
University of Wollongong - Research Online
Thesis Collection

Title: The adaptive serializable snapshot isolation protocol for managing database transactions

Author: Yang Yang

Year: 2007

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

The adaptive serializable snapshot

isolation protocol for managing database

transactions

Yang Yang
University of Wollongong

Yang, Yang, The adaptive serializable snapshot isolation protocol for managing database
transactions, M.Comp.Sc. thesis, Computer Science Department, University of Wollongong,
2007. http://ro.uow.edu.au/theses/624

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/624

UW
NIVERSITY

OLLONGONG
OF

The Adaptive Serializable Snapshot
Isolation Protocol for Managing

Database Transactions

A thesis submitted in fulfillment of the

requirements for the award of the degree

Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG

by

Yang Yang

Computer Science Department

February 2007

c© Copyright 2007

by

Yang Yang

All Rights Reserved

ii

Dedicated to

My parents

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Yang Yang
February 15, 2007

iv

Abstract

In this thesis, concept of database concurrency control, computational models of database

transaction, the correct criterias of concurrent execution of transactions and concur-

rency control algorithms such as two phase locking, serialization graph testing, Snap-

shot Isolation are reviewed. A graph based mechanism is proposed for preserving

Snapshot Isolation protocol(SI) serializable at run-time. Firstly, we present Dynamic

Managed Snapshot Isolation Serialization Graph(called DSISG). By using this mecha-

nism, non-serializable transactions under Snapshot Isolation protocol can be detected

at run-time. Secondly, in order to guarantee the effectivity of DSISG, a new model of

database transaction(segmented transaction model) is proposed. Thirdly, an algorithm

of managing a hierarchical structured acyclic graph is presented. The run-time charac-

terzing of non-serializable transaction under Snapshot Isolation protocol will be more

efficient when this hierachical graph structure is applied to DSISG. We also summarize

the contributions of this thesis and formulate some open problems.

v

Acknowledgments

I would like to extend my sincere thanks to my supervisor Dr. Janusz R. Getta

without whose invaluable assistance this thesis would not have been possible.

My thanks also go to the technical staff in the school of Information Technology

and Computer Science for the help they gave me.

I am also grateful to my parents and friends for their supports throughout this

work.

vi

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

2 Database Concurrency Control 4

2.1 Database Transaction . 4

2.2 Transaction model and conventions in concurrency control 6

2.2.1 Transaction Application . 6

2.2.2 Page Model . 7

2.2.3 Object Model . 9

2.2.4 Semantic Model . 10

2.2.5 Transaction model used in this thesis 11

2.3 Correct execution of concurrent transactions 12

2.3.1 Typical concurrency problems 12

2.3.2 Serializability of concurrent execution 14

3 Concurrency Control Algorithms 17

3.1 Pessimistic Protocol . 17

3.1.1 Two Phase Locking . 18

3.1.2 Some variants of two phase locking 20

3.2 Optimistic Protocol . 22

3.2.1 Long Transactions . 22

3.2.2 Serialization Graph Testing . 23

3.2.3 Time Stamp Ordering . 24

3.2.4 Multiversion Concurrency Control 25

vii

4 Snapshot Isolation 29

4.1 Isolation levels . 29

4.2 Snapshot Isolation protocol . 31

4.3 Characterize the serializability of Snapshot Isolation 34

5 Multiversion Serialization Graph for Snapshot Isolation 36

5.1 Motivations . 36

5.2 Multiversion Serialization Graph . 36

5.3 Dynamic Management of MVSG . 38

5.4 Dynamic managed Snapshot Isolation serialization graph 39

5.5 The evaluation of time complexity . 43

6 Segmented Transaction Model 45

7 Self-adjusting Acyclic Serialization Graph 48

7.1 Motivations . 48

7.2 Self-adjusting acyclic graph . 50

7.3 Parameterized Self-adjusting Acyclic Graph 57

7.4 Implement the SAAG on Snapshot Isolation Protocol 65

8 Contributions and Open Problems 69

Bibliography 71

viii

List of Figures

2.1 Example for object model transaction 10

2.2 The serialization graph of a non conflict serializable schedule 16

3.1 Compatibility of Locks in Two Phase Locking 18

3.2 Serialization graph of schedule in example 3.1.1 19

3.3 Wait-for graph of schedule in example 3.1.2 20

3.4 An example of Multiversion Serialization Graph 28

4.1 ANSI SQL Isolation Levels Defined in the terms of phenomena 30

4.2 Interference Graph of Read-only transaction anomaly 35

5.1 MVSG for S5.2.1 under a general Multiversion concurrency control . . 37

5.2 MVSG of S5.2.2 under Snapshot Isolation 38

5.3 non-serializability can be found earlier 39

5.4 Dynamic Managed Snapshot Isolation Serialization Graph 44

ix

Chapter 1

Introduction

In the modern database systems, it is important that transactions submitted by dif-

ferent users can be handled simultaneously. Database transaction is an execution of a

program submitted by a user accessing a shared database. In order to preserve the in-

tegrity and consistency of a database, the concurrent execution of transactions requires

to be equivalent to a serial execution over the same set of transactions. Concurrency

control is the mechanism that guarantees the serializability of concurrent execution.

Database concurrency control algorithms can be classified into two categories: Pes-

simistic Protocol and Optimistic Protocol. Algorithms that belong to Pessimistic Pro-

tocol are based on locking mechanism. The simultaneous accesses on shared data items

are managed by locks, which can be set on and removed from data items on behalf of

transactions. When a data item is locked by a transaction, other transactions that want

to access this data item will be suspended until the lock on it is released. On the other

hand, algorithms that belong to Optimistic Protocol are based on validation after the

execution. Operations on shared data items are alway allowed to be executed. Then

the system will verify the serializability of schedule frequently. Transactions which may

harm the serializability of schedule will be aborted.

Snapshot Isolation protocol(SI) is an optimistic concurrency control algorithm that

has been widely implemented by database system vendors. It precludes many con-

currency problems by managing multiple versions of data items. However SI can not

guarantee the serializability in all cases. During the concurrent execution of trans-

actions, the violation of constrain which involves numbers of data items can not be

prevented by SI. Previously, researcher proposed a mechanism that can characterize

the serializability of Snapshot Isolation protocol. The general idea of this mechanism

is to characterize the non-serializable transactions by evaluating an ad hoc Interference

1

2

Graph of all the transactions that can be executed concurrently. However, this mech-

anism can only be implemented in system design pahse. The aim of this thesis is to

provide an efficient mechanism that makes Snapshot Isolation protocol serializable at

run time. The problem is solved through the following steps.

Firstly, in order to decrease the time spent on characterizing the serializability, I

propose another mechanism which can reach the same objective. The acyclicity of a

graph MVSG is used to characterize the serializability of schedule running under SI.

Because the cost of aborting a transaction at the very end will become unacceptable

when transaction has been running for a long period, I provide a dynamic managed

variation of MVSG(called DSISG) so that non-serializable transactions can be detected

earlier. Moreover, the model of transaction is proposed to be formated by observing

a few principles. Then the earlier detection of non-serializable transaction can be per-

formed more efficiently on this well formated model.

Secondly, because the overhead of characterizing the acyclicity of DSISG will grow

unacceptable when the number of concurrent transactions increase significantly, I pro-

pose a mechanism which makes it more efficient to detect nodes that may cause a cycle

in DSISG. A new hierarchical structure of DSISG is introduced. Two variations of

algorithm that manages this hierarchized graph are provided. The tradeoff between

efficiency and precision are discussed as well.

In this thesis I mainly focus on solving the above problems theoretically. It should

be acknowledged that no real implementation of these solutions is included in this the-

sis. In the future, experiments will be made to confirm the theoretical evaluation of

solutions presented in this thesis.

The thesis is structured as follows:

Chapter 1 provides a brief description of the main problems and a strategy for so-

lutions thereof.

Chapter 2 introduces the concept of database concurrency control. Computational

models of database transaction are presented. The correct criterias of concurrent exe-

cution of transactions are also given.

3

Chapter 3 presents numbers of basic concurrency control algorithms from two cat-

egories.

Chapter 4 studies Snapshot Isolation protocol. Defect of Snapshot Isolation proto-

col is pointed out after describing the algorithm. Previous solution by other researcher

on solving this defect is also presented.

Chapter 5 discusses the limitation of the solution mentioned in chapter 4. An ap-

proach called DSISG is elaborated.

Chapter 6 proposes the segmented model of database transaction, which makes

DSISG more implementable.

Chapter 7 describes how to minimize the system overhead while preserving the

serializability of Snapshot Isolation. Self-adjusting acyclic graph is presented and al-

gorithm that manage self-adjusting graph is studied.

Chapter 8 summaries the contributions of this thesis and formulates some open

problems.

Chapter 2

Database Concurrency Control

The ability of concurrently handling the tasks submitted by the different users is one

of the main requirements imposed on the modern database systems. Database concur-

rency control deals with the issues arising when the users simultaneously process shared

data. The main objective of concurrency control algorithms is to find a correct and effi-

cient synchronization of concurrent processes accessing the shared database resources.

Protocols, criteria and efficiency issues of the database concurrency algorithms control

have been studied by the researches in recent twenty years([6],[12], [25], [2], [3]). This

chapter reviews the basic concepts of concurrency control in database systems. The

definition and the intuitions related to a concept of database transaction are presented

in section 1.1. Section 1.2 presents the evaluation criteria of concurrency control proto-

cols. A conceptual model of a database system used in this thesis is included in section

1.3.

2.1 Database Transaction

A database transaction is an execution of a program submitted by a user accessing a

shared database. The transactions retrieve and modify data. Logically, a transaction

consists of numbers of read operations and write operations(include insert, update and

delete). A boundary of transaction should is marked by a start and a commit(abort) of

program. Because numbers of transactions may access same data simultaneously, the

following features should be attached to database transaction to ensure the consistency

of database content. In order to preserve database consistency the transactions must

satisfy the properties listed below.

1. Atomicity:

From the perspective of a user, a transaction is executed completely or not at

4

2.1. Database Transaction 5

all. Transaction is ended with ”commit” or ”abort”. At ”commit” point a trans-

action completes successfully without any errors. At ”abort” point a transaction

is canceled and a database is automatically brought back to a state it was before

the transaction started. In this situation, the database appears that the trans-

action had never been executed at all. The same actions are performed when

a transaction fails due to the events like hardware corruption, operation system

failure etc.

2. Consistency:

The consistency of a database system is preserved by enforcing the logical con-

sistency constrains.A transaction must take a database from one consistent state

to another. For example, the debit record and credit record of one customer in

a bank’s database should be mutually consistent. When a transaction is about

to commit, the constraints like the one listed above must be satisfied. However,

while a transaction is processed, the temporally inconsistent states are tolerated

and unavoidable.

Normally, the enforcement of database consistency is implemented by checking

constraint . At a certain stage of transaction execution, the logical consistency

constraints will be verified on an updated database. If the verification fails then

transactions reaches its ”abort” pint and it is automatically rolled back. On

the other hand, because of the properties of transactions, many consistency con-

straints do not have to be checked. For example, for a constraint requiring a

quantity to be positive, there is no need to check this constraint after the execu-

tion of a transaction which increases that quantity.

3. Isolation:

A transaction is isolated from the other transactions. It means that transactions

do not communicate one with each other and transactions can only operate on

a consistent state of a database. Only the results of committed transactions are

”visible” to the other transaction. This property hides the concurrent executions

of the transactions from the database users. A sufficient condition for isolation is

that the concurrent executions of the transactions are equivalent to the sequential

ones.

4. Durability:

The results of committed transactions must remain permanent in a database. The

modifications to a database should be able to survive the software or hardware

2.2. Transaction model and conventions in concurrency control 6

failures.

Summarizing, an execution of a transaction is a sequence of read and/or write opera-

tions and it should end with either ”commit” or ”abort”. ACID properties guarantee

the consistency and security of database system accessing by concurrently running

transactions.

2.2 Transaction model and conventions in concur-

rency control

2.2.1 Transaction Application

Typically, a database application is a computer program that consists of a mixture of

SQL statement and the statements of a general purpose programming language(such

as JAVA or C, etc). The database applications submitted by the users are executed by

a database system as the database transactions. The following example shows a sam-

ple database application and its sample execution traced as a sequence of elementary

operations forming a database transaction.

Example 2.2.1

Then debit/credit transaction can be considered the most popular transaction example

and has become the basis of TPC-A, TPC-B benchmarks which measure the perfor-

mance in database environments typical in transaction processing applications.([23])

Suppose there is a user who want to transfer a mount of money from account A to

account B, the following application will handle this request.

Procedure transfer(accA in number,

accB in number,amount in number)

Declare

accB balance number;

accA balance number;

Begin

select balance from acc into accA balance

where acc number=accA;

accA balance := accA balance-amount;

if accA balance < 0 then /*Statementα*/

2.2. Transaction model and conventions in concurrency control 7

abort;

else

begin

update acc set balance=accA balance

where acc number=accA;

select balance from acc into accB balance

where acc number=accB;

accB balance := accB balance+amount;

update acc set balance=accB balance

where acc number=accB;

commit;

end;

end if;

end;

To study the synchronization of database transaction we do not need to consider

all details of the application listed above. A sequence of operations on data items is

completely sufficient. For example, the execution of the application listed above may

results with the following sequence of operations on data items:R(a)R(b)W (a)W (b)C.

In the following sections, variant computational models of database transactions will

be formally presented.

2.2.2 Page Model

The page model of transactions was the subject of theoretical studies since paper [17]

and [4]. Now, it is the widely accepted by researchers as the conventional model of

database transaction. From an execution trace of the sample application above we find

that all higher-level operations can be mapped to read operation(select statement) and

write operation(insert or update statement) on pages(also known as blocks).In the page

model a database consists of a finite set of data items. The data item may be thought as

pages as these are the elementary items involved in read and/or write operations. When

an application is executed, a sequence of operations is submitted by the application to

a database server. From a database server side a sequence of executed operations is

considered as a transaction. If in an application given in example 2.2.1 a return value

of statement α is true, then a transaction recognized by a database server is:

T1 : R(accA balance) abort

2.2. Transaction model and conventions in concurrency control 8

Otherwise, if the return value of α is false, then a transaction is formed by the following

operations:

T2 : R(accA balance) R(accB balance) W (accA balance) W (accB balance) commit

Furthermore, we find that operations in page model of transaction are not necessary to

be totally ordered. As long as ACID principles apply, the order in which two or more

operations are executed does not matter. For the transaction T2 above, the final result

in a database will be no different if the order of operations is changed to:

T2‘ : R(accA balance) W (accA balance)

R(accB balance) W (accB balance) commit

A page model of transactions is defined as follows. ([25]).

Definition 2.2.1 Page Model Transaction

A transaction is a pair

t = (op,<)

where op is a finite set of steps of the form r(x) or w(x), x ∈ D, and < ⊆ op× op is a

partial order on set op for which the following holds: if p, q ⊆ op such that p and q both

access the same data item and at least one of them is a write step, then p < q ∨ q < p.

Therefore, in the page model of transactions, a read and write operations on the same

data item, or two write operations on the same data item, must be ordered.

In a database application, when a data item is read its value is saved in a local

variable. The value of the variable will be available for any possible further operation

on the same data item until transaction is completed. Moreover, only the last write

step determines the final value of data item produced by the transaction. Any other

write operations on the same data item will be overwritten. On the other hand, before

a data item x is written, the new valued will be computed and stored in a local variable

as long as the transaction is still running. Then, after the write operation on x, the new

value can be accessed from the local variable. Any further read of x from the database

will lead to an unnecessary overload. Therefore, the following additional rules enhance

the page model of transactions:

• A transaction reads or writes a data items at most one time.

