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Abstract

In this thesis, concept of database concurrency control, computational models of database
transaction, the correct criterias of concurrent execution of transactions and concur-
rency control algorithms such as two phase locking, serialization graph testing, Snap-
shot Isolation are reviewed. A graph based mechanism is proposed for preserving
Snapshot Isolation protocol(SI) serializable at run-time. Firstly, we present Dynamic
Managed Snapshot Isolation Serialization Graph(called DSISG). By using this mecha-
nism, non-serializable transactions under Snapshot Isolation protocol can be detected
at run-time. Secondly, in order to guarantee the effectivity of DSISG, a new model of
database transaction(segmented transaction model) is proposed. Thirdly, an algorithm
of managing a hierarchical structured acyclic graph is presented. The run-time charac-
terzing of non-serializable transaction under Snapshot Isolation protocol will be more
efficient when this hierachical graph structure is applied to DSISG. We also summarize

the contributions of this thesis and formulate some open problems.
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Chapter 1

Introduction

In the modern database systems, it is important that transactions submitted by dif-
ferent users can be handled simultaneously. Database transaction is an execution of a
program submitted by a user accessing a shared database. In order to preserve the in-
tegrity and consistency of a database, the concurrent execution of transactions requires
to be equivalent to a serial execution over the same set of transactions. Concurrency

control is the mechanism that guarantees the serializability of concurrent execution.

Database concurrency control algorithms can be classified into two categories: Pes-
simistic Protocol and Optimistic Protocol. Algorithms that belong to Pessimistic Pro-
tocol are based on locking mechanism. The simultaneous accesses on shared data items
are managed by locks, which can be set on and removed from data items on behalf of
transactions. When a data item is locked by a transaction, other transactions that want
to access this data item will be suspended until the lock on it is released. On the other
hand, algorithms that belong to Optimistic Protocol are based on validation after the
execution. Operations on shared data items are alway allowed to be executed. Then
the system will verify the serializability of schedule frequently. Transactions which may

harm the serializability of schedule will be aborted.

Snapshot Isolation protocol(SI) is an optimistic concurrency control algorithm that
has been widely implemented by database system vendors. It precludes many con-
currency problems by managing multiple versions of data items. However SI can not
guarantee the serializability in all cases. During the concurrent execution of trans-
actions, the violation of constrain which involves numbers of data items can not be
prevented by SI. Previously, researcher proposed a mechanism that can characterize
the serializability of Snapshot Isolation protocol. The general idea of this mechanism

is to characterize the non-serializable transactions by evaluating an ad hoc Interference



Graph of all the transactions that can be executed concurrently. However, this mech-
anism can only be implemented in system design pahse. The aim of this thesis is to
provide an efficient mechanism that makes Snapshot Isolation protocol serializable at

run time. The problem is solved through the following steps.

Firstly, in order to decrease the time spent on characterizing the serializability, I
propose another mechanism which can reach the same objective. The acyclicity of a
graph MVSG is used to characterize the serializability of schedule running under SI.
Because the cost of aborting a transaction at the very end will become unacceptable
when transaction has been running for a long period, I provide a dynamic managed
variation of MVSG(called DSISG) so that non-serializable transactions can be detected
earlier. Moreover, the model of transaction is proposed to be formated by observing
a few principles. Then the earlier detection of non-serializable transaction can be per-

formed more efficiently on this well formated model.

Secondly, because the overhead of characterizing the acyclicity of DSISG will grow
unacceptable when the number of concurrent transactions increase significantly, I pro-
pose a mechanism which makes it more efficient to detect nodes that may cause a cycle
in DSISG. A new hierarchical structure of DSISG is introduced. Two variations of
algorithm that manages this hierarchized graph are provided. The tradeoff between

efficiency and precision are discussed as well.

In this thesis I mainly focus on solving the above problems theoretically. It should
be acknowledged that no real implementation of these solutions is included in this the-
sis. In the future, experiments will be made to confirm the theoretical evaluation of

solutions presented in this thesis.

The thesis is structured as follows:

Chapter 1 provides a brief description of the main problems and a strategy for so-

lutions thereof.

Chapter 2 introduces the concept of database concurrency control. Computational
models of database transaction are presented. The correct criterias of concurrent exe-

cution of transactions are also given.



Chapter 3 presents numbers of basic concurrency control algorithms from two cat-

egories.

Chapter 4 studies Snapshot Isolation protocol. Defect of Snapshot Isolation proto-
col is pointed out after describing the algorithm. Previous solution by other researcher

on solving this defect is also presented.

Chapter 5 discusses the limitation of the solution mentioned in chapter 4. An ap-
proach called DSISG is elaborated.

Chapter 6 proposes the segmented model of database transaction, which makes

DSISG more implementable.

Chapter 7 describes how to minimize the system overhead while preserving the
serializability of Snapshot Isolation. Self-adjusting acyclic graph is presented and al-

gorithm that manage self-adjusting graph is studied.

Chapter 8 summaries the contributions of this thesis and formulates some open

problems.



Chapter 2

Database Concurrency Control

The ability of concurrently handling the tasks submitted by the different users is one
of the main requirements imposed on the modern database systems. Database concur-
rency control deals with the issues arising when the users simultaneously process shared
data. The main objective of concurrency control algorithms is to find a correct and effi-
cient synchronization of concurrent processes accessing the shared database resources.
Protocols, criteria and efficiency issues of the database concurrency algorithms control
have been studied by the researches in recent twenty years([6],[12], [25], [2], [3]). This
chapter reviews the basic concepts of concurrency control in database systems. The
definition and the intuitions related to a concept of database transaction are presented
in section 1.1. Section 1.2 presents the evaluation criteria of concurrency control proto-
cols. A conceptual model of a database system used in this thesis is included in section
1.3.

2.1 Database Transaction

A database transaction is an execution of a program submitted by a user accessing a
shared database. The transactions retrieve and modify data. Logically, a transaction
consists of numbers of read operations and write operations(include insert, update and
delete). A boundary of transaction should is marked by a start and a commit(abort) of
program. Because numbers of transactions may access same data simultaneously, the
following features should be attached to database transaction to ensure the consistency
of database content. In order to preserve database consistency the transactions must

satisfy the properties listed below.

1. Atomicity:

From the perspective of a user, a transaction is executed completely or not at
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all. Transaction is ended with ”commit” or "abort”. At ”commit” point a trans-
action completes successfully without any errors. At ”abort” point a transaction
is canceled and a database is automatically brought back to a state it was before
the transaction started. In this situation, the database appears that the trans-
action had never been executed at all. The same actions are performed when
a transaction fails due to the events like hardware corruption, operation system

failure etc.

. Consistency:

The consistency of a database system is preserved by enforcing the logical con-
sistency constrains.A transaction must take a database from one consistent state
to another. For example, the debit record and credit record of one customer in
a bank’s database should be mutually consistent. When a transaction is about
to commit, the constraints like the one listed above must be satisfied. However,
while a transaction is processed, the temporally inconsistent states are tolerated
and unavoidable.

Normally, the enforcement of database consistency is implemented by checking
constraint . At a certain stage of transaction execution, the logical consistency
constraints will be verified on an updated database. If the verification fails then
transactions reaches its “abort” pint and it is automatically rolled back. On
the other hand, because of the properties of transactions, many consistency con-
straints do not have to be checked. For example, for a constraint requiring a
quantity to be positive, there is no need to check this constraint after the execu-

tion of a transaction which increases that quantity.

. Isolation:

A transaction is isolated from the other transactions. It means that transactions
do not communicate one with each other and transactions can only operate on
a consistent state of a database. Only the results of committed transactions are
"visible” to the other transaction. This property hides the concurrent executions
of the transactions from the database users. A sufficient condition for isolation is
that the concurrent executions of the transactions are equivalent to the sequential

ones.

. Durability:

The results of committed transactions must remain permanent in a database. The

modifications to a database should be able to survive the software or hardware
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failures.

Summarizing, an execution of a transaction is a sequence of read and/or write opera-
tions and it should end with either ”commit” or "abort”. ACID properties guarantee
the consistency and security of database system accessing by concurrently running

transactions.

2.2 Transaction model and conventions in concur-

rency control

2.2.1 Transaction Application

Typically, a database application is a computer program that consists of a mixture of
SQL statement and the statements of a general purpose programming language(such
as JAVA or C, etc). The database applications submitted by the users are executed by
a database system as the database transactions. The following example shows a sam-
ple database application and its sample execution traced as a sequence of elementary

operations forming a database transaction.

Example 2.2.1
Then debit/credit transaction can be considered the most popular transaction example
and has become the basis of TPC-A, TPC-B benchmarks which measure the perfor-
mance in database environments typical in transaction processing applications. ([23])
Suppose there is a user who want to transfer a mount of money from account A to
account B, the following application will handle this request.
Procedure transfer(accA in number,
accB in number,amount in number)
Declare
accB_balance number;

accA _balance number;

Begin
select balance from acc into accA balance
where acc_number=accA;
accA_balance := accA _balance-amount;
if accA_balance < 0 then /*Statementa™/
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abort;
else
begin
update acc set balance=accA _balance
where acc_number=accA;
select balance from acc into accB_balance
where acc_number=accB;
accB_balance := accB_balance+amount;
update acc set balance=accB_balance
where acc_number=accB;
commit;
end;
end if;

end;

To study the synchronization of database transaction we do not need to consider
all details of the application listed above. A sequence of operations on data items is
completely sufficient. For example, the execution of the application listed above may
results with the following sequence of operations on data items: R(a)R(b)W (a)W (b)C.
In the following sections, variant computational models of database transactions will

be formally presented.

2.2.2 Page Model

The page model of transactions was the subject of theoretical studies since paper [17]
and [4]. Now, it is the widely accepted by researchers as the conventional model of
database transaction. From an execution trace of the sample application above we find
that all higher-level operations can be mapped to read operation(select statement) and
write operation(insert or update statement) on pages(also known as blocks).In the page
model a database consists of a finite set of data items. The data item may be thought as
pages as these are the elementary items involved in read and /or write operations. When
an application is executed, a sequence of operations is submitted by the application to
a database server. From a database server side a sequence of executed operations is
considered as a transaction. If in an application given in example 2.2.1 a return value
of statement « is true, then a transaction recognized by a database server is:

T : R(accA balance) abort
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Otherwise, if the return value of « is false, then a transaction is formed by the following
operations:
Ty : R(accA balance) R(accB_balance) W(accA balance) W (aceB balance) commit
Furthermore, we find that operations in page model of transaction are not necessary to
be totally ordered. As long as ACID principles apply, the order in which two or more
operations are executed does not matter. For the transaction Ty above, the final result
in a database will be no different if the order of operations is changed to:
T5¢ : R(accA_balance) W (accA balance)

R(aceB balance) W (accB_ balance) commit

A page model of transactions is defined as follows. (]25]).

Definition 2.2.1 Page Model Transaction

A transaction is a pair

t = (op, <)

where op is a finite set of steps of the form r(x) or w(z), x € D, and < C op X op is a
partial order on set op for which the following holds: if p,q C op such that p and q both

access the same data item and at least one of them is a write step, then p < qV q < p.

Therefore, in the page model of transactions, a read and write operations on the same

data item, or two write operations on the same data item, must be ordered.

In a database application, when a data item is read its value is saved in a local
variable. The value of the variable will be available for any possible further operation
on the same data item until transaction is completed. Moreover, only the last write
step determines the final value of data item produced by the transaction. Any other
write operations on the same data item will be overwritten. On the other hand, before
a data item x is written, the new valued will be computed and stored in a local variable
as long as the transaction is still running. Then, after the write operation on x, the new
value can be accessed from the local variable. Any further read of x from the database
will lead to an unnecessary overload. Therefore, the following additional rules enhance

the page model of transactions:
e A transaction reads or writes a data items at most one time.
e No data item is read after it has been written.

In the page model of transactions, the concurrent execution of a set of transactions

can be mapped into a sequence of operations. Such sequence is called as a schedule
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[25]. A software that ensure the correctness of a schedule by applying an implemented

concurrency control technique is called as a scheduler.

Definition 2.2.2 Let T = t1,ts, -+ be a limited set of transactions. Fach t; € T has
the form t; = (op;, <;) with op; denoting the set of operations of t; and <; denoting
their ordering, 1 < i <n

A schedule for T is a pair s=(op(s), <s) such that:

1. s consists of the union of the operations from the given transactions plus a termi-

nation operation, which is either a c;(commit) or an a;(abort), for each t; € T;
2. for each transaction, there is either a commit or an abort in s, but not both;
3. all transaction orders are contained in the partial order given by s;
4. the Commit or Abort operation always appears as the last step of a transaction;

5. every pair of operations p,q € op(s) from distinct transactions that access the
same data item and have at least one write operation among them is ordered in

s in such a way that either p <sq or q <s;p

2.2.3 Object Model

The object model of transactions has been proposed in [1]. It provides a framework
for operations on arbitrary types of objects. Additionally, it is possible in the object
model to clearly describe the case where an transaction is nested and called by other

transaction.

