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Abstract

Red-time operating systems (RTOSes) are required to run for years, and never fal,
without human intervention. Safety is the primary concern for RTOSes because they
usually control physical equipment. One strand of rea-time operating system (RTOS)
research islooking at the question: can developing an RTOS in a safe language result in a
system that an errant process can’t crash? Choosing a good programming language can
significantly improve the safety of the RTOS. In this thesis, we examine the advantages
and associated problems of writing RTOSes in a safe language, namely Java.

We design an RTOS named JARTOS that schedules processes on a micro-controller
called TINI. The code of the JARTOS system is mainly written in Java, since Java
provides both static and dynamic safety. The Java compiler handles potentially unsafe
operations rather than the programmer. Also, Java includes run-time support to catch and

handle run-time errors.

JARTOS is designed to be a time-sharing system, where cooperative multiprocessing is
used to schedule real-time processes. JARTOS switches processes on a timer interrupt.
Each process is required to execute quickly and then give up the processor. Otherwise it
will be timed out. To implement a timeout, JARTOS supports a timer interrupt that
regularly updates a clock and checks for timeouts. To keep the number of interrupts to a
minimum, input/output is done using polling where possible. Also, interrupts code is
designed to be transparent to the processes. An interrupt handler sets flags and values,

and then returns to the process it interrupted.

In the context of achieving real-time performance, we look at the issues of implementing
our system design in Java. We introduce how we used Java constructs to implement the

design of JARTOS, and how we solved the low-level issues.



RTOSes have to guarantee that real-time processes execute within specified time dead-
lines. Loss of synchronization can occur when deadlines are not met. Timing problems
are often very difficult to find. In JARTOS, we designed a set of performance
measurements to investigate timing problems. These performance measurements are
carefully designed to provide the right information at minimal cost in performance.
Performance of TINI and JARTOS are measured and discussed.
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Chapter 1

Introduction

1.1 Background and Motivation

Red-time software has much more stringent requirements than persona computer
software [Laplante, 2004]. It must execute within strict time deadlines, it must be correct,
and it must be robust. Every modern car has an embedded computer controlling its
engine. It is expected to caculate the correct fuel/air mixture every time the accelerator
is pressed. Also, the computer is expected to run for years without crashing or having to
perform software upgrades to fix bugs.

The requirement that a rea-time application will run for years, and never fail, with no
human intervention places huge demands on the operating system that supportsit. Some
embedded systems try to avoid this problem by not having an operating system, i.e. they
are asingle process. The only advantage of that approach is that the programmer knows
al the code. The disadvantage is that the application programmer has to write all the

code.

One advantage of using an operating system is that the programmer is better able to focus
on programming the real-time task because many of the low-level details are abstracted
away by the operating system. Another advantage is that the task can be decomposed
into severa interacting processes. As each process is small relative to the task, the

complexity of the code is reduced and its correctness increased.

However, the programmer has to be able to rely on the operating system to execute every

process reliably and in time. Also, the operating system must provide the low-level

12



services the programmer requires to implement the task. In addition, the increase in
programmer productivity and system reliability should far outweigh the increase in
execution time due to using an operating system.

One strand of real-time operating system (RTOS) research is looking at the question: can
developing an operating system in a safe language result in a system that an errant
process cannot crash? This question decomposes into two sub-questions. First, if we
write a process in a safe language can we guarantee that the process does not cause harm
to other processes or to the operating system, because the compiler has removed all the
unsafe statements? Second, can we develop an operating system that cannot be crashed if
we use a safe language? This goal raises a further question: are the a gorithms commonly
used in RTOSes safe? Does writing these agorithms in a safe language make them safe
or are there aternate algorithms that are safe because they are written in a safe language?

A number of research projects have looked for answers to these questions. The
Burroughs B5000 does not have a memory management unit (MMU) so it relies on the
Algol compiler to detect dangerous code [ Tanenbaum, et. al., 2006]. XO/2 [Brega, 2002]
is an RTOS developed at ETH in Zurich in Oberon to run on PowerPC embedded
processors. Oberon is an object-oriented language developed by Nicholas Wirth to follow
on from Modula-2 [Oberon, 2007]. A more recent project is the development of the
Singularity operating system by Microsoft Research [Tanenbaum, et. al., 2006]. It is
programmed in Sing#, a safe language based on C#. All processes run in asingle virtual-
address space, which is very efficient because it eliminates kernel traps to perform
context switches. The exclusion between processes is complete (without using an MMU
for protection) with each process having its own code, data structures, runtime, libraries
and garbage collector. Processes communicate by sending strongly-typed messages to

the operating system over point-to-point bi-directional channels.
We have developed a simple RTOS named JARTOS in Java. Brega [Brega, 2002] claims

that Javais a safe language suitable for embedded systems. One goal of thisresearch isto
investigate the advantages and disadvantages of developing an RTOS in Java. JARTOS

13



executes tasks on a microcontroller named TINI, which is to be mounted on our flying

robot. The TINI platform [TINI, 2007] provides an extensible Java runtime environment.

We want to take an approach to developing an RTOS that uses advances in computer
science. So, we try to write JARTOS using the design and compile technology of Java.
The code of the JARTOS system is mainly written in Java, since Java provides both static
and dynamic safety. The Java compiler handles potentially unsafe operations rather than
the programmer. Also, Java includes run-time support to catch and handle run-time

errors.

1.2 Objectives

Safety is the primary concern for RTOSes because they usually control physica
equipment. Choosing a good programming language can significantly improve the safety
of the RTOS. In thisthesis, we will examine the advantages and associated problems of

writing real-time operating systems (RT OSes) in a safe language, namely Java.

In this thesis, we will introduce the design of JARTOS that schedules tasks on TINI.
JARTOS is small enough to run on TINI, which is to be mounted on our flying robot to
do all the fast rea-time processing. JARTOS is designed to be a time-sharing system,
where cooperative multiprocessing is used to schedule real-time processes. We do not use
priority preemptive scheduling because it is a cause of RTOS indeterminism. An interrupt
can result in the scheduler transferring control of the processor from the current process

to other processes for an undetermined period of time.

JARTOS switches processes on a timer interrupt. Each process is required to execute
quickly and then give up the processor. Otherwise it will be timed out. To implement a
timeout, JARTOS supports a timer interrupt that regularly updates a clock and checks for
timeouts. To keep the number of interrupts to a minimum, input/output will be done using
polling where possible. Also, interrupts code is designed to be transparent to the
processes. An interrupt handler sets flags and vaues, and then returns to the process it
interrupted.

14



In the context of achieving real-time performance, we will look at the issues of
implementing our system design in Java. We will introduce how we used Java constructs
to implement the design of JARTOS, and how we solved the low-leve issues. We will
try to design a set of tests that will thoroughly test the flow of control, performance and
reliability of the OS (Operating System). They will be extended and run every time any
part of the OS is changed. Then we can say JARTOS has passed a given set of tests, and
hence has been updated without the changes reducing the correctness, performance or
reliability of the existing code.

RTOSes have to guarantee that real-time processes execute within specified deadlines.
Loss of synchronization can occur when deadlines are not met due to timing problems.
Timing problems are often very difficult to find. In this thesis we try to design a set of
performance measurements to investigate the timing problems. These performance
measurements will be carefully designed to provide the right information at minimal cost
in performance. Performance of TINI and JARTOS are measured and discussed.

1.3 Outline of the Thesis
Chapter 2 introduces the definition and genera concepts of RTOS.

Chapter 3 focuses on real-time programming languages. The features of a safe
language are presented. Different real-time programming languages are discussed
in this chapter. Examples of OS developed in a safe language are also introduced
in this chapter.

Chapter 4 describes the design of JARTOS.

Chapter 5 presents the code design of JARTOS. TINI runtime environment is
introduced in this chapter.

Chapter 6 introduces the issues of implementing our system design in Java.
Performance of TINI and JARTOS are measured and discussed in Chapter 7.
Conclusions are made in Chapter 8, where a summary of the work is given and
future work is outlined.

15



Chapter 2

Real-time Operating Systems

A real-time operating system is an operating system designed for real-time applications,
such as industria robots, mobile phone and spacecraft. It must execute within strict time
deadlines, it must be correct, and it must be robust [Purser and Jennings, 1975]. This
chapter introduces the definition and genera concepts of RTOS. Different concepts such
as tasks, scheduling, timer, event handler, inter-process communication, memory

management and networking will be presented.

2.1 What is a RTOS?

A real-time operating system is an operating system required to ensure that rea time
processes execute correctly within specified response-time constraints [Laplante, 2004].
RTOSes must guarantee that processes meet time deadlines. Anything that causes
indeterminism in the execution time makes it harder to achieve that guarantee.

There are two types of programs in RTOS: hard real-time program and soft red-time
program [Liu, 2000]. A hard real-time program must guarantee to finish its execution
before atime deadline. A soft real-time program only has to meet its deadline on average.

2.2 Basic Concepts of the RTOS

2.2.1 Tasks

A task is an independent activity performed by RTOS [Barrett and Park, 2005]. As shown
in Figure 2.1, atask can be in one of five states. Dormant, Ready, Running, Waiting, or
ISR (Interrupt Service Routine) [L abrosse, 1999].

Dormant: The task resides in memory but has not been avail able to the kernel.
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Ready: The task is waiting to execute but its priority is lower than the currently
running task.

Running: The task has control of the CPU.

Waiting: The task has been delayed from execution since it requires the
occurrence of an event

ISR: The task is in the ISR state when an interrupt has occurred and the CPU is

servicing the interrupt.

Task Delzted Wailing lor Evenl

Evant Coourrad
Ta sk

Crealec
Delated

Cortsuxt
Switch

Figure 2.1 Task states

Read -time tasks can be classified by their timing requirements as hard-real-time task, soft-
real-time task and non-real-time task [Brega, 2002]. A hard-real-time task must finish its
execution correctly before a deadline. Missing the deadline will cause the task to fail. A
soft-real-time task is desired to finish its execution before a deadline. The deadline is
only a soft deadline that is not critical to the function of task. A soft real-time task should
meet the deadline on average, where a hard real-time task must meet it every time. A
non-rea-time task is atask with no real -time requirements.

Red -time tasks can be further classified, according to the predictability of their arrival, as
periodic, aperiodic and sporadic [Krishna and Shin, 1997]. A periodic task isatask that is

executed repetitively at regular intervals of time. It can be prescheduled since it is known

17



to the developer. An aperiodic task is a task whose execution time cannot be predicted
because its occurrence depends on an event. A sporadic task is a periodic task with a
bounded interval time.

2.2.2 Design Architecture

There are two kinds of basic design architecture in RTOS:. event-triggered architecture
and time-triggered architecture [Nissanke, 1997]. An event-triggered RTOS switches
tasks as a response to an external event. A time-triggered RTOS switches tasks in
accordance with a clock. It is often complex to model an event-triggered system because
many interrupts and priorities may be present. The programmers need to pre-allocate the
system’s time resources for a time-triggered system. [Brega, 2002]. Although these two
design architectures have different concepts, they often exist at the same time in many
RTOSes.

2.2.3 Scheduling
Scheduling is an essential function of an RTOS. The goal of scheduling is to guarantee
that the performance of the system meets the time requirements [Krishna and Shin, 1997].

Priority-based scheduling can be classified as preemptive scheduling or non-preemptive
scheduling. Preemptive scheduling guarantees that “each task has a priority, and the
highest-priority task runs first. If a task with a priority higher than the current task
becomes ready to run, the kernel immediately saves the current task’s context in its Task
Control Block (TCB) and switches to the higher-priority task. [Laplante, 2004]” A
preemptive kernel guarantees that an interrupt is used to suspend the currently running
task and invoke the kernel to decide which task will run next.

Non-preemptive scheduling is aso called "cooperative multiprocessing,” because tasks
must cooperate with each other to share the CPU in this environment. In non-preemptive
kernels, the task must run quickly without any interruption and explicitly give up control

of the CPU. Therefore, inter-process communication is very important in a non-
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preemptive kernel RTOS [Barrett and Park, 2005]. Exclusive access is alowed to shared

resources in non-preemptive scheduling, thus the synchronization overhead is eliminated.

The major difference between preemptive scheduling and non-preemptive scheduling is
what controls the CPU. In a non-preemptive kernel, the task gives up control of the CPU
back to the RTOS. In a preemptive kernel, the kernel decides which task will run next and
whether the current task will be preempted [Barrett and Park, 2005]. The most important
drawback of a non-preemptive kernel is responsiveness [Horton, 2000]. Compared to
non-preemptive scheduling, preemptive scheduling has better system responsiveness.

Hence, a preemptive kernel isused in responsiveness-critical systems.

However, preemptive scheduling may be impossible or very expensive due to practica
problems in RTOS scheduling [Horton, 2000]. It also can switch context at an
ingppropriate time. Priority-preemptive scheduling is a main cause of indeterminism in
the execution time of real-time systems. Also, the design of a preemptive kernel is much
more complicated than that of a non-preemptive kernel. Non-preemptive scheduling does
not need to guard shared resources and data. Further, in a non-preemptive kernel, the

interrupt latency is much lower than in a preemptive kernel.

RTOS scheduling can be further classified as static scheduling or dynamic scheduling. In
static scheduling, all priorities are assigned to tasks as constants at design time. The
priority of a task remains fixed for the lifetime of the task [Brega 2002]. A rate-
monotonic (RM) algorithm is a typical static scheduling algorithm in which a task is
assigned a priority according to its execution time, so that a shorter period task is
assigned a higher priority than alonger period task [Li, Potkonjak and Wolf, 1997]. In
dynamic scheduling, priorities are assigned to tasks at run time. The priorities may be
changed over time based on execution parameters of tasks [Brega, 2002]. Earliest-
deadline-first (EDF) is awell-known dynamic scheduling agorithm in RTOS. With EDF
scheduling, the task with the earliest deadline will always be assigned the highest priority.

The major disadvantage of dynamic scheduling is the higher run-time cost with respect to
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static scheduling [Brega, 2002]. Undoubtedly, dynamic scheduling is more complicated
than static scheduling because of extra computation for priority. However, compare with
static scheduling, dynamic scheduling is more flexible and responsive in implementation.

2.2.4 Polling and Interrupts

Polling is a routine that continuously checks each device to see if the status of the device
has been changed. In a polling-based program, the CPU keeps reading the status register
of each device. If a device has completed the required task, the status of the device will
be changed. Polling is simple to design. However, CPU has to waste its time to
continuously check the devices over and over again. When the hardware is designed to
support polled operation, the CPU does not have to or poll as often, reducing the time

wasted on regular polling.

An interrupt is a signal indicating that the processor should stop the current process and
service the interrupt. The function of interrupt handling is [Purser and Jennings, 1975]:

1. Toidentify the interrupt

2. Tocadl the appropriate process.

3. Toschedule.

When an interrupt occurs, the processor saves the state of the current process, and then
services the interrupt task. After completing the interrupt service routine, the processor
restores the state of the current process and resumes the original process. Interrupts have
two types of latency: the time from where the interrupt signalled until the interrupt
handler starts execution, and the time to save system state. However, interrupts are a
cause of indeterminism in process execution time because they cause the processor to
stop what it is doing and service the interrupt. They take the processor away from the

running process for an indeterminate period of time.
2.2.5 Timer

A timer isatool for checking the elgpsed time and the process switching. “Polling atimer

is awasteful use of processor cycles. The code must contain a subroutine that frequently
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checks the timer. In most applications, the timer should be interrupt-driven [Ford and
Topp, 1988].” A timer is generated by a hardware clock periodicaly. Its purpose is to
update the clock, set the timer process to run and time out any processes that are taking
too long. The timer interrupt allows processes to be suspended for integral number of
ticks and sets timeouts when processes are waiting for an event to occur. It is also
responsible for returning program counter (PC) to where it was prior to hardware service

interrupt. Normally the timer does not have any interaction with any other process.

2.2.6 Threads and Events

A thread is a single sequence of program execution. Threads are used to split a program
into multiple simultaneoudy running tasks. An event is a change in the state of the
system, such as a mouse click, timer timeout. It requires the execution of a process to
handle it. An event handler is a program that is executed in response to events. The
execution of the event handler is triggered by the reception of a hardware event or a

software event.

Threads and events can be both used in concurrent programming. Threads can execute
the task efficiently. Thread-based programs run faster on a computer system that has
multiple CPUs. But as Lee points out, in an article on concurrent programming, threads
result in non-determinism [Lee, 2006]. Worse, a programmer appears to have no way of
knowing when this non-determinism is going to occur. So it may not be possible to
guarantee that a hard real-time process will meet a deadline, because we do not know
when and how the language schedules threads. Another issue is that threads must be
coordinated with locks when trying to access shared data [Ousterhout, 1996]. If alock is
forgotten, it may cause corrupted data. Writing data access synchronization can become

difficult, because circular dependencies must be avoided.

Events have better performance in managing concurrency than threads [Ousterhout,
1996]. Events are successful enough to solve amost al problems instead of threads
[Gustafsson, 2005]. An event-based program runs even faster than thread-based program

on a single CPU. There is no locking overheads and context switching in event-based

21



programs. Event-based programs reduce the complexity of programming and the overall

usage of memory. Programming with events also makes debugging programs easier.

2.2.7 Inter-process Communication

Executing multiple processes to perform a single task requires those processes to share
data[Richard, 1999]. Inter-process communication is a set of techniques supported by an
RTOS that alows the flow of data between processes. Theses processes can be running
on the same processor or on different processors connected by a network. Methods of
doing this are common-data storage, message passing, and producer-consumer queues.
The choice of inter-process communication method depends on the type of data being

communicated and environment of communication.

2.2.8 Memory Management

Memory management has a significant impact on the security and reliability of the RTOS.
Good memory management is essential in order to maintain the efficiency of the RTOS
[Ethernut, 2007]. Improper memory allocation can destroy the system’s determinism, for
example, buffer overflow or underflow. Garbage collection is a technology for automatic
dynamic memory management. It is used to identify and release the memory that is no
longer being used by processes. Garbage collection can avoid memory leaks that may

cause an operating system to run out of memory and crash.

2.2.9 Testing and Performance Measurement

Debugging and rigorous testing of real-time embedded systems remains a difficult
problem. A network connection facilitates the development of better tools than a seria
link [M°Kerrow et al., 2007]. Using a network, data collected on the embedded system
can be analyzed on the host. Also, the embedded system can be controlled from the host.

Performance monitoring and debugging take time to execute and consequently they
impact on the timing performance of the processes running on the embedded processor.
A network connection enables a hybrid gpproach where small, fast probes collect data

and put it onto a queue. A soft real-time process takes the data from the queue and
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outputs it to the host over the network. All the calculation and analysis software runs on

the host, moving most of the execution load to the host.

2.2.10 Networking

A Network processor is a programmable chip, which is optimised to support the
implementation of network protocols at the high speed [Marwedel, 2003]. Most modern
embedded RTOSes are connected to networks. Many systems distribute processing to
multiple processes over the network, for example sensor networks. Network processors

provide the environment to assist with network establishment.

However, networks can be a source of indeterminism that can cause a process to miss a
deadline. For example, when process A sends a message to process B running on the
same microprocessor, the CPU, memory and OS are common to both processes. So
process A can continue confident that process B will get the message within a given time.
While process B may be blocked waiting for the message, it receives it as soon as the OS

schedules process B.

By contrast, where process B is running on a separate microprocessor, process A sends
the message and continues. A network fault or a higher priority process running on the
second processor may result in process B waiting for an undefined period of time.
Assuming that the network is functioning correctly may be valid within arobot, but such
assumptions become increasingly less valid between robots as their physical separation
increases. Adding protocol to the message passing to confirm to process A that process B

gets the messages has a significant cost in performance, and increases code complexity.
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Chapter 3

RTOSes in a Safe Language

Safety is the primary concern for RTOSes. One strand of RTOS research is looking at
the question: can developing an operating system in a safe language result in a system
that an errant process cannot crash? Choosing a good programming language can
significantly improve the safety of the RTOS. This chapter focuses on safe programming
languages in RTOSes. Different rea-time programming languages are discussed in this

chapter. Some relevant research projects are also discussed.

3.1 The Language Requirements of RTOSes

The requirements of RTOSes call for language features that are not found in many
programming languages. Low-level features are often removed from languages because
they are not safe. That is, when incorrectly used, they can crash other programs or the
operating system. If the language does not support low-level features then the language
either has to be extended or it has to support cals to assembler routines. The latter is
very unsafe. Rather than leaving these features out, Modula-2 places them in a system
module, so that the programmer would explicitly recognize that the instructions are
unsafe and use them with care.

Low-level featuresinclude;

accessing specific memory locations, such as the address of a hardware input
buffer;

treating the contents of memory as different types, such as loading in bytes

from aserial input and then using them as an array of pixelsin an image;
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setting bits in a register, such as changing the processor from user to system
state;

changing the return-from-interrupt address, such as an interrupt handler
returning to a priority-preemptive scheduler which dispatches a different

process to the one interrupted;

saving and restoring system state including register contents before and after

handling an interrupt;

programming an interrupt handler, so that it is vectored to by the hardware

and not called from software, and

an interrupt handler being able to transfer data to a user process, such as the
interrupt handler reading a value and then storing it in a variable known to the

process.

These low-level constructs are machine dependent. The problem with them is that they
lack the redundancy required by the compiler to check them for consistency with the rest
of the program, and the compiler is not able to protect the programmer against errors.
Also, the IDE must be able to add the appropriate header and create links to routines in

the run-time support software in the embedded system, including its operating system.

Choosing a good programming language can significantly improve the quality of the
embedded software. Reliability is the most important feature for rea-time systems.
Red -time programming languages should include run-time support to minimize run-time
errors and to reduce the probability of programming errors.

3.2 What is a Safe Language?

The goal of a safe language is for the compiler to handle potentially unsafe operations
rather than the programmer. Also, a safe language includes run-time support to catch and
handle run-time errors. The features that make a language safe [M “Kerrow, et. al., 2007]

include:
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A safe language minimizes the damage due to programmer error by getting the
compiler to handle dangerous functionality. By catching more errors at compile

time rather than at run time, it can also increase programmer productivity.

A safe language is type safe. There is no mixing of types, so there are no errors
due to numbers changing in value when assigned from a variable of one type to a
variable of another type. Cast operations have to be explicit and justified.

A safe language has assertions to check conformance to design. Asserts can be
used to catch incorrect usage of functions. An assertion performs a calculation on

input values to confirm that they are in the desired range and type.

There is no pointer arithmetic in a safe language. The compiler codes al address
calculations, such as array indexing. Programming with references rather than
with pointer arithmetic stops a program scribbling outside a program’s memory
area. As aconsequence, it eliminates the need for memory management units as
protection devices.

A safe language includes overflow and underflow checking in its run time support,
so that buffer writes cannot corrupt code. A common method of attacking the
security of an operating system is to attempt to achieve a buffer overflow or

underflow.

A safe language has real-time garbage collection, i.e. automatic memory
management to avoid memory leaks which may cause an operating system to run
out of memory and crash.

A safe language handles mathematical errors, such as divide by zero, which cause

low-level hardware faults, with exceptions.

3.3 Low-level Languages

Machine code defines the capabilities of a processor and is directly executed by it.

