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Abstract

Some materials encountered in nature and used in engineering exhibit mechanical
effects which cannot be adequately explained by classical linear elastic theories. For
example, rubber is an elastic material that undergoes large elastic deformations,
and therefore renders a non-linear mechanical behavior. An analytical investigation
dealing with the problem of static deformation of such materials therefore involves
highly non-linear equations leading to arduous mathematical work. Consequently
there exists only a limited number of known exact solutions for such problems in
the field of finite elasticity.

This thesis is concerned with two problems of finite elastic deformations of rub-
ber blocks. Rubber has been successfully modeled as an isotropic incompressible
hyperelastic material with strain energy function given by either the neo-Hookean
or Mooney forms. For this class of materials, substantial reductions of the basic un-
derlying equilibrium equations can be obtained, making the problems more tractable
and for plane and axially symmetric deformations of these materials, simpler stress-
strain relations can be obtained. Therefore, by combining these essentially two-
dimensional stress-strain relations together with the reduced equilibrium equations
it is possible to obtain comparatively tractible forms of the equations.

In this thesis the following problems for axially symmetric deformations of isotropic

incompressible neo-Hookean and Mooney materials are investigated:

(i) asymptotic axially symmetric deformations describing compression of rubber

cylindrical tubes with bonded metal end plates;

(ii) rippling of a long rectangular rubber block bent into a sector of a solid bounded

by two circular arcs.

The above mentioned reduced equllibrium equations are employed in the context of
non-linear continuum mechanics to arrive at approximate solutions. The solutions
are approximate in the sense that the point-wise vanishing of the stress vector on a
boundary is assumed to be replaced by the vanishing of forces in an average manner.

In the first problem, for axially symmetric deformations of the perfectly elastic
neo-Hookean and Mooney materials, formal asymptotic solutions are determined

in terms of expansions in appropriate powers of 1/R, where R is the cylindrical



polar material coordinate. Remarkably, for both the neo-Hookean and Mooney
materials, the first three terms of such expansions can be completely determined
analytically in terms of elementary integrals. From the incompressibility condition
and the equilibrium equations, the six unknown deformation functions, that appear
in the first three terms can be reduced to five formal integrations involving in total,
seven arbitrary constants, and a further five integration constants, making a total
of twelve integration constants for the deformation field. The solutions so obtained
for the neo-Hookean material are applied to the problem of the axial compression
of a cylindrical rubber tube which has bonded metal end-plates. The resulting
solution is approximate in two senses; namely as an approximate solution of the
governing equations and for which the stress free boundary conditions are satisfied
in an average manner only. The resulting deformation and load-deflection relation
are shown graphically.

The second problem examined in this thesis is that of finite elastic deformation of
a long rectangular rubber block which is deformed in a perturbed cylindrical configu-
ration. This problem is motivated from the problem of determining surface rippling
that is observed in bent multi-walled carbon nano-tubes. The problem of finite
elastic bending of a tube is considerably more complicated than the geometrically
simpler problem of the finite elastic bending of a rectangular block. Accordingly, we
examine here the simpler block problem which is assumed to be sufficiently long so
that the out of plane end effects may be ignored. The general equations governing
plane strain deformations of an isotropic incompressible perfectly elastic Mooney
material, which models rubber like materials, are used to determine small superim-
posed deformations upon the well known controllable family for the deformation of
rectangular blocks into a sector of a solid bounded by two circular arcs. Traction
free boundary conditions are assumed to be satisfied in an average sense along the
bounding circular arcs. Physically realistic rippling is found to occur and typical
numerical values are used to illustrate the solution graphically.

In summary reduced equilibrium equations and simplified two-dimensional stress
strain relations are used in this study to solve two problems for isotropic incom-
pressible neo-Hookean and Mooney materials. Such deformations and the class of

materials studied considerably simplify what are otherwise very complex problems



from the theory of finite elasticity.
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Chapter 1

Overview

1.1 Background

The theory of non-linear elasticity, also known as finite elasticity, is becoming in-
creasingly important in modern mathematics due to its predominate use in many
engineering applications. Its authority in applied mathematics in the main is due
to the major role of rubber as a successful engineering material. Within the pages
that follow it is the intention of the author to look into two problems related to the
analysis of finite elastic deformations specifically as encountered with rubber blocks.

Natural rubber was first found as latex, and in common-use the terms are inter-
changeable. Latex was first discovered in South America as a naturally occurring
"sap” which issued from the wound of certain trees as a milky colloidal suspension.
Though Latex found employment primarily as a water proofing agent, it’s commer-
cial development did not really begin in earnest until Charles Goodyear discovered
the process of Vulcanization in 1839 [1]. Generally referred to as simply 'rubber’
is actually vulcanized rubber which is obtained from raw rubber by masticating,
mixing with sulphur and heating. When raw rubber undergoes this chemical reac-
tion it is converted into an elastic material, making it a versatile material. Since
then rubber has been used extensively in nearly all forms of engineering due to its
outstanding physical properties.

Some of vulcanized rubbers more outstanding qualities which have promoted its
use are: excellent weathering resistance and general durability, high energy storage
capacity, inherent damping qualities in applications where resonant vibrations are
encountered, low maintenance and near to zero service requirement coupled with

a comparatively high resistance to fatigue, easy installation due to its flexibility,
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in-expensive nature and ease of manufacture. Furthermore, rubber lends its-self to
efficient bonding, making it a readily deployable material across different materials
especially metals and also protect them from rusting by acting as a cover. Finally
but not definitively, is the overarching observation that its employment across both
the developing and existing industrial landscapes will continue to grow, making it
a preferred material over others. Its main industrial applications include: bridge
bearings, bush mounting, rubber rollers, springs, rings and tyres.

As rubber is becoming an increasingly popular material in construction and
manufacturing engineering, understanding its mechanical properties is proving to
be significant. Owing to its high elastic energy, rubber can undergo large elastic
deformations, and thus a theory aiming to describe its mechanical behavior under
such conditions must take account of the non-linearities involved.

Historically the development of a descriptive theory for rubber was not achieved
until the close of the 19th century. Bearing in mind that the real value in application
of rubber was not fully appreciated until Goodyear’s discovery (1839) of vulcaniza-
tion there was, none the less, a significant gap between its emerging use and the
development of a suitable theory. Although Stokes in 1845 proposed the concept
of non-linear constitutive equations for viscous fluid which exhibit similar nonlin-
ear mechanical behavior like rubber, nothing significant was done in this regard for
the next 100 years. However the concepts of elasticity and hyper elasticity were
developed prior and during this era. To this achievement much is owed to those
famous early workers in the area notably James Bernoulli (1691-1705) and Euler
(1727-1778) who contributed through their important work in one dimensional non-
linear elasticity. Although in the main, ideas for a general theory of elasticity were
first introduced by Cauchy (1823-1828) and Green (1839-1841) who followed with
suggesting the main theories of hyper-elasticity. Subsequent to Green’s theory other
savants such as Kirchhoff (1852-1859) and Kelvin (1863) added to his original work
thus enhancing our understanding of hyper-elasticity. This area of work attracted
others like St. Venant, Stokes, Boussinsq, Gibbs, Duhem, and Hadamard. In 1896,
the Cosserat brothers published a exposition containing general equations of finite
elasticity. However this early work was followed by a period of little significant

progress. Signorini was commended in Italy for his teaching and writing on the
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subject in 1930 [2], but it was not until Reiner in 1945 and then Rivlin in 1948
contributed significantly to this area, that a concrete foundation was laid in the
theory [3]. Reiner is credited as providing the first general approach to the topic
of rubber through constitutive equations of a non-linear nature. However, it was
Rivlin who sparked a resurgence in this area through his problems of physical in-
terest in non-linear theories providing exact solutions as distinct from the linear
general solutions previously employed. Much is owed to Rivlin for rekindling inter-
est in this work and it is reasonable to attribute much of his ingenuity to the recent
advances. In the 1950’s it was primarily Truesdell’s contributions that further pro-
gressed research and it is worth mentioning both Erickson and Eringen as important
workers from that era. A fruitful progression has been since made with researchers
publishing numerous papers solving many physical problems in engineering.

Some other examples of elastic media with large deformations which admits
non-linear theories are biological tissues, metals and alloys under high pressure [4],
non-linear liquid polymer solutions and solid rocket propellant [5].

The obvious historical question in engineering as to why after the development of
a rich set of linear theory and Stokes proposal in 1845, did a sound development in
non-linear theory not achieved until after 1940 still remains ambiguous. One possible
reason could be that the need for such a theory was not fully realized as not many
materials exhibiting non-linear behavior were used in applications. A second reason,
still applicable today, is that many believe that only a molecular-statistical theory
of the structure of the materials can lead to an understanding of their behavior [2].
Another presumable cause would be the tedious and numerous mathematical com-
plexity involved in a comprehensive nonlinear mathematical model which encourages
workers to rely on linear theory for solutions. This being said it must be noted that
these theoretical presentations supply engineers with satisfactory results in so far
as practical applications are concerned, but they do not answer the problems that
are manifest in materials that present large deformations. In such cases linear the-
ory does not approach the accuracy required to answer these problems. Hence in
such cases the governing equations involve highly non-linear terms which, due to
mathematical complexity, involve analytical solutions to a precision that is not eas-

ily tenable in the real world. As a result only a limited number of exact solutions
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are known to exist. Due to the mathematical tediousness involved in such cases a
number of approximating theories were developed, from the exact theories, which
provide a tenable "rule of thumb” to address such problems.

This leaves a number of challenging problems on the table that are yet to be
satisfactorily answered. Here-in we will explore, as our first problem, axially sym-
metrical compression of thick cylindrical rubber tubes as well as, for our second
problem, finite elastic bending of a long rectangular rubber block into a perturbed
cylindrical configuration from the point of view of surface rippling.

Our first problem, that of axially symmetric deformations of the perfectly elastic
neo-Hookean and Mooney materials, an asymptotic expansion in appropriate powers
of 1/R, where R is the cylindrical polar coordinate for the material coordinates is
assumed for the axis-symmetric deformation field. The first three terms of the
expansion are determined completely analytically in terms of elementary integrals.
The solutions obtained for the neo-Hookean material are applied to the problem
of the axial compression of a cylindrical rubber tube which has bonded metal end
plates.

Six unknown deformation functions appear in the first three terms of the above
asymptotic expansion . Using incompressibility condition and equilibrium equations
they are reduced to five integrations involving in total seven arbitrary constants and
a further five integration constants making a total of 12 constants.

In this problem the solutions obtained are approximate in the sense that the
traction free boundary condition is not satisfied in a point wise manner but only
in an average sense. As well it should be noted that the solution is followed only
to the third term. Progressive terms increase both the tediousness and complexity
of the algorithm without enhancing the practical value of the result. In which case
the theoretical solution whilst increasing in expended effort provides diminishing
returns such that even the fourth term would prove of limited if any use in a practical
engineering application.

Our second problem deals with finite elastic bending of a long rectangular rub-
ber block into a perturbed cylindrical configuration and examining from the point
of view of surface rippling. Approximate solutions are sought for small superim-

posed deformations upon the well known controllable family for the deformations
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of rectangular blocks into a sector of a solid bounded by two circular arcs. Again
the solutions obtained are approximate in the sense that the traction free boundary
condition are not satisfied in a point wise manner but only in average sense.

Problems arising from finite deformations of rubber blocks have been looked
at by many authors before. Hill and Lee [6] study the problem of large elastic
compression of a finite rectangular rubber block which has bonded metal plates to
its upper and lower surfaces. An approximate load deflection relation is derived
from a fully three dimensional deformation and the results of both finite and infinite
relations are compared with experimental results and with that predicted by the
conventional engineering approximation deduced from the ’shape factor’ method.
Their work indicates that if the shape factor approximation is used in conjunction
with a value of the Young’s modulus obtained from the linear experimental data then
this generates a consistently good estimate. They also present a finite model that
provides a reasonable accurate approximation irrespective of whether the Young’s
modulus is determined from the linear experimental data or from a hardness test. A
similar approximation is given by Klingbeil and Sheild [7] for extremely long rubber
blocks with rectangular cross sections bonded between two parallel rigid end-plates.
They also investigate flat deformable circular disks bonded between two end-plates
to which closed form of solutions are presented for materials possessing either of two
extreme forms of the Mooney strain-energy function. The results are compared with
the experimental results of Gent and Lindley [8]. Load deflection relationships are
also presented. Experimental observations of the failure of rubber mounts in tension
given by Gent and Lindley [8] are used to assess the stress distributions.

The above study was extended by Hill and Lee [9] to include torsion and com-
pression of a cylindrical rubber pad with bonded metal end-plates. Numerical results
are obtained for neo-Hookean material and experimental values for pure compression
are obtained. The experimental results are compared with the theoretical results
due to Klingbeil and Shield [7] and the shape factor approximation and found that
they provide satisfactory agreement but only up to some percentage. Bending and
stretching of a rectangular rubber blocks into a circular cylindrical tube has also
investigated by earlier researchers. For example, Hill [10] describes theoretical load

deflection relations for the four principle modes of bonded rubber bush mountings,
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constructed from rectangular blocks of rubber namely, torsional, axial radial and
conical deflections, based upon well-known exact solution due to Rivlin [11]. Tri-
antafyllidis [12] studied the bifurcation problem of an incompressible plate under
pure bending. Bifurcation problem of incompressible isotropic elastic plates sub-
jected to a combined flexure and axial compression is also studied by Haughton [13].
Biot [30] carries theoretical analysis of similar problem of rubber blocks. Gent’s [29]
contribution through his experimental studies on deformations of rubber blocks has

rendered valuable insight to the subject.

1.2 Thesis structure

Chapter one establishes the context of the thesis and explains where in the sub-
ject domain the problems examined lie. Some important existing researches with
relevance are outlined.

Chapter two summaries the general theories that have been derived by previous
workers which are useful in solving our problem.

Chapter three discusses the problem of axially symmetric deformations and axial
compression of a cylindrical rubber tube which has bonded metal end plates. We
present a brief introduction to the problem followed by basic equations governing the
six functions associated with the problem. Then we give the analytical details for
the neo-Hookean material and the corresponding details of the Mooney material.
In the subsequent section we use the derived results to determine load deflection
relation for the axial compression of a hollow neo-Hookean rubber cylinder. Finally
we present numerical results.

Chapter four examines the problem of finite elastic bending of a long rectan-
gular rubber block into a perturbed cylindrical configuration. We start with a
introduction to the problem and then explain the geometry of the block and initial
deformation. Next we present the equations governing the deformation followed by
the load-deflection relationships. Finally we illustrate possible solutions with typical
numerical values.