Definition 2.2.3 Object Model Transaction

A transaction t is a finite tree of labeled nodes with
e the transaction identifier as the label of the root node,

e the names and parameters of invoked operations as labels of inner(i.e., non-leaf,

non-root) nodes,

e page model read/write operations as labels of leaf nodes, along with a partial order
"< 7 on the leaf nodes such that for all leaf node operations p and q with p of the
form w(x) and q of the form r(x) or w(x) or vice versa, we have p < qV q <p
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T<2>\
Withdraw(accA, amount) Deposit(accB, amount)
T LT
search(acc) modi fy(acc) search(acc) modi fy(acc)
| l |
R(x) W(z) R(y) W(y)

Figure 2.1: Example for object model transaction

For example, the object model of transaction T(2) in section 2.2.2 is presented in figure
2.1. Compare with the page model, object model is an enriched alternation page model.
The semantics and business logic inside the application is shown explicitly in object
model. In figure 2.1, we can see transaction T(2) logically consists two part:withdraw
and deposit. Before operations access the page in database in leaves level, the ac-
cessing of table "acc” is shown in level 3. This object model of transaction presents
rich information such as semantics, operations and object(such as table, index) be ac-
cessed in transaction,such that implementation performance of concurrency running

transactions can be acquired.

2.2.4 Semantic Model

The semantic model of database transactions has been proposed in [3].The model allows
for the explicit demonstration of the preconditions and postconditions in a transaction.
Unlike listing the operations on various data items, the semantic model present the se-
mantics of transaction application. The semantics of a transaction, T}, can be formally

characterized by the triple:
{I; AB; A (T = X)) YT L A Qi t

where I is a logical consistency constraint imposed on the contents of a database,
and [; is the conjunction of I required for the correct execution of T;.For example,
in the application given in example 2.2.1, the consistency constraint is: the balance
of all accounts can not be negative. Consequently, I; is both the precondition and
the postcondition of T;. B; describes all conditions that T; assumes to be true of the

arguments passed to it. In the example 2.2.1, amount is the parameter representing the
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money to be transfered from account A to account B, then B; should assert amount > 0.
QQ; is the result and asserts that T; has achieved its purpose. In the same example, if
T; transfer the money successfully, the final balance of account A is less than initial
balance while the final balance of account B is more than initial one. In semantic
model, the initial value of database variable is recorded by X;. T; holds the value that
changed by transaction 7;. Then, the semantic model of transaction in example 2.2.1
is:
{accA.balance > 0 A aceB.balance > 0 A\ amount > 0
NaccA.balance = BAL1 A aceB.balance = BAL2}

T;
{accA.balance > 0 A accB.balance > 0 A accA.balance = BAL1 — amount
NaceB.balance = BAL2 + amount}
The execution of a transaction is correct if the first and third part of semantic model
is true(i.e. semantic correct). Likewise, the concurrent execution of transactions is
correct if all transactions are semantic correct. However, the critical defect of semantic
model is, it is hard to be implemented. The semantic modelization of transaction can
not be fulfilled as easy as the other two models. The analysis of interference between
semantics of transactions is also hard to be realized by computer while it can be easily
implemented by locking mechanism in page model. Therefore, there are not many
researchers study database concurrency control by following semantic model since it

has been proposed.

2.2.5 Transaction model used in this thesis

In the former three sections, I introduced three different computational model for
database transaction. Page model and object model belong to one family while seman-
tic model belongs to another. Page model and object model describe the transaction by
abstractly presenting the detail of operations and data items involved in transaction.
Then the correctness of concurrently running transactions can be assured by solving
the conflicts between operations. The difference between page model and object mode
is object model contains more information like accessed tables or indexes. Moreover,
nested transaction can be described clearer by object model. On the other hand, se-
mantic model ignores the specific details of operations and on which data items these
operations are executed. Preconditions and postconditions of transaction are elab-
orated in semantic model by applying Hoare’s logic([14]). When preconditions and

postconditions are true we say that the execution of transaction is semantic correct.
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Then the concurrent execution of transactions can be guaranteed if every single trans-

action 1s semantic correct.

In the scope of this thesis, the complicated analysis of semantics or nested trans-
actions will not be included. The fundamental and algorithms of concurrency control
can be clearly expressed and easier understood in the simple page model. More impor-
tantly, one of my solutions, "segmented transaction model” which will be presented in
chapter 6 is also based on page model. Consequently, only page model will be used as

conventional transaction model in this thesis.

2.3 Correct execution of concurrent transactions

As stated above, the main objective of database concurrency control is to avoid the
incorrect execution of concurrent transactions. So, the formal definition of correctness
is necessary for the study on concurrency control algorithms. After the introduction
of the concept of database transaction and its computational model, this section will
focus on the page model of transactions and discuss the correctness for their concurrent

execution.

2.3.1 Typical concurrency problems

Because database transaction can be executed concurrently, some data items might be
accessed by some operations belong to different transactions. We say two operations
conflict with each other if they are on the same data item and at least one of them is
write operation. In the absence of proper concurrency control, conflicting operations
may breach the ACID of particular transactions. The following example is a typical

concurrency problem is known as ”dirty read”.

Example 2.3.1

Ty: write(x) abort

Ty: read(x) write(x) commit

X is a bank account. The balance of z is not allowed to be negative and it is 100$ at
the moment. Suppose Mr. and Mrs Smith all have the privilege to access account .
One day Mr. Smith starts a transaction Ty while Mrs. Smith starts another one Ty at
the same time. Firstly, Ty deposits 1008 into z, so balance(z) becomes 2008 temporally.
Then, Ty try to withdraw 2008 from x. Before this operation can be executed, Ty will
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read x to check whether it has enough money. Because of the absence of concurrency
control, Ty will get the value that created by Ty, which is 200$. Then the request of
withdraw is approved, Ty commit. After that, Mr. Smith will get his 1008 back by

aborting that deposit transaction Ty. The result is, the balance of x becomes negative.

The reason of the database corruption above is, there is no proper concurrency
control on the operation which tries to read an uncommitted(dirty) data item. The
uncommitted modification on data item might be discarded later by aborting cor-
responding transaction. Then the consistency of database may be broken by some

operation based on the value of dirty read data.

Dirty read is the concurrency problem which involves with one read operation and
one write operation on the same data item. The next example will present an incor-

rectness which involves two write operations.

Example 2.3.2

Ty: read(x) write(x)commit

Ty: write(x) commit

x 15 still the bank account that can be accessed by Mr. and Mrs Smith simultaneously.
The balance of x is 100%. T, and Ty are started by the couple individually at the same
time. Firstly, Ty tries to withdraw 100$ from x. After read(z) is executed to check
whether the money in x is enough to be withdrawn, Ty deposit 100$ into z. Balance(z)
is updated as 200% temporally. Then request of withdraw in T, is approved. Because
the unawareness of the modification made by Ty on x, Ty will update and commit the
balance of © as zero. At last, the balance of x will still be zero after Ty is committed.
Then, Mr. and Mrs Smith will lost 100$ and the bank encounters an inconsistency

between ledger and cashes.

In the example above, the modification on x made by 75 was overwritten by 717, i.e.
the Ty’s update is lost. The isolation property of T5 was violated by this lost of update.
That violation leads to the incorrect execution of T and 75. What can be seen from
the above examples is that the data accesses performed by concurrently executing
transactions have a potential of conflicting with each other. Therefore, some form
of concurrency control has to be taken to ensure the correct execution of concurrent

transactions. In examples above, the correctness criteria is the common sense of bank



2.3. Correct execution of concurrent transactions 14

business. However, for the research work on concurrency control of transactions, a
general criteria of correctness must be defined formally. The next chapter will manifest

numbers of classical correctness criteria of concurrent execution of transactions.

2.3.2 Serializability of concurrent execution

In the preceding examples, the errors were caused by the interleaved execution of op-
erations from different transactions. To avoid these and other problems, the kinds of
interleavings between transactions must be controlled. One way to avoid interference
problems is not to allow transactions to be interleaved at all. For a pair of transaction,
if one transaction is not allowed to start until the transaction before it has been explic-
itly committed or aborted, the execution of these transactions is called serial. Serial
executions are correct because each transaction individually is assumed to be correct,
and transactions that execute serially cannot interfere with each other. However, if
DBMS is forced to process transactions serially, it may make very insufficient use of
its resource. DBMS will become inefficient without the concurrency. In order to ac-
quire a DBMS which can handle transactions efficiently and correctly, we can include
other executions of the same set of transactions as long as they have the same effect as
serial ones. Such executions are call serializable. An execution of set of transactions
is serializable if it produces the same output and has the same effect on database as
one possible serial execution of the same transactions. Since serial execution is always
correct, and since serializable execution has the same effect as a serial execution, the
correctness of serializable execution is self-proved.Look back at ”lost update” presented
in example 2.3.2, the execution is incorrect because it is not serializable. Two possible
serial execution of two transactions in example 2.3.2 is T3 — T3 or reverse. The result
of these two serial executions are all balance(z) = 100$. However, the result of execu-
tion in example 2.3.2 is balance(x)=0 which does not equal to the result any possible

serial execution. So, this execution is not correct(serializable).

Compare with the general concept of serializable mentioned above, view serializable(
proposed in [27]) is a specific criteria of serializability and especially useful for the formal

treatment of concurrency control algorithms for multiversion data.

Definition 2.3.1 Concurrent execution of database transactions is view serializable if
there exists a possible serial execution of the same set of transactions such that in both
executions each transaction reads the same values and the final states of the database

are the same.
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However, the complexity of testing the view serializability of a schedule is proved to
be NP complete. It means that it takes to much time to check whether execution
of a database operation violates view serializability correctness criterion. So, due to
the high complexity of its recognition problem, view serializability is inappropriate as
a correctness notion for practical scheduling algorithms. So, conflict serializability is

proposed.

Another notion of serializability , conflict serializability, is the most important for
the practice of database concurrency control. It is computationally easy to test and
differs significantly from view serializability. Conflict serializability is based on a notion
of conflict that was briefly mentioned in section 2.3.1. Let s be a schedule, T; and T}
are different transactions belong to this schedule. We say two operations p € T} and
q € Tj are conflict with each other in s if they access the same date item and at least
one of them is a write. conf(s) = {(p,q)|p, q are in conflict in s and p <, ¢} annotates

the conflict relation of s.

Definition 2.3.2 Concurrent execution of database transactions is conflict serializable
if there exists a possible serial execution of the same set of transactions such that in

both executions the order of conflicting operations is the same.

For the schedule which caused "lost update” in example 2.3.2,

conf(s) = {(ri(z), wa(x))(we(z), w1 (x))}

and this conflict relation can be obtained from the serial execution T} — 15 or T, — Tj.

Therefore, schedule in example 2.3.2 is not conflict serializable.

The most important difference between conflict serializable and the previously in-
troduced view serializable is that the former can be tested efficiently. The conflict
serializability of a schedule can be characterized via the corresponding serialization
graph. In serialization graph, nodes represent committed transactions. Directed edge
from transaction 7} to transaction 7j indicates that there are operations p € T; and
q € T} such that p and q are in conflict. The order of conflicting operations is repre-

sented by the direction of edge. Consider the following schedule:

s = Ri(y)Rs(p) Ra(y) Wa(y)Ws(x) Ra(q) C2Ws(q) Cs Wi (p)Ch

Conflicts (R1(y), Wa(y)) and (R2(q), W3(¢g)) mean that in a serial execution 77 < Ty <
T5. However, conflict (R3(p), Wi(p)) says that T3 should be prior to 7} in a serial
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execution. Obviously, those are impossible to meet simultaneously. The dilemma is
represented as a cycle in serialization graph of s(shown in Figure 2.2, which means s

is not conflict serializable. In [9], the theorem widely known as ”conflict serializability

NS

13

T 15

Figure 2.2: The serialization graph of a non conflict serializable schedule

theorem” is defined:

Definition 2.3.3 Let s be a schedule. Then s is conflict serializable if and only if

serialization graph SG(s) is acyclic.

Compare with view serializability, conflict serializability is more restrictive. A schedule
which is conflict serializable is also view serializable but a view serializable schedule is
not necessary also conflict serializable. More concurrency is available if a scheduler is
based on view serializability. From a practical point of view, the complexity of testing
the view serializability of a schedule s is much higher than that of the conflict serializ-
ability of s. Consequently, most known single-version concurrency control algorithms
are conflict serializability based. Their goal is to order conflicting operations in a con-
sistent way. The result of concurrent execution under these algorithms produce only
conflict serializable. On the other hand, as stated previously, the concept of view serial-
izability is very useful for multiversion concurrency control algorithms. An alternation
of criteria especially for multiversion called One-copy serializability will be elaborated

in the next chapter.

In addition to view serializable and conflict serializable, other correctness crite-
rias were also studied by researches. Some are more restricted than conflict serializable
such as order-preserving serializable, recoverable execution, cascadeless execution which
were proposed in [24], [7]. Some like partial order serializability, predicatewise serial-
izability ([15]) are proposed for the implementation of particular database on which
CAD or CAD-like applications are running. Moreover, a criteria which is based on the
semantic of transactions are proposed in [3]. In this thesis, all the concurrency control

mechanisms will focus on view serializability and conflict serializability.



Chapter 3

Concurrency Control Algorithms

Database concurrency control algorithms are categorized into two types of algorithms
depending on a way the algorithms handle the conflicting operations. A group of
concurrency control algorithms called as pessimistic protocols blocks the execution of
an operation that conflicts with an operation executed earlier by another transaction.
A group of concurrency control algorithms called as optimistic protocols never blocks
the execution of an operation. The verification of conflict serializability criterion is
performed in certain frequency, normally it is only once when transaction is about
to commit. When the verification fails a transaction that caused a non-serializable
execution is forced to abort. This chapter reviews the major database concurrency

control algorithms that belongs to pessimistic and optimistic protocols.

