#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Adaptive reorganization of database structures through dynamic vertical partitioning of relational tables
Author: Liu Zhenjie

Year: 2007

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Theses Collection

University of Wollongong Theses Collection

University of Wollongong Year 2007

Adaptive reorganization of database
structures through dynamic vertical
partitioning of relational tables

Liu Zhenjie
University of Wollongong

Liu, Zhenjie, Adaptive reorganization of database structures through dynamic vertical
partitioning of relational tables, MCompSc thesis, School of Information Technology and
Computer Science, University of Wollongong, 2007. http://ro.uow.edu.au/theses/33/

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/33

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

NIVERSITY § ||
OF
‘W JOLLONGONG

Adaptive Reorganization of Database
Structures Through Dynamic Vertical
Partitioning of Relational Tables

A thesis submitted in fulfillment of the

requirements for the award of the degree
Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG
by

Zhenjie Liu

School of Information Technology and Computer Science
October 2007

(© Copyright 2007
by
Zhenjie Liu
All Rights Reserved

1

111

Dedicated to
My parents and wife Yanting

Declaration

This is to certify that the work reported in this thesis was done
by the author, unless specified otherwise, and that no part of
it has been submitted in a thesis to any other university or

similar institution.

Zhenjie Liu
October 23, 2007

v

Publications

Zhenjie Liu and Janusz R. Getta. Optimization of query processing through con-
strained vertical partitioning of relational tables. In DBA’06: Proceedings of the 24th
IASTED international conference on Database and applications, pages 221-227, Ana-
heim, CA, USA, 2006. ACTA Press.

Abstract

Performance tuning of relational database systems is always a challenging task for
database administrator. Automated performance tuning has been proposed recently
as a new approach to detect and to eliminate performance problems and to support
the decisions of database administrators.

This work considers one of the techniques used in automated performance tuning,
dynamic vertical partitioning. Dynamic vertical partitioning of relational tables is one
of the ways in which the physical structures of a relational database can be reorganised
automatically in order to improve the performance of future database applications. The
thesis presents how dynamic vertical partitioning can be used for the comprehensive
analysis and optimisation of an adaptive reorganisation of database structures. In
particular, we propose the algorithms to use to predict the future workload of the
system, to analyse the characteristics of the workload, and to find a near optimal
vertical partitioning of relational tables. Then, we discuss the implementation aspects
of vertical partitioning with the materialized view and index-based techniques.

Our contributions to automated performance tuning of relational database systems

can be summarised as follows:

1. Propose a cost model to perform a detailed analysis of the costs of query and

data manipulation processing over a given configuration of a relational database;

2. Propose a new algorithm for vertical partitioning of relational schemas in a data-

base system with a given level of redundancies for a given workload;

3. Discuss the limitations of static vertical partitioning and propose dynamical ver-

tical partitioning;

4. Discuss the characteristics of workload in order to predict the future workloads

of the system;

vi

5. Implementation aspects of vertical partition discussion: materialized view based

and index based;
6. Discussion of the implementation of a vertical partition as a virtual view;

7. Conduct experiments to confirm the correctness of the cost model used by the
vertical partitioning algorithm and demonstrate the expected performance gains

from the partitioning

Vil

Acknowledgements

The research work for this thesis was undertaken at the University of Wollongong.
Firstly, I would like to thank my supervisor, Dr. Janusz R.Getta for his guidance
and help in my research. Without him, this thesis would not have been possible.
Also, T wish to acknowledge the support I have received from all the staff in the
School of IT & CS, University of Wollongong.
Finally, I would like to thank my family and friends for their enduring love and

support.

viil

Contents

Publications v
Abstract vi
Acknowledgements viii
1 Introduction 1
1.1 Database Performance Tuning 1
1.1.1 Overview of Automatic Database Administration 1
1.1.2 Automatic Query Performance Tuning 2
1.2 Partitioningo 3
1.2.1 Horizontal Partitioning 3
1.2.2 Vertical Partitioning 5
1.2.3 Comparison of Horizontal and Vertical partitioning 5
1.3 The Challenge 6
1.4 Strategy of Solution Lo 7
1.5 Thesis Organisation 7
2 Technical Backgrounds
2.1 Autonomic Database Management Systems
2.2 Automatic Performance Optimisation 11
2.2.1 Performance Measurement Methodologies 11
2.2.2 Automatic Performance Monitoring and Diagnosis 11
2.2.3 Automatic Performance Tuning 12
2.3 Dynamic Query Optimisation 13
2.3.1 Query Execution Optimisation 13
2.3.2 Physical database structure Reorganization. 13
2.4 Static Vertical Partitioning L 14

1X

2.4.1 Non-Overlapping Partitioning 14

2.4.2 Overlapping Partitioning 14
2.4.3 Finding interesting partitions 15
2.5 Dynamical Vertical Partitioning 16
2.5.1 Workload Monitoring and Analyzing 16
2.5.2 Implementing Vertical Partition 17
2.6 SUMMATY 17
Static partitioning 18
3.1 Preliminaries 18
3.2 Cost Model 21
3.3 Partition Configuration L 23
3.3.1 Algorithm overview 23
3.3.2 Choosing the partitions 24
3.3.3 Recycling of the original tables 25
3.3.4 Merging the partitionso 26
3.4 Experiments 27
3.4.1 Evaluation of partitioning 27
3.4.2 'Trend of Storage and Benefit. 28
3.5 Summary and open problemo 29
Dynamic Partitioning 31
4.1 Workload Patterns o 31
4.2 Preliminaries 32
4.3 Cost Model 35
4.4 Overview of Dynamic Partitioning Algorithm 35
4.5 Potential Low Workload Time Detecting 37
4.6 Finding Most Similar Workload 38
4.6.1 Function to calculate similarity of two signatures 38
4.6.2 Most Similar Workload Searching 39
4.7 Finding configuration 39
4.7.1 Choosing partitions 39
4.8 Merging the partitions 0oL 41
4.9 Partition Implementation 41
4.10 Comparison between Static and Dynamic partitioning 42
411 Summary 42

5 Implementation of Dynamic Vertical Partitioning

5.1 [Issues of implementing partitions

5.1.1 Materialized View-based Implementation

5.1.2 Index based Implementation

5.2 Comparison of Index-based and Materialized view-based

5.2.1 Consistency Control Comparison

5.2.2 Storage Cost Comparison

5.2.3 Comparison by Time Cost

5.3 Open problems

5.4 Experiments

5.4.1 Query Rewrite of Materialized View
5.4.2 Fast Full Index Scan
5.4.3 Comparison of Materialized View and Index
54.4 View Update

5.5 Summary .

6 Conclusions and Future work

6.1 Conclusions
6.2 Future work

Bibliography

x1

44
44
45
46
47
47
48
49
50
51
51
51
92
52
23

56
26
o7

59

List of Tables

xil

List of Figures

1.1
1.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6

Principle of horizontal partitioning

Principle of vertical partitioning

Outline of algorithms 24
Storage and performance L 28
Performance comparison 28
Total workload 33
Example of session and signature 34
Workload before dynamic partitioning 36
Workload after dynamic partitioning 36
Overview of dynamic partitioning 37
Example of Materialized View 46
Horizontal traversal of index 47
Query Rewrite of Materialized View 52
Fast Full Index Scan, 52
Comparison of MV and Index 53
View Update 54

xiil

Chapter 1

Introduction

1.1 Database Performance Tuning

Performance tuning of relational database systems has an important impact on the suc-
cessful implementation of modern information systems such as e-business systems, deci-
sion support systems, operational business process implementation systems, etc. Poor
performance of e-business applications and system crashes have a disastrous effect on
customers’ attitudes about the system used. High performance of the database servers
supporting e-business applications requires system configuration parameters well tuned
to the physical properties of the available hardware, efficient query and data manipula-
tion processing, and efficient processing of customer transactions. Performance tuning
is always a challenging task for database administrators. Some researchers agreed that
it is extremely hard for DBAs and other I'T operators to tune a complex system un-
der pressure [17, 7]. Database administrator are likely to make mistakes when tuning
complicated system. The automatic performance tuning of relational database servers
is considered as an important solution when reducing the running costs of information

services [45].

1.1.1 Overview of Automatic Database Administration

Automatic performance tuning is one of the automatic database administration fea-
tures. Automatic database administration includes two main fields: automatic perfor-
mance administration and automatic security administration. Automatic performance
administration includes self-optimization, self-configuration, self-organizing and self-
recovery. Self-optimization enables a database system to automatically optimise a
query execution such as query translation, or the modification of a query plan. Self-
configuration means that a database system is able to dynamically adjust for hardware

and software setting parameters. Self-healing allows the database system to recover

1.1. Database Performance Tuning 2

from failure by using logs and backups automatically. Self-organizing is a way to dy-
namically reorganise a physical database structures. Automatic security administration
includes self protecting and auto inspecting. Self-protecting concerns the privacy, au-
diting mechanisms, encryption of data, and access control. Self-inspecting occurs when
the system can detect the problems by itself and provide the auditing for itself.

In the thesis, we propose a technique, dynamic vertical partition, which contributes
to the self-optimization and self-organization features of the autonomic database sys-
tems. Automatic query optimization is the most important task of self-optimization.
To achieve automatic query optimization, one of the ways is to adjust the physical data-
base designs in order to reduce the unnecessary read in a query. Vertical partitioning

of the relational tables is one of the ways to adjust the physical database designs.

1.1.2 Automatic Query Performance Tuning

The rapid development of the internet application and more and more complex and
complicated application system brings a major challenge relates to query optimization.
First of all, the continuous growth of database size could slow down the query exe-
cution dramatically. Also, the higher-level application services requires the database
technology to be unbundled and dispersed. The applications provides user friendly
query interfaces which allows users input the selection criteria. Such applications are
more focus on the business requirements and rules rather than optimization of the
queries. This creates a good amount of nature and non-tuned queries which may make
the database system run inefficiently. Therefore, it is critical that database systems
can tune the query processing automatically.

To achieve automatic query performance tuning, we can improve data manipulation
and query execution plans on run time, and reorganise the physical database structures

with the change of workload.

1. Dynamic modification of query processing plans:

Currently, commercial database management systems can provide a cost-efficient
execution plan for most queries. There are many alternative ways to execute
a plan for a query. Query optimizer evaluates the cost of each alternative and
chooses the most cost efficient way. However, estimating a cost query execution is
difficult and sometimes the query optimizer will provide a sub-optimal execution
plan. The accuracy of estimation strongly relies on up-to-date historical statistics

and column distributions. Besides, the explain plan environment can be different

1.2. Partitioning 3

from the execution environment. Therefore, the query optimizer is expected to

dynamically change the execution plan.

To dynamically re-optimize the query execution plan, a statistics collector model
has been proposed to observe the sizes and data distributions of intermediate
query result sizes at run-time [29]. If a sub-optimal execution plan is detected,
the query optimizer should dynamically change the remainder parts of execution

plan.

2. Dynamic storage reorganization techniques

The adaptive reorganisation of the physical database design includes the auto-
matic implementation of additional persistent data structures such as various
types of indexes, clusters, materialized views, partitions, etc. in a reply to the

expected query and data manipulation operations.

On one hand, the significant improvements in the performance of relational data-
base systems can be achieved through well tailored adjustments to the physical
database designs matching the requirements of user applications. On the other
hand, a large number of different types of user applications still makes it impos-
sible to have a one-fits-all design that satisfies the wide range of contradictory
requirements to fit all user applications. This is why the adaptive reorganisa-
tion of physical database structures to the anticipated data access requirements
of user applications is an attractive option for the implementation of self-tuning

relational database servers.

1.2 Partitioning

The thesis targets the performance problems in the systems where a significant amount
of query processing time is spent on the full scans of the large relational tables. Par-
titioning of the relational tables either through vertical partitioning or horizontal par-
titioning or a combination of both is a reliable way for these problems to be solved.
In this section, we will introduce the basic principles of horizontal partitioning and

vertical partitioning.

