
University of Wollongong - Research Online
Thesis Collection

Title: Viewpoints consistency management using belief merging operators

Author: Q Lin

Year: 2004

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

Viewpoints consistency management

using belief merging operators

Qiuming Lin
University of Wollongong

Lin, Qiuming, Viewpoints consistency management using belief merging operators,
M.Info.Sys. thesis, School of Economics and Information Systems, University of Wollongong,
2004. http://ro.uow.edu.au/theses/458

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/458

VIEWPOINTS CONSISTENCY MANAGEMENT

USING BELIEF MERGING OPERATORS

A thesis submitted in fulfilment of the

requirements for the award of the degree

MASTER OF INFORMATION SYSTEMS BY RESEARCH

from

UNIVERSITY OF WOLLONGONG

by

QIUMING LIN

School of Economcs & Information Systems

2004

CERTIFICATION

I, Qiuming Lin, declare that this thesis, submitted in fulfilment of

the requirements for the award of Master of Information Systems by

Research, in the School of Economcs & Information Systems, University

of Wollongong, is wholly my own work unless otherwise referenced or

acknowledged. The document has not been submitted for qualifications

at any other academic institution.

Qiuming Lin

March 2004

ii

Table of Contents

Table of Contents iii

Abstract vi

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 4

1.3 Organization of the Thesis . 7

2 Background 9

2.1 Inconsistency Management in requirements engineering 9

2.1.1 What is Inconsistency? . 10

2.1.2 Inconsistency Management . 14

2.1.3 Approaches to Inconsistency Management 16

2.2 Requirements Negotiation . 24

2.3 Social Choice Theory . 28

2.4 Belief Merging . 30

2.5 Formal Specifications via Finite State Models 32

2.6 Easterbrook and Chechik’s Framework 33

2.7 Summary . 35

3 Merging Viewpoints via Incrementally Elicited Ranked Structure 36

3.1 Preliminaries . 36

3.1.1 The χbel framework . 36

3.2 Belief Merging . 42

3.2.1 Epistemic States . 42

3.2.2 Properties for Combining Epistemic States 44

iii

3.2.3 Merging Operators . 46

3.2.4 Model Checking Merged Viewpoints using SMV 49

3.3 Merging via Ranked Structure . 51

3.3.1 Ranked Structures . 51

3.3.2 Signature Map . 52

3.3.3 Guidelines for Selecting Merging Operators 53

3.4 Algorithm for Merging via Incrementally Elicited Ranked Structures . 54

3.5 Example . 63

4 Implementation 67

4.1 System Design . 67

4.1.1 Data Structure Description . 69

4.2 Implementation Description . 72

4.2.1 Overview . 72

4.2.2 Implementation Description 75

5 The Case Study 89

5.1 Telephone System Case Study . 89

5.1.1 The Scenario . 90

5.1.2 Experiment Description . 90

5.1.3 Summary . 96

5.2 Student Application System Case Study 97

5.2.1 The Scenario . 97

5.2.2 Experiment Description . 98

5.2.3 Summary . 104

5.3 Discussion . 105

6 Conclusion and Future Work 107

Bibliography 110

A Source Code 117

A.1 AddArcPanel.java . 117

A.2 AddModelPanel.java . 119

A.3 AddNodePanel.java . 126

A.4 Arc.java . 129

A.5 CheckModel.java . 130

A.6 Database.java . 133

A.7 DisplayModelPanel.java . 153

iv

A.8 Go.java . 155

A.9 MergeModel.java . 156

A.10 MergeOperator.java . 159

A.11 MergeResultsPanel.java . 161

A.12 Model.java . 163

A.13 MyJFrame.java . 164

A.14 Node.java . 165

A.15 RegistrationPanel.java . 168

A.16 ShowFrame.java . 171

A.17 Utility.java . 174

v

Abstract

Handling inconsistent requirement specifications is a critical and difficult issue in

requirements engineering. There has been considerable research interest in this topic

and many methods have been proposed and implemented in the past. This research

aims at developing an approach to viewpoint merging for inconsistent management.

The recent literature on belief merging provides several well defined merging operators

that can be useful for viewpoints merging. This research has implemented a system

for merging viewpoints specified as finite state models, in order to demonstrate that

belief merging operators can indeed be the basis for viewpoints merging. We extend

the state of the art by providing a technique for incremental viewpoints elicitation,

and by addressing the problem of iterative merging in the present of viewpoints.

vi

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Aditya Ghose for his

many insightful comments and thoughts that guided me to finish this research. I am

also thankful to Dr. Thomas Meyer for his work and helping me to understand his

merging operator formulas. Thanks also to my other colleagues in Decision Systems

Laboratory (DSL) for their valuable comments, supports, helps and encouragement

during the process of completing this thesis as well as during the period of my master

study.

vii

Chapter 1

Introduction

Software tools make it much easier to manage the complexities of a system and help

assure the construction of high-quality systems within time and budget limits. Re-

quirements engineering has proven to be one of the most problematic areas within

software development. Reconciling the requirements of multiple and disparate stake-

holders involves effort on the part of system analysts, adding to the cost/time of

system construction. We address this problem in this dissertation, by adapting and

augmenting a formal framework for belief merging and by building a inconsistency

management tool based on this framework, in the specific instance where requirements

are specified as finite state machines.

1.1 Motivation

Requirements define the functionality and performance characteristics of systems to

be implemented. These include descriptions of system behavior, application domain

information, constraints on the system’s operation, or specifications of system prop-

erties or attributes. Sometimes they are constraints on the development process of

1

2

the system. Requirements are further divided into functional requirements and non-

functional requirements. The former are descriptions of what the system must do,

while the latter are the properties or qualities such as operational cost, reliability,

project budget etc. that a system must have, which are not directly related to func-

tionality.

Requirements engineering is a branch of software engineering and can be defined as

“the systematic process of developing requirements through an iterative cooperative

process of analyzing the problem, documenting the resulting observations in a variety

of representation formats, and checking the accuracy of the understanding gained”

[11]. The process of requirement engineering consists of such activities as requirements

elicitation, requirements analysis and negotiation, and requirements validation [46].

Requirements engineering is the first stage of the software development life cy-

cle. As part of this stage, requirements are discovered through consultation with

stakeholders. Stakeholders are people who will be affected by the system and who

have a direct or indirect influence on the system requirements [46]. They can be end

users, clients, customers, analysts, managers, etc. Hence stakeholders may have dif-

ferent perspectives on the system as they may have different interests in the system

and express their requirements in different vocabularies. Inconsistency among these

requirements is therefore inevitable.

Handling inconsistent requirements is very important, as inconsistent requirements

will have adverse impact on the system development. Requirements specifications that

contradict with each other or system constraints often impede the process of system

development. Worse still, the inconsistencies may be neglected by the analysts or

3

hidden in the documents and found at a later stage, in which case the options are

either to roll back the entire development process to the early phases of the life-cycle

or to perform imperfect patchwork repairs. In either case, the costs are likely to be

unacceptably high. Therefore, inconsistency management is a critical but difficult

task in requirements engineering.

There has been considerable recent research interest in this topic and several differ-

ent methods have been proposed to handle the problem of requirement inconsistency.

Generally, there are two approaches towards inconsistency handling. One is to enforce

consistency so that inconsistency is not allowed (see [49] for example). The second

involves inconsistency management that permits the existence of inconsistencies in

a specification and supports a principled yet pragmatic approach to resolving these

inconsistencies when appropriate (see [20] for example).

Ultimately, the challenge in multi-perspective requirements engineering is to rec-

oncile the multiple, possibly inconsistent perspectives to obtain a single consistent

specification. Inconsistency handling is clearly a key element of this process. Tradi-

tionally, this problem has been addressed by the process of requirements negotiation.

The WinWin negotiation model based on Theory W [5] is one of the most commonly

cited approaches to this problem. In this model, the stakeholders first provide their

requirements, which are called Win Conditions. If a conflict is identified, an Issue

schema, which contains the conflict, the Win Conditions affected and the stakehold-

ers involved, is formed. The stakeholders then prepare their Options (alternative

solutions) addressing the Issue for evaluation among the stakeholders until a satisfac-

tory Option is achieved through an Agreement schema. More details on this will be

presented in Section 2.2.

4

Our problem has much in common with the problem addressed in social choice the-

ory by Kenneth J. Arrow (1972 Nobel Prize Winner for economics) in 1951 [1]. Social

choice theory aims at providing a fair and equitable aggregation procedure for com-

bining individual preferences into a new single social preference relation. Similarly,

belief merging concerns constructing operations for merging the preferences of the

individuals into a new single preference, as well as merging a finite set of knowledge

bases that represent the beliefs of an agent, into an appropriate consistent knowledge

base. Konieczny and Pino-Perez [27] have proposed a merging operation and defined

a set of properties the merging operation should satisfy. There has been much earlier

work on merging, notable examples being [3, 48, 31, 40, 30]. This research takes the

work on belief merging as its point of departure. Within the framework of belief

merging proposed by Meyer [33], we define an incremental elicitation approach to

merging inconsistent viewpoints specified as finite state machines. We identify a class

of merging operators, from the repertoire defined by Meyer [33], that are applicable in

the context of incremental elicitation of progressively relaxed viewpoints. We present

a tool to support viewpoint merging based on this approach, and we present some

experimental results and case studies to validate this approach.

1.2 Main Contributions

The main contribution of this thesis is to argue, and in part, establish that belief merg-

ing operations are useful in reconciling multiple stakeholder perspectives in require-

ments engineering. We prove this by developing a framework implementing merging

operations to handle multiple/inconsistent requirement perspectives represented as

finite state models and propose an interactive, demand-driven model algorithm for

5

requirements elicitation.

The merging operations applied are based on the idea of Meyer’s merging op-

erations [33] defined in terms of epistemic states. A epistemic state provides a set

of preference rankings of the models. The lower the ranking the more preferred it

is deemed to be. In our framework, we have defined a ranked structure which has

the same structure as the epistemic state. But it does not provide a full ranking of

preference, it only provides preference rankings to a set of elicited models.

Requirements involved in our framework are represented as finite state models

(FSMs), which have been used in many contexts, both conceptual and technical.

FSMs are useful also because they are simple to understand, simple to reason about

and simple to build. FSMs are especially interesting because they can be used in

conjunction with a class of efficient model-checking procedures for verifying that the

specified models satisfy relevant system properties (these may include liveness, fair-

ness and safety properties).

Our framework contains the following components.

• A set of ranked structures (these may be viewed as partially specified epistemic

states in the sense of Meyer’s framework), each representing the viewpoint of a

given stakeholder.

• A consistency checking device, which handles different vocabularies across the

viewpoint models and perform consistency checking among the viewpoint mod-

els.

• A combination device to combine the consistent models into one model.

6

• A set of merging operators to merge the preference ranks of consistent sets of

models into a new single list of preferences.

• SMV model checker [32] for verifying the system properties of the combined

model.

A viewpoint in our system is assumed to be represented as a finite state model.

First, the stakeholders provide their partial ranked structures with their most pre-

ferred models, which are checked by the tool for agreement, i.e. whether there are

identical or consistent models among all the stakeholders. If no agreement is reached,

the stakeholders are required to present their next most preferred models by either

modifying the existing models or making new ones (and the models are added to their

ranked structure), until an agreement is reached. Once an agreement is reached, the

consistent models are combined into a single model with a merging operator selected

to determine the new preference ranking for the combined model, hence creating a

new and merged ranked structure containing the combined model. The combined

model of the most preferred ranking is checked using the SMV model checker (more

information on it is presented in chapter 2) to check against the system properties pro-

vided by the stakeholders (we do not address the problem of possible inconsistencies

within these, and assume them to be consistent. If it does not satisfy all the proper-

ties, models of next preferred level in the merged ranked structure is model checked

against the system properties until a satisfactory model is found. The model satisfy-

ing all of the system properties as well as the newly created ranked structure are the

final outcomes of the tool. In the case where none of the models in the newly created

ranked structure satisfy the properties, we have to continue the process by asking

7

the stakeholders to provide their models of the rank higher than the one where they

reached the agreement, and the same process is iterated until a satisfactory model is

found.

We describe the design and implementation of a tool that implements the scheme

described above. We also present some case studies where this tool is deployed in

semi-realistic situations.

1.3 Organization of the Thesis

The thesis consists of four chapters. Chapter 2 provides a brief background intro-

duction to the areas related to our framework. First is the literature review of

inconsistency management in requirements engineering. Inconsistency is explained

with examples from [20]. Inconsistency management strategies and approaches to it

are discussed. Then we briefly introduce other related areas, including requirement

negotiation, social choice theory, belief merging and finite state model formally rep-

resenting the specifications. In this chapter we also discuss the work of Chechik and

Easterbrook that is closely related to what we are doing.

In Chapter 3, we present more details of the approach developed in this research.

We first discuss the epistemic state, properties for combining epistemic states, a

ranked structure defined based on the idea of epistemic state and the merging oper-

ators used. The SMV model checker incorporated into our framework is also briefly

introduced. Then we explain how to merge multiple viewpoints and present the al-

gorithm for constructing the framework. An example is presented in the last section

to further explain how the framework works.

8

We discuss the implementation in Chapter 4, where we describe our system design

and demonstrate how the prototype works with the major screen shots provided. The

last chapter concludes the thesis by pointing out the limitation of our framework and

the future work.

Chapter 2

Background

In this chapter, a brief literature review of the major areas related to our framework

will be presented. Those areas are inconsistency management in requirements engi-

neering, requirement negotiation, belief merging and formal specifications via finite

state models. Finally the framework to merging inconsistent requirements proposed

by Easterbrook and Chechik is discussed.

2.1 Inconsistency Management in requirements en-

gineering

Inconsistency may arise due to mistakes, misunderstandings, or lack of information.

It may also be the result of impractical requirements or conflicts between different

perspectives. In the following, we briefly discuss inconsistency and inconsistency

management strategies, and then a range of approaches to inconsistency handling is

presented.

9

10

2.1.1 What is Inconsistency?

Inconsistency is generally defined as any situation in which two descriptions do not

obey some relationship that should hold between them [36]. Inconsistency is inevitable

in requirements engineering usually for the following reasons:

1) Inconsistent requirements specifications: Due to mistakes, misunderstandings, or

lack of information, inconsistencies may occur in the requirements specifications.

These are called local inconsistencies and are usually associated with a single

stakeholder.

2) Inconsistent perspectives among multiple stakeholders: Inconsistencies arise more

often among the requirements of multiple stakeholders. Different stakeholders

may have their own knowledge, responsibilities, interests and commitments, so

it is common to find that their requirements specifications contradicting each

other. We call these global inconsistencies.

3) Requirement evolution: As the system environment as well as stakeholder require-

ments specifications change, new requirements may be added and existing ones

may be deleted, hence causing contradiction among the requirements.

4) Inconsistency between functional requirements and non-functional requirements:

Functional requirements may contradict non-functional requirements (a com-

mon example involves the competing pulls of speed and greater functionality).

Relationships between descriptions can be expressed as consistency rules, against

which descriptions can be checked. A logical inconsistency is one instance of this

11

definition (in logical inconsistency, inconsistency occurs when both some fact A and

its negation not A are derived), but other instances can also exist.

We shall consider the following examples from [20]. These examples are based

on the TRMCS (Teleservices and Remote Medical Care System) case study used

for IWSSD (International Workshop on Software Specification and Design). The

examples are written in a language similar to KAOS (Knowledge Acquisition in au-

tOmated Specification) language, and contain three parts. The first is the system

requirements, which are also called goals. The second part is the formal definition

of the requirement, represented in many-sorted first-order logic. The third part is

further explanation of the requirement, written in English language.

In these examples, paramedical professionals (paramedics) and quality assurance

(QA) professionals are stakeholders in the system. QA professionals require access to

paramedic activity logs to better monitor their performance. Formally:

Goal 1 Maintain [QAAccessParamedicActivityLog]

FormalDef ∀ p: Paramedic, q: QAProfessional, l: ActivityLog

Records(p,l) → Accesss(q,l)

InformalDef: Activity logs of every paramedic are accessible to all QA professionals.

Goal 2 Maintain [ParamedicActivityLogAccess]

FormalDef ∀ p: Paramedic, q: QAProfessional, m: MedicalPractioner, l: Activity-

Log

Records(p,l) → Accesss(m,l) ∧ ¬Accesses(q,l)

InformalDef: Activity logs of every paramedic are accessible to all medical profes-

sionals but not to any QA professional.

12

It is obvious that if

∃ p: Paramedic, l: ActivityLog

Records(p,l)

holds in the system, then Goal 1 and Goad 2 of distinct stakeholders defined above

are inconsistent. This is an example of a conflict between distinct stakeholder groups

and between distinct functional requirements.

Goal 3 Achieve [DispatcherAccessPatientRecords]

FormalDef ∀ p:Patient, d: Dispatcher, r: PatientRecord, e: Event

Emergency(e,p) ∧ History(p,r) ∧ Manages(d,e) → AccessesDuringEvents(d,r,e)

InformalDef: If a dispatcher is involved in the management of a medical emergency

concerning a given patient, then the dispatcher has access to the medical history of

that patient for the duration of the emergency.

The rationale for this goal is another goal that requires that dispatchers be able

to communicate relevant portion of a patient’s medical history to paramedics during

a medical emergency involving that patient.

Goal 4 Achieve [PatientRecCommunicatedParamedics]

FormalDef ∀ p: Patient, d: dispatcher, r: PatientRecord, e: event, m: Paramedic

Emergency(e,p) ∧ History(p,r) ∧ Manages(d,e) ∧ Responds(m,e) → Communicates-

DuringEvent(d,m,r,e)

InformalDef: Dispatchers managing a medical emergency involving a patient com-

municate that patient’s medical history to paramedics responding to the emergency.

Goal 5 Maintain [MobileAccessPatientRecords]

FormalDef ∀ c: MobileComputingDevice, r: PatientRecord DeviceAccess(c,r)

13

This is a different goal that requires mobile computing devices be equipped to

directly access patient records from help center data servers.

Goal 6 Achieve [ParamedicAccessPatientRecords]

FormalDef ∀ p: Patient, r: PatientRecord, e: Event, m: Paramedic

Emergency(e,p) ∧ History(p,r) ∧ Responds(m,e) → AccessesDuringEvent(m,r,e)

InformalDef: Paramedics responding to a medical emergency involving a patient are

able to directly access that patient’s medical history.

The rationale for this is a goal that requires that paramedics be able to directly

access a patient’s medical records during an emergency involving that patient.

Goal 7 Avoid [RedundantAccess]

FormalDef ∀ x, y: HealthProfessional, r: PatientRecord, e: Event Communicate-

DuirngEvent(x,y,r,e) ∧ x 6= y → ¬AccessesDuringEvent(y,r,e)

InformalDef: If a patient history is communicated to a health professional y by

another health professional x during an event, then y does not require direct access to

the patient history during that event.

Both dispatchers and paramedics belong to the HealthProfessional sort. If we

know that states of the system exist where the following is true:

∃ p: Patient, d: Dispatcher, r: PatientRecord, e: Event, m: Paramedic

Emergency(d,e) ∧ History(p,r) ∧ Manages(d,e) ∧ Responds(m,e)

Then we are able to detect that Goal 3, Goal 5 and Goal 7 are jointly inconsistent,

Goals 4, 6, 7 are also jointly inconsistent. These are examples of conflict between

rationales.

Goal 8 Maintain [FastAccessPatientRecords]

14

FormalDef ∀ u: User, r: PatientRecord, t: TimeInterval

AccessDelay(u,r,t) → t ≤ 30

InformalDef: The delay in accessing a patient record must be no more than 30

seconds.

Goal 9 Maintain [SecureAccessPatientRecords]

FormalDef ∀ u: User, r: PatientRecord

AccessRequest(u,r) → Authenticate(u,r)

InformalDef: If a user requests access to a patient record, then the system must

authenticate that request.

Given the domain theory:

∀ u: User, r: PatientRecord, t: TimeInterval

Authenticate(u,r) ∧ AccessDelay(u,r,t) → t > 30

Goal 8 and Goal 9 are inconsistent, which is an example between a functional require-

ment and a non-functional requirement.

In the following, we will briefly describe the process of inconsistency management

in requirements engineering.

2.1.2 Inconsistency Management

The process of inconsistency management generally consists of detecting inconsis-

tency, diagnosing inconsistency, handling inconsistency and then monitoring the out-

come. Consistency rules play an important role in inconsistency management. They

are used to check the descriptions/specifications of requirements in order to identify

15

conflicts/contradictions. This set of rules will be improved and expanded as the in-

consistency management cycle iterates [16]. Therefore, consistency rules must be

expressed precisely.

The choice of inconsistency handling strategy depends on when it arises and how

it impacts other aspects of the development process. Generally, there are two strate-

gies. One is the conventional one that inconsistency is avoided, i.e. it will be re-

jected or resolved immediately after being detected. However, it is undesirable and

costly to maintain consistency all the time through the software development process.

Therefore, more and more researchers are advocating a different strategy, living with

inconsistency.

Living with inconsistency allows the existence of inconsistency until it is resolved

at the appropriate stage so that developers can continue their work without being

constrained by the conflicts with others. It is most useful in handling inconsistency

during specification evolution. According to [16], there are different actions that can

be taken when an inconsistency is detected:

• Ignore - The presence of inconsistency can be ignored if the inconsistency does

not have any significant impact on the development process. However, it is

important to record and keep track of all inconsistencies even if they are ignored.

• Circumvent - Inconsistency is bypassed by modifying or disabling the rule for a

specific context if a consistency rule is not applicable to that context or if the

inconsistency represents an exception to the rule.

• Defer - Resolution of inconsistency is deferred and development can continue

until it is deemed appropriate to handle the inconsistency.

16

• Ameliorate - Requirements causing inconsistencies can be repaired/modified

instead of being deleted. This is only suitable if the modification of requirements

does not have major side effects. The process is also referred to as incremental

resolution.

In the next section, we are going to outline different approaches to inconsistency

management.

2.1.3 Approaches to Inconsistency Management

Approaches to inconsistency management can be grouped into the following cate-

gories. Some of these approaches are based on similar ideas, but are implemented

differently. For example, there are approaches that advocate formalization of the

requirements specifications, but represent the specifications in different formal lan-

guages.

Ontological Approaches

This approach seeks to identify conflicts by providing a set of meaningful terms, or

ontologies, by which one can specify conflict relationships between requirements. The

idea is to explicitly state the vague and imprecise requirements. This can be useful

for automated analysis of the specification.

[50] is an example of this approach that was proposed for analyzing the trade-

offs between conflicting requirements. The approach employs utility functions from

decision science [26]. These are used to validate the structure used in aggregating

17

prioritized requirements, to identify the structures and the parameters of the underly-

ing representation of imprecise requirements and to assess the priorities of conflicting

requirements.

Imprecise requirements are represented in fuzzy logic in this approach so that

requirements can be described using linguistic terms, which make it easier to commu-

nicate and understand the requirements. An imprecise requirement can be satisfied to

a degree and a satisfaction function, denoted as SatR, maps a requirement’s domain

to the range of satisfaction degree. Two imprecise requirements, R1 and R2 are said

to be conflicting with each other if an increase in the degree of satisfaction of R1(R2)

often causes a decrease in the degree of satisfaction of R2(R1). If an increase in the

satisfaction degree of one requirement always decrease the satisfaction degree of the

other, they are completely conflicting [50]. The approach also use conjunction and

disjunction operators in fuzzy logic, where
⊗

is a fuzzy AND and
⊕

is a fuzzy OR.

[7] is another example of ontological approach, which adopts the Non-Functional

Requirement (NFR) framework to deal with changes. It treats NFRs as goals to

be achieved during the process of system evolution. Through the process, goals are

decomposed, design tradeoffs are analyzed, design decisions are rationalized, and goals

are evaluated.

The approach utilizes structures similar to semantic nets, in that it uses link

types such as AND and OR links to connect the parent goals with the decomposed

goals (offspring goals). Goals are captured and shown in a goal graph. Guidelines

for changes are offered by use of the notion of structurally traceable goal graph to

provide syntactic principles for maintaining the consistency of a goal graph.

18

The two approaches mentioned above suggest the need for an explicit semantics to

bridge the gap between the imprecise requirements and formal specification method.

The proposal in [50] is simple and explicit, while the notation in [7] is somewhat

more complex.

State Machine Based Approaches

With this approach, requirement conflicts are identified by a specific technique, or

automation. Automated technique helps to easily detect many classes of errors in

requirements specification. [21] is an example of this approach. It proposes a formal

analysis technique, called consistency checking, for automatic detection of errors in

requirements specifications, which are expressed in Software Cost Reduction (SCR)

tabular notation. Below is brief description of this approach.

It is based on the Four-Variable Model, which describes the required system be-

havior, as a set of mathematical relations on four sets of variables - monitored and

controlled variables and input and output data items. A monitored variable represents

an environmental quantity or variable that influences system behavior; a controlled

variable is an environmental quantity that the system controls.

SCR has four other constructs: modes, terms, conditions and events. A mode class

is a state machine, defined on the monitored variables, whose states are called system

modes and whose transition is triggered by events. A term is an auxiliary function

defined on input variables, modes, or other terms that help make the specification

concise. A condition is a predicate defined on one or more system entities (a system

entity is an input or output variable, mode, or term) at some point of time. An event

occurs when any system entity changes value.

19

SCR tables contain condition tables, event tables, and mode transition tables.

Each table describes a function to define an output variable, a term or a mode class.

An automated consistency checker is developed to check the specification for syn-

tax and type correctness, coverage, determinism and other application-independent

applications. As for the automated consistency checking, the consistency checker de-

termines whether a logical expression is a tautology, by applying a tableaux-based

decision procedure.

Approach based on Formal Logic

There have been several proposals of logical treatment of the inconsistency of software

specification [22, 38, 19, 20, 43, 39, 10, 51].

Logic-based approaches contribute to inconsistency handling by providing tech-

niques that assist analysis and reasoning in the presence of inconsistency. The use

of logic provides a precise and unambiguous language to identify inconsistencies in

evolving multi-perspective specifications. It also provides the means to address issues

of inconsistency management in a generic way that is independent of any particular

software engineering method or formalism [22]. In the following, we briefly address

three categories of the approach: logical abduction, belief revision and argumentation

view.

1) Logical Abduction

Abduction is one of the three fundamental modes of reasoning, in addition to

deduction and induction. In artificial intelligence, abduction is generally accepted

as the search for a set of hypotheses to achieve some given goals without causing

20

conflicts, when combined with a given theory [25].

