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Abstract

Network application has become a part of our everyday life. With the increasing of
convenience and popularity of network, more and more malicious users utilize network
to obtain their vicious intentions. In order to protect network users’ information secu-
rity and privacy, various intrusion detection systems were proposed and developed in
the last decade. Intrusion detection as an emerging technology has made great achieve-
ments in theory and practice, whose aim is to protect the confidentiality, integrity or
availability of a system or resource. As a complex system, the development of an in-
trusion detection system includes many aspects, such as system architecture design,
design and implementation of system components, system test in real cases, and so on.

Though many intrusion detection systems have been presented, most of them mainly
focus on one or two aspects of intrusion detection systems. This thesis aims at providing
a rudimentary solution for an agent-based Peer-to-Peer distributed intrusion detection

framework. The major contributions of this thesis include the following five aspects.

1. Introducing a novel Peer-to-Peer framework which involve different agents on

different peers;

2. Designing functionalities of each agent in the framework by using JACK/UML
approach;

3. Representing knowledge of each agent about intrusion and detection according

to employing ontology;

4. Developing an efficient task allocation protocol which is used to coordinate dif-

ferent hosts in the system to collaboratively detect distributed attacks;

5. Implementing and testing the framework in a reasonable manner by utilizing an

agent development environment, i.e. JACK™M.

In summary, this framework integrates agent technology, Peer-to-Peer architecture,

ontology technique and a task allocation protocol. Implementation and experiments



show the potential applicability of this framework to real cases. In addition, this
framework could help in development of a good intrusion detection system in open and

complex environments.
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Chapter 1

Introduction

Since the last decade, security issues, such as network intrusions, have become more and
more serious with the growth of computer and network applications. Intrusion is a set
of actions that attempt to compromise the confidentiality, integrity or availability of a
resource. In order to prevent information from malicious attackers, Intrusion Detection
Systems (IDSs) are used to detect various intrusions in network environments.

After Anderson [3] and Denning [11] presented the very first prototypes of IDSs,
many works have been done on intrusion detection. Recently, with the development of
artificial intelligence, multi-agents systems and intelligent agent technology provide a
powerful paradigm for the modeling and developing of complex systems. Subsequently,
many studies are undertaken on agent-based intrusion detection systems. The archi-
tectures of conventional agent-based IDSs are centralized which involve a central unit
to monitor the entire system, such as [6], [31], [38], [81], and [84]. The centralized
architectures have two obvious drawbacks. Firstly, the centralized forms may lead to a
single point failure, because the failure of the central analyzer (e.g. the central analyzer
is cracked by an attacker) would cause the whole system to be destructed. Secondly,
the central unit is easy to become the bottleneck of the whole system when there are
many simultaneous client requests. In an effort to overcome the two disadvantages,
some researchers proposed agent-based Peer-to-Peer (P2P) architectures for IDS, e.g.
[55] [79] [82]. However, most of these P2P architectures only allow hosts in a network
to obtain information from their one-hop (direct linked) neighbors. This limitation
may lead a system to make inaccurate decisions. The aim of this thesis is to provide
a novel agent-based P2P framework for distributed intrusion detection, in which hosts
derive information not only from the directed neighbors but also other indirect linked
hosts if needed. Thereafter, the detailed design and knowledge representation of each
agent in this framework are presented in this thesis as well. Furthermore, an efficient
task allocation protocol which is utilized to allocate detection tasks among hosts is also

introduced.
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The goal of this chapter is to provide an overview of intrusion detection and the ar-
chitectures of agent-based intrusion detection systems. Section 1.1 describes intrusions
and their detections. Section 1.2 demonstrates the architectures and mechanisms of
some current agent-based IDSs. Section 1.3 depicts the research concerns that remain
open for agent-based IDSs in a P2P environment. Section 1.4 outlines this thesis, and
also explains the outcomes of this research and how these outcomes are embodied in
this thesis.

1.1 Intrusion and Intrusion Detection

A significant security problem for computer systems and networks is intrusion by users
or softwares. User intrusion can take the form of unauthorized login to a machine or
an authorized user illegally acquires privileges which are beyond those that have been
authorized to that user. Software intrusion can be the form of a virus, worm, or Trojan
horse. This thesis focuses on user intrusion.

From Internet Security Glossary [67], security intrusion and intrusion detection are

defined as follows, respectively.

e Security Intrusion: An action, or a set of actions, which attempt(s) to gain access
to a system or a resource without legal privileges to do so, or to prevent legitimate

users from being served.

e Intrusion Detection: A security service that attempts to find suspicious events
or actions which constitute an intrusion, and to provide real time warnings if

possible.

In Subsection 1.1.1, a detailed description of various intrusions is provided, while

an overview regarding intrusion detection is shown in Subsection 1.1.2.

1.1.1 Intrusion

There exist numerous categories of intrusions. In order to exhibit various intrusions
systematically, much attention has been paid on attack taxonomies. Landwehr et
al. [36] provided a taxonomy which is categorized according to genesis (how), time
of introduction (when) and location (where). They contain subclasses of: walidation
errors, boundary condition errors and serialization errors, as a means of effecting an

intrusion.
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As detailed by McHugh [43], the common character of most taxonomies is that
the categorization is based on the attacker’s point of view. Thus, McHugh suggested
a different way, which classifies attacks according to protocol layer, i.e. whether a
completed protocol handshake is needed or not. Similarly, Guha [22] also provided
an alternative categorization approach which relies on analysis of each layer of the
TCP/IP protocol stack.

A taxonomy, which is based on the consequence of attacks, is proposed by DARPA
Off-Line Intrusion Detection Evaluations [24] [41]. From this taxonomy, the sub-
categories include Denial of Service (DoS'), Remote to Local (R2L), User to Root (U2R)

and Probe. Each of the four sub-categories are described as follows:

e Denial of Service (DoS): this attack utilizes any methods which can overload or
crash some service in order to prevent other legitimate users from being served,
e.g. SYN flood attack [64]. More details with regard to DoS attack can be found
in [32].

e Remote to Local (R2L): unauthorized access from a remote machine to local

ones, e.g. guessing password;

e User to Root (U2R): unauthorized access to local superuser (root) privileges,

e.g., various “buffer overflow” attacks;

e Probe: surveillance and other probing, e.g., port scanning.

Joshi and Undercoffer [27] utilized ontology to classify attacks based on the following

four criteria:

1. Target of Attack: the system or network component that is the target of an
attack. The components may include the network protocol stack, the operation

systems, applications and so on.

2. Means of Attack: the methods that are used by the attacker. This category
involves input validation errors (buffer overflows, boundary condition errors, etc.),

exploits and configuration errors.

3. Consequences of Attack: the end result of the attack. This category consists of
DoS, R2L, U2R and Probe as described above.

4. Location of Attacker: the location of the attacker, namely that whether the at-

tacker is from the network or a local host.
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In addition, Joshi and Undercoffer [27] also presented a complete ontology in a
graphical form with Resource Description Framework (RDF) [58], which is easy to read
and understand as shown in Figure 1.1. An ontology [21] is “an explicit specification
of a conceptualization”. Ontology is employed to support the sharing and reuse of
formally represented knowledge among systems, such as Artificial Intelligence (AI)
systems. Details about ontology will be depicted in Chapter 4.

The construction in Figure 1.1, presented in [27], is based on the notion that an
intrusion is effected by some inputs from an attacker. These inputs are caused by
some means and directed to some system components, and finally result in some con-
sequences. Details regarding the notations in Figure 1.1 will be elaborated in Chapter
4. Tt should be noted that one attack instance could belong to two or more classes
based on different criteria. For example, SYN flood attack [64] can be categorized into
Denial of Service, if the criterion of classification is Consequences of Attack; meanwhile
SYN flood attack [64] can also be labeled as T'CP Layer, if the classification is based
on Target of Attack.

Intrusion

Ay pawajiy

__Consequence

Fuisnny

T
Network
Protocol

Ry

Validation
Error

Figure 1.1: Attack Classification with Ontology

Generally, the objective of an intruder is to gain the access to a system or a resource,

or to increase the intruder’s privileges accessible on a system. In most cases, the target
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system has been protected by a username and password combination. Since username
is usually public, with the knowledge of a legitimate user’s password, an intruder can
log in to a system and execute all the privileges which are authorized to that legitimate
user. Therefore, the first step of the intruder is to guess the password. Alternatively,
the goal of an intruder might be to disable a system or a service. In this case, the
intruder may employ various DoS attacks to make the target system inefficient, and
thus the legitimate users are unable to be served. The instances of various DoS attacks
can be found in [46].

In order to increase the probability of successful intrusion and conceal the traces,
distributed attacks, which involve multiple decentralized host domains, are becoming
a greater concern. Frincke [17] divided distributed attacks into the following three

categories.

1. Simple attacks: Attacks are constituted by a series of actions (automated or
interactive) initiated from a single host. This category actually includes those

attacks aimed at a single host.

2. Repeated pattern attacks: Attacks are formed from a sequence of simple attacks,
each independently taking place on a separate host or network and potentially
issued from one or more host(s). Some network attacks, such as distributed port

scanning, usually fall into this category.

3. Multipoint attacks: Attacks are combined from a set simple attacks. Compared
with Repeated pattern attacks, individual actions may take place on different hosts
and be launched from one or more distinct hosts. This type of attacks is more
insidious compared with the other two categories. The attack is still widespread,
but different activities target at different hosts, rather than a repetition of the

same activity at victim hosts.

The following three examples are distributed attacks which can be matched with the
aforementioned three types, i.e. Simple attacks, Repeated pattern attacks and Multipoint

attacks.

1. Doorknob-Rattling Attack [71]: For this attack, the intruder tries a very few
username and password combinations on several hosts that results in very few
failed login attempts (e.g. guessing password) on each host. This type of attack
is difficult to be detected unless the data related to failed login attempts are

collected and correlated from several hosts in the network. This attack belongs
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to the second category, i.e. Repeated pattern attacks. Figure 1.2 depicts the
paradigm of this attack.

Host 1 Host 2
Fermote Host | username | No. of failures Remote Host | username | Mo, of failures
153.86.0.1 fov 7 153.86.0.1 test [
17015 % | administrator 5 190.10.x.% root 7
Host 3
Fermote Host | username (Mo, of failures
153.86.01 guest 8
16273 xx admin 4
L 4 l v
Remote Host Tsernames list Victirn hosts
153.86.0.1 fov, test, guest Host1, Host 2, Host 3

Figure 1.2: A Paradigm of Doorknob-Rattling Attack

In Figure 1.2, there are attempts from a remote host, whose IP address is
153.86.0.1,to login the three hosts, namely Host 1, Host 2 and Host 3. According
to the view of any one host, there are just several failed login attempts, and some
hosts may not even consider this as a suspicious activity since the threshold with
regard to the number of failed login attempts is different for each host. However,
if the relevant data about failed login attempts could be correlated from several
hosts, the subtle Doorknob-Rattling Attack would be discovered.

2. Chain/Loop Attack [34]: In Chain attack, the attacker moves across several hosts
in order to hide his/her original trace, which is the host this attacker first suc-
cessfully logged on. The result of this attack is in a chain of connection through
many hosts. In Loop attack, the chain of connection forms a loop which makes
it more difficult to trace the origin of connection. This attack is an instance of

Simple attacks. Figure 1.3 demonstrates the paradigm of this attack.

In Figure 1.3, it can be seen that at time ¢1, a remote host with IP address
153.86.0.1 successfully connected to Host 1. Then, at time ¢2, a connection was
created between Host 1 and Host 2. Thereafter, a link was initiated from Host
2 to Host 3 at time t3. Finally, at time ¢4, the user of Host 4 logged on Host
1 successfully. It is similar with Doorknob-Rattling Attack that any one host in
the network cannot find out the Chain/Loop Attack only from its local record.

Several hosts have to be cooperated to reveal this attack.
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Connected from

(time stamp)

153.86.01 (t1)

Host 3 (t4)

Host 1 Host 2
Connected to Connected from Connected to
(tirme starmp) (time stamp) (time stamp)
16832 %% (%) 1301222 %) | 127.18.5= %
Host 2 (t2) Host 1 (t2) Host 3 (t3)
Host 3
Connected from Connected to

(time starmp)

(time stamp)

146,38 2.5 (%)

140.15 2. (%)

Host 2 (t3)

Host 1 (t4)

Figure 1.3: A Paradigm of Chain/Loop Attack

3. Mitnic Attack [50]: For this attack, an intruder first launches one type of DoS
attacks (such as SYN flood attack [64]) to prevent a trusted host (e.g. HostA)
from accepting incoming TCP connection requests (i.e. SYN packets). Then, the
intruder tries to connect to another host (say HostB which trusts HostA) by
spoofing HostA’s IP address and TCP port, which have been flooded, as source
IP and source port. HostB is the intruder’s real target. This attack can be
classified into the third category, namely Multipoint attacks. Figure 1.4 shows
the paradigm of this attack.

Figure 1.4 displays the steps which will be followed by the attacker to initiate the
Mitnick Attack. In this attack, Host A can detect a type of DoS attacks, while
Host B may disclose a TCP sequence number prediction attack. Thus, both Host
A and Host B cannot discover the Mitnic Attack, if they only check their own
local records. This distributed attack is more insidious than Doorknob-Rattling

Attack and Chain/Loop Attack, as it utilizes two different types of attacks.
This thesis uses the above three attacks as instances to test the proposed framework,

since they are representatives of common distributed attacks and easy to simulate.

1.1.2 Intrusion Detection

In this subsection, the background about intrusion detection will be introduced. Ac-

cording to [72], intrusion detection can be classified as follows:
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Host A

%&Qﬂ‘ﬁf
F Y 5t g
Step 4: Hast Blsends Synfack to

Hast A i regponse to Step 3, "
o Attacker

while Aost A tannot respond to 2

Ffast B due to [Byn Flood attaclk

Host B

Figure 1.4: A Paradigm of Mitnick Attack

1. Host-based Intrusion Detection monitors any suspicious activities and events
which occur on a single host. By utilizing host-based intrusion detection, both
external and internal intrusions can be detected, while internal intrusions are
usually difficult to detect with network-based intrusion detection. There are gen-

erally two approaches within host-based intrusion detection.

o Anomaly Detection is based on detecting the deviation of the profile of le-
gitimate users’ behavior. The profile is formed according to data collection
and correlation over a period of time, while detection methods against the

profile are usually statistical ones.

e Signature Detection relies on a set of predefined rules, which are employed
to observe events occurring in the system, and then result in a decision that

whether an activity is suspicious or not.

2. Distributed Host-based Intrusion Detection: Traditionally, host-based intrusion
detection focused on a single host. However, many distributed attacks hap-
pened in recent years, whose targets may include several hosts, such as Doorknob-
Rattling Attack, Chain/Loop Attack and Mitnick Attack. In order to detect these
attacks, data collected and correlated from multiple hosts are needed. Therefore,
distributed host-based intrusion detection is necessary, which is employed to co-

operate and coordinate individual suspicious activities happening on each single
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host in the network.

3. Network-based Intrusion Detection monitors and analyzes network traffic to iden-
tify suspicious activities. Network-based intrusion detection may involve several
sensors distributed in different network segments. The sensors observe network
transport and render their observation to one or more manager(s) (generally hu-
man interface) to analyze and lead to a decision regarding whether or not there

is an intrusion in the network.

The above three categories of intrusion detection are sometimes overlapping and
complementary. Thus, they are often collaborated together to perform intrusion de-
tection. A distributed host-based IDS makes use of several host-based IDSs that can
cooperate and communicate with each other. A network-based IDS focuses on network
events and network devices. Distributed host-based IDSs and network-based IDSs can
then be combined to monitor different parts of a network system and coordinate in-

trusion detection and response. The framework proposed in this thesis assembles a
distributed host-based IDS and a network-based IDS.

1.2 Agent-Based Intrusion Detection Systems

According to [10], a hierarchical IDS generally consists of three logical components,
i.e. sensors, analyzers and managers. Sensors are located at the bottom level of the
hierarchy and output data to analyzers, which in turn report up to a manager, located

at the top most level of the hierarchy.

e Sensors: Sensors (sometimes called as monitors or detectors) are responsible
for collecting data and preprocessing the data in a common format for further
analysis. Different IDSs usually have different common formats. The input for
a sensor may be from any part of a system, which includes network packets, log
files, and system call traces. Sensors collect and forward this information up to

the analyzer.

o Analyzers: Analyzers receive input from one or more sensors or from other ana-
lyzers. The analyzer is responsible for determining if an intrusion has occurred.
The output of this component is an indication that an intrusion has occurred or
not or the confidence of an intrusion happening. The output may include evi-
dences which support the conclusion that an intrusion occurred. The analyzer

might provide guidance about what actions to take against the intrusion.
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e Managers: Managers (sometimes called as directors or consoles) of an IDS man-
age the whole IDS, including controlling and configuring the behavior of the

system and/or reporting the output to security officers.