In Chapter five we present the summary and concluding remarks. The final

chapter comprises the appendices that present some mathematical details and bib-
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Chapter 2

Basic Equations

This chapter outlines the fundamental equations governing large deformations of
homogeneous isotropic incompressible elastic materials which are useful in our study.
These results are the work of previous researches and will not be repeated in full
detail here. For more comprehensive reading we refer to Green and Zerna [14],
Truesdell and Noll [2] and Eringen [15]. We comment that these theories follow
from the theory of classical continuous media, where a material body is thought to
be composed of a large collection of material particles, which are assumed to be
continuous throughout the medium except, possibly, at macro-scale discontinuities
[16].

The first step in defining large deformation is to define the relationship between
the initial undeformed configuration of a body and its deformed configuration as
different to classical theory where we analyze both configurations with respect to

one reference frame neglecting the difference due to infinitesimal strains.

2.1 Deformation gradients

Consider a body whose points are denoted by X% (K = 1,2,3) in a curvilinear
coordinate system, occupying a region Bgr in Euclidian space. If it under goes a
deformation so that the deformed body occupy a another region B and if the position
of points of B is denoted by a curvilinear coordinate system by z%(i = 1,2,3) then

the points are transformed according to

vt =2 (XE) or XE = XK. (2.1)
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The coordinates X* are called material or Lagrangian coordinates and the coordi-
nates z* are called spatial or Eulerian coordinates. The original body is also referred
to as reference configuration. It is assumed that

ox’

Jj= ‘(‘9X—K #0, (2.2)

so that the above coordinate transformation posses a one-to-one relation, where j is

the Jacobian of (2.1). From (2.1) we have
de' =z, dX g, dXg = Xg,;dz;. (2.3)

The two quantities 2%, and X% ; are defined as deformation gradients and inverse
gradients respectively. Here the subscript comma followed by and index indicates a

partial derivative, namely

, ox’ oOXK
P € 2.4
KT XK " o (24)
From the chain rule we have that
Ti,k XK.j= 0ij, XKyiTiL=OKL. (2.5)

2.2 Metric tensors

If the position vector of a material point P whose coordinates are ZM (M = 1,2, 3)
and XX (K = 1,2,3) with respect to rectangular cartesian coordinate system and
some general curvilinear coordinate system respectively, is P, then the base vectors

of the XX system are denoted by G (X) and defined by

oP ozM

- OXK M

G = px =

(2.6)

where I,(M = 1,2,3) are the unit rectangular base vectors and can be given by

OXE

(2.7)

Similarly for the corresponding spatial quantities base vectors g,(x) are defined by

_op o
gi_@xi o™

(2.8)
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Figure 2.1: Analysis of deformation of a body [16]

The metric tensors associated with the above deformation are given by

0ZMozM 0z2m0z™

G = GG = Giicgyr: 99~ 88 = Frig, (29)
and we have the conjugate metric tensors GXX and g% defined by
GKLGLM = (51\12, gijgjk = (5;, (210)

where § denotes the Kronecker symbol. If the Jacobian of the deformation mapping
in rectangular cartesian coordinate system is defined by
9z ’

S (2.11)

7-|

then we have

j= J@, (2.12)

V9

where G and g are scalars defined by

G: |GKL’7 g = |g,-j|. (213)

It is understood that the necessary and sufficient condition for isochoric deformation

is that J = 1.
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2.3 Deformation tensors

If dS and ds are the distances between two neighboring points in the undeformed
and deformed bodies respectively, then we have the squares of the line elements in

Bpr and B given by

dS? = dZMdzM = GrpdX¥dXt = ¢y dat da? (2.14)
ds* = dz"dz™ = g datdy? = CgpdX®dX*, '
where we have defined
Ckr = Cg.Cp= gijxiJ{ ij,La
Cij = Ci.Cj = GKLXK,i XL,j . (2].5)

C is called the Green deformation tensor while c is known as the Cauchy deformation

tensor. The reciprocal of Cx, which satisfies
CHECyenr = 6%, (2.16)
is denoted by C 1%L and given by
O 0. D G (2.17)
Similarly, the reciprocal of ¢;; which satisfies
i = 6, (2.18)
is denoted by ¢™'“ and given by
V=GR pead g (2.19)

I are known as Piola deformation tensor and

The above inverse tensors C™' and ¢~
Finger deformation tensor respectively. It can be also noted that deformation tensors
and their reciprocals are symmetrical. That is,

— —1KL _ —1LK
C’KL - CLK7 C = C )

— —1lij
= GCji, =

(2.20)

Cij
We also note that the mixed components of C and ¢ can be obtained as follows by

raising indices using respective metric tensors.

Cl = CurG™M, ¢} = cnjg™. (2.21)
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2.4 Changes in lengths, areas and volumes during
deformation

Changes in lengths during deformation can be expressed by (2.14) and the areas are
related by
day, = JXM ., dAy, dAy = J 2™ dag, (2.22)

where dA,; is the element of area vectors of a surface which transforms to area
vector element da,, after deformation. If dv is the volume into which the volume of

material element dV deforms, it can be deduced that they are related by

dv = JdV. (2.23)

2.5 Strain invariants

1

The principle invariants of Finger deformation tensor ¢, are denoted by [, I, and

I3 and obtained from the characteristic equation as

L=c¢Y L=|c"d Iz= |c—1;|. (2.24)

J

Utilizing the symmetry of Finger deformation tensor ¢~! and using equations (2.2),

(2.13) and (2.12) it can be shown that
Iy = J> (2.25)
Hence the principal invariants become

[1 = C_li 12 == JQCZ:, 15 = JQ. (226)

77

2.6 The Christoffel Symbols

Christoffel symbols represent partial derivatives of base vectors with respect to co-

ordinate variables. From (2.6) and (2.7) we obtain

0G, OXM  g2zN
OXT — OXN JXKIXL M- (2.27)

24



which may be written as

0Gk
oX*t

= I'%.Gur, (2.28)
where
M oXM  92zN
FKL - )
OXN OXEQXL

are defined as Christoffel symbols of second kind relative to the coordinate system

(2.29)

X&_ Similarly Christoffel symbols of second kind relative to the coordinate system

z* is given by
m 2.n
pm _ 02" 0%z (2.30)

" 9rn xior

2.7 Double tensor fields and covariant derivative

If points 2 and X belong to two spaces and the functions ti(z, X) and ., (z', X')

transform according to

il i 81’”/ 8XK
t/K’(xlaX/) :tK(xa)()WWa (231)
where
¢ =1(z), X =X'(X), (2.32)

then the above functions are defined as a double tensor field in the sets of variables
r, X, 2" and X’. The covariant partial derivatives of a double tensor field t%-(x, X)
are denoted by ti,;, and t; in which the differentiation is carried out with respect
to the coordinates X with z held fixed and with respect to the coordinates z* with

X held fixed respectively. Hence we have the expressions

i ot; i
KL — _8XKL - tMF]\K/[La
lisj = 8;; + Uk lj (2.33)

where I'}; and T ; denote Christoffel symbols based on Gk and g;; respectively.
The total covariant derivative of a double tensor field t%(z, X) with z = z(X) is

defined by

i i g 02
K;L - tK7L+tK’j OXL’
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It is noted that for a double tensor % (z, X) that t;, k 7 0, while for a single-point
tensor field t% (z, X), té, x = 0. Thus it is clear that partial covariant derivatives of
both metric tenors and their conjugates are zero. Since deformation gradients z°,;,

and XX ; are two point tensors, it can be shown that the total covariances are given

by

; 0%t v 0T e
[l = gxraxr ~ Tixgxear T Dng e a™ e
92X K DX K
K . _ m K I M

From equations (2.35), (2.17) and (2.19) it can be obtained

KLri 1. oo L
G [IZ,L},K = Vo' +15,c7",

grIXE ]y = VIXE 4Ty, 07 (2.36)

where V and V; are Laplacians defined by

v2 — KL 0 M 0
oXKoxL THELoxMm |’
. 0? 0
2 _ ) ™M
Vi = g¢¥ [6xi8xj Fij aXm} (2.37)

2.8 Stress tensor

If da is a small element of the deformed body and the force acting on the element
at time t is dF', then the stress vector t at a point x inside the element at time ¢ is
given by

t da = dF. (2.38)

The stress tensor T is defined by
t=Tn, (2.39)

where n is the unit normal of the element da. The first Piola-Kirchoff stress tensor
Tg is defined by
Th = JXK T, (2.40)
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Figure 2.2: Stress on an elementary tetrahedron in rectangular Cartesian coordinates
[17]

while if the undeformed area of the deformed element da is dA, then the Piola-

Kirchoff stress vector tg is defined by
tR = TR ng, tJR = ngnRK, (241)

where np is the unit normal to element dA. On using Nanson’s fomula for area

change during deformation, namely
da; = JXE ; dAk, (2.42)
and equations (2.40) and (2.41) it is obtained that
th dA = tda,. (2.43)
Hence from (2.43) it is clear that
th dA = t'da;, (2.44)

and

trdA =t da = dF. (2.45)
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Figure 2.3: Tllustration of first Piola Kirchoff stress [18§]

Here the area vectors of deformed and un-deformed bodies are respectively,

da=dan, dA = dAng. (2.46)

2.9 Physical components of a tensor

The components of a tensor in a curvilinear coordinate system do not have the same
physical dimensions as the tensor itself. Thus when those tensor components are
used in solving physical problems we need to convert them to physical components.
The physical components of a tensor are the tensor components possessing the same
physical dimensions as the physical quantity represented by the tensor. However
in nonorthogonal coordinates several different types of physical components arise.

That is to say that there is no unique definition for physical components of a second-
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order tensor. For example for a tensor T the physical components T((;)) can be given

by

70 _ i Jii
() e
VYii

or the physical components 7 can be defined by

(2.47)

T@OG) — Tid NG (2.48)

where underscore for indices suspends the summation. When the coordinates are
orthogonal we note that

y 1
= (2.49)

Hence in the case of symmetric tensors referred to orthogonal curvilinear coordinates,
the physical components T(Z) and T(j)(i) are identical. For symmetric tensors in
orthogonal curvilinear coordinates we therefore have [16], [19].

0 — _ i g — i VI
Lo = Zgagm ~ TV = T (2.50)

2.10 Equilibrium equations
The law of conservation of mass states that

/pdv:/pod\/, (2.51)
v 14

where py and dV denote the mass density and the element of volume respectively,
before deformation while p and dv denote the corresponding quantities after defor-

mation. Equation (2.23) and localizing may result in
pJ = po, (2.52)

which is the local law of conservation of mass generally known as the continuity
equation. Due to local balance law of linear momentum, in the absence of body

forces we have the equilibrium equation given by

div T = 0. (2.53)
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Upon using the Euler-C. Neumann identity
[J X5, ]:x=0, (2.54)

and equation (2.40) on (2.53), the equilibrium equation in terms of first Piola-

Kirchoff stress tensor can be given by
TN = 0. (2.55)

Under the local balance law of moment of momentum, for nonpolar media (ie in the
absence of torques or couple stresses) the stress tensor T requires to be symmetric.

Hence we have

™" =T, 7TV=T1% (2.56)

which is known as Cauchy’s second law of motion.

2.11 Hyperelastic materials

A constitutive equation relates the mechanical behavior of the material to stress and

motion. The constitutive equation of an elastic material is given by
T = g(F), (2.57)

where T is the stress tensor and F is the deformation gradient. The function g

which is referred to as response function of the elastic material satisfies the relation

Qg (F)Q" =g(QF), (2.58)

for a orthogonal tensor Q [2]. An elastic material with response function g is said

to be isotropic if and only if g satisfies the relation
Qg(F)Q' =g(QFQ"), (2.59)

for all orthogonal Q [5]. The general constitutive equation for isotropic elastic
materials is given by

T = ¢0C + ¢15 + ¢20_1, (260)

where T is the stress tensor, c is the Cauchy deformation tensor and ¢ is the unit
tensor. ¢; (i = 1,2,3) are scalar functions of the invariants I, I and I3 of inverse

Cauchy deformation tensor ¢! and is called the response coefficients of the material.
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Hyperelastic materials are isotropic elastic materials whose response functions
can be given by derivatives of a scalar function with respect to the strain invariants.

That is, for such materials there exists a scalar function
¥ =3, I I3), (2.61)

where I, I, and I3 are strain invariants defined above. The scalar function ¥ is called
the strain energy function or stored energy function. The response coefficients are

namely,

s = —2V/hoe

oIy’
2 0y 0y
= — [L—=4+ .=
$1 \/]_3(28]2+ 367[3)’
2 0%
¢3 = (2.62)

VI 0L

Hence from equation (2.60) the Finger stress strain relation becomes [20]

T = i |:<128_Z -+ 138—2]) 5 + a—Zcil — 138—ZC]

Jh \"?a5, " ol al, ol (263)

2.12 Isotropic incompressible hyperelastic mate-
rials

Deformations in which volume elements remain unaltered are called isochoric defor-
mations. A material for which only isochoric deformations are possible is said to be
incompressible. According to (2.23) the necessary and sufficient condition for iso-
choric deformations is that J = 1. Hence the continuity equation for incompressible

materials becomes

where pr and p are the densities in the deformed and undeformed configurations
respectively. Further due to (2.25) invariant I3 becomes unity which subsequently
makes the equation (2.62); indeterminate. Hence the Finger stress-strain relation

for isotropic incompressible materials is given by
> o

T=p9+2—c' —2— 2.65
R TR A (2.65)
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where p* is an arbitrary function, referred to as pressure function and strain energy

function ¥ = (I3, ).

2.13 Mooney and neo-Hookean materials
An incompressible material with strain energy function given by
Y =C1(I1 —3) + Cy(Is — 3). (2.66)

is called a Mooney material. This was first proposed by Melvin Mooney to model
certain rubber like materials and such models were in fairly good agreement with
the experimental results [3]. In the special case when Cs is zero, the theory is called

neo-Hookean, viz

S =Cy(l; — 3), (2.67)

for a neo-Hookean material [2]. [; and I, denote the first two invariants of the
inverse Cauchy deformation tensor and C; and Cy are positive material constants
such that 2(C; + C5) may be identified with the infinitesimal shear modulus p, given
by

1=2(Cy + Cy). (2.68)

Moreover, for many rubber-like materials typically Cy is approximately C;/10. Here,
following normal practice, we use I' to denote the ratio Cy/C. The Mooney model
usually fits experimental data better than Neo-Hookean model does, but involves
an additional material constant leading to more complex analytical results. Due to

the above definition of strain energy functions we have

ox.

oL Ch, (2.69)
for both type of materials and

ox

oL Cs, (2.70)

for Mooney materials.
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Chapter 3

Asymptotic axially symmetric
deformations for perfectly elastic
neo-Hookean and Mooney
materials

3.1 Introduction

In this chapter we provide a detailed treatment for the problem of axial compression
of cylindrical rubber tubes of neo-Hookean and Mooney material with bonded metal
end plates. For axially symmetric deformations, an asymptotic expansion in powers
of 1/R is assumed, where R is the cylindrical polar coordinate for the material
coordinates. The first three terms are completely determined analytically in terms
of elementary integrals. The solution determined is approximate in two senses;
namely as an approximate solution of the governing equations and for which the
stress free and displacement boundary conditions are satisfied in an average manner
only.