1.2.1 Horizontal Partitioning

Horizontal partitioning breaks down a relational table into smaller pieces, called parti-

tions, according to the range of values of a given attribute or combination of attributes,

1.2. Partitioning 4

Enplhyee

Enmp#
Fname
Lrane
Drepart
Salary
City
Streat
Hased

N‘w -

Engloyes HE Enployes FIN Enplome MPS Enployee IT
Exrgé Enp# Enp# Erpét

Frame Fname Frame Frarme
Lnarme Lrane Lrame Lyare
Salary Salary Salary Salary

City City City City

Sheet Streat Streat Streat
Haose## Homsed Homsed# Hensedf

Figure 1.1: Principle of horizontal partitioning

called a partition key. Horizontal partitioning reduces the total number of read opera-
tions needed to access the rows determined by the values of the partition key provided
in a query. Figurel.l shows how horizontal partitioning works. Suppose there is a table
recording employee information and it contains columns (emp#, f name, 1 name, de-
partment, salary, city, street, house#). The department attribute records the division
of the employee. It has four values: Human Resources(HR), Finance(FIN), Marketing
and Product Strategy(MPS) and Information Technology(IT). If the queries access the
information by department, we can partition the table employee into four divisions:
employee_HR, employee_FIN, employee_MPS, employee_IT. Therefore, for queries only
retrieving information on employees within human resources, we will only access the
partition employer_ HR and improve the query processing.

Further improvements can be achieved through vertical partitioning and through
replication of data in the appropriate partitions. In this paper, we focus on vertical

partitioning with a controlled level of redundancies in the database.

1.2. Partitioning %

1.2.2 Vertical Partitioning

Paradoxically, a database system quite frequently has to access the large amounts of
data in order to retrieve or to update a relatively small number of values determined by
a user. This is mainly due to the average row length being significantly bigger than the
amount of data retrieved or modified in a row. A typical example is a projection on a
single attribute of a relational table whose schema consists of many attributes with the
values consuming a larger amount of storage. Vertical partitioning splits a relational
table into a number of pieces, also called partitions, and replicates a primary key in
each partition. This reduces the average row length and in consequence, minimizes the
total number of read and write operations.

Figurel.2 is an example to show the principle of vertical partitioning. Take the
employee table discussed in Figurel.l as an example. The Human Resources depart-
ment will require the employees’ address information frequently. When scanning the
employee table to retrieve address information, the employee’s other non-relevant in-
formation such as department, salary will also appear. In such a situation, we can
partition the table employee into two parts: Emp_Dept, Emp_Addr. Then the queries
needing only access to address information can be improved by avoiding access to other

employee’s information.

1.2.3 Comparison of Horizontal and Vertical partitioning

Both horizontal partitioning and vertical partitioning can avoid the unnecessary reading
of data blocks. However, vertical partitioning is easier to implement than horizontal
partitioning. For example, suppose there is table T(A, B, C, D, E, F, G) and the
value of G ranges from 0 to 50. And there is a query (Select A, B, C, D from T
where G>=10 and G<20). If we create a vertical partition V P (A,B,C,D,G) for T
and horizontal partition HP; which G ranges from 10 to less than 20, H P, which F
ranges from 20 to 80 . V P, can avoid reading unnecessary attribute E,F while H P, can
avoid reading rows other than (10<=G<20). But because both the predicates of the
query and the predicates of horizontal partition can be much more complex, matching
both predicates of query and horizontal partition may not be achievable. Consider the
condition on attribute E, F, G is [((10<=G<20) or Not(30<=G<50)) And (20 <=F
<=80)) Or (E = F+G)]. Since the selection criteria of E is variable, the query optimizer
cannot locate the horizontal partitions for such a condition. By comparison, finding

the optimal vertical partition is much simpler than horizontal partitioning because we

1.3. The Challenge 6

Emp Dept
Emp#
Friarme
Lnarne

Emploves Depart
Falary

Empi#

Frname '

Lratne

Depart

Salary

el e r i m e e e ——— Emp_Addr

City

Street

House# Er_np#
City
Btreet
House#

Figure 1.2: Principle of vertical partitioning

only match the attributes used in the query and the attributes in the vertical partition.

1.3 The Challenge

The aim of this work is to find how the physical database structures can be dynamically
reorganised in order to improve the performance of a relational database server. It is

desirable that the solution should have the following characteristics.

1. One of important feature is that he optimisation of the system should be automat-
ically adaptive with the change of workload. The workload of a database system
changes with time. An optimal configuration for current workload may cause
low performance for the workload in the future. The configuration of vertical

partitioning for optimising system must be updated with the workload change.

2. Another important feature is the optimization configuration of vertical partition-
ing should be transparent to the end user and database applications, to avoid a

rewriting query for the change of configuration.

1.4. Strategy of Solution 7

1.4 Strategy of Solution
To achieve the objectives described above, we propose the following strategy:

1. Propose a new algorithm for static vertical partitioning of relational schemas in

a database system under storage constraints.

2. Introduce an algorithm to predict the future workload of the system. Note that,
we assume that a workload cannot rapidly change. Rapid changes occur only
when certain events happen, otherwise the system is stable. Workload changes

happen in a periodic way which makes prediction reliable.
3. Create vertical partitions for a peak time workload during a low workload time.
4. Propose a method to analyse the characteristics of a workload.

5. Index based and materialised view-based implementation of vertical partitioning
are proposed and analysed in order assure the transparency of dynamic vertical

partitioning.

6. Perform the experiments to confirm the benefit of vertical partitioning and com-
pare the implementation of vertical partitioning for an index and a materialized

view.

1.5 Thesis Organisation
The rest of the thesis is organised as follows:

1. In chapter 2, we will present a review of some techniques used and the technical

background for automatic tuning database systems in the past.

2. Chapter 3 will be devoted to the current static partition for database tuning.
This will introduce a new algorithm that vertically partitions the relational tables
according to a given workload and accordingly to a given limit of redundancies

acceptable in a database.

3. In Chapter 4, we discuss the algorithm used to change the configuration of a ver-
tical partition for a dynamic workload. Since workloads change in a set pattern,
we can trace a certain moment in the past with a present similar workload and

then predict what will happen next. The implementation of vertical partitions

1.5. Thesis Organisation 8

will be set up in the low load time so that in high load time, the workload can

be relieved by the configuration.

4. To achieve an automatic tuning database system, the change of configuration
should be completely transparent to the end user and the applications. This
requires that the implementation of the vertical partitioning should be recognised
by the query processor and that the query processor will automatically change
the routine for the queries. Index and Materialized View are two options for
implementing vertical partition. We will compare these two options in Chapter

5, and discuss the storage cost and time cost of building an index.

5. Chapter 6 is the conclusion, where we will summarise our work within this thesis,

together with a list suggesting future research directions.

6. The last part of this thesis comprises the references.

Chapter 2

Technical Backgrounds

With the increasing complexity of database management systems, many researchers
proposed the autonomic database system to reduce database administrator’s work.
An autonomic database system is able to manage itself and to dynamically adapt to
the changes of workload. This chapter begins with a brief introduction of autonomic
database management system features. Then, an overview about automatic database
performance tuning is presented. The database tuning approaches are classified ac-
cording to their characteristics and several approaches will also be described in this
chapter. Vertical partitioning of relational tables is one of the ways to improve database
applications by avoiding unnecessary read. The related work on vertical partitioning

will be discussed as well.

2.1 Autonomic Database Management Systems

The increasing complexity of current database applications demands more administra-
tive costs, such as system installation, configuration, upgrade, deployment and tuning,
administrator’s training and salaries and so on. Therefore, some researchers have pro-
posed an autonomic database management system, which helps to set administrators
free from routine database management and tuning tasks.

The self-managed commercial database management systems should possess the fea-
tures: self-optimized, self-configuring, self-healing, self-protecting, self-organised and
self-inspected [16].

1. self-optimized: it allows DBMS to perform any task in the most efficient way
under the constraint of a present workload, hardware configurations and avail-
able resources. Apparently, query optimization is the most important task of
self-optimization. It involves query translation, the generation of an optimal

execution plan and dynamic runtime optimizations [18]. Self-optimized will be

2.1. Autonomic Database Management Systems 10

discussed in detail in the following sections.

2. self-configuring: configuration of hardware and software should be adaptive with
the changes of environment. A DBMS configuration includes: consumption
thresholds of resources like CPU, memory, disks and the performance parame-
ters. To enhance system performance, on one hand, we may add memory, disk
or CPU. After adding these resources, we may adjust their allocation and tune
the degree of parallelism. On the other, the tuning parameters such as size of
log file, buffer size, block size and checkpoint interval and etc. could be modified
automatically without severely disrupting online operations. Current commercial
database management systems can automatically change memory configurations.
Self-Tuning Memory Manager (STMM) is proposed to dynamically tune database
memory heaps such as sort memory, locking memory, complied SQL cache, buffer
pool and so on [43]. Memory Controller evaluates the cost-benefit of distribution
of memory and then inputs the benefit into the integral control model to deter-
mine the redistribution frequency. By comparison, Automatic Shared Memory
Management (ASMM by Oracle) and memory tuner in SQL Server have limited

ability to automatically configure memory distribution.

3. self-healing: DBMS should provide a way to preserve consistency of database
systems and to perform backup and recovery with minimal system disruption.
Self-healing should maximise the reliability and availability of data while min-

imising outage of the system.

4. self-protecting: a self-protection should involve database security, privacy, data
encryption, and admission control strategies. In [9], the authors discusses the
database security issues such as secrecy, integrity and confidentiality of data.
In [3], the authors identified the technical challenges in preserving privacy and
performance and/or undesirably consuming system resources. The DB2 Query
Patroller and the Oracle Resource Manager are examples of admission control

tools used today [16].

5. self-organised: ADBMS should reorganise the table and its associated indexes to
control the storage fragmentation level. Also, ADBMS should be able to deter-
mine the optimal set of indexes, materialized views, partitions for data access.
ADBMS should recommend the optimal set of indexes, materialized views and
partitions to be used by the query. Some related research work is discussed in

the following section.

2.2. Automatic Performance Optimisation 11

6. self-inspected: the DBMS should collect the signs of unhealthiness and store
performance data automatically. Such information can be used to make recom-

mendations for maintenance utilities.

The thesis contributes to self-optimization and self-organization features of the

autonomic database systems.

2.2 Automatic Performance Optimisation

Automatic performance tuning includes performance measurement methodologies, au-

tomatic performance monitoring and diagnosis, automatic performance tuning.

2.2.1 Performance Measurement Methodologies

Different components of the database are measured in different metrics. For example,
hit-ratio is used to measure the efficiency of the buffer cache; transaction-per-second is
used to measure the database throughput; read and write latencies are used to measure
the I/O. However, to determine the performance impact of a particular component over
the total database throughput is extremely hard. A common currency called Database
Time has been proposed to measure a workload [15]. Database time can be a measure
to gauge the time spent in various phases of processing user requests and using or
waiting for various database resources to process the requests. This work can help to

gauge the cost saving of our work in total database throughput.

2.2.2 Automatic Performance Monitoring and Diagnosis

It is hard to discover the root cause of a low database performance and to fix the
performance symptoms [45, 13, 25, 8.

The performance diagnosis techniques include rule-based diagnosis and model-based
diagnosis. A class of rule-based diagnosis systems [37, 39] has been proposed to collect
data from experts, build up a decision tree, and prune the decision tree to provide
a collection of rules for the actions at performance troubleshooting stages. A sample
model-based diagnosis system dynamically compares the behaviour of the system with a
presumed and correct model. The differences between the assumed mode and the actual
system are used to detect malfunctioning of the system. Model-diagnosis approach
has a wide application in troubleshooting of mechanical devices, circuits, physical and

biological systems. To automatically diagnose the performance problems, a system was

2.2. Automatic Performance Optimisation 12

designed [26] to store performance related data in a multidimensional database and uses
the contents of the database to determine the source of performance problems.
Automatic database diagnostic monitor(ADDM) [15] uses DBTime-graph to detect
the performance bottlenecks and to provide the recommendations to alleviate them.
The DBTime-graph represents two dimensional identification process of the causes of
performance problems. Those two independent dimensions are: the database time
spent in various phases of processing user requests and the database time spent using
or waiting for various database resources used in processing user requests. ADDM ex-
plores the DBTime-graph from the root-node and exploring the node and its children
which cause significant performance issue. In the end, ADDM reports the causes of
performance issues by ranking the respective impacts. Recently, a prototype called Re-
source Advisor was proposed [33] to continuously collect trace information and maintain
a usage summary of buffer pool, storage, CPU. The collected statistics could answer

"what-if” questions and give hints to a resource upgrade.

2.2.3 Automatic Performance Tuning

Implementation of automatic performance tuning requires not only the investigations
of automatic performance diagnosis, but also the approaches to improve performance
dynamically.

