University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2006

Using assumptions in service composition
context

Zheng Lu
University of Wollongong

Lu, Zheng, Using assumptions in service composition context, MCompSc-Res thesis,
School of Information Technology and Computer Science, University of Wollongong, 2006.
http://ro.uow.edu.au/theses/736

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/736

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

Usiné Assumptions in Dervice
omposition Context

A thesis submitted in fulfillment of the
requirements for the award of the degree

Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG
by

Zheng Lu

School of IT & Computer Science
June 2006

© Copyright 2006
by
Zheng Lu
All Rights Reserved

ii

iii

Dedicated to

My Parents

i

Declaration

This is to certify that the work reported in this thesis was done
by the author, unless specified otherwise, and that no part of
it has been submitted in a thesis to any other university or

similar institution.

Zheng Lu
November 8, 2006

Abstract

Service composition aims to provide an efficient and accurate model of a service, based
on which the global service oriented architecture (SOA) can be realized, allowing value
added services to be generated on the fly. Unlike a traditional software module, which
runs within a predictable domain, Web Services are autonomous software agents run-
ning in a heterogeneous execution environment. Because of distributed responsibilities,
ownership and control, it is often not feasible to acquire all information needed for the
service composition. These characteristics of autonomy and heterogeneity are funda-
mental to service oriented computing but make it inherently difficult to avoid service
conflicts. To reason about and adapt to a changing environment, in this work, we will
extend current OWL-S by introducing the concept of service assumptions which allow
reasoning with incomplete information. Furthermore, together with the proposed ser-
vice assumptions, a sequence of rule conditions are proposed to describe all permitted

behaviors in service composition context.

Acknowledgments

I would like to express my gratitude to my supervisors and for their many insightful
comments and thoughts that guided me to finish this research. I am also thankful to my
other colleagues in Decision Systems Laboratory (DSL) for their valuable comments,
supports, helps and encouragement during the process of completing this thesis as well
as during the period of my master study.

List of Publications

This is a list of referred papers that is related to this research work.

e Zheng Lu, Shiyan Li and Aditya K. Ghose, Web Service Conflict Management,
Proceedings of the First International Workshop on Design of Service-Oriented
Applications (WDSOA’05), in conjunction with Third International Conference
on Service Oriented Computing 2005, Amsterdam, The Netherlands, 2005.

e Zheng Lu, Aditya K. Ghose, Peter Hyland and Ying Guan, Using Assumptions
in Service Composition, In Proceedings the 2006 IEEE International Conference
on Services Computing, SCC 2006, Chicago, USA, September 2006. To Appear
in proceedings of SCC 2006

e Zheng Lu, Aditya K. Ghose, Peter Hyland, Adopting Default Reasoning in Ser-
vice Composition Context. To appear in Proceedings of The 4th IEEE European
Conference on Web Services (ECOWS) (ECOWS 2006), Zurich, Switzerland,
2006. IEEE Computer Society Press.

e Zheng Lu, Shiyan Li and Aditya K. Ghose and Peter Hyland, Extending Seman-
tic Web Service Description by Service Assumption, Web Intelligence Conference,
Hong Kong 2006. To appear in Proceedings of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI’06). Hong Kong, China, 2006.

Table of Contents

Abstract v
Acknowledgments vi
List of Publications vii
Table of Contents viii
1 Introduction 1
1.1 Motivation e e 2

1.2 Contributions 4
1.3 Organization of the Thesis 5

2 Background 7
21 WebServiceo i i e e e 7
2.2 Semantic Web Service e 12
2.3 Web Service Composition as Planning 21
2.4 Inconsistency in Software Engineering and Default logic 24
25 RelatedWorks. e 31
2.6 SUMMAIY e e e e e e e e e e e e 35

3 Extending OWL-S by Service Assumption 36
3.1 Atomic Services ot e e e e e 36
3.2 The Need for Service Assumptions 38
3.3 Service Assumptions 40
3.4 Service Assumption as Functional Properties 43
3.5 Service Assumptions about Individuals 44
3.6 Classification of Service Assumptions 47
3.6.1 Hard Assumptions and Soft Assumptions 47

3.6.2 Transient Assumptions and Persistent Assumptions 51

3.7 Summary e e e e e e 54

4 Service Composition Framework 56
4.1 Preliminaries e e e e 56
4.1.1 ServiceSelection 0. 57

viii

CONTENTS ix
412 Composite Service 58

4.1.3 Service Composition Planning Domain 59

4.1.4 Service Composition Planning Problem, 60

4.2 Service Composition as Planning 60
421 Stateof Knowledgeo... 61

422 Assumption Database 67

4.2.3 State TransitionwithRules 74

4.3 Reasoning with Service Assumptions 80

5 Scenario 85
51 ScenarioOmne e e e e 85
52 Scenario Two i e 90
53 SUumMmAaIy v vt e e e e e e e e e e e 93

6 Conclusion and Future Work 95
Bibliography 98

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5

OWL Constructs and Their Corresponding DL Syntax 15
OWL Axioms and Their Corresponding DL Syntax 16
IOPE Used to Handle Inconsistencies 26
Connection between Web Services and Their Functional Properties . . 44
Class Axioms of Hard Assumptions and Soft Assumptions 50
Property Axioms of hasHard Assumption and hasSoftAssumption. . . . 51
Transient Assumptions Vs. Persistent Assumptions 53
Service Assumption Options at Different Phases 53

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2

IBM Web Services Conceptual Stack 9
Top Level OWL-S Class Hierarchy 17
Extended Atomic Service Description 48
ServiceSelection e 59
Sensing Operations in Service Composition Planning 64
Static Data Vs. DynamicData 68
Dynamic Data in Service Composition Context 71
Generic State Transition Operators 77
Reasoning with Service Assumptions 81
Current State of Knowledge and Assumption Database 89
Violation of Joint Consistency of Service Assumptions 93

Chapter 1

Introduction

Web Services are self-contained, self-describing applications which not only perform the
business functions on their own, but also are capable of engaging other web services in
order to complete more complex business transactions. Service-Oriented Computing
(SOC [54]) is the computing paradigm that utilizes services as fundamental elements for
developing application solutions. To build the service model, SOC relies on the Service
Oriented Architecture (SOA [55]) which is an emerging approach and addresses the re-
quirements of loosely ‘coupled, standards-based, and protocol-independent distributed
computing. The nature of loosely-coupled system serves the needs of a business to
adapt rapidly to changes in policies, business environment, product offerings, part-
nerships and regulatory requirements. Briefly speaking, SOA is a way of reorganizing
software applications and infrastructure into a set of interacting services. The driv-
ing goal of SOA is to eliminate communication barriers so that applications can be
integrated between enterprises and within enterprises, i.e. Web Service composition.
Web Service composition is the ability of one business to provide value-added ser-
vices to its customers through the composition of basic Web Services, possibly offered
by different companies [57]. By offering an integrated service i.e. a composite service,
enterprises are enabled to continuously discover new opportunities to form alliances
with other enterprises to share their cost, skills and resources. Despite its enormous
potential to achieve the integration of heterogeneous systems, the dynamic Web Ser-

vice Composition is still the object of ongoing research activity. Due to the problems

1.1. Motivation 2

of distributed responsibilities, accountability, authority, ownership, and control etc,
typically, it is unrealistic to acquire complete information from all parties involved in
dynamic service composition. 'Ma.king decisions about the role of various Wed Services
based upon partial or incomplete information often fails to achieve consistency. In
other words, the dynamic composition of Web Services entails consistency problems or

conflicts.

1.1 Motivation

Conflict has been defined in [61] as “the interaction of interdependent people who per-
ceive opposition of goals, aims, and values, and who see the other party as potentially
interfering with the realization of these goals...”. This highlights some general charac-
teristics of conflict: interaction, interdependence, and incompatible goals. In addition,
it has been demonstrated that conflict is common in group interactions [26, 27, 64].
Often, Web Service composition involves multiple independent parities, and during the
process of Web Service composition, the interactions between these independent par-
ities have to be carried out to locate and invoke services. Thus we can assume that
any service composition involving more than one independent service providers may
be subject to typical group conflicts (26, 64].

The following example of a travel agency is used to explain the service conflicts
which may be caused by incompleteness of information during the dynamic service
composition. Our example uses the often presented travel agency service package. A
typical use case could involve arranging a trip consisting a hotel booking, a car rental
and a sightseeing service. To simplify this use case, we assume this composite service
is executed in a sequential manner (i.e. hotel booking service, then car rental service,
finally sightseeing service). Assume that, when requesting this composite travel agency
service, the user specifies his preferred car model, for example, a city car. Obviously,

this car will be used for sightseeing, which is also generated as part of this composite

1.1. Motivation 3

service. If the functionality matches the user’s requirement, then the car rental service
is invoked. In the real world, it is most likely that the car rental service providers have
some service policy about usage of rental cars. However, when the car rental service is
invoked, we don’t have any information about what kinds of sightseeing plan might have
been generated from the execution of the service, in other words, we don’t know how
the rented car will be used. The point here is that different sightseeing plans may be
associated with different roads, and it may not be allowable for a rented car to drive on
certain roads. For example, a desert dune exploration plan is dynamically generated
from the sightseeing service and a city car is used for the desert dune exploration.
Clearly, this is not an acceptable situation for either the car rental company or the
customer.

The platform neutral nature of Web Services creates the opportunity for building
composite services by dynamically composing the functionalities of existing atomic or
complex services. What makes achieving the consistent service composition compli-
cated is the fact that services can interact in complex ways. Different enterprises have
distinct business objectives, rules and assumptions about using or providing a Web Ser-
vice, especially in some rule or policy intensive enterprises. It is unrealistic to acquire
complete information from all parties involved during dynamic service composition. In
this proposed work, we will extend the current Semantic Web Service Description [4]
by introducing the concept of “Service Assumption”. Together with this proposed ex-
tension, we will define a formal mechanism for reasoning about incomplete knowledge
during dynamic service composition and to address the service conflict issues.

The term conflict is used to cover any interference in one service’s activities, needs
or goals, caused by the activities of another service [26]. Handling conflict is one of
the factors that determines whether a group of services can be composed together
successfully. In our framework, detecting the inconsistency among the various services
is the way to avoid the service conflict. Inconsistency here can be viewed as a state

in which two or more overlapping elements of different services make assertions about

1.2. Contributions 4

certain aspects of the service composition they describe which are not jointly satisfiable.
We believe that the question of conflict between various services is highly relevant to
any dynamic service composition. To assume absence of conflicts in service composition
is naive. If service descriptions ignore issues of conflict in a dynamic service execution
environment, then this ignorance about conflict becomes embedded in the underlying
service composition. This ignorance may influence the style of service composition in
unplanned ways, for instance, by restricting the means that the composition planner

has of dealing with conflicts.

1.2 Contributions

Ontology Web Language for Services (OWL-S [4]), formerly known as DAML-S [3], is
an upper ontology for services, aimed at achieving the automation of service discovery,
invocation, composition and interoperation. OWL-S leverages the rich expressive power
of OWL [23], together with its well-defined semantics, to provide richer descriptions of
Web Services. Recently, Semantic Web Rule Language (SWRL) [38] has been proposed
to define service process preconditions and effects, process control conditions and their
contingent relationships in OWL-S. Though OWL-S is endowed with more expressive
power and reasoning options when combined with SWRL, the description provided by
a combination of OWLS and SWRL about service composition is still only a partial
picture of the real world. Most of what we know about the world, when formalized,
will yield an incomplete theory precisely because we cannot know everything - there
are gaps in our knowledge [62]. In the same way, the ontology of services, is finite
and incomplete. Thus, a service composition specified by OWL-S has to deal with
partial or incomplete knowledge. The contributes I have made to the field of service

composition, are based on the current Semantic Web Service Description as follows:

e Currently, OWL-S has no mechanism for handling incomplete information in

service composition context and no method for reasoning about its side-effects.

1.3. Organization of the Thesis 5

We extended current OWL-S by introducing the concept of service assumptions
which allow reasoning with incomplete information. The proposed extension is
an attempt to bridging the gap between the semantic service description and the

multiple operational domains involved in dynamic service composition.

o We explain the semantics of service assumptions and how service assumptions

can facilitate the further automation of service composition planning,.

e To allow service assumptions to be used in a more flexible way, we further classify
service assumptions as Hard Assumptions and Soft Assumptions. To avoid the self-
defeating problem, we also classify service assumptions as Transient Assumptions

and Persistent Assumptions.

o Together with the proposed service assumptions, we offer a sequence of rules to
be used in the process of service composition planning, which describes conditions

required to achieve consistent service composition.

1.3 Organization of the Thesis

The next chapter of this thesis surveys the works from a number of related fields.
Web Service is an emerging research area, and the importance of Web Services has
been recognized and widely accepted by industry and in academic research. Qur re-
view about Web Services will be conducted from both industry and academic research
perspectives. Additionally, an implementation of a Web Service is a software module,
thus Web Services inherit principles and technology from software development[78]. To
understand the software consistency management, our survey also includes the brief
review about the inconsistency problem in software engineering literature.

Dynamic composition of services is a hard problem and it is not entirely clear
which techniques can solve the problem best. One family of techniques that has been

proposed for this task is service composition as planning. We will give an overview

1.3. Organization of the Thesis 6

of recent research efforts concerning automatic Web Service composition from the Al
planning research community. Then we explain some basic concepts of default logics
which support reasoning with incomplete information. In addition to introducing the
reader to these diverse areas, the chapter discusses their relevance to the topic of the
thesis.

In Chapter 3, we extend the current version of OWL-S by adopting service assump-
tions, explain the semantics of the service assumptions and classifications of service
assumptions. In Chapter 4, firstly, we define the basic semantics for the planning-
based service composition domain. Then, based on our proposed extensions to the
current Semantic Web Service Description, a formal framework for reasoning about
incomplete knowledge during the service composition planning process is presented. In
Chapter 5, we look at the often presented example, travel agency package, as a service
composition. T'wo scenarios are presented in which the service assumption as an ex-
tension to current Semantic Web Service Description can prove to be useful. Chapter
6 presents our conclusions, a discussion about the limitations of the proposed approach

is given and an outline of how this work can progress further.

Chapter 2

Background

Despite their enormous potential to achieve integration of heterogeneous systems, the
composition of services in dynamic environments is still the object of ongoing research
activity, particularly, the consistency problems associated with the integration of Web
Services. In this chapter, a brief literature review of the major areas related to our
study will be presented. These areas include: basic Web Service concepts, Semantic
Web Services, consistency management in software engineering, default logic and Al

planning.

2.1 Web Service

Web Services are techniques for direct communications between one program and an-
other across the Web. The basic idea of the service-oriented computing paradigm has
evolved from various distributed computing approaches such as electronic data inter-
change, common object and request broker, etc. However, service-oriented computing
(54, 78] is different from a traditional distributed computing approach in that it en-
ables the software to be created on the fly through the use of loosely coupled, reusable
software components.

Generally speaking, Web Services are a new breed of Web application. They are
self-contained, self-describing, modular applications that can be published, located,

and invoked across the web [41]. Based on the industry-standard Web Services Model

2.1. Web Service 8

[41, 9], there are three basic roles involved in the Web Service Architecture:

e Service Provider: a Web Service provides some functionality on behalf of its
owner. From an architectural perspective, a Service Provider is the network
application platform that uses Internet protocols to advertise and provide services

to Web Service Requesters.

e Service Requester: an entity which wishes to make use of existing Web Ser-
vices. Usually, it initializes the message exchanges with the service providers.
From an architecture perspective, the service requester is an application that
uses Internet protocols to access the information and functionality made avail-

able by Web Service Providers.

e Service Registry: a Service registry is a centrally controlled searchable reg-
istry of service descriptions. Service Requesters find services and obtain binding
information from the service descriptions held in Service Registry. The service
binding can be either static binding, which is defined during service development,

or dynamic binding, which occurs during service execution.

It is well known that the current dominant programming paradigm is the object-
oriented programming which uses direct invocation method, i.e. the method must be
provided by an object running at invocation time. On the other hand, service oriented
computing adopts the find-bind-use as its operation model. To use an existing service,
a service requester first searches a service registry for descriptions of all available ser-
vices, then the target service is selected based on service functional and non-functional
descriptions. Finally, the service description is used to bind with the service provider
and invoke with the Web Service implementation. The find-bind-use model [10] al-
lows for greater flexibility, especially in distributed environments. Based on the Web

Services Model [41, 9], the Web Service life cycle includes following basic operations:

e Publish: to be accessible, the service description needs to be published so that

the service requester can find it.

2.1. Web Service 9

o Find: the service requester retrieves a service description directly or queries the

service registry for the type of service required.

e Bind: eventually, a service needs to be invoked. In the bind operation, the
binding details specified in the service description are used by a service requester

to initiate an interaction with the service at runtime.

Please see print copy for Figure 2.1

Figure 2.1: IBM Web Services Conceptual Stack

The Web Service architecture defined by IBM [41] is the most elaborate and the
best described industry ad-hoc standard for Web Services, in which a Web Service is
viewed as an abstract interface that specifies a set of network accessible operations
through standardized XML messaging (See Fig 2.1). Layered on top of Network and
XML-based messaging (SOAP), the service description layer is responsible for describ-
ing the interface of a Web Service and related service interactions. The current service
description language supported by the industry is WSDL [6, 20], which is used to de-
fine the interface and mechanics of service interaction. SOAP offers a basic message
exchange mechanism, while WSDL carries the information which indicates what mes-
sages should be exchanged during service execution. To enable service publishing and

discovery, UDDI provides a mechanism for holding the descriptions of Web Services.

2.1. Web Service 10

UDDI: The Universal Description, Discovery, and Integration specification defines a
standard data structure for service descriptions, and specifies how to get access to
the service publication and description. Thus, UDDI is responsible for both service
publication and service discovery. Here, UDDI is roughly equivalent to an automated
directory mechanism, but it also defines a data structure standard for representing
service descriptions in a unified and systematic way.

One of most important characteristics of Web Services is the ability to be compos-
able. Service composition is the top layer of the conceptual Web Service stack, aimed to
support business-to-business or enterprise application integration. The Business Pro-
cess Execution Language for Web Services (BPEL4WS[21)) is a language which aims to
specify the common concepts for a business process execution language and help organi-
zations coordinate business processes and transactions. The publication of BPEL4WS
is a joint effort by BEA, IBM, Microsoft, SAP and Siebel, which superseded XLANG
and WSFL as a standard for Web Services flow specification. BPEL4WS forms the
necessary technical foundations for multiple usage patterns including both the process
interface descriptions required for business protocols and executable process models.
In addition, the underlying models provided by BPEL4WS collectively describe how
to define, create, and connect multiple business processes in a Web Services environ-
ment. The BPEL4WS process model is layered on top of the service model defined by
WSDL. The principle objective of BPEL4WS is to model the peer-to-peer interaction
between services. The processes and the partners involved in a service composition
are modeled by BPEL4WS as the standard service interface. Typically, these standard
service interfaces are specified by using WSDL.

Basically, BPEL4WS supports two different ways of describing composite Web Ser-

vice flow:

o Executable business processes: similar to workflow descriptions, the executable
business processes are represented using basic and structured activities. They

can be used to specify the details of business processes in a business interaction

2.1. Web Service 11

as well as a pattern of execution of Web Services. Because of the explicitly
specified internal details of process flows, the executable business processes can

be executed by a service composition engine.

e Abstract business protocols: which only allow the specification of public message

exchange between parties, and ignore process-internal data and computation.