[38] proposes logical treatment of inconsistency of software specifications, based

on the abduction as formal reasoning. According to [38], abduction provide a for-

mal technique for handling inconsistency by permitting incremental evolution of con-

flicting requirement specifications, as well as allowing implementation by employing

existing tools for handling theory change. The specification and consistency rules

are represented in quasi-classical (QC) logic [23], which allows continued reasoning

in the presence of inconsistency. Classical abduction reasoning is adapted to handle

inconsistent specifications in this logic. The abductive process is a backwards rea-

soning mechanism. If a literal α needs to be removed from a given QC specification

in order to resolve the inconsistency, the abductive process backward from all the

resolution steps that have lead to that literal. If it reaches some relevant literals that

in the specification, then the identified literals become the abducible anti-explanation

of that initial literal and will be deleted since QC logic is monotonic.

2) Belief Revision:

[19], [43] and [51] are similar in that they all present a logical framework to

reasoning about requirements evolution based on the theory of belief revision. A

sufficiently rich meta-level logic is used to formally and accurately capture intuitive

aspects of handling incompleteness and inconsistency in requirements. Operators are

used to map between theories of this meta-level logic to provide formal basis for the

theory change component. This framework is based on the idea of belief revision

that seek to find solutions through minimal changes to specification in the presence

of inconsistency in the system development.

21

For example, [43] proposes a computational method for minimal revised logical

specification. It utilizes an abductive procedure to compute a set of abducibles for

minimal revised specification, in which abducibles are generated to get consistency

for a given program. The mechanism can be used to compute deletion and addition

of specification, which may be potential causes of inconsistency.

3) Argumentation View:

[39] presents a logical framework for reasoning about inconsistent requirements

in the context of multi-viewpoint requirements engineering process. It proposes an

argumentation view of multiple requirements, which can analyze the sources of in-

consistencies.

In this approach, multi-viewpoints are represented as arguments. Arguments with

no counterarguments represent the acceptable class of arguments and different mean-

ings of “counterarguments” are used to derivate different classes of acceptable re-

quirement. These arguments are characterized by order: from weakly confident to

strongly confident (i.e. consistent). Inference rules are created for intra-viewpoints

reasoning (concerned gradual reasoning) and inter-viewpoints reasoning (concerned

safe reasoning). Reasoning is represented by the degree of confidence obtained from

previous ordering over requirements.

Other Approaches to Tolerating Inconsistency

The followings are some of the typical notations of the strategy of managing incon-

sistency in the presence of inconsistency.

1) Living with Inconsistency:

22

Schwanke and Kaiser [44] suggest that during large systems development, pro-

grammers often circumvent strict consistency enforcement mechanism in order to get

their jobs done. They propose and approach to “living with inconsistency” during

development, and describe a configuration management (CONMAN) programming

environment that helps programmers handling inconsistency by:

• identifying and tracking different kinds of inconsistencies (without requiring

them to be removed),

• reducing the cost of restoring type safety after a change (using a technique

called “smarter recompilation”), and

• protecting programmers from inconsistent code (by supplying debugging and

testing tools with inconsistency information).

2) Tolerating Inconsistency:

It was first introduced by Robert Balzer [2]. In this approach, constraints are

relaxed by treating inconsistencies as temporary exceptions, which will eventually be

corrected. Before correction, the violated data are guarded by a technique called

Pollution Marker. By use of these guards, specifications can be modified to avoid

any inconsistencies completely or to tolerate them by adjusting their behavior, while

specifications that are insensitive to violations of a specific constraint, need not be

guarded by its Pollution Marker and will continue normal processing of the database,

including the inconsistencies.

When the violation is eventually resolved and the data is no longer inconsistent,

the guards are automatically removed indicating that no further resolution activity

is required. Accessibility of this data to specification is restored.

23

3) Making inconsistency respectable:

Gabbay and Hunter propose ”making inconsistency respectable” in that incon-

sistencies can be viewed as signals to external actions as well as signals to internal

actions that activate ore deactivate other rules [29]. According to this approach, in-

consistency is not necessary resolved by eradicating it, but by supplying rules that

specify how to act in the presence of such inconsistency.

4) Lazy consistency:

This approach was proposed by Narayanaswamy and Goldman as the base for

cooperative software development [35]. Its aim is to identify the technical basis to

support the resolutions of cooperative software development (CSD) problems that

may arise due to the distributed nature of the development process.

This approach favors software development architectures where the proposed changes

(PCs) that are about to occur as well as changes that already occurred, are announced

or broadcasted within the context of a larger transactional unit called evolution step,

where all of the object-level changes are grouped together and handled coherently as

a single logic unit. All the impacted stakeholders are notified of the PCs and they can

review all the affected objects and explicitly express approval, rejection to or make

modification to the PCs that adversely affect their objectives. Through such process,

the step is gradually become consistent. Such an intra-step consistency is one aspect

of lazy consistency.

The causal relationships between proposed changes are maintained so that stake-

holder negotiations and other organizational protocols can be supported to resolve

the collision and conflicts. It makes each step internally consistent and consistent

24

with regard to other volatile steps that might be pursued concurrently. The process

of eventually resolving the intra-step and inter-step consistency within the step-based

transaction model is the so-called lazy consistency.

We have discussed a range of approaches to managing inconsistency and presented

them based on different dimensions. However, our concern is in belief merging, which

suits handling inconsistency arising among multiple stakeholders. In the next section,

we briefly describe belief merging and the related areas.

2.2 Requirements Negotiation

Requirements negotiation is an early phase in the system development process. After

requirements have been acquired, analysis for conflicts/inconsistencies, overlaps and

omissions is carried out, as well as negotiation with different stakeholders to reconcile

and agree on these requirements.

There have been many models proposed to support requirements negotiation.

WinWin negotiation model [29] is one of them. It is developed using Theory W [5]

to generate the objectives, constraints, and alternative, as the goal of Theory W is to

“Make everyone a winner”. Figure 2.1 shows the WinWin negotiation model. It has

four artifacts, Win Conditions, Issues, Options and Agreements. Win Conditions are

the individual requirements; Stakeholders start by entering their Win Conditions. If

a conflict among the stakeholders’ Win Conditions is detected, an Issue is formed to

address the conflict, contradictory Win Conditions and stakeholders involved. Then

Options are proposed by the stakeholders to resolve the identified Issue. Stakeholders

25

Figure 2.1: WinWin Negotiation Model [4]

evaluate, negotiate and reconcile on the Options and ultimately adopt a mutually

satisfactory (i.e. win-win) one. The adoption of the final Option is called Agreement.

We shall explain how this negotiation model works more explicitly using the above

hospital example. Assuming there are four stakeholders entering their Win Condi-

tions which are Goal 5, 6, 8 and 9 (see section 2.1.1) respectively. Then the Win

Conditions are examined to search for potential conflicts. In this example, conflicts

arise between Goal 8 and Goal 9. Then stakeholders affected by these potential con-

flicts are identified, i.e. owners of Goal 8 and Goal 9, as well as a list of potential

conflicts with the new Win Conditions are formed into an Issue artifact and provided

to the stakeholders concerned (owners of Goal 8 and Goal 9 in this example), who will

prepare their candidate Options addressing the issue. The Options are provided for

stakeholders’ evaluation, negotiation and adoption through the Agreement artifact.

Other similar approaches include Conflict-Oriented Requirements analysis [41, 42]

(CORA) created to better analysis of the relationships among the system require-

ments. It provides requirement restructuring techniques to address issues arising

through stakeholder analysis. It contains a cycle with three phases:

1) System requirements are defined.

26

2) Issues arise, through analysis of the requirements, which indicate possible conflicts

among requirements.

3) Requirements are changed in response to conflicts.

The basic process of CORA is summarized as follows: System requirements are

captured by defining the semantics of entities and relations. Then issues arise through

analysis of requirements that may lead to varied stakeholder alternative solutions to

the issues. In the conflict analysis process, a focusing strategy guides the order in

which issues are to be analyzed for conflicts. A set of domain-independent trans-

formations is provided to generate alternative requirements that remove stakeholder

conflicts and the strategy for guiding the resolution generation process is defined.

The transformations are changes to the meaning of requirements made by changing

the classes or logical relationships specified in the requirements, rather than changes

to design or implementation in order to satisfy requirements through various oper-

ationalization. A resolution is selected among a set of possible resolutions for each

conflict. At last the requirement is updated with the newly defined requirement

resolutions.

Viewpoints framework is another approach based on the concept of negotiation.

There have been many works [16, 14, 13, 37, 12, 15, 17] approaching inconsistency

management using Viewpoints framework, addressing the conflicts resulting from

different perspectives of many stakeholders involved in the development of especially

large and complex systems.

27

Viewpoints refer to the multiple perspectives that stakeholders maintain sepa-

rately. In software terms, “Viewpoints are loosely coupled, locally managed, dis-

tributable objects that encapsulate partial knowledge about a system and its domain,

specified in a particular, suitable representation scheme, and partial knowledge of the

development process.” [14] Each viewpoint consists of the following slots [17]:

• A representation style, the scheme and notation by which the Viewpoint ex-

presses what it can see.

• A domain, which defines that part of the “world” delineated in the style.

• A specification, the statements expressed in the Viewpoint’s style describing the

domain.

• A work plan, which describe the process by which the specification can be built

• A work record, which contains an annotated history of actions performed on the

Viewpoint.

In Viewpoints framework, inconsistencies between viewpoints are managed by

explicitly defining relationships between them, and recording both resolved and unre-

solved inconsistencies. A viewpoint is locally consistent, while it may be inconsistent

with other stakeholders’. Therefore, inconsistency is tolerated throughout the soft-

ware development process.

Inconsistency checking is performed by applying consistency rules, which express

the relationships that should hold between particular Viewpoints. When a consis-

tency rule is applied, both the Viewpoints involved must collaborate to perform the

28

check and they both need to know the result. The Viewpoints might be evolving

asynchronously and hence the application of the rule need to be performed as a single

action.

Once an inconsistency is identified, (i.e. consistency check for relationship be-

tween two Viewpoints failed,) it will be corrected only if the owner wishes to do.

Otherwise, inconsistency is tolerated. Resolution of inconsistency is re-establishing

the relationship containing the rule that failed. If a relationship did previously hold,

information about subsequent changes can be used to guide the resolution process.

This information is available in the work record of each Viewpoint, as well as in the

record of the results of previous consistency check.

2.3 Social Choice Theory

Social choice theory also offers a useful approach to reconciling the interest of differ-

ent stakeholders’ requirements. The theory is intensively studied in the fields of eco-

nomics, political science and applied mathematics, and has lead to two Nobel Prizes

in economics. It is most commonly applied in elections such as political elections

or firm elections. It is also applied in the field of artificial intelligence to aggregate

preference from different agents with different priorities, which is similar to our work

in belief merging.

It is a theory of studying a decision among a collection of alternatives made by

a group of n voters (truthful voters) with separate opinions. An individual voter’s

preference can be represented in total order ≤ over Ω. For example, for A, B ∈ Ω, A ≤

B means A is at least as preferred as B. While the theory is interested in constructing

29

an aggregation operation on the preferences of n voters, i.e. ≤1,. . ., ≤n that generate

a new preference ordering over Ω. Any choice for the entire group should reflect the

desires of the individual voters to the greatest extent possible. In a social choice

setting or voting, there will be different voting strategies. However, none of these

strategies will guarantee consistency with Arrow’s five desirable principles - the basis

of his Impossibility Theorem. These principles are:

• Universality : The procedure should work for any preference configuration of

individuals

• Unanimity : Unanimous preference of individuals should be respected. If all

individuals prefer A to B then the social ranking will place A ahead of B.

• Transitivity : If the society prefers A to B and B to C, then the society prefers

A to C.

• Non-dictatorship: The mechanism should not allow for dictator whose prefer-

ence is dominant.

• Independence of Irrelevant Alternative: The relative ordering of two alternatives

should be based only on their respective standings.

Arrow’s work was later extended by Amatya Sen in many directions. Sen won

Nobel Prize for economics in 1998 partly for his outstanding work in the field of

social choice theory. One of Sen’s major results dealt with the difficulties of reconciling

libertarian ideals and considerations of efficiency.

Based on the ideal of liberalism, the individual is entirely decisive on any choice,

no matter what the opinions the others have. If you want to drink water, others

30

should not force you to drink orange juice. While a mild liberal requirement would

be that each individual should have a decisive voice over at least one alternative. An

even weaker notion is that there should be at least two individuals who have a decisive

voice over at least one pair of choice each. Sen called the latter minimal liberalism.

On the hand, Pareto principle has long been regarded as an important requirement

of “efficiency”: for a pair of alternatives A and B, if everybody strictly prefers A

to B, then B should not be chosen. A social decision function (the aggregation

procedure) should also be universal and intransitive. Sen proved there couldn’t be a

social decision function that meets all these requirements simultaneously, which he

called “the impossibility of a Paretian liberal”.

2.4 Belief Merging

More and more research effort has been spent on belief merging over recent years and

much exciting and interesting work has been done in this area. Belief merging is an

approach to merging information from different sources and at different moments in

time into a consistent one. It is based on the idea of belief revision, which happens

when new information is added or removed from the agent’s current set of belief. It

is related to the AGM revision theory [9, 18], which proposed a set of postulates that

any revising operator should satisfy.

There have been many different merging operations proposed in literature to re-

solve the inconsistency problem. Merging operation can be further divided into two

sub operations, arbitration operation and majority operation.

Arbitration was first proposed by Revesz in [40] as a third type of theory change,

31

the others being revision and update. The idea of arbitration is that it is a possible

situation where there is no reason to consider any of the different sources of informa-

tion is more reliable than others. So the best outcome will be merging these views

into a new and consistent one, while trying to retain as much information of different

views as possible to maximize the individual satisfaction. In [40], Revesz introduces

model-fitting and defines arbitration in the derived notion of model-fitting. He also

discusses the properties an arbitration operator should satisfy. The approach pro-

posed in [30] is similar to what Revesz proposes in that it merges different sources of

information on the idea of arbitration as well as proposing the properties an arbitra-

tion operator should satisfy. But [30] also provides a set of postulates for arbitration

and suggests to formalize arbitration by directly giving properties for it. [27] discusses

some merging operators and also proposes a new arbitration operator and provides

properties this arbitration operator should satisfy. All of this research relates to AGM

(Alchóurron, Gärdenfors, Makinson) framework of revision theory [9].

Taking a different track, [31] proposes merging knowledge bases by majority.

Here the viewpoints of the majority carry the most weight. There may be such a

situation where “the number of agents who hold a particular belief is important, and

sometimes it may be the only practical way of resolving a conflict.” [31]. In [31],

the properties that a majority operator should satisfy are proposed and principles of

the majority operator are formalized.

[3] and [47] also discuss the issue of combining possibly inconsistent knowledge

bases. But their goals and applications are different from the above discussed meth-

ods. In [47], Subrahmanian presents a framework to combine multiple knowledge

bases based on annotated logic, a multi-value logic. In his work, he defines a model

32

where different databases are integrated via a supervisory database, which plays the

role of mediator as referred by Silberschatz, Stonebraker and Ullman [45] to mediate

between multiple knowledge bases. The supervisor mediates and chooses one piece of

information over the other when conflicts arise. This approach best suits the situation

where original databases cannot be modified.

Based on logic program, Baral et al. [3] tries to maximally combine multiple knowl-

edge bases into a consistent combination with respect to the integrity constraints asso-

ciated with the knowledge bases. It is possible that union of the knowledge bases can

violate the integrity constraint, while each individual knowledge base does not. Even

though the union itself is consistent, it may still violate the integrity constraints. So

in case of contradiction, the knowledge base is converted into a disjunctive knowledge

base to make it consistent. The users can choose among the disjunctive facts.

2.5 Formal Specifications via Finite State Models

Requirements can be represented in different ways. They can be in informal, semifor-

mal or formal specifications. With informal specifications, there are no complete sets

of rules to constrain the models that can be created. With semiformal specifications,

syntax is defined. While for formal specifications, there are rigorously defined syntax

and semantics, and a fundamental theoretical model against which a description can

be verified.

With formal specification, the analyst is able to specify, develop, and verify a

computer-based system by applying a strict and mathematical notation, allowing

them to describe systems properties in a precise way. Therefore, formal specifications

33

help to reduce ambiguity, and improve consistency and completeness. They also help

in verification of the specification and their implementation. There are many formal

specification languages, such as Larch, which is an algebraic, sequential language.

Z is a model oriented, sequential language and temporal logic is a model-oriented,

concurrent language. The formal specification language we are concerned with here

is finite state model (FSM), an abstract model of a system. It consists of the following

components.

• A set of states

• A set of transitions between those states.

FSMs are widely applied in design and testing of automatic devices, telecommu-

nication and computer hardware. They are also applied in software development,

although to a lesser extent than in hardware development. In the last ten years,

model checking, an automatic verification technique, has gained much attention in

formal method application and FSMs are used to represent the finite-state concur-

rent system since the key property of a FSM is that all of the information about the

process is captured in the current state. Its ability to represent an abstract model of

a system is also useful in handling the “space explosion” problem in model checking.

2.6 Easterbrook and Chechik’s Framework

Chechik and Easterbrook have proposed a merging approach to reasoning over incon-

sistent viewpoints [11]. It is based on multi-valued logic in which different values of

the logics represent different levels of agreement.

34

In the approach proposed by Chechik and Easterbrook, logic is defined by using

a lattice of truth values and the logical operators are defined in terms of lattice

operations. It can ensure that a disjunction and conjunction of each pair of values

exists and is unique in the logic by defining disjunction as join and conjunction as

meet in the lattice. Besides disjunction and conjunction, it also can specify negation.

Properties such as associativity, idempotency, distributivity, and De Morgan’s laws

hold in this logic and such logic is called quasi-boolean logics [6].

The viewpoint model used in the approach, or χview, is state machine model

extended with a specific Quasi-Boolean logic in which Boolean variables can have a

range of values, rather than just being “true” or “false”. Now let us see how these

χviews are combined into a merged model. Firstly, a signature map is defined to unify

the vocabularies of the χviews as each χview is allowed to retain its local namespace

in this approach. The signature map enforces that state names can only be mapped to

state names and variable names mapped to variable names. Every state in the source

χview must map to a state in the merged χview, but not necessary the variables. A

name in a source χview may map to more than one name in the merged χview. Two

different names from the same source χview cannot be mapped to the same name in

the merged χview. Secondly, a value map is defined to map the truth values in the

source χview to the truth values in the merged χview. After the merging, the merged

χview is checked and analyzed using the symbolic multi-valued model checker χchek,

which was developed by Chechik and Easterbrook.

The approach discussed here has advantages over the one with classical logic in

that reasoning based on classical logic cannot reason about inconsistent and incom-

plete model because a single contradiction will result in trivialization. Properties of

35

individual viewpoints cannot be reasoned since these properties may change depend-

ing on how these viewpoints are combined.

2.7 Summary

In this chapter we have outlined several existing approaches to dealing with inconsis-

tency in requirements engineering. These include a variety of approaches that apply

to informal specifications as well as approaches that relate to formal specifications.

We have also surveyed relevant literature in social choice theory and belief merging.

We have discussed in the penultimate section an approach to combining specifica-

tions represented as finite state models. This approach is important but has several

shortcomings, which have motivated our efforts to define an improved framework.

Chapter 3

Merging Viewpoints via
Incrementally Elicited Ranked
Structure

3.1 Preliminaries

3.1.1 The χbel framework

Our work takes as its starting point Chechik and Easterbrook’s framework [11] for

merging inconsistent viewpoints. The crux of their proposal is the use of multi-valued

logic in which different values of the logic represent different levels of agreement.

Thus, while individual viewpoints might be quite categorical in their specification,

using only the TRUE and FALSE values (although the flexibility to use other truth

values exists), the result may involve truth values other than TRUE and FALSE.

Easterbrook and Chechik base their framework on a class of multi-values logics called

quasi-boolean logics. Such logics are based on lattice of truth values with the logical

operators defined in terms of lattice operations. Disjunction and conjunction of each

pair of values exist and are unique as a consequence of disjunction being defined as

36

37

join and conjunction as meet in the lattice (these operations are also commutative,

associative and idempotent in the lattice). Negation is also well-defined - the negation

of each lattice element is another lattice element such that ¬¬a ≡ a for each lattice

element a.

The notion of a viewpoint specified as a state transition model is extended in this

approach in two ways. Variables which would be treated as boolean in conventional

viewpoints are permitted to range over the set of truth values in the selected quasi-

boolean logic. Viewing transitions as predicates (in conventional viewpoints, these

would assume the value of TRUE if a transition existed between two states and

FALSE otherwise), these too are allowed to range over set of truth values of the

selected quasi-boolean logic. Such an augmented viewpoint is called a χview, and is

defined as 6-tuple (L, S, S0, R, I, A) where:

• L is a quasi-boolean logic with L denoting its set of truth values,

• S is a set of states, each with a unique label,

• S0 ⊆ S is a non-empty set of initial states,

• R : S × S → L is a total function assigning a truth value in L to each possible

transition between pairs of states (including reflexive transitions). Each state

is obliged to have at least one non-FALSE transition out of it.

• A is a set of atomic propositions, or variables,

• I : A × S → L is a total function giving truth values to each variable in each

state.

38

Observe that each χview comes with its own set of variables and state labels as

well as its own quasi-boolean logic. Since the task of unifying these across distinct

χviews is difficult to automate, it is assumed to be a manual process executed by an

analyst. Two distinct data structures are used to define the unification. A signature

map unifies the vocabularies of a set of distinct χviews by determining which names

in distinct χviews are synonyms and what the resulting name would be in the merged

χview. A value map is a total function that maps each tuple of truth values in the

quasi-boolean logics of the source χviews being merged into a truth value in the quasi-

boolean logic underlying the merged χview (note that this assumes that such a logic

has been selected).

The Easterbrook and Chechik approach is clearly an improvement over approaches

that are based in one way or another on classical logic, since it avoids the problem

of trivialization in the face of inconsistency. However, the approach is primarily

useful for identifying sources of disagreement during viewpoint merging, rather than

generating a merged viewpoint. For example, if the quasi-boolean logic underlying

the merged χview is 4-valued, with values TT, FF, TF and FT, then variables and

transitions having the value TT can be deemed to be fully agreed to by stakeholders

as true while variables and transitions having the value FF can be deemed to be fully

agreed to by stakeholders as false. But the variables with values of TF or FT are

undefined and negotiation is necessary among the stakeholders to achieve a specific

value. The value of the Easterbrook and Chechik framework lies in focusing attention

on these areas of disagreement.

We note that a relatively straightforward approach based on maximal consistent

39

subsets provides a significant amount of guidance in generating specific merged view-

point outcomes. The following definitions and the subsequent example illustrate this.

Definition 3.1.1. Tm, the syntactic representation, of a state transition model m, is

defined as follows:

• For every state variable x which is assigned a value of TRUE in a state s of

model m, holds(x, s)∈ Tm

• For every state variable x which is assigned a value of FALSE in a state s of

model m, ¬holds(x, s)∈ Tm

• For every pair of states si and sj in m where there exists a transition between si

and sj, trans(si, sj)∈ Tm. For all other pairs sk and sl in m, ¬trans(sk, sl)∈ Tm.

Definition 3.1.2. A maximal consistent subset MaxCons(Tm) of the theory Tm that

is the syntactic representation of a model m is defined as follows:

• MaxCons(Tm) ⊆ Tm

• MaxCons(Tm) 2⊥

• For every T ′ s.t. MaxCons(Tm) ⊂ T ′ ⊆ Tm, T ′ |=⊥.

In general, several such maximal consistent subsets might exist.

Consider the setting shown in Figure 3.1(adapted from [11]), where two stake-

holders(users) Alice and Bob present two distinct viewpoints, U1 and U2 respectively.

For simplicity, we shall refer to these models using the names of the stakeholders that

specified them. Using the syntactic approach based on maximal consistent subsets

40

Figure 3.1: Sample Viewpoints

outlined above, we obtain the following. We assume here the existence of an analyst-

generated signature map (see Table 3.1) which identifies the state labelled A0 in U1

with B0 in U2 and renames it as C0 in the merged model (A1 and B2 are similarly

identified and renamed as C1, while B1 is renamed as C2). x maps to z and they are

renamed as a, while y remains unchanged.

TU1={holds(a, C0), ¬holds(a, C1), trans(C0,C1) trans(C1,C0)}

TU2={holds(y, C0), ¬holds(a, C0), ¬holds(y, C2), holds(a, C2), holds(y, C1), holds(a,

C1), trans(C0, C2), trans(C2, C1), trans(C1, C2), ¬trans(C2, C0), ¬trans(C0,

C1), ¬trans(C1, C0)}

Several maximal consistent subsets of TU1 and TU2 exist and the followings are

Table 3.1: Signature Map

U1 U2 Mapping
A0 B0 C0

A1 B2 C1

B1 C2

x z a
- y y

41

just two examples. We create the first maximal consistent subsets by taking Alice’s

viewpoint and adding as much of Bob’s viewpoint as we consistently can. See Figure

3.2(a) for the combined viewpoint.

{holds(a, c0), ¬holds(a, c1), trans(C0, C1), trans(C1, C0), holds(y, C0), ¬holds(y, C2),

holds(a, C2), holds(y, C1), trans(C0, C2), trans(C2, C1), trans(C1, C2), ¬trans(C2,

C0)}

The following maximal consistent subsets are created by taking Bob’s viewpoint

and adding Alice’s viewpoint as much as we consistently can. See figure 3.2(b) for

the combined viewpoint.

{holds(y, C0), ¬holds(a, C0), ¬holds(y, C2), holds(a, C2), holds(y, C1), holds(a,

C1), trans(C0, C2), trans(C2, C1), trans(C1, C2), ¬trans(C2, C0), ¬trans(C0, C1),

¬trans(C1, C0)}

As we can see, the combined viewpoints obtained using the maximal consistent

subset approach differ from the one (see figure 3.2(c)) obtained using the multi-valued

logic approach proposed by Chechik and Easterbrook. Resolutions of inconsistency

based on the maximal consistent subset approach provide more specific models as

outcome, but require choice amongst multiple possible potential outcomes.

In this chapter, we present an approach to viewpoint merging using belief merging

operators. We demonstrate this by implementing, as with Chechik and Easterbrook, a

system for merging viewpoints specified as finite state models. We extend the state of

art by providing a technique for incremental viewpoints elicitation, and by addressing

the problem of iterative merging in the present of viewpoints.

42

Figure 3.2: Merged Outcomes

3.2 Belief Merging

We base our work on Meyer’s approach to belief merging [33]. We shall introduce

this approach in this section. We begin by discussing the representation of beliefs

using epistemic states. We then discuss some rationality postulates for belief merging

operators. We then present a subset of Meyer’s repertoire of merging operators.

3.2.1 Epistemic States

We shall assume a propositional language L, U is the set of interpretations of L and

M(α) is the set of models of α ∈ L. We shall use Φ to denote an epistemic state and φ

to denote the knowledge base associated with Φ. We let xn denote the list containing

n version of x. The length of a list l is denoted by | l |.

In this and following subsections, we summarize several results from [33] that are

relevant to our discussion.

