
University of Wollongong - Research Online
Thesis Collection

Title: Two problems in finite elasticity

Author: Himanshuki Nilmini Padukka Withana

Year: 2009

Repository DOI:

Copyright Warning 
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site. 
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au


University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

Two problems in finite elasticity

Himanshuki Nilmini Padukka Withana
University of Wollongong

Padukka Withana, Himanshuki N, Two problems in finite elasticity, MScRes the-
sis, School of Mathematics and Applied Statistics, University of Wollongong, 2009.
http://ro.uow.edu.au/theses/869

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/869





 

 

Two Problems in Finite Elasticity 

 
A thesis submitted in fulfilment of the 

requirement of the award for the degree of 

 

Masters by Research 

 
From 

University of Wollongong 
 

By 

Himanshuki Nilmini Padukka Withana 
Bsc (hons) University of Peradeniya Srilanka 

 

School of Mathematics and Applied Statistics 

2009 



Certification

I, Himanshuki Nilmini Padukka Withana, declare that this thesis, submitted in

fulfilment of the requirements for the award of Masters by Research, in the School

of Mathematics and Applied Statistics, University of Wollongong, is wholly my own

work unless otherwise referenced or acknowledged. The document has not been

submitted for qualifications at any other academic institution.

H. Nilmini Paduuka Withana

August, 2009

1



Acknowledgements

I owe a great debt of thanks to my supervisor Professor Jim Hill not only for his

consultation on the subject matter of this thesis but on his selfless help in solving

the seemingly intractable problems that arose alongside my academic pursuits.

Not surprisingly teams with great leaders are always great and this is certainly

the case with the team of Nano Technology at UOW. While too numerous to mention

here by name the wonderful support of everyone is greatly appreciated. I would

especially like to thank Dr. Barry Cox for always being there so cheerfully when ever

help was needed. My thanks also go to Dr.Ngamta Thamwattana for kindly sharing

her room with me. I would like to thank Dr.Tamsyn Hilder and Dr.Duangkamon

Baowan for their support and friendship.

A special thank you to my boss and my fiend Mr. Stephen Haines for the valuable

suggestions to the introduction.

Finally to my husband Sajeewa , the best thing that ever happened to me, thank

you for always being there smoothening the rough road ahead of me!

2



Abstract
Some materials encountered in nature and used in engineering exhibit mechanical

effects which cannot be adequately explained by classical linear elastic theories. For

example, rubber is an elastic material that undergoes large elastic deformations,

and therefore renders a non-linear mechanical behavior. An analytical investigation

dealing with the problem of static deformation of such materials therefore involves

highly non-linear equations leading to arduous mathematical work. Consequently

there exists only a limited number of known exact solutions for such problems in

the field of finite elasticity.

This thesis is concerned with two problems of finite elastic deformations of rub-

ber blocks. Rubber has been successfully modeled as an isotropic incompressible

hyperelastic material with strain energy function given by either the neo-Hookean

or Mooney forms. For this class of materials, substantial reductions of the basic un-

derlying equilibrium equations can be obtained, making the problems more tractable

and for plane and axially symmetric deformations of these materials, simpler stress-

strain relations can be obtained. Therefore, by combining these essentially two-

dimensional stress-strain relations together with the reduced equilibrium equations

it is possible to obtain comparatively tractible forms of the equations.

In this thesis the following problems for axially symmetric deformations of isotropic

incompressible neo-Hookean and Mooney materials are investigated:

(i) asymptotic axially symmetric deformations describing compression of rubber

cylindrical tubes with bonded metal end plates;

(ii) rippling of a long rectangular rubber block bent into a sector of a solid bounded

by two circular arcs.

The above mentioned reduced equllibrium equations are employed in the context of

non-linear continuum mechanics to arrive at approximate solutions. The solutions

are approximate in the sense that the point-wise vanishing of the stress vector on a

boundary is assumed to be replaced by the vanishing of forces in an average manner.

In the first problem, for axially symmetric deformations of the perfectly elastic

neo-Hookean and Mooney materials, formal asymptotic solutions are determined

in terms of expansions in appropriate powers of 1/R, where R is the cylindrical
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polar material coordinate. Remarkably, for both the neo-Hookean and Mooney

materials, the first three terms of such expansions can be completely determined

analytically in terms of elementary integrals. From the incompressibility condition

and the equilibrium equations, the six unknown deformation functions, that appear

in the first three terms can be reduced to five formal integrations involving in total,

seven arbitrary constants, and a further five integration constants, making a total

of twelve integration constants for the deformation field. The solutions so obtained

for the neo-Hookean material are applied to the problem of the axial compression

of a cylindrical rubber tube which has bonded metal end-plates. The resulting

solution is approximate in two senses; namely as an approximate solution of the

governing equations and for which the stress free boundary conditions are satisfied

in an average manner only. The resulting deformation and load-deflection relation

are shown graphically.

The second problem examined in this thesis is that of finite elastic deformation of

a long rectangular rubber block which is deformed in a perturbed cylindrical configu-

ration. This problem is motivated from the problem of determining surface rippling

that is observed in bent multi-walled carbon nano-tubes. The problem of finite

elastic bending of a tube is considerably more complicated than the geometrically

simpler problem of the finite elastic bending of a rectangular block. Accordingly, we

examine here the simpler block problem which is assumed to be sufficiently long so

that the out of plane end effects may be ignored. The general equations governing

plane strain deformations of an isotropic incompressible perfectly elastic Mooney

material, which models rubber like materials, are used to determine small superim-

posed deformations upon the well known controllable family for the deformation of

rectangular blocks into a sector of a solid bounded by two circular arcs. Traction

free boundary conditions are assumed to be satisfied in an average sense along the

bounding circular arcs. Physically realistic rippling is found to occur and typical

numerical values are used to illustrate the solution graphically.

In summary reduced equilibrium equations and simplified two-dimensional stress

strain relations are used in this study to solve two problems for isotropic incom-

pressible neo-Hookean and Mooney materials. Such deformations and the class of

materials studied considerably simplify what are otherwise very complex problems
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from the theory of finite elasticity.
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Nomenclature

BR undeformed configuration

B deformed configuration

C Green deformation tensor

c Cauchy deformation tensor

C−1 Piola deformation tensor

c−1 Finger deformation tensor

dA element area in BR

da element area in B

dF force acting on an element area in da

dS line element in BR

ds line element in B

dV element of volume in BR

dv element of volume in B

F deformation gradient

ĝ response function

GK material base vectors for the curvilinear coordinate system

gi spatial base vectors for the curvilinear coordinate system

GKL elements of material metric tensor

gij elements of spatial metric tensor

GKL elements of conjugate material metric tensor

gij elements of conjugate spatial metric tensor
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G determinate of material metric tensor | G |

g determinate of spatial metric tensor | g |

IK unit rectangular base vectors

I1, I2, I3 principal invariants of the Finger deformation tensor

J Jacobian of the rectangular Cartesian coordinate system | ∂zi

∂ZK |

j Jacobian of the curvilinear coordinate system | ∂xi

∂XK |

K, L, M labeling indices associated with BR

i, j, k labeling indices associated with B

n unit normal to da

nR unit normal to dA

p modified pressure function

p∗ pressure function

Q an orthogonal tensor

T stress tensor

TR first Piola-Kirchoff stress tensor

t stress vector

tiK(x,X) double tensor field

XK material curvilinear coordinates

xi spatial curvilinear coordinates

ZK material rectangular Cartesian coordinates

zi spatial rectangular Cartesian coordinates

xi,K deformation gradients

XK ,i inverse deformation gradient
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δ unit tensor

δij, δKL Kronecker deltas

∇2 Laplacian of a scalar with respect to XK

ΓM
KL Christoffel symbols based on GKL

Γi
jk Christoffel symbols based on gij

µ shear modulus

φi response coefficients

ρR density in undeformed body BR

ρ density in deformed body B

Σ strain energy function

List of coordinate systems used

(X, Y, Z) material rectangular Cartesian coordinates

(x, y, z) spatial rectangular Cartesian coordinates

(R, Θ, Z) material cylindrical polar coordinates

(r, θ, z) spatial cylindrical polar coordinates
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Chapter 1

Overview

1.1 Background

The theory of non-linear elasticity, also known as finite elasticity, is becoming in-

creasingly important in modern mathematics due to its predominate use in many

engineering applications. Its authority in applied mathematics in the main is due

to the major role of rubber as a successful engineering material. Within the pages

that follow it is the intention of the author to look into two problems related to the

analysis of finite elastic deformations specifically as encountered with rubber blocks.

Natural rubber was first found as latex, and in common-use the terms are inter-

changeable. Latex was first discovered in South America as a naturally occurring

”sap” which issued from the wound of certain trees as a milky colloidal suspension.

Though Latex found employment primarily as a water proofing agent, it’s commer-

cial development did not really begin in earnest until Charles Goodyear discovered

the process of Vulcanization in 1839 [1]. Generally referred to as simply ’rubber’

is actually vulcanized rubber which is obtained from raw rubber by masticating,

mixing with sulphur and heating. When raw rubber undergoes this chemical reac-

tion it is converted into an elastic material, making it a versatile material. Since

then rubber has been used extensively in nearly all forms of engineering due to its

outstanding physical properties.

Some of vulcanized rubbers more outstanding qualities which have promoted its

use are: excellent weathering resistance and general durability, high energy storage

capacity, inherent damping qualities in applications where resonant vibrations are

encountered, low maintenance and near to zero service requirement coupled with

a comparatively high resistance to fatigue, easy installation due to its flexibility,
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in-expensive nature and ease of manufacture. Furthermore, rubber lends its-self to

efficient bonding, making it a readily deployable material across different materials

especially metals and also protect them from rusting by acting as a cover. Finally

but not definitively, is the overarching observation that its employment across both

the developing and existing industrial landscapes will continue to grow, making it

a preferred material over others. Its main industrial applications include: bridge

bearings, bush mounting, rubber rollers, springs, rings and tyres.

As rubber is becoming an increasingly popular material in construction and

manufacturing engineering, understanding its mechanical properties is proving to

be significant. Owing to its high elastic energy, rubber can undergo large elastic

deformations, and thus a theory aiming to describe its mechanical behavior under

such conditions must take account of the non-linearities involved.

Historically the development of a descriptive theory for rubber was not achieved

until the close of the 19th century. Bearing in mind that the real value in application

of rubber was not fully appreciated until Goodyear’s discovery (1839) of vulcaniza-

tion there was, none the less, a significant gap between its emerging use and the

development of a suitable theory. Although Stokes in 1845 proposed the concept

of non-linear constitutive equations for viscous fluid which exhibit similar nonlin-

ear mechanical behavior like rubber, nothing significant was done in this regard for

the next 100 years. However the concepts of elasticity and hyper elasticity were

developed prior and during this era. To this achievement much is owed to those

famous early workers in the area notably James Bernoulli (1691-1705) and Euler

(1727-1778) who contributed through their important work in one dimensional non-

linear elasticity. Although in the main, ideas for a general theory of elasticity were

first introduced by Cauchy (1823-1828) and Green (1839-1841) who followed with

suggesting the main theories of hyper-elasticity. Subsequent to Green’s theory other

savants such as Kirchhoff (1852-1859) and Kelvin (1863) added to his original work

thus enhancing our understanding of hyper-elasticity. This area of work attracted

others like St. Venant, Stokes, Boussinsq, Gibbs, Duhem, and Hadamard. In 1896,

the Cosserat brothers published a exposition containing general equations of finite

elasticity. However this early work was followed by a period of little significant

progress. Signorini was commended in Italy for his teaching and writing on the
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subject in 1930 [2], but it was not until Reiner in 1945 and then Rivlin in 1948

contributed significantly to this area, that a concrete foundation was laid in the

theory [3]. Reiner is credited as providing the first general approach to the topic

of rubber through constitutive equations of a non-linear nature. However, it was

Rivlin who sparked a resurgence in this area through his problems of physical in-

terest in non-linear theories providing exact solutions as distinct from the linear

general solutions previously employed. Much is owed to Rivlin for rekindling inter-

est in this work and it is reasonable to attribute much of his ingenuity to the recent

advances. In the 1950’s it was primarily Truesdell’s contributions that further pro-

gressed research and it is worth mentioning both Erickson and Eringen as important

workers from that era. A fruitful progression has been since made with researchers

publishing numerous papers solving many physical problems in engineering.

Some other examples of elastic media with large deformations which admits

non-linear theories are biological tissues, metals and alloys under high pressure [4],

non-linear liquid polymer solutions and solid rocket propellant [5].

The obvious historical question in engineering as to why after the development of

a rich set of linear theory and Stokes proposal in 1845, did a sound development in

non-linear theory not achieved until after 1940 still remains ambiguous. One possible

reason could be that the need for such a theory was not fully realized as not many

materials exhibiting non-linear behavior were used in applications. A second reason,

still applicable today, is that many believe that only a molecular-statistical theory

of the structure of the materials can lead to an understanding of their behavior [2].

Another presumable cause would be the tedious and numerous mathematical com-

plexity involved in a comprehensive nonlinear mathematical model which encourages

workers to rely on linear theory for solutions. This being said it must be noted that

these theoretical presentations supply engineers with satisfactory results in so far

as practical applications are concerned, but they do not answer the problems that

are manifest in materials that present large deformations. In such cases linear the-

ory does not approach the accuracy required to answer these problems. Hence in

such cases the governing equations involve highly non-linear terms which, due to

mathematical complexity, involve analytical solutions to a precision that is not eas-

ily tenable in the real world. As a result only a limited number of exact solutions
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are known to exist. Due to the mathematical tediousness involved in such cases a

number of approximating theories were developed, from the exact theories, which

provide a tenable ”rule of thumb” to address such problems.

This leaves a number of challenging problems on the table that are yet to be

satisfactorily answered. Here-in we will explore, as our first problem, axially sym-

metrical compression of thick cylindrical rubber tubes as well as, for our second

problem, finite elastic bending of a long rectangular rubber block into a perturbed

cylindrical configuration from the point of view of surface rippling.

Our first problem, that of axially symmetric deformations of the perfectly elastic

neo-Hookean and Mooney materials, an asymptotic expansion in appropriate powers

of 1/R, where R is the cylindrical polar coordinate for the material coordinates is

assumed for the axis-symmetric deformation field. The first three terms of the

expansion are determined completely analytically in terms of elementary integrals.

The solutions obtained for the neo-Hookean material are applied to the problem

of the axial compression of a cylindrical rubber tube which has bonded metal end

plates.

Six unknown deformation functions appear in the first three terms of the above

asymptotic expansion . Using incompressibility condition and equilibrium equations

they are reduced to five integrations involving in total seven arbitrary constants and

a further five integration constants making a total of 12 constants.

In this problem the solutions obtained are approximate in the sense that the

traction free boundary condition is not satisfied in a point wise manner but only

in an average sense. As well it should be noted that the solution is followed only

to the third term. Progressive terms increase both the tediousness and complexity

of the algorithm without enhancing the practical value of the result. In which case

the theoretical solution whilst increasing in expended effort provides diminishing

returns such that even the fourth term would prove of limited if any use in a practical

engineering application.

Our second problem deals with finite elastic bending of a long rectangular rub-

ber block into a perturbed cylindrical configuration and examining from the point

of view of surface rippling. Approximate solutions are sought for small superim-

posed deformations upon the well known controllable family for the deformations

16



of rectangular blocks into a sector of a solid bounded by two circular arcs. Again

the solutions obtained are approximate in the sense that the traction free boundary

condition are not satisfied in a point wise manner but only in average sense.

Problems arising from finite deformations of rubber blocks have been looked

at by many authors before. Hill and Lee [6] study the problem of large elastic

compression of a finite rectangular rubber block which has bonded metal plates to

its upper and lower surfaces. An approximate load deflection relation is derived

from a fully three dimensional deformation and the results of both finite and infinite

relations are compared with experimental results and with that predicted by the

conventional engineering approximation deduced from the ’shape factor’ method.

Their work indicates that if the shape factor approximation is used in conjunction

with a value of the Young’s modulus obtained from the linear experimental data then

this generates a consistently good estimate. They also present a finite model that

provides a reasonable accurate approximation irrespective of whether the Young’s

modulus is determined from the linear experimental data or from a hardness test. A

similar approximation is given by Klingbeil and Sheild [7] for extremely long rubber

blocks with rectangular cross sections bonded between two parallel rigid end-plates.

They also investigate flat deformable circular disks bonded between two end-plates

to which closed form of solutions are presented for materials possessing either of two

extreme forms of the Mooney strain-energy function. The results are compared with

the experimental results of Gent and Lindley [8]. Load deflection relationships are

also presented. Experimental observations of the failure of rubber mounts in tension

given by Gent and Lindley [8] are used to assess the stress distributions.

The above study was extended by Hill and Lee [9] to include torsion and com-

pression of a cylindrical rubber pad with bonded metal end-plates. Numerical results

are obtained for neo-Hookean material and experimental values for pure compression

are obtained. The experimental results are compared with the theoretical results

due to Klingbeil and Shield [7] and the shape factor approximation and found that

they provide satisfactory agreement but only up to some percentage. Bending and

stretching of a rectangular rubber blocks into a circular cylindrical tube has also

investigated by earlier researchers. For example, Hill [10] describes theoretical load

deflection relations for the four principle modes of bonded rubber bush mountings,
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constructed from rectangular blocks of rubber namely, torsional, axial radial and

conical deflections, based upon well-known exact solution due to Rivlin [11]. Tri-

antafyllidis [12] studied the bifurcation problem of an incompressible plate under

pure bending. Bifurcation problem of incompressible isotropic elastic plates sub-

jected to a combined flexure and axial compression is also studied by Haughton [13].

Biot [30] carries theoretical analysis of similar problem of rubber blocks. Gent’s [29]

contribution through his experimental studies on deformations of rubber blocks has

rendered valuable insight to the subject.

