used to store process table and relevant methods. 
Field Summary 

int Size 

The size of process table. 

int[] PROCESS_NUMBER 

The number of the process 

String[] PROCESS_NAME 

The name of the process. 

boolean[] WAITING_ON_EVENT 

If the process is waiting on an event. 

int[] EVENT_NUMBER 

The event number of an event that a process is waiting on. 

boolean[] EVENT_OCCURRED 

If the event has occurred. 

boolean[] WAITING_ON_MESSAGE 

If the process is waiting on a message. 

int[] MESSAGE_NUMBER 

The message number of a message that the process is waiting on. 

boolean[] MESSAGE_ARRIVED 

If the message is available. 

boolean[] WAITING_ON_TIME 

If the process is waiting on time. 

boolean[] TIME_IS_UP 

If the time is up. 

String[] REFERENCE_TO_PROCESS_METHOD 

The reference to the process method. 

 

 
Method Summary 

void setupProcessTable() 

Sets up process table. 

void addToProcessTable(Process proc) 

Adds a process to process table. 

void removeFromProcessTable(String procName) 

Removes a process from process table. 
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int getProcessNumber(String procName) 

Gets the process number of the process with the given process name.      

void setEventOccurred(int procNum, boolean is) 

Sets the eventOccurred value to indicate if the event has occurred. 

boolean getEventOccurred(int procNum) 

Gets the eventOccurred value to check if the event has occurred. 

void setWaitingOnEvent(int procNum, boolean is) 

Sets the waitingOnEvent value to indicate if there is a process waiting on the event. 

boolean getWaitingOnEvent(int procNum) 

Gets the waitingOnEvent value to check if there is a process waiting on the event. 

void setEventNumber(int procNum, int eventNum) 

Sets the event number which process is waiting for. 

int getEventNumber(int procNum) 

Gets the event number which process is waiting for. 

void setWaitingOnMessage(int procNum, boolean is) 

Sets the waitingOnMessage value to indicate if there is a process waiting on the message. 

boolean getWaitingOnMessage(int procNum) 

Gets the waitingOnMessage value to check if there is a process waiting on the message. 

void setMessageNumber(int procNum, int messageNum) 

Sets the message number which process is waiting for. 

int getMessageNumber(int procNum) 

Gets the message number which process is waiting for. 

void setMessageArrived(int procNum, boolean is) 

Sets the messageArrived value to indicate if the message has arrived. 

boolean getMessageArrived(int procNum) 

Gets the messageArrived value to check if the message has arrived. 

void setWaitingOnTime(int procNum, boolean is) 

Sets the waitingOnTimeValue. 

boolean getWaitingOnTime(int procNum) 

Gets the waitingOnTimeValue. 

void setTimeIsUp() 

Sets the timeIsUp value to indicate if time is up. 

boolean getTimeIsUp() 

Gets the timeIsUp value to check if time is up. 

void setReferenceToProcessMethod(int procNum, String reference) 

Sets the reference to the process. 

String getReferenceToProcessMethod(int procNum) 
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Gets the reference to the process. 

int getIndexInProcessTable(String procName) 

Gets the index of the process by the given process name in process table. 

void resetProcessTable() 

Resets the process table. 

void getProcessTable() 

Returns the current value of process table. 

void loadProcess(Process proc) 

Loads a process in the process table. 

void removeProcess(String procName) 

Removes a process from the process table. 

 

Class Scheduler (Inner class of OS class) 

Scheduler class is used to store scheduler method, scheduler table and relevant methods. 
Field Summary 

int Size 

The size of scheduler table. 

int[] PROCESS_NUMBER 

The number of the process. 

boolean[] EXECUTE_FLAG 

Execute flag of the process. 

boolean[] LOADED_FLAG 

Loaded flag of the process. 

int[] WAIT_TIME 

Wait time of the process. 

int[] WAIT_PHASE 

Wait phase of the process. 

int[] TICK_COUNT 

Tick count of the process. 

boolean[] WAITING_ON_EVENT 

If the process is waiting on an event. 