• No data item is read after it has been written.

In the page model of transactions, the concurrent execution of a set of transactions

can be mapped into a sequence of operations. Such sequence is called as a schedule

2.2. Transaction model and conventions in concurrency control 9

[25]. A software that ensure the correctness of a schedule by applying an implemented

concurrency control technique is called as a scheduler.

Definition 2.2.2 Let T = t1, t2, · · · be a limited set of transactions. Each ti ∈ T has

the form ti = (opi, <i) with opi denoting the set of operations of ti and <i denoting

their ordering, 1 ≤ i ≤ n

A schedule for T is a pair s=(op(s), <s) such that:

1. s consists of the union of the operations from the given transactions plus a termi-

nation operation, which is either a ci(commit) or an ai(abort), for each ti ∈ T ;

2. for each transaction, there is either a commit or an abort in s, but not both;

3. all transaction orders are contained in the partial order given by s;

4. the Commit or Abort operation always appears as the last step of a transaction;

5. every pair of operations p, q ∈ op(s) from distinct transactions that access the

same data item and have at least one write operation among them is ordered in

s in such a way that either p <s q or q <s p

2.2.3 Object Model

The object model of transactions has been proposed in [1]. It provides a framework

for operations on arbitrary types of objects. Additionally, it is possible in the object

model to clearly describe the case where an transaction is nested and called by other

transaction.

Definition 2.2.3 Object Model Transaction

A transaction t is a finite tree of labeled nodes with

• the transaction identifier as the label of the root node,

• the names and parameters of invoked operations as labels of inner(i.e., non-leaf,

non-root) nodes,

• page model read/write operations as labels of leaf nodes, along with a partial order

”<” on the leaf nodes such that for all leaf node operations p and q with p of the

form w(x) and q of the form r(x) or w(x) or vice versa, we have p < q ∨ q < p

2.2. Transaction model and conventions in concurrency control 10

T (2)

²² ,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Withdraw(accA, amount)

²² **UUUUUUUUUUUUUUUU
Deposit(accB, amount)

²² **TTTTTTTTTTTTTTT

search(acc)

²²

modify(acc)

²²

search(acc)

²²

modify(acc)

²²
R(x) W (x) R(y) W (y)

Figure 2.1: Example for object model transaction

For example, the object model of transaction T(2) in section 2.2.2 is presented in figure

2.1. Compare with the page model, object model is an enriched alternation page model.

The semantics and business logic inside the application is shown explicitly in object

model. In figure 2.1, we can see transaction T(2) logically consists two part:withdraw

and deposit. Before operations access the page in database in leaves level, the ac-

cessing of table ”acc” is shown in level 3. This object model of transaction presents

rich information such as semantics, operations and object(such as table, index) be ac-

cessed in transaction,such that implementation performance of concurrency running

transactions can be acquired.

2.2.4 Semantic Model

The semantic model of database transactions has been proposed in [3].The model allows

for the explicit demonstration of the preconditions and postconditions in a transaction.

Unlike listing the operations on various data items, the semantic model present the se-

mantics of transaction application. The semantics of a transaction, Ti, can be formally

characterized by the triple:

{Ii ∧Bi ∧ (xi = X i)}Ti{Ii ∧Qi}

where I is a logical consistency constraint imposed on the contents of a database,

and Ii is the conjunction of I required for the correct execution of Ti.For example,

in the application given in example 2.2.1, the consistency constraint is: the balance

of all accounts can not be negative. Consequently, Ii is both the precondition and

the postcondition of Ti. Bi describes all conditions that Ti assumes to be true of the

arguments passed to it. In the example 2.2.1, amount is the parameter representing the

2.2. Transaction model and conventions in concurrency control 11

money to be transfered from account A to account B, thenBi should assert amount ≥ 0.

Qi is the result and asserts that Ti has achieved its purpose. In the same example, if

Ti transfer the money successfully, the final balance of account A is less than initial

balance while the final balance of account B is more than initial one. In semantic

model, the initial value of database variable is recorded by X i. xi holds the value that

changed by transaction Ti. Then, the semantic model of transaction in example 2.2.1

is:

{accA.balance ≥ 0 ∧ accB.balance ≥ 0 ∧ amount ≥ 0

∧accA.balance = BAL1 ∧ accB.balance = BAL2}

Ti

{accA.balance ≥ 0 ∧ accB.balance ≥ 0 ∧ accA.balance = BAL1− amount

∧accB.balance = BAL2 + amount}

The execution of a transaction is correct if the first and third part of semantic model

is true(i.e. semantic correct). Likewise, the concurrent execution of transactions is

correct if all transactions are semantic correct. However, the critical defect of semantic

model is, it is hard to be implemented. The semantic modelization of transaction can

not be fulfilled as easy as the other two models. The analysis of interference between

semantics of transactions is also hard to be realized by computer while it can be easily

implemented by locking mechanism in page model. Therefore, there are not many

researchers study database concurrency control by following semantic model since it

has been proposed.

2.2.5 Transaction model used in this thesis

In the former three sections, I introduced three different computational model for

database transaction. Page model and object model belong to one family while seman-

tic model belongs to another. Page model and object model describe the transaction by

abstractly presenting the detail of operations and data items involved in transaction.

Then the correctness of concurrently running transactions can be assured by solving

the conflicts between operations. The difference between page model and object mode

is object model contains more information like accessed tables or indexes. Moreover,

nested transaction can be described clearer by object model. On the other hand, se-

mantic model ignores the specific details of operations and on which data items these

operations are executed. Preconditions and postconditions of transaction are elab-

orated in semantic model by applying Hoare’s logic([14]). When preconditions and

postconditions are true we say that the execution of transaction is semantic correct.

2.3. Correct execution of concurrent transactions 12

Then the concurrent execution of transactions can be guaranteed if every single trans-

action is semantic correct.

In the scope of this thesis, the complicated analysis of semantics or nested trans-

actions will not be included. The fundamental and algorithms of concurrency control

can be clearly expressed and easier understood in the simple page model. More impor-

tantly, one of my solutions, ”segmented transaction model” which will be presented in

chapter 6 is also based on page model. Consequently, only page model will be used as

conventional transaction model in this thesis.

2.3 Correct execution of concurrent transactions

As stated above, the main objective of database concurrency control is to avoid the

incorrect execution of concurrent transactions. So, the formal definition of correctness

is necessary for the study on concurrency control algorithms. After the introduction

of the concept of database transaction and its computational model, this section will

focus on the page model of transactions and discuss the correctness for their concurrent

execution.

2.3.1 Typical concurrency problems

Because database transaction can be executed concurrently, some data items might be

accessed by some operations belong to different transactions. We say two operations

conflict with each other if they are on the same data item and at least one of them is

write operation. In the absence of proper concurrency control, conflicting operations

may breach the ACID of particular transactions. The following example is a typical

concurrency problem is known as ”dirty read”.

Example 2.3.1

T1: write(x) abort

T2: read(x) write(x) commit

X is a bank account. The balance of x is not allowed to be negative and it is 100$ at

the moment. Suppose Mr. and Mrs Smith all have the privilege to access account x.

One day Mr. Smith starts a transaction T1 while Mrs. Smith starts another one T2 at

the same time. Firstly, T1 deposits 100$ into x, so balance(x) becomes 200$ temporally.

Then, T2 try to withdraw 200$ from x. Before this operation can be executed, T2 will

2.3. Correct execution of concurrent transactions 13

read x to check whether it has enough money. Because of the absence of concurrency

control, T2 will get the value that created by T1, which is 200$. Then the request of

withdraw is approved, T2 commit. After that, Mr. Smith will get his 100$ back by

aborting that deposit transaction T1. The result is, the balance of x becomes negative.

The reason of the database corruption above is, there is no proper concurrency

control on the operation which tries to read an uncommitted(dirty) data item. The

uncommitted modification on data item might be discarded later by aborting cor-

responding transaction. Then the consistency of database may be broken by some

operation based on the value of dirty read data.

Dirty read is the concurrency problem which involves with one read operation and

one write operation on the same data item. The next example will present an incor-

rectness which involves two write operations.

Example 2.3.2

T1: read(x) write(x)commit

T2: write(x) commit

x is still the bank account that can be accessed by Mr. and Mrs Smith simultaneously.

The balance of x is 100$. T1 and T2 are started by the couple individually at the same

time. Firstly, T1 tries to withdraw 100$ from x. After read(x) is executed to check

whether the money in x is enough to be withdrawn, T2 deposit 100$ into x. Balance(x)

is updated as 200$ temporally. Then request of withdraw in T1 is approved. Because

the unawareness of the modification made by T2 on x, T1 will update and commit the

balance of x as zero. At last, the balance of x will still be zero after T2 is committed.

Then, Mr. and Mrs Smith will lost 100$ and the bank encounters an inconsistency

between ledger and cashes.

In the example above, the modification on x made by T2 was overwritten by T1, i.e.

the T2’s update is lost. The isolation property of T2 was violated by this lost of update.

That violation leads to the incorrect execution of T1 and T2. What can be seen from

the above examples is that the data accesses performed by concurrently executing

transactions have a potential of conflicting with each other. Therefore, some form

of concurrency control has to be taken to ensure the correct execution of concurrent

transactions. In examples above, the correctness criteria is the common sense of bank

2.3. Correct execution of concurrent transactions 14

business. However, for the research work on concurrency control of transactions, a

general criteria of correctness must be defined formally. The next chapter will manifest

numbers of classical correctness criteria of concurrent execution of transactions.

2.3.2 Serializability of concurrent execution

In the preceding examples, the errors were caused by the interleaved execution of op-

erations from different transactions. To avoid these and other problems, the kinds of

interleavings between transactions must be controlled. One way to avoid interference

problems is not to allow transactions to be interleaved at all. For a pair of transaction,

if one transaction is not allowed to start until the transaction before it has been explic-

itly committed or aborted, the execution of these transactions is called serial. Serial

executions are correct because each transaction individually is assumed to be correct,

and transactions that execute serially cannot interfere with each other. However, if

DBMS is forced to process transactions serially, it may make very insufficient use of

its resource. DBMS will become inefficient without the concurrency. In order to ac-

quire a DBMS which can handle transactions efficiently and correctly, we can include

other executions of the same set of transactions as long as they have the same effect as

serial ones. Such executions are call serializable. An execution of set of transactions

is serializable if it produces the same output and has the same effect on database as

one possible serial execution of the same transactions. Since serial execution is always

correct, and since serializable execution has the same effect as a serial execution, the

correctness of serializable execution is self-proved.Look back at ”lost update” presented

in example 2.3.2, the execution is incorrect because it is not serializable. Two possible

serial execution of two transactions in example 2.3.2 is T1 → T2 or reverse. The result

of these two serial executions are all balance(x) = 100$. However, the result of execu-

tion in example 2.3.2 is balance(x)=0 which does not equal to the result any possible

serial execution. So, this execution is not correct(serializable).

Compare with the general concept of serializable mentioned above, view serializable(

proposed in [27]) is a specific criteria of serializability and especially useful for the formal

treatment of concurrency control algorithms for multiversion data.

Definition 2.3.1 Concurrent execution of database transactions is view serializable if

there exists a possible serial execution of the same set of transactions such that in both

executions each transaction reads the same values and the final states of the database

are the same.

2.3. Correct execution of concurrent transactions 15

However, the complexity of testing the view serializability of a schedule is proved to

be NP complete. It means that it takes to much time to check whether execution

of a database operation violates view serializability correctness criterion. So, due to

the high complexity of its recognition problem, view serializability is inappropriate as

a correctness notion for practical scheduling algorithms. So, conflict serializability is

proposed.

Another notion of serializability , conflict serializability, is the most important for

the practice of database concurrency control. It is computationally easy to test and

differs significantly from view serializability. Conflict serializability is based on a notion

of conflict that was briefly mentioned in section 2.3.1. Let s be a schedule, Ti and Tj

are different transactions belong to this schedule. We say two operations p ∈ TI and

q ∈ Tj are conflict with each other in s if they access the same date item and at least

one of them is a write. conf(s) = {(p, q)|p, q are in conflict in s and p <s q} annotates

the conflict relation of s.

Definition 2.3.2 Concurrent execution of database transactions is conflict serializable

if there exists a possible serial execution of the same set of transactions such that in

both executions the order of conflicting operations is the same.

For the schedule which caused ”lost update” in example 2.3.2,

conf(s) = {(r1(x), w2(x))(w2(x), w1(x))}

and this conflict relation can be obtained from the serial execution T1 → T2 or T2 → T1.

Therefore, schedule in example 2.3.2 is not conflict serializable.

The most important difference between conflict serializable and the previously in-

troduced view serializable is that the former can be tested efficiently. The conflict

serializability of a schedule can be characterized via the corresponding serialization

graph. In serialization graph, nodes represent committed transactions. Directed edge

from transaction Ti to transaction Tj indicates that there are operations p ∈ Ti and

q ∈ Tj such that p and q are in conflict. The order of conflicting operations is repre-

sented by the direction of edge. Consider the following schedule:

s = R1(y)R3(p)R2(y)W2(y)W3(x)R2(q)C2W3(q)C3W1(p)C1

Conflicts (R1(y),W2(y)) and (R2(q),W3(q)) mean that in a serial execution T1 < T2 <

T3. However, conflict (R3(p),W1(p)) says that T3 should be prior to T1 in a serial

2.3. Correct execution of concurrent transactions 16

execution. Obviously, those are impossible to meet simultaneously. The dilemma is

represented as a cycle in serialization graph of s(shown in Figure 2.2, which means s

is not conflict serializable. In [9], the theorem widely known as ”conflict serializability