BPEL4WS is essentially used to define a new Web Service by composing multiple
existing services. Relying heavily on WSDL description of the Web Services, the inter-
face of the new composite Web Service specified by BPEL4WS uses a set of port types
specified by WSDL to provide combined operations like any other Web Service. Fur-
thermore, the BPEL4WS process supports either sequential or parallel execution. The
execution could be controlled by conditional expressions. Like the programming lan-
guage, a BPEL4WS process has the ability to construct loops, declare variables, copy
and assign values and define fault handlers. By combining all these constructs, the com-
plex business processes could be defined in a fully controlled manner. A BPEL4WS
process consists of a set of activities. Multiple primitive activities can be combined as
a structured activity. Primitive activities represent basic constructs and are used for

common tasks, such as the following:
e Invoke: used to invoke other Web Services.
o Receive: used to wait for the next invocation request of the business process.
¢ Reply: used to generate a response for synchronous operations.
o Assign: used to manipulate data variables.
o Throw: used to deal with faults and exceptions during service execution.
e Wait: used to wait for some time.

e Terminate: used to terminate the entire process.

2.2. Semantic Web Service 12

In summary, from the industry respect, the base level of Web Service is WSDL
which provides a standard Web Interface specification and provides a way to map from
the abstract descriptions of a Web Service to its specific implementation. To describe
other high level aspects of the Web Service, some other service descriptions are adopted
to complement current WSDL. Together with WSDL, UDDI data structures are used
to describe service context information, for example name and contact information of
a service provider etc. At the top level of the Web Service conceptual stack, service
compositions allow applications to be assembled from a set of appropriate existing
software modules. BPEL4WS provides a straightforward way to compose several Web

Services into a new composite service.

2.2 Semantic Web Service

Like we stated in the previous chapter, industry has made significant progress towards
a new web application paradigm - service oriented computing. To provide a robust
service development and operational environment, the current industry quasi-standard,
however, is too flat to be comprehensive [69] and richer descriptions of Web Services are
required. OWL Web Ontology Language for Services (OWL-S) Specification, formerly
called DAML-S, was first developed by the DAML coalition [3] in 2001. The latt;,st
release is OWL-S version 1.1 (complete specification can be found at [4]). OWL-S is
an upper ontology for services, aimed at achieving the automation of service discovery,
invocation, composition and interoperation. OWL-S leverages the rich expressive power
of OWL [23] together with its well-defined semantics to provide richer descriptions of
Web Services. Service ontologies can be used to map service functional descriptions and
domain properties into a standardized logic so that they can be machine understandable
and interpretable. Thus OWL-S forms a good foundation for describing Web Services

and their composition in an open, web-based environment.

2.2. Semantic Web Service 13

The Semantic Web Service is an emerging research area which builds on the foun-
dations of diverse prior works. First, the Semantic Web Service is built on the top of
a new form of Web - the Semantic Web [16]. Second, the field of knowledge represen-
tation provides high-level descriptions of the world and logic foundation for Semantic
Web Service Description, which can be used to characterize semantics and semantic
relationships between various concepts. Finally, the service description languages pro-
posed by indusfry such as WSDL defines a stateless client-server model of synchronous
or uncorrelated asynchronous interactions. On the other hand, OWL-S, siting on top
of these low-level communication layers, provides a richer semantic description of Web
Services and tries to answer the different questions.

The Semantic Web is not a separate Web, but an extension of the current one, in
which information is given well-defined meaning, better enabling computers and people
to work in cooperation [16]. OWL-S adopts the Semantic Web technology for service
description. Description Logics [14] and Ontology Web Language [23] provide the se-
mantic foundation for the markup of Web Services. Description Logic [14] is sometimes
called terminological logic, classification logic or concept logic. It is a technical thread
of formal knowledge representations, aimed at providing a logic language for expressing
and using semantic information. Generally speaking, Description Logic is a knowledge
representation formalism, which provides structures for organizing and reasoning about

the expression of knowledge and was developed to:

1. emphasize representing knowledge language.
2. define the common terminology in the application domain.

3. support the design of knowledge-based systems.

In order for information to be exchanged between service applications and for knowl-
edge to reused in an open-ended environment, a shared understanding of the relevant
domains are required. A solution to this problem is provided by ontologies, which aim

to capture the semantics of a particular subject area. Basically, an ontology defines the

2.2. Semantic Web Service 14

basic terms and relations comprising the vocabulary of a topic area, as well as the rules
for combining terms and relations to define extensions to the vocabulary [47]. In the
context of the Semantic Web, ontologies can encode the descriptions of web resources
or services in a way that enables machines to use or process these descriptions. Usually,
an ontology is represented in a logical language, for example, Description Logic. When
an ontology is codified in a formal knowledge representation language, it is endowed
with more expressive power and reasoning options, thus the description of an ontology
is more precise and machine interpretable.

An ontology can be viewed as a finite controlled but extensible vocabulary, which
is used to describe classes, instances and their relations in an unambiguous way. In
addition, class specification, instance inclusion and value restriction in ontology can
be specified in a strict class hierarchy. Similar to knowledge bases, ontologies provide
both intention and extension types of knowledge, where the intention is about class
or generic information that describes the particular domain, while the extension is
about instances, i.e. the specific instantiations of the domain description. Ontologies
enhance the functionality of the Web in many ways, such as, consistency checking, inter-
operability support, data or schema validation and verification, configuration support,
structured search, exploiting generalization and specialization information. Interested
readers can refer to [24].

The OWL Web Ontology Language (OWL[23]) is the most expressive of the on-
tology languages currently developed for the Semantic Web. OWL has three different
levels of language: OWL Lite, OWL DL(for description logic), and OWL Full. These
three sub-languages are in increasingly expressive in order. Beyond the RDFS [2]
which defines classes, subclasses, properties and subproperites, OWL defined property
restrictions. Both intentional and extensional knowledge can be represented in OWL.
In order to represent class information and data-type information, OWL defines class

constructs such as disjointWith and supports logic set theory such as intersectionOf,

2.2, Semantic Web Service 15

unionOf, complementOf. Additionally, the universal quantifier is specified by allValue-
From as a restriction on corresponding property, which means that for each instance of
the class or data type restricted, all values for the corresponding property must belong
to that instance. On the other hand, the existing quantifier, is specified by someVal-
ueFrom as a restriction on corresponding property, which means that for each instance
of the class or data type restricted, at least one value for the corresponding property
belongs to the instance. An OWL document is composed of RDF [1] triples, but those
triples have been assigned the specific semantics. In this way, OWL provides a seman-
tic interpretation for those RDF graphs. OWL is a Description Logic markup language
for defining Web ontology. Thus, there is a mapping of constructors (Table 2.1) and
axioms (Table 2.2) in OWL which correspond to the Description Logics constructors

and axioms:

OWL Constructor | DL Syntax Example
intersectionOf Cin---NC, | Woman N Mother
unionOf CGu---ucl, | Manu Woman
complementOf -C -Male
oneOf {p1y...,0n} | {sue,...,mary}
allValueFrom vYP.C VhasChild.Student
someValueFrom Ir.cC JhasChild.President
minCardinalityQ >nP.C > 1 hasChild.Student
maxCardinalityQ <nP.C < 3 hasChild.Student

Table 2.1: OWL Constructs and Their Corresponding DL Syntax

OWL.is a Web Ontology language which is formally defined to provide explicit
specification of certain domains shared between large groups of stakeholders. When
Web contents are defined by ontologies, machines can achieve a certain degree of under-
standing of the data. Thus web ontologies are ideal to enable automatic intei’operation
between entities on the Web. As far as Semantic Web Service is concerned, the inter-
operation may include: service matching, service composition, service planning, service

exception handling etc.

2.2. Semantic Web Service 16

OWL Axiom DL Syntax | Example
subClassOf CiCC Student C Male N Female
equivalentClass Ci=C, Man = Human N Male
disjoint With C,C -G, Male C ~Female
samelndividualAs | p; =ps 207 = Zheng L
differentFrom P1F# Do 2107 # dr36

subPropertyOf PAC P, hasSon C hasChild
equivalentProperty | Py = P2 Cost = Price

inverseOf P=P, hasChild = hasParent™
transitiveProperty | Py C P, | Ancestort C Ancestor

Table 2.2: OWL Axioms and Their Corresponding DL Syntax

OWL-S [4] is developed, as an OWL-based Web Service Ontology, and aims to sup-
port tools and agent technology for the automation of services on the Semantic Web.
“OWL-S supplies Web Service providers with a core set of markup language constructs
for describing the properties and capabilities of their Web Services in unambiguous,
computer-intepretable form. OWL-S markup of Web Services will facilitate the au-
tomation of Web Service tasks including automated Web Service discovery, execution,
interoperation, composition and execution monitoring”. OWL-S supports both simple
and complex interactions of Web Services, the primary motivation in defining OWL-S

is as follows:

o Automatic service discovery: this means the act of automatically locating a
machine-interpretable description of a Web Service which matches a given set
of functional, non-functional or other constraints. The goal is to find an appro-
priate Web Service resource by using an automated process. For example, to find

a weather forecast service for a city where service requester is located.

o Automatic service invocation: this means that when an appropriate service has
been located, without further interaction required, the identified services are
executed automatically by a computer program or agent. For example, when a

weather forecast service is found, the response is automatically sent to the service

2.2. Semantic Web Service 17

requester.

e Automatic service composition and interoperation: this means that based on
high-level description of a service requirement, automatically composing several
Web Services into a new Web Service. To support this processes, multiple tasks
may be involved, such as automatic service selection, composition, and interop-

eration.

o Automatic service execution monitoring: the execution transactions that rely on
Web Services are vulnerable to the problems of those Web Services. OWL-S
offers the ability to find out where in the process the request is and whether any
unanticipated glitches have appeared by providing declarative descriptors for the

state of execution of services.

Presents

What is does

Described by
ServiceMeodel

How it works

Supports
Service
How to access it \ Grounding

Figure 2.2: Top Level OWL-S Class Hierarchy

Industry has focused on manageability and modularization of Web Services, while
academic research has been concerned more with expressiveness of service descriptions
[69]. As an upper ontology for services, OWL-S defines four basic classes, namely
Service, ServiceProfile, ServiceModel and ServiceGrounding, where the Service is at the top

level of service description hierarchy, and it is an organizational point of reference for

2.2 Semantic Web Service 18

any Web Service. Having been defined as the properties of a class Service, ServiceProfile,
ServiceModel and ServiceGrounding represent different perspectives of a Web Service,
and each of these properties provides an essential type of information about the service
respectively (See Fig 2.2).

ServiceProfile: this description document answers the question of what a particu-
lar service does. The ServiceProfile represents a comprehensive description of informa-
tion necessary for any service application to decide if this particular service matches
the requirement. In addition to the functional description, the ServiceProfile also
includes non-functional requirement descriptions such as limitation on service appli-
cability, quality of service and the constraints which a service requester must satisfy.
The relation between class Service and ServiceProfile has the form of “Presents”, which
means an instance of Service presents a ServiceProfile description.

ServiceModel: this description document answers the question of how is a partic-
ular service used. The ServiceModel offers details about: conditions applied on using a
service, what are the steps that lead to service outcomes etc. This description is useful
for further analysis of the service matching, composition of existing service descrip-
tions, coordination among multiple services involved and monitoring the execution of
the service. The relationship between class Service and ServiceModel has the form of
“DescribedBy”, which means an instance of Service is described by a ServiceModel
description.

ServiceGrounding: this description document answers the question of how a
particular service could be accessed. Generally, the ServiceGrounding specifies which
communication protocols, message formats are used. The relation between class Service
and ServiceGrounding has the form of “Supports”, which means an instance of Service
have a support property referring to a ServiceGrounding.

Briefly, the ServiceProfile forms the description used for service discovery, the Ser-
viceModel groups with ServiceGrounding to form the description used for execution of

a service,

2.2. Semantic Web Service 19

In current OWL-S, a service is intentionally modeled as a process which is a spec-
ification of how to interact with that service, but not a program to be executed. The

processes can be categorized as:

e An atomic process which only performs single function, i.e. return one mes-
sage in response. There are no sub-processes or further executions in an atomic
process. Usually, it is directly invocable, with a single message receiving and a

single message return pattern.

e A composite process which performs multiple functions by aggregating multi-
ple existing atomic processes and needs to maintain some states during a service
transaction. A composite process can be decomposed into either atomic or com-
posite sub-processes. To specify the method of decomposition, OWL-S defines
the control constructs, such as sequence and iterate. However, what a process
specifies is not what behaviors a service will do, instead, it specifies that to
achieve overall service effect, what behaviors the client should do to invoke every

sub-process.

e A simple process which is not invocable, but is regarded as having one step
execution. A simple process in OWL-S is out of two purposes, first it may be used
to provide a view of an atomic process, in this case, the simple process is realized
by the atomic process; second, it may be used represent a simplified version
of composite process, in this case, the simple process expandsTo the composite
process. Unlike an atomic process and a composite process, a simple process is

not related to any grounding, because it is uninvocable.

Each service has input and output parameters. Besides the input and output pa-
rameters, the functional description is described by two sets of conditions, namely
precondition and effect, where precondition must be true for the process to be exe-
cuted and effect represents the conditions that must be true immediately after the

service execution completes. For instance, if we are going to use a car rental service, a

2.9, Semantic Web Service 20

precondition would be that the credit card is valid, and an effect of the execution of the
service would be that the credit card is charged a certain amount (namely, the price
of the rental fee). The four elements (input, output, precondition, effect) of service
functional description are referred as IOPE.

In the the service ontology hierarchy structure, inputs and outputs are the sub-
classes of parameter. Input to output represents a process of data transformation
produced by a service execution. The input required by an atomic service must come
from the service requesters, while the input required by composite services could be
either directly from the service requesters or from output generated by previous steps.
Furthermore, a service can have as many inputs and outputs as required, also including
none. Specified by inputs and outputs, data transformation formed the good founda-
tion for reasoning about service syntactic inconsistencies which has been defined in
classical software literatures [70, 65). For example, two processes are type compatible,
if the output parameterType process A is a subtype of the input parameterType of
process B.

The last two elements in IOPE are represented as an object property called expres-
sion, which connect processes to their precondition and effect. Precondition to effect
represents a transition of the world state, when a service execution completes. If a
process has a precondition, to execute the process properly, the precondition must be
true. Effects are the changes of world states, when execution of a service completes.
However, the evaluation of precondition can generate results other than true or false,
for example, being believed to be true, being known to be true or unknown. If the pre-
condition is evaluated as false, the results of performing the process are undefined. The
combination of effect and output constructs the service result data structure. The term
“result” is used to refer to a coupled service output and effect. Effects represent the
condition changing of the world, while outputs represent the message passing. Finally,
a service can have as many preconditions and effects as required, including none.

From the studies of the current Web Service descriptions from both industry and

2.3. Web Service Composition as Planning 21

academic research, we can tell that the two efforts have different foci and have pro-
posed two different solutions to this new computing paradigm. The service description
languages proposed by industry define a stateless client-server model of synchronous
or uncorrelated asynchronous interactions [6, 21). On the other hand, the current Se-
mantic Web Service Ontology language (OWI-S) is layered on top of these low-level
communication layers and provides a richer semantic description of Web Services. In
summary, WSDL can be viewed as a low-level communication language and protocols
which define how to access a Web Service, while OWL-S aims at providing an answer

to the questions, such as:

e why one uses a certain Web Service.

o what this Web Service actually does [73).

2.3 Web Service Composition as Planning

The Semantic Web is an approach to making the Web resources machine interpretable.
To achieve the goal of automatic Web Service composition, Semantic Web Service
Language (OWL-S) is developed to specify the various aspects about the semantics of
services, which has been proved to be useful for various intelligent service behaviors such
as service discovery, description and composition. Recently, the planning techniques
which result from the AI research discipline have been employed to automate the
composition of Web Services. The planning technique can be viewed as a problem
solver which helps us to “know what to do before things are done”. In classical planning
representation, the planning system is defined by the initial state of the world, a set of
operators which correspond to actions changing the current state, and a goal condition
which is a set of ground formulas. The state is a set of ground formulas expressed in
first order language. During the planning process, the planning agent attempts to find
a sequence of operators or actions which transform the initial world state into the goal

state, i.e. a model which satisfies a given set of goal formulas. A state is a complete

2.3. Web Service Composition as Planning 29

view of the world, a ground formula p holds in the current state S iff p € S. The

description of each action is specified by:

e the precondition which specifies what formulas should belong to the current state

in order for the action to be applicable.
o the add list which denotes the positive effects of an action.

o the delete list which denotes the negative formulas that may no longer be true

and therefore must be deleted.

In the rest of this work, we will use the symbol |= to represent logical entail. Typically,
an action @ can be represented as a triple 6 = (name(0), pre(8), effect(d)). An action
0 is applicable in a state S when the preconditions p are satisfied in the state, i.e.
S [pre(#). Traditionally, planners represent the world state with a relational database
and thus precondition evaluation is very fast. Applying the effects of an operator is
completed by adding or deleting entries from the database. If the goal condition G
is & set of formulas with variables, S satisfies G is denoted by S |= G. During the
planning process, a resolution theorem prover is adopted for the operator precondition
evaluation, for the goal formula validation in the last world state, and also for directing
the search.

In classical planning, a domain theory denotes a description of the possible ac-
tions, which are specified in some formal language and may be executed. Usually,
domain theories follow some state-transition model. A transition system is a tuple
T =(A,S8,5,R,S,) where A is the set of actions which may change the world model
from one state to another, S is the set of all possible states of the world, S is the set
of initial states and Sy C S, R is the transition relation and R € S x A x S, and
finally, S, is the set of final states.

Description logics and Semantic Web Language provide the logic foundations for
the service ontology language OWL-S, and this formalization provides the formal se-

mantics of the services, i.e. a domain theory. Similarly, the state change produced by

2.3. Web Service Composition as Planning 23

the execution of the service is specified through the service functional properties: pre-
condition and effect. Precondition presents logical conditions that should be satisfied
prior to the service being requested. Effects are the result of the successful execution of
a service. Because of this similarity, the majority of the methods of service composition
as planning use OWL-S as the service description language.

Over time, planning has become a rich research area in the Al research discipline,
and many Al planning techniques have been developed to support different levels of
expressivity and solve different planning problems. This has resulted in a wide range of
different formats and notations, thus the semantics of domains have often been ambigu-
ous. To address this problem, the Planning Domain Definition Language (PDDL{36])
was developed to serve as a standard planning domain and problem specification lan-
guage and is widely recognized as a standardized input for various planners. Moreover,
the development of OWL-S has been strongly influenced by PDDL language. It is
straightforward to map from one language representation to another. Because OWL-S
descriptions could be easily translated into the PDDL syntax, then different planners
could be exploited for further service synthesis.

Among the approaches of service composition as planning is the HTN planning
system SHOP2, which is a Hierarchical Task Network (HTN) planner. In [71], the
SHOP?2 planner is applied for automatic service composition and provides a sound
and complete algorithm to translate OWL-S service descriptions to a SHOP2 domain.
Motivated by the task decomposition in HTN planning, HTN planner is adopted to
solve the semantic service composition problem. The authors also claim that the HTN
planner is more efficient than other planning languages, such as Golog. Finally, the
Proposed system is also capable of executing information-providing Web Services during
the planning process, which means the proposed system is suitable for the service
planning even with an incomplete initial state of the world.

[46] proposed a Golog-based approach for the automatic composition of Web Ser-

vices. Golog is a logic programming language built on top of the situation calculus.