For homogeneous isotropic incompressible elastic material sometimes referred to
as simply perfectly elastic materials, there are a limited number of exact analytical
solutions for finite deformations. However, frequently these limited analytical results
can be exploited to determine approximate analytical solutions to many problems
of practical interest (see for example Hill [21]). Klingbeil and Shield [7] determined
analytical expressions for the neo-Hookean and Mooney elastic materials for the

axially symmetric deformation

r=f(Z)R, 0=0, z=g(Z), (3.1)
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where (R, 0, Z) and (r, 0, z) denote material and spatial cylindrical polar coordinates
respectively and f and g are functions of Z only. Further, the deformation (3.1) can
be utilized to determine approximate load deflection relations for the two problems
of axial tension and compression of solid rubber cylinders under conditions of axial
symmetry and loaded by means of bonded metal end-plates. The deformation (3.1)
specifically only applies for solid cylinders, and the question arises as to how (3.1)
might be extended to deal with the corresponding problem but for the axial ten-
sion and compression of hollow rubber cylinders, again loaded by means of bonded
metal end-plates. Since it is not known how to determine exact analytical solutions
applicable to tubes rather than solid cylinders, it is natural to consider some ana-
lytical asymptotic expansions involving powers of R and coefficients as functions of
Z only. However, if we assume such an expansion involving only positive powers of
R, then it may be readily shown that an infinite number of such terms are required
to properly close the system. This is essentially because V? operating on the typical
term, say f,(Z)R", produces in particular the term n?f,(Z)R" 2, which makes a
contribution to the lower order term f, »(Z)R"™2, and evidently it is not possible
to properly close such a system using only a finite number of terms. In this paper

we consider the axially symmetric static deformation
r=r(R,Z), 0=0, z=zR,2), (3.2)
for which r(R, Z) and z(R, Z) admit the following asymptotic expansions

r = Rpz)+ LA 2D

R 3 .
(3.3)
n(Z) | ¢z
z = go(Z2)+ 1];2)—1- 2}%4)—1—...,

so that now for example, V? operating on the typical term f,(Z)/R?>"~! produces
in particular the term (2n — 1)?f,(Z)/R?*"*! and this makes a contribution to the
determination of the next higher order term f,+1(Z) rather than a lower one. Ac-
cordingly, we may properly close the system using only a finite number of terms.
Here for the perfectly elastic neo-Hookean and Mooney materials, we show that for
the six functions involved in (3.3) we may produce five first order integrals involving

seven arbitrary constants A, B,C, D, E, H and k?, and from which the full solution
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for all functions may be determined from a further five formal integrations. Thus,
for both neo-Hookean and Mooney materials the full analytical solutions for (3.3)
can be presented in terms of five formal integrations and involving in total twelve
arbitrary constants.

In the following section we present the basic equations for axially symmetric
deformations of the incompressible neo-Hookean and Mooney perfectly elastic ma-
terials. In the subsequent section we present the basic equations governing the
six functions f;(Z) and g;(Z) (j = 0,1,2) appearing in (3.3). Since the analyti-
cal details for the Mooney material are considerably more complicated than those
for the neo-Hookean material, in Section 3.4 we first present those for the neo-
Hookean material and then in Section 3.5 we give the corresponding results for the
Mooney material. In Section 3.6 we use the solutions obtained to determine the
load-deflection relation for the axial compression of a hollow neo-Hookean rubber
cylinder. Such a solution is approximate both in the sense that the governing equa-
tions are satisfied asymptotically, and in the sense that the point-wise stress free
boundary conditions are assumed to be replaced by average or integral conditions
on every arbitrary elemental strip. However, the formal solutions obtained here are
“exact” asymptotic solutions of the governing equations, and in the absence of pre-
cise analytical results might be rendered as an approximate solution for any axially
symmetric problem for which the Z-axis is excluded. In Section 3.7 we exploit these
solutions for the problem of the axial compression of a hollow thick walled rubber
cylinder by application of equal and opposite forces applied to bonded metal end
plates. In Section 3.7 we give numerical results for the approximate load deflection
relation so determined. Appendices A to F record various analytical details required

for the approximate load-deflection relation derived in Section 3.6.

3.2 Basic equations

The general equations outlined in Chapter 2 for perfectly elastic materials are sim-
plified here for the case of axially symmetric deformation field given by (3.2). We
briefly present here the basic equations that are useful in solving the present prob-

lem. More detailed derivation of this equations are given in the literature [20].
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Let the points of the undeformed body X% (K = 1,2,3) and those of the de-

formed body z*, (k = 1,2,3) be referred to by the cylindrical polar coordinates

(R,0,Z) and (1,0, z) respectively. If the corresponding rectangular cartesian co-

ordinates are given by ZM(M = 1,2,3) and 2™(m = 1,2, 3) respectively then we

have

Zl

Zl

It should be noted that

= Rcos® Z*=Rsin® 27°=7,
= rcosf 22 =rsinf 23 =2 (3.4)

in the following discussions only the values 1 and 3 are

assigned to the labeling indices a,b A and B.

3.2.1 Metric tensors

Due to (2.9) the metric tensors for the deformation (3.2) are given by

and

From (2.10) the spatial conjugate metric tensor becomes

while the material conjugate metric tensor is given by

(1 0 0

Gkr=10 R?> 0|, (3.5)
|0 0 1
(1 0 0

9i; = 0 T2 0 . (36)
0 0 1
1 00

¢?=10 % 0], (3.7)
0 0 1
1 0 0

GEL =10 1/R? 0 |. (3.8)
0 0 1

3.2.2 Deformation tensors

From (2.15)y Cauchy deformation tensor for the deformation (3.2) is given by

R? 4+ 7?2 0 R.R.+Z.Z,
0 R? 0 , (3.9)
RR.+2,7Z. 0  R:+ 22
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while on using (2.19), Finger deformation tensor is shown to become

%+ 1% 0 rrzr+rzzz
o — 0 1/R? 0 . (3.10)
rrzr+7z27 0O 2%+ 23

The corresponding mixed components of the above tensors are given by

R? + 72 0 RR.+Z2Z,
ch = 0 1/\2 0 : (3.11)

R,R.+7Z,Z. 0 R2+ 72

and
7“%4‘7"% 0 TRZR+T22Z
cl= 0 z? 0 : (3.12)
TrRZr + 7227 0 2%+ 22

3.2.3 Incompressibility condition

From (2.2) we have

= 3.13
and from (2.13)
g=1r> ,G=R. (3.14)
Hence due to (3.13) and (2.12) the incompressibility condition becomes
ar,z) R
a(R,Z) = TRZz — TzZR — ? (315)

3.2.4 Strain invariants

Since for incompressible materials J = 1, due to (2.26), principle invariants of the

Finger deformation tensor become

L=cY L=c, I3=1. (3.16)

We let I and I denote the principle invariants of c_ll‘f. Thus we have

I=c'* II=|c". (3.17)

a’
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Now combining (3.17) in (2.24) and utilizing (3.12) we obtain
Li=1+X, I=XI+II, Iy=\II,
where \ is defined by
A=r1/R.
Due to (3.17) it is also clear that I is defined by
]zr%—}—r%%—zé—l—zg.

Further the Cauchy Hamilton theorem for ¢ *

¢ yields
I1¢ =601 —c 'y

However it can be shown that

II=|c" = N6

and therefore we have the strain invariants expressed by

1
I =1+ )\, 12:>\2[+§ Iy =1.

3.2.5 Equilibrium equations

Since in terms of free products the stress tensor T can be expressed as

T =T} g.9",

for deformation (3.2), (2.62) becomes

a * ca az —1la 62 a
) oy 1

T2 = pr 42—\ —-2—-_—

T o, 2

T = Ty =0.

Upon using (3.21) in (3.25); and introducing p and ¢ defined by

ox
= P2
0x ox
= 2|== 2=
¢ {6[1 A 012] !
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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T can be shown to become
T = —pdy + ¢c 4. (3.27)
Hence by substituting from (3.12) the stress components are shown to be given by

TN = —p+o(rh+13),
T; = —p+9¢(zh+23), (3.28)

T3 = T =06 (rrer +7222).
Now by introducing
0x 1) 0%
— =g (r-— )= 3.29
v {azﬁ( )\4) afg]’ (3.29)
(3.25)5 can be expressed as
T3 = —p+ X, (3.30)

where p is called the modified pressure function while ¢ and v are known as response
functions which due to (3.18) can also be expressed as

0% )y

a7 ) =2-—— (3.31)

Q=2 e

Next on using (3.15) we deduce the following results

RT = )\Zz, RZI—)\Tz,

Zr = =\ ZR, Zz = )\TR. (332)

Upon utilizing 7% = ¢**T] and (2.40) and subsisting above results into (3.28) we

obtain
Ty = —\pzz + org,
T]?é:)) = _)\er + (bZZ?

TR = Aprz+ oézg,

T}%l = )\sz + ¢TZ7

22 P (0
I = Tpt
T = T¥ =0. (3.33)
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Noting that for orthogonal coordinates Christoffel symbols I'}; vanish for r # i # j,

there remain only the following non zero terms for the coordinates (7,6, 7)
1 2 2 1
Py =—r, Th=1% = P (3.34)

The equilibrium equations (2.55) therefore give

oTR | TH T

Rt R Tz = TR (3.35)

or§ | T oTy

It is understood that the second equilibrium equation (3.36) is automatically satis-
fied.
Owing to (3.19) it is easily seen that

LyEoy, 22 (3.37)

An= g TR R

Upon substituting (3.33) in (3.35) and accompanying the above results the two

equilibrium equations simplify to give

0 r
8_]7’9 = OV?r+ ¢rrr+ ¢zrz — ¢ﬁ’ (3.38)
0
a—i’ = OV22+ Gpep + drzg, (3.39)
where V2 denotes the usual axially symmetric Laplacian, thus
0? 1 0 0?
2
=—4+=-——+ —. A4
V' =or " Ror "oz (3.40)
For the Mooney strain-energy function, namely
> (I, L) = Ci(I1 = 3) + Ca(I> - 3), (3.41)
those relations yield
1
b =2(Cy+ NCy), =2 (01 + <I — F) Cg) ) (3.42)

In the following section we use the above results to determine the basic equations

for the asymptotic deformation (3.3).
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3.3 Governing equations for the deformation (3.3)

Formally, we assume that term by term differentiation of (3.3) with respect to both

R and Z is permissable any number of times. Thus for example

A2 3h(2)

R = folZ) R2 Ri +
(3.43)
rz = Rf(l)(Z)—Ff{;%Z)‘f“féf(ng)-f‘.. :
and
ZR = _29;%(5)_4,9;;5)_’_7
(3.44)

N2, %(%)

2z = g()(Z)—i_ R2 R4 ey

where throughout primes denote differentiation with respect to Z. It is also conve-
nient to use ¢ for 1/R?, and subsequently we generally omit any indication of higher
order terms. Noting simply that the analysis given here is consistently accurate to
order 2.

We first deal with the incompressibility condition. From (3.3), (3.15) and for-

mulae such as (3.43), we obtain respectively on equating coefficients of £°,¢ and

2

€%
9% = 11,
fodi +2foq1 = 0,
/ / / / / f12 f2
Jogs — f19) — 3f290 +4fog2 +201f1 = 73 T 2 (3.45)
fo 1o
By rearranging terms and integrating, from (3.45), it can be shown that
A
91 = 755 (3.46)
o

where A denotes a constant of integration. Upon substituting for g, g1 and g] in

(3.45)3 we may readily deduce

(foga +2Afo 1) = f7 + 2fofo. (3.47)

Thus, assuming fo(Z), f1(Z) and fo(Z) are known functions, the functions go(Z2),
91(Z) and g2(Z) can be formally determined by two integrations.
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Next, by substituting ¢ = % in equation (3.3);, squaring it and neglecting the

terms of order €2 and higher we obtain

o= fe+2efofi+E ([T +2ff). (3.48)

Using the above relationship and employing the binomial expansion we yield

1 1 10f2 — 4
F = f—é — 45;_;5 + €2< fl fg fsz) . (349)

It is understood that again we have neglected the terms of order £® and higher in

equation (3.49). Now carrying on the expressions (3.43) and (3.44) into (3.20) we
have I given by

£ . .
1= 2 (fa2fifi+ ) +e(F - 2hh+ 26055+ 24391 )

noting that the order £? contribution in the equation has not been included, because
subsequently we need ¢/ R? (ie £1)) and therefore the order €2 terms in both (3.50)
and (3.49) are not required. From (3.48), (3.49) and (3.42) we obtain

¢ = 2(Ci+ fGCo) +4eCafofi +2°Ca(f7 + 2f0f2),

L= 20 20+ 20 + 2030 (3.50)

; 4
+2C5¢? <f{ + 2fofs + 2909) — 2fof1 + %) :
0

noting that in deriving the latter expression we have utilized (3.45);.
Next for the convenience of calculations we use a, b, ¢, a, 3 and v as shorthand

for the coefficients arising in (3.50), thus

¢ = a-+be+ce?