Thus, according to the above description, the standard architecture of an IDS can

be graphically represented in Figure 1.5.

Manager

/

Analyzer 1

h
Sensor 2

Sensor 1 Sensor 4
Sensor 3

LAN 1

Analyzer 2

Sensor 5
Sensor 6

Sensor 7

Figure 1.5: A Standard Architecture of IDS

With the development of artificial intelligence, many studies have been undertaken
on agent-based intrusion detection systems. Russell and Norvig [61] defined that an
agent is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators. Particularly, a software agent
can receive keystrokes, file contents, and network packets as sensory inputs and then
acts autonomously on the environment by displaying on the screen, writing files, and
sending network packets. Software agents are widely used in intrusion detection, as

they have the following benefits [4].

1. Agents can be added to and removed from a system without affecting other com-
ponents in the system, since they are independently running, i.e. autonomous,
entities. Therefore, when new agents join in an IDS or existing agents leave an
IDS, there is no need for the IDS to restart.

2. Agents can reconfigure themselves without having to restart by using some mech-

anisms.

3. Before including agents into a complex environment, they can test on their own.
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4. Many different agents can cooperate to form a group to fulfill a complex task.
Each agent in the group performs simple functions and exchanges information
with each other to obtain more complex results, which are difficult to derive by

any one of these agents.

There have been several agent-based systems for intrusion detection, which are
worthy to look through. In [6], a distributed intrusion detection framework based on
autonomous and mobile agents was presented. It makes use of an administrator agent
to create analyzer agents and send them toward the stations to be analyzed. There is a
crisis agent to create a new administrator agent if the administrator falls in breakdown.
In a large network, the administrator needs to create many analyzer agents and send
them out. This is a heavy burden for the administrator, and the administrator will
become the bottleneck of the whole system. Hence, the scalability might be an issue.
DIDMA [31] is a distributed intrusion detection system using mobile agents. It is
aimed at building a distributed IDS which places static agents at every host and the
network along with a centralized Mobile Agent Dispatcher and IDS console. Although
it has better scalability and is platform independent, it still faces a security problem,
namely that if a hacker cracks mobile agent dispatcher or IDS console, the whole system
will fail. The Multi-agent based Intrusion Detection Architecture [84] is a hierarchical
architecture too. It consists of four types of agents, including basic agent, coordination
agent, global coordination agent, and interface agent. If a basic agent encounters a
complex task it is unable to handle, a coordination agent is created dynamically. The
coordination agent communicates with other basic agents and directs them to perform
certain functions cooperatively. When the coordination agent encounters a complex
task it is unable to handle, it will give a report to the global coordination agent. In
this system, the global coordination agent might be a weakness for intrusions, because
if the global coordination agent was cracked, no other agents could replace it and the
system would break down.

The above three proposed architectures of agent-based IDSs, ie. [6], [31] and
[84], have centralized architectures, which have the risk of single point failure and
poor scalability. In order to overcome these two drawbacks, P2P architectures of
agent-based IDS are presented. In [55], a P2P intrusion detection system based on
mobile agents is introduced. This IDS gives up traditional hierarchical architecture.
Hosts in a LAN monitor each other. They periodically send mobile agents to their
neighbors to detect intrusions. When anomalous behaviors are detected, the observer

neighbor initiates a voting process. It sends a mobile agent with a voting sheet to
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other neighbors of the compromised host for a cooperative decision. This system can
completely avoid single point failure problem. However, each host in the network has to
store critical information of its neighbors which is a burden for each host. In addition,
periodic detection may result in network overload increasing and have negative impact
on the system overall performance. The basic principles of the system proposed in
[79] are similar to those of the system described in [55]. According to [79], host in the
network dispatches a mobile agent to its neighbors only when a suspicious incident is
observed in that host instead of periodically sending mobile agents to its neighbors.
Although this system overcomes some drawbacks of the one proposed in [55], it still
has a few limitations. Because the host in the network only asks its neighbors for
collaborative decision, it might not detect some specific distributed attacks, which may
simultaneously attack multiple hosts in a network, such as Doorknob-Rattling Attack
and Mitnic Attack.

As introduced in the previous paragraphs, most current agent-based IDSs have some
limitations and drawbacks, specifically on the aspects of single point failure and detec-
tion accuracy. The framework, introduced in this thesis, adopts a P2P architecture,
which can avoid single point failure. Furthermore, Intrusion detections in this frame-
work are not only relied on direct-linked neighbors of a host, but also other hosts in
the network if necessary. In this way, the original host can obtain further information

to achieve a more accurate decision.

1.3 Research Concerns

The research concerns regarding agent-based P2P intrusion detection framework in-

clude:

1. A general architecture which outlines the components of the framework and func-
tions of each component. For an agent-based architecture, the components are
various agents which take on different tasks. Many architectures have been pro-
posed. Most of them are based on centralized control. Although few ones are
based on P2P style, they have other limitations as aforementioned. The archi-
tecture presented in this thesis is also based on P2P style, but alleviates the

drawbacks which exist in current P2P based architectures.

2. Detailed design of each component (agent) in the framework. Even though many

research work about application of intelligent agents in intrusion detection has
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been done during the last decade, very few provide detailed design of each agent
in proposed systems. In this thesis, the design and implementation of Belief-
Desire-Intention (BDI) agents in our framework are introduced. A BDI agent
[56] is able to continuously reason about beliefs, goals, and intentions and act

accordingly. Detailed description of BDI agents will be provided in Chapter 3.

3. Knowledge representation of each agent in the framework. In a distributed do-
main, each individual IDS has to implement and interpret the rules with the same
detection language in order to cooperate with each other. However, since IDSs
can be developed by different vendors and different vendors may exploit differ-
ent detection languages, the interoperability among various IDSs may become an
obstacle. This shortcoming might be mitigated by using ontology technique, as
ontology provides software systems with the ability to share a common under-
standing of information and enables software systems to have greater capability
to reason the information. Many research efforts on application of ontology in
network security have been done. Nevertheless, they mostly stop at initial pro-
posal or focus on framework design without detailed representation of intrusion
or attack and relevant detection knowledge with ontology. In this thesis, the de-
sign of ontology based knowledge representation for each agent in our framework

is proposed.

4. Task allocation can be employed in our framework for detecting distributed at-
tacks. When detecting some distributed attacks, e.g. Doorknob-Rattling, Chain-
loop Attack and Mitnic Attack (mentioned in Subsection 1.1.1), the information
from only one host is not sufficient. The host, which initiates a distributed de-
tection, has to allocate detection tasks to other hosts. Thus, an efficient task
allocation protocol is necessary. Task allocation in distributed environments has
been studied thoroughly, but very few published works considered P2P envi-
ronments. In addition, many task allocation protocols proposed in distributed
environments assumed that there is a central manager which takes charge of task
allocation. In this thesis, a novel task allocation protocol which is suitable for

intrusion detection in P2P environments is presented.

5. Effective detection strategies are worthy to study in order to handle the current

attacks and the variants of existing attacks.

6. Agent negotiation and coordination models could be used for task allocation in

P2P environments for intrusion detection.
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7. The communication security among different hosts in a P2P environment should
also be considered, which involves message authentication and data integrity
check.

1.4 Thesis Structure and Outcomes

This thesis starts with a presentation and review of developments in intrusion detec-
tion, and describes three specific distributed intrusions which are utilized to test our
proposed framework. The difficulty of detecting distributed attacks in P2P environ-
ments is that the victim of such an attack is not only one host and any host does not
have a global view of the P2P environments. The research concerns of this area are
considered to be eight-fold (recall Section 1.3). The first five are tackled in this thesis
as a part of the full approach to intrusion detection in P2P environments.

The major contributions of this thesis involve:

1. An agent-based P2P framework for distributed intrusion detection is proposed,

which overcomes the disadvantages existing in the current related works;

2. Each agent in the framework is designed and implemented, which has not been

undertaken by most related research;

3. Knowledge of each agent is represented by exploiting ontology which can ease

communication and information exchange among different hosts;

4. An efficient task allocation protocol is presented for assigning detection tasks

among various hosts in P2P environments.

The rest chapters of this thesis are organized as follows:

Chapter 2 reviews current related works, which include architectures and design
of agent-based intrusion detection systems, intrusion detection representation mecha-
nisms, task allocation protocols, and resource retrieval in P2P environments.

Chapter 3 introduces an agent-based P2P framework and its detailed design for
distributed intrusion detection. This framework does not have a central controller
which can avoid single point failure, and allows hosts to request help from not only
direct linked neighbors but other hosts if needed.

Chapter 4 gives an ontology-based knowledge representation for each agent in the
proposed framework. By making use of ontology, the capability of communication and

information exchange among agents in our framework is enhanced.
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Chapter 5 presents an efficient task allocation protocol, which is based on Contract
Net Protocol [69] but more suitable for task allocation in P2P environments.

Chapter 6 demonstrates the test of our framework which is implemented by using
the tool JACK™M (Java Agent Compiler and Kernel) [23], and discusses the test results.

Chapter 7 concludes this thesis, with providing advantages and limitations of this

study, and presents the future work.



Chapter 2

Related Research and Literature Review

The agent-based framework proposed in this thesis includes four parts, i.e. general
architecture, detailed design of each agent, knowledge representation for each agent,
and task allocation protocol for detecting distributed intrusions. In this chapter, we
first review the related research about the architectures of agent-based IDSs and agent
design in Section 2.1, and then introduce the literature regarding knowledge represen-
tation for intrusion detection in Section 2.2. In Section 2.3, we discuss the relevant
task allocation protocols in distributed environments and resource search mechanisms

in P2P environments. Finally, this chapter is summarized in Section 2.4.

2.1 Architecture and Design of Agent-Based Intru-

sion Detection Systems

There are numerous agent-based architectures proposed for intrusion detection re-
search. This section depicts several typical architectures.

The AAFID project [4] proposed a distributed IDS architecture including three
components that are various agents, transceivers and monitors. Agents are responsible
for detecting suspicious events on a protected host and each agent is for a specific type
of attack. Agents report their findings to the appropriate transceiver. Transceivers
are per-host entities that oversee the operation of all the agents running in their host.
Transceivers also report their results to one or more monitors which surveil the opera-
tion of several transceivers. In that case, monitors have the ability to access network-
wide data and are able to perform high-level correlation to detect intrusions which
involve several hosts. The shortcoming of this architecture is that a transceiver has
to report to more than one monitors to provide redundant information to resist the

failure of one of the monitors.

16
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Qin et al. [54] deployed a number of light-weight agents, called ID (Intrusion Detec-
tion) agents, to various network components. They proposed multiple ID agents and
each of them specializes in a certain category of intrusions. For example, the host-based
ID agents can analyze audit data, system call traces, or user shell command streams
to monitor applications and user behaviors. On the other hand network ID agents are
responsible for network level attacks, such as DoS. The proposed architecture is hierar-
chical and divides the protection and analysis scope to Local-analysis, regional-analysis
and Global-analysis. The ID agents are deployed locally to detect intrusive behaviors
on network components. An ID Correlator manages some local ID agents and com-
bines the security alarms sent by local ID agents. An ID Correlator is responsible for
a region and reports its findings to the ID Manager, which is responsible for the whole
network. Similar as most other research on application of agents in intrusion detection
and response, the focus of Qin et al. is on the distribution of detection and response
functions across a domain or several domains rather than the intelligent behavior of
agents. Furthermore, the architecture proposed in [54] is hierarchical, which has the
potential risk regarding single point failure.

Another agent-based IDS architecture, which was presented in [26], is also a hi-
erarchical one that consists of several lightweight agents. These agents involve static
data cleaning agents for obtaining and rendering information from system logs and
audit data, low-level agents which monitor and classify ongoing activities, and high-
level agents, namely data mining agents, that use machine learning methods to acquire
predictive rules for intrusion detection.

The CIDS (Cougaar-based intrusion detection system) [8] provided a hierarchical
security agent framework. In CIDS, a security node consists of four different agents
and a number of such nodes form a security community. The advantage of CIDS is
that an individual agent is responsible for each functional module which makes future
modification easy. Compared to other related research, the most significant contribu-
tion of CIDS is that it is not only an initial design but also has been implemented
although it only concentrated on single node intrusion detection.

A multi-agent based dynamic hierarchical distributed intrusion detection system
was presented in [81]. There are four types of agents in this system. They are tracer
agent, basic agent, supervisor agent and monitor agent. The supervisor agent is dy-
namically voted from basic agents in a Local Area Network (LAN) and takes charge
of the LAN. Monitor agent is dynamically voted from supervisor agents in the whole

system and monitors the running states of the system and interacts with administrator.
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In some extent, it avoids the single point failure problem. However, in real hierarchi-
cal networks, some specific hosts cannot be substituted, such as servers and routers.
If these devices were cracked, no one could replace them and the system would be
crashed. Besides, their research stopped at initial architecture without detailed design.

Boudaoud and McCathieNevile [5] presented an intelligent agent-based model for
security management, which is composed of three plans: the user plan, the intelligence
plan and the kernel plan. The wuser plan represents the security policy-based model,
which involves the administrator and the security policies. The administrator specifies
security policies to apply to the network. The intelligence plan conveys the intelligent
agent-based model that includes a multi-agent system and a BDI-based information
model. The kernel plan indicates the event-based model, which consists of network
to secure and the security events occurring in it. The authors attempted to employ
BDI agent model in their research, but, like most related works, lacked detailed design
and implementation. Furthermore, the functional architecture of the model is still
centralized and hierarchical.

In [65], Shajari and Ghorbani explained the design of the Fuzzy Adaptive Surviv-
ability Tool (FAST) agents and their intelligent behaviors. A FAST agent uses BDI
logic as the reasoning framework to decide on desirable response plans. This is the
only research work which referred to the design and implementation of BDI agents in
intrusion detection. However, they only considered intrusion detection and response on
a single host without attempting to enable the FAST agents to cooperatively monitor
and mitigate the attack in a distributed domain.

According to the survey of current related research, most of them only presented
an architecture. Although some published works mentioned detailed design, they con-
centrated more on a single host rather than in a distributed environment, which is

attempted to be dealt with in this thesis.

2.2 Intrusion Detection Language

In order to recognize intrusive behaviors effectively, a well defined representation scheme
of intrusion or attack signatures is inevitable. There have been several attack languages
proposed in the literature to handle this problem. These languages can be categorized
as Event, Response, Reporting, Correlation, Exploit and Detection Languages [76],

each of which is described as follows.
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e Event Languages, such as [19] and [78], are used to describe “events”. These
events may be system logs or network traffic records, which are usually the basic
input for security analysis. This class of languages is primarily concentrated on

the specification of data format and structure.

e Response Languages are employed to specify the actions, which have to be
taken in response to the observation of intrusions or attacks. To the best of our
knowledge, there is not a well defined and accepted response language. Instead,
most IDSs use library functions written in general purpose languages, e.g. C or

Java, to represent response actions.

e Reporting Languages. One of the possible responses to an attack is reporting
the attack event to a human security officer or an application. Reporting lan-
guages, such as [7], [29] and [15], are utilized to describe warnings which contain
information about an attack, such as source of the attack, target of the attack,
type of the attack if known, time of the attack, etc. A reporting language could
also be used as an event language at a higher level, for example as input to

correlators in a distributed IDS.

e Correlation Languages. In a distributed IDS, a correlator or manager may re-
ceive many alerts from different IDSs. Then, the correlator or manager correlates
these alerts and attempts to recognize some complex attacks. Hence, correlation
languages are used to specify the relationships among different attacks or suspi-

cious events in an effort to identify distributed attacks. An example is [40].

e Exploit Languages are harnessed to depict the steps, which have to be followed
to perform an intrusion or attack. Usually, exploit languages are executable and
general purpose languages, e.g. C, C++ and Perl. There are also languages that
are explicitly developed to support the scripting of attacks, such as [48] and [45].

e Detection Languages are devised to represent intrusion detection. These lan-
guages provide mechanisms and abstractions for identifying the manifestation of
an attack, such as [13], [52] and [59].

