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Abstract

Usually, the researchers of traditional belief change theories (e.g., AGM theory)

assume that the knowledge of the agents which have the lower priorities should fully

accept the knowledge of those higher priority ones in the process of belief revision.

These kinds of theories are called prioritized belief change theories. On the contrary,

in the discussion of non-prioritized belief change theories (e.g., Konieczny and Pino-

Pérez’s merging theory), the belief changes happen among the agents which have the

same priorities. In this dissertation, we provide a new style of epistemic states and

the belief change operations on this kind of epistemic states such that the prioritized

or non-prioritized characteristics of belief change operators will be determined only by

the properties of agents’ knowledge.
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Chapter 1

Introduction

A rational agent has been defined as ”for each possible percept sequence, a rational

agent should select an action that is expected to maximize its performance measure,

given the evidence provided by the percept sequence and whatever built-in knowledge

the agent has” [47]. According to the definition, the intellection of a rational agent

is mainly about acquiring, comparing, revising and merging the knowledge rationally.

Therefore, the method of how the agents’ knowledge would be represented and changed

are two crucial aspects of modelling the agents’ mental states. In this dissertation, we

will utilize a new method of knowledge representation to carry the operations of belief

change.

Inasmuch our research focuses on the agents’ mental states, we simplify the mod-

els of agents to the models of information sources, i.e., different agents are regarded

as independent information sources which provide their knowledge to the others. By

”independent information sources”, we mean that the knowledge included in one infor-

mation source is not a partial knowledge of the relevant agent or a combination of the

mental states of more than one agent, but belongs to exactly one agent and includes the

entire content of this agent’s knowledge. We hereby put a group of such independent

information sources under our attention. Henceforward, when we mention the agents,

we mean the independent information sources.

1



1.1. Priorities between Agents 2

Since the early 1980’s, belief change has been studied in both computer science and

philosophy. In our opinion, the problems of belief change can be categorised into two

branches based on the priorities of agents:

• The agents have different priorities: in traditional revision theory [1], it is one of

the basic assumed premises in which the revision operation should be taken place.

Traditionally, the knowledge of the agents which have the lower priorities should

be revised by the knowledge of those higher priority ones, and the knowledge of

the latter agents should be fully accepted in the result.

• The agents have the same priorities: this is the area of belief merging operations

[29] or so-called non-prioritised belief revision [24], i.e., there is no necessary that

the knowledge of one agent should be fully accepted by the others.

Therefore, one important problem is that how do the priorities of agents are assigned.

In this dissertation, we will introduce a new knowledge representation in which the

priorities of agents will be assigned fairly and rationally. Then the above two cases can

be treated as one unified process such that we can use only one belief change operator

to deal with all situations, i.e., we will banish the borderline between the belief change

operations on prioritised and non-prioritised agents. In other words, the prioritised

or non-prioritised characteristics of belief change operators will be determined only by

the properties of agents’ knowledge.

1.1 Priorities between Agents

”The passion of men for equality is ardent, insatiable, eternal, invincible” (de Toc-

queville, 1860). In a narrow sense, this opinion is a slogan of egalitarianism in which

it amounts to allocate equal rights to individual agents [43]. In a broad sense, it can

be understood as that every agent is born without any congenital priorities, and the

postnatal efforts of agents should be taken fairly. In other words, the agents can strive
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for higher priorities through their own hard work but not any god-given authorities.

Since our agents are equal to the independent information sources, the ”hard work”

means the efforts of deliberation. We assume that each agent will faithfully expose its

efforts and history of deliberation.

Suppose that we are a group of rational people who are assigned to solve a specific

problem. We will trust those who are called experts among us like this example:

Example 1.1.1. In a discussion of a specific subject, people always tend to accept the

opinions of those who are the experts in this subject. Usually, the experts are those

who have spent more work on some subjects than the other people (we admit that

there exists some geniuses who can be professionals in some fields but need not to do

much work). In other words, the experts have more mature points of view on some

subjects than the other people. Therefore, we can say the more mature points of view

have higher priorities than the less mature points of view.

From the above example, although we are born equally, we trust some people more

than the others in the end. In other words, some people’s knowledge get higher priori-

ties than the others’ following the deepening of their deliberation, and so do the agents.

We have another example from which can explain that we sometimes trust something

which looks like not that authoritative:

Example 1.1.2. When we try to solve some primitive arithmetical problems, we gener-

ally trust a calculator more than our brains. Seemingly, the calculator is just a machine

which absolutely does not think more than human brains. On the contrary, the cal-

culator should be treated as an expert of primitive arithmetical problems because it

is a product of the efforts of its researchers, designers and workers. In other words,

we trust the calculator because it is a convergency of the knowledge of its researchers,

designers and workers.
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Therefore, a group of rational agents can be prioritized based on their explicite (the

example 1.1.1) or implicite (the example 1.1.2) degrees of deliberation. In other words,

agents’ knowledge states should imply the priorities of the relevant agents.

The agents begin to acquire and process the knowledge along with putting them in

operation. In the life time of an agent, its priority is adjusted continually through the

change of its knowledge. Hence, we can develop a method to embed the agent’s priority

into its knowledge representation.

1.2 Smoothness of Belief Change

We call the representations of agents’ knowledge states (or belief states) plus their

embeded information of priorities the epistemic states of agents. By reason of banishing

the borderline between the belief change operations on prioritised and non-prioritised

agents, it is necessary to build some belief change operators which can produce different

results based on the priorities of the input epistemic states, e.g., if we can smoothly

change the priority of one input epistemic state x from extremely low to extremely

high, then the result of revision operation should be smoothly modified to be closer

and closer to x, till the result completely accept x.

Example 1.2.1. Assume that Bob is a student who focuses on the subject of knowl-

edge representation, and he decides to take a bachelor’s degree first, then continue to

a master’s degree, and finally achieve the PhD. Thus, in the process of his study, his

knowledge of his subject is improved from a layman level to a professional level bit by

bit. Obviously, by following this improvement, Bob’s opinions on the subject of knowl-

edge representation get more and more creditability among the academia. Therefore,

when Bob becomes the greatest name on knowledge representation, almost everyone

tends to accept points of view from Bob on the subject.
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Because we treat the prioritised and non-prioritised belief change as one unified pro-

cess, it is unpractical to evaluate the result of belief change by testing whether the

result entail some specific information, e.g., the (Success) postulate in AGM frame-

work. Fortunately, this problem can be addressed by introduce the concept of distance

between the epistemic states. The shorter the distance between two epistemic states is,

the closer are those two epistemic states. Then the mission of belief revision operators

are to close up the gap between two epistemic states (like the bridge building analogy

in [7]).

The problem of how to design the distance functions is complex in our circumstance.

The agents’ priorities and the content of knowledge should be considered simultaneously

while we try to calculate the distance between two epistemic states.

1.3 Organization of the Thesis

In the following chapters, we will first provide a brief background introduction of the

area of belief change in Chapter 2. Then the framework of a specific kind of epistemic

states, which are embeded with the priorities of information sources, will be proposed

in Chapter 3. Chapter 4 will introduce an instance, which is based on n-dimensional

analytic geometry [21], of our epistemic states and the belief change operations on

them. The thesis will be concluded in Chapter 5. In the end, some proposed future

work will be listed in the last chapter.



Chapter 2

Background

The discussion of belief change among contemporary researchers can be retrospected

to the end of 1960’s [33], and some of Isssac Levi’s works [34, 35, 36, 37, 38] have

motivated many present research topics on belief change. Since the early 1980’s, the

AGM theory [1] has graduated into the most popular theory of belief change. In [14, 17],

we can find the beginning of the adherence of success (Section 2.2.1, (AGMu2)) by

which the prioritized belief change has been separated. Then, in 1990’s, many works

on non-prioritized belief change [41, 45, 48] ,which argue on the necessity of success,

have been published (see [24] for more details). And the binary merging operators in

[7] and the multiple merging operators in [26, 28, 29, 30, 31] are some remarkable works

which have been done recently in the non-prioritized belief change field. For fusing the

prioritized and non-prioritized belief change into one unified process, some background

information will be provided in this chapter.

2.1 Preliminaries

When we mention logic in this thesis, we mean classical logic. Suppose L is a finitely

generated propositional language which is closed under the usual propositional connec-

tives (conjunction: ∧, disjunction: ∨, negation: ¬). Throughout this dissertation, we

define W = {w1, w2, . . . , wn} the finite set of all possible worlds and W 6= ∅. And we

also define B the set of all subsets of W , i.e., B = 2W . Then, any proposition A ∈ B,

6



2.1. Preliminaries 7

i.e. that a proposition can be any subset of W . Obviously, we have A ∧ B = A ∩ B,

A ∨ B = A ∪ B and ¬A = A (A means the complementary set of A) for all A, B ∈ B.

A belief set K ⊆ B is a consistent and deductively closed set of propositions, i.e.,⋂
K 6= ∅, and A ∈ K iff

⋂
K ⊆ A. We also defined C =

⋂
K the net content of the

belief set K. Thus, the belief set can be represented also by K = {A|C ⊆ A}. R and I

are respectively the set of all real numbers and the set of all integers.

A preorder r on a set E is defined as a reflexive and transitive relation. r is total

if for all e, e′ ∈ E ere′ or e′re. Moreover, minr(E) = {e|ere′ for all e′, and e, e′ ∈ E},

maxr(E) = {e|e′re for all e′, and e, e′ ∈ E}. Usually, the output of min or max is a set.

We define min(E) = minr(E) and max(E) = maxr(E) for short if E ⊆ R and r =≤. In

this situation, we define the output of min or max is a value, e.g., min(I−) = {0} = 0.

Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two n-dimensional vectors in the

Euclidean n-space. Then we have V +U = 〈v1 +u1, v2 +u2, . . . , vn +un〉. If k ∈ R, then

k · V = 〈k · v1, k · v2, . . . , k · vn〉. Moreover, we define min(V ) = min({v1, v2, . . . , vn})

and max(V ) = max({v1, v2, . . . , vn}).