Y
ﬁ o+ 65 + ’782, (351)
where it is readily seen from (3.50) that

CL* = Q(Cl—i‘fgCg),

b* = 4Cyfo fi,
¢ = 2C(f7 4+ 2fof2), (3.52)
a = 202 62,

B = 20, +205(f3 + 2o /1),
4f1

v = 20, (ff +2fof5 + 29091 — 2fof1 + F) .
0
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Now due to our assumption that deformation (3.3) is differentiable any number of

times with respect to R and Z, from (3.43) and (3.44) we have

TRR = 2f]1%(3Z) + 12];52) ey

rzz = RE(Z)+ f}fu 19

691(Z 20g2(Z
ZRR = 9;2(4)+ gé((s) ce

1" Z 1 Z
25n = gg(Z)+91};2)+92}g4)+..., (3.53)

where prime denotes differentiation with respect to Z. Applying the Laplacian given

by (3.40) on (3.3) and utilizing equations (3.53) and (3.43) it is easily obtained that

V2r = RfJ+ Re(fo+ f) + Re*(f) + f1),

V%2 = g +ed] +%(4g1 + gb). (3.54)

Now using equations (3.51) and substituting (3.54) in the two equilibrium equations

given by (3.38) we deduce the following results

dp Fi(Z) Fy(2)
B REy(Z) + P T
(3.55)
dp G1(Z2)  Go(2)
5 = Go(Z) + T T

where the six functions F;(Z) and G;(Z) (j =0, 1,2) are given by
FO = (a*fé)/_aan
Fyo= (a"fi+ b0 f3) +a"fo—afi — Bfo,
B o= (afy+ 0 fi+cfo) +a* fr =0 fo — afe = Bfi — v fo, (3.56)
and
GO = (a*gé))/7
Gi = (a*gy+ Vg,
Gy = (agy + gy + "gp) + da*g, (3.57)
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Now on eliminating the pressure function p from (3.55), namely using the equation

d(0p/or,r)  0(0p/0z, 2) _
I(R,Z) J(R,Z) ’

we may deduce from (3.3), (3.55) and (3.58)

(3.58)

Fofo— Fofo=0,
Fofi — Fify+ Fofi — Fifo =0, (3.59)
Fofy — Fsfo+ Fifi = Fif{ + 3Fy fa = 3F2 fy + 20:Gf — 2Gagy = 0,

the first two of which readily integrate to yield
Fy = —2C1kK*fy, Fi = —2Ck*f1 +2C1B/ fo, (3.60)

where B and k? denote real constants of integration, noting that k itself can be
real or pure imaginary. Next on using (3.45) and (3.60) in equation (3.59); we may
deduce

[f3(Fy + 2C1K% f2) + 201 Bfo f1)' = 2(AG) — G), (3.61)

and from (3.57) we have

!/ 40 ! /
AGy -G, = [—f 2(Afy - fl)} . (3.62)
0
Therefore on integration we obtain
3 2 802 /
fo (B2 +2C1k" f2) + 2C1 B fo f1 = f—(Afo = fi) +2C,C, (3.63)
0

where C' denotes the constant of integration.
In the following section we deduce from (3.60) and (3.63) the greatly simplified
equations which apply for the special case of the neo-Hookean material (Cy = 0).

The analysis for Cy # 0 is presented in the section thereafter.

3.4 Solutions and integrals for the neo-Hookean
material

For the case Cy = 0, we have simply a* = f = 2C} and b* = ¢ = a =y = 0 and
the three determining equations for fo(Z) and f1(Z) are obtained from (3.60) as

0+ kK fo=0, fI+kfi=B/f. (3.64)
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Due to (3.56)3 it is clear that

F2 - 201 é/. (365)
Hence from (3.63) we obtain
C Bf
Sk = — — =5, (3.66)
fo 0

again noting that B, C' and k? are all constants of integration. In summary for

neo-Hookean Material we therefore have

Fy

2C1fy, Fi=2C1f], F,=2C\f;,
Go = 20196/, G1 = 20191/, GQ = 20195’ + 80191. (367)

Multiplication of (3.64); by f} gives
o+ k3 =D, (3.68)

where D is a further constant of integration. Similarly, multiplication of (3.64); by

f1 and (3.64), by f} and by addition gives the integral

fofi + K fofi = Blog fo + E, (3.69)

where E denotes the constant of integration. The formal integration of (3.66) is
achieved by multiplication of this equation by f; and adding f| times equation

(3.64) plus f} times equation (3.64), thus

B B /
Jolds B L) + AU+ K1) + oSG + K2 fo) = 51 = Bhgs C?,
0

which may be readily integrated to yield

=4 gt (3.70)

2 2
R (R T R

where H denotes the constant of integration.

The calculation for the pressure function p is quite arduous even for the neo-
Hookean material. We need to integrate (3.55) using (3.60) and (3.63) with Cy =0
and using

dp _ Op Ip op _ Op Ip

@ = ETR + %ZR, 6_Z - ETZ + &ZZ7 (371)
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we may eventually deduce as shown in Appendix A

2 /
p - —zcl{kQ (Rfo+ﬁ+f2) L2 O Brg(rpy) - B L }

2 R R) RS 2R f2 Rfy  2fd

+201p0, (372)

where py denotes the constant of integration and the term r? appearing in (3.72)
means )

(Rf0+f—}%+%) :R2f§+2fof1+W+.... (3.73)
Thus the functions appearing in equation (3.3) can be determined completely from
five further formal integrations, namely (3.47)q, (3.47)3, (3.68), (3.69) and (3.70).
These five equations involve in total seven arbitrary constants (A4, B, C, D, E, H and k?)
which together with the five further constants of integration makes in total twelve
arbitrary constants. The stresses will generally involve all these constants plus the
constant pg which arises in the integration of the pressure function. The same picture
applies for the Mooney material, but the integrals corresponding to (3.68), (3.69)

and (3.70) are far more complicated. These results are obtained in the following

section

3.5 Solutions and integrals for the Mooney ma-
terial

For Cy non-zero we have from (3.50) and (3.51)

@t = 2ACH+ f2C),

b = 40y fof,
¢ = 205(fF +2fof2),
a = 205f7, (3.74)

B = 20, +205(f2 +2£ 1),
vo= 205(f + 2505+ 20691 — 2fofu + 411/ £3),

and from the equations (3.56), (3.60) and (3.63) we may eventually deduce the
following expressions for fo(Z), fi(Z) and fo(Z), thus

(L +Tf)f§ +Thofy +k fo=0, (3.75)
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L+ T F + 20 fofoft + DSy + f5) Fu + K2 f1 = B/ fo, (3.76)

(L+ TS5 + 20 fofo f5 + TQ@fof + 15 fa+ K2 fo (3.77)
FD(f2f 200 f100) + DAL+ ) fo=C/f3 — Bfi/f2,

where I" denotes this ratio Cy/C). Formal integrals for these three equations are
obtained precisely as described in the previous section for the neo-Hookean material,
although of course the details are more complicated.

Multiplication of (3.75) by f§ and integrating yields
(1+Tf)f + K f2=D. (3.78)

This nonlinear first order differential equation was first derived by Klingbiel and
Shield [7] and has a solution which may be expressed in terms of elliptic functions.
Similarly, multiplication of (3.75) by f{ and (3.76) by f{, adding the two equations
and integrating yields

(L+ T2 fifi+Thofy fr + K fofs = Blog fo + E, (3.79)

Although complicated, It is noted that by dividing by (1 + T'f)f, this equation
is formally only a first-order linear ordinary differential equation whose integrating

factor is given by e® where

¢ 2 2
o (L+Tf5)fo
which on using (3.75) can be shown to become
A= —log f;. (3.81)

Hence the integrating factor becomes f} and the differential equation (3.79) becomes

(%) _ Blog fo+ E (3.82)

D-I2ff
which for known fy(Z) can usually be integrated directly. Following the same recipe
for the determination of (3.70), we multiply (3.75) by f5, (3.76) by fi and (3.77) by

f{, and an addition the resulting equation may be integrated to yield
2 r
(L4+T ) fofs + Tfofy fo+ K fofo + ) {(fLfo+ fof1)? +2fofo i f1}

12 2

W e Brp-opr v 389
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and again, although more complicated, this is merely a first-order linear ordinary
differential equation with the same integrating factor as (3.79), and simplifies to give

(é)’ DS+ S0P + 2fofs i3 + IF + B f7
fi 2(D — k2 f3)

_ Bf/fo—C2f2+H
N (D—k2f5)

(3.84)

and again, in principle for known fy(Z) and f1(Z), this equation may be formally
integrated. Thus for the deformation (3.3) we have again reduced the problem to
five formal integrations, namely (3.47)1, (3.47)3, (3.78), (3.82) and (3.84). In the
following section we use the results of the previous section to determine an approxi-
mate solution to the problem of the axially symmetric compression of a rubber tube

with bonded metal end-plates.

3.6 Axial compression of a cylindrical tube with
bonded metal end-plates

(a) Undeformed cylinder (b) Deformed cylinder

Figure 3.1: Original and deformed body of the cylindrical tube with bonded metal
plates subjected to axial compression

In this section we determine an approximate solution to the problem of the axial
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compression of a cylindrical tube as shown in Figure 3.1. We assume inner and outer
radii a and b respectively, and originally of length 2L and deformed symmetrically
as shown in the figure to have final overall length 2¢. We suppose that the actual
deformation may be approximated by a deformation of the form (3.3), and ideally
we seek functions f;(Z) and g;(Z) (j = 0,1,2) such that they are even and odd

respectively and that the following boundary values apply, namely

fo(:‘:L) =1, fl(iL) = f2(iL) =0,

go(£L) =+, g1(£L) = go(£L) =0, (3.85)

and since g;(Z) (7 =0, 1,2) are assumed to be odd functions of Z, we have automat-
ically g;(0) =0 (5 = 0,1,2). Subsequently, we find that it is not possible to satisfy
(3.85)¢ in a pointwise manner and we have to satisfy the condition go(+L) = 0 in
an average sense. Now from (3.68), (3.45); and the above boundary values, we may
readily deduce

coskZ _ cos® kL

p— 9(2) = . tan kZ, (3.86)

which is the solution for the axial compression for the solid rubber cylinder, and
first given by Klingbeil and Shield [7].
Now with fy(Z) defined by (3.86); and (3.69) we may obtain

fo(Z) =

Z
, Blog C(,)S—k + FE| coskL
fi L sin kL (3.87)
sinkz ) ksin?kZ ’ '
which can readily integrated to give
B L Z E L
fi(Z) = %ﬁk [cos kZ log (ZZZZL) + kZ sin kZ} + %ik coskZ + IsinkZ,

(3.88)
where I denotes the integration constant. From the boundary condition (3.86)s we

may deduce I =0 and £ = BkLtan kL, and we obtain

BcoskL
Rz

cosk”Z
cos kL

f1(Z) |:COS kZ log ( ) +kZsinkZ — kLtankLcoskZ| . (3.89)

Since ¢1(Z) is assumed to be odd, we have immediately from (3.46) that the constant

A is zero and thus ¢;(7) is identically zero.
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Now again with fo(Z) defined by (3.86); and with f;(Z) defined by (3.89), equa-
tion (3.70) may be integrated to give

B?cos® kL coskZ coskZ
Z) = — log?
J2(2) k4 { 2 % ( cos kL )

o8 ki) + kZ sin k‘Z}

COS

+(1+ kLtan kL) |:COS kZ log (

2
—kZ sinkZ log (COS kZ) i

——7? A
coskL 2 cos k

L L
—kLtan kL (1 + %) coskZ — 2kI,(Z) sin kZ}

B C cos® kL cos2kZ N H coskL
2k2 cosk”Z k2

coskZ + JsinkZ, (3.90)

where J denotes the further constant of integration. From the boundary values we
may deduce J is zero and H = B? {(L*cos2kL)/2 + I;(L)sin 2k L} + (C/2) cos 2k L

and we obtain the following expression which is derived in Appendix B,

f(2) =

B?cos*kL [ cos kZl o [coskZ
— 0
k4 2 & \ CoskL

cosk”Z
cos kL

+(1 4+ kLtankL) {cos kZ log ( ) + kZ sin kZ]

kZ k?
—kZsinkZ log cos — —Z%coskZ + T coskZ — 2k*I,(Z)sinkZ
cos kL 2

CcoskL

—_ kL — cos*kZ 91
+2]€2COS/{:Z(COS kL — cos” kZ), (3.91)

where T is a constant defined by
T = (kL)*/2 — k*L*tan® kL — kL tan kL + 2k*I, (L) tan kL, (3.92)

and I, (Z) is defined by

Z 7 1 Z
L(Z) = / Etan k&dE = —Elog kZ + E/ log cos k&dE. (3.93)
0 0

Further, with fo(Z), f1(Z) and f5(Z) defined by (3.86), (3.89); and (3.91), as shown
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in Appendix C we may integrate equation (3.47) to give go(Z) as

B?cos® kL [1 coskZ coskZ
Z) = ———— |=sin2kZ1 kZ1 kZ sin? kZ
92(2) k5 cost kZ [QSm o8 (cos kL) T ralog (cos kL) Rzsm

ES

1 T in 2k
— SRS 2KZ + EI(Z)(1 42008 KZ) + - (k:Z + sz )}

C [coskL\* sin 2k Z
= (SBE2) | Zcos 2k — 94
ibTe (COSkZ> { o8 2k } (3:54)

where T* is the constant defined by T* = 2T + k*L? tan? kL. Here we have utilized
the fact that go(Z) is an odd function, to determine the integral constant as zero.
We observe that while go(Z) is correctly an odd function, we are not able to impose
the additional requirement that go(£L) = 0. Accordingly, we assume that we may
replace the assumption of a bonded metal plate, by an averaged approximation for
this requirement.

At this point there remains four as yet undetermined constants, namely B, C, k?
and pg. These constants are obtained by prescribing the resultant applied force F' to
the bonded metal end-plates, and by requiring that every elemental strip subtended
by an arbitrary angle d© on both surfaces originally given by R = a and R = b
respectively be subject to an uniform vertical force. This procedure follows that
first exploited by Klingbeil and Shield [7] and later used by Hill and Lee [9]. Given
the approximate nature of both the assumed deformation and the average boundary
conditions, it is not a simple matter to deduce conditions under which such a solution
might apply. We point out that for the series solution (3.3) to be a good approximate
analytical solution, it is necessary that R is large. For the problem considered in this
section, this implies that a should be large, where of course the largeness or smallness
of a quantity is in a relative sense. Here, we might expect what is required is that
a is much larger than the characteristic axial length, that is 2L or indeed L. Under
such a condition, it would then be reasonable to replace the point-wise traction free
conditions on the two lateral surfaces, by requiring the resultant to be zero. However
numerical results for the final load deflection relation (3.127) show that a physically
sensible relation is only obtained for a < L. For a > L the relation (3.127) does not
display the characteristics one might expect such as achieving the maximum force in

the vicinity of § = 1 —//L equals unity, namely ¢ ~ 0. Accordingly, in the numerical
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example of the following section we restrict our attention to a < L.

Due to the axial symmetry and the mid-plane symmetry, the only non-zero
resultant force acting on every elemental strip subtended by the arbitrary angle d©
is given by .

dF, = d© / T RdZ, (3.95)

-L
where T g I (K,j = 1,2,3) denotes the first Piola-Kirchoff stress tensor which is

given explicitly in Hill and Lee [9]. In particular for the neo-Hookean material we

have

r
T}%l = _pﬁ

and therefore from (3.3) with ¢;(Z) = 0 and (3.88) we have

2y + 20, TH = —p}%TR + 202y, (3.96)

R R?