T1
// T2

~~~~
~~

~~
~

T3

``@@@@@@@

Figure 2.2: The serialization graph of a non conflict serializable schedule

theorem” is defined:

Definition 2.3.3 Let s be a schedule. Then s is conflict serializable if and only if

serialization graph SG(s) is acyclic.

Compare with view serializability, conflict serializability is more restrictive. A schedule

which is conflict serializable is also view serializable but a view serializable schedule is

not necessary also conflict serializable. More concurrency is available if a scheduler is

based on view serializability. From a practical point of view, the complexity of testing

the view serializability of a schedule s is much higher than that of the conflict serializ-

ability of s. Consequently, most known single-version concurrency control algorithms

are conflict serializability based. Their goal is to order conflicting operations in a con-

sistent way. The result of concurrent execution under these algorithms produce only

conflict serializable. On the other hand, as stated previously, the concept of view serial-

izability is very useful for multiversion concurrency control algorithms. An alternation

of criteria especially for multiversion called One-copy serializability will be elaborated

in the next chapter.

In addition to view serializable and conflict serializable, other correctness crite-

rias were also studied by researches. Some are more restricted than conflict serializable

such as order-preserving serializable, recoverable execution, cascadeless execution which

were proposed in [24], [7]. Some like partial order serializability, predicatewise serial-

izability ([15]) are proposed for the implementation of particular database on which

CAD or CAD-like applications are running. Moreover, a criteria which is based on the

semantic of transactions are proposed in [3]. In this thesis, all the concurrency control

mechanisms will focus on view serializability and conflict serializability.



Chapter 3

Concurrency Control Algorithms

Database concurrency control algorithms are categorized into two types of algorithms

depending on a way the algorithms handle the conflicting operations. A group of

concurrency control algorithms called as pessimistic protocols blocks the execution of

an operation that conflicts with an operation executed earlier by another transaction.

A group of concurrency control algorithms called as optimistic protocols never blocks

the execution of an operation. The verification of conflict serializability criterion is

performed in certain frequency, normally it is only once when transaction is about

to commit. When the verification fails a transaction that caused a non-serializable

execution is forced to abort. This chapter reviews the major database concurrency

control algorithms that belongs to pessimistic and optimistic protocols.

3.1 Pessimistic Protocol

The simultaneous access to the shared data items is managed by the locks set on and

removed from the data items on behalf of a transaction. A data item locked by a

transaction is not available to other transactions until a lock is released. Before a

transaction T is allowed to access a data item x, it has to request a lock on the data

item. Next, the scheduler checks whether x has been locked by another transaction or

not. If a lock has been set on x on behalf of another transaction then transaction a

request to grant the lock is suspended and T has to wait till data item x is unlocked.

If a data item x is not locked than the requested lock is granted to a transaction T,

x is locked by the scheduler on behalf of the transaction, and intended operation is

performed by a transaction T on a data item x. A transaction T releases a lock on

x when access to x is no longer needed. Then the scheduler checks whether there

is another blocked transaction in a queue of transactions for the lock on x. If it is,

transaction in the head of queue will obtain the lock and resume. All the pessimistic

protocols are based on the locking mechanism described above. Different kinds of locks

17



3.1. Pessimistic Protocol 18

are managed in the different ways by different algorithms.

3.1.1 Two Phase Locking

Two phase locking is the most frequently implemented concurrency control algorithm

in the commercial database systems. Based on page model of transaction, two kinds

of locks are involved in two phase locking. When a data item x is read or written by

an operation which belongs to transaction T, a read lock(rl)or write lock(wl) will be

put on x on behalf of T. Similar to the way operations on the same date item conflict

in page model, different locks on the same data item will also conflict with each other

in certain way. The table below shows the compatibility between read and write lock.

Read Lock(x) Hold by Ti Write Lock(x) Hold by Ti

Read Lock(x) Request by Tj Granted if i 6= j Rejected
if i = j Granted

Write Lock(x) Request by Tj if i 6= j Rejected if i 6= j Rejected
if i = j Granted if i = j Granted

Figure 3.1: Compatibility of Locks in Two Phase Locking

Two locks pli(x) and qlj(y) are in conflict if x=y, x 6= j, and operations p and q

are in conflict(i.e., at least one of them is write operation). The requested lock issued

by transaction Ti will be blocked by the conflicting lock that has already been held by

other transactions Tj. This lock can be granted to Ti when Tj releases the conflicting

lock. Therefore, read lock is also called shared lock and write lock is called exclusive

lock. On the other hand, if x=y and i=j, the requested lock will be granted anyway.

Transaction running under two phase locking protocol consists of two phases: lock ac-

quiring phase and lock releasing phase. Each transaction must acquire all locks before

it is terminated. No lock held by a transaction T could be released until T is termi-

nated. In the following, an example will be given to present how two phase locking

works.

Example 3.1.1

Suppose transactions T1, T2, T3 are running concurrently under two phase locking. The

submission order of operations is shown below:

T1 : R1(x) W1(x) W1(z)C1

T2 : R2(y) R2(x) W2(x)C2

T3 : R3(z) W3(y) C3



3.1. Pessimistic Protocol 19

Then the execution of this schedule can be mapped into the following history:

RL3(z), R3(z), RL1(x), R1(x), RL2(y), R2(y), WL1(x), W1(x),

WL3(y) blocked, RL2(x) blocked, WL1(z) blocked, WL2(x) blocked, C3,

RL3(z) released, WL1(z), W1(z), C1, WL1(x) released, WL1(z) released,

RL2(x), R2(x), WL2(x), W2(x), C2

Obviously, because some of the operations have been suspended by locking mechanism,

the concurrent execution of the transactions under two phase locking is equivalent to

the following serial execution: T3 < T1 < T2. Consequently, the order of conflicts be-

tween operations is preserved. The schedule in example 3.1.1 is conflict serializable.

More intuitively, the equivalent serial execution of schedule s under two phase locking

can be described by serialization graph(s).

T3

~~~~
~~

~~
~

T1
// T2

Figure 3.2: Serialization graph of schedule in example 3.1.1

Under two phase locking, transaction will not release the locks it holds until all

locks it requires are granted. So, it is possible that a group of transactions will be

suspended forever if each of them requires conflicting locks that have already been held

by the others. For example, in the simplest case with only two transactions T1 and T2,

T1 requests a conflicting lock that T2 is holding so that T1 is waiting for T2 to releas

it, meanwhile, T2 requests a conflicting lock that T1 is holding so that T2 is waiting

for T1. Then T1 and T2 will be blocked by each other and no transaction is able to go

on. This defect of two phase locking algorithm is called ”deadlock”. A straightforward

way to solve this problem uses a timeout period. Once a transaction T is waiting for

a lock longer than for a timeout period, the scheduler assumes that T is involved in a

deadlock and aborts the transaction. This technique is not completely reliable as the

correct recognition of a deadlock depends on the length of timeout. Longer a timeout

period is, more probable it is to recognize a deadlock correctly. On the other hand, a

shorter timeout period implies less time time spent by the transactions in an idle state.

So, the tunning of timeout period becomes tricky and it can not be guaranteed that

there is not ”innocent” transaction is aborted by this deadlock guessing approach.

3.1. Pessimistic Protocol 20

Another solution to deadlock problem is to construct and to maintain a wait-for

relationships while the transactions are running. The wait-for relationship between con-

flicting operations can be revealed by wait-for graph(WFG). WFG is a graph G =(V,E)

whose nodes are the active transactions, and in which an edge of the form(Ti,Tj) indi-

cates that Ti waits for Tj to release a lock that it needs. Obviously, a cycle in wait-for

graph reveals a deadlock. As an example consider the following concurrent execution

of three transactions controlled by two phase locking scheduler.

Example 3.1.2

T1: R1(x) R1(y) W1(y) R1(z) C1

T2: W1(x) R2(p) W2(p) C2

T3: R3(q) W3(z) R3(p) C3

In this schedule, T2 is waiting for T1 to release lock on x; T3 is waiting for T2 to release

lock on p; T1 is waiting for T3 to release lock on z. The wait-for graph of this execution

is:

T1

~~~~
~~

~~
~

T2
// T3

``@@@@@@@

Figure 3.3: Wait-for graph of schedule in example 3.1.2

A cycle in a wait-for graph indicates a deadlock

When a deadlock is discovered by the scheduler, one involved transaction will be

aborted to break the deadlock. Then, the scheduler releases all locks held by the

aborted transaction and the transactions waiting for these locks can be continued.

3.1.2 Some variants of two phase locking

In addition to the original two phase locking(2PL) algorithm, many other pessimistic

algorithms based on a similar idea have been proposed in the past. Conservative 2PL

is a more restricted version of two phase locking in a way that it eliminates deadlocks

at the expense concurrency level. A transaction controlled by a conservative 2PL

scheduler is not allowed to continue until all locks it needs are granted at a start point.

It needs a transaction T to declare its entire read, write sets in advance. If some the

requested locks are already held by the running transactions then T has to wait. This



3.1. Pessimistic Protocol 21

is why a blocked transaction never holds a lock and because of that two transactions

will never block each other. In [25], the definition of this conservative two phase locking

is presented as:

Definition 3.1.1 Under conservative 2PL each transaction sets all locks that it needs

in the beginning, i.e., before it executes its first r or w step. This is also known as

preclaiming all necessary locks up front.

Altruistic locking(AL) protocol proposed in [18] is an extension of two phase lock-

ing protocol motivated by the inefficient performance of when dealing with the long

transactions. A long transaction is a transaction that has much longer execution time

when compared with the ordinary transactions. Transactions under two phase locking

will not release locks it held unless all required locks are granted. The transactions

waiting for the items locked by a long transaction are delayed for a long period of time.

So, the performance problem of 2PL is serious when dealing with long transactions.

Under altruistic locking protocol, the transactions are allowed to hold conflicting

locks on a data item simultaneously under certain conditions. Besides set lock and

release lock, AL protocol introduces a third access control operation called as donate.

The donate operation is used to notify the scheduler that the transaction will no

longer access a data item that has been locked by it. Then the locked data item

can be ”donated” to other transaction which requires an access on it. The donating

transaction is allowed to put lock on other data items in the future. Lock and donate

operations do not need to follow a two phase rule. The formal definition of altruistic

locking is presented in the paper [18]:

Definition 3.1.2 A scheduler is an altruistic locking scheduler if it is a 2PL scheduler

and obeys the following four rules:

1. Items can not be read or written by Ti once it has donated them;

2. Donated items are eventually unlocked;

3. Transactions cannot hold conflicting locks simultaneously, unless one has donated

the data item in question;

4. If a transaction Tj locks a data item that has been donated (and not yet unlocked)

by another transaction, we say that it is in the wake of the donating transaction

Ti. Tj is indebted to transaction Ti in a schedule s if



3.2. Optimistic Protocol 22

• oi(x), di(x)(the donating on item x by transaction Ti), pj(x) ∈ op(s) such

that pj(x) is in the wake of Ti and

• either oi(x) and pj(x) are in conflict or some intervening operation qk(x)

such that di(x) <s qk(x) <s pj(x) is in conflict with both oi(x) and pj(x)

When a transaction Tj is indebted to another transaction Ti, Tj must remain

completely in the wake of Ti until Ti begins to unlock items.

Similar to conservative 2PL, altruistic locking requires the read set and write set of a

transaction to be provided before the transaction starts. Altruistic locking does not

solve the long transaction problem completely although it reduces the likelihood of

transaction’s long period delaying. It is still possible that some transactions suffer long

time waits under altruistic locking. In the next section, algorithms belong to another

family will be introduced. The simultaneous accesses to same data items will never

be delayed by optimistic algorithms. Different approaches but not locking are used by

optimistic algorithms to ensure the serializability.

3.2 Optimistic Protocol

In this chapter, the concept and features of long transaction will be introduced at first.

Then optimistic algorithms will be studied from two classes: single-version algorithms

and multi-version algorithms.

3.2.1 Long Transactions

A long transaction has a longer duration than regular transaction. Long transac-

tion may access many data items, perform lengthy computations, pause frequently for

feedback of users, etc. For example, in a bank system, the transaction which com-

putes the interests of all accounts for entire last year can easily take several hours.

Similarly, a transaction that reads/writes large file(a few gigabytes) will also take a

significant amount of time. Because pessimistic algorithms such as two phase locking

and conservative 2PL require lock to be kept for the whole duration of transactions,

the performance of system might be badly harmed by the delaying of transactions.

Optimistic algorithms allow transactions to be executed concurrently without de-

laying. When a transaction is about to commit, some validation processing will be

taken to ensure the serializability of the whole schedule. If validation succeeds, the



3.2. Optimistic Protocol 23

transaction commits. Otherwise, the transaction will be aborted and restarted. So,

to a system in which most transactions are long transactions, optimistic algorithm is

more efficient than algorithms based on locking.

3.2.2 Serialization Graph Testing

As discussed in section 2.3.2, serialization graph is an useful graphical approach that

can be used to characterized the conflict serializability of schedule. The concurrent

execution of a set of transactions is conflict serializable if and only if corresponding

serialization graph is acyclic. In [8], Serialization Graph Testing(SGT) was developed

as an optimistic algorithm. According to the original definition of serialization graph,

a serialization graph contains nodes for all committed transactions and for no others.

Such SG differs from the one that is maintained by SGT scheduler. In SGT sched-

uler’s serialization graph, only node for active transaction will be included. A node will

be added in or removed from the graph when corresponding transaction is started or

committed. A different term, stored serialization graph(SSG) is used to denote the SG

maintained by a SGT scheduler. The conflict serializability of execution is guaranteed

by preserving the acyclicity of stored serialization graph.

When an operation pi(x) of transaction Ti arrives and pi(x) is not commit, it can

be executed anyway. If pi(x) is the first operation of Ti, the scheduler creates a node

for Ti in current serialization graph G. Then conflict edge will be inserted in G if pi(x)

conflicts with others. On the other hand, if pi(x) is commit, the cyclicity of G will be

evaluated. If G is acyclic, Ti is allowed to commit. If G is cyclic, transaction Ti will be

forced to abort. The node for Ti and all edges connects to it are removed from G. For

a node stands for a committed transaction in serialization graph G, it can be removed

from G as long as it is a source node(a node without outgoing edges). For example ,

consider the following schedule:

Example 3.2.1

These transactions are running concurrently under Serialization Graph Testing:

T1 : R1(x) W1(x) W1(y)C1

T2 : R2(y) R2(x) W2(z)C2

T3 : R3(z) W3(z) C3

Before C1 can be executed the serialization graph is:

There is a cycle in the graph, so T1 will be aborted, node T1 will also be removed



3.2. Optimistic Protocol 24

T1

xx
T2

88

T3

from graph. When C2 is arrived, the serialization graph is:

T2 T3
oo

The acyclicity of graph means T2 is able to commit. Because node T2 is not a

source node, it can not be removed from graph. The serialization will still be remained

as above. When C3 is arrived, transaction T3 will be allowed to commit. Because node

T3 is a source node and stands for a committed transaction, it can be removed from

graph. After that, node T2 becomes a source node. So it can be removed too.As the

result, by aborting T1 which violates the conflict serializability, a serializable execution

of T2 and T3 is preserved.

Serialization Graph Testing is such an intuitive and important algorithm that most

other graphical concurrency control mechanisms are based on it. In the future part

of this thesis, number of graphical mechanisms which are similar with SGT will be

studied more specifically.

3.2.3 Time Stamp Ordering

Time Stamp Ordering is from [22]. The scheduler assigns to each transaction Ti a

unique timestamp ts(Ti). Normally, the value of time stamp is from a counter that

increases every time a new time stamp is needed. The timestamp of a transaction is

inherited by every operation of that transaction. So, the timestamp of an operation

oi(x) is simply also the timestamp of transaction Ti that issues oi(x). Under Time

Stamp Ordering, the order of conflicting operations are decided by their timestamps.

More precisely, a time stamp ordering scheduler observes the following rule:

if pi(x) and qj(x) are conflicting operations and ts(Ti) < ts(Tj), pi(x) must be ex-

ecuted prior to qj(x).

When operation pi(x) arrives after a conflicting operation qj(x) which has already

been executed, if ts(Ti) < ts(Tj), the approval of pi(x) will violate the rule above.



3.2. Optimistic Protocol 25

Therefore, this ”too late” operation pi(x) will be rejected and transaction Ti has to be

aborted. The behavior of Time Stamp Ordering algorithm is illustrated in the follow-

ing example:

Example 3.2.2

T1 : R1(x) R1(p)C1

T2 : W2(x) W2(y) Abort

T3 : R3(y) W3(x)C3

Because T2 is started earlier than T3, ts(T2) < ts(T3). But W2(y) arrives later than

R3(y), so W2(y) is rejected such that T2 is aborted.

Although transactions which don’t have conflicts can be executed in arbitrary order

under TSO, the actual execution order of conflicting transactions under TSO is strictly

preserved as the starting order of these transactions. So, for a set of concurrent trans-

actions, there exists only one equivalent serial execution under TSO. This is much more

restricted than the concept of ”serializable”. Consequently, some transaction might be

aborted unnecessary even if the schedule is conflict serializable. For example, in the

next schedule, transaction T1 will survive under 2PL or SGT, but it has to be aborted

under time stamp ordering.

Example 3.2.3

T1 : R1(p) R1(x)Abort

T2 : W2(x) R2(y)

Beside to indicating the order of equivalent serial execution in timestamp ordering, the

value of time stamps can also be implemented in other concurrency control algorithms.

For instance, in chapter 4, time stamp plays an important role in the implementation

of an efficient and widely used algorithm: Snapshot Isolation.

3.2.4 Multiversion Concurrency Control

In all the concurrency control algorithms mentioned above, each data item only has one

copy in the database. This means, without any concurrency control, the result of one

write operation might be overwritten by that of the other write operation. Therefore,

algorithms introduced in sections above can be categorized as single-version algorithm.

On the other hand, another kind of concurrency control algorithm, multiversion algo-

rithm, keeps multiple copies for each data item. It is the optimistic algorithm which



3.2. Optimistic Protocol 26

will never block conflicting operations. In a multiversion concurrency control algo-

rithm, multiple copies of data items will be kept simultaneous. The write operation on

data item x will not overwrite the original value of x. On the contrary, a new version

of x will be created. For each read(x), the scheduler will decide which version of x can

be accessed. At particular point, normally is the commit point of each transaction,

one version of each data item will be chosen by scheduler and saved into database

permanently. Copies of data item x are annotated as xi, xj...where the subscript is the

index of transaction that create the version. So, in a multiversion schedule, a write

operation is always the form Wi(xi) while a read operation is the form Ri(xj)(j might

be equivalent to i). For multiversion concurrency control in general, there is no specific

order of data versions is given. However, for some specific implementation of multiver-

sion concurrency control, order of versions of data item x will be decided by ”creating

time”(the time on which a write operation is executed on x) or ”committing time”(the

time on which the created version is committed). To the same data item x, if a version

xi is ordered preceding to another one xj, we say that the order of these two versions

is xi ¿ xj. The existence of multiple versions of data items should not be awarded of

by transactions. They are only visible to the scheduler. On the perspective of outside

user, the functionality of database system is still over the single version of data.

Because the concept of conflicting operations is based on the fact that there is only

one version for each data item, conflict serializability is not applicable to be used as

the correctness criteria of multiversion algorithm. The extension of view serializability,

one copy serializability, has been introduced as the correctness criteria of multiversion

algorithm in [5]. From the point of view of users, all the data stored in database

system are kept single versioned. Recall that two schedules are view equivalent if

they read the same values of data items and produce the same outputs. Similarly, a

multivesion schedule and a single version schedule over the same set of transactions

are view equivalent if they read the same vales of data items and produce the same

outputs. One copy serializable was defined as the correctness criteria of multiversion

algorithm in [5]:

Definition 3.2.1 Let S be an Multiversion schedule over a set of transactions T, S is

view equivalent to a serial, one version schedule over T if and only if S is one copy

serializable(1SR).

For instance, one single version schedule and one multiversion schedule are over the

same set of transactions:



3.2. Optimistic Protocol 27

Example 3.2.4

Multiversion schedule:

T1: R1(x0) W1(x1) C1

T2: R2(z0) W2(y2) R2(x1) C2

T3: R3(y0) W3(y3) C3

Single version serial schedule:

T3:R3(y) W3(y) C3

T1: R1(x) W1(x) C1

T2: R2(z) W2(y) R2(x) C2

In multiversion schedule, T1 reads the original value of x; T2 reads the original value of

z and the version of x created by T1; T3 reads the original value of y. The final output

of this schedule is x = x1 and y = y2. These inputs and outputs are exactly the same

as that of the second single version serial schedule. So, the first multiversion schedule

is one copy serializable.

In [5], the author proposed a mechanism which can characterize the correctness

of general multiversion concurrency control algorithm. Serialization graph is modified

to presented the order of versions of data items that were accessed by concurrent

transactions. This serialization graph especially for multiversion algorithm is called

Multiversion Serialization Graph(MVSG).

Definition 3.2.2 For a given MV schedule S and a version order ¿, the multiversion

serialization graph for S and¿, MVSG(S,¿), is serialization graph(S)(edges are issued

by applying the definition of SG of single version schedule) with the following version

order edges added: for each Rk(xj) and Wi(xi) where i, j, and k are distinct,

1. if xi ¿ xj then include Ti → Tj;

2. otherwise include Tk → Ti.

Then, the one copy serializability of multiversion schedule can be characterized by the

acyclicity of corresponding MVSG.

Theorem 3.2.1 A multiversion schedule S is one-copy-serializable if and only if the

multiversion serialization graph (MVSG) is acyclic.

For example, the MVSG of multiversion schedule in example 3.2.4 is: The graph is

acyclic, so this multiversion schedule is one copy serializable. Actually, the direction of



3.2. Optimistic Protocol 28

T1

