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Abstract

Far-infrared absorption spectroscopy was carried out on samples of germanium cut
from single-crystal ingots doped with zinc. The ingots were grown in a hydrogen
atmosphere and hence also contained the axial complex ZnH. Landau studies were
made in the Voigt configuration for both the acceptors neutral zinc, Zno, and ZnH with
B oriented along <100> crystallographic directions. Measurements were made in a
super-conducting magnet with field strengths up to 6 T for both ZnH and Zn’ using a
modified slow-scan Polytec FTIR spectrometer. The incident radiation was plane
polarised either parallel or perpendicular to the field. It was found that the main Landau
features for both acceptors are the same as for the group III single-hole acceptor boron.
The difference is in the fine-structure of the Landau lines which reflects the different

natures of the acceptors boron, Zn" and ZnH.
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Chapter 1. Introduction

In 1930, de Haas and van Alphen [1] observed that the magnetic susceptibility of
bismuth exhibited an oscillatory behaviour with changing magnetic field strength and
different crystallographic orientations. In the same year Shubnikov and de Haas [2]
reported a similar result associated with the electrical conductivity of the same material.
Without knowing of the de Haas-van Alphen effect (dHvA), Landau [3] developed his
theory of the diamagnetism of a free electron gas. He demonstrated that in a uniform
magnetic field, B, the energy states of such electrons in their classical circular motion in
the planes perpendicular to B were condensed into a series of equally-spaced, parabolic
bands, giving a quantisation of the closed magnetic orbits of the electrons. The density
of these states was essentially localised at the bottom of each band to give a very
narrow, energy-wise, distribution of the electrons. This set of magnetic subbands have
become known as Landau levels and strongly influence the magnetic properties of
metals and semiconductors and their behaviour as a function of B (=|B|). Thus Landau
predicted the dHVA effect. Both of these effects have been exploited extensively for
probing the nature of the Fermi surfaces in solids. A history of the dHVA effect and its
uses has been given by Shoenberg[4]. These and other oscillatory effects have been
described by Kahn and Frederikse [5].

Another experimental technique based on the formation of Landau levels is that of
cyclotron resonance. This phenomenon, classically, is the result of electromagnetic
radiation being absorbed when its frequency matches that of the frequency of the
electrons in their closed orbits; the latter frequency is that of an electron in a cyclotron,
W, and is given by B/em,, where m. is the inertial mass of the electron. Quantum
mechanically, the resonance corresponds to transitions of electrons from one Landau
level to the next higher, these being separated by nw. (see Chapter 2). This process
provides a means to measure the mass of the electron which, in solids, is not necessarily
the inertial mass; it is usually designated as the effective mass which conceals the
periodic potential of the crystal. The sharpness of the observed resonances requires that
the broadening of the Landau levels by scattering mechanisms is small which,
classically, means that the particle executes several revolutions before being scattered
out of its orbit. Early cyclotron resonance experiments involved silicon and germanium
[6 ,7] and measured in detail the anisotropy of the effective masses of the electrons at

the bottom of the conduction bands and the holes at the top of the valence bands.



Cyclotron resonance was next reported for metals using the experimental procedure
developed by Azbel’ and Kaner [8].

The Landau levels also play a role in magneto-optical effects. For example, the
optical absorption spectrum at and near the absorption edge of a semiconductor exhibits
oscillations due to transition of electrons from the valence band Landau levels to those
in the conduction band. Early observations of these were reported in the 1950’s [9]. In
addition, the photo-ionisation spectra of impurities in semiconductors under B contain
oscillations due to transitions of electrons or holes from the ground states to the
Coulomb-related Landau states. The first observation of these was for group V donors
in germanium [10] while those for group III acceptors in this material were observed
soon after [11]. Extensive measurements on the latter, particularly for boron, have been
carried out by Takacs [12]. Recently, this technique has been extended to the study of
neutral zinc, a double acceptor in germanium, and to axial acceptors in germanium [13].
It is the purpose of the present thesis to extend the previous studies of neutral zinc and

the axial defect, ZnH, in germanium.



Chapter 2. Theoretical

The treatment of the behaviour of electrons in a magnetic field in both a constant
and a periodic potential has developed through several stages. A few, pertinent to the
problem at hand, will be mentioned. First, as introduced earlier, there was that of
Landau [3]. Later there was the work of Luttinger and Kohn [14], and Luttinger [15];
they extended the effective mass theorem [16] to complex semiconductor structures in
which the conduction band minima did not occur at k = 0 and where the top of the
valence band, although at the Brillouin zone centre, was degenerate. Both these
situations exist for Si and Ge. Such calculations were particularly applicable in
connection with cyclotron resonance and impurity states in semiconductors. The theory
of Luttinger [15] was applied by Wallis and Bowlden [17] to give numerical results for
the Landau levels of the valence band of Ge. Because of the complexity of the energy
states, Suzuki and Hensel [18] and Hensel and Suzuki [19] recognised that the
application of an external uniaxial force would lift the degeneracy at the top of the
valence band and would simplify interpretation of the experimental results. They carried

out both the theoretical and experimental work for this arrangement.
2.1 Landau States for Free Electrons