A multi-set is the set in which the elements are not necessarily different. We denote

a multi-set as X = [x1, x2, . . . ]. Two multi-sets X = X ′ iff for every element x of

X there is a unique element x′ (position-wise) of X ′ such that x = x′ and for every

element x′ of X ′ there is a unique element x (position-wise) of X such that x′ = x. t is

the union of multi-sets, i.e., XtX ′ = [x1, x2, . . . , x
′
1, x

′
2, . . . ]ifX = [x1, x2, . . . ]andX ′ =

[x′1, x
′
2, . . . ]. The union of n same multi-sets is denoted as Xn = X tX t . . . tX. If

MX = [X1, X2, . . . ] is a multi-set of multi-sets, then
⊔

MX = X1 t X2 t . . . which

means the union of all elements in MX.
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2.2 AGM Belief Change and Its Ramifications

The AGM theory has included the postulates of belief change operators and the

method of how to distinguish the importances of the objects of belief. Spohn’s theory

of ordinal conditional functions has quantitatively embeded epistemic entrenchment

into epistemic states. Since we tend to embed the agents’ priorities into epistemic

states, these two theories are immensely important for us.

2.2.1 AGM Belief Revision

In AGM theory, belief revision operators are defined by a set of postulates which

are called AGM postulates. The most direct motivation for AGM postulates is that

we want to make a minimal change when we try to revise our old beliefs by some new

sentences [1], i.e., we want to keep our old beliefs as much as possible.

Suppose K is a belief set and A, B are two sentences. A basic revision operator u

is characterized by the following postulates:

(AGMu1) KuA = {B|
⋂

(K u A) ⊆ B}. (Closure)

(AGMu2) CKuA ⊆ A. (Success)

(AGMu3) CK ∩ A ⊆ CKuA. (Inclusion)

(AGMu4) If CK ∩ A 6= ∅, then CKuA ⊆ CK ∩ A. (Vacuity)

(AGMu5) CKuA = ∅ iff A = ∅. (Consistency)

(AGMu6) If A = B, then CKuA = CKuB. (Extensionality)

(AGMu1) and (AGMu5) ensure that the outputs of the revision operator are the

consistent belief sets except the input sentences are inconsistent. The success property

of u is described by (AGMu2), i.e., the input sentence A should always be accepted
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by the output belief set K. Therefore, (AGMu2) is also a property which defines the

AGM revision operators as the prioritized operators. Then (AGMu3) and (AGMu4)

denote that if the input sentence A is consistent with the old belief set K, then the

output should be exactly the conjunction of A and K. Finally, (AGMu6) means that

if we try to revise a belief set by two semantically tantamount inputs, then the results

should be identical. If an operator satisfies (AGMu1)-(AGMu6), then we call this

operator the basic revision operator.

The following two postulates are called the supplementary postulates of basic revision

operators:

(AGMu7) CKuA ∩B ⊆ CKu(A∩B). (Superexpansion)

(AGMu8) If CKuA ∩B 6= ∅, then CKu(A∩B) ⊆ CKuA ∩B. (Subexpansion)

These two postulates ensure that if the result of the revision of a belief set K is

K u A and K u A is consistent with another sentence B, then the revision of K by

A ∩B is identical with the conjunction of K u A and B.

AGM theory also includes the set of postulates for contraction operators; however

we do not want to list them here because they will not be refered in the rest chapters.

A contraction operator is denoted −̇ such that K−̇A means to contract the sentence A

from the belief set K. In addition, the revision operator u and the contraction operator

−̇ satisfy the Levi Identity and the Harper Identity:

(LI) CK u A = (CK−̇A) ∩ A. (Levi Identity)

(HI) CK−̇A = (CK u A) ∩ CK. (Harper Identity)

Thus we can define a revision operator by a contraction operator and vice versa.
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2.2.2 Epistemic Entrenchment

If we have two choices of contraction when we intend to contract some information

from a belief set K, i.e., we must give up the sentence A or B to form a revision or

a contraction, then we need to know that which one of A and B will bring us the

lowest losing of information after it has been given up [16]. Thus, the idea of epistemic

entrenchment has been motivated in [15, 18], hence the sentences with the lowest degree

of entrenchment should always be given up first.

Suppose we have two sentences A and B and a belief set K. A 4 B means that B

is at least as epistemically entrenched as A. We have the following postulates for the

epistemic entrenchment 4:

(EE1) If A 4 B and B 4 C, then A 4 C. (Transitivity)

(EE2) If A ⊆ B, then A 4 B. (Dominance)

(EE3) A 4 A ∩B or B 4 A ∩B for any A and B. (Conjunctiveness)

(EE4) When K 6= ∅, A /∈ K iff A 4 B for all B. (Minimality)

(EE5) If B 4 A for all B, then A = W . (Maximality)

The justification of (EE1) is trivial. (EE2) means that if we want to remove a

sentence from a belief set, then we must remove all the logically stronger sentences

first. (EE3) ensures that one needs only to remove A or B if the deletion of A ∩ B is

required. And also, (EE3) reveals that the epistemic entrenchment 4 is a total pre-

order. The rational for (EE4) is that all sentences which are not in K should hold the

same degree of entrenchment and the less degree of entrenchment than the sentences

which are in K. And (EE5) states that the tautology should have the top degree

of entrenchment. By the way, there are some methods to measure the information

quantities of the sentences in logic systems, e.g., [39]. Maybe, they can be used to form

some diverse kinds of epistemic entrenchment.
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2.2.3 Ordinal Conditional Functions

Wolfgang Spohn has developed a very different but useful knowledge representation,

which is called the ordinal conditional function, and its dynamic mechanisms in [49].

The ordinal conditional functions generalize the possible worlds models [20, 25] such

that the epistemic states include not only the content of sentences, or, propositions,

but also the degrees of belief. In other words, an ordinal conditional function implies

a belief set and the epistemic entrenchment on this set [16].

According to Spohn’s theory, an ordinal conditional function κ is a function from W

into the set of ordinals which is the set of all nonnegative integers I−, i.e., κ : W → I−,

such that there is at least one element w ∈ W which satisfies κ(w) = 0. Each ordinal

conditional function implies a plausibility grading of the possible worlds. Moreover,

for each proposition A ∈ B, the ordinal of A is defined as the minimal ordinal of the

possible worlds included in A, i.e., κ(A) = min({κ(w)|w ∈ A}). Thus, we have the

following two properties of the ordinal conditional function κ(w):

(κ1) κ(A) = 0 or κ(A) = 0 for all A ∈ B.

(κ2) κ(A ∪B) = min({κ(A), κ(B)}) for all A, B ∈ B.

By taking each ordinal conditional function κ(w) as a deterministic (not probabilis-

tic) epistemic state, the net content of κ(w) includes all possible worlds which have

the ordinal 0, i.e., Cκ = {w|κ(w) = 0}. Then A is believed or disbelieved in κ iff,

respectively, κ(A) > 0 or κ(A) > 0. We say that A is neutral in κ iff κ(A) = 0 and

κ(A) = 0. Moreover, the firmness α of a proposition A relative to κ is defined as:

ακ
A =

 κ(A) if κ(A) = 0

−κ(A) if κ(A) > 0
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Thus, A is believed or disbelieved in κ iff, respectively, ακ
A > 0 or ακ

A < 0. And A

is neutral in κ iff ακ
A = 0. Based on the concepts of epistemic entrenchment in Section

2.2.2, B 4 A iff κ(A) < κ(B) for all A, B ∈ B.

The belief change on ordinal conditional functions is called the conditionalization

of the ordinal conditional functions. Let α be an ordinal, A ∈ B and κ an ordinal

conditional function. The A, α-conditionalization of κ is defined as:

κA,α(w) =

 −κ(A) + κ(w) if w ∈ A

α− κ(A) + κ(w) if w ∈ A

κA,α is also an ordinal conditional function.

Therefore, the A, α-conditionalization of κ intends to shift the ordinal of A to be 0

and the ordinal of A to be α. In other words, the A, α-conditionalization of κ means the

epistemic state κ is revised by A with the parameter α, and A is believed in κA,α with

firmness α. It can be shown that this kind of belief revision is a generalized version of

AGM revision [16].

2.2.4 Distance Based Revision

Another interesting branch of AGM theory is the so-called distance based revision

which has been introduced in [3, 32], and then the infinite version in [4]. We mention

this theory just because a sort of distance functions will be introduced in the follow-

ing chapters. In the distance based revision theory, a distance functions is actually a

pseudo-distance (with triangle inequality omitted) between any two models. By com-

paring it with our theory, the readers will find that our distance functions are facing a

much more complex situation in which we should measure the distance between any two

epistemic states. Therefore, our distance functions should have the ability to provide
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a synthetical measurement of the distances between belief contents and the distances

between agents’ priorities.

2.3 Non-Prioritized Belief Change

In fact, the so-called non-prioritized belief change is not entirely that the belief

change happens between the non-prioritized agents. Usually, when a belief change

theory denies (AGMu2), we classify it into the non-prioritized belief change. Richard

Booth’s belief negotiation models provide us the confidence to build a framework to

weld the prioritized and non-prioritized belief change. And, Sébastien Konieczny and

Ramón Pino-Pérez’s postulates of belief merging operators can be an appropriate start

point to build our own framework.

2.3.1 Negotiation-Style Framwork for Revision

Richard Booth has made a good analogy of non-prioritized belief change on two belief

sets in 2001: If K,K′ ⊆ B and CK ∩ CK′ = ∅, then there is an imaginary gap between

A and B. The duty of belief revision operations is to build a bridge which straddle on

this gap. Therefore, the problem of belief revision is then converted into the problem

of how to build this bridge. The suggestion of ”non-prioritized belief change builders”

is to build the bridge from both sides, i.e., K and K′, simultaneously.

A framework of belief negotiation models for non-prioritized belief change has been

introduced in [7]. The framework assumes that the equally prioritized owners of K and

K′, while K,K′ ⊆ B, do some kind of negotiation during the process of belief revision

that in each round of negotiation, the loser makes some kind of concession on its belief

set, i.e., expands its net content, until the intersection of the net contents of two owners

is not empty, i.e., CKn ∩ CK′
n
6= ∅ in which Kn and K′

n are respectively the belief sets

of the owner of K and the owner of K′ after the nth round of negotiation. And then
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the result of belief revision should be CKn ∩ CK′
n
. After this work, several variation of

the theory has been developed. In [26], the framework of belief negotiation models has

been used to develop a new family of belief merging operators. And [46] has introduced

a new version of negotiation-style framwork on possibilistic logic.

We will not list the formalization of belief negotiation models, because we will not

refer the detail information of this framework in the rest of thesis. A very important

conclusion for us is that the belief negotiation models will degenerate to the AGM

models when one of the negotiators always be the winner. This conclusion proofs that

the prioritized belief change and the non-prioritized belief change can be studied in the

same framework.