Instructions are represented with binary numbers that have a one-to-one mapping to a

hardware function. As people find lots of numbers difficult to remember, they program

in assembly language, which uses mnemonics to represent the machine codes [Burn and
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WEellings, 2001]. However, assembly language code is difficult to read and it is easy to
produce errors. Therefore, although it is common, the use of assembly language is not
encouraged in real-time systems [Gritzalis and Iliadis, 1998].

Programming in assembler is tedious and time consuming even though the programmer
has total control over the machine. Programmers soon redlized that they were
programming the same sequences of machine code over and over again. By replacing
these sequences with high-level language constructs they were able to program faster and
their programs had less errors as well.

3.4 High-level Languages

High-level languages achieve three purposes:
They make the code easier for people to read.
They protect the program from dangerous constructs that human programmers
produce both by accident and deliberately. This protection is achieved by the
compiler taking over the function.
They increase programmer productivity. Programming is more enjoyable
when you can focus on solving the problem and not be bogged down by run-

time errors.

3.4.1 The C Programming Language

The C programming language achieves the above three goals to a limited extent. Firstly,
the code is easier to read than assembler. Secondly, the compiler takes over the control of
the register set so that the programmer can no longer select which register to use or
explicitly change the content of a register. This protects a program aganst the
programmer using one register for two different purposes. Also, in theory, it stops the
programmer writing self-modifying code.

C is the language most commonly used in embedded programming. However, it has a
number of serious problems that may result in a system crash, some of which are listed

below [McKerrow, et al., 2007].
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C code is very difficult to read and understand. It was designed prior to the
research into human computer interface and its syntax is very poorly designed.
Also, asit was developed before cut-and-paste editors, it has a cryptic syntax,
making it easy to type but hard to read. Additionaly, it has no concept of
graphics.

C has defined a couple of functions differently to how they are defined in
mathematics which causes confusion.

It has weak typing, which results in programs with numeric errors. By
allowing statements that assign a float to an integer a program will truncate
the value and give the wrong result.

Pointer arithmetic alows the code to write anywhere and if the arithmetic is
wrong the code will write over other code or data [Holzmann, 2006]. A
hardware solution (the memory management unit) was invented to protect
against this software problem.

C does not support some low-level operations that are required to program an
operating system. To “overcome” this problem a massive hole was created:
in-line assembler. C alows both the system and application programmers to

include assembler code in their program, which is extremely dangerous.

Asit has no support for exceptions [Rizk and Halsall, 1987], all errors have to
be handled by the return of integers, which results in complex error handling
code. These integer vaues are treated as true and false, because C does not

have a Boolean type.

It has no run-time environment so the programmer has to write all the memory
management code. Also, the programmer has to write the code to check for

overflow and underflow of common data structures such as arrays.
3.4.2 The Oberon-2 Programming Language

The Oberon-2 programming language was designed to be a highly reliable programming

language, featuring strong typing, object orientation, modularization, bounds checking
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and garbage collection [Nikitin, 1997]. It is a successor of the Pasca programming
language and the Modula-2 programming language, but ssmpler and safer. Many errors
can be detected at compile time rather than run time. Memory leaks are prevented by
Oberon’s runtime support of memory management. “It compiles with our request for
compile-time enforceable static safety and run-time support for dynamic safety, while
being well suited for component software development [Brega, 2002].” According to
Brega, the Java programming language is at the same level of safety as Oberon-2.

3.4.3 The Java Programming Language

The Java programming language is designed to be safe and robust. A reliable and secure
platform is provided for developing an RTOS in Java. The Java programming language
has the following features that make it safe and reliable.

Enforcing strict typing
Java is a strongly-typed programming language. It enforces strict typing with type
conversion functions. The type of every variable and every expression are known at
compile time. Casts are trusted in Java because Java’s strong typing ensures that
every cast is checked at both compile time and runtime. “The Java language is
designed to enforce type safety. This means that programs are prevented from

accessing memory in inappropriate ways”’ [McGraw and Felton, 1999].

Removing pointer arithmetic
There is no pointer arithmetic in the Java language, which prevents the misuse of
pointers. Although pointer arithmetic is a very powerful mechanism in programming,
it is also a major source of RTOS crashes. All memory address calculations are
handled in the reliable runtime environment. Java programmers must use object
references instead of pointers to get access to any memory location. They cannot
access memory directly by using pointers.

Run-time data structure bounds checking
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Buffer overflow or underflow is a programming error that may result in a security
attack to RTOS. In Java, buffer overflow or underflow errors never happen because
data cannot be stored into unallocated memory. Java provides overflow and

underflow checking in its run-time support.

Run-time support of memory management — garbage collection
Java has red-time garbage collection. Memory leaks, which may cause an operating
system to run out of memory and crash, are prevented by Java’s runtime support of
memory management. Using a garbage collector not only eliminates code bugs, but
also removes potential security dangers. In Java, the garbage collector aso relieves
programmers of the burden of performing manual memory management [Venners,
1996].

Assertions for verifying that data conforms to design
Java has asserts to check conformance to design. An assert performs a calculation on
input values to confirm that they are in the desired range and type [Gosling, et al.,
1996]. An expected Boolean condition is declared in an assert statement. If the
assertion is enabled when the program is running, then the condition is checked at

runtime.

Object Oriented (OO)
Java is an OO language with structured programming of methods. Objects cannot be
manipulated directly by programmers, but only through the public interfaces.
“Object-orientation and a modern memory model both turn out to have a positive
impact on Java security” [McGraw and Felton, 1999].

Exceptions handling
Exceptions are for handling of errors deep down in a procedure call sequence.
Programmers can write a function to define which exception it can raise in Java. Both
expected and unexpected errors can be handled by using the exception handling

mechanism.

30



3.4.4 Issues with Using Java

Java was designed to be a safe language and meets the criteriain Section 3.2. Here we
will look first at additiona issues with Java and then examine how these issues are
handled in the RTOSes programmed in Java.

Java is designed to compile a program every time it is run. Much work has gone into
just-in-time compilers to compile the byte codes on the target machine so that
performance is not reduced. This approach makes sense in mobile phones and in applets
on the web were the code is often downloaded and runs only once. However, rea-time
systems are generally compiled once and run many times. This difference in underlying
philosophy means that Java compilers normally are not optimised for producing code for

real-time systems.

Much of the magic of Java is due to threads. Programmers can produce small applets
simply by overriding 4 routines, because the run-time event loop does most of the work
for them. However, al Java programmers have tried to find the size of a window in an
instruction sequentially after the instruction to open the window, only to get asize of zero
returned. The reason, as it appears, is that Java started a separate thread to open the
window and continued executing the constructor thread. We are still looking for
documentation on when the Java run-time starts additional threads and why.

As Lee points out, in an article on concurrent programming, threads result in non-
determinism [Lee, 2006]. Worse, a programmer appears to have no way of knowing
when this non-determinism is going to occur. So it may not be possible to guarantee that
a hard real-time process will meet a deadline, because we do not know when and how the
language schedules threads. Another issue is that threads must be coordinated with locks
when trying to access shared data [Ousterhout, 1996]. Forgetting a lock may result in
corrupted data. Writing data access synchronization is difficult, because circular

dependencies must be avoided.
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While some developers wish that Java did not have threads, others are trying to improve
the Java threading model [Wellings, 2004] through the development of the Real-Time
Specification for Java (RTSJ). This approach forces a specific concurrency model on the
design of the rea-time system. Another addition that is required is area-time clock class
to Java.

3.5 Low-level Issues of Developing an OS in a Safe High-level
Language

There are a number of problems when we are developing an operating system in a safe,
high-level language [McKerrow, et al., 2007].

There are low-level operations that cannot be coded in the high-level language.
This usually forces the person programming the operating system to program
some operations in an unsafe language. This code is often called “trusted” code
because it is locked away inside the operating system so that the application’s
programmers cannot access it. To become trusted, it must be rigorously tested.
Also, the smaller the amount of trusted code the less chance there should be of it

causing problems.

A system clock is required to implement a deadline scheduler. Typicaly, this
clock will generate a hardware interrupt every n milliseconds. If the language
does not include a clock function, this rea-time clock has to be written in
assembler.

The clock is one example of an interrupt. When an interrupt occurs, the processor
stops the thread of execution of the current process a the end of the current
instruction, saves the system state and vectors to an interrupt handling function.
This requires afacility to store the address in the memory location from where the
hardware fetches the vector.

When the interrupt handler completes servicing the interrupt it normally

returns to the hardware, which restores the state and continues the thread of
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execution of the current process. This requires the ability to write a method
that does not return to caling software but via the hardware to the
interrupted process. An interrupt handler function should finish with a
return from interrupt instruction not a return from subroutine instruction.

In order to implement some operations in response to interrupts (for
example a time out), interrupt handlers may have to change the return
address of the process that it interrupts so that the operating system can take
the processor away from that process.

All libraries used by the operating system and the applications must also be
written in the safe language and compiled with the operating system or the
application. As C is an unsafe language, standard C libraries cannot be used
unless they are guaranteed to be trusted.

Most modern embedded systems are connected to networks. Many distribute
processing to multiple processes over the network, for example sensor networks.
When two processes communicate by passing a message, the receiving process
often waits for the sending process. When they are running on a single processor,
the wait time is determined by the load on that processor and deadlines can be
guaranteed to be met. When they are running on separate processors it is much
more difficult (and in many designs impossible) to guarantee that deadlines are

met.

3.6 Examples of OSes Developed in a Safe Language

3.6.1 XO/2

XOJ/2 [Brega, et al., 2000] is an object-oriented, hard-real-time system developed at ETH
in Zurich to run on PowerPC embedded processors. It is designed for safety, extensibility
and abstraction using the Oberon-2 programming language. XO/2 is boot loaded from the

host M acintosh and communicates to users viaweb pages running on the host network.
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Brega points out that most embedded systems are written using languages that provide
neither static nor dynamic safety. This author summarizes alist of languages classified
according to the degree of safety as follows [Brega, 2002].

Static and Dynamic Safety: Oberon, Oberon-2, garbage-collected versions of Ada,

Java, Sather, Component Pascal.

Dynamic Safety Only: Smalltalk, Lisp.

Partial Static/Dynamic  Safety: Pasca, Modula2, Ada (using explicit

deallocation).

Unsafe: C, C+.

Oberon is an object-oriented language developed by Nicholas Wirth to follow on from
Modula-2 [Oberon, 2007]. Oberon-2 is chosen as the programming language for the
XOJ/2 system since it is statically and dynamically safe [Tomatis, et al., 2003]. Many
errors can be detected at compile time rather than run time. Memory leaks are prevented

by Oberon’s runtime support of memory management.

The design architecture of XO/2 is time-triggered. The CPU time and system resources
are pre-allocated, which can lead to a waste of the system time and resources. In the
XOJ/2 system, the developers devised a scheme for approximating worst-case execution
time. To approximate a more realistic value of a task’s execution time, they use static
analysis of the source code combined with task’s runtime information that is collected by
the performance monitor. Tomatis [Tomatis, et. al., 2001] claims that this scheme can

work well even for the tasks with alot of dynamic cache usage.

The XO/2 hegp manager assigns a type to each allocated object, and a garbage collector
is responsible for its reclamation [Tomatis, et. al., 2001]. This garbage collector provides
good performance without any memory requirements at execution time, which is very
important when it works in a low-memory condition. The developers claim very fast
switching times between processes because the Memory Management Unit (MMU) is

only needed for address trand ation and not for catching program errors.



One of the design principles is the separation of concerns [Tomatis, et. al., 2001]. The
XOJ/2 system is structured in modules. The presence of safe dynamic loading and
unloading of compiled units, aong with short edit-compile-run cycles, is an important
precondition for this principle. New modules can be safely tested without threatening the
stability of the system.

A static, EDF (Earliest Deadline First) algorithm, with admission testing, is adopted in
the priority assignment of XO/2 [Tomatis, et al., 2001]. Tomatis claims that the improved
modelling capabilities trade off for the increased processing time. A task is statically
assigned a priority according to its deadline. This task will remain its priority, until its
normal execution is completed, or when atask with an earlier deadline has been activated
by the occurrence of an event. In the XO/2 system, non-real-time tasks are brought to the
foreground only when no real-time task is waiting. The non-real-time tasks with the same
priority are scheduled in round-robin a gorithms, which assign the same time slice to each

process.

The XO/2 system has been used for many research projects and commercial products.
Brega argues the XO/2 system has successfully implemented the software techniques
addressing safety on a system-wide level [Brega, 2002]. Brega points out that the Java
programming language has the same level of safety as Oberon-2. This is one of the

motivations for usto develop an RTOS in Java.

3.6.2 JX Operating System

The JX operating system is a single address space operating system mainly written in
Java [Golm et al., 2002]. Golm and colleagues believe that the features of Java raise the
level of abstraction and help to develop more robust systems in less time. Protection in
JX is no longer based on MMU, but on the type-safety of the Java byte code instruction
set. Therefore, there is no memory space switch caused by inter-process communication
and system calls. To expand the address space, MM U support can be added. Typica Java

security problems, such as native methods, execution of code of different trustworthiness
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in the same thread, and a huge trusted class library, are avoided by JX. The code written

in C and assembler is kept to minimal, which makes the system ssmple and robust.
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Figure 3.1 JX architecture

The system architecture (Figure 3.1) is comprised of a number of components, which are
loaded into domains, executing the JX kerndl that is responsible for system initialisation,
saving and restoring CPU state and low-level domain management [Golm et al., 2001].
All domains, except Domain Zero, are written in Java. All the native code of JX is stored
in Domain Zero. Operating system code is completely isolated from application code,
communicating via portals. A domain can only access other domains when it possesses a
portal to a service of the other domain. The operations that can be performed with the
porta are listed in the portal interface. Each domain is assigned its own hegp with it own
garbage collector. These garbage collectors can use different agorithms, running
independently. Each domain has its own threads, which do not migrate during inter-
domain communication. The stacks and thread control blocks are assigned memory from
the domain’s memory area.

3.6.3 Singularity Operating System

Singularity is an operating system developed by Microsoft Research [Tanenbaum et al.,
2006]. It uses advances in programming languages to develop an operating system that

an errant process cannot crash [Hunt et al., 2005].
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Singularity is programmed in Sing#, a new type-safe language based on C#. All
processes run in a single virtual-address space, which is very efficient because it
eliminates kernel traps to perform context switches. The exclusion between processes is
complete (without using an MMU for protection) with each process having its own code,
data structures, runtime, libraries and garbage collector. Processes communicate by
sending strongly-typed messages to the operating system over point-to-point bi-
directional channels.
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Figure 3.2 Singularity Operating System

Figure 3.2 shows the architecture of the Singularity Operating System. The microkernel
provides the core functionality of Singularity, including process creation and termination,
channd management, scheduling, I/0 management and memory management. Most
functionality and extensibility of the system exist in OS processes, not in the microkernel.
Singularity is built on an extension model based on Software-Isolated Processes (SIPs)
[Hunt et al., 2005]. SIPs are OS processes that provide strong interfaces, failure isolation

and information hiding. Singularity uses SIPs for both extensibility and protection.
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Chapter 4

Design of JARTOS

JARTOS is designed to be a time-sharing system, where cooperative multiprocessing is
used to schedule real-time processes. JARTOS switches processes on atimer interrupt. In
this chapter, rea-time design issues are discussed. The components of JARTOS are
introduced and discussed in detall .

4.1 Real-time Design Issues
RTOSes have to guarantee that processes meet time deadlines. Anything that causes

indeterminism in the execution time makes it harder to achieve that guarantee. In the
design of the JART OS system, the real-time design issues considered are discussed in the

following sections.

4.1.1 Interrupts

Interrupts are one cause of indeterminism because they cause the processor to stop what it
is doing and service the hardware. They take the processor away from the running
process. For this reason interrupts should always service the hardware and then return to

the interrupted process, so that they are trangparent to the interrupted process.

To keep the number of interrupts to a minimum, polling of input/output is preferred to
interrupts. However, the hardware designer may have reduced the amount of hardware
by assuming that the software would respond to interrupts and the data request/available
signa disgppears too quickly to be detected by polling. Design of real-time systems
involves a trade off between what is done in hardware and what is done in software. A

poor decision by the hardware designer can result in the software taking much longer to
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execute than it would with a better design. A better hardware design for rea-time
systems is a handshake design where the data available signa is not reset until the datais
read and the data request signal staysvalid until the datais written.

4.1.2 Scheduling

Priority preemptive scheduling is another cause of indeterminism. An interrupt can result
in the scheduler transferring control of the processor from the current process to other
processes for an undetermined period of time. For this reason, many rea-time systems
use cooperative scheduling where the current process only gives up the processor when it
is finished. However, to guarantee that deadlines are met the application must be
designed as a number of small, fast, interacting processes. For example, instead of a
single process having aloop whose execution time is determined by data va ues, the loop
is divided into two processes that start one another. Each time a process returns to the
scheduler, other processes get a chance to run, where with a single process it may hog the

[Processor.

4.1.3 Inter-process Communication

Executing multiple processes to perform a single task requires those processes to share
data. Methods of doing this are common-data storage, message passing, and producer-
consumer queues. One instance of a common data object has to be accessed by all
processes. Access to attributes in the common data object must be done via methods that
enforce a protection protocol. Only one process should be able to write to an attribute of
the common data object. By not allowing pre-emption, this can be enforced for processes

without critical sections, because awrite cannot be pre-empted by a higher-priority read.

However, even if we had critical sections, interrupt handlers will ignore them, so care has
to be exercised when they access common data to ensure that, at worst, access to a
variable in common data can only result in a delay and not data corruption. This is
another reason to keep the number of interrupts to a minimum. A producer and a
consumer that share a queue write to and read from different places, so the methods for

this class can be written to avoid data corruption.
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When message passing is used, the process wanting to read the message may have to wait
for another process to send it. So the process has to set its state to wait and return to the
scheduler. When the message is sent, the sending process has to enable the receiving
process to be restarted by the scheduler. Programmers have to avoid creating deadlocks
where processes are waiting on each other.

4.1.4 Timeout

With respect to the processor, a cooperative scheduling system must be able to timeout
processes that are taking too long. To implement a timeout, the rea-time clock interrupt
has to set a timeout flag to tell the scheduler to run a timeout process, and change the
address that it will return to in the hogging process. The new return address is to an
instruction in the hogging process that exits to the scheduler. In this way the hogging
process will exit normally, the scheduler will continue to schedule tasks, and a timeout
process will be run to report on the timeout error. Such hogging indicates either a
software design fault or a hardware falure. Both require human intervention to
investigate and fix the problem.

4.1.5 A Safe High-level Language -Java

Hardware failures also cause interrupts. As we commented before a mathematical error
should cause an exception. The use of a safe language should guarantee that illegal
instructions and invalid memory address errors do not occur due to data being written
over code. Missed interrupts are usually the result of the software taking too long to
service the interrupt and require a hardware or software redesign. Segmentation errors
are only of concern when an embedded system uses virtual memory (which is unusual),

and should be handled by the exception facility in the language.

As discussed in Section 3.4.3, Java was designed to be a safe language and meets the
criteria in Section 3.2. Therefore, the mgority code of JARTOS is written in Java
language. Assembly code is only allowed in the OS code. There is no calling of C

libraries.



4.2 Components of JARTOS

Figure 4.1 depicts the overal architecture of JARTOS. The Operating system (OS) is
completely isolated from user applications. Splitting the responsibility in this way results
in the application programmer being able to focus on the design and programming of the
set of processes required to solve the application problem. The OS part provides the
main components of JARTOS, including OS Methods (Table 4.1), OS Processes (Table
4.2), OS Tables (Table 4.3) and Supervisor Cals (Table 4.4).

JARTOS
Application

Start Applicaticn

Usar Task
Process

IJser Procass 1

Stop Applicatian
Process

Event Monitor
Process

Iser Frocess 22

o5
| (S Tanles | 0S5 Methods
| ElE e | Timer  ||Scheduler

called Interrupt ([ Other
Handler || mMathods

| OS5 Processes |

Figure 4.1 Overall architecture of JARTOS

In JARTQOS, afew method (Table 4.1) work together to provide the run-time kernel of

the OS. Much of the work of the OS and al the work is done by applications. So the task
of the OS kernel isto schedule processes. The Main method is called to start the OS
kernel by enabling timer interrupts and then calling the scheduler to schedule the first
process. Performance probes are placed in the scheduler to measure process performance.

Table 4.1 OS methods
Name Description
Main Initializes OS tables and processes, enables timer interrupt, enables
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processes and calls scheduler to start OS
Scheduler Decides which processisto run and dispatchesit
Enable timer interrupt Enables/disables timer interrupt
Timer interrupt handler Sets flag to run timer process and handles time out
Performance probe Collects performance data and places it onto a circular buffer
Process A method of aprocess object that performs computation

The OS processes (Table 4.2) do the work of the operating system apart from scheduling.
The timer process, which scheduled in response to the timer interrupt, sets flagsto tell the
scheduler when to run time-triggered processes. The other processesin Table 4.2 handle
common OS functionality. Note, the event monitor process is an application process not

an OS process because the events are specified to each application.

Table 4.2 OS processes
Name Description
Timer process Maintains the timer table and sets flags for processes to run
Message Monitor process Checksfor the arrival of messages
Performance Analysis process | Analyses data collected by performance probes
Timeout Report process Reports on the timeout of aprocess
Garbage Collector process Runs when time available to clean up heap
Idle process Runswhen no other process requires the CPU, enables the event

monitor to run (and can simulate the timer interrupt)

Terminate process Disablestimer interrupt and resets tables to stop scheduler

The scheduling of processes and other OS functionality requires a number of tables.

These are givenin Table 4.3.

Table 4.3 OStables
Name Description
OStable For OS variables
Process table Dynamic part of process control block (process state)
Scheduler table For scheduler variables
Memory table For memory variables
Event table For event variables
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Message teble

For message variables

Performanceltesting data table

For performance and testing data

Circular Buffer table

For producer/consumer separation of real-time concerns, and for
performance anaysis

Common Data table

For common data

To request work by the OS, processes execute supervisor calls (Table4.4). The cals

allow aprocessto start and stop other processes, to communicate with other processes,

and to respond to events. By restricting this functionality to supervisor calls, we stop

poorly written application code corrupting the OS table.

Table 4.4 OS supervisor calls

Name Description

Run Process Sets the execute flag in the scheduler table for a process that has been
loaded and enabled, so scheduler will run process

Stop Process Resets execute flag in the scheduler table

Get Message Gets a message object — array of ints, floats or string

Send Message Writes message into message buffer and sets available flag

Receive Message If therewill get message and reset available flag, else will return and set
process up to waits for the message, giving up processor

Release Message Returns message resource to OS

Get circular list Createsacircular list object

Addto Circular List

Addsvauesto acircular list

Remove from Circular List

Removesvaduesfrom acircular list

Write common datavaue

Writes values to common data area

Read common data value

Reads values from common data area

Wait Event Waits for an event

Wait Goes into wait state for n clock ticks— a form of saf scheduling

Load Process Loads aprocess - set up OS tables using values in process control block
Remove Process If processis running stopsit and clears out OS tables

Enable Process

Add aprocess to Scheduler table

Disable Process

Removes a process from Scheduler table

Change priority

Changes the priority of user processes by moving them in process table

Simulate event

Switch from hardware event to software event simulator for testing

Get OS Tables

Copy the current value of al OS tables for use in debugging, testing and




performance measurement

Library of event handlers A library of event handlers.

