#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Viewpoints consistency management using belief merging operators
Author: Q Lin

Year: 2004

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2004

Viewpoints consistency management
using belief merging operators

Qiuming Lin
University of Wollongong

Lin, Qiuming, Viewpoints consistency management using belief merging operators,
M.Info.Sys. thesis, School of Economics and Information Systems, University of Wollongong,
2004. http://ro.uow.edu.au/theses/458

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/458

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

VIEWPOINTS CONSISTENCY MANAGEMENT
USING BELIEF MERGING OPERATORS

A thesis submitted in fulfilment of the

requirements for the award of the degree

MASTER OF INFORMATION SYSTEMS BY RESEARCH

from

UNIVERSITY OF WOLLONGONG

by

QIUMING LIN

School of Economcs & Information Systems

2004

CERTIFICATION

[, Qiuming Lin, declare that this thesis, submitted in fulfilment of
the requirements for the award of Master of Information Systems by
Research, in the School of Economcs & Information Systems, University
of Wollongong, is wholly my own work unless otherwise referenced or
acknowledged. The document has not been submitted for qualifications

at any other academic institution.

Qiuming Lin

March 2004

i

Table of Contents

Table of Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3

Motivation L
Main Contributions
Organization of the Thesis

2 Background

2.2
2.3
24
2.5
2.6
2.7

2.1.1 What is Inconsistency?
2.1.2 Inconsistency Management
2.1.3 Approaches to Inconsistency Management
Requirements Negotiation
Social Choice Theory
Belief Merging
Formal Specifications via Finite State Models
Easterbrook and Chechik’s Framework
SUMMATY . . . o o o v o e e

3 Merging Viewpoints via Incrementally Elicited Ranked Structure

3.1

3.2

Preliminaries L L
3.1.1 The xbel framework L.
Belief Merging
3.2.1 Epistemic States
3.2.2 Properties for Combining Epistemic States

il

iii

vi

vii

S TSR

©

10
14
16
24
28
30
32
33
35

36

3.2.3 Merging Operators 46

3.2.4 Model Checking Merged Viewpoints using SMV 49

3.3 Merging via Ranked Structure 51
3.3.1 Ranked Structures 51

3.3.2 Signature Map 52

3.3.3 Guidelines for Selecting Merging Operators 53

3.4 Algorithm for Merging via Incrementally Elicited Ranked Structures . 54
3.5 Exampleo 63

4 Implementation 67
4.1 System Designo 67
4.1.1 Data Structure Description. 69

4.2 Implementation Description 72
4.2.1 Overview 72

4.2.2 Implementation Description 75

5 The Case Study 89
5.1 Telephone System Case Study 89
5.1.1 The Scenario 90

5.1.2 Experiment Description 90

5.1.3 Summary 96

5.2 Student Application System Case Study 97
5.2.1 The Scenario 97

5.2.2 Experiment Description 98

5.2.3 Summary 104

5.3 Discussion 105

6 Conclusion and Future Work 107
Bibliography 110
A Source Code 117
A.1 AddArcPaneljava 117
A.2 AddModelPanel.javao 119
A.3 AddNodePaneljava 126
A4 Arcjava 129
A.5 CheckModel.java 130
A.6 Databasejava 133
A.7 DisplayModelPanel.java 153

v

A8 Gojava 155

A9 MergeModel.java 156
A.10 MergeOperator.java 159
A.11 MergeResultsPanel.java 161
A2 Modeljavao 163
A.13 MyJFramejava 164
Al4 Nodejava 165
A.15 RegistrationPanel.java L. 168
A.16 ShowFrame.javao 171
A7 Utility.java 0 o o 174

Abstract

Handling inconsistent requirement specifications is a critical and difficult issue in
requirements engineering. There has been considerable research interest in this topic
and many methods have been proposed and implemented in the past. This research
aims at developing an approach to viewpoint merging for inconsistent management.
The recent literature on belief merging provides several well defined merging operators
that can be useful for viewpoints merging. This research has implemented a system
for merging viewpoints specified as finite state models, in order to demonstrate that
belief merging operators can indeed be the basis for viewpoints merging. We extend
the state of the art by providing a technique for incremental viewpoints elicitation,

and by addressing the problem of iterative merging in the present of viewpoints.

vi

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Aditya Ghose for his
many insightful comments and thoughts that guided me to finish this research. I am
also thankful to Dr. Thomas Meyer for his work and helping me to understand his
merging operator formulas. Thanks also to my other colleagues in Decision Systems
Laboratory (DSL) for their valuable comments, supports, helps and encouragement
during the process of completing this thesis as well as during the period of my master
study.

vil

Chapter 1

Introduction

Software tools make it much easier to manage the complexities of a system and help
assure the construction of high-quality systems within time and budget limits. Re-
quirements engineering has proven to be one of the most problematic areas within
software development. Reconciling the requirements of multiple and disparate stake-
holders involves effort on the part of system analysts, adding to the cost/time of
system construction. We address this problem in this dissertation, by adapting and
augmenting a formal framework for belief merging and by building a inconsistency
management tool based on this framework, in the specific instance where requirements

are specified as finite state machines.

1.1 Motivation

Requirements define the functionality and performance characteristics of systems to
be implemented. These include descriptions of system behavior, application domain
information, constraints on the system’s operation, or specifications of system prop-

erties or attributes. Sometimes they are constraints on the development process of

the system. Requirements are further divided into functional requirements and non-
functional requirements. The former are descriptions of what the system must do,
while the latter are the properties or qualities such as operational cost, reliability,
project budget etc. that a system must have, which are not directly related to func-

tionality.

Requirements engineering is a branch of software engineering and can be defined as
“the systematic process of developing requirements through an iterative cooperative
process of analyzing the problem, documenting the resulting observations in a variety
of representation formats, and checking the accuracy of the understanding gained”
[11]. The process of requirement engineering consists of such activities as requirements

elicitation, requirements analysis and negotiation, and requirements validation [46].

Requirements engineering is the first stage of the software development life cy-
cle. As part of this stage, requirements are discovered through consultation with
stakeholders. Stakeholders are people who will be affected by the system and who
have a direct or indirect influence on the system requirements [46]. They can be end
users, clients, customers, analysts, managers, etc. Hence stakeholders may have dif-
ferent perspectives on the system as they may have different interests in the system
and express their requirements in different vocabularies. Inconsistency among these

requirements is therefore inevitable.

Handling inconsistent requirements is very important, as inconsistent requirements
will have adverse impact on the system development. Requirements specifications that
contradict with each other or system constraints often impede the process of system

development. Worse still, the inconsistencies may be neglected by the analysts or

hidden in the documents and found at a later stage, in which case the options are
either to roll back the entire development process to the early phases of the life-cycle
or to perform imperfect patchwork repairs. In either case, the costs are likely to be
unacceptably high. Therefore, inconsistency management is a critical but difficult

task in requirements engineering.

There has been considerable recent research interest in this topic and several differ-
ent methods have been proposed to handle the problem of requirement inconsistency.
Generally, there are two approaches towards inconsistency handling. One is to enforce
consistency so that inconsistency is not allowed (see [49] for example). The second
involves inconsistency management that permits the existence of inconsistencies in
a specification and supports a principled yet pragmatic approach to resolving these

inconsistencies when appropriate (see [20] for example).

Ultimately, the challenge in multi-perspective requirements engineering is to rec-
oncile the multiple, possibly inconsistent perspectives to obtain a single consistent
specification. Inconsistency handling is clearly a key element of this process. Tradi-
tionally, this problem has been addressed by the process of requirements negotiation.
The WinWin negotiation model based on Theory W [5] is one of the most commonly
cited approaches to this problem. In this model, the stakeholders first provide their
requirements, which are called Win Conditions. If a conflict is identified, an Issue
schema, which contains the conflict, the Win Conditions affected and the stakehold-
ers involved, is formed. The stakeholders then prepare their Options (alternative
solutions) addressing the Issue for evaluation among the stakeholders until a satisfac-
tory Option is achieved through an Agreement schema. More details on this will be

presented in Section 2.2.

Our problem has much in common with the problem addressed in social choice the-
ory by Kenneth J. Arrow (1972 Nobel Prize Winner for economics) in 1951 [1]. Social
choice theory aims at providing a fair and equitable aggregation procedure for com-
bining individual preferences into a new single social preference relation. Similarly,
belief merging concerns constructing operations for merging the preferences of the
individuals into a new single preference, as well as merging a finite set of knowledge
bases that represent the beliefs of an agent, into an appropriate consistent knowledge
base. Konieczny and Pino-Perez [27] have proposed a merging operation and defined
a set of properties the merging operation should satisfy. There has been much earlier
work on merging, notable examples being [3, 48, 31, 40, 30]. This research takes the
work on belief merging as its point of departure. Within the framework of belief
merging proposed by Meyer [33], we define an incremental elicitation approach to
merging inconsistent viewpoints specified as finite state machines. We identify a class
of merging operators, from the repertoire defined by Meyer [33], that are applicable in
the context of incremental elicitation of progressively relaxed viewpoints. We present
a tool to support viewpoint merging based on this approach, and we present some

experimental results and case studies to validate this approach.

1.2 Main Contributions

The main contribution of this thesis is to argue, and in part, establish that belief merg-
ing operations are useful in reconciling multiple stakeholder perspectives in require-
ments engineering. We prove this by developing a framework implementing merging
operations to handle multiple/inconsistent requirement perspectives represented as

finite state models and propose an interactive, demand-driven model algorithm for

requirements elicitation.

The merging operations applied are based on the idea of Meyer’s merging op-
erations [33] defined in terms of epistemic states. A epistemic state provides a set
of preference rankings of the models. The lower the ranking the more preferred it
is deemed to be. In our framework, we have defined a ranked structure which has
the same structure as the epistemic state. But it does not provide a full ranking of

preference, it only provides preference rankings to a set of elicited models.

Requirements involved in our framework are represented as finite state models
(FSMs), which have been used in many contexts, both conceptual and technical.
FSMs are useful also because they are simple to understand, simple to reason about
and simple to build. FSMs are especially interesting because they can be used in
conjunction with a class of efficient model-checking procedures for verifying that the
specified models satisfy relevant system properties (these may include liveness, fair-

ness and safety properties).

Our framework contains the following components.

e A set of ranked structures (these may be viewed as partially specified epistemic
states in the sense of Meyer’s framework), each representing the viewpoint of a

given stakeholder.

e A consistency checking device, which handles different vocabularies across the
viewpoint models and perform consistency checking among the viewpoint mod-

els.

e A combination device to combine the consistent models into one model.

e A set of merging operators to merge the preference ranks of consistent sets of

models into a new single list of preferences.

e SMV model checker [32] for verifying the system properties of the combined

model.

A viewpoint in our system is assumed to be represented as a finite state model.
First, the stakeholders provide their partial ranked structures with their most pre-
ferred models, which are checked by the tool for agreement, i.e. whether there are
identical or consistent models among all the stakeholders. If no agreement is reached,
the stakeholders are required to present their next most preferred models by either
modifying the existing models or making new ones (and the models are added to their
ranked structure), until an agreement is reached. Once an agreement is reached, the
consistent models are combined into a single model with a merging operator selected
to determine the new preference ranking for the combined model, hence creating a
new and merged ranked structure containing the combined model. The combined
model of the most preferred ranking is checked using the SMV model checker (more
information on it is presented in chapter 2) to check against the system properties pro-
vided by the stakeholders (we do not address the problem of possible inconsistencies
within these, and assume them to be consistent. If it does not satisfy all the proper-
ties, models of next preferred level in the merged ranked structure is model checked
against the system properties until a satisfactory model is found. The model satisfy-
ing all of the system properties as well as the newly created ranked structure are the
final outcomes of the tool. In the case where none of the models in the newly created

ranked structure satisfy the properties, we have to continue the process by asking

the stakeholders to provide their models of the rank higher than the one where they
reached the agreement, and the same process is iterated until a satisfactory model is

found.

We describe the design and implementation of a tool that implements the scheme
described above. We also present some case studies where this tool is deployed in

semi-realistic situations.

1.3 Organization of the Thesis

The thesis consists of four chapters. Chapter 2 provides a brief background intro-
duction to the areas related to our framework. First is the literature review of
inconsistency management in requirements engineering. Inconsistency is explained
with examples from [20]. Inconsistency management strategies and approaches to it
are discussed. Then we briefly introduce other related areas, including requirement
negotiation, social choice theory, belief merging and finite state model formally rep-
resenting the specifications. In this chapter we also discuss the work of Chechik and

Easterbrook that is closely related to what we are doing.

In Chapter 3, we present more details of the approach developed in this research.
We first discuss the epistemic state, properties for combining epistemic states, a
ranked structure defined based on the idea of epistemic state and the merging oper-
ators used. The SMV model checker incorporated into our framework is also briefly
introduced. Then we explain how to merge multiple viewpoints and present the al-
gorithm for constructing the framework. An example is presented in the last section

to further explain how the framework works.

We discuss the implementation in Chapter 4, where we describe our system design
and demonstrate how the prototype works with the major screen shots provided. The
last chapter concludes the thesis by pointing out the limitation of our framework and

the future work.

Chapter 2

Background

In this chapter, a brief literature review of the major areas related to our framework
will be presented. Those areas are inconsistency management in requirements engi-
neering, requirement negotiation, belief merging and formal specifications via finite
state models. Finally the framework to merging inconsistent requirements proposed

by Easterbrook and Chechik is discussed.

2.1 Inconsistency Management in requirements en-
gineering

Inconsistency may arise due to mistakes, misunderstandings, or lack of information.
It may also be the result of impractical requirements or conflicts between different
perspectives. In the following, we briefly discuss inconsistency and inconsistency
management strategies, and then a range of approaches to inconsistency handling is

presented.

10

2.1.1 What is Inconsistency?

Inconsistency is generally defined as any situation in which two descriptions do not
obey some relationship that should hold between them [36]. Inconsistency is inevitable

in requirements engineering usually for the following reasons:

1) Inconsistent requirements specifications: Due to mistakes, misunderstandings, or
lack of information, inconsistencies may occur in the requirements specifications.
These are called local inconsistencies and are usually associated with a single

stakeholder.

2) Inconsistent perspectives among multiple stakeholders: Inconsistencies arise more
often among the requirements of multiple stakeholders. Different stakeholders
may have their own knowledge, responsibilities, interests and commitments, so
it is common to find that their requirements specifications contradicting each

other. We call these global inconsistencies.

3) Requirement evolution: As the system environment as well as stakeholder require-
ments specifications change, new requirements may be added and existing ones

may be deleted, hence causing contradiction among the requirements.

4) Inconsistency between functional requirements and non-functional requirements:
Functional requirements may contradict non-functional requirements (a com-

mon example involves the competing pulls of speed and greater functionality).

Relationships between descriptions can be expressed as consistency rules, against

which descriptions can be checked. A logical inconsistency is one instance of this

11

definition (in logical inconsistency, inconsistency occurs when both some fact A and

its negation not A are derived), but other instances can also exist.

We shall consider the following examples from [20]. These examples are based
on the TRMCS (Teleservices and Remote Medical Care System) case study used
for IWSSD (International Workshop on Software Specification and Design). The
examples are written in a language similar to KAOS (Knowledge Acquisition in au-
tOmated Specification) language, and contain three parts. The first is the system
requirements, which are also called goals. The second part is the formal definition
of the requirement, represented in many-sorted first-order logic. The third part is

further explanation of the requirement, written in English language.

In these examples, paramedical professionals (paramedics) and quality assurance
(QA) professionals are stakeholders in the system. QA professionals require access to

paramedic activity logs to better monitor their performance. Formally:

Goal 1 Maintain [QAAccessParamedicActivityLog]
FormalDef V p: Paramedic, q: QAProfessional, 1: ActivityLog
Records(p,1) — Accesss(q,1)

InformalDef: Activity logs of every paramedic are accessible to all QA professionals.

Goal 2 Maintain [ParamedicActivityLogAccess|

FormalDef V p: Paramedic, q: QAProfessional, m: MedicalPractioner, I: Activity-
Log

Records(p,l) — Accesss(m,l) A =Accesses(q,l)

InformalDef: Activity logs of every paramedic are accessible to all medical profes-

sionals but not to any QA professional.

12

It is obvious that if
3 p: Paramedic, 1: ActivityLog
Records(p,l)
holds in the system, then Goal 1 and Goad 2 of distinct stakeholders defined above
are inconsistent. This is an example of a conflict between distinct stakeholder groups

and between distinct functional requirements.

Goal 3 Achieve [DispatcherAccessPatientRecords|

FormalDef V p:Patient, d: Dispatcher, r: PatientRecord, e: Event

Emergency(e,p) A History(p,r) A Manages(d,e) — AccessesDuringEvents(d,r,e)
InformalDef: If a dispatcher is involved in the management of a medical emergency
concerning a given patient, then the dispatcher has access to the medical history of

that patient for the duration of the emergency.

The rationale for this goal is another goal that requires that dispatchers be able
to communicate relevant portion of a patient’s medical history to paramedics during

a medical emergency involving that patient.

Goal 4 Achieve [PatientRecCommunicatedParamedics]

FormalDef V p: Patient, d: dispatcher, r: PatientRecord, e: event, m: Paramedic
Emergency(e,p) A History(p,r) A Manages(d,e) A Responds(m,e) — Communicates-
DuringEvent(d,m,r,e)

InformalDef: Dispatchers managing a medical emergency involving a patient com-

municate that patient’s medical history to paramedics responding to the emergency.

Goal 5 Maintain [MobileAccessPatientRecords]

FormalDef V ¢: MobileComputingDevice, r: PatientRecord DeviceAccess(c,r)

13

This is a different goal that requires mobile computing devices be equipped to

directly access patient records from help center data servers.

Goal 6 Achieve [ParamedicAccessPatientRecords]
FormalDef V p: Patient, r: PatientRecord, e: Event, m: Paramedic
Emergency(e,p) A History(p,r) A Responds(m,e) — AccessesDuringEvent(m,r,e)
InformalDef: Paramedics responding to a medical emergency involving a patient are
able to directly access that patient’s medical history.

The rationale for this is a goal that requires that paramedics be able to directly

access a patient’s medical records during an emergency involving that patient.

Goal 7 Avoid [RedundantAccess]

FormalDef V x, y: HealthProfessional, r: PatientRecord, e: Event Communicate-
DuirngEvent(x,y,r,e) A x # y — —AccessesDuringEvent(y,r,e)

InformalDef: If a patient history is communicated to a health professional y by
another health professional x during an event, then y does not require direct access to

the patient history during that event.

Both dispatchers and paramedics belong to the HealthProfessional sort. If we

know that states of the system exist where the following is true:

J p: Patient, d: Dispatcher, r: PatientRecord, e: Event, m: Paramedic
Emergency(d,e) A History(p,r) A Manages(d,e) A Responds(m,e)
Then we are able to detect that Goal 3, Goal 5 and Goal 7 are jointly inconsistent,
Goals 4, 6, 7 are also jointly inconsistent. These are examples of conflict between

rationales.

Goal 8 Maintain [FastAccessPatientRecords]

14

FormalDef V u: User, r: PatientRecord, t: Timelnterval
AccessDelay(u,r,t) — t < 30
InformalDef: The delay in accessing a patient record must be no more than 30

seconds.

Goal 9 Maintain [SecureAccessPatientRecords|

FormalDef V u: User, r: PatientRecord

AccessRequest(u,r) — Authenticate(u,r)

InformalDef: If a user requests access to a patient record, then the system must

authenticate that request.

Given the domain theory:
V u: User, r: PatientRecord, t: Timelnterval
Authenticate(u,r) A AccessDelay(u,r,t) — t > 30
Goal 8 and Goal 9 are inconsistent, which is an example between a functional require-

ment and a non-functional requirement.

In the following, we will briefly describe the process of inconsistency management

in requirements engineering.

2.1.2 Inconsistency Management

The process of inconsistency management generally consists of detecting inconsis-
tency, diagnosing inconsistency, handling inconsistency and then monitoring the out-
come. Consistency rules play an important role in inconsistency management. They

are used to check the descriptions/specifications of requirements in order to identify

15

conflicts/contradictions. This set of rules will be improved and expanded as the in-
consistency management cycle iterates [16]. Therefore, consistency rules must be

expressed precisely.

The choice of inconsistency handling strategy depends on when it arises and how
it impacts other aspects of the development process. Generally, there are two strate-
gies. One is the conventional one that inconsistency is avoided, i.e. it will be re-
jected or resolved immediately after being detected. However, it is undesirable and
costly to maintain consistency all the time through the software development process.
Therefore, more and more researchers are advocating a different strategy, living with

inconsistency.

Living with inconsistency allows the existence of inconsistency until it is resolved
at the appropriate stage so that developers can continue their work without being
constrained by the conflicts with others. It is most useful in handling inconsistency
during specification evolution. According to [16], there are different actions that can

be taken when an inconsistency is detected:

e Ignore - The presence of inconsistency can be ignored if the inconsistency does
not have any significant impact on the development process. However, it is

important to record and keep track of all inconsistencies even if they are ignored.

e Circumvent - Inconsistency is bypassed by modifying or disabling the rule for a
specific context if a consistency rule is not applicable to that context or if the

inconsistency represents an exception to the rule.

e Defer - Resolution of inconsistency is deferred and development can continue

until it is deemed appropriate to handle the inconsistency.

16

e Ameliorate - Requirements causing inconsistencies can be repaired/modified
instead of being deleted. This is only suitable if the modification of requirements
does not have major side effects. The process is also referred to as incremental

resolution.

In the next section, we are going to outline different approaches to inconsistency

management.

2.1.3 Approaches to Inconsistency Management

Approaches to inconsistency management can be grouped into the following cate-
gories. Some of these approaches are based on similar ideas, but are implemented
differently. For example, there are approaches that advocate formalization of the
requirements specifications, but represent the specifications in different formal lan-

guages.

Ontological Approaches

This approach seeks to identify conflicts by providing a set of meaningful terms, or
ontologies, by which one can specify conflict relationships between requirements. The
idea is to explicitly state the vague and imprecise requirements. This can be useful

for automated analysis of the specification.

[50] is an example of this approach that was proposed for analyzing the trade-
offs between conflicting requirements. The approach employs utility functions from

decision science [26]. These are used to validate the structure used in aggregating

17

prioritized requirements, to identify the structures and the parameters of the underly-
ing representation of imprecise requirements and to assess the priorities of conflicting

requirements.

Imprecise requirements are represented in fuzzy logic in this approach so that
requirements can be described using linguistic terms, which make it easier to commu-
nicate and understand the requirements. An imprecise requirement can be satisfied to
a degree and a satisfaction function, denoted as Satg, maps a requirement’s domain
to the range of satisfaction degree. Two imprecise requirements, R; and R, are said
to be conflicting with each other if an increase in the degree of satisfaction of R;(R>)
often causes a decrease in the degree of satisfaction of Ry(R;). If an increase in the
satisfaction degree of one requirement always decrease the satisfaction degree of the
other, they are completely conflicting [50]. The approach also use conjunction and

disjunction operators in fuzzy logic, where @) is a fuzzy AND and @ is a fuzzy OR.

[7] is another example of ontological approach, which adopts the Non-Functional
Requirement (NFR) framework to deal with changes. It treats NFRs as goals to
be achieved during the process of system evolution. Through the process, goals are
decomposed, design tradeoffs are analyzed, design decisions are rationalized, and goals

are evaluated.

The approach utilizes structures similar to semantic nets, in that it uses link
types such as AND and OR links to connect the parent goals with the decomposed
goals (offspring goals). Goals are captured and shown in a goal graph. Guidelines
for changes are offered by use of the notion of structurally traceable goal graph to

provide syntactic principles for maintaining the consistency of a goal graph.

18

The two approaches mentioned above suggest the need for an explicit semantics to
bridge the gap between the imprecise requirements and formal specification method.
The proposal in [50] is simple and explicit, while the notation in [7] is somewhat

more complex.

State Machine Based Approaches

With this approach, requirement conflicts are identified by a specific technique, or
automation. Automated technique helps to easily detect many classes of errors in
requirements specification. [21] is an example of this approach. It proposes a formal
analysis technique, called consistency checking, for automatic detection of errors in
requirements specifications, which are expressed in Software Cost Reduction (SCR)

tabular notation. Below is brief description of this approach.

It is based on the Four-Variable Model, which describes the required system be-
havior, as a set of mathematical relations on four sets of variables - monitored and
controlled variables and input and output data items. A monitored variable represents
an environmental quantity or variable that influences system behavior; a controlled

variable is an environmental quantity that the system controls.

SCR has four other constructs: modes, terms, conditions and events. A mode class
is a state machine, defined on the monitored variables, whose states are called system
modes and whose transition is triggered by events. A term is an auxiliary function
defined on input variables, modes, or other terms that help make the specification
concise. A condition is a predicate defined on one or more system entities (a system
entity is an input or output variable, mode, or term) at some point of time. An event

occurs when any system entity changes value.

19

SCR tables contain condition tables, event tables, and mode transition tables.

Each table describes a function to define an output variable, a term or a mode class.

An automated consistency checker is developed to check the specification for syn-
tax and type correctness, coverage, determinism and other application-independent
applications. As for the automated consistency checking, the consistency checker de-
termines whether a logical expression is a tautology, by applying a tableaux-based

decision procedure.

Approach based on Formal Logic

There have been several proposals of logical treatment of the inconsistency of software

specification [22, 38, 19, 20, 43, 39, 10, 51].

Logic-based approaches contribute to inconsistency handling by providing tech-
niques that assist analysis and reasoning in the presence of inconsistency. The use
of logic provides a precise and unambiguous language to identify inconsistencies in
evolving multi-perspective specifications. It also provides the means to address issues
of inconsistency management in a generic way that is independent of any particular
software engineering method or formalism [22]. In the following, we briefly address
three categories of the approach: logical abduction, belief revision and argumentation

view.

1) Logical Abduction
Abduction is one of the three fundamental modes of reasoning, in addition to
deduction and induction. In artificial intelligence, abduction is generally accepted

as the search for a set of hypotheses to achieve some given goals without causing

20

conflicts, when combined with a given theory [25].

[38] proposes logical treatment of inconsistency of software specifications, based
on the abduction as formal reasoning. According to [38], abduction provide a for-
mal technique for handling inconsistency by permitting incremental evolution of con-
flicting requirement specifications, as well as allowing implementation by employing
existing tools for handling theory change. The specification and consistency rules
are represented in quasi-classical (QC) logic [23], which allows continued reasoning
in the presence of inconsistency. Classical abduction reasoning is adapted to handle
inconsistent specifications in this logic. The abductive process is a backwards rea-
soning mechanism. If a literal o needs to be removed from a given QC specification
in order to resolve the inconsistency, the abductive process backward from all the
resolution steps that have lead to that literal. If it reaches some relevant literals that
in the specification, then the identified literals become the abducible anti-explanation

of that initial literal and will be deleted since QC logic is monotonic.

2) Belief Revision:

[19], [43] and [51] are similar in that they all present a logical framework to
reasoning about requirements evolution based on the theory of belief revision. A
sufficiently rich meta-level logic is used to formally and accurately capture intuitive
aspects of handling incompleteness and inconsistency in requirements. Operators are
used to map between theories of this meta-level logic to provide formal basis for the
theory change component. This framework is based on the idea of belief revision
that seek to find solutions through minimal changes to specification in the presence

of inconsistency in the system development.

21

For example, [43] proposes a computational method for minimal revised logical
specification. It utilizes an abductive procedure to compute a set of abducibles for
minimal revised specification, in which abducibles are generated to get consistency
for a given program. The mechanism can be used to compute deletion and addition

of specification, which may be potential causes of inconsistency.

3) Argumentation View:

[39] presents a logical framework for reasoning about inconsistent requirements
in the context of multi-viewpoint requirements engineering process. It proposes an
argumentation view of multiple requirements, which can analyze the sources of in-

consistencies.

In this approach, multi-viewpoints are represented as arguments. Arguments with
no counterarguments represent the acceptable class of arguments and different mean-
ings of “counterarguments” are used to derivate different classes of acceptable re-
quirement. These arguments are characterized by order: from weakly confident to
strongly confident (i.e. consistent). Inference rules are created for intra-viewpoints
reasoning (concerned gradual reasoning) and inter-viewpoints reasoning (concerned
safe reasoning). Reasoning is represented by the degree of confidence obtained from

previous ordering over requirements.

Other Approaches to Tolerating Inconsistency

The followings are some of the typical notations of the strategy of managing incon-

sistency in the presence of inconsistency.

1) Living with Inconsistency:

22

Schwanke and Kaiser [44] suggest that during large systems development, pro-
grammers often circumvent strict consistency enforcement mechanism in order to get
their jobs done. They propose and approach to “living with inconsistency” during
development, and describe a configuration management (CONMAN) programming

environment that helps programmers handling inconsistency by:

e identifying and tracking different kinds of inconsistencies (without requiring

them to be removed),

e reducing the cost of restoring type safety after a change (using a technique

called “smarter recompilation”), and

e protecting programmers from inconsistent code (by supplying debugging and

testing tools with inconsistency information).