1.2 Thesis structure

Chapter one establishes the context of the thesis and explains where in the sub-

ject domain the problems examined lie. Some important existing researches with

relevance are outlined.

Chapter two summaries the general theories that have been derived by previous

workers which are useful in solving our problem.

Chapter three discusses the problem of axially symmetric deformations and axial

compression of a cylindrical rubber tube which has bonded metal end plates. We

present a brief introduction to the problem followed by basic equations governing the

six functions associated with the problem. Then we give the analytical details for

the neo-Hookean material and the corresponding details of the Mooney material.

In the subsequent section we use the derived results to determine load deflection

relation for the axial compression of a hollow neo-Hookean rubber cylinder. Finally

we present numerical results.

Chapter four examines the problem of finite elastic bending of a long rectan-

gular rubber block into a perturbed cylindrical configuration. We start with a

introduction to the problem and then explain the geometry of the block and initial

deformation. Next we present the equations governing the deformation followed by

the load-deflection relationships. Finally we illustrate possible solutions with typical

numerical values.

In Chapter five we present the summary and concluding remarks. The final

chapter comprises the appendices that present some mathematical details and bib-
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Chapter 2

Basic Equations

This chapter outlines the fundamental equations governing large deformations of

homogeneous isotropic incompressible elastic materials which are useful in our study.

These results are the work of previous researches and will not be repeated in full

detail here. For more comprehensive reading we refer to Green and Zerna [14],

Truesdell and Noll [2] and Eringen [15]. We comment that these theories follow

from the theory of classical continuous media, where a material body is thought to

be composed of a large collection of material particles, which are assumed to be

continuous throughout the medium except, possibly, at macro-scale discontinuities

[16].

The first step in defining large deformation is to define the relationship between

the initial undeformed configuration of a body and its deformed configuration as

different to classical theory where we analyze both configurations with respect to

one reference frame neglecting the difference due to infinitesimal strains.

2.1 Deformation gradients

Consider a body whose points are denoted by XK(K = 1, 2, 3) in a curvilinear

coordinate system, occupying a region BR in Euclidian space. If it under goes a

deformation so that the deformed body occupy a another region B and if the position

of points of B is denoted by a curvilinear coordinate system by xi(i = 1, 2, 3) then

the points are transformed according to

xi = xi(XK) or XK = XK(xi). (2.1)

20



The coordinates Xk are called material or Lagrangian coordinates and the coordi-

nates xk are called spatial or Eulerian coordinates. The original body is also referred

to as reference configuration. It is assumed that

j =

∣∣∣∣
∂xi

∂XK

∣∣∣∣ 6= 0, (2.2)

so that the above coordinate transformation posses a one-to-one relation, where j is

the Jacobian of (2.1). From (2.1) we have

dxi = xi,K dXK , dXK = XK ,i dxi. (2.3)

The two quantities xi,K and XK ,i are defined as deformation gradients and inverse

gradients respectively. Here the subscript comma followed by and index indicates a

partial derivative, namely

xi,K =
∂xi

∂XK
, XK ,i =

∂XK

∂xi
. (2.4)

From the chain rule we have that

xi,K XK ,j = δij, XK ,i xi,L = δKL. (2.5)

2.2 Metric tensors

If the position vector of a material point P whose coordinates are ZM(M = 1, 2, 3)

and XK(K = 1, 2, 3) with respect to rectangular cartesian coordinate system and

some general curvilinear coordinate system respectively, is P, then the base vectors

of the XK system are denoted by GK(X) and defined by

GK =
∂P

∂XK
=

∂ZM

∂XK
IM , (2.6)

where IM(M = 1, 2, 3) are the unit rectangular base vectors and can be given by

IM = GK(X)
∂XK

∂ZM
. (2.7)

Similarly for the corresponding spatial quantities base vectors gi(x) are defined by

gi =
∂P

∂xi
=

∂zm

∂xi
Im. (2.8)
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Figure 2.1: Analysis of deformation of a body [16]

The metric tensors associated with the above deformation are given by

GKL = GK .GL =
∂ZM∂ZM

∂XK∂XL
, gij = gi.gj =

∂zm∂zm

∂xi∂xj
, (2.9)

and we have the conjugate metric tensors GKL and gij defined by

GKLGLM = δK
M , gijgjk = δi

j, (2.10)

where δ denotes the Kronecker symbol. If the Jacobian of the deformation mapping

in rectangular cartesian coordinate system is defined by

J =

∣∣∣∣
∂zm

∂ZM

∣∣∣∣ , (2.11)

then we have

j = J

√
G√
g

, (2.12)

where G and g are scalars defined by

G = |GKL|, g = |gij|. (2.13)

It is understood that the necessary and sufficient condition for isochoric deformation

is that J = 1.
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2.3 Deformation tensors

If dS and ds are the distances between two neighboring points in the undeformed

and deformed bodies respectively, then we have the squares of the line elements in

BR and B given by

dS2 = dZMdZM = GKLdXKdXL = cij dxi dxj,
ds2 = dzmdzm = gij dxi dxj = CKLdXKdXL,

(2.14)

where we have defined

CKL = CK .CL = gijx
i,K xj,L ,

cij = ci.cj = GKLXK ,i XL,j . (2.15)

C is called the Green deformation tensor while c is known as the Cauchy deformation

tensor. The reciprocal of CKL which satisfies

CLKCKM = δL
M , (2.16)

is denoted by C−1KL and given by

C−1KL = gijXK ,i X
L,j . (2.17)

Similarly, the reciprocal of cij which satisfies

cjicim = δj
m, (2.18)

is denoted by c−1ij and given by

c−1ij = GKLxi,K xj,L . (2.19)

The above inverse tensors C−1 and c−1 are known as Piola deformation tensor and

Finger deformation tensor respectively. It can be also noted that deformation tensors

and their reciprocals are symmetrical. That is,

CKL = CLK , C−1KL = C−1LK ,
cij = cji, c−1ij = c−1ji.

(2.20)

We also note that the mixed components of C and c can be obtained as follows by

raising indices using respective metric tensors.

CK
L = CMLGKM , c i

j = cmjg
im. (2.21)
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2.4 Changes in lengths, areas and volumes during

deformation

Changes in lengths during deformation can be expressed by (2.14) and the areas are

related by

dam = JXM ,m dAM , dAM = J−1xm,M dam, (2.22)

where dAM is the element of area vectors of a surface which transforms to area

vector element dam after deformation. If dv is the volume into which the volume of

material element dV deforms, it can be deduced that they are related by

dv = JdV. (2.23)

2.5 Strain invariants

The principle invariants of Finger deformation tensor c−1, are denoted by I1, I2 and

I3 and obtained from the characteristic equation as

I1 = c−1i
i , I2 = |c−1i

j|ci
i, I3 = |c−1i

j|. (2.24)

Utilizing the symmetry of Finger deformation tensor c−1 and using equations (2.2),

(2.13) and (2.12) it can be shown that

I3 = J2. (2.25)

Hence the principal invariants become

I1 = c−1i
i, I2 = J2ci

i, I3 = J2. (2.26)

2.6 The Christoffel Symbols

Christoffel symbols represent partial derivatives of base vectors with respect to co-

ordinate variables. From (2.6) and (2.7) we obtain

∂GK

∂XL
=

∂XM

∂XN

∂2ZN

∂XK∂XL
GM , (2.27)
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which may be written as
∂GK

∂XL
= ΓM

KLGM , (2.28)

where

ΓM
KL =

∂XM

∂XN

∂2ZN

∂XK∂XL
, (2.29)

are defined as Christoffel symbols of second kind relative to the coordinate system

XK . Similarly Christoffel symbols of second kind relative to the coordinate system

xk is given by

Γm
ij =

∂xm

∂xn

∂2zn

∂xi∂xj
(2.30)

2.7 Double tensor fields and covariant derivative

If points x and X belong to two spaces and the functions tiK(x,X) and t′i
′

K′(x′, X ′)

transform according to

t′i
′

K′(x′, X ′) = tiK(x,X)
∂x′i

′

∂xi

∂XK

∂X ′K′ , (2.31)

where

x′ = x′(x), X ′ = X ′(X), (2.32)

then the above functions are defined as a double tensor field in the sets of variables

x, X, x′ and X ′. The covariant partial derivatives of a double tensor field tiK(x,X)

are denoted by tiK ,L and tiK ,j in which the differentiation is carried out with respect

to the coordinates XK with x held fixed and with respect to the coordinates xi with

X held fixed respectively. Hence we have the expressions

tiK ,L =
∂tiK
∂XL

− tiMΓM
KL,

tiK ,j =
∂tiK
∂xj

+ tmKΓi
mj, (2.33)

where ΓM
KL and Γi

mj denote Christoffel symbols based on GKL and gij respectively.

The total covariant derivative of a double tensor field tiK(x,X) with x = x(X) is

defined by

tiK ;L = tiK ,L +tiK ,j
∂xj

∂XL
,

tiK ;j = tiK ,j +tiK ,L
∂XL

∂xj
. (2.34)

25



It is noted that for a double tensor tiK(x,X) that tij,K 6= 0, while for a single-point

tensor field tiK(x, X), tij,K = 0. Thus it is clear that partial covariant derivatives of

both metric tenors and their conjugates are zero. Since deformation gradients xi,L

and XK ,j are two point tensors, it can be shown that the total covariances are given

by

[
xi,K

]
;L =

∂2xi

∂XL∂XK
− ΓM

LK

∂xi

∂XM
+ Γi

mjx
j,L xm,K ,

[
XK ,i

]
;j =

∂2XK

∂xj∂xj
− Γm

ij

∂XK

∂xm
+ ΓK

IMXI ,i X
M ,j . (2.35)

From equations (2.35), (2.17) and (2.19) it can be obtained

GKL
[
xi,L

]
;K = ∇2xi + Γi

jmc−1jm,

gji
[
XK ,i

]
;j = ∇2

1X
K + ΓK

MLC−1ML, (2.36)

where ∇ and ∇1 are Laplacians defined by

∇2 = GKL

[
∂2

∂XK∂XL
− ΓM

KL

∂

∂XM

]
,

∇2
1 = gij

[
∂2

∂xi∂xj
− Γm

ij

∂

∂Xm

]
. (2.37)

2.8 Stress tensor

If da is a small element of the deformed body and the force acting on the element

at time t is dF , then the stress vector t at a point x inside the element at time t is

given by

t da = dF. (2.38)

The stress tensor T is defined by

t = T n, (2.39)

where n is the unit normal of the element da. The first Piola-Kirchoff stress tensor

TR is defined by

TKj
R = JXK ,i T

ij, (2.40)
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Figure 2.2: Stress on an elementary tetrahedron in rectangular Cartesian coordinates
[17]

while if the undeformed area of the deformed element da is dA, then the Piola-

Kirchoff stress vector tR is defined by

tR = TR nR, tjR = TKj
R nRK , (2.41)

where nR is the unit normal to element dA. On using Nanson’s fomula for area

change during deformation, namely

dai = JXK ,i dAK , (2.42)

and equations (2.40) and (2.41) it is obtained that

tjR dA = tijdai. (2.43)

Hence from (2.43) it is clear that

tjR dA = tidai, (2.44)

and

tR dA = t da = dF. (2.45)
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Figure 2.3: Illustration of first Piola Kirchoff stress [18]

Here the area vectors of deformed and un-deformed bodies are respectively,

da = da n , dA = dA nR. (2.46)

2.9 Physical components of a tensor

The components of a tensor in a curvilinear coordinate system do not have the same

physical dimensions as the tensor itself. Thus when those tensor components are

used in solving physical problems we need to convert them to physical components.

The physical components of a tensor are the tensor components possessing the same

physical dimensions as the physical quantity represented by the tensor. However

in nonorthogonal coordinates several different types of physical components arise.

That is to say that there is no unique definition for physical components of a second-
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order tensor. For example for a tensor T the physical components T
(i)
(j) can be given

by

T
(i)
(j) = T i

j

√
gii√
gjj

, (2.47)

or the physical components T (i)(j) can be defined by

T (i)(j) = T ij√gii gjj, (2.48)

where underscore for indices suspends the summation. When the coordinates are

orthogonal we note that

gii =
1

gii
. (2.49)

Hence in the case of symmetric tensors referred to orthogonal curvilinear coordinates,

the physical components T
(i)
(j) and T

(i)
(j) are identical. For symmetric tensors in

orthogonal curvilinear coordinates we therefore have [16], [19].

T
(i)
(j) =

Tij√
giigjj

= T ij√giigjj = T i
j

√
gii√
gjj

. (2.50)

2.10 Equilibrium equations

The law of conservation of mass states that

∫

v

ρdv =

∫

V

ρ0dV, (2.51)

where ρ0 and dV denote the mass density and the element of volume respectively,

before deformation while ρ and dv denote the corresponding quantities after defor-

mation. Equation (2.23) and localizing may result in

ρJ = ρ0, (2.52)

which is the local law of conservation of mass generally known as the continuity

equation. Due to local balance law of linear momentum, in the absence of body

forces we have the equilibrium equation given by

div T = 0. (2.53)
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Upon using the Euler-C. Neumann identity

[
J XK ,i

]
;K = 0, (2.54)

and equation (2.40) on (2.53), the equilibrium equation in terms of first Piola-

Kirchoff stress tensor can be given by

TKj
R ;K = 0. (2.55)

Under the local balance law of moment of momentum, for nonpolar media (ie in the

absence of torques or couple stresses) the stress tensor T requires to be symmetric.

Hence we have

TT = T , T ij = T ji, (2.56)

which is known as Cauchy’s second law of motion.

2.11 Hyperelastic materials

A constitutive equation relates the mechanical behavior of the material to stress and

motion. The constitutive equation of an elastic material is given by

T = ĝ(F), (2.57)

where T is the stress tensor and F is the deformation gradient. The function ĝ

which is referred to as response function of the elastic material satisfies the relation

Qĝ (F)QT = ĝ (QF), (2.58)

for a orthogonal tensor Q [2]. An elastic material with response function ĝ is said

to be isotropic if and only if ĝ satisfies the relation

Qĝ (F)QT = ĝ (QFQT ), (2.59)

for all orthogonal Q [5]. The general constitutive equation for isotropic elastic

materials is given by

T = φ0c + φ1δ + φ2c
−1, (2.60)

where T is the stress tensor, c is the Cauchy deformation tensor and δ is the unit

tensor. φi (i = 1, 2, 3) are scalar functions of the invariants I1, I2 and I3 of inverse

Cauchy deformation tensor c−1 and is called the response coefficients of the material.
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Hyperelastic materials are isotropic elastic materials whose response functions

can be given by derivatives of a scalar function with respect to the strain invariants.

That is, for such materials there exists a scalar function

Σ = Σ(I1, I2, I3), (2.61)

where I1, I2 and I3 are strain invariants defined above. The scalar function Σ is called

the strain energy function or stored energy function. The response coefficients are

namely,

φ0 = −2
√

I3
∂Σ

∂I2

,

φ1 =
2√
I3

(
I2

∂Σ

∂I2

+ I3
∂Σ

∂I3

)
,

φ3 =
2√
I3

∂Σ

∂I1

. (2.62)

Hence from equation (2.60) the Finger stress strain relation becomes [20]

T =
2√
I3

[(
I2

∂Σ

∂I2

+ I3
∂Σ

∂I3

)
δ +

∂Σ

∂I1

c−1 − I3
∂Σ

∂I2

c

]
. (2.63)

2.12 Isotropic incompressible hyperelastic mate-

rials

Deformations in which volume elements remain unaltered are called isochoric defor-

mations. A material for which only isochoric deformations are possible is said to be

incompressible. According to (2.23) the necessary and sufficient condition for iso-

choric deformations is that J = 1. Hence the continuity equation for incompressible

materials becomes

ρR = ρ, (2.64)

where ρR and ρ are the densities in the deformed and undeformed configurations

respectively. Further due to (2.25) invariant I3 becomes unity which subsequently

makes the equation (2.62)2 indeterminate. Hence the Finger stress-strain relation

for isotropic incompressible materials is given by

T = p∗δ + 2
∂Σ

∂I1

c1 − 2
∂Σ

∂I2

c, (2.65)
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where p∗ is an arbitrary function, referred to as pressure function and strain energy

function Σ = Σ(I1, I2).

2.13 Mooney and neo-Hookean materials

An incompressible material with strain energy function given by

Σ = C1(I1 − 3) + C2(I2 − 3). (2.66)

is called a Mooney material. This was first proposed by Melvin Mooney to model

certain rubber like materials and such models were in fairly good agreement with

the experimental results [3]. In the special case when C2 is zero, the theory is called

neo-Hookean, viz

Σ = C1(I1 − 3), (2.67)

for a neo-Hookean material [2]. I1 and I2 denote the first two invariants of the

inverse Cauchy deformation tensor and C1 and C2 are positive material constants

such that 2(C1 +C2) may be identified with the infinitesimal shear modulus µ, given

by

µ = 2(C1 + C2). (2.68)

Moreover, for many rubber-like materials typically C2 is approximately C1/10. Here,

following normal practice, we use Γ to denote the ratio C2/C1. The Mooney model

usually fits experimental data better than Neo-Hookean model does, but involves

an additional material constant leading to more complex analytical results. Due to

the above definition of strain energy functions we have

∂Σ

∂I1

= C1, (2.69)

for both type of materials and
∂Σ

∂I2

= C2, (2.70)

for Mooney materials.
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Chapter 3

Asymptotic axially symmetric
deformations for perfectly elastic
neo-Hookean and Mooney
materials

3.1 Introduction

In this chapter we provide a detailed treatment for the problem of axial compression

of cylindrical rubber tubes of neo-Hookean and Mooney material with bonded metal

end plates. For axially symmetric deformations, an asymptotic expansion in powers

of 1/R is assumed, where R is the cylindrical polar coordinate for the material

coordinates. The first three terms are completely determined analytically in terms

of elementary integrals. The solution determined is approximate in two senses;

namely as an approximate solution of the governing equations and for which the

stress free and displacement boundary conditions are satisfied in an average manner

only.