Finaly, the purpose of the OS is to run applications An application consists of severa
communicating processes. All applications are started by a Start Application process
where responsibility is to set up the processes required to perform the application and
schedule at least one to run. The purpose of the Stop Application process is to gracefully
shut an application down. The event monitor process polls 1/O to check for extend events

and sets scheduler flagsto start application processes to respond to the events.

Table 4.5 Processes in atypical user application in priority order

Name Description

Event Monitor process Pallsfor 1/0 event

Application specific process Application specific code

Application specific process Application specific code

Start Application process Sets up processes to get the application to be run by the OS
Stop Application process Stopsall processes in the current gpplication

The operating system is an instance of an OS class. The JVM, JVM runtime (underlying
thread mechanism), and hardware are considered to be the machine (unlike an assembler
OS where only the hardware is the machine). JARTOS runs as a process on top of the
JVM runtime (Figure 4.2).

JARTOS

JWIA

[N OS5

Figure 4.2 Runtime environment of JARTOS

Getting the system running is the responsibility of the Main method, which starts the
operating system, enables the Start Application process, and calls the scheduler loop. The



scheduler runs the Start Application process, which starts the processes to perform the
user application. The Main method (Algorithm 4.1) first declares an object of OS, calling
the OS constructor. The constructor is responsible for declaring instances of all tables,
initialising all table values to zero, and initidising the OS table. To correctly initialise the
timer, the Main method sets the value of current time to the previous time. The Main
method loads and enables the Timer process, Garbage Collector process, Timeout Report
process, Performance Analysis process and Idle process. These processes are needed for
OS house keeping. It aso loads and enables the Start Application process, which starts
the user application. The Main method sets the Start Application process and Idle process
to run. If the Start Application process does nothing then the OS will run servicing timer
events by calling the timer process on each clock tick. Then the Main method enables the

timer interrupts and calls the scheduler method.

Algorithm4.1 Main method
1 Declaresan object of type OS — calls the OS constructor, which
Declares instances of all tables
Initialises all table valuesto zero
Initialises the OStable
2 Reads current time and setsto previoustime to correctly initiaise the timer
L oads and enables the following processes, which are considered to be part of
the OS: Timer, Garbage Collector, Timeout Report, Performance Analysis and
Idle.
4 Loads and enables the Start Application Process. to load, enable and run
application processes.
Sets the Start Application Process and the Idle processto run
Enables timer interrupts
Calls the scheduler method, which only returnsto Main when terminate

processiscalled. Then Main should exit gracefully.
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Figure 4.3 shows the timing control flow of JARTOS. The JARTOS system schedules
processes on a timer interrupt, which we have ssmulated in the Idle process for much of
our testing. There is an interrupt handler handling the timer interrupt (either hardware or
simulated). It sets the execute flag of Timer process in Scheduler table, and execute the

timeout function if any process in the Scheduler table has gone over time.

Timer Interrupt
{sirmulated) Scheduler

Loap

Interrupt Sets Flag in Execute

Handlar Sc:he_duler Table ﬁTimerF’rncess
far Timer Procass

Timeout

Figure 4.3 Timing flow control in JARTOS

4.3 Scheduler

The scheduler runs at the completion of each process and should run at least every clock
tick. It is responsble for giving the CPU to the processes that want it, in priority order.
The scheduler loop will only exit when a call to the terminate process resets all execute
flags in scheduler table. The scheduler checks the flag of each process in the scheduler
table. If the process is ready to run, the scheduler will reset its execute flag to false in the
scheduler table. The scheduler sets timeout counter and current process number in OS
table. Then the scheduler will start the process and pass state to it. The process executes
and returns to the scheduler. If the performance testing flag is set, the scheduler will call

performance probe method before and after calling the process.

Algorithm4.2 Scheduler
i=0 /I set process number to zero — loop invariant i<= number of processes
WHILE thereisaprocesstorun //lastidle processisaways ready to run
i=i+1 /Icheck next process
IF processi isready torun  //flag in scheduler tableistrue
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END

Reset process execute flag in scheduler table  //something else hasto set it
Set timeout counter in OS table
Set current process number in OS table
IF performance testing flag set in OS table THEN call probe method
CALL process //start process and pass stateto it
//process executes and returns to here

ENDIF

IF performance testing flag set in OS table THEN call probe method
i=0 /Ireturn to highest priority process
Set current process number in OStable //i = 0 is scheduler

ENDIF

WHILE

NOTES

1.

When a process is timed out it is set to return to the scheduler as if it was a

normal exit so that the scheduler does not have to clean the timed out process.

2. By doing things (such as timing) with processes, the scheduler is simplified

3. When a process goes into wait, it must call a method to set up the timer table

values, then it must set its state values, then it returns to the scheduler.
All processes must execute quickly and return to the scheduler. Thisrequires a
style of code writing where work is broken up into little bits, for example, a
loop may execute one iteration and then return to the scheduler
The scheduler is held in an infinite loop by the last process in the scheduler
table (idle process) dways being enabled to run. A call to the terminate process
will reset all enable flags in the scheduler table and the scheduler will return to

the Main method, whose task it isto exit gracefully.

4.4 User Process Design

A process object (Table 4.6) contains attributes and methods. Attributes include process

control

block, constants and variables. Process control block is a static part with initia

values, which cannot be updated by OS. Methods includes process constructor, process

47



method, and private get and set methods. The process method, which must conform to
design rulesin Section 4.4.1, is called by the Scheduler method.

Table 4.6 A process object
Name Description
Attributes | Process control block Static part with initid values (cannot be updated by OS)
Congtants Process constants
Variables Only part of user process that can be changes, local copy of
State
Methods | Constructor Congtructs a process
Process Cdled by scheduler — must conform to design rules in
Section 4.4.1
Private get and set methods | Gets and sets process attributes

4.4.1 Process Method Structure

Process execution is intended to be short. Long calculations involving loops should be
rolled out so that one iteration is done each time the process is called. This design uses
cooperative multiprocessing where a process must release the CPU by returning to the
scheduler. If it does not, and timeouts are enabled, it will be timed out and stopped,
because a time out is considered to be an error. If timeouts are not enabled it will hang

the system.

A process is expected to enable timeouts when it starts and disable them when it ends.
Having the process set and reset atimeout flag in the OStable means that there is no need
to disable timer interrupts at any time. It solves adifficult critical section problem. Also,
it means that trusted (i.e. tested) processes do not have to be protected by timeouts.

Having to rely on the programmer of the process to include the timeout enable/disable is
a weakness. To overcome it, we would have to override the method call and return

functions with ones modified to perform these operations.



A process can wait on an event, a message or a time period to finish. In each case it will
set the wait state and return to the scheduler. When the process executes again it is its
responsibility to check why it was called. Hence the EL SE IF structure in agorithm 4.1.
The process need only test for those states that it is expecting. For asimple process, there

may be no tests, and for many processes there will only be one or two.

A DEBUG flag in the OS table can be used to turn debugging code on and off (a

compiler directive is a preferable aternative).

Algorithm 4.3 Default process structure
Process name (state)
Enable timeouts for duration of process //set flag in OS table
/I so timer interrupt knows it is interrupting a process and not the scheduler
IF waiting on event AND event occurred THEN
process event
/Imay disable event if asynchronous
IF DEBUG THEN //debug flag in OS Table
execute debug code
ENDIF
ELSE IF want to wait on an event THEN//enable wait for event
EventNumber = WaitEvent (parameters) //when return to scheduler it will wait
ENDIF
IF waiting on amessage AND message received THEN
ReceiveM essage(message number, message)
Process message
/Imay disable wait for message
EL SE IF want to wait for amessage THEN
MessageNumber = WaitM essage(parameters)
ENDIF
IF waiting on time AND timeisup THEN

Time code
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/Imay disable wait on time if asynchronous operation
EL SE IF want to wait on time THEN
Cdl wait on time
ENDIF
common execution code
exit Disable Timeouts //reset flag in OS table
[ltimer interrupt returns to here on process time out
RETURN - return to scheduler

4.4.2 The Life of a Process

A process is an instance of a process class. The executable method is called by the
scheduler. Thus a process is a piece of code that is compiled. Intheinitia version it will
be part of a single Java application that includes the scheduler, etc. Thus, the code
downloaded to the embedded system includes everything for an application to run. This
is appropriate for small rea-time systems that do not have disk drives to load processes

from. Extension to include loads of applicationsis left for alater project.

During itslifetime aprocessis (refer to Figure 4.4 and Figure 4.5):

1. Compiled and loaded into memory with the OS, including its process control
block
L oaded by the load supervisor call — sets up OS tables from process control block
Enabled by the Enable supervisor call — addsit to the scheduler table so that it can
execute
Set by the Run Process supervisor call — sets the run flag in the schedul er table
Executed by the scheduler when it is the top priority process and resetsits run flag
Repeat 4 and 5 until process is Disabled — can d so be Stoped or Timed out (error).
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[ReFnable Processi—] Enable Process |

| Hun Process |

Figure 4.4 Asynchronous flow of control of scheduling a process

[ Timer Proc. | Erable Proc. |

[ Scheduler H Run Proc. |

Figure 4.5 Flow of control of scheduling a synchronous process

4.4.3 Process Timing
Synchronous — run every n clock ticks
Time— number of clock ticks between executions
Phase — which clock tick relative to first

Asynchronous— called by events— time = 0 = run once

O S SRR i -

pi pe p3 Pl pd

Figure 4.6 Processtiming

pl:time=1, phase=1
p2:time =3, phase=1
p3:time=2, phase=1
p4:time =2, phase = 2

idle: rest of time — OS is checking for events etc.

4.4.4 Events

Events are changes in system state that require the execution of a task to handle them.
Events are usualy hardware changes such as timer timeout, analog to digital conversion
complete, digital input set, and character arrived. In this design, the hardware is expected
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to make events easy to detect and handle by the software. However, we realize that the
hardware design is not always under the control of the software designer and there are
times when interrupts are unavoidable. It is typica in the embedded system world to use

cheap hardware at the cost of making the software more difficult to write.

Preferably, events should be level s not edges, and should hang around for a while and not
be fleeting. Also, inputs should be buffered so that the software can read them within a
given time and does not have to either respond immediately or consume CPU time
waiting for them. When a process blocks waiting on an event, we will store the time for

testing purposes (atimeout may be added later).

A software event is a software simulation of an event that one process can create to signa
to another to run, etc. It is commonly used to in ssimulations of hardware events during
testing. Only one entry should be in the event table for each event and an event should
only start one process. |If other processes are required to run then they should be started

by the process that waited on the event.

Four types of events are to be handled:
1. Level - the level of an input can be detected by polling inputs and reading its value,
2. Edge - achange in an input can be detected either by an interrupt which vectors to
an interrupt handler (e.g. timer) or by polling the input and comparing successive
values,
3. Handshake — output alevel (or pulse) in response to an input event, and

4. Software —amethod call that simulates an event.

While polled and interrupt events are enabled and detected in different ways, the response
to al eventsinvolves the following steps:
1. A process enablesthe event (and interrupt handler) and sets a process (can be itself)

to wait for the event.
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2. The event monitor process, or the interrupt handler, sets flags in the event table
and process table to tell the OS that the event has occurred and sets the scheduler
flag to run the application process that is waiting on the event.

3. The gpplication process executes in response to the event. It clears the event
occurred flags. It may also disable the event (and interrupt handler), depending on
whether synchronous or asynchronous operation is required. NOTE: when a
process is disabled any events that it enabled must be disabled.

Polled Events

An event monitor process is a process in the user application that monitors events by
polling hardware inputs. It is called regularly by the scheduler. When it detects an event
it sets the execute flag in the scheduler table for the process waiting on the event. Then
this process is run by the scheduler. The algorithm for the event monitor is given in
Section 4.7.6.

Interrupt Events

A hardware interrupt causes the processor to vector to an interrupt handler. The interrupt
handler sets the execute flag of the process that is waiting on the event. It may aso read
(write) an input (output) value and place it in (get it from) a circular list, a message or
common data. The goa is that the hard real-time part is done in the interrupt handler and

the soft rea-time part is done by the process.

Algorithm4.4 Interrupt handler
IF event enabled in event table THEN
Read data into common data, circular list or message
IF processis enabled in scheduler table THEN
Set flags in event and process tables
Set execute flag in the scheduler table
ENDIF
RETURN from Interrupt
ENDIF
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Enabling Events

To enable or disable an event, an application process (such as start applications) calls
EventNumber = WaitEvent(parameters) and passes in the parameters for the event. The
method finds the next available event in the event table and returns the event number to
the process. The process should then exit to the scheduler.

Algorithm4.5 Enabling event

Find the next available entry in the event table.

From the parameters passed in set up the event table entry for this event

IF the process that isto wait on the event is not in the scheduler table THEN
Enable the processin the scheduler table with execute flag not set
Set the waiting on event flag and event number in the process table

END

IF the event is detected by an interrupt THEN
Enable the interrupt — pass in the event number to the handler

Return the event number

Disabling Events isdone in reverse order to enabling events.

4.4.5 Inter-process Communication

A crucid feature of a rea-time system is the flow of data between processes. Typically,
a fast process will read input data and make it available to other processes for
calculations etc. Normally, only one process can write a data value while severd
processes can read it. The write of data does not have to be in a critical section because
we are using co-operative scheduling not preemptive scheduling. All datawill consist of
avalue and a time stamp (when the data value was updated). Three mechanisms will be
used for inter-process communication, common data, circular buffers and messages
(Section 2.2.7).



Common data is a set of variables defined at compile time in a common data object that
can be read and written to using public get and set functions. Each data object includes
value, type, time updated, and number of updating process. The additional data is useful
for testing and debugging. As shown in Figure 4.7, a process that reads sensors may save

their values in common data for other processes to read.

Process A gets
a commen data

L
Frocess A | Other processes
wirites values read vallues

Figure 4.7 Flow of control of common data

Circular buffers are used to separate slower calculation processes from very fast input or
output processes. Often used as a way of handling input data that comes in bursts where
processing can be done at leisure. Also, useful for output data that has to be synchronized
to real-time but can be calculated ahead of time. As shown in Figure 4.8, one process
adds to the buffer and a second removes from it. In this design, when the buffer is full,
new data overwrites old, so that the most recent n data values are available. A flagis set
to indicate that data has been lost.

Process A Process B

pets a C. buffer "|finds out buffer na.
Process A Process B
adds data removes data

Figure 4.8 Flow of control of circular buffer

M essages require synchronization between processes. They are used to pass data values
between processes and the synchronization guarantees that a process does not proceed
until it has the latest data values. The messages are objects that are created at run time.
We will store the time the process started waiting for use in testing (a timeout may be
added later). Inter process communication over the network will be handled with
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messages 0 that data can be shared between multiple processors. These processors could
be other Java machines, the host development machine, or web clients displaying dataon

aweb page.

Steps for passing amessage (Figure 4.9):
1. Get Message — gets a message object — array of ints, floats or string
2. Send Message — writes message into message buffer and sets available flag
3. Receive Message — if there will get message and reset available flag, else will
return and set process up to wait for the message, giving up the processor

4. Release Message — returns message resource to O.S.

| Process A | ._.__,|Process B finds
gets a message QU Messags no.
; Process B
; waits for message
; I
Process A | Process B
sends message | reads message
Process 8
releases message

Figure.4.9 Flow of control of passing a message

4.5 Tables Design

4.5.1 Process Control Block
Process control block (Table 4.7) islocated in a process object. It contains constants from
which the process table is loaded, so it cannot be updated by OS.

Table 4.7 Process control block

Process name

Synchronous wait time In ticks, where O = run once
Synchronous wait phase <waittime

Timeout Inticks— < wait time— 2 isthe minimum
Eventl Number of event, 0 = no event
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Event2

Messagel

Message?

Process exit address

Used to update rti on time out

4.5.2 Configuration Constants

OS methods must check the configuration constants (Table 4.8) for overflow/underflow

when adding to or deleting from the tables.

Table 4.8 Configuration constants

Maximum number of processes

e.g. n=32

Size of memory blocks

eg. S=1K

Number of memory blocks

m*n

Number of memory blocks per process

Number of messages

*

Number of messages per process

1
Nl S

Number of events per process

Number of timers per process

Number of memory blocks for common data

Number of circular buffers

N e R BN B o =1

453 OS Table

The OS table (Table 4.9) contains the values of all the OS variables. The scheduler sets

the timeout counter and current process number in the OS table. If the Enable

Performance flag is set, the scheduler will call the performance probe before and after

calling the process.

Table 4.9 OStable
Clock Enable Enable DEBUG | Timeout counter | Timeout report | Number of
Timeouts flag flag process timed
flag out
Enable Current Process | Start of Memory | Common data Cligsaddress | PreviousTime
perform
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4.5.4 Process Table
The Process table (Table 4.10) contains dynamic values instead of process control block,
including process state. Note, the number of entries changes when processes are added

and removed s0 that n is aways less than the configuration constant. The OSis processO.

Table4.10 Process table
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455 Scheduler Table

Processes in the scheduler table (Table 4.11) are in priority order. Setting an execute flag
will tell the scheduler to dispatch the process when the CPU is available. When tick count
reaches 0, the timer process sets the execute flag in the scheduler table and resets the tick

count to wait time.

Table4.11 Scheduler table
Process Execute flag | Loaded flag | Wait time | Wait phase | Tick count | Waiting on event
number

58




45.6 Event Table

The Event table (Table 4.12) contains all the values of events. Setting the Event occurred
will tell the waiting process to run. There are four types of events. Level, Edge,
Handshake and Software.

Table4.12 Event table
Event Event type: | Interrupt | Event Event Process | Reference Reference to
number | Level, edge, | orpolled | enabled | occurred | waiting | toevent Interrupt
handshake, on event | method handler
software

45.7 Memory Table
The Memory table (Table 4.13) contains all the values of memory. If memory has not

been allocated, it could be allocated by process, message, circular list or common data.

Table 4.13 Memory table

Block number | Allocated | Processnumber | Message number | Circular Common data

list number

4.5.8 Message Table
The Message table (Table 4.14) contains al the vaues of messages. Setting Message sent
will tell the To Process that this message has been sent and can be read.

Table 4.14 Message table
Message | Allocated | From | To | Waiting | Sent | Reference | Type | Transaction | Sent | Over
Number for number time | Flow

message flag

59



4.5.9 Circular Buffer Table
Circular Buffer table (Table 4.15) contains circular buffer values for producer/consumer
separation of real-time concerns, and performance analysis. One buffer is permanently
allocated to the performance probe

Table 4.15 Circular buffer table
Buffer Allocated | Buffer Add Remove Overflow | Addindex | Remove
number reference | process process flag index

45.10 Common Data Table
Common Data table (Table 4.16) contains a set of variables defined at compiletimein a
common data object. The additional data is useful for testing and debugging. A process

that reads sensors may save their values in common data for other processes to read.

Table 4.16 Common datatable
Vdue Type Time Written Number of Writing Process Additional Data

4.6 OS Methods

The OS methods contain scheduler, timer interrupt handler, performance probe and
enable interrupt. As discussed in section 4.3, the scheduler is responsible for giving the
CPU to the processes that want it, in priority order. The scheduler loop will only exit
when a call to the terminate process resets al execute flags in scheduler table (Section
45.5). We will look at the timer interrupt handler, performance probe and enable

interrupt as foll owed.

4.6.1 Timer Interrupt Handler
The purpose of the timer interrupt handler is to update the clock, set the timer process to
run and timeout any process that is taking too long. It is designed to be invisible to the

rest of the system except on timeout. Normally there is no interaction with any other

60



process. It returns the program counter (PC) to where it was prior to hardware servicing
interrupt (only exception is timeout)

The timer interrupt handler sets the values in the OS table and handles the timeout
operation. The execution time of the timer interrupt handler is kept to be minimum,
otherwise it will affect the execution of the processes.

Algorithm4.6 Timer interrupt handler
Save state //implementation dependent e.g. registers used in this code
Increment clock value in OS table //done here rather than in timer process for accuracy
Set timer execute flag in scheduler table //work is done by timer process
IF timeout enabled in OS table THEN // only timeout processes not scheduler
Decrement timeout counter in OS table
IF timeout counter isO THEN
Set timeout report flag and process number in OS table
Enable timeout report process to run in scheduler table
Clear timed out process’s execute flag in scheduler table
Reset process table to match process control block
Modify rti on stack to return to the exit point of timed out process
ENDIF
ENDIF
Restore state
RETURN from interrupt

4.6.2 Performance Probe
This probe saves process number and time stamp in a circular list, from where it will be
read by the performance analysis process. When full the circular list overwrites itself, so

collected datamay be lost, it will contain data on the execution of the last few processes.
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4.6.3 Enable Interrupt
This process enables/disables interrupts. For example, the timer interrupt so that it calls

the timer interrupt handler on each tick. First it sets up thetick time etc.

4.7 OS Processes

As discussed in Section 4.2, getting the system running is the responsibility of the Main
method, which starts the operating system, and the Start Application process, which starts
the user application. The Man method (Algorithm 4.1) loads and enables the Start
Application process and other OS processes, which are needed for OS house keeping.
Then it gets the Start Application process and Idle process to run. We will introduce what

the OS processes do in this subsection.

4.7.1 Start Application Process

The task of the Start Application process is to set up the application. It will load the
processes into the process table, it will enable those processes that are to be executed
initially in the scheduler table, and it will set one or more processes to run by setting the
execute flag in the scheduler table. It may also set processes to wait on events. If

performance analysisis enabled, it sets the performance anaysis process to run.

Once started, the application will be performed by the choreography of the synchronous
and asynchronous processes that it starts. It loads, enables and sets the application

processes to run. When it finishesit returns to the scheduler and the application starts.

This design alows for the possibility of dynamically changing the application processes
to suit new operating conditions or to change the application. Based on the current values
of data, a process may load, enable and set to run another process. Thus, a different
process can be run in response to changes in operating conditions. At a higher level, a
process can load, execute and run a different Start Application to set up the system for a

new application.
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4.7.2 Stop Application Process

This process stops the application by reversing the actions of Start Application and
returns the system to the state of just the OS running. First it disables any events that the
Start Application process has enabled. It cals Stop, Disable and Remove for each
process in the application. It isalow priority process so that it is called when the OS is
going to idle. Then it must either start a new process by setting a Start Application
process to run or enable Terminate process to run so that next time the system is idle it
will terminate the OS.

4.7.3 Terminate Process

This process shuts the OS down by reversing the actions of Main. It disables the timer
interrupt and then resets al execute flags in the scheduler table so that the scheduler stops.
If log or error (e.g. timeout report) process flags are set, these processes should be run on

exit to ensure al debugging information is available on termination.

4.7.4 Idle Process

This process enables the event monitor process to run so that during idle the system is
checking for events. This improves response time to events on average. The Idle process
must re-enable itself so that the scheduler keeps caling it, else the scheduler would exit
and the operating system would stop. Also, the idle process must check that the event
monitor process has been enabled to run before setting its run flag in the scheduler table.
When testing the OS, to simulate the timer interrupt, simulation code is added to the idle
process. This code will simulate atimer interrupt by updating current time and setting the

timer process to run.