 
Method Summary 

void setupSchedulerTable(int processNumber, bololean executeFlag, boolean loadedFlag, int 

waitTime, int waitPhase, int tickCount, boolean waitingOnEvent) 

Sets up the scheduler table. 
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void addToSchedulerTable(int processNumber) 

Adds a process to the scheduler table. 

void addToSchedulerTable(Process proc) 

Adds a process to the scheduler table. 

void removeFromSchedulerTable(String procName) 

Removes a process from the scheduler table. 

void removeFromSchedulerTable(int processNumber) 

Removes a process from the scheduler table. 

int getIndexInSchedulerTable(int processNumber) 

Gets the index of the process by given process number in the scheduler table. 

void getSchedulerTable() 

Returns the current value of scheduler table. 

int getProcessIndexInSchedulerTable(int processNumber) 

Gets the index of the process by given process number in the scheduler table. 

int getProcessNumberInSchedulerTable() 

Gets the number of processes in scheduler table. 

boolean getIsProcessInSchedulerTable(int processNumber) 

Checks if the process is in the scheduler table. 

int getProcessNumber(int procNum) 

Gets the processes number. 

void setExecuteFlag(int procNum, boolean flag) 

Sets the execute flag value. 

boolean getExecuteFlag(int procNum) 

Gets the execute flag value. 

void setLoadedFlag(int procNum, boolean flag) 

Sets the loaded flag value. 

void setWaitTime(int procNum, int time) 

Sets the wait time value. 

void setWaitPhase(int procNum, int phase) 

Sets the wait phase value. 

void setTickCount(int procNum, int tick) 

Sets the tick count value. 

int getTickCount(int procNum) 

Gets the tick count value. 

void setWaitingOnEvent(int procNum, boolean is) 

Sets the waitingOnEvent value to check if the process is waiting on event. 

void enableProcess(Process proc) 
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Enables a process by adding it to scheduler table. 

void enableProcess(int processNumber) 

Enables a process by adding it to scheduler table. 

void disableProcess(String procName) 

Disable a process by removing it from scheduler table. 

void disableProcess(int processNumber) 

Disable a process by removing it from scheduler table. 

void runProcess(Process proc) 

Sets the execute flag to true in the scheduler table for a process. 

void runProcess(String processName) 

Sets the execute flag to true in the scheduler table for a process. 

void stopProcess(int processNumber) 

Sets the execute flag to false in the scheduler table for a process. 

void schedulerInfiniteLoop() 

Decides which process is to run and dispatches it. 

 

Class Message (Inner class of OS class) 

Message class is used to store message table and relevant methods. 
Field Summary 

int Size 

The size of message table. 

int[] MESSAGE_NUMBER 

The number of the message. 

boolean[] ALLOCATED 

If the message object is allocated. 

int[] FROM_PROCESS 

The process that is sending the message. 

int[] TO_PROCESS 

The process that is receiving the message. 

boolean[] WAITING_FOR_MESSAGE 

The process that is waiting for the message. 

boolean[] MESSAGE_SENT 

If the message has been sent. 

String[] MESSAGE_REFERENCE 

The reference to the message. 

String[] MESSAGE_TYPE 
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The type of the message. 

int[] TRANSACTION_NUMBER 

The transaction number of the message. 

long[] MESSAGE_SENT_TIME 

The time when the message is sent. 

boolean[] OVERFLOW_FLAG 

The overflow flag of the message. 