2.3.2 Belief Merging

Sébastien Konieczny and Ramón Pino-Pérez have proposed a framework of belief

merging operators which tend to combine multiple non-prioritized pieces of information

at the same time in [29]. And an anamorphic framework is introduced in the subsequent

papers [28, 30, 31]. Recently, the relation between the belief merging operators and

Richard Booth’s belief negotiation models has also been revealed in [26]. Here, we will

only care about the primitive framework.

A knowledge base is the net content of a belief set K, i.e., CK. Different with the belief

negotiation models, the belief merging operators are not binary operators, but they take

the multi-sets of knowledge bases as the inputs. We call such multi-sets the knowledge

sets which are denoted by E = [CK1 , CK2 , . . . , CKn ]. Moreover,
⋂
E = CK1∩CK2∩. . .∩CKn .

The merging operator ∆ should satisfies the following postulates:

(BM1) ∆(E) 6= ∅.

(BM2) If
⋂
E 6= ∅, then ∆(E) =

⋂
E .
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(BM3) If E ′ = E , then ∆(E ′) = ∆(E ′).

(BM4) If CK ∩ CK′ = ∅, then CK * ∆([CK] t [CK′ ]).

(BM5) ∆(E) ∩∆(E ′) ⊆ ∆(E t E ′).

(BM6) If ∆(E) ∩∆(E ′) 6= ∅, then ∆(E t E) ⊆ ∆(E) ∩∆(E ′).

(BM1) ensures that the outputs of ∆ should always be the useful information. The

rationale of (BM2) is that if the knowledge set is consistent, then the result of merging

should entails all knowledge bases in this knowledge set. For the same reason with

(AGMu6), we need (BM3). (BM4) means fairness, i.e., if two knowledge bases are

inconsistent, then the result of merging should not totally accept any one of these two

knowledge bases. Thus, this postulate strictly define the neutralism of ∆. (BM5) and

(BM6) are similar with (AGMu3) and (AGMu4). They together ensures that if the

mergings of two knowledge sets get the consistent results r and r′, then the result

of the merging of the union of these two knowledge sets should be identical with the

conjunction of r and r′.

Moreover, we have the following supplementary postulates:

(BM-Majority) ∀CK ∃n ∆(E t [CK]n) ⊆ CK.

(BM-Arbitration) ∀CK′ ∃CK CK′ * CK ∀n ∆([CK′ ] t [CK]n) = ∆([CK′ ] t [CK]).

We call ∆ the majority operator if it satisfies (BM-Majority) which means that the

result of merging should obey the majority rule. And then, ∆ is called the arbitration

operator if it satisfies (BM-Arbitration) by which it is ensured that the result of merging

is irrelevant with the occurrence of the same knowledge bases in the input knowledge

set. The inconsistency of these two postulates and (BM4) have been proved in [29].

Then it has been proved that (BM-Majority) is consistent with a revised version of

(BM-Arbitration) in [31]. We will not care these two postulates too much in this

thesis.
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In [29], it has been proved that the occurrence of (BM4) has destroyed many useful

properties of the merging operators, e.g., iteration, associativity, and etc. Obviously,

(BM4) is too strong for us ([42] has the same opinion).

There are two branches of this belief merging theory we are interest in: Thomas

Meyer’s combination operations [42], and Sébastien Konieczny, Jérôme Lang and Pierre

Marquis’s distance based merging theory [27, 28]. Because of the proposed structure of

epistemic states in the following chapters, we need some sort of quantitative methods

to capture the dynamic properties of our epistemic states. Therefore, we should better

start from the investigation of some existing insteresting methods.

2.3.3 Combination Operations

For applying the belief merging theory on epistemic states instead of knowledge

bases, Thomas Meyer has developed a class of combination operations in 2001 [42]. In

this theory, similar with Spohn’s ordinal conditional functions, it is defined that an

epistemic state is a function Φ : W → I−. So for each epistemic state Φ, CΦ = {w|w ∈

W and Φ(w) = 0}. An epistemic list E is defined as a finite multi-set of epistemic

states, i.e., E = [Φ1, Φ2, . . . , Φn]. Moreover, ME is a finite multi-set of epistemic lists.

A combination operator (or operation) Π is a function from the set of all non-empty

epistemic lists to the set of all epistemic states. And, for all w, w′ ∈ W , the function

Π has the following properties:

(CO0) Π([Φ]) = Φ(w)−min({Φ(w)|w ∈ W}).

(CO1) ∃w ∈ W such that Π(E)(w) = 0.

(CO2) If Φ(w) = Φ′(w)∀Φ, Φ′ ∈ E and sE≤(w) @lex sE≤(w′), then Π(E)(w) < Π(E)(w′).

(CO3) If Φ(w) ≤ Φ(w′)∀Φ ∈ E , then Π(E)(w) ≤ Π(E)(w′).
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(CO4) If Π(E)(w) ≤ Π(E)(w′), then Φ(w) ≤ Φ(w′) for some Φ ∈ E .

(CO0) is called the normalization process. It intend to keep the epistemic states’

net contents consistent. In our opinion, (CO0) is an aftertreatment of combination

operators, which can easily harm the properties of combination operators. (CO1) is a

generalised (BM1), and it follows trivially from (CO0). (CO2) means that when w is

assigned the same value by all epistemic states in an epistemic list E , if the minimal

value of the values of w′ assigned by all epistemic states in E is greater than all of the

values of w, then w′ should be also assigned greater value than w in the combination

result (please refer [42] if you want to know more detail about the expression sE≤(w) @lex

sE≤(w′)). Thus, (CO2) is a generalisation of (BM2). The rationale of (CO3) is that if

the order of two possible worlds are same in all epistemic states in an epistemic list,

then this order should be held in the result of combination. In our opinion, (CO2)

is a special case of (CO3). In another direction, (CO4) says that if a specified order

between two possible worlds occurs in the result of combining an epistemic list E , then

we can find such order occurs in at least one epistemic state in E . (CO4) can be a

different form of Pareto Principle in social choice theory [2].

(CO3) and (CO4) can be further generalized by the following postulates:

(CO5) If Π(E)(w) = Π(E)(w′)∀E ∈ ME , then Π(
⊔
ME)(w) ≤ Π(

⊔
ME)(w′).

(CO6) If Π(
⊔
ME)(w) ≤ Π(

⊔
ME)(w′), then Π(E)(w) = Π(E)(w′) for some E ∈

ME .

(CO5) and (CO6) generalize (CO3) and (CO4) respectively. And it has been proved

that (CO1) and (CO5) imply (BM5) [2].

Moreover, from (CO3) the following postulate follows:

(CO-Unit) If Φ(w) = Φ(w′)∀Φ ∈ E , then Π(E)(w) = Π(E)(w′).



2.3. Non-Prioritized Belief Change 18

Then, by generalizing (BM-Majority) and (BM-Arbitration), the following postulates

are introduced:

(CO-Majority) ∃n such that ∀w,w′ ∈ W , Φ(w) ≤ Φ(w′) if Π(E t Φn)(w) ≤ Π(E t

Φn)(w′).

(CO-Arbitration) ∀n Π(E t [Φ])(w) ≤ Π(E t [Φ])(w′) iff Π(E t Φn)(w) ≤ Π(E t

Φn)(w′).

It has been pointed out in [31] that (CO-Arbitration) is not a real arbitration

property, and it just degenerates the epistemic lists from the multi-sets to the usual

sets.

Moreover, another postulate has been given in this theory:

(CO-Comm) If E = E ′, then Π(E) = Π(E ′).

It has been proved that if a combination operator satisfies (CO-Comm), then it can

not satisfy (CO-Majority) and (CO-Arbitration) simultaneously [42].

2.3.4 Distance Based Merging

In 2002, Sébastien Konieczny, Jérôme Lang and Pierre Marquis have introduced

a framework of belief merging in [27], which is general enough to used to describe

many existing operators. From the combination of different distance functions and

aggregation functions, many different merging operators can be built.

A set of possible worlds CIC is provided as the domain of merging results, i.e., the

results of merging operators should be a subset of CIC . This domain is called integrity

constraint (we also call IC the integrity constraint). The idea of distance based merging

of a knowledge set (we use the concept of knowledge set in Section 2.3.2) is about to find

those possible worlds in the integrity constraint, which are the closest possible worlds
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with the knowledge set. Therefore, the main problem of distance based merging theory

is about how to measure the distance between possible worlds and knowledge sets.

It is defined that a distance is a function which takes two possible worlds as inputs

and gives a nonnegative number as the quantity of distance, i.e., pd : W × W → I−.

For all w,w′ ∈ W and A ∈ B, a distance function pd is supposed to have the following

properties:

(DBM-pd0) ∀w, w′ ∈ W pd(w,w′) = pd(w′, w).

(DBM-pd1) pd(w,w′) = 0 iff w = w′.

(DBM-pd2) pd(w, A) = min{pd(w, w′)|w′ ∈ A}.

Obviously, pd is a pseudo-distance discussed in Section 2.2.4. Recently, in [12],

Daniel Eckert and Gabriella Pigozzi have used an almost same version of distance

functions despite that they have extended the range of d to the set of nonnegative real

numbers, i.e., pd : W ×W → R−.

Moreover, an aggregation function a is a function with variable number of inputs,

i.e., a : I− × I− × . . .× I− → I−, which satisfies the following properties:

(DBM-a0) If x ≤ y, then a(x1, . . . , x, . . . , xn) ≤ a(x1, . . . , y, . . . , xn).

(DBM-a1) a(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0.

(DBM-a2) a(x) = x.

Then let pd be a distance function and a and g be two aggregation functions. The

merging operator of any knowledge set E under any integrity constraint IC, ∆pd,a,g
IC (E),

is defined as follow:
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C∆pd,a,g
IC (E) = {w ∈ CIC |pd(w, E) is minimal }

where

pd(w, E) = g(pd(w, CK1), . . . , pd(w, CKn))

and for every Ai,1, . . . , Ai,ni
∈ B and CKi

⊆ Ai,1, . . . , Ai,ni

pd(w, CKi
) = a(pd(w, Ai,1), . . . , pd(w,Ai,ni

)).

As the above, ∆pd,a,g
IC (E) uses two aggregation functions a and g to ”transfer” the

distance function of two possible worlds to the distance function of one possible world

and a knowledge set. In this way, the problem of how to measure the distance between

possible worlds and knowledge sets has been solved.



