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Abstract

Performance tuning of relational database systems is always a challenging task for

database administrator. Automated performance tuning has been proposed recently

as a new approach to detect and to eliminate performance problems and to support

the decisions of database administrators.

This work considers one of the techniques used in automated performance tuning,

dynamic vertical partitioning. Dynamic vertical partitioning of relational tables is one

of the ways in which the physical structures of a relational database can be reorganised

automatically in order to improve the performance of future database applications. The

thesis presents how dynamic vertical partitioning can be used for the comprehensive

analysis and optimisation of an adaptive reorganisation of database structures. In

particular, we propose the algorithms to use to predict the future workload of the

system, to analyse the characteristics of the workload, and to find a near optimal

vertical partitioning of relational tables. Then, we discuss the implementation aspects

of vertical partitioning with the materialized view and index-based techniques.

Our contributions to automated performance tuning of relational database systems

can be summarised as follows:

1. Propose a cost model to perform a detailed analysis of the costs of query and

data manipulation processing over a given configuration of a relational database;

2. Propose a new algorithm for vertical partitioning of relational schemas in a data-

base system with a given level of redundancies for a given workload;

3. Discuss the limitations of static vertical partitioning and propose dynamical ver-

tical partitioning;

4. Discuss the characteristics of workload in order to predict the future workloads

of the system;

vi



5. Implementation aspects of vertical partition discussion: materialized view based

and index based;

6. Discussion of the implementation of a vertical partition as a virtual view;

7. Conduct experiments to confirm the correctness of the cost model used by the

vertical partitioning algorithm and demonstrate the expected performance gains

from the partitioning
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Chapter 1

Introduction

1.1 Database Performance Tuning

Performance tuning of relational database systems has an important impact on the suc-

cessful implementation of modern information systems such as e-business systems, deci-

sion support systems, operational business process implementation systems, etc. Poor

performance of e-business applications and system crashes have a disastrous effect on

customers’ attitudes about the system used. High performance of the database servers

supporting e-business applications requires system configuration parameters well tuned

to the physical properties of the available hardware, efficient query and data manipula-

tion processing, and efficient processing of customer transactions. Performance tuning

is always a challenging task for database administrators. Some researchers agreed that

it is extremely hard for DBAs and other IT operators to tune a complex system un-

der pressure [17, 7]. Database administrator are likely to make mistakes when tuning

complicated system. The automatic performance tuning of relational database servers

is considered as an important solution when reducing the running costs of information

services [45].

1.1.1 Overview of Automatic Database Administration

Automatic performance tuning is one of the automatic database administration fea-

tures. Automatic database administration includes two main fields: automatic perfor-

mance administration and automatic security administration. Automatic performance

administration includes self-optimization, self-configuration, self-organizing and self-

recovery. Self-optimization enables a database system to automatically optimise a

query execution such as query translation, or the modification of a query plan. Self-

configuration means that a database system is able to dynamically adjust for hardware

and software setting parameters. Self-healing allows the database system to recover

1



1.1. Database Performance Tuning 2

from failure by using logs and backups automatically. Self-organizing is a way to dy-

namically reorganise a physical database structures. Automatic security administration

includes self protecting and auto inspecting. Self-protecting concerns the privacy, au-

diting mechanisms, encryption of data, and access control. Self-inspecting occurs when

the system can detect the problems by itself and provide the auditing for itself.

In the thesis, we propose a technique, dynamic vertical partition, which contributes

to the self-optimization and self-organization features of the autonomic database sys-

tems. Automatic query optimization is the most important task of self-optimization.

To achieve automatic query optimization, one of the ways is to adjust the physical data-

base designs in order to reduce the unnecessary read in a query. Vertical partitioning

of the relational tables is one of the ways to adjust the physical database designs.

1.1.2 Automatic Query Performance Tuning

The rapid development of the internet application and more and more complex and

complicated application system brings a major challenge relates to query optimization.

First of all, the continuous growth of database size could slow down the query exe-

cution dramatically. Also, the higher-level application services requires the database

technology to be unbundled and dispersed. The applications provides user friendly

query interfaces which allows users input the selection criteria. Such applications are

more focus on the business requirements and rules rather than optimization of the

queries. This creates a good amount of nature and non-tuned queries which may make

the database system run inefficiently. Therefore, it is critical that database systems

can tune the query processing automatically.

To achieve automatic query performance tuning, we can improve data manipulation

and query execution plans on run time, and reorganise the physical database structures

with the change of workload.

1. Dynamic modification of query processing plans:

Currently, commercial database management systems can provide a cost-efficient

execution plan for most queries. There are many alternative ways to execute

a plan for a query. Query optimizer evaluates the cost of each alternative and

chooses the most cost efficient way. However, estimating a cost query execution is

difficult and sometimes the query optimizer will provide a sub-optimal execution

plan. The accuracy of estimation strongly relies on up-to-date historical statistics

and column distributions. Besides, the explain plan environment can be different
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from the execution environment. Therefore, the query optimizer is expected to

dynamically change the execution plan.

To dynamically re-optimize the query execution plan, a statistics collector model

has been proposed to observe the sizes and data distributions of intermediate

query result sizes at run-time [29]. If a sub-optimal execution plan is detected,

the query optimizer should dynamically change the remainder parts of execution

plan.

2. Dynamic storage reorganization techniques

The adaptive reorganisation of the physical database design includes the auto-

matic implementation of additional persistent data structures such as various

types of indexes, clusters, materialized views, partitions, etc. in a reply to the

expected query and data manipulation operations.

On one hand, the significant improvements in the performance of relational data-

base systems can be achieved through well tailored adjustments to the physical

database designs matching the requirements of user applications. On the other

hand, a large number of different types of user applications still makes it impos-

sible to have a one-fits-all design that satisfies the wide range of contradictory

requirements to fit all user applications. This is why the adaptive reorganisa-

tion of physical database structures to the anticipated data access requirements

of user applications is an attractive option for the implementation of self-tuning

relational database servers.

1.2 Partitioning

The thesis targets the performance problems in the systems where a significant amount

of query processing time is spent on the full scans of the large relational tables. Par-

titioning of the relational tables either through vertical partitioning or horizontal par-

titioning or a combination of both is a reliable way for these problems to be solved.

In this section, we will introduce the basic principles of horizontal partitioning and

vertical partitioning.

1.2.1 Horizontal Partitioning

Horizontal partitioning breaks down a relational table into smaller pieces, called parti-

tions, according to the range of values of a given attribute or combination of attributes,
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Figure 1.1: Principle of horizontal partitioning

called a partition key. Horizontal partitioning reduces the total number of read opera-

tions needed to access the rows determined by the values of the partition key provided

in a query. Figure1.1 shows how horizontal partitioning works. Suppose there is a table

recording employee information and it contains columns (emp#, f name, l name, de-

partment, salary, city, street, house#). The department attribute records the division

of the employee. It has four values: Human Resources(HR), Finance(FIN), Marketing

and Product Strategy(MPS) and Information Technology(IT). If the queries access the

information by department, we can partition the table employee into four divisions:

employee HR, employee FIN, employee MPS, employee IT. Therefore, for queries only

retrieving information on employees within human resources, we will only access the

partition employer HR and improve the query processing.

Further improvements can be achieved through vertical partitioning and through

replication of data in the appropriate partitions. In this paper, we focus on vertical

partitioning with a controlled level of redundancies in the database.
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1.2.2 Vertical Partitioning

Paradoxically, a database system quite frequently has to access the large amounts of

data in order to retrieve or to update a relatively small number of values determined by

a user. This is mainly due to the average row length being significantly bigger than the

amount of data retrieved or modified in a row. A typical example is a projection on a

single attribute of a relational table whose schema consists of many attributes with the

values consuming a larger amount of storage. Vertical partitioning splits a relational

table into a number of pieces, also called partitions, and replicates a primary key in

each partition. This reduces the average row length and in consequence, minimizes the

total number of read and write operations.

Figure1.2 is an example to show the principle of vertical partitioning. Take the

employee table discussed in Figure1.1 as an example. The Human Resources depart-

ment will require the employees’ address information frequently. When scanning the

employee table to retrieve address information, the employee’s other non-relevant in-

formation such as department, salary will also appear. In such a situation, we can

partition the table employee into two parts: Emp Dept, Emp Addr. Then the queries

needing only access to address information can be improved by avoiding access to other

employee’s information.

1.2.3 Comparison of Horizontal and Vertical partitioning

Both horizontal partitioning and vertical partitioning can avoid the unnecessary reading

of data blocks. However, vertical partitioning is easier to implement than horizontal

partitioning. For example, suppose there is table T(A, B, C, D, E, F, G) and the

value of G ranges from 0 to 50. And there is a query (Select A, B, C, D from T

where G>=10 and G<20). If we create a vertical partition V P1(A,B,C,D,G) for T

and horizontal partition HP1 which G ranges from 10 to less than 20, HP2 which F

ranges from 20 to 80 . V P1 can avoid reading unnecessary attribute E,F while HP1 can

avoid reading rows other than (10<=G<20). But because both the predicates of the

query and the predicates of horizontal partition can be much more complex, matching

both predicates of query and horizontal partition may not be achievable. Consider the

condition on attribute E, F, G is [((10<=G<20) or Not(30<=G<50)) And (20 <= F

<= 80)) Or (E = F+G)]. Since the selection criteria of E is variable, the query optimizer

cannot locate the horizontal partitions for such a condition. By comparison, finding

the optimal vertical partition is much simpler than horizontal partitioning because we
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Figure 1.2: Principle of vertical partitioning

only match the attributes used in the query and the attributes in the vertical partition.

1.3 The Challenge

The aim of this work is to find how the physical database structures can be dynamically

reorganised in order to improve the performance of a relational database server. It is

desirable that the solution should have the following characteristics.