2) Tolerating Inconsistency:

It was first introduced by Robert Balzer [2]. In this approach, constraints are
relaxed by treating inconsistencies as temporary exceptions, which will eventually be
corrected. Before correction, the violated data are guarded by a technique called
Pollution Marker. By use of these guards, specifications can be modified to avoid
any inconsistencies completely or to tolerate them by adjusting their behavior, while
specifications that are insensitive to violations of a specific constraint, need not be
guarded by its Pollution Marker and will continue normal processing of the database,

including the inconsistencies.

When the violation is eventually resolved and the data is no longer inconsistent,
the guards are automatically removed indicating that no further resolution activity

is required. Accessibility of this data to specification is restored.

23

3) Making inconsistency respectable:

Gabbay and Hunter propose "making inconsistency respectable” in that incon-
sistencies can be viewed as signals to external actions as well as signals to internal
actions that activate ore deactivate other rules [29]. According to this approach, in-
consistency is not necessary resolved by eradicating it, but by supplying rules that

specify how to act in the presence of such inconsistency.

4) Lazy consistency:

This approach was proposed by Narayanaswamy and Goldman as the base for
cooperative software development [35]. Its aim is to identify the technical basis to
support the resolutions of cooperative software development (CSD) problems that

may arise due to the distributed nature of the development process.

This approach favors software development architectures where the proposed changes
(PCs) that are about to occur as well as changes that already occurred, are announced
or broadcasted within the context of a larger transactional unit called evolution step,
where all of the object-level changes are grouped together and handled coherently as
a single logic unit. All the impacted stakeholders are notified of the PCs and they can
review all the affected objects and explicitly express approval, rejection to or make
modification to the PCs that adversely affect their objectives. Through such process,
the step is gradually become consistent. Such an intra-step consistency is one aspect

of lazy consistency.

The causal relationships between proposed changes are maintained so that stake-
holder negotiations and other organizational protocols can be supported to resolve

the collision and conflicts. It makes each step internally consistent and consistent

24

with regard to other volatile steps that might be pursued concurrently. The process
of eventually resolving the intra-step and inter-step consistency within the step-based

transaction model is the so-called lazy consistency.

We have discussed a range of approaches to managing inconsistency and presented
them based on different dimensions. However, our concern is in belief merging, which
suits handling inconsistency arising among multiple stakeholders. In the next section,

we briefly describe belief merging and the related areas.

2.2 Requirements Negotiation

Requirements negotiation is an early phase in the system development process. After
requirements have been acquired, analysis for conflicts/inconsistencies, overlaps and
omissions is carried out, as well as negotiation with different stakeholders to reconcile

and agree on these requirements.

There have been many models proposed to support requirements negotiation.
WinWin negotiation model [29] is one of them. It is developed using Theory W [5]
to generate the objectives, constraints, and alternative, as the goal of Theory W is to
“Make everyone a winner”. Figure 2.1 shows the WinWin negotiation model. It has
four artifacts, Win Conditions, Issues, Options and Agreements. Win Conditions are
the individual requirements; Stakeholders start by entering their Win Conditions. If
a conflict among the stakeholders” Win Conditions is detected, an Issue is formed to
address the conflict, contradictory Win Conditions and stakeholders involved. Then

Options are proposed by the stakeholders to resolve the identified Issue. Stakeholders

25

Please see print copy for Figure 2.1

Figure 2.1: WinWin Negotiation Model [4]

evaluate, negotiate and reconcile on the Options and ultimately adopt a mutually
satisfactory (i.e. win-win) one. The adoption of the final Option is called Agreement.

We shall explain how this negotiation model works more explicitly using the above
hospital example. Assuming there are four stakeholders entering their Win Condi-
tions which are Goal 5, 6, 8 and 9 (see section 2.1.1) respectively. Then the Win
Conditions are examined to search for potential conflicts. In this example, conflicts
arise between Goal 8 and Goal 9. Then stakeholders affected by these potential con-
flicts are identified, i.e. owners of Goal 8 and Goal 9, as well as a list of potential
conflicts with the new Win Conditions are formed into an Issue artifact and provided
to the stakeholders concerned (owners of Goal 8 and Goal 9 in this example), who will
prepare their candidate Options addressing the issue. The Options are provided for

stakeholders’ evaluation, negotiation and adoption through the Agreement artifact.

Other similar approaches include Conflict-Oriented Requirements analysis [41, 42]
(CORA) created to better analysis of the relationships among the system require-
ments. It provides requirement restructuring techniques to address issues arising

through stakeholder analysis. It contains a cycle with three phases:

1) System requirements are defined.

26

2) Issues arise, through analysis of the requirements, which indicate possible conflicts

among requirements.

3) Requirements are changed in response to conflicts.

The basic process of CORA is summarized as follows: System requirements are
captured by defining the semantics of entities and relations. Then issues arise through
analysis of requirements that may lead to varied stakeholder alternative solutions to
the issues. In the conflict analysis process, a focusing strategy guides the order in
which issues are to be analyzed for conflicts. A set of domain-independent trans-
formations is provided to generate alternative requirements that remove stakeholder
conflicts and the strategy for guiding the resolution generation process is defined.
The transformations are changes to the meaning of requirements made by changing
the classes or logical relationships specified in the requirements, rather than changes
to design or implementation in order to satisfy requirements through various oper-
ationalization. A resolution is selected among a set of possible resolutions for each
conflict. At last the requirement is updated with the newly defined requirement

resolutions.

Viewpoints framework is another approach based on the concept of negotiation.
There have been many works [16, 14, 13, 37, 12, 15, 17] approaching inconsistency
management using Viewpoints framework, addressing the conflicts resulting from
different perspectives of many stakeholders involved in the development of especially

large and complex systems.

27

Viewpoints refer to the multiple perspectives that stakeholders maintain sepa-
rately. In software terms, “Viewpoints are loosely coupled, locally managed, dis-
tributable objects that encapsulate partial knowledge about a system and its domain,
specified in a particular, suitable representation scheme, and partial knowledge of the

development process.” [14] Each viewpoint consists of the following slots [17]:

e A representation style, the scheme and notation by which the Viewpoint ex-

presses what it can see.

e A domain, which defines that part of the “world” delineated in the style.

A specification, the statements expressed in the Viewpoint’s style describing the

domain.

A work plan, which describe the process by which the specification can be built

A work record, which contains an annotated history of actions performed on the

Viewpoint.

In Viewpoints framework, inconsistencies between viewpoints are managed by
explicitly defining relationships between them, and recording both resolved and unre-
solved inconsistencies. A viewpoint is locally consistent, while it may be inconsistent
with other stakeholders’. Therefore, inconsistency is tolerated throughout the soft-

ware development process.

Inconsistency checking is performed by applying consistency rules, which express
the relationships that should hold between particular Viewpoints. When a consis-

tency rule is applied, both the Viewpoints involved must collaborate to perform the

28

check and they both need to know the result. The Viewpoints might be evolving
asynchronously and hence the application of the rule need to be performed as a single

action.

Once an inconsistency is identified, (i.e. consistency check for relationship be-
tween two Viewpoints failed,) it will be corrected only if the owner wishes to do.
Otherwise, inconsistency is tolerated. Resolution of inconsistency is re-establishing
the relationship containing the rule that failed. If a relationship did previously hold,
information about subsequent changes can be used to guide the resolution process.
This information is available in the work record of each Viewpoint, as well as in the

record of the results of previous consistency check.

2.3 Social Choice Theory

Social choice theory also offers a useful approach to reconciling the interest of differ-
ent stakeholders’ requirements. The theory is intensively studied in the fields of eco-
nomics, political science and applied mathematics, and has lead to two Nobel Prizes
in economics. It is most commonly applied in elections such as political elections
or firm elections. It is also applied in the field of artificial intelligence to aggregate
preference from different agents with different priorities, which is similar to our work
in belief merging.

It is a theory of studying a decision among a collection of alternatives made by
a group of n voters (truthful voters) with separate opinions. An individual voter’s
preference can be represented in total order < over). For example, for A, B € Q, A <

B means A is at least as preferred as B. While the theory is interested in constructing

29

an aggregation operation on the preferences of n voters, i.e. <y,..., <, that generate
a new preference ordering over). Any choice for the entire group should reflect the
desires of the individual voters to the greatest extent possible. In a social choice
setting or voting, there will be different voting strategies. However, none of these
strategies will guarantee consistency with Arrow’s five desirable principles - the basis

of his Impossibility Theorem. These principles are:

o Universality: The procedure should work for any preference configuration of

individuals

e Unanimity: Unanimous preference of individuals should be respected. If all

individuals prefer A to B then the social ranking will place A ahead of B.

o Transitivity: If the society prefers A to B and B to C, then the society prefers
A to C.

e Non-dictatorship: The mechanism should not allow for dictator whose prefer-

ence is dominant.

e [ndependence of Irrelevant Alternative: The relative ordering of two alternatives

should be based only on their respective standings.

Arrow’s work was later extended by Amatya Sen in many directions. Sen won
Nobel Prize for economics in 1998 partly for his outstanding work in the field of
social choice theory. One of Sen’s major results dealt with the difficulties of reconciling

libertarian ideals and considerations of efficiency.

Based on the ideal of liberalism, the individual is entirely decisive on any choice,

no matter what the opinions the others have. If you want to drink water, others

30

should not force you to drink orange juice. While a mild liberal requirement would
be that each individual should have a decisive voice over at least one alternative. An
even weaker notion is that there should be at least two individuals who have a decisive
voice over at least one pair of choice each. Sen called the latter minimal liberalism.
On the hand, Pareto principle has long been regarded as an important requirement
of “efficiency”: for a pair of alternatives A and B, if everybody strictly prefers A
to B, then B should not be chosen. A social decision function (the aggregation
procedure) should also be universal and intransitive. Sen proved there couldn’t be a
social decision function that meets all these requirements simultaneously, which he

called “the impossibility of a Paretian liberal”.

2.4 Belief Merging

More and more research effort has been spent on belief merging over recent years and
much exciting and interesting work has been done in this area. Belief merging is an
approach to merging information from different sources and at different moments in
time into a consistent one. It is based on the idea of belief revision, which happens
when new information is added or removed from the agent’s current set of belief. It
is related to the AGM revision theory [9, 18], which proposed a set of postulates that

any revising operator should satisfy.

There have been many different merging operations proposed in literature to re-
solve the inconsistency problem. Merging operation can be further divided into two

sub operations, arbitration operation and majority operation.

Arbitration was first proposed by Revesz in [40] as a third type of theory change,

31

the others being revision and update. The idea of arbitration is that it is a possible
situation where there is no reason to consider any of the different sources of informa-
tion is more reliable than others. So the best outcome will be merging these views
into a new and consistent one, while trying to retain as much information of different
views as possible to maximize the individual satisfaction. In [40], Revesz introduces
model-fitting and defines arbitration in the derived notion of model-fitting. He also
discusses the properties an arbitration operator should satisfy. The approach pro-
posed in [30] is similar to what Revesz proposes in that it merges different sources of
information on the idea of arbitration as well as proposing the properties an arbitra-
tion operator should satisfy. But [30] also provides a set of postulates for arbitration
and suggests to formalize arbitration by directly giving properties for it. [27] discusses
some merging operators and also proposes a new arbitration operator and provides
properties this arbitration operator should satisfy. All of this research relates to AGM

(Alchéurron, Gérdenfors, Makinson) framework of revision theory [9].

Taking a different track, [31] proposes merging knowledge bases by majority.
Here the viewpoints of the majority carry the most weight. There may be such a
situation where “the number of agents who hold a particular belief is important, and
sometimes it may be the only practical way of resolving a conflict.” [31]. In [31],
the properties that a majority operator should satisfy are proposed and principles of

the majority operator are formalized.

[3] and [47] also discuss the issue of combining possibly inconsistent knowledge
bases. But their goals and applications are different from the above discussed meth-
ods. In [47], Subrahmanian presents a framework to combine multiple knowledge

bases based on annotated logic, a multi-value logic. In his work, he defines a model

32

where different databases are integrated via a supervisory database, which plays the
role of mediator as referred by Silberschatz, Stonebraker and Ullman [45] to mediate
between multiple knowledge bases. The supervisor mediates and chooses one piece of
information over the other when conflicts arise. This approach best suits the situation

where original databases cannot be modified.

Based on logic program, Baral et al. [3] tries to maximally combine multiple knowl-
edge bases into a consistent combination with respect to the integrity constraints asso-
ciated with the knowledge bases. It is possible that union of the knowledge bases can
violate the integrity constraint, while each individual knowledge base does not. Even
though the union itself is consistent, it may still violate the integrity constraints. So
in case of contradiction, the knowledge base is converted into a disjunctive knowledge

base to make it consistent. The users can choose among the disjunctive facts.

2.5 Formal Specifications via Finite State Models

Requirements can be represented in different ways. They can be in informal, semifor-
mal or formal specifications. With informal specifications, there are no complete sets
of rules to constrain the models that can be created. With semiformal specifications,
syntax is defined. While for formal specifications, there are rigorously defined syntax

and semantics, and a fundamental theoretical model against which a description can

be verified.

With formal specification, the analyst is able to specify, develop, and verify a
computer-based system by applying a strict and mathematical notation, allowing

them to describe systems properties in a precise way. Therefore, formal specifications

33

help to reduce ambiguity, and improve consistency and completeness. They also help
in verification of the specification and their implementation. There are many formal
specification languages, such as Larch, which is an algebraic, sequential language.
Z is a model oriented, sequential language and temporal logic is a model-oriented,
concurrent language. The formal specification language we are concerned with here
is finite state model (FSM), an abstract model of a system. It consists of the following

components.

o A set of states

e A set of transitions between those states.

FSMs are widely applied in design and testing of automatic devices, telecommu-
nication and computer hardware. They are also applied in software development,
although to a lesser extent than in hardware development. In the last ten years,
model checking, an automatic verification technique, has gained much attention in
formal method application and FSMs are used to represent the finite-state concur-
rent system since the key property of a FSM is that all of the information about the
process is captured in the current state. Its ability to represent an abstract model of

a system is also useful in handling the “space explosion” problem in model checking.

2.6 Easterbrook and Chechik’s Framework

Chechik and Easterbrook have proposed a merging approach to reasoning over incon-
sistent viewpoints [11]. It is based on multi-valued logic in which different values of

the logics represent different levels of agreement.

34

In the approach proposed by Chechik and Easterbrook, logic is defined by using
a lattice of truth values and the logical operators are defined in terms of lattice
operations. It can ensure that a disjunction and conjunction of each pair of values
exists and is unique in the logic by defining disjunction as join and conjunction as
meet in the lattice. Besides disjunction and conjunction, it also can specify negation.
Properties such as associativity, idempotency, distributivity, and De Morgan’s laws

hold in this logic and such logic is called quasi-boolean logics [6].

The viewpoint model used in the approach, or yview, is state machine model
extended with a specific Quasi-Boolean logic in which Boolean variables can have a
range of values, rather than just being “true” or “false”. Now let us see how these
xviews are combined into a merged model. Firstly, a signature map is defined to unify
the vocabularies of the yviews as each yview is allowed to retain its local namespace
in this approach. The signature map enforces that state names can only be mapped to
state names and variable names mapped to variable names. Every state in the source
xview must map to a state in the merged yview, but not necessary the variables. A
name in a source yview may map to more than one name in the merged yview. Two
different names from the same source yview cannot be mapped to the same name in
the merged yview. Secondly, a value map is defined to map the truth values in the
source yview to the truth values in the merged yview. After the merging, the merged
xview is checked and analyzed using the symbolic multi-valued model checker ychek,

which was developed by Chechik and Easterbrook.

The approach discussed here has advantages over the one with classical logic in
that reasoning based on classical logic cannot reason about inconsistent and incom-

plete model because a single contradiction will result in trivialization. Properties of

35

individual viewpoints cannot be reasoned since these properties may change depend-

ing on how these viewpoints are combined.

2.7 Summary

In this chapter we have outlined several existing approaches to dealing with inconsis-
tency in requirements engineering. These include a variety of approaches that apply
to informal specifications as well as approaches that relate to formal specifications.
We have also surveyed relevant literature in social choice theory and belief merging.
We have discussed in the penultimate section an approach to combining specifica-
tions represented as finite state models. This approach is important but has several

shortcomings, which have motivated our efforts to define an improved framework.

Chapter 3

Merging Viewpoints via
Incrementally Elicited Ranked
Structure

3.1 Preliminaries

3.1.1 The xbel framework

Our work takes as its starting point Chechik and Easterbrook’s framework [11] for
merging inconsistent viewpoints. The crux of their proposal is the use of multi-valued
logic in which different values of the logic represent different levels of agreement.
Thus, while individual viewpoints might be quite categorical in their specification,
using only the TRUE and FALSE values (although the flexibility to use other truth
values exists), the result may involve truth values other than TRUE and FALSE.
Easterbrook and Chechik base their framework on a class of multi-values logics called
quasi-boolean logics. Such logics are based on lattice of truth values with the logical
operators defined in terms of lattice operations. Disjunction and conjunction of each

pair of values exist and are unique as a consequence of disjunction being defined as

36

37

join and conjunction as meet in the lattice (these operations are also commutative,
associative and idempotent in the lattice). Negation is also well-defined - the negation
of each lattice element is another lattice element such that =—a = a for each lattice

element a.

The notion of a viewpoint specified as a state transition model is extended in this
approach in two ways. Variables which would be treated as boolean in conventional
viewpoints are permitted to range over the set of truth values in the selected quasi-
boolean logic. Viewing transitions as predicates (in conventional viewpoints, these
would assume the value of TRUE if a transition existed between two states and
FALSE otherwise), these too are allowed to range over set of truth values of the

selected quasi-boolean logic. Such an augmented viewpoint is called a yview, and is

defined as 6-tuple (L, S, So, R, I, A) where:

e [is a quasi-boolean logic with £ denoting its set of truth values,

S is a set of states, each with a unique label,

So C S is a non-empty set of initial states,

e R:5 xS — L is a total function assigning a truth value in £ to each possible
transition between pairs of states (including reflexive transitions). Each state

is obliged to have at least one non-FALSE transition out of it.

A is a set of atomic propositions, or variables,

e [: Ax S — L is a total function giving truth values to each variable in each

state.

38

Observe that each yview comes with its own set of variables and state labels as
well as its own quasi-boolean logic. Since the task of unifying these across distinct
xviews is difficult to automate, it is assumed to be a manual process executed by an
analyst. Two distinct data structures are used to define the unification. A signature
map unifies the vocabularies of a set of distinct yviews by determining which names
in distinct yviews are synonyms and what the resulting name would be in the merged
xview. A wvalue map is a total function that maps each tuple of truth values in the
quasi-boolean logics of the source yviews being merged into a truth value in the quasi-
boolean logic underlying the merged yview (note that this assumes that such a logic

has been selected).

The Easterbrook and Chechik approach is clearly an improvement over approaches
that are based in one way or another on classical logic, since it avoids the problem
of trivialization in the face of inconsistency. However, the approach is primarily
useful for identifying sources of disagreement during viewpoint merging, rather than
generating a merged viewpoint. For example, if the quasi-boolean logic underlying
the merged yview is 4-valued, with values T'T, FF, TF and FT, then variables and
transitions having the value T'T can be deemed to be fully agreed to by stakeholders
as true while variables and transitions having the value FF can be deemed to be fully
agreed to by stakeholders as false. But the variables with values of TF or FT are
undefined and negotiation is necessary among the stakeholders to achieve a specific
value. The value of the Easterbrook and Chechik framework lies in focusing attention

on these areas of disagreement.

We note that a relatively straightforward approach based on maximal consistent

39

subsets provides a significant amount of guidance in generating specific merged view-

point outcomes. The following definitions and the subsequent example illustrate this.

Definition 3.1.1. T},,, the syntactic representation, of a state transition model m, is

defined as follows:

e For every state variable which is assigned a value of TRUE in a state s of

model m, holds(z, s)€ T,,

e For every state variable x which is assigned a value of FALSE in a state s of

model m, —holds(z, s)€ T,
e For every pair of states s; and s; in m where there exists a transition between s;
and s;, trans(s;, s;)€ T,. For all other pairs s, and s; in m, ~trans(sy, s;)€ T),.
Definition 3.1.2. A maximal consistent subset MaxCons(7},) of the theory T,, that
is the syntactic representation of a model m is defined as follows:
e MaxCons(T,,) C Ty,
o MazxCons(T,,) ¥L
e For every 7" s.t. MaxCons(T,,) CT' CT,,, T' =L.

In general, several such maximal consistent subsets might exist.

Consider the setting shown in Figure 3.1(adapted from [11]), where two stake-
holders(users) Alice and Bob present two distinct viewpoints, U; and U, respectively.
For simplicity, we shall refer to these models using the names of the stakeholders that

specified them. Using the syntactic approach based on maximal consistent subsets

40

&) (b}

Figure 3.1: Sample Viewpoints

outlined above, we obtain the following. We assume here the existence of an analyst-
generated signature map (see Table 3.1) which identifies the state labelled Aq in Uy
with By in U, and renames it as Cy in the merged model (A; and By are similarly
identified and renamed as C}, while Bj is renamed as C5). maps to z and they are

renamed as a, while y remains unchanged.

Ty, ={holds(a, Cy), —holds(a, C;), trans(Cy,C;) trans(C;,Co)}

Ty,={holds(y, Cy), —holds(a, Cy), —holds(y, Cs), holds(a, Cs), holds(y, C;), holds(a,
Cy), trans(Cy, Cy), trans(Cy, Cy), trans(Cy, Cs), —trans(Csy, Cy), —trans(Co,
Cy), —trans(Cq, Co)}

Several maximal consistent subsets of Ty, and Ty, exist and the followings are

Table 3.1: Signature Map

U, | Uy | Mapping

AO BO OO
Al BQ Cl
Bl C(2

X Z a

- y y

41

just two examples. We create the first maximal consistent subsets by taking Alice’s
viewpoint and adding as much of Bob’s viewpoint as we consistently can. See Figure

3.2(a) for the combined viewpoint.

{holds(a, ¢q), —holds(a, c), trans(Cy, Cy), trans(Cy, Cp), holds(y, Cy), —holds(y, Cs),
holds(a, Cs), holds(y, C;), trans(Cy, Cs), trans(C2, Cy), trans(Cy, Cy), —trans(Ca,
Co)}

The following maximal consistent subsets are created by taking Bob’s viewpoint
and adding Alice’s viewpoint as much as we consistently can. See figure 3.2(b) for

the combined viewpoint.

{holds(y, Cyp), —holds(a, Cy), —holds(y, Cs), holds(a, Cs), holds(y, C;), holds(a,
C1), trans(Cy, Cs), trans(Cy, Cyp), trans(Cy, Cp), —trans(Cq, Cp), —trans(Cy, Cy),
—trans(Cy, Co)}

As we can see, the combined viewpoints obtained using the maximal consistent
subset approach differ from the one (see figure 3.2(c)) obtained using the multi-valued
logic approach proposed by Chechik and Easterbrook. Resolutions of inconsistency
based on the maximal consistent subset approach provide more specific models as

outcome, but require choice amongst multiple possible potential outcomes.

In this chapter, we present an approach to viewpoint merging using belief merging
operators. We demonstrate this by implementing, as with Chechik and Easterbrook, a
system for merging viewpoints specified as finite state models. We extend the state of
art by providing a technique for incremental viewpoints elicitation, and by addressing

the problem of iterative merging in the present of viewpoints.

42

(&) (k) l ()

Figure 3.2: Merged Outcomes

3.2 Belief Merging

We base our work on Meyer’s approach to belief merging [33]. We shall introduce
this approach in this section. We begin by discussing the representation of beliefs
using epistemic states. We then discuss some rationality postulates for belief merging

operators. We then present a subset of Meyer’s repertoire of merging operators.

3.2.1 Epistemic States

We shall assume a propositional language L, U is the set of interpretations of L and
M(«) is the set of models of & € L. We shall use ® to denote an epistemic state and ¢
to denote the knowledge base associated with . We let x,, denote the list containing

n version of x. The length of a list [is denoted by | [].

In this and following subsections, we summarize several results from [33] that are

relevant to our discussion.

Definition 3.2.1. An epistemic state ® is a function from U to the set of natural
numbers. Given an epistemic state ®, the knowledge base associated with ®, denoted

by ¢s, is some ¢ € L such that M(¢) = {u | (u) = 0}.

43

Epistemic states allow us to represent preference orderings on valuation (or mod-
els). Valuations which receive a rank of 0 are the most preferred, while those that
get a rank of 1 are the next most preferred, and so on. Some numbers may have
no valuations assigned to them (i.e. there may be empty ranks) suggesting that the

relative distance between ranks can play a role in the specification of preference.

An epistemic list E = [®F ... (I)\%I] is a non-empty finite list of epistemic states.
Each element of an epistemic list is an epistemic state representing the beliefs of an
agent in the collection of agents whose beliefs must be merged. For any epistemic
state @, let

min(®) = min{®(u) | u € U},

let

mazx(®) = max{®(u) | u € U},

and for an epistemic list £, let
maz(E) = maz{maz(®F) | 1 <i < |E|}.

For an epistemic list £ and u € U, let min®(u) = min{®F(u) | 1 <i <|E|} and
let max?(u) = max{®F(u) | 1 <i < |E|}. seq(E) denotes the set of all sequences of
length |E| of natural numbers, ranging from 0 to max(E). We denote by seq < (E)
the subset of seq(F) of all sequences that are in non-decreasing order, and seq > (FE)
the subset of seq(E) of all sequences that are in non-increasing order. For u € U, we

let sZ(u) be the sequences containing the natural numbers ®F(u), ..., (1353|(u) in that

order, we let sZ(u) be the sequence s”(u) in non-decreasing order, and we let s (u)

be the sequence s”(u) in non-increasing order. Obviously s”(u) € seq(E), sZ(u) €

seq<(E) and sf(u) € seqs (E). s (u), SZ(E’S) and s(P2) denote the i-th digit in sZ(u),

7

44
sZ(u) and s¥(u) respectively. Given any set seq of finite sequences of natural numbers
and a total preorder C on seq, we define the function QF* : seq — {0, ..., [seq| — 1}
by assigning consecutive natural numbers to the elements of seqin the order imposed

by C, starting by assigning 0 to the elements lowest down in C.

3.2.2 Properties for Combining Epistemic States

A merging operation A on epistemic states is defined as a function from the set of
all non-empty epistemic lists to the set of all epistemic states [33] . [33] also pro-
poses (E0) to (E6), (Arb) and (Maj) postulates (as listed below) that a merging
operator should satisfy. Such postulates are useful in defining a yardstick for defining
the rationality /correctness of the merging operators under consideration. Rationality
postulates have been used previously in non-monotonic reasoning [28] and belief revi-
sion [9] literature for motivating specific classes of inference and revision operations.

Similar postulates for merging have been previously be proposed by [27] and [30].
(E0) A([®))(w) = (®)(u) - min(P)
(E1) Ju s.t. A(E)(u) =0

(E2) f(u) = ®¥(u) Vi,j € {1,...,|E|} and sZ(u)sE(v) implies that A(E)(u) <
A(E)(v)

(E3) If ®F(u) < ®F(v) Vi € {1,...,|E|} then A(E)(u) < A(E)(v)

(E4) if A(E)(u) < A(E)(v) then ®F(u) < ®E(v) for some i € {1,...,|E|}

The above are the basic properties for merging of epistemic states. Let ¢ be a

finite list of epistemic list € = [Ey, ..., Ej], there are following two properties:

45

(E5) A(E;)(u) < A(E;)(v) Vi€ {1,...,|e|} implies that A<, E;)(u) < A(LE, E)(v)

(E6) If A, E)(u) < AL, E)(v) then A(E)(u) < A(E)(v) for some i €
{1,..., e}

The arbitration postulate and majority postulate can be generalized as follows:

(Arb) Vn A(EU[®])(u) < AE U [®))(v) iff A(EL &™) (1) < A(E L O™)(v)

(Maj) dn s.t. Yu,v € U, ®(u) < ®(v) it A(EUP")(u) < A(E U P™)(v)

(E0) states that combination with a singleton list should produce no change.
But if there is no model assigned the preference rank 0 after the merging operation,
which indicates an inconsistency in the knowledge base, then we should perform
normalization by subtracting the minimal level to make it consistent. Therefore (EO)
restricts to epistemic states of consistent associated knowledge base. (E1) says there
exists a model that is assigned rank O after the merging operation, which requires
that the model obtained should be consistent. (E2) says model u that are agreed
by all of the epistemic states in F, should be strictly more preferred than any model
v which is regarded by every epistemic state to be at most as preferred as wu, but
less preferred than u by at least one of the epistemic states. (E3) states that if all
epistemic states in F agree that u is at least as preferred as v, then it should be the
case in the resulting epistemic state. (E4) shows that if a model u is regarded as at
least as preferred as v after completion of the merging operation, so there has to be

at least one epistemic state in E which regards u as at least as preferred as v.