Chapter 3

Belief Change with Embeded Priorities

For the sake of embedding the priorities into the models of agents’ belief states, we

classfy the belief states by putting them into a hierarchy of generalisation:

(Class 1) The models of belief states consist of the sentences of some specified formal

languages or the sets of possible worlds directly, e.g., the belief sets or the knowl-

edge sets in [1], the belief bases in [13, 22, 23, 40, 44] and the possible worlds

models in [7, 20, 25].

(Class 2) The information of epistemic entrenchment is embeded into this class of

models, e.g., the ordinal conditional functions in [49].

(Class 3) The information of priorities between different belief states is embeded into

this class of models. We call this kind of belief states the epistemic states.

The models of (Class 1) has the lowest generalized level in our hierarchy. They only

include the primitive exertions of some formal languages from which we can simply

assign the truth values to assertions. The (Class 2) models generalize the models

of (Class 1) by grading sentences of the formal languages. Thus, we can distinguish

different importances of assertions. Our discussion will focus on the models of (Class 3)

which generalize the (Class 2) models, and we can tell the importances of information

sources through them.

21
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From another point of view, different (Class 1) belief states can be distinguished by

different contents of beliefs, e.g., different belief sets have different sets of sentences.

And two (Class 2) belief states are identical iff the contents of beliefs and the entrench-

ment information of beliefs of two belief states are identical. Finally, the identical (Class

3) belief states are those which have the same priorities except the same contents and

the same entrenchments.

In the following sections, we will propose an abstract framework for the (Class 3)

belief states and a special kind of belief change operators, which is called the belief

combination operators, on them.

3.1 Groundwork of Epistemic States

Before we construct the (Class 3) models, we must choose a (Class 2) model which can

be generalised to include the information of the agents’ priorities. There are two ways

to impart the entrenchment information. One is the qualitative way in which an pre-

order is used to represent the entrenchments directly. The other one is the quantitative

way which endue the belief sets with the entrenchment information by assigning each

sentence a numerica value. Technically, the quantitative way is a generalisation of the

qualitative way, however, we still classfy them into the same generalized level, i.e., they

all are the (Class 2) belief states.

3.1.1 Belief States

In this chapter, for increasing the possibilities of generalising the agents’ belief states,

we will employ a qualitative method to build the groundwork of our (Class 3) belief

states (or epistemic states). The other reason for this is that we intend to focus on the

qualitative properties of belief states.
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Definition 3.1.1. A belief state 4 is a total pre-order on W . Then C4 = min4(W ) is

the net content of 4. Moreover, let A, B ∈ B and i, j ∈ {1, 2, . . . , n}, if wi ∈ min4(A)

and wj ∈ min4(B), then we denote B 4 A iff wi 4 wj, i.e., a proposition is more

plausible than another iff its models are more plausible than the other’s. We define

the set of all possible total pre-orders on W as Ξ.

Thus, each total pre-order on W implies a belief set and an epistemic entrenchment

which satisfies the postulate (EE1)-(EE5) [16]. Then A is believed in the belief state

4 iff C4 ⊆ A, i.e., A 4 C4 and C4 4/ A.

Since we have the qualitative definition of belief states, there are many methods

which can be employed to make the quantitative representations of them, e.g., the

ordinal conditional functions. We will do this in the next chapter.

3.2 Epistemic States with Embeded Priorities

Suppose we have a set of agents A = {a, a′, · · · } as the set of information sources,

and S, S ′, · · · are the epistemic states of agents a, a′, · · · respectively. S, S ′, · · · ∈ S,

while the set of all possible epistemic states is denoted by S.

3.2.1 Components of Epistemic States

As discussed before, an epistemic state should be imparted with a belief state and

a priority. In this chapter, we do not care the technical detail of the constructions of

epistemic states, but only the abstruct structure. By assuming each epistemic state as

an integrator of one belief state and one priority, we have the following defination:

Definition 3.2.1. Suppose P ⊆ R− and P is continuing, we define two extraction

functions of epistemic states as follow:
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Belief State Extraction : eW : S → Ξ, which extract the relative belief state of the

input epistemic state.

Priority Extraction : eP : S → P, which extract the relative priority of the input

epistemic state.

We denote 4S= eW (S), pS = eP(S) and CS = C4S
for convenient, in which 4S∈ Ξ

and p ∈ P .

In Definition 3.2.1, we point out that the set of priorities is a subset P of real

numbers. By P is continuing, we mean that for all p, p′ ∈ P and p < p′, we have

p′′ ∈ P such that p < p′′ and p′′ < p′. The rationale for the requirement of continuity

is that we assume that for any pair of epistemic states with different priorities, there

is always the third epistemic state in which its priority is in between of them. For

convenient, we will use P as our all-purpose number set.

3.2.2 Distance Functions

In Section 1.2, we have pointed out that the distance between epistemic states is hard

to measure. The measurement of this kind of distances involves the measurements of

the distances between the belief states and between the priorities. So we should syn-

thetically consider the construction of distance function of belief states and priorities.

Here, we provide an abstract framework of the distance function of epistemic states

because the technical details of epistemic states have not been revealed yet.

Definition 3.2.2. The distance function d : S × S → P is a function which satisfies

the following properties:

(d0) d(S, S ′) = d(S ′, S),

(d1) d(S, S ′) = 0 iff S = S ′,

(d2) d(S, S ′) ≤ d(S, S ′′) + d(S ′, S ′′),
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for all S, S ′ ∈ S.

(d0) is the property of symmetry of d which stipulates that the distance function

should measure the distance of two epistemic states regardless of the direction of mea-

surement. By (d1), it implies that if the distance of two epistemic states is zero, then

the two epistemic states are identical. The triangle inequality (d2) ensures that the

shortest path from one epistemic state to another is the most direct path.

For the purpose of exposing the relationship between the distance functions and the

priorities, we have the following supplementary property for d:

(d3) d(S, S ′) ≤ d(S, S ′′) if |pS − pS′| ≤ |pS − pS′′| and the belief states of S, S ′, S ′′ are

identical for all S, S ′, S ′′ ∈ S.

Figure 3.1: Intuition of (d3)

This property says that if the belief states of three epistemic states are identical, then

the shortest distance is the distance between the two epistemic states which have the

minimal difference between their priorities. It reveals that the relationship between

the epistemic states, which have the same belief states, is like the points on a straight

line (Figure 3.1). It is an important clue for building the actual epistemic states in the

next chapter.

Different with the distance functions in [3, 32], d is not a pseudo-distance but a real

distance with triangle inequality like the distance between matrixes in [19]. Therefore,

the postulates imply a family of total quantitative instances of epistemic states.
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3.2.3 Concession Functions

By the reason of analysing the dynamic properties of epistemic states, we propose a

framework of concession functions which is intended to weaken some epistemic states

to coincide with some other epistemic states, i.e., the gap between two epistemic states

can be filled through such concession functions.

Definition 3.2.3. The concession function of epistemic states c : S × S → S is a

function which satisfies the following properties:

(c0) 4S⊆4c(S,S′),

(c1) Cc(S,S′) ∩ CS′ 6= ∅,

(c2) If CS ∩ CS′ 6= ∅, then c(S, S ′) = S,

(c3) pc(S,S′) = pS,

for all S, S ′ ∈ S.

Intuitively, as in figure 3.2, c(S, S ′) means the result of the concession of the epis-

temic state S toward S ′, i.e., S and S ′ are respectively the source and the target of the

conceded epistemic state c(S, S ′). In other words, c(S, S ′) ”pushes” the epistemic state

S toward S ′. The justification of (c0) is that the gradings of the conceded epistemic

states should not be more than their respective original epistemic states’.

Theorem 3.2.1. The property (c0) implies the following property:

(c4) CS ⊆ Cc(S,S′) for all S, S ′ ∈ S,

i.e., the conceded epistemic states are entailed by their respective original epistemic

states.

Proof. Because CS = C4S
= min4S

(W ) and Cc(S,S′) = C4c(S,S′)
= min4c(S,S′)

(W ). From

(c0), it follows that min4S
(W ) ⊆ min4c(S,S′)

(W ). Thus, for all S, S ′ ∈ S, we have

CS ⊆ Cc(S,S′).
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Figure 3.2: Concession Function

Therefore, (c0) and (c4) guarantees the safety of concession, i.e., the net contents

of the conceded epistemic states do not exceed the scope of the belief sets of their

respective original epistemic states.

(c1) and (c2) guarantees the success and the vacuity of concession, i.e., c(S, S ′)

pushes S toward S ′, untill the epistemic states S is consistent with S ′ or there is no

necessity to push at the beginning. These two properties are the essence of concession

functions due to the motivations of concession functions are revealed by them. In the

end, the property (c3) makes that the concession functions do not affect the priorities of

epistemic states. This property is attached because we want to simplify the behaviors

of concession functions. However, the necessity of (c3) is still arguable.

We have another property which is caused by the properties (c2):

Theorem 3.2.2. If the concession function c satisfies (c2), then c also satisfies the

following property:

(c5) c(S, S) = S for all S ∈ S.

Proof. The result trivially follows from (c2) and S ∩ S 6= ∅.
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The rationale of (c5) is that the concession of an epistemic state toward itself should

be itself, i.e., there should be no concession while we try to concede one epistemic state

toward itself.

To sum up this section, an abstract framework of epistemic states has been presented.

We have also introduced the concepts of the method of measuring distance between two

epistemic states and the concepts of concession functions. Based on these foundations,

we can begin to build the general framework of belief combination operators.

3.3 A General Framework of Belief Combination

One of the central idea of this thesis is to build a kind of belief change operators

which is sensitive to the priorities of epistemic states. We call this kind of operators

the belief combination operators (or functions). As the epistemic states are a snapshot

of the agents’ belief states and priorities, the belief functions should merge the belief

states and priorities simultaneously.

3.3.1 Combination Functions

A set of postulates is employed to represent the properties of combination functions.

We assume the combination function f which is a binay operator since it can be

implemented more easily and more efficiently. Thus, the formal definition of f is as

follow.

Definition 3.3.1. A combination function f : S ×S → S is a function which satisfies

the following properties:

(f0) f(S, S ′) ∈ S,

(f1) f(S, S ′) = f(S ′, S),

(f2) If S ′ = S ′′, then f(S, S ′) = f(S, S ′′),
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(f3) f(S, f(S ′, S ′′)) = f(f(S, S ′), S ′′),

(f4) If wi 4S wj and wi 4S′ wj, then wi 4f(S,S′) wj,

(f5) If pS ≤ pS′ , then d(S ′, f(S, S ′)) ≤ d(S, f(S, S ′)),

for all S, S ′, S ′′ ∈ S.