3.1 Pessimistic Protocol

The simultaneous access to the shared data items is managed by the locks set on and
removed from the data items on behalf of a transaction. A data item locked by a
transaction is not available to other transactions until a lock is released. Before a
transaction T is allowed to access a data item x, it has to request a lock on the data
item. Next, the scheduler checks whether x has been locked by another transaction or
not. If a lock has been set on x on behalf of another transaction then transaction a
request to grant the lock is suspended and T has to wait till data item x is unlocked.
If a data item x is not locked than the requested lock is granted to a transaction T,
x is locked by the scheduler on behalf of the transaction, and intended operation is
performed by a transaction T on a data item x. A transaction T releases a lock on
x when access to x is no longer needed. Then the scheduler checks whether there
is another blocked transaction in a queue of transactions for the lock on x. If it is,
transaction in the head of queue will obtain the lock and resume. All the pessimistic

protocols are based on the locking mechanism described above. Different kinds of locks

17
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are managed in the different ways by different algorithms.

3.1.1 Two Phase Locking

Two phase locking is the most frequently implemented concurrency control algorithm
in the commercial database systems. Based on page model of transaction, two kinds
of locks are involved in two phase locking. When a data item x is read or written by
an operation which belongs to transaction T, a read lock(rl)or write lock(wl) will be
put on x on behalf of T. Similar to the way operations on the same date item conflict
in page model, different locks on the same data item will also conflict with each other

in certain way. The table below shows the compatibility between read and write lock.

Read Lock(x) Hold by T; | Write Lock(x) Hold by T;
Read Lock(x) Request by Tj Granted if i # j Rejected
if i = j Granted
Write Lock(x) Request by T} if i # j Rejected if i # j Rejected
if i = j Granted if i = j Granted

Figure 3.1: Compatibility of Locks in Two Phase Locking

Two locks pl;(z) and ¢l;(y) are in conflict if x=y, x # j, and operations p and ¢
are in conflict(i.e., at least one of them is write operation). The requested lock issued
by transaction T; will be blocked by the conflicting lock that has already been held by
other transactions 7}. This lock can be granted to 7T; when Tj releases the conflicting
lock. Therefore, read lock is also called shared lock and write lock is called exclusive
lock. On the other hand, if x=y and i=j, the requested lock will be granted anyway.
Transaction running under two phase locking protocol consists of two phases: lock ac-
quiring phase and lock releasing phase. Each transaction must acquire all locks before
it is terminated. No lock held by a transaction T could be released until T is termi-
nated. In the following, an example will be given to present how two phase locking

works.

Example 3.1.1
Suppose transactions Ty, Ty, T3 are running concurrently under two phase locking. The
submission order of operations is shown below:
Ti : Ry (x) Wi (x) Wi(2)Cy
Ty : R (y) Ry () Wa(2)Cy
Ts : R3(2) Ws(y) Cs
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Then the execution of this schedule can be mapped into the following history:

RLs(z), R3(2), RLi(x), Ri(z), RL2(y), Ra(y), WLi(z), Wi(z),

W Ls3(y) blocked, RLo(x) blocked, W L1(z) blocked, W Lo(x) blocked, Cs,
RL3(z) released, W Ly(z), Wi(z), C1, WLi(x) released, W Ly(z) released,
RLy(x), Ray(x), WLy(z), Wa(x), Co

Obviously, because some of the operations have been suspended by locking mechanism,
the concurrent execution of the transactions under two phase locking is equivalent to
the following serial execution: T3 < T; < T;. Consequently, the order of conflicts be-
tween operations is preserved. The schedule in example 3.1.1 is conflict serializable.
More intuitively, the equivalent serial execution of schedule s under two phase locking

can be described by serialization graph(s).

13

/

Figure 3.2: Serialization graph of schedule in example 3.1.1

T;
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Under two phase locking, transaction will not release the locks it holds until all
locks it requires are granted. So, it is possible that a group of transactions will be
suspended forever if each of them requires conflicting locks that have already been held
by the others. For example, in the simplest case with only two transactions 77 and 715,
T7 requests a conflicting lock that 75 is holding so that T} is waiting for T3 to releas
it, meanwhile, T, requests a conflicting lock that 7} is holding so that T, is waiting
for T;. Then T7 and T, will be blocked by each other and no transaction is able to go
on. This defect of two phase locking algorithm is called ”deadlock”. A straightforward
way to solve this problem uses a timeout period. Once a transaction T is waiting for
a lock longer than for a timeout period, the scheduler assumes that T is involved in a
deadlock and aborts the transaction. This technique is not completely reliable as the
correct recognition of a deadlock depends on the length of timeout. Longer a timeout
period is, more probable it is to recognize a deadlock correctly. On the other hand, a
shorter timeout period implies less time time spent by the transactions in an idle state.
So, the tunning of timeout period becomes tricky and it can not be guaranteed that

there is not "innocent” transaction is aborted by this deadlock guessing approach.
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Another solution to deadlock problem is to construct and to maintain a wait-for
relationships while the transactions are running. The wait-for relationship between con-
flicting operations can be revealed by wait-for graph(WFG). WFG is a graph G =(V,E)
whose nodes are the active transactions, and in which an edge of the form(7;,7;) indi-
cates that T; waits for 7} to release a lock that it needs. Obviously, a cycle in wait-for
graph reveals a deadlock. As an example consider the following concurrent execution

of three transactions controlled by two phase locking scheduler.

Example 3.1.2

Ty: Ry(z) Ri(y)  Wil(y) Ri(z) Cy
TQZ W1 (CL’) Rg(p) Wg(p) CQ
T3: R3(q) W3(2) Rs(p) Cs

In this schedule, Ty is waiting for Ty to release lock on x; T3 is waiting for Ty to release
lock on p; Ty is waiting for Ty to release lock on z. The wait-for graph of this execution

AN

Figure 3.3: Wait-for graph of schedule in example 3.1.2

T, 15

A cycle in a wait-for graph indicates a deadlock

When a deadlock is discovered by the scheduler, one involved transaction will be
aborted to break the deadlock. Then, the scheduler releases all locks held by the

aborted transaction and the transactions waiting for these locks can be continued.

3.1.2 Some variants of two phase locking

In addition to the original two phase locking(2PL) algorithm, many other pessimistic
algorithms based on a similar idea have been proposed in the past. Conservative 2PL
is a more restricted version of two phase locking in a way that it eliminates deadlocks
at the expense concurrency level. A transaction controlled by a conservative 2PL
scheduler is not allowed to continue until all locks it needs are granted at a start point.
It needs a transaction T to declare its entire read, write sets in advance. If some the

requested locks are already held by the running transactions then T has to wait. This
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is why a blocked transaction never holds a lock and because of that two transactions
will never block each other. In [25], the definition of this conservative two phase locking

is presented as:

Definition 3.1.1 Under conservative 2PL each transaction sets all locks that it needs
in the beginning, 1i.e., before it executes its first r or w step. This is also known as

preclaiming all necessary locks up front.

Altruistic locking(AL) protocol proposed in [18] is an extension of two phase lock-
ing protocol motivated by the inefficient performance of when dealing with the long
transactions. A long transaction is a transaction that has much longer execution time
when compared with the ordinary transactions. Transactions under two phase locking
will not release locks it held unless all required locks are granted. The transactions
waiting for the items locked by a long transaction are delayed for a long period of time.

So, the performance problem of 2PL is serious when dealing with long transactions.

Under altruistic locking protocol, the transactions are allowed to hold conflicting
locks on a data item simultaneously under certain conditions. Besides set lock and
release lock, AL protocol introduces a third access control operation called as donate.
The donate operation is used to notify the scheduler that the transaction will no
longer access a data item that has been locked by it. Then the locked data item
can be "donated” to other transaction which requires an access on it. The donating
transaction is allowed to put lock on other data items in the future. Lock and donate
operations do not need to follow a two phase rule. The formal definition of altruistic

locking is presented in the paper [18]:

Definition 3.1.2 A scheduler is an altruistic locking scheduler if it is a 2PL scheduler

and obeys the following four rules:
1. Items can not be read or written by T; once it has donated them;
2. Donated items are eventually unlocked;

3. Transactions cannot hold conflicting locks simultaneously, unless one has donated

the data item in question;

4. If a transaction T; locks a data item that has been donated (and not yet unlocked)
by another transaction, we say that it is in the wake of the donating transaction

T;. T} is indebted to transaction T; in a schedule s if
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e 0,(z), d;(z)(the donating on item x by transaction T;), p;j(x) € op(s) such
that p;(x) is in the wake of T; and

e cither o;(x) and p;(x) are in conflict or some intervening operation qi(x)

such that d;(x) <s qi(z) <s pj(x) is in conflict with both o;(x) and p;(x)

When a transaction Tj is indebted to another transaction T;, T; must remain

completely in the wake of T; until T; begins to unlock items.

Similar to conservative 2PL, altruistic locking requires the read set and write set of a
transaction to be provided before the transaction starts. Altruistic locking does not
solve the long transaction problem completely although it reduces the likelihood of
transaction’s long period delaying. It is still possible that some transactions suffer long
time waits under altruistic locking. In the next section, algorithms belong to another
family will be introduced. The simultaneous accesses to same data items will never
be delayed by optimistic algorithms. Different approaches but not locking are used by

optimistic algorithms to ensure the serializability.

3.2 Optimistic Protocol

In this chapter, the concept and features of long transaction will be introduced at first.
Then optimistic algorithms will be studied from two classes: single-version algorithms

and multi-version algorithms.

3.2.1 Long Transactions

A long transaction has a longer duration than regular transaction. Long transac-
tion may access many data items, perform lengthy computations, pause frequently for
feedback of users, etc. For example, in a bank system, the transaction which com-
putes the interests of all accounts for entire last year can easily take several hours.
Similarly, a transaction that reads/writes large file(a few gigabytes) will also take a
significant amount of time. Because pessimistic algorithms such as two phase locking
and conservative 2PL require lock to be kept for the whole duration of transactions,

the performance of system might be badly harmed by the delaying of transactions.

Optimistic algorithms allow transactions to be executed concurrently without de-
laying. When a transaction is about to commit, some validation processing will be

taken to ensure the serializability of the whole schedule. If validation succeeds, the
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transaction commits. Otherwise, the transaction will be aborted and restarted. So,
to a system in which most transactions are long transactions, optimistic algorithm is

more efficient than algorithms based on locking.

3.2.2 Serialization Graph Testing

As discussed in section 2.3.2, serialization graph is an useful graphical approach that
can be used to characterized the conflict serializability of schedule. The concurrent
execution of a set of transactions is conflict serializable if and only if corresponding
serialization graph is acyclic. In [8], Serialization Graph Testing(SGT) was developed
as an optimistic algorithm. According to the original definition of serialization graph,
a serialization graph contains nodes for all committed transactions and for no others.
Such SG differs from the one that is maintained by SGT scheduler. In SGT sched-
uler’s serialization graph, only node for active transaction will be included. A node will
be added in or removed from the graph when corresponding transaction is started or
committed. A different term, stored serialization graph(SSG) is used to denote the SG
maintained by a SGT scheduler. The conflict serializability of execution is guaranteed

by preserving the acyclicity of stored serialization graph.

When an operation p;(z) of transaction T; arrives and p;(z) is not commit, it can
be executed anyway. If p;(z) is the first operation of T;, the scheduler creates a node
for T; in current serialization graph G. Then conflict edge will be inserted in G if p;(x)
conflicts with others. On the other hand, if p;(x) is commit, the cyclicity of G will be
evaluated. If G is acyclic, T; is allowed to commit. If G is cyclic, transaction T; will be
forced to abort. The node for T; and all edges connects to it are removed from G. For
a node stands for a committed transaction in serialization graph G, it can be removed
from G as long as it is a source node(a node without outgoing edges). For example ,

consider the following schedule:

Example 3.2.1

These transactions are running concurrently under Serialization Graph Testing:

T : Ry (x) Wi (x) Wi (y)Ch
TQ : RQ(Z/) RQ(SL’) WQ(Z)CQ
T3 . R3(2) Wg(Z) 03

Before C can be executed the serialization graph is:

There 1s a cycle in the graph, so T, will be aborted, node T will also be removed
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from graph. When Cy is arrived, the serialization graph is:

15

13

The acyclicity of graph means Ty is able to commit. Because node Ty is not a
source node, it can not be removed from graph. The serialization will still be remained
as above. When C5 is arrived, transaction T3 will be allowed to commit. Because node
T3 is a source node and stands for a committed transaction, it can be removed from
graph. After that, node Ty becomes a source node. So it can be removed too.As the
result, by aborting Ty which violates the conflict serializability, a serializable execution

of Ty and T3 is preserved.

Serialization Graph Testing is such an intuitive and important algorithm that most
other graphical concurrency control mechanisms are based on it. In the future part
of this thesis, number of graphical mechanisms which are similar with SGT will be

studied more specifically.

3.2.3 Time Stamp Ordering

Time Stamp Ordering is from [22]. The scheduler assigns to each transaction 7; a
unique timestamp ts(7;). Normally, the value of time stamp is from a counter that
increases every time a new time stamp is needed. The timestamp of a transaction is
inherited by every operation of that transaction. So, the timestamp of an operation
oi(z) is simply also the timestamp of transaction 7; that issues o;(x). Under Time
Stamp Ordering, the order of conflicting operations are decided by their timestamps.

More precisely, a time stamp ordering scheduler observes the following rule:

if pi(x) and q;(x) are conflicting operations and ts(T;) < ts(1}), pi(z) must be ex-
ecuted prior to q;(x).