46

(E2), (E3) and (E4) postulates are regarded as the most basic and important
ones. A merging operator satisfying these postulates has a rational behavior con-
cerning merging. (E5) and (E6) postulates are just generalization of (E3) and (E4)
respectively. (Arb) postulate states the characteristics of an arbitration operation,
while (Maj) postulate explains that adding enough epistemic states ® to the epistemic
list F results in a refined version of ® when combining epistemic states. In the next

section, we describe some of the merging operations that satisfy the above postulates.

3.2.3 Merging Operators

In the following, we will review some of Meyer’s merging operators. In particular,
we will review three specific operators: A,in, Amee and Ayx. Meyer defines several
others, but these three form a representative subset. A,,;, and A,,.. are examples of

arbitration operators while Ay, is an example of a majority operator.

There are two steps in the construction of each merging operation. The first step
is to assign the rank (natural number) to each model (or valuation). After completing
this step, if none of the models have been assigned a value 0, then the second step
is to perform an appropriate uniform substraction of values, which is referred to as
normalization. In cases where there are no models of rank 0 (suggesting that the
agent’t beliefs are inconsistent) we normalize by shifting all of the ranks down, while
maintaining their relative order and distance, but ensuring that the set of models at

rank 0 are non-empty.
Arbitration

We consider the idea of an arbitration operation in which we take as many different

viewpoints as possible from all the stakeholders into account. We will discuss two

47

Figure 3.3: A representation of the merging operator A,,;,. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

arbitration operators, the first of which is the A,,;, merging operator.

Definition 3.2.2. If F contains a single epistemic state @, let ®£. = &. If not, let
(I)E

pin(w) = 2min®(u) if ®F(u) = ®F(u) Vi,j € {1,...,|E|} and ®,, (u) = 2min® (u)
+ 1 otherwise. Then A,;,(E)(u) = ®F, (u) - min(®E

Figure 3.3 [33] is a pictorial representation of merging operator A,,;,. The A,
operator involves the following steps. Identify the models which are agreed to by all
epistemic states as being the most preferred, and take them to be the most preferred
model in the resulting epistemic state from the merging operation (assigning them
the rank of 0). The models on the next level of preference are those deemed to be
the most preferred by at least one epistemic state. The models on the next level
of preference are considered to be the ones that are deemed to be the second most
preferred by all the epistemic states and the models regarded as the second most
preferred by at least one epistemic state are on the following level of preference. The
above process is repeated until all levels of preference for all the epistemic states have

been treated. The idea of A,,;, is to find the minimum preferred rank given to a

48

Figure 3.4: A representation of the merging operator A,,,,. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

model by any of the epistemic states and then to normalize the rank. The normalized

rank is assigned as the new preference rank to the model.

Apin satisfies (E0)-(E5) and (Arb) properties (see [33] for proof), reflecting its
suitability for the merging task. It does not satisfy (Maj) indicating that it is an

arbitration operator rather than a majority operator.

A, 1s another arbitration operator.

Definition 3.2.3. Let @2 (u) = max®(u). Then A, (F)(u) = ®Z _(u) - min(®Z).

max max max

Figure 3.4 [33] represents A,,q,. The maximum preference rank assigned to a
model by any of the epistemic states is taken as the preference rank to that model.
It satisfies (E0)-(E6) and (Arb) properties (see [33] for proof) and it does not satisfy

(Maj).

49

Majority

Majority operators take the viewpoints of the majority stakeholders into account, i.e.
it tries to minimize global dissatisfaction. The Ay merging operation is an example
of a majority operation. Before we come to the definition of the Ay, operation, it is
necessary to look at the following form of summation (which is used in defining Ay,

). For s € seq(E), let
|E|

sum®(s) = Z S
i=1

where s; is the ith element of s.
Definition 3.2.4. Let ®Z(u) = sum®P(sf(u)). Then Ax(E)(u) = ®E(u) — min(dE).

As before, the final sentence in the definition represents the normalization step.
Figure 3.5 [33] gives a pictorial representation of Ay. The idea of this operation is to
obtain the new preference rank of the model by summing the preference ranks given
by the different epistemic states (representing viewpoints of stakeholders) and then

to normalize the ranks.

Ay satisfies (E0)-(E6) and (Maj), but it does not satisfy (Arb) (see [33] for proof),

indicating it is a suitable majority operator.

There are also some other forms of combination, which are not given further

description here, interested readers can refer to [33].

3.2.4 Model Checking Merged Viewpoints using SMV

A key element of our approach to merging multiple viewpoints is to generate ap-

propriated merged outcome. When viewpoints are specified as state machines, the

50

Figure 3.5: A representation of the merging operator Ay. The numbers in a cell
represent the rank that the appropriate merging operation assigns to the viewpoints
contained in that cell before normalization

satisfaction of a set of properties (including liveness, safety etc.), usually specified in
a temporal logic, is an important concern. Our approach thus relies on the existence
of some form of machinery to verify that a given model satisfies a set of properties.
Since we restrict our attention to finite state models, a model checker (see [8] for a

good introduction to model checking) is an obvious choice for this machinery.

We use the SMV (“symbolic model verifier”) [32] model checker for analyzing
the merged viewpoints obtained via our merging process. SMV is the best-known of
model checkers that supports CTL (Computation Tree Logic). SMV takes two inputs,
i.e. a model described in the SMV input language and some properties specified in
CTL . It outputs either the word “true” if the specifications are satisfied in all initial
states, or the word “false” with a counterexample showing why the specification does

not hold in the model determined by the program.

CTL is a branching-time temporal logic. There are different paths in the future and

ol

any of the paths may be the realized one. Basically, CTL has the following eight tem-
poral connectives: AX, EX, AG, EG, AU, EU, AF and EF. A and E are the path
quantifiers, i.e. A signifies “for all computation paths” and E represents “for some
computation path” [8]. X (“next state”), F (“some future state”), G (“globally”)
and U (“until”) are the basic temporal operators. These temporal operators must be
preceded by one of the path quantifiers. The logic connectives V, A and — are also

used in CTL with the usual meaning. See [24] for more details on CTL.

The SMV model checker allows us to ensure that the model generated by our
system satisfies the given properties. We do not address the problem of resolving in-
consistencies amongst alternative sets of properties specified by different stakeholders.
Several of the techniques discussed in the previous chapter (such as the framework
presented in [20]) can be used for this purpose. We assume that there is a single

consistent set of properties that all stakeholders agree to.

3.3 Merging via Ranked Structure

3.3.1 Ranked Structures

We introduce the idea of a ranked structure - a notion related to, but distinct from the
notion of epistemic state used in Meyer’s framework for belief merging. An epistemic
state is intended to be a complete specification of an agent’s epistemic state. Thus,
it requires us to assign a rank to every possible state of affairs. In most non-trivial
domains, the number of possible states of affairs is typically very large, and many
of them, particularly at higher ranks (i.e. those that are less preferred), are often
irrelevant to the discourse. In a realistic application domain, such as ours, we cannot

conceivably have access to such a mapping. At best, we may ask agents (stakeholders)

52

to rank the models elicited thus far. A ranked structure can thus be loosely viewed
as being analogous to a partially specified epistemic state. There is another critical
difference. In Meyer’s approach to belief merging, we assume a commonly agreed
upon language, relative to which models (or states of affairs) are conceived. In our
context, each viewpoint comes with its own local vocabulary, relative to which a
stakeholder specifies models. A global (common) vocabulary is eventually constructed
via signature maps (described below), but this results in individual stakeholder models
becoming incomplete (in general) relative to this global vocabulary. This represents
another point of departure from the notion of an epistemic state. Meyer, Ghose and
Chopra [34] have defined a syntactic approach to merging using ranked knowledge
bases, but these are expressively equivalent to epistemic states, and hence inapplicable

in our context for precisely the same reasons as those listed above.

3.3.2 Signature Map

Given a set of viewpoints, although all of them are represented in finite state models
(refer to Chapter 2 for more details), it is possible that they are expressed in different
ways, using different vocabularies. Therefore, we require a signature map that unifies
different vocabularies. We assume that the models do not share the same vocabularies,
and the analyst can decide the matching values of the states and variables across the

viewpoint models.
We follow the similar properties as in [11] to define our signature map.

e Type information preserved - state name can only be mapped to state names,

and variable names can only be mapped to variable names.

93

e Every state and variable in the source models must map to a state and a variable

in the merged model.

e Two different names from the same source model cannot be mapped to the same

name in the merged model.

3.3.3 Guidelines for Selecting Merging Operators

Our framework provides a set of merging operators and the followings are the guide-

lines for choosing a merging operator.

Generally, there are two subclasses of merging operations as mentioned before.
Arbitration operators try to take as many different opinions as possible into account
to minimize the individual dissatisfaction. Majority operators take the viewpoints of
the majority stakeholders into account, i.e. they try to maximize global satisfaction.
Therefore, in cases where individual stakeholders are of similar importance, arbitra-
tion operators are the preferred choice. Majority operators, on the other hand, may
produce outcomes that leave some stakeholders very happy but others that are not

happy with the result at all.

Arbitration operators include such operators as A,,;, and A,e.. With Ain,
what effectively happens (with a minor variation) is that the lowest preference rank
(indicating most preferred) assigned to a viewpoint model by at least one stakeholder
will be taken as the preference rank for that viewpoint model in the resulting ranked
structure. A, takes the highest preference rank (indicating the least preferred)
assigned to a viewpoint model by at least one stakeholder as the preference rank

for that viewpoint model in the resulting epistemic state. A,,;, can be regarded as

54

an open minded operator in which if the viewpoint is highly regarded by at least
one stakeholder, then the viewpoint is assigned the better preference rank. The A,
operator, on the other hand, is more conservative, as it assigns the poorest rank given

by at least one stakeholder to the viewpoint.

Ay is a majority operator. Ay adds all the preference ranks assigned to a view-
point by different stakeholders and takes it as the new preference rank to the model
in the resulting ranked structure. Therefore, it takes all the stakeholders’ viewpoints

into consideration and tries to maximize the global satisfaction.

3.4 Algorithm for Merging via Incrementally Elicited
Ranked Structures

In this section, we present an algorithm for constructing our framework. It is a
lazy valuation, in that no full rank of epistemic states is necessarily provided. We
just provide a ranked structure that contains the firstly given viewpoints models. The
stakeholders start by giving their most preferred models, i.e models of preference rank
0 (It is possible that some stakeholders may have more than one model at a given
rank in which case their models must be inconsistent). If the models presented by all
the stakeholders are consistent, then we should retain all of these models and combine
them into a single model. Otherwise, the stakeholders are required to supply their
next most preferred models and the models are added to the ranked structure. They
keep providing additional models until they reach an agreement, i.e. their models
are identical or consistent. Once an agreement is reached, sets of agreed models are
combined into single models with a merging operator selected to determine the new

preference ranks for them, and a new and merged ranked structure is hence formed.

95

The merged ranked structure is comprised of only combined models and the pref-
erence ranks assigned to them. The most preferred models of the merged ranked
structure is first taken to check against the system properties set by the stakeholders
using SMV model checker. If SMV returns a true value, this model will be the result
model. If SMV returns a false value, then models of the next preference level of the
merged ranked structure are model checked until a model is found to satisfy the prop-
erties and such model is the final outcome model. If no such model is found in the
merged ranked structure, then we have to keep asking the stakeholders to give their
models of the next preference level from where they previously reached an agreement,
and repeat the above process to find a successful outcomes. The following algorithm

of procedure IncrementalMerge() reflects this process.

Not all operators in Meyer’s repertoire of merging operators lend themselves to
an incremental elicitation approach to merging. We define below the incrementality
property to circumscribe the set of merging operators that do lend themselves to
incremental elicitation.

Definition 3.4.1. A merging operator is said to satisfy the incrementality property
iff it is able to generate a complete merged epistemic state, up to rank(r-1) if all

epistemic states in input epistemic list are completely determined up to rank r, for r
> 1.

It is easy to see that amongst Meyer’s operators, only A, in, Amae, Ay and Agy
satisfy this property. In the rest of our discussion, we will only be interested in

merging operators which satisfy the incrementality property.

r represents the rank of the ranked structure and ¢ represents to the number of

stakeholders through the algorithms described in this chapter.

o6

procedure IncrementalMerge

inputs:
1. A set of partial ranked structures, {RS; | i € STAKEHOLDERS}
2. A merging operator OP and an associated function PartialMergeop
3. A set of CTL properties PROP
outputs:
1. A single partial ranked structure PM, represented as a sequence of sets
(So, S1, ..., S,), organized in ascending order of rank, where each
set S; contain models at rank 1.

2. A model m

repeat
for each stakeholder 1 € STAKEHOLDERS
elicit all models at rank r and place them in the set SM?
PM := PartialMergeop({SM] | j € STAKEHOLDER, % € {0, ..., r}})
if the (r — 1)th element of PM exists and is non-empty
if there is a model m in PM,_; that satisfies all properties in PROP
done := true
return m, PM

else

if there exists a model m’ € PM, that satisfies all properties in PROP

57

done = true

return m', PM

else
r=r+l
else
ri=r+l
until done

We define PartialMergeop() for instances where the merging operations under

consideration are A,,in, Amae and Ay, in the following discussion. Thus PartialMergea

min

(z)%/ PartialMerge(z, min), PartialMergea, .. (v)%/ PartialMerge(z, max) and

PartialMergea, (v)%/ PartialMerge(z, X) for all z. Other merging operations
from [33] could also be supported by other instances of PartialMergeop(), but we

do not elaborate them here, in the interests of brevity.

procedure PartialMerge()

inputs:
1. A set of partial ranked structures, one for each stakeholder. For a
stakeholder 4, a partial ranked structure is represented as sequence of sets
(SMg, SMY,..., SM}) where each set SM; contains the models specified
by stakeholder ¢ at rank j
2. A function f, determined by the merging operator OP
outputs:

1. A single merged partial ranked structure S : (Sy, S1, ...,)

o8

for each m € SM; (for any 7 and any 7)
CONS(m) = {(n, j) | n € SM’, for any i and any j, s.t. Consistent*(m, n)}
Sy =S U {{ n, k)} where (n, k) = Combine(CONS(m), f)

return S

Consistent™(m, n) is a test for the consistency of models m and n. Two models

are consistent if the following rules are satisfied:

e If a variable is true in the state in one model, and the state is described in the
second model, then the variable should be true or undefined in the state of the

second model.

e If a variable is false in the state in one model, and the state is described in the
second model, then the variable should be false or undefined in the state of the

second model.

e If a transition between two states is described in one model, both of the states
are described in the second model, then the transition should be described in

the second model.

The following algorithm for function Combine() used in procedure PartialMerge()

is for merging procedure involving the A,,., and Ay, operations.

function Combine(S,f)

inputs:

1. A set S of pairs of form (m,[), where m is a model and 1 is a rank such

99

that [€ {0, ..., r}. (All models referred to in S are guaranteed to be
consistent).
2. A function f where f = max or f =X
outputs:

1. A combined model with its associated rank (n, k)

ni={}
k=0
for | =0,...,rdo
n := CombineModels*(n, m) where (m,l) € S
L { max(k,l) if f = max

kil iff=Y
return (n, k)

The following algorithm for function Combine() using the A,,;, is slightly differ-

ent from the above.

function Combine(S, f)

inputs:

1. A set S of pairs of form (m, (), where m is a model and 1 is a rank such
that [€ {0, ..., r}. (All models referred to in S are guaranteed to be
consistent).

2. A function f where f = min

outputs:

1. A combined model with its associated rank (n, k)

60

n = {}
rank-set := {}
for [=0,...,rdo
n := CombineModels*(n, m) where (m,l) € S

rank-set == rank-set |J {l}
b 21 if rank-set is a singleton and rank-set = {l}
. 2min(

rank-set)+1 otherwise
return (n, k)

The function CombineModels*(mq, ms) takes two consistent models m; and my

as input and combine them into a single model m based on the following principles.

We use Var,,(s;) to denote the set of variables that are assigned a value in state
s; in model m. We note that in a completely specified model, Var,,(s;) should be
identical for each state s;, but we allow for the possibility that users may incompletely

specify a model.
We use (s;, s;) to denote a transition from s; to s,

e If a state s; is defined in both models m; and ms, then s; must be defined in m

V(lT’m(SZ') = Varml (Sz) U varmz (82)

e If a state s; is defined in model m; but not in the model my (or the reverse,
without loss of generality), then state s; must be defined in model m. Var,,(s;)

= Vary,, (s;).

o If a transition (s;, s;) is defined in either my or mo, (s;, s;) remains a transition

n m.

61

We have described thus far a procedure for merging the incrementally elicited
viewpoints of a fixed set of stakeholders. In real-life applications, the set of stake-
holders may change - new stakeholders may join and existing ones may have. In the
following, we present an approach to deal with new stakeholders, i.e. an approach to
iterated merging. The problem of altering the merged outcome to reflect that a given
stakeholder’s viewpoint is no longer applicable, without having to recompute from
scratch, is a difficult problem (with similarities to the problem of belief contraction)

and one that we do not address in this dissertation.

In the case where there are new stakeholders joining, then the new stakeholders
first provide their models of rank 0, which will be compared with the combined models
of rank 0 of the newly created merged partial ranked structure, which can be regarded
as the combined viewpoints of the existing stakeholders. Merging process is repeated
similarly to the above described incremental merging process between models from
the new stakeholders and models from the merged ranked structure, until a successful

model is found.

If there is no agreement reached when it comes to the highest rank of the merged
ranked structure, then all the stakeholders, including the existing ones and the new
ones, shall give their models at the next preference rank higher than the rank where
the existing stakeholders reached the agreement. The same process is continued until
a satisfactory model is found. The algorithm for procedure IteratedMerge() below

represents this process.

procedure IteratedMerge()

62

inputs:
1. A set of partial ranked structures,
{NRS; | j € NEWSTAKEHOLDERS}
2. A single partial ranked structure PM output from procedure
IncrementalMerge()
3. A merging operator OP and associated function PartialMergepp
4. A set of CTL properties PROP
outputs:
1. A single partial ranked structure NPM, represented as a sequence of sets
(So, S1, ..., S,), organized in ascending order of rank, where each
set .S, contain models at rank n.

2. A model m

done := false
forn=0,...,r do
for each new stakeholder 5 € NEWSTAKEHOLDERS
elicit all models at rank n and place them in the set NSM/
TEMP_PM = {PM; |l e{0,...,r}}
NPM := PartialMergeop({NSM! | j € NEWSTAKEHOLDER,
ned{0,...,r} U TEMP_PM}) where NPM = {So,..., Sy}
if the S,,_; exists and is non-empty
if there is a model m in S,,_; that satisfies all properties in PROP
done := true
return m, NPM

else

63

if there exists a model m’ € S, that satisfies all properties in PROP
done := true
return m', NPM
if NOT done
STAKEHOLDERS := STAKEHOLDERS |J NEWSTAKEHOLDERS

call procedure IncreamentalMerge()

This last call to the procedure IncrementalMerge can be optimized (and is opti-
mized in the implementation) by not starting the incremental elicitation process from
rank 0, but from one rank higher than the highest rank r elicited (from both the
prior set of stakeholders and the new set of stakeholders). Note that when the In-
crementalMerge procedure is called, every stakeholder in the set STAKEHOLDERS
U NEWSTAKEHOLDERS will have completely specified all ranked structures up to

rank r.

Thus, the algorithm embodies our framework’s characteristics, which are inter-
leaved elicitation, interleaved merging and interleaved model checking. It demon-
strates the applicability of merging operation to inconsistency management in re-

quirements engineering.

3.5 Example

For better understanding, we present an example to demonstrate how our framework
works. In this example, we assume that arbitration operator A,,;, is chosen. We
start by taking the sample viewpoints shown in Figure 3.1. Consider a set of ranked

structures V = {®;, ®3}, where & represents the viewpoints of stakeholder 1 and

64

®, represents the viewpoints of stakeholder 2. Stakeholder 1 first gives her most
preferred model u; and stakeholder 2 gives her most preferred model uy. So in the
partial ranked structure ®; of stakeholder 1 there is one model u; assigned rank 0 and
there is one model us assigned rank 0 in the partial ranked structure ®, of stakeholder
2. Then, these two viewpoint models are checked for agreement, i.e. whether they

are identical or consistent, based on the consistent rules described in section 3.4.

Before consistency checking, we need to define a signature map to unify the vo-
cabularies of these two models. We take the same signature map from [11] as shown
in Table 3.1. Obviously, these two models are inconsistent according to the above
consistency rules as there are conflicts between the state transitions. As this is the
case, both stakeholder 1 and stakeholder 2 must now give their models of next pref-
erence level, i.e. level 1. The models they give are uz and uy respectively. Models of
O (uq, uz) and models of @y (ug, uy) are checked again for agreement. Assume no
agreement is reached, then both stakeholders have to give their models of preference
level 2, which are us and wug respectively. Now ®; ranks the models as ®;(u;) = 0,
Oy (uz) = 1, ®1(us) = 2 and P ranks the models as Po(uz) = 0, Po(uy) = 1, Py (ug)
= 2 (see Figure 3.6 (a) and (b) for a pictorial view of the ranked structures of @,
and @, respectively). Suppose an agreement is reached at this preference rank (rank
2), assuming uz and ug are consistent, us and uy are consistent, and us and wug are
consistent, even though they are not identical. Then merging operation is performed
to combine these three sets of consistent models and assign ranks to the combined
models, hence creating a new ranked structure, which we refer as . We name the
model combined from us and ug as v, model combined from us and us as vy and

model combined from uz and ug as vs. With the merging operator A,,;,, model

65

U, |2 U, |2 Vi |2 U, |2
u, |1 u, |1 v, |1 ug |1 v, |1
fay] W [0 syl Wy |0 (e Y5 |0 W 10 () Vs | 0

Figure 3.6: Partial Ranked Structures

vy is assigned the rank 1, model v, assigned rank 0 and model v3 assigned rank 2.
Therefore, the ranked structure ¢ contains models vo, v1 and vs at ranks 0, 1 and 2

respectively (see Figure 3.6 (c) for a pictorial representation).

As vy is the most preferred combined model, it is first checked against a set of
system properties using SMV model checker. If vy satisfies all the system properties,
it will become the desired resulting model and the final outcomes are vy and ranked
structure ®. Otherwise, we have to go to the next most preferred model and so
on, until we find a successful one. If none of the models in ® satisfies the system
properties, then the stakeholders have to continue to provide their models of the next
preference rank, which is rank 3. The process is repeated until a satisfactory model
is found. In our example, we assume combined model v; between models us and s

is the successful model, therefore the final outputs are v; and ranked structure ®.

After the completion of the process, if there is another stakeholder 3 coming and
presenting her viewpoint model u7, then the process should continue by checking
model u7; with model vy, the most preferred one in the ranked structure ® for con-
sistency. If an agreement is reached, then model v; and model u; are combined into
a single model, which will be taken for model checking. If it returns a true value,
such a model is the output model with a ranked structure containing only this model.

Assuming in this example, model u; is not consistent with vy, then stakeholder 3 has

66

to give her next most preferred model which is ug at rank 1. Models at rank 1 of
the ranked structure ® shall also be taken to join the consistency checking process.
That is models of ®(vg, v1) and ®3(ur7, ug) are checked for consistency. Assuming
an agreement is reached at this rank, i.e. model v; and model ug are consistent,
then they are combined into a single model, which is named as v4. A new ranked
structure @' is formed containing model v, at rank 0. Now model v4 is model checked
against the system properties. Assuming that it does not satisfy all the properties,
then stakeholder 3 has to give her model (ug) of next preference rank, i.e. rank 2.
Model of rank 2 of ranked structure ® is also taken for consistency checking as we
did for the previous ranks. Assuming model ug is consistent with model vy, then they
are combined into model named vs and assigned rank 0 with merging operator A,,.;,.
Contents of ranked structure ® is changed and it contains models v5 at rank 0 and
vy at rank 1 (see Figure 3.6 (e)). If model vs satisfies all the system properties, the
final outcomes are model v5 and ranked structure ® . Otherwise, the merging process
need to continue with all the stakeholders, i.e. stakeholders 1, 2 and 3 providing their
models at next preferred rank, rank 3. Now the V = {®y, &y, &3} and the process

is iterated as described above until a satisfactory combined model is found.

Chapter 4

Implementation

In this chapter, we present a viewpoint merging tool based on the framework pre-
sented in the previous chapter. First, we describe the design using an object-oriented
approach. The design consists of three major components. Details of these com-
ponents and their relationships are explained in section 4.1. Then we present the
implementation of the algorithms presented in Chapter 3, operationalized through a
user interface written in Java (a object-oriented programming language). Individual

method is explained in detail in Section 4.2.

4.1 System Design

The overall architecture of the merging system consists of three components: Model
Elicitation, Model Merging and Model Checking.

The Model Elicitation system relates to model elicitation from stakeholders. In
order to maximize convenience to stakeholders, the stakeholders are able to present

their models at their own terminals to carry out the followings.

e Register as a new stakeholder providing their required details as well as their

67

68

viewpoint-specific vocabularies.

e Registered stakeholders are able to login to the system where they will be able

to view their models.

e Registered stakeholders are able to enter details of the models as well as their
associated preference ranks (stakeholders do not enter ranks of the models they

specify - instead the system prompts them for models of a given rank).

e Registered stakeholders are able to edit the models entered except for the model

ID.
e Registered stakeholders are able to delete a model.

e Registered stakeholders are able to modify their personal details including the

password.

After all stakeholders have registered (at which time they provide their viewpoint-
specific vocabularies), the analyst is required to create a signature map (described in

Chapter 3).

The second component of the system is to merge the models elicited from the

stakeholders and produce a ranked structure. It carries out the following functions.

e Signature mapping. Models from different stakeholders are mapped to the same

vocabulary according to the signature map created by the system analyst.

e Most of the functionality described in the IncrementalMerge() procedure

described in Chapter 3 is implemented in this component, but involves, in part,

69

the model elicitation functionality of the first component and the model checking

functionality of the 3rd component.

e Consistency checking, which implements the Consistent() procedure described

in Chapter 3.

e Model combination. Combine a set of consistent models into a single model and
assign a rank to this model (based on the merging operator being used and the
ranks of the input models). It implements the Combine() function described

in Chapter 3.

The last component is model checking which perform the function to check models
against a set of system properties. In this system, the most preferred model from the

newly created ranked structure will be taken for model checking.

In the following, we will discuss the data structure to implement the merging

system consisting of the above three components.

4.1.1 Data Structure Description

Figure 4.1 shows the class diagram describing the above three components.

The viewpoints used in our framework are represented as finite state models,
each of which consists of a set of states and transitions. The class Model is used
to describe the finite state models. It has aggregated classes Node and Arc that
describe states and transitions respectively. Class Node has aggregated class Variable
that represents the atomic propositions that are assigned a value of true or false in

each state. Therefore, all these classes record details of a complete model. The models

Model

Frnodealld
FmodelMame
Franking

+addNodel)

+aetMode()
HaddAre])

Hgetane)

MNode
Fnodeld
Variable . ! | nodeMName
warld Fmode Id
rodeld — @ -nodahid
+eethidi) +zatilameal)
FgetMid() +getMame()
+selVariable()
1 T +getariablel)
Atom
~atomild
LatomMame
-atombid
warld
ConsistencyChecking
-consld

. *

1

+allConsistent() © boal
+oonsistent() : bool
+iransltienConflict() - bool
+varableConflict() @ bool
+atomConflict() | bool

|Hnrga-0pnratinn|

Arc

Larcld

Hlabel

-labehid
Fprefodeld
LnextModeld
Lmodedld
Hsatlabel()
+getLabel()
#aatPreModeald()
HgetPreModeld()
+etMextModeld()
+gethexttodeld()

ModelChecking

ModelMerging

+iminLavel()
+daltalin)
+delialax()
+deltaSigmal)

HunCad SMY()
HcheckCadShMYResults()

CombinedModel

Fnode = Mode
l-arc - Arc
-nodeld
arcid

+combinedModeal{}
+setNewPreMexiModeld()
+eombinaTransition))
+oombineMode|)

+eombinetariable)

Figure 4.1: Class Diagram of the proposed Framework

70

71

are stored in a database. The class Model implements the functions related to Model

Elicitation component.

The class ModelMerging(of Model Merging component) interacts with the class
Model. Tts aggregated class Consistent, which implements the consistency checking
function of the Model Merging component, checks models retrieved from the database
for consistency. Models of one stakeholder are checked with those of another stake-
holder. In Java, we use the “vector” data structure to store the models. Every
element of one vector holds models of one stakeholder. The other aggregated class
Combine combines a consistent set of models into a single one. Model of one stake-
holder is combined with model of next stakeholder and the merged model is combined
with model of next stakeholder and so on. Rank of the combined models are gener-
ated based on the merging operator used. The final combined model is stored in the
database with new name and ID. Its states, state variables and transitions are also
recorded to the database. This class implements the model combination function of
the Model Merging component. Therefore, the class ModelMerging implements the
functionality to produce a partial ranked structure containing the combined models

with their associated preference ranks.