 
Method Summary 

void setupMessageTable(boolean allocated, int fromProcess, int toProcess, boolean 

waitingForMes, boolean messageSent, String messageReference, String messageType, int 

transactionNumber, long messageSentTime, boolean overflowFlag) 

Sets up message table. 

int getMessageNumberInMessageTable() 

Gets the number of messages in message table. 

int getMessageIndexNumber(int toProcessNumber) 

Gets the index of message in message table. 

int getMessageNumber(int messageNum) 

Gets message number. 

void setAllocated(int messageNum, boolean is) 

Sets the allocated value in message table. 

boolean getAllocated(int messageNum) 

Gets the allocated value to check if the  message has been allocated. 

void setFromProcess(int messageNum, int processNumber) 

Sets the process sending a message. 

int getFromProcess(int messageNum) 

Gets the process sending a message. 

void setToProcess(int messageNum, int procNumber) 

Sets the process receiving a message. 

int getToProcess(int messageNum) 

Gets the process receiving a message. 

void setWaitingForMessage(int messageNum, boolean is) 

Sets waitingForMessage value. 

boolean getWaitingForMessage(int messageNum) 

Checks to see if there is a process waiting for message. 

void setMessageSent(int messageNum, boolean is) 
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Sets messageSent value. 

boolean getMessageSent(int messageNum) 

Checks to see if the message has been sent. 

void setMessageType(int messageNum, String type) 

Sets the type of message. 

String getMessageType(int messageNumber) 

Gets the type of message. 

void setMessageReference(int messageNum, String messageReference) 

Sets the reference of message. 

String getMessageReference(int messageNum) 

Gets the reference of message. 

void setMessageSentTime(int messageNum, long time) 

Sets the time of sending message. 

long getMessageSentTime(int messageNum) 

Gets the time of sending message. 

void setTransactionNumber(int messageNum, int transactionNumber) 

Sets the transaction number of message. 

int getTransactionNumber(int messageNum) 

Gets the transaction number of message. 

void setOverflowFlag(int messageNum, boolean is) 

Sets the overflow flag. 

boolean getOverflowFlag(int messageNum) 

Gets the overflow flag. 

int getIndexInMessageTable(int messageNum) 

Get the message index in message table. 

void getMessageTable() 

Returns the current value of message table. 

int getMessage(String fromProcessName, String toProcessName, String messageType) 

Gets a message object. 

void sendMessage(int msgNumber, String toProcessName, String messageReference) 

Writes message into message buffer and sets available flag. 

void receiveMessage(String toProcessName) 

Process asks for message. If it has been sent process reads it and continues. If not process 

sets message wait and exit. 

void releaseMessage(int messageNumber) 

Returns message resource to OS. 
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Class Event (Inner class of OS class) 

Event class is used to store event table and relevant methods. 
Field Summary 

int Size 

The size of the event table. 

int[] EVENT_NUMBER 

The number of the event. 

String[] EVENT_TYPE 

The type of the event. 

String[] INTERRUPT_OR_POLLED 

Is the event an interrupt event or polled event. 

boolean[] EVENT_ENABLED 

If the event is enabled. 

boolean[] EVENT_OCCURED 

If the event has occurred. 

int[] PROCESS_WAITING_ON_EVENT 

The process that is waiting on the event. 

String[] REFERENCE_TO_EVENT_METHOD 

The reference to the event method. 

String[] REFERENCE_TO_INTERRUPT_HANDLER 

The reference to the interrupt handler. 

 
Method Summary 

void setupEventTable(int eventNumber, String eventType, String interruptOrPolled, boolean 

eventEnabled, boolean eventOccured, int processWaitingOnEvent, String 

referenceToEventMethod, String referenceToInterruptHandler) 

Sets up event table. 

void addToEventTable(String eventType, String interruptOrPolled, Boolean eventEnabled, 

Boolean eventOccurred, String procName, String refToEventMethod, String refToHandler) 

Adds an event to event table. 

void getEventTable() 

Returns current value of event table. 

int getEventNumberInEventTable() 

Gets the total number of event in event table. 

void setEventNumber(int eNum, int eventNumber) 

Sets eventNumber value. 
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void setEventType(int eNum, String eventType) 

Sets the type of event. 