T3 — _ (fo f f ) (fo—_;J;lz_i{j>+201< }%i), (3.98)

where for the neo-Hookean material from (3.72) the pressure function p is given by

RQ ]{72

p = —201[ fo <k2f0f1 Blog fo — Qf)
0

+(f12 + 2fofo)k* + C/ f§ — 2Bf1/ fo)

SR — Blog R} +2C1po.  (3.99)

If we include the three leading order terms in the expressions for (3.97) and (3.98)

then we obtain

Th k? 1 Bl 3k?
SR _ R25f0+(f0——5—@_ ng0+ f1> BlgR(f f1)+

2C, 2fg  fo fo 2 R f

1 [k C  2Kf7

R { (5f2 4f0f092) 2f0 + fofl

(B4 Blgfytpl gD ]+ (8-100)

13 25
T R2k_2f4_ f2_L_k2f3f + Bf3log fi +i Q—Bff
20, — e T \Plo T TR o B R 0 T -
—BfilogR+.... (3.101)
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From the expressions (3.86), (3.91) and (3.94) we have from (3.100)

2_6’1 2coskL +

Ty _,k*coskZ  [coskZ  cos’ kL cos kL N
coskL  2coskZ ! PcoskZ

1
BcoskL 3 coskZlog fo + §k;Z sinkZz — §/<;L tan kL coskZ — 08 Jo
2 2 2 coskZ

log? fo  kZlog fosinkZ
cosk”Z cos? kZ

1 (B%cos®*kL [3
+ﬁ {T |:110g2 f() COSs ]{IZ —

1
+ 5(1 — 3kLtankL)(log focoskZ + kZ sinkZ) + ng log fosinkZ

kZsinkz

log fo 5
cos? kZ

“k2Z%coskZ + (1+T*
coskZ 4 cos +( + )

+ (1+ kLtankL)

(T* + kLtan kL)
cosk”Z

1
Z(T* + 3k*L* tan® kL) coskZ +

2
2 - _
+k°1(Z)sinkZ (COS2/€ 1)}

B
12 (coskLcoskZlog fo + kZ coskLsinkZ — kLsinkL coskZ

cos" kLlog fo | kZcos"kLsinkZ  kLcos®kLsinkL
2cos® kZ 2cosb kZ 2cos® kZ

_poBcos®kL ( log fo N kZsinkZ  kLtankL
k2 cosk”Z cos2 k7 cosk”Z

+C coskL (4kZtankZ cos2kL + sin® kZ — 5sin® kL n cos? kL

4 cosk”Z cos3 kZ o

(3.102)
Now on using (3.102) as shown in Appendix D, the condition (3.95) becomes
K1 Ko + B/ig

= —BlogR+ (kR)?

Po o8 Rt R e+ 7on & B (R
1 (BQH4 + BI<L5 + /{ZQCIi(j) (3103)

TRR? e+ B/(Rrs
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R = a and b, and where x; (j = 1..8) are constants not involving R and defined by

2 3 3
K1 = f, KQZ—S—g——SCS——CB’w, kg = 3cw — 3kL — ckls,
c c 4 8 8
x«2 2 4 27 2 5 T7Cs
Ky = kL(Q2T"c* — c¢*sw — ¢*) + k"Lt sl + we” + 5

C3 212

k2L
5 (3k1y — 4kIs) +

2 s 3

3
Ky = kL(2—€+T+§C432—|—§c6sw)
As 13 47 3
(9 €8s 1o 5 207 ST
Rew+ o5+ 760°° ~ 160" ¥ T 167¢ )

ke = 2kL(2¢2 —1) —wc®, Ky = 2cw,

(*s + 3s°c) + 2k* I (L)c*(c* + 2),

kg = 2kLA(1 — sw) — 2w + kI, (3.104)

Here for convenience we adopt the abbreviations

¢ = coskL, s=sinkL, w =log[seckL + tanklL], (3.105)
L
I, = / log(sinkZ + 1) tan kZdZ,
-L

L Z
I; = k:/ / log(sin kx + 1) tan kx tan kZdxdZ.
L J-L

Since (3.103) applies at both R = a and R = b we have

) K1 ko + Brs 1 (B?ky4 + Brs + k*Ckg)
po = (ka) + +
k7 + B/(ka)’ks k7 + B/(ka)’ks  (ka)?> k7 + B/(ka)?kg
—Bloga, (3.106)
B 1 (B2 B kE2C
b = (kD) K1 N ko + Bks N (B*k4 + Brs + Ke)
K7+ B/(kb)’ks =~ k7 + B/(kb)%2kg  (kb)? K7+ B/(kb)%ks
_Blogh, (3.107)

and therefore we may deduce

C = ﬂk2a2b2+ﬁ(
6

R1Rg

k*(a* + b?) +

K k% \ k7Kg Krke ke kg (b2 — a?)

_ __>10g(b/a)) _ %%, (3.108)

Krke  Ke kg (b® — a?)

Ki,9, 9 ,ov Ko k3  (b*logb— a*loga)
_ My py L2 g
Po p (a® +b%) + p + (/{7 =)

_ B?kglog(b/a)
k2 k7 (b2 — a2)’
(3.109)
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as the two determining equations for C' and py.
It remains only to determine an expression for the total applied vertical force,

which may be deduced from (3.96), and the following equation, namely
27 b
F= / / T3(Z = +L)RdR dO. (3.110)
0 a
From (3.101) noting that fo(£L) = 1, we may readily deduce from (3.110)

F Ko, N1, o, C

B b2_ 2
—— {bﬂogb—aﬂoga—w]}, (3.111)
2 2
and on using (3.108) and (3.109) we obtain
F k? K K 1\ 1
) VN 1 AN [y TP AT A ST Rl A
20, W[8( @) ( (@40 + L —3) 2 )
K 5 ! 2 3
+3a b log(b/a)ﬁ— + By + B s + B’us |, (3.112)
6

where p1, 1o and p3 are constants defined by

mo= [k2<a2+b2>“1“8+“2“8 s ’an%Zlog(b/a)ﬁ} log(b/a)

Krke — Kek7  Kg (0> —a?) kg 2k2
(B> —a?) (1 ks
AP (A 11
A 5 ) (3.113)
log(b/a) [ksks Ka kg kg (b? + a?)
—————— log(b
H2 2k2 Krke Ke Ky kg (b* — a?) og(b/a)|
___ kflog(b/a)
he T ik ke (2 — a2)

In the above we have determined a one-parameter family of deformations charac-
terized by the parameter B. However, if we impose the additional requirement that
the value zero of the applied force F' corresponds to the absence of any deformation,
then, as shown below, we obtain three allowable values of B. However we comment
that only the value B = 0 gives a physically reasonable response.

In the limit k tending to zero we have from (3.64) and (3.66),

2

(722 - L% |C — %(22 —5L%)|, (3.114)

B

Jo=1l, fix 5(22 —L?), fo

DN | —
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and from (3.45), (3.46) and (3.47) we have,

B? (7Z° C (73

We note that in this limit, from (3.114) and (3.115) the deformation (3.3) becomes
simply
2

B 1 B
— _Z2_L2 _ZQ_L2 __Z2_ L2
P = R g2 D) (2 - 1) o - @ -1,

1 72 B? (Z*
=+ lo(Z ) 2 (A e 11
s = ziggo(5-v)+ 5 (B -] (3.116)

giving rise to displacements which are asymptotic linear incompressible elastic de-
formations. On using (3.114) and (3.115) in (3.100) we can show that as k tends to
zero we have from the condition (3.95),

(b*logb — a’loga) o, L?log(b/a)
b? — a? 3(0? —a?)’

1

and

2 21 2 2L2 2 2
C ~ —2B (abo—g(b/“) + —L2> B (mlogb/a— 1)

b? —a? 3 3 \b?—a?
B 42L*og(b/a)
9(v? —a?)
(3.118)
Therefore to leading order we have
F v —a® 2L7 a’b? N
2C, ~ 2B [( Y Tlog(b/a) - mlog (b/a))
1 b + a? L*1log*(b/a)
—BL*log(b - — ————log(b - B2
o8(v/a) (3~ s o0/ ) - B PO,
(3.119)

and hence F' tends to zero with k only when B = 0 or when B is a root of the

quadratic equation

L*log?(b/a) 1 b + a?

B2m + BL*log(b/a) (5 T3FE— @) log(b/a)) (3.120)

v —a® 217 a?b?
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As shown in Appendix E ;| equation (3.120) has real solutions when

b V13+3 3
- > \/_% L? < 2 |(V13 = 3)b* — (V13 + 3)a?|, (3.121)

a

ol

where 2L is the height and a and b are inner and outer radii respectively of the
undeformed body. We comment that subsequently for the problem under consid-
eration, numerical results indicate that only the case B = 0 provides a meaningful

physical result.

3.7 Numerical results and conclusions

From the assumption that the bonded metal plate boundary conditions (3.85)4,
(3.85)5 and (3.85)s may be replaced by the average requirement, namely

/B {e — go(L) — gQ}SLf) RdR =0, (3.122)

which gives on simplification

{=go(L)+

(3.123)

we obtain the new deformed height 2¢. By substituting for go(L) and go(L) from
(3.86)2 and (3.94) respectively in (3.123) we obtain,

B?cos* kL ) ) )
2kl = —iE [(kL)*(kL — 3tankL — kL tan® kL) 4+ 2k*I;(L)(3 + 2kL tan kL)]
—l—ﬁ (2kL cos2kL — sin2kL) + sin 2k L, (3.124)

where I1(Z) is the integral defined by equation (3.93) and again we note that the
constant C' is given by (3.108), and either B is zero or given as a root of (3.120).
On using the conditions (3.121) by taking the original dimensions of the cylinder
as a = b/4 and L = b/3, from (3.120) we get the non zero values of B as 4.667
and -0.774. Now in order to plot the variation of the applied load Fk?/2C, as a
function of the displacement § = (1 — ¢/L) for B = 0, 4.667 and -0.774, we seek
a set of values for kL from equation (3.124) corresponding to the deflections from
0.1L to 0.9L. Figure 3.2 shows the right hand side of equation (3.124) and the left
hand side of equation (3.124) corresponding to the deflections from 0.1L to 0.9L
plotted as two separate functions of 2kL for the three value of B. The straight
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lines shown represent the left hand side of equation (3.124) using 2k¢ = 2kL(1 — §)
where ¢ is the deflection. We see that the physically acceptable values are given only
when B = (0. Hence we conclude that the constant B is zero. For the two non-zero
values of B, we find that the first term of the right hand side of equation (3.124) is
considerably larger than the left hand side, and accordingly we have the situation
shown in Figures 3.2b and 3.2¢c. The curves shown in these two figures are actually

non-constant, but the variation is only apparent outside the shown range.
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Figure 3.2: Right hand side and left hand sides of equation (3.124) versus 2kL for
three values of B: (a) B=0, (b) B=-0.640 and (¢) B=6.415

Therefore, in summary for the problem of the axial squashing of a hollow circular

cylindrical tube with B = 0, we have from equations (3.3), (3.86), (3.89), (3.91) and
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(3.94) that the deformation is approximated by

n f1(Z) n fo(Z)

r = Rf()(Z) R R3

+ ...,

(3.125)

9n(2) | 92(2)
T TR

where the functions f;(Z) and ¢;(Z)(j = 0, 1,2) are even and odd, respectively, and

z = g(](Z) +

are given explicitly by
coskZ CcoskL

z) = = Z) = s5———(cos” kL — cos’ kZ
fo(Z) p———— fi(z) =0, fo(2) 2k2coskZ(COS kL — cos*kZ),
kL
g()(Z) = Cosk tan kZ? gl(’z) = 07
C (coskL\" sin 2kZ
Z) = — | ——— Z cos2kL — 12
9217) = 53 (coskZ) { cos ok } ’ (8-126)
and from equation (3.112) the load-deflection relation becomes
k? 1 Ki Ky 1 K
Ferl™at— a2 (12220 o F2 2 2 2 2,221
’/T|:8(b a) 2<k(a +b)f<;7+/<;7 5 (b a)—i—kabKGog(b/a),
(3.127)

where k1, ko, kg and k7 are constants defined in (6.17), namely

2 3 3
, Ko = . —s¢® — —cPw, kg = 3cw — 3kL — ckl,,

c 4 8 8
2 2 4 27 2 5 I7Cs
Ky = kLQ2T"c* — c¢"sw — ") + k"Lt sl + we” + 5

(s + 3s%c) + 2k* [ (L) (¢ + 2),

=N

S

I
[NV

212

3 k
+%(3k]2 —AkL) +
2 32?3

3
ks = kL(2-— = + Ve + 50432 + gcﬁsw)

c3s 13 47 3
(Rew+ 35+ 1607 ~ 160° Wt 6P )
kg = 2kL(2¢* —1) —wc®, Ky =2cw, kg =2kL*(1— sw)—2c%w + kI,
and ¢, s, and w are defined by

c=coskL, s=sinkL, w=Ilog(seckL +tankL),

and in the above formulae a and b denote the inner and outer radii, respectively,
2L is the original height of the tube and for an assumed deformed height 2/, the
constant k is determined from equation (3.124) with B = 0, thus

2k( = C(2kL cos 2k L — sin2kL)/2k*a*b* + sin 2k L, (3.128)
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where C' = k?k?a?b?/k¢. Figure 3.3 shows the variation of non-dimensional force
against the deflection for B = 0 for @« = L/2 and b = L,2L,3L and 4L. The
shown curves have an initial linear-quadratic response and achieve a maximum in
the vicinity of the maximum deflection. Although nonlinear the response appears
not to predict an intermediate maximum such as occurs when blowing up a balloon.
In the absence of any accurate experimental data, the predicted response appears

to be physically reasonable.