For homogeneous isotropic incompressible elastic material sometimes referred to

as simply perfectly elastic materials, there are a limited number of exact analytical

solutions for finite deformations. However, frequently these limited analytical results

can be exploited to determine approximate analytical solutions to many problems

of practical interest (see for example Hill [21]). Klingbeil and Shield [7] determined

analytical expressions for the neo-Hookean and Mooney elastic materials for the

axially symmetric deformation

r = f(Z)R, θ = Θ, z = g(Z), (3.1)

33



where (R, Θ, Z) and (r, θ, z) denote material and spatial cylindrical polar coordinates

respectively and f and g are functions of Z only. Further, the deformation (3.1) can

be utilized to determine approximate load deflection relations for the two problems

of axial tension and compression of solid rubber cylinders under conditions of axial

symmetry and loaded by means of bonded metal end-plates. The deformation (3.1)

specifically only applies for solid cylinders, and the question arises as to how (3.1)

might be extended to deal with the corresponding problem but for the axial ten-

sion and compression of hollow rubber cylinders, again loaded by means of bonded

metal end-plates. Since it is not known how to determine exact analytical solutions

applicable to tubes rather than solid cylinders, it is natural to consider some ana-

lytical asymptotic expansions involving powers of R and coefficients as functions of

Z only. However, if we assume such an expansion involving only positive powers of

R, then it may be readily shown that an infinite number of such terms are required

to properly close the system. This is essentially because ∇2 operating on the typical

term, say fn(Z)Rn, produces in particular the term n2fn(Z)Rn−2, which makes a

contribution to the lower order term fn−2(Z)Rn−2, and evidently it is not possible

to properly close such a system using only a finite number of terms. In this paper

we consider the axially symmetric static deformation

r = r(R, Z), θ = Θ, z = z(R, Z), (3.2)

for which r(R, Z) and z(R,Z) admit the following asymptotic expansions

r = Rf0(Z) +
f1(Z)

R
+

f2(Z)

R3
+ . . . ,

(3.3)

z = g0(Z) +
g1(Z)

R2
+

g2(Z)

R4
+ . . . ,

so that now for example, ∇2 operating on the typical term fn(Z)/R2n−1 produces

in particular the term (2n − 1)2fn(Z)/R2n+1 and this makes a contribution to the

determination of the next higher order term fn+1(Z) rather than a lower one. Ac-

cordingly, we may properly close the system using only a finite number of terms.

Here for the perfectly elastic neo-Hookean and Mooney materials, we show that for

the six functions involved in (3.3) we may produce five first order integrals involving

seven arbitrary constants A,B, C, D, E, H and k2, and from which the full solution
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for all functions may be determined from a further five formal integrations. Thus,

for both neo-Hookean and Mooney materials the full analytical solutions for (3.3)

can be presented in terms of five formal integrations and involving in total twelve

arbitrary constants.

In the following section we present the basic equations for axially symmetric

deformations of the incompressible neo-Hookean and Mooney perfectly elastic ma-

terials. In the subsequent section we present the basic equations governing the

six functions fj(Z) and gj(Z) (j = 0, 1, 2) appearing in (3.3). Since the analyti-

cal details for the Mooney material are considerably more complicated than those

for the neo-Hookean material, in Section 3.4 we first present those for the neo-

Hookean material and then in Section 3.5 we give the corresponding results for the

Mooney material. In Section 3.6 we use the solutions obtained to determine the

load-deflection relation for the axial compression of a hollow neo-Hookean rubber

cylinder. Such a solution is approximate both in the sense that the governing equa-

tions are satisfied asymptotically, and in the sense that the point-wise stress free

boundary conditions are assumed to be replaced by average or integral conditions

on every arbitrary elemental strip. However, the formal solutions obtained here are

“exact” asymptotic solutions of the governing equations, and in the absence of pre-

cise analytical results might be rendered as an approximate solution for any axially

symmetric problem for which the Z-axis is excluded. In Section 3.7 we exploit these

solutions for the problem of the axial compression of a hollow thick walled rubber

cylinder by application of equal and opposite forces applied to bonded metal end

plates. In Section 3.7 we give numerical results for the approximate load deflection

relation so determined. Appendices A to F record various analytical details required

for the approximate load-deflection relation derived in Section 3.6.

3.2 Basic equations

The general equations outlined in Chapter 2 for perfectly elastic materials are sim-

plified here for the case of axially symmetric deformation field given by (3.2). We

briefly present here the basic equations that are useful in solving the present prob-

lem. More detailed derivation of this equations are given in the literature [20].
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Let the points of the undeformed body XK(K = 1, 2, 3) and those of the de-

formed body xk, (k = 1, 2, 3) be referred to by the cylindrical polar coordinates

(R, Θ, Z) and (r, θ, z) respectively. If the corresponding rectangular cartesian co-

ordinates are given by ZM(M = 1, 2, 3) and zm(m = 1, 2, 3) respectively then we

have

Z1 = R cos Θ Z2 = R sin Θ Z3 = Z,

z1 = r cos θ z2 = r sin θ z3 = z. (3.4)

It should be noted that in the following discussions only the values 1 and 3 are

assigned to the labeling indices a,b A and B.

3.2.1 Metric tensors

Due to (2.9) the metric tensors for the deformation (3.2) are given by

GKL =




1 0 0
0 R2 0
0 0 1


 , (3.5)

and

gij =




1 0 0
0 r2 0
0 0 1


 . (3.6)

From (2.10) the spatial conjugate metric tensor becomes

gij =




1 0 0

0 1
r2 0

0 0 1




, (3.7)

while the material conjugate metric tensor is given by

GKL =




1 0 0

0 1/R2 0

0 0 1




. (3.8)

3.2.2 Deformation tensors

From (2.15)2 Cauchy deformation tensor for the deformation (3.2) is given by

cij =




R2
r + Z2

r 0 RrRz + ZrZz

0 R2 0

RrRz + ZrZz 0 R2
z + Z2

z




, (3.9)
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while on using (2.19), Finger deformation tensor is shown to become

c−1ij =




r2
R + r2

Z 0 rRzR + rZzZ

0 1/R2 0

rRzR + rZzZ 0 z2
R + z2

Z




. (3.10)

The corresponding mixed components of the above tensors are given by

ci
j =




R2
r + Z2

r 0 RrRz + ZrZz

0 1/λ2 0

RrRz + ZrZz 0 R2
z + Z2

z




, (3.11)

and

c−1i
j =




r2
R + r2

Z 0 rRzR + rZzZ

0 λ2 0

rRzR + rZzZ 0 z2
R + z2

Z




. (3.12)

3.2.3 Incompressibility condition

From (2.2) we have

j =
∂(r, z)

∂(R, Z)
, (3.13)

and from (2.13)

g = r2 , G = R2. (3.14)

Hence due to (3.13) and (2.12) the incompressibility condition becomes

∂(r, z)

∂(R,Z)
= rRzZ − rZzR =

R

r
. (3.15)

3.2.4 Strain invariants

Since for incompressible materials J = 1, due to (2.26), principle invariants of the

Finger deformation tensor become

I1 = c−1i
i , I2 = ci

i, I3 = 1. (3.16)

We let I and II denote the principle invariants of c−1a
b . Thus we have

I = c−1a
a, II = |c−1a

b|. (3.17)

37



Now combining (3.17) in (2.24) and utilizing (3.12) we obtain

I1 = I + λ2, I2 = λ2I + II, I3 = λ2II, (3.18)

where λ is defined by

λ = r/R. (3.19)

Due to (3.17) it is also clear that I is defined by

I = r2
R + r2

Z + z2
R + z2

z . (3.20)

Further the Cauchy Hamilton theorem for c−1a
b yields

IIca
b = δa

b I − c−1a
b . (3.21)

However it can be shown that

II = |c−1a
b | =

1

λ2
, (3.22)

and therefore we have the strain invariants expressed by

I1 = I + λ2, I2 = λ2I +
1

λ2
I3 = 1. (3.23)

3.2.5 Equilibrium equations

Since in terms of free products the stress tensor T can be expressed as

T = T a
b gag

b, (3.24)

for deformation (3.2), (2.62) becomes

T a
b = p∗δa

b + 2
∂Σ

∂I1

c−1a
b − 2

∂Σ

∂I2

ca
b ,

T 2
2 = p∗ + 2

∂Σ

∂I1

λ2 − 2
∂Σ

∂I2

1

λ2
, (3.25)

T 2
a = T a

2 = 0.

Upon using (3.21) in (3.25)1 and introducing p and φ defined by

p = p∗ + 2λ2I
∂Σ

∂I2

,

φ = 2

[
∂Σ

∂I1

+ λ2 ∂Σ

∂I2

]
, (3.26)
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T a
b can be shown to become

T a
b = −pδa

b + φc−1a
b . (3.27)

Hence by substituting from (3.12) the stress components are shown to be given by

T 1
1 = −p + φ

(
r2
R + r2

Z

)
,

T 3
3 = −p + φ

(
z2

R + z2
Z

)
, (3.28)

T 1
3 = T 3

1 = φ (rRzR + rZzZ) .

Now by introducing

ψ =

[
∂Σ

∂I1

+

(
I − 1

λ4

)
∂Σ

∂I2

]
, (3.29)

(3.25)2 can be expressed as

T 2
2 = −p + ψλ2, (3.30)

where p is called the modified pressure function while φ and ψ are known as response

functions which due to (3.18) can also be expressed as

φ = 2
∂Σ

∂I
, ψ = 2

∂Σ

∂λ2
. (3.31)

Next on using (3.15) we deduce the following results

Rr = λ zZ , Rz = −λ rZ ,

Zr = −λ zR, Zz = λ rR. (3.32)

Upon utilizing T ij = gikT j
k and (2.40) and subsisting above results into (3.28) we

obtain

T 11
R = −λpzZ + φrR,

T 33
R = −λprR + φzZ ,

T 13
R = λprZ + φzR,

T 31
R = λpzR + φrZ ,

T 22
R = − p

r2
+

ψ

R2
,

T 2a
R = T a2

R = 0. (3.33)
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Noting that for orthogonal coordinates Christoffel symbols Γr
ij vanish for r 6= i 6= j,

there remain only the following non zero terms for the coordinates (r, θ, Z)

Γ1
22 = −r, Γ2

12 = Γ2
21 =

1

r
. (3.34)

The equilibrium equations (2.55) therefore give

∂T 11
R

∂R
+

T 11
R

R
+

∂T 31
R

∂Z
= rT 22

R , (3.35)

∂T 13
R

∂R
+

T 13
R

R
+

∂T 33
R

∂Z
= 0. (3.36)

It is understood that the second equilibrium equation (3.36) is automatically satis-

fied.

Owing to (3.19) it is easily seen that

λR = − r

R2
+

rR

R
, λZ =

rZ

R
. (3.37)

Upon substituting (3.33) in (3.35) and accompanying the above results the two

equilibrium equations simplify to give

∂p

∂r
= φ∇2r + φRrR + φZrZ − ψ

r

R2
, (3.38)

∂p

∂z
= φ∇2z + φRzR + φZzZ , (3.39)

where ∇2 denotes the usual axially symmetric Laplacian, thus

∇2 =
∂2

∂R2
+

1

R

∂

∂R
+

∂2

∂Z2
. (3.40)

For the Mooney strain-energy function, namely

∑
(I1, I2) = C1(I1 − 3) + C2(I2 − 3), (3.41)

those relations yield

φ = 2(C1 + λ2C2), ψ = 2

(
C1 +

(
I − 1

λ4

)
C2

)
. (3.42)

In the following section we use the above results to determine the basic equations

for the asymptotic deformation (3.3).
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3.3 Governing equations for the deformation (3.3)

Formally, we assume that term by term differentiation of (3.3) with respect to both

R and Z is permissable any number of times. Thus for example

rR = f0(Z)− f1(Z)

R2
− 3f2(Z)

R4
+ . . . ,

(3.43)

rZ = Rf ′0(Z) +
f ′1(Z)

R
+

f ′2(Z)

R3
+ . . . ,

and

zR = −2g1(Z)

R3
− 4g2(Z)

R5
+ . . . ,

(3.44)

zZ = g′0(Z) +
g′1(Z)

R2
+

g′2(Z)

R4
+ . . . ,

where throughout primes denote differentiation with respect to Z. It is also conve-

nient to use ε for 1/R2, and subsequently we generally omit any indication of higher

order terms. Noting simply that the analysis given here is consistently accurate to

order ε2.

We first deal with the incompressibility condition. From (3.3), (3.15) and for-

mulae such as (3.43), we obtain respectively on equating coefficients of ε◦, ε and

ε2,

g′0 = 1/f 2
0 ,

f0g
′
1 + 2f ′0g1 = 0,

f0g
′
2 − f1g

′
1 − 3f2g

′
0 + 4f ′0g2 + 2g1f

′
1 =

f 2
1

f 3
0

− f2

f 2
0

. (3.45)

By rearranging terms and integrating, from (3.45)2 it can be shown that

g1 =
A

f 2
0

, (3.46)

where A denotes a constant of integration. Upon substituting for g′0, g1 and g′1 in

(3.45)3 we may readily deduce

(f 4
0 g2 + 2Af0f1)

′ = f 2
1 + 2f0f2. (3.47)

Thus, assuming f0(Z), f1(Z) and f2(Z) are known functions, the functions g0(Z),

g1(Z) and g2(Z) can be formally determined by two integrations.

41



Next, by substituting ε = 1
R2 in equation (3.3)1 , squaring it and neglecting the

terms of order ε3 and higher we obtain

λ2 = f 2
0 + 2εf0f1 + ε2

(
f 2

1 + 2f0f2

)
. (3.48)

Using the above relationship and employing the binomial expansion we yield

1

λ4
=

1

f 4
0

− 4ε
f1

f 5
0

+ ε2 (10f 2
1 − 4f0f2)

f 6
0

. (3.49)

It is understood that again we have neglected the terms of order ε3 and higher in

equation (3.49). Now carrying on the expressions (3.43) and (3.44) into (3.20) we

have I given by

I =
f ′

2

0

ε
+

(
f 2

0 + 2f ′0f
′
1 + g′

2

0

)
+ ε

(
f ′

2

1 − 2f0f1 + 2f ′0f
′
2 + 2g′0g

′
1

)
,

noting that the order ε2 contribution in the equation has not been included, because

subsequently we need ψ/R2 (ie εψ) and therefore the order ε2 terms in both (3.50)

and (3.49) are not required. From (3.48), (3.49) and (3.42) we obtain

φ = 2(C1 + f 2
0 C2) + 4εC2f0f1 + 2ε2C2(f

2
1 + 2f0f2),

ψ

R2
= 2C2f

′2
0 + 2C1ε + 2C2ε(f

2
0 + 2f ′0f

′
1) (3.50)

+2C2ε
2

(
f ′

2

1 + 2f ′0f
′
2 + 2g′0g

′
1 − 2f0f1 +

4f1

f 5
0

)
,

noting that in deriving the latter expression we have utilized (3.45)1.

Next for the convenience of calculations we use a, b, c, α, β and γ as shorthand

for the coefficients arising in (3.50), thus

φ = a + bε + cε2,

ψ

R2
= α + βε + γε2, (3.51)

where it is readily seen from (3.50) that

a? = 2(C1 + f 2
0 C2),

b? = 4C2f0f1,

c? = 2C2(f
2
1 + 2f0f2), (3.52)

α = 2C2f
′2
0 ,

β = 2C1 + 2C2(f
2
0 + 2f ′0f

′
1),

γ = 2C2

(
f ′

2

1 + 2f ′0f
′
2 + 2g′0g

′
1 − 2f0f1 +

4f1

f 5
0

)
.
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Now due to our assumption that deformation (3.3) is differentiable any number of

times with respect to R and Z, from (3.43) and (3.44) we have

rRR =
2f1(Z)

R3
+

12f2(Z)

R5
+ . . . ,

rZZ = Rf ′′0 (Z) +
f ′′1 (Z)

R
+

f ′′2 (Z)

R3
+ . . . ,

zRR =
6g1(Z)

R4
+

20g2(Z)

R6
+ . . . ,

zZZ = g′′0(Z) +
g′′1(Z)

R2
+

g′′2(Z)

R4
+ . . . , (3.53)

where prime denotes differentiation with respect to Z. Applying the Laplacian given

by (3.40) on (3.3) and utilizing equations (3.53) and (3.43) it is easily obtained that

∇2r = Rf ′′0 + Rε(f0 + f ′′1 ) + Rε2(f ′′2 + f1),

∇2z = g′′0 + εg′′1 + ε2(4g1 + g′′2). (3.54)

Now using equations (3.51) and substituting (3.54) in the two equilibrium equations

given by (3.38) we deduce the following results

∂p

∂r
= RF0(Z) +

F1(Z)

R
+

F2(Z)

R3
+ . . . ,

(3.55)

∂p

∂z
= G0(Z) +

G1(Z)

R2
+

G2(Z)

R4
+ . . . ,

where the six functions Fj(Z) and Gj(Z) (j = 0, 1, 2) are given by

F0 = (a?f ′0)
′ − αf0,

F1 = (a?f ′1 + b?f ′0)
′ + a?f0 − αf1 − βf0,

F2 = (a?f ′2 + b?f ′1 + c?f ′0)
′ + a?f1 − b?f0 − αf2 − βf1 − γf0, (3.56)

and

G0 = (a?g′0)
′,

G1 = (a?g′1 + b?g′0)
′,

G2 = (a?g′2 + b?g′1 + c?g′0)
′ + 4a?g1, (3.57)
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Now on eliminating the pressure function p from (3.55), namely using the equation

∂(∂p/∂r, r)

∂(R,Z)
+

∂(∂p/∂z, z)

∂(R,Z)
= 0, (3.58)

we may deduce from (3.3), (3.55) and (3.58)

F0f
′
0 − F ′

0f0 = 0,

F0f
′
1 − F1f

′
0 + F ′

0f1 − F ′
1f0 = 0, (3.59)

F0f
′
2 − F ′

2f0 + F ′
1f1 − F1f

′
1 + 3F ′

0f2 − 3F2f
′
0 + 2g1G

′
0 − 2G1g

′
0 = 0,

the first two of which readily integrate to yield

F0 = −2C1k
2f0, F1 = −2C1k

2f1 + 2C1B/f0, (3.60)

where B and k2 denote real constants of integration, noting that k itself can be

real or pure imaginary. Next on using (3.45) and (3.60) in equation (3.59)3 we may

deduce

[f 3
0 (F2 + 2C1k

2f2) + 2C1Bf0f1]
′ = 2(AG′

0 −G1), (3.61)

and from (3.57) we have

AG′
0 −G1 =

[
4C2

f0

(Af ′0 − f1)

]′
. (3.62)

Therefore on integration we obtain

f 3
0 (F2 + 2C1k

2f2) + 2C1Bf0f1 =
8C2

f0

(Af ′0 − f1) + 2C1C, (3.63)

where C denotes the constant of integration.