1. One of important feature is that he optimisation of the system should be automat-

ically adaptive with the change of workload. The workload of a database system

changes with time. An optimal configuration for current workload may cause

low performance for the workload in the future. The configuration of vertical

partitioning for optimising system must be updated with the workload change.

2. Another important feature is the optimization configuration of vertical partition-

ing should be transparent to the end user and database applications, to avoid a

rewriting query for the change of configuration.
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1.4 Strategy of Solution

To achieve the objectives described above, we propose the following strategy:

1. Propose a new algorithm for static vertical partitioning of relational schemas in

a database system under storage constraints.

2. Introduce an algorithm to predict the future workload of the system. Note that,

we assume that a workload cannot rapidly change. Rapid changes occur only

when certain events happen, otherwise the system is stable. Workload changes

happen in a periodic way which makes prediction reliable.

3. Create vertical partitions for a peak time workload during a low workload time.

4. Propose a method to analyse the characteristics of a workload.

5. Index based and materialised view-based implementation of vertical partitioning

are proposed and analysed in order assure the transparency of dynamic vertical

partitioning.

6. Perform the experiments to confirm the benefit of vertical partitioning and com-

pare the implementation of vertical partitioning for an index and a materialized

view.

1.5 Thesis Organisation

The rest of the thesis is organised as follows:

1. In chapter 2, we will present a review of some techniques used and the technical

background for automatic tuning database systems in the past.

2. Chapter 3 will be devoted to the current static partition for database tuning.

This will introduce a new algorithm that vertically partitions the relational tables

according to a given workload and accordingly to a given limit of redundancies

acceptable in a database.

3. In Chapter 4, we discuss the algorithm used to change the configuration of a ver-

tical partition for a dynamic workload. Since workloads change in a set pattern,

we can trace a certain moment in the past with a present similar workload and

then predict what will happen next. The implementation of vertical partitions
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will be set up in the low load time so that in high load time, the workload can

be relieved by the configuration.

4. To achieve an automatic tuning database system, the change of configuration

should be completely transparent to the end user and the applications. This

requires that the implementation of the vertical partitioning should be recognised

by the query processor and that the query processor will automatically change

the routine for the queries. Index and Materialized View are two options for

implementing vertical partition. We will compare these two options in Chapter

5, and discuss the storage cost and time cost of building an index.

5. Chapter 6 is the conclusion, where we will summarise our work within this thesis,

together with a list suggesting future research directions.

6. The last part of this thesis comprises the references.



Chapter 2

Technical Backgrounds

With the increasing complexity of database management systems, many researchers

proposed the autonomic database system to reduce database administrator’s work.

An autonomic database system is able to manage itself and to dynamically adapt to

the changes of workload. This chapter begins with a brief introduction of autonomic

database management system features. Then, an overview about automatic database

performance tuning is presented. The database tuning approaches are classified ac-

cording to their characteristics and several approaches will also be described in this

chapter. Vertical partitioning of relational tables is one of the ways to improve database

applications by avoiding unnecessary read. The related work on vertical partitioning

will be discussed as well.

2.1 Autonomic Database Management Systems

The increasing complexity of current database applications demands more administra-

tive costs, such as system installation, configuration, upgrade, deployment and tuning,

administrator’s training and salaries and so on. Therefore, some researchers have pro-

posed an autonomic database management system, which helps to set administrators

free from routine database management and tuning tasks.

The self-managed commercial database management systems should possess the fea-

tures: self-optimized, self-configuring, self-healing, self-protecting, self-organised and

self-inspected [16].

1. self-optimized: it allows DBMS to perform any task in the most efficient way

under the constraint of a present workload, hardware configurations and avail-

able resources. Apparently, query optimization is the most important task of

self-optimization. It involves query translation, the generation of an optimal

execution plan and dynamic runtime optimizations [18]. Self-optimized will be

9
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discussed in detail in the following sections.

2. self-configuring: configuration of hardware and software should be adaptive with

the changes of environment. A DBMS configuration includes: consumption

thresholds of resources like CPU, memory, disks and the performance parame-

ters. To enhance system performance, on one hand, we may add memory, disk

or CPU. After adding these resources, we may adjust their allocation and tune

the degree of parallelism. On the other, the tuning parameters such as size of

log file, buffer size, block size and checkpoint interval and etc. could be modified

automatically without severely disrupting online operations. Current commercial

database management systems can automatically change memory configurations.

Self-Tuning Memory Manager (STMM) is proposed to dynamically tune database

memory heaps such as sort memory, locking memory, complied SQL cache, buffer

pool and so on [43]. Memory Controller evaluates the cost-benefit of distribution

of memory and then inputs the benefit into the integral control model to deter-

mine the redistribution frequency. By comparison, Automatic Shared Memory

Management (ASMM by Oracle) and memory tuner in SQL Server have limited

ability to automatically configure memory distribution.

3. self-healing: DBMS should provide a way to preserve consistency of database

systems and to perform backup and recovery with minimal system disruption.

Self-healing should maximise the reliability and availability of data while min-

imising outage of the system.

4. self-protecting: a self-protection should involve database security, privacy, data

encryption, and admission control strategies. In [9], the authors discusses the

database security issues such as secrecy, integrity and confidentiality of data.

In [3], the authors identified the technical challenges in preserving privacy and

performance and/or undesirably consuming system resources. The DB2 Query

Patroller and the Oracle Resource Manager are examples of admission control

tools used today [16].

5. self-organised: ADBMS should reorganise the table and its associated indexes to

control the storage fragmentation level. Also, ADBMS should be able to deter-

mine the optimal set of indexes, materialized views, partitions for data access.

ADBMS should recommend the optimal set of indexes, materialized views and

partitions to be used by the query. Some related research work is discussed in

the following section.
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6. self-inspected: the DBMS should collect the signs of unhealthiness and store

performance data automatically. Such information can be used to make recom-

mendations for maintenance utilities.

The thesis contributes to self-optimization and self-organization features of the

autonomic database systems.

2.2 Automatic Performance Optimisation

Automatic performance tuning includes performance measurement methodologies, au-

tomatic performance monitoring and diagnosis, automatic performance tuning.

2.2.1 Performance Measurement Methodologies

Different components of the database are measured in different metrics. For example,

hit-ratio is used to measure the efficiency of the buffer cache; transaction-per-second is

used to measure the database throughput; read and write latencies are used to measure

the I/O. However, to determine the performance impact of a particular component over

the total database throughput is extremely hard. A common currency called Database

Time has been proposed to measure a workload [15]. Database time can be a measure

to gauge the time spent in various phases of processing user requests and using or

waiting for various database resources to process the requests. This work can help to

gauge the cost saving of our work in total database throughput.

2.2.2 Automatic Performance Monitoring and Diagnosis

It is hard to discover the root cause of a low database performance and to fix the

performance symptoms [45, 13, 25, 8].

The performance diagnosis techniques include rule-based diagnosis and model-based

diagnosis. A class of rule-based diagnosis systems [37, 39] has been proposed to collect

data from experts, build up a decision tree, and prune the decision tree to provide

a collection of rules for the actions at performance troubleshooting stages. A sample

model-based diagnosis system dynamically compares the behaviour of the system with a

presumed and correct model. The differences between the assumed mode and the actual

system are used to detect malfunctioning of the system. Model-diagnosis approach

has a wide application in troubleshooting of mechanical devices, circuits, physical and

biological systems. To automatically diagnose the performance problems, a system was
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designed [26] to store performance related data in a multidimensional database and uses

the contents of the database to determine the source of performance problems.

Automatic database diagnostic monitor(ADDM) [15] uses DBTime-graph to detect

the performance bottlenecks and to provide the recommendations to alleviate them.

The DBTime-graph represents two dimensional identification process of the causes of

performance problems. Those two independent dimensions are: the database time

spent in various phases of processing user requests and the database time spent using

or waiting for various database resources used in processing user requests. ADDM ex-

plores the DBTime-graph from the root-node and exploring the node and its children

which cause significant performance issue. In the end, ADDM reports the causes of

performance issues by ranking the respective impacts. Recently, a prototype called Re-

source Advisor was proposed [33] to continuously collect trace information and maintain

a usage summary of buffer pool, storage, CPU. The collected statistics could answer

”what-if” questions and give hints to a resource upgrade.

2.2.3 Automatic Performance Tuning

Implementation of automatic performance tuning requires not only the investigations

of automatic performance diagnosis, but also the approaches to improve performance

dynamically.

Optimisation of Database system can be achieved by building a model to select the

indices according to workload change; it also can be achieved by configuring proper

concurrency control such as number of locks held by each transaction, types of locks,

duration a transaction holds lock; besides, it can be achieved by allowing dynamic

memory allocation according to workload change so that the buffer ratio can be kept

in a recommended level; it can be achieved by executing the optimal execution plan

provided by query optimizer; last but not least, it can be achieved by denomalisation

of schema to reduce the joins among tables.

In the next section, we will discuss optimization of data manipulation and query

execution plans, and reorganization of the physical database structures.
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2.3 Dynamic Query Optimisation

2.3.1 Query Execution Optimisation

Producing an accurate execution plan relies on histograms. There are a few papers that

focus on producing accurate histograms. Chaudhuri and Narasayya defined a technique

called Magic Number Sensitivity Analysis to avoid creating not syntactically relevant

statistics [12]. Some researchers explored how to efficiently construct and maintain

histograms using sampling [11, 19, 38].

Since a query optimizer may not always find the best way to process a complex query

involving complicated predicates, a prototype of a LEarning Optimizer (LEO) has been

proposed to dynamically modify the query processing plans [31]. LEO compares the

optimizer’s estimates with actual cardinalities at each step in a query execution plan. If

the estimates are different from actual cardinalities, optimizer will update its estimates

for future optimisation of a similar query. At the same time, the detection of estimation

errors can also trigger re-optimisation of a query in mid-execution.