~~~~
~~

~~
~

T2 T3
oo

Figure 3.4: An example of Multiversion Serialization Graph

edges in MVSG clearly indicates the execution order of transactions in equivalent serial

schedule. As it is revealed in Figure 3.4, any single copy serial execution of transactions

in example 3.2.4 is equivalent to the multiversion concurrent execution as long as the

following two conditions hold: (1) T1 is prior to T2. (2) T3 is prior to T2.

Sine MVSG actually is the classical serialization graph together with some addi-

tional edges caused by dependencies between different versions of the same data item,

edges in MVSG can be categorized as the following:

Two types of edges in MVSG:

• A, Edges caused by conflict between operations on same versions of the same

data item. Conflicting Operations belongs to different transactions.

• B, Edges caused by conflict between operations on different versions of the sam

data item.Conflicting Operations belongs to different transactions.

In fact, only edges in category B are decided by two rules in definition 3.2.2. The first

condition figures out the edge between two write operations from older version to newer

version of the same data item. The second condition figures out the edge between a

read operation on older version and a write operation on newer version of the same

data item.

Chapter 4

Snapshot Isolation

Snapshot isolation [2] protocol is a multiversion concurrency control algorithm used by

the database systems to enforce the logical consistency of a database while processing

the database transactions. By implementing the techniques of multiversion and time

stamps, Snapshot Isolation(SI) is free from concurrency problems such as dirty read,

unrepeatable read, lost update, etc. SI protocol is free from the typical anomalies

such as dirty read, unrepeatable read, lost update, etc. SI has been implemented in

the systems including Oracle, PostgreSQL and Microsoft’s SQL Server. In different

systems, SI is implemented in different ways. For example, in Oracle, the mechanism

”First-committer-wins” is replaced with a variation ”First-writer-wins”. Write/Read

locks are used to obtain SI behavior. In this thesis, all the studies will be focus on

the general concepts of Snapshot Isolation. This chapter presents a study of SI protocol.

4.1 Isolation levels

The problems with concurrent access to shared data are the subjects to the properties

of concurrently running transactions. In some situations, the properties of the con-

currently running database transactions are such that that the execution is free of a

particular kind of concurrency problem. Then, an over restricted concurrency control

algorithm may harm the performance of system. For example, consider a database

system where no data item is inserted or deleted by a concurrent running transaction.

Then, and algorithm, which puts long duration locks on the whole table accessed by

the transaction is obviously over restricted. ANSI standard [26] defines three typi-

cal incorrect concurrent execution of transactions if there is no proper concurrency

control. These incorrect executions are named ”Phenomena”. ANSI standard [26] in-

troduced a concept of isolation level. Each isolation level can prevent the execution of

transactions from experiencing particular phenomena. An overview of the relationship

29

4.1. Isolation levels 30

between ”phenomena” and isolation levels are presented in the following table.

Isolation Level P1 Dirty Read P2 Fuzzy Read P3 Phantom
ANSI READ UNCOMMITTED Not prevented Not prevented Not prevented
ANSI READ COMMITTED Prevented Not prevented Not prevented
ANSI REPEATABLE READ Prevented Prevented Not prevented
ANOMALY SERIALIZABLE Prevented Prevented Prevented

Figure 4.1: ANSI SQL Isolation Levels Defined in the terms of phenomena

The descriptive specifications of phenomena are as follows.

Suppose the transaction T1 and T2 are running concurrently.

• Dirty Read: T2 reads a data item x that has been written by T1 before T1 is

committed.

• Fuzzy Read: T1 reads a data item x. Before T1 is committed, T2 submits a write

operation on x and commits.

• Phantom: T1 reads a set of data items which satisfy a certain criteria C. Before,

T1 is committed, T2 removes or inserts number of data items which also satisfy

the same criteria and commits.

In [2] the informal definitions of isolation levels are criticized as being too ambigu-

ous. The same work proposes a different set of phenomena that avoids the problems of

the ANSI-SQL definitions. In addition new phenomena such dirty write, lost update,

write skew· · · , that paper more precisely redefines all the phenomena in the terms of

the page model. The mathematical definitions of phenomena from [2] are shown below:

• Dirty Write: W1(x) · · · W2(x) · · · (c1 or a1)

• Dirty Read: W1(x) · · · R2(x) · · · (a1 and c2 in either order)

• Fuzzy Read: R1(x) · · · W2(x)· · · ((c1((c1 or a1) and (c2 or a2) in any order)

• Phantom: R1(P) · · · W2(y in P) · · · ((c1 or a1) and (c2 or a2) in any order)

• Read Skew: R1(x)· · · W2(x)· · · W2(y)· · · c2· · ·R1(y)· · · (c1 or a1)

• Lost Update: R1(x) · · · W2(x) · · · W1(x) · · · c1

P is a set of data item which have to be read before executing a write operation

on a particular data item(i.e. predicate)

4.2. Snapshot Isolation protocol 31

• Write Skew: R1(x)· · ·R2(y)· · · W1(y)· · · W2(x)· · · (c1 and c2 occur)

It is important to note, that Lost Update and Write Skew phenomena are closely

related to Snapshot Isolation protocol.

4.2 Snapshot Isolation protocol

Snapshot Isolation (SI) protocol was proposed in [2]. SI protocol is a special case of

timetstamp based implementation of multi-version concurrency control algorithm. Un-

der Snapshot Isolation, an unique timestamp tsi is assigned to transaction Ti when it

starts. Every write operation Wi(x) in Ti creates a new version of data item x. New

versions are not saved into database permanently (i.e. accepted) until transaction Ti is

committed successfully. All read operations in Ti can only access the versions of data

items either created by itself or the latest transaction that committed before Ti starts.

The following example shows how the transactions under SI protocol access versions

of data item.

Example 4.2.1

T1: R1(x0) W1(x1) W1(y1) C1

T2: R1(x0) W2(x2) R2(y0)C2

T3: R3(x2) R3(y1) C3

As it is shown above, because T1 has not committed when T2 starts, versions of x and y

created by T1 is invisible to T2. On the other hand, because T1 is the committed trans-

action which created the latest version of y, T3 retrieves version y1 when it attempts to

read data item y. Similarly, T3 also reads x2.

At this point, application of multiple versions of data items and timestamps allows

for elimination of ”Dirty write”, ”Dirty Read”, ”Fuzzy read”, ”Phantom” phenomena.

However, the elimination of ”Lost Update” requires an additional mechanism which is

named ”First-committer-wins”.

”Lost Update” phenomenon is caused by the successful commitments of two trans-

actions that performed write operations on the same data item. We say that trans-

action Ti is concurrent with transaction Tj when their time intervals from start-

point to commit-point overlap. Transaction Ti is able to commit only when it did

4.2. Snapshot Isolation protocol 32

not perform write operation on a data item written by another committed transac-

tion Tj and Tj is concurrent with Ti. Otherwise, transaction Ti has to be aborted

and resubmitted later. Look back at the page model of ”Lost Update” anomaly,

R1(x) · · ·W2(x) · · ·W1(x) · · · c1. By enforcing a principle ”first-committer-wins”, a ver-

sion of data item x created by W2(x) must be discarded when transaction T2 is about

to commit. This is why ”Lost Update” phenomenon never happens in a schedule con-

trolled by SI protocol.

Definition 4.2.1 Transaction Ti running under Snapshot Isolation conceptually reads

data from the committed state of the database at the start time of Ti. The result of Ti’s

writes will be stored as a new version of data item in memory. If Ti reads data it has

written, it will read the version created by itself. Snapshot Isolation also must obey a

”First Committer Wins” rule, defined below.

Definition 4.2.2 Transaction Ti will successfully commit if and only if no concurrent

transaction Tj has already committed writes of data items that Ti intends to write.

On summary, SI is a multiversion algorithm which never delays the conflicting opera-

tions. Access to the versions of data items is controlled through managing the unique

timestamp of each transaction. ”First-committer-wins” guarantees that Lost update

anomaly can be precluded by Snapshot Isolation.

Although high system concurrency and absence of most anomalies can be provided

by Snapshot Isolation, the serializability of schedule under Snapshot Isolation can not

be guaranteed all the time. In [2], a concurrency problem that can not be prevented

by Snapshot Isolation was pointed out. The page model of this anomaly has been

presented as ”Write Skew” in section 4.1. A intuitive example of ”write skew” is given

below:

Example 4.2.2

Consider a combined account, which consists of a check account x and a cash account

y. Each one of sub-accounts can be overdrawn as long as their total balance is not neg-

ative. Suppose the following two transactions are running under Snapshot Isolation:

T1: R1(x0 = 100) R1(y0 = 100) W1(x1 = −100) C1

T1: R2(x0 = 100) R2(y0 = 100) W2(y2 = −100) C2

Since the write operations are performed on different data items, no transaction in the

4.2. Snapshot Isolation protocol 33

execution above violates the first-committer-wins principle. However, this execution

sets the balance of the combined account to -200, which violates the constraint on the

combined account. This defect makes conflict serializability of Snapshot Isolation not

guaranteed in every possible case.

As it was stated in chapter 1, a transaction must take a database from one consis-

tent state to another. Constraints which have been put on database should be satisfied

all the time. In the example above, the constraint was satisfied initially but it was

violated after the execution of schedule under Snapshot Isolation.

Recently, another defect of Snapshot Isolation was presented in [11]. This defect

is named ”Read-Only Transaction Anomaly”. A schedule under Snapshot Isolation

could be non-serializable while the execution of all update transactions is serializable.

This ”Read-Only Transaction Anomaly” under Snapshot Isolation is presented in the

following example:

Example 4.2.3

Suppose x and y are combined accounts. Withdrawal on anyone of them will be ap-

proved by the system as long as x + y > 0. However, if x+y goes negative, a penalty

charge of 1 will be applied.

T1: R1(y0, 0) W1(y1, 20) C1

T2: R2(x0, 0) R2(y0, 0) W2(x2,−11) C2

T3: R3(x0, 0) R3(y1, 20) C3

Transaction T2 withdraw 10 from account x,which makes x+y < 0. Therefore, a penalty

charge of 1 is applied on x. That is why the final balance of x is -11. a read-only trans-

action that retrieves the values of x and y and prints them out for the customer. The

anomaly that arises in this transaction is that read-only transaction T3 prints out x =

0 and y = 20, while the actual final values are y = 20 and x = -11. More theoretically,

the result of this schedule is not equivalent to any serial schedule.

Then, by detecting and prohibiting those non-serializable schedules, the consistency

of database updated by the transactions running under SI protocol is guaranteed. A

mechanism that can fulfill this objective is explained in the next section.

4.3. Characterize the serializability of Snapshot Isolation 34

4.3 Characterize the serializability of Snapshot Iso-

lation

Snapshot Isolation is an efficient multiversion concurrency control algorithm. However,

it can not guarantee the serializability of concurrently execution of transactions. Re-

cently, [10] presented an approach that can characterize the serializability of Snapshot

Isolation at system design time.