In the following section we deduce from (3.60) and (3.63) the greatly simplified

equations which apply for the special case of the neo-Hookean material (C2 = 0).

The analysis for C2 6= 0 is presented in the section thereafter.

3.4 Solutions and integrals for the neo-Hookean

material

For the case C2 = 0, we have simply a? = β = 2C1 and b? = c? = α = γ = 0 and

the three determining equations for f0(Z) and f1(Z) are obtained from (3.60) as

f ′′0 + k2f0 = 0, f ′′1 + k2f1 = B/f0. (3.64)
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Due to (3.56)3 it is clear that

F2 = 2C1f
′′
2 . (3.65)

Hence from (3.63) we obtain

f ′′2 + k2f2 =
C

f 3
0

− Bf1

f 2
0

, (3.66)

again noting that B, C and k2 are all constants of integration. In summary for

neo-Hookean Material we therefore have

F0 = 2C1f
′′
0 , F1 = 2C1f

′′
1 , F2 = 2C1f

′′
2 ,

G0 = 2C1g
′′
0 , G1 = 2C1g

′′
1 , G2 = 2C1g

′′
2 + 8C1g1. (3.67)

Multiplication of (3.64)1 by f ′0 gives

f ′
2

0 + k2f 2
0 = D, (3.68)

where D is a further constant of integration. Similarly, multiplication of (3.64)1 by

f ′1 and (3.64)2 by f ′0 and by addition gives the integral

f ′0f
′
1 + k2f0f1 = B log f0 + E, (3.69)

where E denotes the constant of integration. The formal integration of (3.66) is

achieved by multiplication of this equation by f ′0 and adding f ′1 times equation

(3.64)2 plus f ′2 times equation (3.64)1, thus

f ′0(f
′′
2 + k2f2) + f ′1(f

′′
1 + k2f1) + f ′2(f

′′
0 + k2f0) =

B

f0

f ′1 −
Bf1

f 2
0

f ′0 +
Cf ′0
f 3

0

,

which may be readily integrated to yield

f ′0f
′
2 +

f ′
2

1

2
+ k2

(
f0f2 +

f 2
1

2

)
=

Bf1

f0

− C

2f 2
0

+ H, (3.70)

where H denotes the constant of integration.

The calculation for the pressure function p is quite arduous even for the neo-

Hookean material. We need to integrate (3.55) using (3.60) and (3.63) with C2 = 0

and using
∂p

∂R
=

∂p

∂r
rR +

∂p

∂z
zR,

∂p

∂Z
=

∂p

∂r
rZ +

∂p

∂z
zZ , (3.71)
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we may eventually deduce as shown in Appendix A

p = −2C1

{
k2

2

(
Rf0 +

f1

R
+

f2

R3

)2

+
2Af ′0
R2f 5

0

+
C

2R2f 2
0

−B log(Rf0)− Bf1

R2f0

− 1

2f 4
0

}

+2C1p0, (3.72)

where p0 denotes the constant of integration and the term r2 appearing in (3.72)

means (
Rf0 +

f1

R
+

f2

R3

)2

= R2f 2
0 + 2f0f1 +

(f 2
1 + 2f0f2)

R2
+ . . . . (3.73)

Thus the functions appearing in equation (3.3) can be determined completely from

five further formal integrations, namely (3.47)1, (3.47)3, (3.68), (3.69) and (3.70).

These five equations involve in total seven arbitrary constants (A,B, C, D,E, H and k2)

which together with the five further constants of integration makes in total twelve

arbitrary constants. The stresses will generally involve all these constants plus the

constant p0 which arises in the integration of the pressure function. The same picture

applies for the Mooney material, but the integrals corresponding to (3.68), (3.69)

and (3.70) are far more complicated. These results are obtained in the following

section

3.5 Solutions and integrals for the Mooney ma-

terial

For C2 non-zero we have from (3.50) and (3.51)

a? = 2(C1 + f 2
0 C2),

b? = 4C2f0f1,

c? = 2C2(f
2
1 + 2f0f2),

α = 2C2f
′2
0 , (3.74)

β = 2C1 + 2C2(f
2
0 + 2f ′0f

′
1),

γ = 2C2(f
′2
1 + 2f ′0f

′
2 + 2g′0g

′
1 − 2f0f1 + 4f1/f

5
0 ),

and from the equations (3.56), (3.60) and (3.63) we may eventually deduce the

following expressions for f0(Z), f1(Z) and f2(Z), thus

(1 + Γf 2
0 )f ′′0 + Γf0f

′2
0 + k2f0 = 0, (3.75)
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(1 + Γf 2
0 )f ′′1 + 2Γf0f

′
0f
′
1 + Γ(2f0f

′′
0 + f ′

2

0 )f1 + k2f1 = B/f0, (3.76)

(1 + Γf 2
0 )f ′′2 + 2Γf0f

′
0f
′
2 + Γ(2f0f

′′
0 + f ′

2

0 )f2 + k2f2 (3.77)

+Γ(f 2
1 f ′′0 + 2f1f

′
1f
′
0) + Γ(2f1f

′′
1 + f ′

2

1 )f0 = C/f 3
0 −Bf1/f

2
0 ,

where Γ denotes this ratio C2/C1. Formal integrals for these three equations are

obtained precisely as described in the previous section for the neo-Hookean material,

although of course the details are more complicated.

Multiplication of (3.75) by f ′0 and integrating yields

(1 + Γf 2
0 )f ′

2

0 + k2f 2
0 = D. (3.78)

This nonlinear first order differential equation was first derived by Klingbiel and

Shield [7] and has a solution which may be expressed in terms of elliptic functions.

Similarly, multiplication of (3.75) by f ′1 and (3.76) by f ′0, adding the two equations

and integrating yields

(1 + Γf 2
0 )f ′0f

′
1 + Γf0f

′2
0 f1 + k2f0f1 = B log f0 + E, (3.79)

Although complicated, It is noted that by dividing by (1 + Γf 2
0 )f ′0 this equation

is formally only a first-order linear ordinary differential equation whose integrating

factor is given by eΛ where

Λ =

∫ ζ

0

(Γf ′
2

0 + k2)f0dζ

(1 + Γf 2
0 )f ′0

, (3.80)

which on using (3.75) can be shown to become

Λ = − log f ′0. (3.81)

Hence the integrating factor becomes f ′0 and the differential equation (3.79) becomes
(

f1

f ′0

)′
=

B log f0 + E

D − k2f 2
0

, (3.82)

which for known f0(Z) can usually be integrated directly. Following the same recipe

for the determination of (3.70), we multiply (3.75) by f ′2, (3.76) by f ′1 and (3.77) by

f ′0, and an addition the resulting equation may be integrated to yield

(1 + Γf 2
0 )f ′0f

′
2 + Γf0f

′2
0 f2 + k2f0f2 +

Γ

2

{
(f1f

′
0 + f0f

′
1)

2 + 2f0f
′
0f1f

′
1

}

+
f ′

2

1

2
+

k2

2
f 2

1 = Bf1/f0 − C/2f 2
0 + H, (3.83)
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and again, although more complicated, this is merely a first-order linear ordinary

differential equation with the same integrating factor as (3.79), and simplifies to give

(
f2

f ′0

)′
+

Γ {(f1f
′
0 + f0f

′
1)

2 + 2f0f
′
0f1f

′
1}+ f ′

2

1 + k2f 2
1

2(D − k2f 2
0 )

=
Bf1/f0 − C/2f 2

0 + H

(D − k2f 2
0 )

, (3.84)

and again, in principle for known f0(Z) and f1(Z), this equation may be formally

integrated. Thus for the deformation (3.3) we have again reduced the problem to

five formal integrations, namely (3.47)1, (3.47)3, (3.78), (3.82) and (3.84). In the

following section we use the results of the previous section to determine an approxi-

mate solution to the problem of the axially symmetric compression of a rubber tube

with bonded metal end-plates.

3.6 Axial compression of a cylindrical tube with

bonded metal end-plates

Z

Y

  X

L

 

(a) Undeformed cylinder (b) Deformed cylinder

Figure 3.1: Original and deformed body of the cylindrical tube with bonded metal
plates subjected to axial compression

In this section we determine an approximate solution to the problem of the axial
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compression of a cylindrical tube as shown in Figure 3.1. We assume inner and outer

radii a and b respectively, and originally of length 2L and deformed symmetrically

as shown in the figure to have final overall length 2`. We suppose that the actual

deformation may be approximated by a deformation of the form (3.3), and ideally

we seek functions fj(Z) and gj(Z) (j = 0, 1, 2) such that they are even and odd

respectively and that the following boundary values apply, namely

f0(±L) = 1, f1(±L) = f2(±L) = 0,

g0(±L) = ±`, g1(±L) = g2(±L) = 0, (3.85)

and since gj(Z) (j = 0, 1, 2) are assumed to be odd functions of Z, we have automat-

ically gj(0) = 0 (j = 0, 1, 2). Subsequently, we find that it is not possible to satisfy

(3.85)6 in a pointwise manner and we have to satisfy the condition g2(±L) = 0 in

an average sense. Now from (3.68), (3.45)1 and the above boundary values, we may

readily deduce

f0(Z) =
cos kZ

cos kL
, g0(Z) =

cos2 kL

k
tan kZ, (3.86)

which is the solution for the axial compression for the solid rubber cylinder, and

first given by Klingbeil and Shield [7].

Now with f0(Z) defined by (3.86)1 and (3.69) we may obtain

(
f1

sin kZ

)′
= −

[
B log

(
cos kZ

sin kL

)
+ E

]
cos kL

k sin2 kZ
, (3.87)

which can readily integrated to give

f1(Z) =
B cos kL

k2

[
cos kZ log

(
cos kZ

cos kL

)
+ kZ sin kZ

]
+

E cos kL

k2
cos kZ + I sin kZ,

(3.88)

where I denotes the integration constant. From the boundary condition (3.86)2 we

may deduce I = 0 and E = BkL tan kL, and we obtain

f1(Z) =
B cos kL

k2

[
cos kZ log

(
cos kZ

cos kL

)
+ kZ sin kZ − kL tan kL cos kZ

]
. (3.89)

Since g1(Z) is assumed to be odd, we have immediately from (3.46) that the constant

A is zero and thus g1(Z) is identically zero.
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Now again with f0(Z) defined by (3.86)1 and with f1(Z) defined by (3.89), equa-

tion (3.70) may be integrated to give

f2(Z) =
B2 cos3 kL

k4

{
−cos kZ

2
log2

(
cos kZ

cos kL

)

+(1 + kL tan kL)

[
cos kZ log

(
cos kZ

cos kL

)
+ kZ sin kZ

]

−kZ sin kZ log

(
cos kZ

cos kL

)
− k2

2
Z2 cos kZ

−kL tan kL

(
1 +

kL tan kL

2

)
cos kZ − 2kI1(Z) sin kZ

}

−C cos3 kL

2k2

cos 2kZ

cos kZ
+

H cos kL

k2
cos kZ + J sin kZ, (3.90)

where J denotes the further constant of integration. From the boundary values we

may deduce J is zero and H = B2 {(L2 cos 2kL)/2 + I1(L) sin 2kL}+ (C/2) cos 2kL

and we obtain the following expression which is derived in Appendix B,

f2(Z) =
B2 cos3 kL

k4

{
−cos kZ

2
log2

(
cos kZ

cos kL

)

+(1 + kL tan kL)

[
cos kZ log

(
cos kZ

cos kL

)
+ kZ sin kZ

]

−kZ sin kZ log

(
cos kZ

cos kL

)
− k2

2
Z2 cos kZ + T cos kZ − 2k2I1(Z) sin kZ

}

+
C cos kL

2k2 cos kZ
(cos2 kL− cos2 kZ), (3.91)

where T is a constant defined by

T = (kL)2/2− k2L2 tan2 kL− kL tan kL + 2k2I1(L) tan kL, (3.92)

and I1(Z) is defined by

I1(Z) =

∫ Z

0

ξ tan kξdξ = −Z

k
log kZ +

1

k

∫ Z

0

log cos kξdξ. (3.93)

Further, with f0(Z), f1(Z) and f2(Z) defined by (3.86), (3.89)1 and (3.91), as shown
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in Appendix C we may integrate equation (3.47) to give g2(Z) as

g2(Z) =
B2 cos6 kL

k5 cos4 kZ

[
1

2
sin 2kZ log

(
cos kZ

cos kL

)
+ kZ log

(
cos kZ

cos kL

)
+ kZ sin2 kZ

−1

2
k2Z2 sin 2kZ + k2I1(Z)(1 + 2 cos2 kZ) +

T ∗

2

(
kZ +

sin 2kZ

2

)]

+
C

2k2

(
cos kL

cos kZ

)4 [
Z cos 2kL− sin 2kZ

2k

]
, (3.94)

where T ∗ is the constant defined by T ∗ = 2T + k2L2 tan2 kL. Here we have utilized

the fact that g2(Z) is an odd function, to determine the integral constant as zero.

We observe that while g2(Z) is correctly an odd function, we are not able to impose

the additional requirement that g2(±L) = 0. Accordingly, we assume that we may

replace the assumption of a bonded metal plate, by an averaged approximation for

this requirement.

At this point there remains four as yet undetermined constants, namely B, C, k2

and p0. These constants are obtained by prescribing the resultant applied force F to

the bonded metal end-plates, and by requiring that every elemental strip subtended

by an arbitrary angle dΘ on both surfaces originally given by R = a and R = b

respectively be subject to an uniform vertical force. This procedure follows that

first exploited by Klingbeil and Shield [7] and later used by Hill and Lee [9]. Given

the approximate nature of both the assumed deformation and the average boundary

conditions, it is not a simple matter to deduce conditions under which such a solution

might apply. We point out that for the series solution (3.3) to be a good approximate

analytical solution, it is necessary that R is large. For the problem considered in this

section, this implies that a should be large, where of course the largeness or smallness

of a quantity is in a relative sense. Here, we might expect what is required is that

a is much larger than the characteristic axial length, that is 2L or indeed L. Under

such a condition, it would then be reasonable to replace the point-wise traction free

conditions on the two lateral surfaces, by requiring the resultant to be zero. However

numerical results for the final load deflection relation (3.127) show that a physically

sensible relation is only obtained for a < L. For a ≥ L the relation (3.127) does not

display the characteristics one might expect such as achieving the maximum force in

the vicinity of δ = 1−`/L equals unity, namely ` ≈ 0. Accordingly, in the numerical
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example of the following section we restrict our attention to a < L.

Due to the axial symmetry and the mid-plane symmetry, the only non-zero

resultant force acting on every elemental strip subtended by the arbitrary angle dΘ

is given by

dFr = dΘ

∫ L

−L

T 11
R RdZ, (3.95)

where TKj
R (K, j = 1, 2, 3) denotes the first Piola-Kirchoff stress tensor which is

given explicitly in Hill and Lee [9]. In particular for the neo-Hookean material we

have

T 11
R = −p

r

R
zZ + 2C1rR, T 33

R = −p
r

R
rR + 2CzZ , (3.96)

and therefore from (3.3) with g1(Z) ≡ 0 and (3.88) we have

T 11
R = −p

(
f0 +

f1

R2
+

f2

R4

)(
g′0 +

g′2
R4

)
+ 2C1

(
f0 − f1

R2
− 3f2

R4

)
, (3.97)

T 33
R = −p

(
f0 +

f1

R2
+

f2

R4

)(
f0 − f1

R2
− 3f2

R4

)
+ 2C1

(
g′0 +

g′2
R4

)
, (3.98)

where for the neo-Hookean material from (3.72) the pressure function p is given by

p = −2C1

[
R2k2

2
f 2

0 +

(
k2f0f1 −B log f0 − 1

2f 4
0

)

+
(f 2

1 + 2f0f2)k
2 + C/f 2

0 − 2Bf1/f0)

2R2
−B log R

]
+ 2C1p0. (3.99)

If we include the three leading order terms in the expressions for (3.97) and (3.98)

then we obtain

T 11
R

2C1

= R2k2

2
f0 +

(
f0 − 1

2f 5
0

− p0

f0

− B log f0

f0

+
3k2f1

2

)
−B log R

(
1

f0

+
f1

R2f 2
0

)
+

1

R2

[
k2

2
(5f2 − 4f 2

0 f ′0g2) +
C

2f 3
0

+
2k2f 2

1

f0

−(B + B log f0 + p)
f1

f 2
0

− f1 − f1

2f 6
0

]
+ . . . , (3.100)

T 33
R

2C1

= R2k2

2
f 4

0 −
(

p0f
2
0 −

1

2f 2
0

− k2f 3
0 f1 + Bf 2

0 log f0

)
+

1

R2

(
C

2
−Bf1f0

)

−Bf 2
0 log R + . . . . (3.101)
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From the expressions (3.86), (3.91) and (3.94) we have from (3.100)

T 11
R

2C1

= R2k2 cos kZ

2 cos kL
+

[
cos kZ

cos kL
− cos5 kL

2 cos5 kZ
− p0

cos kL

cos kZ
+

B cos kL

(
3

2
cos kZ log f0 +

3

2
kZ sin kZ − 3

2
kL tan kL cos kZ − log f0

cos kZ

)]

+
1

R2

{
B2 cos3 kL

k2

[
3

4
log2 f0 cos kZ − log2 f0

cos kZ
+

kZ log f0 sin kZ

cos2 kZ

+
1

2
(1− 3kL tan kL)(log f0 cos kZ + kZ sin kZ) +

3

2
kZ log f0 sin kZ

+ (1 + kL tan kL)
log f0

cos kZ
− 5

4
k2Z2 cos kZ + (1 + T ∗)

kZ sin kZ

cos2 kZ
+

1

4
(T ∗ + 3k2L2 tan2 kL) cos kZ +

(T ∗ + kL tan kL)

cos kZ

+k2I1(Z) sin kZ

(
2

cos2 kZ
− 1

)]

−B

k2
(cos kL cos kZ log f0 + kZ cos kL sin kZ − kL sin kL cos kZ

+
cos7 kL log f0

2 cos5 kZ
+

kZ cos7 kL sin kZ

2 cos6 kZ
− kL cos6 kL sin kL

2 cos5 kZ

)

−p0B cos3 kL

k2

(
log f0

cos kZ
+

kZ sin kZ

cos2 kZ
− kL tan kL

cos kZ

)

+
C cos kL

4

(
4kZ tan kZ cos 2kL + sin2 kZ − 5 sin2 kL

cos kZ
+ 2

cos2 kL

cos3 kZ

)}
+ . . . .