String getEventType(int eNum) 

Gets the type of event. 

void setInterruptOrPolled(int eNum, String iop) 

Sets the value to display that the event is an interrupt event or polled event. 

void setEveEnabled(int eNum, boolean is) 

Enables or disables event. 

boolean getEveEnabled(int eNum) 

Checks if the event is enabled or not. 

void setEveOccured(int eNum, boolean is) 

Sets the event has occurred or not. 

boolean getEveOccured(int eNum) 

Checks if the event has occurred. 

void setProcessWaitingOnEvent(int eNum, int processNumber) 

Sets the process number that is waiting on an event. 

int getProcessWaitingOnEvent(int eNum) 

Gets the process number that is waiting on an event. 

void setReferenceToEventMethod(int eNum, String method) 

Sets the reference to an event method. 

String getReferenceToEventMethod(int eNum) 

Gets the reference to an event method. 

void setReferenceToInterruptHandler(int eNum, String method) 

Sets the reference to an interrupt handler. 

int getIndexInEventTable(int processNumber) 

Gets the index in event table. 

void waitEvent(int eventNumber, int processNumber, String eventType) 

Waits for an event. 

void interruptHandler(int eventNumber) 

Handles the interrupt. 

void enableEvent(int eventNumber) 

Enables an event. 

void disableEvent() 

Disables an event. 

 

Class CircularBuffer (Inner class of OS class) 
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CircularBuffer is used to store circular buffer table and relevant methods. 
Field Summary 

int Size 

The size of circular buffer table. 

int[] BUFFER_NUMBER 

The number of the buffer. 

boolean[] ALLOCATED 

If the buffer has been allocated. 

String[] BUFFER_REFERENCE 

The reference to the buffer. 

int[] ADD_PROCESS 

The process that adds the buffer. 

int[] REMOVE_PROCESS 

The process that removes the buffer. 

boolean[] OVERFLOW_FLAG 

The overflow flag. 

int[] ADD_INDEX 

The index of adding buffer. 

int[] REMOVE_INDEX 

The index of removing buffer. 

 
Method Summary 

void setupCircularBufferTable(boolean allocated, String bufferReference, int addProcess, int 

removeProcess, boolean overflowFlag, int addIndex, int removeIndex) 

Sets up circular buffer table. 

void addToCircularBufferTable(int bufferNumber, String bufferReference,int addProcNumber, 

int removeProcNumber,int addIndex, int removeIndex) 

Adds a buffer to circular buffer table. 

void removeFromCircularBufferTable(int bufferNum) 

Removes a buffer from a circular buffer table. 

void setBufferNumber(int bufferNum, int bufferNumber) 

Sets the buffer number. 

void getBufferNumber(int bufferNum) 

Gets the buffer number. 

void setAllocated(int bufferNum, boolean is) 

Sets the allocated value to display if the buffer has been allocated. 
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boolean getAllocated(int bufferNum) 

Checks if the buffer has been allocated. 

void setBufferReference(int bufferNum, String bufferReference) 

Sets the reference to the buffer. 

String getBufferReference(int bufferNum) 

Gets the reference to the buffer. 

void setAddProcess(int bufferNum, int addProcessNumber) 

Sets the process that adds a buffer. 

int getAddProcess(int bufferNum) 

Gets the process that adds a buffer. 

void setRemoveProcess(int bufferNum, int removeProcessNumber) 

Sets the process that removes a buffer. 

int getRemoveProcess(int bufferNum) 

Gets the process that removes a buffer. 

void setOverflowFlag(int bufferNum, boolean overflowFlag) 

Sets the overflow flag. 

boolean getOverflowFlag(int bufferNum) 

Gets the overflow flag. 

void setAddIndex(int bufferNum,int addIndex) 

Sets the index of added buffer. 

int getAddIndex(int bufferNum) 

Gets the index of added buffer. 

void setRemoveIndex(int bufferNum,int removeIndex) 

Sets the index of removed buffer. 

int getRemoveIndex(int bufferNum) 

Gets the index of removed buffer. 

void getCircularBufferTable() 

Gets the circular buffer table. 

int getCircularBuffer(int addProcessNumber, int removeProcessNumber) 

Gets a circular buffer object. 

void addToCircularList(int bufferNumber, String bufferReference,int addProcNumber, int 

removeProcNumber, int addIndex, int removeIndex) 

Adds a buffer to circular list. 