A detailed explanation of these attack languages is provided as follows.
LogWeaver [19] is a log auditing tool, which provides a well-defined syntax and
grammer for users to write signatures (rules). LogWeaver takes a system log as input

and processes the system log according to a signature (rule) file, which defines the type
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of events that are to be monitored and reported on. In addition, LogWeaver is capable
of performing regular expressions and making correlations among events. The logic,
which is utilized by LogWeaver, depends on model checking [60].

The Internet Engineering Task Force [7] attempted to establish a standard and
widely accepted computer intrusions data model, namely Intrusion Detection Message
Exchange Format (IDMEF) Data Model and eXtensible Markup Language (XML)
Document Type Definition. Concretely, the Internet Engineering Task Force defines
a data model in [7], which is representation of data exported by an IDS, and it also
specifies the data formats and exchange procedures for inter or intra IDS(s) information
exchanges. Considering the catholicity, the data model is defined and implemented in
XML [78], which is a simple and very flexible format designed to ease the exchange of
various data on the web.

The Common Intrusion Detection Framework (CIDF) [29] aimed at developing pro-
tocols and application programming interfaces to make information and resources able
to be shared among IDS research projects. Furthermore, CIDF also enables developed
IDS components to be reused by multiple systems. The components in CIDF exchange
data in a standard format, which is based on a reporting language, i.e. the Common
Intrusion Specification Language (CISL) [15].

Production-Based Expert System Toolset (P-BEST) [40] is a correlation language,
which supports users to write inference rules for reasoning and acting based on facts
asserted into its fact base or derived from external events. However, according to [12],
the language, provided in P-BEST, lacks the ability to recognize events.

CASL (Custom Attack Simulation Language) [48] is a development tool. It is
designed to test real network security holes by directly manipulating networks. In
other words, CASL is intended to simulate attacks against hosts in order to see if those
hosts are vulnerable to those attacks.

ADeLe [45] is an attack description language designed to model a database of known
attack scenarios. This database is then used to configure the probes and detection
engines of a given IDS or to test the detection capabilities of a given IDS (by means
of attack replay). ADeLe relies on a largely accepted intrusion detection framework,
i.e. IDMEF [10]. Compared with CASL [48], ADeLe considered three parts of attack
languages, namely response, exploit and detection, not only concentrating on exploit
part, like CASL.

STATL [13] is an attacker-oriented intrusion detection language which is based on

extensible state transition. STATL enables users to describe computer intrusions as
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a set of actions which an attacker has to follow to perform an attack. This language
presents mechanisms to represent an attack as a combination of states and transitions.
Nonetheless, it lacks constructs for assembling sub-events into larger events.

Bro [52] is a real-time and network based IDS. The language used in Bro is a detec-
tion language, which is called “Bro Language”. The target of the “Bro Language” is
to describe security policies, which specify the reactions when a specific event happens.
According to Paxson [52], the language is environment sensitive.

SNORT [59] is a highly configurable host-based and network-based IDS. The func-
tions provided by SNORT involve real-time packet capture, protocol analysis, and
content searching and matching. SNORT utilizes its own detection language to define
rules, which have two parts, namely header and options. The header contains infor-
mation about the rule action, source/destination IP addresses and so on. The options
include information regarding the type of attack, the message to be sent when an event
is generated, etc.

In addition to formal attack languages, there are also attack signature specification
mechanisms, such as [39] and [49].

Lin et al. [39] proposed abstraction-based misuse detection, including misuse sig-
nature specification and adaptable detection strategies. Due to the use of high-level
concepts, a misuse signature can represent misuse in a simple form and with high ex-
pressiveness. However, the authors only considered host-based attacks without explor-
ing network-based attacks which are very pervasive and serious in computer systems
nowadays.

Ning et al. [49] extended the work in [39] to distributed environments. The authors
exploited event relationships to represent attack signatures and derived system views
from signatures to provide a more concise view of what has happened or is happening
in the systems. This approach allows signatures to accommodate unknown variants of
known attacks. Nevertheless, the extensibility and knowledge sharing are limitations
of this approach.

From the above description, the majority of the attack languages specifically ad-
dress one aspect of intrusion detection, and they are particular to specific domains,
environments and systems. Consequently, they are not extensible and communicable
among heterogeneous systems, and their semantics are often vague and lack ground-
ing in any formal logic. Ontology which can avoid these disadvantages is utilized to
represent agent knowledge in this thesis. Undercoffer et al. [75] compared ontology

with an emerging standard, i.e. IDMEF data model encoded in XML, and provided
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the following three conclusions.

e Representation: ontology is able to model the attributes and characteristics of a

domain.

e Information sharing: ontology can represent the existence of an instance of the
domain in a way that is understandable by any other entities which possess the

specific ontology.

e Reasoning: ontology has the capability of aggregating particular instances of the
domain in a knowledge base and concluding that some larger, or more compre-

hensive, instances of the ontology exist.

Some related works about the application of ontology in intrusion detection are
introduced in the following paragraphs.

Raskin et al. [57] introduced and advocated the use of ontologies for information
security. In stating the case for using ontologies, they claimed that an ontology orga-
nizes and systematizes all of the phenomena (intrusive behaviors) at any level of detail,
consequently reducing a large diversity of items to a smaller list of properties.

Undercoffer et al. [75] produced an ontology which specifies a model of computer
attack using the DARPA Agent Markup Language together with Ontology Inference
Layer. They transitioned from traditional taxonomies and attack languages to ontolo-
gies and ontology specification languages. This is the only work we reviewed which
referred to formally defining ontology for intrusion detection. However, they only con-
centrated on building an IDS ontology on a single host without either detailed repre-
sentation of intrusion or attack with ontology or considering detection in a distributed
domain. In addition, their IDS is deprived of some of the benefits which an intelligent
agent can offer; such as autonomy and mobility.

Fang et al. [14] presented a novel fraud detection method based on ontology and
ontology instance similarity. According to the measurement of the similarity of ontology
instances, the proposed system can determine whether a user is defrauded. Compared
to other detection methods, this method can reduce data model cost. However, they
only focused on representing user behaviour with ontology rather than representing
intrusion or attack with ontology, which will be described in this thesis.

In [25], the authors proposed a cooperative detection framework relied on the on-
tology, which unified the network and host features on a single host. Although the
detection becomes more flexible and the global locality information to support coop-

eration can be provided, they only considered information correlation on a single host
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to detect intrusion without between hosts to discover suspicious distributed attacks.

According to [68], Simmonds et al. listed some common taxonomies of network
security attacks, demonstrated the relationship between them, and defined an exten-
sible ontology for network security. However, this paper is just a proposal to initiate
the design of ontology for network security attacks without any details about how to
represent attacks or intrusions with ontology.

Vorobiev and Han [77] described several web services security threats, such as prob-
ing attacks, CDATA field attacks and so on. In addition, they depicted these attacks
ontologies. Nonetheless, these ontology representations are comparatively rough and
cannot be used in real cases.

From the above depiction, most current related work about ontology for network
security lacks representation of intrusion or attack and relevant detection knowledge.
This thesis adopts ontology technique to represent intrusion and detection knowledge.
In this way, hosts in our proposed framework can share their common understanding
of information due to ontology application and detect distributed intrusions taking the

advantage of agent communication and cooperation.

2.3 Task Allocation Protocols and Resource Search

Mechanisms

In an effort to detect distributed attacks, e.g. Doorknob-Rattling Attack [71], in a P2P
environment, an efficient task allocation scheme which allocates tasks to other hosts
for collaborative detection is essential. In this Section, we first provide some relevant
research outputs with respect to task allocation in distributed environments. There
is little, if any, published work about task allocation in P2P environments, but many
research works regarding resource search in P2P environments have been done. Since
resource search is the first step of task allocation, some literature about resource search

in P2P environments is worth to exhibit.

2.3.1 Task Allocation in Distributed Environments

Recently, many mechanisms for task allocation have been proposed. Some of them
investigate the task allocation problem in a centralized manner. Zheng and Koenig
[85] presented reaction functions for task allocation to cooperative nodes. The objec-

tive is to find a solution with a small team cost and each task to be assigned to the
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exact number of different nodes. This work assumed that there is a central planner to
allocate tasks to nodes. Kraus et al. [35] proposed an auction based task allocation
protocol which allows nodes to form coalitions with time constrains before allocating
tasks. This protocol assumed each node knows the capabilities of all others, and one
manager is responsible for allocating tasks to all coalitions. Theocharopoulou et al.
[73] presented an approach for allocating temporally interdependent tasks to homo-
geneous or heterogeneous cooperative nodes in dynamic large-scale networks. Their
contribution is combining searching, task allocation and scheduling as a synthesized
problem to deal with. However, this method is based on a centralized way.

Centralized fashion can make the allocation process efficient and effective in a small
system since the central planner has a global view of the system and it understands
which nodes are good at which tasks. In that case, communication overhead during
allocation processes could be reduced. However, the centralized fashion also has several
notable disadvantages. The first one is that in some environments, it is difficult to have
such a central controller, such as P2P environments in which no one node has a global
view but only the local prospect about direct linked neighbors. Secondly, when the
central planner is out of order or cracked by some attackers, task allocation will suffer
a big trouble in this environment. Finally, the scalability in such an environment is
limited because when too many nodes exist, the central controller has to maintain
much information to hold the global view and respond plenty of request messages
from nodes. In this case, the CPU and memory usage of the central controller and
network bandwidth consumption drastically raise. To conquer these disadvantages,
task allocation in distributed environments has also been investigated. A classic task
allocation protocol for distributed environments is Contract Net Protocol (CNP) [69].
CNP was aimed to cope with problem-solving communication and control for nodes in a
distributed problem solver. This protocol facilitates distributed control of cooperative
task execution (called task sharing) with efficient inter-node communication. Task
sharing is a process which is carried on between nodes with tasks to be executed and
nodes that may be able to perform those tasks. The CNP was then evolved in [70]
by adding another concept, result sharing. Result sharing is a form of cooperation in
which individual nodes assist each other by sharing partial results. However, CNP was
only a preliminary work and many details have to be done.

According to [37] and [66], the authors developed distributed algorithms with low

communication complexity for forming coalitions in large-scale networks. Although
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their work was pursued in distributed environments, it is still necessary to form coali-
tions before allocating tasks. Abdallah and Lesser [1] provided a decision theoretic
model in order to limit the interactions between agents and mediators. Mediators in
that paper mean the nodes which receive the task and have connections to others.
Mediators have to decompose the task into subtasks and negotiate with other nodes
to obtain commitments to execute these subtasks. However, their work concentrated
on modeling the decision process of a single mediator. A scalable and distributed task
allocation protocol was presented in [62]. The algorithm adopted in this protocol is
based on computation geometry techniques, but the prerequisite of this approach is
that agents’ and tasks’ geographical positions are known.

Weerdt et al. [80] proposed a distributed task allocation protocol in social networks.
This protocol only allows neighboring nodes to help with a task which might result in
high probability of abandon of tasks when neighbors can not offer sufficient resources.

As described in the first paragraph of this subsection, resource search is the first
step of task allocation. Thus, some related works regarding resource search in P2P

environments are depicted in the following subsection.

2.3.2 Resource Search in P2P Environments

Currently, the P2P architecture is a popular and effective paradigm for distributed
computing and resource sharing. A P2P system [9] is an overlay system between nodes
interconnected by an underlying physical network. The users that are located on the
nodes in a P2P system are enabled to establish connections with other users (nodes)
to acquire and share resources with each other in a decentralized manner. Compared
with the traditional client-server architecture, the P2P architecture has the following

advantages [33]:

1. Improved Scalability: Because of the lack of central servers, the information stor-
age and computational cost are distributed among the peers in the P2P system
which avoids the central server bottleneck problem and, thus, makes the P2P

system easy to extend.

2. High Reliability: The P2P system has a high reliability due to its eliminating
centralized coordinators. That means the P2P system can still survive even if

part of peers are out of order.

3. Increased Flexibility: The P2P system allows individual nodes to join and leave

the system frequently to share information directly with each other without the
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help of dedicated servers. Thus, this manner gives users unlimited freedom. Each

node plays as a server and a client simultaneously in a P2P system.

With the increasing popularity of resource sharing in P2P environments, many
efficient resource search approaches have been presented. One of the most famous
search algorithms in P2P environments is Gnutella algorithm [18] which is a flooding
like scheme. It contacts all accessible nodes within a predefined number of hops. The
advantage of Gnutella is its simplicity for implementation, while the disadvantage is the
huge overhead during contacting many nodes. In order to improve the original Gnutella
algorithm, some researchers proposed modified versions. The algorithm, presented in
[30], is one of the variations of Gnutella algorithm. It has peers randomly choose only
a part of their neighbors to forward the query to. This method can reduce the average
message production in some extent, but still contacts a large number of peers. Another
example of revised Gnutella algorithm is proposed in [42], which utilized iterative
flooding with increasing user defined number of hops in order to search as small depth
as possible. However, in some cases, this approach might produce even larger loads
than the original Gnutella algorithm. Another contribution of [42] is its use of Random
Walk. In Random Walk, the requesting node sends out k query messages to an equal
number of randomly chosen neighbors. Each of these messages has intermediate nodes
forward it to a randomly chosen neighbor at each step.These query messages are called
“Walkers”. A Walker terminates either with a success or a failure. The limitation of
Random Walk is that its success rate totally depends on network topology and random
choices. The aforementioned search methods are brute-force schemes, as they just
attempt to traverse the network to find the objectives without intelligence. Conversely,
some other researchers provided intelligent search approaches for P2P systems.

Kalogeraki et. al [30] also provided an intelligent version of modified Gnutella
algorithm, in which nodes store query-neighborID tuples for recently answered requests
from (or through) their neighbors in order to rank them. When a peer initiates a
requesting, it identifies all queries similar to the current one. The peer, then, selects
several of its neighbors, which have returned the most results for these queries, to
forward query messages to . In [83], the authors proposed a local indices method.
Each node indexes the objects stored at all nodes with a certain radius r and can
answer queries on behalf of them. The search is performed in the same manner as
the one in Gnutella algorithm. Distributed Resource Location Protocol (DRLP) is
presented in [44]. Peers have no idea about the location of an object, and forward the

query to each of their neighbors with a certain probability. If any object is found, the
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query takes the reverse path to the requester, storing the document location at those
peers. In the consequent queries, peers with location information can directly contact
the specific nodes. The target of these intelligent approaches is improving resource
discovery accuracy, but the message production is also increased during the process of
building intelligence.

In this thesis, an Efficient Task Allocation Protocol (ETAP) is proposed for task al-
location in P2P environments to collaboratively detect distributed attacks. Compared
with [85], ETAP does not need a central planner. Against [37], it is not necessary for
ETAP to form coalitions among nodes before allocating tasks. Unlike GDAP presented
in [80] which allows only neighboring nodes to help with a task, ETAP enables nodes
to allocate tasks not only to their neighbors but also other nodes in the system based
on a novel resource search mechanism that will be described in Chapter 5. In this

way, the nodes could have more opportunities to achieve solution of their tasks.

2.4 Summary

This chapter reviews the state of the art of agent-based IDS’s various aspects in regard
to our targeted research questions mentioned in Chapter 1. We briefly introduced the
architectures of agent-based IDSs and some efforts which attempt to implement the
architectures. We then discussed the knowledge representation of intrusion detection,
which consists of a review of attack languages and ontology-based knowledge repre-
sentation. After that, various current task allocation protocols are elaborated, which
is accompanied by an overview of resource search schemes in P2P environments. In
the next chapter, we present our solution for the first two problems outlined in Section

1.3, i.e. general agent-based intrusion detection architecture and detailed design.



Chapter 3

A Novel P2P Agent-Based Framework for
Distributed Intrusion Detections

Several research issues have been outlined in Chapter 1. Aiming at solving these
problems, a P2P agent-based framework is proposed in Section 3.1, and the detailed
design of each agent in the framework is introduced in Section 3.2. Finally, this chapter
is summarized in Section 3.3. For simplicity, the terms node, host and peer are used

interchangeably throughout this thesis.

3.1 Framework Architecture

The framework is composed of six types of agents which are Monitor Agent, Analysis
Agent, Executive Agent, Manager Agent, Retrieval Agent and Result Agent. The
former four agents are static agents that are inquiline on hosts, while the latter two
are mobile agents that can travel among hosts if needed. Consideration of the security
and flexibility of the system, each host in the framework has to be equipped with
the four static agents. This framework is independent of specific network topology.
Figure 3.1 demonstrates the general architecture and the interaction between hosts of
this framework. The following sessions describe each component of the framework in

detail.

3.1.1 Monitor Agent

Monitor Agent is like a host monitor which fixes at a host. The responsibility of
Monitor Agent is collecting and preprocessing information of both system audit records
and network traffic for further analysis, such as system file operation and network

connection.