2.3.2 Physical database structure Reorganization

The automated performance tuning of relational database servers is considered as

an important solution when reducing the running costs of information services [45].

The significant improvements in the performance of relational database systems can

be achieved through the well tailored adjustments to the physical database designs

matching the requirements of user applications. On the other hand, a large number

of different types of user applications still makes it impossible to have a one-fits-all

design that satisfies the different requirements of all applications. This is why the

adaptive reorganisation of physical database structures to the anticipated data access

requirements of user applications is an attractive option for the implementation of self-

tuning relational database servers. The adaptive structures reorganisation includes

reorganisation of indexes, partitions, materialized view.

1. Index organizing: Currently, all commercial DBMSs provide an index advisor to

generate a set of indexes for a given workload [11, 2]. In general, an index can

retrieve data which satisfies a given selection conditions efficiently. However, if

the retrieval of data is a large number rows of relational tables, full scanning

tables may be more efficient than using an index. Moreover, if there are frequent

updates on indexed data, the cost of index maintenance could be very high.
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2. Materialized View organizing: Recently, some researchers proposed algorithms

to pick up the materialized views to improve database performance [41, 22, 23].

Agrawal, Chaudhuri and Narasayya suggested to integrate selection of index se-

lection and materialized view selection not in isolation. The drawback of using

materialized view is the maintenance of consistency with an underlying table [4].

3. Partition organizing: this will be discussed in next section.

2.4 Static Vertical Partitioning

Finding the optimal partitioning for a given workload and a given database schema is

NP-complete problem. The previous work on vertical partitioning can be grouped into

two categories: overlapping and non-overlapping. First, in this section, we compare

these two categories. Then we introduce two main steps to find an optimal configuration

of vertical partitions. One is searching for the interesting column-group for partitioning.

The other is evaluating the cost of the interesting column-group.

2.4.1 Non-Overlapping Partitioning

The configuration of partitions is overlapping if the intersection(except the primary key

of the table) of any two vertical partitions is empty. An algorithm [34] has been ad-

dressed to partition a table into non-overlapping fragments based on attribute affinity.

Some researchers proposed an optimal binary non-overlapping partitioning algorithm

to optimise the number of disks accesses [14]. Recently, Agrawal, Narasayya and Yang

presented a novel techniques to integrate horizontal partitioning and non-overlapping

vertical partitioning into an automated physical database design [6].

• Advantage: duplicating attributes(except primary key) is not necessary. There-

fore, not much storage for partitions is required. Furthermore, the cost for con-

sistency control is less than for an overlapping partitioning.

• Disadvantage: in reality, it is extremely hard to find a ”clean” solution for queries

access common attributes.

2.4.2 Overlapping Partitioning

The configuration of partitions is overlapping if the intersection(except the primary key

of the table) of any two vertical partitions is not empty. Navathe, Ceri and etc. not only
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proposed a non-overlapping partitioning algorithm but also proposed an overlapping

partitioning considering the cost spent on preserving the consistency of the replicated

data [34]. AutoPart algorithm [1] was proposed to improve the performance of SDSS

database [20, 44] by overlapped partitioning.

• Advantage: By duplicating attributes in different partitions we can satisfy more

queries.

• Disadvantage: It requires additional cost to preserve the consistency of replicated

data.

Since the cost to pay for disk is quite cheap, an acceptable redundancy may enhance

the database performance dramatically.

2.4.3 Finding interesting partitions

Finding interesting partitions can reduce the complexity of finding the configuration of

partitions. A bottom-up approach to partitioning is proposed in [42, 36]. Partitioning

starts with single-attribute partitions, which are gradually increased by merging the

smaller partitions. Currently, there are two main ways to find interesting partition:

affinity based and transaction based.

1. Affinity based: One of the first solutions [32, 27, 24] proposed clustering al-

gorithms based on the affinity between the attributes. Affinity is used for the

identification of the usage patterns and groupings of the attributes, which later

on, is applied to determine a representative workload. In [34], authors proposed

an algorithm that begins with setting up an attribute pairwise affinity matrix.

Then it employed an empirical cost function called BEA to separate the matrix

into two sets of attributes: one is frequently used together and the other is less

relevant. The complexity of this solution has been reduced in [35] by an applica-

tion of the graphical techniques to optimise the partitioning. The above research

did not provide a detailed cost model to evaluate the cost of the attribute. More

recently, some researchers presented a method based on the interpretation of a

workload as a powerset of items and on the analysis of the frequent itemsets to

find out which column-set is interesting for partitioning [6, 21]. However, it is

difficult to determine a precise support as it is an empirical value and it needs

repeated tries.
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2. Transaction based: A solution proposed in [14] assumes that the database trans-

actions provide more semantic meaning than the attributes and because of that it

applies a transaction binary partitioning algorithm to decompose the relational

schemas. In [30], authors proposed a hypothetical solution that always finds

the optimal partitioning would start from the generation of all combination of

attributes from the workload.

The previous works focus on the search for an optimal solution for a given workload.

However, the workload changes from time to time, the optimal solutions from static

algorithms may optimise the database system at present but aggregate the burden in

future. Therefore, in our thesis, we proposed a dynamic algorithm to adapt the vertical

partitions to the change of workload.

2.5 Dynamical Vertical Partitioning

To our best knowledge there have been no attempts to investigate the applications of

dynamic vertical partitioning, i.e. partitioning that changes its schema together with

the changing amount and characteristics of database workload to the automated per-

formance tuning of relational database systems. However, the knowledge of database

workload monitoring, analysis and the way to implement database tuning automati-

cally assist us to improve query performance dynamically by vertical partitioning.

2.5.1 Workload Monitoring and Analyzing

The basic idea behind automated performance tuning is a feedback control loop that

consists of observation, prediction, and reaction. Self tuning of a database server should

be based on the feedback control loop where a database system continuously observes

the performance indicators and dynamically adjusts the values of critical system para-

meters to the current workload characteristics [45]. The solution proposed in this thesis

is based on a feedback loop. We observe the change of workload to detect a relatively

low workload time. Then we predict the coming workload based on the characteristics

of current workload and implement the new vertical partitions.

Capturing a moment when a significant change of workload happens is an impor-

tant aspect of self tuning systems. Much work has been done in the area of monitoring,

analysing and detecting changes in a database workload. A framework has been de-

signed to collect information about the behaviour of a database system and how to
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facilitate self-tuning and adaptive actions [10]. A system QUIET [40] has been pro-

posed to gather workload information and to dynamically choose the best indexing

schema for the currently running applications. The system considers the continuous

workload as an isolated unit and dynamically updates benefit information for each one

of the candidate indices.

An ordering of SQL statements is an important hint for performance tuning [5].

This approach treats the workload as a sequence of steps and identifies two sorts of

workload: query workload and update workload. By exploiting an order between the

query and update statements, a tuning system automatically creates and removes the

physical structures that improve performance of the system.

2.5.2 Implementing Vertical Partition

Implementation of a vertical partition as a composite key index is possible when a query

processor is able to detect and to apply the index-only processing of a query. In such

a case, a query is processed by the horizontal traversal of a leaf level of B*-Tree index

without access to a relational table. At a logical level it is equivalent to a sequential

scan of a vertical partition. As long as a partition is implemented as an index over a

relational table, the query processor is able to invoke a horizontal traversal of index

automatically.

The advanced query processors in the commercial database management systems

are capable of rewriting a query such that a materialized view is used instead of a

relational table when it improves the performance of query processing. As a conse-

quence, the mechanism is completely transparent to query processing and it allows for

the dynamic implementation at vertical partitions.

2.6 Summary

Nowadays more complicated database systems require automated database manage-

ment systems. There is still much work to do to reduce the high need for human

intervention such as human input and intelligence, need for dynamic adaption, the

lack of ability to reset DBMS parameters, the lack of analytical capabilities, no smart

maintenance strategies and so on. Dynamic vertical partition is a technique that con-

tributes to self-optimization and self-organization features of the autonomic database

systems. In this thesis, we propose a solution to achieve query optimization based on

dynamic vertical partition.



Chapter 3

Static partitioning

This chapter proposes a new algorithm that uses a suboptimal vertical partitioning

of relational tables under the constraint that a certain level of redundancies is ac-

ceptable in a database. The algorithm is based on a new cost model, which precisely

estimates I/O throughput as the total number of physical read/write database opera-

tions required to implement a given workload. The solution described in this chapter

transforms a schema of relational database into a partitioned one and decides which

components of the original schema should be replicated as the separate partitions.

The experiments conducted confirm the correctness of the cost model used by the ver-

tical partitioning algorithm and demonstrate the expected performance gains from the

partitioning.

The chapter is organised as follows. Section 3.1 defines the problem and describes

the fundamental concepts of the solution. Section 3.2 presents a cost model of the

relational database, which easily calculates the cost for a representative workload.

Section 3.3 presents the algorithm that finds the suboptimal partitions for the given

workload with a given level of redundancies. The results of our experiments and an

evaluation are included in section 3.4. Finally, section 3.5 concludes the paper and

outlines the future work.

3.1 Preliminaries

This section reviews the basic concepts of vertical partitioning of relational database

schemas.

Definition 1 Let A = {a1, . . . , an} be a set of attribute names. Then let database

schema be a set of relational schemas S = {s1, . . . , sn} such that ∀i = 1, . . . , n(si ⊆ A

and si 6= ∅).

18
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The relational schemas are normalised to the best extent for an adopted model of

data dependencies. Typically, BCNF or sometimes 3NF is enough when considering

only a class of functional dependencies, and 4NF is sufficient when extending a model

with a class of multivalued dependencies.

Definition 2 Let T = {t1, . . . , tn} be a set of SQL statements. Let a frequency fi of a

statement ti represents the total number of times the statement has been submitted for

the execution by the database applications in a given period of time. Then, the total

workload imposed on a database with a schema S is defined as a set WS = {w1, . . . , wn}
where each wi = (ti, fi).