Definition 3.2.1. An epistemic state Φ is a function from U to the set of natural

numbers. Given an epistemic state Φ, the knowledge base associated with Φ, denoted

by φΦ, is some φ ∈ L such that M(φ) = {u | Φ(u) = 0}.

43

Epistemic states allow us to represent preference orderings on valuation (or mod-

els). Valuations which receive a rank of 0 are the most preferred, while those that

get a rank of 1 are the next most preferred, and so on. Some numbers may have

no valuations assigned to them (i.e. there may be empty ranks) suggesting that the

relative distance between ranks can play a role in the specification of preference.

An epistemic list E = [ΦE
1 , . . . , ΦE

|E|] is a non-empty finite list of epistemic states.

Each element of an epistemic list is an epistemic state representing the beliefs of an

agent in the collection of agents whose beliefs must be merged. For any epistemic

state Φ, let

min(Φ) = min{Φ(u) | u ∈ U},

let

max(Φ) = max{Φ(u) | u ∈ U},

and for an epistemic list E, let

max(E) = max{max(ΦE
i) | l ≤ i ≤ |E|}.

For an epistemic list E and u ∈ U , let minE(u) = min{ΦE
i (u) | 1 ≤ i ≤ |E|} and

let maxE(u) = max{ΦE
i (u) | 1 ≤ i ≤ |E|}. seq(E) denotes the set of all sequences of

length |E| of natural numbers, ranging from 0 to max(E). We denote by seq ≤ (E)

the subset of seq(E) of all sequences that are in non-decreasing order, and seq ≥ (E)

the subset of seq(E) of all sequences that are in non-increasing order. For u ∈ U , we

let sE(u) be the sequences containing the natural numbers ΦE
1 (u), . . . , ΦE

|E|(u) in that

order, we let sE
≤(u) be the sequence sE(u) in non-decreasing order, and we let sE

≥(u)

be the sequence sE(u) in non-increasing order. Obviously sE(u) ∈ seq(E), sE
≤(u) ∈

seq≤(E) and sE
≥(u) ∈ seq≥(E). sE

i (u), s
(E,≤)
i and s(E,≥) denote the i-th digit in sE(u),

44

sE
≤(u) and sE

≥(u) respectively. Given any set seq of finite sequences of natural numbers

and a total preorder v on seq, we define the function Ωseq
v : seq → {0, . . . , |seq| − 1}

by assigning consecutive natural numbers to the elements of seq in the order imposed

by v, starting by assigning 0 to the elements lowest down in v.

3.2.2 Properties for Combining Epistemic States

A merging operation ∆ on epistemic states is defined as a function from the set of

all non-empty epistemic lists to the set of all epistemic states [33] . [33] also pro-

poses (E0) to (E6), (Arb) and (Maj) postulates (as listed below) that a merging

operator should satisfy. Such postulates are useful in defining a yardstick for defining

the rationality/correctness of the merging operators under consideration. Rationality

postulates have been used previously in non-monotonic reasoning [28] and belief revi-

sion [9] literature for motivating specific classes of inference and revision operations.

Similar postulates for merging have been previously be proposed by [27] and [30].

(E0) ∆([Φ])(u) = (Φ)(u) - min(Φ)

(E1) ∃u s.t. ∆(E)(u) = 0

(E2) ΦE
i (u) = ΦE

j (u) ∀i, j ∈ {1, . . . , |E|} and sE
≤(u)sE

≤(v) implies that ∆(E)(u) <

∆(E)(v)

(E3) If ΦE
i (u) ≤ ΦE

i (v) ∀i ∈ {1, . . . , |E|} then ∆(E)(u) ≤ ∆(E)(v)

(E4) if ∆(E)(u) ≤ ∆(E)(v) then ΦE
i (u) ≤ ΦE

i (v) for some i ∈ {1, . . . , |E|}

The above are the basic properties for merging of epistemic states. Let ε be a

finite list of epistemic list ε = [E1, . . . ,E|ε|], there are following two properties:

45

(E5) ∆(Ei)(u) ≤ ∆(Ei)(v) ∀i ∈ {1, . . . , |ε|} implies that ∆(
⊔|ε|

i=1 Ei)(u) ≤ ∆(
⊔|ε|

i=1 Ei)(v)

(E6) If ∆(
⊔|ε|

i=1 Ei)(u) ≤ ∆(
⊔|ε|

i=1 Ei)(v) then ∆(Ei)(u) ≤ ∆(Ei)(v) for some i ∈

{1, . . . , |ε|}

The arbitration postulate and majority postulate can be generalized as follows:

(Arb) ∀n ∆(E t [Φ])(u) ≤ ∆(E t [Φ])(v) iff ∆(E t Φn)(u) ≤ ∆(E t Φn)(v)

(Maj) ∃n s.t. ∀u, v ∈ U, Φ(u) ≤ Φ(v) if ∆(E t Φn)(u) ≤ ∆(E t Φn)(v)

(E0) states that combination with a singleton list should produce no change.

But if there is no model assigned the preference rank 0 after the merging operation,

which indicates an inconsistency in the knowledge base, then we should perform

normalization by subtracting the minimal level to make it consistent. Therefore (E0)

restricts to epistemic states of consistent associated knowledge base. (E1) says there

exists a model that is assigned rank 0 after the merging operation, which requires

that the model obtained should be consistent. (E2) says model u that are agreed

by all of the epistemic states in E, should be strictly more preferred than any model

v which is regarded by every epistemic state to be at most as preferred as u, but

less preferred than u by at least one of the epistemic states. (E3) states that if all

epistemic states in E agree that u is at least as preferred as v, then it should be the

case in the resulting epistemic state. (E4) shows that if a model u is regarded as at

least as preferred as v after completion of the merging operation, so there has to be

at least one epistemic state in E which regards u as at least as preferred as v.

46

(E2), (E3) and (E4) postulates are regarded as the most basic and important

ones. A merging operator satisfying these postulates has a rational behavior con-

cerning merging. (E5) and (E6) postulates are just generalization of (E3) and (E4)

respectively. (Arb) postulate states the characteristics of an arbitration operation,

while (Maj) postulate explains that adding enough epistemic states Φ to the epistemic

list E results in a refined version of Φ when combining epistemic states. In the next

section, we describe some of the merging operations that satisfy the above postulates.

3.2.3 Merging Operators

In the following, we will review some of Meyer’s merging operators. In particular,

we will review three specific operators: ∆min, ∆max and ∆Σ. Meyer defines several

others, but these three form a representative subset. ∆min and ∆max are examples of

arbitration operators while ∆Σ is an example of a majority operator.

There are two steps in the construction of each merging operation. The first step

is to assign the rank (natural number) to each model (or valuation). After completing

this step, if none of the models have been assigned a value 0, then the second step

is to perform an appropriate uniform substraction of values, which is referred to as

normalization. In cases where there are no models of rank 0 (suggesting that the

agent’t beliefs are inconsistent) we normalize by shifting all of the ranks down, while

maintaining their relative order and distance, but ensuring that the set of models at

rank 0 are non-empty.

Arbitration

We consider the idea of an arbitration operation in which we take as many different

viewpoints as possible from all the stakeholders into account. We will discuss two

47

Figure 3.3: A representation of the merging operator ∆min. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

arbitration operators, the first of which is the ∆min merging operator.

Definition 3.2.2. If E contains a single epistemic state Φ, let ΦE
min = Φ. If not, let

ΦE
min(u) = 2minE(u) if ΦE

i (u) = ΦE
j (u) ∀i, j ∈ {1, . . . , |E|} and ΦE

min(u) = 2minE(u)

+ 1 otherwise. Then ∆min(E)(u) = ΦE
min(u) - min(ΦE

min).

Figure 3.3 [33] is a pictorial representation of merging operator ∆min. The ∆min

operator involves the following steps. Identify the models which are agreed to by all

epistemic states as being the most preferred, and take them to be the most preferred

model in the resulting epistemic state from the merging operation (assigning them

the rank of 0). The models on the next level of preference are those deemed to be

the most preferred by at least one epistemic state. The models on the next level

of preference are considered to be the ones that are deemed to be the second most

preferred by all the epistemic states and the models regarded as the second most

preferred by at least one epistemic state are on the following level of preference. The

above process is repeated until all levels of preference for all the epistemic states have

been treated. The idea of ∆min is to find the minimum preferred rank given to a

48

Figure 3.4: A representation of the merging operator ∆max. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

model by any of the epistemic states and then to normalize the rank. The normalized

rank is assigned as the new preference rank to the model.

∆min satisfies (E0)-(E5) and (Arb) properties (see [33] for proof), reflecting its

suitability for the merging task. It does not satisfy (Maj) indicating that it is an

arbitration operator rather than a majority operator.

∆max is another arbitration operator.

Definition 3.2.3. Let ΦE
max(u) = maxE(u). Then ∆max(E)(u) = ΦE

max(u) - min(ΦE
max).

Figure 3.4 [33] represents ∆max. The maximum preference rank assigned to a

model by any of the epistemic states is taken as the preference rank to that model.

It satisfies (E0)-(E6) and (Arb) properties (see [33] for proof) and it does not satisfy

(Maj).

49

Majority

Majority operators take the viewpoints of the majority stakeholders into account, i.e.

it tries to minimize global dissatisfaction. The ∆Σ merging operation is an example

of a majority operation. Before we come to the definition of the ∆Σ operation, it is

necessary to look at the following form of summation (which is used in defining ∆Σ

). For s ∈ seq(E), let

sumE(s) =

|E|∑
i=1

si

where si is the ith element of s.

Definition 3.2.4. Let ΦE
Σ(u) = sumE(sE(u)). Then ∆Σ(E)(u) = ΦE

Σ(u)−min(ΦE
Σ).

As before, the final sentence in the definition represents the normalization step.

Figure 3.5 [33] gives a pictorial representation of ∆Σ. The idea of this operation is to

obtain the new preference rank of the model by summing the preference ranks given

by the different epistemic states (representing viewpoints of stakeholders) and then

to normalize the ranks.

∆Σ satisfies (E0)-(E6) and (Maj), but it does not satisfy (Arb) (see [33] for proof),

indicating it is a suitable majority operator.

There are also some other forms of combination, which are not given further

description here, interested readers can refer to [33].

3.2.4 Model Checking Merged Viewpoints using SMV

A key element of our approach to merging multiple viewpoints is to generate ap-

propriated merged outcome. When viewpoints are specified as state machines, the

50

Figure 3.5: A representation of the merging operator ∆Σ. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

satisfaction of a set of properties (including liveness, safety etc.), usually specified in

a temporal logic, is an important concern. Our approach thus relies on the existence

of some form of machinery to verify that a given model satisfies a set of properties.

Since we restrict our attention to finite state models, a model checker (see [8] for a

good introduction to model checking) is an obvious choice for this machinery.

We use the SMV (“symbolic model verifier”) [32] model checker for analyzing

the merged viewpoints obtained via our merging process. SMV is the best-known of

model checkers that supports CTL (Computation Tree Logic). SMV takes two inputs,

i.e. a model described in the SMV input language and some properties specified in

CTL . It outputs either the word “true” if the specifications are satisfied in all initial

states, or the word “false” with a counterexample showing why the specification does

not hold in the model determined by the program.

CTL is a branching-time temporal logic. There are different paths in the future and

51

any of the paths may be the realized one. Basically, CTL has the following eight tem-

poral connectives: AX, EX, AG, EG, AU, EU, AF and EF. A and E are the path

quantifiers, i.e. A signifies “for all computation paths” and E represents “for some

computation path” [8]. X (“next state”), F (“some future state”), G (“globally”)

and U (“until”) are the basic temporal operators. These temporal operators must be

preceded by one of the path quantifiers. The logic connectives ∨, ∧ and ¬ are also

used in CTL with the usual meaning. See [24] for more details on CTL.

The SMV model checker allows us to ensure that the model generated by our

system satisfies the given properties. We do not address the problem of resolving in-

consistencies amongst alternative sets of properties specified by different stakeholders.

Several of the techniques discussed in the previous chapter (such as the framework

presented in [20]) can be used for this purpose. We assume that there is a single

consistent set of properties that all stakeholders agree to.

3.3 Merging via Ranked Structure

3.3.1 Ranked Structures

We introduce the idea of a ranked structure - a notion related to, but distinct from the

notion of epistemic state used in Meyer’s framework for belief merging. An epistemic

state is intended to be a complete specification of an agent’s epistemic state. Thus,

it requires us to assign a rank to every possible state of affairs. In most non-trivial

domains, the number of possible states of affairs is typically very large, and many

of them, particularly at higher ranks (i.e. those that are less preferred), are often

irrelevant to the discourse. In a realistic application domain, such as ours, we cannot

conceivably have access to such a mapping. At best, we may ask agents (stakeholders)

52

to rank the models elicited thus far. A ranked structure can thus be loosely viewed

as being analogous to a partially specified epistemic state. There is another critical

difference. In Meyer’s approach to belief merging, we assume a commonly agreed

upon language, relative to which models (or states of affairs) are conceived. In our

context, each viewpoint comes with its own local vocabulary, relative to which a

stakeholder specifies models. A global (common) vocabulary is eventually constructed

via signature maps (described below), but this results in individual stakeholder models

becoming incomplete (in general) relative to this global vocabulary. This represents

another point of departure from the notion of an epistemic state. Meyer, Ghose and

Chopra [34] have defined a syntactic approach to merging using ranked knowledge

bases, but these are expressively equivalent to epistemic states, and hence inapplicable

in our context for precisely the same reasons as those listed above.

3.3.2 Signature Map

Given a set of viewpoints, although all of them are represented in finite state models

(refer to Chapter 2 for more details), it is possible that they are expressed in different

ways, using different vocabularies. Therefore, we require a signature map that unifies

different vocabularies. We assume that the models do not share the same vocabularies,

and the analyst can decide the matching values of the states and variables across the

viewpoint models.

We follow the similar properties as in [11] to define our signature map.

• Type information preserved - state name can only be mapped to state names,

and variable names can only be mapped to variable names.

53

• Every state and variable in the source models must map to a state and a variable

in the merged model.

• Two different names from the same source model cannot be mapped to the same

name in the merged model.

3.3.3 Guidelines for Selecting Merging Operators

Our framework provides a set of merging operators and the followings are the guide-

lines for choosing a merging operator.

Generally, there are two subclasses of merging operations as mentioned before.

Arbitration operators try to take as many different opinions as possible into account

to minimize the individual dissatisfaction. Majority operators take the viewpoints of

the majority stakeholders into account, i.e. they try to maximize global satisfaction.

Therefore, in cases where individual stakeholders are of similar importance, arbitra-

tion operators are the preferred choice. Majority operators, on the other hand, may

produce outcomes that leave some stakeholders very happy but others that are not

happy with the result at all.

Arbitration operators include such operators as ∆min and ∆max. With ∆min,

what effectively happens (with a minor variation) is that the lowest preference rank

(indicating most preferred) assigned to a viewpoint model by at least one stakeholder

will be taken as the preference rank for that viewpoint model in the resulting ranked

structure. ∆max takes the highest preference rank (indicating the least preferred)

assigned to a viewpoint model by at least one stakeholder as the preference rank

for that viewpoint model in the resulting epistemic state. ∆min can be regarded as

54

an open minded operator in which if the viewpoint is highly regarded by at least

one stakeholder, then the viewpoint is assigned the better preference rank. The ∆max

operator, on the other hand, is more conservative, as it assigns the poorest rank given

by at least one stakeholder to the viewpoint.

∆Σ is a majority operator. ∆Σ adds all the preference ranks assigned to a view-

point by different stakeholders and takes it as the new preference rank to the model

in the resulting ranked structure. Therefore, it takes all the stakeholders’ viewpoints

into consideration and tries to maximize the global satisfaction.

3.4 Algorithm for Merging via Incrementally Elicited

Ranked Structures

In this section, we present an algorithm for constructing our framework. It is a

lazy valuation, in that no full rank of epistemic states is necessarily provided. We

just provide a ranked structure that contains the firstly given viewpoints models. The

stakeholders start by giving their most preferred models, i.e models of preference rank

0 (It is possible that some stakeholders may have more than one model at a given

rank in which case their models must be inconsistent). If the models presented by all

the stakeholders are consistent, then we should retain all of these models and combine

them into a single model. Otherwise, the stakeholders are required to supply their

next most preferred models and the models are added to the ranked structure. They

keep providing additional models until they reach an agreement, i.e. their models

are identical or consistent. Once an agreement is reached, sets of agreed models are

combined into single models with a merging operator selected to determine the new

preference ranks for them, and a new and merged ranked structure is hence formed.

55

The merged ranked structure is comprised of only combined models and the pref-

erence ranks assigned to them. The most preferred models of the merged ranked

structure is first taken to check against the system properties set by the stakeholders

using SMV model checker. If SMV returns a true value, this model will be the result

model. If SMV returns a false value, then models of the next preference level of the

merged ranked structure are model checked until a model is found to satisfy the prop-

erties and such model is the final outcome model. If no such model is found in the

merged ranked structure, then we have to keep asking the stakeholders to give their

models of the next preference level from where they previously reached an agreement,

and repeat the above process to find a successful outcomes. The following algorithm

of procedure IncrementalMerge() reflects this process.

Not all operators in Meyer’s repertoire of merging operators lend themselves to

an incremental elicitation approach to merging. We define below the incrementality

property to circumscribe the set of merging operators that do lend themselves to

incremental elicitation.

Definition 3.4.1. A merging operator is said to satisfy the incrementality property

iff it is able to generate a complete merged epistemic state, up to rank(r-1) if all

epistemic states in input epistemic list are completely determined up to rank r, for r

≥ 1.

It is easy to see that amongst Meyer’s operators, only ∆min, ∆max, ∆Σ and ∆RΣ

satisfy this property. In the rest of our discussion, we will only be interested in

merging operators which satisfy the incrementality property.

r represents the rank of the ranked structure and i represents to the number of

stakeholders through the algorithms described in this chapter.

56

procedure IncrementalMerge

inputs:

1. A set of partial ranked structures, {RSi | i ∈ STAKEHOLDERS}

2. A merging operator OP and an associated function PartialMergeOP

3. A set of CTL properties PROP

outputs:

1. A single partial ranked structure PM, represented as a sequence of sets

〈 S0, S1, . . . , Sr 〉, organized in ascending order of rank, where each

set Si contain models at rank i.

2. A model m

done := false

r := 0

repeat

for each stakeholder i ∈ STAKEHOLDERS

elicit all models at rank r and place them in the set SM i
r

PM := PartialMergeOP ({SM j
k | j ∈ STAKEHOLDER, k ∈ {0, . . ., r}})

if the (r − 1)th element of PM exists and is non-empty

if there is a model m in PMr−1 that satisfies all properties in PROP

done := true

return m, PM

else

if there exists a model m
′ ∈ PMr that satisfies all properties in PROP

57

done := true

return m
′
, PM

else

r := r+1

else

r := r+1

until done

We define PartialMergeOP () for instances where the merging operations under

consideration are ∆min, ∆max and ∆Σ in the following discussion. Thus PartialMerge∆min

(x)def
= PartialMerge(x, min), PartialMerge∆max (x)def

= PartialMerge(x, max) and

PartialMerge∆Σ
(x)def

= PartialMerge(x, Σ) for all x. Other merging operations

from [33] could also be supported by other instances of PartialMergeOP (), but we

do not elaborate them here, in the interests of brevity.

procedure PartialMerge()

inputs:

1. A set of partial ranked structures, one for each stakeholder. For a

stakeholder i, a partial ranked structure is represented as sequence of sets

〈 SM i
0, SM i

1,. . . , SM i
j 〉 where each set SM i

j contains the models specified

by stakeholder i at rank j

2. A function f, determined by the merging operator OP

outputs:

1. A single merged partial ranked structure S : 〈 S0, S1, . . . ,Sk 〉

58

for each m ∈ SM i
j (for any i and any j)

CONS(m) = {〈n, j〉 | n ∈ SMi
j, for any i and any j, s.t. Consistent∗(m, n)}

Sk := Sk

⋃
{〈 n, k〉} where 〈 n, k〉 = Combine(CONS(m), f)

return S

Consistent∗(m, n) is a test for the consistency of models m and n. Two models

are consistent if the following rules are satisfied:

• If a variable is true in the state in one model, and the state is described in the

second model, then the variable should be true or undefined in the state of the

second model.

• If a variable is false in the state in one model, and the state is described in the

second model, then the variable should be false or undefined in the state of the

second model.

• If a transition between two states is described in one model, both of the states

are described in the second model, then the transition should be described in

the second model.

The following algorithm for function Combine() used in procedure PartialMerge()

is for merging procedure involving the ∆max and ∆Σ operations.

function Combine(S,f)

inputs:

1. A set S of pairs of form 〈m, l〉, where m is a model and l is a rank such

59

that l ∈ {0, . . ., r}. (All models referred to in S are guaranteed to be

consistent).

2. A function f where f = max or f = Σ

outputs:

1. A combined model with its associated rank 〈n, k〉

n := {}

k := 0

for l = 0, . . ., r do

n := CombineModels∗(n, m) where 〈m, l〉 ∈ S

k :=

{
max(k, l) if f = max

k + l if f = Σ

return 〈n, k〉

The following algorithm for function Combine() using the ∆min is slightly differ-

ent from the above.

function Combine(S, f)

inputs:

1. A set S of pairs of form 〈m, l〉, where m is a model and l is a rank such

that l ∈ {0, . . ., r}. (All models referred to in S are guaranteed to be

consistent).

2. A function f where f = min

outputs:

1. A combined model with its associated rank 〈n, k〉

60

n := {}

rank-set := {}

for l = 0, . . ., r do

n := CombineModels∗(n, m) where 〈m, l〉 ∈ S

rank-set := rank-set
⋃
{l}

k :=

{
2l if rank-set is a singleton and rank-set = {l}

2min(rank-set)+1 otherwise

return 〈n, k〉

The function CombineModels∗(m1, m2) takes two consistent models m1 and m2

as input and combine them into a single model m based on the following principles.

We use V arm(si) to denote the set of variables that are assigned a value in state

si in model m. We note that in a completely specified model, V arm(si) should be

identical for each state si, but we allow for the possibility that users may incompletely

specify a model.

We use 〈si, sj〉 to denote a transition from si to sj

• If a state si is defined in both models m1 and m2, then si must be defined in m

V arm(si) = V arm1(si)
⋃

V arm2(si)

• If a state si is defined in model m1 but not in the model m2 (or the reverse,

without loss of generality), then state si must be defined in model m. V arm(si)

= V arm1(si).

• If a transition 〈si, sj〉 is defined in either m1 or m2, 〈si, sj〉 remains a transition

in m.

61

We have described thus far a procedure for merging the incrementally elicited

viewpoints of a fixed set of stakeholders. In real-life applications, the set of stake-

holders may change - new stakeholders may join and existing ones may have. In the

following, we present an approach to deal with new stakeholders, i.e. an approach to

iterated merging. The problem of altering the merged outcome to reflect that a given

stakeholder’s viewpoint is no longer applicable, without having to recompute from

scratch, is a difficult problem (with similarities to the problem of belief contraction)

and one that we do not address in this dissertation.

In the case where there are new stakeholders joining, then the new stakeholders

first provide their models of rank 0, which will be compared with the combined models

of rank 0 of the newly created merged partial ranked structure, which can be regarded

as the combined viewpoints of the existing stakeholders. Merging process is repeated

similarly to the above described incremental merging process between models from

the new stakeholders and models from the merged ranked structure, until a successful

model is found.

If there is no agreement reached when it comes to the highest rank of the merged

ranked structure, then all the stakeholders, including the existing ones and the new

ones, shall give their models at the next preference rank higher than the rank where

the existing stakeholders reached the agreement. The same process is continued until

a satisfactory model is found. The algorithm for procedure IteratedMerge() below

represents this process.

procedure IteratedMerge()

62

inputs:

1. A set of partial ranked structures,

{NRSj | j ∈ NEWSTAKEHOLDERS}

2. A single partial ranked structure PM output from procedure

IncrementalMerge()

3. A merging operator OP and associated function PartialMergeOP

4. A set of CTL properties PROP

outputs:

1. A single partial ranked structure NPM, represented as a sequence of sets

〈 S0, S1, . . . , Sr 〉, organized in ascending order of rank, where each

set Sn contain models at rank n.

2. A model m

done := false

for n = 0, . . . , r do

for each new stakeholder j ∈ NEWSTAKEHOLDERS

elicit all models at rank n and place them in the set NSM j
n

TEMP PM := {PMl | l ∈ {0, . . ., r}}

NPM := PartialMergeOP ({NSM j
n | j ∈ NEWSTAKEHOLDER,

n ∈ {0, . . ., r}
⋃

TEMP PM }) where NPM = {S0, . . . , Sn}

if the Sn−1 exists and is non-empty

if there is a model m in Sn−1 that satisfies all properties in PROP

done := true

return m, NPM

else

63

if there exists a model m
′ ∈ Sn that satisfies all properties in PROP

done := true

return m
′
, NPM

if NOT done

STAKEHOLDERS := STAKEHOLDERS
⋃

NEWSTAKEHOLDERS

call procedure IncreamentalMerge()

This last call to the procedure IncrementalMerge can be optimized (and is opti-

mized in the implementation) by not starting the incremental elicitation process from

rank 0, but from one rank higher than the highest rank r elicited (from both the

prior set of stakeholders and the new set of stakeholders). Note that when the In-

crementalMerge procedure is called, every stakeholder in the set STAKEHOLDERS⋃
NEWSTAKEHOLDERS will have completely specified all ranked structures up to

rank r.

Thus, the algorithm embodies our framework’s characteristics, which are inter-

leaved elicitation, interleaved merging and interleaved model checking. It demon-

strates the applicability of merging operation to inconsistency management in re-

quirements engineering.

3.5 Example

For better understanding, we present an example to demonstrate how our framework

works. In this example, we assume that arbitration operator ∆min is chosen. We

start by taking the sample viewpoints shown in Figure 3.1. Consider a set of ranked

structures V = {Φ1, Φ2}, where Φ represents the viewpoints of stakeholder 1 and

64

Φ2 represents the viewpoints of stakeholder 2. Stakeholder 1 first gives her most

preferred model u1 and stakeholder 2 gives her most preferred model u2. So in the

partial ranked structure Φ1 of stakeholder 1 there is one model u1 assigned rank 0 and

there is one model u2 assigned rank 0 in the partial ranked structure Φ2 of stakeholder

2. Then, these two viewpoint models are checked for agreement, i.e. whether they

are identical or consistent, based on the consistent rules described in section 3.4.