The approach is based on the maintenance of a binary directed graph, Interference

Graph. Interference Graph represents interferences among the transactions. Nodes in

Interference Graph are committed transactions. Edges between nodes are added by

observing the following rules:

• No Edge: There is no interference edge from Tj to Tk when all the following occur:

readset(Tj) ∩ writeset(Tk) = ∅; writeset(Tj) ∩ readset(Tk) = ∅; writeset(Tj) ∩

writeset(Tk) = ∅

• There is an exposed edge Tj

expo
−→ Tk when both readset(Tj) ∩ writeset(Tk) 6= ∅

and also writeset(Tj) ∩ writeset(Tk) = ∅.

• There is an protected edge Tj

prot
−→ Tk when one of two situations is found:

– writeset(Tj) ∩ writeset(Tk) 6= ∅ or

– readset(Tj) ∩ writeset(Tk) = ∅ and writeset(Tj) ∩ readset(Tk) 6= ∅

When there is no need to distinguish varieties of edges, a notation(global edge)

Tj

glob
−→ Tk is used to indicate some interference edge exists. What should be noted here

is, transactions are considered to be accessing the same data item even if operations

belong to them are on different versions of it. Then a node Tk can be characterized as

a ”pivot” if there are transactions Ti and Tj (which may be equal to each other),such

that the following three conditions all hold:

• Ti

expo
−→ Tk

• Tk

expo
−→ Tj

• Ti, Tk and Tj occur consecutively in a chord-free cycle

Ta

glob
−→ Tb

glob
−→ · · ·

glob
−→ Ta

in Interference Graph.

4.3. Characterize the serializability of Snapshot Isolation 35

In a special case, if Ti is equal to Tj, they will all be characterized as pivots. Then, the

main theorem in [10] is stated as the following.

Theorem 4.3.1 For a set of transactions T, suppose a subset of T S is allocated

Snapshot Isolation as their concurrency control mechanism. Every execution of S will

be conflict-serializable if and only if none of the pivots of IG(T) is in S.

Then, the serializability of Snapshot Isolation can be preserved by examining the cor-

responding Interference Graph. In the Interference Graph of a set of transactions S, if

there exists pivot in IG(S), the serializability of execution of S can not be guaranteed

under Snapshot Isolation. For example, the Interference Graph of the following three

transactions is:

T1: R1(y0, 0) W1(y1, 20) C1

T2: R2(x0, 0) R2(y0, 0)W2(x2,−11) C2

T3: R3(x0, 0) R3(y1, 20) C3

T1

prot

­­

prot

··
T2

expo

JJ

prot

33 T3
exposs

expo

TT

Figure 4.2: Interference Graph of Read-only transaction anomaly

Obviously, because node T2 is in the cycle T3

expo
−→ T2

expo
−→ T1

prot
−→ T3, T2 is char-

acterized as pivot. Therefore, the serializability of the concurrent execution of these

transactions can not be guaranteed under Snapshot Isolation. In example 4.2.3, the

schedule that is consist of these transactions is not serializable under Snapshot Iso-

lation. In order to protect the database from corrupting, other concurrency control

mechanism such as two phase locking should be allocated to Transaction T2.

Similar with serialization graph testing that has been introduced in section 3.2.2,

this ”pivot” mechanism guarantees the serializability of schedule under Snapshot Iso-

lation.

Chapter 5

Multiversion Serialization Graph for
Snapshot Isolation

5.1 Motivations

According to the mechanism introduced in chapter 4([10]), transactions that may harm

the serializability of schedule under Snapshot Isolation can be characterized by detect-

ing the pivots in corresponding Interference Graph. However, this ”Pivot” mechanism

can only be applied at design time. The Interference Graph of all transactions that

may be running concurrently will be tested. Transaction which stands for a pivot in

Interference Graph will not be allowed to run concurrently with other transactions un-

der Snapshot Isolation. In this chapter, a mechanism that can test the serializability

of schedule under Snapshot Isolation at run time will be discussed.

Multiversion Serialization Graph(MVSG), proposed in [5], is a relative graph which

can be used to characterize the serializability of schedule running under general mul-

tiversion concurrency control algorithm. In order to characterize the serializability

of Snapshot Isolation at run time, the implementation of MVSG on schedule under

Snapshot Isolation will be discussed in section 5.2. After that, a dynamic managed

serialization graph especially for Snapshot Isolation is presented in section 5.3. At last,

Section 5.4 will evaluate the time complexity of my proposal.

5.2 Multiversion Serialization Graph

Snapshot Isolation is an instance of multiversion concurrency control together with

extra restriction ”first-committer-wins”. As described in chapter 3, multiversion se-

rialization graph can be used to characterize the one copy serializability of general

multiversion concurrency control. logically, it should also be applicable to Snapshot

36

5.2. Multiversion Serialization Graph 37

Isolation.

Theorem 5.2.1 A schedule S under Snapshot Isolation is one-copy-serializable if and

only if the multiversion serialization graph (MVSG) is acyclic.

For example, suppose schedule S5.2.1 is executed under a general multiversion concur-

rency control:

Example 5.2.1

Schedule s5.2.1

T1 : R1(z0) W1(x1) R1(y0) W1(y1) · · ·C1

T2 : R2(y0) W2(x2)C2

T3 : R3(x2) · · ·C3

For W2(x2) and R3(x2), because they operate on the same versions of the same data

item and W2(x2) precedes R3(x2), there is an edge from T2 to T3.

For R2(y0) and W1(y1), because y0 ¿ y1, there is an edge from T2 to T1.

For R3(x2) and W1(x1), because x1 ¿ x2, there is an edge from T1 to T2.

Consequently, the multiversion serialization graph of this schedule MVSG(S5.2.1,¿)

is generated as figure 5.1.

T1

**
T2

~~~~
~~

~~
~

jj

T3

Figure 5.1: MVSG for S5.2.1 under a general Multiversion concurrency control

According to definition 5.2.1, cycle between T1 and T2 indicates the non-serializability

of S.

On the other hand, if s5.2.1 is executed under Snapshot Isolation, transaction T1

will be aborted when it is about to commit. To different implementation of SI, the

behavior of schedule might be different. For example, in Oracle, the transaction writes

the version but not commit the version will ”win”(i.e. T2 will be aborted when T1 is

committed). In this thesis, I will focus on the original conceptual of Snapshot Isola-

tion. Two concurrent write operations on the same data item is prevented from being

committed by applying ”first-committer-wins”. The final state of S5.2.1 becomes:



5.3. Dynamic Management of MVSG 38

Schedule s5.2.2

T2 : R2(y0) W2(x2)C2

T3 : R3(x2) · · ·C3

Obviously, schedule s5.2.2 is the subset of schedule s5.2.1, Consequently,MVSG(s5.2.2,¿)

under Snapshot Isolation is also the subgraph of MVSG(5.2.1,¿) under general mul-

tiversion concurrency control:

T2

~~~~
~~

~~
~

T3

Figure 5.2: MVSG of S5.2.2 under Snapshot Isolation

Because transaction T1 is aborted, and only node for corresponding committed trans-

action can be included in MVSG, node T1 is excluded from graph. As the result,

MVSG(s5.2.2,¿) is acyclic. So S5.2.2 is serializable under Snapshot Isolation.

5.3 Dynamic Management of MVSG

The serializability of schedule running under Snapshot Isolation can be guaranteed

by preventing the forming of cycle in MVSG. However, because MVSG only contains

nodes for all committed transactions and for no others, an assumption that significantly

weakens this solution is that all the operations of concurrent transactions should be

known before the graph is formed. It means that we can only apply this mechanism

after the transaction’s commit point. Suppose s is the set of all transactions running

in a database system. Because it is not practical to predict that which transactions

in s will be executed concurrently at runtime, only the latter option could be consid-

ered. In order to prevent the non-serializable execution, transactions which close a

cycle in MVSG have to be aborted when they reach their commit points. However,

if most concurrent running transactions have long duration life, the cost of aborting

long transactions at commit point is not acceptable. Suppose two concurrent long

transactions T1 and T2 are running concurrently under Snapshot Isolation:

At point t on the time line, the information about the transactions has been ad-

equate to detect the non-serializability of schedule (i.e. a cycle is formed in MVSG).

5.4. Dynamic managed Snapshot Isolation serialization graph 39

T1 : R(x) W (x) R(y) · · · · · ·C1

T2 : R(y) R(x) W (y) · · · · · ·C2

Time Line -
6

t

Figure 5.3: non-serializability can be found earlier

Since transaction T2 is destined to be aborted at commit point in order to avoid the

non-serializable schedule, time and system resources expended on operations of T2 after

point t are wasted. If a non-serializable execution of a long transaction can be detected

at the early stages of its execution, time and system resources do not need to be wasted

to continue the execution. Therefore, it is important to detect non-serializable execu-

tion as early as it is possible.

5.4 Dynamic managed Snapshot Isolation serializa-

tion graph

The non-serializability of schedule under Snapshot Isolation can be characterized by

the cyclicity of corresponding MVSG. In order to avoid the waste of system resource

and time when it comes long transactions, I propose that the scheduler should be aware

of cycle in MVSG as soon as the operation, which may trigger an edge to close a cycle

is received by scheduler. Consequently, MVSG has to be managed dynamic.

Because the original definition of MVSG is ”a serialization graph with additional

edges added”, no node can be included in the graph until the corresponding transaction

is committed. In order to manage the MVSG while transactions is still on going, a

concept of dynamic managed serialization graph should be defined at first.

Definition 5.4.1 Let s be a on-growing schedule, dynamic managed serialization graph

(DSG) for s, denoted DSG(s), is a directed graph whose nodes are the transactions in

s. Edges in DSG are all Ti → Tj(i 6= j) such that one of a transaction Ti’s operations

precedes and conflicts with one of the other transaction Tj’s operation in s.

5.4. Dynamic managed Snapshot Isolation serialization graph 40

A node for Ti in its DSG is added when scheduler receives the first operation of trans-

action Ti. As soon as an operation Oi(x) is received, possible edges between nodes in

DSG will be evaluated by checking conflicting operations.

Then, for the dynamic management, the definition of MVSG can be variated as ”a

dynamic managed serialization graph with additional edges added”. Suppose after the

emergence of an edge between two write operations on different versions of the same

data item, a cycle is closed in the dynamic managed MVSG(s,¿). According to Lemma

5.2.1, the corresponding schedule is supposed to be characterized as non-serializable

under Snapshot Isolation. However, one of the transactions connected by that write-

write edge will be aborted by ”first-committer-wins”. The cycle will be disappeared

later. A new schedule consists of the rest transactions is serializable under Snapshot

Isolation. Actually, although not all transactions in schedule s can survive at the end

of its execution under Snapshot Isolation, the content of database system is consistent.

Therefore, we can say schedule s is still serializable under Snapshot Isolation, to some

extent. Consequently, if two concurrent transactions create versions of a same data

item, the inclusion of write-write edge between these two transactions is unnecessary

in a dynamic managed MVSG. As discussed in section 5.2, this write-write edge (no

matter they are concurrent or not) is decided by rule 1 of definition 5.2.1. So, it can

be excluded from graph if rule 1 is modified.

After the definition of dynamic managed serialization graph and the exclusion of un-

necessary concurrent write-write conflict edge, a dynamic managed serialization graph

especially for schedule under Snapshot Isolation can be defined as the following:

Definition 5.4.2 For a given schedule S running under Snapshot Isolation and a ver-

sion order ¿, the dynamic managed Snapshot Isolation serialization graph for S and

¿, DSISG(S,¿), is dynamic managed serialization graph(S) with the following version

order edges added: for each Rk[xj] and Wi[xi] where i, j, and k are distinct,

1. if xi ¿ xj and Ti is not concurrent with Tj, then include Ti → Tj;

2. if xj ¿ xi, include Tk → Ti.

Conclusively, the serializability of schedule under Snapshot Isolation can be efficiently

characterized by applying the following theorem:

Theorem 5.4.1 The execution of a schedule S running under Snapshot Isolation is

serializable if and only if DSISG(S,¿) is acyclic.

5.4. Dynamic managed Snapshot Isolation serialization graph 41

Proof:

Suppose schedule s is running under Snapshot Isolation.

Firstly, assume that a DSISG(S, ¿) is acyclic. According to the definition, MVSG(S,

¿) is a DSISG(S, ¿) plus possible write-write edges between two concurrent transac-

tions.That is, MVSG(S,¿) is equivalent to DSISG(S,¿) or is the superset of DSISG(S,

¿). If MVSG(S, ¿) equals to DSISG(S, ¿), MVSG(S, ¿) is also acyclic. According

to Theorem 5.2.1, S is serializable. On the other hand, if MVSG(S,¿) is the DSISG(S,

¿) plus edges between two concurrent transactions which write the same data item,

one of these transactions will be forced aborted by ”first-committer-wins”. The execu-

tion of remain transaction is still serializable under Snapshot Isolation. Therefore, if

DSISG(S, ¿) is acyclic then S is serializable.

Secondly,assume that a schedule S is serializable. Since S is serializable and Snap-

shot Isolation is a multiversion concurrency control algorithm, according to Lemma

5.2.1, MVSG(S, ¿) must be acyclic. According to the definition, DSISG(S, ¿) is the

MVSG(S,¿) without possible edges between two concurrent transactions which write

the same data item (i.e. DSISG(S, ¿) is the subset of MVSG(S, ¿)). The subset of

an acyclic graph is also an acyclic graph. So, DSISG(S, ¿) is acyclic. Therefore, if S

is serializable then DSISG(S, ¿) is acyclic.

Since DSISG is a dynamic managed graph,a significant practical consideration is

when the scheduler may discard the information that has been collected about a trans-

action. That is, remove the node for a particular transaction from the graph. To detect

conflicts, the read set and write set of every transaction exists in DSISG have to be

maintained. A lot of storing space will be used by this maintaining. Therefore, it is

important to discard information that is not needed anymore as soon as possible. For

an aborted transaction, all the information of it has been discarded automatically, so

its corresponding node can be removed as soon as the transaction is aborted. For a

committed transaction, one may also assume that the schedule can delete information

about a transaction and remove the node as soon as it commits. Unfortunately, this is

not true. For instance, consider the scheduler in example 5.2.1, if we remove the node

for transaction T2 after point C2, the edge from T2 to T1 and T2 to T3 will be missed.

Then the non-serializability which could have lead to the aborting of T1 is missed. So,

the scheduler can delete information about a committed transaction Ti if and only if Ti

could not, at any time in the future, be involved in a cycle of DSISG. For a node A to

form a cycle with an acyclic graph G, it must have at least one incoming edge issued

5.4. Dynamic managed Snapshot Isolation serialization graph 42

from G and one outgoing edge points to G. According to the definition of DSISG, if Ti

is concurrent with Tj, edges between them can be any directions. On the other hand, if

Ti is committed before Tj starts, only edge from Ti to Tj is possible. Therefore, suppose

S is a set transactions and DSISG(s,¿) is acyclic. If transaction Ti is started after

all transactions in S have been committed, cycle will never be formed between node Ti

and S. Then the information of all transactions in S can be discarded by scheduler. The

corresponding nodes for them can be removed from DSISG. In conclusion, the node

of a committed transaction can be removed from DSISG if all the other transactions,

which have node in DSISG, have already been committed. The following is an example

of dynamic management of DSISG.