(3.102)

Now on using (3.102) as shown in Appendix D, the condition (3.95) becomes

p0 = −B log R + (kR)2 κ1

κ7 + B/(kR)2κ8

+
κ2 + Bκ3

κ7 + B/(kR)2κ8

+
1

(kR)2

(B2κ4 + Bκ5 + k2Cκ6)

κ7 + B/(kR)2κ8

, (3.103)
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R = a and b, and where κj (j = 1..8) are constants not involving R and defined by

κ1 =
s

c
, κ2 =

2s

c
− sc

4
− 3

8
sc3 − 3

8
c5w, κ3 = 3cw − 3kL− ckI2,

κ4 = kL(2T ∗c2 − c2sw − c4) + k2Lc2sI2 + wc3 +
T ∗c3s

2

+
c3

2
(3kI2 − 4kI3) +

k2L2

2
(c3s + 3s3c) + 2k2I1(L)c2(c2 + 2),

κ5 = kL(2− c2

5
+

c2s2

4
+

3

8
c4s2 +

3

8
c6sw)

−(2cw +
c3s

80
+

13

160
c5s− 47

160
c7w +

3

16
kc7I2),

κ6 = 2kL(2c2 − 1)− wc3, κ7 = 2cw,

κ8 = 2kLc2(1− sw)− 2c2w + kc3I2. (3.104)

Here for convenience we adopt the abbreviations

c = cos kL, s = sin kL, w = log[sec kL + tan kL], (3.105)

I2 =

∫ L

−L

log(sin kZ + 1) tan kZdZ,

I3 = k

∫ +L

−L

∫ Z

−L

log(sin kx + 1) tan kx tan kZdxdZ.

Since (3.103) applies at both R = a and R = b we have

p0 = (ka)2 κ1

κ7 + B/(ka)2κ8

+
κ2 + Bκ3

κ7 + B/(ka)2κ8

+
1

(ka)2

(B2κ4 + Bκ5 + k2Cκ6)

κ7 + B/(ka)2κ8

−B log a, (3.106)

p0 = (kb)2 κ1

κ7 + B/(kb)2κ8

+
κ2 + Bκ3

κ7 + B/(kb)2κ8

+
1

(kb)2

(B2κ4 + Bκ5 + k2Cκ6)

κ7 + B/(kb)2κ8

−B log b, (3.107)

and therefore we may deduce

C =
κ1

κ6

k2a2b2 +
B

k2

(
κ1κ8

κ7κ6

k2(a2 + b2) +
κ2κ8

κ7κ6

− κ5

κ6

− κ7

κ6

k2a2b2

(b2 − a2)
log(b/a)

)

B2

k2

(
κ3κ8

κ7κ6

− κ4

κ6

− κ8

κ6

(b2 + a2)

(b2 − a2)
log(b/a)

)
− B3

k4

k2
8 log(b/a)

k7k6(b2 − a2)
, (3.108)

p0 =
κ1

κ7

k2(a2 + b2) +
κ2

κ7

+ B

(
κ3

κ7

− (b2 log b− a2 log a)

(b2 − a2)

)
− B2

k2

k8 log(b/a)

k7(b2 − a2)
,

(3.109)
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as the two determining equations for C and p0.

It remains only to determine an expression for the total applied vertical force,

which may be deduced from (3.96)2 and the following equation, namely

F =

∫ 2π

0

∫ b

a

T 33
R (Z = ±L)R dR dΘ. (3.110)

From (3.101) noting that f0(±L) = 1, we may readily deduce from (3.110)

F

2C1

= 2π

{
k2

8
(b4 − a4)−

(
p0 − 1

2

)
1

2
(b2 − a2) +

C

2
log(b/a)

−B

2

[
b2 log b− a2 log a− (b2 − a2)

2

]}
, (3.111)

and on using (3.108) and (3.109) we obtain

F

2C1

= 2π

[
k2

8
(b4 − a4)−

(
k2(a2 + b2)

κ1

κ7

+
κ2

κ7

− 1

2

)
1

2
(b2 − a2)

+
k2

2
a2b2 log(b/a)

κ1

κ6

+ Bµ1 + B2µ2 + B3µ3

]
, (3.112)

where µ1, µ2 and µ3 are constants defined by

µ1 =

[
k2(a2 + b2)

κ1κ8

κ7κ6

+
κ2κ8

κ6κ7

− κ5

κ6

− k2a2b2 log(b/a)

(b2 − a2)

κ7

κ6

]
log(b/a)

2k2

+
(b2 − a2)

2

(
1

2
− κ3

κ7

)
, (3.113)

µ2 =
log(b/a)

2k2

[
κ3κ8

κ7κ6

− κ4

κ6

− κ8

κ7

− κ8

κ6

(b2 + a2)

(b2 − a2)
log(b/a)

]
,

µ3 = − k2
8 log(b/a)

2k4k7k6(b2 − a2)
.

In the above we have determined a one-parameter family of deformations charac-

terized by the parameter B. However, if we impose the additional requirement that

the value zero of the applied force F corresponds to the absence of any deformation,

then, as shown below, we obtain three allowable values of B. However we comment

that only the value B = 0 gives a physically reasonable response.

In the limit k tending to zero we have from (3.64) and (3.66),

f0 ' 1, f1 ' B

2
(Z2 − L2), f2 ' 1

2
(Z2 − L2)

[
C − B2

12
(Z2 − 5L2)

]
, (3.114)
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and from (3.45), (3.46) and (3.47) we have,

g0 ' Z, g1 = 0, g2 ' B2

6

(
Z5

5
− L4Z

)
+

C

2

(
Z3

3
− L2Z

)
. (3.115)

We note that in this limit, from (3.114) and (3.115) the deformation (3.3) becomes

simply

r = R +
B

2R
(Z2 − L2) +

1

2R3
(Z2 − L2)

[
C − B2

12
(Z2 − 5L2)

]
,

z = Z +
1

2R4

[
C

(
Z2

3
− L2

)
+

B2

3

(
Z4

5
− L4

)]
, (3.116)

giving rise to displacements which are asymptotic linear incompressible elastic de-

formations. On using (3.114) and (3.115) in (3.100) we can show that as k tends to

zero we have from the condition (3.95),

p0 ' 1

2
−B

(b2 log b− a2 log a)

b2 − a2
+ B2L2 log(b/a)

3(b2 − a2)
, (3.117)

and

C ' −2B

(
a2b2 log(b/a)

b2 − a2
+

2

3
L2

)
+ B2 2L2

3

(
b2 + a2

b2 − a2
log b/a− 1

)

−B3 2L4 log(b/a)

9(b2 − a2)
.

(3.118)

Therefore to leading order we have

F

2C1

' 2πB

[(
b2 − a2

4
− 2L2

3
log(b/a)− a2b2

b2 − a2
log2(b/a)

)

−BL2 log(b/a)

(
1

2
− b2 + a2

3(b2 − a2)
log(b/a)

)
−B2L4 log2(b/a)

9(b2 − a2)

]
,

(3.119)

and hence F tends to zero with k only when B = 0 or when B is a root of the

quadratic equation

B2L4 log2(b/a)

9(b2 − a2)
+ BL2 log(b/a)

(
1

2
− b2 + a2

3(b2 − a2)
log(b/a)

)
(3.120)

−
(

b2 − a2

4
− 2L2

3
log(b/a)− a2b2

b2 − a2
log2(b/a)

)
= 0.
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As shown in Appendix E , equation (3.120) has real solutions when

b

a
>

√
13 + 3

2
, L2 ≤ 3

8

[
(
√

13− 3)b2 − (
√

13 + 3)a2
]
, (3.121)

where 2L is the height and a and b are inner and outer radii respectively of the

undeformed body. We comment that subsequently for the problem under consid-

eration, numerical results indicate that only the case B = 0 provides a meaningful

physical result.

3.7 Numerical results and conclusions

From the assumption that the bonded metal plate boundary conditions (3.85)4,

(3.85)5 and (3.85)6 may be replaced by the average requirement, namely

∫ B

A

[
`− g0(L)− g2(L)

R4

]
R dR = 0, (3.122)

which gives on simplification

` = g0(L) +
g2(L)

(ab)2
, (3.123)

we obtain the new deformed height 2`. By substituting for g0(L) and g2(L) from

(3.86)2 and (3.94) respectively in (3.123) we obtain,

2k` =
B2 cos2 kL

k4a2b2

[
(kL)2(kL− 3 tan kL− kL tan2 kL) + 2k2I1(L)(3 + 2kL tan kL)

]

+
C

4k2a2b2
(2kL cos 2kL− sin 2kL) + sin 2kL, (3.124)

where I1(Z) is the integral defined by equation (3.93) and again we note that the

constant C is given by (3.108), and either B is zero or given as a root of (3.120).

On using the conditions (3.121) by taking the original dimensions of the cylinder

as a = b/4 and L = b/3, from (3.120) we get the non zero values of B as 4.667

and -0.774. Now in order to plot the variation of the applied load Fk2/2C1 as a

function of the displacement δ = (1 − `/L) for B = 0, 4.667 and -0.774, we seek

a set of values for kL from equation (3.124) corresponding to the deflections from

0.1L to 0.9L. Figure 3.2 shows the right hand side of equation (3.124) and the left

hand side of equation (3.124) corresponding to the deflections from 0.1L to 0.9L

plotted as two separate functions of 2kL for the three value of B. The straight
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lines shown represent the left hand side of equation (3.124) using 2k` = 2kL(1− δ)

where δ is the deflection. We see that the physically acceptable values are given only

when B = 0. Hence we conclude that the constant B is zero. For the two non-zero

values of B, we find that the first term of the right hand side of equation (3.124) is

considerably larger than the left hand side, and accordingly we have the situation

shown in Figures 3.2b and 3.2c. The curves shown in these two figures are actually

non-constant, but the variation is only apparent outside the shown range.
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Figure 3.2: Right hand side and left hand sides of equation (3.124) versus 2kL for
three values of B: (a) B=0, (b) B=-0.640 and (c) B=6.415

Therefore, in summary for the problem of the axial squashing of a hollow circular

cylindrical tube with B = 0, we have from equations (3.3), (3.86), (3.89), (3.91) and
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(3.94) that the deformation is approximated by

r = Rf0(Z) +
f1(Z)

R
+

f2(Z)

R3
+ . . . ,

(3.125)

z = g0(Z) +
g1(Z)

R2
+

g2(Z)

R4
+ . . . ,

where the functions fi(Z) and gj(Z)(j = 0, 1, 2) are even and odd, respectively, and

are given explicitly by

f0(Z) =
cos kZ

cos kL
, f1(z) = 0, f2(Z) =

C cos kL

2k2 cos kZ
(cos2 kL− cos2 kZ),

g0(Z) =
cos2 kL

k
tan kZ, g1(z) = 0,

g2(Z) =
C

2k2

(
cos kL

cos kZ

)4 [
Z cos 2kL− sin 2kZ

2k

]
, (3.126)

and from equation (3.112) the load-deflection relation becomes

F = π

[
k2

8
(b4 − a4)− 1

2

(
k2(a2 + b2)

κ1

κ7

+
κ2

κ7

− 1

2

)
(b2 − a2) + k2a2b2κ1

κ6

log(b/a)

]
,

(3.127)

where κ1, κ2, κ6 and κ7 are constants defined in (6.17), namely

κ1 =
s

c
, κ2 =

2s

c
− sc

4
− 3

8
sc3 − 3

8
c5w, κ3 = 3cw − 3kL− ckI2,

κ4 = kL(2T ∗c2 − c2sw − c4) + k2Lc2sI2 + wc3 +
T ∗c3s

2

+
c3

2
(3kI2 − 4kI3) +

k2L2

2
(c3s + 3s3c) + 2k2I1(L)c2(c2 + 2),

κ5 = kL(2− c2

5
+

c2s2

4
+

3

8
c4s2 +

3

8
c6sw)

−(2cw +
c3s

80
+

13

160
c5s− 47

160
c7w +

3

16
kc7I2),

κ6 = 2kL(2c2 − 1)− wc3, κ7 = 2cw, κ8 = 2kLc2(1− sw)− 2c2w + kc3I2,

and c, s, and w are defined by

c = cos kL, s = sin kL, w = log(sec kL + tan kL),

and in the above formulae a and b denote the inner and outer radii, respectively,

2L is the original height of the tube and for an assumed deformed height 2`, the

constant k is determined from equation (3.124) with B ≡ 0, thus

2k` = C(2kL cos 2kL− sin2kL)/2k2a2b2 + sin 2kL, (3.128)
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where C = k2
1k

2a2b2/k6. Figure 3.3 shows the variation of non-dimensional force

against the deflection for B = 0 for a = L/2 and b = L, 2L, 3L and 4L. The

shown curves have an initial linear-quadratic response and achieve a maximum in

the vicinity of the maximum deflection. Although nonlinear the response appears

not to predict an intermediate maximum such as occurs when blowing up a balloon.

In the absence of any accurate experimental data, the predicted response appears

to be physically reasonable.
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Figure 3.3: Non-dimensional force Fk2/2C1 versus non-dimensional deflection δ =
1− `/L for B=0 and a=L/2: (a) b=L, (b) b=2L, (c) b=3L and (d) b=4L

In conclusion, we have determined asymptotic axially symmetric deformations

applicable for hollow cylinders and applying to the neo-Hookean and Mooney per-

fectly elastic incompressible materials. From the incompressibility condition and

the equilibrium equations, we show that formal solutions for the first three terms
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can be expressed in terms of seven integration constants and five formal integra-

tions, making a total of twelve integration constants. For the particular case of

the neo-Hookean strain-energy function we exploit these solutions to determine an

approximate load-deflection relation for the squashing under axially symmetric con-

ditions of a thick walled hollow cylinder by equal and opposite forces applied to

bonded metal end plates. The resulting load-deflection curves are shown graphi-

cally in Figure 3.3.
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Chapter 4

Rippling of long rectangular
rubber blocks under bending

4.1 Introduction

In this chapter we investigate the problem of finite elastic deformation of a long

rectangular rubber block which is deformed in a perturbed cylindrical configuration

with the point of view of surface rippling. Motivated by the surface rippling observed

in bent multi-walled carbon nanotubes, we examine here the simpler block problem

which is assumed to be sufficiently long so that the out of plane end effects may be

ignored. The general equations governing plane strain deformations of an isotropic

incompressible perfectly elastic Mooney material, which models rubber like materi-

als, are used to determine small superimposed deformations upon the well known

controllable family for the deformation of rectangular blocks into a sector of a solid

bounded by two circular arcs. Traction free boundary conditions are assumed in an

average sense along the bounding circular arcs.

Studies have shown that due to their superior mechanical properties, carbon nan-

otubes exhibit many new mechanical phenomena, and in particular exhibit almost

perfect elasticity and extraordinarily high strength. Moreover, from experiments

surface rippling is observed when the nanotube is subjected to bending [22]. Fur-

ther, Liu et al [23] use a model nanobeam subjected to pure bending to confirm a

transition from the classical bending mode predicted by linear theory, to a rippling

bending mode under severe bending. Their analysis indicates that the bending mo-

ment and the bending curvature have a bilinear relation, in which the transition

corresponds to the emergence of a rippling mode. In another study they present

a nonlinear vibration analysis which suggests that the effective Young’s modulus
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drops sharply as the diameter increases upon the emergence of a rippling mode [22],

which is also confirmed by calculations in [24]. A rippling bending mode is also ob-

served by Ruoff and Lorents [25], Kuzumaki et al [26] and Poncharal et al [27]. The

analysis presented by Mahadevan et al [28] indicates that the rippling instability is

not unique to the bent multi-walled nanotubes, but also when a rubber tube made

by rolling a thin sheet of rubber into a scroll is bent, a similar rippling instability

is formed. Mahadevan et al [28] verify their results experimentally using materials

as disparate as rubber and graphite, for varying lengths ranging from millimeters to

nanometers. Their study concludes that the rippling pattern is independent of the

material properties but depends on the effective anisotropy of the system generated

by the layered structure, suggesting similar behavior can be expected in macroscopic

systems with layered structures. Since carbon nanotubes are known to be perfectly

elastic, in the present study we examine the related problem which is mathematically

much simpler, of the finite deformations of a rectangular rubber block.