A workload on a schema may be alleviated by using index, horizontal partition

besides vertical partition. However, in some cases, the majority of the workload on a

schema is a full table scan. In such a case, the workload will not benefit from indexing

and horizontal partitioning at all. In our thesis, we try to optimise the full table scan

workload by vertical partitioning. A typical workload consists of two types of SQL

statements: queries and data manipulation statements. The queries include single

relation queries and multi-relation queries such as join and antijoin queries, and set

algebra expressions. Multi-relation queries contribute to the scans of relational tables

in the same way as single relation queries. As a consequence the frequency of a query

is calculated as the summation of times a relational table is scanned by the single and

multi-relation queries. Furthermore, some of data manipulation statements contribute

to the scans of relational tables due to SELECT statements included in the multilevel

WHERE clauses of UPDATE, DELETE, and INSERT INTO ...(SELECT ...) statements.

Definition 3 Let 2S be a set of all database schemas created over a set of attributes

A. Then, a vertical partitioning is defined as a mapping P : 2S → 2S that transforms a

database schema S = {s1, . . . , sn} into a database schema S ′ = {s′1, . . . , s′m} such that

∀s′i ∈ S ′∃sj ∈ S(s′i ⊆ sj, kj ⊆ s′i where kj is a primary key of sj, and ∪i si = ∪is
′
i).

An elementary step of partitioning extracts from a relational schema s a new schema

s′ such that s′ ⊂ s and primary key of s is included in s′. A relational schema s can be

dropped during a partitioning process if there exists the schemas s1, . . . , sk such that

primary key of s is included in each one of s1, . . . , sk and ∪isi = s. In our approach,

elimination of the relational schemas which are the supersets of smaller schemas is not

compulsory. For example, a database schema that consists of the relational schemas

s1 = {a, b, c}, s2 = {a, b}, and s3 = {a, c} is acceptable if the large number of queries
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frequently scan each one of the schemas s1, s2, s3. Besides, dropping of s1 is possible,

however it may not be beneficial due to the frequent joins of s2 and s3 in order to restore

s1. We assume, that the reduced time of query processing compensates the costs of

redundancies and replications of data manipulation statements. It is also important

to note, that even though this kind of partitioning introduces the redundancies into a

database, it has no negative impact on the normalisation of relational schemas because

no two schemas are merged at any stage of the process.

Definition 4 Consider a database schema S and workload WS imposed on a database

with a schema S. The storage requirements of implementation of schema S for the

particular contents of a database are denoted by storage(S) and are measured as the

total number of megabytes of persistent storage needed to keep the data.

Definition 5 The costs paid for the implementation of a workload WS i.e. the costs

of processing queries and data manipulation statements are denoted by cost(WS) and

are measured as the total number I/O operations required to implement the workload.

The detailed analysis of the implementation costs is provided in the next section.

Definition 6 Given a database schema S and workload WS. A problem of optimal

unconstrained vertical partitioning is to find a vertical partitioning S ′ = P (S) such

that cost(WS′) < cost(WS) and 6∃S ′′(cost(WS′′) < cost(WS′).

If an extreme situation workload WS includes only queries and no insertions, up-

dates, and deletions then a simple solution to the problem is to add to the original

database schema the new schemas that optimise the full scans of the projections of the

relational tables. If we additionally consider the data manipulation operations then an

optimal solution can be found through merging of the new schemas.Let, workload WS

includes n queries q1, . . . , qn each scanning a relational table created over a respective

relational schema s1, . . . , sn. If a query qi for i = 1, . . . , n, accesses only the attributes

in a subset s′i of a full schema si of a relational table ri then in the first step we create

n relational tables r′1, . . . , r
′
n over the schemas s′1, . . . , s

′
n. If an additional load created

by the data manipulation operations replicated in the new relational tables exceeds the

benefits from query processing, i.e. the total number of additional I/O operations spent

on implementation of data manipulations is larger than the total number of I/O oper-

ations saved on query processing, then we reverse partitioning by merging the schemas

s′1, . . . , s
′
n. This process is a part of an algorithm discussed later in the paper. Note,

that unconstrained vertical partitioning does not eliminate original relational schemas

and because of that it does not increase the costs of join operations.
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Definition 7 A problem of optimal constrained vertical partitioning is to find a ver-

tical partitioning S ′ = P (S) such that cost(WS′) < cost(WS) and 6∃S ′′(cost(WS′′) <

cost(WS′) and storage(S ′) ≤ cmax where cmax is a constraint imposed on the total

amount of persistent storage available for the implementation of schema S ′.

A constraint imposed on the total amount of additional persistent storage available

for the vertical partitions makes the problem more realistic and significantly increases

its complexity. As finding an optimal solution is NP-hard problem we weaken it to a

suboptimal solution.

Definition 8 A problem of the suboptimal constrained vertical partitioning is to find

a vertical partitioning S ′ = P (S) such that cost(WS′) < cost(WS) and storage(S ′) ≤
cmax.

In this case we are interested in a solution that increases the performance of query

processing at a rate higher than the costs from increased processing of data manipula-

tion statements and it does not exceeds a given amount of persistent storage.

3.2 Cost Model

A central point in any algorithm used to find the optimal or suboptimal partitioning

is the quality of the cost model being used to calculate a value cost(WS) for a given

workload WS imposed on a database with a schema S.

The iterations towards the optimal partitioning are conducted by moving from one

database schema to another in an attempt to reduce the data processing costs and to

stay below a given threshold of persistent storage.

An elementary step of this procedure, i.e. the choice of the next best database

schema from a given set of options is determined by the largest reduction of cost(WS)

for any new database schema. This is why, the precise estimation of cost(WS) at each

stage is so important for the quality of the entire process.

In this paper we measure cost(WS) as the total number of read and/or write data

block operations needed to compute a workload WS over a database schema S. A

workload consists of query processing component QS, data entry component IS, update

US, and delete DS components. The data manipulation components contribute to

a query processing component when the respective SQL statements contain SELECT

statement in their bodies, e.g INSERT INTO T (SELECT ...) statement which inserts
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into a relational table T the rows retrieved by SELECT statement. Hence, cost(WS) =

cost(QS) + cost(IS) + cost(US) + cost(DS).

To calculate cost(QS) we decompose the multi-queries into a collection of single

queries and we add up the frequencies which exclude the times of the repeating reads

from caching. Currently, The DBMS stores information in memory caches and on disk.

Memory access is much faster than disk access. For this reason, many cache algorithms

like Least Recently Used (LRU), Most Recently Used (MRU), Least Frequently Used

(LFU), etc. have been proposed to store frequently accessed objects in the memory,

rather than requiring disk access. Therefore, cost(QS) does not include the cost of

memory access for the selection query.

cost(QS) =
∑

i

cost(Q
(i)
S ) ∗ (fi − ci)

where cost(Q
(i)
S ) is the total number of I/O operations needed of query Q(i) over a

database schema S.

To calculate cost(IS), cost(US), cost(DS) we decompose each data manipulation

statement into an operation part and query part. As the query parts have been already

considered in query cost(QS), the cost of the operation part is evaluated in the following

ways. The costs of insertions are determined by a formula:

cost(IS) =
∑

i

(cost(I
(i)
S ) ∗ fi)

where for each insertion cost(I
(i)
S ) is equal to N ∗ (1 + logf K) + 2) Insertion into

a relational table needs an insertion into a B-tree index over an index key and two

operations (read and write) on a data block to insert a row into the table. If an

insertion affects N schemas then it has to be repeated N times.

The costs of updates are determined by a formula:

cost(US) =
∑

i

(cost(U i
S) ∗ fi)

When the number of updated rows in the first partition is small then cost(U
(1)
S ) is

equal to the total number of I/O operations needed to scan the first partition and for

i > 1 cost(U
(i)
S ) is equal to ((1 + logf K) + 2) ∗n ∗ (M − 1) where n is the total number

of rows updated in the first partition and M is the total number of partitions to be

updated and f denotes a fanout of B-tree implementation of an index, k denotes the

total number of keys in an index. When the total number of updated rows in the first

partition is large then cost(U
(i)
S ) for i ≥ 1 is equal to the total number of I/O operations

needed to scan all partitions that need to be updated.
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The deletions are performed in the same way as the updates. The costs of deletions

are determined by a formula:

cost(DS) =
∑

i

(cost(D
(i)
S ) ∗ fi)

When the number of deleted rows from the first partition is small then cost(D
(1)
S ) is

equal to the total number of I/O operations needed to scan the first partition and for

i > 1 cost(D
(i)
S ) is equal to ((1+ logf K)+2) ∗n ∗ (M − 1) where n is the total number

of rows deleted in the first partition and M is the total number of partitions to be

considered and f denotes a fanout of B-tree implementation of an index, k denotes

the total number of keys in an index. When the total number of deleted rows in the

first partition is large then cost(D
(i)
S ) for i ≥ 1 is equal to the total number of I/O

operations needed to scan all partitions that are affected by the deletions.

3.3 Partition Configuration

Finding the optimal partitioning for a given workload WS and a given database schema

S is NP-complete problem.

A hypothetical solution that always finds the optimal partitioning would start with

the generation of all combinations of attributes from a relational schema and then

repeating this process for all relational schemas in a database schema. Next, we would

compute cost(WS) for all combinations of the sets of attributes found in the previous

step so that each combination covers an entire database schema. The optimal solution

is the one that minimises cost(WS). The complexity of such an algorithm would be

O(n2) where m is the total number of attributes in a database schema.

The partitioning algorithms presented in this section speed up this process by start-

ing from the original schema S of a database and using the greedy partition selection

algorithm to find a partition configuration that minimises the cost of the workload at

each step.