Optimisation of Database system can be achieved by building a model to select the
indices according to workload change; it also can be achieved by configuring proper
concurrency control such as number of locks held by each transaction, types of locks,
duration a transaction holds lock; besides, it can be achieved by allowing dynamic
memory allocation according to workload change so that the buffer ratio can be kept
in a recommended level; it can be achieved by executing the optimal execution plan
provided by query optimizer; last but not least, it can be achieved by denomalisation
of schema to reduce the joins among tables.

In the next section, we will discuss optimization of data manipulation and query

execution plans, and reorganization of the physical database structures.

2.3. Dynamic Query Optimisation 13

2.3 Dynamic Query Optimisation

2.3.1 Query Execution Optimisation

Producing an accurate execution plan relies on histograms. There are a few papers that
focus on producing accurate histograms. Chaudhuri and Narasayya defined a technique
called Magic Number Sensitivity Analysis to avoid creating not syntactically relevant
statistics [12]. Some researchers explored how to efficiently construct and maintain
histograms using sampling [11, 19, 38].

Since a query optimizer may not always find the best way to process a complex query
involving complicated predicates, a prototype of a LEarning Optimizer (LEO) has been
proposed to dynamically modify the query processing plans [31]. LEO compares the
optimizer’s estimates with actual cardinalities at each step in a query execution plan. If
the estimates are different from actual cardinalities, optimizer will update its estimates
for future optimisation of a similar query. At the same time, the detection of estimation

errors can also trigger re-optimisation of a query in mid-execution.

2.3.2 Physical database structure Reorganization

The automated performance tuning of relational database servers is considered as
an important solution when reducing the running costs of information services [45].
The significant improvements in the performance of relational database systems can
be achieved through the well tailored adjustments to the physical database designs
matching the requirements of user applications. On the other hand, a large number
of different types of user applications still makes it impossible to have a one-fits-all
design that satisfies the different requirements of all applications. This is why the
adaptive reorganisation of physical database structures to the anticipated data access
requirements of user applications is an attractive option for the implementation of self-
tuning relational database servers. The adaptive structures reorganisation includes

reorganisation of indexes, partitions, materialized view.

1. Index organizing: Currently, all commercial DBMSs provide an index advisor to
generate a set of indexes for a given workload [11, 2]. In general, an index can
retrieve data which satisfies a given selection conditions efficiently. However, if
the retrieval of data is a large number rows of relational tables, full scanning
tables may be more efficient than using an index. Moreover, if there are frequent

updates on indexed data, the cost of index maintenance could be very high.

2.4. Static Vertical Partitioning 14

2. Materialized View organizing: Recently, some researchers proposed algorithms
to pick up the materialized views to improve database performance [41, 22, 23].
Agrawal, Chaudhuri and Narasayya suggested to integrate selection of index se-
lection and materialized view selection not in isolation. The drawback of using

materialized view is the maintenance of consistency with an underlying table [4].

3. Partition organizing: this will be discussed in next section.

2.4 Static Vertical Partitioning

Finding the optimal partitioning for a given workload and a given database schema is
NP-complete problem. The previous work on vertical partitioning can be grouped into
two categories: overlapping and non-overlapping. First, in this section, we compare
these two categories. Then we introduce two main steps to find an optimal configuration
of vertical partitions. One is searching for the interesting column-group for partitioning.

The other is evaluating the cost of the interesting column-group.

2.4.1 Non-Overlapping Partitioning

The configuration of partitions is overlapping if the intersection(except the primary key
of the table) of any two vertical partitions is empty. An algorithm [34] has been ad-
dressed to partition a table into non-overlapping fragments based on attribute affinity.
Some researchers proposed an optimal binary non-overlapping partitioning algorithm
to optimise the number of disks accesses [14]. Recently, Agrawal, Narasayya and Yang
presented a novel techniques to integrate horizontal partitioning and non-overlapping

vertical partitioning into an automated physical database design [6].

e Advantage: duplicating attributes(except primary key) is not necessary. There-
fore, not much storage for partitions is required. Furthermore, the cost for con-

sistency control is less than for an overlapping partitioning.

e Disadvantage: in reality, it is extremely hard to find a ”clean” solution for queries

access common attributes.

2.4.2 Overlapping Partitioning

The configuration of partitions is overlapping if the intersection(except the primary key

of the table) of any two vertical partitions is not empty. Navathe, Ceri and etc. not only

2.4. Static Vertical Partitioning 15

proposed a non-overlapping partitioning algorithm but also proposed an overlapping
partitioning considering the cost spent on preserving the consistency of the replicated
data [34]. AutoPart algorithm [1] was proposed to improve the performance of SDSS
database [20, 44] by overlapped partitioning.

e Advantage: By duplicating attributes in different partitions we can satisfy more

queries.

e Disadvantage: It requires additional cost to preserve the consistency of replicated
data.

Since the cost to pay for disk is quite cheap, an acceptable redundancy may enhance

the database performance dramatically.

2.4.3 Finding interesting partitions

Finding interesting partitions can reduce the complexity of finding the configuration of
partitions. A bottom-up approach to partitioning is proposed in [42, 36]. Partitioning
starts with single-attribute partitions, which are gradually increased by merging the
smaller partitions. Currently, there are two main ways to find interesting partition:

affinity based and transaction based.

1. Affinity based: One of the first solutions [32, 27, 24] proposed clustering al-
gorithms based on the affinity between the attributes. Affinity is used for the
identification of the usage patterns and groupings of the attributes, which later
on, is applied to determine a representative workload. In [34], authors proposed
an algorithm that begins with setting up an attribute pairwise affinity matrix.
Then it employed an empirical cost function called BEA to separate the matrix
into two sets of attributes: one is frequently used together and the other is less
relevant. The complexity of this solution has been reduced in [35] by an applica-
tion of the graphical techniques to optimise the partitioning. The above research
did not provide a detailed cost model to evaluate the cost of the attribute. More
recently, some researchers presented a method based on the interpretation of a
workload as a powerset of items and on the analysis of the frequent itemsets to
find out which column-set is interesting for partitioning [6, 21]. However, it is
difficult to determine a precise support as it is an empirical value and it needs

repeated tries.

2.5. Dynamical Vertical Partitioning 16

2. Transaction based: A solution proposed in [14] assumes that the database trans-
actions provide more semantic meaning than the attributes and because of that it
applies a transaction binary partitioning algorithm to decompose the relational
schemas. In [30], authors proposed a hypothetical solution that always finds
the optimal partitioning would start from the generation of all combination of

attributes from the workload.

The previous works focus on the search for an optimal solution for a given workload.
However, the workload changes from time to time, the optimal solutions from static
algorithms may optimise the database system at present but aggregate the burden in
future. Therefore, in our thesis, we proposed a dynamic algorithm to adapt the vertical

partitions to the change of workload.

2.5 Dynamical Vertical Partitioning

To our best knowledge there have been no attempts to investigate the applications of
dynamic vertical partitioning, i.e. partitioning that changes its schema together with
the changing amount and characteristics of database workload to the automated per-
formance tuning of relational database systems. However, the knowledge of database
workload monitoring, analysis and the way to implement database tuning automati-

cally assist us to improve query performance dynamically by vertical partitioning.

2.5.1 Workload Monitoring and Analyzing

The basic idea behind automated performance tuning is a feedback control loop that
consists of observation, prediction, and reaction. Self tuning of a database server should
be based on the feedback control loop where a database system continuously observes
the performance indicators and dynamically adjusts the values of critical system para-
meters to the current workload characteristics [45]. The solution proposed in this thesis
is based on a feedback loop. We observe the change of workload to detect a relatively
low workload time. Then we predict the coming workload based on the characteristics
of current workload and implement the new vertical partitions.

Capturing a moment when a significant change of workload happens is an impor-
tant aspect of self tuning systems. Much work has been done in the area of monitoring,
analysing and detecting changes in a database workload. A framework has been de-

signed to collect information about the behaviour of a database system and how to

2.6. Summary 17

facilitate self-tuning and adaptive actions [10]. A system QUIET [40] has been pro-
posed to gather workload information and to dynamically choose the best indexing
schema for the currently running applications. The system considers the continuous
workload as an isolated unit and dynamically updates benefit information for each one
of the candidate indices.

An ordering of SQL statements is an important hint for performance tuning [5].
This approach treats the workload as a sequence of steps and identifies two sorts of
workload: query workload and update workload. By exploiting an order between the
query and update statements, a tuning system automatically creates and removes the

physical structures that improve performance of the system.

2.5.2 Implementing Vertical Partition

Implementation of a vertical partition as a composite key index is possible when a query
processor is able to detect and to apply the index-only processing of a query. In such
a case, a query is processed by the horizontal traversal of a leaf level of B*-Tree index
without access to a relational table. At a logical level it is equivalent to a sequential
scan of a vertical partition. As long as a partition is implemented as an index over a
relational table, the query processor is able to invoke a horizontal traversal of index
automatically.

The advanced query processors in the commercial database management systems
are capable of rewriting a query such that a materialized view is used instead of a
relational table when it improves the performance of query processing. As a conse-
quence, the mechanism is completely transparent to query processing and it allows for

the dynamic implementation at vertical partitions.

2.6 Summary

Nowadays more complicated database systems require automated database manage-
ment systems. There is still much work to do to reduce the high need for human
intervention such as human input and intelligence, need for dynamic adaption, the
lack of ability to reset DBMS parameters, the lack of analytical capabilities, no smart
maintenance strategies and so on. Dynamic vertical partition is a technique that con-
tributes to self-optimization and self-organization features of the autonomic database
systems. In this thesis, we propose a solution to achieve query optimization based on

dynamic vertical partition.

Chapter 3

Static partitioning

This chapter proposes a new algorithm that uses a suboptimal vertical partitioning
of relational tables under the constraint that a certain level of redundancies is ac-
ceptable in a database. The algorithm is based on a new cost model, which precisely
estimates [/O throughput as the total number of physical read/write database opera-
tions required to implement a given workload. The solution described in this chapter
transforms a schema of relational database into a partitioned one and decides which
components of the original schema should be replicated as the separate partitions.
The experiments conducted confirm the correctness of the cost model used by the ver-
tical partitioning algorithm and demonstrate the expected performance gains from the
partitioning.

The chapter is organised as follows. Section 3.1 defines the problem and describes
the fundamental concepts of the solution. Section 3.2 presents a cost model of the
relational database, which easily calculates the cost for a representative workload.
Section 3.3 presents the algorithm that finds the suboptimal partitions for the given
workload with a given level of redundancies. The results of our experiments and an
evaluation are included in section 3.4. Finally, section 3.5 concludes the paper and

outlines the future work.

3.1 Preliminaries

This section reviews the basic concepts of vertical partitioning of relational database

schemas.

Definition 1 Let A = {ay,...,a,} be a set of attribute names. Then let database
schema be a set of relational schemas S = {s1,...,8,} such that Vi =1,... ,n(s; C A

and s; # 0).

18

3.1. Preliminaries 19

The relational schemas are normalised to the best extent for an adopted model of
data dependencies. Typically, BCNF or sometimes 3NF is enough when considering
only a class of functional dependencies, and 4NF is sufficient when extending a model

with a class of multivalued dependencies.

Definition 2 Let T = {t1,...,t,} be a set of SQL statements. Let a frequency f; of a
statement t; represents the total number of times the statement has been submitted for
the execution by the database applications in a given period of time. Then, the total
workload imposed on a database with a schema S is defined as a set Wg = {wy, ..., w,}

where each w; = (t;, f;).

A workload on a schema may be alleviated by using index, horizontal partition
besides vertical partition. However, in some cases, the majority of the workload on a
schema is a full table scan. In such a case, the workload will not benefit from indexing
and horizontal partitioning at all. In our thesis, we try to optimise the full table scan
workload by vertical partitioning. A typical workload consists of two types of SQL
statements: queries and data manipulation statements. The queries include single
relation queries and multi-relation queries such as join and antijoin queries, and set
algebra expressions. Multi-relation queries contribute to the scans of relational tables
in the same way as single relation queries. As a consequence the frequency of a query
is calculated as the summation of times a relational table is scanned by the single and
multi-relation queries. Furthermore, some of data manipulation statements contribute
to the scans of relational tables due to SELECT statements included in the multilevel
WHERE clauses of UPDATE, DELETE, and INSERT INTO ...(SELECT ...) statements.