The first four postulates (f0), (f1), (f2) and (f3) focus on the mathematical proper-

ties of f that the closure, the commutativity, the extensionality and the associativity

are incured by the four postulates respectively. (f0) ensures that the result of combin-

ing two epistemic states should be still an epistemic state. (f1) makes the combination

functions to be the direction senseless functions. Then (f2) incurs that the semantically

identity epistemic states should be taken without bias. Associativity, which is incured

by (f3), is a useful property since it would ignore the order of combination. Intuitively,

if the order of two possible worlds are same in two epitemic states, then this order

should be maintained in the result epitemic state of combination functions, thus (f4)

implies this property. (f5) reveals that the result of combination should be closer to the

epistemic state which has the higher priority. Moreover, if the priority of one epistemic

state is high enough, then the distance between this epistemic state and the result of

combination may be close enough such that (f5) is degenerated to (AGMu2), i.e., the

(Success) postulate.

We call the postulates (f0)-(f5) the basic postulates of combination functions. In

these basic postulates, there is no postulate which is similar with the postulate (AGMu2)

in AGM framework or the postulate (BM4) in belief merging framework. Therefore,

the basic postulates of combination functions form a set of constraints which is mathe-

matically strong and epistemicly weak. Therefore, (f0)-(f5) seem to be good at building

the combination functions on the quantitative epistemic states.
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3.3.2 Supplementary Properties of Combination Functions

From the postulate (f4), some properties can be deduced. The most interesting pair

of priorities may be the inclusion postulate and the vacuity postulate. In other words,

(f4) is a generalised version of (AGMu3) and (AGMu4). If the net contents of two

epistemic states are consistent, then the net content of the combined epistemic state

is identical with the intersection of them, more precisely we have the following:

Theorem 3.3.1. If the function f satisfies the postulate (f4), then it has the following

properties:

(f6) CS ∩ CS′ ⊆ Cf(S,S′),

(f7) If CS ∩ CS′ 6= ∅, then Cf(S,S′) ⊆ CS ∩ CS′,

for all S, S ′ ∈ S.

Proof. Obviously, CS = C4S
= min4S

(W ), CS′ = C4S′ = min4S′ (W ) and Cf(S,S′) =

C4f(S,S′)
= min4f(S,S′)

(W ). If min4S
(W ) ∩ min4S′ (W ) = ∅, then it is trivial that

min4S
(W ) ∩ min4S′ (W ) ⊆ min4f(S,S′)

(W ). And if min4S
(W ) ∩ min4S′ (W ) 6= ∅,

then there exists i ∈ {1, 2, . . . , n} such that wi ∈ min4S
(W ) ∩ min4S′ (W ) and wi 4S

wj, wi 4S′ wj for all j ∈ {1, 2, . . . , n} and j 6= i. It follows from (f4) that also wi 4f(S,S′)

wj for all j ∈ {1, 2, . . . , n} and j 6= i. Then min4S
(W ) ∩min4S′ (W ) = min4f(S,S′)

(W )

iff min4S
(W ) ∩min4S′ (W ) 6= ∅, from which the result follows.

Furthermore we can get two other postulates which are similar with (AGMu7) and

(AGMu8):

Theorem 3.3.2. If the function f satisfies the postulates (f3) and (f4), then it has the

following properties:

(f8) Cf(S,S′) ∩ CS′′ ⊆ Cf(S,f(S′,S′′)),

(f9) If Cf(S,S′) ∩ CS′′ 6= ∅, then Cf(S,f(S′,S′′)) ⊆ Cf(S,S′) ∩ CS′′,



3.4. Summary 31

for all S, S ′, S ′′ ∈ S.

Proof. When Cf(S,S′) ∩ CS′′ = ∅, then it is trivial that Cf(S,S′) ∩ CS′′ ⊆ Cf(S,f(S′,S′′)).

And if Cf(S,S′) ∩ CS′′ 6= ∅, then it follows from Theorem 3.3.1 that Cf(f(S,S′),S′′) =

Cf(S,S′) ∩ CS′′ . From (f3), we have Cf(S,f(S′,S′′)) = Cf(f(S,S′),S′′), from which we have

Cf(S,f(S′,S′′)) = Cf(f(S,S′),S′′).

Obviously, (f8) and (f9) are weaker than (AGMu7) and (AGMu8).

Apparently, if we combine the conceded epistemic state with its target, then the

result of combination should be the intersection of the conceded epistemic state and

its target.

Theorem 3.3.3. If the concession function c satisfies the postulates (c1) and the com-

bination function f satisfies the postulates (f4), then f has the following property:

(f10) Cc(S,S′) ∩ CS′ = Cf(c(S,S′),S′) for all S, S ′ ∈ S.

Proof. If the combination function f satisfies the postulates (f4), then f also satisfies

(f6) and (f7). From (c1), it follows that Cc(S,S′) ∩ CS′ 6= ∅. Then Cc(S,S′) ∩ CS′ =

Cf(c(S,S′),S′) for all S, S ′ ∈ S which is from (f6) and (f7).

The relationship between the concession function c and the combination function

f is revealed by this theorem.

3.4 Summary

The concepts of epistemic states with embeded priorities, i.e., the (Class 3) models,

have been introduced in this chapter. Each of this kind of epistemic states consists of

a belief state, which is presented with a total preorder on W , and a priority, which

is presented with a number. However, this is just an abstract framework of epistemic

states. Then the frameworks of distance functions and concession functions have been
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built. We thus can measure and manipulate the epistemic states on purpose. The

postulate (d2) reveals the clue of the technical detail of epistemic states which will be

introduced in Chapter 4.

Then we have studied the basic postulates and the induced postulates by them. It

is remarkable that (f0)-(f5) are adept at the combination functions of epistemic states

in which the belief states are presented in some quantitative methods. Thus we will

use such a method in Chapter 4.



Chapter 4

Epistemic Vectors

We are going to build the actual epistemic states in this chapter based on the abstract

frameworks which have been introduced in Chapter 3, and the belief states of epistemic

states will utilize a quantitative method to impart the total pre-orders on the set of all

possible worlds W . Furthermore, we will carefully design this quantitative method in

order to embed the priorities into the epistemic states.

4.1 Generalised Ordinal Conditional Functions

Based on Chapter 3, the most direct way to build (Class 3) models is to generalise

the (Class 2) models. So we first generalise the framework of ordinal conditional func-

tions as an attempt to build epistemic states. By generalising the ordinal conditional

functions, we expect to impart the information of priorities into it.

4.1.1 Extended OCF

Thus, we define the extended ordinal conditional functions in the following way:

Definition 4.1.1. An extended ordinal conditional function (EOCF) κe is a function

from W into the set of all nonnegative real numbers R−, i.e., κe : W → R−. Moreover,

we define that for all A ∈ B \ {∅}, κe(A) = min({κe(w)|w ∈ A}). We also define that

the priority of the EOCF κe as pκe = min({κe(w)|w ∈ A}). And the set of all possible

epistemic vectors is denoted V .

33



4.1. Generalised Ordinal Conditional Functions 34

In the above definition, an EOCF assigns a nonnegative real number to each possible

world and each proposition. We can say each EOCF is also an epistemic state. In

the state κe, Cκe = {w|κe(w) = min({κe(w)|w ∈ A})} is the net content. In other

words, the net content of κe is the set of the possible worlds which make that κe

gets the minimal value. Therefore, the proposition A is believed in the state κe iff

κe(A) = min({κe(W )|w ∈ W}) and κe(A) > min({κe(W )|w ∈ W}).

Definition 4.1.2. The extended firmness αe of a proposition A relative to κe is defined

as:

αe =

 κe(A) if κe(A) = min({κe(W )|w ∈ W})

−κe(A) if κe(A) > min({κe(W )|w ∈ W})

From definition 4.1.2, if the firmness αe of a proposition A in the state κe is a

positive, a negative or 0, then, respectively, A is believed, disbelieved or neutral with

firmness αe in the state κe.

The next two definitions introduce a kind of belief change on EOCF through gener-

alising the belief change on OCF.

Definition 4.1.3. Suppose κe is an EOCF and A ∈ B \ {∅}. Then κe(w|A) =

−κe(A) + κe(w) + min({κe(W )|w ∈ W}) for all w ∈ A. We also define κe(B|A) =

−κe(A) + κe(A ∩B) + min({κe(W )|w ∈ W}) for B ∈ B with A ∩B 6= ∅.

Thus, κe(w|A) is intended to shift EOCF value for A to be the minimal value of

κe.

Definition 4.1.4. Let κe be an EOCF, A ∈ B \ {∅}, and αe ∈ R−. Then κeA,αe is an

EOCF which satifies the following equation:

κeA,αe =

 κe(w|A) if w ∈ A

αe + κe(w|A) if w ∈ A

κeA,αe is called the A, αe-conditionalization of κe.
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The above definition of the A, αe-conditionalization of κe is the central idea of the

dynamics of epistemic states. It implies that the epistemic state κe is revised by a

proposition A. Thus, the essence of the belief change on EOCF is a kind of prioritised

belief revision.

4.1.2 Problems with EOCF

So far, we have tried to employ EOCFs as our epistemic states. But there are some

problems which cause EOCFs to be some unsuitable carriers of epistemic states. First

of all, the definition of the priorities of EOCFs is farfetched and unintuitionistic, i.e.,

the priorities are abruptly defined as the minimal values of EOCFs. Secondly, the belief

change of EOCF is hard to fit the framework in Definition 3.3.1.

However, EOCF is still a good start point to build our epistemic states. In the next

section, we will introduce a new representation of epistemic states, which is different

with EOCF, but enlightened by it.

4.2 Modeling Epistemic States with Epistemic Vec-

tors

Holding the purpose of modeling the belief states and grading the priorities of epis-

temic states together, we should provide a unified and coherent framework in which

the degrees of deliberation and the contents of epistemic states will be expressed and

associated properly. By assuming each possible world can be treated as the indepen-

dent element of thinking, i.e. the evaluation of one possible world will not affect the

evaluation of the other one, we can measure the attitudes of agents on each possible

world separately. Obviously, an agent can have three different kinds of attitude on

each possible world: believing, disbelieving or neutral, hence our measurements must
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be endued with the ability to evaluate all three kinds of attitudes. On the other hand,

the measurements should also expose the priorities of agents which not depends on any

oracle but the epistemic states of agents, e.g., in a group of people, usually, the one

who spent the most resources(time, physical force, etc.) to think about a problem has

the most important opinion in the discussion of this problem.