The class ModelChecking has a function to call SMV model checker to check the
combined models and a function to check the output returned by SMV model checker

to decide whether the combined model is satisfactory or not.

72

4.2 Implementation Description

4.2.1 Overview

The prototype is written in Java. We have designed a user interface for data entry
which is used by the stakeholders to enter their requirements/preferences (i.e. their
ranked structure). The data input are stored in a database. Different stakeholders can
enter their models at their individual terminals. Once all the stakeholders have given
their models, the system is able to automatically check the models and perform the
merging operation if a consistent set of models is found. In our prototype, Microsoft
(MS) Access is used to create the database, which consists of twelve tables. Schema

definition in SQL of these tables are listed below:

e create table stakeholder (SHId char(5) not null, SHName char(30), SHAd-

dress char(30), password char(6), primary key (SHId))

e create table model_sh (SHId char(5) not null, modelld char(5) not null,

primary key (SHId, modelld))

e create table model (modelld char(5) not null, modelName char(30), con-
sld char(5), rank integer, operator char(20), desc char(30), primary key
(modelld))

e create table node (nodeld char(5) not null, modelld char(5) not null, pri-
mary key (nodeld, modelld))

e create table variable (varld char(5) not null, value boolean, nodeld char(5)

not null, modelld char(5) not null, primarykey (varld, nodeld, modelld))

73

e create table arc (preNodeld char(5) not null, nextNodeld char(5) not null,

modelld char(5) not null, primary key (preNodeld, nextNodeld, modelld))

e create table consModel (consld char(5) not null, modelld char(5) not null,

primary key (consld, modelld))

e create table nodeVocabulary (SHId char(5), name char(30), nodeld char(5)

not null, primary key (nodeld))

e create table varVocabulary (SHId char(5), name char(30), varld char(5)

not null, primary key (varld))

e create table nodeSignatureMap (nodeld char(5) not null, mapld char(5),

primary key (nodeld))

e create table varSignatureMap (varld char(5) not null, mapld char(5), pri-

mary key (varld))

e create table loginSH (SHId char(5), rank integer, newSH boolean)

In the following discussion, we will refer to the notions of source model and com-
bined model. A source model is a model that was originally specified by a stakeholder
while a combined model is one that is output by the Combine() function described

in Chapter 3.

Table STAKEHOLDER records details such as id, name, address and login pass-
word of all the registered stakeholders. Table MODEL_SH joins tables STAKE-
HOLDER and MODEL together. It only contains two fields: stakeholder ID and

74

model ID. Table MODEL records both source models and combined models. It con-
tains model ID, model name, consld of consistent set of models (we identify maximal
consistent sets of models from the input set of models and each such set is identified
by consld). If the model is a combined model, it records from which set of consistent
models it is combined in the desc field. If it is a source model, its consld is null.
Table MODEL also records the rank of each model and the merging operator used to
obtain the combined model (if the model in question happens to be a source model -
the value is null). Table NODE records the node ID and ID of its associated model.
Similarly, table VARIABLE records the information of a variable: variable ID and
ID of its associated node and the true or false value that variable holds in the node.
Table ARC records the arc ID, arc’s pre node’s ID and next node’s ID as well as its
associated model ID. Details of the consistent models are recorded in table CONS-
MODEL, which contains the ID for the set of consistent models and the ID of models

contained in that set.

Table NODEVOCABULARY captures node-specific vocabularies provided by the
stakeholders. It contains stakeholder ID, the node names specified by the stakeholders
and node Id that distinguishes the names given by the stakeholders. Table VARVO-
CABULARY records the variable-specific vocabularies given by the stakeholders and
it contains stakeholder ID, variable name and variable ID. From the vocabularies
recorded in these two tables, the analyst creates the respective tables NODESIG-
NATUREMAP and VARSIGNATUREMAP to unify the vocabularies of nodes and
variables given by the stakeholders. Each table contains the respective ID and the

mapping value.

75

The last table LOGINSH registers the stakeholders that already provide their
models of a particular rank and also record whether the stakeholders are newly joining

one or the existing ones.

In the subsection that follows, we will give a detailed description of the user

interface that facilitates our merging system.

4.2.2 Implementation Description

The data input would ideally be a diagrammatic state machine editor. Implementing
such an editor is a non-trivial task, and the exercise was deemed to be orthogonal
to the objectives of this research. We have therefore devised a simple form-based

interface for specifying state machine models.

Data input interface has five forms, i.e. 1) stakeholder login form, 2) stakeholder
registration form, 3) data entry main menu, 4) add model form, 5) add state form
and 6) add arc form. We will explain the form with an example. In this example,

there are two stakeholders named Alice and Bob.

The initial interface presents the user with two options, one for a new stakeholder
registration, the other for existing stakeholders. Selecting the “New User” option will

take the user to the Stakeholder Registration Form.

The Stakeholder Registration System captures information of a stakeholder as
listed on Figure 4.2. It also captures viewpoint-specific vocabularies presented by the
stakeholders. Stakeholder details are recorded to the STAKEHOLDER table in the

database. The stakeholder ID is generated automatically based on the value of the last

76

| Merging Praject - Stakeholder Registration

D-»_ﬁ-a MERGING SYSTEM

Stakeholder Registration

Stakeholder 10 :

Stakehobder Nama: iTl:urrr

Slakeholder Addmess: |1 23 Crown Street

Password: i""'""

Please enter ihe stale vocabularies
State 1: |C: |E
Shate 2: |C1 '
State 3: |C1

Please enter the variable vocabularies

VM'I:|3 (=
Variable 2 v |

Variable 3: |t

Submit Resal

Figure 4.2: Stakeholder Registration Form

id in the database incremented by 1. The vocabularies are added in the corresponding
vocabulary tables, i.e. node vocabularies to table NODEVOCABULARY and variable
vocabularies to table VARVOCABULARY. We assume that the analyst also registers
as a stakeholder, and provides a vocabulary. This is the vocabulary used to represent

combined models.

For the registered stakeholders, after logging in based on the user’s ID and pass-

word, the user is presented with three options , where they can choose whether to

7

£ DSL merging Project - Add Model

D } MERGING SYSTEM

Add Model
Stakeholder 1D: Stakeholder Mame:
Model 10
Prefereance rank
Model Name: u1|
Add State Add Transition || Save Model || Show Model || Relurn |

Figure 4.3: Add Model Form

add model, edit model or delete model. In our prototype!, we have only implemented

the “Add Model” and “Delete Model” functions.

The merging process begins with all stakeholders being prompted to provide all of
their most preferred models, i.e. models at rank 0. If a consistent outcome is found
from these models, that also satisfies a given set of properties specified in Computa-
tion Tree Logic (CTL), then the process terminates. Otherwise, all stakeholders are
prompted for their next most preferred models, i.e. models at rank 1. The process

follows the steps described in the IncrementalMerged() procedure in Chapter 3.

When the user selects the “Add Model” option, the Add Model form is displayed

as shown in figure 4.3.

The stakeholder ID and name are retrieved from the database and shown auto-

matically. The Model ID is generated automatically as the stakeholder ID is. The

1See Appendix A for the complete java source codes

78

preference rank is prompted by the system and the user only need to enter the name
of the model. In this example, the preference rank is 0 and model name is ul for stake-

holder Alice. The partial ranked structure of stakeholder Alice is therefore elicited.

Models are added in two stages. In the first stage, state details are added; in the
second stage, transition/arc details are added. Selecting the “Add State” option will
call the Add State form (see Figure 4.4) for the user to select her specified state names
and variable names from their respective drop down lists. Each variable can take the
value of true or false. Therefore, there is also a drop down list containing “True”
and “False” that can be selected to assign the value to the variables. After the user
selects the a state name, a variable name and a value and select the “Add” option,
the variable with its assigned value is displayed in the text area below. The next
variable is then entered if there is any. A particular variable can also be removed.

Just select that variable listed in the text area and select the “Remove” option.

After finishing entering all the variables for that particular state, the user selects
the “Save State” option to save the data for this state. Then the user enters the
next state following the same procedure. In our example, Model u1 has two states:
A0 and Al, and two variables: = and a. Both x and a hold in state A0(See Figure
4.5(a)). On entering this information, it is saved and state Al containing variables z
and a both with false value is added. Figure 4.4 shows the input of state A1. The
user then returns to the Add Model form and selects the “Add Arc” option to enter

the transition details.

The state names and variable names selected are mapped automatically according

to the signature map already created by the analyst. In this example, we follow the

79

& DSL Merging Praject - Add State

DVSL MERGING SYSTEM

Add State
State Name: A1 = Variable: a - Walue: iFdn -
Variables Added -
x=F Add |
a=F

Runm|

| BaeStas || Retun

Figure 4.4: Add State Form

signature map listed in Table 4.1

The transition details are added in a similar way as the user adds the state details.
The user selects the names of the arc’s in-node and out-node from the respective
dropdown lists (see figure 4.6). Names of these nodes come from the nodes added
via Add State form. After all the transitions have been entered and saved, the user
returns to the Add Model form and select the “Save Model” option inserting the
complete model into the database. Model, node and arc data are inserted to the
MODEL table, NODE table, VARIABLE table and ARC table respectively. Then a
message dialog box is displayed to ask whether the user wants to add another model
of the same preference rank. The user can enter another model of the same preference
rank if there is one. As stakeholder Alice has no more model at rank 0 to add, once

she selects the “No” option, she returns to the main menu.

Selecting the “Delete Model” option will take the user to the Delete Model Form

where models of that particular user are displayed. Displayed details include the

80

Table 4.1: Signature Map

Sy | Sy | Mapping
AO BO N()
Al BQ Nl

- | By Ny

x| z a

a | vy b

model ID, the model name and the associated preference rank. The user can select
the model to be deleted. In this system, the “Add Model” option is the major concern

and we will continue its discussion in the following.

In our example, it is now stakeholder Bob’s turn to given his model at rank 0. The
model given by Bob is named u2 as shown in Figure 4.5(b). Once he finishes entering
his model, he is also prompted a message dialog box to select whether to add another
model. When he selects “No” option, consistency checking is performed as the system
can detect that he is the last stakeholder to enter the models (i.e. all the stakeholders
have entered their models at rank 0). Consistency checking is performed based on
the consistency rules described in the previous chapter. If no agreement is reached,
the message is displayed using a dialog box on the screen and all the stakeholders
involved are informed, in which case, the stakeholders have to provide their models
of next preference rank. If there is an agreement, merging operation will continue by
combining any consistent sets of models according to the algorithm of Combine()

function described in Chapter 3.

In our example, these two models are not consistent, therefore, stakeholders Alice

and Bob have to present their models of next preference rank, i.e rank 1. Once

(a)

{a)

e

()

ib)

(d)

Figure 4.5: Example Viewpoints

81

82

& Add Transition

DQ_SL MERGING SYSTEM

Add Transition

InNnﬂa::l A1 -r| uuum:[i.au -]

Arcs Added

Transition is from AKND) to AT(NT) Add

Transition is from A1(N1) to AB{ND)

Rall.lm|

Figure 4.6: Add Transition Form

they have provided their models u3 and u4 (as shown in Figure 4.5 (c¢) and (d))
respectively, consistency checking is reapplied. This time consistent set of models
is found, i.e. model 3 and mode 4 are consistent. Details of the consistent set of
models are recorded to the CONSMODEL table in the database. Merging operation
continues. We assume A,,;, merging operator is used. Therefore, the above merging

process implemented the algorithm PartialMergena, . ().

Result of the merge is displayed in a separate form, which will show the contents
of the newly created ranked structure. It displays the preference ranks, model IDs
of the merged models, merging operator used and a description indicating the model
IDs of the source models that form the combined models. In this example, only one
combined model is created, which is assigned the rank 0, model ID 1001 (combined
models are assigned the model IDs greater than 1000 to distinguish from the source

models), with “Delta min” and a description of “models 3 and 4” recorded to the

83

MODEL table (see Figure 4.7). Its nodes, variables and arcs are inserted respectively
into the tables NODE, VARIABLE, and ARC in the database.

& DSL Merging Project - Result of Merge

DJL, MERGING SYSTEM

Results of Merge
[Rank | Model | [Operator | Deseription |
‘D 10M Dielta Min Modais 3, 4
Menu Show Model || Model Check || Exit |

Figure 4.7: Model Merging Results Form

The combined model is then selected for model checking against the system prop-
erties. The SMV model checker is used for checking system properties (these are
assumed to be written in CTL). The SMV system assumes that models are specified
in a system-specified input language - called the SMV language. We use an intuitive
representation of finite state models in a format that users can easily understand and
that supposes a diagrammatic representation of such models (although we have not
implemented the graphical display component). Translating between this represen-
tation and the SMV language is non-trivial, and implementing such a translator is
not central to our research aims. Consequently, we have not implemented such a
translator, but we point out that such a translator could be implemented. For our

prototype, we assume that the analyst performs this translation. The model checking

84

component thus functions as a stand-alone system in the current version of our proto-
type. In this example, we assume the satisfactory model should satisfy the following
property: For any state, if a a holds, then it will eventually get to a state where b is

false. The property can be represented in CTL (see chapter 3 for more details) as:

AG(a — AF (~b)).

Figure 4.8 (a) is the graphic view of the combined model between models 3 and

4. We name this model as v; and it is represented in the following SMV code.

v @ v @

1 b

(a)

Figure 4.8: Combined Models

MODULE main
VAR

a, b: boolean;

ASSIGN
init(a) := 0;
init(b) = 1;

next(a) 1= ~a;
next(b) := {0, 1};
SPEC

85

AG (a — AF (~D))

When the SMV model checker is run to check model v, it returns a false value,
indicating that the model does not satisfy the above property (See Figure 4.9 for part
of the verifying result). Therefore, stakeholders Alice and Bob are informed of the
result and they must give their models again of next preferred rank, i.e. rank 2. The
models given by Alice and Bob in our example are u5 and u6 respectively as shown
in Figure 4.5(e) and (f). Once the models are input following the same procedure
described above by Alice and Bob, consistency checking is performed. Consistent set
of models is found between model 1 and 6, in addition to the consistent set of model

3 and 4. See Figure 4.10 for the merge results.

A new ranked structure is now created containing two combined models. Model
1001 formed between model 1 and 6 (see Figure 4.8(b) for a graphic view) is assigned
the rank 0 and model 1002 formed between model 3 and 4 (see Figure 4.8(a)) is

assigned the rank 1. We name model 1001 as v, and model 1002 remains as v;.

Obviously, model v, ranked 0 is sent to SMV model checker to be checked against

the property. The following is the SMV’s representation of this model.

MODULE main
VAR

a, b: boolean;

ASSIGN
init(a) := 1;
init(b) := 1;

next(a) := {0, 1};

vi.smv

File Prop View Goto History Abstraction
Browser | Properties | Results | Cone | Using | Groups |

I Froperty | Rnultl

[IAG (a ->(AF (~b)j)) false

Source | Trace | Log |

File Show

MODULE main
WALR
g, b: boolean:
ASESIGH
iaitia) = O
initibk) = 1:
nextia) = ~az
nextib) = {0, 1l}:

SFEC

REF (a => AF ~Bb)

Figure 4.9: SMV Running Output for Model v,

86

87

& DSL Merging Project - Result of Merge

D"_SL MERGING SYSTEM

Results of Merge

Rank [Model Id [Operator | Deseription |
_I] 1001 Dealta Min Models 1, 6
‘1 10032 Delta Min Models 3, 4
[Menu H Sharw Model |[Model Check H Exit |

Figure 4.10: Second Merging Results Form

next(b) := ~y;
SPEC

AG (a — AF (~D))

After running SMV model checker, a true value is returned (see Figure 4.11)
indicating the model satisfies the property. Therefore, the merged model vy be-
tween model 1 and 6 becomes the resulting model. No further iteration is required.
The merging system implementing the algorithm IncrementalMerge() described in
Chapter 3 output model v, and a ranked structure containing model vy with rank 0

and model v; with rank 1.

In the cases when new stakeholders are joining, they enter their models in the
same procedure as described above and their models are then checked with the most
preferred models in the ranked structure, i.e. model vy of model ID 1001. Analysis
and model merging procedure are repeated until a satisfactory combined model is

found, which is implemented based on the algorithm IteratedMerge() described in

w2 smv

File Prop WView Goto History Abstraction Help
Browser | Properties [Ensum] gone | Using | Groups |

Property | Result |
(AG (a ->{AF {~b)))) true

—Jl
Source | Trace | Log I

File Show
MODULE main -
A
a, b: booclean:
AS5IE
imic(a) = 1;
imie(b) = 1;
ey (A = [0, 1}
nexe (b)) = ~pb2
SEEC

A5 (a -» AF «b)

Lol

Figure 4.11: SMV Running Output for Model v,

Chapter 3.

38

Chapter 5

The Case Study

In this chapter, we present two case studies involving the application of our viewpoint

merging approach.

5.1 Telephone System Case Study

The purpose of this case study is to further demonstrate the applicability of belief
merging to inconsistency management in requirements engineering. This case study
was the result of a real life experience involving two stakeholders who provided their

viewpoints on the behavioral specification of a telephone system.

The case study involved two individuals (we shall refer to them as Tom and Jerry
in the following) who were given an initial problem description as plain text English.
They used the State View Merge System to merge their initially inconsistent viewpoint

(based on their diverging interpretation of the textual description given to them).

89

90

5.1.1 The Scenario

The scenario involves the telephone handset being used to receive a call. The following

was the description of the requirement given to the stakeholders.

A telephone handset can be used to make and receive a call. When it is idle, the
receiver is replaced. When there is an incoming call, it is connected. If the incoming

call 1s not answered, it will be disconnected and become idle again.

Based on the above description, two stakeholders first presented their most pre-
ferred viewpoints, i.e. viewpoints at rank 0. It is assumed that their requirements
could reach an agreement at some rank and then are combined to give a complete

description of the handset.

Consistency rules described in Chapter 3 are used to test whether the different

state transition diagrams representing the same device are consistent with each other.

The merging process described in Chapter 3 combines the set of consistent models
into a single one and then a set of system properties applied to this telephone system
will be used to check whether the resultant combined viewpoint is a satisfied and

desired viewpoint.

The complete experiment was conducted using our tool developed based on the

algorithms described in Chapter 3.

5.1.2 Experiment Description

The case study was developed based on the viewpoints on [11] between Tom and his

colleague Jerry. Tom’s most preferred viewpoint suggests replacing the receiver during

Table 5.1: vocabulary Map

Tom Jerry Mapping
DialTone DIALTONE DIALTONE
Idle IDLE IDLE
Ringing RINGING RINGING
Connected | CONNECTED | CONNECTED
offhook offHook offhook
connected Connected connected

91

an incoming call will not disconnect the call (see model u; in Figure 5.1(1)). From
the Figure 5.1 (1) we can see there was a transition from state Connected to state
Ringing, where variable Connected was true in both states. Jerry’s most preferred
viewpoint assumed that replacing the receiver always disconnects the call (see model
us in Figure 5.1(2)), where there were transitions from states CONNECTED and
DIALTONE in which variable offHook held to state IDLE in which variable offHook
was false and Connected was false. Jerry also had another viewpoint model u3 at rank
0 as shown on Figure 5.1.(3). In this model, he had a transition from state IDLE to

state DIALTONE;, indicating that it was allowed to make a call.

Tom’s diagram had four states, DialTone, Idle, Connected and Ringing, and
two variables: offhook and connected. Jerry’s diagram was also represented in four
states: DIALTONE, IDEL, CONNECTED and RINGING, with two variables:
offHook and Connected. Their vocabularies were mapped according the signature map
on Table 5.1. Tom’s ranked structure ®; contained a model u; rank 0 and Jerry’s
ranked structure ®, contained two models uy and ugz at rank 0. Once their viewpoints
were presented, i.e. they both entered their requirements that were recorded to the

database, consistency checking was performed immediately and a message dialog box

(1)

()

15}

17}

{9)

DialTone
offhook=T
connectad=F

(2}

DIALTOMNE
offHook=T
Connected=F

RINGING
offHock=F

3 14)

DIALTONE
affHook=T

-

RINGING
affHook=F

(6)

DialTone
affhook=T
connectad=F

(8]

Ringing
offhook=F
connectad=T

(10}

DIALTONE
offHook=T
Connectad=F

RINGING
offHook=F
Connacted=T

DialTona ° Connected
offhock=T offhook=T
connected=F connected=T

RINGING
offHook=F

DIALTONE ©
affHook=T
Connectad=F

DIALTOMNE
affHook=T
Connectad=F

Connecled=T

RINGING
offHook=F

DIALTONE
offHook=T
Connacted=F

IOLE
offHoak=F
Connected=F

offHook=F
Connected=T

Figure 5.1: All Viewpoints Elicited for Telephone Systems

92

93

popped up to inform the users that no consistent model was found, indicating model

u; was not consistent with model uy or model us.

Then the two stakeholders had to present their next preferred viewpoints. When
the “Add Model Form” was invoked, the system indicated that viewpoints at rank 1
were required from the stakeholders. Tom entered his viewpoint uy at rank 1 as shown
on Figure 5.1(4). He changed his viewpoint by adding a transition from state Idle to
state DialTone, which allowed making a call. Jerry also had two viewpoints at rank
1. The first one was us (see Figure 5.1(5)). It allowed that replacing the receiver
would either disconnect the call or still have the call connected by having transitions
from state CONNECTED to states RINGING and IDLE. But Jerry’s second
viewpoint ug at rank 1 (see Figure 5.1(6)) retained his previous opinion that replacing
the receiver would always disconnect the call, but he also allowed making a call as
well. After these three models were entered, consistency checking was performed
among models of ®;(ul, u4) and models of ®o(u2, u3, ub, u6). Still no consistent

models were found.

Tom and Jerry kept entering their viewpoints of next preference rank, i.e. rank 2.
Tom’s viewpoint u; at rank 2 allowed that the call could be either disconnected or con-
nected when the callee replaces the receiver, with transitions from state Connected
to states Idle and Ringing. As it was the viewpoint of a callee, Tom believed that he
should not be concerned with the feature of call making. Therefore, he removed the
transition from state Idle to state DialTone (see Figure 5.1(7)). At this rank, Jerry
presented only one viewpoint instead of two as he did in the previous ranks. The
viewpoint he presented was ug (see Figure 5.1(8)). Jerry still preferred that replacing

the receiver would disconnect the call, but he also allowed that when the user was

94

DIALTONE
offhook=T
connacted=F

DIALTONE ©
affficak=T

connected=T

RINGING
affhook=F
connectad=T

(@) | ¥ (B

RINGING
offhiook=F afffiook=F
connectad=F connected=T

offhoak=F
connectad=F

Y3

Figure 5.2: Result of Merge

dialing, if there was an incoming call, the user could stop making the call and receive
the incoming call instead. At this rank, the tool detected that consistent models were
found. Therefore a merging operation was performed (in this experiment, both Tom
and Jerry agreed to use A,,,, merging operator) and the results were displayed in
another window showing that a merged model ranked 0 was combined between model

uy of Tom at his preference rank 2 and us of Jerry at his preference rank 1.

As both Tom and Jerry had the same states and same variables, we can see that
these two consistent models were actually identical. We rewrote the models as shown

in Figure 5.2(a) with the signature map names.

Now the combined model was model checked against the properties using SMV.

Both Tom and Jerry agree that the following properties should be satisfied.

Property 1 If you are connected, you can replace the receiver. It is represented in

CTL as: AG(connected — EX(~ofthook)).

Property 2 If you are dialing, you can receive an incoming call. It is represented in

CTL as: AG((offhookA~connected)—EX(connected)).

95

SMV model checker returned true for the first property, but false for the second
property, indicating the model did not satisfy all the properties. Therefore, models

of next preference rank needed to be elicited from the the stakeholders.

Therefore, Tom and Jerry had to enter their models of rank 3, which were models
ug and wujp respectively (see Figure 5.1(9) and (10)). Now models of ®q(uy, uy,
uz, u9) and models of ®o(us, us, us, ug, us, ug) (see Figure 5.3 (a) and (b) for a
pictorial viewpoint of the ranked structures of ®; and ®, respectively) were checked
for consistency. A window was displayed showing that two merged models were
produced. One was ranked 0 (and formed by the combination of models u; and us),
which was named vq, the other was ranked 1 (and formed formed by the combination
of models ug and uy¢), which was named vy. Therefore, a new merged ranked structure

¢ was produced. See Figure 5.3(c) for the pictorial view.

As the merged model between models u; and us did not satisfy all the properties,
it would not be taken for model checking even it was ranked the most preferred model.
So the next preferred model would be checked against the above mentioned properties
using SMV model checker. It was model v, (formed by the combination of models
ug and wuyg). The SMV model checker returned true for both properties. Therefore,

model vy was the output model.

Tom and Jerry finally resolved the problem at rank 3 with a model satisfies all
the system properties and a merged ranked structure containing two models, model

v; at rank 0 and model vy at rank 1.

96

Rank 3 Ug Rank 3 Usg
Rank 2 Uz Rank 2 Uy
Rank 1 Uy Rank 1 Us, Ug Rank 1 Vs
Rank 0 U, Rank 0 Uy, Uy Rank 0 V4
{a) Tom's Ranked Structure (b} Jemy's Ranked Structure {c) Merged Ranked Structure

Figure 5.3: Ranked Structures
5.1.3 Summary

The study elicited 10 models involving up to 4 preference ranks from two stake-
holders to finally get an agreed model that satisfied the system properties, and was
conducted over a period of two days. The main effort was in eliciting models from
the stakeholders and translating the agreed model in to the SMV language for model
checking. The rest i.e. the consistency checking and model merging were completely
done by the tool. Testing of the system properties for the agreed model using the
SMV model checker was very straightforward once the model was translated into the

SMV language.

In this process, at every rank when there was conflict. Both stakeholders had
to relax their viewpoints gradually in order to reach an agreement. Take Tom as
example. His second model (uy4 in Figure 5.1(4)) had more function allowed compared
with his most preferred model (u; in Figure 5.1(1)) because it added a transition from
state Idle to state DialTone. Although Tom’s next preferred model u; removed this
transition since it was concerned with making call instead of receiving call, he added

a transition from state Connected to Idle.

97

A program can be used to relax viewpoints according the the relaxation policy
provided by the stakeholders so that stakeholders do not continuously and repeatedly
interact with the tool. Once the most preferred models and the relaxation policies

are provided, the whole process can be completed by the tool.

5.2 Student Application System Case Study

In order to give a more specific idea of the iterated process of this system, we have
undertaken another case study. The case study was conducted between Peter and his

colleagues based on the student application process.

The case study conducted here is different from the previous one in that it involved
a new stakeholder after the successful completion of the merging process between two
stakeholders. The required process, i.e. the student application for submission process
was expressed in finite state machines. The whole process was conducted using the

tool developed in this research.

5.2.1 The Scenario

The viewpoints involved described the process of a student’s application for admission.
The process starts when a student makes an application, which can be accepted or
rejected. If she is accepted for admission, she should confirm whether she accepts the

offer or not.

98

5.2.2 Experiment Description

This experiment was first conducted by two stakeholders, Peter and John. For sim-
plicity, we assume that all the stakeholders use the same vocabularies. Therefore, no

vocabulary mapping was required in this case study.

First Peter started by giving his most preferred viewpoint as shown on Figure
5.4(1)(model u;). He assumed that if a student withdrew his offer, he had to reapply,
with a transition from state S; where variables active and approve were true and
accept was false, to state S; where variables active, approve and accept were all false.
His colleague John only specified that if a student’s application was rejected, he was
allowed to reapply (See model us on Figure 5.4(2)). There was a transition from state
Sowhere variable approve was true to state S; where variables active, approve and

accept were all false.

Both Peter and John had the same boolean variables: active, approve and accept.
Variable active refers to the activation of the application. approve refers to the
approval of the application and accept refers to the acceptance of the offer. After the
viewpoints were entered into the tool, it returned a message saying that no consistent

models were found.

The stakeholders then had to present their next preferred models which were
models at rank 1. Peter entered his model uz as shown on Figure 5.4(3). He revised
his model by allowing a student to reapply if his application was rejected, adding a
transition from state S, to S;. John changed his viewpoint by allowing a student to
reaccept the offer after his withdrawal (see model uy on Figure 5.4(4)), by adding

a transition from S, to S3 where variables active, approve and accept were all true.