4.7.5 Timer Process

This process maintains the timer table and sets processes to run.
Algorithm4.7 Timer process

IF current time— previoustime <> 1 tick THEN

log error
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ENDIF
Previous time = current time
FOR each process in scheduler table DO
Decrement tick count
IF tick count <= 0 THEN
Sets execute flag in scheduler table
Resetstick count to wait time
ENDIF
Resets its execute flag to false //flag set by timer interrupt
END

4.7.6 Event Monitor Process

This process polls for 1/0 events by calling event methods

Algorithm 4.8 Event Monitor process
FOR each process in event table DO
Execute event method
IF event has occurred THEN
Set process execute flag in scheduler table
ENDIF
ENDFOR

4.7.7 Message Monitor Process
This process checks for the arrival of messages and sets execute flags for the process that

iswaiting on the message.

Algorithm 4.9 Message Monitor process
FOR each process in message table DO
IF wait flag is set and message has been sent THEN
Set process execute flag in scheduler table
ENDIF



ENDFOR

4.7.8 Garbage Collector Process

This process runs when time available to clean up heap, so it is called by the idle process.
The Garbage Collector process has not been designed in detail yet. JARTOS relies on the
garbage collection provided by the JVM.

4.7.9 Performance Analysis Process
This process reads the performance data from the circular list and calculates execution

timesetc. If itisnot running, the circular list will contain the last n readings.

The Performance Analysis Process will

Allocate Circular Buffer;

At agiven time cal performance probes by setting the performance testing flag;
Setsitself to run every n msec at priority lower then processes being monitored;
Reset performance testing flags a alater time (i.e. after atime interval);

Read data from circular buffer and produce analysis trace on each run;

S e A o

Display results to and interact with user.

4.7.10 Timeout Report Process
If there is a timed out process, the timeout report process will print out the detailed

timeout information.

4.8 0O.S. Supervisor calls

Supervisor calls are methods provided by the OS class, which processes can call to get
work done, such as getting and putting values in tables. The first sets are for inter-
process communication (Table 4.6.8). The second sets are for event handling (Table
4.6.6).

4.8.1 Get Message

Gets a message object for passing messages between two processes.
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Steps for getting a message object:

1.

N o g &

Searches message table to see if message is adready alocated (message 1 or
message 2). If it is, return the message number and transaction number

EL SE search message table for first unused message, simple algorithm — start at
last used and use next - roll around at end of list (faster than for loop searching
whole table) — if no unused message log error

set alocated, from process (this one), to process, message type, transaction
number

Reset wait flag

Get amemory block for the message and make it the correct type

Save message number in process table for both processes

Return message number

4.8.2 Send Message

Send message to other process and continue.

Steps for sending a message:

S oA

Get message number and transaction number
Copy datainto message

Increment transaction number

Set message available flag

Set message sent flag and time

Return

4.8.3 Receive Message

Process asks for message. If it has been sent process reads it and continues. If not

process sets message wait and exits.

Algorithm4.10 Receive message

Get message number and transaction number

IF message sent THEN get from message
IF debug/test THEN calcul ate time for message to transfer
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Reset waiting for message flag //done here and not in monitor to avoid race
condition
Reset message sent flag in Message table
Reset local have to wait flag
ELSE
Set waiting for message flag in Message Table
Set local have to wait flag
Return (local have to wait)
ENDIF

Process should test local have to wait flag and exit if it has to wait

4.8.4 Release Message

Returns message resource to O.S.

4.8.5 Add to Circular Buffer

One process adds data to a circular buffer. When the circular buffer is full, new data
overwrites old, so that the most recent n data values are available. An overflow flag is set
to indicate that data has been lost.

Algorithm4.11 Add to circular buffer

Get add index

Set allocated, buffer reference, time and add process number

IF not overflow THEN
Reset add index & remove index
Reset overflow flag

ENDIF

IF overflow THEN
Reset add index & remove index
Reset overflow flag

ENDIF
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4.8.6 Remove from Circular Buffer
One process removes data from a circular buffer. If there is no datain the circular buffer,

it will log error information.

Algorithm4.12 Remove from circular buffer
Get remove index
IF Remove Index=0 THEN
Log error
Return
ENDIF
Set allocated, buffer reference, time and remove process
IF not overflow THEN
Set remove index
ENDIF
IF overflow THEN
Set remove index
ENDIF

4.8.7 Wait
A form of self scheduling where a process is put into wait state for n clock ticks. Set the
tick count for the process in the scheduler table for the given process.

4.8.8 Wait Event

Often we want a process to execute when an 1/0O event has occurred. The method sets up
the event table to enable this process to run when the event occurs. Part of the
initialization of the operating system is the setting up of the event table. All the events
are entered into the table with their disabled flags set.

This method attaches a process to an event and enables the event. It has to be called
every time you want the process to wait for the event. The time cost of doing this is
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balanced by only events of interest are being monitored. Attaching an event to a process
permanently stops other processes using that event. Attaching it for one event means that

another process can register for that event at another time.

Algorithm4.13 Wait event

IF event nis not enabled THEN //can wait on that event
Put process number into event table
Select event type
Enable event

EL SE //another process is waiting on this event
Log error
Set flag for process to wait and try again

ENDIF

RETURN (event enabled)

4.8.9 Others
There are lots of other processes in Section 4.2 that are still to be designed.

4.9 Library of Event Handlers

These will depend on the 1/O devices.
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Chapter 5

Code Design of JARTOS

In this chapter, the architecture of TINI is introduced. We provide an overview of how
the code of JARTOS fits together. We look at the issues of implementing our system
design in Java. Also, the design of testing is introduced. In this chapter, we focus on the
genera code design of JARTOS. We will discuss the detailed implementation issues in
Chapter 6.

5.1 TINI Architecture

A TINI (Tiny Internet Interface) is a microcontroller that runs a Java virtual machine
(Figure 5.1). The TINI platform is a combination of the broad-based 1/O, a full TCP/IP
stack, and an extensible Java runtime environment that smplifies development of the
network connected equipment [TINI, 2007].

Figure 5.1 Maxim TINI from Dallas Semiconductor

The Java program is downloaded using commands in Slush, not by a boot loader. The

documentation claims that Slush is only acommand shell and that it is a Java application
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running on TINI. As shown in Figure 5.2, the VM is running under an operating system
called the TINI OS.

Java Application JARTOS
____A_F’I_—_________A_F‘I____
JW I Tl

Mative Methods

TINI OS5 Procass & Thread Schedulars

1/ Subsystem Memory Subsysiem
- - --=-=-=-=--"- 1 |- - - --==-=== 1
| TCPAP || 1O [1!IFile System Manager],
: Stack Manager |, | |
1| Metwork || Dewvice |'1| Heap Carbage :
: Crrivers || Drivers : : Manager | |Collactor :
Fy A

e e [ T T [ e s e s g e e |
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External Hardware

Figure 5.2 Runtime environment of TINI

TINI OS is at the lowest level of TINI runtime environment. It consists of Process and
Thread Schedulers, 1/0 Subsystem and Memory Subsystem. A microcontroller timer is
used to update a real-time clock every millisecond. The thread scheduler runs every 2
msec. A round robin scheduler divides time between processes in 8 msec slices. Round
robin scheduling makes it very difficult to guarantee that any process running on TINI

can meet area-time deadline. A single process can utilize nearly al CPU on TINI.

The VM sitson top of TINI OS. In between there is anative interface layer, so TINI OS
is probably not written in Java. We can invoke assembly code functions to solve low-
level problems from Java applications using this native layer. The I/O library uses the

native interface layer to call functions written in assembler to read inputs and write
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outputs. Applications programs written in Javasit on top of the VM. The JVM supports

the Java APl and libraries.

We develop the software for JARTOS in XCode on a Macintosh and then download them
into the TINI using the Slush command shell that runs on it. In our research we are
running JARTOS as a single application on top of the VM. We can aso run it as an
application in Mac OSX. Figure 5.3 shows the overal work flow of executing JARTOS
on TINI. The number of application processes is twenty-two (this value can be changed
by changing a content in the Process table). The maximum size of the OS.tini fileis 512K,

since TINI has alimited amount of RAM.
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Figure 5.3 Activity diagram of running JARTOS on TINI

TINI provides a class named Clock to access the TINI Real-Time clock in two ways
[TINI, 2007]. The faster way is to directly use the values minute, second, hundredth-
second, etc. The clock resolution is in hundredth-second called by the getHundredth()
method. The other way is to use getTickCount() method returning the long value in
milliseconds that have passed since midnight, 1st January, 1970. The getTickCount()
method is slower, since the Clock class has to convert the clock vaues to an amount of

milliseconds. Although getTickCount() returns times in millisecond, the clock resolution
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is in hundredth-second, not in millisecond. Therefore we decided to adopt the first way
instead of caling the getTickCount() method.

5.2 Overview of Code Design

Application code is separated from the OS code, so that:
the writer of the application only has to write application code and need make
no changes to the OS. With this approach, they are better able to focus on
programming the real-time task because many of the low-level details are
abstracted away by the OS;
the real-time task is decomposed into several interacting processes. As each
process is small relative to the task, the complexity of the code is reduced and
its correctness increased,;
the OS can run as a stand alone executable for testing (may be a test

application).

Figure 5.4 shows the overdl class diagram of JARTOS. There are three java classes in
our system: OS class, Process class and Application class. All OS tables are inner classes
of the OS class. OS processes are mainly inner classes of the OS class, and inherit from
the Process class. Event Monitor process, Start Application process, Stop Application
process and all user application processes are inner classes of the Application class, and
inherit from the Process class as well.
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Figure 5.4 Overdl class diagram of JARTOS

The Main method in the OS class starts the running of OS. The Main method constructs
an instance of the OS class and an instance of the Application class. It constructs the OS
processes, and sets their execute flag. Then the Main method enables the timer interrupt
and calls the scheduler. The scheduler executes in loop until the Terminate process runs.
On thefirst loop, the scheduler runs OS processes and the Start Application process. Each
process is defined by declaring an instance of the Process class, and overriding the
process method with their process specific code. The Process class contains a standard
template for process methods, and methods for working with processes. The Application
class contains the code for a specific task. This code includes Start Application process,
application processes to carry out the task and Stop Application process. The amount of
application processes is limited to 22 processes. This vaue can be changed by changing a
content in the Process table (Table 4.10).
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5.3 Can Javalmplement the Design of JARTOS?

The majority of JARTOS is written in Java. Java can implement al high-level functions
in the design. The OS tables are stored as Java arrays and accessed by the methods of the
relevant table class.

Each processis written as a subclass of the Process class by using the inheritance of Java.
Each OS process is constructed in the Main method by declaring an instance of its class.
It is set to run according to the design of the JARTOS system. Each user process is
constructed in the process method of the StartApplication class. It is loaded, enabled and
set to run al in the process method of the StartApplication class. The loadProcess()
method is a method of the ProcessTable class. The enableProcess method and the
runProcess() method are methods of the Scheduler class.

The schedulerlnfiniteLoop() method is a method of the Scheduler class. It is called by the
Main method of OS class. The schedulerinfiniteLoop() method calls the OS processes on
the first loop, then the StartApplication process enables each user process to run. The
scheduler loop agorithm isimplemented by a WHIL E statement. Every process executes
quickly and returns to the scheduler, then the scheduler will run the next process. The
number of processes determines the maximum number of iterations of the scheduler loop.
The scheduler will call processes using Java Reflection. “Reflection gives your code
access to internal information for classes loaded into the JVM and alows you to write
code that works with classes sel ected during execution, not in the source code [Sosnoski,
2003].” One of the ways of using reflection is to invoke a method of a specified name
[McCluskey, 1998]. In the Process table (Table 4.10), the last column is called “reference
to process method”. So, the scheduler can call the processes by their references.

Inter-process communication and supervisor cals can be implemented in Java as well.
Suppose we pass a message from process A to process B. In the processMethod() of the
process A class, the getMessage() method is called to get a message object for passing a
message between two processes. Then the sendMessage() method is cdled to write a
message and set its available flag in the Message table. In the processMethod() of process
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B class, the receiveMessage() method is caled to ask for the message. Finaly the
message resource is returned to OS by calling the releaseMessage() method. The
getMessage() method, the sendMessage() method, the receiveMessage() and the
rel easeM essage() method are all methods of the Message class.

The circular list is read by caling the removeFromCircularList() method. It is written to
by calling the addToCircularList() method. Both the removeFromCircularList() method
and the addToCircularList() method are the methods of the CircularBuffer class.

A common data value is written by caling the writeCommonDataValue() method of the
CommonData class. It is read by calling the reeadCommonDataVaue() method of the

CommonData class.

TINI (Section 5.1) supports /O interfaces within its run-time environment including:
Serid (RS232/485), SPI™, Paralel, 1°C*, 1-Wire and CAN. Dallas Semiconductor

provides several TINI classes to assist with 1/0 access [TINI, 2007].

5.4 Low-level Issues

The timer interrupt handler should be connected to the hardware interrupt of TINI. In
initial testing of JARTOS, the timer interrupt is simulated in the Idle process. The
interrupt updates the clock value every tick.

When an interrupt occurs, the processor stops the thread of execution of the current
process at the end of the current instruction, saves some system state and vectors to an
interrupt handling function called timerinterruptHandler(). When the interrupt handler
completes servicing the interrupt it normally returns to the hardware, which restores the
state and continues the thread of execution of the current process. In order to implement
some operations in response to interrupts (for example atime out), interrupt handlers may
have to change the return address of the process that it interrupts so that JARTOS can

take the processor away from that process.
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As this type of operation is potentially dangerous and can cause failure to meet deadlines,
the only time an interrupt handler is alowed to return to a different address is in a time
out. When a time out occurs, the interrupt returns to the exit address of the interrupted
process so that it returnsto the scheduler in the normal way. These low-level functionsin
the timerinterruptHandler() method cannot be written in Java. TINI provides TNI (TINI
Native Interface) for programmers to call native code in Java code. Therefore, we

implement low-level functions in assembly language supported in TNI.

In TINI Native API, there is afunction named System SaveJavarl hreadState used to save
the Java state for the current thread. We have a native method called Native SaveState()
to cal this function. When an interrupt occurs, the Native SaveState() method will be

called by the timerInterruptHandler() method to save the state of current running process.

There is a function named System_RestoreJavarl hreadState used to restore the Java state
for the current thread. We have a native method called Native RestoreState() to call this
function. When the interrupt handler completes servicing the interrupt, the
Native RestoreState() method will be called by the timerinterruptHandler() method to

restore the state and continue the thread of execution of the current process.

We are till looking for the way to connect the timer interrupt handler to the hardware
interrupt and change the return address to the exit address of the timed out process. We
may write them in assembly language and save them as native methods called by the

timerInterruptHandler() method.

Note:

During the period of time when the thesis was being examined, we designed ways to
solve each of the low-level issues with Java language features. Specially, we found
solutions to the timer interrupt handler and to the problem of cleanly killing a process in

response to atimeout.
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The timer interrupt is programmed as a single background thread by using the
javautil.Timer and java.util. TimerTask classes. The timer interrupt is scheduled as a
TimerTask object for repeated execution at regular intervals by a Timer.

It is possible for one method to stop/kill the execution of another in Java when that
method is packaged in a Thread. So, our implementation would involve three threads:
Main thread, the Timer interrupt thread and the Process thread. The design of each of
these threads follows.

Timer Interrupt Thread (as designed, now running as athread)

- handle timer interrupt
- |IF timeout THEN set flags, etc., stop Process thread

Process Thread

- the process method becomes the run method of a thread

- as now it terminates, so when the method terminates the thread dies

- another thread can kill it by calling the interrupt method

Main Thread (i.e. current main)
- initialise as now
- Scheduler loop
- timing measurement etc. as now
- instead of call to process method, start Process Thread to call process’s run method
- join Process Thread (Main thread waits until Process Thread completes)
- Main thread resumes after Process thread dies
- rest of main as now — i.e. back around scheduler loop

5.5 Design of Testing
5.5.1 Test Harness

Each class of JARTOS OS has a test harness. A test harness is a program for a class

that calls every function with test inputs, and then compares the outputs of the function
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to those expected for the given test inputs. Test harnesses overcome a common problem.
Often, the programmer thoroughly tests the code when it is written. But when it is
modified, the programmer often does not run the same tests, so the quality of the code is
reduced every time it is updated because the programmer does not run al the tests
previously run. A test harness guarantees that al tests are run every time the code is
updated. While test harnesses take time to write, they are easy to maintain and extend.
These test harnesses are kept up to date and documented so that they can be run every

time achange is made to a class, then we can say that the class passes a given set of tests.

5.5.2 Test Application
The JARTOS system has a set of the test applications (Appendix C) that are documented,
extended and run every time any part of the OS is changed. These test gpplications carry
out the following tests.
1. Test that the OS runs, tests the scheduler, and runs a single application process that
prints out the contents of all OS tables.
2. Test each OS process (timer, etc) that they give expected results
3. Test timeout (We cannot test timeout now, since we have not worked out the
timeout function.)
4. Test performance probes
5. Test multiple processes, including process to print out tables

6. Test Performance Analysis process

5.5.3 Assertions

The system has a set of assertions for checking conformance to design set out in the
earlier phase of the development [Bartezko, 2001]. The purpose of assertions is to catch
incorrect usage of functions, not to debug code. It is very helpful to program with
assertions, as they are self documenting. We write assertions in any method with the IF-
EL SE statement, the SWITCH statement and the FOR statement. Figure 5.5 shows the
code of the Timer process. The Timer process is to operate for each process in the

Scheduler table. The maximum process number is 32 (this value can be changed by
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changing a content in the Process table) in the Scheduler table (Table 4.11). We place an

assertion at line 3380 to check the value of “i”(assert 1<33), which is the process number.

3364
3365
3366
3367
3368
3369
3370
337
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3300
3301
3302

3393

closs Timer extends Process{
publlic Timer({String procMome, int synWaitTime, int syrWoitPhose,

int timeout, int eventl, int eventz, int messagel,

int mezsoge?, long processExitAddress)y

super (procMome, synWaitTime, synWoitPhose, timeout, eventl, eventz,
messagel, messoge?, processExitAddress);

public woid processMethod( )

AAIF current time-previous time - 1 tick THEM log error END
if {{getCurrentTime J-getPreviousT ime{ ) /201 =17

System.out .println{"error occured:current time-previous time1");
1

AfPrevious time = current tine
refTolS.setPreviousTime(ref TolS.getCurrentTine () //Previous Lime=current time
AAfor each process in scheduler table
for{int i=1ji-=refToScheduler .getProcessiumber InSchedu lexTable (s ive
azsert i<33;//03zert the process number iz less than 33
int tickCount=refToScheduler.getTickCount{i’;
dfDecrement. tick count
refToScheduler .setTickCount (i ,-—tickCounty;
AIF tick count == B THEN
if {refToScheduler .getTickCounti h==B8xef ToSchedu ler .getProcessNunber (1 )1=87
/75et execute flag in scheduler table
refToScheduler .setExecuteF lagl i, true;
dfrezet tick count to wait time
refToScheduler .setTickCount( i ,ref ToSchedu ler .getWaitTime i),

Figure 5.5 Example code with assertion
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Chapter 6

Code Implementation

In this chapter, we describe how to write OS tables and processes in Java. We introduce
how to avoid repetitive object creation in code implementation. Also, we discuss how to

write atest harness for each classin JARTOS.

6.1 Classes

All classes in JARTOS are declared with the public modifier, so that we can pass objects
by its reference. All the fields are declared with the private modifier, making each field
accessible only within its own class. We have set and get methods with the public
modifier to write and read the fields. Supervisor calls and system methods are stored in

relevant classes. Detailed descriptions of each class and methods are listed in Appendix A.

6.1.1 OS Tables
All the attributes of the OS tables are stored in arrays, so we can call any value of tables
directly within the OS. Figure 6.1 shows the declaration code for the Process table.

c18 int size=32;

519 int[] PROCESI_MUMBER=new int[size];

520 String[] PROCESS_HAME=new String[zize];

521 boolean[] WATTING_ON_EVENT=new boolean[size];
522 int[] EVEMT_NUMBER=rew int[zize]:

523 boolean[] EVENT_OCCURRED=new boolean[size];

524 boolean[] WATTING_ON_MESSAGE=new boolean[size];
525 int[] MESSAGE_MUMBER=new int[size];

526 boolean[] MESSAGE_ARRIMED=new boolean[size]:
527 boolean[] WAITING_ON_TIME=new boolean[size];
528 boolean[] TIME_IS_UP=new booleon[size];

520 String[] REFERENCE_TO_PROCESS_METHOD=new String[size];

Figure 6.1 The declaration code of Processtable
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6.1.2 Processes

The Main method is responsible for enabling the Start Application process to be run by

the scheduler (Figure 6.2) to enable the user application processes to be run as required.

175

77
179
180

182
183
184
185
186
188
189

268
269
270
271
272
273

274

276
277
278
279
280

closs Startapplication extends Process{
public Startapplication{String procHams, int syrWaitTime, int synWoitPhase,
int timeout, int eventl, int ewent2, int messagel, int messogeZ, long processExitAddress)f
super {procMame, synWaitTime, svrWaitPhase, timeout, eventl, eventz,
messagel, messageZ, processExitAddress);

public woid processMethod
Applicationl Appl = new Applicationdl{"4pplicationt”,1,1,2,8,8,8,8,8%;
ref Tol3.pazsRef (Appd ;
passRef {appd ) ;
ref ToProcessTable. loadProcess (Appl s
ref ToSchedu ler .enableProcess (Appd b ;
ref ToSchedu ler .runProcess{Appl ) ;

Figure 6.2 Code of Start Application process

closs Applicotionl extends Process{
public Applicationl{String procMame, int synWaitTime, int syrWoitPhose,
int timeout, int eventl, int ewent2, int messagel, int messageZ, long processExitiddress )y
superiproclane, syriaitTime, syrWoitPhose, timeout, eventl, eventZ,
messagel, message?, processExitAddress);

public woid processMethod
refTolS .setEnab leT imeoutsF log{true’; Jlenables timeouts for duration of process
Adinsert wour code here

refTolS.setEnab leTimsoutsF lag{falsel; Afdizables timsouts

Figure 6.3 Code of sample Application process

There are 2 steps to write and run an application process:

1.

2.

As shown in Figure 6.3, the code of an application process is written in the
processMethod() of the application process class which inherits from Process
class. The processMethod() method of the application process class overrides the
processM ethod() method of the Process class with the specific code.

We congtruct an instance of the application class in the processMethod() of the
StartApplication class (Figure 6.2), then we call loadProcess(), enableProcess()
and runProcess to set the application process to run.
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6.2 Passing Object by Reference
We pass the objects of public classes by reference in order to avoid repetitive object
creation. If we congtruct an instance of a class every time we need to call its methods, the

runtime datawill be | ost.

When we call the methods of an object, we should pass the object reference to this object.
There are three steps:
1. We declare a reference to an object and define a method to pass the object
reference;
2. After constructing the object, we cal the reference passing method;
3. Wecall the method by the object reference.