28
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Figure 3.1: Architecture of the Framework

3.1.2 Analysis Agent

Analysis Agent integrates and analyzes the information received from Monitor Agent.
In the framework, each host in the network has a local knowledge base which stores
some critical information, such as attack signatures, intrusion patterns, system file size,
and so on. If Analysis Agent can confirm an intrusion or attack, it will send a notifi-
cation to Executive Agent to quarantine damaged file or cut off network connection.
If Analysis Agent suspects that a distributed attack occurs, it will request Manager

Agent for help and store the suspicious activity.

3.1.3 Executive Agent

Executive Agent is responsible for executing tasks depending on the notification of
Analysis Agent. These tasks include restoring corrupted files, preventing network con-

nection, etc.
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3.1.4 Manager Agent

As introduced in Subsection 3.1.1, the Monitor Agent of a host is the agent that collects
information from the host. However, to detect distributed attacks, it is not sufficient to
collect information only from a single host. Hence, another three kinds of agents (i.e.
Manager Agent, Retrieval Agent and Result Agent) are included in the framework to
collect related information from multiple hosts of a network.

The Manager Agent is the agent that manages retrieval processes. It takes charge
of Retrieval Agent and Result Agent, including dispatching, retracting and communi-
cating with these two agents. A Manager Agent also maintains a neighborhood list
of the host which the Manager Agent resides on. Neighborhood list is a list which
contains P addresses of the direct-linked neighbors of a host. Obviously, the Manager
Agent of a host can easily calculate the number of neighbors of the host by checking
the length of the neighbor list.

When a host connects/disconnects with another host, the Manager Agent of the
host modifies the neighborhood list by adding/removing related information to/from
the list. In addition, each Manager Agent has a Retrieval Agent Recorder (RAR) which
is used to store Retrieval Agent Identifiers. Retrieval Agent Identifier (RAID) is used to
distinguish different Retrieval Agents. RAID is also generated by the Manager Agent.
We define RAID as the format “HostName0001”. “HostName” means the name of the
host which dispatches the Retrieval Agent, while “0001” means the serial number of
the Retrieval Agent, for example, the first group of Retrieval Agents which perform the
same task is “0001”, the second group is “0002”, and so on. Retrieval Agent Recorder
is used to store Retrieval Agent Identifiers in order to avoid a Retrieval Agent traveling
the hosts which this Retrieval Agent or other Retrieval Agents with the same RAID
has/have already visited. Each Manager Agent has a RAR.

If a Manager Agent originates the mobile agent for a traveling detection, this Man-
ager Agent is called as an Initiator. When an Initiator receives a request from an
Analysis Agent for deciding a distributed attack, it will dispatch Retrieval Agents to
inform other hosts to check whether they have the similar records from the same sus-
picious remote host. Then, each Manager Agent of the hosts, which have been visited
by those Retrieval Agents, will send a Result Agent back to the Initiator. The Ini-
tiator will correlate the information and confirm whether this suspicious activity is a
distributed attack. If so, the Initiator will broadcast this information to other hosts in

the network and notify the local Executive Agent to take actions.
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3.1.5 Retrieval Agent

Retrieval Agent moves to other hosts and lets their Analysis Agents check whether
there are the similar records from the same suspicious remote host. There are four
main types of information that Retrieval Agent needs to maintain, which are source IP
address from where the original host dispatches this Retrieval Agent, characters of the
incident, Retrieval Agent Identifier, and Time to Live (TTL). TTL, which is generated
by an Initiator, is used to demonstrate the number of rest hosts the Retrieval Agent
needs to visit. The Retrieval Agent will be discarded when the value of TTL reaches

zero or there is no more host to be traveled.

3.1.6 Result Agent

Result Agent with a result record will be sent back by each Manager Agent, which has
been visited by the Retrieval Agent, to the Initiator. Then, the Initiator tallies all the

result records to make a final decision.

3.1.7 Agent working process

The working process of agents in our framework is described by a sequence diagram in
Unified Modeling Language (UML) notations shown in Figure 3.2. Monitor Agents
are fixed at hosts of the network and monitor the local activities of hosts. It collects
and preprocesses relevant information, and reports the information to Analysis Agent.
The Analysis Agent analyzes the information and decides whether there is an intrusion
or attack based on the local knowledge base. If so, the Analysis Agent informs the Ex-
ecutive Agent to take actions against the intrusion or attack. However, if the Analysis
Agent suspects that a distributed attack is occurring, it asks the upper level Manager
Agent for help. When the Manager Agent receives a request from Analysis Agent, this
Manager Agent becomes an Initiator, and then analyzes the request and dispatches
Retrieval Agents to gather information for determining whether some suspicious ac-
tivities in different hosts could be combined to form a distributed attack. Then those
hosts, visited by Retrieval Agent, will send Result Agents with necessary information
back to the Initiator. The Initiator will make a final decision based on the information
it received. If there is a definite distributed attack, the Initiator will broadcast this
detection result to other hosts in the network, and inform the local Executive Agent
to take actions.

Six categories of agents and the working process, which consist of the foundation



3.2. Detailed Design of the Framework 32

monitorA analyserA : execulter manageraA : retrievalerA managerb : resulterB :
MonitorA. . Analysis. Executive... ManagerAgent RetrievalAgent ManagerAgent ResultAgent
1: monitor{ ) i
' 2: reportf{ ’ H
Tl 3 analyse()
— H
4: findintrusion ) ;
5 handlelntrusion )
P— I
6: requestRetrleva:J( )
T: generate( ) ; :
{ Arysly) i o generate( )
10: report( )

:

11: broadcast() U

Figure 3.2: Retrieval Process

of the framework, have been described. In the next section, the detailed design of each

agent will be introduced.

3.2 Detailed Design of the Framework

This section focuses on the design and implementation of agents in the framework.
The brief overviews of BDI agents and JACK™ agent development environment are
presented in Subsections 3.2.1 and 3.2.2, respectively. After that, the design of each

agent in the framework will be described in detail.

3.2.1 Overview of BDI agents

A BDI agent [56] is able to continuously reason about beliefs, goals, and intentions and

act accordingly. There are four major concepts in the BDI architecture:

e Beliefs of an agent are information about the environment in which the agent
stays. Beliefs include previous and current environment states and inference

rules, which allow forward chaining to lead to new beliefs.

e Desires are goals assigned to the agent. They represent objectives or situations

that the agent would like to accomplish or bring about.
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e [ntentions are commitments by an agent to achieve particular goals. Intentions
represent the deliberate states of the agent, namely that what the agent has

chosen to do.

e Plans are sequences of actions that an agent can perform to achieve one or more

of its intentions.

3.2.2 JACK™ Agent Development Environment

In this thesis, JACK™™ is used to design and develop agents in our framework. JACK™M
[23] is an agent oriented development environment, which is built on and integrated
with the Java programming language. It includes all components of the Java develop-
ment environment as well as offering specific extensions to implement agent behaviors.
JACK™™ also provides programming constructs for representing and implementing

reasoning. There are five main class-level constructs in JACK™™:

e Agentis used to define the behavior of an intelligent software agent. The behavior
includes capabilities an agent has, what type of messages and events the agent

responds to and which plans it will use to achieve its goals.

e [vent represents an occurrence which the agent must respond to by using a pre-
defined plan. Events involve foreign events which are received from other agents,

or interiorly generated events which correspond to some conditions happening.
e Plan is used by the agent to achieve its goals and handle its designated event.

e Capability allows the functional components that make up an agent to be aggre-
gated and reused. A capability can be made up of plans, events, beliefsets and
other capabilities that together serve to give an agent certain abilities. An agent
can, in turn, be made up of a number of capabilities, each of which has a specific

function attributed to it.

e BeliefSet represents agent beliefs according to employ a generic relational model.
It has been specifically designed so that a beliefset can be queried using logical
members. Logical members are like normal data members, except that they

follow the rules of logic programming (as in programming languages like Prolog).

The agents in our framework are implemented by use of the JACK™™ development

environment. The agents operate according to their beliefs about the attack signatures,



3.2. Detailed Design of the Framework 34

intrusion patterns and the current status of the network, and use their predefined plans
to deal with the events which happen in the network. Events include attack incidents
and inter-agents communication.

An extension of UML for designing JACK™ agents (JACK/UML) has been pro-
posed by Papasimeion and Heinze [51]. In [51], the UML high level stereotypes are
used to represent the five main class-level constructs in JACK™  ie. Agent, Fvent,
Plan, Capability and BeliefSet; and the UML uni-directional association level stereo-
types are utilized to define relationships between and behaviors of agents, such as
posts, handles, modifies, private, etc. Table 3.1 lists a set of high level stereotypes
for JACK™ class-level constructs, while Table 3.2 defines a sequence of associa-
tion level stereotypes for agents behaviors in JACKT™ . TFigure 3.3 gives a sim-
ple example. This example illustrates the case that Monitor Agent has a private
beliefset SystemAudit Record which can post an event NewAuditRecord, and the

Monitor Agent uses a plan Audit RecordPreprocess to handle this event.

Stereotype Description

<<agent>> Class level stereotype that defines a JACK agent
<<event>> Class level stereotype that defines a JACK event
<<plan>> Class level stereotype that defines a JACK plan
<<capability>> | Package stereotype that defines a JACK capability
<<beliefset>> Class level stereotype that defines a JACK beliefset

Table 3.1: UML High Level Stereotypes for JACK™M

Stereotype Description

<<posts>> Indicates a beliefset or a plan posting an intra agent event
<<sends>> Indicates a plan sending an inter agent event

<<uses>> Indicates an agent using a plan

<<handles>> Indicates an event handled by a plan

<<modifies>> Indicates a beliefset which a plan can modify

<<private data>> | Indicates a private beleifset owned by an agent

Table 3.2: UML Association Level Stereotypes for JACK™™

The design of the six types of agents in our framework is described in the following

subsections.

3.2.3 Monitor Agent

The responsibility of Monitor Agent is collecting and preprocessing information of both

system audit records and network traffic for further analysis, which has been depicted
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Figure 3.3: A Simple Example of Designing JACK™™ Agent with UML

in Subsection 3.1.1. The implementation of Monitor Agent using JACK/UML is

described as follows (also demonstrated in Figure 3.4).

<<Beliefset>> <<Event>> <<Plan>> <<Event>>
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<<Beligfset>> e <<Event>> S, <<Plan>> <<Event>>
NetworkFlowRecord posts NewNetworkFlow andes NetworkFlowPreprocess NewSystemRecord

Figure 3.4: Design of Monitor Agent with JACK/UML

The Monitor Agent has the following Beliefsets:

1. SystemAuditRecord: stores system operation records, such as user login, file ac-

cess, and so on.

2. NetworkFlowRecord: stores network data flow, such as remote client connection,

port scanning, and so on.
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3.

SystemRecord: stores both system operation records and network data flow with
a predefined format which have been preprocessed by Monitor Agent, and this
beliefset will be further analysed by Analysis Agent to find intrusion or attack.

The following Events are defined in the Monitor Agent:

1.

NewAuditRecord: is posted by SystemAuditRecord beliefset to remind the Monitor

Agent that there is a new system audit record and it is ready for preprocessing.

NewNetworkFlow: is posted by NetworkFlowRecord beliefset to inform the Mon-
itor Agent that a piece of new network data flow is received and ready for pre-

processing.

NewSystemRecord: is posted by SystemRecord beliefset to notify the Monitor
Agent that a new system record has been preprocessed and is ready for analyzing

by Analysis Agent.

SystemRecordAvailable: is sent to Analysis Agent to inform that a new system

record is ready for analysis.

A Monitor Agent uses the following Plans:

1.

AuditRecordPreprocess: preprocesses the new system audit record for further

analysis, handling the NewAuditRecord event.

NetworkFlowPreprocess: preprocesses the new network flow for further analysis,
handling the NewNetworkFlow event.

SystemRecordSending: retransmits the new system record to Analysis Agent for
further analysis, handling NewSystemRecord event and sending SystemRecor-

dAvailable event.

3.2.4 Analysis Agent

Analysis Agent, as described in Subsection 3.1.2, integrates and analyzes the infor-

mation received from Monitor Agent, and requests Manager Agent for help if needed.
The implementation of the Analysis Agent by using JACK/UML is indicated as follows

(also demonstrated in Figure 3.5).

The Analysis Agent has the following Beliefsets:

1.

KnowledgeBase: stores some critical information, such as attack signatures, in-

trusion patterns, system file size, and so on.
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Figure 3.5: Design of Analysis Agent with JACK/UML

2. SystemRecord: the same as the above description in Monitor Agent.
The following Events are defined in the Analysis Agent:

1. SystemRecordAvailable: is sent to Analysis Agent to inform that a new system

record is ready for analysis.

2. IntrusionDetected: is sent to Executive Agent to take actions against the intru-

sion.

3. DistributedIntrusionSuspected: is sent to Manager Agent to request help for col-

lecting information from other hosts.

4. DistributedIntrusionResponse: is sent by Manager Agent with the collected in-

formation to Analysis Agent.

5. DistributedIntrusionRequest: is sent by Manager Agent to ask for collecting rele-

vant information for other hosts.

6. InformationRequested: is sent to Manager Agent with the information the foreign

Retrieval Agent requests.
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The Analysis Agent uses the following Plans:

1. AnalysisSystemRecord: analyses the new system record received from Monitor

Agent, handling the SystemRecordAvailable event, and sending the IntrusionDe-

tected event or DistributedIntrusionSuspected event.

2. AnalysisDistributedIntrusion: analyses the result information received from Man-

ager Agent which is collected from other hosts, handling the DistributedIntrusion-

Response event and sending the IntrusionDetected event.

3. AnalysisForeignRequest: analyses the request from foreign Retrieval Agents and

provides the relevant information, handling DistributedIntrusionRequest event

and sending InformationRequested event.

3.2.5 Executive Agent

Executive Agent is responsible for executing tasks depending on the notification of
Analysis Agent. The implementation of the Executive Agent using JACK/UML is

described as follows (also demonstrated in Figure 3.6).
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dies>> <<usps>>

<<Plan>>
TakeActions

<<sends>>

<<rea

<<Event>>
DistributedIntrusionHappened

<<Beliefset>>
ExecutiveDatabase

Figure 3.6: Design of Executive Agent with JACK/UML

The Executive Agent has the following Beliefset:
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1.

EzecutiveDatabase: stores the actions against each type of intrusion.

The following Events are defined in the Executive Agent:

1.

IntrusionDetected: is sent by Analysis Agent to inform Executive Agent to take

actions against the intrusion.

DistributedIntrusionHappened: is sent to ask Manager Agent to broadcast to the
entire network that a distributed attack happened.

ForeignBroadcastInformation: is sent by Manager Agent to inform Executive
Agent to take actions against a distributed attack which is notified by other
hosts through broadcast.

The Executive Agent uses the following Plans:

1.

TakeActions: takes specific actions to deal with an intrusion or attack, handling

IntrusionDetected event.

TakeActionsOnBroadcastInformation: takes specific actions to deal with a dis-
tributed attack which is notified by other host, handling ForeignBroadcastinfor-

mation.

3.2.6 Manager Agent

The Manager Agent is the agent that manages retrieval processes. It takes charge

of Retrieval Agent and Result Agent, including generating, dispatching, retracting

and communicating with these two agents. Detailed description regarding Manager

Agent can be found in Subsection 3.1.4. The implementation of Manager Agent using
JACK/UML is described as follows (also demonstrated in Figure 3.7).
The Manager Agent has the following Beliefsets:

1.

NeighbourList: stores IP addresses of the direct-linked neighbours of this host.

RetrievalAgentRecorder: stores Retrieval Agent Identifiers (RAID) in order to
avoid a Retrieval Agent traveling the hosts which this Retrieval Agent or other
Retrieval Agents with the same RAID have already visited.

The following Events are defined in the Manager Agent:

1.

DistributedIntrusionSuspected: is sent by Analysis Agent to request Manager

Agent to collect information from other hosts in the network.
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Figure 3.7: Design of Manager Agent with JACK/UML

host to request for help.

Retrieval Agent requests.

lected from other hosts.

mation.

mation.

RequestInformation: is sent by foreign Retrieval Agent which is from another

InformationRequested: is sent by Analysis Agent with the information the foreign

RelevantInformation: is sent by foreign Result Agents with the information col-

DistributedIntrusionRequest: is sent to Analysis Agent to ask for collecting infor-

DistributedIntrusionResponse: is sent to Analysis Agent with the collected infor-

DistributedIntrusionInformation: is broadcasted to other hosts in the network.
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. DistributedIntrusionHappened: is sent by Executive Agent to ask Manager Agent

to broadcast the distributed attack happened information to the entire network.

. ForeignBroadcastInformation: is sent to ask Executive Agent to take actions

against a distributed attack which is notified by other host through broadcast.

The Manager Agent uses the following Plans:

1.

InformationCollection: generates Retrieval Agents and sends them to other hosts

to collect information, handling DistributedIntrusionSuspected event.

InformationFeedback: generates Result Agent and sends it to the host which

requests for specific information, handling InformationRequested event.

InformationRequest: asks local Analysis Agent to collect information, handling

RequestInformation event and sending DistributedIntrusionRequest event.

InformationProvisin: provides the collected information to Analysis Agent for
further analysis, handling RelevantInformation event and sending DistributedIn-

trusionResponse event.

BroadcastDistributedIntrusion: broadcasts the information that a distributed in-
trusion has been detected to the entire network, handling DistributedIntrusion-

Happened event and sending DistributedIntrusionInformation event.

ReceiveBroadcastInformation: receives broadcast information from other hosts,
handling DistributedIntrusionInformation event and sending ForeignBroadcastin-

formation event.

3.2.7 Retrieval Agent

Retrieval Agent moves to other hosts and lets their Analysis Agents check whether

there are the similar records from the same suspicious attacker.
The implementation of the Retrieval Agent using JACK/UML is described as fol-

lows (also demonstrated in Figure 3.8).

The following FEvent is defined in the Retrieval Agent:

1.

RequestInformation: is sent to the Manager Agent on the destination host to

request it for help.
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Figure 3.8: Design of Retrieval Agent with JACK/UML

3.2.8 Result Agent

Result Agent with a result record will be sent back by each Manager Agent, which
has been visited by the Retrieval Agent, to the original Manager Agent that initiates
the detection process. Then, the Analysis Agent, which receives the results from the
original Manager Agent, tallies all the result records to make a final decision. The
implementation of the Result Agent using JACK/UML is described as follows (also
demonstrated in Figure 3.9).

<<Agent=> ey <<Eyent>»>
Resultagent CL S| Relevantinformation

Figure 3.9: Design of Result Agent with JACK/UML

The following Fvent is defined in the Result Agent:

1. RelevantInformation: is sent to the original Manager Agent with the information

collected from the host on which the Result Agent resides.

3.3 Summary

In this chapter, a novel agent-based P2P intrusion detection framework is proposed
and the detailed design of each agent in the framework is also provided. Compared
with current related works, this framework can avoid single point failure and easy to
be extended. We will utilize ontology to represent knowledge of each agent in this

framework in the following chapter.



Chapter 4

Ontology-Based Knowledge Representation
for Distributed Intrusion Detection

In order to empower the interoperability among hosts in our framework, ontology-based
knowledge representation of each agent is presented in this chapter. A brief charac-
terization of ontology is introduced in Section 4.1. The tool adopted to implement
ontology and the knowledge representation of each agent in our framework are de-
scribed in detail in Section 4.2. Summarization of this chapter is presented in Section
4.4.

4.1 Overview of Ontology

An ontology [21] defines a set of representational primitives to model a domain of
knowledge. The representational primitives include classes (or sets), attributes (or
properties), and relationships (or relations among class members). Therefore, ontology
is designed for the purpose of enabling knowledge sharing and reuse between entities
within a domain. In this thesis, these entities are various agents in our framework.
Resource Description Framework (RDF) [58] is employed to depict the ontology
graph in this thesis. RDF is based on the idea that the things being described have
properties which have values. The part that identifies the thing, which the statement
defines, is called the subject. The part that identifies the property or characteristic of
the subject, which the statement specifies, is called the predicate, and the part that
identifies the value of that property is called the object. For example, in this sentence
“champagne is made in France”, “champagne” is subject; “made in” is predicate; and
“France” is object. In a RDF graph, an ellipse is utilized to denote a class which may
have several attributes. When two classes (ellipses) are connected by a directed edge,
the edge dictates a relationship (predicate) between the two classes, where the class
representing the subject is denoted by the start of the edge and the class representing
the object is denoted by the end of the edge. Obviously, the example, “champagne is
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made in France”, should be represented as the form in Figure 4.1.

Champagne

Figure 4.1: RDF relationship graph

Gruber [20] proposed a preliminary set of design criteria for ontologies that should

be followed with during a design process.

1.

Clarity: An ontology should effectively and correctly present the meaning of
defined terms. The definition of terms or concepts should be explicit and inde-
pendent of social or computational contexts. In addition, the definition should be
complete in a domain rather than partial, and all definitions can be represented

by natural languages.

Coherence: An ontology should support inferences that are consistent, at least
logically consistent, with the definitions. Furthermore, the informally defined

concepts should also be consistent, such as description in natural languages.

Extendibility: An ontology could accommodate variants of defined concepts in
some extent. An ontology should offer a conceptual foundation to allow users to
define new terms for their special uses based on the existing ontology without

any modification.

Minimal encoding bias: An ontology should be defined on the knowledge level
instead of the symbol-level encoding. An encoding bias limits knowledge sharing
of the defined ontology, since different users may utilize different encoding mecha-
nisms, which might not decode each other’s ontologies. The relationship between
an ontology and encoding schemes is similar with that between an algorithm and
programming languages. An algorithm should be written by any programming
languages, and analogously, an ontology should be represented by any encoding

schemes.

Minimal ontological commitment. An ontology should make as few claims as
possible with regard to the modeled domain in order to let users freely instantiate

the ontology for the purpose of knowledge sharing.
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4.2 Ontology Implementation

Figure 4.2 presents a high level view of our ontology which represents the knowledge

of each agent in a peer in our framework. The representation of other peers is similar.

Referred by

| Monitor Agent

| Executive Agent

System Record Executive Strategy

Current State Taking Actions Through

Intrusion Pattern Network Environment

lanager Agent

Figure 4.2: Ontology representation of agent knowledge in each peer

The central level of Figure 4.2 is the class Peer. Peer has the predicates Current
State, Intrusion Pattern, Network Environment and Taking Actions Through. This
construction is predicated upon the notion that the peer (a host in the network) con-
tains attack signatures which are used to detect suspicious activities from the current
state of the peer and it may need the information from other peers in the network
(network environment) to cooperate detection, and finally the peer will take actions
against the intrusion or attack.

Protege [53] is harnessed to implement the knowledge (beliefs) of each agent in
our framework. Protege is a free and open source ontology editor and knowledge-base
framework, which implements a rich set of knowledge-modeling structures and actions
that support the creation, visualization and manipulation of ontologies in various rep-
resentation formats. Protege ontologies can be exported into a variety of formats
including RDF(S), OWL, XML, and so on. After implementation of knowledge rep-
resentation with Protege, the representation is converted into N-Triples. The reason
for choosing N-Triples is that N-Triples is more intuitionistic than XML and OWL.
N-Triples [47] is a line-based and plain text format for representing the correct answers

for parsing RDF/XML. The representation of N-Triples is of the following form:
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<Subject> <Predicate> <Object>

The following sessions will describe knowledge representation of each agent in detail.

4.2.1 Knowledge of Monitor Agent

Monitor Agent is a host monitor which fixes at a host. The responsibility of Monitor
Agent is collecting and preprocessing information of both system audit records and
network traffic for further analysis. Figure 4.3 shows the ontology of knowledge of
Monitor Agent. The knowledge of Monitor Agent is System Record which is about
system status of the host. The class System Record consists of two components, i.e.
Network Flow Record and System Audit Record. From Figure 4.3, it can be seen that
three classes are defined in the ontology which are System Record, Network Flow Record

and System Audit Record.

Monitor Agent

Instance of |audit Record 1 System Audit Record

System Audit Mem_Total 1024ME
Adem Idle: 324 MEB
Record =} Adem_idle: TOOMEB

CRLT Load dwe: 40%%

gk Taiad 100GE
T(L‘omponent of Disk ke 750B
R _of Uksrs: 4
MNum_of Processes: 52
System Record =

Component of MNetwork Record 1: Network Flow Fecord

ia) Femote Aozt 137,145 55,149
Local _Host 192.168.1.1
Corrrpctad From: true
Crorprpected Time: 2008.04.01.20:04:30
Dheratice:, 243
FPratocal Type: TCP
M Foiled Logins: 7

K Loggaed Tw trae
FPart_MNo _Scaie: 21
Fort Scarr_ Freg: 230

Networl
Flow Record

Instance of

Figure 4.3: Monitor Agent Knowledge

The class Network Flow Record includes several attributes about network features
which are IP address of remote host (Remote_Host), IP address of local host (Lo-
cal_Host), whether the remote host connects to the local host or oppositely (Con-
nected_From), the time when the remote host has a successful connection to the local
host (Connected_Time), length (the number of seconds) of the connection (Duration),

type of the protocol which the remote host uses to connect to the local host, e.g.
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TCP, UDP, etc (Protocol_Type), the number of failed login attempts before a suc-
cessful login (Num_Failed_Logins), whether the remote host successfully logged in the
local host (Logged_In), the port number which has been scanned by the remote host
(Port_No._Scanned), and the number of scanning to a specific port in the past two sec-
onds (Port_Scan_Freq). In Figure 4.3, (a) is an example instance of the class Network
Flow Record.

The class System Audit Record is inclusive of attributes representing the operating
system state of the host, such as memory usage (Mem_Total, Mem_Idle, and Mem_Use),
CPU usage (CPU_Load_Ave), disk usage (Disk_Total and Disk_Use), the number of
current users (Num_of_Users), and the number of current processes (Num_of_Processes).
In Figure 4.3, (b) is an example instance of the class System Audit Record.

The attribute, Remote_Host, representation with N-Triples (mentioned at the be-
ginning of this section) is shown in Table 4.1 which means Remote_Host belongs to the
class Network_Flow_Record and its type is string. The other attributes representation

with N-Triples are analogous.

<http://www.owl-ontologies.com/unnamed.owl#Remote_Host >
<http://www.w3.0rg/2000/01 /rdf-schema#domain>
<http://www.owl-ontologies.com/unnamed.owl#Network_Flow_Record>

<http://www.owl-ontologies.com/unnamed.owl#Remote_Host >
<http://www.w3.0rg/2000/01 /rdf-schema#range>
<http://www.w3.org/2001 /XMLSchema#string>

Table 4.1: An Example of N-Triples

4.2.2 Knowledge of Analysis Agent

Analysis Agent integrates and analyzes the information received from Monitor Agent
(in Figure 4.2, the predicate Queried by representing this relationship). In our frame-
work, on each host, the Analysis Agent contains many attack signatures which are used
to discover intrusions or attacks through analyzing information from Monitor Agent.
When Analysis Agent detects an intrusion or a attack, it will send a notification to
Executive Agent to quarantine damaged file or cut off network connection. If Analysis
Agent suspects that a distributed attack occurs, it will request Manager Agent for help.

The knowledge of Analysis Agent is Attack Signature which is about various in-

trusion or attack patterns. The class Attack Signature has two components, including
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Network Attack and Host Attack. Figure 4.4 demonstrates the ontology representa-
tion of the three classes. In order to conveniently communicate and cooperate between
Monitor Agent and Analysis Agent, the attributes of Network Attack and Host Attack
are nearly the same as those of Network Flow Record and System Audit Record respec-
tively, except the attributes, Attack_Type and Num_of -Hosts, which are additional in
Network Attack and Host Attack to specify the type of an attack and how many hosts
need to be detected. In this research, four subclasses are added to the class Network
Attack which are DoS, R2L, U2R and Probe (described in Subsection 1.1.1). In Figure

4.4, (a) is an example instance of the class R2L.

et R L e L L L L e e L L L LR

Signagure 1. R2L

I

i

I

(@) Attack_Tpe: Dootknob-Rattling :
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Local Host 192.168.1.1 :
Connected_From: true :
Connected_Fime: N4 :
Diipation: Ni& :
Frotacol Type: NIA !
|

I
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I

I

I

I

i

I

I
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i

|

I

|

Component of

MNem_Failed Logins: 5
Logged In true
FPort Mo _Seesn NIk
Part_Sean_Fray NI
MNum_af Hosts: 5

Probing

Instance of

Figure 4.4: Analysis Agent Knowledge

4.2.3 Knowledge of Executive Agent

Executive Agent is responsible for executing tasks against intrusions or attacks which
depend on the type of attack notified by Analysis Agent (in Figure 4.2, the predicate
Referred by representing this relationship). These tasks include restoring corrupted
files, preventing network connection, and so on. The knowledge of Executive Agent is
Fzxecutive Strategy which is about how to take actions against intrusions or attacks. The
example of knowledge representation with ontology of Executive Agent is demonstrated
in Figure 4.5.

The attributes of Ezecutive Strategy include type of attack (Attack_Type), type of
actions to be taken (Action_Type), effect to which target (Target), and extent of the
effect (Extent).
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Figure 4.5: Executive Agent Knowledge

4.2.4 Knowledge of Manager Agent

As described in Subsection 3.1.4, the Manager Agent is the agent that manages re-
trieval processes. It takes charge of Retrieval Agent and Result Agent, including gen-
erating, dispatching, retracting and communicating with these two agents. The knowl-
edge of Manager Agent is Fnvironment Record which is about environment information
of the host. The class Environment Record has two components, i.e. Neighbor List and
Retrieval Agent Record. The ontology representation of the three classes is shown in
Figure 4.6. The class Neighbor List contains relevant information about neighbor hosts
(one-hop hosts) of the the host which the Manager Agent resides on. The class Neigh-
bour List has attributes including IP addresses of neighbors (Neig_IP_Addr), host names
of neighbors (Host_-Name), and MAC addresses of neighbors (MAC_Addr). Obviously,
the number of neighbors of a host is equal to the number of records the Neighbor List
contains. The class Retrieval Agent Record is used to store Retrieval Agent Identifiers
(RAID) in order to avoid Retrieval Agent traveling the hosts which it or other Retrieval
Agents with the same RAID have already visited. The class Retrieval Agent Record
has several attributes, including visited time ( Vis_Time), from where (/P_Address) and
the RAID (RAID). In Figure 4.6, (a) and (b) are example instances of the classes
Neighbor List and Retrieval Agent Record respectively.

When an original Manager Agent, which initiates the detection process, receives a
request from the Analysis Agent for deciding distributed attack, it will generate and
dispatch Retrieval Agents to inform other hosts to check whether they have the similar
records which could form a distributed attack (in Figure 4.2, the predicate Referred

by representing this relationship).
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Figure 4.6: Manager Agent Knowledge

4.2.5 Knowledge of Retrieval Agent

Retrieval Agent, generated by Manager Agent, moves to other hosts and lets their
Analysis Agents check whether there are the similar records to constitute a distributed
attack. There are four types of knowledge that Retrieval Agent needs to maintain,
which are source IP address from where the original host dispatches this Retrieval Agent
(Source_IP_Addr), type of the suspicious attack (Attack_Type), remote IP address where
the suspicious attack is from (Remote_IP_Addr), Retrieval Agent Identifier (RAID), and
Time to Life (TTL). TTL, generated by an Initiator, is used to demonstrate the number
of rest hosts the Retrieval Agent needs to visit. The Retrieval Agent will be discarded

when the value of T'TL reaches zero or there is no more host to be traveled.

4.2.6 Knowledge of Result Agent

Result Agent, also generated by Manager Agent, with a result record will be sent back
by each Manager Agent, which has been visited by the Retrieval Agent, to the Initiator.
The result record contains the information including source IP address from where the
original host dispatches this Result Agent (Source_Host), type of the suspicious attack
(Attack-Type), whether the original host has similar records (Similar_Record), and if
so where these records are from (Remote_Host). Then, the local Analysis Agent which
resides on the same host with Initiator tallies all the result records to make a final

decision.
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4.3 Example

We have created several instances of the class R2L and Probing in our ontology with
Protege and maintained them as the knowledge of Analysis Agent. These instances
are specific intrusions or attacks, such as Doorknob-Rattling Attack, Chain/Loop-Attack
and Mitnick Attack. In this section, we only present the detection of Doorknob-Rattling
attack as an example. The sponsor of Doorknob-Rattling Attack (mentioned in Section
1.1) tries a very few common username and password combinations on several com-
puters that results in very few failed attempts on each host. This type of attack is
hard to be detected unless the data related to failed login attempts are collected and
correlated from all hosts in the network. The N-Triples representation of suspicious
Doorknob-Rattling Attack is illustrated in Table 4.2.

<http://www.owl-ontologies.com/unnamed.owl#network_attack_Instance_1>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.owl-ontologies.com/unnamed.owl#R2L>

<http://www.owl-ontologies.com/unnamed.owl#network _attack Instance_1>
<http://www.owl-ontologies.com/unnamed.owl#Attack_Type>
“Doorknob_Rattling” " " <http://www.w3.org/2001 /XMLSchema#string>

<http://www.owl-ontologies.com/unnamed.owl#network _attack Instance_1>
<http://www.owl-ontologies.com/unnamed.owl#Connected From>
“true” " " <http://www.w3.org/2001/XMLSchema#boolean>

<http://www.owl-ontologies.com/unnamed.owl#network_attack Instance_1>
<http://www.owl-ontologies.com/unnamed.owl#Num_Failed Logins>
“57 " <http://www.w3.org/2001/XMLSchema#int >

<http://www.owl-ontologies.com/unnamed.owl#network _attack Instance_1>
<http://www.owl-ontologies.com /unnamed.owl#Logged In>
“true” " " <http://www.w3.org/2001/XMLSchema#boolean>

Table 4.2: N-Triples Notation for Suspicious Doorknob-Rattling Attack

In Table 4.2, it is noted that Doorknob-Rattling Attack is an instance of R2L and
in this attack the victim host is connected from a remote host, the number of failed
login attempt is at least 5, and the login is finally successful.

In order to query for the existence of a suspicious Doorknob-Rattling Attack, a
rule should be defined which tests for the number of failed login attempts before a
successful login. The query in Table 4.3 performs this test in JACK™ [23] syntax.

If the attributes, Connected_From and Logged_In, of any instance in the class System
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Record matches the query, other attributes of that instance are instantiated. Then, the
test about whether the number of failed login is more than 5 will be executed on each
matched instance. If so, that instance is a suspicious Doorknob-Rattling Attack and
the relevant information will be sent to Manager Agent to request help. The relevant
information includes the type of attack, the IP address of remote host which connects

to the local host, and the number of hosts which need to be visited.

SystemRecord.query (Connected _From=true, Logged In=true)

=>

if (Num _Failed_Logins>=5) then

send(“ManagerAgent”, SuspiciousMessage(Attack_Type,Remote_Host,Num_of Hosts))

Table 4.3: Query for Suspicious Doorknob-Rattling Attack

4.4 Summary

In this chapter, we utilize ontology to represent knowledge of each agent in our frame-
work. The advantage of using ontology is that peers in the framework can easily share
knowledge among each other. In the next chapter, an efficient task allocation proto-
col will be introduced to assign detection tasks to different peers for collaboratively

detecting distributed attacks.



Chapter 5

Task Allocation in the P2P Framework

To cope with the issue of allocating tasks in a P2P environment, a decentralized task
allocation protocol, i.e. Efficient Task Allocation Protocol (ETAP), is elaborated in
this chapter. We first formally describe the task allocation problem in Section 5.1,
and then propose the ETAP in Section 5.2. Section 5.3 gives the comparison tests of
ETAP against Gnutella algorithm [18] and Greedy Distributed task Allocation Protocol
(GDAP) [80]. Finally, this chapter is summarized in Section 5.4.

5.1 Problem Description

The description of task allocation problem is formalized in this subsection. Firstly, the

definition of a P2P system is given.

e Definition 5.1: A P2P system is defined as an undirected graph written as
P2P = (P, E) where P is the set of peers in the system, namely P = {p1, ps, ..., Pn}
and F = {ejs, €13, ..., €21, €23, ...} indicates the set of edges which are existing re-
lationships between two peers. For example, the edge e;; € £/ means there is a
connection between the peers p;, and p;. Therefore, p; and p; are neighbors of

each other.

Each peer p € P is defined as a tuple <PeerID(p), Neig(p), Resource(p)>, where
PeerID(p) is the identity of the peer, Neig(p) is a list which indicates the neighbors
of the peer, and Resource(p) is a dataset which depicts the resource types and the
number of resources for each type that the peer contains. Then, the definitions of the
two terms Initiator and Participant, which are used throughout the rest of this thesis,

are provided in Definition 5.2.

e Definition 5.2: Suppose there is a set of tasks T" = {t1,ts,...,t,} in a P2P
system. The agent which requests help for its tasks is called Initiator and the

agent which accepts and performs the announced tasks is called Participant.

53
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Each task t € T is defined as a tuple, namely <T'askID(t), Resource(t), Benefit(t)>.
In this tuple, T'askID(t) is the identity of the task, the form of Resource(t) is simi-
lar as Resource(p) but Resource(t) just contains a record which depicts the resource
type and the number of this resource that is necessary for completing the task, and
Benefit(t) is the benefit gained when the task is completed successfully. The detailed
illumination of Benefit(t) relies on different situations and applications. In this thesis,
Benefit(t) is just set as a random integer number for simplicity.

Besides T'askID(t), Resource(t) and Benefit(t), the query message for each task
contains three more tuples, namely PeerID(p;) that is the ID of Initiator, PeerlD(p;)
indicating the ID of agent which forwards this query message last time, and 77'L (Time-
To-Live) which means the number of hops the query message could be forwarded.

In this thesis, it is assumed that each task ¢ € T needs only one type of resource
to finish and can be assigned to only one agent to accomplish, as task decomposition
is not the concentration of this research. Task allocation, therefore, can be defined as

follows.

e Definition 5.3: Given a finite set of tasks, recorded as T' = {t1, 1o, ..., ¢, }, and a
finite set of peers, written by P = {p1,ps, ..., pm } in a P2P system, Task allocation
in this research is defined as attempting to allocate the n tasks to some or all of

the m agents.

A successful task allocation should satisfy the situation that the Participant agent
has the specified resource type which is matched the announced task’s resource type,
and the number of this resource the Participant agent contains should be more than
the number of the resource which is needed for completing the announced task.

The Initiator prioritizes the tasks based on the efficiency of each task, and allocates
tasks with their efficiency descending. In addition, the Participant also chooses the
most efficient tasks to offer help every time. The definition of the efficiency of a task,

t € T, is described as follows.

e Definition 5.4: The efficiency of a task, ef fi(t), is in the light of the ratio
between the benefit gained from completing the task and the number of the

resource that is required for accomplishing the task, i.e.

ef fift) = Denel i) (5.1)

~ Resource(t)
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As aforementioned about Benefit(t), efficiency in this thesis is not a very critical
term either, which is only used to prioritize the tasks. Hence, we overlook the particular

explanation of efficiency.

5.2 Principle of ETAP

In a P2P system, there is no peer that has a global view about the system but only the
local prospect regarding its neighbors. This research focuses on how to allocate tasks,
which are distributed among the peers in a system, appropriately to Participant peers
particularly when the neighbors of the Initiator peer do not have sufficient resources
for tasks. In this thesis, for simplicity, it is supposed that the P2P system architecture
is fixed during task allocation process, which means that peers entering and leaving
the system dynamically are not considered. Figure 5.1 briefly describes the interaction
process between an Initiator and a Participant. In Figure 5.1, Resor,,, means the type
and number of the resources which Agent a needs to finish its tasks, while Reso,i4(a)
indicates the the type and number of the resources that Agent a’s neighboring agents
contain. The idea of ETAP is illustrated as follows.

The Initiator peer, p € P, attempts to find its neighboring peers to help with its
tasks, t; € T, and T}, C T'. Here, T}, means that the set of tasks that the Initiator peer
has to allocate. The Initiator peer first sends resource query messages to its neighbors.
These neighbors will respond the message with information about the types of resources
they contain and the number of resources for each type, and the identities of them.

The Initiator peer then compares the available resources from its neighbors, i.e.
Res0neig(p), with the resources required for its tasks, namely Resor,. They are cal-
culated as Resoneig(p) = Up,eneig(p) Resource(p;) and Resor, = Uy, er, Resource(t;),

respectively. This comparison will result in one of the following two cases.

1. Case One (Resopeig(a) O Resor,): in this situation, Initiator directly requests
help for tasks from its neighbors, as Initiator’s neighbors have enough resources
to handle its tasks. Initiator begins with assigning the most efficient task(s). If
more than one neighbors can solve one task, Initiator will allocate this task to
the one which has the most number of available relevant resource. The neighbors
receive and store the requests, and select the tasks with the highest efficiency
to perform. When Initiator receives the responses from its neighbors, it finally

sends contracts for the allocated tasks to Participants.
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Figure 5.1: Interaction Process Between Initiator and a Participant

2. Case Two (Resopeig(a) C Resor,): in this case, Initiator requests help only for
those tasks, t; € TC'L, which can be handled by current available resources from
its neighbors. Initiator starts with allocating the tasks, t; € T(;, also based on
the efficiency of these tasks. When finishing assigning tasks, t; € T, Initiator
attempts to send query messages in depth (not only to neighbors) for the rest of
tasks which cannot be dealt with by using the resources of its neighbors, namely
ti € (T, —T.).

Initiator generates query messages which are called Walkers and dispatches
them out. The definition of Walker is the same as that of query message intro-
duced in Section 5.1. The number of Walkers for each task is set to k that can
be adjusted by users, and the TT'L of each Walker is also set by users. A Walker
then is forwarded to a neighboring agent at each step. The probability with
which a neighboring agent is chosen depends on the number of neighbors that
each neighboring agent has, excluding the Initiator. The agent which connects
with more neighbors has higher probability to be selected. The probability can

be calculated according to Equation 5.2.
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|Neig(a;)| — 1
DPa;, = ; ;
(Xaieneiglar) [N eig(ai)]) — [Neig(ar)|

(5.2)

In Equation 5.2, p,, is the probability with which the agent, a;, is selected; as the
description in Section 5.1, Neig(a;) is a list which indicates the neighbors of the
agent, a;, and |Neig(a;)| — 1 designates the number of neighbors which agent a;
connects, excluding the Initiator agent a;. For example, agent a; is the Initiator
that has two neighbors, i.e. a; and a3, while a; and a3 connect with 4 and 8
neighboring agents separately, both excluding a;. When a; selects a neighbor to
pass a Walker, it chooses ay and a3 with the probability ﬁ = % and 4%8 = %
respectively.

The agent which receives a Walker will decrease the TT'L by 1, before the
agent forwards the Walker to any of its neighbors. If, after decrementing the
Walker's TTL, the TTL is found to be zero, the Walker will not be forwarded
any more. Otherwise, the agent forwards the Walker to one of its neighbors with
the same manner as the above description. During this process, if any agent has
the relevant resources which are desired by Walkers, the agent sends a response
message with its available resources back to Initiator. Initiator, then, selects the
agent with the most number of available resource as Participant, like in Case

One, and makes a contract with it.

In order to avoid query message replication, each agent keeps a State Record
which contains the information about where the Walkers are from and forward to.
The State Record is consisted of four attributes, i.e. TaskID(t), AgentID(ay),
AgentID(a;), and AgentID(a;). TaskID(t), AgentID(a;) and AgentID(a;)
have been mentioned in Section 5.1. TaskID(t) and AgentID(ar) can be used
to distinguish different tasks, and AgentID(a;) is exploited to avoid agent for-
warding the Walker to the former agent which just sent this Walker. AgentID(a;)
is the ID of the agent which is chosen for the Walker to be forwarded to. When a
new Walker arrives, the agent checks the Walker's TaskID(t) and AgentID(ay)
against its state record. If the same record has existed, the agent will forward the
Walker to one of other neighbors, with the same way depicted above, to which
this Walker has not been forwarded yet, and creates a new piece of record in its
State Record with the four aforementioned attributes. If, in the extreme condi-
tion, all of the agent’s neighbors have received this Walker, this Walker will be
discarded no matter the value of its TT'L.
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In the concurrent situation that is one agent has been requested by two or more
other agents nearly simultaneously, the agent responds their requests with First-Come-
First-Service (FCFS) mechanism, and its available resources announced in each re-
sponse message will exclude the former announced ones.

From the above description, it can be found that ETAP is based on both Gnutella
algorithm [18] and Random Walk [42], but extends them. Gnutella algorithm can
achieve high resource discovery accuracy, while Random Walk can lower message pro-
duction. In addition, both of them do not need to have any pre-knowledge of the P2P
system before searching resources. Thus, ETAP first employs Gnutella algorithm to
request help from Initiator’s neighbors (setting the number of hops to 1), and then
utilizes the refined Random Walk to query other agents for the rest of tasks. Instead
of randomly choosing a neighbor to forward the Walker as in [42], a biased selection
approach is employed when choosing next neihboring agent to pass the Walker, which

relies on the number of neighbors that each neighboring agent has.

5.3 Test of ETAP

To test the performance of ETAP, we compare ETAP with the Gnutella algorithm [18]
and the Greedy Distributed Allocation Protocol (GDAP) [80]. Gnutella is a popular
and well-established searching algorithm which has been deployed in many real P2P
systems. GDAP is utilized for allocating tasks in a distributed environment, but it only
allows neighboring agents to help with a task. In this section, we first depict Gnutella
and GDAP briefly. Then, the settings of a test environment and three criteria are

introduced. Finally, the test results and the relevant analysis are illustrated.

5.3.1 Gnutella Algorithm

As described in Subsection 2.3.2; Gnutella algorithm [18] is exploited for resource
search in P2P systems. It attempts to traverse all the peers in a P2P system. Gnutella’s
flooding like scheme is easy to be implemented, but produces a large number of messages
due to contacting many peers. Although Gnutella algorithm has not been used in task

allocation, it can be borrowed in our research as a standard for comparison.
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5.3.2 Greedy Distributed Allocation Protocol

Greedy Distributed Allocation Protocol (GDAP) [80] is employed to handle task allo-
cation problem in agent social networks. An agent social network is defined in [80] as
an undirected graph where vertices are agents and each edge indicates the existence
of a social connection between two agents. The task allocation process of GDAP is
described briefly as follows. All manager agents try to find neighboring contractors to
help them with their tasks. They start with offering the most efficient task. Out of
all tasks offered, contractors select the task with the highest efficiency, and send a bid
to the related manager. A bid includes all the resources the agent is able to supply
for this task. If sufficient resources have been offered, the manager selects the required
resources and informs all contractors of its choice. When a task is allocated, or when
a manager has received offers from all neighbors but still cannot satisfy its task, the
task is removed from its task list.

It can be seen that the main shortcoming of GDAP is that it only relies on neighbors
which may cause many unallocated tasks due to the limitation of resources, while our

research is trying to figure this problem out.

5.3.3 Test Setting

In order to compare the three protocols, ETAP, Gnutella and GDAP, we set a test
environment for assessing them. Power-Law random graph [2], which is the topology
of many real life P2P networks [28], is simulated for testing ETAP, Gnutella and GDAP.
The feature of power-law topology is that although the average number of neighbors is
the same as the normal random graphs, there are few peers with very high connectivity
while most other peers with few neighbors.

There are four different setups used in this test.

e Setup 1: The number of peers and tasks in the P2P network are 50 and 30
separately. The number of types of different resources is 5 and each peer randomly
has several of them. The average number of resources for each type is 30 and
the average number of resources required by each task is also 30. The number
of Walkers for each task, i.e. k, is 1 and the TTL value for each Walker is
set to 5. In this evaluation, we suppose that each task only needs one type of
resources because task decomposition is not considered in this thesis (as described
in Section 5.1). The tasks are distributed uniformly on each peer. The exact

number of resources of each resource type that a peer has and the number required
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by a task are both distributed normally. In addition, the average efficiency of
tasks is 10 and the exact efficiency of a task also satisfies normal distribution. The
only changeable attribute is the average number of neighbors in this setup. This
setup is designed to show how different average number of neighbors influences

the performance of the three protocols.

e Setup 2: This setting is similar to Setup 1 but with a few modifications. The
TTL value for each Walker varies from 2 to 8. Furthermore, the average number
of neighbors is fixed at 6. The purpose of this setting is to test the adaptability
of the three protocols.

e Sectup 3: In this setting, the average number of neighbors is fixed at 6. The
number of peers fluctuates from 100 to 400 and the ratio between the number of
agents and tasks is confirmed at 5/3. The proportion of the number of peers and
resources types is set to 10/1. In order to match the fluctuation of the number of
peers, the T'TL value for each Walker transforms from 5 to 20. This setup is used
for demonstrating the scalability of the three protocols in different scale networks

with a fized average number of neighbors.

e Setup 4: This setting is only for ETAP which is also similar to Setup 1. The
only difference from Setup 2 is that instead of adjusting 7"T'L value, we adapt the
number of walkers, i.e. k, from 1 to 4. Since Gnutella and GDAP do not contain
the term Walker, they are neglected in this setting. The target of this setting is
to exhibit the relationship between the number of Walkers and the performance of
ETAP.