4.2.1 Epistemic Vectors as Epistemic States

By assuming the epistemic states as points in geometry, from (d3), it follows that

the epistemic states which have the identical belief states are the points on the same

straight line. Consequently, we can safely assume that the epistemic states which have

different belief states with each other should on different lines. It seems that these

properties have close association with the vectors in the same quadrant. Thus, we may

treat the epistemic states as vectors in some sort of space. The above ideas arouse the

following discussion.

Intuitively, we may define the possible world wi as the i-th dimensional axis of the

Euclidean n-space Rn. If there are totally n possible worlds in W , i.e., |W | = n, then

we define such space the n-dimensional epistemic space. So each point of the epistemic

space has a coordinate measured by n possible worlds and the i-th element of the

coordinate is measured by wi.

Definition 4.2.1. An epistemic vector V = 〈v1, v2, . . . , vn〉 is a n-dimensional vector

in the Euclidean n-space Rn where n ∈ I+ and n = |W |. Moreover, we call |vi| the

maturity of V on wi and εi = vi

|vi| (we define vi

|vi| = 0 iff vi = 0) the signal of faith (SOF)

of V on wi for all i ∈ [1, 2, . . . , n].

In the epistemic vector V , wi is believed or disbelieved iff, respectively, SOF εi = +1

or εi = −1; wi is taken neutrally by V when εi = 0. The maturity of V on wi, i.e. vi,

coule be explained as the depth of thinking of V on wi. In other worlds, with more
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maturity of V on wi, it takes more cost to change the SOF εi. For example, suppose

V = 〈. . . , vi, . . . , vj, . . . 〉, if vi = 4 and vj = −6, then the agent believes wi with the

maturity 4 and disbelieves wj with the maturity 6. Thus, the total maturity of V is a

measurement of stability of the epistemic state implied by V . We define the length of

V as the total maturity of V .

Definition 4.2.2. We define the length of the vector |V | the total maturity of the

epistemic vector V , i.e., |V | =
√∑n

i=1 v2
i . See Figure 4.1 for an example.

Figure 4.1: Total Maturity of V

Intuitively, the total maturity of V is a complex of an agent’s deliberation on all

possible worlds. So we define the total maturity of V as the priority of V , i.e., pV = |V |.

4.2.2 Belief States of Epistemic Vectors

Sometime we need focus on the contents of epistemic vectors and thus we should get

rid of the information of the priorities of such epistemic vectors. Different with the

method of normalization of OCF in [42], we will decrease or increase the elements of

the epistemic vector V pro rata in our process of normalization. From another point

of view, we will get rid of the length of V , for the length of V is the information of the

priority of V . Therefore the normalized epistemic vector V should be the norm of V

(Figure 4.2).
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Figure 4.2: Normalized Epistemic States

Definition 4.2.3. The normalized epistemic vector V̂ of V is defined by:

V̂ =
V

|V |
(|V | 6= 0)

= 〈v1/

√√√√ n∑
i=1

v2
i , v2/

√√√√ n∑
i=1

v2
i , . . . , vn/

√√√√ n∑
i=1

v2
i 〉

Hence V̂ is the belief state of V . Apparently, when we try to focus on the belief

states of a group of epistemic vectors, we should convert them to have the same priority,

i.e. to make them to have the same maturity. For example, by Definition 4.2.3,

{k · V̂1, k · V̂2, . . . }, where k ∈ (R), is called coequalized group of {V1, V2, . . . }.

4.2.3 Plausible Orders of Epistemic Vectors

Since we have the definition of the priorities of epistemic vectors, we have also ex-

tracted the belief states from epistemic vectors. By taking the possible worlds as the

axises of epistemic space, we can intuitively define that the distance between an epis-

temic vector and an axis (or a possible world) is the degree of the epistemic vector

liking or disliking the possible world.

Definition 4.2.4. The plausibility ρi of the possible world wi for the epistemic vector

V is the distance between the vector Vaxis(i) = 〈0, 0, . . . , vi, . . . , 0〉 and V . Then we
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have:

ρi =
√

v2
1 + v2

2 + . . . + v2
i−1 + v2

i+1 + . . . + v2
n

=

√√√√ n∑
j=1

v2
j − v2

i

Figure 4.3: Plausibility of V

The plausibility of the possible world wi in V is the distance between wi and V

(Figure 4.3). Simply, from V , the closest possible worlds with V are the most plausible

possible worlds for V . However, that is not correct. An epistemic vector expresses not

only the degrees of belief but also the degrees of disbelief. Therefore, for V , if εi = +1,

then ρi is the plausibility of believing wi, i.e., the closer distance means the higher

plausibility of believing, or the ”grading of disbelief” [49] of wi; if εi = −1, then ρi is

the plausibility of disbelieving wi, i.e., the closer distance means the higher plausibility

of disbelieving, or the grading of dis-disbelief of wi. In other words, the plausibility of

the possible world wi in V is the distance between V and the affirmation or denial of

wi.

Obviously, there is a close relationship between the maturities and the plausibilities

as follow:

Theorem 4.2.1. Let V = 〈v1, v2, . . . , vn〉 be an epistemic vector. ρi ≤ ρj iff |vi| ≥ |vj|

for all i, j ∈ {1, 2, . . . , n}.



4.2. Modeling Epistemic States with Epistemic Vectors 40

Proof. Obviously, we have
√∑n

j=1 v2
j − v2

i =
√
|V |2 − |vi|2 for all i ∈ {1, 2, . . . , n}.

And
√
|V |2 − |vi|2 ≤

√
|V |2 − |vj|2 iff |vi| ≥ |vj| for all i, j ∈ {1, 2, . . . , n}. Therefore,

from Definition 4.2.4 it follows that ρi ≤ ρj iff |vi| ≥ |vj| for all i, j ∈ {1, 2, . . . , n}.

Thus, there is an inverse ratio between the plausibility ρi and the i-th factor vi of

the epistemic vector V for any i ∈ {1, 2, . . . , n}.

Next, the plausible orders of epistemic vectors are introduced as follow:

Definition 4.2.5. The plausible order 4 on W implied by an epistemic vector V =

〈v1, v2, . . . , vn〉 is defined by:

1. when εi = εj, wi 4 wj iff εiρi ≤ εjρj,

2. when εi 6= εj, wi 4 wj iff εjρj < εiρi

for all i, j ∈ {1, 2, . . . , n}. Moreover, we define:

• wi ∼ wj iff wi 4 wj and wj 4 wi,

• wi ≺ wj iff wi 4 wj and wi � wj,

• wi � wj iff wj 4 wi and wj � wi

for all i, j ∈ {1, 2, . . . , n}. Refer table 4.1.

We denote the plausible order of V as 4V . wi 4V wj means that the possible world

wi is at least as plausible as the possible world wj. Obviously, 4V is a total pre-order

on W . Hence 4V is the qualitative aspect of the belief state of V .

There is a tight relationship between the plausible order 4V and the maturities of

V , more precisely we have the following:

Theorem 4.2.2. The plausible order 4V on W implied by an epistemic vector V =

〈v1, v2, . . . , vn〉 can be also got by: wi 4V wj iff vj ≤ vi for all i, j ∈ {1, 2, . . . , n}.
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εi εi ρi ρj wi wj

> �
+1 +1 = ∼

< ≺
> ≺

+1 −1 = ≺
< ≺
> �

−1 +1 = �
< �
> ≺

−1 −1 = ∼
< �

+1 0 < ≺

0 +1 > �

−1 0 < �

0 −1 > ≺

0 0 = ∼

Table 4.1: Plausible Order of W

Proof. We have εiρi ≤ εjρj iff εi|vi| ≥ εj|vj| for all i, j ∈ {1, 2, . . . , n} based on Theorem

4.2.1. So from Definition 4.2.5 it follows that:

1. when εi = εj, wi 4V wj iff εi|vi| ≥ εj|vj|,

2. when εi 6= εj, wi 4V wj iff εi|vi| > εj|vj|

for all i, j ∈ {1, 2, . . . , n}. And εi|vi| = vi by Definition 4.2.1. So wi 4V wj iff vj ≤ vi

for all i, j ∈ {1, 2, . . . , n}.

Trivially, we can get the net content through the following methods:
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Definition 4.2.6. The net content CV of an epistemic vector V = 〈v1, v2, . . . , vn〉 is

defined by CV = min4V
(W ) = {wi|wi 4V wj for all j, and i, j ∈ {1, 2, . . . , n}}.

Theorem 4.2.3. Let V = 〈v1, v2, . . . , vn〉 be an epistemic vector. wi ∈ CV iff vi =

max({v1, v2, . . . , vn}), i ∈ {1, 2, . . . , n}.

Proof. Let i ∈ {1, 2, . . . , n}, then vi = max({v1, v2, . . . , vn}) iff vj ≤ vi for all j ∈

{1, 2, . . . , n}. And from Theorem 4.2.2, wi 4V wj for all j ∈ {1, 2, . . . , n} iff vj ≤ vi for

all j ∈ {1, 2, . . . , n}. Thus wi ∈ ϕ(V ) iff vi = max({v1, v2, . . . , vn}), i ∈ {1, 2, . . . , n}

by Definition 4.2.6.

Example 4.2.1. Suppose a language L includes only 3 different propositional variables,

which means that there are totally 8 possible worlds in W , i.e., W = {w1, w2, . . . , w8}.

Assume that an epistemic vector in this language is V = 〈−6, 3, 9, 6, 9, 5, 2, 1〉. Thus,

the maturity of V is |V | ≈ 16.5227. Because v1 = −6, v2 = 3 and v3 = 9, so the agent

disbelieves w1 with a plausibility 15.3948, believes w2 with a plausibility 16.2481 and

believes w3 with a plausibility 13.8564, and so we can get all plausibilities of w4-w8.

Moreover, it is obvious that w1-w8 satisfy w3 ∼ w5 ≺ w4 ≺ w6 ≺ w2 ≺ w7 ≺ w8 ≺ w1.

Therefore the net content of V is CV = {w3, w5}.

So far, the complete structure of epistemic states has been constructed. We define

these epistemic vectors as the instances of our abstract epistemic states, i.e., for all

v ∈ V , |V |, V̂ and CV are respectively the priority, the belief state and the net content

of the epistemic state V .