99

3, Sy 3, 3, 3, 3,
active = F active=T aclive=F | actve=T actve=F || actve=T
approve = F || approve = F approve = F f-f— approve = F approve = F (- approve = F
accept = F accept = F accept=F accept=F accept=F \ accept = F

TZRNRN i i
S, S, S, S, S, S,
aclive=T aclive=T acive=T active=T active=T active=T
approve =T approve =T approve =T approve =T approve =T approve =T
accept=T u, accept=F accept=T u, accept =F accept=T u, accapt=F
(1) (1) i3
5, 3, 3, S, 3, 3,
active =F | active=T active=F [active=T active=F | active=T
approve = F -4 approve =F approve = F -4 approve =F approve =F approve = F
accepl = F accept = F accept=F ‘\ accept = F accept=F accept = F
1] ¥ ¥
s, S, S, s, s, S,
active =T |g | active=T aclive=T aclive=T active=T active =T
approve =T approve =T approve =T approve =T approve =T approve =T
accept=T u, accept=F accept=T U, accept=F accept=T Uy accept =F
(4} {3} (&)

5, 5, 5, 5, 5, 5,
active=F |- active=T aclive=F || aclive=T actve=F || active=T
approve = F |-4—{ approve = F approve = F (-4 approve = F approve = F (-4— approve = F
accept=F accept=F accept=F accept=F accept=F accept = F

RN i IR
= 5, 5, 5, 5, 5,
active =T active =T active=T . aclive=T active=T active=T
approve =T approve =T approve =T approve =T approve =T approve =T
accept=T u, accepl =F accept=T u, accept =F accept=T U, accept=F
{7} {4} (%
S, S, 5, S,
aclive =F = active=T aclive=F || aclive=T
approve = F L— approve = F approve = F |-4— approve = F
accept=F accept=F accept=F \ accept=F
| J \ Y
= 5, S, s,
active =T activa=T active=T active=T
approve =T approve =T approve =T approve=T
accept=T | | accept=F accept=T |, | accept=F

(100

()

Figure 5.4: All Viewpoints Elicited for Student Application System

100

Now Peter’s ranked structure ®; contained two models u; and us at rank 0 and rank
1 respectively. John’s ranked structure ®, contained models u; and u4 at rank 0 and

rank 1 respectively. Still no consistency was found up to this rank.

Peter and John then presented their models of next preference rank, i.e. rank 2.
Peter’s model us was changed to allow a student to reaccept his offer if he denied
the offer, the student did not have to reapply. He removed the transition from state
S, to state Si, and added a transition from state Sy to state S3 (see model us on
Figure 5.4(5)). John changed his viewpoint by not allowing a student to reaccept his
offer if he denied it . The student would have to reapply(by changing the transition
between state S, and state S5 to a transition between state Sy and state S;). He also
changed his mind that if a student’s application was rejected, he could not reapply,
by removing the transition from state Sy to state S;(see model ug on Figure 5.4.(6)).
Now the tool checked models of ®;(uy, ug, us) and models of ®q(us, uy, ug) for
consistency and detected that consistent models were found and merging operation
was therefore performed (in this experiment, both Peter and John agreed to use Ay
merging operator) and the results were displayed in another window showing that
two merged models were found. One was ranked 0 formed by combination of model
model u; of Peter at his preference rank 0 and model ug of John at his preference
rank 2, the other was ranked 1 formed by combination of model us of Peter at his

preference rank 1 and model w4 of John at his preference rank 1.

Actually models u; and ug were identical and models us and uy were identical too
as both Peter and John had the same states and same variables. We renamed the
first combined model as v; and the second one as v,. Now the newly created merged

ranked structure ® contained models v; and ve. See Figure 5.6(1) for a pictorial view

101

of the merged ranked structure.

Models v; and v, were then model checked against the following property set by
Peter and John using SMV.

Property 1 If a student denies his offer, he may have to reapply. It is represented

in CTL as: AG((approve A ~accept) — EX(~active)).

The most preferred model v; was checked against the above property and the SMV
model checker returned a true value, indicating model v; was a satisfactory model.
Therefore, model checking on model v, was not necessary. The final output were

model v; and the ranked structure . The merging operation was deemed complete.

But at this moment, a new stakeholder Mark joined this process. He was allowed
to present his most preferred model. It was model u; as shown on Figure 5.4(7). He
allowed a student to reapply if his application was rejected. He assumed that if a
student withdrew his offer, he would have to reapply. Mark’s model u; was checked

with most preferred model v; in the merged ranked structure ® for consistency.

The tool detected that model u; was not consistent with model v;. Therefore,
Mark specified his next preferred model which was model ug at rank 1. See Figure
5.4(8). He changed his viewpoint by allowing a student to reaccept his offer if he
withdrew it. Model vy at rank 1 of the merged ranked structure ® was also taken
to be compared with the models of Mark’s. That is models of ®(v;, v2) and models
of ®3(uy, ug) were checked for consistency. The tool detected that model ug was
consistent with model vy. Therefore, the three stakeholders reached an agreement.
Actually it was models us, uy and ug that were consistent. The combined model was

renamed as vs.

102

Now the merged ranked structure ® was changed and contained only model vs,
which was model checked against the above described system property. The SMV
model checker returned false for the property. Therefore, no satisfactory model was
found and the merging process should continue. In this case, models of preference
rank higher than the rank where Peter and John reached an agreement should be
elicited from all of the three stakeholders, i.e. Peter, John and Mark. As Peter and
John previously reached an agreement at rank 2, models of rank 3 were required from

them.

Peter gave his model ug as shown on Figure 5.4(9). He assumed that if a student’s
application was rejected, he could reapply. If a student denied his offer, he would have
to reapply too. John entered his model u;o. He also assumed that if a student was
rejected, he could reapply. If a student denied his offer, he had to reapply. See Figure
5.4(10). Mark presented his next preferred model uy; (see Figure 5.4(11)) which was
at rank 3 and he did not have model at rank 2 in this case. Mark assumed that if
a student’s application was rejected, he was not allowed to reapply. If a student to
withdrew his offer he would have to reapply. Now models of Peter’s ranked structure
Oy (uq, us, us, ug), models of John’s ranked structure ®q(us, uy, ug, u19) and models of
Mark’s ranked structure ®3(uz, us, u11)(See Figure 5.5(1), (2) and (3) for a pictorial

view of the ranked structures respectively) were checked for consistency.

The tool output results showing that a model combined from consistent models
us, uy and ug was ranked 0 (renamed as mq), a model combined from models uy,
ug and u;; was ranked 1 (renamed as ms), and a model combined from models ug,
u1p and uy; was ranked 2 (renamed as m3). Therefore, the merged ranked structure

contained models my, my and ms in the order of preference rank. (See Figure 5.6(2)

103

3 Uy 3 Uio 3 s
2 Ug 2 L.IE 2

1 u, 1 u, 1 Ug
0 Uy 0 U, 0 u,

2
m,
1 V2 1 m
2
0 vy 0 m 1

(1) (2)

Figure 5.6: Merged Ranked Structures using Ay,

for a pictorial view of the merged ranked structure ® using merging operator Ay).

Now the most preferred model m; was first model checked against the system
property. After running the SMV model checker, model m; was found not satisfying
the property. Therefore, the next preferred model ms was sent for model checking and
the SMV model checker returned true for the property specified. Model ms become
the resultant output model and no further model checking was required on model mg.
Finally, the three stakeholders reached an agreement at rank 3 with output model ms,

and a merged ranked structure ®.

In order to test the merging operation outcome with different merging operators,
we run the above case study again with merging operators A,,;, and A,,.. as well

using the tool. We only changed the merging operators, others retained unchanged.

104

1 Wy 1 m,

0 v, 0 m, m,

{1 (2)

Figure 5.7: Merged Ranked Structures using A,

1 m, My

0 Vi Vo 0 m,

(n (2)

Figure 5.8: Merged Ranked Structures using A4z

The outputs were shown on Figure 5.7 (for A,,;,, merging operator) and 5.8 (for
Ajnq: merging operator). Figures 5.7(1) and 5.8(1) are the first output resulted from
the agreement between Peter and John. Figures 5.7(2) and 5.8(2) are the final out-
comes (with a model satisfying the system property) agreed by all of the three stake-
holders.

5.2.3 Summary

The study embodied the merging process with iteration. It elicitated 11 models up to
4 preference ranks from three stakeholders to finally get an agreed model that satisfied
the system property. Consistency checking and model merging were completely done

by the tool.

In this case study, which was different from the previous one that it was iter-

ated through more stakeholders joining, different outputs were produced when more

105

stakeholders joined the system.

Different outputs were also produced when using different merging operators. For
the output between Peter and John, the outcomes resulting from the use of Ay and
A, merging operators were the same, i.e. they produced the same outcome model
v, and the same ranked structure. But for the outcome resulting from A,,,, merging
operator was different. Although model v; was still the outcome model, but the
ranked structure was different. See Figures 5.6(1), 5.7(1) and 5.8(1) for a pictorial

view of the ranked structures using different merging operators.

The outcome produced among the three stakeholders were different too. Ranked
structures produced were different. From the output ranked structure produced using
merging operator A,,;,, if model ms was sent for model checking and then it would
become the output model as it also satisfied the system property. It was the same

for the results produced from using merging operator A,,q..

5.3 Discussion

This chapter presented two different case studies on the use of merging operation to
resolve inconsistent viewpoints. The results are very encouraging: belief merging was
very valuable in resolving inconsistent requirements. The iterated merging process
we have developed based on the idea of belief merging was extremely valuable as it
allowed further merge to be performed on the already merged model. Therefore, it

satisfied the iterative characteristic of requirements engineering.

The study also tested our tool used in the merging process. The tool was proven

106

to be helpful in automating both consistency checking and consistent model combi-

nation.

Chapter 6

Conclusion and Future Work

This project has focused on the design and development of a framework for merging
multiple viewpoints in requirements engineering, which is a practical, complicated
and challenging problem in the field of requirements engineering. The approach we
use in this research involves the use of belief merging operations to merge multiple

viewpoints.

Several belief merging operations have been proposed in the literature to solve
inconsistency handling problems in requirements engineering. However some merging
operations such as the one proposed by Chechik and Easterbrook, as well as the ones
based on merging knowledge bases, can not specifically or sufficiently represent the

behavior of the system or suggest merged outcomes.

We emphasize in this research that belief merging operations are useful in recon-
ciling multiple stakeholder perspectives in requirements engineering and can be the
basis for viewpoints merging. We have proposed the idea of ranked structures that
are developed based on epistemic states. The use of epistemic states involves the pro-
vision of a complete mapping of all possible models to ranks, while ranked structures

only map the currently elicited models to ranks. The models themselves differ from

107

108

those used in the belief merging framework of Meyer, since they are defined relative
to local vocabularies (while Meyer’s approach assumes a common vocabulary across

all agents).

The framework we propose also includes the SMV model checker to check against
system properties expressed in CTL. The main feature of this approach is itera-
tive merging of multiple viewpoints from different stakeholders until a satisfactory
viewpoint model is found. It also provides real-time merging operation by allowing

merging newly added viewpoints from new stakeholders and hence is very flexible.

To demonstrate the applicability of the approach, we have designed and imple-
mented a prototype incorporating the merging operators proposed by [33]to handle

multiple/inconsistent requirements perspectives represented in finite state models.

As specifications used in this framework are represented in finite state models,
which are formal method, it will be hard for the analysts to develop and hence being
one of the limitations to this research. We are therefore motivated to refine our

framework in the future.

It is observed in the case studies that relaxation policy is feasible and helpful in
the elicitation process. However, we have not addressed the guidelines for forming
such relaxation policy. It is anticipated to develop guidelines for relaxation policy in

the future and incorporate the relaxation policy in our tool.

In this research, we only focus on handling the inconsistent requirements; the
system properties have not been addressed. We consider in the future to improve our
framework so that it can handle system properties (whether consistent or not), as

well.

109

Some functionality has not been provided by our prototype. In the future, we
hope to refine the prototype by implementing more functionalities. We also hope
to be able to display the models graphically rather than by text. There are more
merging operators proposed in [33] and we will seek to implement all of these merging
operators in our tool in the future. The most important future task is considered to
be the implementation of the automatic model checking using SMV model checker
is feasible. As we explained in previous chapter, we need to convert the models
represented in finite state models into SMV program representation so that the models
can be input directly to the SMV model checker for model checking. Therefore, a

device for the translation needs to be developed in the future.

Bibliography

1]

K. J. Arrow. Social choice theory and individual values (2nd edition). Wiley,
New York, 1963.

R. Balzer. Tolerating inconsistency. In In Proceedings of the 13th Int’l Conference
on Software Engineering, pages 158-165, 1991.

C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEFE
Transactions on Knowledge and Data Engineering, 3(2):208-220, 1991.

Barry Boehm and Hoh In. Aids for identifying conflicts among quality require-
ments. [EEE Software, March 1996.

B. Boehm and R. Ross. Theory w software project management:principles and

examples. IEEE Transaction on Software Engineering, pages 902-916, July 1989.
L. Bolc and P. Borowik. Many-valued logics, 1992. Springer-Verlag.

L. Chung, B. A. Nixon, and E. Yu. Using non-functional requirements to sys-
tematically support change. In In Proceedings of he Second IEEE International
Symposium on Requirements Engineering, pages 132—-139, York, England, March
1995.

Edmund M. Clarke, Jr. Orna Grumberg, and Doron A. Peled. Model Checking.
Cambridge, Massachusetts.

110

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

111

P. Gérdenfors C. E. Alchourron and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic

Logic, 50:510-530, 1985.

D. Duffy, C. MacNish, J. McDermid, and P Morris. A framework for requirements
analysis using automated reasoning. In Proc. Seventh Advanced Conference on
Information Systems Engineering, Springer-Verlag, 1995. CAiSE*95. Lecture

Notes in Computer Science.

Steve Easterbrook and Marsha Chechik. A framework for multi-valued reasoning

over inconsistency viewpoints. In In Proceedings of International Conference on

Software Engineering (ICSE’01), pages 411-420, May 2001.

S. M. Easterbrook, A. C. W. Finkelstein, J. Kramer, and B. A. Nuseibeh. Co-
ordinating conflicting viewpoints by managing inconsistency. In Workshop on
Conflict Management in Design, International Conference on Artificial Intelli-

gence in Design, Lausanne, Switzerland, August 1994.

S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating dis-
tributed viewpoints: The anatomy of a consistency check. Int. Journal of Con-

current Engineering: Research & Applications, 2(3):209-222, 1994.

S. Easterbrook and B. Nuseibeh. Managing inconsistencies in an evolving specifi-
cation. In Proc. RE’95: Second IEEE International Symposium on Requirements

Engineering, pages 48-55, York UK, March 1995. IEEE Computer Society Press.

S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency manage-

ment. IEEE Software Engineering Journal, pages 31-43, November 1995.

A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency handling in multi-perspective specifications. Transactions on Software

Engineering, 20(8):569-578, August 1994. IEEE CS Press.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

112

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and & M. Goedicke.
Viewpoints: A framework for integrating multiple perspectives in system devel-
opment. International Journal of Software Engineering and Knowledge Engi-

neering, 2(1):31-58, 1992.

P. Gardenfors. Knowledge in flux: Modeling the Dynamics of Epistemic States.
MIT Press, 1988.

A. K. Ghose. A formal basis for consistency, evolution and rationale management
in requirements engineering. In In Proceedings of the 1999 IEEE International

Conference on Tools for Al, pages 77-84. IEEE Computer Society Press, 1999.

A. K. Ghose. Formal tools for managing inconsistency and change in RE. In
Proceedings of the 10th International Workshop on Software Specification and
Design (IWSSD 2000), pages 171-182, San Diego, November 2000. IEEE Com-

puter Society Press.

”C. L. Heitmeyer, R. D. Jeffords, JOURNAL = ”"ACM Transaction of Soft-
ware Engineering B. G. Labaw”, TITLE = ” Automated consistency checking of
requirements specifications”, and volume = ”5” number = 73" pages = "231-261"

Methodology”, YEAR = 71996”.

A. Hunter and B. Nuseibeh. Managing inconsistent specifications: Reasoning,
analysis and action. Technical report, Department of Computing, Imperial Col-

lege, London, UK, June 1995. Technical report.

A. Hunter. Measuring inconsistency in knowledge via quasi-classical mod-
els. In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI’2002), pages 68-73, 2002.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-

soning about Systems. Cambridge University Press, November 1999.

[25]

[26]

[27]

28]

[31]

113

C. Kakas, R. A. Kowalski, and F. Toni. The Role of Abduction in Logic Pro-
gramming. Handbook of Logic in Artificial Intelligence and Logic Programming,

chapter 5, pages 235-324. Oxford University Press, 1998.

R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Trade-offs. Wiley, 1976.

Sebastien Konieczny and Ramon Pino-Perez. On the logic of merging. In L. Schu-
bert In A. G. Cohn and S. C. Shapiro, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Sizth International Conference (KR

'98), pages 488-498, San Francisco, California, 1998.

Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reason-
ing, preferential models and cumulative logics. Journal of Artificial Intelligence,

44(1-2):167-207, July 1990.

Mingjune Lee and Barry Boehm. The winwin requirements negotiation system:

a model-driven approach.

Paolo Liberatore and Marco Schaerf. Arbitration (or how to merge knowledge
bases). IEEE Transactions on Knowledge and Engineering, 10(1):76-90, Jan-
uary/February 1998.

J. Lin and A. Mendelzon. Knowledge base merging by majority, 1994. Jinxin
Lin and Alberto O. Mendelzon. Knowledge base merging by majority. Manuscript,
1994.

K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic, 1993.

Thomas Meyer. On the semantics of combination operations. Journal of Applied

Non-Classical Logics, 2001.

[34]

[35]

[36]

[38]

[39]

[40]

[41]

114

T. A. Meyer, A. K. Ghose, and S. Chopra. Syntactic representations of semantic
merging operations. In Proceedings of the IJCAI-2001 Workshop on Inconsis-
tency in Data and Knowledge, pages 36—42, August 2001.

K. Narayanaswamy and N. Goldman. "lazy” consistency: A basis for cooperative
development software development. In In Proceedings of International Confer-
ence on Computer-Supported Cooperative Work (CSCW °92), pages 257-264,
1992. ACM SIGCHI and SIGOIS.

B. Nuseibeh and S. M. Easterbrook. The process of inconsistency management: a
framework for understanding. In In Proceedings of the First International Work-
shop on the Requirements Engineering process (REP 99), page 364, Florence,
Italy, 1999.

B. Nuseibeh, J. Kramer, and A. C. W. Finkeltein. Expressing the relationships
between multiple views in requirements specification. In In Proceedings of the
15th International Conference on Software Engineering (ICSE-93), pages 187—
200, Bltimore, May 1993. IEEE Computer Society Press.

B. Nuseibeh and A. Russo. Using abduction to evolve inconsistent requirements
specifications. In Proc. of ICSE99 workshop on Software Change and Evolution
(1999), 1999.

L. Perrussel and P. Charrel. Inconsistent requirements: an argumentation view.

In ICRE 2000, September 1999.

P. Z. Revesz. On the semantics of theory changes: arbitration between old and
new information. In In Proceedings PODS 93, 12th ACM SIGACT SIGMOD
SIGART Symposium on the Principles of Database System, pages 71-82, 1993.

WN Robinson and S. Volkov. Conflict-oriented requirements restructuring. Gsu-

cis working paper, Georgia State University, Atlanta, GA, April 1999.

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

115

W.N. Robinson. Requirement conflict restructuring. Gsu cis working paper,

Georgia State University, Atlanta, GA, 1999.

K. Satoh. Consistency management in software engineering by abduction. In
Proceedings of the ICSE-2000 Workshop on Intelligent Software Engineering,
pages 90-99, Limerick, Ireland, 2000.

R. W. Schwanke and G. E. Kaiser. Living with inconsistency in large systems. In
In Proceedings of International Workshop on Software Version and Configuration

Control, pages 98-118, Grassau, Germany, January 1988.

A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achieve-
ments and opportunities. Comm. of the ACM, 34(10):110-120, 1991.

Ian Sommerville and Pete Sawyer. Requirements Engineering, A Good Practice

Guide. John Wiley and Sons Ltd, England, 1997.

V.S. Subrahmanian. On the semantics of quantitative logic programs. In Proc.
4th IEEE Symposium on Logic Programming, pages 173-182, Wahsington DC,
1987. Computer Society Press.

V. S. Subrahmanian. Amalgamating knowledge bases. AGM Transactions on

Database systems, 19(2):291-331, 1994.

A. van Lamsweerde, R. Darimont, and E. Letier. ~Managing conflicts in
goal-driven requirements engineering. [EEE Trans. on Software Engineering,

24(11):908-926, 1998.

J. Yen and W. Tiao. A systematic tradeoff analysis for conflicting imprecise
requirements. In In Proceedings of the Third IEEE International Symposium on
Requirements Engineering (RE’97), pages 87-96, Annapolis, Maryland, USA,
January 1997.

116

[51] D. Zowghi, A. K. Ghose, and P. Peppas. A framework for reasoning about
requirements evolution. In Proceeding of Fourth Pacific Rim International Con-
ference on Artificial Intelligence, pages 157168, Cairns, Australia, August 1996.
PRICAI-96.

Appendix A

Source Code

The followings are the java source code for the implementation of the tool developed

in this research. Documents are listed in the alphabetical order of the java file names.

A.1 AddArcPanel.java

import java.util.x*;
import javax.swing.x*;
import java.awt.event.x*;
import java.awt.x*;

VAL
* Title: AddArcPanel. java
* Description: The program receives nodes details from stakeholders and
write them to
Access based database
* Q@author {iuming Lin
* September 2002
*/

class AddArcPanel extends JPanel implements ActionListener
{

static final int SIZE = 10;

SHPanel jp_sh;

Header header;

JTextField jt_label;

JComboBox jcb_inNode, jcb_outNode;

JButton jb_add, jb_remove, jb_return;

JList jlist_arc;

Model m;

Arc arc;

117

118

public AddArcPanel (){
super () ;
try {
jpInit O);
}
catch(Exception e) {
e.printStackTrace () ;

}

private void jpInit() throws Exception{
header = new Header();
add (header) ;

m = new Model();
arc = new Arc();

JLabel jl_title = new JLabel("Add_Transition");
jl_title.setFont(new Font("Arial",Font.BOLD,20));
jl_title.setPreferredSize (new Dimension(ShowFrame.formX,30));
jl_title.setHorizontalAlignment (SwingConstants.CENTER) ;
add(jl_title);

jcb_inNode = Utility.getNode();
jcb_outNode = Utility.getNode();
JPanel jp_header = new JPanel();
jp_header.setLayout (new GridLayout(0,4,5,0));
jp_header.add (ShowFrame .newLabel ("In_ Node:"));
jp_header.add(jcb_inNode) ;
jp_header.add (ShowFrame.newLabel ("Out Node:"));
jp_header.add(jcb_outNode) ;
add (jp_header) ;

//display the arc added

jlist_arc = new JList();

JScrollPane jsp = new JScrollPane(jlist_arc);

jsp.setPreferredSize (new Dimension(ShowFrame.formX-150, ShowFrame.

buttonY*2)) ;

jsp.setBorder (BorderFactory.createTitledBorder (
BorderFactory.createEtchedBorder () ,"Arcs Added"));

add (jsp);

jb_add = new JButton("Add");

jb_add.addActionListener (this);

jb_remove = new JButton("Remove");
jb_remove.addActionListener (this);

JPanel jp_button = new JPanel();

jp_button.setLayout (new GridLayout(0,1,20,10));
jp_button.add(jb_add);

jp_button.add(jb_remove) ;

jp_button.setPreferredSize(new Dimension (100, ShowFrame.buttonY+20));
add (jp_button) ;

jb_return = new JButton("Return");
jb_return.addActionListener (this);
JPanel jp_arcButton = new JPanel();
jp_arcButton.add(jb_return);

119

jp_arcButton.setPreferredSize(new Dimension(ShowFrame.formX,
ShowFrame .buttonY)) ;

add (jp_arcButton);

}

public void actionPerformed(ActionEvent e){

}

if (e.getSource()==jb_add){
addArc () ;

}else if (e.getSource()==jb_remove){
removelArc () ;

}else if (e.getSource()==jb_return){
this.setVisible(false);
ShowFrame.showAddModelFrame () ;

//add an arc to model
void addArc (){

}

arc = new Arc();
arc.setPreNode ((Node)Utility.model.node.get(jcb_inNode.
getSelectedIndex ()));
arc.setNextNode ((Node)Utility.model.node.get(jcb_outNode.
getSelectedIndex ()));
Utility.model.addArc (arc);
printArc () ;

void removeArc (){

}

if (jlist_arc.getSelectedIndex () >=0) {
Utility.model.arc.remove(jlist_arc.getSelectedIndex
0);
printArc () ;
}else
JOptionPane.showMessageDialog(this, "Pleaseselecty
theyarc toybe removed!");

void printArc (){

}

A.2

import
import
import
import

VAL

Vector v = new Vector();

for(int k=0; k<Utility.model.arc.size(); k++)
v.add ((Arc)Utility.model.arc.get(k));

jlist_arc.setListData(v);

AddModelPanel.java

java.util.*;
java.awt .*;
javax.swing.x*;
java.awt.event.x*;

* Title: AddModelPanel. java
* Description: The program recetives models details from stakeholders and
write them to

120

Access based database
* Q@author @iuming Lin
* September 2002
*/

class SHPanel extends JPanel
{
JTextField jt_shid, jt_shname;
public SHPanel () {
setLayout (new GridLayout(0,4,5,0));
jt_shid = new JTextField (10);
jt_shid.setEnabled (false);
jt_shname = new JTextField (10);
jt_shname.setEnabled (false);
JLabel jl = new JLabel("Stakeholder ID:");
jl.setHorizontalAlignment (SwingConstants.RIGHT) ;
add (j1);
add (jt_shid);
jl = new JLabel("Stakeholder Name:");
jl.setHorizontalAlignment (SwingConstants.RIGHT) ;
add (j1);
add (jt_shname) ;
setPreferredSize (new Dimension(ShowFrame.formX, ShowFrame.fieldY));
}
}
SR KKKK kKKK KK KKk *kKkk ADD MODEL PANEL ¥ %k Kk kK k Kk KKK KK KKK KKK KK KKK KKK KKK KKK KK K)
class AddModelPanel extends JPanel implements ActionListener
{
static int SHCount = 2;
static int newSHCount = 1;
JLabel jl_title, jl_rank, jl_modelName, jl_modelld;
JTextField jt_rank,jt_modelName, jt_modelld;
JButton jb_saveModel, jb_addNode, jb_addArc, jb_return;
Header header;
SHPanel jp_sh;
JScrollPane jsp_model;

//constructor
public AddModelPanel () {
try {
jpInit O);
}
catch(Exception e) {
e.printStackTrace () ;
}

private void jpInit() throws Exception{
header = new Header();
add (header) ;

JLabel jl_title = new JLabel ("Add_ Model");
jl_title.setFont(new Font("Serif",Font.BOLD,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX,30));
jl_title.setHorizontalAlignment (SwingConstants.CENTER);
add(jl_title);

jp_sh = new SHPanel();

121

jp_sh.jt_shid.setText (Utility.shid);
Database.connectDatabase () ;

jp_sh.jt_shname.setText (Database.getSHName (Utility.shid));
add (jp_sh);

JPanel jp_header = new JPanel();

jl_modelId = new JLabel("Model_ ID:,");

jl_modelId.setHorizontalAlignment (SwingConstants.RIGHT) ;
jt_modelId = new JTextField(getModelId());

jt_modelId.setEnabled(false);

jp_header.add(jl_modelId) ;

jp_header.add(jt_modelId);

jp_header.setLayout (new GridLayout (4,2));
jl_rank = new JLabel("Preferenceyrank:,");
jl_rank.setHorizontalAlignment(SwingConstants.RIGHT);
jt_rank = new JTextField (15);
jt_rank.setEnabled(false);
setRank () ;
jp_header.add(jl_rank);
jp_header.add(jt_rank) ;
jl_modelName = new JLabel ("Model Name: ") ;
jl_modelName.setHorizontalAlignment (SwingConstants.RIGHT) ;
jt_modelName = new JTextField (15);
jp_header.add(jl_modelName) ;
jp_header.add(jt_modelName) ;
add (jp_header) ;

JPanel jp_button = new JPanel();
jp_button.setPreferredSize(new Dimension(ShowFrame.buttonX*6,
ShowFrame.buttonY)) ;
jb_addNode = new JButton("Add,State");
jb_addNode .addActionListener (this) ;
jb_addArc = new JButton("Add, Transition");
jb_addArc.addActionListener (this);
jb_saveModel = new JButton("Save Model");
jb_saveModel.addActionListener (this) ;
jb_return = new JButton("Return");
jb_return.addActionListener (this);
jp_button.add(jb_addNode) ;
jp_button.add(jb_addArc);
jp_button.add(jb_saveModel) ;
jp_button.add(jb_return);
add (jp_button);
Database.closeDatabase (false);

}

private void setRank (){
if (Database.firstRank(Utility.shid)) {
jt_rank.setText ("0");
Yelse{
int nextRank = Database.getNextRank(Utility.shid);
int maxRank = Database.getMaxRank();

if ((nextRank = maxRank) | | (nextRank == maxRank+1))
{
jt_rank.setText (nextRank+"");
Yelse{

jt_rank.setText (maxRank+"");

122

}

public void actionPerformed(ActionEvent e){
if (e.getSource() == jb_addNode) {
ShowFrame.showAddNodeFrame () ;
this.setVisible(false);

}else if (e.getSource()==jb_addArc){
this.setVisible(false);
ShowFrame.showAddArcFrame () ;

}else if(e.getSource() == jb_saveModel){

saveModel () ;

}else if (e.getSource()==jb_return){
setVisible (false) ;

ShowFrame .showSHMenuFrame () ;

void saveModel (){
if (dataIsValid()) {

Database.connectDatabase () ;

setModelDetails () ;

Database.insertModel () ;//insert data to database

Database.insertModelSH();

Database.insertLoginSH(Utility.shid, Utility.model.
rank, Utility.newSH);

performOperation();

Database.closeDatabase (false);

}

void saveModellIteration(){
if (dataIsValid()) {

Database.connectDatabase () ;

setModelDetails () ;

Database.insertModel () ;//insert data to database

Database.insertModelSH();

Database.insertLoginSH(Utility.shid, Utility.model.
rank, Utility.newSH);

performOperation () ;

Database.closeDatabase (false);

}

boolean datalIsValid (){
if (jt_rank.getText().equals("")) {
JOptionPane.showMessageDialog(this, "Please, fill,in
the rank of the model !");
return false;
Yelse if (!'Utility.isDigit(jt_rank.getText())){
JOptionPane.showMessageDialog(this, "The,rank_ musty
be numerals!",
"Rank Input Error", JOptionPane.
ERROR_MESSAGE) ;
jt_rank.setText ("");
return false;
}else if (jt_modelName.getText ().equals("")){

123

JOptionPane.showMessageDialog(this, "Please,fill,in
the_ model name!");
return false;
}
return true;

}

void setModelDetails (){
Utility.model.id = jt_modelId.getText().trim();
Utility.model.name = jt_modelName.getText().trim();
Utility.model.rank = jt_rank.getText().trim();

}
void performOperation (){
int answer = JOptionPane.showConfirmDialog(null, "Model, isy
addedsuccessfully! ;Add another one?", "Add, Model",
JOptionPane.YES_NO_OPTION);//yes=0, no=1
if (answer == 0) {
clearModelFields () ;
Yelsed{
if (Database.getSHCount () .size () >SHCount) {
SHCount = Database.getSHCount () .size();
}
Vector loginSHCount = Database.getLoginSHCount (
Utility.model.rank, Utility.newSH);
if ('Utility.newSH) {
if ((loginSHCount.size ()==SHCount)) {
checkConsistency (Utility.newSH) ;
}else{
setVisible (false) ;
ShowFrame .showSHMenuFrame () ;
}
}else{//new stakeholders joining
String maxMergedRank = Database.
getMaxMergedRank () ;
if (loginSHCount.size ()==newSHCount) {
checkConsistencyIteration(Utility.
newSH) ;
}else {
setVisible (false) ;
ShowFrame .showSHMenuFrame () ;
}
if (Utility.model.rank.equals(maxMergedRank)
) {
Database.updateNewLoginSH(Utility.
shid);
}
}
}
}
void checkConsistency(boolean newSH)
{

Vector m = Utility.getAllModel();
if (CheckModel.allConsistent (m)){
combineModels (newSH) ;
Yelseq
JOptionPane.showMessageDialog (this, "Models are not,consistent!")