Example 5.4.1

The following is the schedule S5.4.1 of four executing long transactions under Snapshot

Isolation

T1 : R1(x0) · · ·C1

T2 : · · · · · ·W2(x2) · · · · · ·R2(y0) · · · · · ·C2

T3 : · · · · · · · · · · · ·W3(y3) · · · · · ·R3(x0) · · ·W3(z3) · · ·C3

T4 : W4(p4) · · · · · ·

Time Line -

6 6 6

6

a b c d

At time a, DSISGS5.4.1,¿ is:

T1
// T2

At time b, DSISGS5.4.1,¿ is:

T1
// T2

~~~~
~~

~~
~

T3

At time c, DSISGS5.4.1,¿ is:

T1
// T2

xx
T3

88

A cycle is formed, so T3 is forced to abort and DSISG(S5.4.1, ¿) becomes like:

T1
// T2

At time d, DSISGS5.4.1,¿ is:

T4



5.5. The evaluation of time complexity 43

The serializability of S5.4.1 is guaranteed and DSISG(S5.4.1, ¿) will keep being up-

dated and verified as furthering operations of transactions coming.

As a conclusion, the DSISG of schedule can be created when the first operation is

issued instead of at the very end of the whole schedule. A node, which indicates corre-

sponding transaction is included when the transaction starts. Every time the scheduler

receives an operation, possible edges between transactions will be evaluated (i.e. edges

between nodes in the graph are updated). When a new issued edge E(Ti,Tj) between

node Ti and Tj is going to close a cycle in DSISG, one of corresponding transactions

Ti and Tj has to be aborted. Because the time that has been spent on a transaction

can be recorded, the scheduler will choose to abort the transaction which has been run

for a shorter period. This mechanism helps to save long transactions. If transaction

Ti is aborted, the corresponding node is removed from graph. All nodes in DSISG

can be discarded when corresponding transactions in scheduler are all committed at

the moment. Consequently, system resources which used to be wasted on part of long

transaction which was predetermined to be aborted can be saved.

5.5 The evaluation of time complexity

The most reasonable and recognized criteria to evaluate the efficiency of an algorithm,

is the worst time complexity. To characterize an non-serializable schedule under Snap-

shot Isolation, the cyclicity of DSISG need to be verified. In [21], the author states

that only directed acyclic graphs can be topological sorted. So, the cyclicity of DSISG

or Interference Graph can be verified by topological sorting.

The worst time complexity of topological sorting a directed graph G(n,e),is O(n+e)

in which n indicates the number of nodes and e stands for the number of edges. For

example, suppose the schedule S5.2.1 in example 5.2.1 is running under Snapshot

Isolation. DSISG(S5.2.1,¿) can be find in the figure 5.4.

When the topological sorting is finished, schedule can be characterized as non-

serializable as soon as the sorting for DSISG is failed(i.e. there exist cycles in the

DSISG).

In conclusion, for a schedule consists of n transactions, the worst time complexity

of DSISG mechanism can be described as

TDSISG = T (topological sorting(DSISG)) = T (n+ e) = O(n+ C2

n) = O(n2)



5.5. The evaluation of time complexity 44

T1 T2

~~~~
~~

~~
~

oo

T3

DSISG(S5.2.1,¿)

Figure 5.4: Dynamic Managed Snapshot Isolation Serialization Graph

There is one thing should be noted here is: since DSISG is an ongoing algorithm, the

time complexity discussed in this section is that of a single invocation that checks an

added edge or node.

Chapter 6

Segmented Transaction Model

In order to preserve the serializability of schedule S under Snapshot Isolation protocol,

a transaction whose request to access data closes a cycle in SIMVSG(S,¿) should be

be detected and aborted. An implementation of this mechanism is not efficient if we

still apply a standard model of database transactions considered earlier. In a standard

model the read and write operations of a database transaction are either organized

arbitrarily or all write operations follow all read operations([10]). In the following, the

necessity of a new model of transaction will be discussed from two aspects.

We need a new model because the dynamic verification of DSISG becomes ineffi-

cient when transactions are modeled in old ways. Suppose a particular write operation

W is the only operation that triggers a cycle in DSISG(s). Then, non-serializability

of schedule s cannot be detected until W is submitted. In the worst case, W may be

delayed by the other operations to the end of the long transaction. Then, the dynamic

verification of DSISG becomes no different with the previous mechanism that verify

the acyclicity once at the end of transaction. For example,

Example 6.1.1

Schedule s6.1.1

T1 : R1(x0) R1(y0) W1(x1) · · ·C1

T2 : R2(y0) R2(x0) · · · other operations · · ·W2(y2)C2

An operation W2(y2) issued by a transaction T2, causes non-serializable execution of

s6.1.1. If a cycle caused by W2(y2) is detected earlier then it impossible to waste less

time on the execution of T2.

Logically, before a change on a database can be made by a write operation, some

data should be acquired or verified by a transaction.Therefore, some read operations

have to be executed before a write operation. Assume that in the example above all

45

46

the preconditions of W2(y2) are satisfied by the execution of read operations R2(y0)

and R2(x0). Then W2(y2) could have been submitted right after R2(x0) in T2. In such

a case T2 is aborted earlier without the unnecessary execution of the remaining opera-

tions of T2.

The dynamic verification of DSISG requires identifications of the points at which

the verification can be performed. Too dense or to scattered verification points make

the dynamic verification either too demanding or meaningless. A concept of ”breaking

point” is proposed in [16], to partition a transaction into the sets of consecutive steps.

An algorithm which finds the finest chopping of a set of transaction is given in [20].

This work introduces a new model of transaction, which achieves appropriate gran-

ularity without explicit ”breaking points” or ”transaction chopping”. More efficient

verification DSISG is achieved in the model through the self-revealed dependency re-

lationships between the operations on a database.The model assumes that transaction

is a sequence of operations that ends with either commit or abort. For the sake of

simplicity, we only consider the transactions that end with commit operation. The

other operations are read or write. Write is an operation, which signs the new value of

data item that already exists in a database. Read retrieves a value of data item from a

database. The purpose of reading the value of a data item from a database is either to

inform a user about its value, or to use a value in the computations, or to verify of the

logical consistency constraints imposed on a database. A write operation on data item

x is denoted by W(x) and it is a pair 〈(x), s〉 where s is the set of data items which’s

values are necessary to perform W(x). We say that write operation on x ”depends on”

a data set s.

A database transaction can be logically partitioned into the segments such that

each segment is concluded with a sequence of write operations. Moreover, the model

assumes that implementation of each transactions follows a rule saying that ”before

write(x) is performed, a transaction reads only the data items that write(x) depends

on and no other data items”. So, all read operations, which access the data for user

display, must be grouped between the last write operation and commit point of a trans-

action. Or, to those opthese The following example provides more intuitions.

Example 6.1.2

47

An enrollment transaction of a university administration system verifies the follow-

ing consistency constraints. In this transaction, the admission offer(o) and tuition fee

payment(t) should be checked. If there is no unsatisfied condition in the offer and no

outstanding balance in payment, the status of student (s) will be changed to ”enrolled”.

Also, preferred contact method (c) provided by student before should be replaced by uni-

versity email account generated by system automatically. The number of student in

certain school (n) will be increased by 1. At last, a welcome letter (l) retrieved from

database will be print out.

Formerly, this transaction might be organized arbitrarily as:

T: R(o) R(t) R(n) W(s) R(l) W(c) W(n) C

Just as all transaction models listed in [3]. However, by following the programming rule

that we proposed above, the model of this enrollment transaction will be better organized

like:

T: R(o) R(t) W(s) W(c) R(n) W(n) R(l) C

In this model, transaction is logically partitioned into smaller granularities and depen-

dencies between write operations and read operations are self-revealed.

Definition 6.1 A segment s is a sequence of read operations followed by a write op-

eration or commit. A segment starts either at the beginning of transaction or after a

write operation and ends after the next write or commit.

Definition 6.2 The segmented model of database transaction is a sequence s1, · · · , sn,

c or where each si is a segment, c is a commit operation.

Moreover, two additional rules that enhance standard page model(introduced in sec-

tion 2.2.2) will also be applied to this segmented model. With segmented transaction

model, the dynamically management and verification of DSISG can be performed at

the end of each segment. When a transaction is aborted for closing a cycle in graph,

the structure of this segmented model guarantees that system resource will only be

wasted on minimal number of operations.

This proposal of segmented transaction model provides a tradeoff between coding

freedom and system performance. Although the effectivity of DSISG mechanism will

not be different whether this segmented transaction model is taken by programmer or

not, the efficiency of characterizing a non-serializable transaction under Snapshot Isola-

tion will be higher if transactions are programmed by following segmented transaction

model.

Chapter 7

Self-adjusting Acyclic Serialization Graph

7.1 Motivations

DSISG is a directed graph, which presents the conflicts between concurrent transac-

tions running under Snapshot Isolation protocol. A schedule is conflict serializable if

and only if corresponding DSISG is acyclic. Unfortunately, the detection of cycle in

DSISG has squared time complexity. As discussed in section 6.4, for a DSISG with n

nodes and e edges, the time complexity of characterizing the acyclicity is T = O(n+e).

In a directed graph with n nodes, the maximum number of edges can be computed as

e = n(n − 1). So, T can be simplified as T = (n + n(n − 1)) = n2. Since the number

of nodes in DSISG equals to the number of concurrently running transactions, the

size of graph will also increase when the number of concurrently running transactions

increases . As the result, the overhead of characterizing acyclicity of DSISG grows

unacceptable.

As stated in [6], a node can be involved in a cycle only if it has incoming edges

and outgoing edge. Consequently, the acyclicity of DSISG can be guaranteed when:

no node in the graph has both incoming and outgoing edges. Suppose the execution of

operation Oi causes an edge E(Ti,Tj) between nodes Ti and Tj. If E(Ti,Tj) is approved,

Oi can be executed, otherwise, transaction Ti will be aborted to eliminate the prob-

ability of forming cycle. Although it does ensure the serializability of schedule, this

solution is over restricted. Suppose the probability space concers a directed edge point

to a node Ti, the outcomes are {Ti has outgoing edge} and {Ti has no outgoing edge}.

Because each of those two outcomes has equal chance and is independent with each

other, The events of this probability space are: {Ti has outgoing edge}, with probabil-

ity 0.5; {Ti has no outgoing edge}, with probability 0.5; {}=∅, with probability 0; {Ti

has outgoing edge} or {Ti has no outgoing edge}, with probability 1. Consequently,

48

7.1. Motivations 49

when an incoming edge to node Ti is issued, the probability of node Ti having outgoing

edges is 0.5. This is also the probability of aborting transaction Ti. This means: if an

operation of transaction Ti is conflict with operation in another transaction Tj, there

is 50 percents chance that Ti will be aborted. This extraordinary high frequency of

aborting badly harms the concurrency of database system. In order to achive the high

level of concurrency while trying to save time used to be spent on acyclicity character-

ization, we need a more sophisticated mechanism.

In graph theory[13], a cycle in directed graph is defined as ”A closed directed walk,

with repeated nodes allowed”. This means that if a node N is in a cycle, a directed

walk started from N can finally reach N.

Definition 7.1.1 In a directed graph, every nodes that can be reached by following

edges started from N are called successors of N. Likewise, all nodes that can reach N

by following edges started from themselves are called ancestors of N.

acyclic directed graph can be guaranteed by observing the following rule:

Conclusion 7.1.1 A directed graph G is acyclic, if and only if no node in G is pointed

by its successor.

Proof :

Suppose there is no node in a cyclic graph G is pointed by its successor. Since G is

cyclic, there is path starts from Ni and travels through one of its successors Nj and

reaches Ni again. Then Ni is pointed by its successor Nj. It’s a contradiction. So, if

there is no node in graph G is pointed by its successor, G is acyclic.

Suppose in acyclic graph G, there is a node Ni is pointed by its successor Nj. Ac-

cording to definition 7.1.1, there exists a directed path from Ni to its successor Nj.

Moreover, Ni is pointed by Nj. So there exists a directed path starts from Ni, travels

through Nj and reaches Ni again, which means a cycle. This is contradicted with that

G is acyclic. So, if G is acyclic, there is no node can be pointed by its successor.

When an edge is issued from node Ni to Nj, all successors of Nj will be checked

to find out whether Ni is one of them. If not, the edge from Ni to Nj can be allowed.

Obviously, if the number of successors of a node is large, the time spend on going

through all successors will be high. In the next section, I will present a new structure

7.2. Self-adjusting acyclic graph 50

of directed graph. In that well organized directed graph, the relationship between

nodes will become explicit without checking the whole set of their successors.

7.2 Self-adjusting acyclic graph

Self-adjusting acyclic graph is an acyclic directed graph. The corresponding node of

a transaction will be included in graph when the transaction is started. nodes will

be assigned with unique level values when they are connected by conflict edges. The

level value of node Ni is indicated as LV(Ni). E(Ti,Tj) stands for an edge from node

Ti to Tj.CS(Ni) is the collection of successors of node Ni. AS(Ni) is the collection of

ancestors of node Ni. Before the graph is created, two variables NV=0 and PV=0

are initialized. NV and PV records the level value of top level and bottom level,

respectively. The graph can be implemented by ”adjacency list”. ”Adjacency list” is a

data structure which consists of an n-elements(n is the number of all nodes in graph)

array of linked lists. In position i of the array, the information of node Ni and two

pointers to the linked list of edges connected with Ni are stored. One linked list List out

stores the index number(position in the array) of nodes that are connected by edges

which incident from Ni. The other linked list List in stores the index number(position

in the array) of nodes that are connected by edges which point to Ni. A directed graph

and corresponding Adjacency list is presented in the following example:

Example 7.2.1

T3

ÃÃ@
@@

@@
@@

T1

ÃÃ@
@@

@@
@@

~~~~
~~

~~
~

T4
// T2



7.2. Self-adjusting acyclic graph 51

0 T1

out //

in

ÂÂ?
??

??
??

? 1 // 3

2

1 T2

in

ÂÂ?
??

??
??

?

0 // 3

2 T3

out // 0

3 T4

out //

in

ÂÂ?
??

??
??

? 1

0

When a transaction is started, the corresponding node of a transaction is included in

graph. Before the node is connected with other nodes by conflict edges, its level value

is initialized as zero. Obviously, if LV(Ni)=0, it means that Ni is neither ancestor nor

successor of any other nodes. We call this kind of node ”isolated node”. To an isolated

node N in acyclic graph G, the acyclicity of G will not be harmed no matter an incoming

or outgoing edge is newly connected with N. Consequently, when E(Ti,Tj) is issued,

if LV(Ti) or LV(Tj) equals zero, the edge can be approved immediately. If LV(Ti)=0,

NV is decreased by 1 and assigned to LV(Ti). On the other hand, if LV(Tj)=0, PV is

increased by 1 and assigned to LV(Tj). The level value of initial node comes from NV

which’s value is always decreasing. The level value of terminal node comes from PV

which’s value is always increasing. Consequently, it can be concluded that:

Conclusion 7.2.1 In self-adjusting acyclic graph, the level value of an node is always

smaller than level value of its successor.

By applying rules above, the self-adjusting acyclic graph can be intuitively looked as a

directed graph with numbers of levels. On each level there is only one node. The level

with greater value is regarded ”below” the one with smaller value. A directed edge

from a node in upper level to lower level is called ”pointing down”. Otherwise, it is



7.2. Self-adjusting acyclic graph 52

”pointing up”.

For two nodes Ti and Tj,if LV (Ti) < LV (Tj), there is no possibility that Ti is the

successor of Tj. The edge which is ”pointing down” from Ti to Tj will not close a cycle

in the graph. So, Suppose none of Ti and Tj is isolated node. When edge E(Ti,Tj)

is issued, if LV (Ti) < LV (Tj), E(Ti,Tj) can be approved immediately and there is no

variation to LV (Ti) and LV (Tj).

On the other hand, if the edge is going to ”pointing up”, the situation becomes

more complex. Because there is E(Ti, Tj) and LV (Ti) > LV (Tj), according to Conclu-

sion 7.2.1, Ti might be the successor of Tj. If Ti is the successor of Tj, the acyclicity

of graph can not be preserved. Therefore, this ”pointing up” edge has to be declined.

If Ti is not the successor of Tj, E(Ti,Tj) will not form a cycle in graph so it can be

approved. Moreover, this approval of ”pointing up” edge E(Ti,Tj) will result in that

Ti has a successor Tj which is assigned with a smaller level value. In order to over-

come this violation of Conclusion 7.2.1, I propose that the approval of ”pointing up”

edge has to come together with a procedure which is named ”pushing down”. When

the ”pointing up” edge E(Ti,Tj) is approved, Tj and all its successors will be pushed

down to other levels which are lower than Ti. Consequently, all approved edges in

self-adjusting acyclic graph are still pointing from higher to lower level. So, when an

edge is issued from a node Ti in lower level to a node in higher level Tj, the algorithm

will firstly get CS(Tj). If Ti belongs to CS(Tj), edge E(Ti,Tj) is refused. Otherwise,

E(Ti,Tj) can be approved and the level values of nodes in CS(Tj)) will be re-assigned.

The algorithm that manages edges in self-adjusting acyclic graph is presented be-

low:

Algorithm 7.2.1

When E(Ti,Tj) is issued

Procedure SAAG BEGIN

1 IF LV (Ti) ∗ LV (Ti) = 0 then

2 Approve Edge(E(Ti,Tj));

3 ELSE

4 IF LV (Ti) < LV (Tj) then

5 Approve Edge(E(Ti,Tj));

6 ELSE



7.2. Self-adjusting acyclic graph 53

7 CS SetOfnodes;

8 CS := Get CS(Tj); *

9 IF Ti in CS THEN

10 Decline E(Ti,Tj);

11 ELSE

12 Approve Edge(E(Ti,Tj));

13 Push Down(Tj,CS);

End IF;

END IF;

End IF;

END SAAG;

*In this statement, CS(Tj) is obtained by calling classical graph traverse algorithm

Depth-first search, DFS(Tj).

Procedure Approve Edge(e Edge)

IF LV(Ti)=0 then

NV := NV-1;

LV(Ti) := NV;

End IF;

IF LV(Tj)=0 then

PV:=PV+1;

LV(Tj) :=PV;

End IF;

Build Edge(e);

Procedure Push Down(N node, CS SetOfNodes) IS

BEGIN

CS := CS
⋃
{N}

TPV :=PV;

P := LV(N)

For i:=0..Length(CS)-1 Loop

Distance := LV(CS(i))- P;

LV(CS(i)) := PV+Distance+1;

IF LV(CS(i)) > TPV THEN

TPV := LV(CS(i));



7.2. Self-adjusting acyclic graph 54

END IF;

End Loop;

PV := TPV;

End PushDown;

In the following example, the above algorithm will be clarified to show the variation

of a self-adjusting acyclic graph.

Example 7.2.2

T1 T2

T3 T4

Four nodes are included in a self-adjusting acyclic graph G.

LV (T1) = LV (T2) = LV (T3) = LV (T4) = 0, NV = 0, PV = 0

T3 T1

ÃÃ@
@@

@@
@@

T4 T2

Edge E(T1, T2) is issued, because LV (T1) ∗ LV (T2) = 0, the edge is approved.

LV (T1) = −1, LV (T2) = 1, LV (T3) = LV (T4) = 0, NV = −1, PV = 1

T3

ÃÃ@
@@

@@
@@

T1

ÃÃ@
@@

@@
@@

T4 T2

Edge E(T3, T1) is issued, because LV (T1) ∗ LV (T3) = 0, the edge is approved.

LV (T1) = −1, LV (T2) = 1, LV (T3) = −2, LV (T4) = 0, NV = −2, PV = 1



7.2. Self-adjusting acyclic graph 55

T3

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

ÃÃ@
@@

@@
@@

T2

T4

Edge E(T1, T4) is issued, because LV (T1) ∗ LV (T4) = 0, the edge is approved.

LV (T1) = −1, LV (T2) = 1, LV (T3) = −2, LV (T4) = 2, NV = −2, PV = 2

T3

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

ÃÃ@
@@

@@
@@

T2

ºº0
00

00
00

00
00

00
00

T4

T5

A new node T5 is included in G, because LV (T2) ∗ LV (T5) = 0, the edge is approved.

LV (T1) = −1, LV (T2) = 1, LV (T3) = −2, LV (T4) = 2, LV (T5) = 3, NV = −2,

PV = 3

T3

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

ÃÃ@
@@

@@
@@

T2

ºº0
00

00
00

00
00

00
00

T4

**UUUUUUUUUUUUUUUUUUUUUUU

T5



7.2. Self-adjusting acyclic graph 56

Edge E(T4, T5) is issued, because the edge is pointing from higher level to lower level,

the edge is approved.

LV (T1) = −1, LV (T2) = 1, LV (T3) = −2, LV (T4) = 2, LV (T5) = 3, NV = −2,

PV = 3

T3

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

ÃÃ@
@@

@@
@@

T2

ºº0
00

00
00

00
00

00
00

T4

**UUUUUUUUUUUUUUUUUUUUUUU

Declined

OOÂ
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

T5

Edge E(T4, T3) is issued, because the edge is pointing from lower level to higher level

and T4 ∈ CS(T3), the edge is declined.

LV (T1) = −1, LV (T2) = 1, LV (T3) = −2, LV (T4) = 2, LV (T5) = 3, NV = −2,

PV = 3

T3

ÃÃ@
@@

@@
@@

T3

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

ÃÃ@
@@

@@
@@

T1

¨¨±±
±±
±±
±±
±±
±±
±±
±

¶¶'
''

''
''

''
''

''
''
''

''
''
''

''
''

''
'

T2

ºº0
00

00
00

00
00

00
00

=⇒

T4

Approved

77nnnnnnnn

**UUUUUUUUUUUUUUUUUUUUUUU T4

¸*̧
**

**
**

**
**

**
**

**
**

**
*

ÃÃ@
@@

@@
@@

@@
@@

@@
@@

@@
@@

T5

T2

~~~~
~~

~~
~

T5

Edge E(T4, T2) is issued, although the edge is pointing from lower level from higher

level, T4 /∈ CS(T2),so the edge is approved. T2 and its successor T5 are pushed to lower

7.3. Parameterized Self-adjusting Acyclic Graph 57

levels.

LV (T1) = −1, LV (T2) = 4, LV (T3) = −2, LV (T4) = 2, LV (T5) = 5, NV = −2,

PV = 5

Obviously, except the execution of Get CS(Ti), the other parts of algorithm only

have linear complexity. Get CS(Ti) is the function that return the reachable set of a

node Ti in directed graph G. Depth-First Search DFS(n) is a classical algorithm. It can

be used to visit every node which is reachable to N, in a directed Graph. According

to [19], the worst time complexity of DFS(n) is O(n2). Consequently, the worst time

complexity of function Get CS(Ti) is O(n
2).

7.3 Parameterized Self-adjusting Acyclic Graph

Although the average time complexity of algorithm above is lower than that of tradi-

tional serialization graph testing, it is still on the squared level and they have the same

worst time complexity O(n2). In order to decrease the time complexity, the rule of eval-

uating pointing-up edge E(Ti,Tj) in Self-adjust acyclic graph can be refined. Instead of

getting the whole CS(Tj), the retrieving of CS(Tj) can be parameterized. Parameter L

is introduced to limit the length of edges that can be traveled when retrieving the set

of successors of node Tj. If Ti ∈ Get CS(Tj,L) or there exists node Ta that is reachable

from Tj and the length of edges from Tj to Ta is more than L, the edge E(Ti,Tj) will

be declined. The following graph gives an intuitive example of the concept of ”Length

of Edges”.

Example 7.3.1

T1

²²

// T2

T3
// T4

From T1 to T2, the length of edge that has been traveled is 1.

From T1 to T4, the length of edge that has been traveled is 2.

In an acyclic directed graph which has N nodes, the maximum length of edges is

N-1. So,the value of L is an integer which stands in range [1, (n − 1)]. When an edge

E(Ti,Tj) is issued and LV (Ti) ∗LV (Tj) 6= 0, LV (Ti) > LV (Tj), Get CS(Tj,L) will only

travel L length of edges to get the set of successors of node Tj. When L=1, the set of

7.3. Parameterized Self-adjusting Acyclic Graph 58

nodes that directly connected with Tj will be returned as CS(Tj). When L = n − 1,

the whole set of CS(Tj) will be returned. Consequently, the worst time complexity of

algorithm variates with the value of parameter L. When an ”pointing up” edge E(Ti,Tj)

is issued, Get CS(Tj,L) will retrieve the set of successors of Tj by traveling L length of

edges.

When L=1, the worst case is that all the other nodes(except Tj) are the successor of

Tj and maximum length of edges is 1.

Tj

²²wwnnnnnnnnnnnnnnnn

''PPPPPPPPPPPPPPPP

T1 · · · Tk · · · Tn

The time spent on traversing the above graph G is the time spent on traveling through

each edge in G. So, the maximum time spent on Get CS(Tj,1) is T (1) = N − 1.

When L=2, the worst case is that all the other nodes(except Tj) are the successor of

Tj and maximum length of edges is 2.

Tj

²²

®®~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

ÃÃA
AA

AA
AA

AA
AA

AA
AA

AA
AA

T1

²²vvnnnnnnnnnnnnnnnn

((PPPPPPPPPPPPPPPP

T2 · · · Tk · · · Tn

The maximum time spent on Get CS(Tj,2) is T (2) = (N − 1) + (N − 2) = 2N − 3

When L=K, the worst case is that all the other nodes(except Tj) are the successor of

Tj and maximum length of edges is K.

7.3. Parameterized Self-adjusting Acyclic Graph 59

Tj

²²

°°

°°ªªµµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µ

¸,̧
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,

T1

µµ

´´¨¨²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²
²²

ºº/
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

/

.

.

.

Tp

²²wwoooooooooooooooo

''PPPPPPPPPPPPPPPP

Tq · · · Tk · · · Tn

The maximum time spent on Get CS(Tj,K) is T (K) = (N−1)+(N−2)+· · ·+(N−K) =

KN − (1 +K)K/2

Obviously, when L < N − 1, the worst time complexity of Get CS(Tj,L) is O(N).

When L=N-1, time spent on Get CS(Tj,K) is T (N) = N ∗ N − (1 + N)N/2 =

(N 2 − N)/2. This is exactly the same as the time spent on retrieving the whole

set of successors of Tj. Consequently, when L=N-1, the worst time complexity is

O(N 2).Although the worst time complexity can be decreased from squared to linear,

a downside is introduced by parameterized algorithm. When L < N − 1, some edge

might be declined unnecessarily. For example, in the following graph, when L=2, edge

E(Ti,Tj) which will not cause a cycle is declined unnecessarily by the algorithm.

Example 7.3.1

7.3. Parameterized Self-adjusting Acyclic Graph 60

Tj

wwooooooooooooooo

Ta

ÃÃ@
@@

@@
@@

Tb

wwnnnnnnnnnnnnnnn

ºº0
00

00
00

00
00

00
00

Tc

Td

Ti

Declined

RR&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

When L=2, E(Ti,Tj) is unnecessarily declined

In order to minimize the impact of this unnecessary refusion, a mechanism called

”pushing up” is proposed. When a ”pointing up” edge E(Ti,Tj) is issued and there

exists node Ta that is reachable from Tj and the length of edges from Tj to Ta is more

than L and Ti is not in the set that returned by Get CS(Tj,L), the algorithm will call a

function Get AS(Ti,L). If Tj /∈ AS(Ti, L) and AS(Ti,L) is the full set of all ancestors of

node Ti, E(Ti,Tj) is approved and AS(Ti,L) is pushed up to other levels together with

node Ti. This ”pushing up” mechanism is a complement to ”pushing down” such that

the chance of unnecessary refusion is decreased by half. The parameterized algorithm

is presented below:

Algorithm 7.3.1

When E(Ti,Tj) is issued

CS SetOfnodes;

AS SetOfnodes;

Full CS boolean;

Full AS boolean;

Procedure SAAG Par(L Integer) Begin

1 IF LV (Ti) ∗ LV (Ti) = 0 then

2 Approve Edge(E(Ti,Tj));

3 ELSE

4 IF LV (Ti) < LV (Tj) then

5 Approve Edge(E(Ti,Tj));

7.3. Parameterized Self-adjusting Acyclic Graph 61

6 ELSE

7 Get CS(Tj,L);

8 IF Ti in CS THEN

9 Decline E(Ti,Tj);

10 ELSE

11 IF Full CS=true then

12 Approve Edge(E(Ti,Tj));

13 Push Down(Tj,CS);

14 ELSE

15 Get AS(Ti,L);

16 IF Tj in AS THEN

17 Decline E(Ti,Tj);

18 ELSE

19 IF Full AS=true then

20 Approve Edge(E(Ti,Tj));

21 Push Up(Ti,AS);

22 ELSE

23 Decline E(Ti,Tj);

24 END IF;

25 END IF;

26 END IF;

27 END IF;

28 END IF;

29 End IF;

END SAAG Par;

Procedure Get CS(V in node, Length in Integer) *

BEGIN

Get the set of successors of node N without traveling more than L length;

CS := the result of statement above;

IF CS is the full set of successors of node N then

Full CS:=true;

ELSE

Full CS:=false;

END IF; END Get CS;

7.3. Parameterized Self-adjusting Acyclic Graph 62

*In this procedure, set of successors is obtained by calling classical graph traverse al-

gorithm Depth-first search, DFS(Tj). Link list List out in adjacency list of graph is

used. If DFS(Tj) is terminated because the length of edges that can traveled exceeds

L, CS is not the full set of ancestors of node N. Otherwise, CS is the full set.

Procedure Get AS(V in node, Length in Integer) *

BEGIN

Get the set of ancestors of node N without traveling more than L length;

AS := the result of statement above;

IF AS is the full set of ancestors of node N then

Full AS:=true;

ELSE

Full AS:=false;

END IF;

END Get CS;

*In this procedure, set of ancestors is also obtained by calling classical graph traverse

algorithm Depth-first search, DFS(Tj). Link list List in in adjacency list of graph is

used. If DFS(Tj) is terminated because the length of edges that can traveled exceeds

L, AS is not the full set of ancestors of node N. Otherwise, AS is the full set.

Procedure Approve(E Edge)

IF LV(Ti)=0 then

NV := NV-1;

LV(Ti) := NV;

End IF;

IF LV(Tj)=0 then

PV:=PV+1;

LV(Tj) :=PV;

End IF;

Build Edge(e);

Procedure Push Down(N node, CS SetOfNodes) IS

BEGIN

CS := CS ∩N

TPV :=PV;

7.3. Parameterized Self-adjusting Acyclic Graph 63

P := LV(N)

For i:=0..Length(CS)-1 Loop

Distance := LV(CS(i))- P;

LV(CS(i)) := PV+Distance+1;

IF LV(CS(i)) > TPV THEN

TPV := LV(CS(i));

END IF;

End Loop;

PV := TPV;

End PushDown;

Procedure Push Up(N node, AS SetOfnodes) IS

BEGIN

AS := AS ∩N

TNV :=NV;

P := LV(N)

For i:=0..Length(AS)- 1 Loop

Distance := LV(AS(i))- P;

LV(AS(i)) := NV - Distance - 1;

IF LV(AS(i)) < TNV THEN

TNV := LV(AS(i));

END IF;

End Loop;

NV := TNV;

End PushDown;

In example 7.3.1, edge E(Ti,Tj) can be ”saved” by mechanism of ”pushing up”.