Definition 3 Let 2% be a set of all database schemas created over a set of attributes
A. Then, a vertical partitioning is defined as a mapping P : 25 — 2% that transforms a
database schema S = {s1,...,s,} into a database schema S" = {s},..., s, } such that

Vs, € §'3s; € S(s; C s, k;j C s where k; is a primary key of s;,and U; s; = U;s}).

An elementary step of partitioning extracts from a relational schema s a new schema
s’ such that s’ C s and primary key of s is included in s’. A relational schema s can be
dropped during a partitioning process if there exists the schemas sq, ..., s, such that
primary key of s is included in each one of sq,...,s; and U;s; = s. In our approach,
elimination of the relational schemas which are the supersets of smaller schemas is not
compulsory. For example, a database schema that consists of the relational schemas

s1 = {a,b,c},so = {a,b}, and s3 = {a, c} is acceptable if the large number of queries

3.1. Preliminaries 20

frequently scan each one of the schemas sy, s9, s3. Besides, dropping of s; is possible,
however it may not be beneficial due to the frequent joins of s, and s3 in order to restore
s1. We assume, that the reduced time of query processing compensates the costs of
redundancies and replications of data manipulation statements. It is also important
to note, that even though this kind of partitioning introduces the redundancies into a
database, it has no negative impact on the normalisation of relational schemas because

no two schemas are merged at any stage of the process.

Definition 4 Consider a database schema S and workload W imposed on a database
with a schema S. The storage requirements of implementation of schema S for the
particular contents of a database are denoted by storage(S) and are measured as the

total number of megabytes of persistent storage needed to keep the data.

Definition 5 The costs paid for the implementation of a workload Wy i.e. the costs
of processing queries and data manipulation statements are denoted by cost(Ws) and
are measured as the total number I/0 operations required to implement the workload.

The detailed analysis of the implementation costs is provided in the next section.

Definition 6 Given a database schema S and workload Wg. A problem of optimal
unconstrained vertical partitioning is to find a vertical partitioning S = P(S) such
that cost(Wg) < cost(Wg) and 75" (cost(Wgn) < cost(Wy).

If an extreme situation workload Wy includes only queries and no insertions, up-
dates, and deletions then a simple solution to the problem is to add to the original
database schema the new schemas that optimise the full scans of the projections of the
relational tables. If we additionally consider the data manipulation operations then an
optimal solution can be found through merging of the new schemas.Let, workload Wy
includes n queries q1, ..., q, each scanning a relational table created over a respective
relational schema sq,...,s,. If a query ¢; for : = 1,...,n, accesses only the attributes
in a subset s, of a full schema s; of a relational table r; then in the first step we create
n relational tables 7, ... r! over the schemas s,..., s/ . If an additional load created
by the data manipulation operations replicated in the new relational tables exceeds the
benefits from query processing, i.e. the total number of additional I/O operations spent
on implementation of data manipulations is larger than the total number of I/O oper-
ations saved on query processing, then we reverse partitioning by merging the schemas
sy ..., s,. This process is a part of an algorithm discussed later in the paper. Note,
that unconstrained vertical partitioning does not eliminate original relational schemas

and because of that it does not increase the costs of join operations.

3.2. Cost Model 21

Definition 7 A problem of optimal constrained vertical partitioning is to find a ver-
tical partitioning S" = P(S) such that cost(Ws/) < cost(Wg) and 75" (cost(Wsr) <
cost(Wgr) and storage(S’) < Cpax where Cpae 18 a constraint imposed on the total

amount of persistent storage available for the implementation of schema S'.

A constraint imposed on the total amount of additional persistent storage available
for the vertical partitions makes the problem more realistic and significantly increases
its complexity. As finding an optimal solution is NP-hard problem we weaken it to a

suboptimal solution.

Definition 8 A problem of the suboptimal constrained vertical partitioning is to find
a vertical partitioning S" = P(S) such that cost(Wgs) < cost(Wg) and storage(S’) <

Cmaa: ‘

In this case we are interested in a solution that increases the performance of query
processing at a rate higher than the costs from increased processing of data manipula-

tion statements and it does not exceeds a given amount of persistent storage.

3.2 Cost Model

A central point in any algorithm used to find the optimal or suboptimal partitioning
is the quality of the cost model being used to calculate a value cost(Wg) for a given
workload Wg imposed on a database with a schema S.

The iterations towards the optimal partitioning are conducted by moving from one
database schema to another in an attempt to reduce the data processing costs and to
stay below a given threshold of persistent storage.

An elementary step of this procedure, i.e. the choice of the next best database
schema from a given set of options is determined by the largest reduction of cost(Wy)
for any new database schema. This is why, the precise estimation of cost(Ws) at each
stage is so important for the quality of the entire process.

In this paper we measure cost(Wg) as the total number of read and/or write data
block operations needed to compute a workload Ws over a database schema S. A
workload consists of query processing component (Qg, data entry component Ig, update
Us, and delete Dg components. The data manipulation components contribute to
a query processing component when the respective SQL statements contain SELECT
statement in their bodies, e.g INSERT INTO T (SELECT ...) statement which inserts

3.2. Cost Model 22

into a relational table T the rows retrieved by SELECT statement. Hence, cost(Wg) =
cost(Qg) + cost(ls) + cost(Us) + cost(Dg).

To calculate cost(Qs) we decompose the multi-queries into a collection of single
queries and we add up the frequencies which exclude the times of the repeating reads
from caching. Currently, The DBMS stores information in memory caches and on disk.
Memory access is much faster than disk access. For this reason, many cache algorithms
like Least Recently Used (LRU), Most Recently Used (MRU), Least Frequently Used
(LFU), etc. have been proposed to store frequently accessed objects in the memory,
rather than requiring disk access. Therefore, cost(Qs) does not include the cost of

memory access for the selection query.
cost(Qs) = cost(Qg)) x (fi —)

where cost(Qg)) is the total number of I/O operations needed of query Q¥ over a
database schema S.

To calculate cost(lg), cost(Us), cost(Dg) we decompose each data manipulation
statement into an operation part and query part. As the query parts have been already
considered in query cost(Qs), the cost of the operation part is evaluated in the following

ways. The costs of insertions are determined by a formula:

cost(lg) = Z(cost(fg)) * i)

)

where for each insertion cost(I éz)) is equal to N x (1 + log, K) + 2) Insertion into
a relational table needs an insertion into a B-tree index over an index key and two
operations (read and write) on a data block to insert a row into the table. If an
insertion affects N schemas then it has to be repeated N times.

The costs of updates are determined by a formula:

cost(Us) = Z(cost(Ué) * fi)

)

When the number of updated rows in the first partition is small then cost(U, fgl)) is
equal to the total number of I/O operations needed to scan the first partition and for
i>1 cost(Ug)) is equal to ((1+log; K) +2) *n (M — 1) where n is the total number
of rows updated in the first partition and M is the total number of partitions to be
updated and f denotes a fanout of B-tree implementation of an index, k& denotes the
total number of keys in an index. When the total number of updated rows in the first
partition is large then cost(U. S)) for i > 1 is equal to the total number of I/O operations

needed to scan all partitions that need to be updated.

3.3. Partition Configuration 23

The deletions are performed in the same way as the updates. The costs of deletions
are determined by a formula:

cost(Dg) = Z(cost(ngi)) * fi)

(2

When the number of deleted rows from the first partition is small then cost(ngl)) is

equal to the total number of I/O operations needed to scan the first partition and for
i > 1 cost(DY) is equal to ((1+ log; K') +2) *n* (M — 1) where n is the total number
of rows deleted in the first partition and M is the total number of partitions to be
considered and f denotes a fanout of B-tree implementation of an index, k£ denotes
the total number of keys in an index. When the total number of deleted rows in the
first partition is large then cost(Dg)) for i > 1 is equal to the total number of I/O

operations needed to scan all partitions that are affected by the deletions.

3.3 Partition Configuration

Finding the optimal partitioning for a given workload Wy and a given database schema
S is NP-complete problem.

A hypothetical solution that always finds the optimal partitioning would start with
the generation of all combinations of attributes from a relational schema and then
repeating this process for all relational schemas in a database schema. Next, we would
compute cost(Wg) for all combinations of the sets of attributes found in the previous
step so that each combination covers an entire database schema. The optimal solution
is the one that minimises cost(Ws). The complexity of such an algorithm would be
O(n?) where m is the total number of attributes in a database schema.

The partitioning algorithms presented in this section speed up this process by start-
ing from the original schema S of a database and using the greedy partition selection
algorithm to find a partition configuration that minimises the cost of the workload at

each step.

3.3.1 Algorithm overview

Figure 3.1 shows the main steps of the algorithm. At the beginning the algorithm
generates the candidate partitions for each query and data manipulation task included
in a given workload. Next, it calculates the benefits from the separate implementation

of each one of the partitions taken from a candidate set. A partitioning that returns the

3.3. Partition Configuration 24

‘ Candidate partitioning generation ‘

v

‘ Candidate partitioning evaluation ’*7

Benefit ?
Mo Tes

‘ Vertical partition generation ‘

= Storage
Lirnitation Ho
2

Ves

‘ Original table recycling ‘

é Recyeling? Ves
Ho ‘

‘ Partitioning merging

l Ierging 7 Ves

>

Ho

Figure 3.1: Outline of algorithms

highest benefits is accepted for the implementation. As we keep all the original tables in
a database, the implementations of the new partitions require the additional amounts
of persistent storage. The algorithm repeats the allocations of the new partitions from
a collection of partitions computed at the beginning as long as the total amounts of
additional persistent storage do not exceed a given threshold. When that happens, the
algorithm recycles one of the relational tables from the original database. A recycled
space is used to implement the next partition. The algorithm stops when either all
partitions are implemented or when we no longer benefit from the implementation of

a new partition.

3.3.2 Choosing the partitions

A greedy algorithm (shown as Algorithm 1) controls the selection of the partitions from
a set of candidate partitions generated at the beginning of the algorithm. A partition
is chosen when it provides the highest benefits from a collection of the still remaining
partitions and its implementation does not exceed the assumed storage threshold. Once
the new configuration is generated, the algorithm recalculates the cost of the candidate

partition which is a subset of a new partition or includes the subset of a new partition.

3.3. Partition Configuration 25

Initialization;

Set candidate partition schemas set of Workload CP = {¢py, ¢pa, ...cpn };
Calculate the benefit of each candidate partition and Sort them;
repeat

if maz benefit candidate partition cppq, > 0 then
Add ¢pynq. into partition configuration P to generate new partition

configuration P’;

Remove ¢p,,q. from CP;

Calculate the benefit of every candidate partition;

Find the maximum benefit of candidate partition cp),,, for new Partition

P

Y

else
| exit;

end
until (Storage(P’') + Storage(cp.,o)) > Cmax;

Run Algorithm 2;
Algorithm 1: Partition greedy selection algorithm

3.3.3 Recycling of the original tables

The original tables covered by the new partitions are kept in a database as long as we
do not run out of storage for the implementation of the new partitions. Such a strategy
allows for the effective utilisation of cheap persistent storage and as long as it is possible,
eliminates the expensive computations of join operations when two or more partitions
are used in the same query. At this stage, according to the current configuration, we
can easily evaluate the join cost for the current workload and decide whether or not to
recycle the space of origin table to enhance performance. The complemental attribute
set of original table T is denoted as T. After removing an original table from the
partition configuration, we will add T' to make sure no any attribute of T will be lost.

Algorithm 2 shows the procedure of recycling the original tables.

3.3. Partition Configuration 26

foreach original Table T}, in D do
foreach candidate partition cp; C T}, do

if Storage(new partition P’) <= Cpa, then
| Calculate the benefit of cp;;

end
end
Find the maximum benefit of candidate partition cp,,qz;

if there exists cpyqae > 0 then
Add candidate partition ¢p,,,, into partition configuration P;

Remove ¢p,,q. from CP;
Remove T}, from partition configuration; Add T}, into partition
configuration P;

Set Flag = True;
end

end

if there is some space left and Flag = True then
| run Algorithml;

end
Algorithm 2: Table recycling algorithm

3.3.4 Merging the partitions

At the final stage we merge the pairs of very similar partitions in order to save some
disk space for further partitioning. This algorithm enhances the quality of partitioning

by merging the similar partitions.