>

void che

{

124

Utility.model = new Model();
ShowFrame .showLoginFrameFromLogout () ;
this.setVisible(false);

}

ckConsistencyIteration(boolean newSH)

Vector m = Utility.getAllModelIteration(Utility.model.rank);

if (CheckModel.allConsistent (m)){

}elseq
JOpt

>

/**Comb1
public v
{

private

combineModels (newSH) ;
Database.updateAllNewLoginSH() ;

ionPane.showMessageDialog(this, "Models are_ not, consistent!")

Utility.model = new Model();
ShowFrame .showLoginFrameFromLogout () ;
this.setVisible(false);

}

ne models and assign ranks to the combined models**/
oid combineModels(boolean newSH)

if (!newSH) {
if (Database.getAllMergedId().size()'!'=0) {
Vector mergedId = Database.getAllMergedId();

if (mergedId.size() != 0) {
for (int i=0; i<mergedId.size(); i
++) {

Database.deleteModel ((String
)mergedId.get(i));

}
}
Vector consId = Database.getConsId();
Vector allConsRank = Utility.getAllConsModelRankSet ();
for (int i=0; i<comnsId.size(); i++) {
Vector v = Database.getConsModel ((String)consId.get(

i));

Model combinedModel = MergeModel.mergeModel(v, newSH
)5

String rank = getMergedRank ((String)consId.get (i),
allConsRank) ;

setMergedModel (v, (String)consId.get(i), rank);
Database.insertMergedModel () ;
Database.deleteConsModel ((String) consId.get (i));

}

this.setVisible(false);

JOptionPane.showMessageDialog(this, "Merging, isycompletedy

sucessfully!");
ShowFrame .showMergeResultsFrame () ;

String getModelId (){
String s = Database.getUsedModelId();
String modelId = "";
if (s!'=null){
modelId = s.substring(l, modelId.length());

125

return modellId;

}elseq{
return (Database.createModelId()+1)+"";
}
}
public void setMergedModel (Vector v, String consId, String rank)
{
String s = "Modelsy";

for (int i=0; i<v.size(); i++){
s += ((Model)v.get(i)).id;
if (i<v.size()-1)
s += II’L‘II;
Utility.model.consId = consId;
Utility.model.rank = rank;
Utility.model.operator = Utility.O0P;
Utility.model.desc = s;

static String getMergedRank (String consId, Vector allConsRank)
{
Vector consRank = Utility.getConsModelRankSet (consId);

int mergedRank = -1;
if (Utility.OP.equals("DeltayMin")) {
mergedRank = MergeOperator.deltaMin (consRank,
allConsRank) ;
}else if (Utility.0OP.equals("DeltaMax")){
mergedRank = MergeOperator.deltaMax (consRank,
allConsRank) ;

}else if (Utility.O0OP.equals("Delta,Sigma")){
mergedRank = MergeOperator.deltaSigma(consRank,
allConsRank) ;
}
return (mergedRank+"");

}

void clearModelFields ()

}

{

jt_rank.setText ("");

jt_modelName.setText ("");

Utility.model = new Model(Database.createModelId()+"");
jt_modelId.setText(Utility.model. id);

void showModel () {

JTextArea temp = new JTextArea(300,300);

temp.append (Utility.model.toString());

jsp_model = new JScrollPane (temp) ;

JFrame jf = new JFrame("Model");
jf.getContentPane () .add(jsp_model);
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.setSize (ShowFrame.formX,300) ;

jf.setVisible (true);

A.3

import
import
import
import

/% *

AddNodePanel.java

java.util.*;
javax.swing.x*;
java.awt.event.x*;
java.awt . *;

* Title:AddNodePanel. java

* Description:

writte them to

Access based database

* Q@author @iuming Lin
* September 2002

*/

class AddNodePanel extends JPanel implements ActionListener

{

SHPanel jp_sh;

JComboBox jcb_nodeName, jcb_varName, jcb_value;
JButton jb_add, jb_remove, jb_save, jb_return;
JList jl_variable;

Header header;

Node node;
JFrame parent;

//constructor
public AddNodePanel (){

super () ;
try {
jpInit O);
}
catch (Exception e) {
e.printStackTrace () ;
}

private void jpInit() throws Exception{
header = new Header ();
add (header) ;

node = new Node();

JLabel jl_title = new JLabel("Add State");
jl_title.setFont(new Font("Arial",Font.BOLD,20));
jl_title.setPreferredSize (new Dimension(ShowFrame.formX,30));
jl_title.setHorizontalAlignment (SwingConstants.CENTER) ;

add(jl_title);

JPanel jp_state = new JPanel();
Database.connectDatabase () ;
Vector nodeName = Database.getSHNodeName (Utility.shid);
jcb_nodeName = new JComboBox(nodeName) ;
jp_state.add(ShowFrame.newLabel ("State Name:"));
jp_state.add(jcb_nodeName) ;

The program receives nodes detatils from stakeholders and

126

127

add (jp_state);

JPanel jp_var = new JPanel();
jp_var.setlLayout (new GridLayout(1,4,3,5));
Vector varName = Database.getSHVarName (Utility.shid);
jcb_varName = new JComboBox (varName) ;
String[] value = {"True", "False"};
jcb_value = new JComboBox(value);

jp_var.add (ShowFrame.newLabel ("Variable: "));
jp_var.add(jcb_varName) ;

jp_var.add (ShowFrame.newLabel ("Value:y ")) ;
jp_var.add(jcb_value) ;

add (jp_var) ;

jl_variable = new JList();
JScrollPane jsp = new JScrollPane(jl_variable);
jsp.setPreferredSize (new Dimension(ShowFrame.formX-200, ShowFrame.
buttonY*2));
jsp.setBorder (BorderFactory.createTitledBorder (
BorderFactory.createEtchedBorder () ,"Variables Added"
DN
add (jsp);

JPanel jp_addVarButton = new JPanel();
jp_addVarButton.setLayout (new GridLayout (0,1,20,10));

jb_add = new JButton("Add");
jb_add.addActionListener (this);
jb_remove = new JButton("Remove");
jb_remove.addActionListener (this);

jp_addVarButton.add(jb_add);

jp_addVarButton.add(jb_remove) ;

jp_addVarButton.setPreferredSize (new Dimension (100, ShowFrame.buttonY
+20)) ;

add (jp_addVarButton);

JPanel jp_addNodeButton = new JPanel();

jb_save = new JButton("Save, State");

jb_save.addActionListener (this);

jb_return = new JButton("Return");

jb_return.addActionListener (this);

jp_addNodeButton.add(jb_save);

jp_addNodeButton.add(jb_return);

jp_addNodeButton.setPreferredSize(new Dimension(ShowFrame.formX,
ShowFrame .buttonY));

add (jp_addNodeButton) ;

Database.closeDatabase (false);

}

public void actionPerformed(ActionEvent e){
if (e.getSource()==jb_add){
setVar () ;//set ncde wariables

}

128

}else if (e.getSource()==jb_remove){
removeVar () ;

}else if(e.getSource()==jb_save){//add node data to model
setNode () ;
clearTextArea () ;

}else if(e.getSource()==jb_return){
ShowFrame.showAddModelFrame () ;
this.setVisible(false);

}

//set node wariables
private void setVar () {

}

if (!jcb_nodeName.getSelectedItem().equals("")) {
String varName = (String) jcb_varName.getSelectedItem
O3
if (!varName.equals("")) {
String varId = Database.getId("varVocabulary
", Utility.shid, varName) ;
Variable variable = new Variable(varName,
varId);
String mid = Database.getVarMid(varId);
variable.setMid(mid); //System.out.printin ("
var mid: "+variable.mid);
String value = (String) jcb_value.
getSelectedItem () ;
variable.setValue (value) ;
node.setVariable(variable);
printVariable ();

//add mode to model
void setNode (){

String nodeName = (String) jcb_nodeName.getSelectedItem() ;
if (!nodeName.equals("")) {

node.setName (nodeName) ;

String nodeId = Database.getId("nodeVocabulary",

Utility.shid, nodeName);

node.setId (nodeld);

String mid = Database.getNodeMid (nodeId);

node .setMid (mid) ;

Utility.model.addNode (node);

node = new Node();

void clearTextArea (){

Vector v = new Vector ();

for (int k=0; k<node.getVarRowCount (); k++)
v.add("");

jl_variable.setListData(v);

}

void removeVar (){

if (jl_variable.getSelectedIndex () >=0){
node.removeVariable (jl_variable.getSelectedIndex());
printVariable ();

}else

}

129

JOptionPane.showMessageDialog(this, "Pleaseselecty
thevariable toybe removed!");

}
void printVariable (){
Vector v = new Vector ();
for (int i=0; i<node.getVarRowCount (); i++) {
String s = "";
Variable var = (Variable)node.getVariable().get(i);
if (var.value.equals("True")) {
s += var.name + "_ = T";
}else
s += var.name + " = F";
v.add(s);
}
jl_variable.setListData(v);
}

A.4 Arc.java

import java.util.x*;

/% *
* Title: Arc. java
* Description: The program describes the arc between two nodes
* Qauthor @iuming Lin
* August/September 2002

class Arc

{

Node preNode, nextNode;
String preNodeId, nextNodeld;

//constructor
public Arc()

{
preNodeId = "";
nextNodeId = "";
}
public Arc(Arc a)
{
this.preNode = new Node(a.preNode);
this.nextNode = new Node(a.nextNode);
}
//pre node
public void setPreNode (Node n)
{
preNode = n;
}

public Node getPreNode(){return preNode;}

//next node
public void setNextNode (Node n)
{

130

nextNode = n;
}
public Node getNextNode () {return nextNode;}

//check if the arc has the same pre node and next node
public boolean isIdentical (Arc a)

{
if (!'this.getPreNode () .getMid () .equals(a.getPreNode ().getMid ()))
return false;
else if (!this.getNextNode ().getMid () .equals(a.getNextNode ().getMid
O»
return false;
else
return true;
}
public String toString()
{
return ("\nTransition,"+"is_ from_ "+ this.
getPreNode () .name +
"("+this.getPreNode () .mid+")"+" to "+ this.getNextNode ().
name +
"("+this.getNextNode () .mid+")");
}

}

A.5 CheckModel.java

import java.util.x;

VAT
* Title: CheckModel. java
* Description: The program check whether two models represented in STD are
consistent or identical
* Qauthor @iuming Lin
* August/September 2002
*/

class CheckModel

{
public static int consId=1;
public static int identId=1;

/**check all the stakeholders models of the same level**/
public static boolean allConsistent(Vector m)
{
boolean cons = false;
for (int i=0; i<m.size(); i++){
if (consistent ((Vector)m.get(i))) {
Utility.insertConsModel (consId+"", (Vector)m
.get (i));
consId++;
cons = true;

if (cons)
return true;

else
return false;
}
public static boolean consistent(Vector m)
{
for (int i=0; i<m.size(); i++){
for (int j=i; j<m.size(); j++) {
if (!'consistent ((Model)m.get(i), (Model)m.
get(j))) {
return false;
}
}
}
return true;
}

/*%check two models for both transition consistency and variable
cosistency**/

public static boolean consistent(Model ml, Model m2)

{
for(int i=0; i<ml.getNodeCount (); i++) {
if (transitionConflict (m1,m2)) {
return false;
}Yelse if (nodeConflict(ml, m2))
return false;
}
return true;
}

/*¥*transition checking**/
static boolean transitionConflict (Model mi1, Model m2)
{

boolean identical;

Arc templ;

//compare modell’s transition with modell2’s
for (int i=0; i<ml.getArcCount (); i++) {
identical = false;
templ = ml.getArc(i);
if (Utility.findNode (templ.getPreNode (), m2) !=null&&
Utility.findNode (templ.getNextNode (), m2) !'=null){
for (int j=0;j<m2.getArcCount (); j++) {
if (templ.isIdentical(m2.getArc(j))){ //check whether
the two arcs have the same label,

identical = true; //same pre mnode
and nezxt node
break;

}
}
if (!'identical)
return true;
}
}
//compare model2’s transition with modell’s
for (int i=0; i<m2.getArcCount (); i++){
identical = false;

131

132

templ = m2.getArc(i);
if (Utility.findNode (templ.getPreNode (), ml) !=null&&
Utility.findNode (templ.getNextNode (), ml) !=null){
for (int j=0;j<ml.getArcCount (); j++) {
if (templ.isIdentical(ml.getArc(j))){
identical = true;
break;
}
}
if (!identical)
return true;
}
}
return false;

}

/**Variables Checking**/
static boolean nodeConflict (Model ml, Model m2)//compare all the nodes
for consistent wariables

{
Node templ, temp2;
for (int i=0; i<ml.getNodeCount (); i++){
templ = ml.getNode (i);
temp2 = Utility.findNode (templ ,m2);
if (temp2!=null)
if (nodeConflict(templ,temp2))
return true;//inconsistent
}
return false;//consistent
}

/**compare two nodes for consistent wvariables**/
static boolean nodeConflict(Node ni, Node n2)

{
Vector vl = nl.getVariable();
Vector v2 = n2.getVariable();
for (int i=0; i<vi.size(); i++){
for (int j=0; j<v2.size(); j++){
if (varConflict ((Variable)vl.get (i), (Variable)v2.get(j))){
return true;//Conflict exists/Not consistent
}
}
}
return false;//consistent
}

/**compare ome wvariable with another for consistencyx**/
static boolean varConflict(Variable v1, Variable v2)
{
if (vl.mid.equals(v2.mid)) {
if (vl.value.equals(v2.value)) {
return false;//NO conflict
}else
return true;//Conflict ezists, t.e. Not
consistent
}else
return false;//NO conflict ezxzists, i.e. comsistent

}

A.6 Database.java

// Database. java
// September 2002

import java.sql.x*;
import java.util.x*;
import javax.swing.x*;

class Database

{
// instance wvariables
public static String query;
public static Connection con;
public static Statement stmt;
public static ResultSet results, nodeRS, arcRS, atomRS,
static String SQLText;
static Vector nv;
static Model model;
static Node node;
static Arc arc;

/**static method to establish connection to databasex*/
public static void connectDatabase () {
String url = "jdbc:odbc:MYDBMS";
String username = "";
String password = "";

try {
// Load the jdbc-odbc bridge driver
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");
// Load the Oracle jdbc driver

133

varRS;

// Class. forName ("oracle.jdbc.driver.OracleDriver");

// Attempt to conmnect to a driver.
con = DriverManager.getConnection(url, username,
stmt = con.createStatement () ;
} catch (SQLException ex) {
while (ex != null) {

password) ;

System.out.println ("SQLyException: " + ex.getMessage ());

ex = ex.getNextException ();
}
} catch (java.lang.Exception ex) {
ex.printStackTrace ();
}
}
/*¥*static method to close database**/
public static void closeDatabase(boolean withresults) {
try {
if (withresults){
results.close();
stmt.close () ;
con.close();
}
} catch (SQLException ex) {

134

while (ex != null) {
System.out.println ("SQL_ Exception: " + ex.getMessage ());
ex = ex.getNextException ();

}

} catch (java.lang.Exception ex) {
ex.printStackTrace ();
}
}
/**INSERT, UPDATE OR DELETE DATA**/
public static void updateModelId(String modelId){
try {
int ResultCode;
ResultCode = stmt.executeUpdate(updateModelIdSQL (modelId)) ;
}catch (java.lang.Exception ex) {
System.out.println("**_ Errorong,dataginsert. ** ");
ex.printStackTrace ();
}
}
public static void updateAllNewLoginSH ()
{
try {
int ResultCode;
ResultCode = stmt.executeUpdate (updateAllNewLoginSHSQL());
}catch (java.lang.Exception ex) {
System.out.println("**_ Error_ong,dataginsert. **_ ");
ex.printStackTrace ();
}
Y/ xx/
public static void updateNewLoginSH(String shid)
{
try {
int ResultCode;
ResultCode = stmt.executeUpdate (updateNewLoginSHSQL (shid));
}catch (java.lang.Exception ex) {
System.out.println("**_ Erroron dataginsert. **_ ");
ex.printStackTrace ();

}
}
public static void deleteConsModel (String consId)
{
try {
int ResultCode;
ResultCode = stmt.executeUpdate(deleteConsModelSQL (consId));
}catch (java.lang.Exception ex) {
System.out.println("**,Error_ ongdatagdelete. *x*,");
ex.printStackTrace ();
}
}
public static void deleteLoginSH(){
try {
int ResultCode;
ResultCode = stmt.executeUpdate(deletelLoginSHSQL ());
}

catch (java.lang.Exception ex) {
System.out.println ("**_ Error ,on data,delete. **");
ex.printStackTrace () ;

135

public static void deleteModel (String modelId)

{
try {
//connectDatabase () ;
stmt = con.createStatement () ;
int ResultCode;
ResultCode =

stmt .executeUpdate(deleteLoginSHSQL (Utility.
shid, getRank(modellId)));

ResultCode=stmt.executeUpdate (deleteArcSQL (modelId)) ;
Vector nodeld = getNodeId(modelId);

ResultCode = stmt.executeUpdate(deleteModelSHSQL (modelId)
)

for (int i=0; i<nodeld.size(); i++) {

ResultCode=stmt.executeUpdate (deleteVarsSQL ((
String)nodeId.get (i), modelId));

ResultCode=stmt.executeUpdate (deleteNodeSQL ((
String)nodeId.get (i), modelId));

}
ResultCode = stmt.executeUpdate(deleteModelSQL (modelId));

}catch (java.lang.Exception ex) {

System.out.println("**_ Error_on,dataginsert. ** ");
ex.printStackTrace ();

}
}
public static void insertConsModel (String consId, String modelId){
try {
stmt = con.createStatement ();
int ResultCode;
ResultCode = stmt.executeUpdate(insertConsModelSQL (consId,
modelId));//insert into comsModel table
}catch (java.lang.Exception ex) {
System.out.println("**x_ Erroron,dataginsert. ** ");
ex.printStackTrace ();
}
public static void insertNodeVoc(String shid, String name){
try {
stmt = con.createStatement () ;
int ResultCode;
ResultCode = stmt.executeUpdate(insertNodeVocSQL (
shid, name));
}

catch (java.lang.Exception ex) {

System.out.println("**x_ Error_ong,dataginsert. **x ");
ex.printStackTrace ();

}
}
public static void insertVarVoc(String shid, String name){
try {
stmt = con.createStatement () ;
int ResultCode;
ResultCode = stmt.executeUpdate(insertVarVocSQL (shid
, name));
}

catch (java.lang.Exception ex) {

System.out.println("**_ Error_ongdataginsert. ** ");
ex.printStackTrace ();

136

}
public static void insertModelSH(){
try {
stmt = con.createStatement () ;
int ResultCode;
ResultCode = stmt.executeUpdate(insertModelSHSQL());
}
catch (java.lang.Exception ex) {
System.out.println("**_ Error_ong,dataginsert. **_ ");
ex.printStackTrace ();
}
}

public static void insertSHDetails (String shid, String name, String
address, String password)

{
try {
stmt = con.createStatement () ;
int ResultCode;
ResultCode = stmt.executeUpdate(insertSHDetailsSQL (
shid, name, address, password));
}
catch (java.lang.Exception ex) {
System.out.println("**_ Error_on,dataginsert. **_ ");
ex.printStackTrace ();
}
}
public static void insertLoginSH(String shid, String rank, boolean
newSH) {
try {
stmt = con.createStatement () ;
int ResultCode;
ResultCode = stmt.executeUpdate(insertLoginSHSQL (
shid, rank, newSH));
}
catch (java.lang.Exception ex) {
System.out.println("**x_ Error_on,dataginsert. **x ");
ex.printStackTrace ();
}
}
public static void insertMergedModel (){
try {
stmt = con.createStatement () ;

int ResultCode;
ResultCode = stmt.executeUpdate(insertMergedModelSQL());//
insert to mergedModel table
for(int i=0; i<Utility.model.getNodeCount ();i++){
Node n = Utility.model.getNode (i) ;
ResultCode=stmt.executeUpdate (insertNodeSQL(n));//insert to
node table
ResultCode = stmt.executeUpdate (insertNodeVocSQL (
"O", n.mid)) ;
for (int j=0; j<n.getVarRowCount ();j++){
Variable var = n.getVariable(j);
ResultCode=stmt.executeUpdate (
insertVarSQL(var.id, var.value, n.id
, Utility.model.id));

137

}
for(int i=0; i<Utility.model.getArcCount ();i++){
ResultCode=stmt.executeUpdate (insertArcSQL(Utility.model.
getArc(i)));//insert to arc table
}
}catch (java.lang.Exception ex) {
System.out.println("#**_ Erroron,dataginsert. **, ");
ex.printStackTrace ();

}

} S/

public static void insertModel (){
try {

stmt = con.createStatement () ;
int ResultCode;
System.out.println(
insertModelSQL ());

ResultCode = stmt.executeUpdate(insertModelSQL());//insert to
model table
for(int i=0; i<Utility.model.getNodeCount () ;i++){
Node n = Utility.model.getNode(i);
ResultCode=stmt.executeUpdate (insertNodeSQL(n));//insert
to node table
for (int j=0; j<n.getVarRowCount ();j++){
Variable v = n.getVariable(j);
ResultCode=stmt.executeUpdate (
insertVarSQL(v.id, v.value, n.id
, Utility.model.id));
}
}
for(int i=0; i<Utility.model.getArcCount ();i++){
ResultCode=stmt.executeUpdate (insertArcSQL(Utility.model.
getArc(i)));//insert to arc table
}
}catch (java.lang.Exception ex) {
System.out.println("**_ Errorjon datainsert. **x, ");
ex.printStackTrace ();
}
}
/**xxSQL STATEMENT ***/
private static String updateModelIdSQL(String modelId){
String s = "X"+modelld;
return "update model setymodelId, =’"+s+"’ ,where modellId =’
"+modelId+"’";
}
private static String updateAllNewLoginSHSQL (){
return "updateyloginSH,setynew,=,0";
} /xx/
private static String updateNewLoginSHSQL(String shid){
return "updateyloginSH, setynew,=_,"+0+" ,where SHid_ =_"+shid;
}
private static String deleteConsModelSQL(String consId){
return "delete_from_ ,consModel where, consId =, "+consId;
}
private static String deleteModelSQL(String modelId){
return "delete_from_ model_ where ymodelId, = ,’" + modelId+"’";
}
private static String deleteNodeSQL(String nodeId, String modelId){

}

private

}

private

}

private

}

private

}

private
}

private

138

return "delete_from_ node_ where_ nodeld, =, "+ nodelId + " and,

modelId =’ "+modelId+"’";

static String deleteVarSQL(String nodeId, String modelId){

return "delete,fromyvariableywhere g nodeId =" +
and_ modelId =,’" + modelId+"’";

static String deleteModelSHSQL (String modelId){
return "delete_from_ model_sh_ where modellId = ,’"

static String deleteLoginSHSQL (){
return "deleteyfrom, loginSH";

nodelId + ",

+ modelId+"’

static String deleteLoginSHSQL(String shid, String rank)

{

return "delete_ from_loginSH_where SHid,=,"+shid+" andrank

u=u"+rank;

static String deleteArcSQL(String modelId){

return "deletegfrom_arc where modelId, =,’" + modelId +"’";

static String insertConsModelSQL(String consId,

modelId){

return "

private

}

private

}

private

}
//insert detail

insert_ into_ consModel values (" +
consId+", ,’ "+
modelId+"’)";

String

static String insertNodeVocSQL(String shid, String name){
return "insert_intoynodeVocabulary,values (’" +

Shld + Il)’UIII +

name + IIJ’UII +

createNodeId() + ")";

static String insertVarVocSQL(String shid, String name){
return "insertyintoyvarVocabulary,values (’" +

Shld + Il}’u}ll +

name + IIJ’UII +

createId("varId", "varVocabulary") + ")";

static String insertModelSHSQL (){
return "insert_intogmodel_sh_ values (" +

Utility.shid + ", " + Utility.model.id + ")";

s of source models

private static String insertModelSQL (){

return "
}
private stat
return "

insert_into_ model values (’" +
createModelId ()+"’, > "+
Utility.model.name+"’ , "+
Utility.model.rank+", "+
null+", "+
null+", "+

null+")";

ic String insertNodeSQL(Node n){
insert_ into_node values ("+
n.id+")_l"+

139

Utility.model.id+")";
}
private static String insertVarSQL(String varId, String value, String
nodeId, String modelId){
return "insertyintoyvariableyvalues, (" +
varId+", "+
value+ "7, "+
nodeId+ ", ’"+
modelId+"’)";
}
private static String insertArcSQL (Arc a){
return "insert_intogarcyvalues (" +
a.preNode.id+", "+
a.nextNode.id+" , "+
Utility.model.id+")";

private static String insertSHDetailsSQL(String shid, String name,
String address, String password){
return "insert_into_stakeholder values ("+
Shid+ll ,l_l, I|+
name+" >’ yl_l’"+
address+"’,,° "+
password+"’)";
}
private static String insertLoginSHSQL(String shid, String rank,
boolean newSH){
return "insert_intoyloginSH,values ("+shid+",,’"+rank+"’, "+
newSH+")";
}
//insert details of merged models
private static String insertMergedModelSQL (){
return "insert,into_model values (" +
Utility.model.id+", "+
Utility.model.name+","+
Utility.model.rank+", "+
Utility.model.consId+", ’"+
Utility.model.operator+"’, ,’ "+
Utility.model.desc+"’)";
}
public static String getConsistentRank(String modelId){
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selecty *,from_model where modelId =,’"+
modelId+"’";
results = stmt.executeQuery(query);
if (results.next ()){
return results.getString(3);
}
else
return null;
}catch (java.lang.Exception ex) {
System.out.println("**,Error ongdatagquery **,");
ex.printStackTrace () ;
return null;