3.3.1 Algorithm overview

Figure 3.1 shows the main steps of the algorithm. At the beginning the algorithm

generates the candidate partitions for each query and data manipulation task included

in a given workload. Next, it calculates the benefits from the separate implementation

of each one of the partitions taken from a candidate set. A partitioning that returns the
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Figure 3.1: Outline of algorithms

highest benefits is accepted for the implementation. As we keep all the original tables in

a database, the implementations of the new partitions require the additional amounts

of persistent storage. The algorithm repeats the allocations of the new partitions from

a collection of partitions computed at the beginning as long as the total amounts of

additional persistent storage do not exceed a given threshold. When that happens, the

algorithm recycles one of the relational tables from the original database. A recycled

space is used to implement the next partition. The algorithm stops when either all

partitions are implemented or when we no longer benefit from the implementation of

a new partition.

3.3.2 Choosing the partitions

A greedy algorithm (shown as Algorithm 1) controls the selection of the partitions from

a set of candidate partitions generated at the beginning of the algorithm. A partition

is chosen when it provides the highest benefits from a collection of the still remaining

partitions and its implementation does not exceed the assumed storage threshold. Once

the new configuration is generated, the algorithm recalculates the cost of the candidate

partition which is a subset of a new partition or includes the subset of a new partition.
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Initialization;

Set candidate partition schemas set of Workload CP = {cp1, cp2, ...cpn};
Calculate the benefit of each candidate partition and Sort them;

repeat

if max benefit candidate partition cpmax > 0 then
Add cpmax into partition configuration P to generate new partition

configuration P ′;

Remove cpmax from CP;

Calculate the benefit of every candidate partition;

Find the maximum benefit of candidate partition cp′max for new Partition

P ′ ;

else
exit;

end

until (Storage(P ′) + Storage(cp′max)) > cmax;

Run Algorithm 2;
Algorithm 1: Partition greedy selection algorithm

3.3.3 Recycling of the original tables

The original tables covered by the new partitions are kept in a database as long as we

do not run out of storage for the implementation of the new partitions. Such a strategy

allows for the effective utilisation of cheap persistent storage and as long as it is possible,

eliminates the expensive computations of join operations when two or more partitions

are used in the same query. At this stage, according to the current configuration, we

can easily evaluate the join cost for the current workload and decide whether or not to

recycle the space of origin table to enhance performance. The complemental attribute

set of original table T is denoted as T . After removing an original table from the

partition configuration, we will add T to make sure no any attribute of T will be lost.

Algorithm 2 shows the procedure of recycling the original tables.
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foreach original Table Tk in D do

foreach candidate partition cpi ⊂ Tk do

if Storage(new partition P’) <= cmax then
Calculate the benefit of cpi;

end

end

Find the maximum benefit of candidate partition cpmax;

if there exists cpmax > 0 then
Add candidate partition cpmax into partition configuration P;

Remove cpmax from CP;

Remove Tk from partition configuration; Add Tk into partition

configuration P;

Set Flag = True;

end

end

if there is some space left and Flag = True then
run Algorithm1;

end
Algorithm 2: Table recycling algorithm

3.3.4 Merging the partitions

At the final stage we merge the pairs of very similar partitions in order to save some

disk space for further partitioning. This algorithm enhances the quality of partitioning

by merging the similar partitions.
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foreach original Table Tk do

foreach pi, pj ⊂ Tk do
if benefit of merging pi, pj > 0 then Merge(pi, pj);

Run algorithm 1;

else if benefit of (merging pi, pj and adding cpmax) and new Partition

<= cmax > 0 then
Merge(pi, pj);

Run algorithm 1;

else
exit;

end

end

end
Algorithm 3: Partition merging algorithm

3.4 Experiments

The vertical partitioning algorithm has been implemented and tested on a sample

database containing synthetically generated data. The experiments involved a number

of various distributions of the database loads. All experiments have been conducted

with the off-the-shelf, commercially available database server Oracle 10g, release 1

running on a single processor 2-GHz Intel CPU box with 512 MB of main memory and

a 40-GB hard drive. A sample database implemented TPC-R[28] benchmark database

with data generated accordingly to the benchmark specifications.

The TPC-R database comprises 8 tables. We experimented with the workloads

consisting of 20 queries accessing two of the largest relational tables in a sample data-

base. The size of the largest table is about 2 Gbytes and its schema consists of 16

attributes. The size of the second largest table is about 650MB and its schema con-

sists of 9 attributes. Both tables have the non-clustered B-tree indexes automatically

constructed on the primary keys.

3.4.1 Evaluation of partitioning

In the first experiment, we generated two partition configurations, VPMY and VPQO

respectively, with our cost model and a cost model provided by Oracle query optimizer.

We compared these two configurations with the original table ORIG. The figure 3.2
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Figure 3.2: Storage and performance

Figure 3.3: Performance comparison

shows that the partition configurations generated by both cost models got the same

benefit. Meanwhile, the performance of the new partition configuration is enhanced

about 30%.

3.4.2 Trend of Storage and Benefit

In the second experiment, we defined two quite typical workloads. The first one has

many similar schemas to those in the workload S WKLD while the other D WKLD

has only a few similar schemas. We allocated the same storage threshold for both

workloads. Figure 3.3 shows that:

1. the performance is enhanced with the storage cmax increasing;

2. with the storage boundary increasing, the performance improvement trends for

the workloads in a different similarity level.
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3.5 Summary and open problem

This chapter introduces a new algorithm that vertically partitions the relational ta-

bles according to a given workload and accordingly to a given limit of redundancies

acceptable in a database.The contributions of the chapter are as follows:

1. we show how to perform a detailed analysis of the costs of query and data ma-

nipulation processing over a given configuration of a relational database and we

compare the analytical results with the results obtained from a cost-based opti-

mizer of a commercial relational database server,

2. we propose a new algorithm for vertical partitioning of relational schemas in a

database system with a given level of redundancies

However, there are some limitations of static partitioning algorithms. Firstly, the

configuration conducted from a static partitioning algorithm cannot optimise the data-

base system automatically. The workload fluctuates dramatically from time to time. A

configuration which optimises the database system at present may not do so in future.

Furthermore, we should not create the configuration during a heavy workload because

it will place a burden on the system. One of solutions to optimise a dynamic workload

is to create the vertical partitions for the heavy workload while in the low workload

time.

Secondly, the query processing subsystems of the commercial database servers can-

not detect which vertical partitions are the constituents of which relational tables. Cur-

rently query optimizers consider only relational tables, indexes and relational views.

Vertically partitioned relational tables are not allowed for generating better query

processing plans. Therefore, if we implement the vertical partitions as relational ta-

bles, we have to adjust the applications and compile them every time the configuration

changes. If we implement the vertical partitions as relational tables and then we use

the relational views to compose the original relational tables, the query optimizer is

not smart enough to find the lest length path to find the records. For example, we have

an original table T1(A,B,C) and we reorganise table T1 as vertical partitions P1(A,

B), P2(A,C) and view V1(P1.A, P1.B, P2.C). If we have a query on V1.B, then the

query optimizer still joins two partitions first, and is not smart enough to take P1 only.

To make the query optimizers smart enough to use the vertical partitions, we im-

plement the partition as an index. The optimizer will consider a fast full scan of the

index which represents the partition without changing the applications.
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In the next chapter, we will introduce an algorithm that will dynamically optimise

the workload on a schema by indexing a partition based on the static partitioning

algorithm.



Chapter 4

Dynamic Partitioning

We begin this chapter by introducing the periodical behaviors of the database workload.

Then, we define the basic concepts for detecting the potential low workload time. When

a potential low workload time comes, we start to search for all similar workloads.

If there exists a similar workload, we use a greedy algorithm to find a sub-optimal

configuration for a high workload. When we get the configuration, we may schedule

the implementation to avoid affecting the performance of the low workload time. The

chapter finishes with some experiments and a conclusion for dynamic partitioning.

4.1 Workload Patterns

Workloads change from time to time, however the changes are not totally random.

The order of database access is restricted by business rules or business logic, which

results in database workload changes that appear cyclical over time. For example, in

the morning, a commercial system will start with reviewing all the transactions that

happened yesterday, then it handles the exceptional transactions or approves successful

transactions. Therefore, the business rules and business logic of a database system

make the workload behave in a strongly periodic way. From the structure of a program

view, many programs are written in a modular way and they are composed by a set

of procedures contained in a loop. These loops in the application make the workload

behave periodically. As well, database administrators may arrange some job lists to

run in a specific time which contributes to the system’s periodic performance. In this

thesis, we assume that a workload cannot rapidly change. Rapid changes occur only

when certain events happen, otherwise the system is stable.

In a database system, some unexpected events cause a workload to show an unusual

pattern. In some cases, we may not find any similar present or past patterns. For

example, when a table crashes it takes some time to rebuild it. The queries based on

the tables cannot be executed and will have to wait until the table is available. In such

31



4.2. Preliminaries 32

a case, the workload changes are unpredictable and similar workloads cannot be found.

In some other cases, the exceptional event could have happened before and we may

find a similar workload based on the characteristics of these accidental events. For this

thesis, the algorithm may not be necessary to find a similar workload when unexpected

events happen.

4.2 Preliminaries

This section introduces the basic concepts of dynamical vertical partitioning of rela-

tional database schemas.

Definition 9 Let A = {a1, . . . , an} be a set of attribute names. We say that a database

schema is a set of relational schemas R = {r1, . . . , rn} such that ∀i = 1, . . . , n(ri ⊆ A

and ri 6= ∅).

Definition 10 Let 2R be a set of all database schemas created over a set of attributes

A. Then, a vertical partitioning is defined as a mapping P : 2R → 2R that transforms

a database schema R = {r1, . . . , rn} into a database schema R′ = {r′1, . . . , r′m} such

that ∀r′i ∈ R′∃rj ∈ R(r′i ⊆ rj, kj ⊆ r′i where kj is a primary key of rj, and∪i ri = ∪ir
′
i).