3.4. Experiments 27

foreach original Table T}, do
foreach p;,p; C T}, do
if benefit of merging p;,p; > 0 then Merge(p;, p;);
Run algorithm 1;
else if benefit of (merging p;, p; and adding cpma.) and new Partition
<= Cmaz > 0 then
Merge(p, p;);
Run algorithm 1;

else
| exit;

end

end

end
Algorithm 3: Partition merging algorithm

3.4 Experiments

The vertical partitioning algorithm has been implemented and tested on a sample
database containing synthetically generated data. The experiments involved a number
of various distributions of the database loads. All experiments have been conducted
with the off-the-shelf, commercially available database server Oracle 10g, release 1
running on a single processor 2-GHz Intel CPU box with 512 MB of main memory and
a 40-GB hard drive. A sample database implemented TPC-R[28] benchmark database
with data generated accordingly to the benchmark specifications.

The TPC-R database comprises 8 tables. We experimented with the workloads
consisting of 20 queries accessing two of the largest relational tables in a sample data-
base. The size of the largest table is about 2 Gbytes and its schema consists of 16
attributes. The size of the second largest table is about 650MB and its schema con-
sists of 9 attributes. Both tables have the non-clustered B-tree indexes automatically

constructed on the primary keys.

3.4.1 Evaluation of partitioning

In the first experiment, we generated two partition configurations, VPMY and VPQO
respectively, with our cost model and a cost model provided by Oracle query optimizer.

We compared these two configurations with the original table ORIG. The figure 3.2

3.4. Experiments 28

Workload Costs

GO0

5000

o
[}
(=3
=3

1/0 throughput
i) oo
=] (=]
(=) (=)
(=] (=]

1000

WERQO VEMY ORIG

Partition Configuration

Figure 3.2: Storage and performance

Workload Comparison

28% - /
20% = / - S WKID
_ / —D WD
105% /

2 4 [} & m 12 4 17T 20
Storage unit{G)

Improvement

Figure 3.3: Performance comparison

shows that the partition configurations generated by both cost models got the same
benefit. Meanwhile, the performance of the new partition configuration is enhanced

about 30%.

3.4.2 Trend of Storage and Benefit

In the second experiment, we defined two quite typical workloads. The first one has
many similar schemas to those in the workload S_-W K LD while the other D W K LD
has only a few similar schemas. We allocated the same storage threshold for both

workloads. Figure 3.3 shows that:
1. the performance is enhanced with the storage ¢;,q, increasing;

2. with the storage boundary increasing, the performance improvement trends for

the workloads in a different similarity level.

3.5. Summary and open problem 29

3.5 Summary and open problem

This chapter introduces a new algorithm that vertically partitions the relational ta-
bles according to a given workload and accordingly to a given limit of redundancies

acceptable in a database.The contributions of the chapter are as follows:

1. we show how to perform a detailed analysis of the costs of query and data ma-
nipulation processing over a given configuration of a relational database and we
compare the analytical results with the results obtained from a cost-based opti-

mizer of a commercial relational database server,

2. we propose a new algorithm for vertical partitioning of relational schemas in a

database system with a given level of redundancies

However, there are some limitations of static partitioning algorithms. Firstly, the
configuration conducted from a static partitioning algorithm cannot optimise the data-
base system automatically. The workload fluctuates dramatically from time to time. A
configuration which optimises the database system at present may not do so in future.
Furthermore, we should not create the configuration during a heavy workload because
it will place a burden on the system. One of solutions to optimise a dynamic workload
is to create the vertical partitions for the heavy workload while in the low workload
time.

Secondly, the query processing subsystems of the commercial database servers can-
not detect which vertical partitions are the constituents of which relational tables. Cur-
rently query optimizers consider only relational tables, indexes and relational views.
Vertically partitioned relational tables are not allowed for generating better query
processing plans. Therefore, if we implement the vertical partitions as relational ta-
bles, we have to adjust the applications and compile them every time the configuration
changes. If we implement the vertical partitions as relational tables and then we use
the relational views to compose the original relational tables, the query optimizer is
not smart enough to find the lest length path to find the records. For example, we have
an original table T1(A,B,C) and we reorganise table T1 as vertical partitions P1(A,
B), P2(A,C) and view V1(P1.A, P1.B, P2.C). If we have a query on V1.B, then the
query optimizer still joins two partitions first, and is not smart enough to take P1 only.

To make the query optimizers smart enough to use the vertical partitions, we im-
plement the partition as an index. The optimizer will consider a fast full scan of the

index which represents the partition without changing the applications.

3.5. Summary and open problem 30

In the next chapter, we will introduce an algorithm that will dynamically optimise
the workload on a schema by indexing a partition based on the static partitioning

algorithm.

Chapter 4

Dynamic Partitioning

We begin this chapter by introducing the periodical behaviors of the database workload.
Then, we define the basic concepts for detecting the potential low workload time. When
a potential low workload time comes, we start to search for all similar workloads.
If there exists a similar workload, we use a greedy algorithm to find a sub-optimal
configuration for a high workload. When we get the configuration, we may schedule
the implementation to avoid affecting the performance of the low workload time. The

chapter finishes with some experiments and a conclusion for dynamic partitioning.

4.1 Workload Patterns

Workloads change from time to time, however the changes are not totally random.
The order of database access is restricted by business rules or business logic, which
results in database workload changes that appear cyclical over time. For example, in
the morning, a commercial system will start with reviewing all the transactions that
happened yesterday, then it handles the exceptional transactions or approves successful
transactions. Therefore, the business rules and business logic of a database system
make the workload behave in a strongly periodic way. From the structure of a program
view, many programs are written in a modular way and they are composed by a set
of procedures contained in a loop. These loops in the application make the workload
behave periodically. As well, database administrators may arrange some job lists to
run in a specific time which contributes to the system’s periodic performance. In this
thesis, we assume that a workload cannot rapidly change. Rapid changes occur only
when certain events happen, otherwise the system is stable.

In a database system, some unexpected events cause a workload to show an unusual
pattern. In some cases, we may not find any similar present or past patterns. For
example, when a table crashes it takes some time to rebuild it. The queries based on

the tables cannot be executed and will have to wait until the table is available. In such

31

4.2. Preliminaries 32

a case, the workload changes are unpredictable and similar workloads cannot be found.
In some other cases, the exceptional event could have happened before and we may
find a similar workload based on the characteristics of these accidental events. For this
thesis, the algorithm may not be necessary to find a similar workload when unexpected

events happen.

4.2 Preliminaries

This section introduces the basic concepts of dynamical vertical partitioning of rela-

tional database schemas.

Definition 9 Let A = {ay,...,a,} be a set of attribute names. We say that a database

schema is a set of relational schemas R = {ry,...,r,} such thatVi=1,... n(r; C A

and r; £ ().

Definition 10 Let 27 be a set of all database schemas created over a set of attributes
A. Then, a vertical partitioning is defined as a mapping P : 2% — 2% that transforms
a database schema R = {ry,...,r,} into a database schema R = {r},..., 7.} such

that Vrl € R'3r; € R(r; Crj, k;j C rl where k; is a primary key of rj, and U; r; = U;r}).

Definition 11 An execution e is a quadruple(s,ts,te,u) where s is SQL statement,
ts and t. represent respectively the times the statement s starts and ends, ty < t.. A

statement s is executed on behalf of a user u.
Definition 12 A tracefile T is a set of executions {e1, e, ..., e,}.

Definition 13 Let s;, s; be SQL statements. We say that s; is equivalent to s; when
a query execution plan of s; is the same as that of s;. A query execution plan is
an extended relational algebra expression parsed by the query optimizer. An extended
relational algebra includes the operation of selections, projections, joins, divisions and

groupings.

For example, given queries Q1 and Q2 on table T(a, b, ¢, d) as follows:
Q1: SELECT a, b FROM T WHERE ¢ = 100;

Q2: SELECT a, b FROM T WHERE ¢ > 72 and ¢ < 100;

4.2. Preliminaries 33

L J

Figure 4.1: Total workload

The relational algebra of Q1 and Q2 is a projection of T on (a,b,c). Therefore, Q1

is equivalent to Q2.

Definition 14 Let load(s) denotes an amount of workload imposed on the system by
the execution of a statements. For any statements if s has been entirely executed within
a period (tfrom, tio) then it contributes with load(s) to the total workload, otherwise it
contributes with (g/c) * load(s) which g is the length execution time in the period and

c is the total execution time of s;

Definition 15 Let S = s1,82,...,5; be a set of SQL statements. The total workload
imposed on a database with schema R within a given time period (¢,,,t,) is defined as

a set Wg’mt") = Uiz, (load(s;) * gi/c;).

For example, Figure 4.1 shows that in duration (t;,¢2), the system completely
executed the statements sy, so, s3, s4 and half of s5 and such that s, is equivalent to s3
then the total workload is load(s1) + load(ss) + 2 * load(ss) + load(s,) + 0.5 * load(ss)
= load(s1) + 3 * load(s3) + load(ss) + 0.5 * load(ss).

Definition 16 Let 0 be a unit of time used to measure a workload. Then we denote

an amount workload over § as unit workload W.

4.2. Preliminaries 34

1
|
£1.57 i
£1.55] E——
£a. 81 i
f — = £1. 53 |
i
8
Bz 52 £1.51 &8 i
T .83 i
E1.5 _ _
1.=1 £1.54 T E
1
| | "
I I
t1 t2 t

Figure 4.2: Example of session and signature

Definition 17 We call a given period(t,,,t,) as low workload time, when Vi =0, ... n(
Ws, <= Vo) and 0; included in (t,, t,) and vy, is a minimum support value of low

workload.

Definition 18 We call a given period(t,,,t,) as high workload time, when Vi =
0,....,n(Ws, >= vnign) and 6; included in (t,, t,) and vpign s a minimum support

value of low workload.

Definition 19 We define a session ¢ as a sequence of executions < eq,...,e, > in a

duration from t; to t;. Vi <=mn, e; = (s;,t',t", u).

Definition 20 We define a signature of a workload W, .,y as a set of sessions {c1, ..., ¢, }

that occurred in duration (t;, t;).

As shown in Figure 4.2, in (t1,15), a session ¢; of user e is < 1, 84, S2, S1, S5, S3 >}
co of user ey is < s1, Sg, So >; c3 of user ez is < Sg, 3 >;

A signature of a workload is a set of sessions (c1, ¢z, ¢3).

4.3. Cost Model 35

4.3 Cost Model

As discussed in chapter 3, the quality of any algorithm relies on the quality of the cost
model being used to calculate a value cost(Wg) for a given workload Wg imposed on
a database with a schema R.

In this chapter, the measurement of cost(Wpg) is the same as cost model in static
partition, which is the total number of read and/or write data block operations needed
to compute a workload Wg over a database schema R. The workload consists of the
query processing component (g, the data entry component Ir, update Ug, and delete
Dpgr components. The data manipulation components contribute to a query processing
component when the respective SQL statements contain a SELECT statement in their
bodies, e.g INSERT INTO T (SELECT ...) statement which inserts into a relational
table T the rows retrieved by SELECT statement. Hence, cost(Wg) = cost(Qgr) +
cost(Ig) + cost(Ug) + cost(Dpg). Detailed calculation of cost model can be referred to
chapter 3.

4.4 Overview of Dynamic Partitioning Algorithm

The objective of the dynamic partitioning algorithm is to balance system workloads.
As shown in Figure 4.3, at some durations, there are excessive applications access to
the database which causes the database system to work extremely slow. At other
durations, there are only a few applications access to the database system while many
resources of the system are wasted. To improve the performance in busy time and to
fully use the resources in idle time, we may generate the optimal configuration for high
workload time during low workload time. Figure 4.4 shows the dynamic partitioning
algorithm have this result.

Figure 4.5 shows the main steps of the dynamic partitioning algorithm. A starting
point to the dynamic partitioning algorithm is the continuously repeated evaluation of
a workload level imposed on the system by the database applications. Next, we search
for the best match for current and previous workload by comparing the signatures of
current workload and the previous low workloads. If the most similar workload can be
found, we analyse its historical executions to find what query and data manipulations
will be performed. The analysis of anticipated an database operation is used to generate
a set of vertical partitions. Finally, the implementation of partitions will carry on until

all partitions are implemented or the workload during implementation increases above

VUhigh-

4.4. Overview of Dynamic Partitioning Algorithm

Workload Fluctuation
100 4

ga
| |
&0 i pil

/ /‘ — "W arkloacd
40 _‘\ _A\
20

1T 3 5 7 91113151719 2123 2527293 33 3537 39 41

Figure 4.3: Workload before dynamic partitioning

Workload Fluctuation aft

70
o |
40 [\\ f\

N i) =
o [—warkioad

20
10

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Figure 4.4: Workload after dynamic partitioning

4.5. Potential Low Workload Time Detecting 37

| Potential low workload time detecting ‘1—
< >—|N

¥

| Finding most similar workload |

Found <l>

| Searching configuration |

¥

‘ Implement partitions |

Figure 4.5: Overview of dynamic partitioning

4.5 Potential Low Workload Time Detecting

An objective of this procedure is to detect the periods of time when the system is
relatively idle and when it is possible to find which new vertical partitions will be
needed in the future and which can be discarded. Evaluation of a workload is performed
at every single unit of time t. If a workload at the continuous k units is below v,,, then
the system starts a procedure that tries to anticipate how much time of a low workload
is left and what changes to the vertical partitioning should be done. If at any of the
following time units a workload increases above v, then re-partitioning procedure is
stopped and the most up to date state of vertical partitioning is preserved at that point

in time.