2.4, Inconsistency in Software Engineering and Default logic 24

The goal of this work is to provide a semantic web agent the programming capabil-
ity of writing generic procedures for service-based tasks. The knowledge state of a
planning agent can provide & logical encoding of the Semantic Web Service Descrip-
tions in the language of the situation calculus. The general idea of this method is
that various service requests are predefined as generic procedures. In addition, with
user’s specified constraints, these generic procedures can be customized at runtime to
goal instances. Moreover, Services are defined as two subclasses, namely, PrimitiveSer-
vices and ComplexServices. Primitive services are similar to atomic service in OWL-S,
which denotes a service that expects one message and returns one message in response.
ComplexServices are compositions of multiple services. Finally, using procedural pro-
gramming language control constructs (if-then-else, while, and so forth), a composite

service becomes a set of atomic services.

2.4 Inconsistency in Software Engineering and De-
fault logic

Web Services are emerging application technologies to reuse software as the service cross
the web. The Web Service model provides a powerful access channel to integrating
services across multiple applications inside and outside the enterprise to achieve a
business objective. At the same time, it also creates a new set of challenges other than
opportunities. A critical issue with the current Web Service’s model is the problem
of how to establish consistent service composition. The composition of existing Web
Services from multiple independent parties entails inconsistency problems, and the
difficulties arise as Web Services are dynamically composed.

When Web Services execute in an open-ended environment, uncertainties can easily
lead to conflicts. Here the service composition can be viewed as: the chain of the world

state transitions produced by the execution of a single business capability, unions of

2.4. Inconsistency in Software Engineering and Default logic 25

specific domain properties from all distinct parties involved and application of gen-
eral infra-structure rules and constraints. Since a Web Service’s implementation is a
software module, it shares many similarities with traditional software systems [77, 78].
In terms of software engineering, inconsistence denotes “any situation in which a set
of descriptions does not obey some relationship that should hold between them ”[49).
It can also be described as “a state in which two or more overlapping elements of
different software models make assertions about the aspects of the system they de-
scribe which are not jointly satisfiable ”[70]. Generally speaking, inconsistency means
situations where a given set of requirements cannot be simultaneously satisfied. As
far as the software development life cycle is concerned, these inconsistencies can arise
in system requirements, design specifications and, quite often, in the descriptions that
form the final implemented software product [50]. In terms of the software requirement

engineering, the inconsistency can been broadly classified as [65]:

e Syntactic Inconsistency: this is caused by terminology inconsistency or im-

proper grammar.
¢ Semantic Inconsistency: this is about conceptual meanings.

The inconsistency classification above can be easily applied to Semantic Web Service
Descriptions. As mentioned in the previous section, the functional property of a service
is specified by the input, output, precondition and effect. Clearly, the combination of
input and output can be used for syntactic inconsistency handling, while both precon-
dition and effect are logic expressions which can be used for the semantic inconsistency
handling, as shown on Table 2.3

However, in this work, what our concerns is that the set of assertions about a given
service composition are inconsistent with respect to the domain theories, in other words,
there is no way to satisfy all these assertions together. We will explain our ideas in more
detail in later chapters. Having reviewed a number of research surveys in the software

engineering literature, a wide range of inconsistencies can arise during requirements

2.4. Inconsistency in Software Engineering and Default logic 26

Property Range Kind Handling Inconsistency
hasInput Input Parameter | Syntactic
hasOutput Output Parameter | Syntactic
hasPrecondition | Condition | Expression | Semantic
hasEffect Expression | Expression | Semantic

Table 2.3: IOPE Used to Handle Inconsistencies
engineering because of the following reasons:

e Multiple perspectives: System requirements are elicited from multiple stakehold-
ers, who may have distinct and often contradictory viewpoints on the require-

ments of the proposed system.

o Non-functional Vs functional requirement: non-functional requirement or qual-
ity factors often contradict to functional requirements. Distinct non-functional
requirements can even contradict each other, for example, security requirement

may contradict to the system accessibility requirement.

o Requirement evolution: during the process of system evolution, modification of
the some elements leads two actions occur, namely adding and deleting, these

two actions may cause the inconsistency to other existing elements.

In traditional software engineering, normally the system specification is under the
control of a single stakeholder who, at least in principle, determines a consistent set
of requirements [37]. This process makes it easier to handle inconsistencies caused by
various sources. On the other hand, service composition is characterized by multiple-
stakeholder environments and distributed deployment and dynamic execution. Conse-

quently, the inconsistencies in the context of service composition may result from:

¢ limited control and knowledge about the multiple application domains involved.
e distributed responsibilities, accountability, authority, ownership, and control etc.

¢ lack of coordination and collaboration among those autonomous software agents.

2.4, Inconsistency in Software Engineering and Default logic o7

Clearly, incompleteness of information and uncertainty can easily result from such
an open environment. By an environment, or service composition environment, we
refer to that the part of the real world with which various services are to interact,
including the people and organizations as well as the implementation of the software
modules, and hardware devices. To achieve consistent service composition, it is critical
that the behavior of services has the ability to reason about and adapt to a changing
environment. When the services are dynamically composed, possibly, the candidate
services from different parties have conflicting goals or perspectives for the underlying
service composition to be built. The application of default rules [67, 63, 44] to the state
of knowledge during the service composition process is beneficial for this practical
purpose. Default logics allow for the representation of contradictory beliefs within
the same model, and then they could highlight potential conflicts and possible ways
of resolving them. Thus default logic representations may ideally model the various
aspects of the service composition problem, specially, when it is not particularly clear
what the underlying service composition to be. By adopting the default rules, each
service node in the distributed environment is allowed to routinely make assumptions
about the permanence of objects and the typical features or properties of objects.
Following the process of service composition, corrections to the assumptions also can
be smoothly accommodated. If a contradiction is detected, the old conclusions are
discarded to incorporate new knowledge.

Default logic is introduced by Reiter in [63]. It provides formal principles for making
inferences when the information at hand is incomplete and for retracting of the previous
conclusions when contradictory information appears. A default theory is a pair (D, W)
where W is a set of first-order formulae representing the facts which are known to be

true with certainty and D is a set of defaults. A default J has the form of

QPP
X

where ¢, 1;,...,9, and x are classical predicate logic formulas. The formulas ¢ are

2.4. Inconsistency in Software Engineering and Default logic 28

called the prerequisite and are denoted by pre(d), formulas 41, ..., are called the
consistency conditions or justifications and are denoted by just(d), and formulas x are
the consequence of the default and are denoted by cons(d). Note that the formulas in a
default must be ground. On the other hand, defaults with free variables are called open
defaults, which are usually interpreted as the schema representing a set of defaults.
Intuitively, given a default ¢ : 41, ...,¥n/X, its informal meaning is the following:
if ¢ is true and it is consistent to assume 4y,...,4,, then we can conclude x. To
formalize this interpretation, for a given default cons(d), we should know in which
context ¢ must be true and with what #,,...,%, should be consistent. Only if the
consistency of the set of justifications has been tested against the set of known facts,
can the defaults be subsequently applied. Given § = ¢ : 91,...,%,/x is applicable to
a deductive closed set of formulas F, if and only if p € E and ¢, ¢ E,...,", ¢ E.
A default theory introduces so-called extensions which represent possible consistent
interpretations of the available information, i.e. possible world views based on the
given default theories. One default theory can have more than one extension, which
is the way of the default theory to allow for the representation of contradictory beliefs
within the same model. E is an extension of (D, W) if and only if E is a deductively

closed set satisfying the following properties:

e An extension E should include W which is the set of facts containing the infor-

mation available, i.e. W C E.

o An extension E should be deductively closed, which allows us to perform classical

logical reasoning as well as to draw conclusions based on the default theory.

e All defaults that are applicable with respect to E have been applied, which means

that the extensions F is maximal possible world views.

The extension of the defaults has been defined in [76]. Let (D, W) be a default
theory, then E is an extension of (D, W) if and only if W C E and E is deductively

2.4, Inconsistency in Software Engineering and Default logic 29

closed where

Dp = (ZXLTH | 5 D,y € just(s),~w # B}

An operational definition of default extensions has been given in (76, 12]. Let a
given default theory be T = (W, D), Il = (41, ..., 8,) is a sequence of defaults from D,
in other words, II denotes a possible order in which the set of defaults are applied from
D. With the sequence II, there are two sets of first-order formulas, namely, In(IT) and
Out(IT), where

1. In(II) is represented by W U {cons(é,),...,cons(d,)} for i € {1,...,n}. In
addition, W U {cons(61),...,cons(8;—1)} |= pre(d;). As usual |= here denotes
the classical consequence relation. Thus, In(II) represents the current knowledge

base after the default §,, has been applied.

2. Out(Il) = {9l € just(d) for some & occurring in II}. Contrary to In(II),
Out(II) contains formulas that should not turn out to be true, which means that
Out(IT) represents the knowledge that should not be contained in the current
knowledge base after subsequent application of other defaults OR the current

knowledge base will contain the contradiction.

A key property of intelligence whether exhibited by man or by machine is flexibility.
This flexibility is intimately connected with the defeasible nature of commonsense in-
ference. We are all capable of drawing conclusions, acting on them, and then retracting
them if necessary in the face of new evidence. If our computer programs are to act
intelligently, they will need to be similarly flexible [31]. Default logics allow one to
make plausible conjectures when faced with incomplete information about the problem
at hand. Default reasoning [62] denotes the process of arriving at the conclusion based
upon patterns of inference of the form “In the absence of any information to the con-
trary, assume...”. Default logics support reasoning with incomplete information based

on assumptions, thus it provides means for adapting to a changing environment.

24. Inconsistency in Software Engineering and Default logic 30

Service composition is about implementing new value-added services, whose appli-
cation logic involves the invocation of operations offered by other services. The new
service is a composite service, and the invoked services are the components. Typically,
the components of a composite service are provided by different parties and an existing
application needs to be exposed over a network for use by unknown requesters. Conse-
quently, the information required-by any given dynamic service composition could be
ambiguous, inconsistent and incomplete. To clarify the ambiguity, resolve the incon-
sistencies and accommodate the incompleteness of information, we adopt an explicit
notion of defaults in current semantic service description, and this added default notion

makes service composition more flexible in the following ways:

o During the process of service composition, particularly in the face of incomplete
information or uncertainty, it is possible to draw tentative conclusions based upon

an incompletely specified initial set of knowledge and to act on them.

o It also provides an adequate account of how composing a value-added service pro-
gresses as a consequence of new information being added or existing conclusions

being retracted.

Adopting an explicit notion of defaults is an attempt to make precise statement
about the intended behavior of a service composition and its environment, which can
help achieve a higher degree of flexibility. As well as achieving a higher degree of
flexibility, it 'is also important to assure the consistency of service composition. To
assure consistency, the service composition should be viewed as a continual process of
re-validation and re-verification. Obviously, the various defaults involved in any given
service composition need to be handled in an appropriate way. In this case, the default
principle must be applied which allows for the representation of contradictory beliefs
within a partially specified service composition, and then potential conflicts could be
highlighted and possible ways of resolving these conflicts could be identified.

2.5. Related Works 31

2.5 Related Works

In the last section, we have briefly introduced the concept of inconsistency in software
engineering and conducted a basic review about default logics. The use of default
rules in software development is beneficial for practical purposes, in particular, in the
discipline of requirement engineering [11, 79]. Software development usually starts
with system requirement acquisition from multiple stakeholders who are involved in
the process of system development. However, these stakeholders may have conflict-
ing requirements for the system to be developed. Because default logic allows for the
representation of conflicting requirements within the same model, default logic repre-
sentations may ideally model these potentially conflicting requirements.

Among different approaches, paper [45] explored the possibility of automated sup-
port for detecting software requirement inconsistencies. In this work, it provided a
practical way to combine nonmonotonic logic and rapid prototyping to help maintain
software. According to this paper, the changes of the software system environment
introduce the inconsistencies. For this reason, the specifications are classified as im-
mutable or mutable. Mutable specifications are statements about the software and its
environment which remain the same for all time. A mutable specification is a statement
which is believed or assumed to be true, i.e. default assumptions. Default assumptions
here are characterized as: typically being true, but not true in all situations. Based
on an extension to logic programming, this work also presents a standard mechanism
for handling exceptions caused by default assumptions. By extending to logic pro-
gramming, this proposed Computer Aided Prototyping System presents an improved
automated capability for detecting the inconsistencies introduced by software changing.

Since the system environment as well as stakeholder requirements specifications
change, i.e. new requirements may be added and existing ones may be deleted, require-

ment evolution is an important source of contradiction among the requirements. Every

2.5. Related Works 32

phase of software development is characterized by continued evolution. Paper [79] pre-
sented a logic framework for modeling and reasoning about requirement evolution in
the construction of information systems. In this proposed framework, a requirement
model serves as a basis for reasoning with and about requirements. A set of operations
are defined to provide a formal basis for requirement evolution. At a meta-level, the
requirements model which may include incomplete and inconsistent requirements, is
viewed as a nonmonotonic theory, specially a default theory. Suppose that the re-
quirement model is represented in some formal language with a well-defined semantics,
requirement evolution operations can map between theories of this meta-level logic.
In this approach, the operations provide a formal basis for requirements evolution,
and incompleteness of information and inconsistent requirements can be captured and
handled by a rich meta level logic. By adopting the default principle in requirement
management, it is possible to obtain complete requirements models by taking initially
incomplete requirement specification and applying relevant defaults from the domain.
Beyond this, corresponding to multiple possible extensions of the corresponding default
theory, the formal mechanism of acquiring default extension was provided to resolve
the contradiction and select from amongst multiple possible views of a requirements
model.

The works we mentioned in this subsection represent approaches to reasoning about
incompleteness of information and inconsistencies in software requirement engineering
by adopting the default principles. These approaches also provide a useful starting
point for defining semantically well founded system for managing a changing environ-
ment during the system development life cycle. Resolving requirement conflicts caused
by the changing environment and consistently combining reusable components are of-
ten tasks which have to be solved for both traditional software system development and
service composition. In fact, the notions and ideas presented in constructing software
systems are highly applicable to service composition, as service composition could sim-

Ply be viewed as a type of composition of independent reusable software components

2.5. Related Works ' 33

at runtime. Examples for such scenarios are service composition for B2B systems with
a large set of business partners. Each of these business partners operates its service ap-
plications according to its own goals and priorities. When these services are deployed,
each of them has more or less limited knowledge of each other. Because of the dis-
tributed environment and the ignorance of one another, it is almost impossible to have
a central explicitly coordinated consistent model of dynamic service composition at all
times. Thus the approaches used to help the traditional software éystem development
may not be appropriate to solve the problem of dynamic service composition. In this
work, based on our proposed extensions to OWL-S, we use the planning techniques to
resolve the conflicts and unexpected misbehaviors introduced by the incompleteness
of information and inconsistency during the process of dynamic service composition,
which will be explained in detail in the next two chapters.

In the research area of Semantic Web Service, there is another outstanding research
effort, the WSMO working group [7]. WSMO [8] aims to further the development of
Semantic Web Services by working towards further standardization in the area of SWS
languages, and through the development and implementation of a common architecture
and platform for Semantic Web Service. WSMO is based on four concepts: Web
Services, ontologies, goals and mediators.

Similar to OWL-S, ontologies in WSMO provide machine-readable semantics for
the information used by all actors implied in the process of Web services usage, either
providers or requesters, allowing interoperability and information interchange among
components,

The capability of a Web Service is described in terms of precondition, postcondition,
assumption and effect. One of contributions we claimed in this work is to extend the
current Semantic Web Service Description OWL-S by introducing the concept of service
assumptions which allow reasoning with incomplete information. Note that the concept
of service assumption we proposed is different from the assumption defined in WSMO,

because:

2.5. Related Works 34

e The concept of service assumption proposed in this work is an extension to current
version of OWL-S, and most importantly, is based on the default theory, but
assumption defined in WSMO does not explicitly state that it is based on the
default theory. In other words, our proposed service assumption has explicit
purpose of reasoning with incomplete information and adapting to a changing

environment.

e To make the service assumption more flexible and more accurately describe the
problem of service composition, we further classify the service assumption into

different categories (See Chapter 3).

The mediators are another core part of WSMO, which allow the linking of hetero-
geneous resources and the resolution of incompatibilities that arise at data, protocol
and process levels. The current version of the WSMO specification distinguishes four

types of mediators: ooMediators, ggMediators, wgMediators and wwMediators:
e OO Mediators

1. Connect ontologies to any other components, including mediators.

2. Resolve mismatches and conflicts between ontologies.
o WW Mediators

1. Link Web Services to services they depend on.

2. Resolve representation differences through OO Mediators.
¢ WG Mediators which links Goals and Web Services.
e GG Mediators which connect generic and refined Goals.

Generally speaking, WSMO is designed to become a standard and it represents

one of the most comprehensive frameworks for Service Oriented Architecture, which

includes:

2.6. Summary 35

e Coals which describe some state that a user may want to achieve.

e Ontologies which are the formal specification of the knowledge domain used by
both the web service to express its capability, and by the goal to express the

desired world state.

e Mediators which are used to solve different interoperability problems.

2.6 Summary

The importance of Web Services has been recognized and widely accepted by industry
and academic research. In this chapter, we have conducted a brief review with respect
to both industry and academic research. Generally speaking, industry has focused
on modularization of different service layers, while academic research has emphasized
expressiveness of service descriptions. To tackle the problem of the consistent service
composition, we have also surveyed relevant literature in software engineering. To give
the service the ability to adapt to a changing environment during service composition,
we have also given a brief background to default logic which supports reasoning with
incomplete information. [39] accurately described software engineering as a discipline of
description. To improve the current Semantic Web Service Description for the purpose
of consistent service composition, in next chapter, we will extend the current Semantic

Web Service Description by introducing the concept of “Service Assumption”.

Chapter 3

Extending OWL-S by Service Assumption

3.1 Atomic Services

The platform neutral nature of Web Services creates the opportunity for building com-
posite services by dynamically combining the functionalities of existing atomic or com-
plex services. An atomic service is a directly invocable computer program which has
no subprocesses and can be executed in a single step. Usually, an atomic service is
invoked by a request message sent by a client. After processing the request, the atomic
service produces a single response to the client. Also, an atomic service can be com-
bined with other atomic or composite services to create value-added services. One of
characteristics of atomic services is that there is no ongoing interaction between the
client and the service, while typically a composite service needs to maintain some state.

In the context of Semantic Web Services, the functional description of the service
is expressed in terms of information transformation and state change. Information
transformation is represented by input and output properties, while a state change
produced by the execution of a service is specified through the precondition and effect
properties. The functional description of an atomic service in OWL-S is represented

as (1,0, P, E) where:

o [is the input property that describes the information a service requires to proceed

with the computation.

¢ O is the output property that describes what information a service returns back

36

3.1. Atomic Services 37

to the client.

e P is logical condition that should be satisfied prior to a service being requested.
Precondition is an optional description of an atomic service. In other words,
with an atomic service, if no precondition is specified, then the service is always
executable. On the other hand, if any precondition is specified, then the service

cannot be performed successfully unless the precondition is satisfied.

o E represents the effect of an atomic service, and lists the changes that the service
execution imposes on the current state of the world. However, effect is fundamen-
tally different from the output in that effect describes conditions in the world,

while output describes information.

It is worthwhile mentioning that there is another commonly used term, called:
postcondition which has some similarities to the term “effect”. Generally speaking,
postcondition is a condition or predicate that must always be true just after the ex-
ecution of an action or after an operation in a formal specification. There are also
some differences between these two terms. Firstly, OWL-S is an ontology of services
which draws upon well-established work in a variety of fields and includes work in Al
on standardizations of planning language PDDL. The effect is the part of PDDL action
definition. Secondly, from the definition we can tell that postcondition is about the
condition being true or false after the execution of an action, while on the other hand,
effect is about changing the world state after the execution of an action. Although,
there is difference between these two terms, effect depends on conditions that hold true
of the world state at the time the action is performed.

Checking the consistency of information production in the service composition has
been proposed by [78] in terms of the compatibility and conformance of the input and
output., which is also can be found mostly in the theory of programming languages.
In this proposed work, we restrict attention to another dimension, aiming to tackle

the problem of conflicts in service composition which may be caused by conflicting

3.2. The Need for Service Assumptions 38

perceptions, assumptions and goals of the multiple services involved in the service

composition process.

3.2 The Need for Service Assumptions

Web Services build on emerging best practices of eliminating programming module
dependencies from business logic. The basic motivation of service oriented computing
is to allow a high degree of flexibility to create the value-added composite service in
a dynamic fashion. Web Service composition shares many similarities with traditional
component-based software system. They both provide aggregated functionality via
reassembling various existing objects, and emphasize [53] same design principles such
as reusability, replaceability, flexibility and extensibility. As [34] observes: the notions
and ideas presented in constructing software components are highly applicable to Web
Services, as they could simply be viewed as a type of software component architecture
but with the addition of yielding a standard communication model. Briefly speaking,
Web Service composition model aims to connect the functional units of web applications
as services through well-defined interfaces.

Obviously, Web Services are provided by a large number of independent parties.
Often, these independent parties do not necessarily share the same objectives and back-
ground. [37] has pointed out that requirements engineering has traditionally assumed
that the system to be designed is under the control of a single stakeholder who (at least
in principle) determines a consistent set of requirements. Modern distributed systems,
however, do not fit this mold, so requirements engineering must adapt to handle them.
A multi-stakeholder distributed system (MSDS) is a distributed system in which sub-
sets of the nodes are designed, owned, or operated by distinct stakeholders. The nodes

of the system may, therefore, be designed or operated

¢ in ignorance of one another

e or with different, possibly conflicting goals.

3.2. The Need for Service Assumptions 39

The fundamental goal for service-oriented computing is to connect business func-
tions across the Web both between enterprises and within enterprises. Clearly, Web
Service are running in a distributed environment, and the ignorance of one another
may result in incompleteness and uncertainty of the information during the process
of service composition. Making a decision upon incomplete or uncertain information
easily fails to achieve consistency. Hence, to achieve reliable service composition, it
is critical for Web Services to have the ability to adapt to a changing environment.
As a result of this adaptability, it is possible to reason about a changing environment
and to deal with the exceptions resulting from the incompleteness and uncertainty
of the information. The focus of this work is restricted to bridging the gap between
the semantic service descriptions (See Section 2.2) and multiple operational domains
involved and to maintain the consistency of service composition.

Traditional software development usually starts with system requirement acquisi-
tion from multiple stakeholders, however, these stakeholders may have different per-
spectives about the system. Following the acquisition step, analysis needs to be carried
out to detect and resolve conflicts between those different viewpoints. Some approaches
have been proposed in requirement engineering research disciplines [22, 43, 60}. Unlike
traditional software development, during the process of service co_mposition, often, it is
impossible to have a clear cut boundary, based on which the potential conflicts can be
detected and resolved. Unpredictable service executions and a dynamically changing
environment complicate dynamic service composition in many ways.

OWL Web Ontology Language for services specification (OWL-S [4]) leverages the
rich expressive power of OWL [23] together with its well-defined semantics to provide
richer descriptions of Web Services. Service ontologies can be used to map service
functional descriptions and domain properties into a standardized logic [14] so that
they can be machine understandable and interpretable. Recently, Semantic Web Rule
Language (SWRL) [38, 15] has been proposed to define service process preconditions

and effects, process control conditions and their contingent relationships in OWL-S.

3.3. Service Assumptions 40

Though OWL-S is endowed with more expressive power and reasoning options when
combined with SWRL, the description provided by a combination of OWL-S and SWRL
about service composition is still only a partial picture of the real world. Most of what
we know about the world, when formalized, will yield an incomplete theory precisely
because we cannot know everything - there are gaps in our knowledge [62]. Similarly,
the ontology of services, is finite and incomplete. Thus, a service composition specified
by OWL-S has to deal with partial or incomplete knowledge. Currently, OWL-S has no
mechanism for handling incomplete knowledge during the process of dynamic service
composition. Inspired by [63, 44, 67], in this work, we propose service assumption
which aims to bridge the gap between the semantic service descriptions and multiple

operational domains involved in dynamic service composition.

3.3 Service Assumptions

The concept of service assumption extends the functional service description defined
by the current semantic Web Service ontology OWL-S [4]. The proposed service as-
sumption will supply service providers with an option for describing the properties
and capabilities of their Web Services in a more precise way. Service assumptions can
be used to define a collection of default conditions regarding service policies, where
each assumption is believed in lack of evidence to the contrary, and is taken to be
true until the contrary is proved. For instance, the assumption made by a car rental
service could be “city car does not run on dune”. The service assumptions are believed
when information is incomplete, but these assumptions also can be revised over time to
incorporate new knowledge. Because of the heterogeneous nature of the Web Service
execution environment, incomplete information in the process of service composition
may occur either because of the unavailability of certain information or to keep the for-
mulation simple at the start. Service assumptions here allow reasoning with incomplete

information by the default settings and then revising conclusions ever made to reflect

3.3. Service Assumptions 41

new information about the problem. By extending the current OWL Web Ontology
Language for Services (OWL-S) specification, an atomic service ws; in this proposed

work is described by a tuple (p;, e;, a;), where

e p; is a set of sentences representing the precondition that must be true for the
atomic service to execute, which can be represented as: p; = {p},...,p?}. In

addition, we define the each sentence in {p},...,pl'} as a primitive precondition.

e ¢; is a set of sentences representing the change of world state including both
positive and negative effects, which can be represented as: ¢; = {e},...,ef}. In

addition, we define the each sentence in {e},...,e} as a primitive effect.

e a; is a set of sentences representing service assumption, which can be represented
as: a; = {a},...,aP}. In addition, we define the each sentence in {a},...,a?} as

a primitive assumption.

Given a service ws; = (p;, €;, ai,), informally, its semantics can be interpreted as: if p;
can be satisfied, and if it is consistent to assume a;, then we may conclude that e; can

be applied. Note that p; and a; are different, because

o It must be possible to establish that p; is true for ws; to be invoked. On the
other hand, we only need to establish that a; is consistent with what is known,
i.e. nothing is known that contradicts a;.

® p; is a strong condition which must be true in order to execute the service ws;,
while a; is a weak condition. Initially we assume a; to be true, unless we get

additional information which is explicitly contradictory to a;.

¢ Precondition is logical condition that must be satisfied before a service is exe-
cuted, which means that after satisfaction of this precondition, this precondition
no longer affects the succeeding executions in the service composition. On the

other hand, service assumption has the character of being persistent, which means

3.3, Service Assumptions 4

that after service execution, normally, service assumption still has some impact
upon the underlying service composition. Here, precondition can be viewed as
the conditions regarding the eligibility of a service to be used, while the service
assumption can be viewed as the conditions regarding the way in which a service

is used.

OWL-S is a formal language which aims to provide precise and rich declarative
specification of a wide variety of properties about Web Services in order to support
automation of a broad spectrum of activities across the Web Service life cycle such as
discovery, selection, composition, negotiation and contracting, invocation and monitor-
ing of progress. In the current version of OWL-S, the vast majority of techniques focus
on the modeling and specification of the Web Service alone. Certainly, the declarative
specifications of prerequisites, consequences of application of individual services and
data flow interactions need to be defined precisely and related to each other. These
have been defined by means of (I,0, P, E) in the current version OWL-S. However,
currently OWL-S lacks support for reasoning about the composite service made up of
existing atomic or complex services and their environment. Insufficient service assump-
tions about the changing envifonment and uncertainty can easily leads to incomplete
or inaccurate composite service specifications. Thus, in parallel, the assumptions made
about incomplete knowledge and uncertainty also need to be made explicit and docu-
mented. The general goal of adding service assumption as a part of service specification
is to allow reasoning about and adaption to a changing environment in the process of

service composition. This might be seen as

1. accurately describing the service composition environment, in which most in-

stances of a concept generally have some property, but not always.
2. representing the hypothetical guesses about the incompleteness and uncertainty.

3. some combination of each.

3.4. Service Assumption as Functional Properties 43

3.4 Service Assumption as Functional Properties

Currently, there is no way for OWL-S to describe the various assumptions about the
multiple independent application domains involved in service composition. In addition,
there is no mechanism to guarantee that the service execution has the anticipated effects
when there is insufficient knowledge available during service composition execution.
By adopting service assumptions into OWL-S, we can conduct reasoning about what is
known in the composite service execution context against various domain assumptions.
Thus the ontology for Web Service becomes more complete and closer to the real world.
To use the service assumption in unified manner with other service properties specified
by current Semantic Web Services Language OWL-S, together with input, output,
preconditior.l and effect, hasAssumption in this proposed work is also defined as one
of the service’s functional properties, which would allows various assumptions to be

captured and recorded in readily accessible fashion. The syntax is proposed as follows:

<owl:Class rdf:ID="Assumption">
<owl:subClass0f rdf:resource="&expr;#Expression"/>
</owl:Class>

<owl:0ObjectProperty rdf:ID="hasAssumption">
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="&expr;#Condition"/>
</owl:0bjectProperty>

Code Segment 3.4: Extending OWL-S with Service Assumptions

Like the functional property hasPreconditioin which has been already defined in
OWL-S, hasAssumption is also represented as logical expressions and denotes conditions
that are evaluated with respect to the service composition environment. Expressions
here are represented by any allowed logical language. To be consistent with the current
OWL-S specification, we choose the Semantic Web Rule Language (SWRL)[15, 38] to
represent service agssumptions. The construct of hasAssumption here is used to specify

one of the assumptions of the service and ranges over an assumption instance. After

3.5. Service Assumptions about Individuals 44

adding service assumptions, a Web Service is connected to its functional properties

shown in Table 3.1:

Domain Property Range Kind

Service as Process hasAssumption Condition Expression
Service as Process hasPrecondition Condition Expression
Service as Process hasEffect Expression Expression

Table 3.1: Connection between Web Services and Their Functional Properties

3.5 Service Assumptions about Individuals

In a service composition context, service assumptions can be viewed as a hypothesis.
However, this hypothesis is about individuals rather than the terminology, where termi-
nology is about how concepts (classes) or roles (properties) are related to each other in
a given application domain and individuals are instances of these classes or properties.
Terminology represents the characteristics of the world, for instance, MasterCard is al-
ways subclass of Credit Card, while the facts about individuals represent our current
state of knowledge that may change over time, for instance, a particular MasterCard
may have expired. The reason to exclude the usage of terminology as the assumption
is intuitive, because the terminology in ontologies is used to model the world as we
know it.

Moreover, the proposed service assumption can represent two types of different
knowledge in the service composition context. Let x,y, z denote either a variable, an
OWL individual or an OWL data value, C denote an OWL class description and P
denote OWL property, then we have:

1. Concept assumptions C(z), which asserts z is an instance of the OWL class

description C.

2. Property assumptions P(y, z), which asserts z is value of the OWL property P

3.5. Service Assumptions about Individuals 45

for y.

The proposed extensions to the current OWL-S make it possible to capture the
various assumptions of the service domain. We also propose to use SWRL expressions
in OWL-S assumptions, thus we can use the expressive power of rules to facilitate
service conflict reasoning. Here, we give examples to show a simple case of service
assumption. The example is taken from the car rental service, which has the policy
“the rented city car cannot drive on certain road conditions”, and this policy is enforced

by the service assumption. The example is as follows:

<process:hasAssumption>

<expr:SWRL-Condition rdf:ID="DriveCarInProperWay">

<rdfs:label>notDriveOn(car, roadCondition) & notDriveOn{(car,
anotherRoadCondition)

</rdfs:label>

<rdfs:comment>Typically this condition should also include more road
conditons the car cannot drive onm,

to keep this example simple, all other details are left out for this
example.

</rdfs:comment>

<expr:expressionBody rdf:parseType="Literal">

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<8wrl:propertyPredicate rdf:resource="#NotDriveOn" />

<swrl:argumentl rdf:resource="#cityCar" />

<owlx:Individual owlx:name="Dune" />

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#NotDriveOn" />

<swrl:argumentl rdf:resource="#cityCar" />

<owlx:Individual owlx:name="Unsealed_Road" />

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
n/>

</swrl:AtomList>

8.5. Service Assumptions about Individuals 46

</rdf:rest>
</swrl:AtomList>
</expr:expressionBody>
</expr:SWRL-Condition>
</process:hasPrecondition>

Code Segment 3.5: Example of Using Service Assumption

The example is written by using Semantic Web Rule Language (SWRL) syntax
which extends the abstract syntax of OWL-S described in the OWL Semantics. Un-
fortunately, rules written in SWRL are not particularly human-readable. Thus the
example is provided here to explain this abstract syntax. Generally, a service assump-
tion is represented as a rule, which has the form: antecedent = consequent, where
the symbol = denotes the logical “imply” and both antecedent and consequent are
generally defined as conjunctions of atoms, having the form of 1, A - - - A4,,. Using this
syntax, a rule states that the composition of “city car not drive on dune” and “city car
not drive on unsealed road” properties implies the “DriveCarInProperWay” property

would be written:

=DriveOn(?cityCar, dune) A ~DriveOn(?cityCar, unsealedRoad)

= DriveCarInProperWay(?cityCar)

In the example above, the antecedent of the rule consists of two primitive assump-
tions, i.e. —DriveOn(?cityCar,dune) and -DriveOn(?cityCar, unsealedRoad), and
the consequent of the rule is DriveCarInProperWay(?cityCar). Since we have defined
that service assumptions can only contain OWL individuals, possibly with variables, an
assumption expression becomes equivalent to a conjunctive query. Informally, the ex-
ample can be explained as: if both “city car may not drive on dune” and “city car
may not drive on unsealed road” are consistent with what is known in the context of
the service composition, then it is assumed that the car will drive in the proper way,
where consistent means without the information to the contrary. In this example, the
contrary information will be “city car drives on dune” or “city car drives on unsealed

road”.

3.6. Classification of Service Assumptions 47

3.6 Classification of Service Assumptions

3.6.1 Hard Assumptions and Soft Assumptions

Results from the study of default logics serve as a basis for understanding service
assumptions. Default logics provide formalisms to deal with assumptions or beliefs.
Generally speaking, default logics perform the retraction of beliefs when new informa-
tion is presented which contradicts those beliefs. To use service assumptions for the
real world application in more flexible way, there are two distinct usages of service
assumptions which need to be taken into consideration. The first case is the restriction
about the usage of a Web Service, while the second case makes assumptions to provide
warning information, aiming to ensure that service requester gets a satisfactory result.

Informally, the classification of service assumptions as follows:

1. Hard Assumptions: this kind of assumption is used to strengthen the service
policy. In the context of the service composition, the hard assumption cannot be

violated or the service composition will fail.

2. Soft Assumptions: this kind of assumption is used for the purpose of provid-
ing warning information. The soft assumption only states that, typically, most

instances of a service composition have some property.

The example provided in last section uses a hard assumption, which aims to enforce
the service policy - car usage. In other words, if there is conflicting information against
the car usage assumption in the context of the service composition, then this car rental
service will not become a piece of the generated composite service. The second kinds
of service assumption is much like the first, in that it is considered to be a conflict in
service composition, if conflicting information appears. Unlike the first kind of service
assumption, in face of conflict information, soft assumption will provide the warning
information, but the service requester has the option of how to deal with that. In other

words, the service requester could choose either to ignore this conflict information or

3.6. Classification of Service Assumptions 48

to discard the chosen Web Service which produced the conflicting information. Using
a soft assumption is quite normal in our real life. For example, a tobacco vendor
receives a request for tobacco from a customer. The tobacco vendors assume that the
consumer of tobacco knows that “Smoking Causes Heart Disease”, and usually this
wamiué information is displayed on the tobacco pack. However, if face of this warning
information, the customer still can make his own decision. Returning to our car rental
service, one example of using a soft assumption might be that, a particular car model
normally is rented as a wedding courtesy car, but a service requester wants to rent
this car for a long distance trip. Renting this car may be very costly, so the service
provider kindly provides such warning information. However, the service requester can

make his decision whether or not to rent this car in face of the warning information.

e OijectProparly
- = > Subllass

Figure 3.1: Extended Atomic Service Description

After the classification of soft assumptions and hard assumptions, the complete
view of atomic service description is shown on Fig 3.1. The following code segment
shows how HardAssumption and SoftAssumption are represented in OWL syntax as class

axioms:

<owl:Class rdf:ID="HardAssumption®>

3.6. Classification of Service Assumptions 49

<rdfs:subClass0f rdf:resource="#Assumption"/>
</owl:Class>

<owl:Class rdf:ID="SoftAssumption">
<rdfs:subClass0f rdf:resource="#Assumption"/>
</owl:Class>

<owl:Class rdf:ID="Assumption">
<rdfs:comment> The most general class of Assumption </rdfs:comment>
<owl:union0f rdf:parseType="Collection">
<owl:Class rdf:about="#HardAssumption"/>
<owl:Class rdf:about="#SoftAssumption"/>
</owl:union0f>
</owl:Class>

<rdf :Description rdf:about="#HardAssumption">
<owl:disjointWith rdf:resource="#SoftAssumption"/>
</rdf :Description>

Code Segment 3.6.1.1: Class Axioms of Hard/Soft Assumption

All ontologies specified by OWL-S are written in OWL. OWL classes are formally
described using Description Logic [14] that precisely defines the requirements for mem-
bership of the class. OWL classes are interpreted as sets that contain individuals.
Furthermore, classes may be organized into a superclass-subclass hierarchy. Subclasses
specialize their superclasses. Following the spéciﬁca.tion for a service assumption in
OWL-S we have defined in Section 3.3, the code segment 3.6.1.1 above is composed
of four small blocks of code, which describe the hierarchical structure of the classifica-
tion of a service assumption. The first block states that the class HardAssumption is a
specialization of the class Assumption, in other words, the set denoted by class HardAs-
sumption is a subset of class Assumption, i.e. HardAssumption C Assumption. Similarly,
the second block states that the class SoftAssumption is also a specialization of the class
Assumption, i.e. SoftAssumption C Assumption. The third block says that the class As-
sumption has been created as the union of class HardAssumption and SoftAssumption,
i.e. Assumption = SoftAssumption U HardAssumption. Finally, HardAssumption and Sof-

tAssumption are disjoint from each other so that an individual cannot be a member of

3.6. Classification of Service Assumptions 50

more than one of them, i.e. SoftAssumption M HardAssumption C L. The corresponding

OWL abstract syntax and Description Logic syntax are summarized in Table 3.2:

OWL Abstract Syntax DL Syntax

SubClassOf (HardAssumption, Assumption) HardAssumption C Assumption
SubClassOf (SoftAssumption, Assumption) SoftAssumption T Assumption

UnionOf (SoftAssumption, Hard Assumption) . SoftAssumption U Hard Assumption
DisjointClasses (SoftAssumption, HardAssumption) | SoftAssumption N Hard Assumption C L

Table 3.2: Class Axioms of Hard Assumptions and Soft Assumptions

After defining class axioms of HardAssumption and SoftAssumption, the following
code segment shows that how hasHardAssumption and hasSoftAssumption, as property

axioms, are related to the service functional property hasAssumption:

<owl:0bjectProperty rdf:ID="hasSoftAssumption">
<rdfs:subProperty0f rdf:resource="#hasAssumption" />
<rdfs:domain 1"d:t:resourcet"#Process"/>
<rdfs:range rdf:resource="&expr;#Condition"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="hasHardAssumption">
<rdfs:subPropertyQf rdf:resource="#hasAssumption” />
<rdfs:domain rdt:resource-"#Process"/>
<rdfs:range rdf:resource="&expr;#Condition"/>
</owl:0bjectProperty>

Code Segment 3.6.1.2: Defining Sub-Properties of Service Assumptions

The code segment 3.6.1.2 above defines the inheritance hierarchical structure over
hasAssumption. This structure describes two specific functional properties, namely,
hasHardAssumption and hasSoftAssumption. Intuitively, the connection between a ser-
vice and hasAssumption is inherited by these two subproperties. The corresponding
OWL Abstract Syntax and Description Logic Syntax are summarized in Table 3.3:

3.6. Classification of Service Assumptions 51

OWL Abstract Syntax DL Syntax
SubPropertyOf (hasHardAssumption, hasAssumption) | hasHardAssumption £ hasAssumption
SubPropertyOf (hasSoftAssumption, hasAssumption) hasSoftAssumption C hasAssumption

Table 3.3: Property Axioms of hasHard Assumption and hasSoftAssumption

3.6.2 Transient Assumptions and Persistent Assumptions

In this sub-section, we will present an example which demonstrates the need to classify
the service assumptions based on the relation between a service assumption and its
associated service effect. In Section 3.3, a Web Service ws; has been defined as: ws; =
(pi, €3, ;). Here, let af be a primitive assumption, which is a sentence in a;, i.e. af € a;.
Let {—e},...,nel} denote the negation of a service effect e;. Because both service
assumption and effect are generally defined as conjunctions of atoms, if af is also a
sentence in {—e},...,—el}, ie. af € {—e},...,—el}, then clearly, a;U{—e},...,—el} #
@, in other words, a contradiction can be inferred from ws; itself, i.e. a;Ue; = L. In
this case, the service assumption a; of service ws; contradicts its associated service
effect e;. One might hold the view that such a service represents nonsense. However,

considering the following real world example

(: Web Service AAA Shopping Online Member Reg
:parameters (?appl - Applicant

o)
:precondition (and (7appl OlderThan 18)

N
:effect (7appl isAAAmember)
:assumption (?appl isNotAAAmember))

Code Segment 3.6.2: Shopping Online Member Registration Service

For the description of the sample service above, we use syntax similar to that of
the Planning Domain Definition Language [36]). The example is about AAA Shopping
Online Member Registration Service, the precondition of the service is that “the ap-
plicant must be older than 18", the effect is that “the applicant is a member” and the

3.6. Classification of Service Assumptions 52

assumption is that “the applicant is not a current member”. One interpretation is that
as long as the fact of the applicant older than 18 years old can be proved, and so far
there is no known evidence that the applicant is a current member, then after applying
this service, the applicant is a member. The service assumption in this example is used
to prevent the same applicant having two memberships. However, this simple service
also can be interpreted in another way: as long as the fact that the applicant is older
than 18 years can be proved, and assuming that the applicant may never be a member
(even after the service), then after applying this service, the applicant is a member.
The second interpretation makes nonsense of this sample service description, because
the service description itself is self-defeating. Since this service assumption explicitly
contradicts its associated service effect, the issue will be the lifespan of the service
assumption.

As stated earlier, service assumptions represent hypothetical guess that is believed
in the lack of evidence to the contrary, thus it also acts as one of the consistency
conditions needs to be tested under specific contexts during the process of service
composition. Typically, the consistency condition has to be met both before and after
the effect of service is applied. However, to avoid the self-defeating problem in the real
application of Web Services, based on the relation between service assumption and its

associated service effect, we classify service assumptions as: (also See Table 3.4)

1. Transient Assumptions: for any Web Service ws;, if a contradiction can be
inferred from the union of a service assumption a; and its associated effect e;, i.e.
a;Ue; |= L, then we refer to a; as the transient assumption. When a transient
service assumption plays the role of being the consistency condition in a service
composition context, this condition only needs to be tested before the effect ¢; of

given service ws; is applied, but not after.

2. Persistent Assumptions: for any Web Service ws;, if there is no contradiction

inferred from the union of a service assumption a; and its associated effect e;,

3.6. Classification of Service Assumptions 53

ie. a;Ue £ L, then we refer to a; as the persistent assumption. When a
persistent service assumption plays the role of being the consistency condition,
this condition has to be tested both before and after the effect e; of given service

ws; is applied.

Classification Union of a; and ¢; | Checking Methods
Transient Assumption | a;Ue = L Before Applying e;, not After
Persistent Assumption | a;Ue; p5 L Before & After Applying e;

Table 3.4: Transient Assumptions Vs. Persistent Assumptions

Note that unlike the soft assumptions and hard assumptions, which are classified by
service providers at the service design time and used to specify the service requirements
in a flexible way, transient assumptions and persistent assumptions are classified by the
reasoner at service composition planning or execution time and used to avoid ill-formed
service descriptions. In addition, it is still possible for a persistent assumption to be
outdated in the process of service composition. We will explain the concept of outdated
assumption in next chapter. The classification of transient assumptions and persistent
assumptions does not need to be explicitly specified in OWL-S, as these concepts are
only used by the service composition reasoner at execution time, not service providers
at design time. For the different categories of service assumption options available at

different phases, please see Table 3.5.

Phase Service Assumption Available
Service Design Time SoftAssumption OR
HardAssumption
Service Execution Time Persistent Hard Assumption OR
Or Persistent SoftAssumption OR
Composition Planning Time | Transient HardAssumption OR
Transient SoftAssumption

Table 3.5: Service Assumption Options at Different Phases

Although we have proposed different ways to use service assumptions, it is still

3.7. Summary 54

necessary that service providers make a service specification in a sensible way. After
all, if a sentence is an ill-formed sentence, we do not blame the language in which it
is written. Clearly, the application of a service requires that a consistency condition is
satisfied. What makes meeting that condition complicated is the fact that services can
interact in complex ways. To create a value-added service composition in a distributed
environment, it is usually the case that there are multiple independent parties involved
in this process. In next chapter, we will explain the reasoning process with proposed

service assumptions for service composition.

3.7 Summary

Service composition is created in a distributed environment, in which typically, there
are multiple independent parties involved in the process. Often, these independent
parties do not necessarily share the same objectives and perspectives, thus various
services may be designed or operated in ignorance of one another. As a result, we must
make assumptions about things we don’t specifically know. Default attributes are a
powerful kind of knowledge, since they permit useful conclusions to be made...[74].
To reason about and adapt to a changing environment, in this chapter, we have ex-
tended the OWL-S to a richer service description representation schema by introducing
service assumptions. This aims to bridge the gap between the semantic service descrip-
tions and multiple operational domains. The goal of adopting service assumptions into

the service functional description is to enable service applications:

e to be more flexible and intelligent. The flexibility and intelligence result from
default service assumptions which have the defeasible nature of commonsense in-
ference. When a service composition is executed in a heterogeneous environment,

by adopting service assumptions, it is possible to draw tentative conclusions and

smoothly accommodate corrections to the assumptions.

e to be executed in a consistent manner. Because of distributed responsibilities,

3.7. Summary 55

accountability, authority, ownership and control, in the process of service compo-
sition, sometimes the action must be taken in the presence of incomplete knowl-
edge or uncertainties. The proposed service assumption attempts to make precise
statements about the intended behavior of the service and its environment. The
more accurate and precise service the description of the problem, the more reliable

the decisions we make.

Also in this chapter, we have explained the semantics of the service assumption,
and proposed a method to define a service assumption as a functional property. To
adopt the service assumption in more flexible way, we also further classify the service
assumption into two categories (See Fig 3.1): soft assumptions and hard assumptions.
Furthermore, to avoid the self-defeating service description, based on the relation be-
tween a service assumption and its associated service effect, we classify the service
assumption as transient assumption and persistent assumption, which is summarized
in Table 3.4.

In next chapter, together with the proposed service assumptions, the knowledge
based planning framework will be developed, which will attempt to tackle the problem

of incompleteness of information and uncertainties in service composition context.

Chapter 4

Service Composition Framework

4.1 Preliminaries

In the previous chapter, we have extended current OWL-S by introducing service as-
sumptions, aimed at handling incomplete information and uncertainties which may
cause conflicts in a service composition context. It is often assumed that a busi-
ness process or application is associated with some explicit business goal definition
that can guide a planning-based composition tool to select the right service [46, 72].
Planning is a complex problem which has often been investigated in the Al literature
[30, 59, 28, 40, 75]. [66] characterize the problem of planning as follows : “Planning
can be interpreted as a kind of problem solving, where an agent uses its beliefs about
available actions and their consequences, in order to identify a solution over an abstract
set of possible plans”.

In this chapter, we attempt to provide a formal framework for reasoning about
incomplete knowledge during the service composition planning process by adopting
service assumptions. This proposed framework is layered on top of Semantic Markup
for Web Services (OWL-S [4]) and Semantic Web Rule Language (SWRL [38]). Service
assumptions, as the extension to current OWL-S, are represented by default literals
which describe possible incomplete information or uncertainties in service composition

planning domains. During the service composition planning process, when knowledge is

56

4.1. Preliminaries 57

insufficient, the proposed service assumptions enable us to incorporate intelligent deci-
sion making in terms of default principles [63, 67]. In the process of service composition
planning, it is impossible to have a clear cut boundary between multiple application
domains and it is usually infeasible to have a complete view of the world. Hence, the
transitions during a service composition planning process are described in terms of be-
tween different states of knowledge rather than between different states of the world.
In this work, our conflict checking and state transitions use a set of structured rule
conditions which govern the state transitions and guide the derivation of the new state.
Given that a specification of a service composition which is associated with some ex-
plicit goals can be generated via transition-based planning, state transition conditions
are defined to describe all permitted behaviors in a service composition context. The
proposed framework exhibits a number of characteristics. Among them, it is possible
to make tentative conclusions when the information available is insufficient, also the
conclusion that has been made can be revised over time to incorporate new knowledge.
Before we proceed to further describe our service composition framework, we will first

introduce the definitions of the service selection function and the composite services.

4.1.1 Service Selection

Unlike software component compositions, the automated process of service compo-
sitions holds some additional critical issues, such as service matching, selection and
retrieval (See Fig 4.1). UDDI [5, 41] provides a mechanism for the Web-Wide Service
registry, in which descriptions of Web Services are stored and searched by category.
OWL-S allows us to semantically describe the capabilities of Web Services, thus it is
possible to perform logical inferences for the service matching. [51] Provides one way
to combine these two techniques, so that services defined in OWL-S can be registered
with UDDI in a way that allows UDDI engines to exploit OWL-S semantic information
to facilitate the retrieval of Web Services. In this proposed framework,

e ws; represents an atomic service.

4.1. Preliminaries 58

e WS is the set of all Web Services, ws; € WS.

e All Web Service descriptions are held in their corresponding categories {caty, ...,
cat,}. cat; is a tangible area split from the service registry, for example down-

loadable Multimedia.

o CAT is the set of all service categories where

cat; € CAT,cat; € WS, cat; = {ws1, ..., WSn}

o Service selection function sel : CAT — W.S which takes a certain service category
as its input and gives us an atomic service based on the service matching i.e.

sel(cat;) = ws.

To reason about and adapt to a changing environment in the process of service
composition, we have extended current OWL-S by introducing the concept of service
assumption. The proposed service assumption is defined as one of atomic service’s
functional properties. Certainly, a composite service can be built by combining existing
atomic or some other predefined composite services, however, any composite service is
composed of multiple atomic services indeed, that’s why we defined an atomic service
as the output of our service selection function. Every atomic service in the rest of this
chapter refers to the Web Service which is produced by the service selection function
defined above. For more details about the service matching, interested readers may

refer to [51, 52).

4.1.2 Composite Service

Intuitively, a composite service CompW S which performs combined functions may
include multiple atomic services. CompW S is the combination of the multiple atomic

services ws;, where 0 < i < n. A composite service CompW S can be represented as:

CompW S = {sel(cat1),...,sel(cat,)}

4.1. Preliminaries 59

2. Quieries tor service with
OWL-8 dexcriptian

Sorviec Requester

¥

Servive Providers 1. Registers service
with OWL-S deseription

Figure 4.1: Service Selection

Participants in the service composition do not necessarily share the same objectives
and background, so, without a mechanism to reason about incomplete knowledge and
its side effects during service execution, conflicts easily arise in the service composition
context. The underlying idea of this planning framework is to generate a consistent

service composition plan by applying the default principles [63, 67).

4.1.3 Service Composition Planning Domain

A planning domain represents the service composition problem space, which is defined
by the states of the domain, the available service descriptions used to simulate actions,
the assumptions made in the planning process and the state transitions caused by the
execution of services. In this framework, a service composition planning domain D is

the tuple (S, WS, M, TR) where:
e S is a finite set of states.
e WS is a finite set of available services as actions.

e M is an assumption database.

e TR is a 2 - tuple (7,R) where T is the state transition function and R is the

sequence of rule conditions related to each state transition.

4.2. Service Composition as Planning 60

4.1.4 Service Composition Planning Problem

Briefly, a service composition planning problem P is the problem of finding a path or
constructing a process of actions given the planning domain initial and goal states.
In addition, this path must not contain inconsistent problem states. Service compo-
sition planning problem P for a planning domain D = (S, WS, M,TR) is 4-tuple
(D, So, Sg,G), where

e G is the goal of the service composition to achieve.
e Sp € S is the initial state.
o S, is any state such that S; |= G.

A goal G is set of conjunctions of atoms which need to hold in a desired world state
or final state. A service composition plan for a goal is a sequence of state transitions
of atomic services, and the transitions lead from an initial state to a final state where
all ground atomic formulas in the goal are true. A solution to a service composition
planning problem is to jointly compose some selected abstract Web Services as acfions
to get a certain task done i.e. achieve the goals specified by the service requester. Com-
pared with the traditional planning techniques, our primary interest here is to provide
an improved capability for detecting certain kinds of inconsistencies which result from
incompleteness of information or uncertainties. This enhanced planning framework is

endowed with an ability to reason about and adapt to a changing environment.

4.2 Service Composition as Planning

In this section, we will present all the main features of our service composition frame-
work. We proceed incrementally by further decomposing the service composition do-

main. In the previous section, the service composition domain was defined as:

D= (S,WS, M, TR)

4.2. Service Composition as Planning 61

We begin by looking at the state of knowledge S.

4.2.1 State of Knowledge

S is a finite or recursively enumerable set of states, ie. S = {S1,...,5,}. A state
S; in this work is extensionally defined as a set of positive or negative ground atomic
formulas. As usual, we refer to atomic formulas as the formulas which are function-free
and do not contain variables, for example, the formula Registered(john, surfClub)
might represent a state in the problem of Surf Club Online-Registration service. How-
ever, the formulas such as Registered(brother(john), sur fClub) is not allowed. Also
in this framework, there is no delete list. If john canceled his registration, instead of
adding Registered(john,Sur fClub) to the delete list, we simply change the formula
as " Registered(john, Sur fClub). Those formulas which may change their values dur-
ing the state transition are called fluent, while those which do not change are called
state invariant. A state of knowledge during the process of service composition is char-
acterized by the truth values of some combination of fluents and invariants, that is,
predicates describing relevant properties of the domain of discourse, where every fluent
necessarily is either true or false.

We are motivated by the problem of building composite service by dynamically
composing the functionalities of existing atomic or complex services. Often, Web Ser-
vices are provided by independent parties. In real world service composition domains,
it is impossible to have complete information about the entire world. So, we emphasize
that states in this framework represent states of knowledge rather than states of the
world. Incompleteness of information and uncertainties arise when information regard-
ing a domain is not explicitly represented in the context. In the course of the service
composition, the composition planner or system will have incomplete information or

uncertainties about the world, because of

o 3 desire to keep the formulation simple at the start.

4.2. Service Composition as Planning 62

e the unavailability of certain information.

¢ the high cost involved in obtaining certain information.
¢ the abundance of irrelevant data.

¢ a lack of understanding.

The task of the service composition planning for the planning agent is to find
some composition of available services that transforms its given initial knowledge state
into one that satisfies the goal conditions. Traditional planning techniques (30, 18]
simply assumes that there is an initial world state which could provides a complete
description about the world. To solve the problem of dynamic service composition,
this simplifying assumption is unrealistic. As the set of services grows very large
and all services are located in service registries in a distributed way across the Web,
obviously trying to complete the initial state will be practically impossible in the real
world problem domain. Given the nature of Web Services, we cannot assume that
any planner or system knows the all information needed to build a service composition
before the planning process starts. In this work, the initial state is just one of states of
knowledge defined by the domain theory, which does not specify all knowledge relevant
to the planning task. The initial state is either an empty set or is a proper subset of the
initial world model. For the reasons we list above, in this work, the service composition
framework is designed for planning domains in which the information about the initial
state of the world may not be cqmplete, but some of this information can be acquired
through planning time sensing operations [29, 32, 17].

To better understand the sensing operation, first we need to explain the terms on-line
and off-line planning. Classical planning is done off-line. An off-line planner generates a
complete plan before the task is performed, which means that the plans are generated
prior to execution and then the generated plan is fed to the on-line execution module.

On the other hand, an on-line planner typically interleaves planning and execution.

4.2. Service Composition as Planning 63

Second, it is necessary to distinguish atomic services as actions that change the state
of the world from those that only return information. The former are well known in
planning literature, and classical planning languages (30, 36] can only represent this
type of actions, i.e. actions with causal effects, for example, the execution of an action
causes the sentence ¢ to become true. The latter do not actually affect the world during
pla_nning, serving only the sole purpose of information-providing, i.e. only changing the
knowledge that the planning agent has. However, gathering certain information from
information-providing services makes it necessary to execute them at plan time. To
cope with incomplete information during the process of service composition planning,
the planner is endowed with the capability of on-line execution of information-providing
services and off-line simulation of world altering services. In the context of service
composition, the planning process starts with an incomplete initial state and executes
sensing actions for information gathering purpose, which add new knowledge to the
state (See Fig 4.2).

Besides the service matching, one typical use case of the information gathering dur-
ing the service composition process is precondition evaluation of the selected services.
For instance, when requesting a flight-booking service, consider the precondition of the

service shown below:

(:Web Service Flight-Booking
:parameters (?fn-flightNo ?d-requiredDate ?p-price
?cc-CreditCardNo ?lmt-limit)
:precondition (and (?fn isAvailable ?7d)
(?7cc isValidCreditCard)
(7p < 71lmt))
teffect ...)

Code Segment 4.2: Precondition of A Flight-Booking Service

The simple flight-booking service above saying that there must be more tickets
available for a given required date, the credit card must be valid and the available limit
on the credit card must be higher than the price of the air ticket. After the relevant

4.2. Service Composition as Planning

64

liug infor-providing
service

planning agent has

9. expand the state of

f:::‘o?\

(™ Knowledge 2. query infor &

6. dexcriptions of infor-providing
service

—
l N "1 l.relevant service found

the Statc planning Agent

\ J/ 4. relevant infor
found?
Yes l No
5. try to find infor-providing
service
valuate the
conditions

Figure 4.2: Sensing Operations in Service Composition Planning

4.2. Service Composition as Planning 65

service is found in UDDI, the planning agent must first evaluate the precondition by
querying the state of knowledge described above. If relevant information is explicitly
represented in the state of knowledge, then the variables for instance ?flightNo and
?date etc bind to actual values. After the variable binding, the planning agent can
compare these values and verify that the precondition holds. As not all the information
relevant to a service composition problem may already be known at the initial state or
during the course of the planning process, sometimes it will be necessary to perform
plan-time sensing operations to acquire such kind of information. .For example, to
acquire the information about the availability of a ticket, the planning agent may need
to query external information-providing services which could access the flight center’s
database. Similarly, to validate the credit card, the planning agent may need to query
the status of the credit card authorization.