When operation p;(x) arrives after a conflicting operation ¢;(z) which has already

been executed, if ts(T;) < ts(7}), the approval of p;(x) will violate the rule above.
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Therefore, this "too late” operation p;(z) will be rejected and transaction T; has to be
aborted. The behavior of Time Stamp Ordering algorithm is illustrated in the follow-

ing example:

Example 3.2.2
Ty : Ry(x) Ry(p)Ch
T : Wa(x) Wa(y) Abort
Ty R3(y) Ws(x)Cs
Because Ty is started earlier than Ts, ts(Ty) < ts(T3). But Wy(y) arrives later than
R3(y), so Ws(y) is rejected such that Ty is aborted.

Although transactions which don’t have conflicts can be executed in arbitrary order
under TSO, the actual execution order of conflicting transactions under TSO is strictly
preserved as the starting order of these transactions. So, for a set of concurrent trans-
actions, there exists only one equivalent serial execution under T'SO. This is much more
restricted than the concept of "serializable”. Consequently, some transaction might be
aborted unnecessary even if the schedule is conflict serializable. For example, in the
next schedule, transaction 77 will survive under 2PL or SGT, but it has to be aborted

under time stamp ordering.

Example 3.2.3
Ti : Ri(p) Ry (z)Abort
T Wa(z) Ry(y)
Beside to indicating the order of equivalent serial execution in timestamp ordering, the
value of time stamps can also be implemented in other concurrency control algorithms.
For instance, in chapter 4, time stamp plays an important role in the implementation

of an efficient and widely used algorithm: Snapshot Isolation.

3.2.4 Multiversion Concurrency Control

In all the concurrency control algorithms mentioned above, each data item only has one
copy in the database. This means, without any concurrency control, the result of one
write operation might be overwritten by that of the other write operation. Therefore,
algorithms introduced in sections above can be categorized as single-version algorithm.
On the other hand, another kind of concurrency control algorithm, multiversion algo-

rithm, keeps multiple copies for each data item. It is the optimistic algorithm which
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will never block conflicting operations. In a multiversion concurrency control algo-
rithm, multiple copies of data items will be kept simultaneous. The write operation on
data item x will not overwrite the original value of x. On the contrary, a new version
of x will be created. For each read(x), the scheduler will decide which version of x can
be accessed. At particular point, normally is the commit point of each transaction,
one version of each data item will be chosen by scheduler and saved into database
permanently. Copies of data item x are annotated as x;, x;...where the subscript is the
index of transaction that create the version. So, in a multiversion schedule, a write
operation is always the form W;(x;) while a read operation is the form R;(x;)(j might
be equivalent to i). For multiversion concurrency control in general, there is no specific
order of data versions is given. However, for some specific implementation of multiver-
sion concurrency control, order of versions of data item x will be decided by ”creating
time” (the time on which a write operation is executed on x) or ”committing time” (the
time on which the created version is committed). To the same data item x, if a version
x; is ordered preceding to another one z;, we say that the order of these two versions
is ; < z;. The existence of multiple versions of data items should not be awarded of
by transactions. They are only visible to the scheduler. On the perspective of outside

user, the functionality of database system is still over the single version of data.

Because the concept of conflicting operations is based on the fact that there is only
one version for each data item, conflict serializability is not applicable to be used as
the correctness criteria of multiversion algorithm. The extension of view serializability,
one copy serializability, has been introduced as the correctness criteria of multiversion
algorithm in [5]. From the point of view of users, all the data stored in database
system are kept single versioned. Recall that two schedules are view equivalent if
they read the same values of data items and produce the same outputs. Similarly, a
multivesion schedule and a single version schedule over the same set of transactions
are view equivalent if they read the same vales of data items and produce the same
outputs. One copy serializable was defined as the correctness criteria of multiversion

algorithm in [5]:

Definition 3.2.1 Let S be an Multiversion schedule over a set of transactions T, S is

view equivalent to a serial, one version schedule over T if and only if S is one copy

serializable(1SR).

For instance, one single version schedule and one multiversion schedule are over the

same set of transactions:



3.2.  Optimistic Protocol 27

Example 3.2.4

Multiversion schedule:

Tli Rl (ZEQ) W1 (l’l) Cl
TQI RQ(Z[)) Wg(yg) RQ(Q?l) 02
Ty: Rs(yo) Ws(ys) Cs

Single version serial schedule:

T5:R3(y) Ws(y) Cs

Ty: Ry(z) Wi(x) C4

Ty: Ry(z) Wa(y) Ro(z) Co

In multiversion schedule, T reads the original value of x; Ty reads the original value of
z and the version of x created by Ty, T3 reads the original value of y. The final output
of this schedule is x = x1 and y = yo. These inputs and outputs are exactly the same
as that of the second single version serial schedule. So, the first multiversion schedule

1s one copy serializable.

In [5], the author proposed a mechanism which can characterize the correctness
of general multiversion concurrency control algorithm. Serialization graph is modified
to presented the order of versions of data items that were accessed by concurrent
transactions. This serialization graph especially for multiversion algorithm is called
Multiversion Serialization Graph(MVSG).

Definition 3.2.2 For a given MV schedule S and a version order <, the multiversion
serialization graph for S and <, MVSG(S,< ), is serialization graph(S)(edges are issued
by applying the definition of SG of single version schedule) with the following version
order edges added: for each Ry(x;) and W;(z;) where i, j, and k are distinct,

1. if x; < xj then include T; — Tj;
2. otherwise include T}, — T;.

Then, the one copy serializability of multiversion schedule can be characterized by the

acyclicity of corresponding MVSG.

Theorem 3.2.1 A multiversion schedule S is one-copy-serializable if and only if the

multiversion serialization graph (MVSG) is acyclic.

For example, the MVSG of multiversion schedule in example 3.2.4 is: The graph is

acyclic, so this multiversion schedule is one copy serializable. Actually, the direction of
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T

S

Figure 3.4: An example of Multiversion Serialization Graph

T, 15

edges in MVSG clearly indicates the execution order of transactions in equivalent serial
schedule. As it is revealed in Figure 3.4, any single copy serial execution of transactions
in example 3.2.4 is equivalent to the multiversion concurrent execution as long as the

following two conditions hold: (1) T} is prior to T5. (2) T% is prior to Ts.

Sine MVSG actually is the classical serialization graph together with some addi-
tional edges caused by dependencies between different versions of the same data item,
edges in MVSG can be categorized as the following:

Two types of edges in MVSG:

e A, Edges caused by conflict between operations on same versions of the same

data item. Conflicting Operations belongs to different transactions.

e B, Edges caused by conflict between operations on different versions of the sam

data item.Conflicting Operations belongs to different transactions.

In fact, only edges in category B are decided by two rules in definition 3.2.2. The first
condition figures out the edge between two write operations from older version to newer
version of the same data item. The second condition figures out the edge between a
read operation on older version and a write operation on newer version of the same

data item.



Chapter 4

Snapshot Isolation

Snapshot isolation [2] protocol is a multiversion concurrency control algorithm used by
the database systems to enforce the logical consistency of a database while processing
the database transactions. By implementing the techniques of multiversion and time
stamps, Snapshot Isolation(SI) is free from concurrency problems such as dirty read,
unrepeatable read, lost update, etc. SI protocol is free from the typical anomalies
such as dirty read, unrepeatable read, lost update, etc. SI has been implemented in
the systems including Oracle, PostgreSQL and Microsoft’s SQL Server. In different
systems, SI is implemented in different ways. For example, in Oracle, the mechanism
”First-committer-wins” is replaced with a variation ”First-writer-wins”. Write/Read
locks are used to obtain SI behavior. In this thesis, all the studies will be focus on

the general concepts of Snapshot Isolation. This chapter presents a study of SI protocol.

4.1 Isolation levels

The problems with concurrent access to shared data are the subjects to the properties
of concurrently running transactions. In some situations, the properties of the con-
currently running database transactions are such that that the execution is free of a
particular kind of concurrency problem. Then, an over restricted concurrency control
algorithm may harm the performance of system. For example, consider a database
system where no data item is inserted or deleted by a concurrent running transaction.
Then, and algorithm, which puts long duration locks on the whole table accessed by
the transaction is obviously over restricted. ANSI standard [26] defines three typi-
cal incorrect concurrent execution of transactions if there is no proper concurrency
control. These incorrect executions are named ”Phenomena”. ANSI standard [26] in-
troduced a concept of isolation level. Each isolation level can prevent the execution of

transactions from experiencing particular phenomena. An overview of the relationship

29
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between ”phenomena” and isolation levels are presented in the following table.

Isolation Level P1 Dirty Read | P2 Fuzzy Read | P3 Phantom

ANSI READ UNCOMMITTED | Not prevented | Not prevented | Not prevented

ANSI READ COMMITTED Prevented Not prevented | Not prevented

ANSI REPEATABLE READ Prevented Prevented Not prevented
ANOMALY SERIALIZABLE Prevented Prevented Prevented

Figure 4.1: ANSI SQL Isolation Levels Defined in the terms of phenomena

The descriptive specifications of phenomena are as follows.

Suppose the transaction 77 and 75 are running concurrently.

e Dirty Read: T, reads a data item x that has been written by T} before T is

committed.

e Fuzzy Read: T} reads a data item x. Before T} is committed, T5 submits a write

operation on x and commits.

e Phantom: T; reads a set of data items which satisfy a certain criteria C. Before,
T) is committed, T, removes or inserts number of data items which also satisfy

the same criteria and commits.

In [2] the informal definitions of isolation levels are criticized as being too ambigu-
ous. The same work proposes a different set of phenomena that avoids the problems of
the ANSI-SQL definitions. In addition new phenomena such dirty write, lost update,
write skew- - -, that paper more precisely redefines all the phenomena in the terms of

the page model. The mathematical definitions of phenomena from [2] are shown below:

e Dirty Write: Wy(x) --- Wa(x) -+ (¢q or ay)

e Dirty Read: Wi(x) --- Ra(x) --- (ay and ¢ in either order)

e Fuzzy Read: Ry(x) -+ Wa(x) -+ ((c1((¢q or ay) and (cg or as) in any order)
e Phantom: R{(P) --- Wa(yin P) -+ ((c1 or ay) and (cy or as) in any order)
e Read Skew: Ry(x)--+ Wa(x)- - Wa(y)---ca- - Ri(y) -+ (¢q or ay)

e Lost Update: Ry(x) -+ Wy(x) -+ Wi(x) -+ 1
P is a set of data item which have to be read before executing a write operation

on a particular data item(i.e. predicate)
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o Write Skew: Ry(x)--- Ra(y)--- Wi(y)- -+ Wa(x)--- (¢ and ¢y occur)

It is important to note, that Lost Update and Write Skew phenomena are closely

related to Snapshot Isolation protocol.

4.2 Snapshot Isolation protocol

Snapshot Isolation (SI) protocol was proposed in [2]. SI protocol is a special case of
timetstamp based implementation of multi-version concurrency control algorithm. Un-
der Snapshot Isolation, an unique timestamp ts; is assigned to transaction 7; when it
starts. Every write operation W;(x) in 7; creates a new version of data item x. New
versions are not saved into database permanently (i.e. accepted) until transaction T; is
committed successfully. All read operations in 7; can only access the versions of data
items either created by itself or the latest transaction that committed before T; starts.
The following example shows how the transactions under SI protocol access versions

of data item.

Example 4.2.1
Ti: Ri(xg)  Wi(xy) Wi(y) Gy
Ts: Ri(zg)  Wa(za) Ra(yo)Co
Ty: R3(x2) R3(y1) Cs
As it is shown above, because Ty has not committed when Ty starts, versions of  and y
created by Ty is invisible to Ty. On the other hand, because T} is the committed trans-
action which created the latest version of y, T3 retrieves version y, when it attempts to

read data item y. Similarly, T also reads xs.

At this point, application of multiple versions of data items and timestamps allows
for elimination of ” Dirty write”, ”Dirty Read”, ”Fuzzy read”, ” Phantom” phenomena.
However, the elimination of ”Lost Update” requires an additional mechanism which is

named " First-committer-wins” .

"Lost Update” phenomenon is caused by the successful commitments of two trans-
actions that performed write operations on the same data item. We say that trans-
action T; is concurrent with transaction 7; when their time intervals from start-

point to commit-point overlap. Transaction T; is able to commit only when it did
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not perform write operation on a data item written by another committed transac-
tion T; and Tj is concurrent with 7;. Otherwise, transaction 7; has to be aborted
and resubmitted later. Look back at the page model of "Lost Update” anomaly,
Ry(x)---Wy(x)---Wi(z)---c1. By enforcing a principle ”first-committer-wins”, a ver-
sion of data item x created by Ws(x) must be discarded when transaction T5 is about
to commit. This is why ”Lost Update” phenomenon never happens in a schedule con-
trolled by SI protocol.

Definition 4.2.1 Transaction T; running under Snapshot Isolation conceptually reads
data from the committed state of the database at the start time of T;. The result of T;’s
writes will be stored as a new version of data item in memory. If T; reads data it has
written, it will read the version created by itself. Snapshot Isolation also must obey a

"First Committer Wins” rule, defined below.

Definition 4.2.2 Transaction T; will successfully commit if and only if no concurrent

transaction T has already committed writes of data items that T; intends to write.

On summary, SI is a multiversion algorithm which never delays the conflicting opera-
tions. Access to the versions of data items is controlled through managing the unique
timestamp of each transaction. ”First-committer-wins” guarantees that Lost update

anomaly can be precluded by Snapshot Isolation.