Definition 11 An execution e is a quadruple(s, ts, te, u) where s is SQL statement,

ts and te represent respectively the times the statement s starts and ends, ts < te. A

statement s is executed on behalf of a user u.

Definition 12 A tracefile T is a set of executions {e1, e2, . . . , en}.

Definition 13 Let si, sj be SQL statements. We say that si is equivalent to sj when

a query execution plan of si is the same as that of sj. A query execution plan is

an extended relational algebra expression parsed by the query optimizer. An extended

relational algebra includes the operation of selections, projections, joins, divisions and

groupings.

For example, given queries Q1 and Q2 on table T(a, b, c, d) as follows:

Q1: SELECT a, b FROM T WHERE c = 100;

Q2: SELECT a, b FROM T WHERE c > 72 and c < 100;
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Figure 4.1: Total workload

The relational algebra of Q1 and Q2 is a projection of T on (a,b,c). Therefore, Q1

is equivalent to Q2.

Definition 14 Let load(s) denotes an amount of workload imposed on the system by

the execution of a statements. For any statements if s has been entirely executed within

a period (tfrom, tto) then it contributes with load(s) to the total workload, otherwise it

contributes with (g/c) ∗ load(s) which g is the length execution time in the period and

c is the total execution time of s;

Definition 15 Let S = s1, s2, . . . , sk be a set of SQL statements. The total workload

imposed on a database with schema R within a given time period (tm, tn) is defined as

a set W
(tm,tn)
R = ∪i=1..k(load(si) ∗ gi/ci).

For example, Figure 4.1 shows that in duration (t1, t2), the system completely

executed the statements s1, s2, s3, s4 and half of s5 and such that s2 is equivalent to s3

then the total workload is load(s1) + load(s2) + 2 ∗ load(s3) + load(s4) + 0.5 ∗ load(s5)

= load(s1) + 3 ∗ load(s3) + load(s4) + 0.5 ∗ load(s5).

Definition 16 Let δ be a unit of time used to measure a workload. Then we denote

an amount workload over δ as unit workload Wδ.
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Figure 4.2: Example of session and signature

Definition 17 We call a given period(tm, tn) as low workload time, when ∀i = 0, . . . , n(

Wδi
<= vlow) and δi included in (tm tn) and vlow is a minimum support value of low

workload.

Definition 18 We call a given period(tm, tn) as high workload time, when ∀i =

0, . . . , n( Wδi
>= vhigh) and δi included in (tm tn) and vhigh is a minimum support

value of low workload.

Definition 19 We define a session c as a sequence of executions < e1, . . . , en > in a

duration from ti to tj. ∀i <= n, ei = (si, t
′, t′′, u).

Definition 20 We define a signature of a workload W(ti,tj) as a set of sessions {c1, . . . , cx}
that occurred in duration (ti, tj).

As shown in Figure 4.2, in (t1, t2), a session c1 of user e1 is < s1, s4, s2, s1, s5, s3 >;

c2 of user e2 is < s1, s8, s2 >; c3 of user e3 is < s6, s3 >;

A signature of a workload is a set of sessions (c1, c2, c3).
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4.3 Cost Model

As discussed in chapter 3, the quality of any algorithm relies on the quality of the cost

model being used to calculate a value cost(WR) for a given workload WR imposed on

a database with a schema R.

In this chapter, the measurement of cost(WR) is the same as cost model in static

partition, which is the total number of read and/or write data block operations needed

to compute a workload WR over a database schema R. The workload consists of the

query processing component QR, the data entry component IR, update UR, and delete

DR components. The data manipulation components contribute to a query processing

component when the respective SQL statements contain a SELECT statement in their

bodies, e.g INSERT INTO T (SELECT ...) statement which inserts into a relational

table T the rows retrieved by SELECT statement. Hence, cost(WR) = cost(QR) +

cost(IR) + cost(UR) + cost(DR). Detailed calculation of cost model can be referred to

chapter 3.

4.4 Overview of Dynamic Partitioning Algorithm

The objective of the dynamic partitioning algorithm is to balance system workloads.

As shown in Figure 4.3, at some durations, there are excessive applications access to

the database which causes the database system to work extremely slow. At other

durations, there are only a few applications access to the database system while many

resources of the system are wasted. To improve the performance in busy time and to

fully use the resources in idle time, we may generate the optimal configuration for high

workload time during low workload time. Figure 4.4 shows the dynamic partitioning

algorithm have this result.

Figure 4.5 shows the main steps of the dynamic partitioning algorithm. A starting

point to the dynamic partitioning algorithm is the continuously repeated evaluation of

a workload level imposed on the system by the database applications. Next, we search

for the best match for current and previous workload by comparing the signatures of

current workload and the previous low workloads. If the most similar workload can be

found, we analyse its historical executions to find what query and data manipulations

will be performed. The analysis of anticipated an database operation is used to generate

a set of vertical partitions. Finally, the implementation of partitions will carry on until

all partitions are implemented or the workload during implementation increases above

vhigh.
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Figure 4.3: Workload before dynamic partitioning

Figure 4.4: Workload after dynamic partitioning
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Figure 4.5: Overview of dynamic partitioning

4.5 Potential Low Workload Time Detecting

An objective of this procedure is to detect the periods of time when the system is

relatively idle and when it is possible to find which new vertical partitions will be

needed in the future and which can be discarded. Evaluation of a workload is performed

at every single unit of time t. If a workload at the continuous k units is below vlow then

the system starts a procedure that tries to anticipate how much time of a low workload

is left and what changes to the vertical partitioning should be done. If at any of the

following time units a workload increases above vlow then re-partitioning procedure is

stopped and the most up to date state of vertical partitioning is preserved at that point

in time.
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input : ArrayofUnitWorkload WArr, support vlow

output: Boolean

Set Flag = True;

for i = 1 to WArr.last do
if WArr[i] ≤ vlow then Return True;

else
Return False;

Exit
end

end
Algorithm 4: Detecting a potential low workload time algorithm

4.6 Finding Most Similar Workload

The identification of new partitions and the ones that are no longer needed starts from

finding in the history of executions all moments which are the most similar to the

present one. There are four steps finding the most similar workload time in the past

executions. To find the most similar workload we analyse the contents of a trace file

and we pick up the moments when k continuous unit workload was below vlow. Next,

we compare the signatures between the occurrences found and the present workload

and then pick up the one with highest similarity level. If there are several signatures

having the same similarity as the current one, we choose the most recent workload.

If there is no workload similar to the current one then the repartitioning procedure

is terminated. When the most similar workload is found we analyse the history of

executions following the workload in order to find what query and data manipulation

operations will be performed in the future.

First, we introduce the function to calculate the similarity of the two signatures.

4.6.1 Function to calculate similarity of two signatures

Given two signatures, we can calculate the similarity rate by comparing the characters

in the signatures. The more different characters the two signatures have, the less

similar they are. Note that ”-” means difference,
⋃

means set union and ”‖” means

the number of the elements in a set.
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input : Signature s1, s2

output: Similarity Ratio

Set i = 0 ;

i = 1 - (|(s1− s2)| + |(s2− s1)|) / |(s1 + s2)|;
Return i;

Algorithm 5: Calculating Similarity of Signatures algorithm

4.6.2 Most Similar Workload Searching

In the tracefile, we pick up the moments when k continuous unit workload is below vlow.

Then we compare the similarity in signatures of the current workload with signatures

of the workloads we found. If there are several signatures similar to current one, we

choose the most recent. If there is no similar workload as is found, we will not consider

reconfiguring the partitions. The following algorithm shows how to search for the most

similar workload.

input : Current Signature cs, ArrayofSignature AS, support of similarity ss

output: Signature s

for i = 1 to AS.last do

if Similarity(AS[i], cs) < ss then
Remove AS[i]

end

end

if AS is not Empty then
Sort AS by Similarity and time;

Set s = AS[1];

end
Algorithm 6: Searching Most Similar Workload

4.7 Finding configuration

4.7.1 Choosing partitions

The information about the anticipated database operations found while searching for

the most similar workload is used to generate a set of candidate vertical partitions.
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A vertical partition becomes a candidate when it provides the highest benefits from a

collection of the still remaining candidate partitions and its implementation does not

exceed the assumed storage threshold and time limitation.
input : ArrayofPartition AP

output: ArrayofPartition P

Variable(ArrayofTriple: CP, which cpi = (api,benefit,size));

repeat

for i = 1 to CP.last do

if CP [i].time + TimeofBuilding(P) > TimeLimit then
Remove CP[i]

end

end

if CP is Empty then
Exit;

Run Merge Algorithm;

end

for i = 1 to CP.last do

if CP [i].size + Sizeof(AP) > Storage then
Remove CP[i]

end

end

if CP is Empty then
Exit;

Run Algorithm;

end

for i = 1 to CP.last do
Calculate the benefit for CP[i];

end

if CP is Empty then
Exit;

Run Merge Algorithm;

end

Sort CP by benefit;

Add CP[1] into P;

Remove CP[1] from CP;

until (AP is null);
Algorithm 7: Partition greedy selection algorithm
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4.8 Merging the partitions

In this step, we merge the pairs of similar partitions in order to save some disk space

for further partitioning. To evaluate the similarity of two partitions, we can use the

following formula:

i = 1− (|(s1− s2)|+ |(s2− s1)|)/|(s1 ⋃
s2)|

The higher similarity, the higher is the possibility of getting benefit from combining

the two partitions. Merging two partitions with a similarity above a certain support

could enhance the quality of configuration.

for E do
a

end

choriginal Table Tk for E do
a

end

chpi, pj ⊂ Tk if benefit of merging pi, pj > 0 then Merge(pi, pj);

Run Partition greedy selection algorithm;

else if benefit of (merging pi, pj and adding cpmax) and new Partition <= cmax

> 0 then
Merge(pi, pj);

Run Partition greedy selection algorithm;

else
exit;

end
Algorithm 8: Partition merging algorithm

4.9 Partition Implementation

The operations related to the implementation are not counted as the operations that

contribute towards the continuous evaluation of the present workload. This is to avoid

the ’oscillations’ caused by an accidental abortion of the vertical partitioning due to the

current workload increasing by re-partitioning above vlow and therefore restarting the

procedure when a workload goes below the threshold level again. The entire process

of re-partitioning is also not recorded in a history of executions in order to avoid the

distortions to form the past executions.
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4.10 Comparison between Static and Dynamic par-

titioning

Compared with a static partitioning algorithm, dynamic partitioning does not recy-

cle the original table. As a result, a vertical partitioning generated by the algorithm

may not be as good as static partitioning. The static partitioning algorithms gen-

erate the partitions for the long term workloads. Then, the transparency of vertical

partitioning is not required and application programmers have enough time to incor-

porate information about the partitions into into the database applications. Under

the constraints of dynamic partitioning, the vertical partitions must be transparent to

applications because there is no time for re-implementation of a query and data manip-

ulation operations. Currently, commercial database management system can enforce

the transparency of partition by implementing it as a materialized view or an index.