Atomic services which only provide information are fundamentally different from
those which change the state of the world. In general, the planning agent will execute
information-providing atomic services at various points of time, while world-altering
services will never be executed at plan-time, and the effect of world-altering services
will be simulated in off-line mode. However, addipg the sensing operation for creating a
service composition plan in a heterogeneous environment is not a trivial activity, since
it requires coordination with various existing information resources which may involve
problems of currency control, privacy and cost etc. To simplify the case of sensing

operations, we make some assumptions:
e incomplete but correct information is available about the world state.
o information providing services are executable in the initial state.

o information gathered from these services cannot be changed by external services

in the planning process.

4.2. Service Composition as Planning 66

These assumptions are certainly very restrictive, for this reason, some solutions
are proposed, for example, the same information-providing service is prohibited from
executing more than once. Also some other approaches are suggested, for example,
interleaving planning with execution. However, this is not the problem we are trying
to solve in this work, thus the topic is out of the scope of this paper. For advanced
techniques for information gathering during service composition planning, interested
readers may refer to [33, 42].

In the knowledge representation literature [68, 56], incomplete of the knowledge
has been classified as: either absence or uncertainty. Adopting this classification about
the incomplete knowledge in the service composition planning process, we refer to
the missing facts as the absence of information. On the other hand, uncertainty is
the subjective measure of certainty about service interactions, which may be caused
by ignorance of one another when multiple independent parties are involved in the
process. Clearly, uncertainty and absence are essentially different, thus we use different
techniques to handle these two distinct types of incomplete information. The absence
of information is handled by the sensing operation mentioned above. However, what
makes dynamic service composition complicated is the fact that, during the process,
services interact in complex ways. In this work, one of our contributions is to extend
OWL-S by introducing service assumption. The proposed service assumption can be
used to describe the service composition environment which may be not specifically
known. As a consequence of this more precise description of the service composition
environment, it is possible for us to deal with exceptions and resolve the inconsistencies
which are caused by uncertainty. From now on, we will concentrate on the service
composition consistency problem, which may be caused by uncertainty during the
process of interactions among multiple independent parities.

In the following subsection, we will introduce the assumption database M which
stores and manipulates various assumptions during the process of service composition

planning. In turn, the values of various maintained service assumptions may influence

4.2. Service Composition as Planning 67

on the evolution of the service composition.

4.2.2 Assumption Database

Service assumptions made during the process of service composition are represented as
a set of ground formulas and are stored in a database M. We define an assumption

database M to be a 4-tuple (AID,WSID, MA, F), where

e AID is the set of all unique identifiers of each primitive assumption (See Section

3.5) in the scope of a particular service composition.

o WSID is the set of all identifiers of Web Services which are produced by the
service selection function (See Section 4.1.1) and intend to participate in the

Web Service composition.
e MA is the set of all primitive assumptions.
e F is the flag to indicate the assumption status.

In this work, we intentionally use the assumption database M to store various
assumptions made during the process of service composition, instead of writing the
assumptions in the state. As we have defined in Section 4.1.4, a service composition
planning problem P is the problem of finding a path or constructing a process of
actions given the planning domain initial and goal states. Let G represent the goal of
the service composition, S, represent the goal state for the service composition, such
that Sy is any state such that Sy = G. The knowledge of service assumption represents
the guesses that cover different alternatives, for example: “the weather is sunny” is one
possible weather condition among others. Intuitively, we cannot use the assumptions
to directly conclude that the goal has been achieved, thus it is necessary to separate
state of the knowledge and service assumptions.

Description Logic £ [14] has been adopted as knowledge representation language to

describe how service composition problem can be solved. The Semantic Web Service

4.2. Service Composition as Planning

68

[:A
Description Logie

Written by DL
tatic Da
o ¥ Written by DI.
Facts
Service Description i /

Planning Agent
Signal the contradictions

Service Description & Facts I I IService Description

State Transition Assumption Update
Function Function

Service Composition Context:

Write conclugions in * State of Write assumptions in

Knowl
[——“&]

Dynamic Data .

Figure 4.3: Static Data Vs. Dynamic Data

Description, is specified using Description Logic £ with the OWL (23] syntax, thus it is

in a logical form that can be used by an inference tool and agent technology to enable

automation of services on the Semantic Web.

To guide the planning process toward service composition solutions, a planning

agent uses different search strategies (depth-first, bread-first, and so on) for the service

matching and selection. In addition, it may also be the case that some well defined

ontologies will be used to share information and to facilitate the necessary inference.

After the matched service is selected, the state transition function and the assumption

4.2. Service Composition as Planning 69

update function are called. Based on the description of the selected service, the state
transition function will apply the data to the current state of knowledge S;, and the
assumption update function will update to the assumption database M. However,
during this process, if conflicting information is detected, the planning agent must be
able to signal these conflicts.

The service descriptions are held in UDDI which contains static data, representing
knowledge about the problem solving that is unchanged during the process of service
composition. On the other hand, dynamic data generated during the process are
maintained in either the state of knowledge or the assumption database, reflecting
the shifting of different service composition contexts (See Fig 4.3).

To further clarify different types of knowledge in this framework, we will describe

the data used in the service composition planning.

¢ Premises are used to define data that is certainly true. Premises are indepen-
dent of other data and they are not inferred from other facts. Premises include

propositions such as:

— The opposite of right is left.
— The speed of light in vacuum is 300,000 km/h.

— Smoking causes emphysema.

e Time-Based Facts are used to define data that is verified to be true at a
particular time. For example: Population of Australia is: 20,264,082 is valid in
the statistics years 2006. However, with the growth rate: 0.9%, in 2007 this data
will not be true anymore. Typically, time-based facts are either produced by the

sensing operations or applying the new effect to the current state.

e Service Assumptions which means that most instances of a concept have some

property. Assumptions are believed in the lack of information to the contrary,

4.2. Service Composition as Planning 70

unless the contrary is proved (See Section 3.3). What the service assumptions

aim to describe is the environment of service composition.

e Derived Facts, which can be inferred using premises, time-based facts, service
assumptions, and other derived facts. For example, if the customer has a valid
credit card, and he will not use the car for the dune exploration, then the car
will be rented to that customer. The proposition “the customer has a valid credit
card”, represents the precondition and “the customer will not use the car for the
dune exploration” represents the assumption. As the service effect, “the car will
be rented to that customer” represents a derived fact. In general, every derived
fact depends on some other data, and the derived fact is valid if and only if all
data it depends on are valid.

o Justification are the dependencies that arise between data, i.e. justification
describes how derived fact is inferred. Justification represents a relation between
a derived fact and its antecedents. In the example above, a justification for the
derived fact “the car will be rented to that customer” records that this fact is
inferred using “the customer has a valid credit card” and “the customer will not
use the car for the dune exploration”. For the purpose of handling incomplete
knowledge, what we are really concerned is the dependency relation between

service effect and service assumption.

State of knowledge is represented by large number of facts and relations, which contains
derived fact, time-based facts and premises holds in all states. On the other hand, as-
sumption database describes the environment of service composition, including various
service assumptions and corresponding justifications made during the process of service
composition (See Fig 4.4). Service assumptions are useful to reason with incomplete
information, while justifications are useful to handle the contradictions caused by the

underlying service assumptions.

4.2. Service Composition as Planning 71

~—Service Composition Context———

State of Assumption
(Knowledge) Database

Premises Assumptions
Time-Base Facts .

. Justifications
Derived Data

____—/
\ v,
Dynamic Data
\ J

Figure 4.4: Dynamic Data in Service Composition Context

An assumption database M for a particular service composition problem is defined
to be a 4-tuple (AID,WSID, MA, F). For any service ws; = (p;, €;, a;), based on the

properties of an assumption database M, we can maintain the following information:
e ws; is identified by wsid; and wsid; € WSID.

e the assumption a; is a set of primitive assumptions. Each of the primitive as-

sumptions is represented by a ground formula, i.e.
a; ={a},...,a?} and a; C MA.

e any primitive assumption a{ has its corresponding unique identifier aid; and

aid; € AID.

The dependencies that arise between a service effect e; and a service assumption a;
during the process of service composition, are recorded by the combination of AID and
WSID. The effect e;, as derived fact, only if the service assumption a;, on which e;
depends on, is a set of consistent descriptions about the underlying service composition

environment, i.e. a contradiction cannot be inferred from the corresponding set of

4.2. Service Composition as Planning 72

service assumptions, then the application of e; to the current state of knowledge is
legal. When a contradiction is detected during the process, justifications are used to
find all affected service nodes which underlie the contradiction.

Besides recording the dependencies between a service effect e; and a service assump-
tion a;, the operation of the assumption database M has to keep the status of various
assumptions up to date. Before we explain the operation for updating the status of
service assumptions, we will introduce the concept of outdated assumptions.

There are two cases, in which we refer to a service assumption a; as an outdated as-
sumption. The first case is very simple. As defined in Section 3.6, based on the relation
between e; and a;, service assumptions have been classified as transient assumptions
and persistent assumptions. If a contradiction can be inferred from the union of a
service assumption a; and its associated effect e;, i.e, a; Ue; |= L, then a; is classified
as a transient assumption. For any transient assumption a;, to avoid nonsensical ser-
vice descriptions (due to the problem of self-defeating), after its associated effect e; is
applied to the current state of knowledge, a; is outdated, i.e. we only need to check
for consistency beforehand for a transient assumption. For the definitions of transient
assumptions and persistent assumption, please refer to the page 51.

In the second case, the effect e; of service ws; is a set of sentences, such that ¢; =
{ei,...,e?}. We define @ as the negation of the service effect e;, if {—e},...,—el} C o.
Here, we use —e; C ¢ to denote that ¢ is the negation of the service e;. If —e; C ¢ and
¢ is the logical consequence of a current state of knowledge, we refer to the assumption
a; which is associated with service ws; as an outdated assumption. In other words, if
the negation of all sentences in e; is entailed by some states Sj, where ¢; is an effect
of service ws; and j > 4, then we refer to the assumption a; associated with e; as an
outdated assumption. Formally, the assumption is outdated, if Vz € e;,35 > i such
that ~z € Cn(S;), where Cn(S;) denotes logical closure of S;. A simple example of an
outdated assumption is: a book borrowing service assumes that a borrower is in same

city as the library. When the borrowed book is returned, we say this assumption is

4.2. Service Composition as Planning 73

outdated. Outdated assumptions are not allowed to be involved in reasoning process
for the consistency of service composition.

To conduct default reasoning about the current state of knowledge for service com-
position problem, it is necessary to describe and record various assumptions generated
during the process of service composition planning. In this framework, we intention-
ally maintain an assumption database M which holds the information about these
assumptions and their corresponding justifications. Now, we are prepared to introduce
the operation for updating the assumption status. The property F° of an assumption
database M is a flag which indicates the assumption status, which has three values

{active, inactive, deleted}.

1. active: after a service is chosen by the service selection function, and if its ser-
vice assﬁmption is not classified as a transient assumption, when this service
assumption is added to assumption database M, then this assumption’s status

is initially set to be active.
2. inaclive:

e when the assumption is outdated. Note that there are two cases in which
we refer to the service assumption as being outdated. First, if the service
assumption is classified as a transient assumption, after its associated service
effect is applied to the current state of knowledge. Second, if the negation
of a certain service’s effect can be entailed by the logical consequence of the

current state of knowledge.

e when a contradiction is detected during the process, and the contradiction
is caused by a soft assumption, then the choice is left to the client. The
client could choose to ignore the detected contradiction, then the status of
this inconsistent assumption will be set to inactive. If any hard assumption
is involved in the detected contradiction, it is considered to be a conflict of

the Web Service composition anyway. In this caée, the client does not have

4.2. Service Composition as Planning 74

the control over it, i.e. the contradiction cannot be ignored and it has to be
eliminated by revising the current state of knowledge for the given service

composition problem.

3. deleted: when a contradiction is detected, a retraction may be performed by
the planning agent. Simultaneously, the dependency network of service effects
and service assumptions maintained by the assumption database are searched
using the justification information to find out which assumptions underlie the

contradiction. The status of these service assumptions will be set to deleted.

Solving the problem of service composition can be considered as searching for a path
from an initial to a goal state and the path must not contain inconsistent problem states.
During this process, to solve the problem of inconsistency caused by the interactions of
multiple independent parities, our solution is to apply a set of rules that describe and
perform all permitted state transitions from one problem state to another. Obviously,
the rules need to work with various assumptions made during the process. However,
only the assumptions whose status is set to be active are valid ones to participate
in this rule-driven reasoning process. For this purpose, suppose M is an assumption
database for a particular service composition problem, then we use II(M) to denote
the set of all active assumptions maintained by M. Let a; be a sentence maintained
under the property A of the assumption database M (which will be written as M.A)

and f; represent the status of a;, then we can have

Ya; € M.A, if f; = active, then a; € II(M) and II(M) C M.A

4.2.3 State Transition with Rules

To guarantee that the execution of a service composition has the anticipated effects,
during the process of service composition, we apply rules that describe and perform
all permitted state transitions from one problem state to another. In the proposed

system, the state transition TR is 2-tuple (7, R), where

4.2. Service Composition as Planning 75

1. 7 is a transition function 7 : S x WS — S;

2. R is a sequence of structured rule conditions guide the derivation of new state

and govern the state transition function;

3. The atomic service ws € WS is said to be executable in s € S if T(s,ws) # 0

with the rule conditions R;

In the process of state transition, there are three types of knowledge about the
current world. Let SEN; denote a set of sentences used to change the state S;. This
set of sentences can be partitioned into three categories, namely, state invariant, state

expansion and state update. The set of sentences is defined as:
SEN; = {Inv; | Exp; | Upd;}
where:

1. State invariant Inv; denotes a set of sentences which can be entailed by the

knowledge in the previous state, defined as:
Sg_l |= I nv;
2. State expansion Ezp; denotes a set of sentences which cannot be entailed by the

knowledge in the previous state and its negation also cannot be entailed by the

knowledge in the previous state, defined as:
Si-1 ¥ Exp;

and

Si—1 ¥ ~FExp;

3. State update Upd; denotes a set of sentences whose negation can be entailed by

the knowledge in the previous state, defined as:

Si-1 | ~Upd;

4.2. Service Composition as Planning 76

In the last chapter, we have explained the extended semantics of service functional
description, which includes precondition, effect and service assumption. Now, we are
prepared to define how a Web Service is simulated as an action which changes the state
of knowledge. Let ws; be any Web Service, WS be the set of all Web Services, E be
the set of all service effects, P be the set of all service preconditions, we define the

following extraction functions:

1. Effect Extraction Function f, : WS — E which takes an arbitrary atomic
service ws; as an input, and extracts the effect e; of ws; as its output. e; is a set
of primitive effects of ws; and every primitive effect is a partition with the state

invariant, state expansion and state update i.e.
fe(ws;) = e; and ¢; = {eInv; | eExp,; | eUpd;}

in which eInv;, eFzp;,eUpd; denote state invariant, state expansion and state

update respectively.

2. Precondition Extraction Function f, : WS — P which takes an arbitrary
atomic service ws; as an input, and extracts the precondition p; of ws; as its
output. As we explained in the Section 4.2.1, the state of knowledge contains
incomplete but correct information about the world state, thus the precondition
evaluation either depends on the current state of knowledge or is based on sensing
operation which adds new knowledge to the current state. In addition, we have
assumed that the information gathered cannot be changed by external services in
the planning process. Thus the knowledge generated from the sensing operation
for the purpose of precondition evaluation can only expand the current state of
knowledge. Here, precondition p; of the service ws; is defined as a set of sentences

and each sentence is a partition with the state invariant and state expansion, i.e.

Jo(ws;) = p; and p; = {pInv; | pExp;}

4.2. Service Composition as Planning 77

JAws))
Jo(ws:) Expansion
Expatsion *
Update

Se —>”'—9{ Si —)I S —>‘ 5 —-)'"—){ S.

Si_y = S(Sici.pExp) Si=L(A(S,;.cUpd)).eExp)

i—

Figure 4.5: Generic State Transition Operators

Following the definitions above, we can define the generic state transition operators

(See Fig 4.5) as:
1. S;_y = Z(Si-1,pEzp:)
2. S; = S(A(S;_,, eUpd;), eExp;)

which means the state transition from S;_; to S; is completed by means of perform-
ing sensing operations for precondition evaluation, then applying the service effect. In
step one, the knowledge pExp; generated from the sensing operations is used to expand
previous knowledge of the state S;_;. The operator T takes the S;.; and pExp; as its
input, expands knowledge of the S;_; and produces the intermediate state S;_,. S; is
reached at step two, in which the operator A takes the S;_, and eUpd; as its input and
performs an update to knowledge of the S;_,. Finally, applying the effect may also
lead to knowledge expansion.

Having defined the state transition function, we are prepared to define a sequence
of rule conditions which guide the derivation of a new state and govern the state
transition function. Compared to the traditional software development, a dynamic
service composition is an automated process with less human intervention. Usually,
it does not have a predefined boundary, based on which the problems of uncertainty

and incompleteness of information could be tackled. Unpredictable service executions

4.2. Service Composition as Planning 78

and a dynamically changing context complicate dynamic service composition in many
ways. In Chapter 3, we have extended the current Semantic Web Service Description
by introducing service assumptions. Together with the proposed service assumptions,
a sequence of rule conditions are defined to reason about a changing environment. For
any service composition problem p, let ws; represent a Web Service which is produced

by the service selection function (See Section 4.1.1) and ws; = (p, €;, a;), where

e p; is set of sentences representing the precondition of ws;, i.e. p; = {p},...,pl}.
e e; is set of sentences representing the effect of ws;, i.e. ¢; = {e},...,et}.
e a; is set of sentences representing the assumption of ws;, i.e. a; = {a},...,a?}.

In addition, II(M) denotes the set of all active assumptions in M (See Section
4.2.2), where M is an assumption database used to maintain all service assumptions
for the service composition problem p. The state transition function takes previous
state of knowledge S;—; and Web Service ws; as the input and produces the new state
S;. To get the legal state transition, inspired by default logics [63, 67], our conflict

checking contains three transition conditions:

1. Precondition Satisfaction (Cond-A): means that only when a precondition
holds, and then the service is a valid candidate service to participate service
composition. Formally, if S;_; |= p;, then we define ws; as a precondition satisfied
service. Note that S;_; here also contains the knowledge acquired by the sensing

operation for the purpose of precondition evaluation.

2. Consistency of State and Assumptions: which means that after the effect
e; of Web Service w; is applied to the current state, the new state of knowledge
S; must be consistent with the set of all active assumptions II(M) maintained in
M. Formally, S; UTI(M) = L. Normally, e; is the conclusion of a precondition
satisfied service ws;, but e; may need to be retracted in face of new evidence. Note

that here we intentionally make the design decision that the joint consistency of

4.2. Service Composition as Planning 79

service assumptions is required. Thus checking of consistency between the state

and the assumptions has two steps:

e Joint Consistency of Assumptions (Cond-B): which means the con-
junction of all active service assumptions must be consistent. Formally,

OM) E L

o Consistency between State and Assumptions (Cond-C): which means
that in addition to the conjunction of all active service assumptions being
consistent, it is also required that the new state of knowledge should be

consistent with this set of service assumptions. Formally S; UII(M) }~ L

A state transition ¢ = (S;_;, ws;, S;) is called legal, if ws; is a precondition satisfied
service with respect to S;_;, the conjunctions of the set of all current active service
assumptions is consistent and there is no contradiction which can be inferred from the
set of active assumptions with respect to the new state S;. However, the building of
consistent value-added services on a heterogeneous environment is not a trivial task,

we have to take in the consideration that

o the current set of service assumptions must be continually updated over time to

incorporate new knowledge during this process.
o the conclusions which have been drawn must sometimes be revoked.
e corrections must be soothly accommodated to its corresponding assumptions.