Because Get CS(Tj,L) does not return the whole set of CS(Tj) and Tj /∈ CS(Tj, L),

the algorithm will check the set returned by Get AS(Ti,L). AS(Ti,L) is the whole set

of ancestors of Ti and Ti /∈ AS(Ti, L). So E(Ti,Tj) is approved and Ti is pushed up.

7.3. Parameterized Self-adjusting Acyclic Graph 64

Tj

wwooooooooooooooo

Ta

ÃÃ@
@@

@@
@@

Tb

wwnnnnnnnnnnnnnnn

ºº0
00

00
00

00
00

00
00

=⇒

Tc

Td

Ti

Approved

RR&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Ti

**UUUUUUUUUUUUUUUUUUUUUUU

Tj

wwooooooooooooooo

Ta

ÃÃ@
@@

@@
@@

Tb

wwnnnnnnnnnnnnnnn

ºº0
00

00
00

00
00

00
00

Tc

Td

E(Ti,Tj) in example 7.3.1 is saved by ”pushing up” mechanism

The parameterized algorithm provides a tradeoff between efficiency and accuracy.

The value of L can be adjusted based on actual situation. If the number of concurrently

running transactions is small, which is the same as number of nodes in self-adjusting

acyclic graph, the overhead caused by squared time complexity will not give pressure

to the system. L can be set to N-1. On the other hand, if the number of concurrently

running transaction can be potentially high, the efficiency is a bigger concern than

the accuracy of algorithm. Then L can be set as proper number which is less than

N-1. Since the performance of algorithm will be enhanced significantly(from squared

complexity to linear complexity), these ”unnecessary” rejections are endurable sacrifice.

Moreover, in the following decision tree of algorithm 7.3.1, numbers are the line numbers

of pesudo-code in algorithm 7.3.1. In a probability space concerns the execution of

algorithm 7.3.1, the outcomes are the execution of code which’s line number is indicated

by leaf nodes of decision tree. The events of this probability space are: {line 2}, with

probability (1
2
); {line 5}, with probability (1

2

2
); {line 9}, with probability (1

2

3
); {line

12 and line 13}, with probability (1
2

4
); {line 17}, with probability (1

2

5
); {line 20 and

line 21}, with probability (1
2

6
); {line 23}, with probability (1

2

6
); {any one of code in

line indicated by leaf nodes}, with probability 1. When edge E(Ti,Tj)is issued in self-

adjusting acyclic graph, E(Ti,Tj) might be declined uncessarily only when statement

23 is executed. So, the probability of unnecessary rejection on this edge is only (1

2
)6.

This is acceptable to a morden database system which’s efficiency is always the most

7.4. Implement the SAAG on Snapshot Isolation Protocol 65

important concern.

E(Ti, Tj)

3

{{vvvvvvvvvv

1

$$IIIIIIIIII

4¡¡¢¢
¢¢

¢¢
¢¢

6
$$IIIIIIIIIIII 2

5 7

8
zzuuuuuuuuuuu

10 %%JJJJJJJJJJJ

9 10

11zzttttttttt

14 ##FF
FF

FF
FF

F

12, 13 15

16{{xx
xx

xx
xx

x

18

!!CC
CC

CC
CC

C

17

19}}{{
{{

{{
{{

{

22 ÁÁ=
==

==
==

=

20, 21 23

7.4 Implement the SAAG on Snapshot Isolation

Protocol

Because self-adjusting acyclic graph is the mechanism that efficiently preserves the

acyclicity of graph, it can be implemented on Snapshot Isolation protocol to preserve

the serializability of schedule under SI at run-time.

In section 6.2, dynamic managed Snapshot Isolation serialization graph was intro-

duced. DSISG is a serialization graph that can ensure the serializability of Snapshot

Isolation protocol at run-time, by preserving the acyclicty of graph. The disadvantage

of DSISG is that N 2(N is the number of nodes in DSISG) time will be spent on val-

idating the acyclicity of graph. If DSISG is structured by applying algorithm 7.3.1,

the cost of having a serializable SI protocol can be decreased. With the tolerance of

seldom ”unnecessary aborting of transactions”, the worst time complexity can even be

degraded from squared to linear.

Suppose Snapshot Isolation is set as the concurrency control protocol of a database

system. When a transaction is started, the corresponding node will be included in

DSISG. Edges in DSISG are issuing according to definition 5.4.2. When an edge E is

issued, it will be approved or declined by applying algorithm 7.3.1. If E is approved,

7.4. Implement the SAAG on Snapshot Isolation Protocol 66

the transaction that issues E can be carried on. On the other hand, if E is declined, the

transaction that issues E will be aborted. The corresponding node of this transaction

together with all edges attached with it are removed from DSISG. To a committed

transaction T, the corresponding node can be removed from DSISG if there are no

active transactions which are concurrent with T.

For example, suppose parameter L is set as 2 to algorithm 7.3.1 in the database

system. The execution of concurrently running transactions under Snapshot Isolation

protocol is presented as below:

Example 7.4.1

T1 : R1(x0) · · · · · · · · · · · ·R1(z0) · · · · · · · · ·W1(p1) · · ·

T2 : · · · · · · · · ·W2(x2) · · · · · · · · ·R2(y0) · · ·

T3 : · · · · · · · · · · · · · · ·W3(y3) ·R3(p0)

T4 : W4(z4) · · ·R4(x0) · · ·

Time Line
-

6 6

6 6

6

a b c d e

At time a, because LV(T1)* LV(T2)=0, DSISG is:

T1

²²
T2

T3 T4

LV(T1)=-1, LV(T2)=1, LV(T3)=0, LV(T4)=0, NV=-1, PV=1

At time b, because LV(T2)* LV(T3)=0, DSISG is:

T1

~~~~
~~

~~
~

T2

~~~~
~~

~~
~

T3

T4

7.4. Implement the SAAG on Snapshot Isolation Protocol 67

LV(T1)=-1, LV(T2)=1, LV(T3)=2,LV(T4)=0, NV=-1, PV=2

At time c, because LV(T1)* LV(T4)=0, TDSISG is:

T1

~~~~
~~

~~
~

¸*̧
**

**
**

**
**

**
**

**
**

**
*

T2

~~~~
~~

~~
~

T3

T4

LV(T1)=-1, LV(T2)=1, LV(T3)=2,LV(T4)=4, NV=-1, PV=4

At time d, because LV(T2)* LV(T4) 6= 0, LV(T2)< LV(T4), T4 /∈ CS(T2), DSISG is:

T1

~~~~
~~

~~
~

¸*̧
**

**
**

**
**

**
**

**
**

**
*

T2

~~~~
~~

~~
~

T3

T4

Approved

``@
@

@
@

@
@

@
@

@
@

E(T4,T2) is declined, node T2 and T3 are pushed down.

T1

­­¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸

¹¹,
,,

,,
,,

,,
,,

,,
,,

,,
,,

T4

wwnnnnnnnnnnnnnnn

T2

~~~~
~~

~~
~

T3

LV(T1)=-1, LV(T2)=5, LV(T3)=6,LV(T4)=4, NV=-1, PV=6



7.4. Implement the SAAG on Snapshot Isolation Protocol 68

At time e, because LV(T1)* LV(T3) 6= 0, LV(T1)< LV(T3), T3 ∈ CS(T1), DSISG is:

T1

­­¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸

¹¹,
,,

,,
,,

,,
,,

,,
,,

,,
,,

T4

wwnnnnnnnnnnnnnnn

T2

~~~~
~~

~~
~

T3

Declined

HH³
³

³
³

³
³

³
³

³
³

³
³

³
³

³
³

³
³

³

E(T3,T1) is declined, suppose transaction T3 has been run longer than transaction T1,

according to the mechanism introduced at the end of section 5.4,transaction T3 is

aborted. Node T3 is removed from graph.

T1

­­¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸
¸¸

¹¹,
,,

,,
,,

,,
,,

,,
,,

,,
,,

T4

wwnnnnnnnnnnnnnnn

T2

LV(T1)=-1, LV(T2)=5,LV(T4)=4, NV=-1, PV=6

As the result, Snapshot Isolation is preserved serializable by using DSISG which is

managed by algorithm 7.3.1.

Chapter 8

Contributions and Open Problems

In this thesis, I provided a new mechanism that makes Snapshot Isolation protocol(SI)

serializable. This mechanism has the following properties:

1. it characterizes the non-serializable transactions under SI at run time by detecting

cycles in a Dynamic Managed Snapshot Isolation Serialization Graph(DSISG);

2. it guarantees the serializability of SI by preserving DSISG acyclic without the

time-consuming acyclicity validation of DSISG.

After the study of Snapshot Isolation, I proved that a variation of classical Multi-

version Serialization Graph can be used to characterize the serializability of Snapshot

Isolation. Transaction that will cause a cycle in the revised MVSG will be character-

ized as non-serializable under SI. Then, I discussed the performance aspects of this

approach when it is dealing with long transaction. If a long transaction is character-

ized as non-serializable and aborted at the very end, the overhead of system becomes

unacceptable. In order to avoid this situation, the dynamic management of graph is

presented. This dynamic managed graph is named DSISG.

I found that the dynamic management of DSISG is not effective when transactions

are programmed by observing the traditional models. After studying the semantic

relationships between operations in transaction, a segmented model of database trans-

action is defined. The efficiency of DSISG is enhanced by following this segmented

model.

Like all graph based concurrency control mechanisms, DSISG suffers from a square

worst time complexity because of the validating of graph acyclicity. I proposed a hi-

erarchical structure of the graph so that DSISG can be preserved acyclic without that

high cost. Nodes are placed in different level in self-adjusting acyclic graph and edges

69

70

are only allowed from higher level to lower level. There is no need for my mechanism to

follow the traditional process of serialization graph testing, ”verifying the acyclicity→

approving/rejecting”. Two out of three types of issued edges(1, edge from higher level

to lower level and no isolated node is involved; 2, edge involves at least one isolated

node) can be approved directly. For the third type of edge(edge from lower level to

higher level and no isolated node is involved), numbers of rules are used to validate

it. The efficiency and precision of validation are determined by the value of a pa-

rameter ”L”. When L = N − 1, my mechanism has the same worst time complexity

with the one which use topological sorting to validates the acyclicity of normal DSISG.

However, my mechanism has lower average time complexity. When L < N − 1, the

worst time complexity of my mechanism is decreased to linear, with (1

2
)6 probability

in which edge may be declined unnecessarily. The administrator of database system

can tune the value of parameter L by observing the performance of system. Higher

the value of L is, more time will be spent on managing graph and fewer transaction

will be aborted unnecessarily. If squared worst time complexity is acceptable in par-

ticular database system, L can be set to N-1 to acquire the best precision of mechanism.

Conclusively, my contributions in this thesis are:

• A graph based approach which characterizes the serializability of Snapshot Iso-

lation protocol at run time, especially when dealing with long transactions.

• A segmented model of database transaction.

• An graph constructing mechanism which preserves the acyclicity of graph more

efficiently. More flexibility and efficiency can be obtained when this mechanism

is applied to approach in contribution one.

The further research on this topic will go through the following steps. Firstly, the re-

using of level value in acyclic graph will be studied. Secondly, an implementation of self-

adjusting acyclic graph will be developed. Thirdly, the program will be implemented in

a database system to work out a criteria of adjusting parameter L. Snapshot Isolation

will be used as concurrency control method of this database system. Finally, the

hierarchical structure of serialization graph will be generalized so that it can be applied

to concurrency control algorithms other than Snapshot Isolation protocol.

Bibliography

[1] C. Beeri, P.A. Bernstein, and N. Goodman. A model for concurrency in nested

transaction systems. In Journal of the ACM 36, pages 230–269. ACM Press, 1989.

[2] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and

Patrick O’Neil. A critique of ansi sql isolation levels. In SIGMOD ’95: Pro-

ceedings of the 1995 ACM SIGMOD international conference on Management of

data, pages 1–10, New York, NY, USA, 1995. ACM Press.

[3] Arthur Bernstein, Phil Lewis, and Shiyong Lu. Semantic conditions for correctness

at different isolation levels. Proceedings of the 16th International Conference on

Data Engineering (ICDE’2000), pages 57–66, 2000.

[4] P.A. Bernstein, D.W. Shipman, and W.S. Wong. Formal aspects of serializability

in database concurrency control. In IEEE Transactions on Software Engineering

SE-5, pages 75–101. IEEE Press, 1979.

[5] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control-

theory and algorithms. ACM Trans. Database Syst., 8(4):465–483, 1983.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-

trol and Recovery in Database Systems. Addison-Wesley, 1987.

[7] Y. Breitbart and A. Siberschatz. Strong recoverability in multidatabase systems.

In In Proc. 2nd Inernational Workshop on Research Issues in Data Engineering-

Transaction and Query Processing., pages 170–175. ACM Press, 1992.

[8] M.A. Casanova. The concurrency control problem for database systems. Lecture

Notes in Computer Science, 116, 1981.

[9] K.P. Eswaran, J. Gray, R.A. Lorie, and I.L. Traiger. The notions of consistency

and predicate locks in a database system. Communications of the ACM, 19:624–

633, 1976.

71

BIBLIOGRAPHY 72

[10] Alan Fekete. Allocating isolation levels to transactions. In PODS ’05: Proceedings

of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 206–215, New York, NY, USA, 2005. ACM Press.

[11] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A read-only transaction

anomaly under snapshot isolation. SIGMOD Rec., 33(3):12–14, 2004.

[12] Jim Gray and Andreas Reuter. Transaction Processing : Concepts and Techniques.

Morgan Kaufmann, 1993.

[13] Jonathan L. Gross and Jay Yellen. Handbook of Graph Theory. Boca Raton :

CRC Press, 2004.

[14] C.A.R Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12, 1969.

[15] H. K. Korth and G. Speegle. Formal model of correctness without serializabilty.

In SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD international conference

on Management of data, pages 379–386, New York, NY, USA, 1988. ACM Press.

[16] Nancy A. Lynch. Multilevel atomicity a new correctness criterion for database

concurrency control. ACM Trans. Database Syst., 8(4):484–502, 1983.

[17] C.H. Papadimitriou. The serializability of concurrent database updates. In Journal

of the ACM 26, pages 631–653. ACM Press, 1979.

[18] K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Transactions

on Database Systems, 19, No 1:117–165, 1994.

[19] Clifford A. Shaffer. A Practical Introduction To Data Structure and Algorithm

Analysis. ALAN APT, Upper Saddle River, NJ 07458, 1997.

[20] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Transac-

tion chopping: algorithms and performance studies. ACM Trans. Database Syst.,

20(3):325–363, 1995.

[21] Steven S. Skiena. The algorithm design manual. Springer-Verlag New York, Inc.,

New York, NY, USA, 1998.

[22] R.H. Thomas. A majority consensus approach to concurrency control for multiple

copy databases. ACM Trans. on Database Systems, 4(2), 180–209.

BIBLIOGRAPHY 73

[23] TPC. Transaction processing performance council.

[24] W. Weihl. Local atomicity properties: Modular concurrency control for abstract

data types. ACM Transactions on Programming Languages and Systems, 11:249–

282, 1989.

[25] Gerhard Weikum and Gottfried Vossen. Transactional information systems: the-

ory, algorithms, and the practice of concurrency control and recovery. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[26] ANSI X3.135-1992. American national standard for information systems -

database language - sql, November 1992.

[27] M. Yannakakis. Serializability by locking. Journal of the ACM, 31:227–244, 1984.

	University of Wollongong - Research Online
	Cover
	Copyright notice
	Title page
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography

