
University of Wollongong - Research Online
Thesis Collection

Title: An agent-based framework for distributed intrusion detections

Author: Dayong Ye

Year: 2009

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

An agent-based framework for

distributed intrusion detections

Dayong Ye
University of Wollongong

Ye, Dayong, An agent-based framework for distributed intrusion detections, M.Comp.Sc.Res.
thesis, School of Computer Science and Software Engineering, University of Wollongong,
2009. http://ro.uow.edu.au/theses/797

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/797

An Agent-Based Framework for
Distributed Intrusion Detections

A thesis submitted in fulfillment of the

requirements for the award of the degree

Master by Research

from

UNIVERSITY OF WOLLONGONG

by

Dayong Ye

School of Computer Science and Software Engineering

May 2009

c© Copyright 2009

by

Dayong Ye

All Rights Reserved

ii

Dedicated to

Zhen Ye and Tonghua Wang

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Dayong Ye
May 25, 2009

iv

Abstract

Network application has become a part of our everyday life. With the increasing of

convenience and popularity of network, more and more malicious users utilize network

to obtain their vicious intentions. In order to protect network users’ information secu-

rity and privacy, various intrusion detection systems were proposed and developed in

the last decade. Intrusion detection as an emerging technology has made great achieve-

ments in theory and practice, whose aim is to protect the confidentiality, integrity or

availability of a system or resource. As a complex system, the development of an in-

trusion detection system includes many aspects, such as system architecture design,

design and implementation of system components, system test in real cases, and so on.

Though many intrusion detection systems have been presented, most of them mainly

focus on one or two aspects of intrusion detection systems. This thesis aims at providing

a rudimentary solution for an agent-based Peer-to-Peer distributed intrusion detection

framework. The major contributions of this thesis include the following five aspects.

1. Introducing a novel Peer-to-Peer framework which involve different agents on

different peers;

2. Designing functionalities of each agent in the framework by using JACK/UML

approach;

3. Representing knowledge of each agent about intrusion and detection according

to employing ontology;

4. Developing an efficient task allocation protocol which is used to coordinate dif-

ferent hosts in the system to collaboratively detect distributed attacks;

5. Implementing and testing the framework in a reasonable manner by utilizing an

agent development environment, i.e. JACKTM .

In summary, this framework integrates agent technology, Peer-to-Peer architecture,

ontology technique and a task allocation protocol. Implementation and experiments

v

show the potential applicability of this framework to real cases. In addition, this

framework could help in development of a good intrusion detection system in open and

complex environments.

vi

Acknowledgements

Studying abroad is a tedious and tired journey. Without the help and support of many

people, I cannot complete my research.

I am indebted to my supervisors, Associate Professor Minjie Zhang and Dr. Quan

Bai. Their constant commitment and guidance was instrumental in the completion of

this thesis, and in making it a fulfilling experience. I am grateful to Dr. Quan Bai for

his kind help, encouragement and patient proofreading my thesis and research papers.

I am also delightful for Associate Professor Minjie Zhang’s enthusiasm for my everyday

life. Furthermore, I thank the School of Computer Science and Software Engineering

and the University of Wollongong for the financial support of conference attendance.

My thanks are extended to Mr. Shaojie Yuan, who often discusses with me in the

lab and enriches my knowledge; and Mr. Guohua Yao, my house mate, who chats with

me during our dinner time everyday and brings me a lot of fun.

I would like to express my deepest gratitude to my parents, Zhen Ye and Tonghua

Wang, who always make their financial support, encouragement, understanding and

love. Without their help, this thesis would not be finished. Thanks too, to my wife,

Yun, for her constantly tolerating my selfishness and her delicious food. I hope she

could forgive me for what I have done. I have dedicated this thesis to my parents and

my wife for their patience, understanding and unconditional love.

Finally, thanks to all the anonymous reviewers of my research papers, and all my

other dear friends and relatives who have supported me.

vii

Publications

The followings are list of my research papers that have been already published during

my Master study that is to be ended by the completion of this thesis.

• Dayong Ye, Quan Bai, and Minjie Zhang. BDI agent-oriented design for dis-

tributed intrusion detections. Communications of SIWN, 4:11-17, Jun. 2008.

• Dayong Ye, Quan Bai, and Minjie Zhang. Ontology-based knowledge representa-

tion for a p2p multi-agent distributed intrusion detection system. In Proceedings

of the 2008 IFIP International Workshop on Network and System Security (NSS

2008), pages 111-118, Shanghai, China, Oct. 2008.

• Dayong Ye, Quan Bai, and Minjie Zhang. P2P distributed intrusion detections

by using mobile agents. In Proceedings of the seventh IEEE/ACIS International

Conference on Computer and Information Science (ICIS 2008), pages 259-265,

Portland, Oregon, US, May 2008.

• Dayong Ye, Quan Bai, and Minjie Zhang. A mobile agent based peer-to-peer

framework for distributed intrusion detections. In Proceedings of the Eighth

International Conference on Intelligent Technologies (InTech’07), pages 45-55,

Sydney, AU, Dec. 2007.

viii

Contents

Abstract v

Acknowledgements vii

Publications viii

1 Introduction 1

1.1 Intrusion and Intrusion Detection . 2

1.1.1 Intrusion . 2

1.1.2 Intrusion Detection . 7

1.2 Agent-Based Intrusion Detection Systems 9

1.3 Research Concerns . 12

1.4 Thesis Structure and Outcomes . 14

2 Related Research and Literature Review 16

2.1 Architecture and Design of Agent-Based Intrusion Detection Systems . 16

2.2 Intrusion Detection Language . 18

2.3 Task Allocation Protocols and Resource Search Mechanisms 23

2.3.1 Task Allocation in Distributed Environments 23

2.3.2 Resource Search in P2P Environments 25

2.4 Summary . 27

3 A Novel P2P Agent-Based Framework for Distributed Intrusion De-

tections 28

3.1 Framework Architecture . 28

3.1.1 Monitor Agent . 28

3.1.2 Analysis Agent . 29

3.1.3 Executive Agent . 29

3.1.4 Manager Agent . 30

ix

3.1.5 Retrieval Agent . 31

3.1.6 Result Agent . 31

3.1.7 Agent working process . 31

3.2 Detailed Design of the Framework . 32

3.2.1 Overview of BDI agents . 32

3.2.2 JACKTM Agent Development Environment 33

3.2.3 Monitor Agent . 34

3.2.4 Analysis Agent . 36

3.2.5 Executive Agent . 38

3.2.6 Manager Agent . 39

3.2.7 Retrieval Agent . 41

3.2.8 Result Agent . 42

3.3 Summary . 42

4 Ontology-Based Knowledge Representation for Distributed Intrusion

Detection 43

4.1 Overview of Ontology . 43

4.2 Ontology Implementation . 45

4.2.1 Knowledge of Monitor Agent . 46

4.2.2 Knowledge of Analysis Agent 47

4.2.3 Knowledge of Executive Agent 48

4.2.4 Knowledge of Manager Agent 49

4.2.5 Knowledge of Retrieval Agent 50

4.2.6 Knowledge of Result Agent . 50

4.3 Example . 51

4.4 Summary . 52

5 Task Allocation in the P2P Framework 53

5.1 Problem Description . 53

5.2 Principle of ETAP . 55

5.3 Test of ETAP . 58

5.3.1 Gnutella Algorithm . 58

5.3.2 Greedy Distributed Allocation Protocol 59

5.3.3 Test Setting . 59

5.3.4 Test Results . 62

5.3.5 Discussion of ETAP . 66

x

5.4 Summary . 66

6 Test and Discussion 67

6.1 Test Metrics of Intrusion Detection Systems 67

6.2 Test of the Framework . 68

6.2.1 Test Setting . 68

6.2.2 Detection of Doorknob-Rattling Attack 68

6.2.3 Detection of Chain/Loop Attack 71

6.2.4 Detection of Mitnick Attack . 73

6.3 Discussion of the Test . 75

6.4 Summary . 77

7 Conclusion 78

7.1 Major Contributions of this Thesis . 78

7.1.1 Architecture of the Agent-Based P2P Framework 79

7.1.2 Knowledge Representation of Agents 79

7.1.3 A Task Allocation Protocol . 80

7.2 Remaining Problems and Future Work 80

Bibliography 82

xi

List of Tables

3.1 UML High Level Stereotypes for JACKTM 34

3.2 UML Association Level Stereotypes for JACKTM 34

4.1 An Example of N-Triples . 47

4.2 N-Triples Notation for Suspicious Doorknob-Rattling Attack 51

4.3 Query for Suspicious Doorknob-Rattling Attack 52

xii

List of Figures

1.1 Attack Classification with Ontology . 4

1.2 A Paradigm of Doorknob-Rattling Attack 6

1.3 A Paradigm of Chain/Loop Attack . 7

1.4 A Paradigm of Mitnick Attack . 8

1.5 A Standard Architecture of IDS . 10

3.1 Architecture of the Framework . 29

3.2 Retrieval Process . 32

3.3 A Simple Example of Designing JACKTM Agent with UML 35

3.4 Design of Monitor Agent with JACK/UML 35

3.5 Design of Analysis Agent with JACK/UML 37

3.6 Design of Executive Agent with JACK/UML 38

3.7 Design of Manager Agent with JACK/UML 40

3.8 Design of Retrieval Agent with JACK/UML 42

3.9 Design of Result Agent with JACK/UML 42

4.1 RDF relationship graph . 44

4.2 Ontology representation of agent knowledge in each peer 45

4.3 Monitor Agent Knowledge . 46

4.4 Analysis Agent Knowledge . 48

4.5 Executive Agent Knowledge . 49

4.6 Manager Agent Knowledge . 50

5.1 Interaction Process Between Initiator and a Participant 56

5.2 Performance of different protocols on distinct average number of neighbors 62

5.3 Performance of different protocols on distinct TTL value 63

5.4 Performance of different protocols on distinct number of agents 64

5.5 The performance of ETAP with different number of walkers 66

xiii

6.1 An example P2P network which has been attacked by Doorknob-Rattling 69

6.2 Detection of Doorknob-Rattling Attack with different mechanisms . . . 70

6.3 An example P2P network which has been attacked by Chain/Loop . . . 72

6.4 Detection of Chain/Loop Attack with different mechanisms 73

6.5 An example P2P network which has been attacked by Mitnick 74

6.6 Detection of Mitnick Attack with different mechanisms 76

xiv

Chapter 1

Introduction

Since the last decade, security issues, such as network intrusions, have become more and

more serious with the growth of computer and network applications. Intrusion is a set

of actions that attempt to compromise the confidentiality, integrity or availability of a

resource. In order to prevent information from malicious attackers, Intrusion Detection

Systems (IDSs) are used to detect various intrusions in network environments.

After Anderson [3] and Denning [11] presented the very first prototypes of IDSs,

many works have been done on intrusion detection. Recently, with the development of

artificial intelligence, multi-agents systems and intelligent agent technology provide a

powerful paradigm for the modeling and developing of complex systems. Subsequently,

many studies are undertaken on agent-based intrusion detection systems. The archi-

tectures of conventional agent-based IDSs are centralized which involve a central unit

to monitor the entire system, such as [6], [31], [38], [81], and [84]. The centralized

architectures have two obvious drawbacks. Firstly, the centralized forms may lead to a

single point failure, because the failure of the central analyzer (e.g. the central analyzer

is cracked by an attacker) would cause the whole system to be destructed. Secondly,

the central unit is easy to become the bottleneck of the whole system when there are

many simultaneous client requests. In an effort to overcome the two disadvantages,

some researchers proposed agent-based Peer-to-Peer (P2P) architectures for IDS, e.g.

[55] [79] [82]. However, most of these P2P architectures only allow hosts in a network

to obtain information from their one-hop (direct linked) neighbors. This limitation

may lead a system to make inaccurate decisions. The aim of this thesis is to provide

a novel agent-based P2P framework for distributed intrusion detection, in which hosts

derive information not only from the directed neighbors but also other indirect linked

hosts if needed. Thereafter, the detailed design and knowledge representation of each

agent in this framework are presented in this thesis as well. Furthermore, an efficient

task allocation protocol which is utilized to allocate detection tasks among hosts is also

introduced.

1

1.1. Intrusion and Intrusion Detection 2

The goal of this chapter is to provide an overview of intrusion detection and the ar-

chitectures of agent-based intrusion detection systems. Section 1.1 describes intrusions

and their detections. Section 1.2 demonstrates the architectures and mechanisms of

some current agent-based IDSs. Section 1.3 depicts the research concerns that remain

open for agent-based IDSs in a P2P environment. Section 1.4 outlines this thesis, and

also explains the outcomes of this research and how these outcomes are embodied in

this thesis.

1.1 Intrusion and Intrusion Detection

A significant security problem for computer systems and networks is intrusion by users

or softwares. User intrusion can take the form of unauthorized login to a machine or

an authorized user illegally acquires privileges which are beyond those that have been

authorized to that user. Software intrusion can be the form of a virus, worm, or Trojan

horse. This thesis focuses on user intrusion.

From Internet Security Glossary [67], security intrusion and intrusion detection are

defined as follows, respectively.

• Security Intrusion: An action, or a set of actions, which attempt(s) to gain access

to a system or a resource without legal privileges to do so, or to prevent legitimate

users from being served.

• Intrusion Detection: A security service that attempts to find suspicious events

or actions which constitute an intrusion, and to provide real time warnings if

possible.

In Subsection 1.1.1, a detailed description of various intrusions is provided, while

an overview regarding intrusion detection is shown in Subsection 1.1.2.

1.1.1 Intrusion

There exist numerous categories of intrusions. In order to exhibit various intrusions

systematically, much attention has been paid on attack taxonomies. Landwehr et

al. [36] provided a taxonomy which is categorized according to genesis (how), time

of introduction (when) and location (where). They contain subclasses of: validation

errors, boundary condition errors and serialization errors, as a means of effecting an

intrusion.

1.1. Intrusion and Intrusion Detection 3

As detailed by McHugh [43], the common character of most taxonomies is that

the categorization is based on the attacker’s point of view. Thus, McHugh suggested

a different way, which classifies attacks according to protocol layer, i.e. whether a

completed protocol handshake is needed or not. Similarly, Guha [22] also provided

an alternative categorization approach which relies on analysis of each layer of the

TCP/IP protocol stack.

A taxonomy, which is based on the consequence of attacks, is proposed by DARPA

Off-Line Intrusion Detection Evaluations [24] [41]. From this taxonomy, the sub-

categories include Denial of Service (DoS), Remote to Local (R2L), User to Root (U2R)

and Probe. Each of the four sub-categories are described as follows:

• Denial of Service (DoS): this attack utilizes any methods which can overload or

crash some service in order to prevent other legitimate users from being served,

e.g. SYN flood attack [64]. More details with regard to DoS attack can be found

in [32].

• Remote to Local (R2L): unauthorized access from a remote machine to local

ones, e.g. guessing password;

• User to Root (U2R): unauthorized access to local superuser (root) privileges,

e.g., various “buffer overflow” attacks;

• Probe: surveillance and other probing, e.g., port scanning.

Joshi and Undercoffer [27] utilized ontology to classify attacks based on the following

four criteria:

1. Target of Attack: the system or network component that is the target of an

attack. The components may include the network protocol stack, the operation

systems, applications and so on.

2. Means of Attack: the methods that are used by the attacker. This category

involves input validation errors (buffer overflows, boundary condition errors, etc.),

exploits and configuration errors.

3. Consequences of Attack: the end result of the attack. This category consists of

DoS, R2L, U2R and Probe as described above.

4. Location of Attacker: the location of the attacker, namely that whether the at-

tacker is from the network or a local host.

1.1. Intrusion and Intrusion Detection 4

In addition, Joshi and Undercoffer [27] also presented a complete ontology in a

graphical form with Resource Description Framework (RDF) [58], which is easy to read

and understand as shown in Figure 1.1. An ontology [21] is “an explicit specification

of a conceptualization”. Ontology is employed to support the sharing and reuse of

formally represented knowledge among systems, such as Artificial Intelligence (AI)

systems. Details about ontology will be depicted in Chapter 4.

The construction in Figure 1.1, presented in [27], is based on the notion that an

intrusion is effected by some inputs from an attacker. These inputs are caused by

some means and directed to some system components, and finally result in some con-

sequences. Details regarding the notations in Figure 1.1 will be elaborated in Chapter

4. It should be noted that one attack instance could belong to two or more classes

based on different criteria. For example, SYN flood attack [64] can be categorized into

Denial of Service, if the criterion of classification is Consequences of Attack; meanwhile

SYN flood attack [64] can also be labeled as TCP Layer, if the classification is based

on Target of Attack.

Figure 1.1: Attack Classification with Ontology

Generally, the objective of an intruder is to gain the access to a system or a resource,

or to increase the intruder’s privileges accessible on a system. In most cases, the target

1.1. Intrusion and Intrusion Detection 5

system has been protected by a username and password combination. Since username

is usually public, with the knowledge of a legitimate user’s password, an intruder can

log in to a system and execute all the privileges which are authorized to that legitimate

user. Therefore, the first step of the intruder is to guess the password. Alternatively,

the goal of an intruder might be to disable a system or a service. In this case, the

intruder may employ various DoS attacks to make the target system inefficient, and

thus the legitimate users are unable to be served. The instances of various DoS attacks

can be found in [46].

In order to increase the probability of successful intrusion and conceal the traces,

distributed attacks, which involve multiple decentralized host domains, are becoming

a greater concern. Frincke [17] divided distributed attacks into the following three

categories.

1. Simple attacks: Attacks are constituted by a series of actions (automated or

interactive) initiated from a single host. This category actually includes those

attacks aimed at a single host.

2. Repeated pattern attacks: Attacks are formed from a sequence of simple attacks,

each independently taking place on a separate host or network and potentially

issued from one or more host(s). Some network attacks, such as distributed port

scanning, usually fall into this category.

3. Multipoint attacks: Attacks are combined from a set simple attacks. Compared

with Repeated pattern attacks, individual actions may take place on different hosts

and be launched from one or more distinct hosts. This type of attacks is more

insidious compared with the other two categories. The attack is still widespread,

but different activities target at different hosts, rather than a repetition of the

same activity at victim hosts.

The following three examples are distributed attacks which can be matched with the

aforementioned three types, i.e. Simple attacks, Repeated pattern attacks and Multipoint

attacks.

1. Doorknob-Rattling Attack [71]: For this attack, the intruder tries a very few

username and password combinations on several hosts that results in very few

failed login attempts (e.g. guessing password) on each host. This type of attack

is difficult to be detected unless the data related to failed login attempts are

collected and correlated from several hosts in the network. This attack belongs

1.1. Intrusion and Intrusion Detection 6

to the second category, i.e. Repeated pattern attacks. Figure 1.2 depicts the

paradigm of this attack.

Figure 1.2: A Paradigm of Doorknob-Rattling Attack

In Figure 1.2, there are attempts from a remote host, whose IP address is

153.86.0.1,to login the three hosts, namely Host 1, Host 2 and Host 3. According

to the view of any one host, there are just several failed login attempts, and some

hosts may not even consider this as a suspicious activity since the threshold with

regard to the number of failed login attempts is different for each host. However,

if the relevant data about failed login attempts could be correlated from several

hosts, the subtle Doorknob-Rattling Attack would be discovered.

2. Chain/Loop Attack [34]: In Chain attack, the attacker moves across several hosts

in order to hide his/her original trace, which is the host this attacker first suc-

cessfully logged on. The result of this attack is in a chain of connection through

many hosts. In Loop attack, the chain of connection forms a loop which makes

it more difficult to trace the origin of connection. This attack is an instance of

Simple attacks. Figure 1.3 demonstrates the paradigm of this attack.

In Figure 1.3, it can be seen that at time t1, a remote host with IP address

153.86.0.1 successfully connected to Host 1. Then, at time t2, a connection was

created between Host 1 and Host 2. Thereafter, a link was initiated from Host

2 to Host 3 at time t3. Finally, at time t4, the user of Host 4 logged on Host

1 successfully. It is similar with Doorknob-Rattling Attack that any one host in

the network cannot find out the Chain/Loop Attack only from its local record.

Several hosts have to be cooperated to reveal this attack.

1.1. Intrusion and Intrusion Detection 7

Figure 1.3: A Paradigm of Chain/Loop Attack

3. Mitnic Attack [50]: For this attack, an intruder first launches one type of DoS

attacks (such as SYN flood attack [64]) to prevent a trusted host (e.g. HostA)

from accepting incoming TCP connection requests (i.e. SYN packets). Then, the

intruder tries to connect to another host (say HostB which trusts HostA) by

spoofing HostA’s IP address and TCP port, which have been flooded, as source

IP and source port. HostB is the intruder’s real target. This attack can be

classified into the third category, namely Multipoint attacks. Figure 1.4 shows

the paradigm of this attack.

Figure 1.4 displays the steps which will be followed by the attacker to initiate the

Mitnick Attack. In this attack, Host A can detect a type of DoS attacks, while

Host B may disclose a TCP sequence number prediction attack. Thus, both Host

A and Host B cannot discover the Mitnic Attack, if they only check their own

local records. This distributed attack is more insidious than Doorknob-Rattling

Attack and Chain/Loop Attack, as it utilizes two different types of attacks.

This thesis uses the above three attacks as instances to test the proposed framework,

since they are representatives of common distributed attacks and easy to simulate.

1.1.2 Intrusion Detection

In this subsection, the background about intrusion detection will be introduced. Ac-

cording to [72], intrusion detection can be classified as follows:

1.1. Intrusion and Intrusion Detection 8

Figure 1.4: A Paradigm of Mitnick Attack

1. Host-based Intrusion Detection monitors any suspicious activities and events

which occur on a single host. By utilizing host-based intrusion detection, both

external and internal intrusions can be detected, while internal intrusions are

usually difficult to detect with network-based intrusion detection. There are gen-

erally two approaches within host-based intrusion detection.

• Anomaly Detection is based on detecting the deviation of the profile of le-

gitimate users’ behavior. The profile is formed according to data collection

and correlation over a period of time, while detection methods against the

profile are usually statistical ones.

• Signature Detection relies on a set of predefined rules, which are employed

to observe events occurring in the system, and then result in a decision that

whether an activity is suspicious or not.

2. Distributed Host-based Intrusion Detection: Traditionally, host-based intrusion

detection focused on a single host. However, many distributed attacks hap-

pened in recent years, whose targets may include several hosts, such as Doorknob-

Rattling Attack, Chain/Loop Attack and Mitnick Attack. In order to detect these

attacks, data collected and correlated from multiple hosts are needed. Therefore,

distributed host-based intrusion detection is necessary, which is employed to co-

operate and coordinate individual suspicious activities happening on each single

1.2. Agent-Based Intrusion Detection Systems 9

host in the network.

3. Network-based Intrusion Detection monitors and analyzes network traffic to iden-

tify suspicious activities. Network-based intrusion detection may involve several

sensors distributed in different network segments. The sensors observe network

transport and render their observation to one or more manager(s) (generally hu-

man interface) to analyze and lead to a decision regarding whether or not there

is an intrusion in the network.

The above three categories of intrusion detection are sometimes overlapping and

complementary. Thus, they are often collaborated together to perform intrusion de-

tection. A distributed host-based IDS makes use of several host-based IDSs that can

cooperate and communicate with each other. A network-based IDS focuses on network

events and network devices. Distributed host-based IDSs and network-based IDSs can

then be combined to monitor different parts of a network system and coordinate in-

trusion detection and response. The framework proposed in this thesis assembles a

distributed host-based IDS and a network-based IDS.

1.2 Agent-Based Intrusion Detection Systems

According to [10], a hierarchical IDS generally consists of three logical components,

i.e. sensors, analyzers and managers. Sensors are located at the bottom level of the

hierarchy and output data to analyzers, which in turn report up to a manager, located

at the top most level of the hierarchy.

• Sensors: Sensors (sometimes called as monitors or detectors) are responsible

for collecting data and preprocessing the data in a common format for further

analysis. Different IDSs usually have different common formats. The input for

a sensor may be from any part of a system, which includes network packets, log

files, and system call traces. Sensors collect and forward this information up to

the analyzer.

• Analyzers: Analyzers receive input from one or more sensors or from other ana-

lyzers. The analyzer is responsible for determining if an intrusion has occurred.

The output of this component is an indication that an intrusion has occurred or

not or the confidence of an intrusion happening. The output may include evi-

dences which support the conclusion that an intrusion occurred. The analyzer

might provide guidance about what actions to take against the intrusion.

1.2. Agent-Based Intrusion Detection Systems 10

• Managers: Managers (sometimes called as directors or consoles) of an IDS man-

age the whole IDS, including controlling and configuring the behavior of the

system and/or reporting the output to security officers.

Thus, according to the above description, the standard architecture of an IDS can

be graphically represented in Figure 1.5.

Figure 1.5: A Standard Architecture of IDS

With the development of artificial intelligence, many studies have been undertaken

on agent-based intrusion detection systems. Russell and Norvig [61] defined that an

agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through actuators. Particularly, a software agent

can receive keystrokes, file contents, and network packets as sensory inputs and then

acts autonomously on the environment by displaying on the screen, writing files, and

sending network packets. Software agents are widely used in intrusion detection, as

they have the following benefits [4].

1. Agents can be added to and removed from a system without affecting other com-

ponents in the system, since they are independently running, i.e. autonomous,

entities. Therefore, when new agents join in an IDS or existing agents leave an

IDS, there is no need for the IDS to restart.

2. Agents can reconfigure themselves without having to restart by using some mech-

anisms.

3. Before including agents into a complex environment, they can test on their own.

1.2. Agent-Based Intrusion Detection Systems 11

4. Many different agents can cooperate to form a group to fulfill a complex task.

Each agent in the group performs simple functions and exchanges information

with each other to obtain more complex results, which are difficult to derive by

any one of these agents.

There have been several agent-based systems for intrusion detection, which are

worthy to look through. In [6], a distributed intrusion detection framework based on

autonomous and mobile agents was presented. It makes use of an administrator agent

to create analyzer agents and send them toward the stations to be analyzed. There is a

crisis agent to create a new administrator agent if the administrator falls in breakdown.

In a large network, the administrator needs to create many analyzer agents and send

them out. This is a heavy burden for the administrator, and the administrator will

become the bottleneck of the whole system. Hence, the scalability might be an issue.

DIDMA [31] is a distributed intrusion detection system using mobile agents. It is

aimed at building a distributed IDS which places static agents at every host and the

network along with a centralized Mobile Agent Dispatcher and IDS console. Although

it has better scalability and is platform independent, it still faces a security problem,

namely that if a hacker cracks mobile agent dispatcher or IDS console, the whole system

will fail. The Multi-agent based Intrusion Detection Architecture [84] is a hierarchical

architecture too. It consists of four types of agents, including basic agent, coordination

agent, global coordination agent, and interface agent. If a basic agent encounters a

complex task it is unable to handle, a coordination agent is created dynamically. The

coordination agent communicates with other basic agents and directs them to perform

certain functions cooperatively. When the coordination agent encounters a complex

task it is unable to handle, it will give a report to the global coordination agent. In

this system, the global coordination agent might be a weakness for intrusions, because

if the global coordination agent was cracked, no other agents could replace it and the

system would break down.

The above three proposed architectures of agent-based IDSs, i.e. [6], [31] and

[84], have centralized architectures, which have the risk of single point failure and

poor scalability. In order to overcome these two drawbacks, P2P architectures of

agent-based IDS are presented. In [55], a P2P intrusion detection system based on

mobile agents is introduced. This IDS gives up traditional hierarchical architecture.

Hosts in a LAN monitor each other. They periodically send mobile agents to their

neighbors to detect intrusions. When anomalous behaviors are detected, the observer

neighbor initiates a voting process. It sends a mobile agent with a voting sheet to

1.3. Research Concerns 12

other neighbors of the compromised host for a cooperative decision. This system can

completely avoid single point failure problem. However, each host in the network has to

store critical information of its neighbors which is a burden for each host. In addition,

periodic detection may result in network overload increasing and have negative impact

on the system overall performance. The basic principles of the system proposed in

[79] are similar to those of the system described in [55]. According to [79], host in the

network dispatches a mobile agent to its neighbors only when a suspicious incident is

observed in that host instead of periodically sending mobile agents to its neighbors.

Although this system overcomes some drawbacks of the one proposed in [55], it still

has a few limitations. Because the host in the network only asks its neighbors for

collaborative decision, it might not detect some specific distributed attacks, which may

simultaneously attack multiple hosts in a network, such as Doorknob-Rattling Attack

and Mitnic Attack.

As introduced in the previous paragraphs, most current agent-based IDSs have some

limitations and drawbacks, specifically on the aspects of single point failure and detec-

tion accuracy. The framework, introduced in this thesis, adopts a P2P architecture,

which can avoid single point failure. Furthermore, Intrusion detections in this frame-

work are not only relied on direct-linked neighbors of a host, but also other hosts in

the network if necessary. In this way, the original host can obtain further information

to achieve a more accurate decision.

1.3 Research Concerns

The research concerns regarding agent-based P2P intrusion detection framework in-

clude:

1. A general architecture which outlines the components of the framework and func-

tions of each component. For an agent-based architecture, the components are

various agents which take on different tasks. Many architectures have been pro-

posed. Most of them are based on centralized control. Although few ones are

based on P2P style, they have other limitations as aforementioned. The archi-

tecture presented in this thesis is also based on P2P style, but alleviates the

drawbacks which exist in current P2P based architectures.

2. Detailed design of each component (agent) in the framework. Even though many

research work about application of intelligent agents in intrusion detection has

1.3. Research Concerns 13

been done during the last decade, very few provide detailed design of each agent

in proposed systems. In this thesis, the design and implementation of Belief-

Desire-Intention (BDI) agents in our framework are introduced. A BDI agent

[56] is able to continuously reason about beliefs, goals, and intentions and act

accordingly. Detailed description of BDI agents will be provided in Chapter 3.

3. Knowledge representation of each agent in the framework. In a distributed do-

main, each individual IDS has to implement and interpret the rules with the same

detection language in order to cooperate with each other. However, since IDSs

can be developed by different vendors and different vendors may exploit differ-

ent detection languages, the interoperability among various IDSs may become an

obstacle. This shortcoming might be mitigated by using ontology technique, as

ontology provides software systems with the ability to share a common under-

standing of information and enables software systems to have greater capability

to reason the information. Many research efforts on application of ontology in

network security have been done. Nevertheless, they mostly stop at initial pro-

posal or focus on framework design without detailed representation of intrusion

or attack and relevant detection knowledge with ontology. In this thesis, the de-

sign of ontology based knowledge representation for each agent in our framework

is proposed.

4. Task allocation can be employed in our framework for detecting distributed at-

tacks. When detecting some distributed attacks, e.g. Doorknob-Rattling, Chain-

loop Attack and Mitnic Attack (mentioned in Subsection 1.1.1), the information

from only one host is not sufficient. The host, which initiates a distributed de-

tection, has to allocate detection tasks to other hosts. Thus, an efficient task

allocation protocol is necessary. Task allocation in distributed environments has

been studied thoroughly, but very few published works considered P2P envi-

ronments. In addition, many task allocation protocols proposed in distributed

environments assumed that there is a central manager which takes charge of task

allocation. In this thesis, a novel task allocation protocol which is suitable for

intrusion detection in P2P environments is presented.

5. Effective detection strategies are worthy to study in order to handle the current

attacks and the variants of existing attacks.

6. Agent negotiation and coordination models could be used for task allocation in

P2P environments for intrusion detection.

1.4. Thesis Structure and Outcomes 14

7. The communication security among different hosts in a P2P environment should

also be considered, which involves message authentication and data integrity

check.

1.4 Thesis Structure and Outcomes

This thesis starts with a presentation and review of developments in intrusion detec-

tion, and describes three specific distributed intrusions which are utilized to test our

proposed framework. The difficulty of detecting distributed attacks in P2P environ-

ments is that the victim of such an attack is not only one host and any host does not

have a global view of the P2P environments. The research concerns of this area are

considered to be eight-fold (recall Section 1.3). The first five are tackled in this thesis

as a part of the full approach to intrusion detection in P2P environments.

The major contributions of this thesis involve:

1. An agent-based P2P framework for distributed intrusion detection is proposed,

which overcomes the disadvantages existing in the current related works;

2. Each agent in the framework is designed and implemented, which has not been

undertaken by most related research;

3. Knowledge of each agent is represented by exploiting ontology which can ease

communication and information exchange among different hosts;

4. An efficient task allocation protocol is presented for assigning detection tasks

among various hosts in P2P environments.

The rest chapters of this thesis are organized as follows:

Chapter 2 reviews current related works, which include architectures and design

of agent-based intrusion detection systems, intrusion detection representation mecha-

nisms, task allocation protocols, and resource retrieval in P2P environments.

Chapter 3 introduces an agent-based P2P framework and its detailed design for

distributed intrusion detection. This framework does not have a central controller

which can avoid single point failure, and allows hosts to request help from not only

direct linked neighbors but other hosts if needed.

Chapter 4 gives an ontology-based knowledge representation for each agent in the

proposed framework. By making use of ontology, the capability of communication and

information exchange among agents in our framework is enhanced.

1.4. Thesis Structure and Outcomes 15

Chapter 5 presents an efficient task allocation protocol, which is based on Contract

Net Protocol [69] but more suitable for task allocation in P2P environments.

Chapter 6 demonstrates the test of our framework which is implemented by using

the tool JACKTM (Java Agent Compiler and Kernel) [23], and discusses the test results.

Chapter 7 concludes this thesis, with providing advantages and limitations of this

study, and presents the future work.

Chapter 2

Related Research and Literature Review

The agent-based framework proposed in this thesis includes four parts, i.e. general

architecture, detailed design of each agent, knowledge representation for each agent,

and task allocation protocol for detecting distributed intrusions. In this chapter, we

first review the related research about the architectures of agent-based IDSs and agent

design in Section 2.1, and then introduce the literature regarding knowledge represen-

tation for intrusion detection in Section 2.2. In Section 2.3, we discuss the relevant

task allocation protocols in distributed environments and resource search mechanisms

in P2P environments. Finally, this chapter is summarized in Section 2.4.

2.1 Architecture and Design of Agent-Based Intru-

sion Detection Systems

There are numerous agent-based architectures proposed for intrusion detection re-

search. This section depicts several typical architectures.

The AAFID project [4] proposed a distributed IDS architecture including three

components that are various agents, transceivers and monitors. Agents are responsible

for detecting suspicious events on a protected host and each agent is for a specific type

of attack. Agents report their findings to the appropriate transceiver. Transceivers

are per-host entities that oversee the operation of all the agents running in their host.

Transceivers also report their results to one or more monitors which surveil the opera-

tion of several transceivers. In that case, monitors have the ability to access network-

wide data and are able to perform high-level correlation to detect intrusions which

involve several hosts. The shortcoming of this architecture is that a transceiver has

to report to more than one monitors to provide redundant information to resist the

failure of one of the monitors.

16

2.1. Architecture and Design of Agent-Based Intrusion Detection Systems 17

Qin et al. [54] deployed a number of light-weight agents, called ID (Intrusion Detec-

tion) agents, to various network components. They proposed multiple ID agents and

each of them specializes in a certain category of intrusions. For example, the host-based

ID agents can analyze audit data, system call traces, or user shell command streams

to monitor applications and user behaviors. On the other hand network ID agents are

responsible for network level attacks, such as DoS. The proposed architecture is hierar-

chical and divides the protection and analysis scope to Local-analysis, regional-analysis

and Global-analysis. The ID agents are deployed locally to detect intrusive behaviors

on network components. An ID Correlator manages some local ID agents and com-

bines the security alarms sent by local ID agents. An ID Correlator is responsible for

a region and reports its findings to the ID Manager, which is responsible for the whole

network. Similar as most other research on application of agents in intrusion detection

and response, the focus of Qin et al. is on the distribution of detection and response

functions across a domain or several domains rather than the intelligent behavior of

agents. Furthermore, the architecture proposed in [54] is hierarchical, which has the

potential risk regarding single point failure.

Another agent-based IDS architecture, which was presented in [26], is also a hi-

erarchical one that consists of several lightweight agents. These agents involve static

data cleaning agents for obtaining and rendering information from system logs and

audit data, low-level agents which monitor and classify ongoing activities, and high-

level agents, namely data mining agents, that use machine learning methods to acquire

predictive rules for intrusion detection.

The CIDS (Cougaar-based intrusion detection system) [8] provided a hierarchical

security agent framework. In CIDS, a security node consists of four different agents

and a number of such nodes form a security community. The advantage of CIDS is

that an individual agent is responsible for each functional module which makes future

modification easy. Compared to other related research, the most significant contribu-

tion of CIDS is that it is not only an initial design but also has been implemented

although it only concentrated on single node intrusion detection.

A multi-agent based dynamic hierarchical distributed intrusion detection system

was presented in [81]. There are four types of agents in this system. They are tracer

agent, basic agent, supervisor agent and monitor agent. The supervisor agent is dy-

namically voted from basic agents in a Local Area Network (LAN) and takes charge

of the LAN. Monitor agent is dynamically voted from supervisor agents in the whole

system and monitors the running states of the system and interacts with administrator.

2.2. Intrusion Detection Language 18

In some extent, it avoids the single point failure problem. However, in real hierarchi-

cal networks, some specific hosts cannot be substituted, such as servers and routers.

If these devices were cracked, no one could replace them and the system would be

crashed. Besides, their research stopped at initial architecture without detailed design.

Boudaoud and McCathieNevile [5] presented an intelligent agent-based model for

security management, which is composed of three plans: the user plan, the intelligence

plan and the kernel plan. The user plan represents the security policy-based model,

which involves the administrator and the security policies. The administrator specifies

security policies to apply to the network. The intelligence plan conveys the intelligent

agent-based model that includes a multi-agent system and a BDI-based information

model. The kernel plan indicates the event-based model, which consists of network

to secure and the security events occurring in it. The authors attempted to employ

BDI agent model in their research, but, like most related works, lacked detailed design

and implementation. Furthermore, the functional architecture of the model is still

centralized and hierarchical.

In [65], Shajari and Ghorbani explained the design of the Fuzzy Adaptive Surviv-

ability Tool (FAST) agents and their intelligent behaviors. A FAST agent uses BDI

logic as the reasoning framework to decide on desirable response plans. This is the

only research work which referred to the design and implementation of BDI agents in

intrusion detection. However, they only considered intrusion detection and response on

a single host without attempting to enable the FAST agents to cooperatively monitor

and mitigate the attack in a distributed domain.

According to the survey of current related research, most of them only presented

an architecture. Although some published works mentioned detailed design, they con-

centrated more on a single host rather than in a distributed environment, which is

attempted to be dealt with in this thesis.

2.2 Intrusion Detection Language

In order to recognize intrusive behaviors effectively, a well defined representation scheme

of intrusion or attack signatures is inevitable. There have been several attack languages

proposed in the literature to handle this problem. These languages can be categorized

as Event, Response, Reporting, Correlation, Exploit and Detection Languages [76],

each of which is described as follows.

2.2. Intrusion Detection Language 19

• Event Languages, such as [19] and [78], are used to describe “events”. These

events may be system logs or network traffic records, which are usually the basic

input for security analysis. This class of languages is primarily concentrated on

the specification of data format and structure.

• Response Languages are employed to specify the actions, which have to be

taken in response to the observation of intrusions or attacks. To the best of our

knowledge, there is not a well defined and accepted response language. Instead,

most IDSs use library functions written in general purpose languages, e.g. C or

Java, to represent response actions.

• Reporting Languages. One of the possible responses to an attack is reporting

the attack event to a human security officer or an application. Reporting lan-

guages, such as [7], [29] and [15], are utilized to describe warnings which contain

information about an attack, such as source of the attack, target of the attack,

type of the attack if known, time of the attack, etc. A reporting language could

also be used as an event language at a higher level, for example as input to

correlators in a distributed IDS.

• Correlation Languages. In a distributed IDS, a correlator or manager may re-

ceive many alerts from different IDSs. Then, the correlator or manager correlates

these alerts and attempts to recognize some complex attacks. Hence, correlation

languages are used to specify the relationships among different attacks or suspi-

cious events in an effort to identify distributed attacks. An example is [40].

• Exploit Languages are harnessed to depict the steps, which have to be followed

to perform an intrusion or attack. Usually, exploit languages are executable and

general purpose languages, e.g. C, C++ and Perl. There are also languages that

are explicitly developed to support the scripting of attacks, such as [48] and [45].

• Detection Languages are devised to represent intrusion detection. These lan-

guages provide mechanisms and abstractions for identifying the manifestation of

an attack, such as [13], [52] and [59].

A detailed explanation of these attack languages is provided as follows.

LogWeaver [19] is a log auditing tool, which provides a well-defined syntax and

grammer for users to write signatures (rules). LogWeaver takes a system log as input

and processes the system log according to a signature (rule) file, which defines the type

2.2. Intrusion Detection Language 20

of events that are to be monitored and reported on. In addition, LogWeaver is capable

of performing regular expressions and making correlations among events. The logic,

which is utilized by LogWeaver, depends on model checking [60].

The Internet Engineering Task Force [7] attempted to establish a standard and

widely accepted computer intrusions data model, namely Intrusion Detection Message

Exchange Format (IDMEF) Data Model and eXtensible Markup Language (XML)

Document Type Definition. Concretely, the Internet Engineering Task Force defines

a data model in [7], which is representation of data exported by an IDS, and it also

specifies the data formats and exchange procedures for inter or intra IDS(s) information

exchanges. Considering the catholicity, the data model is defined and implemented in

XML [78], which is a simple and very flexible format designed to ease the exchange of

various data on the web.

The Common Intrusion Detection Framework (CIDF) [29] aimed at developing pro-

tocols and application programming interfaces to make information and resources able

to be shared among IDS research projects. Furthermore, CIDF also enables developed

IDS components to be reused by multiple systems. The components in CIDF exchange

data in a standard format, which is based on a reporting language, i.e. the Common

Intrusion Specification Language (CISL) [15].

Production-Based Expert System Toolset (P-BEST) [40] is a correlation language,

which supports users to write inference rules for reasoning and acting based on facts

asserted into its fact base or derived from external events. However, according to [12],

the language, provided in P-BEST, lacks the ability to recognize events.

CASL (Custom Attack Simulation Language) [48] is a development tool. It is

designed to test real network security holes by directly manipulating networks. In

other words, CASL is intended to simulate attacks against hosts in order to see if those

hosts are vulnerable to those attacks.

ADeLe [45] is an attack description language designed to model a database of known

attack scenarios. This database is then used to configure the probes and detection

engines of a given IDS or to test the detection capabilities of a given IDS (by means

of attack replay). ADeLe relies on a largely accepted intrusion detection framework,

i.e. IDMEF [10]. Compared with CASL [48], ADeLe considered three parts of attack

languages, namely response, exploit and detection, not only concentrating on exploit

part, like CASL.

STATL [13] is an attacker-oriented intrusion detection language which is based on

extensible state transition. STATL enables users to describe computer intrusions as

2.2. Intrusion Detection Language 21

a set of actions which an attacker has to follow to perform an attack. This language

presents mechanisms to represent an attack as a combination of states and transitions.

Nonetheless, it lacks constructs for assembling sub-events into larger events.

Bro [52] is a real-time and network based IDS. The language used in Bro is a detec-

tion language, which is called “Bro Language”. The target of the “Bro Language” is

to describe security policies, which specify the reactions when a specific event happens.

According to Paxson [52], the language is environment sensitive.

SNORT [59] is a highly configurable host-based and network-based IDS. The func-

tions provided by SNORT involve real-time packet capture, protocol analysis, and

content searching and matching. SNORT utilizes its own detection language to define

rules, which have two parts, namely header and options. The header contains infor-

mation about the rule action, source/destination IP addresses and so on. The options

include information regarding the type of attack, the message to be sent when an event

is generated, etc.

In addition to formal attack languages, there are also attack signature specification

mechanisms, such as [39] and [49].

Lin et al. [39] proposed abstraction-based misuse detection, including misuse sig-

nature specification and adaptable detection strategies. Due to the use of high-level

concepts, a misuse signature can represent misuse in a simple form and with high ex-

pressiveness. However, the authors only considered host-based attacks without explor-

ing network-based attacks which are very pervasive and serious in computer systems

nowadays.

Ning et al. [49] extended the work in [39] to distributed environments. The authors

exploited event relationships to represent attack signatures and derived system views

from signatures to provide a more concise view of what has happened or is happening

in the systems. This approach allows signatures to accommodate unknown variants of

known attacks. Nevertheless, the extensibility and knowledge sharing are limitations

of this approach.

From the above description, the majority of the attack languages specifically ad-

dress one aspect of intrusion detection, and they are particular to specific domains,

environments and systems. Consequently, they are not extensible and communicable

among heterogeneous systems, and their semantics are often vague and lack ground-

ing in any formal logic. Ontology which can avoid these disadvantages is utilized to

represent agent knowledge in this thesis. Undercoffer et al. [75] compared ontology

with an emerging standard, i.e. IDMEF data model encoded in XML, and provided

2.2. Intrusion Detection Language 22

the following three conclusions.

• Representation: ontology is able to model the attributes and characteristics of a

domain.

• Information sharing: ontology can represent the existence of an instance of the

domain in a way that is understandable by any other entities which possess the

specific ontology.

• Reasoning: ontology has the capability of aggregating particular instances of the

domain in a knowledge base and concluding that some larger, or more compre-

hensive, instances of the ontology exist.

Some related works about the application of ontology in intrusion detection are

introduced in the following paragraphs.

Raskin et al. [57] introduced and advocated the use of ontologies for information

security. In stating the case for using ontologies, they claimed that an ontology orga-

nizes and systematizes all of the phenomena (intrusive behaviors) at any level of detail,

consequently reducing a large diversity of items to a smaller list of properties.

Undercoffer et al. [75] produced an ontology which specifies a model of computer

attack using the DARPA Agent Markup Language together with Ontology Inference

Layer. They transitioned from traditional taxonomies and attack languages to ontolo-

gies and ontology specification languages. This is the only work we reviewed which

referred to formally defining ontology for intrusion detection. However, they only con-

centrated on building an IDS ontology on a single host without either detailed repre-

sentation of intrusion or attack with ontology or considering detection in a distributed

domain. In addition, their IDS is deprived of some of the benefits which an intelligent

agent can offer, such as autonomy and mobility.

Fang et al. [14] presented a novel fraud detection method based on ontology and

ontology instance similarity. According to the measurement of the similarity of ontology

instances, the proposed system can determine whether a user is defrauded. Compared

to other detection methods, this method can reduce data model cost. However, they

only focused on representing user behaviour with ontology rather than representing

intrusion or attack with ontology, which will be described in this thesis.

In [25], the authors proposed a cooperative detection framework relied on the on-

tology, which unified the network and host features on a single host. Although the

detection becomes more flexible and the global locality information to support coop-

eration can be provided, they only considered information correlation on a single host

2.3. Task Allocation Protocols and Resource Search Mechanisms 23

to detect intrusion without between hosts to discover suspicious distributed attacks.

According to [68], Simmonds et al. listed some common taxonomies of network

security attacks, demonstrated the relationship between them, and defined an exten-

sible ontology for network security. However, this paper is just a proposal to initiate

the design of ontology for network security attacks without any details about how to

represent attacks or intrusions with ontology.

Vorobiev and Han [77] described several web services security threats, such as prob-

ing attacks, CDATA field attacks and so on. In addition, they depicted these attacks

ontologies. Nonetheless, these ontology representations are comparatively rough and

cannot be used in real cases.

From the above depiction, most current related work about ontology for network

security lacks representation of intrusion or attack and relevant detection knowledge.

This thesis adopts ontology technique to represent intrusion and detection knowledge.

In this way, hosts in our proposed framework can share their common understanding

of information due to ontology application and detect distributed intrusions taking the

advantage of agent communication and cooperation.

2.3 Task Allocation Protocols and Resource Search

Mechanisms

In an effort to detect distributed attacks, e.g. Doorknob-Rattling Attack [71], in a P2P

environment, an efficient task allocation scheme which allocates tasks to other hosts

for collaborative detection is essential. In this Section, we first provide some relevant

research outputs with respect to task allocation in distributed environments. There

is little, if any, published work about task allocation in P2P environments, but many

research works regarding resource search in P2P environments have been done. Since

resource search is the first step of task allocation, some literature about resource search

in P2P environments is worth to exhibit.

2.3.1 Task Allocation in Distributed Environments

Recently, many mechanisms for task allocation have been proposed. Some of them

investigate the task allocation problem in a centralized manner. Zheng and Koenig

[85] presented reaction functions for task allocation to cooperative nodes. The objec-

tive is to find a solution with a small team cost and each task to be assigned to the

2.3. Task Allocation Protocols and Resource Search Mechanisms 24

exact number of different nodes. This work assumed that there is a central planner to

allocate tasks to nodes. Kraus et al. [35] proposed an auction based task allocation

protocol which allows nodes to form coalitions with time constrains before allocating

tasks. This protocol assumed each node knows the capabilities of all others, and one

manager is responsible for allocating tasks to all coalitions. Theocharopoulou et al.

[73] presented an approach for allocating temporally interdependent tasks to homo-

geneous or heterogeneous cooperative nodes in dynamic large-scale networks. Their

contribution is combining searching, task allocation and scheduling as a synthesized

problem to deal with. However, this method is based on a centralized way.

Centralized fashion can make the allocation process efficient and effective in a small

system since the central planner has a global view of the system and it understands

which nodes are good at which tasks. In that case, communication overhead during

allocation processes could be reduced. However, the centralized fashion also has several

notable disadvantages. The first one is that in some environments, it is difficult to have

such a central controller, such as P2P environments in which no one node has a global

view but only the local prospect about direct linked neighbors. Secondly, when the

central planner is out of order or cracked by some attackers, task allocation will suffer

a big trouble in this environment. Finally, the scalability in such an environment is

limited because when too many nodes exist, the central controller has to maintain

much information to hold the global view and respond plenty of request messages

from nodes. In this case, the CPU and memory usage of the central controller and

network bandwidth consumption drastically raise. To conquer these disadvantages,

task allocation in distributed environments has also been investigated. A classic task

allocation protocol for distributed environments is Contract Net Protocol (CNP) [69].

CNP was aimed to cope with problem-solving communication and control for nodes in a

distributed problem solver. This protocol facilitates distributed control of cooperative

task execution (called task sharing) with efficient inter-node communication. Task

sharing is a process which is carried on between nodes with tasks to be executed and

nodes that may be able to perform those tasks. The CNP was then evolved in [70]

by adding another concept, result sharing. Result sharing is a form of cooperation in

which individual nodes assist each other by sharing partial results. However, CNP was

only a preliminary work and many details have to be done.

According to [37] and [66], the authors developed distributed algorithms with low

communication complexity for forming coalitions in large-scale networks. Although

2.3. Task Allocation Protocols and Resource Search Mechanisms 25

their work was pursued in distributed environments, it is still necessary to form coali-

tions before allocating tasks. Abdallah and Lesser [1] provided a decision theoretic

model in order to limit the interactions between agents and mediators. Mediators in

that paper mean the nodes which receive the task and have connections to others.

Mediators have to decompose the task into subtasks and negotiate with other nodes

to obtain commitments to execute these subtasks. However, their work concentrated

on modeling the decision process of a single mediator. A scalable and distributed task

allocation protocol was presented in [62]. The algorithm adopted in this protocol is

based on computation geometry techniques, but the prerequisite of this approach is

that agents’ and tasks’ geographical positions are known.

Weerdt et al. [80] proposed a distributed task allocation protocol in social networks.

This protocol only allows neighboring nodes to help with a task which might result in

high probability of abandon of tasks when neighbors can not offer sufficient resources.

As described in the first paragraph of this subsection, resource search is the first

step of task allocation. Thus, some related works regarding resource search in P2P

environments are depicted in the following subsection.

2.3.2 Resource Search in P2P Environments

Currently, the P2P architecture is a popular and effective paradigm for distributed

computing and resource sharing. A P2P system [9] is an overlay system between nodes

interconnected by an underlying physical network. The users that are located on the

nodes in a P2P system are enabled to establish connections with other users (nodes)

to acquire and share resources with each other in a decentralized manner. Compared

with the traditional client-server architecture, the P2P architecture has the following

advantages [33]:

1. Improved Scalability: Because of the lack of central servers, the information stor-

age and computational cost are distributed among the peers in the P2P system

which avoids the central server bottleneck problem and, thus, makes the P2P

system easy to extend.

2. High Reliability: The P2P system has a high reliability due to its eliminating

centralized coordinators. That means the P2P system can still survive even if

part of peers are out of order.

3. Increased Flexibility: The P2P system allows individual nodes to join and leave

the system frequently to share information directly with each other without the

2.3. Task Allocation Protocols and Resource Search Mechanisms 26

help of dedicated servers. Thus, this manner gives users unlimited freedom. Each

node plays as a server and a client simultaneously in a P2P system.

With the increasing popularity of resource sharing in P2P environments, many

efficient resource search approaches have been presented. One of the most famous

search algorithms in P2P environments is Gnutella algorithm [18] which is a flooding

like scheme. It contacts all accessible nodes within a predefined number of hops. The

advantage of Gnutella is its simplicity for implementation, while the disadvantage is the

huge overhead during contacting many nodes. In order to improve the original Gnutella

algorithm, some researchers proposed modified versions. The algorithm, presented in

[30], is one of the variations of Gnutella algorithm. It has peers randomly choose only

a part of their neighbors to forward the query to. This method can reduce the average

message production in some extent, but still contacts a large number of peers. Another

example of revised Gnutella algorithm is proposed in [42], which utilized iterative

flooding with increasing user defined number of hops in order to search as small depth

as possible. However, in some cases, this approach might produce even larger loads

than the original Gnutella algorithm. Another contribution of [42] is its use of Random

Walk. In Random Walk, the requesting node sends out k query messages to an equal

number of randomly chosen neighbors. Each of these messages has intermediate nodes

forward it to a randomly chosen neighbor at each step.These query messages are called

“Walkers”. A Walker terminates either with a success or a failure. The limitation of

Random Walk is that its success rate totally depends on network topology and random

choices. The aforementioned search methods are brute-force schemes, as they just

attempt to traverse the network to find the objectives without intelligence. Conversely,

some other researchers provided intelligent search approaches for P2P systems.

Kalogeraki et. al [30] also provided an intelligent version of modified Gnutella

algorithm, in which nodes store query-neighborID tuples for recently answered requests

from (or through) their neighbors in order to rank them. When a peer initiates a

requesting, it identifies all queries similar to the current one. The peer, then, selects

several of its neighbors, which have returned the most results for these queries, to

forward query messages to . In [83], the authors proposed a local indices method.

Each node indexes the objects stored at all nodes with a certain radius r and can

answer queries on behalf of them. The search is performed in the same manner as

the one in Gnutella algorithm. Distributed Resource Location Protocol (DRLP) is

presented in [44]. Peers have no idea about the location of an object, and forward the

query to each of their neighbors with a certain probability. If any object is found, the

2.4. Summary 27

query takes the reverse path to the requester, storing the document location at those

peers. In the consequent queries, peers with location information can directly contact

the specific nodes. The target of these intelligent approaches is improving resource

discovery accuracy, but the message production is also increased during the process of

building intelligence.

In this thesis, an Efficient Task Allocation Protocol (ETAP) is proposed for task al-

location in P2P environments to collaboratively detect distributed attacks. Compared

with [85], ETAP does not need a central planner. Against [37], it is not necessary for

ETAP to form coalitions among nodes before allocating tasks. Unlike GDAP presented

in [80] which allows only neighboring nodes to help with a task, ETAP enables nodes

to allocate tasks not only to their neighbors but also other nodes in the system based

on a novel resource search mechanism that will be described in Chapter 5. In this

way, the nodes could have more opportunities to achieve solution of their tasks.

2.4 Summary

This chapter reviews the state of the art of agent-based IDS’s various aspects in regard

to our targeted research questions mentioned in Chapter 1. We briefly introduced the

architectures of agent-based IDSs and some efforts which attempt to implement the

architectures. We then discussed the knowledge representation of intrusion detection,

which consists of a review of attack languages and ontology-based knowledge repre-

sentation. After that, various current task allocation protocols are elaborated, which

is accompanied by an overview of resource search schemes in P2P environments. In

the next chapter, we present our solution for the first two problems outlined in Section

1.3, i.e. general agent-based intrusion detection architecture and detailed design.

Chapter 3

A Novel P2P Agent-Based Framework for
Distributed Intrusion Detections

Several research issues have been outlined in Chapter 1. Aiming at solving these

problems, a P2P agent-based framework is proposed in Section 3.1, and the detailed

design of each agent in the framework is introduced in Section 3.2. Finally, this chapter

is summarized in Section 3.3. For simplicity, the terms node, host and peer are used

interchangeably throughout this thesis.

3.1 Framework Architecture

The framework is composed of six types of agents which are Monitor Agent, Analysis

Agent, Executive Agent, Manager Agent, Retrieval Agent and Result Agent. The

former four agents are static agents that are inquiline on hosts, while the latter two

are mobile agents that can travel among hosts if needed. Consideration of the security

and flexibility of the system, each host in the framework has to be equipped with

the four static agents. This framework is independent of specific network topology.

Figure 3.1 demonstrates the general architecture and the interaction between hosts of

this framework. The following sessions describe each component of the framework in

detail.

3.1.1 Monitor Agent

Monitor Agent is like a host monitor which fixes at a host. The responsibility of

Monitor Agent is collecting and preprocessing information of both system audit records

and network traffic for further analysis, such as system file operation and network

connection.

28

3.1. Framework Architecture 29

Figure 3.1: Architecture of the Framework

3.1.2 Analysis Agent

Analysis Agent integrates and analyzes the information received from Monitor Agent.

In the framework, each host in the network has a local knowledge base which stores

some critical information, such as attack signatures, intrusion patterns, system file size,

and so on. If Analysis Agent can confirm an intrusion or attack, it will send a notifi-

cation to Executive Agent to quarantine damaged file or cut off network connection.

If Analysis Agent suspects that a distributed attack occurs, it will request Manager

Agent for help and store the suspicious activity.

3.1.3 Executive Agent

Executive Agent is responsible for executing tasks depending on the notification of

Analysis Agent. These tasks include restoring corrupted files, preventing network con-

nection, etc.

3.1. Framework Architecture 30

3.1.4 Manager Agent

As introduced in Subsection 3.1.1, the Monitor Agent of a host is the agent that collects

information from the host. However, to detect distributed attacks, it is not sufficient to

collect information only from a single host. Hence, another three kinds of agents (i.e.

Manager Agent, Retrieval Agent and Result Agent) are included in the framework to

collect related information from multiple hosts of a network.

The Manager Agent is the agent that manages retrieval processes. It takes charge

of Retrieval Agent and Result Agent, including dispatching, retracting and communi-

cating with these two agents. A Manager Agent also maintains a neighborhood list

of the host which the Manager Agent resides on. Neighborhood list is a list which

contains IP addresses of the direct-linked neighbors of a host. Obviously, the Manager

Agent of a host can easily calculate the number of neighbors of the host by checking

the length of the neighbor list.

When a host connects/disconnects with another host, the Manager Agent of the

host modifies the neighborhood list by adding/removing related information to/from

the list. In addition, each Manager Agent has a Retrieval Agent Recorder (RAR) which

is used to store Retrieval Agent Identifiers. Retrieval Agent Identifier (RAID) is used to

distinguish different Retrieval Agents. RAID is also generated by the Manager Agent.

We define RAID as the format “HostName0001”. “HostName” means the name of the

host which dispatches the Retrieval Agent, while “0001” means the serial number of

the Retrieval Agent, for example, the first group of Retrieval Agents which perform the

same task is “0001”, the second group is “0002”, and so on. Retrieval Agent Recorder

is used to store Retrieval Agent Identifiers in order to avoid a Retrieval Agent traveling

the hosts which this Retrieval Agent or other Retrieval Agents with the same RAID

has/have already visited. Each Manager Agent has a RAR.

If a Manager Agent originates the mobile agent for a traveling detection, this Man-

ager Agent is called as an Initiator. When an Initiator receives a request from an

Analysis Agent for deciding a distributed attack, it will dispatch Retrieval Agents to

inform other hosts to check whether they have the similar records from the same sus-

picious remote host. Then, each Manager Agent of the hosts, which have been visited

by those Retrieval Agents, will send a Result Agent back to the Initiator. The Ini-

tiator will correlate the information and confirm whether this suspicious activity is a

distributed attack. If so, the Initiator will broadcast this information to other hosts in

the network and notify the local Executive Agent to take actions.

3.1. Framework Architecture 31

3.1.5 Retrieval Agent

Retrieval Agent moves to other hosts and lets their Analysis Agents check whether

there are the similar records from the same suspicious remote host. There are four

main types of information that Retrieval Agent needs to maintain, which are source IP

address from where the original host dispatches this Retrieval Agent, characters of the

incident, Retrieval Agent Identifier, and Time to Live (TTL). TTL, which is generated

by an Initiator, is used to demonstrate the number of rest hosts the Retrieval Agent

needs to visit. The Retrieval Agent will be discarded when the value of TTL reaches

zero or there is no more host to be traveled.

3.1.6 Result Agent

Result Agent with a result record will be sent back by each Manager Agent, which has

been visited by the Retrieval Agent, to the Initiator. Then, the Initiator tallies all the

result records to make a final decision.

3.1.7 Agent working process

The working process of agents in our framework is described by a sequence diagram in

Unified Modeling Language (UML) notations shown in Figure 3.2. Monitor Agents

are fixed at hosts of the network and monitor the local activities of hosts. It collects

and preprocesses relevant information, and reports the information to Analysis Agent.

The Analysis Agent analyzes the information and decides whether there is an intrusion

or attack based on the local knowledge base. If so, the Analysis Agent informs the Ex-

ecutive Agent to take actions against the intrusion or attack. However, if the Analysis

Agent suspects that a distributed attack is occurring, it asks the upper level Manager

Agent for help. When the Manager Agent receives a request from Analysis Agent, this

Manager Agent becomes an Initiator, and then analyzes the request and dispatches

Retrieval Agents to gather information for determining whether some suspicious ac-

tivities in different hosts could be combined to form a distributed attack. Then those

hosts, visited by Retrieval Agent, will send Result Agents with necessary information

back to the Initiator. The Initiator will make a final decision based on the information

it received. If there is a definite distributed attack, the Initiator will broadcast this

detection result to other hosts in the network, and inform the local Executive Agent

to take actions.

Six categories of agents and the working process, which consist of the foundation

3.2. Detailed Design of the Framework 32

Figure 3.2: Retrieval Process

of the framework, have been described. In the next section, the detailed design of each

agent will be introduced.

3.2 Detailed Design of the Framework

This section focuses on the design and implementation of agents in the framework.

The brief overviews of BDI agents and JACKTM agent development environment are

presented in Subsections 3.2.1 and 3.2.2, respectively. After that, the design of each

agent in the framework will be described in detail.

3.2.1 Overview of BDI agents

A BDI agent [56] is able to continuously reason about beliefs, goals, and intentions and

act accordingly. There are four major concepts in the BDI architecture:

• Beliefs of an agent are information about the environment in which the agent

stays. Beliefs include previous and current environment states and inference

rules, which allow forward chaining to lead to new beliefs.

• Desires are goals assigned to the agent. They represent objectives or situations

that the agent would like to accomplish or bring about.

3.2. Detailed Design of the Framework 33

• Intentions are commitments by an agent to achieve particular goals. Intentions

represent the deliberate states of the agent, namely that what the agent has

chosen to do.

• Plans are sequences of actions that an agent can perform to achieve one or more

of its intentions.

3.2.2 JACKTM Agent Development Environment

In this thesis, JACKTM is used to design and develop agents in our framework. JACKTM

[23] is an agent oriented development environment, which is built on and integrated

with the Java programming language. It includes all components of the Java develop-

ment environment as well as offering specific extensions to implement agent behaviors.

JACKTM also provides programming constructs for representing and implementing

reasoning. There are five main class-level constructs in JACKTM :

• Agent is used to define the behavior of an intelligent software agent. The behavior

includes capabilities an agent has, what type of messages and events the agent

responds to and which plans it will use to achieve its goals.

• Event represents an occurrence which the agent must respond to by using a pre-

defined plan. Events involve foreign events which are received from other agents,

or interiorly generated events which correspond to some conditions happening.

• Plan is used by the agent to achieve its goals and handle its designated event.

• Capability allows the functional components that make up an agent to be aggre-

gated and reused. A capability can be made up of plans, events, beliefsets and

other capabilities that together serve to give an agent certain abilities. An agent

can, in turn, be made up of a number of capabilities, each of which has a specific

function attributed to it.

• BeliefSet represents agent beliefs according to employ a generic relational model.

It has been specifically designed so that a beliefset can be queried using logical

members. Logical members are like normal data members, except that they

follow the rules of logic programming (as in programming languages like Prolog).

The agents in our framework are implemented by use of the JACKTM development

environment. The agents operate according to their beliefs about the attack signatures,

3.2. Detailed Design of the Framework 34

intrusion patterns and the current status of the network, and use their predefined plans

to deal with the events which happen in the network. Events include attack incidents

and inter-agents communication.

An extension of UML for designing JACKTM agents (JACK/UML) has been pro-

posed by Papasimeion and Heinze [51]. In [51], the UML high level stereotypes are

used to represent the five main class-level constructs in JACKTM , i.e. Agent, Event,

Plan, Capability and BeliefSet; and the UML uni-directional association level stereo-

types are utilized to define relationships between and behaviors of agents, such as

posts, handles, modifies, private, etc. Table 3.1 lists a set of high level stereotypes

for JACKTM class-level constructs, while Table 3.2 defines a sequence of associa-

tion level stereotypes for agents behaviors in JACKTM . Figure 3.3 gives a sim-

ple example. This example illustrates the case that MonitorAgent has a private

beliefset SystemAuditRecord which can post an event NewAuditRecord, and the

MonitorAgent uses a plan AuditRecordPreprocess to handle this event.

Stereotype Description
<<agent>> Class level stereotype that defines a JACK agent
<<event>> Class level stereotype that defines a JACK event
<<plan>> Class level stereotype that defines a JACK plan
<<capability>> Package stereotype that defines a JACK capability
<<beliefset>> Class level stereotype that defines a JACK beliefset

Table 3.1: UML High Level Stereotypes for JACKTM

Stereotype Description
<<posts>> Indicates a beliefset or a plan posting an intra agent event
<<sends>> Indicates a plan sending an inter agent event
<<uses>> Indicates an agent using a plan
<<handles>> Indicates an event handled by a plan
<<modifies>> Indicates a beliefset which a plan can modify
<<private data>> Indicates a private beleifset owned by an agent

Table 3.2: UML Association Level Stereotypes for JACKTM

The design of the six types of agents in our framework is described in the following

subsections.

3.2.3 Monitor Agent

The responsibility of Monitor Agent is collecting and preprocessing information of both

system audit records and network traffic for further analysis, which has been depicted

3.2. Detailed Design of the Framework 35

Figure 3.3: A Simple Example of Designing JACKTM Agent with UML

in Subsection 3.1.1. The implementation of Monitor Agent using JACK/UML is

described as follows (also demonstrated in Figure 3.4).

Figure 3.4: Design of Monitor Agent with JACK/UML

The Monitor Agent has the following Beliefsets:

1. SystemAuditRecord: stores system operation records, such as user login, file ac-

cess, and so on.

2. NetworkFlowRecord: stores network data flow, such as remote client connection,

port scanning, and so on.

3.2. Detailed Design of the Framework 36

3. SystemRecord: stores both system operation records and network data flow with

a predefined format which have been preprocessed by Monitor Agent, and this

beliefset will be further analysed by Analysis Agent to find intrusion or attack.

The following Events are defined in the Monitor Agent:

1. NewAuditRecord: is posted by SystemAuditRecord beliefset to remind the Monitor

Agent that there is a new system audit record and it is ready for preprocessing.

2. NewNetworkFlow: is posted by NetworkFlowRecord beliefset to inform the Mon-

itor Agent that a piece of new network data flow is received and ready for pre-

processing.

3. NewSystemRecord: is posted by SystemRecord beliefset to notify the Monitor

Agent that a new system record has been preprocessed and is ready for analyzing

by Analysis Agent.

4. SystemRecordAvailable: is sent to Analysis Agent to inform that a new system

record is ready for analysis.

A Monitor Agent uses the following Plans:

1. AuditRecordPreprocess: preprocesses the new system audit record for further

analysis, handling the NewAuditRecord event.

2. NetworkFlowPreprocess: preprocesses the new network flow for further analysis,

handling the NewNetworkFlow event.

3. SystemRecordSending: retransmits the new system record to Analysis Agent for

further analysis, handling NewSystemRecord event and sending SystemRecor-

dAvailable event.

3.2.4 Analysis Agent

Analysis Agent, as described in Subsection 3.1.2, integrates and analyzes the infor-

mation received from Monitor Agent, and requests Manager Agent for help if needed.

The implementation of the Analysis Agent by using JACK/UML is indicated as follows

(also demonstrated in Figure 3.5).

The Analysis Agent has the following Beliefsets:

1. KnowledgeBase: stores some critical information, such as attack signatures, in-

trusion patterns, system file size, and so on.

3.2. Detailed Design of the Framework 37

Figure 3.5: Design of Analysis Agent with JACK/UML

2. SystemRecord: the same as the above description in Monitor Agent.

The following Events are defined in the Analysis Agent:

1. SystemRecordAvailable: is sent to Analysis Agent to inform that a new system

record is ready for analysis.

2. IntrusionDetected: is sent to Executive Agent to take actions against the intru-

sion.

3. DistributedIntrusionSuspected: is sent to Manager Agent to request help for col-

lecting information from other hosts.

4. DistributedIntrusionResponse: is sent by Manager Agent with the collected in-

formation to Analysis Agent.

5. DistributedIntrusionRequest: is sent by Manager Agent to ask for collecting rele-

vant information for other hosts.

6. InformationRequested: is sent to Manager Agent with the information the foreign

Retrieval Agent requests.

3.2. Detailed Design of the Framework 38

The Analysis Agent uses the following Plans:

1. AnalysisSystemRecord: analyses the new system record received from Monitor

Agent, handling the SystemRecordAvailable event, and sending the IntrusionDe-

tected event or DistributedIntrusionSuspected event.

2. AnalysisDistributedIntrusion: analyses the result information received from Man-

ager Agent which is collected from other hosts, handling the DistributedIntrusion-

Response event and sending the IntrusionDetected event.

3. AnalysisForeignRequest: analyses the request from foreign Retrieval Agents and

provides the relevant information, handling DistributedIntrusionRequest event

and sending InformationRequested event.

3.2.5 Executive Agent

Executive Agent is responsible for executing tasks depending on the notification of

Analysis Agent. The implementation of the Executive Agent using JACK/UML is

described as follows (also demonstrated in Figure 3.6).

Figure 3.6: Design of Executive Agent with JACK/UML

The Executive Agent has the following Beliefset:

3.2. Detailed Design of the Framework 39

1. ExecutiveDatabase: stores the actions against each type of intrusion.

The following Events are defined in the Executive Agent:

1. IntrusionDetected: is sent by Analysis Agent to inform Executive Agent to take

actions against the intrusion.

2. DistributedIntrusionHappened: is sent to ask Manager Agent to broadcast to the

entire network that a distributed attack happened.

3. ForeignBroadcastInformation: is sent by Manager Agent to inform Executive

Agent to take actions against a distributed attack which is notified by other

hosts through broadcast.

The Executive Agent uses the following Plans:

1. TakeActions: takes specific actions to deal with an intrusion or attack, handling

IntrusionDetected event.

2. TakeActionsOnBroadcastInformation: takes specific actions to deal with a dis-

tributed attack which is notified by other host, handling ForeignBroadcastInfor-

mation.

3.2.6 Manager Agent

The Manager Agent is the agent that manages retrieval processes. It takes charge

of Retrieval Agent and Result Agent, including generating, dispatching, retracting

and communicating with these two agents. Detailed description regarding Manager

Agent can be found in Subsection 3.1.4. The implementation of Manager Agent using

JACK/UML is described as follows (also demonstrated in Figure 3.7).

The Manager Agent has the following Beliefsets:

1. NeighbourList: stores IP addresses of the direct-linked neighbours of this host.

2. RetrievalAgentRecorder: stores Retrieval Agent Identifiers (RAID) in order to

avoid a Retrieval Agent traveling the hosts which this Retrieval Agent or other

Retrieval Agents with the same RAID have already visited.

The following Events are defined in the Manager Agent:

1. DistributedIntrusionSuspected: is sent by Analysis Agent to request Manager

Agent to collect information from other hosts in the network.

3.2. Detailed Design of the Framework 40

Figure 3.7: Design of Manager Agent with JACK/UML

2. RequestInformation: is sent by foreign Retrieval Agent which is from another

host to request for help.

3. InformationRequested: is sent by Analysis Agent with the information the foreign

Retrieval Agent requests.

4. RelevantInformation: is sent by foreign Result Agents with the information col-

lected from other hosts.

5. DistributedIntrusionRequest: is sent to Analysis Agent to ask for collecting infor-

mation.

6. DistributedIntrusionResponse: is sent to Analysis Agent with the collected infor-

mation.

7. DistributedIntrusionInformation: is broadcasted to other hosts in the network.

3.2. Detailed Design of the Framework 41

8. DistributedIntrusionHappened: is sent by Executive Agent to ask Manager Agent

to broadcast the distributed attack happened information to the entire network.

9. ForeignBroadcastInformation: is sent to ask Executive Agent to take actions

against a distributed attack which is notified by other host through broadcast.

The Manager Agent uses the following Plans:

1. InformationCollection: generates Retrieval Agents and sends them to other hosts

to collect information, handling DistributedIntrusionSuspected event.

2. InformationFeedback: generates Result Agent and sends it to the host which

requests for specific information, handling InformationRequested event.

3. InformationRequest: asks local Analysis Agent to collect information, handling

RequestInformation event and sending DistributedIntrusionRequest event.

4. InformationProvisin: provides the collected information to Analysis Agent for

further analysis, handling RelevantInformation event and sending DistributedIn-

trusionResponse event.

5. BroadcastDistributedIntrusion: broadcasts the information that a distributed in-

trusion has been detected to the entire network, handling DistributedIntrusion-

Happened event and sending DistributedIntrusionInformation event.

6. ReceiveBroadcastInformation: receives broadcast information from other hosts,

handling DistributedIntrusionInformation event and sending ForeignBroadcastIn-

formation event.

3.2.7 Retrieval Agent

Retrieval Agent moves to other hosts and lets their Analysis Agents check whether

there are the similar records from the same suspicious attacker.

The implementation of the Retrieval Agent using JACK/UML is described as fol-

lows (also demonstrated in Figure 3.8).

The following Event is defined in the Retrieval Agent:

1. RequestInformation: is sent to the Manager Agent on the destination host to

request it for help.

3.3. Summary 42

Figure 3.8: Design of Retrieval Agent with JACK/UML

3.2.8 Result Agent

Result Agent with a result record will be sent back by each Manager Agent, which

has been visited by the Retrieval Agent, to the original Manager Agent that initiates

the detection process. Then, the Analysis Agent, which receives the results from the

original Manager Agent, tallies all the result records to make a final decision. The

implementation of the Result Agent using JACK/UML is described as follows (also

demonstrated in Figure 3.9).

Figure 3.9: Design of Result Agent with JACK/UML

The following Event is defined in the Result Agent:

1. RelevantInformation: is sent to the original Manager Agent with the information

collected from the host on which the Result Agent resides.

3.3 Summary

In this chapter, a novel agent-based P2P intrusion detection framework is proposed

and the detailed design of each agent in the framework is also provided. Compared

with current related works, this framework can avoid single point failure and easy to

be extended. We will utilize ontology to represent knowledge of each agent in this

framework in the following chapter.

Chapter 4

Ontology-Based Knowledge Representation
for Distributed Intrusion Detection

In order to empower the interoperability among hosts in our framework, ontology-based

knowledge representation of each agent is presented in this chapter. A brief charac-

terization of ontology is introduced in Section 4.1. The tool adopted to implement

ontology and the knowledge representation of each agent in our framework are de-

scribed in detail in Section 4.2. Summarization of this chapter is presented in Section

4.4.

4.1 Overview of Ontology

An ontology [21] defines a set of representational primitives to model a domain of

knowledge. The representational primitives include classes (or sets), attributes (or

properties), and relationships (or relations among class members). Therefore, ontology

is designed for the purpose of enabling knowledge sharing and reuse between entities

within a domain. In this thesis, these entities are various agents in our framework.

Resource Description Framework (RDF) [58] is employed to depict the ontology

graph in this thesis. RDF is based on the idea that the things being described have

properties which have values. The part that identifies the thing, which the statement

defines, is called the subject. The part that identifies the property or characteristic of

the subject, which the statement specifies, is called the predicate, and the part that

identifies the value of that property is called the object. For example, in this sentence

“champagne is made in France”, “champagne” is subject; “made in” is predicate; and

“France” is object. In a RDF graph, an ellipse is utilized to denote a class which may

have several attributes. When two classes (ellipses) are connected by a directed edge,

the edge dictates a relationship (predicate) between the two classes, where the class

representing the subject is denoted by the start of the edge and the class representing

the object is denoted by the end of the edge. Obviously, the example, “champagne is

43

4.1. Overview of Ontology 44

made in France”, should be represented as the form in Figure 4.1.

Figure 4.1: RDF relationship graph

Gruber [20] proposed a preliminary set of design criteria for ontologies that should

be followed with during a design process.

1. Clarity: An ontology should effectively and correctly present the meaning of

defined terms. The definition of terms or concepts should be explicit and inde-

pendent of social or computational contexts. In addition, the definition should be

complete in a domain rather than partial, and all definitions can be represented

by natural languages.

2. Coherence: An ontology should support inferences that are consistent, at least

logically consistent, with the definitions. Furthermore, the informally defined

concepts should also be consistent, such as description in natural languages.

3. Extendibility: An ontology could accommodate variants of defined concepts in

some extent. An ontology should offer a conceptual foundation to allow users to

define new terms for their special uses based on the existing ontology without

any modification.

4. Minimal encoding bias: An ontology should be defined on the knowledge level

instead of the symbol-level encoding. An encoding bias limits knowledge sharing

of the defined ontology, since different users may utilize different encoding mecha-

nisms, which might not decode each other’s ontologies. The relationship between

an ontology and encoding schemes is similar with that between an algorithm and

programming languages. An algorithm should be written by any programming

languages, and analogously, an ontology should be represented by any encoding

schemes.

5. Minimal ontological commitment: An ontology should make as few claims as

possible with regard to the modeled domain in order to let users freely instantiate

the ontology for the purpose of knowledge sharing.

4.2. Ontology Implementation 45

4.2 Ontology Implementation

Figure 4.2 presents a high level view of our ontology which represents the knowledge

of each agent in a peer in our framework. The representation of other peers is similar.

Figure 4.2: Ontology representation of agent knowledge in each peer

The central level of Figure 4.2 is the class Peer. Peer has the predicates Current

State, Intrusion Pattern, Network Environment and Taking Actions Through. This

construction is predicated upon the notion that the peer (a host in the network) con-

tains attack signatures which are used to detect suspicious activities from the current

state of the peer and it may need the information from other peers in the network

(network environment) to cooperate detection, and finally the peer will take actions

against the intrusion or attack.

Protege [53] is harnessed to implement the knowledge (beliefs) of each agent in

our framework. Protege is a free and open source ontology editor and knowledge-base

framework, which implements a rich set of knowledge-modeling structures and actions

that support the creation, visualization and manipulation of ontologies in various rep-

resentation formats. Protege ontologies can be exported into a variety of formats

including RDF(S), OWL, XML, and so on. After implementation of knowledge rep-

resentation with Protege, the representation is converted into N-Triples. The reason

for choosing N-Triples is that N-Triples is more intuitionistic than XML and OWL.

N-Triples [47] is a line-based and plain text format for representing the correct answers

for parsing RDF/XML. The representation of N-Triples is of the following form:

4.2. Ontology Implementation 46

<Subject> <Predicate> <Object>

The following sessions will describe knowledge representation of each agent in detail.

4.2.1 Knowledge of Monitor Agent

Monitor Agent is a host monitor which fixes at a host. The responsibility of Monitor

Agent is collecting and preprocessing information of both system audit records and

network traffic for further analysis. Figure 4.3 shows the ontology of knowledge of

Monitor Agent. The knowledge of Monitor Agent is System Record which is about

system status of the host. The class System Record consists of two components, i.e.

Network Flow Record and System Audit Record. From Figure 4.3, it can be seen that

three classes are defined in the ontology which are System Record, Network Flow Record

and System Audit Record.

Figure 4.3: Monitor Agent Knowledge

The class Network Flow Record includes several attributes about network features

which are IP address of remote host (Remote Host), IP address of local host (Lo-

cal Host), whether the remote host connects to the local host or oppositely (Con-

nected From), the time when the remote host has a successful connection to the local

host (Connected Time), length (the number of seconds) of the connection (Duration),

type of the protocol which the remote host uses to connect to the local host, e.g.

4.2. Ontology Implementation 47

TCP, UDP, etc (Protocol Type), the number of failed login attempts before a suc-

cessful login (Num Failed Logins), whether the remote host successfully logged in the

local host (Logged In), the port number which has been scanned by the remote host

(Port No. Scanned), and the number of scanning to a specific port in the past two sec-

onds (Port Scan Freq). In Figure 4.3, (a) is an example instance of the class Network

Flow Record.

The class System Audit Record is inclusive of attributes representing the operating

system state of the host, such as memory usage (Mem Total, Mem Idle, and Mem Use),

CPU usage (CPU Load Ave), disk usage (Disk Total and Disk Use), the number of

current users (Num of Users), and the number of current processes (Num of Processes).

In Figure 4.3, (b) is an example instance of the class System Audit Record.

The attribute, Remote Host, representation with N-Triples (mentioned at the be-

ginning of this section) is shown in Table 4.1 which means Remote Host belongs to the

class Network Flow Record and its type is string. The other attributes representation

with N-Triples are analogous.

<http://www.owl-ontologies.com/unnamed.owl#Remote Host>
<http://www.w3.org/2000/01/rdf-schema#domain>

<http://www.owl-ontologies.com/unnamed.owl#Network Flow Record>

<http://www.owl-ontologies.com/unnamed.owl#Remote Host>
<http://www.w3.org/2000/01/rdf-schema#range>
<http://www.w3.org/2001/XMLSchema#string>

Table 4.1: An Example of N-Triples

4.2.2 Knowledge of Analysis Agent

Analysis Agent integrates and analyzes the information received from Monitor Agent

(in Figure 4.2, the predicate Queried by representing this relationship). In our frame-

work, on each host, the Analysis Agent contains many attack signatures which are used

to discover intrusions or attacks through analyzing information from Monitor Agent.

When Analysis Agent detects an intrusion or a attack, it will send a notification to

Executive Agent to quarantine damaged file or cut off network connection. If Analysis

Agent suspects that a distributed attack occurs, it will request Manager Agent for help.

The knowledge of Analysis Agent is Attack Signature which is about various in-

trusion or attack patterns. The class Attack Signature has two components, including

4.2. Ontology Implementation 48

Network Attack and Host Attack. Figure 4.4 demonstrates the ontology representa-

tion of the three classes. In order to conveniently communicate and cooperate between

Monitor Agent and Analysis Agent, the attributes of Network Attack and Host Attack

are nearly the same as those of Network Flow Record and System Audit Record respec-

tively, except the attributes, Attack Type and Num of Hosts, which are additional in

Network Attack and Host Attack to specify the type of an attack and how many hosts

need to be detected. In this research, four subclasses are added to the class Network

Attack which are DoS, R2L, U2R and Probe (described in Subsection 1.1.1). In Figure

4.4, (a) is an example instance of the class R2L.

Figure 4.4: Analysis Agent Knowledge

4.2.3 Knowledge of Executive Agent

Executive Agent is responsible for executing tasks against intrusions or attacks which

depend on the type of attack notified by Analysis Agent (in Figure 4.2, the predicate

Referred by representing this relationship). These tasks include restoring corrupted

files, preventing network connection, and so on. The knowledge of Executive Agent is

Executive Strategy which is about how to take actions against intrusions or attacks. The

example of knowledge representation with ontology of Executive Agent is demonstrated

in Figure 4.5.

The attributes of Executive Strategy include type of attack (Attack Type), type of

actions to be taken (Action Type), effect to which target (Target), and extent of the

effect (Extent).

4.2. Ontology Implementation 49

Figure 4.5: Executive Agent Knowledge

4.2.4 Knowledge of Manager Agent

As described in Subsection 3.1.4, the Manager Agent is the agent that manages re-

trieval processes. It takes charge of Retrieval Agent and Result Agent, including gen-

erating, dispatching, retracting and communicating with these two agents. The knowl-

edge of Manager Agent is Environment Record which is about environment information

of the host. The class Environment Record has two components, i.e. Neighbor List and

Retrieval Agent Record. The ontology representation of the three classes is shown in

Figure 4.6. The class Neighbor List contains relevant information about neighbor hosts

(one-hop hosts) of the the host which the Manager Agent resides on. The class Neigh-

bour List has attributes including IP addresses of neighbors (Neig IP Addr), host names

of neighbors (Host Name), and MAC addresses of neighbors (MAC Addr). Obviously,

the number of neighbors of a host is equal to the number of records the Neighbor List

contains. The class Retrieval Agent Record is used to store Retrieval Agent Identifiers

(RAID) in order to avoid Retrieval Agent traveling the hosts which it or other Retrieval

Agents with the same RAID have already visited. The class Retrieval Agent Record

has several attributes, including visited time (Vis Time), from where (IP Address) and

the RAID (RAID). In Figure 4.6, (a) and (b) are example instances of the classes

Neighbor List and Retrieval Agent Record respectively.

When an original Manager Agent, which initiates the detection process, receives a

request from the Analysis Agent for deciding distributed attack, it will generate and

dispatch Retrieval Agents to inform other hosts to check whether they have the similar

records which could form a distributed attack (in Figure 4.2, the predicate Referred

by representing this relationship).

4.2. Ontology Implementation 50

Figure 4.6: Manager Agent Knowledge

4.2.5 Knowledge of Retrieval Agent

Retrieval Agent, generated by Manager Agent, moves to other hosts and lets their

Analysis Agents check whether there are the similar records to constitute a distributed

attack. There are four types of knowledge that Retrieval Agent needs to maintain,

which are source IP address from where the original host dispatches this Retrieval Agent

(Source IP Addr), type of the suspicious attack (Attack Type), remote IP address where

the suspicious attack is from (Remote IP Addr), Retrieval Agent Identifier (RAID), and

Time to Life (TTL). TTL, generated by an Initiator, is used to demonstrate the number

of rest hosts the Retrieval Agent needs to visit. The Retrieval Agent will be discarded

when the value of TTL reaches zero or there is no more host to be traveled.

4.2.6 Knowledge of Result Agent

Result Agent, also generated by Manager Agent, with a result record will be sent back

by each Manager Agent, which has been visited by the Retrieval Agent, to the Initiator.

The result record contains the information including source IP address from where the

original host dispatches this Result Agent (Source Host), type of the suspicious attack

(Attack Type), whether the original host has similar records (Similar Record), and if

so where these records are from (Remote Host). Then, the local Analysis Agent which

resides on the same host with Initiator tallies all the result records to make a final

decision.

4.3. Example 51

4.3 Example

We have created several instances of the class R2L and Probing in our ontology with

Protege and maintained them as the knowledge of Analysis Agent. These instances

are specific intrusions or attacks, such as Doorknob-Rattling Attack, Chain/Loop-Attack

and Mitnick Attack. In this section, we only present the detection of Doorknob-Rattling

attack as an example. The sponsor of Doorknob-Rattling Attack (mentioned in Section

1.1) tries a very few common username and password combinations on several com-

puters that results in very few failed attempts on each host. This type of attack is

hard to be detected unless the data related to failed login attempts are collected and

correlated from all hosts in the network. The N-Triples representation of suspicious

Doorknob-Rattling Attack is illustrated in Table 4.2.

<http://www.owl-ontologies.com/unnamed.owl#network attack Instance 1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.owl-ontologies.com/unnamed.owl#R2L>

<http://www.owl-ontologies.com/unnamed.owl#network attack Instance 1>

<http://www.owl-ontologies.com/unnamed.owl#Attack Type>
“Doorknob Rattling”ˆˆ<http://www.w3.org/2001/XMLSchema#string>

<http://www.owl-ontologies.com/unnamed.owl#network attack Instance 1>

<http://www.owl-ontologies.com/unnamed.owl#Connected From>

“true”ˆˆ<http://www.w3.org/2001/XMLSchema#boolean>

<http://www.owl-ontologies.com/unnamed.owl#network attack Instance 1>

<http://www.owl-ontologies.com/unnamed.owl#Num Failed Logins>
“5”ˆˆ<http://www.w3.org/2001/XMLSchema#int>

<http://www.owl-ontologies.com/unnamed.owl#network attack Instance 1>

<http://www.owl-ontologies.com/unnamed.owl#Logged In>

“true”ˆˆ<http://www.w3.org/2001/XMLSchema#boolean>

Table 4.2: N-Triples Notation for Suspicious Doorknob-Rattling Attack

In Table 4.2, it is noted that Doorknob-Rattling Attack is an instance of R2L and

in this attack the victim host is connected from a remote host, the number of failed

login attempt is at least 5, and the login is finally successful.

In order to query for the existence of a suspicious Doorknob-Rattling Attack, a

rule should be defined which tests for the number of failed login attempts before a

successful login. The query in Table 4.3 performs this test in JACKTM [23] syntax.

If the attributes, Connected From and Logged In, of any instance in the class System

4.4. Summary 52

Record matches the query, other attributes of that instance are instantiated. Then, the

test about whether the number of failed login is more than 5 will be executed on each

matched instance. If so, that instance is a suspicious Doorknob-Rattling Attack and

the relevant information will be sent to Manager Agent to request help. The relevant

information includes the type of attack, the IP address of remote host which connects

to the local host, and the number of hosts which need to be visited.

SystemRecord.query (Connected From=true, Logged In=true)
=>

if (Num Failed Logins>=5) then
send(“ManagerAgent”, SuspiciousMessage(Attack Type,Remote Host,Num of Hosts))

Table 4.3: Query for Suspicious Doorknob-Rattling Attack

4.4 Summary

In this chapter, we utilize ontology to represent knowledge of each agent in our frame-

work. The advantage of using ontology is that peers in the framework can easily share

knowledge among each other. In the next chapter, an efficient task allocation proto-

col will be introduced to assign detection tasks to different peers for collaboratively

detecting distributed attacks.

Chapter 5

Task Allocation in the P2P Framework

To cope with the issue of allocating tasks in a P2P environment, a decentralized task

allocation protocol, i.e. Efficient Task Allocation Protocol (ETAP), is elaborated in

this chapter. We first formally describe the task allocation problem in Section 5.1,

and then propose the ETAP in Section 5.2. Section 5.3 gives the comparison tests of

ETAP against Gnutella algorithm [18] and Greedy Distributed task Allocation Protocol

(GDAP) [80]. Finally, this chapter is summarized in Section 5.4.

5.1 Problem Description

The description of task allocation problem is formalized in this subsection. Firstly, the

definition of a P2P system is given.

• Definition 5.1: A P2P system is defined as an undirected graph written as

P2P = (P, E) where P is the set of peers in the system, namely P = {p1, p2, ..., pn}
and E = {e12, e13, ..., e21, e23, ...} indicates the set of edges which are existing re-

lationships between two peers. For example, the edge eij ∈ E means there is a

connection between the peers pi and pj. Therefore, pi and pj are neighbors of

each other.

Each peer p ∈ P is defined as a tuple <PeerID(p), Neig(p), Resource(p)>, where

PeerID(p) is the identity of the peer, Neig(p) is a list which indicates the neighbors

of the peer, and Resource(p) is a dataset which depicts the resource types and the

number of resources for each type that the peer contains. Then, the definitions of the

two terms Initiator and Participant, which are used throughout the rest of this thesis,

are provided in Definition 5.2.

• Definition 5.2: Suppose there is a set of tasks T = {t1, t2, ..., tn} in a P2P

system. The agent which requests help for its tasks is called Initiator and the

agent which accepts and performs the announced tasks is called Participant.

53

5.1. Problem Description 54

Each task t ∈ T is defined as a tuple, namely <TaskID(t), Resource(t), Benefit(t)>.

In this tuple, TaskID(t) is the identity of the task, the form of Resource(t) is simi-

lar as Resource(p) but Resource(t) just contains a record which depicts the resource

type and the number of this resource that is necessary for completing the task, and

Benefit(t) is the benefit gained when the task is completed successfully. The detailed

illumination of Benefit(t) relies on different situations and applications. In this thesis,

Benefit(t) is just set as a random integer number for simplicity.

Besides TaskID(t), Resource(t) and Benefit(t), the query message for each task

contains three more tuples, namely PeerID(pI) that is the ID of Initiator, PeerID(pi)

indicating the ID of agent which forwards this query message last time, and TTL (Time-

To-Live) which means the number of hops the query message could be forwarded.

In this thesis, it is assumed that each task t ∈ T needs only one type of resource

to finish and can be assigned to only one agent to accomplish, as task decomposition

is not the concentration of this research. Task allocation, therefore, can be defined as

follows.

• Definition 5.3: Given a finite set of tasks, recorded as T = {t1, t2, ..., tn}, and a

finite set of peers, written by P = {p1, p2, ..., pm} in a P2P system, Task allocation

in this research is defined as attempting to allocate the n tasks to some or all of

the m agents.

A successful task allocation should satisfy the situation that the Participant agent

has the specified resource type which is matched the announced task’s resource type,

and the number of this resource the Participant agent contains should be more than

the number of the resource which is needed for completing the announced task.

The Initiator prioritizes the tasks based on the efficiency of each task, and allocates

tasks with their efficiency descending. In addition, the Participant also chooses the

most efficient tasks to offer help every time. The definition of the efficiency of a task,

t ∈ T , is described as follows.

• Definition 5.4: The efficiency of a task, effi(t), is in the light of the ratio

between the benefit gained from completing the task and the number of the

resource that is required for accomplishing the task, i.e.

effi(t) =
Benefit(t)

Resource(t)
. (5.1)

5.2. Principle of ETAP 55

As aforementioned about Benefit(t), efficiency in this thesis is not a very critical

term either, which is only used to prioritize the tasks. Hence, we overlook the particular

explanation of efficiency.

5.2 Principle of ETAP

In a P2P system, there is no peer that has a global view about the system but only the

local prospect regarding its neighbors. This research focuses on how to allocate tasks,

which are distributed among the peers in a system, appropriately to Participant peers

particularly when the neighbors of the Initiator peer do not have sufficient resources

for tasks. In this thesis, for simplicity, it is supposed that the P2P system architecture

is fixed during task allocation process, which means that peers entering and leaving

the system dynamically are not considered. Figure 5.1 briefly describes the interaction

process between an Initiator and a Participant. In Figure 5.1, ResoT(a)
means the type

and number of the resources which Agent a needs to finish its tasks, while Resoneig(a)

indicates the the type and number of the resources that Agent a’s neighboring agents

contain. The idea of ETAP is illustrated as follows.

The Initiator peer, p ∈ P , attempts to find its neighboring peers to help with its

tasks, ti ∈ Tp and Tp ⊆ T . Here, Tp means that the set of tasks that the Initiator peer

has to allocate. The Initiator peer first sends resource query messages to its neighbors.

These neighbors will respond the message with information about the types of resources

they contain and the number of resources for each type, and the identities of them.

The Initiator peer then compares the available resources from its neighbors, i.e.

Resoneig(p), with the resources required for its tasks, namely ResoTp . They are cal-

culated as Resoneig(p) =
⋃

pi∈Neig(p) Resource(pi) and ResoTp =
⋃

ti∈Tp
Resource(ti),

respectively. This comparison will result in one of the following two cases.

1. Case One (Resoneig(a) ⊇ ResoTa): in this situation, Initiator directly requests

help for tasks from its neighbors, as Initiator ’s neighbors have enough resources

to handle its tasks. Initiator begins with assigning the most efficient task(s). If

more than one neighbors can solve one task, Initiator will allocate this task to

the one which has the most number of available relevant resource. The neighbors

receive and store the requests, and select the tasks with the highest efficiency

to perform. When Initiator receives the responses from its neighbors, it finally

sends contracts for the allocated tasks to Participants.

5.2. Principle of ETAP 56

Figure 5.1: Interaction Process Between Initiator and a Participant

2. Case Two (Resoneig(a) ⊂ ResoTa): in this case, Initiator requests help only for

those tasks, ti ∈ T
′
a, which can be handled by current available resources from

its neighbors. Initiator starts with allocating the tasks, ti ∈ T
′
a, also based on

the efficiency of these tasks. When finishing assigning tasks, ti ∈ T
′
a, Initiator

attempts to send query messages in depth (not only to neighbors) for the rest of

tasks which cannot be dealt with by using the resources of its neighbors, namely

tj ∈ (Ta − T
′
a).