Because a materialized view or index relies on the original table, recycling of the origi-

nal tables cannot be achieved based on current database management systems. In the

next chapter, we introduce the ways to implement partitions. Also, we propose a solu-

tion to make recycling original tables possible which requires only minor modifications

of commercial database management systems.

4.11 Summary

This chapter presents a dynamic vertical partitions algorithm for dynamic workload

under storage constraints and implementation time limitations. The basic idea of the

solution is to improve the database performance in high workload time by creating

partitions to reduce the unnecessary read for queries. Since the creating partitions will

increase the workload, we implement the partitions in low workload time.

Firstly, we introduced how the workload changes. Then we introduced the basic

definitions for the dynamic algorithm. In section 4, we introduced a way to detect a

moment which could be low workload time. When the potential low workload time

has come, we start to find a moment in the past having the most similar situation as

the current one based on the Signature of workload. Once the most similar workload

has been located, we validate if the current time is a low workload time or not. If

so, we use a greedy algorithm to find the configuration for the coming high workload

time. Finally, we attempt to avoid affecting performance in a low workload time by

scheduling the partitions creating.
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The contributions of this chapter are as follows:

1. we show how workloads change in a periodic way, and use the signature of the

workload to locate a moment in the past having a similar situation as current

time.

2. we proposed a way to generate the partitions dynamically to fit the workload

changes so that we can auto tune the query processing.

Because the configuration changes with the workload, the partitions should be com-

pletely transparent to database applications. How to implement partitions is critical

to database auto tuning. We will be discuss this problem in the next chapter.



Chapter 5

Implementation of Dynamic Vertical
Partitioning

In an ideal case, the changes of configuration of partitions should be completely trans-

parent to the applications and require no intervention or hints. Therefore, the way of

implementing a partition is critical for tuning database systems by vertical partitioning.

At the moment only indices, and in the more advanced systems, materialized views are

transparently considered by a query processor when generating the query execution

plans. The other important property needed for the implementation of dynamic verti-

cal partitioning is the ability of a query processor to dynamically replace the stored old

query execution plans with new ones generated after the vertical partitions are built.

In this chapter, we will firstly discuss the issues of implementation of partitions, and

then we present the ways of implementing a partition as an index and as a materialized

view. To compare the two ways of implementing partitions, we provide not only some

criteria for comparison between an index and a materialized view, but also establish

cost models for the criteria.

5.1 Issues of implementing partitions

To achieve an auto tuning database system by vertical partitioning, partitions should

be completely transparent to applications. Otherwise, changes of partitions will require

modification of applications. As a result, dynamically optimizing a database by the

use of vertical partitions cannot be achieved.

In current commercial database management system, the partition can be imple-

mented as a relational table, a relational view, an index or a materialized view. If the

partition is implemented as a relational table, it may cause a problem of optimal choice

of partition for a query. For example, suppose we have table T(A, B, C, D), partitions

of T: P1(A,B), P2(A,B,D) where A is the primary key. Consider a query

SELECT A, B FROM T

44
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The query of selection from T cannot be transformed to selection from P1 by query

optimizer automatically.

If the partition is implemented as a materialized view, the query processor in the

commercial database management system can detect the optimal materialized view for

a query and be able to rewrite the query to access the optimal materialized view. If

the partitions are implemented as indexes over the relational tables, a query processor

is able to detect that horizontal traversal of an index is equivalent to a full scan of a

partition. Therefore, implementing partitions either as a materialized view or index

allows the changes of the partition as transparent to the applications.

In the next section, we show the ideas of index-based and materialized view-based

implementation.

5.1.1 Materialized View-based Implementation

A materialized view is a preserved result obtained from the query processing in a

database. Therefore, a query is executed much faster by accessing a materialized view

than by accessing a normal view. The advanced query processors in the commercial

database management systems are capable of rewriting a query such that a materialized

view is used instead of a relational table when it improves the performance of the

query processing. As a consequence, the mechanism is completely transparent to query

processing and it allows for the dynamic implementation of vertical partitions.

Take table T, partitions P1, P2 and the same query in figure 5.1 as an example

again. The partitions P1 and P2 are implemented as MV1, MV2 respectively. When

a query is executed, the query optimizer will analyse whether it is faster to access the

materialized view or the underlying tables where the data resides. If the optimizer

accessing the materialized view is a better solution, the optimizer rewrites the query

to use a materialized view.

However, the data in materialized views are not immediately updated together

with the data in a master table. This causes a problem of preserving the consistency

between a master table and a materialized view built as a projection of the master table.

Basically, we have two ways to refresh a materialized view, Fast Refresh and Complete

Refresh. A Fast Refresh can update the materialized view quicker than Complete

Refresh but it cannot be used in some cases. To perform a Fast Refresh, requires a

log on the change of the master table. However, some types of bulk load operation

on a master table do not write log. For example, the bulk load operation includes

some INSERT statements with an APPEND hint and some INSERT ... SELECT
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Figure 5.1: Example of Materialized View

* FROM statements. This causes the consistency problem of the master table and

the materialized view. Complete Refresh reloads data again. It takes a substantially

longer amount of time to synchronise the materialized view and master table but this

can guarantee the consistency between them. If we use Complete Refresh, it could

aggravate the burden during high workload time.

5.1.2 Index based Implementation

The implementation of a vertical partition as a composite key index is possible when

a query processor is able to detect and to apply the index-only processing of a query.

In such a case, a query is processed by the horizontal traversal of a leaf level of B*-

Tree index without access to a relational table. At a logical level it is equivalent to

a sequential scan of a vertical partition. As long as a partition is implemented as an

index over a relational table, the query processor is able to invoke a horizontal traversal

of the index automatically.

The B-tree includes the branch level and leaf level. A branch node contains pointers

to leaf nodes or other branch nodes. The leaf level contains every indexed data value

and a corresponding Rowid used to locate the actual row. In such a case, rewriting a

query in the original application is not necessary. Figure 5.2 illustrates the data in a

leaf level being used in a horizontal traversal of index.

The implementation of a partition as a composite key index requires additional

space for recording index information beside spending some space on table columns.

As a result, the storage costs of an index-based implementation are higher than the
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Figure 5.2: Horizontal traversal of index

costs of a materialized view-based implementation.

The storage cost model in the next section shows the difference between index and

materialized view.

5.2 Comparison of Index-based and Materialized

view-based

Either implementing a partition as an index or as a materialized view will be trans-

parent to the application and the query processor will automatically find the optimal

data source for the query. There are three main criteria for comparing implementation

as an index or as a materialized view.

1. Time cost for maintaining partition consistency with the original table on which

it relies.

2. Storage cost for building a partition by an index or by a materialized view.

3. Time cost for building a partition by an index or by a materialized view.

5.2.1 Consistency Control Comparison

Commercial database systems have two basic methods to maintain the consistency of

a materialized view: Fast Refresh and Complete Refresh. Since Fast Refresh cannot

apply changes which are caused by some types of bulk load operation on a master table,
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we have to use Complete Refresh to guarantee the consistency for materialized view.

If we use Complete Refresh, we have to rebuild the whole materialized view which may

require a heavy read and write operation.

Compared with a materialized view, an index has no need to rebuild to keep it con-

sistent with its master table. An index will be automatically updated simultaneously

in a current commercial database system when the index key in the table has been

changed. The time cost of maintaining an index includes two parts: traversing the

index tree and updating the index tree.

Because the index will be updated immediately with the index key modification,

it may lead to overhead update the index. In some cases, the data in the partitions

may not necessarily be updated immediately with every single modification by a SQL

statement. We may update the partition at a particular time such as every four hours.

In such a case, implementing a partition as a materialized view take advantage of the

index. However, if the modification of data is sensitive to the coming queries, the

change of partition and table must be synchronized at the same time. In such a case,

an index will be a better choice than a materialized view.

5.2.2 Storage Cost Comparison

Storage Cost by Materialized View

Suppose the size of block is b, the length of partition columns is c and extra space to

record materialized view information. And there are r rows in table T. Therefore, we

can deduce that:

The number of fully packed blocks to store the partition is:

n = r/(b/(c + e))

The storage cost for a materialized view is approximately equal to the total rows of a

table multiplied by the row size of a partition. To enforce the integrity of a materialized

view, we consider Complete Refresh since Fast Refresh cannot apply changes for some

bulk loads. Therefore, the cost of update, insertion, and deletion is equal to twice of

partition size.

Storage Cost by Index

All the partitions are implemented as non-clustered B-tree index. Here is the formula

to evaluate the storage cost.
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The index holds the key value and then the address of the row in the table with

this value. Each row in the table must have an entry in the leaf blocks of the index.

The branch blocks are used as an index to the leaf nodes. So each block for the leaf

nodes needs to be addressed by the next level up of the branch nodes.