In this test, three criteria are used to estimate the performance of ETAP, Gnutella
and GDAP.

1. ER (Efficiency Ratio): The proportion of summation efficiency of completed

tasks to the expected total efficiency of tasks in a P2P system, namely:

Syer, ef fi(ti)
FR=—=7]"==
theT effi(t;)

where T, is the set of completed tasks, T is the set of tasks in a P2P system, and
ef fi(t) is efficiency of the task (as described in Section 5.1). Higher 'R means

(5.3)

that more tasks can be allocated and solved, so the performance is better.
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2. Num: The entire number of the communication messages transferring in the
system during one task allocation process. Lower Num indicates that less com-
munication messages are generated and transferred in the system. Therefore, the

burden of a P2P system can be remitted more.

In a P2P system with n tasks, m peers, k& Walkers for each task and TT'L for each
Walker, the complexity of Num is O(n?*(k - TTL + m)). This can be proved as
follows. In each iteration in the worst case (i.e. a fully connected P2P system),
for each of the O(n) Initiators, O(m) resource query messages are sent. Then, the
O(m) available resource response messages are generated and sent back to the
Initiators. Next, each of the O(n) Initiators allocates O(n) tasks to their O(m)
neighbors. Thus, the messages created at this stage are O(n). After that, each of
the O(n) Initiators creates O(kn) Walkers for the rest of tasks and send them out
in O(TTL) hops. Hence, the messages generated during this phase are O(kn -
TTL). Then, the O(m) peers which have available resources will respond the
O(kn) Walkers and the messages are O(nm). Finally, each of the O(n) Initiators
makes O(n) contacts. There are O(n) Initiators in the system. Therefore, during
one task allocation process, the number of communication messages are O(n(m+
m+n—+kn-TTL+nm+n))=O0(m*(k-TTL+ m)). It should be noticed that
several special conditions, such as message replication and concurrent request

(mentioned in Section 5.2), do not affect the final analysis result.

3. CoP (Coefficient of Performance): The ratio between the summation efficiency
of successfully finished tasks and the number of communication messages (Num)
during the task allocation process. CoP can be calculated by using Equation

5.4.
ZtieTc effi(ti)

CoP =
© Num

(5.4)

Generally, the performance of the protocol is more desirable if higher FR could
be achieved and lower number of communication messages are created. Hence,
observing either FR or Num only is not enough to determine the quality of the
protocol. We, therefore, employ the CoP as the third metric to evaluate the three
protocols. Higher C'oP indicates better performance, since higher C'oP means

each message can derive higher efficiency.

For convenience, we suppose that once a task has been allocated to a Participant,

the Participant would definitely finish this task without failure.
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5.3.4 Test Results

The test is performed on the four aforementioned setups for ETAP, Gnutella and
GDAP. In order to achieve precise results, each assessment step was executed 30 times

and the average data were obtained.

Test Results from Setup 1

This test is done on Setup 1 as described in Subsection 5.3.3. The purpose of this test

is to estimate the influence of different average number of neighbors on all the three

protocols.
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Figure 5.2: Performance of different protocols on distinct average number of neighbors

Figure 5.2(a) demonstrates that Efficiency Ratios (ER) of ETAP and Gnutella
in different conditions are much higher and more stable than that of GDAP. This is
because task allocation with GDAP only depends on neighbors of Initiator. Therefore,
the more neighbors work on tasks, the more opportunities the tasks could be solved.
Comparatively, ETAP and Gnutella rely on not only neighbors but also other peers
if needed. This feature results in steady performance of ETAP and Gnutella. It is
also shown that with more average number of neighbors, the performance of GDAP
is improved continuously. The reason of this situation is that when there are more
neighbors, Initiator has higher probability to derive sufficient resources for dealing
with more of its tasks.

Figure 5.2(b) depicts the number of messages (Num) of the three protocols in
different situations generated in allocation processes. As ETAP and Gnutella would

request other peers for help when resources from neighbors are insufficient, the number
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of messages of both ETAP and Gnutella is higher than that of GDAP. Thus the presen-
tation of GDAP in this test is relatively good due to its consideration of neighbors only
which could decrease the number of messages created during task allocation process.
It is also found that the number of messages of Gnutella is much higher than that of
ETAP and GDAP. This is because Gnutella is a flooding scheme which requests all the
neighbors during each hop. In that condition, the number of messages rises dramat-
ically. Compared with Gnutella, the number of messages of ETAP is a little higher
than that of GDAP, since ETAP requests only one neighbor for the unallocated tasks
during each hop (remember k£ =1 in Setup I1).

Figure 5.2(c) shows the Coefficient of Performance (CoP) of the three protocols
in different cases. With the average number of neighbors increasing, the CoP of all the
three protocols declines, but the CoP of ETAP is higher than that of the other two
protocols. It should also be found that when the average number of neighbors is more
than 6 the CoP of Gnutella is lower than that of GDAP. This is because for Gnutella
more neighbors bring much more communication messages. Hence, although the Ef-
ficiency Ratio of Gnutella increases with the average number of neighbors ascending,

the number of communication messages rises much more.

Test Results from Setup 2

This test is done on the setting described in Setup 2 which is employed to assess the
adaptability of the three protocols.
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Figure 5.3: Performance of different protocols on distinct 7TTL value

Figure 5.3(a) provides that with TTL value ascending, the Efficiency Ratio (ER) of
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ETAP and Gnutella soars up. This can be explained that the higher the TTL value is,
the more the task allocation steps are. Therefore, tasks could have more opportunities
to be assigned.

From Figure 5.3(b), it is evident that the numbers of messages of ETAP and
Gnutella increase gradually with T7TL value rising. This is because more allocation
steps generate more communication messages.

According to Figure 5.3(c), with the increase of TTL value, the CoPs of both ETAP
and Gnutella decrease. The reason of this situation is similar to the one described in
Subsection 5.3.4, namely that the increasing rate of Efficiency Ratio is less than that
of the number of messages. Since TTL is not related to GDAP, the performance of

GDAP keeps firm during the test process.

Test Results from Setup 3

This test is based on Setup & which has been depicted in 5.3.3. The aim of this setup

is to evaluate the scalability of the three protocols in different network scales.
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Figure 5.4: Performance of different protocols on distinct number of agents

According to Figure 5.4(a), we can see that with the increasing of network scale,
the Efficiency Ratio (ER) of GDAP is continually descending while £ Rs of both ETAP
and Gnutella keep stable and high. This case can be argued that when the network
scale soars up, tasks and types of resources also rise proportionally. Although the
average number of neighbors is fixed, more tasks and resource types might still lead
to tasks unallocated if Initiators request only neighboring agents. Compared with

GDAP, benefited from requesting other peers, both ETAP and Gnutella can preserve
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their performance.

Figure 5.4(b) shows the number of messages (Num) of the three protocols in
different network scales. All the three protocols generate more communication messages
when there are more peers in the network. This is because although the average number
of neighbors is confirmed, more large network scale is accompanied by more peers and
tasks. Therefore, in order to allocate these tasks, more communication steps cannot
be avoided which results in communication messages rising. On the other hand, the
number of communication messages of GDAP always keeps a lower level than that
of ETAP and Gnutella. This can be apparently explained that GDAP only relies on
neighboring peers, and thus has less communication steps.

Figure 5.4(c) demonstrates the Coefficient of Performance (CoP) of the three
protocols. It can be seen that the C'oPs of both ETAP and Guntella keep almost
steady while that of GDAP descends gradually with the increase of network scale. The
reason of this result is described as follows. For ETAP and Gnutella, even though the
number of communication messages ascends, the absolute value of efficiency derived
by completing tasks also increases. Therefore, the C'oP can keep stable. On the other
hand, for GDAP, as the F R declines gradually while the number of messages soars up
continuously, the CoP of GDAP decreases undoubtedly. It should be also noticed that
the C'oP of GDAP is higher than that of Gnutella, which indicates Gnutella creates a

great deal of messages in large scale networks.

Test Results from Setup 4

As described in Subsection 5.3.3, this setup is only for ETAP since the only varying
parameter in this setup is the number of Walkers, i.e. k, which is not relevant to either
Gnutella or GDAP. The target of this setup is to assess how the number of Walkers
influences the performance of ETAP.

From Figure 5.5(a) and 5.5(b), with the number of Walkers increasing, both
FEfficiency Ratio (EFR) and number of messages ascend correspondingly. Nevertheless,
the Coefficient of Performance drops gradually as depicted in Figure 5.5(c). This is
because more number of Walkers brings higher FR but derives much more messages at
the same time. Hence, it can be concluded that in most cases, k = 1 is a good choice

unless E'R is a very critical factor.
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Efficiency Ratio of ETAP Number of Messages of ETAP Coefficient of Performance of ETAP
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Figure 5.5: The performance of ETAP with different number of walkers

5.3.5 Discussion of ETAP

From the above description, it is obvious that the performance of ETAP is better
than that of both Gnutella and GDAP, as each communication message in ETAP
can achieve higher efficiency, i.e. higher CoP. Although Gnutella always derives the
highest efficiency, the number of messages of Gnutella is very excessive and easily
affected by several factors. On the other hand, GDAP generates the least messages
but the efficiency of GDAP is low and could be easily disturbed by the average number
of neighbors. Therefore, as depicted in the previous paragraphs and pictures, ETAP is
more efficient, adaptable and scalable compared with both Gnutella and GDAP.

5.4 Summary

This chapter gives the detailed description of our ETAP, which is used to allocate
detection tasks to other peers for collectively detecting distributed attacks. The benefit
of ETAP is that it does not need a central planner or to form groups or coalitions before
task allocation. Besides, peers with ETAP can request help for tasks not only from
neighboring peers but other peers if needed. In the next chapter, we demonstrate the

experiment results of our framework, and analyze these results.



Chapter 6

Test and Discussion

Our framework has been implemented by using JACK?™ [23]. In this chapter, in-
trusion detection experiment of the framework is provided, and ETAP is utilized as
the detection mechanism. In order to contrast ETAP, Gnutella [18] and GDAP [80]
are also set into the framework as detection schemes. We adopt the aforementioned
three distributed attacks, i.e. Doorknob-Rattling Attack, Chain/Loop Attack and Mit-
nick Attack, as instances against our proposed framework for testing. Details of the
three distributed attacks have been described in Section 1.1. The intrusion detec-
tion test metrics, which are employed to test our framework, are introduced in Section
6.1. Then, three scenarios for task allocation in detecting distributed attacks by using
ETAP and the test results about each distributed attack are demonstrated in Section
6.2. Thereafter, discussion regarding the test is elaborated in Section 6.3. Finally, this

chapter is summarized in Section 6.4.

6.1 Test Metrics of Intrusion Detection Systems

Ulvila and Gaffney [74] depicted that a system must be in one of the two states: either
with an intrusion occurrence (/) or with no intrusion present (NI). The IDS might
generate an intrusion alarm (A) or no alarm (N A). Therefore, three parameters used
to test intrusion detection systems can be obtained, namely false alarm rate, false

negative rate, and detection rate.

e [ulse alarm rate means that an alarm arises with no intrusion event occurring,
which is written as P(A|NI) = a. Lower P(A|NI) means better performance of
an IDS.

e The meaning of false negative rate is that an intrusion happens with no alarm
generated for it, which is written as P(NA|I) = 3. Lower P(N A|I) means better

performance of an IDS.

67
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e Detection rate depicts the ratio between the number of detected intrusions and
the total number of attempted intrusions, which is written as P(A[|l) = 1 — (.
Higher P(A|I) means better performance of an IDS.

False alarm rate and false negative rate are widely utilized to evaluate the perfor-
mance of IDSs. However, for our framework, since the concentration is different from
most proposed IDSs, we use detection rate as the evaluation metrics. Besides, run time
is also employed as another evaluation metrics, which means the average time length of
each detection process. In next section, three scenarios and the experimental detection
of Doorknob-Rattling Attack, Chain/Loop Attack and Mitnick Attack will be demon-
strated. The experimental detection is based on the two metrics, namely detection rate

and run time.

6.2 Test of the Framework

In this section, the test setting is first depicted, and then three scenarios and the test

results against each distributed attack are provided.

6.2.1 Test Setting

Since the contribution of this thesis is not detection algorithms, DARPA dataset [16],
which is a famous dataset for testing intrusion detection algorithms, is not considered
in this test. Instead, we manually input some normal and hostile records as the belief
of agents on different peers, and initiate the detection process from a randomly selected
victim peer. Each detection process is performed one hundred times and achieves the
results regarding detection rate and run time which have been described in Section 6.1.
In the following subsections, the relevant scenarios are provided first, and then the test
results are exhibited. For convenience, the topology of the simulated P2P network is
the same as that in the scenarios, i.e. Figure 6.1, 6.3 and 6.5. Due to the lack of
test standard, we also mount Gnutella [18] and GDAP [80] into our framework as the

detection mechanisms for comparison with ETAP.

6.2.2 Detection of Doorknob-Rattling Attack

In this subsection, a scenario regarding the detection of Doorknob-Rattling Attack is

provided, and then the detection results within the framework are also given.
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Scenario One: Doorknob-Rattling Attack

Figure 6.1 is an example of a P2P network (such as Ad hoc network [63]) which
has four peers to be attacked by a remote host simultaneously. In this example, the
task can be described as that the detection of Doorknob-Rattling attack needs to check
failed login attempt records on several peers and this task is a high emergent task. It
is also supposed that the number of tasks is 3 and the three tasks have the same task
tuple. Following the definition about task in Subsection 5.1, the description could
be matched as the tuple that <TaskID(t) = Doorknob — Rattling, Resource(t) =
Failed_Login_Attempt > 5, Benefit(t) = 10, Position(t) = Peerl, TTL(t) = 6>.
In this example, Failed_Login_Attempt > 5 is an assumed threshold of failed login
attempt. That means if the number of failed login attempts is more than 5, this record
would be considered as a suspicious one and the agent should initiate a detection

process. Furthermore, Benefit(t) can be circumscribed according to emergency of the

task and, here, the number 10 is just an instance.

Attacked Peer5 Peer7

Figure 6.1: An example P2P network which has been attacked by Doorknob-Rattling

In terms of ETAP, Peer 1 starts the task allocation process, namely detection
process in this example, by first requesting its neighbors for help. However, the only

neighbor of Peer 1is Peer 2 which cannot supply enough resource for Peer 1. Then,
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Peer 1 sends a Walker (k = 1 in this example) with TTL = 6 to Peer 2 following the
ETAP approach described in Subsection 5.2. Peer 2 decreases 1 from TTL (TTL =5
now) and sends the Walker to its neighbor, namely Peer 3. After that, Peer 3 has the
desired resource and sends a response message back to Peer 1. Peer 3 then randomly
chooses a neighbor and dispatches the Walker with TT'L = 4. Here, we suppose Peer
3 selects Peer 5. With the same process, Peer 5 chooses Peer 6 with TT'L = 3. Peer
6 sends a response message back and forwards the Walker with TTL = 2 to Peer
9. Subsequently, it is assumed that Peer 9 randomly selects Peer 8 with TT'L = 1.
Finally, Peer § sends a response message back to Peer I and decrements 1 from T7T'L.
Peer 8 finds TTL = 0 and discards the Walker. The Initiator, Peer 1, then make a
decision about Doorknob-Rattling Attack based on these responses. Details with regard
to the communication between different peers or different agents in one peer can be

found in Section 3.2.

Detection within the Framework

For each test iteration, four randomly selected peers are victims and one of them
initiates the detection process. The example can be found in Figure 6.1. It is defined
that when three out of the four victim peers are discovered, the attack is successfully
detected. Three detection mechanisms, i.e. Gnutella, GDAP and ETAP, are executed
in each iteration. For Gnutella and ETAP, the TT'L value is set to 4. The experiment

results are demonstrated in Figure 6.2.
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Figure 6.2: Detection of Doorknob-Rattling Attack with different mechanisms

Figure 6.2(a) introduces the detection rates, i.e. P(A|l), of three detection schemes.
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It is obvious that Gnutella achieves a higher detection rate than GDAP and ETAP,
because Gnutella attempts more peers in the network. GDAP derives the lowest detec-
tion rate as it only requests neighboring peers for help. The performance of ETAP is
between Gnutella and GDAP. On the other hand, Figure 6.2(b) depicts the run time of
each mechanism. Overtly, Gnutella needs the most time, while GDAP spends the least
time. The reason is the same as that described about detection rate. Comparatively,
ETAP obtains a balance between the two evaluation metrics, namely detection rate

and run time.