4.6. Finding Most Similar Workload 38

input : ArrayofUnitWorkload WArr, support ve,

output: Boolean

Set Flag = True;

for i = 1 to WArr.last do
if WArr[i] < v, then Return True;

else
Return False;
Exit

end

end
Algorithm 4: Detecting a potential low workload time algorithm

4.6 Finding Most Similar Workload

The identification of new partitions and the ones that are no longer needed starts from
finding in the history of executions all moments which are the most similar to the
present one. There are four steps finding the most similar workload time in the past
executions. To find the most similar workload we analyse the contents of a trace file
and we pick up the moments when k continuous unit workload was below v;,,,. Next,
we compare the signatures between the occurrences found and the present workload
and then pick up the one with highest similarity level. If there are several signatures
having the same similarity as the current one, we choose the most recent workload.
If there is no workload similar to the current one then the repartitioning procedure
is terminated. When the most similar workload is found we analyse the history of
executions following the workload in order to find what query and data manipulation
operations will be performed in the future.

First, we introduce the function to calculate the similarity of the two signatures.

4.6.1 Function to calculate similarity of two signatures

Given two signatures, we can calculate the similarity rate by comparing the characters
in the signatures. The more different characters the two signatures have, the less
similar they are. Note that ”-” means difference, |J means set union and ”||” means

the number of the elements in a set.

4.7. Finding configuration 39

input : Signature s1, s2

output: Similarity Ratio

Set 1 = 0;
i=1-((s1=2s2)] + [(s2—3s1)|) / |(s1+ s2)|;
Return i;

Algorithm 5: Calculating Similarity of Signatures algorithm

4.6.2 Most Similar Workload Searching

In the tracefile, we pick up the moments when k continuous unit workload is below v, .
Then we compare the similarity in signatures of the current workload with signatures
of the workloads we found. If there are several signatures similar to current one, we
choose the most recent. If there is no similar workload as is found, we will not consider
reconfiguring the partitions. The following algorithm shows how to search for the most

similar workload.

input : Current Signature cs, ArrayofSignature AS, support of similarity ss

output: Signature s

for 1 = 1 to AS.last do

if Similarity(AS[i], cs) < ss then
| Remove AS]j]

end
end

if AS is not Empty then
Sort AS by Similarity and time;

Set s = AS[1];
end
Algorithm 6: Searching Most Similar Workload

4.7 Finding configuration

4.7.1 Choosing partitions

The information about the anticipated database operations found while searching for

the most similar workload is used to generate a set of candidate vertical partitions.

4.7. Finding configuration 40

A vertical partition becomes a candidate when it provides the highest benefits from a
collection of the still remaining candidate partitions and its implementation does not

exceed the assumed storage threshold and time limitation.
input : ArrayofPartition AP

output: ArrayofPartition P
Variable(ArrayofTriple: CP, which cp; = (api,benefit,size));

repeat
for + = 1 to CP.last do
if C'P[i].time + TimeofBuilding(P) > TimeLimit then
| Remove CPIj]
end

end
if CP is Empty then
Exit;
Run Merge Algorithm;
end
for i = 1 to CP.last do

if C'Pli].size + Sizeof(AP) > Storage then
| Remove CPj]

end
end
if CP is Empty then
Exit;
Run Algorithm;
end

for i = 1 to CP.last do
| Calculate the benefit for CP[i];

end
if CP is Empty then
Exit;
Run Merge Algorithm;
end
Sort CP by benefit;
Add CPI1] into P;
Remove CP[1] from CP;

until (AP is null);
Algorithm 7: Partition greedy selection algorithm

4.8. Merging the partitions 41

4.8 Merging the partitions

In this step, we merge the pairs of similar partitions in order to save some disk space
for further partitioning. To evaluate the similarity of two partitions, we can use the

following formula:

i=1—(|(s1—s2)| + [(s2 = s1)])/I(s1{Js2)|

The higher similarity, the higher is the possibility of getting benefit from combining
the two partitions. Merging two partitions with a similarity above a certain support

could enhance the quality of configuration.

for F do

I a
end

choriginal Table T}, for F do
I a

end

chp;, p; C Ty if benefit of merging p;, p; > 0 then Merge(p;, p;);

Run Partition greedy selection algorithm;

else if benefit of (merging p;, p; and adding cpma.) and new Partition <= Cpay

> () then
Merge(p;, p;);
Run Partition greedy selection algorithm:;

else
| exit;

end
Algorithm 8: Partition merging algorithm

4.9 Partition Implementation

The operations related to the implementation are not counted as the operations that
contribute towards the continuous evaluation of the present workload. This is to avoid
the ’oscillations’ caused by an accidental abortion of the vertical partitioning due to the
current workload increasing by re-partitioning above v,,, and therefore restarting the
procedure when a workload goes below the threshold level again. The entire process
of re-partitioning is also not recorded in a history of executions in order to avoid the

distortions to form the past executions.

4.10. Comparison between Static and Dynamic partitioning 42

4.10 Comparison between Static and Dynamic par-
titioning

Compared with a static partitioning algorithm, dynamic partitioning does not recy-
cle the original table. As a result, a vertical partitioning generated by the algorithm
may not be as good as static partitioning. The static partitioning algorithms gen-
erate the partitions for the long term workloads. Then, the transparency of vertical
partitioning is not required and application programmers have enough time to incor-
porate information about the partitions into into the database applications. Under
the constraints of dynamic partitioning, the vertical partitions must be transparent to
applications because there is no time for re-implementation of a query and data manip-
ulation operations. Currently, commercial database management system can enforce
the transparency of partition by implementing it as a materialized view or an index.
Because a materialized view or index relies on the original table, recycling of the origi-
nal tables cannot be achieved based on current database management systems. In the
next chapter, we introduce the ways to implement partitions. Also, we propose a solu-
tion to make recycling original tables possible which requires only minor modifications

of commercial database management systems.

4.11 Summary

This chapter presents a dynamic vertical partitions algorithm for dynamic workload
under storage constraints and implementation time limitations. The basic idea of the
solution is to improve the database performance in high workload time by creating
partitions to reduce the unnecessary read for queries. Since the creating partitions will
increase the workload, we implement the partitions in low workload time.

Firstly, we introduced how the workload changes. Then we introduced the basic
definitions for the dynamic algorithm. In section 4, we introduced a way to detect a
moment which could be low workload time. When the potential low workload time
has come, we start to find a moment in the past having the most similar situation as
the current one based on the Signature of workload. Once the most similar workload
has been located, we validate if the current time is a low workload time or not. If
so, we use a greedy algorithm to find the configuration for the coming high workload
time. Finally, we attempt to avoid affecting performance in a low workload time by

scheduling the partitions creating.

4.11. Summary 43

The contributions of this chapter are as follows:

1. we show how workloads change in a periodic way, and use the signature of the
workload to locate a moment in the past having a similar situation as current

time.

2. we proposed a way to generate the partitions dynamically to fit the workload

changes so that we can auto tune the query processing.

Because the configuration changes with the workload, the partitions should be com-
pletely transparent to database applications. How to implement partitions is critical

to database auto tuning. We will be discuss this problem in the next chapter.

Chapter 5

Implementation of Dynamic Vertical
Partitioning

In an ideal case, the changes of configuration of partitions should be completely trans-
parent to the applications and require no intervention or hints. Therefore, the way of
implementing a partition is critical for tuning database systems by vertical partitioning.
At the moment only indices, and in the more advanced systems, materialized views are
transparently considered by a query processor when generating the query execution
plans. The other important property needed for the implementation of dynamic verti-
cal partitioning is the ability of a query processor to dynamically replace the stored old
query execution plans with new ones generated after the vertical partitions are built.
In this chapter, we will firstly discuss the issues of implementation of partitions, and
then we present the ways of implementing a partition as an index and as a materialized
view. To compare the two ways of implementing partitions, we provide not only some
criteria for comparison between an index and a materialized view, but also establish

cost models for the criteria.

5.1 Issues of implementing partitions

To achieve an auto tuning database system by vertical partitioning, partitions should
be completely transparent to applications. Otherwise, changes of partitions will require
modification of applications. As a result, dynamically optimizing a database by the
use of vertical partitions cannot be achieved.

In current commercial database management system, the partition can be imple-
mented as a relational table, a relational view, an index or a materialized view. If the
partition is implemented as a relational table, it may cause a problem of optimal choice
of partition for a query. For example, suppose we have table T(A, B, C, D), partitions
of T: P1(A,B), P2(A,B,D) where A is the primary key. Consider a query

SELECT A, BFROM T

44

5.1. Issues of implementing partitions 45

The query of selection from T cannot be transformed to selection from P1 by query
optimizer automatically.

If the partition is implemented as a materialized view, the query processor in the
commercial database management system can detect the optimal materialized view for
a query and be able to rewrite the query to access the optimal materialized view. If
the partitions are implemented as indexes over the relational tables, a query processor
is able to detect that horizontal traversal of an index is equivalent to a full scan of a
partition. Therefore, implementing partitions either as a materialized view or index
allows the changes of the partition as transparent to the applications.

In the next section, we show the ideas of index-based and materialized view-based

implementation.

5.1.1 Materialized View-based Implementation

A materialized view is a preserved result obtained from the query processing in a
database. Therefore, a query is executed much faster by accessing a materialized view
than by accessing a normal view. The advanced query processors in the commercial
database management systems are capable of rewriting a query such that a materialized
view is used instead of a relational table when it improves the performance of the
query processing. As a consequence, the mechanism is completely transparent to query
processing and it allows for the dynamic implementation of vertical partitions.

Take table T, partitions P1, P2 and the same query in figure 5.1 as an example
again. The partitions P1 and P2 are implemented as MV1, MV2 respectively. When
a query is executed, the query optimizer will analyse whether it is faster to access the
materialized view or the underlying tables where the data resides. If the optimizer
accessing the materialized view is a better solution, the optimizer rewrites the query
to use a materialized view.

However, the data in materialized views are not immediately updated together
with the data in a master table. This causes a problem of preserving the consistency
between a master table and a materialized view built as a projection of the master table.
Basically, we have two ways to refresh a materialized view, Fast Refresh and Complete
Refresh. A Fast Refresh can update the materialized view quicker than Complete
Refresh but it cannot be used in some cases. To perform a Fast Refresh, requires a
log on the change of the master table. However, some types of bulk load operation
on a master table do not write log. For example, the bulk load operation includes
some INSERT statements with an APPEND hint and some INSERT ... SELECT

5.1. Issues of implementing partitions 46

Cuery: Zelect &, B from T1

Found LIV1
Cery Chuery
optimizer rewriter

Eewrite

TI(AB.C.D) Ol to

ACCESS

IVl
Derived
from

MYV2(ABDY | | MV (AR

Figure 5.1: Example of Materialized View

* FROM statements. This causes the consistency problem of the master table and
the materialized view. Complete Refresh reloads data again. It takes a substantially
longer amount of time to synchronise the materialized view and master table but this
can guarantee the consistency between them. If we use Complete Refresh, it could

aggravate the burden during high workload time.

5.1.2 Index based Implementation

The implementation of a vertical partition as a composite key index is possible when
a query processor is able to detect and to apply the index-only processing of a query.
In such a case, a query is processed by the horizontal traversal of a leaf level of B*-
Tree index without access to a relational table. At a logical level it is equivalent to
a sequential scan of a vertical partition. As long as a partition is implemented as an
index over a relational table, the query processor is able to invoke a horizontal traversal
of the index automatically.