Fi2C, o FiC/2C,

016f T
014

012 1 _

01f

0.08F

0.06 F 05 i

004

002f

% 055 55 o7 ]

(b)

S R NN T N NN NE R RN |
0 0.25 0.5 0.75

o=14/L
(o) (d)

5=14/L
Figure 3.3: Non-dimensional force Fk?/2C, versus non-dimensional deflection § =

1 —{¢/L for B=0 and a=L/2: (a) b=L, (b) b=2L, (c¢) b=3L and (d) b=4L

In conclusion, we have determined asymptotic axially symmetric deformations
applicable for hollow cylinders and applying to the neo-Hookean and Mooney per-
fectly elastic incompressible materials. From the incompressibility condition and

the equilibrium equations, we show that formal solutions for the first three terms
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can be expressed in terms of seven integration constants and five formal integra-
tions, making a total of twelve integration constants. For the particular case of
the neo-Hookean strain-energy function we exploit these solutions to determine an
approximate load-deflection relation for the squashing under axially symmetric con-
ditions of a thick walled hollow cylinder by equal and opposite forces applied to
bonded metal end plates. The resulting load-deflection curves are shown graphi-

cally in Figure 3.3.
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Chapter 4

Rippling of long rectangular
rubber blocks under bending

4.1 Introduction

In this chapter we investigate the problem of finite elastic deformation of a long
rectangular rubber block which is deformed in a perturbed cylindrical configuration
with the point of view of surface rippling. Motivated by the surface rippling observed
in bent multi-walled carbon nanotubes, we examine here the simpler block problem
which is assumed to be sufficiently long so that the out of plane end effects may be
ignored. The general equations governing plane strain deformations of an isotropic
incompressible perfectly elastic Mooney material, which models rubber like materi-
als, are used to determine small superimposed deformations upon the well known
controllable family for the deformation of rectangular blocks into a sector of a solid
bounded by two circular arcs. Traction free boundary conditions are assumed in an
average sense along the bounding circular arcs.

Studies have shown that due to their superior mechanical properties, carbon nan-
otubes exhibit many new mechanical phenomena, and in particular exhibit almost
perfect elasticity and extraordinarily high strength. Moreover, from experiments
surface rippling is observed when the nanotube is subjected to bending [22]. Fur-
ther, Liu et al [23] use a model nanobeam subjected to pure bending to confirm a
transition from the classical bending mode predicted by linear theory, to a rippling
bending mode under severe bending. Their analysis indicates that the bending mo-
ment and the bending curvature have a bilinear relation, in which the transition
corresponds to the emergence of a rippling mode. In another study they present

a nonlinear vibration analysis which suggests that the effective Young’s modulus
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drops sharply as the diameter increases upon the emergence of a rippling mode [22],
which is also confirmed by calculations in [24]. A rippling bending mode is also ob-
served by Ruoff and Lorents [25], Kuzumaki et al [26] and Poncharal et al [27]. The
analysis presented by Mahadevan et al [28] indicates that the rippling instability is
not unique to the bent multi-walled nanotubes, but also when a rubber tube made
by rolling a thin sheet of rubber into a scroll is bent, a similar rippling instability
is formed. Mahadevan et al [28] verify their results experimentally using materials
as disparate as rubber and graphite, for varying lengths ranging from millimeters to
nanometers. Their study concludes that the rippling pattern is independent of the
material properties but depends on the effective anisotropy of the system generated
by the layered structure, suggesting similar behavior can be expected in macroscopic
systems with layered structures. Since carbon nanotubes are known to be perfectly
elastic, in the present study we examine the related problem which is mathematically
much simpler, of the finite deformations of a rectangular rubber block.

The surface rippling of blocks and rods under bending has received attention in
the literature. For example, Gent et al [29] studied the instabilities of thick rubber
cuboids subjected to bending. They compared the experimental values of the criti-
cal degree of bending, at which the sharp folds appear, with Biot’s [30] theoretical
predictions. Gent et al [29] show that the on-set of surface instability occurs at a
much less sever degree of bending than predicted by Biot [30]. Haughton [13] con-
sidered the bifurcation problem for three-dimensional, incompressible elastic plates
subjected to a combined flexure and axial compression. By forming a right circu-
lar cylinder, the pure bending mode as well as the interaction of the buckling and
barreling modes due to the curvature are studied. The bifurcation problem of an in-
compressible plate under pure bending is studied by Traintafyllidis [12]. In a recent
study Ghatak et al [31] carry out an experimental analysis of soft elastic cylinders
of different diameters subjected to bending and axial compression. They observe a
sharp fold on the compressive side at a critical radius which increases linearly with
the diameter, but remains independent of the material properties.

In the present study we consider a rectangular rubber block which is initially
deformed into a circular arc, and then subjected to a small superimposed deforma-

tion. For material rectangular Cartesian coordinates (X,Y, Z), spatial cylindrical
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polar coordinates (r,6, z), and a positive constant A\ we consider the plane strain

deformation

r=r(X,Y), 0=0X)Y), z=M\Z (4.1)

for an isotropic incompressible hyperelastic Mooney material. We suppose that a
long rectangular rubber block, assumed to be an isotropic incompressible hypere-
lastic Mooney material, is bent into a circular arc by symmetrically applied loads
and moments at the ends. The block is assumed to be sufficiently long in the Z-
direction so that the longitudinal end effects may be ignored. We then superimpose
a small deformation on the initial exact deformation such that the angle subtended
at the center is fixed, and we look for solutions of the resulting equations.

In the following section we detail the geometry of the block and describe the
initial deformation, and in the section thereafter we present the basic equations
governing the deformation (4.1). The equations specific to the deformation (4.34)
and the radial deformation that is superimposed upon (4.34) are described in the
subsequent section. In Section 4.5 we use the load deflection relationships to deter-
mine the constants appearing in the above equations which are useful in solving our
problem. We finally illustrate our solution with typical numerical values in Section
4.6. Appendix G presents certain analytical details required for the solution derived

in Section 4.5.

4.2 Geometry of the deformation

An undeformed rectangular rubber block of length L, height 2h and thickness ¢
which is assumed to be an isotropic incompressible perfectly elastic Mooney ma-
terial, is deformed into a circular arc as shown in Figure 4.1. We suppose that
the X = constant planes become r = constant and Y = constant planes become
0 = constant after the deformation. If the arc subtends an angle 26, at the center,

and the inner and outer radii are given by a and b respectively, then the deformation

is described by (4.1) for which r(X,Y) and #(X,Y) admit the well known form,

X712 0
r:[bz—(b2—a2)7] : ezw—ﬁoy. (4.2)
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a
(a) Undeformed block (b) Deformed block

Figure 4.1: Original and deformed body of the rubber block subjected to bending

From the incompressible constraint we find that the new length is AL where A is
given by
2th

S R (4.3)

4.3 Basic equations for perfectly elastic materials

This section summarizes the basic equations governing the deformation field given by
equation (4.1) that are utilized here in solving the present problem. The basic theory
presented in Chapter 2 for perfectly elastic incompressible material are simplified
here for the problem of axially symmetric plane strain deformation and are available
in literature for a more informative derivation. For more details on these equations,
the reader is referred to Hill [32] .

The coordinates of the undeformed body X (K = 1,2,3) are the rectangular
coordinates XY, Z and those of the deformed body z*(i = 1,2, 3) are the cylindrical
polar coordinates (r,0, z) , viz:

X' = X, X2 = Y, X3 = 7

1 3

zt = rcosf, 22 = rsinf, 22 = 2z, (4.4)

where the corresponding rectangular cartesian coordinates are given by ZM(M =

1,2,3) and 2™ (m = 1, 2, 3) respectively.
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It is understood that in the following discussions the labeling indices a,b A and

B represent the values 1 and 2 only.

4.3.1 Metric tensors

From (2.9), for the deformation (4.1) the material and spatial metric tensors are

given respectively by

1 00
Gr=GEl =101 0],
0 01
and
1 0 0
gj =0 0
0 0 1

Further due to (2.10), spatial conjugate metric tensor is given by

1 0 0
gi=10 1/r2 0

0 0 1

4.3.2 Deformation tensors

(4.5)

(4.6)

Cauchy deformation tensor is obtained for the deformation (4.1) from (2.15) to give

X24Y2  X.Xo+YY, 0
Cij = XTXQ + Yr)/@ X92 + sz 0 s

0 0 1/X?

while the Green deformation tensor is given by

Tg( +7‘28§( TxTy+T20ng 0
CKL = ryrx + 7“295/9)( 7")2/ + 7‘29%/ 0
0 0 A2

Due to (2.19) Finger deformation tensor can be shown to become

7’3(4—7’}2/ TXeX—i-Tyey 0
Cilij = T‘XeX + Tyey 93( + 9)2/ 0 y
0 0 A2
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and from (2.21) the corresponding mixed tensor is given by

r3+ri  r?(rxfx +ryby) 0
c_lji = | rxOx +ryby r*(0% + 6%) 0 1. (4.11)
0 0 A2

4.3.3 Strain invariants

The perfectly elastic Mooney material has strain-energy function » (/y, I3) given by
> (I, ) = Ci(Iy = 3) + Cy(I> — 3), (4.12)

where I; and I denote the first two invariants of the inverse Cauchy deformation
tensor. Noting that for incompressible materials J = 1, due to (2.26), as shown in

Section 3.2.3 the principle invariants I, I, and I35 become

1
I =1+ )\, [2=A21+ﬁ, I; =1, (4.13)
where [ is defined by
I =7r%+7r8 +r%(05% +607), (4.14)

and subscripts denote partial derivatives.

4.3.4 Incompressibility condition

Owing to (2.2)

(r,0)
=\ 4.15
I =y (4.15)
and as before from (2.13)
g=r> ,G=1. (4.16)
Hence from (4.15) and (2.12) the incompressibility condition becomes
a(r,0) 1
=rxfly —rxby = —. 4.1
o(X,y) XTI TN (4.17)
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4.3.5 Equilibrium equations

For deformation (4.1) due to (2.65) the stress tensor becomes

ox ox
Tab —_ * ab ) flab_2 ab
P9t 8116 aff
oY oY 1
T3 = pr 42N\ -2 4.1
T DI, N2 (4.18)

% = T* =0.

where p* is an arbitrary function referred to in Chapter 2. Now as shown in Chapter

3 Section 2.4 we obtain

Tab — _p(;ab_{_gbc—lab
T = —p+¢N°
% = 0 (4.19)

where we define the functions

ox
= P 2N —
X ox
= 2=+ N+
¢ (8[1 * 812) ’
)3 1Y) 0¥
= |== I —— ) —|. 4.20
4 {ah N ( )\4> 812] (420)
We therefore have the stress components for deformation (4.1) given by
T = —p"+201(rk +1y) — 205(X7 + Y)7),
= P a0, 1 6) 20, E Y0
- 7’2 1\VXx Y 2 7’4 )
. 20,
T% = —p"+2000* — = (4.21)
12 21 20
T = T% =2C(rx0x +ryby) — T—Q(XrXe + YY),

T31 — T13 — 0’ T32 — T23 = 0.
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Now owing to (2.40) for incompressible material we have the first Piola-Kirchoff

stress tensors given by
TAY = XA, T, T3 = X373 = 79,
and from the equilibrium equation (2.55), since 73 = 0 we have
Tjg“;A =0, ng;g =0.
Further from (4.23), it is noted that
p=pla', z?).

Next due to Euler-C.Nuemann identity (2.54) we obtain

(X% ]4=0 [X%3]5=0,
and on using (4.19) in (4.22); we may readily deduce

TR = —pX %0 g™ + 9GP’ .

Now carrying the above result into (4.23); yields

—pia X450 g% + 54 GAPab 5 +0GAB 2% 5154 = 0.

However (2.36) is reduced to give
GAB[zb: s = V22b 4+ T0 ¢ Lod,
and therefore combining (4.28) and (4.27) we obtain
Pia g™ = (V2" + Togc ) + G P raa’sp,
where

vQ — GAB 82 . PD a
OXA9XB ABoxD |-

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

Noting that for orthogonal coordinates the only non zero Christoffel symbols I'}; are

1
1 2 2
Loy = —r, F12—F21—;7

the equilibrium equations simplify to give

2
Dr=pu [VQT - 7‘(9§< + 912/)] y Pe = ,W“2 V20 + ;(TXQX +ryby)|
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where = 2(Cy + A2Cy), V? is the two-dimensional Laplacian given by

0? 0?

2__ R
Vi=oxz t gy

(4.33)

and p is the modified pressure function defined above.
Although the terms ry and 0x are readily zero for deformation (4.2) we have

included them here as they are non-zero for deformation (4.39).

4.4 Governing equations for the deformation (4.1)
For convenience we write the deformation (4.2) as
r=(AX+B)Y? 0=CY+D, z=M\Z (4.34)

where A, B, C and D are constants which are readily identified from (4.2), namely

(b2 - a?)

A= ,
t

D=r. (4.35)

It is easily seen that the pressure function can be expressed as

1

pr = ACrpx, pp = obys (4.36)

and we also have from (4.32); and (4.32), that the pressure function given by

A2
Pr=—H <ﬁ + 7‘02) , pp=0. (4.37)

Hence combining the above results (4.36) and (4.37) we obtain

_MA{ A

D=5 14(AX 1 B)

— 02)(} + o, (4.38)

where o is a constant. Now, if due to a further small end moment eAM the curve
which was originally given by the straight line X = constant is further displaced by
a small distance eu(z) in the direction of § = 0, we suppose that the deformation

(4.34) and the pressure function (4.38) can be modified to become [10]

r = (AX + B)Y? + eu(x) cosn(CY + D),
0 = CY + D+ ev(z)k?sinn(CY + D), (4.39)

p = po+eq(x)A%k*? cosn(CY + D),
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where k = C'/A, n is a positive number and u, v and ¢ are functions of x only, which
is defined by
r=k(AX + B). (4.40)

The equations (4.39) form the basis of an incremental stability analysis, in the spirit
of Biot [30] and many other authors. By substituting (4.39); in (4.17) and neglecting

the higher order terms of ¢ we may deduce

1/2,.1 L @ .
ot o =0 (4.41)

It is noted that due to (4.40) X' = 1/C, where primes denote differentiation with

respect to x. Again by expressing the pressure functions in the form

_ . 900)
pr = Arma
po = _M;(()?;))’ (4.42)

and combining with equation (4.32) and substituting from (4.39) we may yield

1
20'2¢ = p [u” + (1 —n?)u + (21: — 2—) Ul] ; (4.43)
x
v nu
_ 1 e 1/2 /
qn = —ux [v + - +4x5/2 + 2nx u} :

It is understood that the higher order terms of ¢ are neglected when deriving the
above expressions. Next on using (4.41) and (4.43) we eventually obtain a fourth

order differential equation for u(z), namely

2 201 _ 2
zu" 4 A" — { (nz _ ;) 1 4 7121‘} W — onZu — wu = 0. (4.44)
€T X

As shown in Appendix G, the solution for u(x) can be given by

u(z) = Z cix™u(x), (4.45)

where for ©: = 1,2, 3,4, ¢; denote four arbitrary constants, m; are numbers given by

1 1
m1:0, m2:17 m3:§(1—]\7), m4:§(1+N), (446)
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and u;(z) are functions of x defined by

w(z) = oF, (%(1 ), 31+ m); g, 3 (3= N), 73+ N); ixQnQ) |

us(z) = oF, G(s ), 33+ m); 2, 25— N), 35+ N); —x2n2> ,

us(z) = oF, (i(2—n—N),i(2+n—N);
3(2 - N),i(?) —N),~(5— N); —x2n2) :

w(®) = oF, G(z—mm&(wmm;
£(2+N),;l(3+N),%l(5+N); ix2n2> , (4.47)

with N = (34+n2)"/2 and 5 F3 denotes the usual generalization of the hypergeometric
function [33] which is formally defined by the series

(O‘I)n(O‘Q)n z"

Dn(p2)n(p3)nn!” (4.48)

o Fy(an, ag; p1, p2, p3i 2) = Z 0

Here oy, as, p1, p2 and p3 are parameters and («),, is the Pochammer symbol which
is defined by (a), = a(a+1)...(a +n — 1), for n = 1,2..... We note that for n =1
(4.6) agrees with the solutions given in Haughton [13] and Hill [10].