Initiator generates query messages which are called Walkers and dispatches

them out. The definition of Walker is the same as that of query message intro-

duced in Section 5.1. The number of Walkers for each task is set to k that can

be adjusted by users, and the TTL of each Walker is also set by users. A Walker

then is forwarded to a neighboring agent at each step. The probability with

which a neighboring agent is chosen depends on the number of neighbors that

each neighboring agent has, excluding the Initiator. The agent which connects

with more neighbors has higher probability to be selected. The probability can

be calculated according to Equation 5.2.

5.2. Principle of ETAP 57

pai
=

|Neig(ai)| − 1

(
∑

ai∈Neig(aI) |Neig(ai)|)− |Neig(aI)|
(5.2)

In Equation 5.2, pai
is the probability with which the agent, ai, is selected; as the

description in Section 5.1, Neig(ai) is a list which indicates the neighbors of the

agent, ai, and |Neig(ai)| − 1 designates the number of neighbors which agent ai

connects, excluding the Initiator agent aI . For example, agent a1 is the Initiator

that has two neighbors, i.e. a2 and a3, while a2 and a3 connect with 4 and 8

neighboring agents separately, both excluding a1. When a1 selects a neighbor to

pass a Walker, it chooses a2 and a3 with the probability 4
4+8

= 1
3

and 8
4+8

= 2
3

respectively.

The agent which receives a Walker will decrease the TTL by 1, before the

agent forwards the Walker to any of its neighbors. If, after decrementing the

Walker’s TTL, the TTL is found to be zero, the Walker will not be forwarded

any more. Otherwise, the agent forwards the Walker to one of its neighbors with

the same manner as the above description. During this process, if any agent has

the relevant resources which are desired by Walkers, the agent sends a response

message with its available resources back to Initiator. Initiator, then, selects the

agent with the most number of available resource as Participant, like in Case

One, and makes a contract with it.

In order to avoid query message replication, each agent keeps a State Record

which contains the information about where the Walkers are from and forward to.

The State Record is consisted of four attributes, i.e. TaskID(t), AgentID(aI),

AgentID(ai), and AgentID(aj). TaskID(t), AgentID(aI) and AgentID(ai)

have been mentioned in Section 5.1. TaskID(t) and AgentID(aI) can be used

to distinguish different tasks, and AgentID(ai) is exploited to avoid agent for-

warding the Walker to the former agent which just sent this Walker. AgentID(aj)

is the ID of the agent which is chosen for the Walker to be forwarded to. When a

new Walker arrives, the agent checks the Walker’s TaskID(t) and AgentID(aI)

against its state record. If the same record has existed, the agent will forward the

Walker to one of other neighbors, with the same way depicted above, to which

this Walker has not been forwarded yet, and creates a new piece of record in its

State Record with the four aforementioned attributes. If, in the extreme condi-

tion, all of the agent’s neighbors have received this Walker, this Walker will be

discarded no matter the value of its TTL.

5.3. Test of ETAP 58

In the concurrent situation that is one agent has been requested by two or more

other agents nearly simultaneously, the agent responds their requests with First-Come-

First-Service (FCFS) mechanism, and its available resources announced in each re-

sponse message will exclude the former announced ones.

From the above description, it can be found that ETAP is based on both Gnutella

algorithm [18] and Random Walk [42], but extends them. Gnutella algorithm can

achieve high resource discovery accuracy, while Random Walk can lower message pro-

duction. In addition, both of them do not need to have any pre-knowledge of the P2P

system before searching resources. Thus, ETAP first employs Gnutella algorithm to

request help from Initiator ’s neighbors (setting the number of hops to 1), and then

utilizes the refined Random Walk to query other agents for the rest of tasks. Instead

of randomly choosing a neighbor to forward the Walker as in [42], a biased selection

approach is employed when choosing next neihboring agent to pass the Walker, which

relies on the number of neighbors that each neighboring agent has.

5.3 Test of ETAP

To test the performance of ETAP, we compare ETAP with the Gnutella algorithm [18]

and the Greedy Distributed Allocation Protocol (GDAP) [80]. Gnutella is a popular

and well-established searching algorithm which has been deployed in many real P2P

systems. GDAP is utilized for allocating tasks in a distributed environment, but it only

allows neighboring agents to help with a task. In this section, we first depict Gnutella

and GDAP briefly. Then, the settings of a test environment and three criteria are

introduced. Finally, the test results and the relevant analysis are illustrated.

5.3.1 Gnutella Algorithm

As described in Subsection 2.3.2, Gnutella algorithm [18] is exploited for resource

search in P2P systems. It attempts to traverse all the peers in a P2P system. Gnutella’s

flooding like scheme is easy to be implemented, but produces a large number of messages

due to contacting many peers. Although Gnutella algorithm has not been used in task

allocation, it can be borrowed in our research as a standard for comparison.

5.3. Test of ETAP 59

5.3.2 Greedy Distributed Allocation Protocol

Greedy Distributed Allocation Protocol (GDAP) [80] is employed to handle task allo-

cation problem in agent social networks. An agent social network is defined in [80] as

an undirected graph where vertices are agents and each edge indicates the existence

of a social connection between two agents. The task allocation process of GDAP is

described briefly as follows. All manager agents try to find neighboring contractors to

help them with their tasks. They start with offering the most efficient task. Out of

all tasks offered, contractors select the task with the highest efficiency, and send a bid

to the related manager. A bid includes all the resources the agent is able to supply

for this task. If sufficient resources have been offered, the manager selects the required

resources and informs all contractors of its choice. When a task is allocated, or when

a manager has received offers from all neighbors but still cannot satisfy its task, the

task is removed from its task list.

It can be seen that the main shortcoming of GDAP is that it only relies on neighbors

which may cause many unallocated tasks due to the limitation of resources, while our

research is trying to figure this problem out.

5.3.3 Test Setting

In order to compare the three protocols, ETAP, Gnutella and GDAP, we set a test

environment for assessing them. Power-Law random graph [2], which is the topology

of many real life P2P networks [28], is simulated for testing ETAP, Gnutella and GDAP.

The feature of power-law topology is that although the average number of neighbors is

the same as the normal random graphs, there are few peers with very high connectivity

while most other peers with few neighbors.

There are four different setups used in this test.

• Setup 1: The number of peers and tasks in the P2P network are 50 and 30

separately. The number of types of different resources is 5 and each peer randomly

has several of them. The average number of resources for each type is 30 and

the average number of resources required by each task is also 30. The number

of Walkers for each task, i.e. k, is 1 and the TTL value for each Walker is

set to 5. In this evaluation, we suppose that each task only needs one type of

resources because task decomposition is not considered in this thesis (as described

in Section 5.1). The tasks are distributed uniformly on each peer. The exact

number of resources of each resource type that a peer has and the number required

5.3. Test of ETAP 60

by a task are both distributed normally. In addition, the average efficiency of

tasks is 10 and the exact efficiency of a task also satisfies normal distribution. The

only changeable attribute is the average number of neighbors in this setup. This

setup is designed to show how different average number of neighbors influences

the performance of the three protocols.

• Setup 2: This setting is similar to Setup 1 but with a few modifications. The

TTL value for each Walker varies from 2 to 8. Furthermore, the average number

of neighbors is fixed at 6. The purpose of this setting is to test the adaptability

of the three protocols.

• Setup 3: In this setting, the average number of neighbors is fixed at 6. The

number of peers fluctuates from 100 to 400 and the ratio between the number of

agents and tasks is confirmed at 5/3. The proportion of the number of peers and

resources types is set to 10/1. In order to match the fluctuation of the number of

peers, the TTL value for each Walker transforms from 5 to 20. This setup is used

for demonstrating the scalability of the three protocols in different scale networks

with a fixed average number of neighbors.

• Setup 4: This setting is only for ETAP which is also similar to Setup 1. The

only difference from Setup 2 is that instead of adjusting TTL value, we adapt the

number of walkers, i.e. k, from 1 to 4. Since Gnutella and GDAP do not contain

the term Walker, they are neglected in this setting. The target of this setting is

to exhibit the relationship between the number of Walkers and the performance of

ETAP.

In this test, three criteria are used to estimate the performance of ETAP, Gnutella

and GDAP.

1. ER (Efficiency Ratio): The proportion of summation efficiency of completed

tasks to the expected total efficiency of tasks in a P2P system, namely:

ER =

∑
ti∈Tc

effi(ti)∑
tj∈T effi(tj)

(5.3)

where Tc is the set of completed tasks, T is the set of tasks in a P2P system, and

effi(t) is efficiency of the task (as described in Section 5.1). Higher ER means

that more tasks can be allocated and solved, so the performance is better.

5.3. Test of ETAP 61

2. Num: The entire number of the communication messages transferring in the

system during one task allocation process. Lower Num indicates that less com-

munication messages are generated and transferred in the system. Therefore, the

burden of a P2P system can be remitted more.

In a P2P system with n tasks, m peers, k Walkers for each task and TTL for each

Walker, the complexity of Num is O(n2(k · TTL + m)). This can be proved as

follows. In each iteration in the worst case (i.e. a fully connected P2P system),

for each of the O(n) Initiators, O(m) resource query messages are sent. Then, the

O(m) available resource response messages are generated and sent back to the

Initiators. Next, each of the O(n) Initiators allocates O(n) tasks to their O(m)

neighbors. Thus, the messages created at this stage are O(n). After that, each of

the O(n) Initiators creates O(kn) Walkers for the rest of tasks and send them out

in O(TTL) hops. Hence, the messages generated during this phase are O(kn ·
TTL). Then, the O(m) peers which have available resources will respond the

O(kn) Walkers and the messages are O(nm). Finally, each of the O(n) Initiators

makes O(n) contacts. There are O(n) Initiators in the system. Therefore, during

one task allocation process, the number of communication messages are O(n(m+

m + n + kn · TTL + nm + n)) = O(n2(k · TTL + m)). It should be noticed that

several special conditions, such as message replication and concurrent request

(mentioned in Section 5.2), do not affect the final analysis result.

3. CoP (Coefficient of Performance): The ratio between the summation efficiency

of successfully finished tasks and the number of communication messages (Num)

during the task allocation process. CoP can be calculated by using Equation

5.4.

CoP =

∑
ti∈Tc

effi(ti)

Num
(5.4)

Generally, the performance of the protocol is more desirable if higher ER could

be achieved and lower number of communication messages are created. Hence,

observing either ER or Num only is not enough to determine the quality of the

protocol. We, therefore, employ the CoP as the third metric to evaluate the three

protocols. Higher CoP indicates better performance, since higher CoP means

each message can derive higher efficiency.

For convenience, we suppose that once a task has been allocated to a Participant,

the Participant would definitely finish this task without failure.

5.3. Test of ETAP 62

5.3.4 Test Results

The test is performed on the four aforementioned setups for ETAP, Gnutella and

GDAP. In order to achieve precise results, each assessment step was executed 30 times

and the average data were obtained.

Test Results from Setup 1

This test is done on Setup 1 as described in Subsection 5.3.3. The purpose of this test

is to estimate the influence of different average number of neighbors on all the three

protocols.

(a) Efficiency Ratio (ER) (b) Number of Messages
(Num)

(c) Coefficient of Perfor-
mance (CoP)

Figure 5.2: Performance of different protocols on distinct average number of neighbors

Figure 5.2(a) demonstrates that Efficiency Ratios (ER) of ETAP and Gnutella

in different conditions are much higher and more stable than that of GDAP. This is

because task allocation with GDAP only depends on neighbors of Initiator. Therefore,

the more neighbors work on tasks, the more opportunities the tasks could be solved.

Comparatively, ETAP and Gnutella rely on not only neighbors but also other peers

if needed. This feature results in steady performance of ETAP and Gnutella. It is

also shown that with more average number of neighbors, the performance of GDAP

is improved continuously. The reason of this situation is that when there are more

neighbors, Initiator has higher probability to derive sufficient resources for dealing

with more of its tasks.

Figure 5.2(b) depicts the number of messages (Num) of the three protocols in

different situations generated in allocation processes. As ETAP and Gnutella would

request other peers for help when resources from neighbors are insufficient, the number

5.3. Test of ETAP 63

of messages of both ETAP and Gnutella is higher than that of GDAP. Thus the presen-

tation of GDAP in this test is relatively good due to its consideration of neighbors only

which could decrease the number of messages created during task allocation process.

It is also found that the number of messages of Gnutella is much higher than that of

ETAP and GDAP. This is because Gnutella is a flooding scheme which requests all the

neighbors during each hop. In that condition, the number of messages rises dramat-

ically. Compared with Gnutella, the number of messages of ETAP is a little higher

than that of GDAP, since ETAP requests only one neighbor for the unallocated tasks

during each hop (remember k = 1 in Setup 1).

Figure 5.2(c) shows the Coefficient of Performance (CoP) of the three protocols

in different cases. With the average number of neighbors increasing, the CoP of all the

three protocols declines, but the CoP of ETAP is higher than that of the other two

protocols. It should also be found that when the average number of neighbors is more

than 6 the CoP of Gnutella is lower than that of GDAP. This is because for Gnutella

more neighbors bring much more communication messages. Hence, although the Ef-

ficiency Ratio of Gnutella increases with the average number of neighbors ascending,

the number of communication messages rises much more.

Test Results from Setup 2

This test is done on the setting described in Setup 2 which is employed to assess the

adaptability of the three protocols.

(a) Efficiency Ratio (ER) (b) Number of Messages
(Num)

(c) Coefficient of Perfor-
mance (CoP)

Figure 5.3: Performance of different protocols on distinct TTL value

Figure 5.3(a) provides that with TTL value ascending, the Efficiency Ratio (ER) of

5.3. Test of ETAP 64

ETAP and Gnutella soars up. This can be explained that the higher the TTL value is,

the more the task allocation steps are. Therefore, tasks could have more opportunities

to be assigned.

From Figure 5.3(b), it is evident that the numbers of messages of ETAP and

Gnutella increase gradually with TTL value rising. This is because more allocation

steps generate more communication messages.

According to Figure 5.3(c), with the increase of TTL value, the CoP s of both ETAP

and Gnutella decrease. The reason of this situation is similar to the one described in

Subsection 5.3.4, namely that the increasing rate of Efficiency Ratio is less than that

of the number of messages. Since TTL is not related to GDAP, the performance of

GDAP keeps firm during the test process.

Test Results from Setup 3

This test is based on Setup 3 which has been depicted in 5.3.3. The aim of this setup

is to evaluate the scalability of the three protocols in different network scales.

(a) Efficiency Ratio (ER) (b) Number of Messages
(Num)

(c) Coefficient of Perfor-
mance (CoP)

Figure 5.4: Performance of different protocols on distinct number of agents

According to Figure 5.4(a), we can see that with the increasing of network scale,

the Efficiency Ratio (ER) of GDAP is continually descending while ERs of both ETAP

and Gnutella keep stable and high. This case can be argued that when the network

scale soars up, tasks and types of resources also rise proportionally. Although the

average number of neighbors is fixed, more tasks and resource types might still lead

to tasks unallocated if Initiators request only neighboring agents. Compared with

GDAP, benefited from requesting other peers, both ETAP and Gnutella can preserve

5.3. Test of ETAP 65

their performance.

Figure 5.4(b) shows the number of messages (Num) of the three protocols in

different network scales. All the three protocols generate more communication messages

when there are more peers in the network. This is because although the average number

of neighbors is confirmed, more large network scale is accompanied by more peers and

tasks. Therefore, in order to allocate these tasks, more communication steps cannot

be avoided which results in communication messages rising. On the other hand, the

number of communication messages of GDAP always keeps a lower level than that

of ETAP and Gnutella. This can be apparently explained that GDAP only relies on

neighboring peers, and thus has less communication steps.

Figure 5.4(c) demonstrates the Coefficient of Performance (CoP) of the three

protocols. It can be seen that the CoP s of both ETAP and Guntella keep almost

steady while that of GDAP descends gradually with the increase of network scale. The

reason of this result is described as follows. For ETAP and Gnutella, even though the

number of communication messages ascends, the absolute value of efficiency derived

by completing tasks also increases. Therefore, the CoP can keep stable. On the other

hand, for GDAP, as the ER declines gradually while the number of messages soars up

continuously, the CoP of GDAP decreases undoubtedly. It should be also noticed that

the CoP of GDAP is higher than that of Gnutella, which indicates Gnutella creates a

great deal of messages in large scale networks.

Test Results from Setup 4

As described in Subsection 5.3.3, this setup is only for ETAP since the only varying

parameter in this setup is the number of Walkers, i.e. k, which is not relevant to either

Gnutella or GDAP. The target of this setup is to assess how the number of Walkers

influences the performance of ETAP.

From Figure 5.5(a) and 5.5(b), with the number of Walkers increasing, both

Efficiency Ratio (ER) and number of messages ascend correspondingly. Nevertheless,

the Coefficient of Performance drops gradually as depicted in Figure 5.5(c). This is

because more number of Walkers brings higher ER but derives much more messages at

the same time. Hence, it can be concluded that in most cases, k = 1 is a good choice

unless ER is a very critical factor.

5.4. Summary 66

(a) (b) (c)

Figure 5.5: The performance of ETAP with different number of walkers

5.3.5 Discussion of ETAP

From the above description, it is obvious that the performance of ETAP is better

than that of both Gnutella and GDAP, as each communication message in ETAP

can achieve higher efficiency, i.e. higher CoP . Although Gnutella always derives the

highest efficiency, the number of messages of Gnutella is very excessive and easily

affected by several factors. On the other hand, GDAP generates the least messages

but the efficiency of GDAP is low and could be easily disturbed by the average number

of neighbors. Therefore, as depicted in the previous paragraphs and pictures, ETAP is

more efficient, adaptable and scalable compared with both Gnutella and GDAP.

5.4 Summary

This chapter gives the detailed description of our ETAP, which is used to allocate

detection tasks to other peers for collectively detecting distributed attacks. The benefit

of ETAP is that it does not need a central planner or to form groups or coalitions before

task allocation. Besides, peers with ETAP can request help for tasks not only from

neighboring peers but other peers if needed. In the next chapter, we demonstrate the

experiment results of our framework, and analyze these results.

Chapter 6

Test and Discussion

Our framework has been implemented by using JACKTM [23]. In this chapter, in-

trusion detection experiment of the framework is provided, and ETAP is utilized as

the detection mechanism. In order to contrast ETAP, Gnutella [18] and GDAP [80]

are also set into the framework as detection schemes. We adopt the aforementioned

three distributed attacks, i.e. Doorknob-Rattling Attack, Chain/Loop Attack and Mit-

nick Attack, as instances against our proposed framework for testing. Details of the

three distributed attacks have been described in Section 1.1. The intrusion detec-

tion test metrics, which are employed to test our framework, are introduced in Section

6.1. Then, three scenarios for task allocation in detecting distributed attacks by using

ETAP and the test results about each distributed attack are demonstrated in Section

6.2. Thereafter, discussion regarding the test is elaborated in Section 6.3. Finally, this

chapter is summarized in Section 6.4.

6.1 Test Metrics of Intrusion Detection Systems

Ulvila and Gaffney [74] depicted that a system must be in one of the two states: either

with an intrusion occurrence (I) or with no intrusion present (NI). The IDS might

generate an intrusion alarm (A) or no alarm (NA). Therefore, three parameters used

to test intrusion detection systems can be obtained, namely false alarm rate, false

negative rate, and detection rate.

• False alarm rate means that an alarm arises with no intrusion event occurring,

which is written as P (A|NI) = α. Lower P (A|NI) means better performance of

an IDS.

• The meaning of false negative rate is that an intrusion happens with no alarm

generated for it, which is written as P (NA|I) = β. Lower P (NA|I) means better

performance of an IDS.