String removeFromCircularList(int bufferNumber) 

Removes a buffer from circular list. 

 

Class CommonData (Inner class of OS class) 
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CommonData is used to store common data table and relevant methods. 
Field Summary 

int size 

The size of the common data area. 

int[] VALUE 

The value of the common data. 

String[] TYPE 

The type of the common data. 

int[] TIME_WRITTEN 

The time when the common data is written. 

int[] NUMBER_OF_WRITING_PROCESS 

The process that is writing the common data. 

int[] ADDITIONAL_DATA 

The additional data of the common data. 

 
Method Summary 

void setupCommonData (String value, String type, long timeWritten, int numberOfWritingProcess, 

int additionalData) 

Sets up common data. 

int getValue() 

Gets common data value. 

String getType() 

Gets common data type. 

int getTime() 

Gets the time when writing the common data value. 

int getProcessNumber() 

Gets the process number which writes the common data. 

int getAdditional() 

Gets the additional value. 

void addToCommonData(String value, String type, long timeWritten, int numberOfWritingProcess, 

int additionalData) 

Adds the value to common data. 

void getCommonDataTable() 

Gets the current value of common data table. 

void writeCommonDataValue(String value, String type, int processNumber,int additionalData) 

Writes the common data value. 
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String readCommonDataValue() 

Reads the common data value. 

 

Class Timer (Inner class of OS class) 

Timer class inherits form Process class. In Timer class, there are a constructor and a 

process method. 
Constructor Summary 

Timer 

Creates a timer process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Timer process’s method. Maintains the timer table and sets flags for processes to run 

 

Class MessageMonitor (Inner class of OS class) 

MessageMonitor class inherits form Process class. In MessageMonitor class, there are a 

constructor and a process method. 
Constructor Summary 

MessageMonitor 

Creates a message monitor process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Message monitor process’s method. Checks for the arrival of messages. 

 

Class PerformanceAnalysis (Inner class of OS class) 

PerformanceAnalysis class inherits form Process class. In PerformanceAnalysis class, 

there are a constructor and a process method. 
Constructor Summary 

PerformanceAnalysis 

Creates a performance analysis process that inherits from Process class. 

 

Method Summary 
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void processMethod() 

Performance analysis process’s method. Analyses data collected by performance 

probes 

 

Class TimeoutReport (Inner class of OS class) 

TimeoutReport class inherits form Process class. In TimeoutReport class, there are a 

constructor and a process method. 
Constructor Summary 

TimeoutReport 

Creates a timeout report process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Timeout report process’s method.  

 

Class GarbageCollector (Inner class of OS class) 

GarbageCollector class inherits form Process class. In GarbageCollector class, there are a 

constructor and a process method. 
Constructor Summary 

GarbageCollector 

Creates a garbage collector process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Garbage collector process’s method. Runs when time available to clean up heap. 

 

Class Terminate (Inner class of OS class) 

Terminate class inherits form Process class. In Terminate class, there are a constructor 

and a process method. 
Constructor Summary 

Terminate 

Creates a terminate process that inherits from Process class. 
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Method Summary 

void processMethod() 

Terminate process’s method. Disables timer interrupt and resets tables to stop scheduler. 

 

Class Idle (Inner class of OS class) 

Idle class inherits form Process class. In Idle class, there are a constructor and a process 

method. 
Constructor Summary 

Idle 

Creates an idle process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Idle process’s method.  

 

Class Process  

Process class contains a standard template for process methods and methods for working 

with processes. 
Field Summary 

String processName 

The name of the process. 

int synchronousWaitTime 

The wait time of the process. 

int synchronousWaitPhase 

The wait phase of the process. 

int timeout 

Number of ticks to be timed out 

int event1 

The event that the process is waiting on. 

int event2 

The other event that the process is waiting on. 

int message1 

The message that the process is waiting on. 

int message2 

The other message that the process is waiting on. 
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long processExitAddress 

The exit address of the process. 