Before consistency checking, we need to define a signature map to unify the vo-

cabularies of these two models. We take the same signature map from [11] as shown

in Table 3.1. Obviously, these two models are inconsistent according to the above

consistency rules as there are conflicts between the state transitions. As this is the

case, both stakeholder 1 and stakeholder 2 must now give their models of next pref-

erence level, i.e. level 1. The models they give are u3 and u4 respectively. Models of

Φ1 (u1, u3) and models of Φ2 (u2, u4) are checked again for agreement. Assume no

agreement is reached, then both stakeholders have to give their models of preference

level 2, which are u5 and u6 respectively. Now Φ1 ranks the models as Φ1(u1) = 0,

Φ1(u3) = 1, Φ1(u5) = 2 and Φ2 ranks the models as Φ2(u2) = 0, Φ2(u4) = 1, Φ1(u6)

= 2 (see Figure 3.6 (a) and (b) for a pictorial view of the ranked structures of Φ1

and Φ2 respectively). Suppose an agreement is reached at this preference rank (rank

2), assuming u3 and u6 are consistent, u5 and u2 are consistent, and u5 and u6 are

consistent, even though they are not identical. Then merging operation is performed

to combine these three sets of consistent models and assign ranks to the combined

models, hence creating a new ranked structure, which we refer as Φ. We name the

model combined from u3 and u6 as v1, model combined from u5 and u2 as v2 and

model combined from u5 and u6 as v3. With the merging operator ∆min, model

65

Figure 3.6: Partial Ranked Structures

v1 is assigned the rank 1, model v2 assigned rank 0 and model v3 assigned rank 2.

Therefore, the ranked structure Φ contains models v2, v1 and v3 at ranks 0, 1 and 2

respectively (see Figure 3.6 (c) for a pictorial representation).

As v2 is the most preferred combined model, it is first checked against a set of

system properties using SMV model checker. If v2 satisfies all the system properties,

it will become the desired resulting model and the final outcomes are v2 and ranked

structure Φ. Otherwise, we have to go to the next most preferred model and so

on, until we find a successful one. If none of the models in Φ satisfies the system

properties, then the stakeholders have to continue to provide their models of the next

preference rank, which is rank 3. The process is repeated until a satisfactory model

is found. In our example, we assume combined model v1 between models u5 and u2

is the successful model, therefore the final outputs are v1 and ranked structure Φ.

After the completion of the process, if there is another stakeholder 3 coming and

presenting her viewpoint model u7, then the process should continue by checking

model u7 with model v2, the most preferred one in the ranked structure Φ for con-

sistency. If an agreement is reached, then model v1 and model u7 are combined into

a single model, which will be taken for model checking. If it returns a true value,

such a model is the output model with a ranked structure containing only this model.

Assuming in this example, model u7 is not consistent with v2, then stakeholder 3 has

66

to give her next most preferred model which is u8 at rank 1. Models at rank 1 of

the ranked structure Φ shall also be taken to join the consistency checking process.

That is models of Φ(v2, v1) and Φ3(u7, u8) are checked for consistency. Assuming

an agreement is reached at this rank, i.e. model v1 and model u8 are consistent,

then they are combined into a single model, which is named as v4. A new ranked

structure Φ
′
is formed containing model v4 at rank 0. Now model v4 is model checked

against the system properties. Assuming that it does not satisfy all the properties,

then stakeholder 3 has to give her model (u9) of next preference rank, i.e. rank 2.

Model of rank 2 of ranked structure Φ is also taken for consistency checking as we

did for the previous ranks. Assuming model u9 is consistent with model v2, then they

are combined into model named v5 and assigned rank 0 with merging operator ∆min.

Contents of ranked structure Φ
′
is changed and it contains models v5 at rank 0 and

v4 at rank 1 (see Figure 3.6 (e)). If model v5 satisfies all the system properties, the

final outcomes are model v5 and ranked structure Φ
′
. Otherwise, the merging process

need to continue with all the stakeholders, i.e. stakeholders 1, 2 and 3 providing their

models at next preferred rank, rank 3. Now the V = {Φ1, Φ2, Φ3} and the process

is iterated as described above until a satisfactory combined model is found.

Chapter 4

Implementation

In this chapter, we present a viewpoint merging tool based on the framework pre-

sented in the previous chapter. First, we describe the design using an object-oriented

approach. The design consists of three major components. Details of these com-

ponents and their relationships are explained in section 4.1. Then we present the

implementation of the algorithms presented in Chapter 3, operationalized through a

user interface written in Java (a object-oriented programming language). Individual

method is explained in detail in Section 4.2.

4.1 System Design

The overall architecture of the merging system consists of three components: Model

Elicitation, Model Merging and Model Checking.

The Model Elicitation system relates to model elicitation from stakeholders. In

order to maximize convenience to stakeholders, the stakeholders are able to present

their models at their own terminals to carry out the followings.

• Register as a new stakeholder providing their required details as well as their

67

68

viewpoint-specific vocabularies.

• Registered stakeholders are able to login to the system where they will be able

to view their models.

• Registered stakeholders are able to enter details of the models as well as their

associated preference ranks (stakeholders do not enter ranks of the models they

specify - instead the system prompts them for models of a given rank).

• Registered stakeholders are able to edit the models entered except for the model

ID.

• Registered stakeholders are able to delete a model.

• Registered stakeholders are able to modify their personal details including the

password.

After all stakeholders have registered (at which time they provide their viewpoint-

specific vocabularies), the analyst is required to create a signature map (described in

Chapter 3).

The second component of the system is to merge the models elicited from the

stakeholders and produce a ranked structure. It carries out the following functions.

• Signature mapping. Models from different stakeholders are mapped to the same

vocabulary according to the signature map created by the system analyst.

• Most of the functionality described in the IncrementalMerge() procedure

described in Chapter 3 is implemented in this component, but involves, in part,

69

the model elicitation functionality of the first component and the model checking

functionality of the 3rd component.

• Consistency checking, which implements the Consistent() procedure described

in Chapter 3.

• Model combination. Combine a set of consistent models into a single model and

assign a rank to this model (based on the merging operator being used and the

ranks of the input models). It implements the Combine() function described

in Chapter 3.

The last component is model checking which perform the function to check models

against a set of system properties. In this system, the most preferred model from the

newly created ranked structure will be taken for model checking.

In the following, we will discuss the data structure to implement the merging

system consisting of the above three components.

4.1.1 Data Structure Description

Figure 4.1 shows the class diagram describing the above three components.

The viewpoints used in our framework are represented as finite state models,

each of which consists of a set of states and transitions. The class Model is used

to describe the finite state models. It has aggregated classes Node and Arc that

describe states and transitions respectively. Class Node has aggregated class Variable

that represents the atomic propositions that are assigned a value of true or false in

each state. Therefore, all these classes record details of a complete model. The models

70

Figure 4.1: Class Diagram of the proposed Framework

71

are stored in a database. The class Model implements the functions related to Model

Elicitation component.

The class ModelMerging(of Model Merging component) interacts with the class

Model. Its aggregated class Consistent, which implements the consistency checking

function of the Model Merging component, checks models retrieved from the database

for consistency. Models of one stakeholder are checked with those of another stake-

holder. In Java, we use the “vector” data structure to store the models. Every

element of one vector holds models of one stakeholder. The other aggregated class

Combine combines a consistent set of models into a single one. Model of one stake-

holder is combined with model of next stakeholder and the merged model is combined

with model of next stakeholder and so on. Rank of the combined models are gener-

ated based on the merging operator used. The final combined model is stored in the

database with new name and ID. Its states, state variables and transitions are also

recorded to the database. This class implements the model combination function of

the Model Merging component. Therefore, the class ModelMerging implements the

functionality to produce a partial ranked structure containing the combined models

with their associated preference ranks.

The class ModelChecking has a function to call SMV model checker to check the

combined models and a function to check the output returned by SMV model checker

to decide whether the combined model is satisfactory or not.

72

4.2 Implementation Description

4.2.1 Overview

The prototype is written in Java. We have designed a user interface for data entry

which is used by the stakeholders to enter their requirements/preferences (i.e. their

ranked structure). The data input are stored in a database. Different stakeholders can

enter their models at their individual terminals. Once all the stakeholders have given

their models, the system is able to automatically check the models and perform the

merging operation if a consistent set of models is found. In our prototype, Microsoft

(MS) Access is used to create the database, which consists of twelve tables. Schema

definition in SQL of these tables are listed below:

• create table stakeholder (SHId char(5) not null, SHName char(30), SHAd-

dress char(30), password char(6), primary key (SHId))

• create table model sh (SHId char(5) not null, modelId char(5) not null,

primary key (SHId, modelId))

• create table model (modelId char(5) not null, modelName char(30), con-

sId char(5), rank integer, operator char(20), desc char(30), primary key

(modelId))

• create table node (nodeId char(5) not null, modelId char(5) not null, pri-

mary key (nodeId, modelId))

• create table variable (varId char(5) not null, value boolean, nodeId char(5)

not null, modelId char(5) not null, primarykey (varId, nodeId, modelId))

73

• create table arc (preNodeId char(5) not null, nextNodeId char(5) not null,

modelId char(5) not null, primary key (preNodeId, nextNodeId, modelId))

• create table consModel (consId char(5) not null, modelId char(5) not null,

primary key (consId, modelId))

• create table nodeVocabulary (SHId char(5), name char(30), nodeId char(5)

not null, primary key (nodeId))

• create table varVocabulary (SHId char(5), name char(30), varId char(5)

not null, primary key (varId))

• create table nodeSignatureMap (nodeId char(5) not null, mapId char(5),

primary key (nodeId))

• create table varSignatureMap (varId char(5) not null, mapId char(5), pri-

mary key (varId))

• create table loginSH (SHId char(5), rank integer, newSH boolean)

In the following discussion, we will refer to the notions of source model and com-

bined model. A source model is a model that was originally specified by a stakeholder

while a combined model is one that is output by the Combine() function described

in Chapter 3.

Table STAKEHOLDER records details such as id, name, address and login pass-

word of all the registered stakeholders. Table MODEL SH joins tables STAKE-

HOLDER and MODEL together. It only contains two fields: stakeholder ID and

74

model ID. Table MODEL records both source models and combined models. It con-

tains model ID, model name, consId of consistent set of models (we identify maximal

consistent sets of models from the input set of models and each such set is identified

by consId). If the model is a combined model, it records from which set of consistent

models it is combined in the desc field. If it is a source model, its consId is null.

Table MODEL also records the rank of each model and the merging operator used to

obtain the combined model (if the model in question happens to be a source model -

the value is null). Table NODE records the node ID and ID of its associated model.

Similarly, table VARIABLE records the information of a variable: variable ID and

ID of its associated node and the true or false value that variable holds in the node.

Table ARC records the arc ID, arc’s pre node’s ID and next node’s ID as well as its

associated model ID. Details of the consistent models are recorded in table CONS-

MODEL, which contains the ID for the set of consistent models and the ID of models

contained in that set.

Table NODEVOCABULARY captures node-specific vocabularies provided by the

stakeholders. It contains stakeholder ID, the node names specified by the stakeholders

and node Id that distinguishes the names given by the stakeholders. Table VARVO-

CABULARY records the variable-specific vocabularies given by the stakeholders and

it contains stakeholder ID, variable name and variable ID. From the vocabularies

recorded in these two tables, the analyst creates the respective tables NODESIG-

NATUREMAP and VARSIGNATUREMAP to unify the vocabularies of nodes and

variables given by the stakeholders. Each table contains the respective ID and the

mapping value.

75

The last table LOGINSH registers the stakeholders that already provide their

models of a particular rank and also record whether the stakeholders are newly joining

one or the existing ones.

In the subsection that follows, we will give a detailed description of the user

interface that facilitates our merging system.

4.2.2 Implementation Description

The data input would ideally be a diagrammatic state machine editor. Implementing

such an editor is a non-trivial task, and the exercise was deemed to be orthogonal

to the objectives of this research. We have therefore devised a simple form-based

interface for specifying state machine models.

Data input interface has five forms, i.e. 1) stakeholder login form, 2) stakeholder

registration form, 3) data entry main menu, 4) add model form, 5) add state form

and 6) add arc form. We will explain the form with an example. In this example,

there are two stakeholders named Alice and Bob.

The initial interface presents the user with two options, one for a new stakeholder

registration, the other for existing stakeholders. Selecting the “New User” option will

take the user to the Stakeholder Registration Form.

The Stakeholder Registration System captures information of a stakeholder as

listed on Figure 4.2. It also captures viewpoint-specific vocabularies presented by the

stakeholders. Stakeholder details are recorded to the STAKEHOLDER table in the

database. The stakeholder ID is generated automatically based on the value of the last

76

Figure 4.2: Stakeholder Registration Form

id in the database incremented by 1. The vocabularies are added in the corresponding

vocabulary tables, i.e. node vocabularies to table NODEVOCABULARY and variable

vocabularies to table VARVOCABULARY. We assume that the analyst also registers

as a stakeholder, and provides a vocabulary. This is the vocabulary used to represent

combined models.

For the registered stakeholders, after logging in based on the user’s ID and pass-

word, the user is presented with three options , where they can choose whether to

77

Figure 4.3: Add Model Form

add model, edit model or delete model. In our prototype1, we have only implemented

the “Add Model” and “Delete Model” functions.

The merging process begins with all stakeholders being prompted to provide all of

their most preferred models, i.e. models at rank 0. If a consistent outcome is found

from these models, that also satisfies a given set of properties specified in Computa-

tion Tree Logic (CTL), then the process terminates. Otherwise, all stakeholders are

prompted for their next most preferred models, i.e. models at rank 1. The process

follows the steps described in the IncrementalMerged() procedure in Chapter 3.

When the user selects the “Add Model” option, the Add Model form is displayed

as shown in figure 4.3.

The stakeholder ID and name are retrieved from the database and shown auto-

matically. The Model ID is generated automatically as the stakeholder ID is. The

1See Appendix A for the complete java source codes

78

preference rank is prompted by the system and the user only need to enter the name

of the model. In this example, the preference rank is 0 and model name is u1 for stake-

holder Alice. The partial ranked structure of stakeholder Alice is therefore elicited.

Models are added in two stages. In the first stage, state details are added; in the

second stage, transition/arc details are added. Selecting the “Add State” option will

call the Add State form (see Figure 4.4) for the user to select her specified state names

and variable names from their respective drop down lists. Each variable can take the

value of true or false. Therefore, there is also a drop down list containing “True”

and “False” that can be selected to assign the value to the variables. After the user

selects the a state name, a variable name and a value and select the “Add” option,

the variable with its assigned value is displayed in the text area below. The next

variable is then entered if there is any. A particular variable can also be removed.

Just select that variable listed in the text area and select the “Remove” option.

After finishing entering all the variables for that particular state, the user selects

the “Save State” option to save the data for this state. Then the user enters the

next state following the same procedure. In our example, Model u1 has two states:

A0 and A1, and two variables: x and a. Both x and a hold in state A0(See Figure

4.5(a)). On entering this information, it is saved and state A1 containing variables x

and a both with false value is added. Figure 4.4 shows the input of state A1. The

user then returns to the Add Model form and selects the “Add Arc” option to enter

the transition details.

The state names and variable names selected are mapped automatically according

to the signature map already created by the analyst. In this example, we follow the

79

Figure 4.4: Add State Form

signature map listed in Table 4.1

The transition details are added in a similar way as the user adds the state details.

The user selects the names of the arc’s in-node and out-node from the respective

dropdown lists (see figure 4.6). Names of these nodes come from the nodes added

via Add State form. After all the transitions have been entered and saved, the user

returns to the Add Model form and select the “Save Model” option inserting the

complete model into the database. Model, node and arc data are inserted to the

MODEL table, NODE table, VARIABLE table and ARC table respectively. Then a

message dialog box is displayed to ask whether the user wants to add another model

of the same preference rank. The user can enter another model of the same preference

rank if there is one. As stakeholder Alice has no more model at rank 0 to add, once

she selects the “No” option, she returns to the main menu.

Selecting the “Delete Model” option will take the user to the Delete Model Form

where models of that particular user are displayed. Displayed details include the

80

Table 4.1: Signature Map

S1 S2 Mapping
A0 B0 N0

A1 B2 N1

- B1 N2

x z a
a y b

model ID, the model name and the associated preference rank. The user can select

the model to be deleted. In this system, the “Add Model” option is the major concern

and we will continue its discussion in the following.

In our example, it is now stakeholder Bob’s turn to given his model at rank 0. The

model given by Bob is named u2 as shown in Figure 4.5(b). Once he finishes entering

his model, he is also prompted a message dialog box to select whether to add another

model. When he selects “No” option, consistency checking is performed as the system

can detect that he is the last stakeholder to enter the models (i.e. all the stakeholders

have entered their models at rank 0). Consistency checking is performed based on

the consistency rules described in the previous chapter. If no agreement is reached,

the message is displayed using a dialog box on the screen and all the stakeholders

involved are informed, in which case, the stakeholders have to provide their models

of next preference rank. If there is an agreement, merging operation will continue by

combining any consistent sets of models according to the algorithm of Combine()

function described in Chapter 3.

In our example, these two models are not consistent, therefore, stakeholders Alice

and Bob have to present their models of next preference rank, i.e rank 1. Once

81

Figure 4.5: Example Viewpoints

82

Figure 4.6: Add Transition Form

they have provided their models u3 and u4 (as shown in Figure 4.5 (c) and (d))

respectively, consistency checking is reapplied. This time consistent set of models

is found, i.e. model 3 and mode 4 are consistent. Details of the consistent set of

models are recorded to the CONSMODEL table in the database. Merging operation

continues. We assume ∆min merging operator is used. Therefore, the above merging

process implemented the algorithm PartialMerge∆min
().

Result of the merge is displayed in a separate form, which will show the contents

of the newly created ranked structure. It displays the preference ranks, model IDs

of the merged models, merging operator used and a description indicating the model

IDs of the source models that form the combined models. In this example, only one

combined model is created, which is assigned the rank 0, model ID 1001 (combined

models are assigned the model IDs greater than 1000 to distinguish from the source

models), with “Delta min” and a description of “models 3 and 4” recorded to the

83

MODEL table (see Figure 4.7). Its nodes, variables and arcs are inserted respectively

into the tables NODE, VARIABLE, and ARC in the database.

Figure 4.7: Model Merging Results Form

The combined model is then selected for model checking against the system prop-

erties. The SMV model checker is used for checking system properties (these are

assumed to be written in CTL). The SMV system assumes that models are specified

in a system-specified input language - called the SMV language. We use an intuitive

representation of finite state models in a format that users can easily understand and

that supposes a diagrammatic representation of such models (although we have not

implemented the graphical display component). Translating between this represen-

tation and the SMV language is non-trivial, and implementing such a translator is

not central to our research aims. Consequently, we have not implemented such a

translator, but we point out that such a translator could be implemented. For our

prototype, we assume that the analyst performs this translation. The model checking

84

component thus functions as a stand-alone system in the current version of our proto-

type. In this example, we assume the satisfactory model should satisfy the following

property: For any state, if a a holds, then it will eventually get to a state where b is

false. The property can be represented in CTL (see chapter 3 for more details) as:

AG(a → AF (∼b)).

Figure 4.8 (a) is the graphic view of the combined model between models 3 and

4. We name this model as v1 and it is represented in the following SMV code.

Figure 4.8: Combined Models

MODULE main

VAR

a, b: boolean;

ASSIGN

init(a) := 0;

init(b) := 1;

next(a) := ∼a;

next(b) := {0, 1};

SPEC

85

AG (a → AF (∼b))

When the SMV model checker is run to check model v1, it returns a false value,

indicating that the model does not satisfy the above property (See Figure 4.9 for part

of the verifying result). Therefore, stakeholders Alice and Bob are informed of the

result and they must give their models again of next preferred rank, i.e. rank 2. The

models given by Alice and Bob in our example are u5 and u6 respectively as shown

in Figure 4.5(e) and (f). Once the models are input following the same procedure

described above by Alice and Bob, consistency checking is performed. Consistent set

of models is found between model 1 and 6, in addition to the consistent set of model

3 and 4. See Figure 4.10 for the merge results.

A new ranked structure is now created containing two combined models. Model

1001 formed between model 1 and 6 (see Figure 4.8(b) for a graphic view) is assigned

the rank 0 and model 1002 formed between model 3 and 4 (see Figure 4.8(a)) is

assigned the rank 1. We name model 1001 as v2 and model 1002 remains as v1.

Obviously, model v2 ranked 0 is sent to SMV model checker to be checked against

the property. The following is the SMV’s representation of this model.

MODULE main

VAR

a, b: boolean;

ASSIGN

init(a) := 1;

init(b) := 1;

next(a) := {0, 1};

86

Figure 4.9: SMV Running Output for Model v1

87

Figure 4.10: Second Merging Results Form

next(b) := ∼y;

SPEC

AG (a → AF (∼b))

After running SMV model checker, a true value is returned (see Figure 4.11)

indicating the model satisfies the property. Therefore, the merged model v2 be-

tween model 1 and 6 becomes the resulting model. No further iteration is required.

The merging system implementing the algorithm IncrementalMerge() described in

Chapter 3 output model v2 and a ranked structure containing model v2 with rank 0

and model v1 with rank 1.

In the cases when new stakeholders are joining, they enter their models in the

same procedure as described above and their models are then checked with the most

preferred models in the ranked structure, i.e. model v2 of model ID 1001. Analysis

and model merging procedure are repeated until a satisfactory combined model is

found, which is implemented based on the algorithm IteratedMerge() described in

88

Figure 4.11: SMV Running Output for Model v2

Chapter 3.

Chapter 5

The Case Study

In this chapter, we present two case studies involving the application of our viewpoint

merging approach.

5.1 Telephone System Case Study

The purpose of this case study is to further demonstrate the applicability of belief

merging to inconsistency management in requirements engineering. This case study

was the result of a real life experience involving two stakeholders who provided their

viewpoints on the behavioral specification of a telephone system.

The case study involved two individuals (we shall refer to them as Tom and Jerry

in the following) who were given an initial problem description as plain text English.

They used the State View Merge System to merge their initially inconsistent viewpoint

(based on their diverging interpretation of the textual description given to them).

89

90

5.1.1 The Scenario

The scenario involves the telephone handset being used to receive a call. The following

was the description of the requirement given to the stakeholders.

A telephone handset can be used to make and receive a call. When it is idle, the

receiver is replaced. When there is an incoming call, it is connected. If the incoming

call is not answered, it will be disconnected and become idle again.

Based on the above description, two stakeholders first presented their most pre-

ferred viewpoints, i.e. viewpoints at rank 0. It is assumed that their requirements

could reach an agreement at some rank and then are combined to give a complete

description of the handset.

Consistency rules described in Chapter 3 are used to test whether the different

state transition diagrams representing the same device are consistent with each other.

The merging process described in Chapter 3 combines the set of consistent models

into a single one and then a set of system properties applied to this telephone system

will be used to check whether the resultant combined viewpoint is a satisfied and

desired viewpoint.

The complete experiment was conducted using our tool developed based on the

algorithms described in Chapter 3.

5.1.2 Experiment Description

The case study was developed based on the viewpoints on [11] between Tom and his

colleague Jerry. Tom’s most preferred viewpoint suggests replacing the receiver during

91

Table 5.1: vocabulary Map

Tom Jerry Mapping
DialTone DIALTONE DIALTONE

Idle IDLE IDLE
Ringing RINGING RINGING

Connected CONNECTED CONNECTED
offhook offHook offhook

connected Connected connected

an incoming call will not disconnect the call (see model u1 in Figure 5.1(1)). From

the Figure 5.1 (1) we can see there was a transition from state Connected to state

Ringing, where variable Connected was true in both states. Jerry’s most preferred

viewpoint assumed that replacing the receiver always disconnects the call (see model

u2 in Figure 5.1(2)), where there were transitions from states CONNECTED and

DIALTONE in which variable offHook held to state IDLE in which variable offHook

was false and Connected was false. Jerry also had another viewpoint model u3 at rank

0 as shown on Figure 5.1.(3). In this model, he had a transition from state IDLE to

state DIALTONE, indicating that it was allowed to make a call.

Tom’s diagram had four states, DialTone, Idle, Connected and Ringing, and

two variables: offhook and connected. Jerry’s diagram was also represented in four

states: DIALTONE, IDEL, CONNECTED and RINGING, with two variables:

offHook and Connected. Their vocabularies were mapped according the signature map

on Table 5.1. Tom’s ranked structure Φ1 contained a model u1 rank 0 and Jerry’s

ranked structure Φ2 contained two models u2 and u3 at rank 0. Once their viewpoints

were presented, i.e. they both entered their requirements that were recorded to the

database, consistency checking was performed immediately and a message dialog box

92

Figure 5.1: All Viewpoints Elicited for Telephone Systems

93

popped up to inform the users that no consistent model was found, indicating model

u1 was not consistent with model u2 or model u3.

Then the two stakeholders had to present their next preferred viewpoints. When

the “Add Model Form” was invoked, the system indicated that viewpoints at rank 1

were required from the stakeholders. Tom entered his viewpoint u4 at rank 1 as shown

on Figure 5.1(4). He changed his viewpoint by adding a transition from state Idle to

state DialTone, which allowed making a call. Jerry also had two viewpoints at rank

1. The first one was u5 (see Figure 5.1(5)). It allowed that replacing the receiver

would either disconnect the call or still have the call connected by having transitions

from state CONNECTED to states RINGING and IDLE. But Jerry’s second

viewpoint u6 at rank 1 (see Figure 5.1(6)) retained his previous opinion that replacing

the receiver would always disconnect the call, but he also allowed making a call as

well. After these three models were entered, consistency checking was performed

among models of Φ1(u1, u4) and models of Φ2(u2, u3, u5, u6). Still no consistent

models were found.

Tom and Jerry kept entering their viewpoints of next preference rank, i.e. rank 2.

Tom’s viewpoint u7 at rank 2 allowed that the call could be either disconnected or con-

nected when the callee replaces the receiver, with transitions from state Connected

to states Idle and Ringing. As it was the viewpoint of a callee, Tom believed that he

should not be concerned with the feature of call making. Therefore, he removed the

transition from state Idle to state DialTone (see Figure 5.1(7)). At this rank, Jerry

presented only one viewpoint instead of two as he did in the previous ranks. The

viewpoint he presented was u8 (see Figure 5.1(8)). Jerry still preferred that replacing

the receiver would disconnect the call, but he also allowed that when the user was

94

Figure 5.2: Result of Merge

dialing, if there was an incoming call, the user could stop making the call and receive

the incoming call instead. At this rank, the tool detected that consistent models were

found. Therefore a merging operation was performed (in this experiment, both Tom

and Jerry agreed to use ∆max merging operator) and the results were displayed in

another window showing that a merged model ranked 0 was combined between model

u7 of Tom at his preference rank 2 and u5 of Jerry at his preference rank 1.

As both Tom and Jerry had the same states and same variables, we can see that

these two consistent models were actually identical. We rewrote the models as shown

in Figure 5.2(a) with the signature map names.

Now the combined model was model checked against the properties using SMV.

Both Tom and Jerry agree that the following properties should be satisfied.

Property 1 If you are connected, you can replace the receiver. It is represented in

CTL as: AG(connected → EX(∼offhook)).