Although high system concurrency and absence of most anomalies can be provided
by Snapshot Isolation, the serializability of schedule under Snapshot Isolation can not
be guaranteed all the time. In [2], a concurrency problem that can not be prevented
by Snapshot Isolation was pointed out. The page model of this anomaly has been
presented as ” Write Skew” in section 4.1. A intuitive example of ”write skew” is given

below:

Example 4.2.2
Consider a combined account, which consists of a check account x and a cash account
y. Fach one of sub-accounts can be overdrawn as long as their total balance is not neg-
ative. Suppose the following two transactions are running under Snapshot Isolation:
Ti: Ri(xo = 100) Ry (yo = 100) Wi(x; = —100) C4
Ti: Ry(zo = 100) Ry (yo = 100) Wy (ys = —100) Cy

Since the write operations are performed on different data items, no transaction in the
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execution above violates the first-committer-wins principle. However, this execution
sets the balance of the combined account to -200, which violates the constraint on the
combined account. This defect makes conflict serializability of Snapshot Isolation not

guaranteed in every possible case.

As it was stated in chapter 1, a transaction must take a database from one consis-
tent state to another. Constraints which have been put on database should be satisfied
all the time. In the example above, the constraint was satisfied initially but it was

violated after the execution of schedule under Snapshot Isolation.

Recently, another defect of Snapshot Isolation was presented in [11]. This defect
is named ”Read-Only Transaction Anomaly”. A schedule under Snapshot Isolation
could be non-serializable while the execution of all update transactions is serializable.
This "Read-Only Transaction Anomaly” under Snapshot Isolation is presented in the

following example:

Example 4.2.3
Suppose x and y are combined accounts. Withdrawal on anyone of them will be ap-
proved by the system as long as  +y > 0. However, if z+y goes negative, a penalty
charge of 1 will be applied.

Th: Rl(ymo) Wl(y1,20) 4
TQI RQ(SL’Q,O) RQ(Z/(),O) WQ(LL’Q, —11) Cg
Ty: R3(70,0) R3(y1,20) C3

Transaction Ty withdraw 10 from account x,which makes x+y < 0. Therefore, a penalty
charge of 1 is applied on x. That is why the final balance of x is -11. a read-only trans-
action that retrieves the values of x and y and prints them out for the customer. The
anomaly that arises in this transaction is that read-only transaction T3 prints out © =
0 and y = 20, while the actual final values are y = 20 and x = -11. More theoretically,

the result of this schedule is not equivalent to any serial schedule.

Then, by detecting and prohibiting those non-serializable schedules, the consistency
of database updated by the transactions running under SI protocol is guaranteed. A

mechanism that can fulfill this objective is explained in the next section.
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4.3 Characterize the serializability of Snapshot Iso-

lation

Snapshot Isolation is an efficient multiversion concurrency control algorithm. However,
it can not guarantee the serializability of concurrently execution of transactions. Re-
cently, [10] presented an approach that can characterize the serializability of Snapshot

Isolation at system design time.

The approach is based on the maintenance of a binary directed graph, Interference
Graph. Interference Graph represents interferences among the transactions. Nodes in
Interference Graph are committed transactions. Edges between nodes are added by

observing the following rules:

e No Edge: There is no interference edge from 77 to T}, when all the following occur:
readset(T;) Nwriteset(Ty) = 0; writeset(T;) N readset(Ty) = 0; writeset(T;) N
writeset(Ty) = ()

e There is an exposed edge T; 2% Ty when both readset(T;) N writeset(Ty,) # 0
and also writeset(T;) Nwriteset(Ty) = .

e There is an protected edge T); prof T, when one of two situations is found:

— writeset(T;) Nwriteset(Ty) # O or
— readset(T;) Nwriteset(T;) = 0 and writeset(T;) N readset(Tk) # )

When there is no need to distinguish varieties of edges, a notation(global edge)
T} gt T}, is used to indicate some interference edge exists. What should be noted here
is, transactions are considered to be accessing the same data item even if operations
belong to them are on different versions of it. Then a node T}, can be characterized as
a "pivot” if there are transactions 7; and 7} (which may be equal to each other),such
that the following three conditions all hold:

expo

o I — Ty

eTpo

[ ] Tk; e T7
e T}, T}, and T} occur consecutively in a chord-free cycle
glob glob glob

e

in Interference Graph.
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In a special case, if T; is equal to 7}, they will all be characterized as pivots. Then, the

main theorem in [10] is stated as the following.

Theorem 4.3.1 For a set of transactions T, suppose a subset of T S is allocated
Snapshot Isolation as their concurrency control mechanism. Fvery execution of S will

be conflict-serializable if and only if none of the pivots of IG(T) is in S.

Then, the serializability of Snapshot Isolation can be preserved by examining the cor-
responding Interference Graph. In the Interference Graph of a set of transactions S, if
there exists pivot in IG(S), the serializability of execution of S can not be guaranteed
under Snapshot Isolation. For example, the Interference Graph of the following three
transactions is:

Ti: Ri(yo,0) Wi(y1,20) Cy

Ty: Ro(w0,0) Ro(yo, 0)Wo(zo, —11) Cy

Tgi Rg(x'o,()) R3<y1,20) Cg
S

A/'m

prot

Figure 4.2: Interference Graph of Read-only transaction anomaly

Obviously, because node T5 is in the cycle Tj e T il T prot T3, Ty is char-

acterized as pivot. Therefore, the serializability of the concurrent execution of these
transactions can not be guaranteed under Snapshot Isolation. In example 4.2.3, the
schedule that is consist of these transactions is not serializable under Snapshot Iso-
lation. In order to protect the database from corrupting, other concurrency control

mechanism such as two phase locking should be allocated to Transaction 75.

Similar with serialization graph testing that has been introduced in section 3.2.2,
this ”pivot” mechanism guarantees the serializability of schedule under Snapshot Iso-

lation.



Chapter 5

Multiversion Serialization Graph for
Snapshot Isolation

5.1 Motivations

According to the mechanism introduced in chapter 4([10]), transactions that may harm
the serializability of schedule under Snapshot Isolation can be characterized by detect-
ing the pivots in corresponding Interference Graph. However, this ” Pivot” mechanism
can only be applied at design time. The Interference Graph of all transactions that
may be running concurrently will be tested. Transaction which stands for a pivot in
Interference Graph will not be allowed to run concurrently with other transactions un-
der Snapshot Isolation. In this chapter, a mechanism that can test the serializability

of schedule under Snapshot Isolation at run time will be discussed.

Multiversion Serialization Graph(MVSG), proposed in [5], is a relative graph which
can be used to characterize the serializability of schedule running under general mul-
tiversion concurrency control algorithm. In order to characterize the serializability
of Snapshot Isolation at run time, the implementation of MVSG on schedule under
Snapshot Isolation will be discussed in section 5.2. After that, a dynamic managed
serialization graph especially for Snapshot Isolation is presented in section 5.3. At last,

Section 5.4 will evaluate the time complexity of my proposal.

5.2 Multiversion Serialization Graph

Snapshot Isolation is an instance of multiversion concurrency control together with
extra restriction ”first-committer-wins”. As described in chapter 3, multiversion se-
rialization graph can be used to characterize the one copy serializability of general

multiversion concurrency control. logically, it should also be applicable to Snapshot

36
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Isolation.

Theorem 5.2.1 A schedule S under Snapshot Isolation is one-copy-serializable if and

only if the multiversion serialization graph (MVSG) is acyclic.

For example, suppose schedule S5.2.1 is executed under a general multiversion concur-

rency control:

Example 5.2.1
Schedule s5.2.1
Ty . Ri(z) Wi(z1) Ri(yo) Wi(y) -+ C
15 : Ry (yo) Wa(22)Co
Ty - R3(x9)---Cs
For Wy(x3) and Rs(xs), because they operate on the same versions of the same data
item and W2(xq) precedes Rs(x2), there is an edge from Ty to Ts.
For Ry(yo) and W1(y1), because yo < yl, there is an edge from Ty to T;.
For R3(xs) and Wi(x1), because x1 < x2, there is an edge from Ty to Ts.
Consequently, the multiversion serialization graph of this schedule MVSG(S55.2.1,<)

is generated as figure 5.1.

Figure 5.1: MVSG for $5.2.1 under a general Multiversion concurrency control

According to definition 5.2.1, cycle between T} and 75 indicates the non-serializability
of S.

On the other hand, if $5.2.1 is executed under Snapshot Isolation, transaction T}
will be aborted when it is about to commit. To different implementation of SI, the
behavior of schedule might be different. For example, in Oracle, the transaction writes
the version but not commit the version will "win” (i.e. T5 will be aborted when T} is
committed). In this thesis, I will focus on the original conceptual of Snapshot Isola-
tion. T'wo concurrent write operations on the same data item is prevented from being

committed by applying ”first-committer-wins”. The final state of S5.2.1 becomes:
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Schedule s5.2.2
TQ : Rz(yo) W2($2)C2
Ts - Rs(xa) -+ Cs

Obviously, schedule s5.2.2 is the subset of schedule s5.2.1, Consequently, MVSG(s5.2.2,<)
under Snapshot Isolation is also the subgraph of MVSG(5.2.1,<) under general mul-

tiversion concurrency control:

15

S

13
Figure 5.2: MVSG of 55.2.2 under Snapshot Isolation

Because transaction T is aborted, and only node for corresponding committed trans-
action can be included in MVSG, node T; is excluded from graph. As the result,
MVSG(s5.2.2,<) is acyclic. So S5.2.2 is serializable under Snapshot Isolation.

5.3 Dynamic Management of MVSG

The serializability of schedule running under Snapshot Isolation can be guaranteed
by preventing the forming of cycle in MVSG. However, because MVSG only contains
nodes for all committed transactions and for no others, an assumption that significantly
weakens this solution is that all the operations of concurrent transactions should be
known before the graph is formed. It means that we can only apply this mechanism
after the transaction’s commit point. Suppose s is the set of all transactions running
in a database system. Because it is not practical to predict that which transactions
in s will be executed concurrently at runtime, only the latter option could be consid-
ered. In order to prevent the non-serializable execution, transactions which close a
cycle in MVSG have to be aborted when they reach their commit points. However,
if most concurrent running transactions have long duration life, the cost of aborting
long transactions at commit point is not acceptable. Suppose two concurrent long
transactions 7 and 75 are running concurrently under Snapshot Isolation:

At point t on the time line, the information about the transactions has been ad-

equate to detect the non-serializability of schedule (i.e. a cycle is formed in MVSG).
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Time Line T

Figure 5.3: non-serializability can be found earlier

Since transaction T3 is destined to be aborted at commit point in order to avoid the
non-serializable schedule, time and system resources expended on operations of T, after
point t are wasted. If a non-serializable execution of a long transaction can be detected
at the early stages of its execution, time and system resources do not need to be wasted
to continue the execution. Therefore, it is important to detect non-serializable execu-

tion as early as it is possible.

5.4 Dynamic managed Snapshot Isolation serializa-
tion graph

The non-serializability of schedule under Snapshot Isolation can be characterized by
the cyclicity of corresponding MVSG. In order to avoid the waste of system resource
and time when it comes long transactions, I propose that the scheduler should be aware
of cycle in MVSG as soon as the operation, which may trigger an edge to close a cycle

is received by scheduler. Consequently, MVSG has to be managed dynamic.

Because the original definition of MVSG is ”a serialization graph with additional
edges added”, no node can be included in the graph until the corresponding transaction
is committed. In order to manage the MVSG while transactions is still on going, a

concept of dynamic managed serialization graph should be defined at first.

Definition 5.4.1 Let s be a on-growing schedule, dynamic managed serialization graph
(DSG) for s, denoted DSG(s), is a directed graph whose nodes are the transactions in
s. Edges in DSG are all T; — T;(i # j) such that one of a transaction T;’s operations

precedes and conflicts with one of the other transaction T;’s operation in s.
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A node for T; in its DSG is added when scheduler receives the first operation of trans-
action T;. As soon as an operation O;(x) is received, possible edges between nodes in

DSG will be evaluated by checking conflicting operations.

Then, for the dynamic management, the definition of MVSG can be variated as ”a
dynamic managed serialization graph with additional edges added”. Suppose after the
emergence of an edge between two write operations on different versions of the same
data item, a cycle is closed in the dynamic managed MVSG(s,<). According to Lemma
5.2.1, the corresponding schedule is supposed to be characterized as non-serializable
under Snapshot Isolation. However, one of the transactions connected by that write-
write edge will be aborted by ”first-committer-wins”. The cycle will be disappeared
later. A new schedule consists of the rest transactions is serializable under Snapshot
Isolation. Actually, although not all transactions in schedule s can survive at the end
of its execution under Snapshot Isolation, the content of database system is consistent.
Therefore, we can say schedule s is still serializable under Snapshot Isolation, to some
extent. Consequently, if two concurrent transactions create versions of a same data
item, the inclusion of write-write edge between these two transactions is unnecessary
in a dynamic managed MVSG. As discussed in section 5.2, this write-write edge (no
matter they are concurrent or not) is decided by rule 1 of definition 5.2.1. So, it can

be excluded from graph if rule 1 is modified.