Suppose the size of block is b, the length of index columns is c and extra space e

to record an index pointer. And there are r rows in table T. Therefore, we can deduce

that:

1. The number of rows can be stored in a fully packed block

n = b/(c + e)

2. The total blocks for leaf level:

l = r/n

3. The total blocks for branch(fanout):

f = l/n

So, the formula to estimate an index size is:

IndexSize = l + f

5.2.3 Comparison by Time Cost

Time cost by Materialized View

Suppose the size of block is b, the length of partition columns is c and extra space to

record materialized view information. There are r rows in table T, therefore, we can

deduce that:

n = r/(b/(c + e))

The time cost for a materialized view is the total read and write blocks of building

it.

Time cost by index

The time cost of building an index is the total of read and write blocks for inserting.

Suppose there are k index keys on the index of table T. When we create the index for



5.3. Open problems 50

table T, we have to take some time to insert k rows with a new value of index key,

meanwhile we have to insert (r-k) rows with an existing value of index key.

The time of inserting a row with a new value of index key is:

t1 = 2 ∗ (1 + logf k)

The time of inserting a row with an existing value of index key is:

t2 = 1 + logf k

Therefore, suppose every index key has the same number of rows which is r/k. The

cost of building an index goes up with more and more index key being inserted in

the tree. For each index keys, we spend one t1 and (r/k - 1)*t2. Then the total time

spending on creating an index is:

T = (2∗(1+logf 1))+(r/k−1)∗(1+logf 1)+...+(2∗(1+logf k))+(r/k−1)∗(1+logf k)

T = (n/k + 1) ∗ (logf 1 + ... + logf k) + n

5.3 Open problems

Because both the materialized view and index rely on the master table, the tables in

the original schema cannot be recycled for further vertical partitioning. To make the

change of partitions transparent to all applications and to recycle the original tables,

we proposed a solution which requires commercial database system to process the

following two abilities:

1. The database system should have query rewrite ability for a view;

2. The database system should have a view update ability.

Firstly, we define a view to present the original table. The view is joining of all

partitioned tables which belong to the original table. When a query accesses the

view, the database system should rewrite the query to access the optimal partition.

Since current commercial database systems can rewrite the query to use the optimal

materialized view, the commercial database system in the future should have the same

mechanism to rewrite the query using the optimal partition.

Once the original table is replaced by a view, the database system should be able to

update the partitions when the view is required to be updated. INSTEAD OF Trigger
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in commercial database systems can be used to synchronise the partitions of a view.

For insertion of a view, we simply insert the new value into respective columns in the

partitions. For update and deletion of a view, firstly we have to find out the primary

keys of the columns which are changed. To find the primary keys, we may have to join

some or all of the partitions of the view to verify the conditions to update or delete.

Based on the primary keys we find, we can update or delete the relevant record in the

partitions.

5.4 Experiments

All experiments have been conducted with an off-the-shelf, commercially available data-

base server Oracle 10g, release 1 running on a single processor 2-GHz Intel CPU box

with 512 MB of main memory and 40-GB hard drive. A sample database implemented

TPC-R[3] benchmark database with data generated according to the benchmark spec-

ifications.

The TPC-R database comprises 8 tables. We experimented with the workloads

consisting of 20 queries accessing two of the largest relational tables in a sample data-

base. The size of the largest table is about 2 Gbytes and its schema consists of 16

attributes. The size of the second largest table is about 650MB and its schema con-

sists of 9 attributes. Both tables have the non-clustered B-tree indexes automatically

constructed on the primary keys.

5.4.1 Query Rewrite of Materialized View

In this experiment, figure 5.3 shows how the query is rewritten to use a materialized

view which is better than using a table. Firstly, we need to enable a query rewrite in

Oracle. Then, we create a materialized view MV Nation(N nationkey, N nationname)

for table Nation. The figure shows how Oracle rewrites the query to access MV Nation

instead of Nation.

5.4.2 Fast Full Index Scan

This experiment shows how a commercial database system uses a horizontal traversal

of an index. In oracle, the horizontal traversal of an index is called Fast Full Index

Scan. Fast Full Index Scan will replace a full scan table for a query automatically

when the query optimizer detects it will take advantage over a full scan table. In this
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Figure 5.3: Query Rewrite of Materialized View

Figure 5.4: Fast Full Index Scan

experiment, we build an index for nation called idx nation. As figure 5.4 shows, the

selection of nation will automatically use Fast Full Index Scan.

5.4.3 Comparison of Materialized View and Index

In this experiment, we compare the time and storage of building a Materialized View

and an Index. As figure 5.5 shows, the cost of time and storage of building a materi-

alized view is less than it is for an index.

5.4.4 View Update

Figure 5.6 shows how a view can be updated in a current commercial database manage-

ment system. There are two tables Nat name(N NATIONKEY, N NAME), Nat Others(N NATIONKEY,

N REGIONKEY, N COMMENT) and view of v Nation which joins tables Nat name
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Figure 5.5: Comparison of MV and Index

and Nat Others by N NATIONKEY. In our proposed solution, v Nation represents

the original table while Nat name and Nat Others represent the vertical partitions.

If v Nation is required to be updated, we should have INSTEAD OF as a trigger to

update its underlying tables Nat name and Nat Others. For each row to be updated,

we record its primary key which is the link to the underlying tables. Then we update

the corresponding values of the underlying table.

5.5 Summary

This chapter has shown the possible solutions of implementing partitions for an auto-

tuning database. Currently, to implement partitions as tables leads to query rewriting

which requires the applications to adapt to changes of configuration. By comparison,

to implement partitions as indices and materialized views make the changes of con-

figuration transparent to an application.The query processors in commercial database

systems will automatically pick up the optimal data destination for the query. We pro-

posed cost models for estimating implementation of partitions as materialized views

and indices. To reduce the data redundancy, we proposed a solution to make recycling

of the original table possible. If the database system can rewrite the query for a view,

we can decompose an original table into partitions and create a view of the original ta-

ble. We may leverage the current rewrite mechanism of a materialized view to achieve

the ability of rewriting a query for a view. The chapter ends with some experiments

which show:

1. A partition can be transparent to applications if it is implemented as an index

or implemented as a materialized view.

2. The comparisons of costs to implementing a partition as a materialized view or
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Figure 5.6: View Update
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an index.

3. A view can be updated so that the solution we proposed can be achieved if a

current commercial database management system makes a minor modification

on the rewrite ability for a view.



Chapter 6

Conclusions and Future work

6.1 Conclusions

This thesis began with an overview of the performance tuning problems and the demand

for an auto-tuning database, along with a brief introduction of autonomic database sys-

tem features. Then we introduced major approaches to optimise query performance.

Since it is impossible to have a one-fits-all design that satisfies sometimes contradic-

tory requirements of complex applications, an adaptive reorganising physical database

structure allows for better utilisation of hardware resources. Our work in this the-

sis has only focussed on dynamic vertical partitioning which denotes the automated

projections of relational tables in order to reduce the time for exhaustive table scans.

By comparing partitioning techniques, we have acknowledged that vertical parti-

tioning takes advantage over horizontal partitioning because vertical partitioning is

much easier when matching predicates between queries and partitions than horizontal

partitioning. We reviewed the past work in vertical partitioning and to our best knowl-

edge found there were no attempts to investigate the applications of dynamic vertical

partitioning.

In chapter 3, we propose a algorithm to choose the optimal partitions for a given long

term workload. We presented a detailed cost model for the precise estimating at the

cost of insertion, deletion and update operations. However, the vertical partitioning

algorithm cannot make an automatic repartition of a database in a response to the

changing database loads.

In chapter 4, we proposed a solution, which is based on an assumption that the

workload on a database server is repetitive in nature. This means that it is possible

to anticipate during the periods of low workload what database applications will be

executed in the future and to create the vertical partitions that will have a positive im-

pact on future performance. The thesis describes the algorithm that finds the expected

56
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workload and how it decided which vertical partitions should be created.

Finally, we investigated two implementation techniques: one based on materialized

views and the other one based on indexing. Both of these techniques strongly rely on the

master table. As a result, the original table cannot be recycled for further partitioning.

We proposed to keep the original table as a view and synchronise the partitions by a

view updating. However, the solution requires that the current commercial databases

have the ability to rewrite a query for view.

6.2 Future work

In this thesis, dynamic vertical partitioning is a first step towards setting up a frame-

work to optimise database performance by the dynamic modification of physical struc-

ture. Other physical database structure tuning methodologies such as reorganization

of index, horizontal partitioning and clusters are expected to be adapted to this model.

The thesis proposed implementing an original table as a view which is a joint of vertical

partitioning. It would be exciting to come up with a commercial database manage-

ment system processing the query rewriting ability, which can find an optimal vertical

partitioning for the query.

In addition, the metric used in the cost model analysed in Chapter 3, 4 may be

transferred to DBTime which has been proposed recently as a common metrics of

performance impact. By using such a common metrics, the performance improvement

in different components over the whole system can be gauged. With only limited

resources, we can allocate those resources in the best way to optimise the database

system.

Another interesting issue is the combination of other workload monitoring ap-

proaches to improve our work in this thesis. The thesis focuses only on workloads

on a database server which are repetitive in nature. However, there are always some

accidents to affect the workload behaviours. The monitoring and diagnosing of work-

loads is still an open question. In conclusion, we summarize possible future work as

follows:

1. Integrate other physical database structure tuning methodologies such as index,

horizontal partitioning and clusters;

2. Implement the rewrite ability of view for vertical partitioning in commercial data-

base management systems;
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3. Combine the metrics DBTime in our cost model in order to identify the perfor-

mance improvement in different system components;

4. Cooperate with other workload monitoring and diagnostic approaches.

The further research on the above open problem will improve the quality of op-

timization by vertical partitioning, ensuring predictable performance and eliminating

the need for manual tuning.
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