Property 2 If you are dialing, you can receive an incoming call. It is represented in

CTL as: AG((offhook∧∼connected)→EX(connected)).

95

SMV model checker returned true for the first property, but false for the second

property, indicating the model did not satisfy all the properties. Therefore, models

of next preference rank needed to be elicited from the the stakeholders.

Therefore, Tom and Jerry had to enter their models of rank 3, which were models

u9 and u10 respectively (see Figure 5.1(9) and (10)). Now models of Φ1(u1, u4,

u7, u9) and models of Φ2(u2, u3, u5, u6, u8, u10) (see Figure 5.3 (a) and (b) for a

pictorial viewpoint of the ranked structures of Φ1 and Φ2 respectively) were checked

for consistency. A window was displayed showing that two merged models were

produced. One was ranked 0 (and formed by the combination of models u7 and u5),

which was named v1, the other was ranked 1 (and formed formed by the combination

of models u9 and u10), which was named v2. Therefore, a new merged ranked structure

Φ was produced. See Figure 5.3(c) for the pictorial view.

As the merged model between models u7 and u5 did not satisfy all the properties,

it would not be taken for model checking even it was ranked the most preferred model.

So the next preferred model would be checked against the above mentioned properties

using SMV model checker. It was model v2 (formed by the combination of models

u9 and u10). The SMV model checker returned true for both properties. Therefore,

model v2 was the output model.

Tom and Jerry finally resolved the problem at rank 3 with a model satisfies all

the system properties and a merged ranked structure containing two models, model

v1 at rank 0 and model v2 at rank 1.

96

Figure 5.3: Ranked Structures

5.1.3 Summary

The study elicited 10 models involving up to 4 preference ranks from two stake-

holders to finally get an agreed model that satisfied the system properties, and was

conducted over a period of two days. The main effort was in eliciting models from

the stakeholders and translating the agreed model in to the SMV language for model

checking. The rest i.e. the consistency checking and model merging were completely

done by the tool. Testing of the system properties for the agreed model using the

SMV model checker was very straightforward once the model was translated into the

SMV language.

In this process, at every rank when there was conflict. Both stakeholders had

to relax their viewpoints gradually in order to reach an agreement. Take Tom as

example. His second model (u4 in Figure 5.1(4)) had more function allowed compared

with his most preferred model (u1 in Figure 5.1(1)) because it added a transition from

state Idle to state DialTone. Although Tom’s next preferred model u7 removed this

transition since it was concerned with making call instead of receiving call, he added

a transition from state Connected to Idle.

97

A program can be used to relax viewpoints according the the relaxation policy

provided by the stakeholders so that stakeholders do not continuously and repeatedly

interact with the tool. Once the most preferred models and the relaxation policies

are provided, the whole process can be completed by the tool.

5.2 Student Application System Case Study

In order to give a more specific idea of the iterated process of this system, we have

undertaken another case study. The case study was conducted between Peter and his

colleagues based on the student application process.

The case study conducted here is different from the previous one in that it involved

a new stakeholder after the successful completion of the merging process between two

stakeholders. The required process, i.e. the student application for submission process

was expressed in finite state machines. The whole process was conducted using the

tool developed in this research.

5.2.1 The Scenario

The viewpoints involved described the process of a student’s application for admission.

The process starts when a student makes an application, which can be accepted or

rejected. If she is accepted for admission, she should confirm whether she accepts the

offer or not.

98

5.2.2 Experiment Description

This experiment was first conducted by two stakeholders, Peter and John. For sim-

plicity, we assume that all the stakeholders use the same vocabularies. Therefore, no

vocabulary mapping was required in this case study.

First Peter started by giving his most preferred viewpoint as shown on Figure

5.4(1)(model u1). He assumed that if a student withdrew his offer, he had to reapply,

with a transition from state S4 where variables active and approve were true and

accept was false, to state S1 where variables active, approve and accept were all false.

His colleague John only specified that if a student’s application was rejected, he was

allowed to reapply (See model u2 on Figure 5.4(2)). There was a transition from state

S2where variable approve was true to state S1 where variables active, approve and

accept were all false.

Both Peter and John had the same boolean variables: active, approve and accept.

Variable active refers to the activation of the application. approve refers to the

approval of the application and accept refers to the acceptance of the offer. After the

viewpoints were entered into the tool, it returned a message saying that no consistent

models were found.

The stakeholders then had to present their next preferred models which were

models at rank 1. Peter entered his model u3 as shown on Figure 5.4(3). He revised

his model by allowing a student to reapply if his application was rejected, adding a

transition from state S2 to S1. John changed his viewpoint by allowing a student to

reaccept the offer after his withdrawal (see model u4 on Figure 5.4(4)), by adding

a transition from S4 to S3 where variables active, approve and accept were all true.

99

Figure 5.4: All Viewpoints Elicited for Student Application System

100

Now Peter’s ranked structure Φ1 contained two models u1 and u3 at rank 0 and rank

1 respectively. John’s ranked structure Φ2 contained models u2 and u4 at rank 0 and

rank 1 respectively. Still no consistency was found up to this rank.

Peter and John then presented their models of next preference rank, i.e. rank 2.

Peter’s model u5 was changed to allow a student to reaccept his offer if he denied

the offer, the student did not have to reapply. He removed the transition from state

S4 to state S1, and added a transition from state S4 to state S3 (see model u5 on

Figure 5.4(5)). John changed his viewpoint by not allowing a student to reaccept his

offer if he denied it . The student would have to reapply(by changing the transition

between state S4 and state S3 to a transition between state S4 and state S1). He also

changed his mind that if a student’s application was rejected, he could not reapply,

by removing the transition from state S2 to state S1(see model u6 on Figure 5.4.(6)).

Now the tool checked models of Φ1(u1, u3, u5) and models of Φ2(u2, u4, u6) for

consistency and detected that consistent models were found and merging operation

was therefore performed (in this experiment, both Peter and John agreed to use ∆Σ

merging operator) and the results were displayed in another window showing that

two merged models were found. One was ranked 0 formed by combination of model

model u1 of Peter at his preference rank 0 and model u6 of John at his preference

rank 2, the other was ranked 1 formed by combination of model u5 of Peter at his

preference rank 1 and model u4 of John at his preference rank 1.

Actually models u1 and u6 were identical and models u5 and u4 were identical too

as both Peter and John had the same states and same variables. We renamed the

first combined model as v1 and the second one as v2. Now the newly created merged

ranked structure Φ contained models v1 and v2. See Figure 5.6(1) for a pictorial view

101

of the merged ranked structure.

Models v1 and v2 were then model checked against the following property set by

Peter and John using SMV.

Property 1 If a student denies his offer, he may have to reapply. It is represented

in CTL as: AG((approve ∧ ∼accept) → EX(∼active)).

The most preferred model v1 was checked against the above property and the SMV

model checker returned a true value, indicating model v1 was a satisfactory model.

Therefore, model checking on model v2 was not necessary. The final output were

model v1 and the ranked structure Φ. The merging operation was deemed complete.

But at this moment, a new stakeholder Mark joined this process. He was allowed

to present his most preferred model. It was model u7 as shown on Figure 5.4(7). He

allowed a student to reapply if his application was rejected. He assumed that if a

student withdrew his offer, he would have to reapply. Mark’s model u7 was checked

with most preferred model v1 in the merged ranked structure Φ for consistency.

The tool detected that model u7 was not consistent with model v1. Therefore,

Mark specified his next preferred model which was model u8 at rank 1. See Figure

5.4(8). He changed his viewpoint by allowing a student to reaccept his offer if he

withdrew it. Model v2 at rank 1 of the merged ranked structure Φ was also taken

to be compared with the models of Mark’s. That is models of Φ(v1, v2) and models

of Φ3(u7, u8) were checked for consistency. The tool detected that model u8 was

consistent with model v2. Therefore, the three stakeholders reached an agreement.

Actually it was models u5, u4 and u8 that were consistent. The combined model was

renamed as v3.

102

Now the merged ranked structure Φ was changed and contained only model v3,

which was model checked against the above described system property. The SMV

model checker returned false for the property. Therefore, no satisfactory model was

found and the merging process should continue. In this case, models of preference

rank higher than the rank where Peter and John reached an agreement should be

elicited from all of the three stakeholders, i.e. Peter, John and Mark. As Peter and

John previously reached an agreement at rank 2, models of rank 3 were required from

them.

Peter gave his model u9 as shown on Figure 5.4(9). He assumed that if a student’s

application was rejected, he could reapply. If a student denied his offer, he would have

to reapply too. John entered his model u10. He also assumed that if a student was

rejected, he could reapply. If a student denied his offer, he had to reapply. See Figure

5.4(10). Mark presented his next preferred model u11 (see Figure 5.4(11)) which was

at rank 3 and he did not have model at rank 2 in this case. Mark assumed that if

a student’s application was rejected, he was not allowed to reapply. If a student to

withdrew his offer he would have to reapply. Now models of Peter’s ranked structure

Φ1(u1, u3, u5, u9), models of John’s ranked structure Φ2(u2, u4, u6, u10) and models of

Mark’s ranked structure Φ3(u7, u8, u11)(See Figure 5.5(1), (2) and (3) for a pictorial

view of the ranked structures respectively) were checked for consistency.

The tool output results showing that a model combined from consistent models

u5, u4 and u8 was ranked 0 (renamed as m1), a model combined from models u1,

u6 and u11 was ranked 1 (renamed as m2), and a model combined from models u9,

u10 and u7 was ranked 2 (renamed as m3). Therefore, the merged ranked structure

contained models m1, m2 and m3 in the order of preference rank. (See Figure 5.6(2)

103

Figure 5.5: Ranked Structures of Individual Stakeholders

Figure 5.6: Merged Ranked Structures using ∆Σ

for a pictorial view of the merged ranked structure Φ using merging operator ∆Σ).

Now the most preferred model m1 was first model checked against the system

property. After running the SMV model checker, model m1 was found not satisfying

the property. Therefore, the next preferred model m2 was sent for model checking and

the SMV model checker returned true for the property specified. Model m2 become

the resultant output model and no further model checking was required on model m3.

Finally, the three stakeholders reached an agreement at rank 3 with output model m2

and a merged ranked structure Φ.

In order to test the merging operation outcome with different merging operators,

we run the above case study again with merging operators ∆min and ∆max as well

using the tool. We only changed the merging operators, others retained unchanged.

104

Figure 5.7: Merged Ranked Structures using ∆min

Figure 5.8: Merged Ranked Structures using ∆max

The outputs were shown on Figure 5.7 (for ∆min merging operator) and 5.8 (for

∆max merging operator). Figures 5.7(1) and 5.8(1) are the first output resulted from

the agreement between Peter and John. Figures 5.7(2) and 5.8(2) are the final out-

comes (with a model satisfying the system property) agreed by all of the three stake-

holders.

5.2.3 Summary

The study embodied the merging process with iteration. It elicitated 11 models up to

4 preference ranks from three stakeholders to finally get an agreed model that satisfied

the system property. Consistency checking and model merging were completely done

by the tool.

In this case study, which was different from the previous one that it was iter-

ated through more stakeholders joining, different outputs were produced when more

105

stakeholders joined the system.

Different outputs were also produced when using different merging operators. For

the output between Peter and John, the outcomes resulting from the use of ∆Σ and

∆min merging operators were the same, i.e. they produced the same outcome model

v1 and the same ranked structure. But for the outcome resulting from ∆max merging

operator was different. Although model v1 was still the outcome model, but the

ranked structure was different. See Figures 5.6(1), 5.7(1) and 5.8(1) for a pictorial

view of the ranked structures using different merging operators.

The outcome produced among the three stakeholders were different too. Ranked

structures produced were different. From the output ranked structure produced using

merging operator ∆min, if model m3 was sent for model checking and then it would

become the output model as it also satisfied the system property. It was the same

for the results produced from using merging operator ∆max.

5.3 Discussion

This chapter presented two different case studies on the use of merging operation to

resolve inconsistent viewpoints. The results are very encouraging: belief merging was

very valuable in resolving inconsistent requirements. The iterated merging process

we have developed based on the idea of belief merging was extremely valuable as it

allowed further merge to be performed on the already merged model. Therefore, it

satisfied the iterative characteristic of requirements engineering.

The study also tested our tool used in the merging process. The tool was proven

106

to be helpful in automating both consistency checking and consistent model combi-

nation.

Chapter 6

Conclusion and Future Work

This project has focused on the design and development of a framework for merging

multiple viewpoints in requirements engineering, which is a practical, complicated

and challenging problem in the field of requirements engineering. The approach we

use in this research involves the use of belief merging operations to merge multiple

viewpoints.

Several belief merging operations have been proposed in the literature to solve

inconsistency handling problems in requirements engineering. However some merging

operations such as the one proposed by Chechik and Easterbrook, as well as the ones

based on merging knowledge bases, can not specifically or sufficiently represent the

behavior of the system or suggest merged outcomes.

We emphasize in this research that belief merging operations are useful in recon-

ciling multiple stakeholder perspectives in requirements engineering and can be the

basis for viewpoints merging. We have proposed the idea of ranked structures that

are developed based on epistemic states. The use of epistemic states involves the pro-

vision of a complete mapping of all possible models to ranks, while ranked structures

only map the currently elicited models to ranks. The models themselves differ from

107

108

those used in the belief merging framework of Meyer, since they are defined relative

to local vocabularies (while Meyer’s approach assumes a common vocabulary across

all agents).

The framework we propose also includes the SMV model checker to check against

system properties expressed in CTL. The main feature of this approach is itera-

tive merging of multiple viewpoints from different stakeholders until a satisfactory

viewpoint model is found. It also provides real-time merging operation by allowing

merging newly added viewpoints from new stakeholders and hence is very flexible.

To demonstrate the applicability of the approach, we have designed and imple-

mented a prototype incorporating the merging operators proposed by [33]to handle

multiple/inconsistent requirements perspectives represented in finite state models.

As specifications used in this framework are represented in finite state models,

which are formal method, it will be hard for the analysts to develop and hence being

one of the limitations to this research. We are therefore motivated to refine our

framework in the future.

It is observed in the case studies that relaxation policy is feasible and helpful in

the elicitation process. However, we have not addressed the guidelines for forming

such relaxation policy. It is anticipated to develop guidelines for relaxation policy in

the future and incorporate the relaxation policy in our tool.

In this research, we only focus on handling the inconsistent requirements; the

system properties have not been addressed. We consider in the future to improve our

framework so that it can handle system properties (whether consistent or not), as

well.

109

Some functionality has not been provided by our prototype. In the future, we

hope to refine the prototype by implementing more functionalities. We also hope

to be able to display the models graphically rather than by text. There are more

merging operators proposed in [33] and we will seek to implement all of these merging

operators in our tool in the future. The most important future task is considered to

be the implementation of the automatic model checking using SMV model checker

is feasible. As we explained in previous chapter, we need to convert the models

represented in finite state models into SMV program representation so that the models

can be input directly to the SMV model checker for model checking. Therefore, a

device for the translation needs to be developed in the future.

Bibliography

[1] K. J. Arrow. Social choice theory and individual values (2nd edition). Wiley,

New York, 1963.

[2] R. Balzer. Tolerating inconsistency. In In Proceedings of the 13th Int’l Conference

on Software Engineering, pages 158–165, 1991.

[3] C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE

Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

[4] Barry Boehm and Hoh In. Aids for identifying conflicts among quality require-

ments. IEEE Software, March 1996.

[5] B. Boehm and R. Ross. Theory w software project management:principles and

examples. IEEE Transaction on Software Engineering, pages 902–916, July 1989.

[6] L. Bolc and P. Borowik. Many-valued logics, 1992. Springer-Verlag.

[7] L. Chung, B. A. Nixon, and E. Yu. Using non-functional requirements to sys-

tematically support change. In In Proceedings of he Second IEEE International

Symposium on Requirements Engineering, pages 132–139, York, England, March

1995.

[8] Edmund M. Clarke, Jr. Orna Grumberg, and Doron A. Peled. Model Checking.

Cambridge, Massachusetts.

110

111

[9] P. Gärdenfors C. E. Alchourron and D. Makinson. On the logic of theory

change: Partial meet contraction and revision functions. Journal of Symbolic

Logic, 50:510–530, 1985.

[10] D. Duffy, C. MacNish, J. McDermid, and P Morris. A framework for requirements

analysis using automated reasoning. In Proc. Seventh Advanced Conference on

Information Systems Engineering, Springer-Verlag, 1995. CAiSE*95. Lecture

Notes in Computer Science.

[11] Steve Easterbrook and Marsha Chechik. A framework for multi-valued reasoning

over inconsistency viewpoints. In In Proceedings of International Conference on

Software Engineering (ICSE’01), pages 411–420, May 2001.

[12] S. M. Easterbrook, A. C. W. Finkelstein, J. Kramer, and B. A. Nuseibeh. Co-

ordinating conflicting viewpoints by managing inconsistency. In Workshop on

Conflict Management in Design, International Conference on Artificial Intelli-

gence in Design, Lausanne, Switzerland, August 1994.

[13] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating dis-

tributed viewpoints: The anatomy of a consistency check. Int. Journal of Con-

current Engineering: Research & Applications, 2(3):209–222, 1994.

[14] S. Easterbrook and B. Nuseibeh. Managing inconsistencies in an evolving specifi-

cation. In Proc. RE’95: Second IEEE International Symposium on Requirements

Engineering, pages 48–55, York UK, March 1995. IEEE Computer Society Press.

[15] S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency manage-

ment. IEEE Software Engineering Journal, pages 31–43, November 1995.

[16] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-

sistency handling in multi-perspective specifications. Transactions on Software

Engineering, 20(8):569–578, August 1994. IEEE CS Press.

112

[17] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and & M. Goedicke.

Viewpoints: A framework for integrating multiple perspectives in system devel-

opment. International Journal of Software Engineering and Knowledge Engi-

neering, 2(1):31–58, 1992.

[18] P. Gärdenfors. Knowledge in flux: Modeling the Dynamics of Epistemic States.

MIT Press, 1988.

[19] A. K. Ghose. A formal basis for consistency, evolution and rationale management

in requirements engineering. In In Proceedings of the 1999 IEEE International

Conference on Tools for AI, pages 77–84. IEEE Computer Society Press, 1999.

[20] A. K. Ghose. Formal tools for managing inconsistency and change in RE. In

Proceedings of the 10th International Workshop on Software Specification and

Design (IWSSD 2000), pages 171–182, San Diego, November 2000. IEEE Com-

puter Society Press.

[21] ”C. L. Heitmeyer, R. D. Jeffords, JOURNAL = ”ACM Transaction of Soft-

ware Engineering B. G. Labaw”, TITLE = ”Automated consistency checking of

requirements specifications”, and volume = ”5” number = ”3” pages = ”231-261”

Methodology”, YEAR = ”1996”.

[22] A. Hunter and B. Nuseibeh. Managing inconsistent specifications: Reasoning,

analysis and action. Technical report, Department of Computing, Imperial Col-

lege, London, UK, June 1995. Technical report.

[23] A. Hunter. Measuring inconsistency in knowledge via quasi-classical mod-

els. In Proceedings of the 18th National Conference on Artificial Intelligence

(AAAI’2002), pages 68–73, 2002.

[24] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-

soning about Systems. Cambridge University Press, November 1999.

113

[25] C. Kakas, R. A. Kowalski, and F. Toni. The Role of Abduction in Logic Pro-

gramming. Handbook of Logic in Artificial Intelligence and Logic Programming,

chapter 5, pages 235–324. Oxford University Press, 1998.

[26] R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and

Value Trade-offs. Wiley, 1976.

[27] Sebastien Konieczny and Ramon Pino-Perez. On the logic of merging. In L. Schu-

bert In A. G. Cohn and S. C. Shapiro, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the Sixth International Conference (KR

’98), pages 488–498, San Francisco, California, 1998.

[28] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reason-

ing, preferential models and cumulative logics. Journal of Artificial Intelligence,

44(1-2):167–207, July 1990.

[29] Mingjune Lee and Barry Boehm. The winwin requirements negotiation system:

a model-driven approach.

[30] Paolo Liberatore and Marco Schaerf. Arbitration (or how to merge knowledge

bases). IEEE Transactions on Knowledge and Engineering, 10(1):76–90, Jan-

uary/February 1998.

[31] J. Lin and A. Mendelzon. Knowledge base merging by majority, 1994. Jinxin

Lin and Alberto O. Mendelzon. Knowledge base merging by majority.Manuscript,

1994.

[32] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. Kluwer Academic, 1993.

[33] Thomas Meyer. On the semantics of combination operations. Journal of Applied

Non-Classical Logics, 2001.

114

[34] T. A. Meyer, A. K. Ghose, and S. Chopra. Syntactic representations of semantic

merging operations. In Proceedings of the IJCAI-2001 Workshop on Inconsis-

tency in Data and Knowledge, pages 36–42, August 2001.

[35] K. Narayanaswamy and N. Goldman. ”lazy” consistency: A basis for cooperative

development software development. In In Proceedings of International Confer-

ence on Computer-Supported Cooperative Work (CSCW ’92), pages 257–264,

1992. ACM SIGCHI and SIGOIS.

[36] B. Nuseibeh and S. M. Easterbrook. The process of inconsistency management: a

framework for understanding. In In Proceedings of the First International Work-

shop on the Requirements Engineering process (REP 99), page 364, Florence,

Italy, 1999.

[37] B. Nuseibeh, J. Kramer, and A. C. W. Finkeltein. Expressing the relationships

between multiple views in requirements specification. In In Proceedings of the

15th International Conference on Software Engineering (ICSE-93), pages 187–

200, Bltimore, May 1993. IEEE Computer Society Press.

[38] B. Nuseibeh and A. Russo. Using abduction to evolve inconsistent requirements

specifications. In Proc. of ICSE99 workshop on Software Change and Evolution

(1999), 1999.

[39] L. Perrussel and P. Charrel. Inconsistent requirements: an argumentation view.

In ICRE 2000, September 1999.

[40] P. Z. Revesz. On the semantics of theory changes: arbitration between old and

new information. In In Proceedings PODS ’93, 12th ACM SIGACT SIGMOD

SIGART Symposium on the Principles of Database System, pages 71–82, 1993.

[41] WN Robinson and S. Volkov. Conflict-oriented requirements restructuring. Gsu-

cis working paper, Georgia State University, Atlanta, GA, April 1999.

115

[42] W.N. Robinson. Requirement conflict restructuring. Gsu cis working paper,

Georgia State University, Atlanta, GA, 1999.

[43] K. Satoh. Consistency management in software engineering by abduction. In

Proceedings of the ICSE-2000 Workshop on Intelligent Software Engineering,

pages 90–99, Limerick, Ireland, 2000.

[44] R. W. Schwanke and G. E. Kaiser. Living with inconsistency in large systems. In

In Proceedings of International Workshop on Software Version and Configuration

Control, pages 98–118, Grassau, Germany, January 1988.

[45] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achieve-

ments and opportunities. Comm. of the ACM, 34(10):110–120, 1991.

[46] Ian Sommerville and Pete Sawyer. Requirements Engineering, A Good Practice

Guide. John Wiley and Sons Ltd, England, 1997.

[47] V.S. Subrahmanian. On the semantics of quantitative logic programs. In Proc.

4th IEEE Symposium on Logic Programming, pages 173–182, Wahsington DC,

1987. Computer Society Press.

[48] V. S. Subrahmanian. Amalgamating knowledge bases. AGM Transactions on

Database systems, 19(2):291–331, 1994.

[49] A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in

goal-driven requirements engineering. IEEE Trans. on Software Engineering,

24(11):908–926, 1998.

[50] J. Yen and W. Tiao. A systematic tradeoff analysis for conflicting imprecise

requirements. In In Proceedings of the Third IEEE International Symposium on

Requirements Engineering (RE’97), pages 87–96, Annapolis, Maryland, USA,

January 1997.

116

[51] D. Zowghi, A. K. Ghose, and P. Peppas. A framework for reasoning about

requirements evolution. In Proceeding of Fourth Pacific Rim International Con-

ference on Artificial Intelligence, pages 157–168, Cairns, Australia, August 1996.

PRICAI-96.

Appendix A

Source Code

The followings are the java source code for the implementation of the tool developed

in this research. Documents are listed in the alphabetical order of the java file names.