 
Constructor Summary 

Process(String procName, int synWaitTime, int synWaitPhase, int timeout, int event1, int event2, int 

message1, int message2, long processExitAddress) 

Creates a process. 

 
Method Summary 

void setProcessName(String processName) 

Sets the name of the process. 

String getProcessName() 

Gets the name of the process. 

void setSynchronousWaitTime(int waitTime) 

Sets the waitTime value of the process. 

int getSynchronousWaitTime() 

Gets the waitTime value of the process. 

void setSynchronousWaitPhase(int waitPhase) 

Sets the waitPhase value of the process. 

int getSynchronousWaitPhase() 

Gets the waitPhase value of the process. 

void setTimeout(int timeout) 

Set number of ticks to be timed out. 

int getTimeout() 

Get number of ticks to be timed out. 

void setEvent1(int event1) 

Sets the event that the process is waiting on. 

int getEvent1() 

Gets the event that the process is waiting on. 

void setEvent2(int event2) 

Sets the other event that the process is waiting on. 

int getEvent2() 

Gets the other event that the process is waiting on. 

void setMessage1(int message1) 

Sets the message that the process is waiting on. 

int getMessage1() 
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Gets the message that the process is waiting on. 

void setMessage2(int message2) 

Sets the other message that the process is waiting on. 

int getMessage2() 

Gets the other message that the process is waiting on. 

void setProcessExitAddress(long processExitAddress) 

Sets the exit address of the process. 

long getProcessExitAddress() 

Sets the exit address of the process. 

void processMethod() 

The method of the process. 

 

Class Application 

In the Application class, there are Event Monitor process, Start Application process, Stop 

application process and user application processes. The Application class contains the 

code for a specific user task.  

  

Class EventMonitor (Inner class of Application class) 

EventMonitor class inherits form Process class. In EventMonitor class, there are a 

constructor and a process method. 
Constructor Summary 

EventMonitor 

Creates an event monitor process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Event monitor process’s method. Polls for i/o event. 

 

StartApplication class (Inner class of Application class) 
Constructor Summary 

StartApplication 

Creates a start application process that inherits from Process class. 

 
Method Summary 
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void processMethod() 

Start application process’s method. Sets up processes to get the application to be run by the OS 

 

StopApplication class (Inner class of Application class) 

Inner class of Application class 
Constructor Summary 

StopApplication 

Creates a stop application process that inherits from Process class. 

 
Method Summary 

void processMethod() 

Stop application process’s method. Stops all the running processes. 

 

Application1 class (Inner class of Application class) 
Constructor Summary 

Application1 

Creates an application process that inherits from Process class. 

 
Method Summary 

void processMethod() 

The method of application 1 process. 
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Appendix B 
 
 

Processes Provided with OS  
  

1. Timer process 
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2. Start Application process 

 
 

3. Message Monitor process 

 
 

4. Performance Analysis process 
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5. Stop Application process 

 
 

6. Idle process 
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7. Terminate process 

 
 

8. Other processes 

We are still working on the design of other processes, which are Event Monitor process, 

Timeout Report process and Garbage Collector process. 
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Appendix C 
 
 

OS Kernel 
  
Main method 
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Scheduler loop 
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Timer interrupt simulation 
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Appendix D 
 
 

Test Applications 

  

1. Test that OS runs, tests scheduler, runs a single application process that prints out table 

contents 

 
 

2. Test each OS process –Timer process etc that they give expected results  

see Section7.2.2 

 

3. Test timeout  

 
 



 154 

4. Test each data communication method: messages, circular list, and common data     
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5. Test performance probes  

 
 

6. Test multiple processes, including process to print out tables  
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7. Test performance analysis process 
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