4.5 Load-deflection relations

For the deformation (4.2) we have the stress components given by

T} = —p*+012A—;—%2;2

Ty = —p*+2010“—%

T = —p*+201)\2—2/\—62’2

T, = Tf =

TP = T3 =0 T3 =T; =0 (4.49)

We suppose that the deformation (4.2) is produced by symmetrical applied end
loadings of force F' and moment M. The midplane symmetry and equilibrium require

that the curved surfaces to be traction free, that is,
ti(a) =0, t;(b) =0, (4.50)
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where té- (1,7 = 1,2,3) are the physical components of the stress tensor in the usual

notation. Now due to (4.14) we have I given by
I = 4’4—; +r2C2 (4.51)
Carrying this into (4.20); we have modified pressure function p related to pressure
function p* by 2
p=p"+2)\° (472 + 7‘202) : (4.52)
On using boundary condition (4.50); and substituting for p* from (4.52) and (4.38)

the constant o can be shown to be given by
o = nA*/8B. (4.53)

Further, the boundary condition (4.50)y requires that the constants A and C' to be
related by
A = 2abC. (4.54)

The condition (4.50); also reveals that the forces F' at the surfaces § = w46, vanish

and we see that the equation

b

F(m£6y) = / t3dr, (4.55)

is correctly satisfied. The moment M applied at the ends is given by

b
M :/ tyrdr, (4.56)
from which we may obtain
_MC2 (b4—a4)_ 272 b

M = 5 [ 1 a“b” log - (4.57)

Next we suppose that a further small moment e AM is applied at the ends of the block
and the corresponding deformation is given by (4.39). Again since the deformation is
produced by end loads alone, the curved surfaces initially given by r = a (or X = t)
and r = b (or X = 0) are to be traction free. Hence we have the first Piola-Kirchoff
stress tensors denoted by %% and tﬁy vanishing on the boundaries X = 0 and
X =t. Subsequently, we find that it is not possible to satisfy the above boundary
conditions in a point-wise manner. Therefore, we attempt to satisfy these conditions

in an average sense, by replacement with the following integral requirements, namely

L h L h
/ / 1" (X =0,t)dYdZ =0, / / th¥(X =0,t)dYdZ =0.  (4.58)
0 J—h 0 J-h
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From (4.17) we deduce the results

X, = Arby, Xy=—-XNrry,

Y, = —)\7‘6)(, Yb:)\?“?”)(,

and the physical stress components are related by

x) _ Xr (X) _ X0
T(r) = T T( 0 = rv,
T(Y) TTY@) T(Y) _ YT

(o) — (r)

(4.59)

(4.60)

On using equations (4.26) and the results given in (3.32), from (2.40) the first Piolar-

Kirchoff tress components are obtained to give

TREi{)) = —Aproy + urx,
TR%) = Apry + prfx,
TRS/)) = Aprix + ury,
TR%) = —pArx + urby,

which by substituting from (4.39) yields

1
Ty = ”CK—fﬁ +m>—e<2pf ~ 2fou — ) cosnd”

TR%) = uCe(v'v/x — fnu)sinnd*,

T = pCe(fv'y/r — nu) sin nb*,

TRE;/)) = pC [(#ﬁ‘_k + \/%) +e€ (M_—\;% —u'(f + 2x)) COS n@*] ,

(4.61)

(4.62)

where f = (1/42 — 2 — a + 1/4a) and 6* = CY + D. Further we have the first

Piolar-Kirchoff stress components expressed by

X) (X)

TRX" = Tg
(
(

TRXy = TR g() cos + TRE;)‘()) sin 6.

)
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Now upon substituting from equations (4.39) and (4.62) in (4.63) and utilizing the

four boundary conditions (4.58) we obtain
A*(a) =0, A*(B)=0, B*(a)=0, B*(f) =0, (4.64)
where A*(z) and B*(z) are functions defined by

Ay —u - T gy = ™y (4.65)

7 S 2w
ci(i=1,2,3,4) are constants and a and 3 are defined by
GotbQ Gota2
=am—ay P hm—a (4.66)

Here we have used equations (4.54) and (4.53) respectively to substitute for constants
A and o appearing in (4.64). We remark that the integrals involve in the above
evaluation vanish only for the non integer values of of n and subsequently the results
in (4.64) hold true for non integer values of n only. It is also noted that from (4.66)
and (4.54) that

8 =1/4a. (4.67)
By substituting for v and ¢ from (4.41) and (4.43) respectively, into (4.64) and car-

rying the value of u given in (4.45), we obtain the homogeneous system of equations

given by
A.c=0, (4.68)
where
) s ) A
A= Bi(a) Bya) Bya) Bila) |’ (4.69)
Bi(B) Ba(B) Bs(B) Ba(B)
and
c= 2 . (4.70)

Here A; and B; are the terms associated with ¢; in (4.65); and (4.65)y respectively

for i = 1,2,3,4. For non trivial solutions of ¢; (i = 1,2,3,4) we require that
det A = 0. (4.71)

In the next section we present some typical numerical values that have been calcu-

lated using the mathematical software MAPLE.
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4.6 Numerical results

1.5 =

14F ———— hit=1
= hit=2

12F

11F

1
0.9
0.8
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0.4
0.3
0.2
0.1F

(radians)

0 b b b b b b b b b b b 1
37 38 39 40 41 42 43 44 45 46 47 48 49
n

Figure 4.2: Variation of 0y against n for h/t=1, 1.5 and 2

By substituting from (4.67) for 5 we seek solutions for a satisfying equation
(4.71). Computation is performed by MAPLE by using certain numerical values for
n. We note that the condition o > [ requires o to be greater than 0.5. Figure 4.2
shows a graph of the values of 6, against the number n for different dimensions of the
block with the view of finding the critical degree of bending. Figure 4.3 shows the
variation of a with n for physically acceptable values. In fact we can obtain more
than one solution for . However based on the behavior of function u(z) we neglect
those solutions as they do not have a physical interpretation. We observe that the
smaller values of n do not satisfy the equation (4.71) for any geometry of the block
and therefore we assume that no rippling occurs at these smaller values of n. We also
note that «a exhibits a relative maximum for n ~ 47.8. Thus we may conclude that

rippling start to occur at a very small degree of bending, which may be as small as
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Figure 4.3: Variation of a = 0ytb*/h(b* — a*) against n

20 times h/t degrees corresponding to n = 37.1 and continue to have more ripples
until around 80 times h/t degrees of bending at n = 47.8. We assume that the
solutions of larger n values (greater than 47.8) are only mathematical possibilities
that are not physically reliable.

In order to illustrate the deformation (4.39) graphically the four constants ¢; (i =
1,2,3,4) are determined from (4.68) and some typical numerical values are used for
t*, a and € where t* = t/h. We have b* = 2a where b* = b/a and 7 given by
v =a — 1/4a where v = 0yt*. Figures 4.4, 4.5 and 4.6 show the deformed profile of

1/2 4t intervals of one tenth

a surface initially deformed according to r = (AX + B)
of t, and corresponding to the numerical values t* = 0.5, a = 3 and ¢ = 0.001 for
n = 55.1, 50.1 and 45.1 respectively. It is noted that equation (4.71) is satisfied
for non integral values for n. For integral values of n we get more complex set of

equations making it untractable to carry out the numerical work using MAPLE,

because for both odd and even integers of n, the hypergeometric functions may

7



terminate and exhibit a numerical difficulty.

In summary, our analysis shows that when a long rectangular rubber block is
bent in the form of an approximately circular arc, a small superimposed end moment
can exhibit wavelike distortions or ripples. As might be anticipated the ripples are
formed along the circular arc with decreasing wave lengths and amplitudes from
the inner to the outer boundary. The number of ripples increases with number n
appearing in (4.39), but as can be seen from Figure 4.2, « reaches maximum for
n = 47.8. Further our predictions are independent of material properties agreeing
with [28]. As also noted in [28], the rippling phenomena is certainly not limited to
the nano-world. Our results constitute a first step to a better understanding of the

rippling deformations observed for carbon nanotubes [22]-][28].

/)M m/%wm

@ @

M M + eAM

(a) Undeformed block  (b) Deformation (4.1) (c) Deformation (4.3)

Figure 4.4: Original and deformed body of the rubber block subjected to bending
for t* =t/h = 0.5, a = 3 and n = 55.1
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(a) Undeformed block  (b) Deformation (4.1) (c) Deformation (4.3)

Figure 4.5: Original and deformed body of the rubber block subjected to bending
for t* =t/h = 0.5, a = 3 and n = 50.1
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(a) Undeformed block  (b) Deformation (4.1) (c¢) Deformation (4.3)

Figure 4.6: Original and deformed body of the rubber block subjected to bending
for t* =t/h =0.5, a = 3 and n = 45.1
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Chapter 5

Concluding remarks

5.1 Summary

In this thesis two problems involving large elastic deformations have been investi-
gated for isotropic incompressible perfectly elastic material. Finite elastic theories
have been employed in the context of non-linear continuum mechanics to determine
approximate analytical solutions to the physical phenomena.

The two problems examined are:

(i) asymptotic axially symmetric deformations for perfectly elastic neo-Hookean

and Mooney materials,
(ii) rippling of long rectangular rubber blocks under bending.

The theory of continuum mechanics is essentially made up of basic principles
(axioms) and constitutive theory. The term non-linear continuum mechanics’ refers
to the continuum mechanics related to non-linear constitutive equations. The fol-
lowing postulates are implied whenever the foregoing theory is dealt with in both of

the problems discussed:
(1) mutual body forces within a body are negligible,
(2) couple stresses and body couples can be ignored, and

The present study is devoted to isotropic incompressible perfectly elastic ma-
terials which have been shown to successfully model rubber-like materials. Elastic
materials are defined as depending only on the present configuration and not on the
history of deformation. An elastic material whose response function is the deriva-

tive of the strain energy function with respect to the deformation gradient is defined
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as hyperelastic, and sometimes loosely known as perfectly elastic. A homogeneous
material is one whose constitutive equation is the same thoroughout the material,
and finally an isotropic material is defined as one whose isotropy group is the full
orthogonal group [5]. These properties permit us to confine our analysis to a com-
paratively much simpler account in the theory, making the problem more tractable.
Further, by considering either axially symmetric or plane strain deformations -as a
first step- we arrive at an essentially simpler problem. The strain energy function
employed is assumed to be of the Mooney and neo-Hookean forms.

Much of this thesis is concerned with the application of theories, modifying and
extending the deduced results to tackle the present problems and carrying out com-
prehensive mathematical deductions. Recourse has been made to the mathematical
software MAPLE where computationally more extensive numerical calculations are

involved.

5.1.1 Asymptotic axially symmetric deformations for
perfectly elastic neo-Hookean and Mooney materials

Chapter 3 presents a detailed treatment for the problem of axial compression of
neo-Hookean and Mooney-Rivlin cylindrical tubes with bonded metal end plates. It
successfully tackles a difficult analytical problem by methods of asymptotic expan-
sions and boundary conditions.

Formal series solutions are determined in terms of expansions in appropriate pow-
ers of 1/R, where R is the cylindrical polar coordinate for the material coordinates.

ie; an expansion of the form

ro= Rfo(Z)Jrfl;%Z)JerJ(%gZ) +..,

is assumed for the deformation field

r=r(R,Z), 6=0, z=2zR,Z).

For both neo-Hookean and Mooney-Rivlin materials, the first three terms of

the above expansions namely, f;(Z), g;(Z) (i = 0,1,2) are completely determined
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analytically in terms of elementary integrals. From the incompressibility condi-
tion and the equilibrium equations, the above six unknown deformation functions
are reduced to five formal integrations involving in total seven arbitrary constants
A,B,C,D,E,H and k?, and a further five integration constants. The solutions
obtained for the neo-Hookean material are applied to determine an approximate
load-deflection relation for the squashing under axially symmetric conditions of a
thick walled hollow cylinder by equal and opposite forces applied to bonded metal
end plates. The resulting load deflection curves are presented graphically in Figure
(3.3) for the case of a = L/2 for b= L,2L,3L and 4L, where a and b are inner and
outer radii respectively and 2L is the original length of the tube. The presented
curves suggest an initial linear-quadratic response and achieve a maximum in the
vicinity of the maximum deflection. Although nonlinear the response appears not to
predict an intermediate maximum such as occurs when blowing up a balloon. The
results further recover known linear elastic solutions and extend foundational large
deformation results of Klingbeil and Sheild [7] for the same problem.

The solution so determined is approximate in two senses; namely as an approx-
imate solution of the governing equations and for which the stress free boundary
conditions are satisfied in an average manner only. However in the absence of any
accurate experimental data, the predicted response appears to be physically reason-

able.

5.1.2 Rippling of long rectangular rubber blocks under
bending

In Chapter 4 the problem of finite elastic deformation of a long rectangular rubber
block which is deformed in a perturbed cylindrical configuration is examined with
the point of view of surface rippling.

A rectangular rubber block which is initially deformed into a circular arc is then
subjected to a further small superimposed deformation. The resulting deformation

field is described by

r = (AX + B)Y? + eu(x) cosn(CY + D),
0 = CY + D+ ev(x)k'?sinn(CY + D),

p = po+eqz)A%k3? cosn(CY + D),
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where k = C'/A, n is a positive number and u, v and ¢ are functions of x only, which
is defined by
r =k(AX + B).

(r,0,z) and (X,Y, Z) are spatial and material coordinates respectively and constants
A, B,C and D are as defined in Chapter 4. The block is assumed to be sufficiently
long so that the out of plane end effects may be ignored. Again the solutions are
approximate due to the fact that traction free boundary conditions are assumed in
an average sense along the bounding circular arcs. Typical numerical values are
used to illustrate the solution graphically.