A.1 AddArcPanel.java

import java.util .*;
import javax.swing .*;
import java.awt.event .*;
import java.awt.*;

/**
* Title: AddArcPanel.java
* Description : The program receives nodes details from stakeholders and

write them to
Access based database

* @author Qiuming Lin
* September 2002
*/

class AddArcPanel extends JPanel implements ActionListener
{

static final int SIZE = 10;
SHPanel jp_sh;

Header header;
JTextField jt_label;
JComboBox jcb_inNode , jcb_outNode;
JButton jb_add , jb_remove , jb_return;
JList jlist_arc;
Model m;
Arc arc;

117

118

public AddArcPanel (){
super ();

try {
jpInit ();

}
catch(Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception{
header = new Header ();
add(header);

m = new Model ();
arc = new Arc();

JLabel jl_title = new JLabel("Add Transition");
jl_title.setFont(new Font("Arial",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,30));
jl_title.setHorizontalAlignment(SwingConstants.CENTER);
add(jl_title);

jcb_inNode = Utility.getNode ();
jcb_outNode = Utility.getNode ();
JPanel jp_header = new JPanel ();
jp_header.setLayout(new GridLayout (0,4,5,0));
jp_header.add(ShowFrame.newLabel("In Node:"));
jp_header.add(jcb_inNode);
jp_header.add(ShowFrame.newLabel("Out Node:"));
jp_header.add(jcb_outNode);
add(jp_header);

// display the arc added
jlist_arc = new JList ();
JScrollPane jsp = new JScrollPane(jlist_arc);
jsp.setPreferredSize(new Dimension(ShowFrame.formX -150, ShowFrame.

buttonY *2));
jsp.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder (),"Arcs Added"));
add(jsp);

jb_add = new JButton("Add");
jb_add.addActionListener(this);
jb_remove = new JButton("Remove");
jb_remove.addActionListener(this);
JPanel jp_button = new JPanel ();
jp_button.setLayout(new GridLayout (0,1,20,10));
jp_button.add(jb_add);
jp_button.add(jb_remove);
jp_button.setPreferredSize(new Dimension (100, ShowFrame.buttonY +20));
add(jp_button);

jb_return = new JButton("Return");
jb_return.addActionListener(this);
JPanel jp_arcButton = new JPanel ();
jp_arcButton.add(jb_return);

119

jp_arcButton.setPreferredSize(new Dimension(ShowFrame.formX ,
ShowFrame.buttonY));

add(jp_arcButton);
}

public void actionPerformed(ActionEvent e){
if (e.getSource ()== jb_add){

addArc ();
}else if (e.getSource ()== jb_remove){

removeArc ();
}else if (e.getSource ()== jb_return){

this.setVisible(false);
ShowFrame.showAddModelFrame ();

}
}

//add an arc to model
void addArc (){

arc = new Arc();
arc.setPreNode ((Node)Utility.model.node.get(jcb_inNode.

getSelectedIndex ()));
arc.setNextNode ((Node)Utility.model.node.get(jcb_outNode.

getSelectedIndex ()));
Utility.model.addArc(arc);
printArc ();

}

void removeArc (){
if (jlist_arc.getSelectedIndex () >=0) {

Utility.model.arc.remove(jlist_arc.getSelectedIndex
());

printArc ();
}else

JOptionPane.showMessageDialog(this , "Please select
the arc to be removed!");

}

void printArc (){
Vector v = new Vector ();
for(int k=0; k<Utility.model.arc.size(); k++)

v.add((Arc)Utility.model.arc.get(k));
jlist_arc.setListData(v);

}
}

A.2 AddModelPanel.java

import java.util .*;
import java.awt.*;
import javax.swing .*;
import java.awt.event .*;

/**
* Title: AddModelPanel.java
* Description : The program receives models details from stakeholders and

write them to

120

Access based database
* @author Qiuming Lin
* September 2002
*/

class SHPanel extends JPanel
{

JTextField jt_shid , jt_shname;
public SHPanel () {

setLayout(new GridLayout (0,4,5,0));
jt_shid = new JTextField (10);
jt_shid.setEnabled(false);
jt_shname = new JTextField (10);
jt_shname.setEnabled(false);
JLabel jl = new JLabel("Stakeholder ID:");
jl.setHorizontalAlignment(SwingConstants.RIGHT);
add(jl);
add(jt_shid);
jl = new JLabel("Stakeholder Name:");
jl.setHorizontalAlignment(SwingConstants.RIGHT);
add(jl);
add(jt_shname);
setPreferredSize(new Dimension(ShowFrame.formX ,ShowFrame.fieldY));

}
}
/* **************** ADD MODEL PANEL ************************************* */
class AddModelPanel extends JPanel implements ActionListener
{

static int SHCount = 2;
static int newSHCount = 1;

JLabel jl_title , jl_rank , jl_modelName , jl_modelId;
JTextField jt_rank ,jt_modelName , jt_modelId;
JButton jb_saveModel ,jb_addNode , jb_addArc , jb_return;

Header header;
SHPanel jp_sh;
JScrollPane jsp_model;

// constructor
public AddModelPanel () {

try {
jpInit ();

}
catch(Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception{
header = new Header ();
add(header);

JLabel jl_title = new JLabel("Add Model");
jl_title.setFont(new Font("Serif",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,30));
jl_title.setHorizontalAlignment(SwingConstants.CENTER);
add(jl_title);

jp_sh = new SHPanel ();

121

jp_sh.jt_shid.setText(Utility.shid);
Database.connectDatabase ();
jp_sh.jt_shname.setText(Database.getSHName(Utility.shid));
add(jp_sh);

JPanel jp_header = new JPanel ();
jl_modelId = new JLabel("Model ID: ");
jl_modelId.setHorizontalAlignment(SwingConstants.RIGHT);

jt_modelId = new JTextField(getModelId ());
jt_modelId.setEnabled(false);
jp_header.add(jl_modelId);
jp_header.add(jt_modelId);

jp_header.setLayout(new GridLayout (4,2));
jl_rank = new JLabel("Preference rank: ");
jl_rank.setHorizontalAlignment(SwingConstants.RIGHT);
jt_rank = new JTextField (15);

jt_rank.setEnabled(false);
setRank ();

jp_header.add(jl_rank);
jp_header.add(jt_rank);
jl_modelName = new JLabel("Model Name: ");
jl_modelName.setHorizontalAlignment(SwingConstants.RIGHT);
jt_modelName = new JTextField (15);
jp_header.add(jl_modelName);
jp_header.add(jt_modelName);
add(jp_header);

JPanel jp_button = new JPanel ();
jp_button.setPreferredSize(new Dimension(ShowFrame.buttonX*6,

ShowFrame.buttonY));
jb_addNode = new JButton("Add State");
jb_addNode.addActionListener(this);
jb_addArc = new JButton("Add Transition");
jb_addArc.addActionListener(this);
jb_saveModel = new JButton("Save Model");
jb_saveModel.addActionListener(this);
jb_return = new JButton("Return");
jb_return.addActionListener(this);
jp_button.add(jb_addNode);
jp_button.add(jb_addArc);
jp_button.add(jb_saveModel);
jp_button.add(jb_return);
add(jp_button);
Database.closeDatabase(false);
}

private void setRank (){
if (Database.firstRank(Utility.shid)) {

jt_rank.setText("0");
}else{

int nextRank = Database.getNextRank(Utility.shid);
int maxRank = Database.getMaxRank ();
if ((nextRank == maxRank)||(nextRank == maxRank +1))

{
jt_rank.setText(nextRank+"");

}else{
jt_rank.setText(maxRank+"");

122

}
}

}

public void actionPerformed(ActionEvent e){
if (e.getSource () == jb_addNode) {

ShowFrame.showAddNodeFrame ();
this.setVisible(false);

}else if (e.getSource ()== jb_addArc){
this.setVisible(false);
ShowFrame.showAddArcFrame ();

}else if(e.getSource () == jb_saveModel){
saveModel ();

}else if (e.getSource ()== jb_return){
setVisible(false);
ShowFrame.showSHMenuFrame ();

}
}

void saveModel (){
if (dataIsValid ()) {

Database.connectDatabase ();
setModelDetails ();
Database.insertModel ();// insert data to database
Database.insertModelSH ();
Database.insertLoginSH(Utility.shid , Utility.model.

rank , Utility.newSH);
performOperation ();
Database.closeDatabase(false);

}
}

void saveModelIteration (){
if (dataIsValid ()) {

Database.connectDatabase ();
setModelDetails ();
Database.insertModel ();// insert data to database
Database.insertModelSH ();
Database.insertLoginSH(Utility.shid , Utility.model.

rank , Utility.newSH);
performOperation ();
Database.closeDatabase(false);

}
}

boolean dataIsValid (){
if (jt_rank.getText ().equals("")) {

JOptionPane.showMessageDialog(this , "Please fill in
the rank of the model !");

return false;
}else if (! Utility.isDigit(jt_rank.getText ())){

JOptionPane.showMessageDialog(this , "The rank must
be numerals!",

"Rank Input Error" , JOptionPane.
ERROR_MESSAGE);

jt_rank.setText("");
return false;

}else if (jt_modelName.getText ().equals("")){

123

JOptionPane.showMessageDialog(this , "Please fill in
the model name!");

return false;
}
return true;

}

void setModelDetails (){
Utility.model.id = jt_modelId.getText ().trim();
Utility.model.name = jt_modelName.getText ().trim();
Utility.model.rank = jt_rank.getText ().trim();

}

void performOperation (){
int answer = JOptionPane.showConfirmDialog(null , "Model is

added successfully ! Add another one?", "Add Model" ,
JOptionPane.YES_NO_OPTION);//yes=0, no=1

if (answer == 0) {
clearModelFields ();

}else{
if (Database.getSHCount ().size()>SHCount) {

SHCount = Database.getSHCount ().size();
}
Vector loginSHCount = Database.getLoginSHCount(

Utility.model.rank , Utility.newSH);
if (! Utility.newSH) {

if ((loginSHCount.size()== SHCount)) {
checkConsistency(Utility.newSH);

}else{
setVisible(false);
ShowFrame.showSHMenuFrame ();

}
}else{//new stakeholders joining

String maxMergedRank = Database.
getMaxMergedRank ();

if (loginSHCount.size()== newSHCount) {
checkConsistencyIteration(Utility.

newSH);
}else {

setVisible(false);
ShowFrame.showSHMenuFrame ();

}
if (Utility.model.rank.equals(maxMergedRank)

) {
Database.updateNewLoginSH(Utility.

shid);
}

}
}

}
void checkConsistency(boolean newSH)
{

Vector m = Utility.getAllModel ();
if (CheckModel.allConsistent(m)){

combineModels(newSH);
}else{

JOptionPane.showMessageDialog(this ,"Models are not consistent!")
;

124

Utility.model = new Model ();
ShowFrame.showLoginFrameFromLogout ();
this.setVisible(false);

}
}

void checkConsistencyIteration(boolean newSH)
{

Vector m = Utility.getAllModelIteration(Utility.model.rank);
if (CheckModel.allConsistent(m)){

combineModels(newSH);
Database.updateAllNewLoginSH ();

}else{
JOptionPane.showMessageDialog(this ,"Models are not consistent!")

;
Utility.model = new Model ();
ShowFrame.showLoginFrameFromLogout ();
this.setVisible(false);

}
}

/**Combine models and assign ranks to the combined models**/
public void combineModels(boolean newSH)
{

if (! newSH) {
if (Database.getAllMergedId ().size()!=0) {

Vector mergedId = Database.getAllMergedId ();
if (mergedId.size() != 0) {

for (int i=0; i<mergedId.size(); i
++) {

Database.deleteModel ((String
)mergedId.get(i));

}
}

}
}
Vector consId = Database.getConsId ();
Vector allConsRank = Utility.getAllConsModelRankSet ();
for (int i=0; i<consId.size(); i++) {

Vector v = Database.getConsModel ((String)consId.get(
i));

Model combinedModel = MergeModel.mergeModel(v, newSH
);

String rank = getMergedRank ((String)consId.get(i),
allConsRank);

setMergedModel(v, (String)consId.get(i) , rank);
Database.insertMergedModel ();
Database.deleteConsModel ((String)consId.get(i));

}
this.setVisible(false);
JOptionPane.showMessageDialog(this , "Merging is completed

sucessfully!");
ShowFrame.showMergeResultsFrame ();

}

private String getModelId (){
String s = Database.getUsedModelId ();
String modelId = "";
if(s!=null){

modelId = s.substring (1, modelId.length ());

125

return modelId;
}else{

return (Database.createModelId ()+1)+"";
}

}

public void setMergedModel(Vector v, String consId , String rank)
{
String s = "Models ";
for (int i=0; i<v.size(); i++){

s += ((Model)v.get(i)).id;
if (i<v.size() -1)

s += " , ";
}

Utility.model.consId = consId;
Utility.model.rank = rank;
Utility.model.operator = Utility.OP;

Utility.model.desc = s;
}

static String getMergedRank(String consId , Vector allConsRank)
{

Vector consRank = Utility.getConsModelRankSet(consId);
int mergedRank = -1;
if (Utility.OP.equals("Delta Min")) {

mergedRank = MergeOperator.deltaMin(consRank ,
allConsRank);

}else if (Utility.OP.equals("Delta Max")){
mergedRank = MergeOperator.deltaMax(consRank ,

allConsRank);
}else if (Utility.OP.equals("Delta Sigma")){

mergedRank = MergeOperator.deltaSigma(consRank ,
allConsRank);

}
return (mergedRank+"");

}

void clearModelFields ()
{
jt_rank.setText("");
jt_modelName.setText("");
Utility.model = new Model(Database.createModelId ()+"");
jt_modelId.setText(Utility.model.id);

}

void showModel (){
JTextArea temp = new JTextArea (300 ,300);
temp.append(Utility.model.toString ());
jsp_model = new JScrollPane(temp);
JFrame jf = new JFrame("Model");
jf.getContentPane ().add(jsp_model);
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.setSize(ShowFrame.formX ,300);
jf.setVisible(true);

}
}

126

A.3 AddNodePanel.java

import java.util .*;
import javax.swing .*;
import java.awt.event .*;
import java.awt.*;

/**
* Title:AddNodePanel.java
* Description : The program receives nodes details from stakeholders and

write them to
Access based database

* @author Qiuming Lin
* September 2002
*/

class AddNodePanel extends JPanel implements ActionListener
{

SHPanel jp_sh;
JComboBox jcb_nodeName , jcb_varName , jcb_value;
JButton jb_add ,jb_remove ,jb_save , jb_return;
JList jl_variable;

Header header;

Node node;
JFrame parent;

// constructor
public AddNodePanel (){

super ();
try {

jpInit ();
}
catch (Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception{
header = new Header ();
add(header);

node = new Node();

JLabel jl_title = new JLabel("Add State");
jl_title.setFont(new Font("Arial",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,30));
jl_title.setHorizontalAlignment(SwingConstants.CENTER);

add(jl_title);

JPanel jp_state = new JPanel ();
Database.connectDatabase ();

Vector nodeName = Database.getSHNodeName(Utility.shid);
jcb_nodeName = new JComboBox(nodeName);

jp_state.add(ShowFrame.newLabel("State Name:"));
jp_state.add(jcb_nodeName);

127

add(jp_state);

JPanel jp_var = new JPanel ();
jp_var.setLayout(new GridLayout (1,4,3,5));

Vector varName = Database.getSHVarName(Utility.shid);
jcb_varName = new JComboBox(varName);
String [] value = {"True" , "False"};
jcb_value = new JComboBox(value);

jp_var.add(ShowFrame.newLabel("Variable : "));
jp_var.add(jcb_varName);
jp_var.add(ShowFrame.newLabel("Value : "));
jp_var.add(jcb_value);

add(jp_var);

jl_variable = new JList();
JScrollPane jsp = new JScrollPane(jl_variable);
jsp.setPreferredSize(new Dimension(ShowFrame.formX -200, ShowFrame.

buttonY *2));
jsp.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder (),"Variables Added"
));

add(jsp);

JPanel jp_addVarButton = new JPanel ();
jp_addVarButton.setLayout(new GridLayout (0,1,20,10));

jb_add = new JButton("Add");
jb_add.addActionListener(this);
jb_remove = new JButton("Remove");
jb_remove.addActionListener(this);

jp_addVarButton.add(jb_add);
jp_addVarButton.add(jb_remove);
jp_addVarButton.setPreferredSize(new Dimension (100, ShowFrame.buttonY

+20));

add(jp_addVarButton);

JPanel jp_addNodeButton = new JPanel ();
jb_save = new JButton("Save State");
jb_save.addActionListener(this);
jb_return = new JButton("Return");
jb_return.addActionListener(this);
jp_addNodeButton.add(jb_save);
jp_addNodeButton.add(jb_return);
jp_addNodeButton.setPreferredSize(new Dimension(ShowFrame.formX ,

ShowFrame.buttonY));

add(jp_addNodeButton);

Database.closeDatabase(false);
}

public void actionPerformed(ActionEvent e){
if(e.getSource ()== jb_add){

setVar ();//set ncde variables

128

}else if(e.getSource ()== jb_remove){
removeVar ();

}else if(e.getSource ()== jb_save){//add node data to model
setNode ();
clearTextArea ();

}else if(e.getSource ()== jb_return){
ShowFrame.showAddModelFrame ();
this.setVisible(false);

}
}
//set node variables
private void setVar (){

if (! jcb_nodeName.getSelectedItem ().equals("")) {
String varName = (String)jcb_varName.getSelectedItem

();
if (! varName.equals("")) {

String varId = Database.getId("varVocabulary
" , Utility.shid , varName);

Variable variable = new Variable(varName ,
varId);

String mid = Database.getVarMid(varId);
variable.setMid(mid);// System.out.println ("

var mid : "+ variable.mid);
String value = (String)jcb_value.

getSelectedItem ();
variable.setValue(value);
node.setVariable(variable);
printVariable ();

}
}

}

//add node to model
void setNode (){

String nodeName = (String)jcb_nodeName.getSelectedItem ();
if (! nodeName.equals("")) {

node.setName(nodeName);
String nodeId = Database.getId("nodeVocabulary",

Utility.shid , nodeName);
node.setId(nodeId);
String mid = Database.getNodeMid(nodeId);
node.setMid(mid);
Utility.model.addNode(node);
node = new Node();

}
}

void clearTextArea (){
Vector v = new Vector ();
for(int k=0; k<node.getVarRowCount (); k++)

v.add("");
jl_variable.setListData(v);
}

void removeVar (){
if (jl_variable.getSelectedIndex () >=0){

node.removeVariable(jl_variable.getSelectedIndex ());
printVariable ();

}else

129

JOptionPane.showMessageDialog(this , "Please select
the variable to be removed!");

}
void printVariable (){

Vector v = new Vector ();
for (int i=0; i<node.getVarRowCount (); i++) {

String s = "";
Variable var = (Variable)node.getVariable ().get(i);
if (var.value.equals("True")) {

s += var.name + " = T";
}else

s += var.name + " = F";
v.add(s);

}
jl_variable.setListData(v);

}
}

A.4 Arc.java

import java.util .*;

/**
* Title: Arc.java
* Description : The program describes the arc between two nodes
* @author Qiuming Lin
* August/September 2002
*/

class Arc
{

Node preNode , nextNode;
String preNodeId , nextNodeId;

// constructor
public Arc()

{
preNodeId = "";
nextNodeId = "";

}

public Arc(Arc a)
{

this.preNode = new Node(a.preNode);
this.nextNode = new Node(a.nextNode);

}
//pre node
public void setPreNode(Node n)
{

preNode = n;
}
public Node getPreNode (){return preNode ;}

//next node
public void setNextNode(Node n)
{

130

nextNode = n;
}
public Node getNextNode (){return nextNode ;}

// check if the arc has the same pre node and next node
public boolean isIdentical(Arc a)
{

if (! this.getPreNode ().getMid ().equals(a.getPreNode ().getMid ()))
return false;

else if (! this.getNextNode ().getMid ().equals(a.getNextNode ().getMid
()))
return false;

else
return true;

}

public String toString ()
{

return ("\nTransition "+"is from "+ this.
getPreNode ().name +

"("+this.getPreNode ().mid+")"+" to "+ this.getNextNode ().
name +

"("+this.getNextNode ().mid+")");
}

}

A.5 CheckModel.java

import java.util .*;

/**
* Title: CheckModel.java
* Description : The program check whether two models represented in STD are

consistent or identical
* @author Qiuming Lin
* August/September 2002
*/

class CheckModel
{

public static int consId =1;
public static int identId =1;

/**check all the stakeholders models of the same level**/
public static boolean allConsistent(Vector m)
{

boolean cons = false;
for (int i=0; i<m.size(); i++){

if (consistent ((Vector)m.get(i))) {
Utility.insertConsModel(consId+"" , (Vector)m

.get(i));
consId ++;
cons = true;

}
}

131

if (cons)
return true;

else
return false;

}
public static boolean consistent(Vector m)
{

for (int i=0; i<m.size(); i++){
for (int j=i; j<m.size(); j++) {

if (! consistent ((Model)m.get(i) , (Model)m.
get(j))) {

return false;
}

}
}
return true;

}
/**check two models for both transition consistency and variable

cosistency**/
public static boolean consistent(Model m1 , Model m2)
{

for(int i=0; i<m1.getNodeCount (); i++) {
if(transitionConflict(m1,m2)) {

return false;
}else if (nodeConflict(m1 , m2))

return false;
}

return true;
}

/**transition checking**/
static boolean transitionConflict(Model m1 , Model m2)
{

boolean identical;
Arc temp1;

// compare mode11 ’s transition with model2 ’s
for (int i=0; i<m1.getArcCount (); i++) {

identical = false;
temp1 = m1.getArc(i);
if (Utility.findNode(temp1.getPreNode () , m2)!=null&&

Utility.findNode(temp1.getNextNode () , m2)!=null){
for (int j=0;j<m2.getArcCount (); j++) {

if (temp1.isIdentical(m2.getArc(j))){ // check whether
the two arcs have the same label ,
identical = true; //same pre node

and next node
break;

}
}
if (! identical)

return true;
}

}
// compare model2 ’s transition with model1 ’s
for (int i=0; i<m2.getArcCount (); i++){

identical = false;

132

temp1 = m2.getArc(i);
if (Utility.findNode(temp1.getPreNode () , m1)!=null&&

Utility.findNode(temp1.getNextNode () , m1)!=null){
for (int j=0;j<m1.getArcCount (); j++) {

if (temp1.isIdentical(m1.getArc(j))){
identical = true;
break;

}
}
if (! identical)

return true;
}

}
return false;

}

/**Variables Checking**/
static boolean nodeConflict(Model m1 , Model m2)// compare all the nodes

for consistent variables
{

Node temp1 , temp2;

for (int i=0; i<m1.getNodeCount (); i++){
temp1 = m1.getNode(i);
temp2 = Utility.findNode(temp1 ,m2);
if (temp2!=null)

if (nodeConflict(temp1 ,temp2))
return true;// inconsistent

}
return false;// consistent

}

/**compare two nodes for consistent variables**/
static boolean nodeConflict(Node n1 , Node n2)
{

Vector v1 = n1.getVariable ();
Vector v2 = n2.getVariable ();
for (int i=0; i<v1.size(); i++){

for (int j=0; j<v2.size(); j++){
if(varConflict ((Variable)v1.get(i) , (Variable)v2.get(j))){

return true;// Conflict exists/Not consistent
}

}
}
return false;// consistent

}

/**compare one variable with another for consistency**/
static boolean varConflict(Variable v1 , Variable v2)

{
if (v1.mid.equals(v2.mid)) {

if (v1.value.equals(v2.value)) {
return false;//NO conflict

}else
return true;// Conflict exists , i.e. Not

consistent
}else

return false;//NO conflict exists , i.e. consistent

133

}
}

A.6 Database.java

// Database.java
// September 2002

import java.sql.*;
import java.util .*;
import javax.swing .*;

class Database
{

// instance variables
public static String query;
public static Connection con;
public static Statement stmt;
public static ResultSet results , nodeRS , arcRS , atomRS , varRS;
static String SQLText;
static Vector nv;
static Model model;
static Node node;
static Arc arc;

/**static method to establish connection to database**/
public static void connectDatabase () {

String url = "jdbc:odbc:MYDBMS";
String username = "";
String password = "";

try {
// Load the jdbc -odbc bridge driver
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");
// Load the Oracle jdbc driver
// Class.forName (" oracle.jdbc.driver.OracleDriver ");
// Attempt to connect to a driver.
con = DriverManager.getConnection(url , username , password);
stmt = con.createStatement ();

} catch (SQLException ex) {
while (ex != null) {

System.out.println ("SQL Exception : " + ex.getMessage ());
ex = ex.getNextException ();

}
} catch (java.lang.Exception ex) {

ex.printStackTrace ();
}

}
/**static method to close database**/

public static void closeDatabase(boolean withresults) {
try {

if (withresults){
results.close();
stmt.close();
con.close();

}
} catch (SQLException ex) {

134

while (ex != null) {
System.out.println ("SQL Exception : " + ex.getMessage ());
ex = ex.getNextException ();

}
} catch (java.lang.Exception ex) {

ex.printStackTrace ();
}

}
/**INSERT , UPDATE OR DELETE DATA**/

public static void updateModelId(String modelId){
try {

int ResultCode;
ResultCode = stmt.executeUpdate(updateModelIdSQL(modelId));

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void updateAllNewLoginSH ()
{

try {
int ResultCode;
ResultCode = stmt.executeUpdate(updateAllNewLoginSHSQL ());

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}/**/

public static void updateNewLoginSH(String shid)
{

try {
int ResultCode;
ResultCode = stmt.executeUpdate(updateNewLoginSHSQL(shid));

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void deleteConsModel(String consId)

{
try {

int ResultCode;
ResultCode = stmt.executeUpdate (deleteConsModelSQL(consId));

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data delete . ** ");
ex.printStackTrace ();

}
}

public static void deleteLoginSH (){
try {

int ResultCode;
ResultCode = stmt.executeUpdate(deleteLoginSHSQL ());

}
catch (java.lang.Exception ex) {

System.out.println("** Error on data delete . **");
ex.printStackTrace ();

}
}

135

public static void deleteModel(String modelId)
{

try {
// connectDatabase ();
stmt = con.createStatement ();
int ResultCode;

ResultCode = stmt.executeUpdate(deleteLoginSHSQL(Utility.
shid , getRank(modelId)));

ResultCode=stmt.executeUpdate(deleteArcSQL(modelId));
Vector nodeId = getNodeId(modelId);
ResultCode = stmt.executeUpdate(deleteModelSHSQL(modelId)

);
for (int i=0; i<nodeId.size(); i++) {

ResultCode=stmt.executeUpdate (deleteVarSQL ((
String)nodeId.get(i), modelId));

ResultCode=stmt.executeUpdate (deleteNodeSQL ((
String)nodeId.get(i), modelId));

}
ResultCode = stmt.executeUpdate (deleteModelSQL(modelId));

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void insertConsModel(String consId , String modelId){

try {
stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate (insertConsModelSQL(consId ,

modelId));// insert into consModel table
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}

public static void insertNodeVoc(String shid , String name){
try {

stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertNodeVocSQL(

shid , name));
}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void insertVarVoc(String shid , String name){

try {
stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertVarVocSQL(shid

, name));
}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}

136

}
public static void insertModelSH (){

try {
stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertModelSHSQL ());

}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void insertSHDetails(String shid , String name , String

address , String password)
{

try {
stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertSHDetailsSQL(

shid , name , address , password));
}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}
public static void insertLoginSH(String shid , String rank , boolean

newSH){
try {

stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertLoginSHSQL(

shid , rank , newSH));
}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}

public static void insertMergedModel (){
try {

stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate (insertMergedModelSQL ());//

insert to mergedModel table
for(int i=0; i<Utility.model.getNodeCount ();i++){

Node n = Utility.model.getNode(i);
ResultCode=stmt.executeUpdate (insertNodeSQL(n));// insert to

node table
ResultCode = stmt.executeUpdate(insertNodeVocSQL(

"0" , n.mid));
for(int j=0; j<n.getVarRowCount ();j++){

Variable var = n.getVariable(j);
ResultCode=stmt.executeUpdate (

insertVarSQL(var.id , var.value , n.id
, Utility.model.id));

}

137

}
for(int i=0; i<Utility.model.getArcCount ();i++){

ResultCode=stmt.executeUpdate (insertArcSQL(Utility.model.
getArc(i)));// insert to arc table

}
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
} /**/
public static void insertModel (){

try {
stmt = con.createStatement ();
int ResultCode;

System.out.println(
insertModelSQL ());

ResultCode = stmt.executeUpdate (insertModelSQL ());// insert to
model table

for(int i=0; i<Utility.model.getNodeCount ();i++){
Node n = Utility.model.getNode(i);
ResultCode=stmt.executeUpdate (insertNodeSQL(n));// insert

to node table
for(int j=0; j<n.getVarRowCount ();j++){

Variable v = n.getVariable(j);
ResultCode=stmt.executeUpdate (

insertVarSQL(v.id , v.value , n.id
, Utility.model.id));

}
}
for(int i=0; i<Utility.model.getArcCount ();i++){

ResultCode=stmt.executeUpdate (insertArcSQL(Utility.model.
getArc(i)));// insert to arc table

}
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data insert . ** ");
ex.printStackTrace ();

}
}

/***SQL STATEMENT ***/
private static String updateModelIdSQL(String modelId){

String s = "X"+modelId;
return "update model set modelId = ’"+s+" ’ where modelId = ’