After the definition of dynamic managed serialization graph and the exclusion of un-
necessary concurrent write-write conflict edge, a dynamic managed serialization graph

especially for schedule under Snapshot Isolation can be defined as the following:

Definition 5.4.2 For a given schedule S running under Snapshot Isolation and a ver-
sion order <, the dynamic managed Snapshot Isolation serialization graph for S and
<, DSISG(S,< ), is dynamic managed serialization graph(S) with the following version
order edges added: for each Rylx;] and W;[z;] where i, j, and k are distinct,

1. if v, < xj and T; is not concurrent with T;, then include T; — T,
2. if v; L @, include Ty, — T;.

Conclusively, the serializability of schedule under Snapshot Isolation can be efficiently

characterized by applying the following theorem:

Theorem 5.4.1 The execution of a schedule S running under Snapshot Isolation is
serializable if and only if DSISG(S,<) is acyclic.
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Proof:

Suppose schedule s is running under Snapshot Isolation.

Firstly, assume that a DSISG(S, <) is acyclic. According to the definition, MVSG(S,
<) is a DSISG(S, <) plus possible write-write edges between two concurrent transac-
tions.That is, MVSG(S, <) is equivalent to DSISG(S, <) or is the superset of DSISG(S,
<). If MVSG(S, <) equals to DSISG(S, <), MVSG(S, <) is also acyclic. According
to Theorem 5.2.1, S is serializable. On the other hand, if MVSG(S, <) is the DSISG(S,
<) plus edges between two concurrent transactions which write the same data item,
one of these transactions will be forced aborted by ”first-committer-wins”. The execu-
tion of remain transaction is still serializable under Snapshot Isolation. Therefore, if
DSISG(S, <) is acyclic then S is serializable.

Secondly,assume that a schedule S is serializable. Since S is serializable and Snap-
shot Isolation is a multiversion concurrency control algorithm, according to Lemma
5.2.1, MVSG(S, <) must be acyclic. According to the definition, DSISG(S, <) is the
MVSG(S, <) without possible edges between two concurrent transactions which write
the same data item (i.e. DSISG(S, <) is the subset of MVSG(S, <«)). The subset of
an acyclic graph is also an acyclic graph. So, DSISG(S, <) is acyclic. Therefore, if S
is serializable then DSISG(S, <) is acyclic.

Since DSISG is a dynamic managed graph,a significant practical consideration is
when the scheduler may discard the information that has been collected about a trans-
action. That is, remove the node for a particular transaction from the graph. To detect
conflicts, the read set and write set of every transaction exists in DSISG have to be
maintained. A lot of storing space will be used by this maintaining. Therefore, it is
important to discard information that is not needed anymore as soon as possible. For
an aborted transaction, all the information of it has been discarded automatically, so
its corresponding node can be removed as soon as the transaction is aborted. For a
committed transaction, one may also assume that the schedule can delete information
about a transaction and remove the node as soon as it commits. Unfortunately, this is
not true. For instance, consider the scheduler in example 5.2.1, if we remove the node
for transaction T after point Cs, the edge from T, to 177 and T5 to T3 will be missed.
Then the non-serializability which could have lead to the aborting of T} is missed. So,
the scheduler can delete information about a committed transaction T; if and only if T;
could not, at any time in the future, be involved in a cycle of DSISG. For a node A to

form a cycle with an acyclic graph G, it must have at least one incoming edge issued
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from G and one outgoing edge points to G. According to the definition of DSISG, if T;
is concurrent with 7}, edges between them can be any directions. On the other hand, if
T; is committed before T starts, only edge from T} to T} is possible. Therefore, suppose
S is a set transactions and DSISG(s, <) is acyclic. If transaction T; is started after
all transactions in S have been committed, cycle will never be formed between node T;
and S. Then the information of all transactions in S can be discarded by scheduler. The
corresponding nodes for them can be removed from DSISG. In conclusion, the node
of a committed transaction can be removed from DSISG if all the other transactions,
which have node in DSISG, have already been committed. The following is an example

of dynamic management of DSISG.

Example 5.4.1

The following is the schedule S5.4.1 of four executing long transactions under Snapshot

Isolation
T1 . Rl(IQ) e Cl
Ty:veenn Wa(zs) -+ - Ro(yo) -+ - C,
Ty tovveneapenn Wilys) - Ry(wo) -+ Wy(z3) -+ Cs
T, Wa(pa) -+
Time Line
a b c d
At time a, DSISGS5.4.1,< is:
T1 —— T2
At time b, DSISGS5.4.1,< is:
Tl - T2
T3
At time ¢, DSISGS5.4.1,< 1is:
T17> 15
T /

A cycle is formed, so Ts is forced to abort and DSISG(S5.4.1, <) becomes like:
Tl — T2

At time d, DSISGS5.4.1,< is:
T



5.5. The evaluation of time complexity 43

The serializability of S5.4.1 is guaranteed and DSISG(S5.4.1, <) will keep being up-

dated and verified as furthering operations of transactions coming.

As a conclusion, the DSISG of schedule can be created when the first operation is
issued instead of at the very end of the whole schedule. A node, which indicates corre-
sponding transaction is included when the transaction starts. Every time the scheduler
receives an operation, possible edges between transactions will be evaluated (i.e. edges
between nodes in the graph are updated). When a new issued edge E(7;,7}) between
node 7T; and T} is going to close a cycle in DSISG, one of corresponding transactions
T; and T} has to be aborted. Because the time that has been spent on a transaction
can be recorded, the scheduler will choose to abort the transaction which has been run
for a shorter period. This mechanism helps to save long transactions. If transaction
T; is aborted, the corresponding node is removed from graph. All nodes in DSISG
can be discarded when corresponding transactions in scheduler are all committed at
the moment. Consequently, system resources which used to be wasted on part of long

transaction which was predetermined to be aborted can be saved.

5.5 The evaluation of time complexity

The most reasonable and recognized criteria to evaluate the efficiency of an algorithm,
is the worst time complexity. To characterize an non-serializable schedule under Snap-
shot Isolation, the cyclicity of DSISG need to be verified. In [21], the author states
that only directed acyclic graphs can be topological sorted. So, the cyclicity of DSISG

or Interference Graph can be verified by topological sorting.

The worst time complexity of topological sorting a directed graph G(n,e),is O(n+e)
in which n indicates the number of nodes and e stands for the number of edges. For
example, suppose the schedule 5$5.2.1 in example 5.2.1 is running under Snapshot
Isolation. DSISG(S5.2.1,<) can be find in the figure 5.4.

When the topological sorting is finished, schedule can be characterized as non-
serializable as soon as the sorting for DSISG is failed(i.e. there exist cycles in the
DSISG).

In conclusion, for a schedule consists of n transactions, the worst time complexity

of DSISG mechanism can be described as

Tosise = T(topological sorting(DSISG)) = T'(n +e) = O(n + C?) = O(n?)
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T1 <—T2

/

T3
DSISG(55.2.1,<)

Figure 5.4: Dynamic Managed Snapshot Isolation Serialization Graph

There is one thing should be noted here is: since DSISG is an ongoing algorithm, the
time complexity discussed in this section is that of a single invocation that checks an

added edge or node.



Chapter 6

Segmented Transaction Model

In order to preserve the serializability of schedule S under Snapshot Isolation protocol,
a transaction whose request to access data closes a cycle in SIMVSG(S,<) should be
be detected and aborted. An implementation of this mechanism is not efficient if we
still apply a standard model of database transactions considered earlier. In a standard
model the read and write operations of a database transaction are either organized
arbitrarily or all write operations follow all read operations([10]). In the following, the

necessity of a new model of transaction will be discussed from two aspects.

We need a new model because the dynamic verification of DSISG becomes ineffi-
cient when transactions are modeled in old ways. Suppose a particular write operation
W is the only operation that triggers a cycle in DSISG(s). Then, non-serializability
of schedule s cannot be detected until W is submitted. In the worst case, W may be
delayed by the other operations to the end of the long transaction. Then, the dynamic
verification of DSISG becomes no different with the previous mechanism that verify

the acyclicity once at the end of transaction. For example,

Example 6.1.1
Schedule s6.1.1
Ty Ri(zo) Ri(yo) Wi(zy)---Cy
15 : Ry(yo) Ry(xg) - - - other operations- - - Wa(y2)Co
An operation Wy(ys) issued by a transaction Ty, causes non-serializable execution of
$6.1.1. If a cycle caused by Ws(ys) is detected earlier then it impossible to waste less

time on the execution of T5.

Logically, before a change on a database can be made by a write operation, some
data should be acquired or verified by a transaction.Therefore, some read operations

have to be executed before a write operation. Assume that in the example above all
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the preconditions of Wj(y,) are satisfied by the execution of read operations Ra(yo)
and Ry(zo). Then Ws(ys2) could have been submitted right after Ro(zo) in T5. In such
a case Ty is aborted earlier without the unnecessary execution of the remaining opera-

tions of 7T5.

The dynamic verification of DSISG requires identifications of the points at which
the verification can be performed. Too dense or to scattered verification points make
the dynamic verification either too demanding or meaningless. A concept of ”breaking
point” is proposed in [16], to partition a transaction into the sets of consecutive steps.
An algorithm which finds the finest chopping of a set of transaction is given in [20].
This work introduces a new model of transaction, which achieves appropriate gran-
ularity without explicit ”breaking points” or ”transaction chopping”. More efficient
verification DSISG is achieved in the model through the self-revealed dependency re-
lationships between the operations on a database.The model assumes that transaction
is a sequence of operations that ends with either commit or abort. For the sake of
simplicity, we only consider the transactions that end with commit operation. The
other operations are read or write. Write is an operation, which signs the new value of
data item that already exists in a database. Read retrieves a value of data item from a
database. The purpose of reading the value of a data item from a database is either to
inform a user about its value, or to use a value in the computations, or to verify of the
logical consistency constraints imposed on a database. A write operation on data item
x is denoted by W(x) and it is a pair ((x), s) where s is the set of data items which’s
values are necessary to perform W(x). We say that write operation on x ”depends on”

a data set s.

A database transaction can be logically partitioned into the segments such that
each segment is concluded with a sequence of write operations. Moreover, the model
assumes that implementation of each transactions follows a rule saying that ”before
write(x) is performed, a transaction reads only the data items that write(x) depends
on and no other data items”. So, all read operations, which access the data for user
display, must be grouped between the last write operation and commit point of a trans-

action. Or, to those opthese The following example provides more intuitions.

Example 6.1.2
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An enrollment transaction of a university administration system verifies the follow-
ing consistency constraints. In this transaction, the admission offer(o) and tuition fee
payment(t) should be checked. If there is no unsatisfied condition in the offer and no
outstanding balance in payment, the status of student (s) will be changed to "enrolled”.
Also, preferred contact method (c) provided by student before should be replaced by uni-
versity email account generated by system automatically. The number of student in
certain school (n) will be increased by 1. At last, a welcome letter (1) retrieved from
database will be print out.

Formerly, this transaction might be organized arbitrarily as:

T: R(o) R(t) R(n) W(s) R(l) W(c) W(n) C

Just as all transaction models listed in [3]. However, by following the programming rule
that we proposed above, the model of this enrollment transaction will be better organized
like:

T: R(o) R(t) W(s) W(c) R(n) W(n) R(l) C

In this model, transaction s logically partitioned into smaller granularities and depen-

dencies between write operations and read operations are self-revealed.

Definition 6.1 A segment s is a sequence of read operations followed by a write op-
eration or commit. A segment starts either at the beginning of transaction or after a

write operation and ends after the next write or commit.

Definition 6.2 The segmented model of database transaction is a sequence sy,--- , Sy,

c or where each s; is a segment, ¢ is a commit operation.

Moreover, two additional rules that enhance standard page model(introduced in sec-
tion 2.2.2) will also be applied to this segmented model. With segmented transaction
model, the dynamically management and verification of DSISG can be performed at
the end of each segment. When a transaction is aborted for closing a cycle in graph,
the structure of this segmented model guarantees that system resource will only be

wasted on minimal number of operations.

This proposal of segmented transaction model provides a tradeoff between coding
freedom and system performance. Although the effectivity of DSISG mechanism will
not be different whether this segmented transaction model is taken by programmer or
not, the efficiency of characterizing a non-serializable transaction under Snapshot Isola-
tion will be higher if transactions are programmed by following segmented transaction

model.



Chapter 7

Self-adjusting Acyclic Serialization Graph

7.1 Motivations

DSISG is a directed graph, which presents the conflicts between concurrent transac-
tions running under Snapshot Isolation protocol. A schedule is conflict serializable if
and only if corresponding DSISG is acyclic. Unfortunately, the detection of cycle in
DSISG has squared time complexity. As discussed in section 6.4, for a DSISG with n
nodes and e edges, the time complexity of characterizing the acyclicity is 7' = O(n+e).
In a directed graph with n nodes, the maximum number of edges can be computed as
e =n(n —1). So, T can be simplified as T = (n + n(n — 1)) = n?. Since the number
of nodes in DSISG equals to the number of concurrently running transactions, the
size of graph will also increase when the number of concurrently running transactions
increases . As the result, the overhead of characterizing acyclicity of DSISG grows

unacceptable.