67

6.2. Test of the Framework 68

• Detection rate depicts the ratio between the number of detected intrusions and

the total number of attempted intrusions, which is written as P (A|I) = 1 − β.

Higher P (A|I) means better performance of an IDS.

False alarm rate and false negative rate are widely utilized to evaluate the perfor-

mance of IDSs. However, for our framework, since the concentration is different from

most proposed IDSs, we use detection rate as the evaluation metrics. Besides, run time

is also employed as another evaluation metrics, which means the average time length of

each detection process. In next section, three scenarios and the experimental detection

of Doorknob-Rattling Attack, Chain/Loop Attack and Mitnick Attack will be demon-

strated. The experimental detection is based on the two metrics, namely detection rate

and run time.

6.2 Test of the Framework

In this section, the test setting is first depicted, and then three scenarios and the test

results against each distributed attack are provided.

6.2.1 Test Setting

Since the contribution of this thesis is not detection algorithms, DARPA dataset [16],

which is a famous dataset for testing intrusion detection algorithms, is not considered

in this test. Instead, we manually input some normal and hostile records as the belief

of agents on different peers, and initiate the detection process from a randomly selected

victim peer. Each detection process is performed one hundred times and achieves the

results regarding detection rate and run time which have been described in Section 6.1.

In the following subsections, the relevant scenarios are provided first, and then the test

results are exhibited. For convenience, the topology of the simulated P2P network is

the same as that in the scenarios, i.e. Figure 6.1, 6.3 and 6.5. Due to the lack of

test standard, we also mount Gnutella [18] and GDAP [80] into our framework as the

detection mechanisms for comparison with ETAP.

6.2.2 Detection of Doorknob-Rattling Attack

In this subsection, a scenario regarding the detection of Doorknob-Rattling Attack is

provided, and then the detection results within the framework are also given.

6.2. Test of the Framework 69

Scenario One: Doorknob-Rattling Attack

Figure 6.1 is an example of a P2P network (such as Ad hoc network [63]) which

has four peers to be attacked by a remote host simultaneously. In this example, the

task can be described as that the detection of Doorknob-Rattling attack needs to check

failed login attempt records on several peers and this task is a high emergent task. It

is also supposed that the number of tasks is 3 and the three tasks have the same task

tuple. Following the definition about task in Subsection 5.1, the description could

be matched as the tuple that <TaskID(t) = Doorknob − Rattling, Resource(t) =

Failed Login Attempt > 5, Benefit(t) = 10, Position(t) = Peer1, TTL(t) = 6>.

In this example, Failed Login Attempt > 5 is an assumed threshold of failed login

attempt. That means if the number of failed login attempts is more than 5, this record

would be considered as a suspicious one and the agent should initiate a detection

process. Furthermore, Benefit(t) can be circumscribed according to emergency of the

task and, here, the number 10 is just an instance.

Figure 6.1: An example P2P network which has been attacked by Doorknob-Rattling

In terms of ETAP, Peer 1 starts the task allocation process, namely detection

process in this example, by first requesting its neighbors for help. However, the only

neighbor of Peer 1 is Peer 2 which cannot supply enough resource for Peer 1. Then,

6.2. Test of the Framework 70

Peer 1 sends a Walker (k = 1 in this example) with TTL = 6 to Peer 2 following the

ETAP approach described in Subsection 5.2. Peer 2 decreases 1 from TTL (TTL = 5

now) and sends the Walker to its neighbor, namely Peer 3. After that, Peer 3 has the

desired resource and sends a response message back to Peer 1. Peer 3 then randomly

chooses a neighbor and dispatches the Walker with TTL = 4. Here, we suppose Peer

3 selects Peer 5. With the same process, Peer 5 chooses Peer 6 with TTL = 3. Peer

6 sends a response message back and forwards the Walker with TTL = 2 to Peer

9. Subsequently, it is assumed that Peer 9 randomly selects Peer 8 with TTL = 1.

Finally, Peer 8 sends a response message back to Peer 1 and decrements 1 from TTL.

Peer 8 finds TTL = 0 and discards the Walker. The Initiator, Peer 1, then make a

decision about Doorknob-Rattling Attack based on these responses. Details with regard

to the communication between different peers or different agents in one peer can be

found in Section 3.2.

Detection within the Framework

For each test iteration, four randomly selected peers are victims and one of them

initiates the detection process. The example can be found in Figure 6.1. It is defined

that when three out of the four victim peers are discovered, the attack is successfully

detected. Three detection mechanisms, i.e. Gnutella, GDAP and ETAP, are executed

in each iteration. For Gnutella and ETAP, the TTL value is set to 4. The experiment

results are demonstrated in Figure 6.2.

(a) (b)

Figure 6.2: Detection of Doorknob-Rattling Attack with different mechanisms

Figure 6.2(a) introduces the detection rates, i.e. P (A|I), of three detection schemes.

6.2. Test of the Framework 71

It is obvious that Gnutella achieves a higher detection rate than GDAP and ETAP,

because Gnutella attempts more peers in the network. GDAP derives the lowest detec-

tion rate as it only requests neighboring peers for help. The performance of ETAP is

between Gnutella and GDAP. On the other hand, Figure 6.2(b) depicts the run time of

each mechanism. Overtly, Gnutella needs the most time, while GDAP spends the least

time. The reason is the same as that described about detection rate. Comparatively,

ETAP obtains a balance between the two evaluation metrics, namely detection rate

and run time.

6.2.3 Detection of Chain/Loop Attack

This subsection exhibits a scenario regarding the detection of Chain/Loop Attack, and

the experimental detection within the framework.

Scenario Two: Chain/Loop Attack

Figure 6.3 exhibits an example that four peers in a P2P network have been intruded by

Chain/Loop Attack. In this scenario, the task is to observe TCP or UDP connections

among several peers in order to discover whether the connections could be formed into

a “chain” or “loop”. It is assumed that the number of tasks is 3, and the three tasks

need different resources which are explained in the following. Peer 1 is supposed to

be the Initiator. As Peer 1 finds out two dubitable connection records, it launches

a task allocation process which is detection process in this example. One suspicious

connection record is from a remote host with more than three failed login attempts,

and the other is that the remote host later builds a connection to another peer in the

network through Peer 1. According to the definition in Subsection 5.1, the task tuple

of Initiator, i.e. Peer 1, can be described as <TaskID(t) = Chain/Loop, Resource(t),

Benefit(t) = 10, Position(t) = Peer1, TTL(t) = 3>, where Resource(t) includes

Failed Login Attempt > 3, Connection = to and Connection T imeStamp > t1.

In this example, Failed Login Attempt > 3 indicates a predefined finitude which is

deemed to be a suspicious connection, Connection = to demonstrates this connection

is built from this peer to another peer in the network, and Connection T imeStamp >

t1 means the connection time should be later than t1 at which Peer1 launches a

connection to another peer, such as Peer 2. Benefit(t) = 10 is just an instance, which

is the same as Scenario One in Subsection 6.2.2.

In the light of ETAP, Peer 1 starts the task allocation process, namely detec-

tion process, by first requesting its neighbors for help. The neighbor of Peer 1 is

6.2. Test of the Framework 72

Figure 6.3: An example P2P network which has been attacked by Chain/Loop

Peer 2 which does not have sufficient resources for Peer 1, since Peer 2 only has one

connection record which can satisfy Peer 1’s desire. Therefore, Peer 1 allocates one

task to Peer 2 and dispatches a Walker (k = 1 in this example) with TTL = 3 to

Peer 2. Peer 2 modifies the Walker as <TaskID(t) = Chain/Loop, Resource(t),

Benefit(t) = 10, Position(t) = Peer1, TTL(t) = 2>, where Resource(t) includes

Failed Login Attempt > 3, Connection = to and Connection T imeStamp > t2. t2 is

the time at which Peer 2 establishes a connection to another peer. Peer 2 then sends

the modified Walker with TTL = 2 to one of its neighbors. The only neighbor of

Peer 2 is Peer 3 in this example. With the same measure, Peer 3 revises the Walker

as <TaskID(t) = Chain/Loop, Resource(t), Benefit(t) = 10, Position(t) = Peer1,

TTL(t) = 1>, where Resource(t) involves Failed Login Attempt > 3, Connection =

to and Connection T imeStamp > t3. The meanings of t3 is similar as t1 and t2.

Subsequently, Peer 3 responds to the Initiator, Peer 1, because Peer 3 has the one

connection record that Peer 1 wishes. Peer 3 selects the neighbor Peer 5 to send the

Walker, because there is a doubted connection record on Peer 3 that indicates Peer 5

is the next “node” in the potential Chain/Loop Attack. Peer 5 then alters the Walker

6.2. Test of the Framework 73

as <TaskID(t) = Chain/Loop, Resource(t), Benefit(t) = 10, Position(t) = Peer1,

TTL(t) = 0>, and replies the Peer 1. Since TTL has become zero, Peer 5 discards the

Walker without further process. Finally, Peer 1 correlates these responses to constitute

the profile of a Chain Attack.

Detection within the Framework

For each test iteration, four peers, which are neighboring one by one, are imaginary

victims, and the detection process is originated from the first or last peer in the “chain”.

Figure 6.3 demonstrates an example of this attack. It is set that when all of the four

victims are exposed, the attack is successfully discovered. For Gnutella and ETAP, the

TTL value is set to 5. Figure 6.4 shows the experimental detection results.

(a) (b)

Figure 6.4: Detection of Chain/Loop Attack with different mechanisms

Figure 6.4(a) displays the detection rates of three detection schemes. Gnutella

undoubtedly obtains the highest detection rate, while the next one is ETAP and the

last one is GDAP. For the run time of each detection mechanism, GDAP is the fastest

while Gnutella is the slowest. ETAP is medium between GDAP and Gnutella. The

sake is the same as the one described in Subsection 6.2.2.

6.2.4 Detection of Mitnick Attack

This subsection demonstrates a scenario about the detection of Mitnick Attack, and

then displays the test results within the framework.

6.2. Test of the Framework 74

Scenario Three: Mitnick Attack

In Figure 6.5, a Mitnick Attack example, which is against a P2P network, is demon-

strated. Peer 1 is supposed to be the Initiator. When Peer 1 discovers a TCP sequence

number predication attack, it originates a task allocation process, i.e. detection pro-

cess, in an effort to expose a Mitnick Attack. In this case, the number of task is 1, with

the task tuple <TaskID(t) = Mitnick, Resource(t), Benefit(t) = 10, Position(t) =

Peer1, TTL(t) = 10>, where Resource(t) involves AttackT ype = SY NFlooding and

TrustedbyP eer1 = true. Here, TTL is larger than the former two scenarios, since the

other victim peer could be anywhere in the network.

Figure 6.5: An example P2P network which has been attacked by Mitnick

According to ETAP, Peer 1 launches the task allocation process by first requesting

neighboring peers for help. The only neighbor of Peer 1 is Peer 2 which does not

contain the interested resource. Then, Peer 1 dispatches a Walker (k = 1 in this

scenario) with TTL = 10 to Peer 2. Peer 2 decreases one from TTL (TTL = 9) and

transmits the Walker to its neighbor, Peer 3, which does not have the relevant resource

either. Whereafter, Peer 3 decrements TTL by 1 (TTL = 8), and selects one of its

neighbors from Peer 4 and Peer 5 to pass the Walker. Here, it is assumed that Peer 3

6.3. Discussion of the Test 75

chooses Peer 4 as the next stop. The innocent Peer 4 detracts 1 from TTL (TTL = 7)

and sends the Walker to its neighbor Peer 9. With the same way, Peer 9 selects Peer 8

and transfers the Walker with TTL = 6, and Peer 8 pushes the Walker with TTL = 5

to Peer 7 supposingly. Peer 7, subsequently, sends the Walker with TTL = 4 to Peer

5 which has the desired resource. Peer 5 then responds the request to Peer 1, and

declines TTL by 1. Since Peer 3, Peer 7 and Peer 8 have been visited, Peer 5 issues

the Walker with TTL = 3 to Peer 6. Then, Peer 6 sends the Walker with TTL = 2 to

Peer 9. As all the neighboring peers of Peer 9 have been requested, Peer 9 discards the

Walker even though the TTL value of the Walker does not reach zero. The Initiator,

Peer 1, synthesizes the response from Peer 5 and results in a decision with regard to

the existence of Mitnick Attack.

Detection within the Framework

According to the nature of Mitnick Attack, during each detection iteration, two ran-

domly selected peers are assumed to be attacked. One peer is supposed to be attacked

by TCP sequence number predicting and the other is attacked by SYN flooding attack.

Since the peer attacked by SYN flooding attack usually has a network congestion, the

detection process is assumed to be launched from the other victim peer. Figure 6.5

displays an example of this attack. It is enacted that when both of the two victim peers

are found out, the attack is successfully detected. The three detection mechanisms,

namely Gnutella, GDAP and ETAP, are all utilized to perform the detection processes.

For Gnutella and ETAP, the TTL value is confirmed at 6. Figure 6.6 demonstrates

the detection results.

In Figure 6.6(a), the detection rates of Gnutella, GDAP and ETAP are exhibited.

Gnutella derives the higher detection rate than both of GDAP and ETAP, while ETAP

achieves better detection rate than GDAP. In Figure 6.6(b), the performance of GDAP

is the best, while Gnutella is the worst. The average consuming time of ETAP is

between that of GDAP and Gnutella. The reason is the same as the one depicted in

Subsection 6.2.2.

6.3 Discussion of the Test

Section 6.2 provided three scenarios and a detailed test for the proposed framework.

According to the three scenarios, ETAP exhibits its potential capability of handling

some real cases. However, people might argue that in these scenarios, other peers,

6.3. Discussion of the Test 76

(a) (b)

Figure 6.6: Detection of Mitnick Attack with different mechanisms

other than Peer 1, might also initiate the detection process synchronizingly with Peer

1. This problem is called task duplication which may increase the redundant time and

communication overhead. Agent negotiation mechanism might be borrowed to solve

this issue in some extent, which is one of our future works.

Although the test results against the three simulated attacks, i.e. Doorknob-

Rattling, Chain/Loop and Mitnick attacks, are analogous, there are two issues which

are worthy to discuss.

1. According to Figure 6.2(a) and 6.4(a), the detection rate of Gnutella with regard

to Doorknob-Rattling Attack is a little lower than that of Chain/Loop Attack.

This can be explained that during the Chain/Loop Attack the victim peers are

located relatively converged, and therefore they are easier to be discovered by

using Gnutella algorithm which requests all accessible peers within the TTL

value. However, the detection rates of both GDAP and ETAP about Doorknob-

Rattling Attack are higher than those regarding Chain/Loop Attack. For GDAP,

this is because not all the victim peers are neighbors of the Initiator in general,

and thus it is hard to discover the attack by only requesting neighboring peers.

For ETAP, the reason is that there is only one Walker which only travels to one

neighbor each time. Due to the character of Chain/Loop Attack that usually only

one neighbor of a victim peer is attacked, the Walker might miss victim peers

during its traveling process and hence leads to detection failure.

2. Comparing Figure 6.2(a) and 6.6(a), the detection rates of Gnutella and ETAP

6.4. Summary 77

about Doorknob-Rattling Attack are almost the same as those for Mitnick Attack.

The reason is that when the TTL value is set to be large enough, the other

victim peers can be easily discovered. Nevertheless, the detection rate of GDAP

regarding Mitnick Attack decreases slightly compared to that against Doorknob-

Rattling Attack. This can be argued that in Mitnick Attack, two victim peers

may be distributed far between each other, and therefore GDAP, which only asks

neighbors for help, might result in detection failure.

From the above description, it can be concluded that ETAP which is proposed in

this thesis achieves a good balance between the detection rate and run time, while

Gnutella and GDAP focus more on one side. In addition, according to Chapter 5,

ETAP is more flexible than Gnutella and GDAP by adjusting the number of Walkers

and TTL value. Hence, compared to Gnutella and GDAP, ETAP is more suitable for

detecting distributed attacks in P2P environments.

6.4 Summary

This chapter provides the experiment about our framework according to using three

detection schemes, i.e. Gnutella, GDAP and ETAP which is proposed in this thesis.

The test results demonstrate that ETAP fits our framework better than Gnutella and

GDAP. In the next chapter, we conclude this thesis and introduce some future works.

Chapter 7

Conclusion

Thousands of computers in the Internet suffer the threat of various network attacks. In

order to protect computers from being compromised, many IDSs have been proposed.

Some of them are centralized, while others are decentralized. The primary objective of

this thesis is to deal with the fundamental issues related to agent-based P2P framework

for distributed intrusion detection, which include:

1. Architecture of the agent-based P2P framework;

2. Design of agents functionalities in the framework;

3. Knowledge representation of agents in the framework;

4. A task allocation protocol which can be adopted as a detection scheme for the

framework.

In the rest of this chapter, we present the major contributions of this thesis and

compare each contribution with current related research. Thereafter, we discuss the

remaining problems of the proposed framework, and outline the future research direc-

tions.

7.1 Major Contributions of this Thesis

In Chapters 3, 4 and 5, we proposed a novel architecture of an agent-based P2P

framework, and then designed the functions of each agent in the framework in detail.

Thereafter, we represented the knowledge of each agent by using ontology, and finally

introduced an efficient task allocation protocol for detecting distributed attacks in the

framework. In the following subsections, we outline our contributions and compare

them with current related works.

78

7.1. Major Contributions of this Thesis 79

7.1.1 Architecture of the Agent-Based P2P Framework

The framework proposed in this thesis is based on P2P layout, and each peer in the

framework contains multiple agents, each of which performs different functions. The

benefits of the architecture are as follows.

1. Independent of particular network topologies;

2. Compared to centralized IDSs [31] [84] which have a central manager to handle

issues in the systems, the proposed decentralized architecture can avoid single

point failure and network congestion;

3. Against current P2P IDSs [55] [79] which remove the central manager but only

allow peers to make queries among neighbors, the presented architecture allows

peers to collaborate with not only direct linked neighbors but also other peers if

necessary. In this way, peers may have more opportunity to achieve their goals.

Furthermore, many proposed agent-based IDSs stop at initial architecture design

without detailed design and implementation of each agent. In this thesis, an agent

development software, JACKTM , is employed to design and implement agents in the

framework. Compared to most relevant works, agents in our framework are not only

introduced but also implemented. Contrasted with [65] which also implemented the

agents but focused on detection on a single host, our framework concentrates on intru-

sion detection in a distributed domain.

7.1.2 Knowledge Representation of Agents

Many attack languages were proposed in the past decade, which can be classified as

Event, Response, Reporting, Correlation, Exploit and Detection Languages [76]. These

languages aim at representing various knowledge in intrusion detection. Nonetheless,

attack languages mainly focus on a specific aspect of intrusion detection and they are

usually dependent on particular systems and environments. Hence, the extensibility

and communicability among non-homogeneous systems of these attack languages are

incompetent. The advantages of adopting ontology to represent intrusion detection

knowledge in this thesis include the following three facets [75].

1. Representation: ontology is able to model the knowledge of a domain, which

involves the domain’s attributes and characteristics;

7.2. Remaining Problems and Future Work 80

2. Information sharing: ontology can represent the existence of an instance of the

domain (model) in a way that is understandable by any other entities that possess

the specific ontology;

3. Reasoning: ontology has the capability of aggregating particular instances of the

domain in a knowledge base and concluding that some larger, or more compre-

hensive, instances of the ontology exist.