"+modelId+"’";
}
private static String updateAllNewLoginSHSQL (){

return "update loginSH set new = 0";
} /**/
private static String updateNewLoginSHSQL(String shid){

return "update loginSH set new = "+0+" where SHid = "+shid;
}

private static String deleteConsModelSQL(String consId){
return "delete from consModel where consId = "+consId;

}
private static String deleteModelSQL(String modelId){

return "delete from model where modelId = ’" + modelId+"’";
}
private static String deleteNodeSQL(String nodeId , String modelId){

138

return "delete from node where nodeId = "+ nodeId + " and
modelId = ’"+modelId+"’";

}
private static String deleteVarSQL(String nodeId , String modelId){

return "delete from variable where nodeId = " + nodeId + "
and modelId = ’" + modelId+"’";

}
private static String deleteModelSHSQL(String modelId){

return "delete from model_sh where modelId = ’" + modelId+"’
";

}
private static String deleteLoginSHSQL (){

return "delete from loginSH";
}
private static String deleteLoginSHSQL(String shid , String rank)

{
return "delete from loginSH where SHid = "+shid+" and rank

 = "+rank;
}
private static String deleteArcSQL(String modelId){

return "delete from arc where modelId = ’" + modelId +"’";
}

private static String insertConsModelSQL(String consId , String
modelId){

return "insert into consModel values (" +
consId+", ’"+
modelId+"’)";

}
private static String insertNodeVocSQL(String shid , String name){

return "insert into nodeVocabulary values (’" +
shid + "’, ’" +
name + "’, " +
createNodeId () + ")";

}
private static String insertVarVocSQL(String shid , String name){

return "insert into varVocabulary values (’" +
shid + "’, ’" +
name + "’, " +
createId("varId" , "varVocabulary") + ")";

}
private static String insertModelSHSQL (){

return "insert into model_sh values (" +
Utility.shid + ", " + Utility.model.id + ")";

}
// insert details of source models

private static String insertModelSQL (){
return "insert into model values (’" +

createModelId ()+" ’, ’"+
Utility.model.name+" ’, "+
Utility.model.rank+" , "+
null+", "+
null+", "+

null+")";
}
private static String insertNodeSQL(Node n){

return "insert into node values ("+
n.id+" , "+

139

Utility.model.id+")";
}
private static String insertVarSQL(String varId , String value , String

nodeId , String modelId){
return "insert into variable values (" +

varId+" , ’"+
value + " ’, "+

nodeId + ", ’"+
modelId+"’)";

}
private static String insertArcSQL(Arc a){

return "insert into arc values (" +
a.preNode.id+" , "+
a.nextNode.id+" , "+
Utility.model.id+")";

}
private static String insertSHDetailsSQL(String shid , String name ,

String address , String password){
return "insert into stakeholder values ("+

shid+", ’"+
name+"’, ’"+
address+"’, ’"+
password+" ’)";

}
private static String insertLoginSHSQL(String shid , String rank ,

boolean newSH){
return "insert into loginSH values ("+shid+", ’"+rank+"’, "+

newSH+")";
}

// insert details of merged models
private static String insertMergedModelSQL (){

return "insert into model values (" +
Utility.model.id+" , "+
Utility.model.name+","+
Utility.model.rank+" , "+
Utility.model.consId+" , ’"+
Utility.model.operator+" ’, ’"+
Utility.model.desc+" ’)";

}
public static String getConsistentRank(String modelId){

try {
stmt = con.createStatement ();
int ResultCode;
query = "select * from model where modelId = ’"+

modelId+"’";
results = stmt.executeQuery (query);
if(results.next()){

return results.getString (3);
}
else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static int getNextRank(String shid){

140

try {
stmt = con.createStatement ();
int ResultCode;
query = "select max(rank) from loginSH where SHid = " + shid;
results = stmt.executeQuery (query);
if(results.next()){

return (Integer.parseInt(results.getString (1))+1);
}
else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}

public static int getMaxRank (){
try {

stmt = con.createStatement ();
int ResultCode;
query = "select max(rank) from loginSH";
results = stmt.executeQuery (query);
if(results.next()){

return (Integer.parseInt(results.getString (1)));
}
else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}/* */

public static String getMaxMergedRank (){
try {

stmt = con.createStatement ();
int ResultCode;
query = "select max(rank) from model where modelId > ’1000’ and

modelId < ’2000’";
results = stmt.executeQuery (query);
if(results.next()){

return (results.getString (1));
}
else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static String getId(String tableName , String shid , String

name){
try {

stmt = con.createStatement ();
int ResultCode;
query = "select * from " + tableName + " where SHid = " + shid

+ " and name = ’"+ name+"’";

141

results = stmt.executeQuery (query);
if (results.next()) {

return results.getString (3);
}else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static String getNodeMid(String nodeId) {
try {

stmt = con.createStatement ();
int ResultCode;
query = "select * from nodeSignatureMap where nodeId = "+ nodeId

;
results = stmt.executeQuery (query);
if (results.next()) {

return results.getString (2);
}else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static String getVarMid(String varId) {

try {
stmt = con.createStatement ();
int ResultCode;
query = "select * from varSignatureMap where varId = "+ varId;
results = stmt.executeQuery (query);
if (results.next()) {

return results.getString (2);
}else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static String getRank(String modelId){

try {
stmt = con.createStatement ();
int ResultCode;
query = "select rank from model where modelId = ’"+modelId + "’"

;
results = stmt.executeQuery (query);
if(results.next()){

return results.getString (1);
}
else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");

142

ex.printStackTrace ();
return null;

}
}

public static String getMergedrank(String modelId){
try {

stmt = con.createStatement ();
int ResultCode;
query = "select distinct rank from model where modelId = ’"+

modelId +"’";
results = stmt.executeQuery (query);
if(results.next()){

return results.getString (1);
}
else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static Vector getConsModel(String consId){//get one set of
consistent models
Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select modelId from consModel where consId ="+consId;
ResultSet modelRS = stmt.executeQuery(query);
while (modelRS.next()){

v.add(getModel (modelRS.getString (1)));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static Vector getConsModelId(String consId){//get one set of

consistent modelId
ShowFrame.jta_process.append("geting consistent model ID...\n");
Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select modelId from consModel where consId = "+consId;
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static Vector getConsId (){

143

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select distinct consId from consModel";
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

static Vector getAllMergedId (){
Vector v = new Vector ();

try{
stmt = con.createStatement ();
query = "select modelId from model where modelId > ’1000’ and

modelId <> ’2000’";
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

//data related to merged models
static Vector getMergedId (){

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select modelId from model where modelId > ’1000’ and

modelId < ’+2000’";
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}/**/

static Vector getMergedId(String rank){
Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select modelId from model where modelId > ’1000’ and

modelId < ’2000’ and rank = "+rank;
results = stmt.executeQuery(query);
while (results.next()){

144

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

static Vector getIteratedMergedId (){
Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "select modelId from model where modelId > ’2000’";
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

/**data related to stakeholder details**/
public static String getSHName(String id){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select SHName from stakeholder where SHid = "+id;
results = stmt.executeQuery(query);
if (results.next()){

return results.getString (1);
}else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static Vector getLoginSHCount(String rank , boolean newSH){
Vector v = new Vector ();
try{

stmt = con.createStatement ();
int ResultCode;

query = "select distinct SHid from loginSH where
rank = "+rank+" and new = "+newSH;

results = stmt.executeQuery(query);
while (results.next()) {

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

145

}
}
public static boolean firstRank(String shid){

try{
stmt = con.createStatement ();
query = "Select shid from loginSH where SHid = "+shid;
results = stmt.executeQuery(query);
if (results.next()){

if (results.getString (1).equals(null)) {
return true;

}else
return false;

}else
return true;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return true;

}
}

public static Vector getSHid (){
Vector v = new Vector ();
try{

stmt = con.createStatement ();
int ResultCode;

query = "select distinct SHid from model_sh";
results = stmt.executeQuery(query);
while (results.next()) {

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static Vector getLoginSHid (){

Vector v = new Vector ();
try{

stmt = con.createStatement ();
int ResultCode;

query = "select distinct SHid from loginSH";
results = stmt.executeQuery(query);
while (results.next()) {

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static Vector getNewSHid (){

Vector v = new Vector ();
try{

stmt = con.createStatement ();

146

int ResultCode;
query = "select distinct SHid from loginSH where new

 = "+1;
results = stmt.executeQuery(query);
while (results.next()) {

v.add(results.getString (1));
}
return v;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static Vector getModelId (){

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "Select * from model_sh";
results = stmt.executeQuery(query);
while (results.next()){

v.add("Model "+results.getString (1)+" of Stakeholder "+
results.getString (2));

}
return v;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

//get name based on stakeholder id
public static Vector getSHNodeName(String shid){

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "Select * from nodevocabulary where SHid = "+shid;
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (2));
}
return v;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static Vector getSHVarName(String shid){
Vector v = new Vector ();

try{
stmt = con.createStatement ();
query = "Select * from varvocabulary where SHid = "+shid;
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (2));
}
return v;

147

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

//get name based on its id
public static String getNodeName(String nodeId){

try{
stmt = con.createStatement ();
query = "Select * from nodevocabulary where nodeId = "+nodeId;
results = stmt.executeQuery(query);
if (results.next()){

return (results.getString (2));
}else

return null;
}catch(java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
public static String getVarName(String varId){

try{
stmt = con.createStatement ();
query = "Select * from varvocabulary where varId = "+varId;
results = stmt.executeQuery(query);
if (results.next()){

return (results.getString (2));
}else

return null;
}catch(java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

/* ******* the above are methods in need ********************************* */
public static Vector getNodeId(String modelId){

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "Select nodeId from node where modelId = "+modelId +"’";
results = stmt.executeQuery(query);
while (results.next()){

v.add(results.getString (1));
}
return v;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

/***GET ALL DATA OF ONE COMPLETE MODEL FROM THE DATABASE ***/
/**get all the models of a stakeholder**/

public static Vector getSHModel(String shid){

148

Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "Select modelId from model_sh where SHId = "+ shid;
ResultSet modelRS = stmt.executeQuery(query);
while (modelRS.next()){

String modelId = modelRS.getString (1);
v.add(getModel(modelId));

}
return v;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static Vector getSHModelId(String shid){
Vector v = new Vector ();
try{

stmt = con.createStatement ();
query = "Select modelId from model_sh where SHId = "+ shid;
ResultSet modelRS = stmt.executeQuery(query);
while (modelRS.next()){

v.add(modelRS.getString (1));
}
return v;

}catch(java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

static Model getMergedModel(String modelId){
Model m = new Model(modelId);
try {

stmt = con.createStatement ();
int ResultCode;
query = "select * from model where modelId = ’"+

modelId +"’";
results = stmt.executeQuery(query);
if (results.next()) {

m.rank = results.getString (3);
m.operator = results.getString (5);
m.desc = results.getString (6);
getNode(m);
getArc(m);
return m;

}else
return null;

}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

static Model getModel(String modelId){
Model m = new Model(modelId);

149

try{
stmt = con.createStatement ();
int ResultCode;
query = "select * from model where modelId = ’"+modelId+"’";
results = stmt.executeQuery(query);
if(results.next()){

m.name = results.getString (2);
m.rank = String.valueOf(results.getString (3));
getNode(m);
getArc(m);
return m;

}else
return null;

}catch (java.lang.Exception ex) {
System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}
static void getNode(Model m) {

try{
// Statement nodestmt = con.createStatement ();
stmt = con.createStatement ();
int ResultCode;
query = "select * from node where modelId = ’"+m.id+"’";
nodeRS = stmt.executeQuery(query);
while (nodeRS.next()){

Node node = new Node();
node.id = nodeRS.getString (1);
node.mid = getNodeMid(node.id);
node.name = getNodeName(node.id);
getVar(node , m);
m.addNode(node);

}
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();

}
}
static void getVar(Node n, Model m){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select * from variable where nodeId = "+n.id+" and

modelId = ’"+m.id+"’";
varRS = stmt.executeQuery(query);
while (varRS.next()){

Variable var = new Variable ();
var.id = varRS.getString (1);
var.mid = getVarMid(var.id);
var.name = getVarName(var.id);
var.value = varRS.getString (2);
n.setVariable(var);

}
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();

}

150

}
static void getArc(Model m){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select * from arc where modelId = ’"+m.id+"’";
arcRS = stmt.executeQuery(query);
while (arcRS.next()){

Arc a = new Arc();
String preNodeId = String.valueOf(arcRS.getString (1));
String nextNodeId = String.valueOf(arcRS.getString (2));
for(int i=0; i<m.node.size(); i++){

if(preNodeId.equals (((Node)m.node.get(i)).id))
a.setPreNode ((Node)m.node.get(i));

if(nextNodeId.equals (((Node)m.node.get(i)).id))
a.setNextNode ((Node)m.node.get(i));

}
m.addArc(a);

}
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();

}
}

/***GET ALL DATA OF ONE COMPLETE MERGED MODEL FROM THE DATABASE ***/
/**automatically generate id**/

public static int createId(String id , String tableName){
try{

stmt = con.createStatement ();
int ResultCode;
query = "select max("+id+") from "+tableName;
results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}

public static String getUsedModelId (){
try {

stmt = con.createStatement ();
int ResultCode;
query = "select modelId from model";
results = stmt.executeQuery(query);
while (results.next()) {

if (results.getString (1).charAt (0)==’X’) {
return results.getString (1);

}
}
return null;

}
catch (java.lang.Exception ex) {

System.out.println("** Error on data query **");

151

ex.printStackTrace ();
return null;

}
}/**/
public static int createModelId (){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select max(modelId) from model where modelId < ’1000’";
results = stmt.executeQuery(query);
if (results.next()){

return Integer.parseInt(results.getString (1))+1;
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}
public static int createMergedId (){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select max(modelId) from model where modelId > ’999’

and modelId < ’2000’";
results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}
public static int createIteratedMergedId (){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select max(modelId) from model where modelId > ’1999’";
results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}
public static int createNodeId (){

try{
stmt = con.createStatement ();
int ResultCode;

152

query = "select max(nodeId) from nodeVocabulary where nodeId
 < 9000";

results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}
public static int createMergedNodeId (){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select max(nodeId) from nodeVocabulary";
results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}
public static int createMergedVarId (){

try{
stmt = con.createStatement ();
int ResultCode;
query = "select max(varId) from varVocabulary where varId > 9000

";
results = stmt.executeQuery(query);
if (results.next()){

return (results.getInt (1)+1);
}else

return -1;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return -1;

}
}

/**check correct login password**/
public static boolean checkLogin(String query)

{
try{

stmt = con.createStatement ();
int ResultCode;

results = stmt.executeQuery(query);
if (results.next())

return true;
else

return false;
}catch (java.lang.Exception ex) {

153

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return false;

}
}

public static String getPassword(String analystId)
{

try {
stmt = con.createStatement ();
query = "select password from stakeholder where SHid

 = "+analystId;
int ResultCode;

results = stmt.executeQuery(query);
if (results.next())

return results.getString (2);
else

return null;
}catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}

public static Vector getSHCount (){
Vector v = new Vector ();
try {

stmt = con.createStatement ();
query = "select distinct SHid from model_sh";
results = stmt.executeQuery(query);
while (results.next()) {

v.add(results.getString (1));
}
return v;

}
catch (java.lang.Exception ex) {

System.out.println ("** Error on data query ** ");
ex.printStackTrace ();
return null;

}
}/**/

}

A.7 DisplayModelPanel.java

import java.util .*;
import java.awt.*;
import javax.swing .*;
import java.awt.event .*;
import javax.swing.event .*;
import javax.swing.border .*;
import javax.swing.JTable;
/**
* Title: DisplayModelPanel.java
* Description : The program merges two consistent models
* @author Qiuming Lin
* September/October 2002

154

*/
class DisplayModelPanel extends JPanel implements ActionListener
{

JButton jb_menu , jb_show , jb_delete;
JList jlist_results;

JScrollPane jsp_results;
Header header;
Object [][] tableData;
JTable table;
Object [][] results;

public DisplayModelPanel ()
{

try {
jpInit ();

}
catch (Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception
{

header = new Header ();
add(header);

JLabel jl_title = new JLabel("Models of Stakeholder "+
Utility.shid);

jl_title.setFont(new Font("Serif",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,20));
jl_title.setHorizontalAlignment(SwingConstants.LEFT);
add(jl_title);

add(displayPanel ());

JPanel jp_button = new JPanel ();
jp_button.setPreferredSize(new Dimension(ShowFrame.formX*3,ShowFrame

.buttonY));
jb_menu = new JButton("Menu");
jb_menu.addActionListener(this);
jp_button.add(jb_menu);

jb_show = new JButton("Show Model");
jb_show.addActionListener(this);
jp_button.add(jb_show);

jb_delete = new JButton("Delete");
jb_delete.addActionListener(this);
jp_button.add(jb_delete);
add(jp_button);
}

public void actionPerformed(ActionEvent e)
{
Database.connectDatabase ();
if (e.getSource ()== jb_menu){

setVisible(false);
ShowFrame.showSHMenuFrame ();

}else if (e.getSource ()== jb_show){
showModel ();

155

}else if (e.getSource ()== jb_delete){
deleteModel ();

}
Database.connectDatabase ();

}
void deleteModel ()

{
int row = table.getSelectedRow ();
if (row >=0) {

Object modelId = getValueAt(row , 0);
Database.updateModelId ((String)modelId);
JOptionPane.showMessageDialog(this , "Model "+(String

)modelId+" is deleted sucessfully!");
}else

JOptionPane.showMessageDialog(this , "Please select
the model to be deleted!");

Database.connectDatabase ();
}

public Object getValueAt(int row , int col)
{

return results[row][col];
}

public Object [][] setTable ()
{

Vector model = Database.getSHModel(Utility.shid);
results = new Object[model.size()][3];
for (int i=0; i<model.size(); i++) {

Model m = (Model)model.get(i);
results[i][0] = m.id+"";
results[i][1] = m.name+"";
results[i][2] = m.rank;

}
return results;

}
public JPanel displayPanel ()
{

JPanel jp_results = new JPanel ();
String [] columnNames = {"Model Id" , "Model Name", "Rank"};
tableData = setTable ();
table = new JTable(tableData , columnNames);
table.setPreferredScrollableViewportSize(new Dimension

(500 , 70));
jsp_results = new JScrollPane(table);
jp_results.add(jsp_results);
return jp_results;

}
public void showModel ()
{

String id = JOptionPane.showInputDialog(this , "Enter the
model ID: ");

Model m = Database.getModel(id);
Utility.showModel(m.toString ());

}
}

A.8 Go.java

156

//by Qiuming Lin
// August 2002
/* ***
* The program is to implement our framework of merging operation to *
* resolve inconsistency in requirements engineering *
*** */

//Main function

import java.util .*;

public class Go
{

public static void main(String [] args)
{

ShowFrame.showLoginFrame ();
}

}

A.9 MergeModel.java

import java.util .*;

/**
* Title: MergeModel.java
* Description : The program merges two consistent models
* @author Qiuming Lin
* August/September 2002
*/

class MergeModel
{

static Node node = new Node();
static Arc arc = new Arc();
static int nodeId;
static int arcId;

/**merge a set of consistent models**/
public static Model mergeModel(Vector m, boolean iterated)

{
Utility.model = (Model)m.get (0);
for (int i=1; i<m.size(); i++){

Model temp = new Model(Utility.model , Utility.model.id);
mergeModel(temp , (Model)m.get(i), iterated);

}
return Utility.model;

}

/**merge two consistent models**/
public static Model mergeModel(Model m1 , Model m2 , boolean iterated)
{

int id;
if (iterated) {

id = Database.createIteratedMergedId ();
}else{

id = Database.createMergedId ();
}
Utility.model = new Model(m2 , id+"");

157

for (int i=0; i<Utility.model.getArcCount (); i++){
setNewPreNextNodeId(Utility.model.getArc(i), Utility.model);

}
mergeNode(m1 , m2 , Utility.model);
mergeTransition(m1 , m2 , Utility.model);

return Utility.model;
}

public static void mergeTransition(Model m1 , Model m2 , Model m)
{

boolean identical = false;
for (int i=0; i<m1.getArcCount (); i++){

identical = false;
for (int j=0; j<m2.getArcCount (); j++){

if (m1.getArc(i).isIdentical(m2.getArc(j)))
identical = true;

}
if (! identical) {

setNewPreNextNodeId(m1.getArc(i), m);
m.addArc(m1.getArc(i));

}
}

}

private static void setNewPreNextNodeId(Arc a, Model m)
{
for (int k=0; k<m.getNodeCount (); k++){

if (a.preNode.mid.equals(m.getNode(k).mid)){
a.preNode.id = m.getNode(k).id;

a.preNode.mid = m.getNode(k).mid;
}

if (a.nextNode.mid.equals(m.getNode(k).mid)){
a.nextNode.id = m.getNode(k).id;

a.nextNode.mid = m.getNode(k).mid;
}

}
}

public static void mergeNode(Model m1 , Model m2 , Model m)
{

Vector v;
Node nodeFound;
for (int i=0; i<m1.getNodeCount (); i++) {

nodeFound = Utility.findNode(m1.getNode(i),m2);
if (nodeFound ==null){//add node to model m

m1.getNode(i).id = String.valueOf(nodeId ++);
m.addNode(m1.getNode(i));

}else{// merge variables and set the merged variables to the
merged model m
v = mergeVariable(m1.getNode(i), nodeFound);
for (int j=0; j<m.getNodeCount (); j++){//set merged

variables to the node in the merged model m
if (m.getNode(j).getMid ().equals(nodeFound.getMid ())){

m.getNode(j).getVariable ().
clear ();

for(int k=0;k<v.size();k++){
m.getNode(j).setVariable(new Variable ((Variable)

v.get(k)));

158

}
break;

}
}

}
}

}

/**merge variables of two consistent nodes**/
public static Vector mergeVariable(Node n1 , Node n2)
{

boolean remove;
boolean add;
boolean conflict;

Vector v1 = n1.getVariable ();
Vector v2 = n2.getVariable ();

Vector v = new Vector ();

for (int i=0; i<v2.size(); i++) {//copy v2 to v
v.add(new Variable ((Variable)v2.get(i)));

}
for (int i=0; i<v1.size(); i++){// merge v1 and v2

remove = false;
add = true;

for (int j=0; j<v2.size(); j++){
if (((Variable)v1.get(i)).mid.equals (((

Variable)v2.get(j)).mid)) {
add = false;

}else{
if (CheckModel.varConflict ((Variable

)v1.get(i) , (Variable)v2.get(j))
) {

add = false;
remove ((Variable)v2.get(j) ,

v);
}

}
}
if (add){

for (int j=0; j<v1.size(); j++) {
v.add(new Variable ((Variable)v1.get(

j)));
}

}
}

return v;
}

public static void add(Variable v1 , Vector v2)
{

Vector temp = new Vector ();
Variable v = new Variable(v1);
v2.add(v);

}

public static void remove(Variable v1 , Vector v2)
{

for (int i=0; i<v2.size(); i++) {

159

if (v1.mid.equals (((Variable)v2.get(i)).mid)) {
v2.remove(v2.get(i));
i--;
break;

}
}

}
}

A.10 MergeOperator.java

import java.util .*;

/**
* Title: MergeOperator.java
* Description : The program merges two consistent models
* @author Qiuming Lin
* September/August 2002
*/

class MergeOperator
{

public static int minRank(Vector rank){//find the minimum rank among
vector rank
int minRank=Integer.parseInt ((String)rank.get(0));
for (int i=1; i<rank.size(); i++){

if (Integer.parseInt ((String)rank.get(i))<minRank)
minRank = Integer.parseInt ((String)rank.get(i));

}
return minRank;

}
/**DELTA MIN OPERATOR**/

public static int deltaMin(Vector rank , Vector rankV){//the final rank
return (findMinRank(rank) - minRank(minRankSet(rankV)));

}
/**get the minimum rank of a set of consistent models**/
public static int findMinRank(Vector rank){

boolean equal = true;
int minRank =0;
for (int i=0; i<rank.size() -1; i++){

for (int j=i+1; j<rank.size(); j++){
if (Integer.parseInt ((String)rank.get(i))!= Integer.parseInt

((String)rank.get(j))){
equal = false;
break;

}
}

}
if (equal){

minRank = Integer.parseInt ((String)rank.get (0)) * 2;
}else{

minRank = minRank(rank) * 2 + 1;
}

return minRank;
}

160

//get a set of minimum ranks of consistents of models.
public static Vector minRankSet(Vector rank){

Vector v = new Vector ();
for (int i=0; i<rank.size(); i++){

v.add(findMinRank ((Vector)rank.get(i))+"");
}

return v;
}

/**DELTA MAX OPERATOR**/
public static int deltaMax(Vector rank , Vector rankV){

return findMaxRank(rank) - minRank ((Vector)(maxRankSet(rankV)));
}
/**get the maximum rank among a set of consistent models**/
public static int findMaxRank(Vector rank){

int maxRank = Integer.parseInt ((String)rank.get(0));
for (int i=1; i<rank.size(); i++){

if (Integer.parseInt ((String)rank.get(i))>maxRank)
maxRank = Integer.parseInt ((String)rank.get(i));

}

return maxRank;
}

//get the maximum ranks of all sets of consistent models
public static Vector maxRankSet(Vector rank){

Vector v = new Vector ();
for (int i=0; i<rank.size(); i++){

v.add(findMaxRank ((Vector)rank.get(i))+"");
}
return v;

}

/**DELTA SIGMA OPERATOR**/
public static int deltaSigma(Vector rank , Vector rankV){

return deltaSigma(rank)-minRank(allDeltaSigma(rankV));
}
public static int deltaSigma(Vector rank){//get sum of the a Vector rank

int sigma = 0;
for (int i=0; i<rank.size(); i++){

sigma += Integer.parseInt ((String)rank.get(i));
}
return sigma;

}
public static Vector allDeltaSigma(Vector rank){//get sum of the a

Vector rank
Vector v = new Vector ();
for (int i=0; i<rank.size(); i++){

v.add(deltaSigma ((Vector)rank.get(i))+"");
}
return v;

}

/**refined delta sigma operator**/
public static int refSigma(Vector rank){

int refSigma =0;
//not implemented yet

return refSigma;

161

}
}

A.11 MergeResultsPanel.java

import java.util .*;
import java.awt.*;
import javax.swing .*;
import java.awt.event .*;
import javax.swing.event .*;
import javax.swing.border .*;
import javax.swing.JTable;
/**
* Title: MergeModelPanel.java
* Description : The program merges two consistent models
* @author Qiuming Lin
* September/October 2002
*/

class MergeResultsPanel extends JPanel implements ActionListener
{

JButton jb_menu , jb_show , jb_exit , jb_modelCheck;
JScrollPane jsp_tableData;

Header header;
Object [][] tableData;
JTable table;

public MergeResultsPanel ()
{

try {
jpInit ();