As stated in [6], a node can be involved in a cycle only if it has incoming edges
and outgoing edge. Consequently, the acyclicity of DSISG can be guaranteed when:
no node in the graph has both incoming and outgoing edges. Suppose the execution of
operation O; causes an edge E(7},T;) between nodes T; and Tj. If E(T;,T;) is approved,
O; can be executed, otherwise, transaction 7; will be aborted to eliminate the prob-
ability of forming cycle. Although it does ensure the serializability of schedule, this
solution is over restricted. Suppose the probability space concers a directed edge point
to a node T;, the outcomes are {7} has outgoing edge} and {T; has no outgoing edge}.
Because each of those two outcomes has equal chance and is independent with each
other, The events of this probability space are: {T; has outgoing edge}, with probabil-
ity 0.5; {T; has no outgoing edge}, with probability 0.5; {}=0, with probability 0; {T;
has outgoing edge} or {T; has no outgoing edge}, with probability 1. Consequently,
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when an incoming edge to node 7; is issued, the probability of node T; having outgoing
edges is 0.5. This is also the probability of aborting transaction 7;. This means: if an
operation of transaction T; is conflict with operation in another transaction 77, there
is 50 percents chance that T; will be aborted. This extraordinary high frequency of
aborting badly harms the concurrency of database system. In order to achive the high
level of concurrency while trying to save time used to be spent on acyclicity character-

ization, we need a more sophisticated mechanism.

In graph theory[13], a cycle in directed graph is defined as ” A closed directed walk,
with repeated nodes allowed”. This means that if a node N is in a cycle, a directed

walk started from N can finally reach N.

Definition 7.1.1 In a directed graph, every nodes that can be reached by following
edges started from N are called successors of N. Likewise, all nodes that can reach N

by following edges started from themselves are called ancestors of N.
acyclic directed graph can be guaranteed by observing the following rule:

Conclusion 7.1.1 A directed graph G is acyclic, if and only if no node in G is pointed

by its successor.

Proof:

Suppose there is no node in a cyclic graph G is pointed by its successor. Since G is
cyclic, there is path starts from N; and travels through one of its successors N; and
reaches IV; again. Then NV; is pointed by its successor INV;. It’s a contradiction. So, if

there is no node in graph G is pointed by its successor, G is acyclic.

Suppose in acyclic graph G, there is a node N; is pointed by its successor N;. Ac-
cording to definition 7.1.1, there exists a directed path from N; to its successor N;.
Moreover, N; is pointed by N;. So there exists a directed path starts from N;, travels
through IV; and reaches N; again, which means a cycle. This is contradicted with that

G is acyclic. So, if G is acyclic, there is no node can be pointed by its successor.

When an edge is issued from node N; to N;, all successors of N; will be checked
to find out whether N; is one of them. If not, the edge from N; to N; can be allowed.
Obviously, if the number of successors of a node is large, the time spend on going

through all successors will be high. In the next section, I will present a new structure
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of directed graph. In that well organized directed graph, the relationship between

nodes will become explicit without checking the whole set of their successors.

7.2 Self-adjusting acyclic graph

Self-adjusting acyclic graph is an acyclic directed graph. The corresponding node of
a transaction will be included in graph when the transaction is started. nodes will
be assigned with unique level values when they are connected by conflict edges. The
level value of node N; is indicated as LV(V;). E(T;,T;) stands for an edge from node
T; to T;.CS(NV;) is the collection of successors of node N;. AS(N;) is the collection of
ancestors of node N;. Before the graph is created, two variables NV=0 and PV=0
are initialized. NV and PV records the level value of top level and bottom level,
respectively. The graph can be implemented by ”adjacency list”. ” Adjacency list” is a
data structure which consists of an n-elements(n is the number of all nodes in graph)
array of linked lists. In position i of the array, the information of node N; and two
pointers to the linked list of edges connected with N; are stored. One linked list List_out
stores the index number(position in the array) of nodes that are connected by edges
which incident from N;. The other linked list List_in stores the index number(position
in the array) of nodes that are connected by edges which point to N;. A directed graph

and corresponding Adjacency list is presented in the following example:
T3

Example 7.2.1
T

Ty

T
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0 T, >1—3
2
1 T,

2 TgLO

3 T4i>1

0
When a transaction is started, the corresponding node of a transaction is included in
graph. Before the node is connected with other nodes by conflict edges, its level value
is initialized as zero. Obviously, if LV(N;)=0, it means that NN; is neither ancestor nor
successor of any other nodes. We call this kind of node "isolated node”. To an isolated
node N in acyclic graph G, the acyclicity of G will not be harmed no matter an incoming
or outgoing edge is newly connected with N. Consequently, when E(T;,T;) is issued,
if LV(T;) or LV(T}) equals zero, the edge can be approved immediately. If LV(T;)=0,
NV is decreased by 1 and assigned to LV(T;). On the other hand, if LV(T})=0, PV is
increased by 1 and assigned to LV(7}). The level value of initial node comes from NV
which’s value is always decreasing. The level value of terminal node comes from PV

which’s value is always increasing. Consequently, it can be concluded that:

Conclusion 7.2.1 In self-adjusting acyclic graph, the level value of an node is always

smaller than level value of its successor.

By applying rules above, the self-adjusting acyclic graph can be intuitively looked as a
directed graph with numbers of levels. On each level there is only one node. The level
with greater value is regarded "below” the one with smaller value. A directed edge

from a node in upper level to lower level is called ”pointing down”. Otherwise, it is
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" pointing up”.

For two nodes T; and Tj,if LV (T;) < LV (T}), there is no possibility that T; is the
successor of T;. The edge which is ”pointing down” from T; to 7; will not close a cycle
in the graph. So, Suppose none of T; and T is isolated node. When edge E(T;,7})
is issued, if LV(T;) < LV (T}), E(T;,1;) can be approved immediately and there is no
variation to LV (T;) and LV (T}).

On the other hand, if the edge is going to ”pointing up”, the situation becomes
more complex. Because there is E(T;,T;) and LV (T;) > LV (T}), according to Conclu-
sion 7.2.1, T; might be the successor of T;. If T; is the successor of T}, the acyclicity
of graph can not be preserved. Therefore, this "pointing up” edge has to be declined.
If 7; is not the successor of T}, E(T;,T;) will not form a cycle in graph so it can be
approved. Moreover, this approval of ”pointing up” edge E(7;,7;) will result in that
T; has a successor T which is assigned with a smaller level value. In order to over-
come this violation of Conclusion 7.2.1, I propose that the approval of "pointing up”
edge has to come together with a procedure which is named ”pushing down”. When
the "pointing up” edge E(T;,1}) is approved, T; and all its successors will be pushed
down to other levels which are lower than T;. Consequently, all approved edges in
self-adjusting acyclic graph are still pointing from higher to lower level. So, when an
edge is issued from a node 7; in lower level to a node in higher level T}, the algorithm
will firstly get CS(7}). If T; belongs to CS(1}), edge E(T;,T;) is refused. Otherwise,
E(T;,T;) can be approved and the level values of nodes in CS(T7)) will be re-assigned.

The algorithm that manages edges in self-adjusting acyclic graph is presented be-
low:
Algorithm 7.2.1
When E(7;,T;) is issued
Procedure SAAG BEGIN
1 IF LV(T;) « LV (T;) = 0 then
2 Approve_Edge(E(T;,1}));
3 ELSE
4 IF LV(T;) < LV(T;) then
5 Approve_Edge(E(T;,1}));
6 ELSE
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7 CS SetOfnodes;
8 CS := Get_CS(T}); *
9 IF T; in CS THEN
10 Decline E(T;,Tj);
11 ELSE
12 Approve_Edge(E(T;,1}));
13 Push_Down(7},CS);
End IF;
END IF;

End IF;

END SAAG;

*In this statement, CS(T}) is obtained by calling classical graph traverse algorithm
Depth-first search, DFS(T}).

Procedure Approve Edge(e Edge)
IF LV(T})=0 then

NV := NV-1;
LV(T;) :== NV;

End IF;

IF LV(7};)=0 then
PV:=PV+1;
LV(T;) :=PV;

End IF;

Build_Edge(e);

Procedure Push_Down(N node, CS SetOfNodes) IS

BEGIN
CS = CS|J{N}
TPV :=PV;

P := LV(N)

For i:=0..Length(CS)-1 Loop
Distance := LV(CS(i))- P;
LV(CS(i)) := PV+Distance+1;
IF LV(CS(i)) > TPV THEN
TPV := LV(CS(i));
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END IF;

End Loop;
PV := TPV,
End PushDown;

In the following example, the above algorithm will be clarified to show the variation

of a self-adjusting acyclic graph.
Example 7.2.2
Ty T,

T3 Ty
Four nodes are included in a self-adjusting acyclic graph G.
LV(Ty) = LV (Ty) = LV(T3) = LV(Ty) =0, NV =0, PV =0

T3 Ty

\

Ty 15

Edge E(T},T5) is issued, because LV (T7) x LV (Ty) = 0, the edge is approved.

LV(T)) = -1, LV(Ty) = 1, LV(T3) = LV(T}) =0, NV = -1, PV = 1

.

T;

N

T, T,

Edge E(T3,T1) is issued, because LV (T1) * LV (T5) = 0, the edge is approved.

LV(Ty) = -1, LV(Ty) = 1, LV(T3) = =2, LV(Ty) =0, NV = —2, PV =1
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13

.

T

15
Ty
Edge E(T1,T}) is issued, because LV (T1) * LV (T) = 0, the edge is approved.

LV(Ty) =—-1, LV(Ty) =1, LV(T3) = =2, LV (Ty) =2, NV = =2, PV =2

13

N,
/>

A new node T5 is included in G, because LV (Ty) x* LV (T5) = 0, the edge is approved.
LV(Ty) = -1, LV(Ty) = 1, LV(T3) = —2, LV(Ty) = 2, LV(T5) = 3, NV = —2,
PV =3

13

N,
)
T4\

15
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Edge E(T},Ts) is issued, because the edge is pointing from higher level to lower level,

the edge is approved.
LV(Ty) = =1, LV(T3) = 1, LV(T3) = =2, LV(Ty) = 2, LV(T5) = 3, NV = =2,
PV =3

.

Declined

Ho----to----3

T \ T2
\

Edge E(T4,T3) is issued, because the edge is pointing from lower level to higher level
and Ty € C'S(T3), the edge is declined.

LV(Ty) = =1, LV(T3) = 1, LV(T3) = =2, LV(Ty) = 2, LV(T5) = 3, NV = =2,
PV =3

15

13 13

N N

Tl Tl
—~ Kp;roved
T4 \ T4
15
13
T5

Edge E(Ty,T5) is issued, although the edge is pointing from lower level from higher
level, Ty ¢ C'S(T3),s0 the edge is approved. T5 and its successor T5 are pushed to lower
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levels.
LV(T1> - —]., LV(TQ) - 4, LV(Tg) - —2, LV(T4) - 2, LV(T5) - 5, NV - —2,
PV =5

Obviously, except the execution of Get_CS(T}), the other parts of algorithm only
have linear complexity. Get_CS(7;) is the function that return the reachable set of a
node 7; in directed graph G. Depth-First Search DFS(n) is a classical algorithm. It can
be used to visit every node which is reachable to N, in a directed Graph. According
to [19], the worst time complexity of DFS(n) is O(n?). Consequently, the worst time
complexity of function Get_CS(T;) is O(n?).

7.3 Parameterized Self-adjusting Acyclic Graph

Although the average time complexity of algorithm above is lower than that of tradi-
tional serialization graph testing, it is still on the squared level and they have the same
worst time complexity O(n?). In order to decrease the time complexity, the rule of eval-
uating pointing-up edge E(7;,T;) in Self-adjust acyclic graph can be refined. Instead of
getting the whole CS(T}), the retrieving of CS(7}) can be parameterized. Parameter L
is introduced to limit the length of edges that can be traveled when retrieving the set
of successors of node Tj. If T; € Get_CS(Tj,L) or there exists node 7}, that is reachable
from 7; and the length of edges from 7} to T, is more than L, the edge E(7;,7;) will
be declined. The following graph gives an intuitive example of the concept of ”Length
of Edges”.

Example 7.3.1

T1 —— T2

I3 —1,
From 77 to T5, the length of edge that has been traveled is 1.
From T} to Ty, the length of edge that has been traveled is 2.

In an acyclic directed graph which has N nodes, the maximum length of edges is
N-1. So,the value of L is an integer which stands in range [1, (n — 1)]. When an edge
E(T;,T;) is issued and LV (T;) « LV (T};) # 0, LV(T;) > LV (T}), Get_CS(T},L) will only
travel L length of edges to get the set of successors of node T;. When L=1, the set of
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nodes that directly connected with 7 will be returned as CS(7j). When L = n — 1,
the whole set of CS(7}) will be returned. Consequently, the worst time complexity of
algorithm variates with the value of parameter L. When an ”pointing up” edge E(T;,T})
is issued, Get_CS(7},L) will retrieve the set of successors of T by traveling L length of
edges.

When L=1, the worst case is that all the other nodes(except T}) are the successor of

T; and maximum length of edges is 1.

T, " T,

The time spent on traversing the above graph G is the time spent on traveling through
each edge in G. So, the maximum time spent on Get_CS(7},1) is T'(1) = N — 1.
When L=2, the worst case is that all the other nodes(except T;) are the successor of

T; and maximum length of edges is 2.