4.2.4 Direction Vectors of Epistemic Vectors

By Theorem 4.2.2, the plausible order of an epistemic vector V can be decided by

the proportionality of all elements in V , i.e., the direction of V . In other words, the

direction of V implies the belief state of the epistemic vector V , and the maturity

(length) of V implies the priority of V . Therefore, an epistemic vector can be also
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represented by the pair of its direction ΘV and its length |V |, i.e., V = 〈ΘV , |V |〉. The

direction of V is defined by the direction cosines as the following definition:

Definition 4.2.7. A direction vector of an epistemic vector V is denoted by ΘV =

〈α1, α2, . . . , αn〉. And for all i ∈ {1, 2, . . . , n}, we have

αi =
vi

|V |
=

vi√∑n
j=1 v2

j

.

If the angle between V and the possible world wi is θi, then αi is the cosine of θi,

i.e., αi = cos(θi). Thus, V = 〈ΘV , |V |〉 = ΘV · |V | = 〈α1 · |V |, α1 · |V |, . . . , α1 · |V |〉.

Obviously, the smaller the angle between V and wi is, the more the possible world wi

is believed in V .

There are two purposes for the concept of direction vectors being aroused. Firstly,

an epistemic vector’s belief state can be changed by changing its direction vector,

hence its priority is kept. Secondly, the direction cosines of V can be close related to

the possibilistic theory or the bipolar possibilistic theory [5]. Intuitively, the direction

cosine ΘV (wi) = αi can be a posibility distribution on W , because −1 ≤ αi ≤ 1. We

can define that αi = −1 means that the chance of wi being disbelieved is 100 percent,

and contrarily, αi = 1 means that the chance of wi being believed is 100 percent. We do

not want to talk more about the relationship between our theory and the possibilistic

theory because of the limited problem scope in this thesis. Please refer [11] if more

detail explanations of possibilistic logic are necessary.

4.2.5 Distances of Epistemic Vectors

For measuring the distance between two epistemic vectors, we choose our distance

function as an Euclidean distance function because it is the most traditional distance

function in Euclidean spaces. The second reason is of the importance of Euclidean

distance functions which satify many useful properties [8].
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Definition 4.2.8. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. Then the distance between V and U can be calculated as follow:

d(V, U) =

√√√√ n∑
i=1

(vi − ui)2

Theorem 4.2.4. The distance function of epistemic vectors d : V ×V → R−, which is

intrduced in Definition 4.2.8, satisfies the postulates (d0)-(d3).

Proof. Because d(V, U) is the Euclidean distance, the provements of (d0), (d1) and

(d2) are trivial. For (d3), let V = 〈v1, v2, . . . , vn〉, U = 〈u1, u2, . . . , un〉 and Y =

〈y1, y2, . . . , yn〉 be three epistemic vectors for which V̂ = Û = Ŷ . Hence there exists

k1, k2 ∈ R such that U = k1 · V and Y = k2 · V . Then pV =
√∑n

i=1 v2
i , pU =

k1 ·
√∑n

i=1 v2
i and pY = k2 ·

√∑n
i=1 v2

i . Suppose |pV − pU | ≤ |pV − pY |. It follows that

|1 − k1| ≤ |1 − k2|. And we have d(V, U) =
√∑n

i=1(vi − ui)2 = |1 − k1| ·
√∑n

i=1 v2
i

and d(V, Y ) =
√∑n

i=1(vi − yi)2 = |1− k2| ·
√∑n

i=1 v2
i . Thus, d(V, U) ≤ d(V, Y ), from

which the result follows.

So the distance function in Definition 4.2.8 satisfies all postulates of distance func-

tions. From another point of view, the consistency of (d0)-(d3) has been proved by

this result.

4.3 Dynamic Epistemic Vectors

Last section focuses on the static structure of epistemic vectors, and now our at-

tention turns to the dynamics of epistemic vectors. The characteristics of concession

functions and combination functions will be studied after we give the definitions of

them.
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4.3.1 Concessions of Epistemic Vectors

Intuitively, assume that the tail of the vector V is anchored on the origin of the n-

dimensional epistemic space, and the length of V is fixed. For conceding an epistemic

vector V toward U , the most direct way is to push V toward U . In the process of

pushing, the vector V rotates around the origin, and the angle between V and U

will be continuely decreased. The above process is complex to be expressed formally

because the rotation in a high dimensional space is tricky. Thus, we provide another

proposal which is much simple and easy to implement.

Definition 4.3.1. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. The concession function of epistemic vectors

c(V, U) =
|V |

|V + Λ|
· (V + Λ)

in which Λ = 〈λ1, λ2, . . . , λn〉 and

λi =

 0 if wi /∈ min4V
(min4U

(W ))

max(V )− vi if wi ∈ min4V
(min4U

(W )), and if λ1 = . . . = λi−1 = 0 for i 6= 1

for all i ∈ {1, 2, . . . , n}.

The purpose of function c(V, U) is to promote exactly one possible world, which is

one in the net content of U and it is simultaneously the nearest possible world with

V ’s net content, to be one of the most plausible possible worlds of V if CV ∩ CU = ∅.

Example 4.3.1. Suppose there are two epistemic vectors V = 〈−6, 3, 9, 6, 9, 5, 2, 1〉

and U = 〈20, 1, 7, 8,−4, 3,−2, 6〉. When we concede V towards U we have c(V, U) =

〈9, 3, 9, 6, 9, 5, 2, 1〉, and from another direction, when U is conceded towards V the

result is c(U, V ) = 〈20, 1, 20, 8,−4, 3,−2, 6〉.

Theorem 4.3.1. The concession function of epistemic vectors in Definition 4.3.1 sat-

ifies the postulates (c0)-(c5).
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Proof. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic vectors.

For (c0), suppose λi is the only nonzero element in Λ, hence vi + λi = max(V ).

So 4V +Λ=4V +wi 4 w1, wi 4 w2, . . . , wi 4 wn, i.e., 4V⊆4V +Λ. Because we have

4c(V,U)=4V +Λ, so it follows that 4V⊆4c(V,U). For (c1) and (c2), from Definition 4.3.1,

if CV ∩ CU = ∅, then suppose λi is the only nonzero element in Λ, hence we have

wi ∈ Cc(V,U) ∩ CU 6= ∅. If CV ∩ CU 6= ∅, then Λ = 〈0, 0, . . . , 0〉. Thus, it follows that

c(V, U) = 1 · V = V . The proof of (c3) is trivial. (c4) and (c5) follows from (c0) and

(c2) respectively.

So the postulates of concession functions are consistent.

4.3.2 Addition as Combination Function

The combination of forces in classical physics is an interesting and practical analogy

of the combination of epistemic vectors: the combination of epistemic vectors is like the

situation that a group agents try to use their forces, i.e., their knowledge, to drag the

origin. Thus, this metaphor sparks us to use the addition operator as the combination

function of epistemic vectors.

Definition 4.3.2. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. The combination function of epistemic vectors f(V, U) = V + U .

Please refer Figure 4.4 for an example of the combination function.

Figure 4.4: Combination of Two Epistemic States

Theorem 4.3.2. The combination function of epistemic vectors in definition 4.3.2

satifies the postulates (f0)-(f10).
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Proof. The proof of (f0)-(f3) is trivial. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉

be two epistemic vectors. For (f4), assume wi 4V wj and wi 4U wj. From Theo-

rem 4.2.2, it follows that vj ≤ vi and uj ≤ ui. Trivially, vj + uj ≤ vi + ui, hence

wi 4V +U wj. For (f5), d(U, f(V, U)) =
√∑n

i=1(ui − (vi + ui))2 =
√∑n

i=1 v2
i = pV and

d(V, f(V, U)) =
√∑n

i=1 u2
i = pU . Thus, d(U, f(V, U)) ≤ d(V, f(V, U)) when pV ≤ pU .

(f6)-(f10) follows from (f3), (f4) and (c1) as in Chapter 3.

Thus, we have also proved the consistency of (f0)-(f10).

4.3.3 Belief Combination on Epistemic Vectors

Finally, we can show that the situation in Example 1.2.1 may happen in our frame-

work:

Lemma 4.3.3. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. If vi ≥ vj and ui < uj, then there exists k ≥ 0 such that vi +k ·ui = vj +k ·uj,

i, j ∈ {1, 2, . . . , n} and k ∈ R.

Proof. Obviously, when vi ≥ vj, ui < uj and k =
vi−vj

uj−ui
, we have k ≥ 0 and vi + k ·ui =

vj + k · uj.

Lemma 4.3.3 implies that the difference of statuses between two possible worlds of

an epistemic vector can be evened by another suitable epistemic vector.

Lemma 4.3.4. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. If vi ≥ vj and ui < uj, then there exists ξ ≥ 0 such that vi + k · ui < vj + k · uj

for all k > ξ, i, j ∈ {1, 2, . . . , n} and k, ξ ∈ R.

Proof. Let vi ≥ vj, ui < uj and ξ =
vi−vj

uj−ui
. From Lemma 4.3.3, we have vi + ξ · ui =

vj + ξ · uj. Assume that δ ∈ R and δ > 0 such that k = ξ + δ. It follows that

vi + k · ui = vi + (ξ + δ) · ui = vi + ξ · ui + δ · ui

and

vj + k · uj = vj + (ξ + δ) · uj = vj + ξ · uj + δ · uj
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Consequently, vi + k · ui < vj + k · uj.

Lemma 4.3.5. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. If wi 4V wj and wj ≺U wi, then there exists ξ ≥ 0 such that wj ≺V +k·U wi for

all k > ξ, i, j ∈ {1, 2, . . . , n} and k, ξ ∈ R.

Proof. Let wi 4V wj and wj ≺U wi. It follows that vi ≥ vj and ui < uj by Theorem

4.2.2. From Lemma 4.3.4, then there exists ξ ≥ 0 such that vi + k · ui < vj + k · uj

for all k > ξ, i, j ∈ {1, 2, . . . , n} and k, ξ ∈ R, from which the result follows by, again,

Theorem 4.2.2.

Lemma 4.3.4 and Lemma 4.3.5 together show that the statuses of two possible

worlds of an epistemic vector can be reversed by another suitable epistemic vector.

Theorem 4.3.6. Let V = 〈v1, v2, . . . , vn〉 and U = 〈u1, u2, . . . , un〉 be two epistemic

vectors. There exists ξ ≥ 0 such that CV +k·U ⊆ CU for all k > ξ, k, ξ ∈ R.

Proof. Suppose w ∈ CU , hence w ≺U w′ for all w′ /∈ CU . From Lemma 4.3.5, there

exists ξ ∈ R such that w ≺V +ξ·U w′ for all w′ 6= w or w ∈ CV +ξ·U , from which the result

follows.