For example, we need to call getClock() and setEnablePerformProbes() of OS classin the
processM ethod() of the PerformanceAnalysis class. Firstly, we declare a reference named
refToOS to OS object and define a method called passRef() to pass the object reference
(Figure 6.4).

10 03 refTal5;

1 public void possRef (05 my054
12 ref TolS=my05;

13 .

Figure 6.4 Example code of passing object by reference (1)

Secondly, we construct an instance of OS class, and then we call the reference passing
method (Figure 6.5).

3602 05 my03=nzw 05 );
3603 03 . pazzRef (w03 ;

Figure 6.5 Example code of passing object by reference (2)

Thirdly, we cal the methods, getClock() and setEnablePerformProbes(), by the object
reference (Figure 6.6).



3449 if (refTo0S.getl lock ( 82A==A "
3450 refTolS.setEnablePerformProbes{false);

3451 T
Figure 6.6 Example code of passing object by reference (3)

6.3 Scheduling Processes

The scheduler is supposed to cal processes using Java reflection. When we wrote the
code for the scheduler, we found that Java reflection is not supported in the runtime
environment of TINI. So, we had to find another way for the scheduler to call processes.
The scheduler calls the processMethod() of each process, based on the process number,
using the switch statement. There are some limitations for the scheduler to call processes.
Every time we change the number of application processes we have to change the code in
the switch statement. Also, it costs the performance of JARTOS. Figure 6.7 shows part of
the scheduler code. We expect that Java reflection is supported in the future version of

TINI runtime environment. Then we can use the Java reflection instead of the switch

statement.
2332 switch (i) {41 iz process number
2333 cose 1 refToTimer.processMethod () break;
2334 cose 2: refToEventMonitor.processMethod(); break;
2335 cose 31 refToStartdpplication.processMethod(); break;
2336 cose 41 refTodpplicotionl.processMethod(); break;
2337 aaaaas
2338 T

Figure 6.7 Part of the switch code in the scheduler

6.4 Low-level Issues

Due to the time and documentation limitation, we have not solved the low-level issues of
JARTOS (Section 5.4). The timer interrupt is simulated in the Idle process, updating the
clock vaue every tick. The timeout function has not been implemented. We will try to

solve them in future work.
6.5 Test Harnesses

All the test harnesses are written in the OS class as public methods with no return type,

and are called in the Main method of the OS class. We wrote a test harness as a method
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named testClassName() for each class of our system. In each test harness (Algorithm 6.1),
we call each method of a certain class with test inputs. If the output is equa to the
expected output, it will display the correct information. Otherwise, it will display the

error information.

Algorithm 6.1 Test harness
IF Output=Expected Output THEN

Correct
ELSE
Error
END
3246 publlic woid testCommonDotal )]
3247 ref ToCommonbata .setupConmonbataldd, "test" (8,8 ,87;
3248 Aftest setupCommonbatal )
3240 if {ref ToCommonDota .getia lue )==A8ref ToCommonData .getType | =="test"
3250 Eref ToCommonData .getT ine{ ==AEraf ToCommonlata .getProcessNumbet | =<
3251 Eref ToCommonbata .getAdditiona L ==A"{
3252 System.out.print Ind"setupCommonbatoia lue] icorrect ! " )
3253 1
3254 elae]
3255 System.out . print Ind " writeCommonbatota lueerror ")
3256 1
3257
3258 ref ToCommonlata W iteCommonDatata lue (1, "test" ,2,30;
3259 Aftest writeCommonDatal )
3260 if {ref ToCommonDota . readConnonatata lue ==13{
3261 System.out.print In{"writeCommonbatolalue icorrect ")
1262 1
3263 elzef
3264 System.out.print Ind " writeCommonbatota lue error ! )
3265 1
1266 1

Figure 6.8 A test harness for the CommonData class

Figure 6.8 shows a section of code from the test harness for the CommonData class. It
shows tests for the setupCommonData() and writeCommonData() methods. The testsin
the IF-EL SE statements encode the correct values to compare the results of the methods
to.
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Chapter 7

Performance Measurement

RTOSes have to guarantee that real-time processes execute within specified deadlines.
Loss of synchronization and disruptions in control can occur when deadlines are not met.
Timing problems are often very difficult to find. In JARTOS the decision to use polling
and an event monitor rather than interrupts, and cooperative multiprocessing rather than
preemptive multiprocessing ensures that an application does not loose control of process
execution but it may introduce timing problems. In this chapter, we introduce a set of
performance measurements to investigate the timing problems. These performance
measurements are carefully designed to provide the right information at minimal cost in

performance. Performance of TINI and JART OS are measured and discussed.

7.1 Performance Measurement of Java Instructions Running on
TINI

Before measuring the performance of JARTOS, we wrote three TINI applications to
measure the performance of Java instructions running on TINI, since JARTOS runs on
top of the VM of TINI.

1. The getHundredth() method (Section 5.1), which is a method provided in TINI
library, is used to access the rea-time clock of TINI. We wrote a TINI application
to measure the performance of getHundredth() reading the clock.

2. We need to obtain the execution time of a WHILE loop and a fundamental
instruction unit, which can give us an idea of the performance that we can expect.
So we wrote a TINI application with aWHILE loop to measure them.

3. The most common method of debugging is to add System.out.println(message)
call to output a debugging message on the console. However, the time consumed
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can seriously impact the performance of the RTOS. So we conducted tests to

measure the time of this function call.

7.1.1 Testing the getHundredth()
We wrote alinear program (Figure 7.1) that calls getHundredth() 100 times and stores the
valuesin an array. Then the TINI application prints the array out.

import. com.dalsemi.svsten.*;
public closz newProj {
public stotic woid main (3tring args[]) {
com.dalseni .system.Clock c=new com.dalseni.system.Clock);
int[] hundredth=new int [18867;
C.getRTC] )
hundredth [A]=c.getHundredth )

C.getRTC )

hundredth [299]=c .getHundredth )

for{int 1=8;1<1088; {4+ )]
Swstem.out .print Infhundredth[1]0;

L = e I = s I I

1
1
1

B on B b R

Figure 7.1 A TINI application testing getHundredth()

The following data sequence is part of the raw test data that we collected:
...51,52,53,54,54,55,56,57,58,59,60,60. ..

The vaues are in hundredths of milliseconds, so we calculated the average over the 100

readings to get atime for the 2 function calls (c.getRTC() and c.getHundredth()). From

the above data, we calculated that it takes 8 milliseconds to read the clock. Thistimeis

much longer than we expected, which aerted us to the fact that the performance of the

TINI is poor. So in the next section we set out to obtain the execution time of a

fundamental instruction unit, to give us an idea of the performance that we can expect.

7.1.2 Testing the WHILE loop

As shown in Figure 7.2, we wrote a TINI application (Algorithm 7.1) that reads the clock
before and after aWHILE loop. There is only one instruction “i=i+1” in the WHILE loop,
which makes the WHILE loop run. The application was tested with different WHILE
loop execution counts (100 times, 1000 times and 10000 times respectively).
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Algorithm 7.1 Testing WHILE loop on TINI
Reads clock
WHILE i<100 (1000} (10,000)
i=i+l
ENDWHILE
Reads clock

import. com.dalsemi.svstem.*;
2l public clazs newProj {

3 public stotic woid main {String args[]) {

4 com.dolzemi systen.Clock c=new com.dalsemt .system. Clock s

g int i=@;

6 C.getRTCO);

7 int startTime={{c.getHour 366600+ c .getMinute () 6008+ (c . getSecond () WiAf+c .getHundredth( ) ;
8 whi Lefi<lAE )y

9 i=i+l;:

10 T

11 C.getRTCO);

12 int finishTime={{c.getHour () 366000+ c .getMinute ] y*E08A+(c . getSecond () 1AB+c .getHundredth ) 3 ;
13 int executionTime={finishTime-startTime};

14 Systen.out.println"execution time:"+executionTime’;

15 T

6| 1

Figure 7.2 A TINI application testing aWHILE loop
The raw test data we collected is listed in Table 7.1. As shown in Figure 7.3, the
measurements do not match the line that we would expect based on the measurement of

100 loops.

Table 7.1 Result of testing WHILE loop on TINI without correction

Loops Actual Time/msec
100 20

1000 140

10000 1360
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Figure 7.3 Result of testing WHILE loop without correction

We found that the instructions calculating the start time (code line 7 in Figure 7.2) costs
the extra time. In order to get more accurate test data, we write a linear program (Figure
7.4) to calculate the time it takes, which is 7 msec (time=(s10-s1)/10~7msec).

import com.dalsemi.svstem.®;

2 public clossz newProj {

3 public static void main (String args[]) {

B com.dalzeni .systen.Clock c=new com.dolseni.system.Clock;

5 c.getRTC;

] int s1={{c.getHour {3 *368800+(c .gettinute () %5080+ (o . getSecond ) % 188+c . getHundredth ) ;

7 c.getRTC);

] int s2={{c.getHour { ) *368808+(c .gettinute ) %5080+ (o . get Second ) % 188+c . getHundredth ) ;

] c.getRTC);

10 int =3={{c.getHour { ) *368808+(c .gettinute ) %5080+ (o . get Second ) % 188+c . getHundredth ) ;
c.getRTC);

2 int =4={{c.getHour { ) *368800+(c .gettinute ) %5080+ (o . get Second ) *188+c . getHundredth ) ;

3 c.getRTC);

14 int =5={{c.getHour { ) *366800+(c .gettinute ) %5080+ (. get Second ) % 188+c . getHundredth ) ;

15 c.getRTC);

] int s6={{c.getHour { ) *368800+(c .gettinute ) %5080+ (o . get Second ) % 188+c . getHundredth ) ;

7 c.getRTC);

18 int s7={{c.getHour { ) *368800+(c .gettinute ) %5080+ (o . get Second ) % 188+c . getHundredth ) ;

19 C.getRTC( )

20 int s8={{c.getHour ) *30EE00+(c.getMinute () 1*EAAA+ (. getSecond ) W LAB+C . getHundredth ) ) 5

21 C.getRTC( )

22 int 3%=({c.getHour ) *36EE00+(c .getMinute () 1*EAAA+ (. getSecond ) W LAB+C  getHundredth ) ) 5

23 C.getRTC( )

24 int 518={{c.getHour ) W36E000+ (¢ getM inute () EAEE+(c . getSecond ) *188+c . getHundredth ) ;

25 System.out.print ln{sl);

26 System.out.print In{s18);

2}

| )

Figure 7.4 A TINI application testing the calculation time
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Table 7.2 lists the new test data after considering the execution time of the time to
calculate the time. As shown in Figure 7.5, the data is fairly close to the data line we
expected. From the data in Table 7.2, we calculated that it takes 0.13 msec to execute a
WHILE loop on TINI.

Table 7.2 Result of testing WHILE loop on TINI with correction
Loops | Actual time/msec | Expected time/msec

100 20-7=13
1000 140-7=133 130
10,000 | 1360-7=1353 1300
f actual result .
1300
e 1
-{.E'h 1
E I 1
E 130 expected result #, :
-— 1 1
5 13 .
= !, | 1 i
g r : 1 1
= 1.3 I | i
O : | .
1
! ] :

0 10 100 1000 10000
lcops

Figure 7.5 Result of testing WHILE loop on TINI with correction

We have defined “j=j+1” as a fundamenta instruction unit in Java. The performance of a
CPU is often defined as the execution time of a register to register add. We consider
adding 1 to a variable to be a similar measure for Java. This measurement will provide a
simple comparison when porting JARTOS to another embedded system (such as the Sun
SPOT when they are available for purchase). Then, we can use it to scale al the other
performance measurements reported here to predict the performance of JARTOS on the
new hardware.

As shown in Figure 7.6, we added the instruction “j=j+1” into the WHILE loop

(Algorithm 7.2). We set the loop execution counts to 10000 times, since the execution
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time is much less than one hundredth of a second. We measured an execution time of

1990msec. Then we calculated the execution time of “j=j+1”. It takes 0.063msec (time =
(1990-1360)/10000 = 0.063mseC).

Algorithm 7.2 Testing the fundamental instruction unit on TINI

Read clock
WHILE i<10000

i=i+1

=i+l

ENDWHILE
Read clock

import com.dolsemi.syvstem.;
public class newProj |
public stotic woid main (String orgs[]) {

com.dalseni.system.Clock c=new com.dalzemi.system.Clock();
int i=@;
int j=@;
C.QetRTC);
int startTimes={{c.getHour 360080+ {C, geth inute ] ) WEAaE+ (et Second O el BA+c . getHundredth ()
whi le i<108)]
i=i+1;
J=3+1;
I
C.getRTC(Y;
int finishTime={{c.getHour () #360000+{c . getMinute ) #6600+ c . get Secondy ) 1A8+c .getHundredth () );

int executionTime={finizhTine-startTime);
System.out .println{"execution time:"+executionTime);

Figure 7.6 Testing the fundamental instruction unit on TINI

7.1.3 Testing the System.out.printin()

In performance testing, we often use the function “System.out.printin()” to display test

information. Its execution affects the accuracy of the testing result, since it costs time. So

we wrote a linear program (Figure 7.7) to test the execution time of
“System.out.printin()”.
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import com.dalzemi.system.*;
public class newProj {
public stotic woid main {String args[])
com.dalsemi .system.Clock c=new com.dalsemi.system.Clock( );
int i=6;
int j=A3
c.getRTC);
int startTime={{c.getHour O RSEAEEAL (G geth inute ) EaEE+(c . getSecond ) *1AAC .getHundredth ()
System.out .printLn s
System.out .printlng);
Systen.out.printLnd g
System.out .printLng ;
System.out .printlng );
Systen.out.printLnd g
System.out .printLng y;
System.out .printlng );
Systen.out.printLnd g
System.out .printLng y;
C.getRTCO);
int finishTime={{c.getHour () 366000+ c .getMinute ] y*E08A+(c . getSecond () 1AB+c .getHundredth ) 3 ;
21 int executionTime={finishTime-startTime);
22 System.out.println"time, execution time:"+executionTime);

[

== - L )

== L

5]

Figure 7.7 Testing System.out.printin()

The result of the above program is 50msec. It takes 7msec to read the clock (Section
7.1.2). So, it actually takes 43msec to execute 10 instructions of “System.out.printin()”.
That is 4.3msec to execute a “System.out.printin()” instruction. We also tested the
instruction  “System.out.printin()”  printing out 20 characters, which s
“System.out.printin(“we are testing print”)”. It takes 5.3msec to execute
“System.out.printin()” printing out 20 characters, i.e. an additiona 0.05msec per
character.

Table 7.3 Testing result of running Javainstructionson TINI

Test Name Test Instruction Test Result

TINI method 1 | getHundredth() Takes 8msec to read the clock

TINI method 2 | Gettime Takes 7msec to get the current time

WHILE loop while Takes 0.13msec to run a WHILE
loop

Fundamental j=j+1 Takes 0.063msec to execute

ingtruction unit

Print System.out.printin() Takes 4.3msec to execute

Print System.out.printin(within 20 characters) | Takes5.3msec to execute
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Table 7.3 lists the test result of running Java instructions on TINI. The developers of
TINI claims that each thread is assigned an 8 msec time slice on TINI [TINI, 2007]. The
instruction “j=j+1” takes 0.063 msec on TINI. That is 126 fundamenta instructions per
dlice, which means it will not do much in any slice. So we think the time dlice used in
TINI OS should be longer.

7.2 Impact of JARTOS on Performance of Java instructions

After measuring the performance of Java instructions running on TINI, we measured the
performance of Java instructions running on JARTOS, since we wanted to check whether

JARTOS has any impact on the performance of Javainstructions.

7.2.1 Testing the WHILE loop

309 clozs Applicationd extends Process]

310 public Application3(String procHame, int syrWaitTime, int synWaitPhose,
311 int timeout, int ewventl, int ewvent2, int messagel, int messogeZ, long processExitaddress)f
31z super{prochane, synWaitTime, syrWaitPhase, timeout, eventl, eventz,
313 messagel, message?, processExitAddress);

314

315 BitPort bp = new BitPorti{BitPort.Port3BitE);

316 public void processMethod{

317 System.out .print ln{"test process is running!®);

318 refTodS.setEnab leTimeoutsF lag{true); Afenables timsouts for duration of process
319 int i=A;

320 int startTime=refTolS.getlurrentTime();

321 whiled <1884

322 i=i+1;

323

324 int finishTime=refTo0S.getlurrentTime{;

325 int executionTime={finishTime-startTime);

326 System.out.print ln{"execution time:"+executionTime’;

327 refTolS.setEnab leTimeoutsF lag{false); A/dizables timeouts

128 1

120 T

Figure 7.8 A Test process testing the WHILE loop on JARTOS

We wrote a Test process (Figure 7.8) running a WHILE loop (Algorithm 7.1). The
WHILE loop aso runs 100 times, 1000 times and 10000 times respectively. As shown in
Table 7.4, the test results are the same as the test result in Table 7.1.



Table 7.4 Results of testing the WHIL E loop on JARTOS without correction
Loops | Actual Time/msec

100 20
1000 140
10000 1360

Then we tested the execution time of calling getCurrentTime() on JARTOS, which is a
method getting the current time. We wrote a linear program in the Test process, which
calls getCurrentTime() 10 times (Figure 7.9). Then we calculated the time from the test
datathat we collected. It takes 7msec (time = (s10-s1)/10 = 7msec). Again, there has been

no change.

L
=2
=]

closs Application3 extends Process]
public Application3{String prochome, int synWaitTime, int synWaitPhaose,
int timeout, int eventl, int ewentZ, int messagel, int messogeZ, long processExitaddress)f

L
=]

=il

312 super{procame , syrWoitTine, synWaitPhose, timeout, eventl, eventZz,
313 messagel, messogez, processExitaddress’;

314 3

315 BitPort bp = new BitPort{BitPort.Port3Bits);

316 public void processMethodi

317 System.out.println{"test process is running!");

318 refTodS.setEnab leTimeoutsF lagtrue); /s/enobles timeouts for duration of process|
310 int sil=refTo0S.getCurrentTime();

320 int sZ=refTol0S.getCurrentTime();

321 int s3=refTolS.getCurrentTime();

322 int z4=refTol5.getCurrentTime();

223 int sB=refTol3.getCurrentTime();

324 int sé=refTol05.getCurrentTime();

325 int g7=refTo0S.getCurrentTime();

226 int z8=refTol5.getCurrentTime();

327 int z9=refTol5.getlurrentTime();

28 int siB=ref To05.getCurrentTime(;

320 System.out .printlhsl);

330 System.out .print Lh{s187;

331 refTolS.setEnab leTimeoutsF log{false); Afdizables timeouts
332 1

333 1

Figure 7.9 Testing the execution time of calling getCurrentTime() on JARTOS

Table 7.5 shows the corrected test result of running WHILE loops on JARTOS. As
shown in Figure 7.10, the datais fairly close to what we expected. From the test data of
Table 7.5, we calculated the execution time of running a WHILE loop on JARTOS. It
takes 0.13msec, which isthe same asthat in Table 7.2.
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Table 7.5 Result of testing WHILE loop on JARTOS with correction
Loops | Actual time/msec | Expected time/msec
100 20-7=13
1000 140-7=133 130
10,000 | 1350-7=1343 1300

J actual result .
U130ﬂ-
O 1
-{.E':: 1
E I I
E 130 expected result #, :
-— 1 1
5 .
= | | :
E J! : 1 1
= 1.3k I 1 .
Lk} 1 . .
|
I

0 10 100 1000 10000
lcops

Figure 7.10 Result of testing WHILE loop on JARTOS

Then we aso wrote the instruction “j=j+1” in the WHILE loop (Figure 7.11) to obtain the
execution time of a fundamental instruction unit on JARTOS. It takes 0.063msec, which

IS the same as we measured previoudly (Section 7.1.2).

300 claoss applicationd extends Process{

310 public Applicotion3{String procMome, int synWoitTime, int synWaitPhose,
311 int timeout, int eventl, int eventZ, int messagel, int messageZ, long processExitaddress)f
312 super (prochamne, synWaitTime, syrWaitPhose, timeout, eventl, eventz,
313 messagel, messogeZ, processExitaddress);

314 1

315 BitPort bp = new BitPort{BitPort.Port36its);

316 public woid processMethody 3

317 System.out.println{"test process iz running!");

318 refTolS.setEnab leTimeoutsF laogltrue); Afenobles timeouts for duration of process
319 int i=8;

320 int j=H;

321 int startTime=refTo0S.getCurrentTime);

322 while{i<lBai{

323 i=i+1;

324 j=j+l3

325

326 int finishTime=refTol3.getCurrentTime);

327 int executionTime={finizhTime-stortTime);

328 System.out.print ln{"execution time:"+executionTime);

329 refTolS.setEnaob leTineoutsFlog(false); A/disobles timsouts

330 T

334 }

Figure 7.11 Testing the fundamental instruction unit on JARTOS
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7.2.3 Testing the System.out.printin()

We wrote a Test process (Figure 7.12) that execute “System.out.printin()” 10 times,
which takes 50msec. The execution time of calling getCurrentTime() is 7msec. So it
takes 43msec to execute 10 instructions of “System.out.printin()”. That is 4.3msec to

execute a “System.out.printin()” instruction, which is same as running on TINI.

272 clazs Application3 extends Process{

273 public Application3{String procMame, int sviWaitTime, int syrWaitPhaose,
274 int timeout, int eventl, int eventZ, int messogel, int messageZ, long processExitaddress)y
275 super{prociome, syriaitTime, synWaitPhose, timeout, ewentil, eventZ,
276 messagel, message?, processExitiddress);

377

278 publlic void processMethod( )y

279 refTo0S.setEnableTineoutsF log(true); Afencbles timeouts for duration of process
280 int sl=refTol5.getCurrentTime);

281 System.out.printing’;

282 Swstem.out.printinl;

283 Swstem.out.printing’;

284 System.out.printind;

285 Swstem.out.printind’;

286 System.out.printing’;

287 System.out.printinl;

288 Swstem.out.printind’;

289 System.out.printing’;

200 Swstem.out.printinl;

291 int s2=refTol0S.getCurrentTime);

20z System.out.println{s2-s1);

203 refTolS.setEnab leTineoutsF lag{false); /Adizables timeouts

204 T

295 *

Figure 7.12 Testing System.out.printin() on JARTOS

From the above tests, we claim that there is no impact of JARTOS on the performance of

Javainstructions.

Note:

During the process of thesis examination, we moved all the work to SunSPOT. The
performance of SunSPOT is much better than TINI. The performance data of SunSPOT
islisted in Table 7.5-1.

Table 7.5-1 Updated performance data.

Instruction TINI SunSPOT JARTOS on SunSPOT

=+l 63microsec 0.47microsec 0.44microsec
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while 130microsec 1.01microsec 1.02microsec

get time 7millisec 5.80microsec 6.4microsecond

7.3 Performance Measurement of JARTOS

In this section, the performance of JARTOS is measured and discussed. We measure the
execution time of clock simulation in the Idle process and of the timer interrupt handler,
since we want to completely characterize the timing performance of JARTOS and
evaluate what duration between clock ticks is appropriated on TINI. This duration sets
the base for the performance of JARTOS, as it specifies the maximum frequency of any

process.

Then we test the flow of control of JARTOS. A test template is developed for the testing
of flow of control. The test data produced by the test template application can be used to

validate that the code achieves our system design.