6.2.3 Detection of Chain/Loop Attack

This subsection exhibits a scenario regarding the detection of Chain/Loop Attack, and

the experimental detection within the framework.

Scenario Two: Chain/Loop Attack

Figure 6.3 exhibits an example that four peers in a P2P network have been intruded by
Chain/Loop Attack. In this scenario, the task is to observe TCP or UDP connections
among several peers in order to discover whether the connections could be formed into
a “chain” or “loop”. It is assumed that the number of tasks is 3, and the three tasks
need different resources which are explained in the following. Peer 1 is supposed to
be the Initiator. As Peer 1 finds out two dubitable connection records, it launches
a task allocation process which is detection process in this example. One suspicious
connection record is from a remote host with more than three failed login attempts,
and the other is that the remote host later builds a connection to another peer in the
network through Peer 1. According to the definition in Subsection 5.1, the task tuple
of Initiator, i.e. Peer 1, can be described as <TaskID(t) = Chain/Loop, Resource(t),
Benefit(t) = 10, Position(t) = Peerl, TTL(t) = 3>, where Resource(t) includes
Failed_Login_Attempt > 3, Connection = to and Connection_TimeStamp > t1.
In this example, Failed_Login_Attempt > 3 indicates a predefined finitude which is
deemed to be a suspicious connection, C'onnection = to demonstrates this connection
is built from this peer to another peer in the network, and Connection_TimeStamp >
t1 means the connection time should be later than ¢1 at which Peerl launches a
connection to another peer, such as Peer 2. Benefit(t) = 10 is just an instance, which
is the same as Scenario One in Subsection 6.2.2.

In the light of ETAP, Peer 1 starts the task allocation process, namely detec-
tion process, by first requesting its neighbors for help. The neighbor of Peer 1 is
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Figure 6.3: An example P2P network which has been attacked by Chain/Loop

Peer 2 which does not have sufficient resources for Peer 1, since Peer 2 only has one
connection record which can satisfy Peer I’s desire. Therefore, Peer 1 allocates one
task to Peer 2 and dispatches a Walker (k = 1 in this example) with TTL = 3 to
Peer 2. Peer 2 modifies the Walker as <TaskID(t) = Chain/Loop, Resource(t),
Benefit(t) = 10, Position(t) = Peerl, TTL(t) = 2>, where Resource(t) includes
Failed_Login_Attempt > 3, Connection = to and Connection_TimeStamp > t2. t2 is
the time at which Peer 2 establishes a connection to another peer. Peer 2 then sends
the modified Walker with T'T'L = 2 to one of its neighbors. The only neighbor of
Peer 2 is Peer 3 in this example. With the same measure, Peer 3 revises the Walker
as <TaskID(t) = Chain/Loop, Resource(t), Benefit(t) = 10, Position(t) = Peerl,
TTL(t) = 1>, where Resource(t) involves Failed_Login_Attempt > 3, Connection =
to and Connection_T'imeStamp > t3. The meanings of t3 is similar as t1 and ¢2.
Subsequently, Peer 8 responds to the Initiator, Peer 1, because Peer 3 has the one
connection record that Peer 1 wishes. Peer 3 selects the neighbor Peer 5 to send the
Walker, because there is a doubted connection record on Peer 3 that indicates Peer 5
is the next “node” in the potential Chain/Loop Attack. Peer 5 then alters the Walker



6.2. Test of the Framework 73

as <TaskID(t) = Chain/Loop, Resource(t), Benefit(t) = 10, Position(t) = Peerl,
TTL(t) = 0>, and replies the Peer 1. Since TT'L has become zero, Peer 5 discards the

Walker without further process. Finally, Peer 1 correlates these responses to constitute
the profile of a Chain Attack.

Detection within the Framework

For each test iteration, four peers, which are neighboring one by one, are imaginary
victims, and the detection process is originated from the first or last peer in the “chain”.
Figure 6.3 demonstrates an example of this attack. It is set that when all of the four
victims are exposed, the attack is successfully discovered. For Gnutella and ETAP, the

TTL value is set to 5. Figure 6.4 shows the experimental detection results.
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Figure 6.4: Detection of Chain/Loop Attack with different mechanisms

Figure 6.4(a) displays the detection rates of three detection schemes. Gnutella
undoubtedly obtains the highest detection rate, while the next one is ETAP and the
last one is GDAP. For the run time of each detection mechanism, GDAP is the fastest
while Gnutella is the slowest. ETAP is medium between GDAP and Gnutella. The

sake is the same as the one described in Subsection 6.2.2.

6.2.4 Detection of Mitnick Attack

This subsection demonstrates a scenario about the detection of Mitnick Attack, and

then displays the test results within the framework.
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Scenario Three: Mitnick Attack

In Figure 6.5, a Mitnick Attack example, which is against a P2P network, is demon-
strated. Peer 1is supposed to be the Initiator. When Peer 1 discovers a TCP sequence
number predication attack, it originates a task allocation process, i.e. detection pro-
cess, in an effort to expose a Mitnick Attack. In this case, the number of task is 1, with
the task tuple <T'askID(t) = Mitnick, Resource(t), Benefit(t) = 10, Position(t) =
Peerl, TTL(t) = 10>, where Resource(t) involves Attackrype = SY N Flooding and
Trustedyypeerl = true. Here, TTL is larger than the former two scenarios, since the

other victim peer could be anywhere in the network.

Attacked by TCP =

eer5
Sequence Number resry
Prediction |

Aftacked
by SYN
Flooding

Figure 6.5: An example P2P network which has been attacked by Mitnick

According to ETAP, Peer 1 launches the task allocation process by first requesting
neighboring peers for help. The only neighbor of Peer 1 is Peer 2 which does not
contain the interested resource. Then, Peer I dispatches a Walker (k = 1 in this
scenario) with TTL = 10 to Peer 2. Peer 2 decreases one from TTL (TTL = 9) and
transmits the Walker to its neighbor, Peer 3, which does not have the relevant resource
either. Whereafter, Peer 8 decrements TTL by 1 (TTL = 8), and selects one of its
neighbors from Peer / and Peer 5 to pass the Walker. Here, it is assumed that Peer 3
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chooses Peer 4 as the next stop. The innocent Peer 4 detracts 1 from TTL (TTL =T7)
and sends the Walker to its neighbor Peer 9. With the same way, Peer 9 selects Peer 8
and transfers the Walker with TTL = 6, and Peer 8 pushes the Walker with TTL =5
to Peer 7 supposingly. Peer 7, subsequently, sends the Walker with TT'L = 4 to Peer
5 which has the desired resource. Peer 5 then responds the request to Peer 1, and
declines TT'L by 1. Since Peer 3, Peer 7 and Peer 8 have been visited, Peer 5 issues
the Walker with TT'L = 3 to Peer 6. Then, Peer 6 sends the Walker with TT'L = 2 to
Peer 9. As all the neighboring peers of Peer 9 have been requested, Peer 9 discards the
Walker even though the TT'L value of the Walker does not reach zero. The Initiator,
Peer 1, synthesizes the response from Peer 5 and results in a decision with regard to
the existence of Mitnick Attack.

Detection within the Framework

According to the nature of Mitnick Attack, during each detection iteration, two ran-
domly selected peers are assumed to be attacked. One peer is supposed to be attacked
by TCP sequence number predicting and the other is attacked by SYN flooding attack.
Since the peer attacked by SYN flooding attack usually has a network congestion, the
detection process is assumed to be launched from the other victim peer. Figure 6.5
displays an example of this attack. It is enacted that when both of the two victim peers
are found out, the attack is successfully detected. The three detection mechanisms,
namely Gnutella, GDAP and ETAP, are all utilized to perform the detection processes.
For Gnutella and ETAP, the TT'L value is confirmed at 6. Figure 6.6 demonstrates
the detection results.

In Figure 6.6(a), the detection rates of Gnutella, GDAP and ETAP are exhibited.
Gnutella derives the higher detection rate than both of GDAP and ETAP, while ETAP
achieves better detection rate than GDAP. In Figure 6.6(b), the performance of GDAP
is the best, while Gnutella is the worst. The average consuming time of ETAP is
between that of GDAP and Gnutella. The reason is the same as the one depicted in
Subsection 6.2.2.

6.3 Discussion of the Test

Section 6.2 provided three scenarios and a detailed test for the proposed framework.
According to the three scenarios, ETAP exhibits its potential capability of handling

some real cases. However, people might argue that in these scenarios, other peers,
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Figure 6.6: Detection of Mitnick Attack with different mechanisms

other than Peer 1, might also initiate the detection process synchronizingly with Peer
1. This problem is called task duplication which may increase the redundant time and
communication overhead. Agent negotiation mechanism might be borrowed to solve
this issue in some extent, which is one of our future works.

Although the test results against the three simulated attacks, i.e. Doorknob-
Rattling, Chain/Loop and Mitnick attacks, are analogous, there are two issues which

are worthy to discuss.

1. According to Figure 6.2(a) and 6.4(a), the detection rate of Gnutella with regard
to Doorknob-Rattling Attack is a little lower than that of Chain/Loop Attack.
This can be explained that during the Chain/Loop Attack the victim peers are
located relatively converged, and therefore they are easier to be discovered by
using Gnutella algorithm which requests all accessible peers within the T7TL
value. However, the detection rates of both GDAP and ETAP about Doorknob-
Rattling Attack are higher than those regarding Chain/Loop Attack. For GDAP,
this is because not all the victim peers are neighbors of the Initiator in general,
and thus it is hard to discover the attack by only requesting neighboring peers.
For ETAP, the reason is that there is only one Walker which only travels to one
neighbor each time. Due to the character of Chain/Loop Attack that usually only
one neighbor of a victim peer is attacked, the Walker might miss victim peers

during its traveling process and hence leads to detection failure.

2. Comparing Figure 6.2(a) and 6.6(a), the detection rates of Gnutella and ETAP
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about Doorknob-Rattling Attack are almost the same as those for Mitnick Attack.
The reason is that when the T'T'L value is set to be large enough, the other
victim peers can be easily discovered. Nevertheless, the detection rate of GDAP
regarding Mitnick Attack decreases slightly compared to that against Doorknob-
Rattling Attack. This can be argued that in Mitnick Attack, two victim peers
may be distributed far between each other, and therefore GDAP, which only asks

neighbors for help, might result in detection failure.

From the above description, it can be concluded that ETAP which is proposed in
this thesis achieves a good balance between the detection rate and run time, while
Gnutella and GDAP focus more on one side. In addition, according to Chapter 5,
ETAP is more flexible than Gnutella and GDAP by adjusting the number of Walkers
and TTL value. Hence, compared to Gnutella and GDAP, ETAP is more suitable for

detecting distributed attacks in P2P environments.

6.4 Summary

This chapter provides the experiment about our framework according to using three
detection schemes, i.e. Gnutella, GDAP and ETAP which is proposed in this thesis.
The test results demonstrate that ETAP fits our framework better than Gnutella and

GDAP. In the next chapter, we conclude this thesis and introduce some future works.



Chapter 7

Conclusion

Thousands of computers in the Internet suffer the threat of various network attacks. In
order to protect computers from being compromised, many IDSs have been proposed.
Some of them are centralized, while others are decentralized. The primary objective of
this thesis is to deal with the fundamental issues related to agent-based P2P framework

for distributed intrusion detection, which include:
1. Architecture of the agent-based P2P framework;
2. Design of agents functionalities in the framework;
3. Knowledge representation of agents in the framework;

4. A task allocation protocol which can be adopted as a detection scheme for the

framework.

In the rest of this chapter, we present the major contributions of this thesis and
compare each contribution with current related research. Thereafter, we discuss the
remaining problems of the proposed framework, and outline the future research direc-

tions.

7.1 Major Contributions of this Thesis

In Chapters 3, 4 and b5, we proposed a novel architecture of an agent-based P2P
framework, and then designed the functions of each agent in the framework in detail.
Thereafter, we represented the knowledge of each agent by using ontology, and finally
introduced an efficient task allocation protocol for detecting distributed attacks in the
framework. In the following subsections, we outline our contributions and compare

them with current related works.

78
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7.1.1 Architecture of the Agent-Based P2P Framework

The framework proposed in this thesis is based on P2P layout, and each peer in the
framework contains multiple agents, each of which performs different functions. The

benefits of the architecture are as follows.

1. Independent of particular network topologies;

2. Compared to centralized IDSs [31] [84] which have a central manager to handle
issues in the systems, the proposed decentralized architecture can avoid single

point failure and network congestion;

3. Against current P2P IDSs [55] [79] which remove the central manager but only
allow peers to make queries among neighbors, the presented architecture allows
peers to collaborate with not only direct linked neighbors but also other peers if

necessary. In this way, peers may have more opportunity to achieve their goals.

Furthermore, many proposed agent-based IDSs stop at initial architecture design
without detailed design and implementation of each agent. In this thesis, an agent
development software, JACK™™ | is employed to design and implement agents in the
framework. Compared to most relevant works, agents in our framework are not only
introduced but also implemented. Contrasted with [65] which also implemented the
agents but focused on detection on a single host, our framework concentrates on intru-

sion detection in a distributed domain.

7.1.2 Knowledge Representation of Agents

Many attack languages were proposed in the past decade, which can be classified as
Event, Response, Reporting, Correlation, Exploit and Detection Languages [76]. These
languages aim at representing various knowledge in intrusion detection. Nonetheless,
attack languages mainly focus on a specific aspect of intrusion detection and they are
usually dependent on particular systems and environments. Hence, the extensibility
and communicability among non-homogeneous systems of these attack languages are
incompetent. The advantages of adopting ontology to represent intrusion detection

knowledge in this thesis include the following three facets [75].

1. Representation: ontology is able to model the knowledge of a domain, which

involves the domain’s attributes and characteristics;
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2. Information sharing: ontology can represent the existence of an instance of the
domain (model) in a way that is understandable by any other entities that possess

the specific ontology;

3. Reasoning: ontology has the capability of aggregating particular instances of the
domain in a knowledge base and concluding that some larger, or more compre-

hensive, instances of the ontology exist.

In this thesis, ontology is utilized to represent agents’ knowledge in the proposed
framework. Compared to related attack languages which focus on specific domains of
intrusion detection, such as [13] and [19], our representation approach is more exten-
sible and sharable. Against other ontology based intrusion detection representation
methods which concentrate on a single host, such as [25] and [75], our approach fo-
cuses on intrusion and detection representation for a distributed environment. In this
manner, peers in our framework can share their common understanding of information

to discover distributed attacks through agent communication and cooperation.

7.1.3 A Task Allocation Protocol

In order to discover distributed attacks, allocating detection tasks to different peers is
necessary. Thus, a potent task allocation protocol is needed. Various task allocation
protocols have been developed. Some of them are centralized, which assume there
is a central planner to schedule task allocation processes. Several protocols need the
nodes in an environment to form groups before allocating tasks. Furthermore, some
allocation mechanisms allow the nodes in an environment only request neighboring
nodes for help.

In this thesis, an efficient task allocation protocol, i.e. ETAP, is proposed and
utilized into our framework for distributed intrusion detection. Compared to [85],
ETAP does not need a central planner. Against [37], it is not necessary for ETAP
to form coalitions among nodes before allocating tasks. Unlike GDAP presented in
[80] which allows only neighboring nodes to help with a task, ETAP enables nodes to

allocate tasks not only to their neighbors but also other nodes in the system.

7.2 Remaining Problems and Future Work

Although several fundamental problems with regard to IDSs have been solved in this

thesis, some remaining issues are still existent.
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1. A well defined model about detection strategy is necessary, as detection strategies
are the basis for an IDS. This model should be complete in order to handle as
many types of attacks as possible, and could accommodate variants of existing
attacks. However, in this thesis, our concentration is on building an agent-based
P2P framework for distributed intrusion detection, not on detailed detection

strategies which will be one of our future works.

2. During detection processes in our framework, it is assumed that the detection is
initiated from one of the victim peers. Nevertheless, in real cases, other victim
peers might also originate the detection processes for exposing the same attack.
This condition would cause redundant detection processes and results in time
and network consumption soaring up. How to deal with this problem is another

future work of us.

3. The agent development tool, JAC KT [23], which is utilized to implement our
framework, is not good for building mobile agent and network simulation. There-
fore, the test results might have some bias, but the trends of the three detection
schemes, i.e. Gnutella [18], GDAP [80] and ETAP, which are revealed by the test,
is still worthy to notice. Since JACK™M is powerful for developing multi-agent
systems with a free version, it is selected as development tool in this thesis. In
the future, we will use some other methods to re-implement our framework and
test it.
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