In this thesis, ontology is utilized to represent agents’ knowledge in the proposed

framework. Compared to related attack languages which focus on specific domains of

intrusion detection, such as [13] and [19], our representation approach is more exten-

sible and sharable. Against other ontology based intrusion detection representation

methods which concentrate on a single host, such as [25] and [75], our approach fo-

cuses on intrusion and detection representation for a distributed environment. In this

manner, peers in our framework can share their common understanding of information

to discover distributed attacks through agent communication and cooperation.

7.1.3 A Task Allocation Protocol

In order to discover distributed attacks, allocating detection tasks to different peers is

necessary. Thus, a potent task allocation protocol is needed. Various task allocation

protocols have been developed. Some of them are centralized, which assume there

is a central planner to schedule task allocation processes. Several protocols need the

nodes in an environment to form groups before allocating tasks. Furthermore, some

allocation mechanisms allow the nodes in an environment only request neighboring

nodes for help.

In this thesis, an efficient task allocation protocol, i.e. ETAP, is proposed and

utilized into our framework for distributed intrusion detection. Compared to [85],

ETAP does not need a central planner. Against [37], it is not necessary for ETAP

to form coalitions among nodes before allocating tasks. Unlike GDAP presented in

[80] which allows only neighboring nodes to help with a task, ETAP enables nodes to

allocate tasks not only to their neighbors but also other nodes in the system.

7.2 Remaining Problems and Future Work

Although several fundamental problems with regard to IDSs have been solved in this

thesis, some remaining issues are still existent.

7.2. Remaining Problems and Future Work 81

1. A well defined model about detection strategy is necessary, as detection strategies

are the basis for an IDS. This model should be complete in order to handle as

many types of attacks as possible, and could accommodate variants of existing

attacks. However, in this thesis, our concentration is on building an agent-based

P2P framework for distributed intrusion detection, not on detailed detection

strategies which will be one of our future works.

2. During detection processes in our framework, it is assumed that the detection is

initiated from one of the victim peers. Nevertheless, in real cases, other victim

peers might also originate the detection processes for exposing the same attack.

This condition would cause redundant detection processes and results in time

and network consumption soaring up. How to deal with this problem is another

future work of us.

3. The agent development tool, JACKTM [23], which is utilized to implement our

framework, is not good for building mobile agent and network simulation. There-

fore, the test results might have some bias, but the trends of the three detection

schemes, i.e. Gnutella [18], GDAP [80] and ETAP, which are revealed by the test,

is still worthy to notice. Since JACKTM is powerful for developing multi-agent

systems with a free version, it is selected as development tool in this thesis. In

the future, we will use some other methods to re-implement our framework and

test it.

Bibliography

[1] S. Abdallah and V. Lesser. Modeling task allocation using a decision theoretic

model. In Proceedings of AAMAS’05, pages 719–726, Utrecht, Netherlands, July

2005.

[2] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive

graphs. In Proceedings of STOC’00, pages 171–180, May 2000.

[3] James P. Anderson. Computer security threat monitoring and surveillance. Tech-

nical report, Fort Washington, PA: James P. Anderson Co., Apr. 1980.

[4] J.S. Balasubramaniyan, J.O. Garcia-Fernandez, D. Isacoff, E. Spafford, and

D. Zamboni. An architecture for intrusion detection using autonomous agents.

Technical Report 98-05, COAST Laboratory, Purdue University, 1998.

[5] K. Boudaoud and C. McCathieNevile. An intelligent agent-based model for se-

curity management. In Proceedings of the Seventh International Symposium on

Computers and Communications, pages 877–882, Los Alamitos, CA, USA, Jul.

2002.

[6] D. Boughaci, H. Drias, A. Bendib, Y. Bouznit, and B. Benhamou. Distributed

intrusion detection framework based on autonomous and mobile agents. In Pro-

ceedings of the International Conference on Dependability of Computer Systems,

pages 248–255, May 2006.

[7] D. Curry and H. Debar. Intrusion detection message exchange format

data model and extensible markup language (xml) document type definition.

http://tools.ietf.org/id/draft-ietf-idwg-idmef-xml-03.txt, Feb. 2001.

[8] D. Dasgupta, F. Gonzales, K. Yallapu, J. Gomez, and R. Yarramsetti. Cids:

An agent-based intrusion detection system. Computer & Security, 24(5):382–398,

August 2005.

82

BIBLIOGRAPHY 83

[9] Prithviraj Dasgupta. Adaptive sharing of large resources in p2p networks. In

Proceedings of AAMAS’05, pages 839–845, Utrecht, Netherlands, July 2005.

[10] H. Debar and D. Curry. The intrusion detection message exchange format (idmef).

http://www.ietf.org/rfc/rfc4765.txt, Mar. 2007.

[11] D. Denning. An intrusion-detection model. IEEE Trans. on Software Engineering,

SE-13(2):222– 232, Feb. 1987.

[12] J. Doyle, I. Kohane, W. Long, H. Shrobe, and P. Szolovits. Event recognition be-

yond signature and anomaly. In Proceedings of the Second IEEE SMC Information

Assurance Workshop, pages 17–23, West Point, NY, USA, Jun. 2001.

[13] S. Eckmann, G. Vigna, and R. Kemmerer. Statl: An attack language for state-

based intrusion detection. Journal of Computer Security, 10(1/2):71–104, 2002.

[14] L. Fang, M. Cai, H. Fu, and J. Dong. Ontology-based fraud detection. In Pro-

ceedings of International Conference on Computational Science, pages 1048–1055,

Beijing, China, May 2007. LNCS.

[15] R. Feiertag, C. Kahn, P. Porras, D. Schackenberg, S. Staniford-Chen, and

B.Tung. A common intrusion specification language. http://www.isi.edu/

brian/cidf/drafts/language.txt, Jun. 1999.

[16] D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mcclung, D. Weber, S. E.

Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman. Evaluating

intrusion detection systems: The 1998 darpa off-line intrusion detection evalua-

tion. In Proceedings of the 2000 DARPA Information Survivability Conference

and Exposition, pages 12–26, Hilton Head, SC, USA, Jan. 2000.

[17] D. Frincke. Balancing cooperation and risk in intrusion detection. ACM Trans.

Information and System Security, 3(1):1–29, February 2000.

[18] Gnutella. The gnutella protocol specification v0.4. In

www9.limewire.com/developer/gnutella protocol 0.4.pdf, 2000.

[19] J. Goubault-Larrecq. An introduction to logweaver (v2.8). http://www.lsv.ens-

cachan.fr/ goubault/DICO/tutorial.pdf, Sep. 2001.

BIBLIOGRAPHY 84

[20] T. R. Gruber. Toward principles for the design of ontologies used for knowledge

sharing. In Formal Ontology in Conceptual Analysis and Knowledge Representa-

tion, Kluwer Academic Publishers, in press. Substantial revision of paper presented

at the International Workshop on Formal Ontology, 1993.

[21] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-

tion, 5(2):199–220, 1993.

[22] B. Guha and B. Mukherjee. Network security via reverse engineering of tcp

code: Vulnerability analysis and proposed solutions. IEEE Networks, 11(4):40–48,

Jul./Aug. 1997.

[23] Jack Intelligent Agent User Guide. http://www.agent-software.com, 2009.

[24] J.W. Haines, L.M. Rossey, R.P. Lippman, and R.K. Cunningham. Extending the

darpa off-line intrusion detections evaluations. In DARPA Information Surviv-

ability Conference and Exposition II, volume 1, pages 35–45, Anaheim, CA, USA,

Jun. 2001.

[25] Y. He, W. Chen, M. Yang, and W. Peng. Ontology based cooperative intrusion

detection system. In Proceedings of International Conference on Network and

Parallel Computing, pages 419–426, Wuhan, China, Oct. 2004. LNCS.

[26] G. Helmer, J.S.K. Wong, V. Honavar, L. Miller, and Y. Wang. Lightweight agents

for intrusion detection. The Journal of Systems and Software, 67(2):109–122,

August 2003.

[27] A. Joshi and J. Undercoffer. On web, semantics, and data mining: Intrusion

detection as a case study. In Proceedings of the NSF Workshop on Next Generation

Data Mining, pages 62–68, Baltimore, Maryland, USA, Nov. 2002.

[28] M. Jovanovic, F. Annexstein, and K. Berman. Scalability issues in large peer-to-

peer networks - a case study of gnutella. Technical report, University of Cincinnati,

2001.

[29] C. Kahn, D. Bolinger, and D. Schackenberg. Communication in

the common intrusion detection framework v 0.7. http://www.isi.edu/

brian/cidf/drafts/communication.txt, Jun. 1998.

BIBLIOGRAPHY 85

[30] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mecha-

nism for peer-to-peer networks. In Proceedings of CIKM, pages 300–307, Mclean,

Virginia, USA, November 2002.

[31] P. Kannadiga and M. Zulkernine. Didma a distributed intrusion detection system

using mobile agents. In Proceedings of the Sixth International Conference on

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing, and First ACIS International Workshop on Self-Assembling Wireless

Networks, pages 238–245, May 2005.

[32] K. Kendall. A database of computer attacks for the evaluation of intrusion detec-

tion systems. Master’s thesis, MIT, Department of EECS, 1999.

[33] Irwin King, Cheuk Hang NG, and Ka Cheung Sia. Distributed content-based

visual information retrieval system on peer-to-peer networks. ACM Trans. Infor-

mation Systems, 22(3):477–501, July 2004.

[34] Calvin Ko, Deborah A. Frincke, Terrence Goan, L. Todd, Heberlein Karl, Levitt

Biswanath, and Mukherjee Christopher Wee. Analysis of an algorithm for dis-

tributed recognition and accountability. In The first ACM Conference on Com-

puter and Communication Security, pages 154–164, Fairfax, VA, US, Nov. 1993.

[35] S. Kraus, O. Shehory, and G. Taase. Coalition formation with uncertain het-

erogeneous information. In Proceedings of AAMAS’03, pages 1–8, Melbourne,

Australia, July 2003.

[36] C.E. Landwehr, A.R. Bull, J.P. McDermott, and W.S. Choi. A taxonomy of

computer program security flaws. ACM Computing Surveys, 26(3):211–254, Sep.

1994.

[37] K. Lerman and O. Shehory. Coalition formation for large-scale electronic markets.

In Proceedings of ICMAS’00, pages 167–174, Boston, Massachusetts, USA, July

2000.

[38] C. Li, Q. Song, and C. Zhang. Ma-ids architecture for distributed intrusion detec-

tion using mobile agents. In Proceedings of the 2nd International Conference on

Information Technology for Application (ICITA 2004), pages 451–455, Jan. 2004.

[39] J. Lin, X.S. Wang, and S. Jajodia. Abstraction-based misuse detection: High-

level specifications and adaptable strategies. In Proceedings of the 11th Computer

Security Foundations Workshop, pages 190–201, Rockport, MA, USA, Jun. 1998.

BIBLIOGRAPHY 86

[40] U. Lindqvist and P.A. Porras. Detecting computer and network misuse through

the productionbased system toolset (p-best). In Proceedings of the 1999 IEEE

Symposium on Security and Privacy, pages 146–161, Oakland, California, USA,

May 1999.

[41] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristo-

pher R. Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod,

Robert K. Cunningham, and Marc A. Zissman. Evaluating intrusion detection

systems: The 1998 darpa off-line intrusion detection evaluation. In Proceedings

of DARPA Information Survivability Conference and Exposition. DISCEX ’00,

volume 2, pages 12–26, Hilton Head, South Carolina, Oct., January 2000. IEEE

Computer Society.

[42] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in un-

structured peer-to-peer networks. In Proceedings of ICS, pages 84–95, New York,

New York, USA, June 2002.

[43] J. McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory.

ACM Transactions on Information and System Security, 3(4):262–294, Nov. 2000.

[44] D. Menasce and L. Kanchanapalli. Probabilistic scalable p2p resource location

services. In SIGMETRICS Perf. Eval. Review, 2002.

[45] C. Michel and L. Me. Adele: An attack description language for knowledge-

based intrusion detection. In Proceedings of the 16th International Conference on

Information Security, pages 353–368. Kluwer, 2001.

[46] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. ACM SIGCOMM Computer Communications Review, 34(2):39–54,

Apr. 2004.

[47] N-Triples. http://www.w3.org/2001/sw/RDFCore/ntriples/, 2009.

[48] Secure Networks. Custom attack simulation language (casl).

http://download.matus.in/doc/eBooks/casl.ps, Jan. 1998.

[49] Peng Ning, S. Jajodia, and X.S. Wang. Abstraction-based intrusion detection in

distributed environment. ACM Trans. Information and System Security, 4(4):407–

452, November 2001.

BIBLIOGRAPHY 87

[50] S. NORTHCUTT. Network Intrusion Detection: An Analysts Handbook. New

Riders, 1999.

[51] M. Papasimeon and C. Heinze. Extending uml for designing jack agents. In Pro-

ceedings of 13th Australian Software Engineering Conference, pages 89–97, Can-

berra, Australia, Aug. 2001.

[52] V. Paxson. Bro: A system for detecting network intruders in real time. In Proceed-

ings of the 7th Symposium on USENIX Security, pages 2435–2463, San Antonio,

TX, USA, Jan. 1998.

[53] Protege Platform. http://protege.stanford.edu/, 2009.

[54] X. Qin, W. Lee, L. Lewis, and J.B.D. Cabrera. Intergrating intrusion detection and

network management. In Proceedings of the 8th IEEE/IFIP Network Operations

and Management Symposium, pages 329–344, Florence, Italy, Apr. 2002.

[55] G. Ramachandran and D. Hart. A p2p intrusion detection system based on mobile

agents. In Proceedings of the 42nd annual southeast regional conference, pages

185–190, Huntsville, Alabama, USA, 2004.

[56] A. Rao and M. Georgeff. Modeling rational agents within a bdi-architecture. In

Porceedings of the 2nd International Conference on Principles of Knowledge Rep-

resentation and Resoning, pages 473–484, San Mateo, CA, 1991. Morgan Kauf-

mann.

[57] V. Raskin, C. F. Hempelmann, K. E. Triezenberg, and S. Nirenburg. Ontology

in information security: A useful theoretical foundation and methodological tool.

In Proceedings of Workshop on New Security Paradigms, pages 53–59, Cloudcroft,

New Mexico, USA, Sep. 2001. ACM Press.

[58] Resource Description Framework (RDF). http://www.w3.org/RDF/, 2004.

[59] M. Roesch. Snort, version 2.8.3.1, an open source nids. availble via www.snort.org,

2009.

[60] M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In

Proceedings of 14th the IEEE Computer Security Foundations Workshop, pages

220–236, Cape Breton, Nova Scotia, Canada, Jun. 2001.

BIBLIOGRAPHY 88

[61] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (Second

Edition). Prentice Hall, 2003.

[62] Pedro V. Sander, Denis Peleshchuk, and Barbara J. Grosz. A scalable, distributed

algorithm for efficient task allocation. In Proceedings of AAMAS’02, pages 1191–

1198, Bologna, Italy, July 2002.

[63] PAOLO SANTI. Topology control in wireless ad hoc and sensor networks. ACM

Computing Surveys, 37(2):164–194, June 2005.

[64] C.L. SCHUBA, I.V. KRSUL amd M.G. KUHN, E.H. SPAFFORD, A. SUN-

DARAM, and D. ZAMBONI. Analysis of a denial of service attack on tcp. In

Proceeding of the 1997 IEEE Symposium on Security and Privacy, pages 208–223,

Oakland, CA, US, May 1997.

[65] M. Shajari and A. A. Ghorbani. Agent-oriented design for network survivability.

In Proceedings of the 5th International Conference on Intelligent Systems Design

and Applications, pages 166–171, Wroclaw, Poland, Sep. 2005.

[66] O. Shehory and S. Kraus. Methods for task allocation via agent coalition forma-

tion. Artificial Intelligence, 101(1-2):165–200, May 1998.

[67] R. Shirey. Internet security glossary. http://www.ietf.org/rfc/rfc2828.txt, May

2000.

[68] A. Simmonds, P. Sandilands, and L.V. Ekert. An ontology for network security

attacks. In Proceedings of the Second Asian Applied Computing Conference, pages

317–323, Kathmandu, Nepal, Oct. 2004. LNCS.

[69] R. G. Smith. The contract net protocol: High-level communication and control

in a distributed problem solver. IEEE Trans. Computers, C-29(12):1104–1113,

December 1980.

[70] R. G. Smith and R. Davis. Frameworks for cooperation in distributed problem

solving. IEEE Trans. Syst., Man, and Cyber., SMC-11(12):61–70, January 1981.

[71] S. Snapp and J. Brentano. Dids (distributed intrusion detection system): Motiva-

tion, architecture and an early prototype. In Proceedings of the 14th NIST-NCSC

National Conference on Computer Security, Washintong, D.C., Oct., 1991.

BIBLIOGRAPHY 89

[72] W. Stallings and L. Brown. Computer Security: Principles and Practice. Person

Prentice Hall, 2008.

[73] Christina Theocharopoulou, I. Partsakoulakis, George A. Vouros, and Kostas Ster-

giou. Overlay network for task allocation and coordination in dynamic large-scale

networks of cooperative agents. In Proceedings of AAMAS’07, pages 295–302, May

2007.

[74] Jacob W. Ulvila and John E. Gaffney. Evaluation of intrusion detection sys-

tems. Journal of Research of the National Institute of Standards and Technology,

108(6):453–473, November 2003.

[75] J. Undercoffer, A. Joshi, and J. Pinkston. Modeling computer attacks: An ontol-

ogy for intrusion detection. LNCS, 2820/2003:113–135, 2003.

[76] G. Vigna, S. Eckmann, and R. Kemmerer. Attack languages. In Proceedings of

the IEEE Information Survivability Workshop, 2000.

[77] A. Vorobiev and J. Han. Security attack ontology for web services. In Proceedings

of the Second International Conference on Semantics, Knowledge, and Grid, pages

42–47, Guilin, Guangxi, China, Oct. 2006.

[78] W3C. Extensible markup language. http://www.w3c.org/XML/, 2009.

[79] X. Wang, J. Zheng, K. Xiao, X. Xue, and CK Toh. A mobile agent-based p2p

model for autonomous security hole discovery. In Proceedings of the Fifth Interna-

tional Conference on Computer and Information Technology, pages 723–727, Sep.

2005.

[80] M. D. Weerdt, Y. Zhang, and T. Klos. Distributed task allocation in social net-

works. In Proceedings of AAMAS’07, pages 500–507, Honolulu, Hawaii, USA, May

2007.

[81] J. Wu, C. Wang, J. Wang, and S. Chen. Dynamic hierarchical distributed intrusion

detection system based on multi-agent system. In Proceedings of IEEE/WIC/ACM

International Conference on Web Intelligence and International Agent Technology

Workshops, pages 89–93, Dec. 2006.

[82] K. Xiao, J. Zheng, X. Wang, and X. Xue. A novel peer-to-peer intrusion detection

system using mobile agents in manets. In Proceedings of the Sixth International

BIBLIOGRAPHY 90

Conference on Parallel and Distributed Computing, Applications and Technologies,

pages 441–445, Dec. 2005.

[83] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In

Proceedings of ICDCS, pages 5–14, Washington, DC, USA, 2002.

[84] R. Zhang, D. Qian, C. Ba, W. Wu, and X. Guo. Multi-agent based intrusion

detection architecture. In Proceedings on the 2001 International Conference on

Computer Networks and Mobile Computing, pages 494–501, Oct. 2001.

[85] Xiaoming Zheng and Sven Koenig. Reaction functions for task allocation to co-

operative agents. In Proceedings of AAMAS’08, pages 559–566, Estoril, Portugal,

May 2008.

	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Dedication
	Declaration
	Abstract
	Acknowledgements
	Publications
	Contents
	List of tables
	List of figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Chapter seven
	Bibliography