The surface rippling of blocks and rods under bending has received attention in

the literature. For example, Gent et al [29] studied the instabilities of thick rubber

cuboids subjected to bending. They compared the experimental values of the criti-

cal degree of bending, at which the sharp folds appear, with Biot’s [30] theoretical

predictions. Gent et al [29] show that the on-set of surface instability occurs at a

much less sever degree of bending than predicted by Biot [30]. Haughton [13] con-

sidered the bifurcation problem for three-dimensional, incompressible elastic plates

subjected to a combined flexure and axial compression. By forming a right circu-

lar cylinder, the pure bending mode as well as the interaction of the buckling and

barreling modes due to the curvature are studied. The bifurcation problem of an in-

compressible plate under pure bending is studied by Traintafyllidis [12]. In a recent

study Ghatak et al [31] carry out an experimental analysis of soft elastic cylinders

of different diameters subjected to bending and axial compression. They observe a

sharp fold on the compressive side at a critical radius which increases linearly with

the diameter, but remains independent of the material properties.

In the present study we consider a rectangular rubber block which is initially

deformed into a circular arc, and then subjected to a small superimposed deforma-

tion. For material rectangular Cartesian coordinates (X, Y, Z), spatial cylindrical
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polar coordinates (r, θ, z), and a positive constant λ we consider the plane strain

deformation

r = r(X,Y ), θ = θ(X,Y ), z = λZ, (4.1)

for an isotropic incompressible hyperelastic Mooney material. We suppose that a

long rectangular rubber block, assumed to be an isotropic incompressible hypere-

lastic Mooney material, is bent into a circular arc by symmetrically applied loads

and moments at the ends. The block is assumed to be sufficiently long in the Z-

direction so that the longitudinal end effects may be ignored. We then superimpose

a small deformation on the initial exact deformation such that the angle subtended

at the center is fixed, and we look for solutions of the resulting equations.

In the following section we detail the geometry of the block and describe the

initial deformation, and in the section thereafter we present the basic equations

governing the deformation (4.1). The equations specific to the deformation (4.34)

and the radial deformation that is superimposed upon (4.34) are described in the

subsequent section. In Section 4.5 we use the load deflection relationships to deter-

mine the constants appearing in the above equations which are useful in solving our

problem. We finally illustrate our solution with typical numerical values in Section

4.6. Appendix G presents certain analytical details required for the solution derived

in Section 4.5.

4.2 Geometry of the deformation

An undeformed rectangular rubber block of length L, height 2h and thickness t

which is assumed to be an isotropic incompressible perfectly elastic Mooney ma-

terial, is deformed into a circular arc as shown in Figure 4.1. We suppose that

the X = constant planes become r = constant and Y = constant planes become

θ = constant after the deformation. If the arc subtends an angle 2θ0 at the center,

and the inner and outer radii are given by a and b respectively, then the deformation

is described by (4.1) for which r(X, Y ) and θ(X,Y ) admit the well known form,

r =

[
b2 − (b2 − a2)

X

t

]1/2

, θ = π − θ0

h
Y. (4.2)
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Figure 4.1: Original and deformed body of the rubber block subjected to bending

From the incompressible constraint we find that the new length is λL where λ is

given by

λ =
2th

θ0(b2 − a2)
. (4.3)

4.3 Basic equations for perfectly elastic materials

This section summarizes the basic equations governing the deformation field given by

equation (4.1) that are utilized here in solving the present problem. The basic theory

presented in Chapter 2 for perfectly elastic incompressible material are simplified

here for the problem of axially symmetric plane strain deformation and are available

in literature for a more informative derivation. For more details on these equations,

the reader is referred to Hill [32] .

The coordinates of the undeformed body XK(K = 1, 2, 3) are the rectangular

coordinates X,Y, Z and those of the deformed body xi(i = 1, 2, 3) are the cylindrical

polar coordinates (r, θ, z) , viz:

X1 = X, X2 = Y, X3 = Z,
x1 = r cos θ, x2 = r sin θ, x3 = z,

(4.4)

where the corresponding rectangular cartesian coordinates are given by ZM(M =

1, 2, 3) and zm(m = 1, 2, 3) respectively.
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It is understood that in the following discussions the labeling indices a,b A and

B represent the values 1 and 2 only.

4.3.1 Metric tensors

From (2.9), for the deformation (4.1) the material and spatial metric tensors are

given respectively by

GKL = GKL =




1 0 0
0 1 0
0 0 1


 , (4.5)

and

gij =




1 0 0
0 r2 0
0 0 1


 . (4.6)

Further due to (2.10)2 spatial conjugate metric tensor is given by

gij =




1 0 0

0 1/r2 0

0 0 1




. (4.7)

4.3.2 Deformation tensors

Cauchy deformation tensor is obtained for the deformation (4.1) from (2.15)2 to give

cij =




X2
r + Y 2

r XrXθ + YrYθ 0

XrXθ + YrYθ X2
θ + Y 2

θ 0

0 0 1/λ2




, (4.8)

while the Green deformation tensor is given by

CKL =




r2
X + r2θ2

X rXrY + r2θXθY 0

rY rX + r2θY θX r2
Y + r2θ2

Y 0

0 0 λ2




. (4.9)

Due to (2.19) Finger deformation tensor can be shown to become

c−1ij =




r2
X + r2

Y rXθX + rY θY 0

rXθX + rY θY θ2
X + θ2

Y 0

0 0 λ2




, (4.10)
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and from (2.21) the corresponding mixed tensor is given by

c−1i
j =




r2
X + r2

Y r2(rXθX + rY θY ) 0

rXθX + rY θY r2(θ2
X + θ2

Y ) 0

0 0 λ2




. (4.11)

4.3.3 Strain invariants

The perfectly elastic Mooney material has strain-energy function
∑

(I1, I2) given by

∑
(I1, I2) = C1(I1 − 3) + C2(I2 − 3), (4.12)

where I1 and I2 denote the first two invariants of the inverse Cauchy deformation

tensor. Noting that for incompressible materials J = 1, due to (2.26), as shown in

Section 3.2.3 the principle invariants I1, I2 and I3 become

I1 = I + λ2, I2 = λ2I +
1

λ2
, I3 = 1, (4.13)

where I is defined by

I = r2
X + r2

Y + r2(θ2
X + θ2

Y ), (4.14)

and subscripts denote partial derivatives.

4.3.4 Incompressibility condition

Owing to (2.2)

j = λ
∂(r, θ)

∂(X, Y )
, (4.15)

and as before from (2.13)

g = r2 , G = 1. (4.16)

Hence from (4.15) and (2.12) the incompressibility condition becomes

∂(r, θ)

∂(X, Y )
= rXθY − rXθY =

1

λr
. (4.17)
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4.3.5 Equilibrium equations

For deformation (4.1) due to (2.65) the stress tensor becomes

T ab = p∗gab + 2
∂Σ

∂I1

c−1ab − 2
∂Σ

∂I2

cab

T 33 = p∗ + 2
∂Σ

∂I1

λ2 − 2
∂Σ

∂I2

1

λ2
(4.18)

T 3a = T a3 = 0.

where p∗ is an arbitrary function referred to in Chapter 2. Now as shown in Chapter

3 Section 2.4 we obtain

T ab = −pδab + φc−1ab

T 33 = −p + ψλ2

T 3a = 0 (4.19)

where we define the functions

p = p∗ + 2λ2I
∂Σ

∂I2

,

φ = 2

(
∂Σ

∂I1

+ λ2 ∂Σ

∂I2

)
,

ψ =

[
∂Σ

∂I1

+

(
I − 1

λ4

)
∂Σ

∂I2

]
. (4.20)

We therefore have the stress components for deformation (4.1) given by

T 11 = −p∗ + 2C1(r
2
X + r2

Y )− 2C2(X
2
r + Y 2

r ),

T 22 = −p∗

r2
+ 2C1(θ

2
X + θ2

Y )− 2C2
(X2

θ + Y 2
θ )

r4
,

T 33 = −p∗ + 2C1λ
2 − 2C2

λ2
, (4.21)

T 12 = T 21 = 2C1(rXθX + rY θY )− 2C2

r2
(XrXθ + YrYθ),

T 31 = T 13 = 0, T 32 = T 23 = 0.
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Now owing to (2.40) for incompressible material we have the first Piola-Kirchoff

stress tensors given by

TAb
R = XA;a T ab, T 33

R = X3
3T

33 = T 33/λ, (4.22)

and from the equilibrium equation (2.55), since T 3a = 0 we have

TAa
R ;A = 0, T 33

R ;3 = 0. (4.23)

Further from (4.23)2 it is noted that

p = p(x1, x2). (4.24)

Next due to Euler-C.Nuemann identity (2.54) we obtain

[
XA;a

]
;A = 0

[
X3;3

]
;3 = 0, (4.25)

and on using (4.19) in (4.22)1 we may readily deduce

TAb
R = −pXA;a gab + φGABxb;B . (4.26)

Now carrying the above result into (4.23)1 yields

−p;A XA;a gab + φ;A GABxb;B +φGAB[xb;B ];A = 0. (4.27)

However (2.36) is reduced to give

GAB[xb;B ];A = ∇2xb + Γb
adc

−1 ad, (4.28)

and therefore combining (4.28) and (4.27) we obtain

p;a gab = φ(∇2xb + Γb
adc
−1ad) + GABφ;A xb;B , (4.29)

where

∇2 = GAB

(
∂2

∂XA∂XB
− ΓD

AB

∂

∂XD

)
. (4.30)

Noting that for orthogonal coordinates the only non zero Christoffel symbols Γr
ij are

Γ1
22 = −r, Γ2

12 = Γ2
21 =

1

r
, (4.31)

the equilibrium equations simplify to give

pr = µ
[∇2r − r(θ2

X + θ2
Y )

]
, pθ = µr2

[
∇2θ +

2

r
(rXθX + rY θY )

]
, (4.32)
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where µ = 2(C1 + λ2C2), ∇2 is the two-dimensional Laplacian given by

∇2 =
∂2

∂X2
+

∂2

∂Y 2
, (4.33)

and p is the modified pressure function defined above.

Although the terms rY and θX are readily zero for deformation (4.2) we have

included them here as they are non-zero for deformation (4.39).

4.4 Governing equations for the deformation (4.1)

For convenience we write the deformation (4.2) as

r = (AX + B)1/2, θ = CY + D, z = λZ, (4.34)

where A,B,C and D are constants which are readily identified from (4.2), namely

A = −(b2 − a2)

t
, B = b2, C = −θo

h
, D = π. (4.35)

It is easily seen that the pressure function can be expressed as

pr = λCrpX , pθ =
1

C
pY , (4.36)

and we also have from (4.32)1 and (4.32)2 that the pressure function given by

pr = −µ

(
A2

4r3
+ rC2

)
, pθ = 0. (4.37)

Hence combining the above results (4.36) and (4.37) we obtain

p0 =
µA

2

{
A

4(AX + B)
− C2X

}
+ σ, (4.38)

where σ is a constant. Now, if due to a further small end moment ε∆M the curve

which was originally given by the straight line X = constant is further displaced by

a small distance εu(x) in the direction of θ = 0, we suppose that the deformation

(4.34) and the pressure function (4.38) can be modified to become [10]

r = (AX + B)1/2 + εu(x) cos n(CY + D),

θ = CY + D + εv(x)k1/2 sin n(CY + D), (4.39)

p = p0 + εq(x)A2k3/2 cos n(CY + D),
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where k = C/A, n is a positive number and u, v and q are functions of x only, which

is defined by

x = k(AX + B). (4.40)

The equations (4.39) form the basis of an incremental stability analysis, in the spirit

of Biot [30] and many other authors. By substituting (4.39)1 in (4.17) and neglecting

the higher order terms of ε we may deduce

x1/2u′ +
u

2x1/2
+

nv

2
= 0. (4.41)

It is noted that due to (4.40) X ′ = 1/C, where primes denote differentiation with

respect to x. Again by expressing the pressure functions in the form

pr = λr
∂(p, θ)

∂(X,Y )
,

pθ = −λr
∂(p, r)

∂(X, Y )
, (4.42)

and combining with equation (4.32) and substituting from (4.39) we may yield

2x1/2q′ = µ

[
u′′ + (1− n2)u +

(
2x− 1

2x

)
u′

]
, (4.43)

qn = −µx

[
v′′ +

v′

x
+

nu

4x5/2
+ 2nx1/2u′

]
.

It is understood that the higher order terms of ε are neglected when deriving the

above expressions. Next on using (4.41) and (4.43) we eventually obtain a fourth

order differential equation for u(x), namely

xu′′′′ + 4u′′′ −
{(

n2

4
− 3

2

)
1

x
+ n2x

}
u′′ − 2n2u′ − n2(1− n2)

4x
u = 0. (4.44)

As shown in Appendix G, the solution for u(x) can be given by

u(x) =
4∑

i=1

cix
miui(x), (4.45)

where for i = 1, 2, 3, 4, ci denote four arbitrary constants, mi are numbers given by

m1 = 0, m2 = 1, m3 =
1

2
(1−N), m4 =

1

2
(1 + N), (4.46)

71



and ui(x) are functions of x defined by

u1(x) = 2F3

(
1

4
(1− n),

1

4
(1 + n);

1

2
,
1

4
(3−N),

1

4
(3 + N);

1

4
x2n2

)
,

u2(x) = 2F3

(
1

4
(3− n),

1

4
(3 + n);

3

2
,
1

4
(5−N),

1

4
(5 + N);

1

4
x2n2

)
,

u3(x) = 2F3

(
1

4
(2− n−N),

1

4
(2 + n−N);

1

4
(2−N),

1

4
(3−N),

1

4
(5−N);

1

4
x2n2

)
,

u4(x) = 2F3

(
1

4
(2− n + N),

1

4
(2 + n + N);

1

4
(2 + N),

1

4
(3 + N),

1

4
(5 + N);

1

4
x2n2

)
, (4.47)

with N = (3+n2)1/2 and 2F3 denotes the usual generalization of the hypergeometric

function [33] which is formally defined by the series

2F3(α1, α2; ρ1, ρ2, ρ3; z) =
∞∑

n=1

(α1)n(α2)n zn

(ρ1)n(ρ2)n(ρ3)n n!
. (4.48)

Here α1, α2, ρ1, ρ2 and ρ3 are parameters and (α)n is the Pochammer symbol which

is defined by (α)n = α(α + 1)...(α + n− 1), for n = 1, 2.... . We note that for n = 1

(4.6) agrees with the solutions given in Haughton [13] and Hill [10].

4.5 Load-deflection relations

For the deformation (4.2) we have the stress components given by

T 1
1 = −p∗ + C1

A2

2r2
− 8C2r

2

A2

T 2
2 = −p∗ + 2C1C

2r2 − 2C2

c2r2

T 3
3 = −p∗ + 2C1λ

2 − 2C2

λ2

T 1
2 = T 2

1 = 0

T 3
1 = T 1

3 = 0 T 3
2 = T 2

3 = 0 (4.49)

We suppose that the deformation (4.2) is produced by symmetrical applied end

loadings of force F and moment M . The midplane symmetry and equilibrium require

that the curved surfaces to be traction free, that is,

t11(a) = 0, t11(b) = 0, (4.50)
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where tij (i, j = 1, 2, 3) are the physical components of the stress tensor in the usual

notation. Now due to (4.14) we have I given by

I =
A2

4r2
+ r2C2. (4.51)

Carrying this into (4.20)1 we have modified pressure function p related to pressure

function p∗ by

p = p∗ + 2λ2

(
A2

4r2
+ r2C2

)
. (4.52)

On using boundary condition (4.50)1 and substituting for p∗ from (4.52) and (4.38)

the constant σ can be shown to be given by

σ = µA2/8B. (4.53)

Further, the boundary condition (4.50)2 requires that the constants A and C to be

related by

A = 2abC. (4.54)

The condition (4.50)1 also reveals that the forces F at the surfaces θ = π±θ0 vanish

and we see that the equation

F (π ± θ0) =

∫ b

a

t22 dr, (4.55)

is correctly satisfied. The moment M applied at the ends is given by

M =

∫ b

a

t22 r dr, (4.56)

from which we may obtain

M =
µC2

2

[
(b4 − a4)

4
− a2b2 log

(
b

a

)]
. (4.57)

Next we suppose that a further small moment ε∆M is applied at the ends of the block

and the corresponding deformation is given by (4.39). Again since the deformation is

produced by end loads alone, the curved surfaces initially given by r = a (or X = t)

and r = b (or X = 0) are to be traction free. Hence we have the first Piola-Kirchoff

stress tensors denoted by tXx
R and tXy

R vanishing on the boundaries X = 0 and

X = t. Subsequently, we find that it is not possible to satisfy the above boundary

conditions in a point-wise manner. Therefore, we attempt to satisfy these conditions

in an average sense, by replacement with the following integral requirements, namely
∫ L

0

∫ h

−h

tXx
R (X = 0, t) dY dZ = 0,

∫ L

0

∫ h

−h

tXy
R (X = 0, t) dY dZ = 0. (4.58)
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From (4.17) we deduce the results

Xr = λrθY , Xθ = −λrrY ,

Yr = −λrθX , Yθ = λrrX , (4.59)

and the physical stress components are related by

T
(X)
(r) = TXr, T

(X)
( θ) = rTXθ,

T
(Y )
( θ) = rT Y θ, T

(Y )
( r) = T Y r. (4.60)

On using equations (4.26) and the results given in (3.32), from (2.40) the first Piolar-