In next section, we will prepare to illustrate the process of constructing a service
composition plan and explain how these proposed state transition conditions should

be used during the reasoning process.

4.3. Reasoning with Service Assumptions 80

4.3 Reasoning with Service Assumptions

Service composition planning can be viewed as a process of resolving conflicts and
gradually refining a partially specified plan, until it is transformed into a complete plan
that satisfies the goal. Service composition planning is similar to the classical planning
in that each state of knowledge is represented by a conjunction of ground formulas
and each Web Service is related to a transition between those states. However, unlike
classical Al planning techniques, in this proposed framework, the planner is the rule
based system which allows making tentative conclusions and revising them in face of
additional information. In other words, the planner is endowed with the ability to
reason about and adapt to a changing environment. As the result of the applying
the state transition rules, the generated plan represents an applicable or consistent
solution to the service composition problem even with insufficient information during
the process. For any state S;_;, Web Service ws; is not applicable to the state until
certain minimal criteria are met. ws; is specified in terms of the precondition p;,
effect e; and assumption a;, where p; must be satisfied for it to be the precondition
satisfied service (Cond-A), the effect may be concluded, however the joint consistency
of assumptions (Cond-B) and consistency of new state of knowledge and various service
assumptions (Cond-C) are required.

A state in our framework is not a complete view of the world. Usually, an agent is
forced to perform sensing operations which aim at finding out the information which
could satisfy the precondition p;. Like “1” shown in Fig 4.6 at page 81, the sensing
operation may lead to knowledge expansion of the state S;_;. When the sensing oper-
ations complete, if p; is satisfied, we can conclude that ws; may be applicable to the
current state S;—; (Cond-A). Due to the knowledge expansion to the state S;_;, before
the transition to state S;, we get an intermediate state S;_,. This intermediate state
holds the current state of knowledge after the agent’s sensing operation, which is shown

as the operation step “2”. Following the sensing operations, beforehand checking will

4.3. Reasoning with Service Assumptions 81

w ¢ = S(Si-1. pErps) 5, "“(A(it €U pds). "5113:)
- z n 1, 40 ¢ G
LSalEm? i x (Wzipmm

Expansion 3.5 e ?

g e e IR

6. Updating, if outdated |
assumptions detected |

Update
¢ ¢ ¢ sy Sn

9. 5; UII(M) ké L2

. ,) & IIM)IEL?
active or nactive (M)

New Assumption 7.1 (ws))

Figure 4.6: Reasoning with Service Assumptions

be performed by means of issuing the query S;_, = —a;. If —a; is entailed by the
knowledge of state S;_,, which means that the current state of knowledge contradicts
the service assumption of new service ws;. On the other hand, if —a; cannot be entailed
by the knowledge of state S;_,, we say the beforehand checking is successful. This step
is shown as operation step “3”. If the beforehand checking is successful, effect e; is
applied to the current state to simulate an action. As we mentioned before, the effect
e; may expand and update the knowledge of the current state, which is shown as the
operation step “4”. This process can be presented as generic state transition operation
as we defined in page 77.

After the effect e; is applied to the current state of knowledge, for this new state of
knowledge S;, it is the time to perform the afterward checking, which could distinguish
the type of service assumption a;. As defined in Section 3.6, based on the relation
between e; and a;, the service assumptions has been classified as transient assumption
and persistent assumption. Because the beforehand checking must have been successful

before reaching to this step, i.e. S;_, & —a;, after applying the e; to the current state

4.3. Reasoning with Service Assumptions 82

of knowledge, if the —a; is entailed by the new state S;, i.e, S; |= —a;, which indicates
that for a Web Service ws; = {p;, &;,a;}, a;Ue; |= L. In this case, the q; is classified as
the transient assumption, otherwise, the a; will be classified as a persistent assumption.
This step is shown as operation step “5”.

One of the main features in this proposed framework is the ability to describe various
service assumptions and support default reasoning with these assumptions. The service
assumptions generated from the service composition planning are represented as a set of
ground formulas stored in the assumption database M. After expanding and updating
the knowledge of the current state, the planner needs to carefully perform checking to
see whether any outdated assumption is in M, i.e. check whether the negation of any
previous applied service effect can be entailed by the logical consequence of the current
state of knowledge. Because the outdated assumptions are not allowed to participate
in the default reasoning, the status of all outdated assumptions will be set to inactive,
which is shown as operation step “6”. After updating the assumption database M, the
service assumption q; is added to the assumption database M. Based on the opetration
of step “3” and “5”, we have completed the assumption type identification checking.
If the service assumption belongs to the type of persistent assumption, then, initially,
the status of this new service assumption a; is set to be active, while if this new service
assumption is a transient assumption, its status will be set to inactive, which is shown
as the operation step “7”.

Service assumptions are made about things that may not specifically be known dur-
ing the process of service composition. Thus what the service assumptions represent
is the environment of an underlying service composition. Clearly, the combination of
the environment and the current knowledge state uniquely identify a service composi-
tion context. A particular service composition environment is described by the set of
all active assumptions II(M) maintained in the assumption database M. Logically,
this environment refers to a conjunction of service assumptions. To achieve consis-

tent service composition, we intentionally make the design decision that the service

4.3. Reasoning with Service Assumptions 83

composition environment is required to be consistent, which means that there is no
contradiction can be inferred from II(M). A consistent service composition environ-
ment is enforced by Cond-B which is shown as the operation step “8”. Note that the
checking of joint consistency of assumptions is performed after both the effect e; is ap-
plied to the current state of knowledge and the updating of all the detected outdated
assumptions in the assumption database M is complete. If a contradiction appears, it
means that the service composition environment is no longer consistent and corrections
to these assumptions must be made in the face of this contradicting information. The
conclusion of applying the e; of w; to the state of knowledge must be revoked.

On the other hand, if the the service composition environment is described by a
consistent set of service assumptions, the next reasoning task is to check the consistency
between the new state of knowledge S; and the set of all active service assumptions
II(M), which is is enforced by Cond-C and shown as operation step “9”. This task is
completed by means of checking whether the negation of any active assumptions can be
entailed by the current state of knowledge. The negation of a service assumption plays
the role of being a defeater, which prevents the effects associated with this assumption
being applied to the state. Similarly, if the contradicting information is detected at
this step, it means that the previous conclusions are not appropriate in the face of this
additional information and the old conclusions must discarded in order to incorporate
new knowledge and adapt to a changing environment. Up to now, the process of state
transition from S;_; to S; is completed. We have illustrated that how the new state of
knowledge is reached in the presence of possibly incomplete or conflicting information.

Notice that, although the are treated as the same during the process of service
composition planning, there is a fundamental difference between the ways of handling
the conflicts caused by hard assumptions and soft assumptions respectively. Typically,
when the conflict is detected, and the conflict is caused by a soft assumption, the choice
will be left to client. The client could choose to ignore the detected conflict. However, if

the detected conflict is produced by a hard assumption, it is considered to be a conflict

4.3. Reasoning with Service Assumptions 84

of the Web Service composition anyway, and the client does not have control over it.

Chapter 5

Scenario

This chapter will present different scenarios in which the application of service assamp-
tion to Semantic Web Service Description might prove to be a useful to achieve the
consistent service composition. In addition, these scenarios could ease the intelligi-
bility of the reasoning process with the proposed service assumptions during service
composition planning.

Our example uses the often presented travel agency service package. A typical
use case could involve arranging a trip comprising a hotel booking, a car rental and
a sightseeing service. To simplify this use case, we assume this composite service is
executed in sequential manner (i.e. hotel booking service, then car rental service, finally

sightseeing service).

5.1 Scenario One

The first scenario demonstrates that, when service composition is built in an open and
distributed environment, service assumptions can be used to represent the information
which may not be specifically known in the context of service composition, and how
the violation of a service assumption can be detected. In this example, the service
conflict arises when composing a car rental service and a sightseeing service together
as part of a travel agency service package. Assume that when requesting this composite

travel agency service, the user specifies his preferred car model, for example, a city car.

85

5.1. Scenario One 86

Obviously, this car will be used for sightseeing which is also generated as part of this
composite service. If the functionality matches the user’s requirement, then a car
rental service is invoked. In the real world, it is most likely that the car rental service
providers have some service policy about usage of rental cars. However, when the car
rental service is invoked, we don’t have any information about what kinds of sightseeing
plan might be generated from the execution of the service, in other words, we don’t
know how the rented car will be used. The point here is that different sightseeing plans
may be associated with different roads, and it may not be allowable for a rented car
to drive on certain roads. For example, a desert dune exploration plan is dynamically
generated from the service and a city car is used for the desert dune exploration.
Clearly, this is not an acceptable situation for either the car rental company or the
customer.

Thus, to ensure integrity of service composition, there should be a mechanism to
deal with incompleteness of information during dynamic service composition. Our
solution to this problem is to use service assumptions. In this example, to prohibit
the illegal usage of the rental car, the car rental service could make the assumption
that “city cars do not drive on dune, beach, unsealed road...”. If the contrary evidence
appears (e.g. a dune exploration) from the succeeding service executions, then we can
conclude that there is a violation to the car usage policy. In other words, if we can get
additional information which is explicitly contradictory to the service assumptions in

the context of the service composition, then the potential service conflicts are detected.

(:Web Service Car Rental
:parameters (?cust - Customer
?7car - Car Model
?cen - Credit Card No
:precondition (and (?cust hasCreditCard ?vc)
(isValid ?ccn))
teffect (?cust rented ?car)
:assumption (driveCarInProperWay ?car))

Code Segment 5.1.1: Car Rental Service

5.1. Scenario One 87

Suppose the travel package service composition is requested by a customer. Also
at this stage, we suppose that the hotel booking service has been successfully applied
as part of requested service composition. The next task for the service composition
planning is to find a car rental service. After searching in the service registration
UDDI, the Car Rental Service (See Code Segment 5.1.1) is located and generated as
the output from service selection function. The selected Car Rental Service which is
intended to participate in the requested service composition, is described as follows:

Precondition: hasCreditCard(?cust, Tcen) A isValid(7cen)
Effect: rented(7cust, 7car)
Service Assumption: driveCarInProperWay(?car)

Satisfaction of the Service Precondition: To participate in the service com-
position, the selected service must be a precondition satisfied service, here Cond-A
is applied. Note that a state in our framework is not a completé view of the world.
Usually, for the purpose of precondition evaluation, it is necessary to perform sensing
operations which aim to find out the information which could satisfy the precondition.
In the example above, to be a valid candidate service, the precondition associated with
this Car Rental Service must be satisfied, that is:

hasCreditCard(?cust, Tcen) A isValid(?cen)

Applying the Effects: If the car rental service is a precondition satisfied service,
normally the effects associated with this service can be applied to the current state,
i.e. rented(?cust,?car). However, these effects may be defeated in the face of new
information because Cond-B or Cond-C may apply.

Making assumptions: Certainly, the rented car should be used in proper way. For
instance, if the rented car is a city car, common sense dictates that this car should not
be used for a mountain or desert dune exploration. To deal with exceptions which may
result from uncertainty, the car rental service provider makes an assumption here that
the car is not to be used for certain road conditions. In the example above, the service

assumption is represented by a SWRL Rule, and driveCarInProperWay(?car) is the

5.1. Scenario One 88

consequent of SWRL Rule. Correspondingly, the antecedent of the rule consists of two
primitive assumptions, i.e. ~driveOn(?car, dune) and ~driveOn(?car, unsealedRoad).
Thus the assumption is equivalent to a conjunctive query, and it would be read as:
—driveOn(?car, dune) A ~driveOn(?car, unsealed Road)
= driveCarInProperWay(?car)

Note that “?car” here is a variable, while “dune” and “unsealedRoad” represent
OWL individuals. After Car Rental Service is invoked, we get the the variable bindings
for “?car”. Because “dune” and “unsealedRoad” represent OWL individuals which
are facts about individual identity, thus they are independent on service requester’s
selection, i.e. no substitution ;)r binding for “dune” and “unsealedRoad”.

After applying the Car Rental Service, the current state of knowledge holds the
following the sentences: hasCreditCard(cust,ccn) A isValid(cen) A rented(cust, car).
In addition, the assumption database needs to maintain the service assumption “the
rented car drives in the property way”. In this case, the two primitive service assump-
tions are added to the assumption database and their status is set to active. Note
that at this time, “?car” has been bound to an actual value, thus it is written as “car”
instead of “?car”, i.e.

—driveOn(car, dune) A ~driveOn(car, unsealed Road)

(:Web Service Sight Seeing
:parameters (7cust - Customer
?78sp - Singht Seeing Plan
:precondition (and (?cust hasCar ?car)
b))
:effect (and (7cust isAssigned 7ssp)
(?car driveOn RdCon))
:assumption (NULL))

Code Segment 65.1.2: SightSeeing Service

To clarify the usage of the assumption and the reasoning with assumptions in our
framework, here we give a simplified example of a sightseeing plan service (See Code

Segment 5.1.2), which is supposed to integrate with the car rental service together

5.1. Scenario One 89

as a travel agency package. After successfully requesting the Car Rental Service, the
customer chooses a rented car to register to the sightseeing plan service. The desert
dune exploration as a sightseeing plan is dynamically generated. As a result, the rented

car will be used for this dune exploration.

- Service Composition Context ~
T T Kuowledge) Database
A bas’(?'re(ﬁt(?ard(mst,(rx*n) ~driveOn(car, dune)
A isValid(cen)
A rented(cust, car) ~driveOn(car, unsealed Roud)
A hasPlan{cust, dune Exploration)
A driveOn(car, dune)
\. _/ v
. .

Figure 5.1: Current State of Knowledge and Assumption Database

The service assumptions generated during the process of service composition are
stored in the assumption database, which allows reasoning with uncertainty and dealing
with exceptions. In our example, the service assumption is used by the service provider
to enforce the policy about a rental car usage, which contains ~driveOn(car, dune) A
~driveOn(car,unsealedRoad). After applying the Sightseeing Service, the current
state of knowledge S; and the assumption database is showed in Fig 5.1. This new
state of knowledge contains the sentence of driveOn(car, dune). Clearly, it contradicts
the active Car Rental service assumption ~driveOn(car, dune), that is S;UII(M) |= L.
Thus the consistency condition Cond-C failed. In this case, the violation against the
car usage is detected, the car will not be rented to the customer for his desert dune
exploration, therefore the policy about the legal rental car usage is enforced. However,

one might hold the view that the policy about the legal rental car usage can be enforced

5.2. Scenario Two 90

by a precondition and why bother to use the service assumption. To answer this
question, we need to distinguish the differences of the semantics between precondition
and service assumption. The precondition denotes the condition that must be satisfied
for the atomic service to execute, while for the service assumption, we only need to
establish that it is consistent with what is known i.e. nothing is known that contradicts
this service assumption. Intuitively, in our Car Rental Service example, we cannot
expect the information about the rental car usage to be available in ALL service
compositions in which the car rental service participates. Obviously, precondition
is not a good way to represent this information. Service composition is a dynamic
behavior, before the service composition is complete, the service requester may not
know everything about the underlying service composition to be, so do the planning
agents. To describe such uncertain information and deal with the exceptions, using

service assumption is ideal way to make service description more accurate and precise.

5.2 Scenario Two

The second scenario presented still use travel agency service package as the example,
which demonstrates that service conflict may be caused by service assumptions made
by different independent parties. In this example, the service conflict arises when com-
posing a hotel booking service, a car rental service and a sightseeing service together as
the part of travel agency service package. Assume that when requesting this compos-
ite travel agency service, the first service located by the service planning agent is the
hotel booking service, without any explicit information about the service requester’s

preference, one of luxury hotel booking services is located (See Code Piece 5.2.1).

(:Web Service Hotel-Booking Service
:parameters (7cust - Customer
?dt - Required Date
?rm - Room
:precondition (and (?rm isAvailable 7d)
N2

5.2. Scenario Two 91

:effect (and (?cust booked ?rm))
:assumption (7cust isNotBugetTraveller))

Code Segment 5.2.1: Hotel Booking Service

The selected hotel booking service which is intended to participate in the requested

service composition, is described as follows:
Precondition: isAvailable(rm, dt)
Effect: booked(cust,rm)
Service Assumption: —bugetTraveller(cust)

This description of the hotel booking service simply says that if on the required
date, there is still more room available for booking, and nothing is known about the
customer being budget traveller, then customer books the room in hotel. Typically a
budget traveller won’t consider a luxury hotel as an ideal accommodation. To avoid
such an situation, the hotel booking service simply makes this assumption. However,
this assumption is set as a soft assumption, whose purpose is to provide warning in-
formation instead of restricting the service usage. After the effect of hotel booking
service is applied, its assumption ~bugetTraveller(cust) is maintained in the assump-

tion database and its status is set to active.

(:Web Service Car Rental
:parameters (?cust - Customer
?7car - Car
?cen - Credit Card No
:precondition (and (7cust hasCreditCard ?vc)
(isValid ?7ccn))
:effect (?cust rented ?car)
:assunption (budgeTraveller ?cust)
(driveCarInProperWay ?7car))

Code Segment 5.2.2: Car Rental Service

The next task for the planning agent will be finding the Car Rental Service. Be-
cause there is no explicit preference given by service requester, an extreme example

could be that a rental service is located (See Code Piece 5.2.2), but unfortunately this

5.2. Scenario Two 92

service only provides the out-of-fashion car and normally most of its customers are
budget travellers. The service description of this Car Rental Service as follows:

Precondition: hasCreditCard(cust,ccn) A isValid(cen)

Effect: rented(cust,car)

Service Assumption: budgeTraveller(cust)
This description of the Car Rental Service simply says that if the customer has valid
credit card, and the given credit card is a valid one, and nothing is known about the
customer not being a budget traveler, then customer rented the car. Out of the con-
sideration that, typically, a luxury traveler won’t consider renting an out-of-fashion
car, the Car Rental Service simply makes the assumption budgetTraveller(cust). Like
the service assumption made by the hotel booking service, this service assumption is
designed as a soft assumption, whose purpose is to provide the warning information
instead of restricting the service usage. In other words, if a luxury traveler intentionally
chooses a budget car, nothing will prevent him from renting this car. After the effect
of the Car Rental Service is applied, the service assumption is added into assumption
database and its status is set to active. What service assumptions describe is the
environment of an underlying service composition, in other words, the environment of
the service composition refers to a conjunction of service assumptions. An environ-
ment is consistent if a contradiction cannot be inferred from the corresponding set of
service assumptions (Cond-B). In this example, the condition of joint consistency of
assumptions is violated (See Fig 5.2), that is [I(M) |= L.

Notice that although being treated as the same during the process of service com-
position planning, there is a fundamental difference between the way of handling the
conflicts caused by hardAssumptions and SoftAsumptions. In this example the detected
conflict information is caused by soft assumptions made by Hotel Booking Service and
Car Rental Service respectively, the choice will be left to the service requester. The

service requester could choose to ignore the detected service conflicts.