}
catch (Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception
{

header = new Header ();
add(header);

JLabel jl_title = new JLabel("Results of Merge");
jl_title.setFont(new Font("Serif",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,20));
jl_title.setHorizontalAlignment(SwingConstants.CENTER);
add(jl_title);

add(resultPanel ());

JPanel jp_button = new JPanel ();
jp_button.setPreferredSize(new Dimension(ShowFrame.formX*3,ShowFrame

.buttonY));
jb_menu = new JButton("Menu");
jb_menu.addActionListener(this);
jp_button.add(jb_menu);

jb_show = new JButton("Show Model");
jb_show.addActionListener(this);

162

jp_button.add(jb_show);
jb_modelCheck = new JButton("Model Check");
jb_modelCheck.addActionListener(this);
jp_button.add(jb_modelCheck);

jb_exit = new JButton("Exit");
jb_exit.addActionListener(this);
jp_button.add(jb_exit);
add(jp_button);
}

public void actionPerformed(ActionEvent e)
{
if (e.getSource ()== jb_menu){

setVisible(false);
ShowFrame.showSHMenuFrame ();

}else if (e.getSource ()== jb_show){
showModel ();

}else if (e.getSource ()== jb_modelCheck){
System.out.println("Not implemented yet");

}else if (e.getSource ()== jb_exit){
Database.closeDatabase(true);

this.setVisible(false);
System.exit (1);

}
}

public Object [][] setTable ()
{

Database.connectDatabase ();
Vector mergedId;
if (Utility.newSH) {

mergedId = Database.getIteratedMergedId ();
}else

mergedId = Database.getMergedId ();
Object [][] tableData = new Object[mergedId.size()][4];
for (int i=0; i<mergedId.size(); i++) {

Model m = Database.getMergedModel ((String)mergedId.
get(i));

tableData[i][0] = m.rank+"";
tableData[i][1] = m.id+"";
tableData[i][2] = m.operator;
tableData[i][3] = m.desc;

}
Database.closeDatabase(false);

return tableData;
}

public JPanel resultPanel ()
{

JPanel jp_tableData = new JPanel ();
String [] columnNames = {"Rank" , "Model Id" , "Operator", "

Description"};
tableData = setTable ();
table = new JTable(tableData , columnNames);
table.setPreferredScrollableViewportSize(new Dimension

(500 , 70));
jsp_tableData = new JScrollPane(table);
jp_tableData.add(jsp_tableData);
return jp_tableData;

163

}

public void modelCheck ()
{

//not implemented yet
}
public void showModel ()
{

String id = JOptionPane.showInputDialog(this , "Enter the
model ID: ");

Database.connectDatabase ();
Model m = Database.getMergedModel(id);
Utility.showModel(m.toString ());

Database.closeDatabase(false);
}

}

A.12 Model.java

import java.util .*;

/**
* Title: Model.java
* Description : The program describes a model represented in a state

transition diagram
* @author Qiuming Lin
* August/September 2002
*/

class Model
{

public String id , name , rank , consId , desc , operator;//,mergedId , shid
Vector node;
Vector arc;

// constructor
public Model(){

id = "";
name = "";
rank = "";
consId = "";
desc = "";
operator = "";

node = new Vector (1,1);
arc = new Vector (1,1);

}
public Model(String i){ // initialize constructor

this();
id = i;

}
public Model(Model m, String id){//copy constructor

this.id = id;
node = new Vector ();
arc = new Vector ();

for (int i=0; i<m.getNodeCount (); i++){
Node temp = new Node(m.getNode(i));

164

node.add(temp);
}
for (int j=0; j<m.getArcCount (); j++){

Arc temp = new Arc(m.getArc(j));
arc.add(temp);

}
}
public String getModelId () { return id; }

//node
public void addNode(Node n){

node.add(n);
}
public void removeNode(Node n) {}
public Node getNode(int i) { return (Node)node.get(i); }
public int getNodeCount (){ return node.size(); }

//arc
public void addArc(Arc a){

arc.add(a);
}
public void removeArc(Arc a){}
public Arc getArc(int i){ return (Arc)arc.get(i);}
public int getArcCount (){return arc.size();}

public void setrank(String r){
rank = r;

}
public String getrank (){return rank;}

// display model
public String toString (){

String s = "\n\nModel Name: "+name+"\tModel ID: "+id;
/* if(node != null){

s += "\n\nIt has following nodes";
for (int i=0; i<node.size(); i++){

s += node.get(i);
}

}
if(arc != null){

s += "\n\nIt has following transtion : ";
for (int i=0; i<arc.size(); i++){

s += arc.get(i);
}

}*/
return s;

}

}

A.13 MyJFrame.java

import java.awt.*;
import java.awt.event .*;
import javax.swing .*;

/**

165

* Title: MyJFrame.java
* Description : The program is mainly to set the frame in the center of the

screen
* @author Qiuming Lin
* August/September 2003
*/

public class MyJFrame extends JFrame
{

public MyJFrame ()
{

addWindowListener(new CloseWindow ());
}

public MyJFrame(String title)
{

super(title);
addWindowListener(new CloseWindow ());

}

public void center ()
{

Dimension screenSize = Toolkit.getDefaultToolkit ().
getScreenSize ();

int screenWidth = screenSize.width;
int screenHeight = screenSize.height;

Dimension frameSize = this.getSize ();
int x = (screenWidth - frameSize.width)/2;
int y = (screenHeight - frameSize.height)/2;

if (x<0){
x = 0;
frameSize.width = screenWidth;

}

if (y<0){
y = 0;
frameSize.height = screenHeight;

}
this.setLocation(x,y);

}
}

class CloseWindow extends WindowAdapter
{

public void windowClosing (WindowEvent e){
System.out.println("closing window");
System.exit (0);

}
}

A.14 Node.java

import java.util .*;

166

/**
* Title: Node.java
* Description : The program describes a node , which is a state of a state

transition diagram
* @author Qiuming Lin
* August/September 2002
*/

/* ******************************* CLASS VARIABLE
******************************* */

class Variable
{

String id , name , value;
String mid;

public Variable (){
id = "0";
name = "unknown";
value = "unknown";

}

public Variable(String n){name=n;}

public Variable(String na , String id){
name = na;
this.id = id;

}
public Variable(Variable v){

id = new String(v.id);
name = new String(v.name);
mid = new String(v.mid);

value = new String(v.value);
}
public void setMid(String m){ mid = m;}
public String getMid (){return mid;}

public void setValue(String v){value = v;}
public String getValue (){return value ;}

public String toString (){
return ("\nVariable Id: "+id +

"\tVariable Name: " + name +
"\tMid value : " + mid +
"\tVariable Value : " + value);

}
}

/* ******************************** CLASS NODE ********************************
*/

class Node
{

String id , name , mid;
Vector variable;

public Node(){
id = "";
name = "";
mid = "";

variable = new Vector ();

167

}

public Node(String na , String id){
name = na;
this.id = id;

}
public Node(Node node , String name)
{

id = node.id;
this.name = name;
mid = node.mid;
variable = new Vector ();

for (int i=0; i<node.variable.size(); i++) {
Variable temp = (Variable)node.variable.get(i);

variable.add(temp);
}

}
public Node(Node node){

id = node.id;
name = node.name;
mid = node.mid;
variable = new Vector ();
for (int i=0; i<node.variable.size(); i++) {

Variable temp = (Variable)node.variable.get(i);
variable.add(temp);

}
}

public void setId(String id){this.id = id;}
public String getId(){return id;}

public void setName(String na){name = na;}
public String getName (){return name;}

/**mid node’s name**/
public void setMid(String m) {mid = m;}
public String getMid () { return mid;}

public void setVariable(Variable v){ variable.add(v);}
public Variable getVariable(int i){ return (Variable)variable.get(i);}
public Vector getVariable (){ return variable ;}

public void removeVariable(int i){ variable.removeElementAt(i)
; }

public int getVarRowCount () { return variable.size(); }

public boolean isIdentical(Node n){
Vector v1 = this.getVariable ();
Vector v2 = n.getVariable ();

if (v1.size()!=v2.size())
return false;

else{
for (int i=0; i<v1.size(); i++){

boolean identical = false;
for (int j=0; j<v2.size(); j++) {

if (Utility.sameVar ((Vector)v1.get(i) , (Vector)v2.get(j)
))
identical = true;

}
if (! identical) {

168

return false;
}

}
}
return true;

}
/**display node**/
public String toString (){

return ("\n\nNode name: "+name+"\tNode ID:s "+this.id+"\tMid value :
"+getMid ()+

"\n\nIts variables are:\n"+variable);
}

}

A.15 RegistrationPanel.java

import java.util .*;
import java.awt.*;
import javax.swing .*;
import java.awt.event .*;
import javax.swing.border .*;

/**
* Title: RegistrationPanel.java
* Description : The program receives details of stakeholders and write them

to
Access based database

* @author Qiuming Lin
* August 2003
*/

/* **************** ADD MODEL PANEL ************************************* */

class RegistrationPanel extends JPanel implements ActionListener
{

static final int SIZE = 10;
JLabel jl_state , jl_var , jl_id , jl_name , jl_address , jl_password;
JTextField jt_id ,jt_name , jt_address;

JPasswordField jt_password;
JButton jb_submit , jb_reset;

Header header;
JTextField jt_state [], jt_var [];

JScrollPane jsp_state , jsp_var;

// constructor
public RegistrationPanel ()

{
try {

jpInit ();
}
catch(Exception e) {

e.printStackTrace ();
}

}

private void jpInit () throws Exception
{

169

header = new Header ();
add(header);

JLabel jl_title = new JLabel("Stakeholder Registration");
jl_title.setFont(new Font("Serif",Font.BOLD ,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX ,30));
jl_title.setHorizontalAlignment(SwingConstants.CENTER);
add(jl_title);

add(registrationPanel ());

jsp_state = new JScrollPane(stateNamePanel ());
jsp_state.setPreferredSize(new Dimension(ShowFrame.formX

-100, ShowFrame.buttonY *2));
jsp_state.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder (),"Please enter the
 state vocabularies"));

add(jsp_state);

jsp_var = new JScrollPane(varNamePanel ());
jsp_var.setPreferredSize(new Dimension(ShowFrame.formX -100,

ShowFrame.buttonY *2));
jsp_var.setBorder(BorderFactory.createTitledBorder(

BorderFactory.createEtchedBorder (),"Please enter the
 variable vocabularies"));

add(jsp_var);

add(buttonPanel ());
}

private JPanel registrationPanel (){
JPanel jp_registration = new JPanel ();
jp_registration.setLayout(new GridLayout (4,2, 3, 5));
jp_registration.setPreferredSize(new Dimension(ShowFrame.

formX -100, ShowFrame.buttonY *3));
jp_registration.setBorder(new TitledBorder(""));
jl_id = new JLabel("Stakeholder ID: ");
jl_id.setHorizontalAlignment(SwingConstants.RIGHT);

Database.connectDatabase ();
jt_id = new JTextField(Database.createId("SHid","stakeholder

")+"");
jt_id.setEnabled(false);
jl_name = new JLabel("Stakeholder Name: ");
jl_name.setHorizontalAlignment(SwingConstants.RIGHT);
jt_name = new JTextField (20);
jl_address = new JLabel("Stakeholder Address : ");
jl_address.setHorizontalAlignment(SwingConstants.RIGHT);
jt_address = new JTextField (30);
jl_password = new JLabel("Password : ");
jl_password.setHorizontalAlignment(SwingConstants.RIGHT);
jt_password = new JPasswordField (10);
jp_registration.add(jl_id); jp_registration.add(jt_id);
jp_registration.add(jl_name); jp_registration.add(jt_name);
jp_registration.add(jl_address); jp_registration.add(

jt_address);
jp_registration.add(jl_password); jp_registration.add(

jt_password);
Database.closeDatabase(false);

170

return jp_registration;
}

private JPanel stateNamePanel ()
{

jt_state = new JTextField[SIZE];
JPanel jp_state = new JPanel ();
jp_state.setLayout(new GridLayout (0, 2 , 0 , 1));
for (int i=0; i<SIZE; i++) {

jp_state.add(ShowFrame.newLabel("State "+(i+1)+": ")
);

jt_state[i] = new JTextField (10);
jp_state.add(jt_state[i]);

}
return jp_state;

}

private JPanel varNamePanel ()
{

jt_var = new JTextField[SIZE];
JPanel jp_var = new JPanel ();
jp_var.setLayout(new GridLayout (0,2,0,1));
for (int i=0; i<SIZE; i++) {

jp_var.add(ShowFrame.newLabel("Variable "+(i+1)+": "
));

jt_var[i] = new JTextField (10);
jp_var.add(jt_var[i]);

}
return jp_var;

}

private void insertData ()
{

String id = jt_id.getText ().trim();
String name = jt_name.getText ().trim();
String address = jt_address.getText ().trim();
char [] x = jt_password.getPassword ();
String password = new String(x);

Database.connectDatabase ();
Database.insertSHDetails(id , name , address , password);
insertVarName ();
insertStateName ();

Database.closeDatabase(false);
}

private void insertStateName ()
{

int i=0;
while (! jt_state[i]. getText ().trim().equals("")) {

Database.insertNodeVoc(jt_id.getText () , jt_state[i].
getText ());

i++;
}

}

private void insertVarName ()
{

for (int i=0; i<SIZE; i++) {

171

if (! jt_var[i]. getText ().trim().equals("")) {
Database.insertVarVoc(jt_id.getText () ,

jt_var[i]. getText ());
}

}
}

private JPanel buttonPanel ()
{

JPanel jp_button = new JPanel ();
jp_button.setPreferredSize(new Dimension(ShowFrame.buttonX*2,

ShowFrame.buttonY));
jb_submit = new JButton("Submit");
jb_submit.addActionListener(this);
jb_reset = new JButton("Reset");
jb_reset.addActionListener(this);
jp_button.add(jb_submit);
jp_button.add(jb_reset);

return jp_button;
}

public void actionPerformed(ActionEvent e)
{
if (e.getSource () == jb_submit) {

this.setVisible(false);
insertData ();
Database.closeDatabase(true);
this.setVisible(false);
ShowFrame.showLoginFrameFromLogout ();

}else if (e.getSource ()== jb_reset){
clearField ();

}
}

private void clearField ()
{

jt_name.setText("");
jt_address.setText("");
jt_password.setText("");
for (int i=0; i<SIZE; i++)

jt_state[i]. setText("");
for (int j=0; j<SIZE; j++)

jt_var[j]. setText("");
}

}

A.16 ShowFrame.java

// ShowFrame.java
// Written by Qiuming Lin
// August/September 2002
//sept 19 11:37 am

import java.util .*;
import javax.swing .*;
import java.awt.*;

172

class ShowFrame
{

static final int formX = 500;
static final int formY = 500;
static final int fieldY = 22;
static final int buttonX = 100;
static final int buttonY = 50;
static JTextArea jta_process = new JTextArea ();
static LoginPanel jp_login;
static AddModelPanel jp_model;
static AddNodePanel jp_node;
static AddArcPanel jp_arc;
static DisplayModelPanel jp_display;
static SHMenuPanel jp_SHMenu;
static MergeResultsPanel jp_mergeResults;
static RegistrationPanel jp_registration;
static MyJFrame frame , processFrame;

public static JLabel newLabel(String s) {
JLabel jl = new JLabel(s);
jl.setHorizontalAlignment(SwingConstants.RIGHT);
return jl;

}
public static void showProcessFrame (){

processFrame = new MyJFrame("Process");
processFrame.getContentPane ().setLayout(new GridLayout (0,1));
processFrame.getContentPane ().add(new JScrollPane(jta_process));
processFrame.setSize (100 ,300);
setProcessFrameLoc ();
processFrame.setVisible(true);

}
static void setProcessFrameLoc (){

processFrame.setLocation ((int)(frame.getLocation ().getX()+frame.
getSize ().getWidth ()),

(int)(frame.getLocation ().getY()));
processFrame.setSize (300,(int)frame.getSize ().getHeight ());
processFrame.show();

}
/**show frames**/

static void newFrame(String title , int x, int y){
frame.setTitle(title);
frame.setSize(x,y);

frame.center ();
// setProcessFrameLoc ();

}
static void showLoginFrame (){

frame = new MyJFrame("Stakeholder Login");
frame.setSize(formX -100 ,350);

frame.center ();
frame.setDefaultCloseOperation(MyJFrame.EXIT_ON_CLOSE);

jp_login = new LoginPanel ();
frame.getContentPane ().add(jp_login);
frame.setVisible(true);

}

static void showLoginFrameFromLogout (){
newFrame("Stakeholder Login", formX -100 ,350);

173

jp_login = new LoginPanel ();
frame.getContentPane ().add(jp_login);
frame.show();

}

/* static void showAnalystFrame (){
newFrame ("DSL Merging Project - System Maintenance",formX

-100 ,350);
frame.getContentPane ().add(new AnalystPanel ());
frame.show();

}*/
static void showSHMenuFrame (){

newFrame("DSL Merging Project - Menu",formX -100 ,350);
jp_SHMenu = new SHMenuPanel ();

frame.getContentPane ().add(jp_SHMenu);
frame.show();

}
static void showAddModelFrame (){

newFrame("DSL Merging Project - Add Model",buttonX *6 , 350);
frame.getContentPane ().add(jp_model);
jp_model.setVisible(true);
frame.show();

}
static void showAddArcFrame (){

newFrame("Add Transition",formX +100,formY -150);
jp_arc = new AddArcPanel ();
frame.getContentPane ().add(jp_arc);
jp_arc.setVisible(true);
frame.show();

}
static void showAddNodeFrame (){

newFrame("DSL Merging Project - Add State",formX +150,formY -150);
jp_node = new AddNodePanel ();
frame.getContentPane ().add(jp_node);
jp_node.setVisible(true);
frame.show();

}
static void showDisplayModelFrame (){

newFrame("DSL Merging Project - Display Models",formX +100 ,300);
jp_display = new DisplayModelPanel ();
frame.getContentPane ().add(jp_display);
jp_display.setVisible(true);
frame.show();

}/**/
static void showMergeResultsFrame (){

newFrame("DSL Merging Project - Result of Merge",formX +100,formY -150)
;

jp_mergeResults = new MergeResultsPanel ();
frame.getContentPane ().add(jp_mergeResults);
jp_mergeResults.setVisible(true);
frame.show();

}
static void showRegistrationForm (){

newFrame("DSL Merging Project - Stakeholder Registration" ,
formX , formY +100);

jp_registration = new RegistrationPanel ();
frame.getContentPane ().add(jp_registration);
jp_registration.setVisible(true);

174

frame.show();
}
static void showAnalystMenuFrame ()
{

newFrame("DSL Merging Project - Analyst Menu",formX -100 ,350);
frame.getContentPane ().add(new AnalystMenuPanel ());
frame.show();
}

}

A.17 Utility.java

// Uitility.java
// Written by Qiuming Lin
// August/September 2002
//sept 19 11:37 am

import java.util .*;
import javax.swing .*;

class Utility
{

static final int SIZE =10;
static Node node = new Node();
static Model model = new Model ();
static Vector mergedRanking;
static String shid = "";
static final String OP = "Delta Min";
static boolean newSH = false;

/**get data from database**/
public static JComboBox getNode ()

{
Vector v = new Vector ();
for(int i=0;i<Utility.model.node.size();i++){

v.add((i+1)+". "+Utility.model.getNode(i).name);
}
if(v != null)

return (new JComboBox(v));
else

return null;
}

public static JComboBox getNodeName(String shid)
{

Vector nodeName = Database.getSHNodeName(shid);
for (int i=0; i<nodeName.size(); i++) {

nodeName.add((i+1)+". "+nodeName.get(i));
}
if (nodeName != null)

return (new JComboBox(nodeName));
else

return null;
}
public static JComboBox getVarName(String shid)
{

Vector varName = Database.getSHVarName(shid);
for (int i=0; i<varName.size(); i++) {

175

varName.add((i+1)+". "+varName.get(i));
}
if (varName != null)

return (new JComboBox(varName));
else

return null;
}

/* ****************** the above methods are in use
******************************* */
public static Vector getRank(Vector modelId)

{
Vector v = new Vector ();
for (int i=0; i<modelId.size(); i++){

v.add(Database.getRank ((String)modelId.get(i)));
}
return v;

}
public static Vector getConsModelRankSet(String consId)
{

Vector modelId = Database.getConsModelId(consId);
return (getRank(modelId));

}
public static Vector getAllConsModelRankSet ()

{
Vector v = new Vector ();
Vector consModelId = getConsModelId ();
for (int i=0; i<consModelId.size(); i++){

v.add(getRank ((Vector)consModelId.get(i)));
}
return v;

}
public static Vector getConsModelId ()//get all sets of consistent

modelId
{

Vector consM = new Vector ();
Vector consId = Database.getConsId ();
for (int i=0; i<consId.size(); i++){

consM.add(Database.getConsModelId ((String)consId.get(i)));
}
return consM;

}
public static Vector getMergedId(String rank){

int size = Integer.parseInt(rank);
Vector v = Database.getMergedId("0");
if (size >0) {

for (int i=0; i<size +1; i++)
v.add(Database.getMergedId(i+""));

}
return v;

}
public static Vector getAllModel (){

Vector shid = Database.getSHid ();
Vector modelId = getAllSHModelId(shid);
Vector modelIdSet = concatAllModelIds(modelId);
Vector m = getAllModel(modelIdSet);
return m;

}
public static Vector getAllModelIteration(String rank){

176

Vector v = new Vector ();
System.out.println("rank = "+rank);
Vector id = getMergedId(rank);
v.add(id);
Vector shid = Database.getNewSHid ();
Vector modelId = getAllSHModelId(shid);
for (int i=0; i<modelId.size(); i++) {

v.add(modelId.get(i));
}
Vector modelIdSet = concatAllModelIds(v);
Vector m = getAllModel(modelIdSet);
return m;

}
public static Vector getModels(Vector modelId)//get one set of

models
{

Vector v = new Vector ();
for (int i=0; i<modelId.size(); i++) {

v.add((Model)Database.getModel ((String)modelId.get(i
)));

}
return v;

}

public static Vector getAllModel(Vector modelId)//get all sets of
models

{
Vector v = new Vector ();
for (int i=0; i<modelId.size(); i++) {

v.add((Vector)getModels ((Vector)modelId.get(i)));
}
return v;

}

public static Vector getAllSHModelId(Vector shid)//get sets of model
id of all the stakeholders

{
Vector v = new Vector ();
for (int i=0; i<shid.size(); i++) {

Vector modelId = Database.getSHModelId ((String)shid.
get(i));

v.add(modelId);
}
return v;

}

public static Vector concatAllModelIds(Vector m){// input a vector of
vector of model ID of all stakeholders

Vector v = concatModelIds ((Vector)m.get (0) , (Vector)m.get(1)
);

if (m.size() >2) {
Vector output = new Vector ();
for (int i=2; i<m.size(); i++) {

concatModelIds(v, (Vector)m.get(i) , output);
v = output;

}
return output;

}else

177

return v;
}

public static Vector concatModelIds(Vector m1 , Vector m2 , Vector m)
//m1 is a vector of vector , m2 is vector.

{
//

add element of m2 to element vector of m1
for (int i=0; i<m1.size(); i++) {

for (int j=0; j<m2.size(); j++) {
Vector v = new Vector ();
Vector v3 = (Vector)m1.get(i);
for (int k=0; k<v3.size(); k++) {

v.add(v3.get(k));
}
v.add(m2.get(j));
// System.out.println (" second v = "+v);
m.add(v);

}
}
return m;

}

public static Vector concatModelIds(Vector m1 , Vector m2)
{

Vector m = new Vector ();
for (int i=0; i<m1.size(); i++) {

for (int j=0; j<m2.size(); j++) {
Vector m3 = new Vector ();
m3.add(m1.get(i));
m3.add(m2.get(j));
m.add(m3);

}
}
return m;

}

public static void insertConsModel(String consId , Vector m)
{

for (int i=0; i<m.size(); i++) {
Database.insertConsModel(consId ,((Model)m.get(i)).id

);
}

}

public static void showModel(String model)
{

JTextArea temp = new JTextArea (300 ,300);
temp.append(model);
JScrollPane jsp_model = new JScrollPane(temp);
JFrame jf = new JFrame("Display Model");
jf.getContentPane ().add(jsp_model);
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.setSize(ShowFrame.formX ,300);
jf.setVisible(true);
}

/**check whether Node n exists in Model m**/
static Node findNode(Node n, Model m)

178

{
for (int i=0; i<m.getNodeCount (); i++)

if (n.getMid ().equals(m.getNode(i).getMid ()))
return m.getNode(i);

return null;
}

static boolean isNewSH(String loginSHid)
{

boolean newSH = false;
if (Database.getMergedId ().size()!=0) {

newSH = true;
Vector shid = Database.getSHid ();//get shid from

model_sh
for (int i=0; i<shid.size(); i++) {

if (loginSHid.equals ((String)shid.get(i))) {
newSH = false;
break;

}
}

}
if (newSH) {

return true;
}else

return false;
}
static boolean isNewSH (){

boolean same = true;
Vector loginSHid = Database.getLoginSHid ();
Vector shid = Database.getSHid ();//from table model_sh
for (int i=0; i<loginSHid.size(); i++) {

same = true;
for (int j=0; j<shid.size(); j++) {

System.out.println("(String)shid.get(j)= "+(
String)shid.get(j));//
/////////////////////

if (!((String)loginSHid.get(i)).equals ((
String)shid.get(j))) {

same = false;
break;

}
}

}
System.out.println("same = "+same);//

//
if (! same) {

return true;
}
return false;

}
/**compare one variable with another for identicality**/

public static boolean sameVar(Vector v1 , Vector v2)
{
boolean equal=false;
if (v1.size()!=v2.size())

return false;
else {

179

for (int i=0; i<v1.size(); i++){
equal = false;
for (int j=0; j<v2.size(); j++){;

if (((Variable)v1.get(i)).getMid ().equals (((Variable)v2.
get(j)).getMid ())){
equal = true;

break;
}

}
if (! equal)

return false;
}

}
return true;

}
public static boolean atomOk(Vector v)

{
String compared;
int j=0;
while(true&&j<v.size()){

compared = (String)v.get(j++);
if (! equalAtom(compared ,j, v))

return true;
}
return false;

}
public static boolean equalAtom(String s, int j, Vector v)

{
for (int k=j; k<v.size(); k++)

if (s.equals(v.get(k)))
return true;

return false;
}
public static boolean isDigit(String s)

{
for (int i=0; i<s.length (); i++)

if (! java.lang.Character.isDigit(s.charAt(i)))return false;
return true;

}

}

	University of Wollongong - Research Online
	Cover
	Copyright warning
	Title page
	Table of Contents
	Abstract
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Appendix A

	Please see print copy for Figure 2:
	1: Please see print copy for Figure 2.1