Kirchoff tress components are obtained to give

TR
(X)
(r) = −λprθY + µrX ,

TR
(X)
(θ) = λprY + µrθX ,

TR
(Y )
(r) = λprθX + µrY ,

TR
(Y )
(θ) = −pλrX + µrθY , (4.61)

which by substituting from (4.39) yields

TR
(X)
(r) = µC

[(
−f

√
x

k
+

1

2
√

xk

)
− ε

(
2p
√

x− 2fxu′ − u′
)
cos nθ∗

]
,

TR
(X)
(θ) = µCε(v′

√
x− fnu) sin nθ∗,

TR
(Y )
(r) = µCε(fv′

√
x− nu) sin nθ∗, (4.62)

TR
(Y )
(θ) = µC

[( −f

2
√

xk
+

√
x

k

)
+ ε

( −p

µ
√

x
− u′(f + 2x)

)
cos nθ∗

]
,

where f = (1/4x − x − α + 1/4α) and θ∗ = CY + D. Further we have the first

Piolar-Kirchoff stress components expressed by

TR
Xx = TR

(X)
(r) cos θ − TR

(X)
(θ) sin θ,

TR
Xy = TR

(X)
(θ) cos θ + TR

(X)
(r) sin θ. (4.63)
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Now upon substituting from equations (4.39) and (4.62) in (4.63) and utilizing the

four boundary conditions (4.58) we obtain

A∗(α) = 0, A∗(β) = 0, B∗(α) = 0, B∗(β) = 0, (4.64)

where A∗(x) and B∗(x) are functions defined by

A∗(x) = u′ − q
√

x

µ
, B∗(x) =

nu

2x
− v′

√
x, (4.65)

ci(i = 1, 2, 3, 4) are constants and α and β are defined by

α =
θ0tb

2

h(b2 − a2)
, β =

θ0ta
2

h(b2 − a2)
. (4.66)

Here we have used equations (4.54) and (4.53) respectively to substitute for constants

A and σ appearing in (4.64). We remark that the integrals involve in the above

evaluation vanish only for the non integer values of of n and subsequently the results

in (4.64) hold true for non integer values of n only. It is also noted that from (4.66)

and (4.54) that

β = 1/4α. (4.67)

By substituting for v and q from (4.41) and (4.43) respectively, into (4.64) and car-

rying the value of u given in (4.45), we obtain the homogeneous system of equations

given by

A.c = 0, (4.68)

where

A =




A1(α) A2(α) A3(α) A4(α)
A1(β) A2(β) A3(β) A4(β)
B1(α) B2(α) B3(α) B4(α)
B1(β) B2(β) B3(β) B4(β)


 , (4.69)

and

c =




c1

c2

c3

c4


 . (4.70)

Here Ai and Bi are the terms associated with ci in (4.65)1 and (4.65)2 respectively

for i = 1, 2, 3, 4. For non trivial solutions of ci (i = 1, 2, 3, 4) we require that

detA = 0. (4.71)

In the next section we present some typical numerical values that have been calcu-

lated using the mathematical software MAPLE.
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4.6 Numerical results

n
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Figure 4.2: Variation of θ0 against n for h/t=1, 1.5 and 2

By substituting from (4.67) for β we seek solutions for α satisfying equation

(4.71). Computation is performed by MAPLE by using certain numerical values for

n. We note that the condition α > β requires α to be greater than 0.5. Figure 4.2

shows a graph of the values of θo against the number n for different dimensions of the

block with the view of finding the critical degree of bending. Figure 4.3 shows the

variation of α with n for physically acceptable values. In fact we can obtain more

than one solution for α. However based on the behavior of function u(x) we neglect

those solutions as they do not have a physical interpretation. We observe that the

smaller values of n do not satisfy the equation (4.71) for any geometry of the block

and therefore we assume that no rippling occurs at these smaller values of n. We also

note that α exhibits a relative maximum for n ' 47.8. Thus we may conclude that

rippling start to occur at a very small degree of bending, which may be as small as
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Figure 4.3: Variation of α = θ0tb
2/h(b2 − a2) against n

20 times h/t degrees corresponding to n = 37.1 and continue to have more ripples

until around 80 times h/t degrees of bending at n = 47.8. We assume that the

solutions of larger n values (greater than 47.8) are only mathematical possibilities

that are not physically reliable.

In order to illustrate the deformation (4.39) graphically the four constants ci (i =

1, 2, 3, 4) are determined from (4.68) and some typical numerical values are used for

t∗, a and ε where t∗ = t/h. We have b∗ = 2α where b∗ = b/a and γ given by

γ = α− 1/4α where γ = θ0t
∗. Figures 4.4, 4.5 and 4.6 show the deformed profile of

a surface initially deformed according to r = (AX + B)1/2 at intervals of one tenth

of t, and corresponding to the numerical values t∗ = 0.5, a = 3 and ε = 0.001 for

n = 55.1, 50.1 and 45.1 respectively. It is noted that equation (4.71) is satisfied

for non integral values for n. For integral values of n we get more complex set of

equations making it untractable to carry out the numerical work using MAPLE,

because for both odd and even integers of n, the hypergeometric functions may
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terminate and exhibit a numerical difficulty.

In summary, our analysis shows that when a long rectangular rubber block is

bent in the form of an approximately circular arc, a small superimposed end moment

can exhibit wavelike distortions or ripples. As might be anticipated the ripples are

formed along the circular arc with decreasing wave lengths and amplitudes from

the inner to the outer boundary. The number of ripples increases with number n

appearing in (4.39), but as can be seen from Figure 4.2, α reaches maximum for

n = 47.8. Further our predictions are independent of material properties agreeing

with [28]. As also noted in [28], the rippling phenomena is certainly not limited to

the nano-world. Our results constitute a first step to a better understanding of the

rippling deformations observed for carbon nanotubes [22]-[28].

M

M

M +

M +

(a) Undeformed block (b) Deformation (4.1) (c) Deformation (4.3)

Figure 4.4: Original and deformed body of the rubber block subjected to bending
for t∗ = t/h = 0.5, a = 3 and n = 55.1
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M

M +

M +

(a) Undeformed block (b) Deformation (4.1) (c) Deformation (4.3)

Figure 4.5: Original and deformed body of the rubber block subjected to bending
for t∗ = t/h = 0.5, a = 3 and n = 50.1
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(a) Undeformed block (b) Deformation (4.1) (c) Deformation (4.3)

Figure 4.6: Original and deformed body of the rubber block subjected to bending
for t∗ = t/h = 0.5, a = 3 and n = 45.1
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Chapter 5

Concluding remarks

5.1 Summary

In this thesis two problems involving large elastic deformations have been investi-

gated for isotropic incompressible perfectly elastic material. Finite elastic theories

have been employed in the context of non-linear continuum mechanics to determine

approximate analytical solutions to the physical phenomena.

The two problems examined are:

(i) asymptotic axially symmetric deformations for perfectly elastic neo-Hookean

and Mooney materials,

(ii) rippling of long rectangular rubber blocks under bending.

The theory of continuum mechanics is essentially made up of basic principles

(axioms) and constitutive theory. The term ’non-linear continuum mechanics’ refers

to the continuum mechanics related to non-linear constitutive equations. The fol-

lowing postulates are implied whenever the foregoing theory is dealt with in both of

the problems discussed:

(1) mutual body forces within a body are negligible,

(2) couple stresses and body couples can be ignored, and

The present study is devoted to isotropic incompressible perfectly elastic ma-

terials which have been shown to successfully model rubber-like materials. Elastic

materials are defined as depending only on the present configuration and not on the

history of deformation. An elastic material whose response function is the deriva-

tive of the strain energy function with respect to the deformation gradient is defined
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as hyperelastic, and sometimes loosely known as perfectly elastic. A homogeneous

material is one whose constitutive equation is the same thoroughout the material,

and finally an isotropic material is defined as one whose isotropy group is the full

orthogonal group [5]. These properties permit us to confine our analysis to a com-

paratively much simpler account in the theory, making the problem more tractable.

Further, by considering either axially symmetric or plane strain deformations -as a

first step- we arrive at an essentially simpler problem. The strain energy function

employed is assumed to be of the Mooney and neo-Hookean forms.

Much of this thesis is concerned with the application of theories, modifying and

extending the deduced results to tackle the present problems and carrying out com-

prehensive mathematical deductions. Recourse has been made to the mathematical

software MAPLE where computationally more extensive numerical calculations are

involved.

5.1.1 Asymptotic axially symmetric deformations for
perfectly elastic neo-Hookean and Mooney materials

Chapter 3 presents a detailed treatment for the problem of axial compression of

neo-Hookean and Mooney-Rivlin cylindrical tubes with bonded metal end plates. It

successfully tackles a difficult analytical problem by methods of asymptotic expan-

sions and boundary conditions.

Formal series solutions are determined in terms of expansions in appropriate pow-

ers of 1/R, where R is the cylindrical polar coordinate for the material coordinates.

ie; an expansion of the form

r = Rf0(Z) +
f1(Z)

R
+

f2(Z)

R3
+ . . . ,

z = g0(Z) +
g1(Z)

R2
+

g2(Z)

R4
+ . . . ,

is assumed for the deformation field

r = r(R, Z), θ = Θ, z = z(R, Z).

For both neo-Hookean and Mooney-Rivlin materials, the first three terms of

the above expansions namely, fi(Z), gi(Z) (i = 0, 1, 2) are completely determined
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analytically in terms of elementary integrals. From the incompressibility condi-

tion and the equilibrium equations, the above six unknown deformation functions

are reduced to five formal integrations involving in total seven arbitrary constants

A, B, C, D, E, H and k2, and a further five integration constants. The solutions

obtained for the neo-Hookean material are applied to determine an approximate

load-deflection relation for the squashing under axially symmetric conditions of a

thick walled hollow cylinder by equal and opposite forces applied to bonded metal

end plates. The resulting load deflection curves are presented graphically in Figure

(3.3) for the case of a = L/2 for b = L, 2L, 3L and 4L, where a and b are inner and

outer radii respectively and 2L is the original length of the tube. The presented

curves suggest an initial linear-quadratic response and achieve a maximum in the

vicinity of the maximum deflection. Although nonlinear the response appears not to

predict an intermediate maximum such as occurs when blowing up a balloon. The

results further recover known linear elastic solutions and extend foundational large

deformation results of Klingbeil and Sheild [7] for the same problem.

The solution so determined is approximate in two senses; namely as an approx-

imate solution of the governing equations and for which the stress free boundary

conditions are satisfied in an average manner only. However in the absence of any

accurate experimental data, the predicted response appears to be physically reason-

able.

5.1.2 Rippling of long rectangular rubber blocks under
bending

In Chapter 4 the problem of finite elastic deformation of a long rectangular rubber

block which is deformed in a perturbed cylindrical configuration is examined with

the point of view of surface rippling.

A rectangular rubber block which is initially deformed into a circular arc is then

subjected to a further small superimposed deformation. The resulting deformation

field is described by

r = (AX + B)1/2 + εu(x) cos n(CY + D),

θ = CY + D + εv(x)k1/2 sin n(CY + D),

p = p0 + εq(x)A2k3/2 cos n(CY + D),
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where k = C/A, n is a positive number and u, v and q are functions of x only, which

is defined by

x = k(AX + B).

(r, θ, z) and (X, Y, Z) are spatial and material coordinates respectively and constants

A, B, C and D are as defined in Chapter 4. The block is assumed to be sufficiently

long so that the out of plane end effects may be ignored. Again the solutions are

approximate due to the fact that traction free boundary conditions are assumed in

an average sense along the bounding circular arcs. Typical numerical values are

used to illustrate the solution graphically.

Our analysis suggest that when a long rectangular rubber block is bent in the

form of an approximately circular arc, a small superimposed end moment can exhibit

wavelike distortions or ripples. As might be anticipated the ripples are formed along

the circular arc with decreasing wave lengths and amplitudes from the inner to the

outer boundary. The number of ripples increases with number n appearing in (4.39)

and reaches a maximum for n = 47.8. We may conclude that rippling start to occur

at a very small degree of bending as small as 20 times h/t degrees corresponding

to n = 37.1 and continue to have more ripples until around 80 times h/t degrees

of bending at n = 47.8 where t and 2h are the original thickness and height of the

block, respectively. Further our predictions are independent of material properties

agreeing with [28]. We note that our solutions recover previous results for the case

of n = 1 given by Haughton [13] and Hill [10]. Our predictions suggest that as

also noted in [28], the rippling phenomena is certainly not limited to the nano-

world. Our results constitute a first step to a better understanding of the rippling

deformations observed for carbon nanotubes [22]-[28].

As the importance of non-linear mechanics are becoming increasingly appreci-

ated, more materials exhibiting nonlinear behavior are created and more uses of

these materials are found. We believe that the foregoing analysis is not only fruitful

for the present problems, but may be also amenable to similar problems of interest

in nonlinear elastostatics, and that the work provides potential solutions to similar

problems in both theoretical and engineering applications.
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Appendix A

Derivation of (3.72)

On using (3.43), (3.44) and (3.55) in (3.71) we obtain

∂p

∂R
= 2C1

[
Rf ′′0 f0 +

B

R
− 1

R3

(
3f ′′0 f2 + f ′′1 f1 − f ′′2 f0 − 4Af ′0

f 5
0

)

− 1

R5

(
3f ′′1 f2 + f ′′2 f1 − 8

f 3
0

− 4Af ′0
f 5

0

)]
, (A.1)

∂p

∂Z
= 2C1

[
R2

2
(f ′0

2
)′ +

(
f ′0f

′
1 +

g′0
2

)′
+

1

R2

(
f ′2f

′
0 +

f ′1
2

+ g′0g
′
1

)′

+
1

R4

(
f ′1f

′
2 + g′0g

′
2 +

g′1
2

)′]
. (A.2)

Equation (A.1) may be readily integrated to give

p = 2C1

[
R2

2
f ′′0 f0 + B log R +

1

2R2

(
3f ′′0 f2 + f ′′1 f1 − f ′′2 f0 − 4Af ′0

f 5
0

)

1

4R4

(
3f ′′1 f2 + f ′′2 f1 − 8

f 3
0

− 4Af ′0
f 5

0

)
+ P1 + G∗(Z)

]
, (A.3)

where P1 is an integration constant and G∗(Z) is a function of Z. Now using equation

(3.64) and (3.66) we simplify and rearrange the above equation (A.3) to give

p = 2C1

[
−R2k2f 2

0

2
+ B log R +

1

2R2

(
−2k2f0f2 +

2Bf1

f0

− k2f 2
1 −

C

f 2
0

− 4Af ′0
f 5

0

)

+P1 + G∗(Z)] . (A.4)
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Next we integrate equation (A.2) and using equations (3.68), (3.69) and (3.70) sim-

plify the result to yield

p = 2C1

[
−R2k2f 2

0

2
+

1

R2

[
−k2f0f2 +

Bf1

f0

− C

2f 2
0

− f 2
1 k2

2
− 2Af ′0

f 5
0

]

R2D

2
+

H

R2
+

1

2f 4
0

+ B log f0 − k2f0f1 + E + P2 + F ∗(R)

]
, (A.5)

where P2 denotes the constant of integration and F ∗(R) is a function of R. From

the above equations (A.3) and (A.4) we observe that

G∗(Z) =
1

2f 4
0

+ B log f0 − k2f0f1. (A.6)

Now by letting P1 = p0 from (A.4) we obtain

p = −2C1

[
k2

2

(
Rf0 +

f1

R
+

f2

R3

)2

+
2Af ′0
R2f 5

0

+
C

2R2f 2
0

−B log(Rf0)− Bf1

R2f0

− 1

2f 4
0

]

+2C1p0, (A.7)

where the term r2 appearing in (A.7) means

(
Rf0 +

f1

R
+

f2

R3

)2

= R2f 2
0 + 2f0f1 +

(f 2
1 + 2f0f2)

R2
+ . . . . (A.8)

86



Appendix B

Derivation of (3.91)

From (3.86)1 and we get,

f ′0(Z) =
−k sin kZ

cos kL
, (B.1)

and from (3.89) we have

f ′1(Z) =
B cos kL

k2

(
k2Z cos kZ + k2L tan kL sin kZ − k sin kZ log f0

)
, (B.2)

Equation (3.70) is rearranged to give

f ′2 +
k2f0f2

f ′0
=

Bf1

f0f ′0
− C

2f 2
0 f ′0

+
H

f ′0
− (f ′21 + k2f 2

1 )

2f ′0
. (B.3)

Now by substituting from (B.1) and (B.2) in (B.3) and after some simplification we

may deduce

f ′2 +
k2f0f2

f ′0
=

B2

k3
cos3 kL

[
− log f0

sinkZ
− kZ

cos kZ
+

kL tan kL

sinkZ

(log f0 − kL tan kL)2

2 sin kZ
+

k2Z2

2 sin kZ

]

C cos3 kL

2k cos2 kZ sin kZ
− H cos kL

k sin kZ
(B.4)

This is a first-order linear ordinary differential equation with an integrating factor

which on using (3.86) can be shown to be equal to 1/ sin kZ and thus (B.4) becomes
(

f2

sin kZ

)′
=

B2 cos3 kL

k3

[
1

2

log2 f0

sin2 kZ
− (1 + kL tan kL)

log f0

sin2 kZ

+kL tan kL

(
1 +

kL

2
tan kL

)
1

sin2 kZ
+

k2

2

Z2

sin2 kZ
− kZ

sin kZ cos kZ

]

+
C cos3 kL

2k cos2 kZ sin2 kZ
− H

k

cos kL

sin2 kZ
. (B.5)
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Using the elementary integrals given in Table F.1 of Appendix F, from (B.5) we may

eventually deduce equation (3.91) given by

f2(Z) =
B2 cos3 kL

k4

{
−cos kZ

2
log2

(
cos kZ

cos kL

)