5.3. Summary 93

-~ Travel Agency Service Package- -\
State of Assumption
{ Knowledge ‘ Database
see A o /\ hiad C
A A -bugetTraveller(cust)
“w A A budgeTraveller(cust)
L) N~
\ J

Figure 5.2: Violation of Joint Consistency of Service Assumptions
5.3 Summary

In many situations, the service composition has only incomplete information at the
planning or run time, perhaps because some information is unavailable, or because it
has to respond first before obtaining all the relevant information. Service description
is described by OWL-S which is based on Description Logic indeed has the capacity
to help users and agents search, discover, invoke, compose and monitor Web Services.
However, there are occasions where plausible conjectures need to be “filled in” .to
overcome the incompleteness of information during the process of service composition.
In such situations, service assumption can help a service composition planner make
more accurate decisions. For example, in the field of health informatics, the online
health symptom checking service has to make some assumptions about the most likely
causes of the symptoms observed before reaching the final result. Obviously, it would
be impossible to have all information about this patient at the beginning. For some
emergency situations, it is also inappropriate to wait for the results of possibly extensive
and time-consuming tests before starting treatment.

One of differences between service precondition and service assumption is that pre-

condition can be viewed as the conditions regarding the eligibility of a service to be

5.3. Summary 94

used, while the service assumption can be viewed as the conditions regarding the way
in which a service is used. For some services, if service providers care about the usage
of their services, service assumption is an ideal way to put such constraints upon the
service usage. In our example of Car Rental Service, obviously, it is inappropriate to
use the precondition to prevent the rented car from the illegal usage, because precondi-
tion is logical conditions that only need to be satisfied before service is invoked, in other
words, after satisfaction of this precondition and service is invoked, the precondition
no longer has the control over the usage of rented car. On the other hand, because
of the character of being persistent, after the invocation of Car Rental Service, service
assumption can continually monitor the usage of the rented car in the life cycle of

underlying service composition.

Chapter 6

Conclusion and Future Work

In this chapter, firstly, we will review the proposed extensions to the current Semantic
Web Service Description. Then we will discuss how these extensions are used in the
underlying framework which meets the needs of service composition in a changing
environment. Based on this analysis, we will outline how this work can progress further.

This work has focused on design and development of a framework which allows
services to have the ability to adapt to a changing service composition environment.
Normally, in an open environment, the action must be taken in the presence of in-
complete knowledge or uncertainty. In terms of service composition, incompleteness
arises when anything regarding a changing environment is not explicitly represented
in the service composition context. Dealing with incomplete information in the service
composition context is a practical, complicated and challenging problem in the field of
Web Service composition.

OWL-S [4] is a formal language which aims to provide precise and rich declarative
specification of a wide variety of properties about Web Services in order to support
automation of a broad spectrum of activities across the Web Service life cycle, such
as discovery, selection, composition, negotiation and contracting, invocation and mon-
itoring of progress. In the current version of OWL-S, the vast majority of efforts and
techniques focus on the modeling and specification of the Web Service alone. Certainly,
the declarative specifications of the prerequisites, consequences of application of indi-

vidual services, and data flow interactions need to be defined precisely and related to

95

96

each other. In current version OWL-S, these properties of services have been defined
by means of (I,0, P, E). However, in the absence of service assumptions which are
essential for a service to have the capability of adapting to a changing environment,
the service composition specification offered by OWL-S is incomplete or inaccurate.
Thus, in parallel, the assumptions made about incomplete knowledge also need to be
explicitly represented and documented as an indispensable part of service composition
specification.

In this work, we have extended OWL-S to a richer service description representa-
tion schema by introducing service assumptions. The general goal of adding service
assumptions as one property of a Web Service is to allow making plausible inferences
in the process of service composition and ensure consistent service composition, which

might be seen as:

e accurately describing the service composition environment, in which most in-

stances of a concept generally have some property, but not always.
e presenting the hypothetical guesses about incompleteness and uncertainty.
e some combination of both.

The goal of dealing with incomplete information in the service composition con-
text is certainly a challenging task. In our proposed framework, together with the
proposed service assumption, we developed a sequence of rule conditions for reasoning
with various assumptions during the process of service composition planning. We also
illustrated how knowledge based planning could reason about incomplete knowledge
in the service composition context and construct a service composition plan. During
the planning process, we showed that only when a precondition holds, then the service
is a valid candidate service to participate service composition. Specially, by adopting
service assumptions, the framework supports default reasoning in the presence of in-

complete knowledge. The service assumptions are made about the things that may not

97

specifically know during the process of service composition, thus what the service as-
sumptions represent is the environment of a underlying service composition. Logically,
this environment refers to a conjunction of service assumptions. To achieve the con-
sistent service composition, we intentionally make the design decision that the service
composition environment is required to be consistent. Finally, consistency between
the state of knowledge and the set of all active service assumptions is required. This
consistency checking task is completed by the means of checking whether the negation
of any active assumptions can be entailed by the current state of knowledge. The
negation of a service assumption plays the role of being a defeater, which prevents
the effects associated with this assumption being applied to the state. Briefly, this
proposed framework allows us to make tentative conclusions based on the available
information, and to detect potential conflicts in service composition when further suit-
able information about the problem is available. This proposed work also leaves many

opportunities for future improvements, which include:

1. Moving beyond sequential service composition, how the underlying service as-
sumptions can be used to deal with incomplete knowledge and uncertainty in

distributed parallel processing.

2. To facilitate the further automation of web service composition, it is desirable to
have priorities among various service assumptions. These priorities indicate the
different levels of the preference that the service requester would have on any given
service composition. With these explicitly specified priorities, the planning agents
may be able to re-compile their knowledge in response to conflicting information

or partial failures.

Bibliography

[1] Resource Description Framework (RDF): Concepts and Abstract Syntax, Gra-
ham Klyne and Jeremy J. Carroll, Editors, W3C Recommendation, 10 February
2004, http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/ . Latest version
available at http://www.w3.org/TR/rdf-concepts/.

[2] RDF Vocabulary Description Language 1.0: RDF Schema, Dan Brickley and R. V.
Guha, Editors, W3C Recommendation, 10 February 2004, Latest version available
at

http://www.w3.org/TR/rdf-schema/ .
(3] The DAML Coalition. http://www.daml.org.

[4] “OWL-S White Paper OWL Services Coalition”. OWL-S: Semantic markup for
Web services, 2005. http://www.daml.org/services/owl-s/1.1/overview

[5] UDDI. The UDDI technical white paper, 2000. http://www.uddi.org/.
[6] WSDL, http:// www.w3.org/TR/wsdl, 15 March 2001

[7} http://www.wsmo.org/

[8] http://www.w3.org/Submission/WSML

[9] Web Services Architecture http://www.w3.org/TR/ws-arch/

98

BIBLIOGRAPHY 99

[10] V. Andrea and M. Aiello. Services and objects: Open issues In G. Piccinelli and S.
Weerawarana, editors, European workshop on OO and Web Service, pages 2329,
2003. IBM Research Report. IBM. Computer Science, (RA 220).

[11] Antoniou G. The role of nonmonotonic representations in requirements engineer-

ing. Int J Software Eng Knowledge Eng 1998;8(3):385-3399.

[12] G. Antoniou (1999). A tutorial on default logics. ACM Computing Surveys,
31(4):337-359.

[13] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., und Weerawarana, S. 2003.
Business Process Execution Language for Web Services, Version 1.1. Specification.

BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems.

[14] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. 2003. The Description Logic Handbook: Theory, Implementation

and Applications. Cambridge University Press 2003.

[15] Benjamin N. Grosof, Ian Horrocks. 2003. Description Logic Programs: Combining
Logic Programs with Description Logic” ACM 1581136803/03/0005.

[16] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic Web. Scien-
tific American, 284(5):34-43, May 2001.

[17) Bertoli, P., Cimatti, A., Dal Lago, U., and Pistore, M. 2003. Extending PDDL
to nondeterminism, limited sensing and iterative conditional plans. In ICAPS

Workshop on PDDL, Informal Proceedings, pages 15-24.

[18] Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence 32(3):
333-377.

[19) Cooke DE, Lugqi . Logic programming and software maintenance. Ann Math Artif
Intell 1997;21:221-229.

BIBLIOGRAPHY 100

[20] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.Weerawarana.
Unraveling the web services web: An introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86-C93, 1 2002.

[21] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Service v1.1. Published
online by BEA, IBM and Microsoft at
http://www.ibm.com/developerworks/library /wsbpel, May 2003.

[22) Dardenne,A., A. van Lamsweerde and S. Fickas. 1993. Goal-Directed Requirements
Acquisition, Science of Computer Programming, 20, pp. 3-50

[23] Dean, M. and Schreiber G. 2004. OWL Web Ontology Language. Reference W3C
Recommendation, http://www.w3.org/tr/owl-ref/.

[24] Deborah L. McGuinness; Ontologies Come of Age. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential. MIT Press. 2003

[25] Doyle, J. 1979. A truth maintenance system. Artificial Intelligence, 12: 231-272.

[26] Easterbrook.S. M. 1991. Handling Conflict Between Domain Descriptions With
Computer Supported Negotiation. Knowledge Acquisition: An International Jour-
nal, Vol 3, No 4, pp 255-289.

[27] Easterbrook.S. M., Beck, E., Goodlet,J., L. Plowman, M. Sharples, and C. C.
Wood (1993) A Survey of Empirical Studies of Conflict. In S. M. Easterbrook (ed)
CSCW: Cooperation or Conflict? London: Springer-Verlag, pp1-68.

(28] Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning: Complexity and Expres-
sivity. In Proceedings of the T'welfth National Conference on Artificial Intelligence,
1123-1128. Menlo Park, Calif.: American Association for Artificial Intelligence.

[29] Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., and Williamson, M. (1992).
An approach to planning with incomplete information. In Nebel, Bernhard; Rich,

BIBLIOGRAPHY 101

Charles; Swartout, W., editor, Proceedings of the 3rd International Conference
on Principles of Knowledge Represen tation and Reasoning, pages 115-125, Cam-
bridge, MA, USA. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

[30] Fikes, R., and Nilsson, N. 1971. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Journal of Artificial Intelligence 2(3-4):
189-208

[31] Ginsberg, M. 1993. AI and nonmonotonic reasoning. In Handbook of Logic in
Artificial Intelligence and Logic Programming: Vol. 3: Nonmonotonic Reasoning
and Uncertain Reasoning. Edited by D. Gabbay, C. Hogger, and J.A. Robinson.
Oxford University Press, Oxford, pp. 1-33.

[32] Golden, K., Etzioni, O. & Weld, D. 1996. Planning with Execution and Incomplete
Information, UW Technical Report TR96-01-09, February 1996.

(33] Golden, K. & Weld, D. 1996. Representing Sensing Actions: The Middle Ground
Revisited, Proc. 5th Int. Conf. on Principles of Knowledge Representation and

Reasoning

[34] Howard Foster, Sebastidn Uchitel, Jeff Magee, Jeff Kramer. Compatibility Ver-
ification for Web Service Choreography. Proceedings of the IEEE International
Conference on Web Services (ICWS04), San Diego, California, USA. IEEE Com-
puter Society pp. 738-741, 2004

[35] R. V. Guha. Contexts: A Formalization and Some Applications. PhD thesis, Stan-
ford University, 1991.

[36] D. McDermott and AIPS’98 IPC Committee. PDDL~-the planning domain defini-
tion language. Technical report, Available at: www.cs.yale.edu/homes/dvm, 1998.

[37] R.J. Hall, Open Modeling in Multi-stakeholder Distributed Systems: Model-based
Requirements Engineering for the 21st Century, in 2002 Workshop on the State

BIBLIOGRAPHY 102

of the Art in Automated Software Engineering, U.C.Irvine, Institute for Software

Research

[38] TIan Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language - Combining
OWL and RuleML. W3C Member Submission,
http://www.w3.0rg/Submission/SWRL/, May 2004.

[39] M. Jackson, Software Requirements & Specifications: A Lexicon of Practice, Prin-
ciples, and Prejudices, Addison- Wesley, Wokingham, England, 1995.

[40] Knoblock, C. 1995. Planning, Executing, Sensing, and Replanning for Information
Gathering. In Proceedings of the Fourteenth International Joint Conference on Ar-
tificial Intelligence, 1686-1693. Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

[41] Kreger, H. Web Services Conceptual Architecture (WSCA 1.0). http://www-

4.ibm.com/software/solutions/webservices/, 2001

[42] U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler. Information gathering
during planning for web service composition. In Proceedings of 3rd International

Semantic Web Conference (ISWC2004), Hiroshima, Japan, November 2003.

[43] A. van Lamsweerde, R. Darimont, E. Letier “Managing Conflicts in Goal-Driven
Requirements Engineering” IEEE Transactions on Software Engineering, Special

Issue on Managing Inconsistency in Software Development, November 1998

[44] LUKASZEWICZ, W. 1988. Considerations on default logic. Comput. Intell. 4, 1,
1-16

[45] Lugi , Cooke DE. How to combine nonmonotonic logic and rapid prototyping to
help maintain software. Int J Software Eng Knowledge Eng 1995;5(1):89-118

BIBLIOGRAPHY 103

[46] S. Mcllraith and T. C. Son. Adapting Golog for composition of Semantic Web
service Proceedings of the 8th International Conference on Knowledge Represen-

tation and Reasoning (KR2002), Toulouse, France, April 2002.

[47] R. F. Neches, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; Swartout, W.R.,
”Enabling Technology for Knowledge Sharing., AI Magazine36-56, 1991.

[48] Nuseibeh, B. and Easterbrook, S. Requirements Engineering: A Roadmap, In-
ternational Conference on Software Engineering,Proceedings of the Conference on

The Future of Software Engineering, Limerick, Ireland, Pages: 35 - 46, 2000

[49] Bashar Nuseibeh, Steve Easterbrook and Alessandra Russo. Leveraging Inconsis-
tency in Software Developoment. IEEE Computer, 33(4):24-29, April 2000.

[50) Bashar Nuseibeh and Steve Easterbrook and Alessandra Russo. Making inconsis-
tency respectable in software development. The Journal of Systems and Software

volume 58-2 171-180, 2001

[51) M. Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara. “Importing the
Semantic Web in UDDI”. In Proceedings of Web Services, E-business and Semantic
Web Workshop.

[52] M. Paolucci, T. Kawmura, T. Payne and K. Sycara. Semantic Matching of Web
Services Capabilities. In First Int. Semantic Web Conf., 2002

[53] M.P. Papazoglou and J. Yang, “Design Methodology for Web Services and Busi-
ness Pro- cesses”, Procs. of the 3rd VLDB-TES Workshop, August, Hong Kong,
Lecture Notes in Computer Science Vol. 2444, Springer, 2002

[54] M. P. Papazoglou and D. Georgakopoulos. Service oriented computing. Commun.

ACM, Oct. 2003.

[55) M.P. Papazoglou, Extending the Service Oriented Architecture, Business Integra-
tion Journal, February 2005,

BIBLIOGRAPHY 104

[56] Simon Parsons,.; and Anthony Hunter. 1998. A review of uncertainty handling
formalisms. Lecture Notes In Computer Science; Vol. 1455. 8 - 37. Springer-Verlag.
ISBN:3-540-65312-0

[57] Paulo F. Pires, Mdrio R. F. Benevides, and Marta Mattos “Building Reliable Web
Services Compositions”, Net.Object Days - WS-RSD’02, page 551-562, 2002

(58] Pednault, E. . ADL and the state-transition model of action. Journal of Logic and
Computation. 1994

[569] Penberthy, J., and Weld, D. 1992. UCPOP: A Sound, Complete, Partial Order
Planner for ADL. In Proceedings of the Third International Conference on Princi-
ples of Knowledge Representation and Reasoning, 103-114. San Francisco, Calif.:
Morgan Kaufmann.,

[60] W. Poon and A. Finkelstein, “Consistency Management for Multiple Perspective
Software Development,” presented at ACM SIGSOFT 96 Workshop - Viewpoints
96, 1996.

[61) Putnam, L. L., and M. S. Poole (1987) Conflict and Negotiation. In L. W. Porter,
Ed., Handbook of Organizational Communication: An Interdisciplinary Perspec-
tive, pp. 549-599, Newbury Park: Sage.

[62] Reiter, R. 1978. On reasoning by default. In Proceedings of TINLAP-2, Associa-
tion for Computatinal Linguistics, University of Illinois, pp. 210-218.

[63] Reiter R. “A logic for default reasoning”, Artif Intell 1980; 13:81132.

[64] Robbins, S. P. (1989) Organizational Behavior: Concepts, Controversies and Ap-
plications. Englewood Cliffs, NJ: Prentice-Hall.

[65] W.N. Robinson, I Didn’t Know My Requirements were Consistent until I Talked
to My Analyst, Living With Inconsistency Workshop at The 19th International

BIBLIOGRAPHY 105

Conference on Software Engineering, IEEE Computer Society Press, Boston, USA
(May 17-24 1997).

(66] Russel, S. and Norvig, P. (2002). Artificial Intelligence: A Modern Approach.
Prentice-Hall Inc.

[67) SCHAUB, T. 1992. On constrained default theories. In Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI92, Vienna, Austria, Aug.
3-7), B. Neumann, Ed. John Wiley and Sons, Inc., New York,NY, 304-308.

[68] M. Smithson. Ignorance and Uncertainty. Emerging Paradigms. Springer Verlag.
New York. NY. 1989

[69] T. Sollazzo and S. Handschuh and S. Staab and M. Frank. Semantic Web Service
Architecture - Evolving Web Service Standards toward the Semantic Web. Pro-
ceedings of the 15th International FLAIRS Conference, Pensacola, Florida, May
16-18, 2002. AAAI Press

[70} Spanoudakis G., Zisman A.: Inconsistency Management in Software Engineer-
ing: Survey and Open Research Issues, Handbook of Software Engineering and
Knowledge Engineering, (eds) Chang S. K., World Scientific Publishing Co., 2001.

[71] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN planning
for web service composition using SHOP2. Journal of Web Semantics, 1(4):377-
396, 2004

[72] Biplav Srivastava and Jana Koehler. Web Service Compaosition - Current Solutions

and Open Problems in Proceedings of ICAPS03, 2003

[73] Stefan Tang. MATCHING OF WEB SERVICE SPECIFICATIONS. USING
DAML-S DESCRIPTIONS. Thesis Diplomarbeit. March 18th, 2004

[74] TANIMOTO,S.L.The Elements of Artificial Intelligence. Computer Science Press,
Rockville, MD, 1987

BIBLIOGRAPHY 106

[75] Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998. Extending GRAPHPLAN
to Handle Uncertainty and Sensing Actions. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence, 897-904. Menlo Park, Calif.: American
Association for Artificial Intelligence.

[76] Wiktor Marek and Mirek Truszczynski. Nonmonotonic Logics; Context-Dependent
Reasoning. Springer, Berlin, 1st edition, 1993.

[77] Jian Yang.; Mike P. Papazoglou. Web Component: A Substrate for Web Service
Reuse and Composition. In Proceedings of the 14th International Conference on
Advanced Information Systems Engineering, 21 - 36, 2002. Springer-Verlag, Lon-
don, UK ISBN:3-540-43738-X

[78] J. Yang,. ; M.P. Papazoglou,: Service Components for Managing the Life-Cycle of

Service Compositions. Will appear in Information Systems, June, 2003,

[79] Zowghi D, Ghose A, Peppas P. A framework for reasoning about requirements
evolution. In: Proc 4th Pacific Rim Int Conf Al. Lecture Notes in Artificial Intel-
ligence 1114. New York: Springer-Verlag; 1996. pp 157-168.

	Cover page
	Copyright warning
	Title page
	Dedication
	Declaration
	Abstract
	Acknowledgements
	List of publications
	Table of contents
	List of tables
	List of figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Bibliography

	Please see print copy for Figure 2:
	1: Please see print copy for Figure 2.1