The B-tree includes the branch level and leaf level. A branch node contains pointers
to leaf nodes or other branch nodes. The leaf level contains every indexed data value
and a corresponding Rowid used to locate the actual row. In such a case, rewriting a
query in the original application is not necessary. Figure 5.2 illustrates the data in a
leaf level being used in a horizontal traversal of index.

The implementation of a partition as a composite key index requires additional
space for recording index information beside spending some space on table columns.

As a result, the storage costs of an index-based implementation are higher than the

5.2. Comparison of Index-based and Materialized view-based 47

Branch |Du |Li |Re |
‘/i/ ¥ \
[anlei [ci] [E 1B [1a | Na [or [P | [sam |Sue [Tim |
Leaf Z/
g = |5
- 5|55 %—}EE%%—pgggg-}
'-"-‘au'-t 3"‘1 "-1 "-1 "" u-—g" P
o=z (2|5 |2 =5 (2|22 | @=Z|C |2 |5 e
SR EEE

Fast Full Index Scan the leaf level

Leaf lewel used as Partition

Figure 5.2: Horizontal traversal of index

costs of a materialized view-based implementation.

The storage cost model in the next section shows the difference between index and

materialized view.

5.2 Comparison of Index-based and Materialized
view-based

Either implementing a partition as an index or as a materialized view will be trans-
parent to the application and the query processor will automatically find the optimal
data source for the query. There are three main criteria for comparing implementation

as an index or as a materialized view.

1. Time cost for maintaining partition consistency with the original table on which

it relies.
2. Storage cost for building a partition by an index or by a materialized view.

3. Time cost for building a partition by an index or by a materialized view.

5.2.1 Consistency Control Comparison

Commercial database systems have two basic methods to maintain the consistency of
a materialized view: Fast Refresh and Complete Refresh. Since Fast Refresh cannot

apply changes which are caused by some types of bulk load operation on a master table,

5.2. Comparison of Index-based and Materialized view-based 48

we have to use Complete Refresh to guarantee the consistency for materialized view.
If we use Complete Refresh, we have to rebuild the whole materialized view which may
require a heavy read and write operation.

Compared with a materialized view, an index has no need to rebuild to keep it con-
sistent with its master table. An index will be automatically updated simultaneously
in a current commercial database system when the index key in the table has been
changed. The time cost of maintaining an index includes two parts: traversing the
index tree and updating the index tree.

Because the index will be updated immediately with the index key modification,
it may lead to overhead update the index. In some cases, the data in the partitions
may not necessarily be updated immediately with every single modification by a SQL
statement. We may update the partition at a particular time such as every four hours.
In such a case, implementing a partition as a materialized view take advantage of the
index. However, if the modification of data is sensitive to the coming queries, the
change of partition and table must be synchronized at the same time. In such a case,

an index will be a better choice than a materialized view.

5.2.2 Storage Cost Comparison
Storage Cost by Materialized View

Suppose the size of block is b, the length of partition columns is ¢ and extra space to
record materialized view information. And there are r rows in table T. Therefore, we
can deduce that:

The number of fully packed blocks to store the partition is:

n=r/(/(c+e))

The storage cost for a materialized view is approximately equal to the total rows of a
table multiplied by the row size of a partition. To enforce the integrity of a materialized
view, we consider Complete Refresh since Fast Refresh cannot apply changes for some
bulk loads. Therefore, the cost of update, insertion, and deletion is equal to twice of

partition size.

Storage Cost by Index

All the partitions are implemented as non-clustered B-tree index. Here is the formula

to evaluate the storage cost.

5.2. Comparison of Index-based and Materialized view-based 49

The index holds the key value and then the address of the row in the table with
this value. Each row in the table must have an entry in the leaf blocks of the index.
The branch blocks are used as an index to the leaf nodes. So each block for the leaf
nodes needs to be addressed by the next level up of the branch nodes.

Suppose the size of block is b, the length of index columns is ¢ and extra space e
to record an index pointer. And there are r rows in table T. Therefore, we can deduce
that:

1. The number of rows can be stored in a fully packed block
n=">b/(c+e)
2. The total blocks for leaf level:
l=r/n
3. The total blocks for branch(fanout):
f=1/n
So, the formula to estimate an index size is:

IndexSize =1+ f

5.2.3 Comparison by Time Cost
Time cost by Materialized View

Suppose the size of block is b, the length of partition columns is ¢ and extra space to
record materialized view information. There are r rows in table T, therefore, we can

deduce that:

n=r/(b/(c+e))

The time cost for a materialized view is the total read and write blocks of building
it.
Time cost by index

The time cost of building an index is the total of read and write blocks for inserting.

Suppose there are k index keys on the index of table T. When we create the index for

5.3. Open problems 50

table T, we have to take some time to insert k rows with a new value of index key,
meanwhile we have to insert (r-k) rows with an existing value of index key.

The time of inserting a row with a new value of index key is:
t1 = 2% (1+log, k)
The time of inserting a row with an existing value of index key is:
ty=1+logsk

Therefore, suppose every index key has the same number of rows which is r/k. The
cost of building an index goes up with more and more index key being inserted in
the tree. For each index keys, we spend one t; and (r/k - 1)*t5. Then the total time

spending on creating an index is:
T = (2*(1+log; 1)) +(r/k—1)x(1+log; 1)+...+(2x(1+log; k))+(r/k—1)*(1+log, k)

T = (n/k+1)*(log; 1 +...+log; k) +n

5.3 Open problems

Because both the materialized view and index rely on the master table, the tables in
the original schema cannot be recycled for further vertical partitioning. To make the
change of partitions transparent to all applications and to recycle the original tables,
we proposed a solution which requires commercial database system to process the

following two abilities:

1. The database system should have query rewrite ability for a view;

2. The database system should have a view update ability.

Firstly, we define a view to present the original table. The view is joining of all
partitioned tables which belong to the original table. When a query accesses the
view, the database system should rewrite the query to access the optimal partition.
Since current commercial database systems can rewrite the query to use the optimal
materialized view, the commercial database system in the future should have the same
mechanism to rewrite the query using the optimal partition.

Once the original table is replaced by a view, the database system should be able to
update the partitions when the view is required to be updated. INSTEAD OF Trigger

5.4. Experiments 51

in commercial database systems can be used to synchronise the partitions of a view.
For insertion of a view, we simply insert the new value into respective columns in the
partitions. For update and deletion of a view, firstly we have to find out the primary
keys of the columns which are changed. To find the primary keys, we may have to join
some or all of the partitions of the view to verify the conditions to update or delete.
Based on the primary keys we find, we can update or delete the relevant record in the

partitions.

5.4 Experiments

All experiments have been conducted with an off-the-shelf, commercially available data-
base server Oracle 10g, release 1 running on a single processor 2-GHz Intel CPU box
with 512 MB of main memory and 40-GB hard drive. A sample database implemented
TPC-R[3] benchmark database with data generated according to the benchmark spec-
ifications.

The TPC-R database comprises 8 tables. We experimented with the workloads
consisting of 20 queries accessing two of the largest relational tables in a sample data-
base. The size of the largest table is about 2 Gbytes and its schema consists of 16
attributes. The size of the second largest table is about 650MB and its schema con-
sists of 9 attributes. Both tables have the non-clustered B-tree indexes automatically

constructed on the primary keys.

5.4.1 Query Rewrite of Materialized View

In this experiment, figure 5.3 shows how the query is rewritten to use a materialized
view which is better than using a table. Firstly, we need to enable a query rewrite in
Oracle. Then, we create a materialized view MV_Nation(N_nationkey, N_nationname)
for table Nation. The figure shows how Oracle rewrites the query to access MV _Nation

instead of Nation.

5.4.2 Fast Full Index Scan

This experiment shows how a commercial database system uses a horizontal traversal
of an index. In oracle, the horizontal traversal of an index is called Fast Full Index
Scan. Fast Full Index Scan will replace a full scan table for a query automatically

when the query optimizer detects it will take advantage over a full scan table. In this

5.4. Experiments 52

SQL= create materialized view mv_nation
2 enable query rewrite as
3 select n_nationkey, n_name from nation;
Materialized view created.
SQL> ALTER SESSION SET QUERY REWRITE _EINNABLED = TRUE;

Session altered.

SOL= set autotrace traceonly explain
S0L= select n_name from nation;

Execution Plan

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=25 Bytes=67

5)
1 0 MAT VIEWREWRITE ACCESS (FULL) OF "MV NATION'
(MAT VIEW RE
WRITE) (Cost=3 Card=25 Bytes=675)

Figure 5.3: Query Rewrite of Materialized View

S0QL> create index idx_nation on nation(n_name) compute statistics;
Index created.
S0QL> select /*+ index_ffs{nation idx_nation) */ n_name from nation;

Execution Plan

0 SELECT STATEMENT Optimizer=ALL. ROWS ({Cost=2 Card=25
Eytes=6215)

1 0 INDEX (FAST FULL SCAN) OF 'IDX NATION' (INDEX) (Cost=2
Card=25 Bytes=625)

Figure 5.4: Fast Full Index Scan

experiment, we build an index for nation called idx nation. As figure 5.4 shows, the

selection of nation will automatically use Fast Full Index Scan.

5.4.3 Comparison of Materialized View and Index

In this experiment, we compare the time and storage of building a Materialized View
and an Index. As figure 5.5 shows, the cost of time and storage of building a materi-

alized view is less than it is for an index.

5.4.4 View Update

Figure 5.6 shows how a view can be updated in a current commercial database manage-
ment system. There are two tables Nat_name(N_NATIONKEY, N.NAME), Nat_Others(N_NATIC
N_REGIONKEY, N.COMMENT) and view of v_Nation which joins tables Nat_name

5.5. Summary 53

Oy
3 B NDE¥

Building Time Storage

Figure 5.5: Comparison of MV and Index

and Nat_Others by N.NATIONKEY. In our proposed solution, v_Nation represents
the original table while Nat name and Nat_Others represent the vertical partitions.
If v_Nation is required to be updated, we should have INSTEAD OF as a trigger to
update its underlying tables Nat_name and Nat_Others. For each row to be updated,
we record its primary key which is the link to the underlying tables. Then we update

the corresponding values of the underlying table.

5.5 Summary

This chapter has shown the possible solutions of implementing partitions for an auto-
tuning database. Currently, to implement partitions as tables leads to query rewriting
which requires the applications to adapt to changes of configuration. By comparison,
to implement partitions as indices and materialized views make the changes of con-
figuration transparent to an application.The query processors in commercial database
systems will automatically pick up the optimal data destination for the query. We pro-
posed cost models for estimating implementation of partitions as materialized views
and indices. To reduce the data redundancy, we proposed a solution to make recycling
of the original table possible. If the database system can rewrite the query for a view,
we can decompose an original table into partitions and create a view of the original ta-
ble. We may leverage the current rewrite mechanism of a materialized view to achieve
the ability of rewriting a query for a view. The chapter ends with some experiments

which show:

1. A partition can be transparent to applications if it is implemented as an index

or implemented as a materialized view.

2. The comparisons of costs to implementing a partition as a materialized view or

5.5. Summary

54

S0L> CREATE or REPLACE TRIGGEER. tr upd instead of update on WV_MNATTOR
for each row
declare
WV NATIONEE Y MUNMBEE,
Begin
select W MNATIONEEY into V. MATIONEEY
from MAT NAWE N, MAT OTHERES O
where 0ld M name = MM name and :old M comment = 0O M comment
AWD OLD M REGIONEEY= OMN REGIONEET,

update MAT MNANE set N name = new M name
where M MATIONEEY = v MATIONKETY,

update MAT OTHERS set N BEGICHMEEY = new N REGIONEEY,
MN_CONIEMNT = new N cormrment
where N MATIONEEY =V NATIONEEY,
end i upd,

SL= zelect * from v nation where n name= PERELT;

M MATIONKEY M _MAWE N REGIOMEEY
N CONMKERNT
17PERU 1

final, final accounts sleep slyly across the requests.

S0L= gelect ™ from nat name where nname = PERLT,
N MNATIOWEEY W HAWE

17 FERU
B0l select ™ from nat others where n_nationley = 17,
M MATIOMNEEY N REGIONEEY N COWMENT

17 1 final, final accounts sleep slyly acrass the requests.

30L> update w nation set n name = 'PERU 1', n comment = 'Good Country,

1 regionkey=2 where n name ="PERELN and n regionkey =1,
S0L= select ™ from v_nation where n_name = PERIT;

no rowes selected

S0L= zelect * from v_nation where n_name="FERTT 1",
M HATIONKEY W HAME N _BREGIOHEEY N_COMMENT
17 FERIT | 2 Good Countdry

Figure 5.6: View Update

5.5. Summary 55

an index.