+(1 + kL tan kL)

[
cos kZ log

(
cos kZ

cos kL

)
+ kZ sin kZ

]

−kZ sin kZ log

(
cos kZ

cos kL

)
− k2

2
Z2 cos kZ + T cos kZ − 2k2I1(Z) sin kZ

}

+
C cos kL

2k2 cos kZ
(cos2 kL− cos2 kZ). (B.6)
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Appendix C

Derivation of (3.94)

Due to (3.47), since A = 0 we have

(f 4
0 g2)

′ = f 2
1 + 2f0f2. (C.1)

By substituting from (3.86)1, (3.89) and (3.91) for f0, f1 and f2 respectively in (C.1)

and after some simplification we obtain

[(
cos kZ

cos kL

)4

g2(Z)

]′
=

B2 cos2 kL

k4

[
2 cos2 kZ log

(
cos kZ

cos kL

)
− k2Z2 cos 2kZ

+kZ sin 2kZ − 2k2I1(Z) sin 2kZ + T ∗ cos2 kZ
]

+
C

k2

(
cos2 kL− cos2 kZ

)
. (C.2)

Using the elementary integrals given in Table F.2 of Appendix F, from (C.2) we

may deduce equation (3.94) namely,

g2(Z) =
B2 cos6 kL

k5 cos4 kZ

[
1

2
sin 2kZ log

(
cos kZ

cos kL

)
+ kZ log

(
cos kZ

cos kL

)
+ kZ sin2 kZ

−1

2
k2Z2 sin 2kZ + k2I1(Z)(1 + 2 cos2 kZ) +

T ∗

2

(
kZ +

sin 2kZ

2

)]

+
C

2k2

(
cos kL

cos kZ

)4 (
Z cos 2kL− sin 2kZ

2k

)
. (C.3)
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Appendix D

Derivation of (3.103)

We may express (3.100) in the form

T 11

2C1

= λ1R
2 + λ2 + λ3

1

R2
+ λ4 log R, (D.1)

where λi(i = 1..4) can be readily identified as:

λ1 =
k2

2
f0,

λ2 = f0 − 1

2f 5
0

− p0

f0

− B log f0

f0

+
3k2f1

2
,

λ3 =
k2

2
(5f2 − 4f 2

0 f ′0g2) +
C

2f 3
0

+
2k2f 2

1

f0

−(B + B log f0 + p)
f1

f 2
0

− f1 − f1

2f 6
0

+ . . . ,

λ4 = −B

(
1

f0

+
f1

R2f 2
0

)
. (D.2)
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Next by substituting from (3.86)1, (3.89) and (3.91) for f0, f1 and f2 in (D.2), sim-

plifying and rearranging the terms we may deduce

λ1 =
k2 cos kZ

2 cos kL
,

λ2 =
cos kZ

cos kL
− cos5 kL

2 cos5 kZ
− p0

cos kL

cos kZ

+B cos kL

(
3

2
cos kZ log f0 +

3

2
kZ sin kZ − 3

2
kL tan kL cos kZ − log f0

cos kZ

)
,

λ3 =
B2 cos3 kL

k2

[
3

4
log2 f0 cos kZ − log2 f0

cos kZ
+

kZ log f0 sin kZ

cos2 kZ

+
1

2
(1− 3kL tan kL)(log f0 cos kZ + kZ sin kZ) +

3

2
kZ log f0 sin kZ

+ (1 + kL tan kL)
log f0

cos kZ
− 5

4
k2Z2 cos kZ + (1 + T ∗)

kZ sin kZ

cos2 kZ

+
1

4
(T ∗ + 3k2L2 tan2 kL) cos kZ +

(T ∗ + kL tan kL)

cos kZ

+k2I1(Z) sin kZ

(
2

cos2 kZ
− 1

)]
− B

k2
(cos kL cos kZ log f0 + kZ cos kL sin kZ

−kL sin kL cos kZ +
cos7 kL log f0

2 cos5 kZ
+

kZ cos7 kL sin kZ

2 cos6 kZ
− kL cos6 kL sin kL

2 cos5 kZ

)

−p0B cos3 kL

k2

(
log f0

cos kZ
+

kZ sin kZ

cos2 kZ
− kL tan kL

cos kZ

)

+
C cos kL

4

(
4kZ tan kZ cos 2kL + sin2 kZ − 5 sin2 kL

cos kZ
+ 2

cos2 kL

cos3 kZ

)
,

λ4 = −B cos kL

cos kZ
− B2 cos3 kL

R2k2

(
log f0

cos kZ
+

kZ sin kZ

cos2kZ
− kL tan kL

cos kZ

)
. (D.3)

Next upon using (D.2) in the condition (3.95) and since the only applied force is

the vertical force F , by making the right hand side of (3.95) zero, we obtain the

following equation
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∫ L

−L

(
λ1R

3 + λ2R + λ3
1

R
+ λ4R log R

)
dZ = 0. (D.4)

Hence we integrate (D.3) and use the elementary definite integrals in Table F.2

of Appendix F to evaluate the resulting expression. After some simplifications,

rearranging the terms and using the abbreviations in (3.105), we deduce the results

∫ L

−L

λ1dZ =
ks

c
,

∫ L

−L

λ2dZ =
B

k
(3cw − 3kL− CkI2)− 2p0cw

k
+

1

k

(
2s

c
− cs

4
− 3c3s

8
− 3c5w

8

)
,

∫ L

−L

λ3dZ =
B2

k3

[
kL(2T ∗c2 − c2sw − c4) + k2Lc2sI2 + wc3 +

T ∗c3s

2

+
c3

2
(3kI2 − 4kI3) +

k2L2

2
(c3s + 3s3c) + 2k2I1(L)c2(c2 + 2)

]

−p0B

k3

[
2kLc2(1− sw)− 2c2w + kc3I2

]

+
B

k3

[
kL(2− c2

5
+

c2s2

4
+

3

8
c4s2 +

3

8
c6sw)

−(2cw +
c3s

80
+

13

160
c5s− 47

160
c7w +

3

16
kc7I2)

]
,

+
C

k

[
2kL(2c2 − 1)− wc3

]
,

∫ L

−L

λ4dZ = −2Bcw

k
− B2

R2k3

[
2kLc2(1− sw)− 2c2w + kc3I2

]
. (D.5)

By substituting (D.5) into (D.4), we deduce the equation (3.103) namely,

p0 = −B log R + (kR)2 κ1

κ7 + B/(kR)2κ8

+
κ2 + Bκ3

κ7 + B/(kR)2κ8

+
1

(kR)2

(B2κ4 + Bκ5 + k2Cκ6)

κ7 + B/(kR)2κ8

. (D.6)

92



Appendix E

Derivation of (3.121)

From equation (3.120) the condition for real roots for B gives,

λ2(b2 − a2)2 −
(

3(b2 + a2) +
8

3
L2

)
λ +

13

4
≥ 0, (E.1)

where λ is defined by

λ =
log(b/a)

b2 − a2
. (E.2)

In order to satisfy the condition (E.1), the quadratic equation in λ must have imag-

inary roots and therefore

√
13(b2 − a2)− 3(b2 + a2) ≥ 8

3
L2. (E.3)

Since right hand side of (E.3) is greater than zero we have the condition (3.121)1

and from (E.3) we have the condition (3.121)2,

L2 ≤ 3

8

[
(
√

13− 3)b2 − (
√

13 + 3)a2
]
. (E.4)
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Appendix F

Tables of integrals

Table F.1: Table of indefinite integrals

∫
(Z/ sin2 kZ)dZ −Z/k tan kZ + k−2log sin kZ

∫
(Z2/ sin2 kZ)dZ −Z2/k tan kZ + 2

k2 Z log sin kZ − 2
k2

∫
log sin kZdZ

∫
(Z/ sin 2kZ)dZ (Z/2k) log tan kZ − 1

2k

∫
log tan kZdZ

∫
(log f0/ sin2 kZ)dZ − log f0/k tan kZ − Z

∫
(log2 f0/ sin2 kZ)dZ − log2 f0/k tan kZ − 2Z log f0 − 2k

∫
Z tan kZdZ

∫
cos2 kZdZ Z/2 + sin 2kZ/4k

∫
Z2 cos 2kZdZ Z cos 2kZ/2k2 + Z2 sin 2kZ/2k − sin 2kZ/4k3

∫
Z sin 2kZdZ sin 2kZ/4k2 − Z cos 2kZ/2k

∫
cos2 kZ log f0dZ

Z
2

log f0 + 1
4k

log f0 sin 2kZ + k
2
I1(Z) + Z/4− sin 2kZ/8k

∫
I1(Z) sin 2kZdZ −I1(Z) cos 2kZ/2k − Z cos 2kZ/4k2 − I1(Z)/2k + sin 2kZ/8k3

where f0 = cos kZ/ cos kL and I1(Z) is defined by the integral

I1(Z) =

∫ Z

0

ξ tan kξdξ = −Z

k
log kZ +

1

k

∫ Z

0

log cos kξdξ.
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In the following table c, s, and w are defined by

c = cos kL, s = sin kL, w = log[sec kL + tan kL]. (F.1)

Table F.2: Table of definite integrals

∫ L

−L
cos kZdZ 2s/k

∫ L

−L
dZ/ cos kZ 2w/k

∫ L

−L
dZ/ cos3 kZ s/kc2 + w/k

∫ L

−L
dZ/ cos5 kZ s/2kc4 + 3s/4kc2 + 3w/4k

∫ L

−L
(kZsin kZ/ cos2 kZ)dZ 2L/c− 2w/k

∫ L

−L
kZ sin kZdZ 2s/k − 2Lc

∫ L

−L
(kZsin kZ/ cos6 kZ)dZ 2L/5c5 − (

2s
c4

+ 3s
c2

+ 3w
)
/20k

I2 =
∫ L

−L
(log f0/ cos kZ)dZ

∫ L

−L
log(sin kZ + 1) tan kZdZ

I3 = 1
2

∫ L

−L
(log2 f0/ cos kZ)dZ k

∫ L

−L

∫ Z

−L
log(sin kx + 1) tan kx tan kZdxdZ

∫ L

−L
(log f0/ cos5 kZ)dZ s/k8c4 + 5s/k16c2 − 7w/k16 + 3I2/8

∫ L

−L
cos kZ log f0dZ 2(w − s)/k

∫ L

−L
k2Z2 coskZdZ 2(kL2 − 2/k)s + 4Lc
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Appendix G

Derivation of (4.45)

Upon substituting t = log x in (4.44) and by substituting u = xmw where m is a

constant, we obtain

wtttt + (4m− 2)wttt +

[
6m2 − 6m +

(
1

2
− n2

4

)]
utt

+

[
4m3 − 6m2 + 2m

(
1

2
− n2

4

)
+

(
1

2
+

n2

4

)]
wt

+

[
m4 − 2m3 + m2

(
1

2
− n2

4

)
+ m

(
1

2
+

n2

4

)]
w

−e2tn2

{
wtt + (2m + 1)wt +

[
m2 + m +

(
1− n2

4

)]
w

}
= 0.

(G.1)

Now if we choose m to satisfy

m4 − 2m3 + m2

(
1

2
− n2

4

)
+ m

(
1

2
+

n2

4

)
= 0, (G.2)

and define a new variable z = n2e2t/4 and an operator δ = zd/dz, then equation

(G.1) can be shown to be equivalent to the form

[δ(δ + ρ1 − 1)(δ + ρ2 − 1)(δ + ρ3 − 1)− z(δ + α1)(δ + α2)]w = 0, (G.3)

for which ρi (i = 1, 2, 3) and αj (j = 1, 2) satisfy the following:

α1 =
1

4
(2m + 1 + n), α2 =

1

4
(2m + 1− n),

ρ1 = 1 +
N

2
, ρ2 =

1

4
(5 + N), ρ3 =

1

4
(3 + N).

(G.4)

Here N is defined by N = (3+n2)1/2. Thus w = 2F3(α1, α2; ρ1, ρ2, ρ3; z) is a solution

to the equation (G.1), where 2F3 is the generalized hypergeometric series [33]. From
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(G.2) we have the four solutions for m which are given by (4.46). Hence we obtain

the four solutions of (G.2) corresponding to each value in (4.46) giving rise to (4.45).

This analysis is also in agreement with the results generated by MAPLE.

97



Bibliography

[1] P.B.Lindley, (1970) Engineering Design with Naural Rubber, The Natural Rub-

ber Producers Research Association, London, 3rd edition.

[2] C.Truesdell and W.Noll, (1992) The Non-Linear Field Theories of Mechanics,

Springer-Verlag, Berlin, 2nd edition.

[3] A.E.Green and J.E. Adkins, (1970) Large elastic deformations, Oxford Uni-

versity Press, London, 2nd edition.

[4] A.D. Deozdov, (1996) Finite Elasticity and Viscoelasticity, World Scientific

Publishing, Singapore.

[5] D.C.Leigh, (1992) Nonlinear Continuum Mechanics, McGraw-Hill, New York.

[6] J.M.Hill and A.I Lee (1988) “Large elastic compression of finite rectangular

blocks of rubber,” Journal of Mechanics and Applied Mathematics, 42, 267-

287.

[7] W.W.Klingbeil and R.T Shield (1966) “Large deformation analysis of bonded

elastic mounts,” Journal of Mathematics and Physics (ZAMP), 17, 281-305.

[8] A.N.Gent and P.B.Lindley (1959) “The compression of bonded rubber blocks”

Proceedings of the Institution of Mechanical Engineering, 173, 111-117.

[9] J.M.Hill and A.I Lee (1989) “Combined compression and torsion of circular

cylindrical pads of rubber,” Journal of the Mechanics and the Physics of Solids,

37, 175-190.

[10] J.M.Hill, (1977) “Load-deflection relations of long cylindrical rubber bush

mountings constructed from rectangular blocks”, Applied Polymer Science,

21, 1459-1467.

98



[11] R.S.Rivlin (1949) “Large elastic deformations of isotropic materials,” Philo-

sophical Transactions of the Royal Society of London, A242, 173-195.

[12] N.Triantafyllidis, (1980) “Bifurcation phenomena in pure bending”, Journal

of the Mechanics and the Physics of Solids, 28, 221.

[13] D.M.Haughton, (1999) “Flexure and compression of incompressible elastic

plates”, International Journal of Engineering Science, 37, 1693.

[14] A.E.Green and W. Zerna, (1968) Theoritical Elasticity, Oxford University

Press, London, 2nd edition.

[15] A.C.Eringen, (1967) Mechanics of Continua, John Wiley and Sons, New York.

[16] M.N.Narasimhan, (1993) Mechanics of Continua, John Wiley and Sons, New

York.

[17] Brown University, Division of Enginnering, USA Advanced Mechanics of

Solids, www.engin.brown.edu

[18] University of Michigon , Division of Enginnering, USA Alternate Definitions

of Stress, www.engin.umich.edu

[19] A.C.Eringen, (1962) Nonlinear Theory of Continuous Media, McGraw-Hill,

New York.

[20] J.M.Hill, (1972) Thesis, University of Quensland, Australia

[21] J.M. Hill, (2001) “A review of partial solutions of finite elasticity and their

applications.”, International Journal of Non-Linear Mechanics, 36 447-463 .

[22] J.Z.Liu, Q.Zheng and Q.Jiang, (2001) “Effect of rippling mode on resonances

of carbon nanotubes”, Physical Review Letters, 86, 4843.

[23] J.Z.Liu, Q.Zheng and Q.Jiang, (2003) “Effect of bending instabilities on the

measurements of mechanical properties of multiwalled carbon nanotubes”,

Physical Review B, 67, 075414.

99



[24] M.Arroyo and T. Belytschko, (2003) “Nonlinear mechanical response and rip-

pling of thick multiwalled carbon nanotubes”, Physical Review Letters, 91,

215505.

[25] R.S.Ruoff and D.C. Lorents, (1995) “Mechanical and thermal properties of

carbon nanotubes”, Carbon, 33, 925.

[26] T.Kuzumaki, T. Hayashi, K. Miyazawa, H. Ichinose, K.Ito and Y. Ishida,

(1998) “In-situ observed deformation of carbon nanotubes”, Philosophical

Magazine, A77, 1461.

[27] P.Poncharal, Z.L. Wang, D. Ugrate and W.A.Heer, (1999) “Electrostatic de-

flections and electromechanical resonances of carbon nanotubes”, Science,

283, 1513.

[28] L.Mahadevan, J. Bico and G. McKinley, (2004) “Popliteal rippling of layered

elastic tubes and scrolls”, Europhysics Letters, 65, 323-329.

[29] A.N.Gent and I.S.Cho, (1999) “Surface instabilities in compressed or bent

rubber blocks”, Rubber Chemistry and Technology, 72, 253.

[30] M.A.Biot, (1965) “Mechanics of Incremental Deformations”, Wiley, New York,

161, 216.

[31] A.Ghatak and A.L.Das, (2007) “Kink instability of a highly deformable elastic

cylinder”, Physical Review Letters, 99, 076101.

[32] J. M. Hill, (1973) “Partial solutions of finite elasticity-plane deformations”,

Journal of Mathematics and Physics (ZAMP), 24, 401-408.

[33] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, (1953) Higher

Transcendental Functions, volume 1, McGrew-Hill, New York, 4, 182-184

100



List of the author’s publications

� J. M. Hill, N. Padukka and H. H. Dai (2007) “Asymptotic axially symmetric

deformations for perfectly elastic neo-Hookean and Mooney materials”, Jour-

nal of Elasticity, 86, 113-137

� N. Padukka and J. M. Hill, (2007) “Rippling of long rectangular rubber blocks

under bending”, Journal of Mathematics and Mechanics of solids, accepted

for publication.

101


	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Certification
	Acknowledgements
	Abstract
	Nomenclature
	Contents
	List of figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Appendices
	Bibliography
	List of the author's publications