Therefore, the combination of two epistemic vectors can totally accept the epistemic

vector whose priority is high enough. Moreover, Theorem 4.3.6 further reveals that

our combination function will satisfy the (Success) postulate in AGM theory when the

difference of the maturities of two epistemic vectors becomes extremely high.

4.4 Related Works with Belief Change on Epistemic

Vectors

Now, we have introduced the complete idea of epistemic vectors and provided some

dynamic mechanisms on this kind of epistemic states. In this section, we will compare

our epistemic vector theory with some existing works.
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There are two theories which attract our attention: Thomas Meyer’s combination

operations (Section 2.3.3), and Sébastien Konieczny, Jérôme Lang and Pierre Marquis’s

distance based merging theory (Section 2.3.4). At first glance, Thomas Meyer’s combi-

nation operators are similar with the combinations of epistemic vectors, i.e., they are

all operations of combining the quantified pre-orders. Then it seems that the combi-

nation operators on epistemic vectors can be instantialized by distance based merging

framework. Therefore, our discussion will focus on these two theories.

4.4.1 Comparing with Combination Operations

An epistemic vector V and a Thomas Meyer’s epistemic state Φ are all functions from

the set of all possible worlds to the set of numbers, i.e., V : W → R and Φ : W → I−.

Obviously, V has more power of expression, e.g., V can assign negtive numbers to

possible worlds to represent the degrees of dislike. One important thing is that V will

never get into the inconsistency while Φ has such chance, i.e., when Φ(w) 6= 0 for all

w ∈ W (the ancestors of Φ - ordinal conditional functions - have the mechanism to

prevent the inconsistency, refer Section 2.2.3).

The above characteristic of Φ then arouses (CO0) which is actually an embeded

operator in a combination operator. It is easy to get that the combination functions

of epistemic vectors satisfy (CO2), (CO3) and (CO5). Moreover, the postulate (f5)

stipulate the direction of combination, which does not occur in Thomas Meyer’s theory.

V can be prioritized by its own content, hence the direction of combination functions

are mainly controled by the properties of epistemic vectors. In combination operation

theory, there is no problem to build ”free directional operators” (i.e., the operators

which do not force the results of combination to include or exclude something) because

(BM4) has been abandoned. Unfortunately, combination operation theory has just

provided some very weak postulates to direct the combination results.
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Let us observe a combination operation ΠΣ which is very similar to our combination

function of epistemic vectors: let E = [Φ1, Φ2, . . . , Φn] be a finite epistemic list. Let

ΦE
Σ(w) =

∑n
i=1 Φi(w). Then ΠΣ(E)(w) = ΦE

Σ(w)−min({ΦE
Σ(w)|w ∈ W}). It has been

proved in [42] that ΠΣ satisfies (CO0)-(CO6), (CO-Comm), (CO-Majority) and (BM6),

and it does not satisfy (CO-Arbitration) and (BM4).

Based on our postulates of combination functions, it is easy to prove that ΠΣ satisfies

(f0)-(f2), (f4), (f6) and (f7), and it does not satisfy (f3), (f5) and (f8)-(f10).

4.4.2 Comparing with Distance Based Merging

The most important thing is that in distance based merging theory, from the ge-

ometrical point of view, the possible worlds can be treated a points in space, hence

there is the concept of the distances between possible worlds. But in our theory, pos-

sible worlds are a bunch of measures which are used to locate the positions of points

(Figure 4.5). If we must define the distances between possible worlds in epistemic vec-

tors theory, then the distance between any two possible worlds should be zero because

the n possible worlds are n orthogonal straight lines which are jointed at the origin.

Therefore, (DBM-pd2) is not feasible for the distances between epistemic vectors.

We can revise (DBM-pd2) to make the postulates of distance functions in distance

based merging theory to adapt the concepts of epistemic vectors.

(DBM-pd2-ev) pd(wi, V ) =
√∑n

j=1 v2
j − v2

i , for all wi ∈ W and any epistemic vector

V .

4.4.3 Other Related Works

Similar with epistemic vectors theory, the bipolar representation of knowledge in-

troduced in [5] is an interesting knowledge representation in which both possible and
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Figure 4.5: Possible Worlds in Distance Based Merging Theory (Left) and Epistemic
Vectors Theory (Right)

negative preferences can be expressed. Epistemic vectors utilize the signals of faith to

indicate agents’ agreements or disagreements of belief, and [5] uses sets of goals and

rejections to capture the similar function. Although the whole story of epistemic vec-

tors is in the scope of deterministic epistemology so far, similar with its kin - ordinal

conditional functions theory - it has a close relationship with probability theory. On

the theory of possibilistic knowledge combination, we can find some useful conclusions

from [6] and [10], and also a theory between possibilistic logic and classical logic [9].

Epistemic vectors may be further developed into the field of possibilistic theory.

4.5 Summary

We have tried to use EOCF to fit the framework proposed in Chapter 3 at the

beginning of this chapter. Since the problems of EOCF have been pointed out, we

turned to a new model of epistemic states. Then, the concepts of epistemic vectors have

been introduced. By employing the knowledge of high dimensional analytic geometry,

the problem of fusing the belief states and the priorities has been solved properly.

After constructing the dynamic mechanism of epistemic vectors, we showed that the

combination function on epistemic vectors fulfilled requirements in our proposal. In the
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end, we have compared the epistemic vectors theory with the combination operations

theory and the distance based merging theory.



Chapter 5

Conclusion and Future Work

It seems that the content of the study of belief change consists of two aspects: the

representation of agents’ beliefs and the dynamics of agents’ beliefs. The former inves-

tigates the static properties of knowledge, and the latter reveals the rules of knowledge

change. Therefore, almost every method of belief change has been studied in both

static and dynamic way and so did we.

In this thesis, a framework of epistemic states has been proposed in the first place to

constrain the scope in which the belief changes would happen. In Chapter 3, a (Class 3)

framework which consists of an abstract representation of belief states and priorities has

been introduced. Then we established a framework to measure the distance between

two epistemic states. Remarkablely, different with the concepts of distances in distance

based revision [3, 32, 48], d is a kind of real distances but not a pseudo-distance. Thus,

this kind of distance functions is ready for a totally quantitative method of knowledge

representation. Next, the framework of concession functions has been provided for

relaxing the restrictions of the belief states implied by the relevant epistemic states,

i.e., contracting some sentences from the belief states implied by the relevant epistemic

states. The significance of concession functions is to provide a method for changing an

epistemic state toward another one as a target.

53
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In Chapter 3, (d3) and (c3) have revealed separability of the belief states and the

priorities of epistemic states. In other words, in our proposed frameworks, we have the

ability to change the belief state of an epistemic state without affecting its priority,

and vice versa. Furthermore, the belief state and the priority of one epistemic state

are two interrelated independent components.

In the end of Chapter 3, a set of postulates of combination functions has been

provided. Before proposing any postulates, our first assumption is that the combination

functions should be binary. This assumption has aroused the motivation of (f1)-(f3)

which ensure f ’s ability of iteration as a binary operator. (f4) has revealed some

potential relations between our combination functions and the AGM revision operators.

Then (f5) has ensured the direction of belief change.

Following the discussion of Chapter 3, Chapter 4 has proposed a detailed structure

of epistemic states and an detailed method of the belief combinations on such epistemic

states. Through the epistemic state and the combination function in Chapter 4, we

have also proved the consistency of all postulates proposed in Chapter 3.

The proposed epistemic states has been called epistemic vectors in this dissertation

because we have utilized the n-dimensional vectors to bear the properties of epistemic

states. Thus, the knowledge representation by epistemic vectors is a totally quantitative

method of knowledge representations. Naturally, it has inherited many characteristics

of normal n-dimensional vectors, but we have only focused on those characteristics

which are related to our topic.

Firstly, the definition of epistemic vectors has been established in Chapter 4. And

then, the mechanisms of the integration of belief states and priorities have been in-

troduced. Based on these definitions, each epistemic vector implies two different total

pre-orders: the total pre-order of all possible worlds W and the total pre-order of all
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epistemic states (or epistemic vectors) S which imply respectively the entrenchment of

beliefs and the importances of agents.

Finally, the addition of epistemic vectors has been taken as the combination opera-

tion of epistemic vectors. Moreover, we have proved this combination operator which

satisfies our purpose of this thesis: to banish the borderline between the belief change

operations on prioritised and non-prioritised agents.

One important problem which has not been discussed is the meaning of the zero

epistemic vector V = 〈v1, v2, . . . , vn〉 in which v1 = v2 = . . . = vn = 0. For convenience,

the zero epistemic vector is denoted by 0. Obviously, V + 0 = V , c(V,0) = V and

c(0, V ) = 0 for all V . Moreover, 0 has no norm because the maturity of 0 is 0, i.e.,

|0| = 0. Therefore, 0 is a tautology with the mature 0. In other words, 0 is an epistemic

state on which an agent has no ideal about anything, i.e., a ”baby” agent. The problem

is whether it is correct to allow the combination of two non-zero epistemic vectors to

be 0. If it is necessary, for all V 6= 0 and U 6= 0 such that f(V, U) = 0, we may

use the concession function to ”shake” the result out of the zero epistemic vector, i.e.,

f(c(V, U), U) or f(V, c(U, V )).

Furthermore, by treating the zero epistemic vector as the epistemic state of a ”baby”

agent, we can use 0 as a start point of an agent’s life scope. In other words, each agent is

born with the zero epistemic vector, and since then, it continuously acquire knowledge

from the outer world to build up its own epistemic state. By utilizing the concepts of

epistemic vectors, we can give a function l : T → V , in which T is the set of time and

V is the set of all epistemic vectors, to describe the change of the agent’s epistemic

state in its whole life, i.e., l(t) = V means the agent’s epistemic vectors is V at time t

and l(0) = 0. Therefore, this gives us the chance to use the mathematical analysis to

analyse the epistemic behaviors of agents or groups of agents.
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Our epistemic vectors are vectors in a finite dimensional space. Another direction of

the study of epistemic vectors may be the epistemic vectors in a infinite dimensional

space, hence the research will be taken into the territory of functional analysis. Another

interesting idea is that if every epistemic vector is taken as a point in a n-dimensional

space, then we may connect the belief change with the pattern recognition. These all

will be left to future work.
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Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the Sixth International Conference (KR

’98), pages 488–498, San Francisco, California, 1998. Morgan Kaufmann.
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