Finaly, we developed a reliability test template to evaluate the reliability of JARTOS.
We want to measure the ability of JARTOS working for a long time. The test template

application runs 24 hours and produces a performance record.

7.3.1 Testing Clock Simulation

We wrote a test program (Figure 7.13) to calculate the time that clock simulation takes.
Clock tick ssmulation code is in the Idle process (line 3581,3582 in Figure 7.13). We
measured 30msec. It takes 7msec to get the current time (Section 7.2.1). So it takes
23msec to simulate a clock tick.
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3568 clozz Idle extends Process{

3569 public Idle{String prochome, int synWaitTime,

3570 int synWaitPhase, int timeout, int eventl,
3571 int eventz, int messagel, int messageZ,
3572 long processExitAddress)y

3573 super{prociane, synWaitTime, synWaitPhase,
3574 timeout, eventl, event?, messagel,
3575 message?, processExitAddress);

3578 1

3577

3578 public woid processMethod( )]

3579 int stort=refTo0S.getCurrentTime( );

3580 Adsav 1 tick = ZBhundredthzec

3581 if {refTodS..getlurrentTine d-ref To0S .getPreviousT ime =280
3582 timerInterruptHand ler{;

3583

3584 int finizh=refTolS.getCurrentTime ;

3585 int time=finish-start;

3586 System.out.printlnd"clock sinulotion tokes "+timel;
3587 refToSchedu ey .runProcess(refToldle);

3588 1

2580 1

Figure 7.13 Testing the clock simulation

7.3.2 Testing the Timer Interrupt Handler

We wrote atest program (Figure 7.14) in the Idle process to test the execution time of the
timer interrupt handler. It takes 20msec. After subtracting the execution time of reading
the clock (7msec), we calculated that it takes 13msec to execute the timer interrupt

handler.

3567 clozs Idle extends Process{

3568 public IdlefString procMome, int syrWaitTime,

3560 int synWaitPhase, int timeout, int eventl,
3570 int event2, int mezsagel, int meszagez,
3571 long processExitAddress )y

3572 super(prochone, synWaitTime, synWaitPhose,
3573 timeout, eventl, eventz, meszsagel,
messoge?, processExitAddress);

3576 public void processMethod( )
3577 désay 1 tick = ZBhundredthsec
3578 if {refTodS.getCurrentTime()-ref To03 .getPreviousT ime =26 34
int start=refTod3.getCurrentTime] );
timer InterruptHandler (;
int finish=refTo05.getCurrentTime! );
int time=finish-start;
System.out.printlnd"timer interrupt handler takes "+ time);

3585 refToScheduler .runProcess(refToldle);//sets Idle process to run

Figure 7.14 Testing timer interrupt handler
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7.3.3 Testing the Process Overhead Time

[ Head Clock

Call Process
Process Time = Code Time

Fxit Frocess

— Fead Clock

Figure 7.15 Process time

As shown in Figure 7.15, Process time consists of reading the clock time, code execution
time and process overhead time. The read clock calls are to obtain the time data to
measure the performance, so they represent the time overhead of performance probes. To
measure the overhead time of caling a process, we wrote a Test process (Figure 7.16)
without any code in the processMethod(). We measured that it takes 10msec to execute
the Test process. After subtracting the execution time of reading clock (7msec), we

worked out that the process overhead time is 3msec (10-7=3msec).

272 closs Applicaotiond extends Process{

273 public Applicotion3{String prochome, int synWoitTime, int synWaitPhose,

274 int timeout, int eventl, int eventZ, int messogel, int messoge2, long processExitaAddress){
275 super{prochame, synWaitTime, syrWoitPhoze, timeout, eventl, eventZ,

276 messagel, message?, processExitAddress);

277

278 public void processMethod

279 AArun nothing

280 T

281 }

Figure 7.16 Testing process time

7.3.4 Testing the Flow of Control of JARTOS

In this section we discuss the test of the flow of control in JARTOS. We can use the
performance data to validate that the code achieves our system design. Three
synchronous processes are required to run to maintain the JARTOS running. These are
Timer process, Idle process and Test process. Test process is an application process on

JARTOS, which we wrote for performance measurement. After running test process a
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certain number of times, the scheduler runs the Performance Analysis process, which
prints out the measured data.

| Start Application process

Tirmer Interrupt ]
Handlar Timer process

| 1

Test process

runs

Test process

100 times
Idle process

(clack simulation)

After 100 times
Stop Application process
Perarmance Anzalysis process

Terminate process

Figure 7.17 Performance evaluation template

Figure 7.17 shows a template of the test system. This test template can be used to
measure the performance of any application simply by running the application processes
as the Test process. The Test process (Figure 7.18), which is set to run by Start
Application process, runs every 2 clock ticks. We wrote many different test processes to
test the flow of control of JARTOS. One of the test processes is a process that turns on or
turns off a LED on the TINI. The clock is simulated in the Idle process, which is set to
tick every 200msec. After 100 executions of the scheduler loop, the Stop Application
process stops the Test process. In the scheduler loop, performance probes (Section 4.6.2)
are called before and after the execution of each process to collect performance data. The
performance probes put process number and current time onto a circular buffer. Then the
scheduler runs Performance Analysis process (Section 4.7.9) to produce the performance

trace, and finally the Terminate process to terminate the JARTOS system.
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309 clozz Application3 extends Process{

310 public Application3{String procMome, int syrWaitTime, int svrWoitPhose,
31 int timeout, int eventl, int eventZ, int messogel, int messageZ, long processExitAddress’y
312 super {prochome, synWaitTime, synWoitPhosze, timeout, eventl, ewentZ,
313 messagel, messogeZ, processExitAddress;

314

315 BitPort bp = new BitPort{BitPort.Port3BitE);

316 private boolean blinkyState=folze;

317 public void setStotedboolean stote)y

318 blinkyStote=stote;

319

120 public booleon getState] ]

321 return blinkyStote;

122

323 public void processMethod()q

324 System.out.printin{"test process is running!");

325 refTolS.setEnab leTineoutsF lagltruey; /fenobles timeouts for duration of process
326 if {getStote(d==falze){//if LED iz off

127 setState(true);

328 bp.clear()s//turn on LED

329 1

330 elzel/ 1T LED iz an

331 setState(falze);

332 bp.set. )5/ /turn of f LED

333

334 refTolS.setEnab leTineoutsF lagifalse); As/dizables timeouts

335 B

336 1

Figure 7.18 A Test process testing the flow of control of JARTOS

As shown in Figure 7.19, a scheduler loop consists of scheduling time and the process
time of a process. Scheduling time is the time that the scheduler takes to select which
process is to run. Process time is the execution time of a process. The execution time of
the start performance probe is included in the scheduling time, and the execution time of
the finish performance probe is included in the process time. Previously we measured the
probe time to be 7msec. In order to maintain consistency of data, we have left this
overhead in the calculations in Table 7.6 and 7.7. Table 7.6 shows part of the raw test
data that we collected. The first entry for each process is its start time, and the second
entry isits finish time.

Process time=Finish o -Start o,

Scheduletime=Start, -Finish

From the timing data (Column 3 in Table 7.5), we calcul ated the process time (Column 4)

and scheduling time of each process execution (Column 5).
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Scheduler Loop

scheduling time seIEfts process
reads  clock

4 writes to buffer >probe

execuies process

reads  clock

b writes o butfer :“)probe

process time

Figure 7.19 Scheduler loop

Table 7.6 Part of test data collected by Performance Analysis process

Processno. | Processname Time/msec Processtime/msec | Scheduling time/msec

1 gart | Timer process 5600740

1 finish | Timer process 5600860 120

6 Test process 5600880 20

6 Test process 5600900 20

31 Idle process 5600930 30

31 Idle process 5600970 40

31 Idle process 5601000 30

31 Idle process 5601040 40

1 Timer process 5601060 20

1 Timer process 5601180 120

31 Idle process 5601210 30

31 Idle process 5601250 40

31 Idle process 5601280 30

31 Idle process 5601330 50

1 Timer process 5601340 10

1 Timer process 5601460 120

6 Test process 5601480 20
Test process 5601510 30

31 Idle process 5601540 30

31 Idle process 5601570 30

31 Idle process 5601600 30

103



31 Idle process 5601650 50

Table 7.7 lists the average process time and average schedule time for each process.
These times are al constant to the precision of our time measurement. We found that a
process aways has the same scheduling time, and that the process execution time of a
processis fairly consistent. We aso note that scheduling time varies with process number,
because the scheduler iterates down the scheduler table until it finds a process to run.

Consequently, scheduling time increases with the process number.

Table 7.7 Result of testing the flow of control of JARTOS

Process no. Processname | Processtime/msec | Scheduling time/msec
(medium + max) (medium + max)

1 Timer process | 120+10 10+10

6 Test process 30+10 20+10

31 Idle process 40+20 30+10

| limer process
Timer Interrupt (120msec)
Handler 1
(12msec)  Test process

scheduling
{10...30msec)

(A0mser)
runs
ldle process Test process
o -
tclock simulationy/ 100 limes

{d0msec)
Figure 7.20 Flow of control with time on it

Figure 7.20 shows the flow of control of JARTOS with the execution time of each
process. We observe that performance data that we collected conforms to the design of
JARTOS.

From Table 7.7 we produced Figure 7.21, which shows the time relationships of the
processes running on JARTOS in the test. The Timer process (pl) runs every clock tick,

the Test process (p6) runs every 2 clock ticks, the Idle process (p31) runs the rest of time.

104



From the datain Table 7.6 we see that the Idle process runs twice every clock tick. Also,

we see that when there are no processes to run, JARTOS runs the Idle process.

pl: Time=1, Phase=1
p2: Time =2, Phase=2
idle: rest of time — OSis checking for events etc.
Time means the number of clock ticks between executions. Phase is the clock tick

relative to first.

—200msec—
0 Ly 12 3 14

X X X X ® X X X x X
P p31p3l pl pEp3ipad

Figure 7.21 Time relationships of processin the test

7.3.5 How Long should the Clock Tick be?

A significant design parameter in JARTOS is the time between clock ticks, whether the
clock is simulated or a hardware interrupt. We chose a target, based on the 20/80 rule,
that JARTOS spends 20% of time performing OS tasks including running the Timer
process, leaving 80% of time for applications (Figure 7.22).

limer interrupt simulation ™ |
Timar intarrupt handler
Performance probe (start)  —20%

Process scheduling

Timar process ] 1 clock tick
Apolication process ]
peieston b L 80%

Performance probe (finish) |

Figure 7.22 How long should the clock tick be?
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We have obtained that the timer interrupt simulation and the timer interrupt handler take
23msec, process scheduling takes 20msec, and the Timer process and one performance
probe take 120msec (Table 7.8).

OS tasks overhead = 163msec

Table 7.8 The time of performing OS tasks

OS tasks Time/msec
Timer interrupt smulation+ Timer interrupt handler | 23

Process scheduling 20

Timer process+ One performance probe 120

On these basi s, the time between clock ticks should be
Duration=overhead/20%=815msec =>800msec

leaving 637msec (Durati on-overhead=800-163=637msec) for application to run.

When using the simulated clock tick, the Idle process has to run to smulate the clock. To
get aregular tick, we should alow sufficient application time for an integral number of
ticks.

Number of ticks=gpplication time/ldle process time=637/40=16
So the duration is sufficient to allow multiple checking for clock tick even when running
anumber of processes.

7.3.6 Reliability Testing of JARTOS
Finaly, we evauate the reliability of JARTOS working for a long time. Figure 7.23
depicts atemplate for reliability testing.
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| Start Application process

Timer ]
Imerrupt Timer process

Hardler
| Test process

run urtil

Work Load process run times=tast time

ldle pracess

Stop Application process

Workload Analysis process

Terminate process

Figure 7.23 Reliability testing template

To maintain the JARTOS running, four synchronous processes are required to run, which
are Timer process, ldle process, Test process (Figure 7.18), and Workload process
(Algorithm 7.3). Test process and Workload process are set to run every 2 clock ticks. A
simple Test process is a process that turns on or turns off the LED on the TINI. The
Workload process counts the executions of itself, not them of the Test process. The Test
process simply provides a workload to exercise OS functions and is not modified. To
count the execution of the Test process it would have to be modified.

In the Workload process, counters and execution parameters of the Workload process are
maintained. These counters include the number of execution of the Workload process.
The parameters include the average, minimum and maximum times between executions
of the Test process. If JARTOS runs for the full test time, the scheduler will set the Stop
Application process, the Workload Analysis process (Algorithm 7.4) and the Terminate
process to run. The Workload Analysis process is a process that prints out the run time,

execute count and timing parameters.

Algorithm 7.3 Workload process
Execute count=Execute count+1
Average time=Run time/Execute count

IF time>Maximum time //time is the time between execution of the Test process
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M aximum time=time
ENDIF

IF time<Minimum time

Minimum time=time

ENDIF

IF Run time>Test time THEN
Set Stop Application processto run
Set Workload Analysis process to run
Set Terminate process to run

ENDIF

Algorithm 7.4 Work Analysis process
Print out the Run time
Print out the Execution count
Print out the Average time

In Section 7.3.5, we suggested that the clock tick should be 800msec. However, we ran a
test with a 200msec clock tick to learn whether the reliability test would confirm that
there is a problem. We set the Test process and Workload process to run every 2 clock

ticks or 400msec.

We set the test time to 24 hours. That is 86,400,000msec. After running 24hours, we
obtained the test result of the reliability test. The measured runtime is 86,400,070msec,
and the execution count is 157,596. The average time between executions of the
Workload process is 548msec, which is 37% longer than the expected 400msec.

Asshown in Table 7.9, the total execution time is 265msec per clock tick with a200msec
clock tick or a 32.5% time overload. Therefore, we show that the 37% longer execution
time is due to overload. If we set the clock tick to 400msec or 800msec, the total time per

clock tick isless than the clock tick time.
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Table 7.9 Analysis of the problem in the reliability testing

200msed/tick | 400msec/tick | 800msec/tick
Timer process Scheduling time 10msec 10msec 10msec
Timer process 120msec 120msec 120msec
Simulated timer Scheduling time 30msec 30msec 30msec
interrupt Idle process 40msec 40msec 40msec
Test process Scheduling time 10msec (20/2) | 20msec 40msec (20*2)
Test process 15msec (30/2) | 30msec 60msec (30*2)
Workload process Scheduling time 10msec (20/2) | 20msec 40msec (20*2)
Workload process | 30msec (60/2) | 60msec 120msec (60* 2)
Total Time 265msec 310msec 460msec
(>200msec) (<400msec) | (<<800msec)

So reliability testing showed a problem and analysis showed the cause. The good news is
that overloading JARTOS did not cause it to crash, the executive overload simply caused

itto run late, i.e. it Slowed down gracefully even though it failed to meet the deadlines.
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Chapter 8

Conclusion and Future Work

The work performed during this thesis has showed that an RTOS named JARTOS has
been developed in a safe language, Java. The thesis examined the advantages (Section
3.4.4) and associated problems (Section 3.4.4) of writing real-time operating systems
(RTOSes) in asafe language, namely Java.

The design of JARTOS is atime-sharing design switching tasks on atimer interrupt. The
scheduling of JARTOS is cooperative multiprocessing. Each application task is
decomposed into several interacting processes to run on JARTOS. As each process is
small relative to the task, the complexity of the code is reduced and its reliability is
increased. A user process executes quickly and gives up the processor. Otherwise it will
be timed out. To implement a timeout, JARTOS supports a timer interrupt handler that
regularly updates a clock and checks for timeouts. There is a small-fast event monitor
that polls I/O and sets event flags to tell the scheduler to run another process to respond
to the event. To keep the number of interrupts to a minimum, input/output is done using
polling where possible. Also, interrupt code is designed to be transparent to the processes.

An interrupt handler sets flags and values, and then returnsto the process it interrupted.

We introduced how we used Java constructs to implement the design of JARTOS. The
majority of JARTOS iswritten in Java. Java can implement al high-level functionsin the
design. However, there are some low-level operations that cannot be coded in Java. The
interrupt handler cannot be connected to hardware interrupt in Java. Also, the return

address of the timed out process cannot be changed in Java. These can only be coded in
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assembly language. We did not solve the low-level issues of JARTOS. We are still doing

research on TINI hardware and TINI Native Interface.

In JARTOS, application code is separated from the OS code, so that the programmer of
the application only has to write application code and make no changes to the OS. Thus,
they can focus on programming the real-time task because many of the low-level detals
are abstracted away by the OS. JARTOS has passed a given set of test applications,
which are documented, extended and run every time any part of the OS is changed. Test
harnesses and assertions are al so used to test JARTOS.

The finad stage of the work was the performance measurement of JARTOS. We
investigated the timing problems by a set of performance measurements. Performance on
the TINI and JARTOS are measured and discussed. We note that the performance data
we collected conforms to the design of JARTOS.

One surprise was how poor the performance of the TINI JVM is. The developers of TINI
claim that each thread is assigned an 8 msec time slice on TINI [TINI, 2007]. The test
data shows that it takes 0.063 msec to execute a fundamental instruction unit on TINI.
That is 126 fundamental instructions per slice, which means it will not do much in any
dlice. So we think the time slice used in TINI OS should be longer. Also, the performance
data of TINI shows that the speed of TINI is much slower than we expected.

As a safe language, Javais suitable for coding a safety-critical RTOS. The Java compiler
handles potentially unsafe operations rather than the programmer. Also, Java includes
run-time support to catch and handle run-time errors. However, the low-level operations
cannot be coded in Java, which is a main problem of writing an RTOS in Java. We can
only rely on the native interface provided by the VM. So, the relevant documentation
should be sufficient for the developers to study.

The documentation of TINI is poor, which is inconvenient for doing research on the TINI

board. Also, there are some omissions in the TINI API, such as reflection [TINI, 2007].
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These hampered the development of JARTOS. So, we conclude that TINI is better suited
to developing stand alone programs than to developing an RTOS.

8.1 Future Work

8.1.1 Low-level issues

During the period when the thesis was being examined, we ported JARTOS to the
SunSPOT and designed ways to solve the remaining low-level issues (Section 5.4). We
will implement our new design on the SunSPOT and finish al the performance testing of
JARTOS running on the SunSPOT in future research.

8.1.2 Network

We plan that JARTOS will run on a multiple processors connected by a network. For
example, the control of a mobile robot may be decomposed into motion control,
ultrasonic sensing, vision and task planning, each running on a separate processor. The
application design will distribute processing to multiple processes over the network, for

example on sensor networks.

8.1.3 Sun SPOT

During the process of the thesis examination, we moved JARTOS from TINI to Sun
SPOT embedded microcontrollers. As discussed in Section 7.1, the design of TINI has
some problems, for example, each process is only assigned an 8msec time dlice, which is
too short for running a process to completion. Also, TINI provides poor documentation,
which is not convenient for research. The performance data of SunSPOT is much better
than TINI (Chapter 7).

There are two questions of interest in our future research. Does the design of the Sun
SPOT enable the use of an RTOS or is it best suited to stand aone programs? What
performance can be achieved by an RTOS running on a Sun SPOT?

With the release of the Sun SPOT in April 2007, Sun [SPOT, 2007] claims to have

achieved their goa of Java being the language of choice for small rea-time computers
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embedded into sensors, robots, instruments, machines and consumer devices. A Sun
SPOT is a small Java machine with I/O that can be used stand alone or in sensor
networks. It communicates with other Sun SPOTs using |IEEE802.25.4 wireless links.
Asshown in Figure 8.1, the left part is the suite creator that runs on the host, and the right
part is the architecture of the embedded device.

Host Macintosh Sun SPOT
IDE
Application
L.classs.jar
Suite creator Interpreted WM
- Loadet
- Verifier Java libraries
- Transformer Uit
P
(optimizer) Bootloader
- Serializer
- Digital signer Mative code
Figure 8.1 Sun SPOT

Sun is tackling the issues of using Java to program embedded systems with the Squawk
virtual machine (VM) [Simon, 2006]. It isasmall JVM with a split architecture (Figure
8.1). On the host machine the Java byte code is transformed into a more compact
execution format and packaged in a suite file for downloading. The VM on the SPOT
interprets the suite file. To overcome the problem that Javais interpreted not compiled,
parts of the onboard VM and run time (e.g. the garbage collector) are translated from
Java to C and to machine code, improving performance and removing the need for just-

in-time compilation [Shaylor, et. al., 2003].

Applications are represented as objects that are instances of the Isolate class to isolate
them from one another. Sun [SPOT, 2007] claimsthat the SPOT has no operating system,
but that operating system functionality is built into Squawk. It implements green threads,
which emulate a multi-threaded environment without relying on an underlying operating
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system. Green threads implement cooperative multiprocessing. When waiting on
something athread is blocked on an event queue that is polled by the scheduler.

Interrupts are handled by assembler routines that set bits in an interrupt status word. The
scheduler checks the interrupt status word and resumes the thread for the device driver
for that interrupt. Thus, many of the features required for real-time programming appear
to be available in Squawk, which seems to be more appropriate for our future research on
JARTOS.
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Appendix A

Class OS

public class OS

System Library

In the OS class, there are main method, constructor, OS tables, OS methods, OS

processes and supervisor cals. OS class is responsible for maintaining the system

running. The operating system is an instance of an OS class. The operating system is

started by running the main() method.

Field Summary

int

Clock
The clock tick of the OS.

boolean

enableTimeoutsFlag
Timeout flag.

boolean

enableDebugFag
Debug flag.

int

timeoutCounter
Timeout counter.

boolean

timeoutReportFlag
Timeout report flag.

int

numberOfProcTimeout
Total number of process that is timed out.

boolean

enablePerformProbes
Perform probes flag.

int

currentProcessNumber
The current running process number on OS.

int

gartOfMemoryBlocks
The gtart address of memory blocks.

long

commonDataAddress
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The common data address.
long circularListsAddress
Thecircular list address.
long previousTime
The previoustime.
long currentTime
The current time of OS.
Method Summary
void setClock(int clock)
Setsthe clock value of OS with the given clock.
int getClock()
Gets the clock value of OS.
void setEnabl eTimeoutsH ag(bool ean flag)
Enables or disables timeouts flag.
boolean getEnableTimeoutsFlag()
Gets enable timeouts flag value.
void setEnableDegugFlag(boolean flag)
Enables or disables debug flag.
boolean getEnableDegugFlag()
Gets enable debug flag value.
void setTimeoutCounter(int t)
Setstimeout counter for the process.
int getTimeoutCounter()
Gets timeout counter.
void setTimeoutReportFlag(boolean flag)
Setstimeout report flag.
boolean getTimeoutReportFlag()
Gets timeout report fleg.
void setNumberOfProcessTimeout(int n)
Setsthe total number of processes that are timed out.
int getNumberOfProcessTimeout()
Getsthe total number of processes that are timed out.
void setEnablePerformProbes(boolean is)
Enables or disable performance probes.