}

public static int getNextRank (String shid){

140

try {
stmt = con.createStatement () ;
int ResultCode;
query = "select_max(rank)_ from, loginSH where SHid_ =" + shid;
results = stmt.executeQuery(query);
if (results.next ()){
return (Integer.parselnt(results.getString(1))+1);
}
else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("**,Error_ ongdata,query **,");
ex.printStackTrace () ;
return -1;
}
}
public static int getMaxRank () {
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(rank)_ from,loginSH";
results = stmt.executeQuery(query);
if (results.next ()){
return (Integer.parselnt(results.getString(1)));
}
else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace ();
return -1;
}
Y/ o/
public static String getMaxMergedRank (){
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(rank)_ from model where modelId, >,’1000’,and
modelId <,’2000°";
results = stmt.executeQuery(query);
if (results.next ()){
return (results.getString(1));
}
else
return null;
}catch (java.lang.Exception ex) {
System.out.println("**,Error ongdata,query **,");
ex.printStackTrace () ;
return null;

}
}
public static String getId(String tableName, String shid, String
name) {
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selecty*yfrom," + tableName + ", where SHid, = " + shid

+ "yandgname, =y’ "+ name+"’";

141

results = stmt.executeQuery(query);
if (results.next()) {
return results.getString(3);
}else
return null;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data ,query **,");
ex.printStackTrace ();
return null;

}
¥
public static String getNodeMid (String nodeId) {

try {
stmt = con.createStatement () ;
int ResultCode;
query = "selecty *yfrom nodeSignatureMap ,wherenodelId = "+ nodeld
results = stmt.executeQuery(query);

if (results.next()) {
return results.getString(2);
}else
return null;
}catch (java.lang.Exception ex) {
System.out.println("**,Error_ on,data,query **,");
ex.printStackTrace () ;
return null;
}
}
public static String getVarMid (String varId) {
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selecty *yfrom,varSignatureMap,whereyvarId, ="+ varId;
results = stmt.executeQuery(query);
if (results.next()) {
return results.getString(2);
}else
return null;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ongdata query **,");
ex.printStackTrace ();
return null;
}
}
public static String getRank(String modelId){
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selectyrank,from model where modelId =,’"+modelId + "’"
results = stmt.executeQuery(query);
if (results.next ()){
return results.getString(1);
}
else
return null;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");

142

ex.printStackTrace ();
return null;

}

public static String getMergedrank(String modelId){
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selectydistinctrank, from model where modelId, =,’"+
modelId +"°’";
results = stmt.executeQuery(query);
if (results.next ()){
return results.getString(1);
}
else
return null;
}catch (java.lang.Exception ex) {
System.out.println("x*,Error_ ongdata,query **,");
ex.printStackTrace ();
return null;
}
}
public static Vector getConsModel (String consId){//get one set of
consistent models

Vector v = new Vector();
try{
stmt = con.createStatement () ;
query = "selectymodelld,fromconsModel where consId ="+consId;

ResultSet modelRS = stmt.executeQuery (query);
while (modelRS.next ()){
v.add (getModel (modelRS.getString(1)));
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace () ;
return null;
}
}
public static Vector getConsModelId(String consId){//get one set of
consistent modelld

ShowFrame. jta_process.append("geting ,consistent model_ ID...\n");
Vector v = new Vector();
tryq{
stmt = con.createStatement () ;
query = "selectymodellId,from,,consModel where consId = "+consId;
results = stmt.executeQuery(query);

while (results.next()){
v.add(results.getString (1)) ;

}

return v;

}catch (java.lang.Exception ex) {
System.out.println("*x*,Error_ ongdata,query x*,");
ex.printStackTrace ();
return null;

}

}
public static Vector getConsId(){

143

Vector v = new Vector();

try{
stmt = con.createStatement () ;
query = "selectydistinctyconsId from,consModel";
results = stmt.executeQuery(query);

while (results.next()){
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace ();
return null;

}
}
static Vector getAllMergedId (){
Vector v = new Vector();
try{
stmt = con.createStatement () ;
query = "selectymodelld,from model_ where modelId,>,’1000’,and
modelId <>,’2000°";
results = stmt.executeQuery(query);

while (results.next ()){
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("x*,Error on,data,query **,");
ex.printStackTrace ();
return null;
}
}
//data related to merged models
static Vector getMergedId (){
Vector v = new Vector();
tryq{
stmt = con.createStatement () ;
query = "selectymodelld,from model ,where modelId>;’1000’,and
modelId <,’+2000°";
results = stmt.executeQuery(query);
while (results.next ()){
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query *x*,");
ex.printStackTrace ();
return null;
}
Y/ xx/
static Vector getMergedId(String rank){
Vector v = new Vector ();
try{
stmt = con.createStatement () ;
query = "selectymodelld, from model_ where modelId, >,’1000’ ,and
modelId <,’2000’ ,and_ rank, =,"+rank;
results = stmt.executeQuery(query);
while (results.next ()){

144

v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace ();
return null;

}
}
static Vector getIteratedMergedId(){
Vector v = new Vector ();
try{
stmt = con.createStatement () ;
query = "select_modelId, from model_ where modelId,>,’2000"";
results = stmt.executeQuery(query);
while (results.next ()){
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace () ;
return null;
}
}

/**data related to stakeholder details**/
public static String getSHName (String id){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "select_ SHName from,stakeholder where SHid = ,"+id;
results = stmt.executeQuery(query);
if (results.next ()){
return results.getString(1);
}else
return null;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query *x*,");
ex.printStackTrace () ;
return null;

}
}
public static Vector getLoginSHCount (String rank, boolean newSH){
Vector v = new Vector();
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectydistinct SHidfrom_,loginSH wherey
rank =, ,"+rank+" ,and_ new_ =_,"+newSH;
results = stmt.executeQuery(query);

while (results.next()) {
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace ();
return null;

145

}
}
public static boolean firstRank(String shid){
try{
stmt = con.createStatement () ;
query = "Selectyshid from,loginSH, where, SHid =_,"+shid;
results = stmt.executeQuery(query);

if (results.next ()){
if (results.getString(1l).equals(null)) {
return true;
}else
return false;
}else
return true;
}catch(java.lang.Exception ex) {
System.out.println("**,Error on,datagquery **,");
ex.printStackTrace () ;
return true;
}
}
public static Vector getSHid (){
Vector v = new Vector();
tryq{
stmt = con.createStatement () ;
int ResultCode;
query = "selectydistinct SHid fromymodel_sh";
results = stmt.executeQuery(query);
while (results.next()) {
v.add (results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace ();
return null;

}
}
public static Vector getLoginSHid (){

Vector v = new Vector();

tryq{
stmt = con.createStatement () ;
int ResultCode;

query = "selectydistinct SHidyfromyloginSH";
results = stmt.executeQuery(query);
while (results.next()) {
v.add(results.getString (1)) ;
}
return v;

}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data ,query **,");
ex.printStackTrace ();
return null;

}

}

public static Vector getNewSHid (){
Vector v = new Vector ();
try{

stmt = con.createStatement () ;

146

int ResultCode;
query = "selectydistinct SHidyfromyloginSH wherenew
u=u"+l;
results = stmt.executeQuery(query);
while (results.next()) {
v.add(results.getString (1)) ;
}
return v;
}catch (java.lang.Exception ex) {
System.out.println("x*,Error_ ongdata,query **,");
ex.printStackTrace () ;
return null;
}

}
public static Vector getModelId (){

Vector v = new Vector();
try{
stmt = con.createStatement () ;
query = "Selecty*yfrom_ model_sh";
results = stmt.executeQuery(query);
while (results.next()){
v.add ("Model "+results.getString (1)+" of ,Stakeholder "+
results.getString (2));
}
return v;
}catch(java.lang.Exception ex) {
System.out.println("**_ Erroron,data,query **,");
ex.printStackTrace () ;
return null;
}

}
//get mame based on stakeholder <d
public static Vector getSHNodeName (String shid){

Vector v = new Vector();

try{
stmt = con.createStatement () ;
query = "Selecty*y fromgynodevocabulary where SHid = "+shid;
results = stmt.executeQuery(query);

while (results.next ()){
v.add(results.getString(2));
}
return v;
}catch(java.lang.Exception ex) {
System.out.println("**_ Error_on,data ,query **,");
ex.printStackTrace ();
return null;

public static Vector getSHVarName (String shid){
Vector v = new Vector ();
try{
stmt = con.createStatement () ;
query = "Selecty *yfromyvarvocabulary_where SHid_ =_,"+shid;
results = stmt.executeQuery(query);
while (results.next()){
v.add (results.getString(2));
}

return v;

147

}catch(java.lang.Exception ex) {
System.out.println("**,Error ongdatagquery **,");
ex.printStackTrace () ;
return null;
}
}
//get mame based on its <d
public static String getNodeName (String nodelId){
try{
stmt = con.createStatement () ;
query = "Select_ *yfrom_ nodevocabulary_ where nodeId,=_"+nodeld;
results = stmt.executeQuery(query);
if (results.next ()){
return (results.getString(2));
}else
return null;
}catch(java.lang.Exception ex) {
System.out.println("**,Error ongdatagquery **,");
ex.printStackTrace () ;
return null;

}
}
public static String getVarName(String varId)({
try{
stmt = con.createStatement () ;
query = "Selecty*yfromyvarvocabulary_ where,varId, = "+varld;
results = stmt.executeQuery(query);

if (results.next()){
return (results.getString(2));
}else
return null;

}catch(java.lang.Exception ex) {

System.out.println("**_ Erroron,data,query **,");

ex.printStackTrace () ;

return null;
}
}

Jrkkkrkkkthe above are MEthodsS ©n Meed kkkkkkkkkkkkkkkokkkkkkkkk kKKK KKK KK K/
public static Vector getNodeId(String modellId){
Vector v = new Vector();
try{
stmt = con.createStatement () ;
query = "Selectynodeld, from nodeywhere modelId_ =_,"+modelld +"’";
results = stmt.executeQuery(query);
while (results.next()){
v.add (results.getString (1)) ;
}
return v;
}catch(java.lang.Exception ex) {
System.out.println("**_ Erroron,data ,query **,");
ex.printStackTrace ();
return null;
}
}

/***GET ALL DATA OF ONE COMPLETE MODEL FROM THE DATABASEx***/
/**%get all the models of a stakeholderx*x*/
public static Vector getSHModel (String shid){

148

Vector v = new Vector();
try{
stmt = con.createStatement () ;
query = "Selectymodelld, from model_sh_ where SHId_ =,"+ shid;

ResultSet modelRS = stmt.executeQuery(query);

while (modelRS.next ()){
String modelId = modelRS.getString(1);
v.add(getModel (modelId));

}

return v;

}catch(java.lang.Exception ex) {

System.out.println("**,Error ongdatagquery **,");

ex.printStackTrace () ;

return null;

public static Vector getSHModelId(String shid){

Vector v = new Vector();

try{
stmt = con.createStatement ();
query = "Select_modellId, from_ model_sh_ where SHId ="+ shid;
ResultSet modelRS = stmt.executeQuery(query);
while (modelRS.next ()){

v.add (modelRS.getString (1)) ;

}
return v;

}catch(java.lang.Exception ex) {
System.out.println("#**,Error ongdatagquery ** ");
ex.printStackTrace () ;
return null;

static Model getMergedModel (String modelId){
Model m = new Model (modellId);

try {
stmt = con.createStatement () ;
int ResultCode;
query = "selecty*,from_ model where modelId =,’"+
modelId +"’";
results = stmt.executeQuery(query);
if (results.next()) {
m.rank = results.getString(3);
m.operator = results.getString(5);
m.desc = results.getString(6);
getNode (m) ;
getArc(m);
return m;
}else
return null;
}

catch (java.lang.Exception ex) {

System.out.println("#**_ Error,ong,data ,query **,");
ex.printStackTrace ();
return null;

}

}

static Model getModel(String modelId){
Model m = new Model (modellId);

149

tryq{
stmt = con.createStatement () ;
int ResultCode;
query = "select *yfrom model where modellId,=,’"+modelId+""’";
results = stmt.executeQuery(query);
if (results.next ()){
m.name = results.getString(2);
m.rank = String.valueOf (results.getString(3));
getNode (m) ;
getArc(m);
return m;
}else
return null;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace ();
return null;
}
}
static void getNode (Model m) {
tryq{
//Statement nodestmt = con.createStatement () ;
stmt = con.createStatement () ;
int ResultCode;
query = "select *,from_ node where modelId, =,’"+m.id+"’";
nodeRS = stmt.executeQuery(query);
while (nodeRS.next()){
Node node = new Node();
node.id = nodeRS.getString(1);
node.mid = getNodeMid(node.id);
node .name = getNodeName (node.id);
getVar (node, m);
m.addNode (node) ;
}
}catch (java.lang.Exception ex) {
System.out.println("**_ Error,ongdata query *x*,");
ex.printStackTrace () ;
}
}
static void getVar(Node n, Model m){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selecty*yfrom,variable where nodelId =_"+n.id+" and
modelId =’ "+m.id+"’";
varRS = stmt.executeQuery(query);
while (varRS.next()){
Variable var = new Variable();
var.id = varRS.getString(1);
var.mid = getVarMid(var.id);
var .name = getVarName (var.id);
var.value = varRS.getString(2);
n.setVariable (var);
}
}catch (java.lang.Exception ex) {
System.out.println("**_ Error,ong,dataquery **,");
ex.printStackTrace ();

150

}
static void getArc(Model m){
tryq{
stmt = con.createStatement () ;
int ResultCode;
query = "selecty *yfromjarcywhere modelId =’"+m.id+""";
arcRS = stmt.executeQuery(query);
while (arcRS.next ()){
Arc a = new Arc();
String preNodeId = String.valueOf (arcRS.getString(1));
String nextNodeId = String.valueOf (arcRS.getString(2));
for(int i=0; i<m.node.size(); i++){
if (preNodeId.equals (((Node)m.node.get(i)).id))
a.setPreNode ((Node)m.node.get (i));
if (nextNodeId.equals (((Node)m.node.get(i)).id))
a.setNextNode ((Node)m.node.get (i));
}
m.addArc(a);
}
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace () ;
}
}

/***GET ALL DATA OF ONE COMPLETE MERGED MODEL FROM THE DATABASE*xx*/
/**aqutomatically generate id**/
public static int createId(String id, String tableName){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax("+id+"),from, "+tableName;
results = stmt.executeQuery(query);
if (results.next ()){
return (results.getInt (1)+1);
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error ong,data query *x*,");
ex.printStackTrace () ;
return -1;

}
}
public static String getUsedModelId (){
try {
stmt = con.createStatement () ;
int ResultCode;
query = "selectymodelld, from model";
results = stmt.executeQuery(query);
while (results.next()) {
if (results.getString(1).charAt (0)=="X") {
return results.getString(1);
}
}
return null;
}

catch (java.lang.Exception ex) {
System.out.println ("**,Error on datagquery **");

151

ex.printStackTrace();
return null;
}
Y/xx/
public static int createModelId (){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(modelId)_ from_ model where modelId,<,’1000°";
results = stmt.executeQuery(query);
if (results.next ()){
return Integer.parselnt(results.getString(1))+1;
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("**,Error_ ongdata,query x*,");
ex.printStackTrace () ;
return -1;

}
}
public static int createMergedId(){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(modelId)_ from_ model where modelId, > ,’999’,
and modelId <,’2000°";
results = stmt.executeQuery(query);

if (results.next ()){
return (results.getInt (1)+1);
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace () ;
return -1;

}
}
public static int createIteratedMergedId (){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(modelId) from_ model where modelId,> ’1999°";
results = stmt.executeQuery(query);

if (results.next ()){
return (results.getInt (1)+1);
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("x*,Error_ ongdatag,query **,");
ex.printStackTrace () ;
return -1;

}
}
public static int createNodeId (){
try{
stmt = con.createStatement () ;

int ResultCode;

152

query = "selectymax(nodelId) from_ nodeVocabulary, where nodeId
u<py9000";
results = stmt.executeQuery(query);

if (results.next ()){
return (results.getInt (1)+1);
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,ong,data query **,");
ex.printStackTrace () ;
return -1;

}
}
public static int createMergedNodeId (){
try{
stmt = con.createStatement ();
int ResultCode;
query = "select_max(nodeld)_ from_ nodeVocabulary";
results = stmt.executeQuery(query);

if (results.next ()){
return (results.getInt (1)+1);
}else
return -1;
}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace ();
return -1;

}
}
public static int createMergedVarId (){
try{
stmt = con.createStatement () ;
int ResultCode;
query = "selectymax(varId) from,varVocabulary,where varId,> ;9000
n
results = stmt.executeQuery(query);

if (results.next ()){

return (results.getInt (1)+1);
}else

return -1;

}catch (java.lang.Exception ex) {
System.out.println("**_ Error,on,data query **,");
ex.printStackTrace ();
return -1;

}

}

/**check correct login password**/
public static boolean checkLogin(String query)

{
tryq{
stmt = con.createStatement () ;
int ResultCode;
results = stmt.executeQuery(query);

if (results.next())
return true;
else
return false;
}catch (java.lang.Exception ex) {

153

System.out.println("**_ Error,ong,data ,query **,");
ex.printStackTrace ();
return false;

}
}
public static String getPassword(String analystId)
{
try {
stmt = con.createStatement () ;
query = "selectypassword, from,stakeholder where SHid

u=u"+analystId;
int ResultCode;
results = stmt.executeQuery(query);
if (results.next())
return results.getString(2);
else
return null;

}catch (java.lang.Exception ex) {
System.out.println("#**_ Error,on,data query **,");
ex.printStackTrace () ;
return null;

}
}
public static Vector getSHCount (){
Vector v = new Vector () ;
try {
stmt = con.createStatement ();
query = "select_distinct_ SHid from_ model_sh";
results = stmt.executeQuery(query);

while (results.next()) {
v.add(results.getString (1)) ;
}
return v;
}
catch (java.lang.Exception ex) {
System.out.println("**,Error ongdatagquery **,");
ex.printStackTrace ();
return null;
}
Y/ xx/
}

A.7 DisplayModelPanel.java

import java.util.x*;
import java.awt.x*;
import javax.swing.x*;
import java.awt.event.x*;
import javax.swing.event.*;
import javax.swing.border.x*;
import javax.swing.JTable;
VAL
* Title: DisplayModelPanel. java
* Description: The program merges two consistent models
* Q@author @iuming Lin
* September/October 2002

*/
class DisplayModelPanel extends JPanel implements ActionListener
{
JButton jb_menu, jb_show, jb_delete;
JList jlist_results;
JScrollPane jsp_results;
Header header;
Object [1[] tableData;
JTable table;
Object [1[] results;

public DisplayModelPanel ()

try {
jpInit) ;
}
catch (Exception e) {
e.printStackTrace () ;
}

private void jpInit() throws Exception
{

header = new Header();

add (header) ;

JLabel jl_title = new JLabel("Models of, Stakeholder "+
Utility.shid);
jl_title.setFont(new Font("Serif",Font.BOLD,20));
jl_title.setPreferredSize(new Dimension(ShowFrame.formX,20));
jl_title.setHorizontalAlignment (SwingConstants.LEFT);
add(jl_title);

add(displayPanel ());

JPanel jp_button = new JPanel();

154

jp_button.setPreferredSize(new Dimension(ShowFrame.formX*3, ShowFrame

.buttonY));
jb_menu = new JButton("Menu");
jb_menu.addActionListener (this);
jp_button.add (jb_menu) ;
jb_show = new JButton("Show Model");
jb_show.addActionListener (this);
jp_button.add(jb_show) ;
jb_delete = new JButton("Delete");
jb_delete.addActionListener (this);
jp_button.add(jb_delete);
add (jp_button);
}

public void actionPerformed(ActionEvent e)

{

Database.connectDatabase () ;

if (e.getSource()==jb_menu){
setVisible (false) ;
ShowFrame.showSHMenuFrame () ;

}else if (e.getSource()==jb_show){

showModel () ;

155

}else if (e.getSource()==jb_delete){
deleteModel () ;

}
Database.connectDatabase () ;
}
void deleteModel ()
{
int row = table.getSelectedRow();
if (row>=0) {
Object modelld = getValueAt (row, 0);
Database.updateModelId ((String)modelId);
JOptionPane.showMessageDialog(this, "Model_ "+(String
JmodelId+" is_ deleted sucessfully!");
}else
JOptionPane.showMessageDialog(this, "Please;selecty
the_ model to ,be deleted!") ;
Database.connectDatabase () ;
}
public Object getValueAt(int row, int col)
{
return results[row][col];
}
public Object [J[] setTable ()
{
Vector model = Database.getSHModel (Utility.shid);
results = new Object[model.size()][3];
for (int i=0; i<model.size(); i++) {
Model m = (Model)model.get (i);
results[i][0] = m.id+"";
results[i][1] = m.name+"";
results[i][2] = m.rank;
}
return results;
}
public JPanel displayPanel ()
{
JPanel jp_results = new JPanel();
String[] columnNames = {"Model, Id", "Model Name", "Rank"};
tableData = setTable();
table = new JTable(tableData, columnNames) ;
table.setPreferredScrollableViewportSize (new Dimension
(500, 70));
jsp_results = new JScrollPane(table);
jp_results.add(jsp_results);
return jp_results;
}
public void showModel ()
{
String id = JOptionPane.showInputDialog(this, "Enter, they
model ID: ") ;
Model m = Database.getModel (id);
Utility.showModel(m.toString());
}

A.8 Go.java

156

//by Qiuming Lin
//August 2002
KKK KKK KKK KKK KR KKK KKK KK KK KK KKK KK KK KK K KKK KK KK KK KK KK KK KKK

* The program ts to implement our framework of merging operation to *

* resolve inconsistency in requirTements engineering *
e R e T T4

//Main function
import java.util.x*;

public class Go
{
public static void main(String[] args)
{

ShowFrame .showLoginFrame () ;

}

A.9 MergeModel.java

import java.util.x*;

VAL
* Title: MergeModel. java
* Description: The program merges two consistent models
* Q@author {iuming Lin
* August/September 2002

*/
class MergeModel
{
static Node node = new Node();
static Arc arc = new Arc();

static int nodeld;
static int arcId;

/**merge a set of consistent models**/
public static Model mergeModel(Vector m, boolean iterated)
{
Utility.model = (Model)m.get (0);
for (int i=1; i<m.size(); i++){
Model temp = new Model(Utility.model, Utility.model.id);
mergeModel (temp, (Model)m.get(i), iterated);

return Utility.model;
}

/**merge two consistent models**/
public static Model mergeModel (Model ml, Model m2, boolean iterated)
{
int id;
if (iterated) {
id = Database.createlteratedMergedId();
Yelsed{
id = Database.createMergedId();
}
Utility.model = new Model(m2, id+"");

157

for (int i=0; i<Utility.model.getArcCount(); i++){
setNewPreNextNodeId (Utility.model.getArc (i), Utility.model);
}
mergeNode (m1, m2, Utility.model);
mergeTransition(ml, m2, Utility.model);
return Utility.model;
}

public static void mergeTransition(Model ml, Model m2, Model m)

{

boolean identical = false;
for (int i=0; i<ml.getArcCount (); i++){
identical = false;

for (int j=0; j<m2.getArcCount (); j++){
if (ml.getArc(i).isIdentical (m2.getArc(j)))
identical = true;

if (!identical) {
setNewPreNextNodeId (ml.getArc(i), m);
m.addArc (ml.getArc(i));

}

private static void setNewPreNextNodeId(Arc a, Model m)
{
for (int k=0; k<m.getNodeCount (); k++){
if (a.preNode.mid.equals(m.getNode (k) .mid)){
a.preNode.id = m.getNode (k) .id;
a.preNode.mid = m.getNode (k) .mid;
}
if (a.nextNode.mid.equals(m.getNode (k) .mid)){
a.nextNode.id = m.getNode (k) .id;
a.nextNode.mid = m.getNode (k) .mid;
}

}

public static void mergeNode (Model ml, Model m2, Model m)
{
Vector v;
Node nodeFound;
for (int i=0; i<ml.getNodeCount (); i++) {
nodeFound = Utility.findNode(ml.getNode (i) ,m2);
if (nodeFound==null){//add node to model m
ml.getNode (i) .id = String.valueOf (nodeId++);
m.addNode (ml1.getNode (1)) ;
}else{//merge wvariables and set the merged variables to the
merged model m
v = mergeVariable (ml.getNode (i), nodeFound) ;
for (int j=0; j<m.getNodeCount(); j++){//set merged
variables to the node in the merged model m
if (m.getNode(j).getMid () .equals(nodeFound.getMid())){
m.getNode(j).getVariable ().
clear () ;
for (int k=0;k<v.size();k++){
m.getNode (j) .setVariable(new Variable((Variable)
v.get(k)));

158

break;

}

/**merge variables of two consistent nodes**/
public static Vector mergeVariable(Node nl, Node n2)

{
boolean remove;
boolean add;
boolean conflict;
Vector vl = nl.getVariable();
Vector v2 = n2.getVariable();
Vector v = new Vector();
for (int i=0; i<v2.size(); i++) {//copy v2 to w
v.add(new Variable ((Variable)v2.get(i)));
}
for (int i=0; i<vil.size(); i++){//merge v1 and v2
remove = false;
add = true;
for (int j=0; j<v2.size(); j++){
if (((Variable)vl.get(i)) .mid.equals (((
Variable)v2.get(j)) .mid)) {
add = false;
}elseq
if (CheckModel.varConflict ((Variable
Jvli.get (i), (Variable)v2.get(j))
) {
add = false;
remove ((Variable)v2.get (j),
v);
}
}
}
if (add)A{
for (int j=0; j<vi.size(); j++) {
v.add(new Variable ((Variable)vil.get(
i)));
}
}
}
return v;
}
public static void add(Variable vl, Vector v2)
{
Vector temp = new Vector();
Variable v = new Variable(vl);
v2.add (v) ;
}

public static void remove(Variable vl1, Vector v2)

for (int i=0; i<v2.size(); i++) {

159

if (vl.mid.equals(((Variable)v2.get(i)) .mid)) {
v2.remove (v2.get (i));
i--3
break;

}

A.10 MergeOperator.java

import java.util.x*;

VAL
* Title: MergeOperator. java
* Description: The program merges two consistent models
* Qauthor (iuming Lin
* September/August 2002
*/

class Merge(Operator
{
public static int minRank(Vector rank){//find the minimum rank among
vector rank
int minRank=Integer.parseInt ((String)rank.get (0));
for (int i=1; i<rank.size(); i++){
if (Integer.parselnt ((String)rank.get(i))<minRank)
minRank = Integer.parselnt ((String)rank.get(i));
}
return minRank;
}
/#%DELTA MIN OPERATOR*%*/
public static int deltaMin(Vector rank, Vector rankV){//the final rank
return (findMinRank (rank) - minRank (minRankSet (rankV)));
}
/**get the minimum rank of a set of consistent models**/
public static int findMinRank(Vector rank){
boolean equal = true;
int minRank=0;
for (int i=0; i<ramnk.size()-1; i++){
for (int j=i+1l; j<rank.size(); j++){

if (Integer.parselInt ((String)rank.get(i))!= Integer.parselnt
((String)rank.get (j))){
equal = false;
break;

}

}
}
if (equal){

minRank = Integer.parselnt((String)rank.get(0)) * 2;
}else{

minRank = minRank (rank) * 2 + 1;

}

return minRank;

160

//get a set of minimum ranks of consistents of models.
public static Vector minRankSet (Vector rank){
Vector v = new Vector ();
for (int i=0; i<rank.size(); i++){
v.add(findMinRank ((Vector)rank.get (i))+"");
}

return v;

}

/#*%DELTA MAX OPERATOR*%*/

public static int deltaMax(Vector rank, Vector rankV){

return findMaxRank (rank) - minRank ((Vector) (maxRankSet (rankV)));
}
/**get the mazimum rank among a set of consistent models**/
public static int findMaxRank(Vector rank){

int maxRank = Integer.parselnt((String)rank.get (0));

for (int i=1; i<rank.size(); i++){

if (Integer.parselnt ((String)rank.get(i))>maxRank)

maxRank = Integer.parselnt ((String)rank.get(i));
}

return maxRank;
}

//get the mazimum ranks of all sets of consistent models
public static Vector maxRankSet (Vector rank){

Vector v = new Vector ();

for (int i=0; i<rank.size(); i++){

v.add (findMaxRank ((Vector)rank.get (i))+"");
}

return v;

}

/#*%DELTA SIGMA OPERATOR**/
public static int deltaSigma(Vector rank, Vector rankV)({
return deltaSigma(rank)-minRank(allDeltaSigma(rankV));

}
public static int deltaSigma(Vector rank){//get sum of the a Vector rank
int sigma = 0;
for (int i=0; i<rank.size(); i++){
sigma += Integer.parseIlnt ((String)rank.get(i));
}
return sigma;
}

public static Vector allDeltaSigma(Vector rank){//get sum of the a
Vector rank
Vector v = new Vector ();
for (int i=0; i<rank.size(); i++){
v.add(deltaSigma ((Vector)rank.get (i))+"");
}
return v;

}

/**refined delta sigma operator**/
public static int refSigma(Vector rank){
int refSigma=0;
//not implemented yet
return refSigma;