Our analysis suggest that when a long rectangular rubber block is bent in the
form of an approximately circular arc, a small superimposed end moment can exhibit
wavelike distortions or ripples. As might be anticipated the ripples are formed along
the circular arc with decreasing wave lengths and amplitudes from the inner to the
outer boundary. The number of ripples increases with number n appearing in (4.39)
and reaches a maximum for n = 47.8. We may conclude that rippling start to occur
at a very small degree of bending as small as 20 times h/t degrees corresponding
to n = 37.1 and continue to have more ripples until around 80 times h/t degrees
of bending at n = 47.8 where ¢t and 2h are the original thickness and height of the
block, respectively. Further our predictions are independent of material properties
agreeing with [28]. We note that our solutions recover previous results for the case
of n = 1 given by Haughton [13] and Hill [10]. Our predictions suggest that as
also noted in [28], the rippling phenomena is certainly not limited to the nano-
world. Our results constitute a first step to a better understanding of the rippling
deformations observed for carbon nanotubes [22]-[28].

As the importance of non-linear mechanics are becoming increasingly appreci-
ated, more materials exhibiting nonlinear behavior are created and more uses of
these materials are found. We believe that the foregoing analysis is not only fruitful
for the present problems, but may be also amenable to similar problems of interest
in nonlinear elastostatics, and that the work provides potential solutions to similar

problems in both theoretical and engineering applications.
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Appendix A

Derivation of (3.72)

On using (3.43), (3.44) and (3.55) in (3.71) we obtain

9 4Af]
8_]1; — 20, [Rf fo+E—R3 <3f ot fLf = f3 fo - fosfo)
L (gpmp e 8 4AfG
g (ot fin - 5 - 2R (A1)

) R? I '
a_g = 20, {_( ) (f0f1 ) (fzfo Ji +9091>
91
<f1f2 Jr9092 9 ) } . (A~2)

Equation (A.1) may be readily integrated to give

p - 201{ fih+ Blog R+ o (ff2+f{’f1 fo—4j}f0)
0
8 4Af)

1R <3f{,f2+f§/f1—f—g 73

) +P+G (2 )} (A.3)

where P is an integration constant and G*(7) is a function of Z. Now using equation

(3.64) and (3.66) we simplify and rearrange the above equation (A.3) to give

N R*K*f§ 1 2 2Bfi 5. O 4Af;
p = 201[— + Blo R+2—R2(—2kfof2+ 7 —kfl—f—g— 7 )
+P + G (Z)]. (A.4)
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Next we integrate equation (A.2) and using equations (3.68), (3.69) and (3.70) sim-
plify the result to yield

B RS Bfi O A 2Af
2
O

where P, denotes the constant of integration and F*(R) is a function of R. From

the above equations (A.3) and (A.4) we observe that

G*(Z2) = + Blog fo — K fof1. (A.6)
2fo
Now by letting P1 = py from (A.4) we obtain
k2 i f 2Af} C Bfi 1
S To oy g2 ~ Bl _ o
p = 20| (e o i) T gy~ PR~ 5 3
+2C'po, (A7)

where the term r? appearing in (A.7) means

f1+f2

(J12 2.}0]2)
R R3

(i £

) = R*fs +2fofi +

86



Appendix B

Derivation of (3.91)

From (3.86); and we get,
_ —ksinkZ

((7) = A2 B.1
and from (3.89) we have
BeoskL
F1(2) = % (K*Z coskZ + K LtankLsinkZ — ksinkZlog fo),  (B.2)

Equation (3.70) is rearranged to give

, Kfofe Bfi  C H (fT+Ff)
L Y T Y - A A T (B.3)

Now by substituting from (B.1) and (B.2) in (B.3) and after some simplification we

may deduce

K fo fo B? log fo kZ  kLtankL
! = —_cos’kL |— _
f2t—p s C08 sinkZ  coskZ | sinkZ
(log fo — kL tan kL)? N k2 Z*
2sink”Z 2sink”z
Ccos® kL H coskL

— B4
2k cos? kZ sinkZ ksinkZ (B.4)

This is a first-order linear ordinary differential equation with an integrating factor

which on using (3.86) can be shown to be equal to 1/sin kZ and thus (B.4) becomes

f2 \ B2 cos® kL [1 log? f;, log fo
— - — (1+ kLtankL
(sin kZ k3 2sin® kZ 1+ an kL) sin? kZ
1 k> 72 kZ

kL
kLtankL ( 1+ —tankl | —— + — -
b tan ( * o ) sin? kZ * 2 sin*kZ sinkZcoskZ

Ccos® kL H coskL

_ ) B.5
2kcos2kZsin’kZ  k sin’kZ (B-5)
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Using the elementary integrals given in Table F.1 of Appendix F, from (B.5) we may
eventually deduce equation (3.91) given by

B?cos® kL coskZ coskZ
i - B et

k4 2 cos kL

cos ki) + kZ sin kZ}

COS

+(1+ kLtan kL) [COS kZ log <

2
—kZ sinkZ log CoskZy k—Z2 coskZ +TcoskZ — 2k*1,(Z) sinkZ
cos kL 2
CcoskL 9 9
—l—m(cos kL — cos” kZ). (B.6)
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Appendix C

Derivation of (3.94)

Due to (3.47), since A = 0 we have

(fog2)' = [T +2fofo. (C.1)

By substituting from (3.86);, (3.89) and (3.91) for fo, fi and fs respectively in (C.1)

and after some simplification we obtain
/
coskZ\* B?cos? kL

Z

[(coskL> 9:(2)

= — a1 [2 cos® kZ log (

cosk”Z
cos kL

> — k*Z%cos 2kZ

+kZ sin2kZ — 2k*1,(Z) sin2kZ + T* cos® kZ|

+£( *kL — cos’ kZ) (C.2)
12 \cos Ccos . :

Using the elementary integrals given in Table F.2 of Appendix F, from (C.2) we

may deduce equation (3.94) namely,

B2cos® kL [1

cosk”Z
cos kL

1 T in 2k 7
—§k:222 sin2kZ + K2L(Z2)(1 + 2cos® kZ) + — (k;Z 4o )}

C [coskL\* sin 2kZ
— A 2kL — . )
o (coskZ) ( cos 2k 2% ) (C-3)
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Appendix D

Derivation of (3.103)

We may express (3.100) in the form
11 1

Q_Q = )\1R2 + )\2 + )\3@ + )\410gR,

where \;(7 = 1..4) can be readily identified as:

A= k;fo,

N - fo_%ﬁ_%_m;ff”gk;fl’

no= SR 4+ 2
—<B+Blogfo+p>;—é—fl—%6+...
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Next by substituting from (3.86)1, (3.89) and (3.91) for fo, f1 and f, in (D.2), sim-

plifying and rearranging the terms we may deduce

)\1:

)\4:

k% coskZ
2coskL’

coskZ cos® kL _coskL
coskL 2cos®k”Z Po cosk”Z

1
+BcoskL (; cos kZ log fo + ;stinkZ— gkLtankLcoskZ_ og fo ) 7

cosk”Z

log? fo N kZlog fosinkZ

B?cos* kL [3
- |Zlog® kZ —
k2 [4 08" fo cos coskZ cos?kZ

1 3
+ 5(1 —3kLtankL)(log focoskZ + kZ sinkZ) + §kZlog fosinkZ
logfo 5.5, wkZsinkZ
+(1+kLtankL)COSij Zk A COS]CZ+(1+T )m

(T* + kLtan kL)
cosk”Z

1
+4_1(T* + 3k?L? tan? kL)coskZ +

2 B
+E* 1 (Z)sinkZ (—052 7 1)] ~ 12 (coskLcoskZlog fo+ kZ coskLsinkZ
c

—kLsinkLcoskZ +

cos’ kLlog fo N kZ cos” kLsinkZ  kLcos®kLsinkL
2cos® kZ 2cosb kZ 2cos® kZ

_poB cos® kL ( log fo N kZsinkZ  kLtan kJL)

k2 coskZ cos2kZ  coskZ

+C coskL [(4kZtankZ cos2kL + sin®> kZ — 5sin® kL . cos? kL
4 cosk”Z cos3kZ )’

(D.3)

Bcoskl  B?cos®kL ( log fo N kZsinkZ  kLtan kL)

coskZ  R2k2 coskZ cos’kZ  coskZ

Next upon using (D.2) in the condition (3.95) and since the only applied force is

the vertical force F', by making the right hand side of (3.95) zero, we obtain the

following equation
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L 1
/ <>\1R3 + MR+ Agf—% + MRlog R) dZ = 0. (D.4)
—L

Hence we integrate (D.3) and use the elementary definite integrals in Table F.2
of Appendix F to evaluate the resulting expression. After some simplifications,

rearranging the terms and using the abbreviations in (3.105), we deduce the results

L
k
/ ndZ = 2
—L C
/L)\ 17 B(3 SkL — CkL) 2pocw N 1/2s e¢s 3cs 3w
= e CcCWw — — — — _——— — — —
3 k ? k k\c 4 8 8 )’
L 2 * .3
B , T
/ A3dZ = =l {kL(QT*c2 — *sw — ') + K2L*sIy 4+ we® + 20 >
-L
c K*L?
—1—5(311:[2 —4klI3) + (s +3s°c) + 2k 1 (L) (* + 2)}
B
_]912_3 [2kLc*(1 — sw) — 2¢%w + ke’ I
B A A 3 ,, 3
+E |:k‘L(2—E+T+§CS +§C sw)
3 13 47 3
—(2cw + % + ﬁc% - ﬁgw + 1—61607[2)] ,
C
+E [2kL(2¢* — 1) — we?],
b 2B B?
/ NdZ = — kcw ~ T [2kL(1 — sw) — 2w + kL) . (D.5)
-L

By substituting (D.5) into (D.4), we deduce the equation (3.103) namely,

K1 4 Ko + Blﬁg
K7 + B/(kR)2I{8 K7 + B/(kR)2K8

po = —DBlogR+ (kR)?

1 (B%k4 + Brs + k*Ckg)

FR? o+ BJ(kR)’rs (D-6)

Bl
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Appendix E

Derivation of (3.121)

From equation (3.120) the condition for real roots for B gives,

1
N (b — a?)? — (S(b2 + a?) + §L2> A+ 13 >0, (E.1)
where \ is defined by
log(b/a)
A= R (E.2)

In order to satisfy the condition (E.1), the quadratic equation in A must have imag-

inary roots and therefore
8
V13(b* — a®) — 3(b* + a?) > §L2. (E.3)

Since right hand side of (E.3) is greater than zero we have the condition (3.121),
and from (E.3) we have the condition (3.121)s,

L? <

(V13— 3)b* — (V13 + 3)a?| . (E.4)

ol W
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Appendix F

Tables of integrals

Table F.1: Table of indefinite integrals

[(Z/sin®kZ)dZ —Z/ktankZ + k™ *logsinkZ
[(Z%/sin* kZ)dZ —7?|ktankZ + % ZlogsinkZ — 2 [logsinkZdZ
[(Z/sin2kZ)dZ (Z/2k)logtankZ — o [logtankZdZ

[(log fo/sin’kZ)dZ  —log fo/ktankZ — Z

[(log? fo/sin kZ)dZ —log” fo/ktankZ — 2Z log fo — 2k [ Z tankZdZ

[ cos*kZdZ Z/2+sin2kZ 4k
[ Z? cos2kZdZ Z cos2kZ 2k* + Z?*sin 2k Z 2k — sin 2k Z /AK?
f Zsin2kzZdZ sin 2k Z /4k* — Z cos 2k Z |2k

[ cos® kZ log fodZ Zlog fo+ 2 1og fosin2kZ + £1,(Z) + Z/4 — sin2kZ /8k

[ L(Z)sin2kZdZ —L(Z) cos2kZ )2k — Z cos 2k Z |4k* — I,(Z) )2k + sin 2k Z /8K

where fo = coskZ/coskL and I;(Z) is defined by the integral

Z 7 1 Z
L(Z)= / Etan kEdE = —%long+ E/ log cos k&dE.
0 0
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In the following table ¢, s, and w are defined by

c=coskL, s=sinkL, w =log[seckL + tankL)]. (F.1)

Table F.2: Table of definite integrals

f_LL coskZdZ 2s/k

[t dz)coskz 2w /k

f_LLdZ/cos?’k:Z s/kc® +w/k

[ dz] cos® kZ 5/2kct + 35 )4k + 3w )4k

[t (kZsinkZ]cos?kZ)dZ — 2L[c—2w/k

[t kZsinkzdz 2s/k — 2Lc
[*(kZsinkZ]cosSkZ)dZ — 2L/5¢° — (2 + 3 + 3w) /20k
L= f_LL(log fo/ coskZ)dZ f_LL log(sinkZ + 1) tankZdZ

I3 = %f_LL(log2 fo/ coskZ)dZ kf_LL f_ZL log(sin kx + 1) tan kx tan kZdxdZ

ffL(log fo/ cos® kZ)dZ s/k8c¢* + 5s/k16c* — Tw/k16 + 31,/8
f_LL coskZ log fodZ 2(w — s)/k
[t k272 coskZdZ 2(kL? — 2/k)s + 4Lc
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Appendix G

Derivation of (4.45)

Upon substituting ¢t = logx in (4.44) and by substituting u = z™w where m is a
constant, we obtain

1 2
wtttt+(4m—2)wttt—|—[6m2—6m+<——z)} Ut
1 n?
4m? —6m* +2m | = — —
—l—[m m+m<2 4)—1—(
1 n? 1 n?
4_ 93 2 (v o n
—i—{m m° +m 5 1 +m 5 1 w

1 — 2
—e%tn? {wtt + (2m + Dw, + {m2 +m+ ( n )

Now if we choose m to satisfy
2

1 1 2
m4—2m3+m2(§—%)+m(§+%>:0, (G.2)

and define a new variable z = n?e* /4 and an operator § = zd/dz, then equation

(G.1) can be shown to be equivalent to the form

[5((54—,01 - 1)(5—|—p2 - 1)((5+ p3 — 1) — Z<5 + 061)(5 + 062)]11) =0,

(G.3)
for which p; (i = 1,2,3) and «; (j = 1, 2) satisty the following:
1 1
ag = Z(2m+1+n), ay = Z(Qm—l—l—n),
N 1 1
pr = 1+5, p2 = 1(5"‘]\[), p3 = Z(3+N)-
(G.4)

Here N is defined by N = (3+n2)Y/2. Thus w = 3 F3(ov, ag; p1, pa, p3; 2) is a solution

to the equation (G.1), where 5 Fj is the generalized hypergeometric series [33]. From
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(G.2) we have the four solutions for m which are given by (4.46). Hence we obtain
the four solutions of (G.2) corresponding to each value in (4.46) giving rise to (4.45).
This analysis is also in agreement with the results generated by MAPLE.
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