123




boolean

getEnablePerformProbes()
Gets enable performance probes value.

void setCurrentProcessNumber (int procNum)
Sets the process number of current running process.
int getCurrentProcessNumber()
Gets the process number of current running process.
void setStartOfMemoryBlocks(int addr)
Setsthe start address of memory blocks.
int getStartOfMemoryBlocks()
Gets the start address of memory blocks.
void setCommonDataAddress(long commonDataAddress)
Setsthe address of common data.
long getCommonDataAddress()
Gets the address of common data.
void setCListsAddress(long address)
Setsthe address of circular ligt.
long getCListsAddress()
Gets the address of circular list.
void setPreviousTime(long p)
Setsthe previous time.
long getPrevousTime()
Getsthe previous time.
void setCurrentTime(long c)
Setsthe current time of OS.
long getCurrentTime()
Gets the current time of OS.
void setupOSTable (int clock, boolean enableTimeoutFlag, boolean enableD ebugFlag, int
timeoutCounter, boolean timeoutReportFl ag, int numberOfProcTimeout, boolean
enablePerformProbes, int currentProcessNumber,int startOfMemoryBlocks, long
commonDataAddress, long CListAddress, long previousTime)
Setsup OStable.
void addToOST able(Process proc)
Adds aprocessto OS table.
void getOSTabl()
Returns OS teble.
void waitState(int n)

Goes into wait state for n clock ticks.
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void changePriority()
Changes the priority of user processes by moving them in processtable.

void simulateEvent()
Switches from hardware event to software event smulator for testing.

void getOSTables()
Returns the current value of all OS tables for use in debugging, testing and performance

measurement.

void libraryOfEventHandlers()
Providesthe library of event handlers.

void timerInterruptHandler()
Sets flag to run timer process and handles time out.

void enableTimerInterrupt(boolean is)
Enables or disables the timer interrupt.

void performanceProbe()
Collects performance data.

void testOS()

A test harnessfor OS class
void testProcessT able()

A test harness for ProcessTable class
void testScheduler()

A test harness for Scheduler class
void testEvent()

A test harness for Event class
void testMessage()

A test harness for Message class
void testCircularBuffer()

A test harness for CircularBuffer class
void testCommonData()

A test harness for CommonData class

public main(String[] args)
static void | Enablestimer interrupt, sets up OS tables and call scheduler to start OS.
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Class ProcessTable (Inner class of OS class)

ProcessTable classis used to store process table and relevant methods.

Field Summary

int Size
Thesize of processtable.

int[] PROCESS NUMBER
The number of the process

String[] PROCESS NAME
The name of the process.

boolean] | WAITING_ ON_EVENT
If the processiswaiting on an event.

int] EVENT_NUMBER
The event number of an event that a process iswaiting on.

boolean[] | EVENT_OCCURRED
If the event has occurred.

boolean[] | WAITING_ON_MESSAGE
If the processiswaiting on amessage.

int] MESSAGE_NUMBER
The message number of a message that the processis waiting on.

boolean]] | MESSAGE_ARRIVED
If the messageis available.

boolean[] | WAITING_ON_TIME
If the processiswaiting on time.

boolean[] | TIME_IS UP
If the timeisup.

String[] REFERENCE_TO_PROCESS METHOD
Thereference to the process method.

Method Summary
void setupProcessT able()
Sets up process table.
void addT oProcessT able(Process proc)

Adds a processto process table.

void removeFromProcessT able(String procName)
Removes aprocess from process table.
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int getProcessNumber(String procName)
Gets the process number of the process with the given process name.
void setEventOccurred(int procNum, boolean is)
Setsthe eventOccurred value to indicate if the event has occurred.
boolean | getEventOccurred(int procNum)
Gets the eventOccurred value to check if the event has occurred.
void setWaitingOnEvent(int procNum, boolean is)
Setsthe waitingOnEvent value to indicate if there is a process waiting on the event.
boolean | getWaitingOnEvent(int procNum)
Gets the waitingOnEvent value to check if thereis a process waiting on the event.
void setEventNumber(int procNum, int eventNum)
Sets the event number which processiswaiting for.
int getEventNumber(int procNum)
Gets the event number which process iswaiting for.
void setWaitingOnM essage(int procNum, boolean is)
Setsthe waitingOnMessage va ue to indicate if there is a process waiting on the message.
boolean | getWaitingOnMessage(int procNum)
Gets the waitingOnMessage value to check if there isa process waiting on the message.
void setM essageNumber(int procNum, int messageN um)
Sets the message number which process iswaiting for.
int getMessageNumber(int procNum)
Gets the message number which process is waiting for.
void setM essageArrived(int procNum, boolean is)
Setsthe messageArrived value to indicate if the message has arrived.
boolean | getMessageArrived(int procNum)
Gets the messageArrived vaue to check if the message has arrived.
void setWaitingOnTime(int procNum, boolean is)
Setsthe waitingOnTimeVaue.
boolean | getWaitingOnTime(int procNum)
Gets thewaitingOnTimeVaue.
void setTimelsUp()
Setsthe timelsUp valueto indicate if timeisup.
boolean | getTimelsUp()
Gets the timelsUp vaue to check if timeis up.
void setReferenceT oProcessMethod(int procNum, String reference)
Setsthe reference to the process.
String getReferenceT oProcessM ethod(int procNum)
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Gets the reference to the process.

int getIndexInProcessT able(String procName)
Gets the index of the process by the given process name in process table.
void resetProcessTabl€()
Resets the process table.
void getProcessT able()
Returns the current value of process table.
void loadProcess(Process proc)

Loads aprocess in the process table.

void removeProcess(String procName)

Removes a process from the process table.

Class Scheduler (Inner class of OS class)
Scheduler classis used to store scheduler method, scheduler table and relevant methods.

Field Summary

int Size
Thesize of scheduler table.
int] PROCESS NUMBER

The number of the process.

boolean]] | EXECUTE_FLAG
Execute flag of the process.

boolean[] | LOADED_FLAG
Loaded flag of the process.

int] WAIT_TIME

Wait time of the process.
int] WAIT_PHASE

Wait phase of the process.
int] TICK_COUNT

Tick count of the process.

boolean[] | WAITING_ ON_EVENT
If the processiswaiting on an event.

Method Summary

void setupScheduler T able(int processNumber, bololean executeFl ag, boolean loadedFlag, int
waitTime, int waitPhase, int tickCount, boolean waitingOnEvent)
Sets up the scheduler table.
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void addT oScheduler Table(int processNumber)
Adds a process to the scheduler table.
void addT oSchedul er Table(Process proc)
Adds a process to the scheduler table.
void removeFromSchedul erTable(String procName)
Removes a process from the scheduler table.
void removeFromSchedul er Table(int processNumber)
Removes a process from the scheduler table.
int getindexInScheduler Tablg(int processNumber)
Gets the index of the process by given process number in the scheduler table.
void getSchedul erTable()
Returns the current value of scheduler teble.
int getProcessindexInScheduler T able(int processNumber)
Gets the index of the process by given process number in the scheduler table.
int getProcessNumberInScheduler Table()
Gets the number of processes in scheduler table.
boolean | getlsProcessinSchedul erTable(int processNumber)
Checks if the processisin the scheduler teble.
int getProcessNumber(int procNum)
Gets the processes number.
void setExecuteFlag(int procNum, boolean flag)
Setsthe execute flag value.
boolean | getExecuteFlag(int procNum)
Gets the execute flag value.
void setl oadedFlag(int procNum, boolean flag)
Setsthe loaded flag value.
void setWaitTime(int procNum, int time)
Setsthewait time value.
void setWaitPhase(int procNum, int phase)
Setsthewait phase value.
void setTickCount(int procNum, int tick)
Setsthetick count value.
int getTickCount(int procNum)
Gets the tick count value.
void setWaitingOnEvent(int procNum, boolean is)
Sets the waitingOnEvent value to check if the process is waiting on event.
void enableProcess(Process proc)
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Enables aprocess by adding it to scheduler table.

void enableProcess(int processNumber)

Enables aprocess by adding it to scheduler table.
void disableProcess(String procName)

Disable a process by removing it from scheduler table.
void disableProcess(int processNumber)

Disable a process by removing it from scheduler table.

void runProcess(Process proc)
Setsthe execute flag to true in the scheduler table for a process.

void runProcess(String processName)
Setsthe execute flag to true in the scheduler table for a process.

void stopProcess(int processNumber)
Setsthe execute flag to false in the scheduler table for aprocess.

void schedul erInfiniteLoop()
Decides which process is to run and dispatchesiit.

Class Message (Inner class of OS class)
Message class is used to store message table and relevant methods.

Field Summary

int Size
The size of message table.

int] MESSAGE_NUMBER
The number of the message.

boolean]] | ALLOCATED
If the message object is allocated.

int] FROM_PROCESS
The processthat is sending the message.
int[] TO_PROCESS

The processthat is receiving the message.

boolean[] | WAITING_FOR_MESSAGE
The processthat is waiting for the message.

boolean[] MESSAGE_SENT
If the message has been sent.

String[] MESSAGE_REFERENCE
Thereference to the message.

String[] MESSAGE _TYPE
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Thetype of the messeage.

int[]

TRANSACTION_NUMBER
The transaction number of the message.

longf] MESSAGE_SENT_TIME
Thetime when the message is sent.
boolean[] | OVERFLOW_FLAG
The overflow flag of the message.
Method Summary
void setupM essageT able(bool ean allocated, int fromProcess, int toProcess, boolean
waitingForMes, boolean messageSent, String messageReference, String messageType, int
transactionNumber, long messageSentTime, boolean overflowFlag)
Sets up message table.
int getM essageNumberInMessageT able()
Gets the number of messages in message table.
int getM essagelndexNumber (int toProcessNumber)
Gets the index of message in message table.
int getMessageNumber(int messageNum)
Gets message number.
void setAllocated(int messageNum, boolean is)
Setsthe allocated value in message table.
boolean | getAllocated(int messageNum)
Gets the alocated value to check if the message has been all ocated.
void setFromProcess(int messageNum, int processNumber)
Sets the process sending a message.
int getFromProcess(int messageNum)
Gets the process sending a message.
void setToProcess(int messageNum, int procNumber)
Sets the process receiving a message.
int getToProcess(int messageNum)
Gets the process receiving a message.
void setWaitingForMessage(int messageNum, boolean is)
Sets waitingForMessage value.
boolean | getWaitingForM essage(int messageNum)
Checksto seeif there is aprocess waiting for message.
void setM essageSent(int messageNum, boolean is)
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Sets messageSent value.

boolean | getMessageSent(int messageNum)
Checksto see if the message has been sent.
void setM essageT ype(int messageNum, String type)
Setsthe type of message.
String getMessageT ype(int messageNumber)
Gets the type of message.
void setM essageReference(int messageNum, String messageReference)
Setsthe reference of message.
String getM essageReference(int messageNum)
Gets the reference of message.
void setM essageSent Time(int messageNum, long time)
Setsthe time of sending message.
long getM essageSent Time(int messageNum)
Gets the time of sending message.
void setTransactionNumber(int messageN um, int transactionNumber)
Sets the transaction number of message.
int getTransactionN umber(int messageNum)
Gets the transaction number of message.
void setOverflowFlag(int messageNum, boolean is)
Setsthe overflow flag.
boolean | getOverflowFlag(int messageNum)
Gets the overflow flag.
int getIndexInM essageT able(int messageNum)
Get the message index in message table.
void getMessageT abl ()
Returns the current value of message table.
int getMessage(String fromProcessName, String toProcessName, String messageT ype)
Gets amessage object.
void sendM essage(int msgN umber, String toProcessName, String messageReference)
Writes message into message buffer and sets available flag.
void receiveM essage(String toProcessName)
Process asks for message. If it has been sent process reads it and continues. If not process
sets message wait and exit.
void releaseM essage(int messageN umber)
Returns message resource to OS.
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Class Event (Inner class of OS class)

Event classis used to store event table and relevant methods.

Field Summary

int

Size
The size of the event table.

int[]

EVENT_NUMBER
The number of the event.

String[]

EVENT_TYPE
Thetype of the event.

String[]

INTERRUPT_OR POLLED
Isthe event an interrupt event or polled event.

boolean[]

EVENT_ENABLED
If the event is enabled.

boolean[]

EVENT_OCCURED
If the event has occurred.

int[]

PROCESS WAITING ON_EVENT
The processthat is waiting on the event.

String[]

REFERENCE_TO EVENT_METHOD
Thereference to the event method.

String[]

REFERENCE_TO_ INTERRUPT_HANDLER
Thereference to the interrupt handler.

Method Summary

void

setupEventTable(int eventNumber, String eventType, String interruptOrPolled, boolean
eventEnabled, boolean eventOccured, int processwWaitingOnEvent, String

referenceT oEventMethod, String referenceTolnterruptHandler)

Sets up event table.

void

addT oEventTable(String eventType, String interruptOrPolled, Boolean eventEnabled,
Boolean eventOccurred, String procName, String refToEventMethod, String refToHandler)
Adds an event to event table.

void

getEventTable()
Returns current value of event table.

int

getEventNumberlnEventTabl&()
Gets the tota number of event in event table.

void

setEventNumber(int eNum, int eventNumber)
Sets eventNumber value.
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void

setEventType(int eNum, String eventType)

Setsthe type of event.
String getEventType(int eNum)
Gets the type of event.
void setinterruptOrPolled(int eNum, String iop)
Setsthe vdue to display that the event is an interrupt event or polled event.
void setEveEnabled(int eNum, boolean is)
Enables or disables event.
boolean | getEveEnabled(int eNum)
Checks if the event is enabled or not.
void setEveOccured(int eNum, boolean is)
Setsthe event has occurred or not.
boolean | getEveOccured(int eNum)
Checks if the event has occurred.
void setProcessWaitingOnEvent(int eNum, int processNumber)
Sets the process number that iswaiting on an event.
int getProcessWaitingOnEvent(int eNum)
Gets the process number that iswaiting on an event.
void setReferenceT oEventM ethod(int eNum, String method)
Setsthe reference to an event method.
String getReferenceT oEventM ethod(int eNum)
Gets the reference to an event method.
void setReferenceT ol nterruptHandler(int eNum, String method)
Setsthe reference to an interrupt handler.
int getIndexInEventTable(int processNumber)
Gets the index in event table.
void waitEvent(int eventNumber, int processNumber, String eventType)
Waits for an event.
void interruptHandler(int eventNumber)
Handles the interrupt.
void enableEvent(int eventNumber)
Enablesan event.
void disableEvent()

Disables an event.

Class CircularBuffer (Inner class of OS class)
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CircularBuffer is used to store circular buffer table and relevant methods.

Field Summary

int

Size
Thesizeof circular buffer table.

int[]

BUFFER_ NUMBER
The number of the buffer.

boolean[]

ALLOCATED
If the buffer has been allocated.

String[]

BUFFER_REFERENCE
Thereference to the buffer.

int[]

ADD_PROCESS
The processthat adds the buffer.

int[]

REMOVE_PROCESS
The processthat removes the buffer.

boolean[]

OVERFLOW_FLAG
The overflow flag.

int[]

ADD_INDEX
Theindex of adding buffer.

int[]

REMOVE_INDEX
Theindex of removing buffer.

Method Summary

void

setupCircul arBufferTable(boolean alocated, String bufferReference, int addProcess, int
removeProcess, boolean overflowH ag, int addindex, int removelndex)
Sets up circular buffer table.

void

addT oCircularBufferTable(int bufferNumber, String bufferReference,int addProcNumber,
int removeProcNumber,int addindex, int removel ndex)
Adds abuffer to circular buffer table.

void

removeFromCircularBufferTable(int bufferNum)
Removes abuffer froma circular buffer table.

void

setBufferNumber(int bufferNum, int bufferNumber)
Sets the buffer number.

void

getBufferNumber(int bufferNum)
Gets the buffer number.

void

setAllocated(int bufferNum, boolean is)
Setsthe allocated value to display if the buffer has been alocated.
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boolean

getAllocated(int bufferNum)
Checksif the buffer has been allocated.

void setBufferReference(int bufferNum, String bufferReference)
Setsthe reference to the buffer.

String getBufferReference(int bufferNum)
Gets the reference to the buffer.

void setAddProcess(int bufferNum, int addProcessNumber)
Setsthe process that adds a buffer.

int getAddProcess(int bufferNum)
Gets the process that adds a buffer.

void setRemoveProcess(int bufferNum, int removeProcessNumber)
Setsthe process that removes a buffer.

int getRemoveProcess(int bufferNum)
Gets the process that removes a buffer.

void setOverflowFlag(int bufferNum, boolean overflowFlag)
Setsthe overflow flag.

boolean | getOverflowFlag(int bufferNum)
Gets the overflow flag.

void setAddIndex(int bufferNum,int addindex)
Setsthe index of added buffer.

int getAddIndex(int bufferNum)
Gets the index of added buffer.

void setRemovel ndex(int bufferNum,int removelndex)
Setsthe index of removed buffer.

int getRemovelndex(int bufferNum)
Gets the index of removed buffer.

void getCircularBufferTable()
Gets the circular buffer table.

int getCircularBuffer(int addProcessNumber, int removeProcessNumber)
Gets acircular buffer object.

void addT oCircularList(int bufferNumber, String bufferReference,int addProcN umber, int
removeProcNumber, int addindex, int removelndex)
Addsabuffer to circuler list.

String removeFromCircul arList(int bufferNumber)

Removes abuffer from circular list.

Class CommonData (Inner class of OS class)
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CommonDatais used to store common data table and relevant methods.

Field Summary

int

size

The size of the common data area.

int[]

VALUE
The vaue of the common data

String[]

TYPE
Thetype of the common data.

int[]

TIME_WRITTEN
The time when the common data is written.

int[]

NUMBER_OF WRITING_PROCESS
The processthat is writing the common data.

int[]

ADDITIONAL_DATA
The additional data of the common data.

Method Summary

void

setupCommonData (String vaue, String type, long timeWritten, int numberOfWritingProcess,
int additionalData)
Sets up common data

int

getVaue()
Gets common data value.

String

getType()
Gets common data type.

int

getTime()
Gets the time when writing the common data value.

int

getProcessNumber()
Gets the process number which writes the common data.

int

getAdditional()
Gets the additional value.

void

addToCommonData(String value, String type, long timeWritten, int numberOfWritingProcess,
int additionalData)
Adds the value to common data.

void

getCommonDataT eble()
Gets the current value of common data table.

void

writeCommonDataV a ue(String value, String type, int processNumber,int additional D ata)
Writes the common data value.
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String | readCommonDataV alue()
Reads the common data value.

Class Timer (Inner class of OS class)
Timer class inherits form Process class. In Timer class, there are a constructor and a

process method.

Constructor Summary

Timer

Creates atimer process that inherits from Process class.

Method Summary

void | processMethod()

Timer process’s method. Maintains the timer table and sets flags for processes to run

Class MessageMonitor (Inner class of OS class)
MessageMonitor class inherits form Process class. In MessageMonitor class, there are a

constructor and a process method.

Constructor Summary

MessageM onitor

Creates amessage monitor process that inherits from Process class.

Method Summary

void | processMethod()
Message monitor process’s method. Checks for the arrival of messages.

Class PerformanceAnalysis (Inner class of OS class)
PerformanceAnalysis class inherits form Process class. In PerformanceAnalysis class,
there are a constructor and a process method.

Constructor Summary

PerformanceAnalysis

Creates aperformance analysis process that inherits from Process class.

Method Summary
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void | processM ethod()
Performance analysis process’s method. Analyses data collected by performance

probes

Class TimeoutReport (Inner class of OS class)
TimeoutReport class inherits form Process class. In TimeoutReport class, there are a

constructor and a process method.

Constructor Summary

TimeoutReport
Creates atimeout report process that inherits from Process class.

Method Summary

void | processMethod()
Timeout report process’s method.

Class GarbageCollector (Inner class of OS class)
GarbageCaollector class inherits form Process class. In GarbageCollector class, there are a

constructor and a process method.

Constructor Summary

GarbageCollector

Creates agarbage collector process that inherits from Process class.

Method Summary

void | processMethod()
Garbage collector process’s method. Runs when time available to clean up hesp.

Class Terminate (Inner class of OS class)
Terminate class inherits form Process class. In Terminate class, there are a constructor

and a process method.

Constructor Summary

Terminate
Creates aterminate process that inherits from Process class.
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Method Summary

void | processMethod()
Terminate process’s method. Disables timer interrupt and resets tables to stop scheduler.

ClassIdle (Inner class of OS class)
Idle class inherits form Process class. In Idle class, there are a constructor and a process

method.

Constructor Summary

Ide
Creates an idle process that inherits from Process class.

Method Summary

void | processMethod()
Idle process’s method.

Class Process
Process class contains a standard templ ate for process methods and methods for working

with processes.

Field Summary

String | processName
The name of the process.

int synchronousWaitTime
The wait time of the process.

int synchronousWaitPhase
Thewait phase of the process.

int timeout
Number of ticksto be timed out

int eventl
The event that the processis waiting on.

int event2
The other event that the process is waiting on.

int messagel
The message that the process is waiting on.
int message2

The other message that the process iswaiting on.
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long processExitAddress
The exit address of the process.

Constructor Summary

Process(String procName, int synWaitTime, int synWaitPhase, int timeout, int eventl, int event2, int
messagel, int message2, long processExitAddress)
Creates aprocess.

Method Summary

void setProcessName(String processName)
Setsthe name of the process.

String | getProcessName()
Gets the name of the process.

void setSynchronousWaitTime(int waitTime)
Setsthe waitTime value of the process.

int getSynchronousWaitTime()
Gets the waitTime vaue of the process.

void setSynchronousWai tPhase(int waitPhase)
Sets the waitPhase value of the process.

int getSynchronousWaitPhase()
Gets the waitPhase vaue of the process.

void setTimeout(int timeout)
Set number of ticks to be timed out.

int getTimeout()
Get number of ticks to be timed out.

void setEvent1(int eventl)
Setsthe event that the processis waiting on.

int getEventl()
Gets the event that the process is waiting on.

void setEvent2(int event2)
Setsthe other event that the process is waiting on.

int getEvent2()
Gets the other event that the process is waiting on.

void setM essagel (int messagel)
Sets the message that the process is waiting on.

int getMessagel()
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Gets the message that the processis waiting on.

void setM essage2(int message?)
Setsthe other message that the processis waiting on.

int getMessage?()
Gets the other message that the process is waiting on.

void setProcessExitAddress(long processExitAddress)
Setsthe exit address of the process.

long getProcessExitAddress()
Setsthe exit address of the process.

void processMethod()
The method of the process.

Class Application
In the Application class, there are Event Monitor process, Start Application process, Stop
application process and user application processes. The Application class contains the

code for a specific user task.

Class EventMonitor (Inner class of Application class)
EventMonitor classinherits form Process class. In EventMonitor class, there are a

constructor and a process method.

Constructor Summary

EventMonitor
Creates an event monitor process that inherits from Process class.

Method Summary

void | processMethod()
Event monitor process’s method. Polls for i/o event.

StartApplication class (Inner class of Application class)

Constructor Summary

StartApplication
Creates astart gpplication process that inherits from Process class.

Method Summary
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void | processMethod()
Start application process’s method. Sets up processes to get the application to be run by the OS

StopApplication class (Inner class of Application class)
Inner class of Application class

Constructor Summary

StopApplication

Creates astop application process that inherits from Process class.

Method Summary

void | processMethod()

Stop application process’s method. Stops all the running processes.