}

161

A.11 MergeResultsPanel.java

import
import
import
import
import
import
import
VAT

* Title: MergeModelPanel. java

* Description: The program merges two

* Qauthor (iuming Lin

* September/October 2002

*/
class MergeResultsPanel extends JPanel

{

java.util.*;
java.awt . *;
javax.swing.x*;
java.awt.event.x*;
javax.swing.event.*;
javax.swing.border.*;
javax.swing.JTable;

JButton jb_menu, jb_show,
JScrollPane jsp_tableData;
Header header;
Object [1[] tableData;
JTable table;

jb_exit,

public MergeResultsPanel ()

try {
jpInit O);
}
catch (Exception e) {

consistent models

implements ActionListener

jb_modelCheck;

e.printStackTrace ();

}

private
{

header = new Header ();
add (header) ;

JLabel jl_title =

void jpInit() throws Exception

new JLabel ("Results of Merge");

jl_title.setFont(new Font("Serif" ,Font.BOLD,20));
jl_title.setPreferredSize (new Dimension(ShowFrame.formX,20));
jl_title.setHorizontalAlignment (SwingConstants.CENTER) ;

add(jl_title);
add (resultPanel ());

JPanel jp_button =

new JPanel();

jp_button.setPreferredSize(new Dimension(ShowFrame.formX*3, ShowFrame

.buttonY));
jb_menu = new JButton("Menu");

jb_menu.addActionListener (this);

jp_button.add(jb_menu) ;
jb_show =

new JButton("Show_Model");

jb_show.addActionListener (this);

162

jp_button.add(jb_show) ;
jb_modelCheck = new JButton("Model Check");
jb_modelCheck.addActionListener (this);
jp_button.add(jb_modelCheck);
jb_exit = new JButton("Exit");
jb_exit.addActionListener (this);
jp_button.add(jb_exit);
add (jp_button) ;
}

public void actionPerformed(ActionEvent e)
{
if (e.getSource()==jb_menu){
setVisible(false) ;
ShowFrame .showSHMenuFrame () ;
}else if (e.getSource()==jb_show){
showModel () ;
}else if (e.getSource()==jb_modelCheck){
System.out.println("Not,implemented yet");
}else if (e.getSource()==jb_exit){
Database.closeDatabase (true);
this.setVisible (false);
System.exit (1) ;
}

public Object[]I[] setTable ()
{
Database.connectDatabase () ;
Vector mergedId;
if (Utility.newSH) {
mergedId = Database.getIteratedMergedId();
}else
mergedId = Database.getMergedId();
Object [1[] tableData = new Object[mergedId.size ()] [4];
for (int i=0; i<mergedId.size(); i++) {
Model m = Database.getMergedModel ((String)mergedId.
get (1)) ;
tableData[i] [0] = m.rank+"";

tableDatal[i][1] = m.id+"";
tableData[i] [2] = m.operator;
tableDatal[i] [3] = m.desc;

}
Database.closeDatabase (false);
return tableData;

}

public JPanel resultPanel ()
{
JPanel jp_tableData = new JPanel();
String[] columnNames = {"Rank", "Model, Id", "Operator", "
Description"};
tableData = setTable();
table = new JTable(tableData, columnNames) ;
table.setPreferredScrollableViewportSize (new Dimension
(500, 70));
jsp_tableData = new JScrollPane(table);
jp_tableData.add(jsp_tableData);
return jp_tableData;

}

public void modelCheck ()

{

//not implemented yet

}

public void showModel ()

{
String id =

JOptionPane.showInputDialog (this,
model ID: ") ;
Database.connectDatabase () ;

Model m = Database.getMergedModel (id);
Utility.showModel(m.toString());

Database.closeDatabase (false);

}
}

A.12 Model.java

import java.util.x*;

VAL
* Title: Model. java
* Description: The program
transition diagram
* Qauthor @iuming Lin
* August/September 2002
*/

class Model

{
public String id, name,
Vector node;
Vector arc;

//constructor
public Model (){

id = Illl;
name = "";
rank = "";
consId = "";
desc = "";
operator =
node = new Vector (1,1);
arc = new Vector(1,1);
}
public Model(String i){
this O ;
id = 1i;
}

describes a model represented in a state

desc, operator;//,mergedId,

//initialize constructor

public Model(Model m, String id){//copy constructor

this.id = id;

node = new Vector();
arc = new Vector();
for (int i=0; i<m.getNodeCount () ;

i++){

Node temp = new Node(m.getNode(i));

163

"Enter_the

shid

164

node.add (temp) ;
}
for (int j=0; j<m.getArcCount (); j++){
Arc temp = new Arc(m.getArc(j));
arc.add (temp) ;
}
}
public String getModelId() { return id; }

//node
public void addNode (Node n){
node.add(n) ;
}
public void removeNode (Node n) {}
public Node getNode(int i) { return (Node)node.get(i); }
public int getNodeCount (){ return node.size(); }

//arc
public void addArc(Arc a){
arc.add(a);
}

public void removeArc (Arc a){}
public Arc getArc(int i){ return (Arc)arc.get(i);}
public int getArcCount (){return arc.size();}

public void setrank(String r){
rank = r;
}
public String getrank(){return rank;}

//display model
public String toString(){

String s = "\n\nModel, Name: "+name+"\tModel_ ID: "+id;
/* t1f(node != null)d{
s += "\n\nIt has following nodes"”;

for (int i=0; i<node.size(); i++){
s += node.get(%);

F
F
if(arc != null){

s += "\m\nIt has following transtion: ";

for (int i=0; i<arc.size(); i++){

s += arc.get (%)
F

}x/
return s;

}

A.13 MyJFrame.java

import java.awt.x*;
import java.awt.event.*;
import javax.swing.*;

/% *

MyJFrame. java
* Description:

165

The program is mainly to set the frame in the center of the

* Q@author @iuming Lin
* August/September 2003

public class MyJFrame extends JFrame

{

}

public MyJFrame ()

addWindowListener (new CloseWindow ());

public MyJFrame (String title)

super (title);
addWindowListener (new CloseWindow ());

public void center ()

Dimension screenSize = Toolkit.getDefaultToolkit ().
getScreenSize () ;

int screenWidth = screenSize.width;

int screenHeight = screenSize.height;

Dimension frameSize = this.getSize();

int x = (screenWidth - frameSize.width)/2;

int y = (screenHeight - frameSize.height)/2;

if (x<0){
x = 0;
frameSize.width = screenWidth;
}
if (y<0){
y = 03
frameSize.height = screenHeight;
}

this.setLocation(x,y);

class CloseWindow extends WindowAdapter

{

}

public void windowClosing (WindowEvent e){

System.out.println("closingywindow") ;
System.exit (0) ;

A.14 Node.java

import java.util.x*;

/¥ *
* Title: Node. java

* Description: The program describes a mnode, which 1is

transition diagram
* Qauthor @iuming Lin
* August/September 2002
*/

SR KKKKKKKKKK KKK KKK KKK KKKk Kk k*x***x CLASS VARIABLE

KA KKK KKK KK KKK KK KKK KK KKK KKK KN K]
class Variable

a state of a state

+ name +

+ value);

166

{
String id, name, value;
String mid;
public Variable (){
id = lloll;
name = "unknown";
value = "unknown";
}
public Variable(String n){name=n;}
public Variable(String na, String id){
name = na;
this.id = id;
}
public Variable(Variable v){
id = new String(v.id);
name = new String(v.name);
mid = new String(v.mid);
value = new String(v.value);
}
public void setMid(String m){ mid = m;}
public String getMid () {return mid;}
public void setValue(String v){value =
public String getValue () {return value;}
public String toString(){
return ("\nVariable Id: "+id +
"\tVariable Name: "
"\tMid_ value: "
"\tVariable_ Value: "
}
}
/AR AKA KA KK KKK KK KKK A KA KKK KKK KK CLASS NODE * 5 o 5 o 5 o 5 o K oA K K KK KK KK A KA KA KA KK KKK
*/
class Node

{
String id, name, mid;
Vector variable;

public Node () {
id = " u;
name = "";
mid = un;
variable = new Vector();

167

}

public Node(String na, String id){
name = na;
this.id = id;

}
public Node (Node node, String name)
{
id = node.id;
this.name = name;
mid = node.mid;
variable = new Vector () ;
for (int i=0; i<node.variable.size(); i++) {
Variable temp = (Variable)node.variable.get(i);
variable.add (temp) ;
¥
}
public Node(Node node){
id = node.id;
name = node.name;
mid = node.mid;
variable = new Vector ();
for (int i=0; i<node.variable.size(); i++) {
Variable temp = (Variable)node.variable.get(i);
variable.add (temp) ;
}
}

public void setId(String id){this.id = id;}
public String getId(){return id;}
public void setName (String na){name = na;}
public String getName () {return name;}

/**mid node’s mname**/
public void setMid(String m) {mid = m;}
public String getMid() {return mid;}

public void setVariable(Variable v){ variable.add(v);}
public Variable getVariable(int i){ return (Variable)variable.get(i);}
public Vector getVariable(){ return variable;}
public void removeVariable(int i){ variable.removeElementAt (1)
.

public int getVarRowCount () { return variable.size(); }

public boolean isIdentical(Node n){
Vector vl = this.getVariable();
Vector v2 = n.getVariable();

if (vi.size()!'=v2.size())
return false;
else{
for (int i=0; i<vi.size(); i++){
boolean identical = false;
for (int j=0; j<v2.size(); j++) {
if (Utility.sameVar ((Vector)vl.get(i), (Vector)v2.get(j)
))
identical = true;
}
if (!'identical) {

}

168

return false;

}
}

return true;

/**display nodex**/
public String toString(){

}

return ("\n\nNode_name:_ "+name+"\tNode_ ID:s_ "+this.id+"\tMid value:
"+getMid () +
"\n\nIts_ variables_are:\n"+variable) ;

A.15 RegistrationPanel.java

import
import
import
import
import

/% *

java.util.x*;
java.awt.*;
javax.swing.*;
java.awt.event .x*;
javax.swing.border.*;

* Title: RegistrationPanel. java
* Description: The program receives details of stakeholders and write them

to

Access based database
* Q@author {iuming Lin
* August 2003

*/

SR KK KKK KK KKK KKk kKK Kk ADD MODEL PANEL ¥ ¥k KKk KKk KKK KKK KKK KKK KKK KKK KKK KKK KKK KK K)

class

{

RegistrationPanel extends JPanel implements ActionListener

static final int SIZE = 10;

JLabel jl_state, jl_var, jl_id, jl_name, jl_address, jl_password;
JTextField jt_id,jt_name, jt_address;

JPasswordField jt_password;

JButton jb_submit, jb_reset;

Header header;
JTextField jt_statel[]l, jt_varl[];

JScrollPane jsp_state, jsp_var;

//constructor
public RegistrationPanel ()

try {
jpInit) ;

}

catch(Exception e) {
e.printStackTrace () ;

}

private void jpInit() throws Exception

{

169

header = new Header ();
add (header) ;

JLabel jl_title = new JLabel("Stakeholder Registration");
jl_title.setFont(new Font("Serif" ,Font.BOLD,20));
jl_title.setPreferredSize (new Dimension(ShowFrame.formX,30));
jl_title.setHorizontalAlignment (SwingConstants.CENTER) ;

add (j1_title);

add(registrationPanel ());

jsp_state = new JScrollPane(stateNamePanel());
jsp_state.setPreferredSize(new Dimension(ShowFrame.formX
-100, ShowFrame .buttonY*2)) ;
jsp_state.setBorder (BorderFactory.createTitledBorder (
BorderFactory.createEtchedBorder () ,"Pleaseenter the
ustateyvocabularies"));
add (jsp_state);

jsp_var = new JScrollPane (varNamePanel ());
jsp_var.setPreferredSize (new Dimension(ShowFrame.formX-100,
ShowFrame .buttonY*2)) ;
jsp_var.setBorder (BorderFactory.createTitledBorder (
BorderFactory.createEtchedBorder () ,"Pleaseenterthe
uvariable vocabularies"));
add (jsp_var) ;

add (buttonPanel ());
}

private JPanel registrationPanel (){
JPanel jp_registration = new JPanel();
jp_registration.setLayout (new GridLayout (4,2, 3, 5));
jp_registration.setPreferredSize (new Dimension(ShowFrame.
formX-100, ShowFrame.buttonY*3)) ;
jp_registration.setBorder (new TitledBorder(""));
jl_id = new JLabel("Stakeholder ID:,");
jl_id.setHorizontalAlignment (SwingConstants.RIGHT) ;
Database.connectDatabase () ;
jt_id = new JTextField(Database.createId("SHid","stakeholder
ll)+llll);
jt_id.setEnabled(false);
jl_name = new JLabel("Stakeholder Name:,");
jl_name.setHorizontalAlignment (SwingConstants.RIGHT) ;
jt_name = new JTextField (20);
jl_address = new JLabel("Stakeholder ,Address: ");
jl_address.setHorizontalAlignment (SwingConstants.RIGHT) ;
jt_address = new JTextField(30);
jl_password = new JLabel("Password:y");
jl_password.setHorizontalAlignment (SwingConstants.RIGHT);
jt_password = new JPasswordField (10);
jp_registration.add(jl_id); jp_registration.add(jt_id);
jp_registration.add(jl_name); jp_registration.add(jt_name);
jp_registration.add(jl_address); jp_registration.add(
jt_address);
jp_registration.add(jl_password); jp_registration.add(
jt_password) ;
Database.closeDatabase (false);

170

return jp_registration;

}

private JPanel stateNamePanel ()
{
jt_state = new JTextField[SIZE];
JPanel jp_state = new JPanel();
jp_state.setlLayout (new GridLayout (0, 2, 0, 1));
for (int i=0; i<SIZE; i++) {
jp_state.add(ShowFrame.newLabel ("State "+(i+1)+":,")
)
jt_state[i] = new JTextField (10);
jp_state.add(jt_state[i]);
}
return jp_state;

}

private JPanel varNamePanel ()

{

jt_var = new JTextField[SIZE];

JPanel jp_var = new JPanel();

jp_var.setLayout (new GridLayout(0,2,0,1));

for (int i=0; i<SIZE; i++) {
jp_var.add(ShowFrame.newLabel ("Variable "+ (i+1)+": "

)5

jt_var[i] = new JTextField (10);
jp_var.add(jt_var[il);

}

return jp_var;

}

private void insertData ()
{
String id = jt_id.getText () .trim();
String name = jt_name.getText().trim();
String address = jt_address.getText().trim();
char[] x = jt_password.getPassword();
String password = new String(x);
Database.connectDatabase () ;
Database.insertSHDetails (id, name, address, password);
insertVarName () ;
insertStateName () ;
Database.closeDatabase (false);

}
private void insertStateName ()
{
int i=0;
while (!jt_state[i].getText().trim().equals("")) {
Database.insertNodeVoc (jt_id.getText (), jt_statel[i].
getText ());
i++;
}
}

private void insertVarName ()

{
for (int i=0; i<SIZE; i++) {

}

if (!'jt_var[i].getText () .trim() .equals("")) {
Database.insertVarVoc (jt_id.getText (),
jt_var[i].getText ());

}

private JPanel buttonPanel ()
{

JPanel jp_button = new JPanel();
jp_button.setPreferredSize(new Dimension(ShowFrame.buttonX*2,

ShowFrame .buttonY));

jb_submit = new JButton("Submit");
jb_submit.addActionListener (this);
jb_reset = new JButton("Reset");
jb_reset.addActionListener (this) ;
jp_button.add(jb_submit);
jp_button.add(jb_reset);

return jp_button;

}

public void actionPerformed(ActionEvent e)
{
if (e.getSource() == jb_submit) {

this.setVisible(false);

insertData () ;
Database.closeDatabase (true);
this.setVisible(false) ;
ShowFrame .showLoginFrameFromLogout () ;

}else if (e.getSource()==jb_reset)q{
clearField () ;

}

private void clearField ()

{
jt_name.setText ("");
jt_address.setText ("");
jt_password.setText ("");
for (int i=0; i<SIZE; i++)
jt_state[i].setText("");
for (int j=0; J<SIZE; j++)
jt_var[j].setText("");
}

A.16 ShowFrame.java

//ShowFrame. java
//Written by Qiuming Lin
//August/September 2002
//sept 19 11:37am

import java.util.x*;
import javax.swing.*;
import java.awt.x*;

171

class ShowFrame
{
static final int formX = 500;
static final int formY = 500;
static final int fieldY = 22;
static final int buttonX = 100;
static final int buttonY = 50;
static JTextArea jta_process = new JTextArea();
static LoginPanel jp_login;
static AddModelPanel jp_model;
static AddNodePanel jp_node;
static AddArcPanel jp_arc;
static DisplayModelPanel jp_display;
static SHMenuPanel jp_SHMenu;
static MergeResultsPanel jp_mergeResults;
static RegistrationPanel jp_registration;
static MyJFrame frame, processFrame;

public static JLabel newLabel(String s) {
JLabel jl = new JLabel(s);
jl.setHorizontalAlignment (SwingConstants.RIGHT) ;
return jl;

}

public static void showProcessFrame (){
processFrame = new MyJFrame ("Process");
processFrame.getContentPane () .setLayout (new GridLayout (0,1));
processFrame.getContentPane () .add(new JScrollPane(jta_process));
processFrame.setSize (100,300) ;
setProcessFrameLoc () ;
processFrame.setVisible (true);

}

static void setProcessFrameLoc (){
processFrame.setlLocation((int) (frame.getLocation () .getX () +frame.
getSize () .getWidth (),

(int) (frame.getLocation () .getY()));
processFrame.setSize (300, (int) frame.getSize () .getHeight ());
processFrame.show () ;

}
/**show frames**/
static void newFrame (String title, int x, int y){
frame.setTitle(title) ;
frame.setSize(x,y);
frame.center () ;
//setProcessFrameLoc () ;
}
static void showLoginFrame () {
frame = new MyJFrame ("Stakeholder Login");
frame.setSize (formX-100,350) ;
frame.center () ;
frame.setDefaultCloseOperation(MyJFrame.EXIT_ON_CLOSE);
jp_login = new LoginPanel();
frame.getContentPane () .add(jp_login);
frame.setVisible (true) ;

}

static void showLoginFrameFromLogout () {
newFrame ("Stakeholder Login", formX-100,350) ;

173

jp_login = new LoginPanel();
frame.getContentPane () .add(jp_login);
frame.show () ;

}
/% static votd showAnalystFrame (){
newFrame ("DSL Merging Project - System Matintenance", formX
-100,350) ;

frame.getContentPane ().add (new AnalystPanel ());
frame. show();

}*/

static void showSHMenuFrame (){
newFrame ("DSL ,Merging Project -, Menu" ,formX-100,350) ;

jp_SHMenu = new SHMenuPanel();

frame.getContentPane () .add (jp_SHMenu) ;
frame.show () ;

}

static void showAddModelFrame () {
newFrame ("DSL ,Merging Project - ,Add Model" ,buttonX*6, 350);
frame.getContentPane () .add(jp_model) ;
jp_model.setVisible (true) ;
frame.show () ;

}

static void showAddArcFrame (){
newFrame ("Add_ Transition",formX+100,formY-150) ;
jp_arc = new AddArcPanel();
frame.getContentPane () .add(jp_arc);
jp_arc.setVisible(true);
frame.show () ;

}

static void showAddNodeFrame () {
newFrame ("DSL Merging Project - ,Add, State" ,formX+150, formY-150) ;
jp_node = new AddNodePanel();
frame.getContentPane () .add(jp_node);
jp_node.setVisible (true);
frame.show () ;

}

static void showDisplayModelFrame (){
newFrame ("DSL Merging_ Project,-,Display Models" ,formX+100,300) ;
jp_display = new DisplayModelPanel();
frame.getContentPane () .add(jp_display) ;
jp_display.setVisible (true);
frame.show () ;

Y/xx/

static void showMergeResultsFrame (){
newFrame ("DSL ,Merging Project - ,Result 0f Merge",formX+100,formY-150)
jp_mergeResults = new MergeResultsPanel();
frame.getContentPane () .add(jp_mergeResults) ;
jp_mergeResults.setVisible (true);
frame.show() ;

static void showRegistrationForm(){
newFrame ("DSL ,Merging, ,Project -, Stakeholder ,Registration",
formX, formY+100);
jp_registration = new RegistrationPanel();
frame.getContentPane () .add(jp_registration);
jp_registration.setVisible(true);

}

frame.show () ;
}
static void showAnalystMenuFrame ()

{

newFrame ("DSL,Merging Project -, Analyst Menu",formX-100,350) ;

frame.getContentPane () .add(new AnalystMenuPanel());
frame.show () ;

}

A.17 Utility.java

//Uitility. java
//Written by @iuming Lin
//August/September 2002
//sept 19 11:37am

import java.util.x*;
import javax.swing.*;

class Utility

{

static final int SIZE=10;

static Node node = new Node();

static Model model = new Model();
static Vector mergedRanking;

static String shid = "";

static final String 0P = "DeltaMin";
static boolean newSH = false;

/**%get data from databasex**/

public static JComboBox getNode ()

{
Vector v = new Vector();
for(int i=0;i<Utility.model.node.size () ;i++){
v.add ((i+1)+" . "+Utility.model.getNode (i) .name) ;

}
if (v != null)

return (new JComboBox(v));
else

return null;

public static JComboBox getNodeName (String shid)

{
Vector nodeName = Database.getSHNodeName (shid);
for (int i=0; i<nodeName.size(); i++) {

nodeName .add ((i+1)+" . "+nodeName.get (i));

}
if (nodeName !'= null)

return (new JComboBox(nodeName)) ;
else

return null;
}
public static JComboBox getVarName (String shid)
{
Vector varName = Database.getSHVarName (shid);
for (int i=0; i<varName.size(); i++) {

174

varName.add ((i+1)+" . ,"+varName.get (i));

}
if (varName != null)

return (new JComboBox(varName));
else

return null;

}

R KKKKKKKK KKK KKK X*%x*xthe above methods are in use
KA KKK KKK KK KKK KK KKK KK KKK KKK KN K]

public static Vector getRank(Vector modelId)

{
Vector v = new Vector ();
for (int i=0; i<modelId.size(); i++){
v.add (Database.getRank ((String)modelId.get (i)));
}

return v;

public static Vector getConsModelRankSet (String consId)

{
Vector modelld = Database.getConsModelId(consId);
return (getRank(modelId));

}

public static Vector getAllConsModelRankSet ()
{
Vector v = new Vector();

}

Vector consModelId = getConsModelId();

for (int i=0; i<consModelld.size(); i++){
v.add (getRank ((Vector) consModelId.get (i)));

}

return v;

public static Vector getConsModelId()//get all sets of consistent

modellId
{

Vector consM = new Vector();
Vector consId =Database.getConsId();
for (int i=0; i<comnsId.size(); i++){

consM.add(Database.getConsModelId ((String) consId.get(i)));

}

return consM;

public static Vector getMergedId(String rank)({
int size = Integer.parselnt(rank);
Vector v = Database.getMergedId("0");
if (size>0) {
for (int i=0; i<size+1; i++)
v.add (Database.getMergedId (i+""));
}
return v;
}
public static Vector getAllModel (){
Vector shid = Database.getSHid ();
Vector modelId = getAllSHModelId(shid);
Vector modelIdSet = concatAllModelIds (modellId);
Vector m = getAllModel (modelIdSet);
return m;
}
public static Vector getAllModelIteration(String rank){

175

176

Vector v = new Vector();

System.out.println("rank,=,"+rank);

Vector id = getMergedId(rank);

v.add (id);

Vector shid = Database.getNewSHid ();

Vector modelId = getAllSHModelId(shid);

for (int i=0; i<modelld.size(); i++) {
v.add (modelId.get (i));

}

Vector modelIdSet = concatAllModelIds (v);

Vector m = getAllModel (modelIdSet);

return m;

}
public static Vector getModels(Vector modelId)//get one set of
models
{
Vector v = new Vector();
for (int i=0; i<modelId.size(); i++) {
v.add ((Model)Database.getModel ((String)modelId.get (i
)5
}
return v;
}
public static Vector getAllModel(Vector modelId)//get all sets of
models
{
Vector v = new Vector () ;
for (int i=0; i<modelld.size(); i++) {
v.add ((Vector)getModels ((Vector)modelId.get(i)));
}
return v;
}

public static Vector getAllSHModelId(Vector shid)//get sets of model
td of all the stakeholders

{
Vector v = new Vector();
for (int i=0; i<shid.size(); i++) {
Vector modelId = Database.getSHModelId ((String)shid.
get (1)) ;
v.add (modelId);
}
return v;
}

public static Vector concatAllModelIds(Vector m){//<input a vector of
vector of model ID of all stakeholders
Vector v = concatModelIds ((Vector)m.get(0), (Vector)m.get (1)
)
if (m.size () >2) {
Vector output = new Vector();
for (int i=2; i<m.size(); i++) {
concatModelIds (v, (Vector)m.get (i), output);
v = output;
}
return output;
}else

return v;

}

177

public static Vector concatModelIds(Vector ml, Vector m2, Vector m)
//ml is a vector of wector, m2 is vector.
{
/7
add element of m2 to element wector of ml
for (int i=0; i<ml.size(); i++) {
for (int j=0; j<m2.size(); j++) {
Vector v = new Vector ();
Vector v3 = (Vector)ml.get(i);
for (int k=0; k<v3.size(); k++) {
v.add(v3.get (k));
}
v.add(m2.get (j));
//System.out.println("second v = "+v);
m.add(v);
}
}
return m;
}
public static Vector concatModelIds(Vector ml, Vector m2)
{
Vector m = new Vector () ;
for (int i=0; i<ml.size(); i++) {
for (int j=0; j<m2.size(); j++) {
Vector m3 = new Vector();
m3.add (ml.get (i));
m3.add (m2.get (j));
m.add (m3) ;
}
}
return m;
}
public static void insertConsModel (String consId, Vector m)
{
for (int i=0; i<m.size(); i++) {
Database.insertConsModel (consId, ((Model)m.get (i)).id
)
}
}

public static void showModel (String model)

{

JTextArea temp = new JTextArea(300,300);

temp.append (model) ;

JScrollPane jsp_model = new JScrollPane(temp);

JFrame jf = new JFrame("Display_ Model");
jf.getContentPane () .add(jsp_model);
jf.setDefaultCloseUperation(JFrame.DISPOSE_UN_CLOSE);
jf.setSize (ShowFrame.formX ,300);

jf.setVisible (true);

/**check whether Node n exists in Model m*xx/
static Node findNode(Node n, Model m)

178

{
for (int i=0; i<m.getNodeCount (); i++)
if (n.getMid () .equals(m.getNode (i) .getMid()))
return m.getNode (i) ;

return null;

static boolean isNewSH(String loginSHid)
{
boolean newSH = false;
if (Database.getMergedId().size () !=0) {
newSH = true;
Vector shid = Database.getSHid();//get shid from
model_sh
for (int i=0; i<shid.size(); i++) {
if (loginSHid.equals ((String)shid.get(i))) {
newSH = false;
break;

}
}
if (newSH) {
return true;
}else
return false;
}
static boolean isNewSH(){
boolean same = true;
Vector loginSHid = Database.getLoginSHid ();
Vector shid = Database.getSHid();//from table model_sh
for (int i=0; i<loginSHid.size(); i++) {
same = true;
for (int j=0; j<shid.size(); j++) {
System.out.println (" (String)shid.get (j)=_"+(
String)shid.get (j));//
VI 202000 0 0 0 A4
if (' ((String)loginSHid.get (i)).equals ((
String)shid.get (j))) {
same = false;
break;

3
X
System.out.println("same,=,"+same);//
L1717 7777777777777 777777777777/ 7777/
if (!same) {
return true;
}
return false;
}
/**compare ome wvariable with another for identicality**/
public static boolean sameVar(Vector vl, Vector v2)
{
boolean equal=false;
if (vi.size()!=v2.size())
return false;
else {

179

for (int i=0; i<vi.size(); i++){
equal = false;
for (int j=0; j<v2.size(); j++){;
if (((Variable)vl.get(i)).getMid () .equals(((Variable)v2.
get(j)) .getMid O)){
equal = true;
break;

}

if (!equal)
return false;

}
}
return true;
}
public static boolean atomOk(Vector v)
{
String compared;
int j=0;
while (true&&j<v.size)){
compared = (String)v.get (j++);
if (!equalAtom(compared,j, v))
return true;
}
return false;
}
public static boolean equalAtom(String s, int j, Vector v)
{
for (int k=j; k<v.size(); k++)
if (s.equals(v.get(k)))
return true;
return false;
}
public static boolean isDigit(String s)

{
for (int i=0; i<s.length(); i++)

if (!java.lang.Character.isDigit(s.charAt(i)))return false;
return true;

	University of Wollongong - Research Online
	Cover
	Copyright warning
	Title page
	Table of Contents
	Abstract
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Appendix A

	Please see print copy for Figure 2:
	1: Please see print copy for Figure 2.1