AR\,

The maximum time spent on Get_CS(7},2) is T'(2) = (N — 1)+ (N —2) =2N —3
When L=K, the worst case is that all the other nodes(except 7}) are the successor of

T; and maximum length of edges is K.
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[

) T,
The maximum time spent on Get_CS(7};,K) isT(K) = (N—1)+(N—-2)+-- - +(N—-K) =
KN — (14 K)K/2

T,

q

Obviously, when L < N — 1, the worst time complexity of Get_CS(T},L) is O(N).
When L=N-1, time spent on Get_CS(7;,K) is T(N) = N* N — (1 + N)N/2 =
(N? — N)/2. This is exactly the same as the time spent on retrieving the whole
set of successors of Tj. Consequently, when L=N-1, the worst time complexity is
O(N?).Although the worst time complexity can be decreased from squared to linear,
a downside is introduced by parameterized algorithm. When L < N — 1, some edge
might be declined unnecessarily. For example, in the following graph, when L=2, edge
E(T;,T;) which will not cause a cycle is declined unnecessarily by the algorithm.
Example 7.3.1
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T;
N
\
\
T, \
\
\ \
\
Tb \
\
\ Declined
\
T, \
\
\
\
Td \

When L=2, E(T;,1;) is unnecessarily declined

In order to minimize the impact of this unnecessary refusion, a mechanism called

"pushing up” is proposed. When a "pointing up” edge E(7;,1}) is issued and there

exists node T, that is reachable from 7); and the length of edges from Tj to T, is more
than L and 7; is not in the set that returned by Get_CS(7},L), the algorithm will call a
function Get_AS(T;,L). If T; ¢ AS(T;, L) and AS(T;,L) is the full set of all ancestors of
node T;, E(T;,1}) is approved and AS(T;,L) is pushed up to other levels together with

node 7;. This "pushing up” mechanism is a complement to "pushing down” such that

the chance of unnecessary refusion is decreased by half. The parameterized algorithm

is presented below:

Algorithm 7.3.1

When E(7;,T;) is issued

CS SetOfnodes;

AS SetOfnodes;

Full_CS boolean;

Full_AS boolean;

Procedure SAAG_Par(L Integer) Begin

1

T = W N

IF LV(T}) * LV(T}) = 0 then
Approve_Edge(E(T;,T;));

IF LV (T;) < LV (Tj) then

Approve_Edge(E(T;,1}));
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6 ELSE

7 Get_CS(T3,L);

8 IF T; in CS THEN

9 Decline E(7;,T;);

10 ELSE

11 IF Full CS=true then

12 Approve_Edge(E(T;,T}));
13 Push_Down(7},CS);

14 ELSE

15 Get_AS(T;,L);

16 IF T; in AS THEN

17 Decline E(T;,Tj);

18 ELSE

19 IF Full AS=true then
20 Approve_Edge(E(T;,1}));
21 Push_Up(T;,AS);
22 ELSE

23 Decline E(7;,T5);
24 END IF;

25 END IF:

2% END IF:

27 END IF:

28 END IF:

29 End IF;

END SAAG_Par;

Procedure Get_CS(V in node, Length in Integer) *
BEGIN
Get the set of successors of node N without traveling more than L length;
CS := the result of statement above;
IF' CS is the full set of successors of node N then
Full_CS:=true;
ELSE
Full_CS:=false;
END IF; END Get_CS;
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*In this procedure, set of successors is obtained by calling classical graph traverse al-
gorithm Depth-first search, DFS(T}). Link list List_out in adjacency list of graph is
used. If DFS(T}) is terminated because the length of edges that can traveled exceeds
L, CS is not the full set of ancestors of node N. Otherwise, CS is the full set.

Procedure Get_AS(V in node, Length in Integer) *
BEGIN
Get the set of ancestors of node N without traveling more than L length;
AS := the result of statement above;
IF AS is the full set of ancestors of node N then
Full_AS:=true;
ELSE
Full_AS:=false;
END IF;
END Get_CS;
*In this procedure, set of ancestors is also obtained by calling classical graph traverse
algorithm Depth-first search, DFS(Tj). Link list List_in in adjacency list of graph is
used. If DFS(T}) is terminated because the length of edges that can traveled exceeds
L, AS is not the full set of ancestors of node N. Otherwise, AS is the full set.

Procedure Approve(E Edge)
IF LV(T};)=0 then

NV := NV-1;
LV(T;) := NV;

End IF;

IF LV(T;)=0 then
PV:=PV+1;
LV(T;) :=PV;

End IF;

Build_Edge(e);

Procedure Push_Down(N node, CS SetOfNodes) IS
BEGIN
CS:=CSNN
TPV =PV,
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P .= LV(N)

For i:=0..Length(CS)-1 Loop
Distance := LV(CS(i))- P;
LV(CS(i)) := PV+Distance+1;
IF LV(CS(i)) > TPV THEN
TPV := LV(CS(i));

END IF:

End Loop;

PV .= TPV,

End PushDown,;

Procedure Push_Up(N node, AS SetOfnodes) IS

BEGIN
AS = ASNN
TNV :=NV;
P = LV(N)

For i:=0..Length(AS)- 1 Loop
Distance := LV(AS(i))- P;
LV(AS(i)) := NV - Distance - 1;
IF LV(AS(i)) < TNV THEN
TNV := LV(AS(i));

END IF;

End Loop;

NV := TNV;

End PushDown;

In example 7.3.1, edge E(T;,7;) can be "saved” by mechanism of ”pushing up”.
Because Get_CS(7},L) does not return the whole set of CS(7}) and T; ¢ CS(1}, L),
the algorithm will check the set returned by Get_AS(7;,L). AS(T;,L) is the whole set
of ancestors of T; and T; ¢ AS(T;, L). So E(1;,T;) is approved and T; is pushed up.
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E(T;T;) in example 7.3.1 is saved by "pushing up” mechanism

The parameterized algorithm provides a tradeoff between efficiency and accuracy.
The value of LL can be adjusted based on actual situation. If the number of concurrently
running transactions is small, which is the same as number of nodes in self-adjusting
acyclic graph, the overhead caused by squared time complexity will not give pressure
to the system. L can be set to N-1. On the other hand, if the number of concurrently
running transaction can be potentially high, the efficiency is a bigger concern than
the accuracy of algorithm. Then L can be set as proper number which is less than
N-1. Since the performance of algorithm will be enhanced significantly(from squared
complexity to linear complexity), these "unnecessary” rejections are endurable sacrifice.
Moreover, in the following decision tree of algorithm 7.3.1, numbers are the line numbers
of pesudo-code in algorithm 7.3.1. In a probability space concerns the execution of
algorithm 7.3.1, the outcomes are the execution of code which’s line number is indicated
by leaf nodes of decision tree. The events of this probability space are: {line 2}, with
probability (1); {line 5}, with probability (1*); {line 9}, with probability (1°); {line
12 and line 13}, with probability (%4); {line 17}, with probability (%5); {line 20 and
line 21}, with probability (%6); {line 23}, with probability (%6); {any one of code in
line indicated by leaf nodes}, with probability 1. When edge E(T;,T;)is issued in self-
adjusting acyclic graph, E(7;,7;) might be declined uncessarily only when statement
23 is executed. So, the probability of unnecessary rejection on this edge is only (%)6.

This is acceptable to a morden database system which’s efficiency is always the most
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important concern.
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7.4 Implement the SAAG on Snapshot Isolation

Protocol

Because self-adjusting acyclic graph is the mechanism that efficiently preserves the
acyclicity of graph, it can be implemented on Snapshot Isolation protocol to preserve

the serializability of schedule under SI at run-time.

In section 6.2, dynamic managed Snapshot Isolation serialization graph was intro-
duced. DSISG is a serialization graph that can ensure the serializability of Snapshot
Isolation protocol at run-time, by preserving the acyclicty of graph. The disadvantage
of DSISG is that N?(N is the number of nodes in DSISG) time will be spent on val-
idating the acyclicity of graph. If DSISG is structured by applying algorithm 7.3.1,
the cost of having a serializable SI protocol can be decreased. With the tolerance of
seldom "unnecessary aborting of transactions”, the worst time complexity can even be

degraded from squared to linear.

Suppose Snapshot Isolation is set as the concurrency control protocol of a database
system. When a transaction is started, the corresponding node will be included in
DSISG. Edges in DSISG are issuing according to definition 5.4.2. When an edge E is
issued, it will be approved or declined by applying algorithm 7.3.1. If E is approved,
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the transaction that issues E can be carried on. On the other hand, if E is declined, the
transaction that issues E will be aborted. The corresponding node of this transaction
together with all edges attached with it are removed from DSISG. To a committed
transaction T, the corresponding node can be removed from DSISG if there are no

active transactions which are concurrent with T.
For example, suppose parameter L is set as 2 to algorithm 7.3.1 in the database
system. The execution of concurrently running transactions under Snapshot Isolation

protocol is presented as below:

Example 7.4.1

Ty i Ry(wg)eevvveeeen- Ry(zg) - vvvvee Wi(p:)
Ty tevvnennns Wo(ag)-wvveen-- Ry (yo)
Ty toeervneeeenns TWg(1fg) « - vvveeeeee e Rs(po)
T, W4(24) R4(Io)
Time Line ‘
a b C d e

At time a, because LV (7})* LV(T3)=0, DSISG is:

T

|

15

T3 T

LV(T})=-1, LV(Ty)=1, LV(T5)=0, LV(T})=0, NV=-1, PV=1

At time b, because LV(T3)* LV(T3)=0, DSISG is:

T

S

15
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LV(T})=-1, LV(Ty)=1, LV(T3)=2,LV(T})=0, NV=-1, PV=2

At time ¢, because LV(T})* LV(T,)=0, TDSISG is:

/

15

/

13

1,
LV(Ty)=-1, LV(T3)=1, LV(T5)=2,LV(T,)=4, NV=-1, PV=4

At time d, because LV (T2)* LV(Ty) # 0, LV(T3)< LV(Ty), Ty ¢ CS(T3), DSISG is:

E(Ty,T5) is declined, node T, and T3 are pushed down.

T

LV(Ty)=-1, LV(Ty)=5, LV(T3)=6,LV(T;)=4, NV=-1, PV=6
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At time e, because LV(T7)* LV(T3) # 0, LV(T))< LV(T3), T3 € CS(T1), DSISG is:

E(T3,T1) is declined, suppose transaction T3 has been run longer than transaction 77,
according to the mechanism introduced at the end of section 5.4 transaction 73 is

aborted. Node T3 is removed from graph.

Ty
L T4
Ty

LV(T})=-1, LV(T3)=5,LV(T})=4, NV=-1, PV=6

As the result, Snapshot Isolation is preserved serializable by using DSISG which is
managed by algorithm 7.3.1.



Chapter 8

Contributions and Open Problems

In this thesis, I provided a new mechanism that makes Snapshot Isolation protocol(SI)

serializable. This mechanism has the following properties:

1. it characterizes the non-serializable transactions under SI at run time by detecting

cycles in a Dynamic Managed Snapshot Isolation Serialization Graph(DSISG);

2. it guarantees the serializability of SI by preserving DSISG acyclic without the

time-consuming acyclicity validation of DSISG.

After the study of Snapshot Isolation, I proved that a variation of classical Multi-
version Serialization Graph can be used to characterize the serializability of Snapshot
Isolation. Transaction that will cause a cycle in the revised MVSG will be character-
ized as non-serializable under SI. Then, I discussed the performance aspects of this
approach when it is dealing with long transaction. If a long transaction is character-
ized as non-serializable and aborted at the very end, the overhead of system becomes
unacceptable. In order to avoid this situation, the dynamic management of graph is

presented. This dynamic managed graph is named DSISG.

I found that the dynamic management of DSISG is not effective when transactions
are programmed by observing the traditional models. After studying the semantic
relationships between operations in transaction, a segmented model of database trans-
action is defined. The efficiency of DSISG is enhanced by following this segmented

model.

Like all graph based concurrency control mechanisms, DSISG suffers from a square
worst time complexity because of the validating of graph acyclicity. I proposed a hi-
erarchical structure of the graph so that DSISG can be preserved acyclic without that
high cost. Nodes are placed in different level in self-adjusting acyclic graph and edges

69
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are only allowed from higher level to lower level. There is no need for my mechanism to
follow the traditional process of serialization graph testing, ”verifying the acyclicity —
approving/rejecting”. Two out of three types of issued edges(1, edge from higher level
to lower level and no isolated node is involved; 2, edge involves at least one isolated
node) can be approved directly. For the third type of edge(edge from lower level to
higher level and no isolated node is involved), numbers of rules are used to validate
it. The efficiency and precision of validation are determined by the value of a pa-
rameter "I.”. When L = N — 1, my mechanism has the same worst time complexity
with the one which use topological sorting to validates the acyclicity of normal DSISG.
However, my mechanism has lower average time complexity. When L < N — 1, the
worst time complexity of my mechanism is decreased to linear, with (%)6 probability
in which edge may be declined unnecessarily. The administrator of database system
can tune the value of parameter L. by observing the performance of system. Higher
the value of L is, more time will be spent on managing graph and fewer transaction
will be aborted unnecessarily. If squared worst time complexity is acceptable in par-

ticular database system, L can be set to N-1 to acquire the best precision of mechanism.

Conclusively, my contributions in this thesis are:

e A graph based approach which characterizes the serializability of Snapshot Iso-

lation protocol at run time, especially when dealing with long transactions.
e A segmented model of database transaction.

e An graph constructing mechanism which preserves the acyclicity of graph more
efficiently. More flexibility and efficiency can be obtained when this mechanism

is applied to approach in contribution one.

The further research on this topic will go through the following steps. Firstly, the re-
using of level value in acyclic graph will be studied. Secondly, an implementation of self-
adjusting acyclic graph will be developed. Thirdly, the program will be implemented in
a database system to work out a criteria of adjusting parameter L. Snapshot Isolation
will be used as concurrency control method of this database system. Finally, the
hierarchical structure of serialization graph will be generalized so that it can be applied

to concurrency control algorithms other than Snapshot Isolation protocol.
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