3. A view can be updated so that the solution we proposed can be achieved if a

current commercial database management system makes a minor modification

on the rewrite ability for a view.

Chapter 6

Conclusions and Future work

6.1 Conclusions

This thesis began with an overview of the performance tuning problems and the demand
for an auto-tuning database, along with a brief introduction of autonomic database sys-
tem features. Then we introduced major approaches to optimise query performance.
Since it is impossible to have a one-fits-all design that satisfies sometimes contradic-
tory requirements of complex applications, an adaptive reorganising physical database
structure allows for better utilisation of hardware resources. Our work in this the-
sis has only focussed on dynamic vertical partitioning which denotes the automated
projections of relational tables in order to reduce the time for exhaustive table scans.

By comparing partitioning techniques, we have acknowledged that vertical parti-
tioning takes advantage over horizontal partitioning because vertical partitioning is
much easier when matching predicates between queries and partitions than horizontal
partitioning. We reviewed the past work in vertical partitioning and to our best knowl-
edge found there were no attempts to investigate the applications of dynamic vertical
partitioning.

In chapter 3, we propose a algorithm to choose the optimal partitions for a given long
term workload. We presented a detailed cost model for the precise estimating at the
cost of insertion, deletion and update operations. However, the vertical partitioning
algorithm cannot make an automatic repartition of a database in a response to the
changing database loads.

In chapter 4, we proposed a solution, which is based on an assumption that the
workload on a database server is repetitive in nature. This means that it is possible
to anticipate during the periods of low workload what database applications will be
executed in the future and to create the vertical partitions that will have a positive im-

pact on future performance. The thesis describes the algorithm that finds the expected

56

6.2. Future work 57

workload and how it decided which vertical partitions should be created.

Finally, we investigated two implementation techniques: one based on materialized
views and the other one based on indexing. Both of these techniques strongly rely on the
master table. As a result, the original table cannot be recycled for further partitioning.
We proposed to keep the original table as a view and synchronise the partitions by a
view updating. However, the solution requires that the current commercial databases

have the ability to rewrite a query for view.

6.2 Future work

In this thesis, dynamic vertical partitioning is a first step towards setting up a frame-
work to optimise database performance by the dynamic modification of physical struc-
ture. Other physical database structure tuning methodologies such as reorganization
of index, horizontal partitioning and clusters are expected to be adapted to this model.
The thesis proposed implementing an original table as a view which is a joint of vertical
partitioning. It would be exciting to come up with a commercial database manage-
ment system processing the query rewriting ability, which can find an optimal vertical
partitioning for the query.

In addition, the metric used in the cost model analysed in Chapter 3, 4 may be
transferred to DBTime which has been proposed recently as a common metrics of
performance impact. By using such a common metrics, the performance improvement
in different components over the whole system can be gauged. With only limited
resources, we can allocate those resources in the best way to optimise the database
system.

Another interesting issue is the combination of other workload monitoring ap-
proaches to improve our work in this thesis. The thesis focuses only on workloads
on a database server which are repetitive in nature. However, there are always some
accidents to affect the workload behaviours. The monitoring and diagnosing of work-
loads is still an open question. In conclusion, we summarize possible future work as

follows:

1. Integrate other physical database structure tuning methodologies such as index,

horizontal partitioning and clusters;

2. Implement the rewrite ability of view for vertical partitioning in commercial data-

base management systems;

6.2. Future work 58

3. Combine the metrics DBTime in our cost model in order to identify the perfor-

mance improvement in different system components;

4. Cooperate with other workload monitoring and diagnostic approaches.

The further research on the above open problem will improve the quality of op-

timization by vertical partitioning, ensuring predictable performance and eliminating

the need for manual tuning.

Bibliography

1]

Autopart: Automating schema design for large scientific databases using data
partitioning. In SSDBM ’0/: Proceedings of the 16th International Conference on
Scientific and Statistical Database Management (SSDBM’04), page 383, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

Db2 design advisor: Integrated automatic physical database design. In
VLDB’2004: Proceedings of the 30th international conference on Very large data
bases, pages 1087-1097, 2006.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hip-
pocratic databases. In 28th International Conference on Very Large Databases
(VLDB), Hong Kong, 2002.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Materialized view
and index selection tool for microsoft sql server 2000. In SIGMOD Conference,
page 608, 2001.

Sanjay Agrawal, Eric Chu, and Vivek R. Narasayya. Automatic physical design
tuning: workload as a sequence. In SIGMOD Conference, pages 683-694, 2006.

Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating vertical and
horizontal partitioning into automated physical database design. In SIGMOD 04
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, pages 359-370, New York, NY, USA, 2004. ACM Press.

A. Brown and D. Patterson. To err is human. In Proceedings of the First Workshop
on Evaluating and Architecting System dependabilitY (EASY ’01), July 2001.,
2001.

Kurt P. Brown, Manish Mehta, Michael J. Carey, and Miron Livny. Towards

Automated Performance Tuning For Complex Workloads. In Proceedings of the

99

BIBLIOGRAPHY 60

[10]

[11]

[12]

[14]

[16]

[17]

[18]

Twentieth International Conference on Very Large Databases, pages 72-84, San-
tiago, Chile, 1994.

Silvana Castano, Maria Grazia Fugini, Giancarlo Martella, and Pierangela Sama-
rati. Database Security. Addison-Wesley & ACM Press, 1995.

Surajit Chaudhuri, Arnd Christian Konig, and Vivek Narasayya. SQLCM: A
continuous monitoring framework for relational database engines. ICDE, 00:473,
2004.

Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Random sam-
pling for histogram construction: How much is enough? In Laura M. Haas and
Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 2-4, 1998, Seattle, Washington,
USA, pages 436-447. ACM Press, 1998.

Surajit Chaudhuri and Vivek Narasayya. Automating statistics management
for query optimizers. IEEFE Transactions on Knowledge and Data Engineering,
13(1):7-20, 2001.

Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architec-
ture: Towards a self-tuning risc-style database system. In VLDB, pages 1-10,
2000.

W. W. Chu and I. T. Ieong. A transaction-based approach to vertical partitioning
for relational database systems. I[IEFEE Transactions on Software Engineering,
19(8):804-812, 1993.

Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Gra-
ham Wood. Automatic performance diagnosis and tuning in oracle. In CIDR,
pages 84-94, 2005.

Said Elnaffar, Wendy Powley, Darcy G. Benoit, and T. Patrick Martin. Today’s
dbmss: How autonomic are they? In DEXA Workshops, pages 651-655, 2003.

A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era.
IBM System Journal, 42(1):5-18, 2003.

Peter Gassner, Guy M. Lohman, K. Bernhard Schiefer, and Yun Wang. Query
optimization in the ibm db2 family. IEEE Data Engineering Bulletin, 16(4):4-18,
1993.

BIBLIOGRAPHY 61

[19]

[22]

[23]

[25]

[26]

[27]

28]

[29]

Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental main-
tenance of approximate histograms. In Matthias Jarke, Michael J. Carey, Klaus R.
Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld,
editors, Proceedings 23rd International Conference Very Large Data Bases, VLDB,
pages 466-475. Morgan Kaufmann, 25-27 1997.

Jim Gray, Alex S. Szalay, Ani R. Thakar, Peter Z. Kunszt, Christopher Stoughton,

Don Slutz, and Jan vandenBerg. Data mining the sdss skyserver database, 2002.

Sylvain Guinepain and Le Gruenwald. Research issues in automatic database
clustering. SIGMOD Record, 34(1):33-38, 2005.

Himanshu Gupta. Selection of views to materialize in a data warehouse. In ICDT,
pages 98-112, 1997.

Himanshu Gupta and Inderpal Singh Mumick. Selection of views to material-

ize under a maintenance cost constraint. Lecture Notes in Computer Science,
1540:453-470, 1999.

Michael Hammer and Bahram Niamir. A heuristic approach to attribute parti-
tioning. In SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 93-101, New York, NY, USA, 1979.
ACM Press.

Joseph L. Hellerstein. Automated tuning systems: Beyond decision support. In
International CMG Conference, pages 263270, 1997.

Joseph L. Hellerstein, David Hart, and Po Yue. Automated drill down: An ap-
proach to automated problem isolation for performance management. In Interna-
tional CMG Conference, pages 376-384, 1999.

Jeffrey A. Hoffer and Dennis G. Severance. The use of cluster analysis in physical
data base design. In Douglas S. Kerr, editor, Proceedings of the International Con-
ference on Very Large Data Bases, September 22-24, 1975, Framingham, Massa-
chusetts, USA, pages 69-86. ACM, 1975.

http://www.tpc.org.

Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In SIGMOD ’98: Proceedings of the 1998 ACM

BIBLIOGRAPHY 62

[30]

[31]

[32]

[34]

[35]

[36]

SIGMOD international conference on Management of data, pages 106-117, New
York, NY, USA, 1998. ACM Press.

Zhenjie Liu and Janusz R. Getta. Optimization of query processing through con-
strained vertical partitioning of relational tables. In DBA’06: Proceedings of the
24th TASTED international conference on Database and applications, pages 221—
227, Anaheim, CA, USA, 2006. ACTA Press.

V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic query optimizer
for db2. IBM System Journal, 42(1):98-106, 2003.

McCormick, WT Schweitzer, J Paul, and TW White. Problem decomposition
and data reorganization by a clustering technique. In Operations Research, pages
993-1009, 1972.

Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. Continuous re-
source monitoring for self-predicting dbms. In MASCOTS ’05: Proceedings of
the 13th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 239-248, Washington, DC,
USA, 2005. IEEE Computer Society.

Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical par-
titioning algorithms for database design. ACM Transaction Database System,
9(4):680-710, 1984.

Shamkant B. Navathe and Minyoung Ra. Vertical partitioning for database design:
A graphical algorithm. In James Clifford, Bruce G. Lindsay, and David Maier,
editors, Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, May 31 - June 2, 1989, pages 440-450. ACM
Press, 1989.

Vincent Ng, Dik Man Law, Narasimhaiah Gorla, and Chi Kong Chan. Applying
genetic algorithms in database partitioning. In SAC ’03: Proceedings of the 2003
ACM symposium on Applied computing, pages 544-549, New York, NY, USA,
2003. ACM Press.

Daniel Paul, Sudhakar Yalamanchili, Karsten Schwan, and Rakesh Jha. Decision

models for adaptive resource management in multiprocessor systems.

BIBLIOGRAPHY 63

[38]

[44]

[45]

Viswanath Poosala, Peter J. Haas, Yannis E. loannidis, and Eugene J. Shekita.
Improved histograms for selectivity estimation of range predicates. In SIGMOD
"96: Proceedings of the 1996 ACM SIGMOD international conference on Manage-
ment of data, pages 294-305, New York, NY, USA, 1996. ACM Press.

Ron Rymon. Goal-directed diagnosis-diagnostic reasoning in exploratory-
corrective domains. In [JCAI pages 1488-1493, 1993.

Kai-Uwe Sattler, Ingolf Geist, and Eike Schallehn. Quiet: Continuous query-driven
index tuning. In VLDB, pages 1129-1132, 2003.

Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized view
selection for multidimensional datasets. In VLDB °98: Proceedings of the 24rd

International Conference on Very Large Data Bases, pages 488-499, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

Jin Hyun Son and Myoung Ho Kim. An adaptable vertical partitioning method
in distributed systems. Journal of Systems and Software, 73(3):551-561, 2004.

Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and
M. Surendra. Adaptive self-tuning memory in db2. In VLDB’2006: Proceedings
of the 32nd international conference on Very large data bases, pages 1081-1092.
VLDB Endowment, 2006.

Alexander S. Szalay, Jim Gray, Ani Thakar, Peter Z. Kunszt, Tanu Malik, Jordan
Raddick, Christopher Stoughton, and Jan vandenBerg. The sdss skyserver: public
access to the sloan digital sky server data. In SIGMOD Conference, pages 570-581,
2002.

Gerhard Weikum, Axel Monkeberg, Christof Hasse, and Peter Zabback. Self-
tuning database technology and information services: from wishful thinking to
viable engineering. In VLDB, pages 20-31, 2002.

	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Dedication
	Declaration
	Publications
	Abstract
	Acknowledgements
	Contents
	List of tables
	List of figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Bibliography