Applicationl class (Inner class of Application class)

Constructor Summary

Applicationl

Creates an application process that inherits from Process class.

Method Summary

void | processMethod()
The method of application 1 process.
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Appendix B

Processes Provided with OS

1. Timer process

3375 clazs Timer extends Process{

3376 public Timer(String procMome, int synWoitTime, int synWaitPhose,

3377 int timeout, int eventl, int eventZ, int messogel, int messoge?, long processExitAddress’d
337 super {proclome, synWaitTime, synWoitPhose, timeout, eventl, eventZ,

3379 messagel , message?, processExitAddress’;

3380 T

3381

3382 public void processMethod(

3383 AAIF current time—previous time = 1 tick THEMN log error EWND

3384 if {{getCurrentTime] j-getPreviousTime ) /401 =1){

3385 System.out.printin{"error occured:current time-previous time=1"};

3386 +

3387 AePrevious time = current time

3388 refTol5.setPreviousTineref ToOS.getCurrentTime s //Previous time=current time
3389 Jéfar each process in scheduler table

3390 for{int i=1;i-refToScheduler .getProcessiunber InSchedulerTable; ie+ ]

3301 int tickCount=refToScheduler.getTickCount{i’;

3302 FfDecremant tick count

3303 refToScheduler .zetTickCount (1 ,—-tickCount’;

3304 AAIF tick count <= B THEM

3305 if {refToScheduler .getTickCount i h==Atref ToSchedu ler .getProcessMumber (131 =87
3305 Jf5et execute flog in scheduler table

2307 refToScheduler .eetExecutef log i, trusl;

3308 Jifreset tick count to wait time

3309 refToScheduler .zetTickCount {1, ref ToScheduler .getWaitTimedi));

3400 1

3401 1

3402 T

2403 1
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2. Start Application process

T

closs Startapplication extends Process{

176 public Startapplication{String procHams, int syrWaitTime, int synWoitPhase,
177 int timeout, int eventl, int ewent2, int messagel, int messogeZ, long processExitAddress)f
178 super {procMame, synWaitTime, svrWaitPhase, timeout, eventl, eventz,

179 messagel, messageZ, processExitAddress);

180

181 public woid processMethod

182 Applicationl Appl = new Applicationdl{"4pplicationt”,1,1,2,8,8,8,8,8%;
183 ref Tol3.pazsRef (Appd ;

184 passRef {appd ) ;

185 ref ToProcessTable. loadProcess (Appl s

186 ref ToSchedu ler .enableProcess (Appd b ;

187 ref ToSchedu ler .runProcess{Appl ) ;

188 1

180 T

3. Message Monitor process

3457 clozs MeszageMonitor extends Process{

3458 publlic MessogeMonitor(String procMome, int synWaitTime, int synWoitPhasze,
3450 int timeout, int eventl, int eventZ, int meszagel, int messagez,

3460 long processExitaddress)y

3461 super {prociome, synWaitTime, synWoitPhosze, timeout, eventl, eventZ,

3462 messagel, messoge?, processExitAddress);

3463

3464 public void processMethody )

3465 Jéfor each process in message taoble

2466 for{int i=8; i-refToMeszage.getMessageMumber InMessageTabled; i++3]

3467 AAIF wait flog iz =et and messoge has been zent THEMW

3468 if {refToMessoge .getWaitingForMessoge(i) & refToMessage .getMessogeSent(i
3469 A45et process execute flag in scheduler table

3470 refToSchedu ler . setExecuteF lag{ref ToMessage .getToProcess (i), true);
3471 1

3472 i

3473 1

3474 }

4. Performance Analysis process

3487 clozs Performoncesnalysis extends Process]

3488 public Performancednalysiz(String prochame, int synWaitTime, int synWaitPhose,
3480 int timeout, int eventl, int event2, int meszagel, int messagel, long processExitAddressif
3400 super(prociome,, syrWaitTime, synWoitPhose, timeout, eventl, eventZz,

3491 messagel, messoges, processExitAddressh;

3402

3493 publlic woid processMethod()f

34D refTodcheduler . stopProcess{27);

3405 ref Todcheduler .disobleProcess(277;

3406/

3497 A70n each run, reads data from circular buffer and produces andlysis trace;
3408 A/Dizplayvs results to and interacts with uszer.

3409 ref ToCircularBuf fer .getPerformanceCirou larBuf ferTab le (s

3500 1

3501 1
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5. Stop Application process

244 closs Stopapplicotion extends Process{

245 pubilic StopdApplication{String prochome, int synWaitTime, int synWaitPhose,
246 int timeout, int ewentl, int eventZ, int messagel, int messogeZ, long processExitdddress)f
247 suUper (prociane, synWaitTime, synWaitPhase, timeout,

248 eventl, eventZ, messzagel, messoge?, processExitéddress);

240 1

250

251 public woid processMethod s

252 Adstop, disable and remove for each process in the application

253 refToSchedu ler .stopProcess(47;

254 refToScheduler .disableProcess(4);

255 refToProcessTable.removeProcess("App licationl" ;

256

257 Afstaort g new process by setting a start agpplication procesz to run
258 SA0r enabe terminate process to run

259 05.Terminate terminate=refTolS.new Terminate("Terminate",1, 1, 2, @, @, A, @, @73
260 refTols.passRef (terminate’);

261 refToProcessTable. loadProcess (terninate )

262 refToScheduler .enableProcess{terminate);

263 refToSchedu ler .runProcess{terminate ) ;

264 +

265 1

6. Idle process

3568 clozs Idle extends Process{

3564 public IdledString prochome, int svrbaitTime,

3570 int synWaitPhosze, int timeout, int eventi,
3571 int eventZ, int messogel, int messages,
3572 long processExitAddress iy

3573 super{proclame, syrWaitTime, synWaitPhose,
3574 timeout, eventl, event?, messagel,
3575 meszages, processExitAddress’;

3576 T

3577

3578 public void processMethod( 4

3570 Afaoy 1 tick = 2Bhundredthzec

3580 if{refTo0S.getCurrentTime j-ref TodS.getPreviousTime =20 3
3581 timer InterruptHandler{;

3582

3563 refToScheduler .runProcess(refToldle);

2584 1

3585 ¥
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7. Terminate process

3536 closs Terminate extends Process{

3537 public Terminote(String procMome, int swhWaitTime, int synWoitPhosze,

3538 int timeout, int eventl, int eventZ, int messagel, int message:z,

3539 long processExitaddress )

3540 super (proclame, synWaitTime, syrnWaitPhose, timeout,

3541 eventl, eventZ, messagel, messages,

3542 processExitdddress);

3543 T

3544

3545 publlic void processMethod( ]

3546 Aédizable the timer interrupt

3547 enableTimer Interrupt(false’;

3548

3540 Séresets all execute flags in the zcheduler toble so that the scheduler stops
3550 for{int i=A;i-refToScheduler .getProcessNumber InSchedulerTable ) ive )
3551 refToScheduler . setExecuteF lagli,false);

3852 1

3853 1

3554 1

8. Other processes
We are still working on the design of other processes, which are Event Monitor process,

Timeout Report process and Garbage Collector process.
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Appendix C

OS Kernel

Main method

ddenables timer interrupt, enables initialize procesz and calls zcheduler to start 05
public stotic void main{Strina[] orgs

Adoonstruct an instance of 05 Class(thiz) closs

05 mydS=rew 05 7;

iy 05 passRef (ny0S s

Jdconstruct an instance of Application class
Application nydpp=new Application);

my0S . passRef (nvApp’;

ity AP possRet (03

JéfDeclares instances of all taobles

05.ProcessTable processTable=my0S5.new ProcessTabled s
05 passRef (processTable);

nyApp . possRef (processToble’;

05.5cheduler schedu ler=my05.new Scheduler();

my035 . pazsRef (schedu lery;

iy App possRer (sohedu ler s

05.Event event=my03.new Event);

03 . passRef {event.;

iy App possRef (event s

05.Mess00e message=ny05.new Message!);

03 . passRef (nessage’;

iy AP possRef (message )

05.CircularBuffer circulorBuffer=my0S.new CircularBuffer();
05 passRef (ciroularBur fer s

iy App possRef (circu lorBuffer )

05 .CommonData commonData=mydS.new CommonDatal ) ;

iy 05 passRef {commonbota )

iy App possRef (commonData

03 bestCommonDatal
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Aflnitialises all table wolues to zero
processTable.setupProcessTabledd, ", false, B, false, false, B, false, false, folse, "'}
scheduler .setupSchedulerTabledd, false, folse, 8, 8, A, falsel;

event .setupEventTabledd, ", ", false, false, @, "", "");

L
mezsnge . setupMessageTable(folse, A, @, false, folse, "', ", @, A, folse);
circulorBuffer .setupCircularBuf ferTable(false, 8, @, 8, false, B, B);
conmonData . setupCommonbata] ", ", @, @, @);

ffinitializes the 05 table
my03.setup0STable(d, false, false, @, folse, B, false, @, @, @1, 41, 8);

Sereads current time and sets to previous time to correctly initialize the timer
035 . setPreviousTime(my0S . getCurrentTime ),

Ay 05 zetC lock {87 ;

05 getStartTine (medS JgetourrentTine ()

ffoonstructs the 05 processes-timer,garbage collector,timeout report,idle
05.Timer timer=my0S.new Timer("Timer", 1, 1, 2, @, @, @, A, A);
05 possRel (Linerh;

05.1dle idle=my0S.new Idle{"Idle",1, 1, 2, B, @, @, 8, 8);
05 possRef (idle);

Afloads and enables the following processes, which are considered to be part of the 05
processTab le. loadProcess{tiner );

AfprocessTab e, londProcess (garbagetol lector 3 ;
AAprocessTable . loodProcess (t imeoutReport s

procezsTable. loodProcess(idle);

scheduler .enab leProcess(tiner ) ;

A/scheduler cenab leProcess(garbageCol lector );

AAzcheduler cenab LeProcess(t ineoutReport )

socheduler .enab leProcess(idle);

Afloads and enobles the Performance dnalvsis Process

05 .Performancednalysis performancedndlysis=my0S.new Performoncednalysiz("Performoncesnalysis",1, 1, 2, 8, A, 6, @, @)
05 . pazsRef (performancesnalysis);

processTab le. loadProcess{performoncesnalysis);

A loads and enables the Stort Application Process

application.StartApplicotion startApplicotion=myApp.new Startapplication("Stortépplication”,1, 1, 2, @, @, @, @, @%;
ny03 .passRef (startipplication);

processTable. loadProcess{startapplication);

zchedu ler .enab leProcess (startapp L icat ion);

Aisets the starts Applicotion process and the Idle process to run
schedu ler . runProcess (startapp L ication);
zcheduler .runProcess(idle);

my0S.enab leTimer Interrupt{true); Afenobles timer interrupts
A0S getEnab lePerformProbes (true); Afenables performance probes
niy05 .setC lock () ;

zcheduler .schedulerInfiniteloop(d; Jfcall scheduler

System.exit(@h; Alexit 03
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Scheduler loop

/% Scheduler—-decides which process is to run and dispatches it #/
private woid schedulerInfiniteloop( )y
/4 zet process number to zero-loop invariant ie=number of processes
Ad loop will only exit when a call to the terminate process resets
A4 all execute flags in scheduler table
int i=A;
whi L i<32 3

AAf process 1 is ready to run
if (EXECUTE_FLAG[i]==true){

Féreset process execute flag in scheduler table
Adsomething else has to set it
EXECUTE_FLAG[1i]=false;

AfGet timeout counter in 05 table
refTol5.setTimeoutCounter (27;

Af5et current process number in 05 table
refTolS . setCurrentProcessNunber (1417 ;

AAF performance testing flag set in 05 table

if (refTo0S.getEnab lePerformProbes ==trus)y{
Aéthen call probe method
performonceProbe s

¥

Aéeall process, start process and poss stote to it
Aéprocess executes ond returns to here
switch (i) {

cose B: refToTimer.processMethod();

break ;

coze 1t refToEventMonitor.processMethod( s
break ;

cose 2@ refToStartApplication.processMethod();
break ;

cose 3: refToApplicotionl.processMethod )
break ;

cose 41 refToApplicotionZ.processMethod s
break ;

cose 5 refToApplicotion3.processMethod s
break ;

cose 6i refToApplicotiond.processMethod
break ;

cose 7i o refToApplicotions.processMethod s
break ;

cose §: refToApplicotiond.processMethod s
break ;

cose 91 refTospplication?.processMethod();
break ;

cose 18: refToApplicotiond.processMethod s
break ;

cose 11: refToApplicotion®.processMethod )
break ;

cose 12: refToApplicationl®.processMethod();
break ;

cose 13: refToApplicaotionll.processMethod();
break ;

cose 14: refToApplicotionl2.processMethod();
break. ;
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cose 15: refToApplicationl3.processMethod ) ;
break.;

cose 161 refTohpplicotionld.processMethod();
break.;

cose 171 refToApplicotionls.processMethod();
break.;

cose 18: refToApplicationls.processMethod ) ;
break.;

cose 19: refTodpplicationl?.processMethod ) ;
break. ;

cose 28: refToApplicationld.processMethod();
break;

cose 21: refToApplicationl?.processMethod ) ;
break ;

cose 22: refToApplication28.processMethod () ;
break;

cose 23: refToApplicationZl.processMethod ) ;
break.;

cose 241 refTohpplicotion22.processMethod();
break.;

cose 25: refToMessageMonitor .processMethod);
break.;

cose 26: refToPerformancednalysis.processMethod;
break. ;

cose 27 refToTimeoutReport .processMethod( ) ;
break;

cose 28: refToGorbageCol lector .processMethod(
break ;

cose 29: refToStopApplicotion.processMethod s
break;

cose 38: refToldle.processMethod);
break.;

cose 31 refToTermingte.processMethod{);
break.;

default: System.out.printin"Invalid process number in scheduler loop.");
break.;

AA0AT timeout not disobled by process potential
défor error if timer interrupt occus here)
AADISABLE timeouts

Jéshould have been done by processz-belt ond bracers
refTolS.setEnab leTimeoutsF lag{falsel;

AT performance testing flag set in 05 table
if (refTol3.getEnablePerformProbesi ==trusf
Afthen call probe method

performaonceProbed ;
T
T
i++;
17 1==31 Y8 EXECUTE _FLAG[31]==fal=e1){
i=H;
T
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Timer interrupt simulation

clozz Idle extendsz Process{
public IdlefString procMome, int swnWaitTime,

int synWaitPhasze, int timecut, int eventl,

int eventz, int messogel, int messogeZz,

long processExitaddress )y

super (procMame, syrWaitTime, synWaitPhase,

timeout, eventl, eventZ, messagel,
messoges , processExitéddress);

¥
publlic woid processMethod )
Adsaw 1 tick = 2Bhundredthsec
if {refTols.getCurrentTime -ref TolS . getPreviousTine =201
timerInterruptHandler);

refToSchedu ler JrunProcess(ref Toldle);
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Appendix D

Test Applications

1. Test that OS runs, tests scheduler, runs a single application process that prints out table

contents

closs Applicotionl extends Process{
public Applicationl{String procMame, int syrWaitTime, int syrWaitPhose,
int timeout, int eventl, int ewvent2, int messagel, int messogeZ, long processExitAddresshf
super (procMame, syrWaitTime, svrMaitPhose, timeout, eventl, eventz,
nessagel, messageZ, processExitAddress);

public woid processMethod(
refTol5.setEnab leTineoutsF log{true); Afenables timeouts for duration of process

refTolS.get05Tables(h; Afprints out all the 05 tables

refTol3.setEnab leTineoutsF lag{false); AAdizobles timeouts

2. Test each OS process—Timer process etc that they give expected results

see Section7.2.2

3. Test timeout

252 closs Applicotionl extends Process{

253 public Applicationl{String procMame, int synWaitTime, int syrWoitPhose,

254 int timeout, int eventl, int ewvent2, int messagel, int messageZ, long processExitiddress )y
255 superiprocMane, syriaitTime, syrWoitPhase, timeout, eventl, eventZ,

256 messagel, messageZ, processExitAddress);

257

258 public void processMethod( s

259 refTols.setEnab leTineoutsF log{true); Jfenables timeouts for duration of process
260

261 for(;id

62 System.out.printin{"4pplicationl is running!";

263 1

264

265 refTolS.setEnab leTineoutsF log{false); Afdizables timsouts

266 +

267 1
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4. Test each data communication method: messages, circular list, and common data

272

73
274
275
276
277
278

284

287
288
289
200
29]
292
203
204
205
206

closs Applicotionl extends Process{
public Applicationl{String procMame, int swrWoitTime, int synWaitPhose,
int timeout, int eventl, int ewventZ, int messogel, int messogeZ, long processExitaddress)f
super{prociamns, synWaitTine, sypWaitPhoze, timeout, eventl, eventZ,
messagel, messogeZ, processExitaddress);

public void processMethod
refTo05.setEnab LT imeoutsF log(true; Afenables timeouts for duration of process
int randomMunber=getRondombumber (3 Afgets a random number

Sfgets and =zends g message

int messageMumber=H;

messagebunber=ref ToMessage .getMessage"App L icat ionl” , "Applicat ion2" " int" );

ref ToMessoge . sendMezzageinessageNunber , "App Lication2" Sty ing va luedf {randomMumber 30
ffadds to circular list

refToCircularBuf fer .oddToCircu larList {5ty ing.va luslf (randombunber ), 473

SAwrites to common daota area

ref ToCommonData.writeCommonDatala lued Sty ing . va lue0f {randombumber b, "String", 4, 8733

refTolS.setEnab leTimeoutsF lag{falsed; A dizables timeouts

public int getRandomMumber
Random generator=new jova.util.Random;
int randombunber=gensrator .nextInt{h;
return randomtunber ;

closs Applicotiong extends Process{
public ApplicationZ({String procMame, int synWaitTime, int syrWoitPhose,
int timeout, int eventl, int ewvent2, int messagel, int messageZ, long processExitaddress)d
superiprocHane, syriaitTime, swrWoitPhase, timeout, eventl, eventZz,
messagel , messoge?, processExitéddress);

public void processMethod( L
refTolS.setEnab leT imeoutsF log{true); /fenables timeouts for durotion of process

ref ToMessoge .receiveMessage!"Application2"y; /freveives the messoge
refToMessoge.releaseMessage(l); A release the message
refToCircularBuf fer .removeFromCirculorList(5); Afremoves from circular list
ref ToConmonData.readCommonbotatalue (s //reads from common doto

refTolS.setEnab leT imsoutsF lag{false’; /dizables timsouts
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5. Test performance probes

clozs Applicaotionl extends Process]
public Applicationl{String procHame, int syrWoitTime, int synWaitPhose,
int timeout, int ewventl, int ewventZ, int messagel, int messoge?, long processExitaddressf
super{prochane, synWaitTime, syrWaitPhase, timeout, eventl, eventZz,
messagel, message?, processExitAddress’;

pubrlic void processMethod
refTo05.setEnab leTingoutsF log(true )y Alenables timsouts for duration of process

refTo05.perf ormancelrobe )
refToCircularBuf fer .getCircularBuf ferTable();

refTolS.setEnab leTineoutsF lag{false); A/dizables timeouts

6. Test multiple processes, including process to print out tables

closs Applicotionl extends Process{
pubrlic Applicationl{String procMame, int syrWoitTime, int synWaitPhose,
int timeout, int eventl, int ewvent2, int messagel, int messoge2, long processExitiddress)f
superiprocane, synWaitTime, syrWoitPhose, timeout, eventl, event2z,
messagel, messageZ, processExitAddress);

public void processMethod{
refTolS.setEnab leTimeoutsF lag{true); Afenables timeouts for duration of process
int randomMunber=getRondonbumber{h; Afgets a random number

Afgets and sends g message

int messogeNumber=A;

messagebumber=ref ToMessage .gethessage"App licat ionl" , "App lication2" " int" 3

ref ToMessoge . sendiessagednessageNunber , "App L ication2" 5ty ing . wa lueOf {randomtumber
Aéadds to circular list

refToCircularBuf fer .oddToCircularlist {5ty ing.va luedf (randombunber ), 473

Aéwrites to common data orea

ref ToCommonData .wr i teCommonDataba luedStr ing . va luedf (rondombumber , "String”, 4, 83

refTod5.setEnab leTimeoutsF lag{false); A/dizobles timeouts
pubrlic int getRandomMumber
Random generator=new jowva.util.Randomn s

int randomMunber=gensrator .nextInt (s
return rondombumnber ;
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closs Applicotiong extends Process{
public ApplicationZ({String procMame, int synWaitTime, int syrWoitPhose,
int timeout, int eventl, int ewvent2, int messagel, int messageZ, long processExitaddress)d
superiprocHane, syriaitTime, swrWoitPhase, timeout, eventl, eventZz,
messagel , messoge?, processExitéddress);

public void processMethod( L
refTolS.setEnab leT imeoutsF log{true); /fenables timeouts for durotion of process

ref ToMessoge .receiveMessage!"Application2"y; /freveives the messoge
refToMessoge.releaseMessage(l); A release the message
refToCircularBuf fer .removeFromCirculorList(5); Afremoves from circular list
ref ToConmonData.readCommonbotatalue (s //reads from common doto

refTolS.setEnab leT imsoutsF lag{false’; /dizables timsouts

closz Applicotiond extends Process{
public Application3(String procMame, int synWaitTime, int syrWoitPhose,
int timeout, int eventl, int ewvent2, int meszagel, int messageZ, long processExitiddress)d
superprocHane, syriaitTime, swrWoitPhase, timeout, eventl, eventZ,
messagel, messogeZ, processExitAddress’;

¥
BitPort bp = new BitPort{BitPort.Port3BitE);
public woid processMethod(
refTolS.setEnab leTineoutsF lag{true); Jfenables timeouts for duration of process
int i=6;
while i1y
i=i+1;
S4Turn an LED
bp oz lear )
A¢Turn of f LED
bp.=zet

refTolS.setEnab leTineoutsF log{false); Afdizables timsouts

closs Applicotiond extends Process{

public Applicationd{String procMame, int synWaitTime, int syrWoitPhose,

int timeout, int ewentl, int eventZ, int messagel, int messogeZ, long processExitdddress’if
super (prociame, synWaitTime, synWaitPhose, timeout, eventl, eventz,
meszagel, nessoge?, processExitAddress’;

h

prlic wioid processMethody )L
refTol5.setEnableT imeoutsF lagdtrus); /lenables timeouts for duration of process
refTol05.get05Tables; A/prints out all the tables
refTolS.setEnab leT ineoutsF lagifalse); Sidizables bimeouts
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7. Test performance anaysis process

clozs Applicaotionl extends Process]
pubilic Applicotioni{String procMome, int synWaitTime, int synWoitPhosze,
int timeout, int ewventl, int ewventZ, int messagel, int messoge?, long processExitaddressf
super{prociame, synWaitTine, sypWaitPhoze, timeout, eventl, eventZ,
messagel, message?, processExitAddress);

public void processMethod
refTolS.setEnab leTineouksF lag{true); Afenables timsouts for duration of process

ref ToSchedu ler .runProcess(ref Tol5 . ref ToPer f ormancedng Lvsis);

refTolS.setEnab leTimeoutsF lag{false); A/dizables timeouts
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