The total energy, €, for an electron in a constant potential, V, is the same as the
kinetic energy, T, if V is arbitrarily set to zero, i.e., for a non-relativistic electron of

momentum p and wave vector k
e(k) = T(k) = p.p2me = Nkk2me = Nk +ky* +k,)2me,  (2.1)
where m, is the inertial mass of the electron. Under an applied magnetic field B along
the z-direction, the energy has been shown [3] to be
Ep = (s + 12N + Nk, 2me;s=0,1,2,3,......... (2.2)

This result is that obtained for the quantised states of a simple harmonic oscillator. The

classical circular trajectories of the electron in the xy-plane can be resolved into two

simple linear harmonic oscillators with angular frequency w, quantised as shown in Eqn

(2.2), while p, is unchanged.



The density of states for a three-dimensional free electron gas with B = 0 is given

by g0(€) 1 2AE, (2.3)
while, for such gas in a uniform B, it is
peoy
g (a) =A < , (2.4)

JIE - (n + 12)%,]
where A——( 6)3/ ?. The results of Eqns (2.1) — (2.4) are shown in Figure 2.1.

Note that the plots of gy (€) are for individual values of n. It is thus seen, as mentioned
in the Introduction, that the electrons in the plane perpendicular to B are concentrated at

the bottom of each sub-band, i.e., at k, = 0, hence the origin of the term Landau level.

2.2 Landau States for Electrons in Semiconductors

The application of the effective mass theory to the cases of Si and Ge was carried
out by Luttinger and Kohn [14]. In this theory, a mass tensor replaces the effect of the
periodic potential of the crystal, the elements of which are determined by the
unperturbed band structure. They show that, if the spin-orbit coupling is neglected, the
energy levels of an electron at the top of the valence band in a magnetic field B are
given by

2D (b +eAq)(pg + eAg)IF; (r) = EF(r). (2.5)
F

Here j runs over the number of degenerate states at the band edge, while a and [3 are

1 .
dummy suffixes and are summed over X, y and z; py = —_ai and the Landau gauge is

chosen for A, the magnetic vector potential. Also

O(B__ p]lplj
D —2m6JJ6uB — Z e (2.6)

Here the summation over i includes all those states of the unperturbed crystal other than
the set j, & is the energy of the degenerate set while & is the energy of the it

unperturbed state. The wave function of the system is given by

=2 F(0, (2.7)
J

where the @; are the degenerate Bloch functions of the unperturbed crystal.



Please see print copy for Figure 2.1

Fig. 2.1. Results of Landau's treatment [3] of the behaviour of free electrons in a homogeneous magnetic field.




If a matrix is defined by D = [D i j'] = [D%.Bkakﬁ] for the diamond structure at k = 0,

without spin-orbit coupling and B = 0, assuming that the cubic axes of the crystal

coincide with the coordinate axes, we have,

Ak; +B(ky +k3) Ckyky Ckk,
D= Ckyk, Ak§ +B(kj +kg) Ckyk, ,  (2.8)
Ck,k, Ckyk, Ak +B(ky +k3)

where A,B and C are real constants given by the appropriate Dg-xj.B’s. Introduction of

spin-orbit coupling lifts some of the degeneracy at k = 0 to give a four-fold degeneracy
at the band edge separated from a band of two-fold degeneracy, the latter being of lower
energy. The spin-orbit splitting of these bands is called A.

Cyclotron resonance experiments involved electromagnetic energies small
compared to A [J[J[] thus the higher lying band could be treated separately. The
resulting energy states are still described by the same set of constants A, B and C of the
unperturbed bands. Luttinger and Kohn [14] did not solve the set of coupled differential
equations to give the energies but recognise that for high quantum numbers these lead to
equally spaced Landau levels but for low quantum numbers there are deviations from

this.

The next stage of this development was due to Luttinger [15]. He pointed out that

in the derivation of Eqn. 2.5 by Luttinger and Kohn [14] that it was assumed that D%,B =
D%g. He demonstrates that this is not true in general, whereas what is true is that

(D%.B) * = D?.(;. Introduction of the difference D%,B - D[j?’j? requires a fourth constant, K,

to be invoked when a magnetic field is present. When spin—orbit coupling is included
with a magnetic field a fifth constant, designated by [3s, is required. Thus, a total of five
constants is now needed to describe the energies of the Landau levels. He finds it

convenient to use the five dimensionless constants, Vi, Y, Y1, K and g, defined by

Lyl :—l(A+2B) i(3K+1):—K
2m 3 m
11 e
—Y,=——(A-B) —q=-Bs; (2.9)
2m 6 mc

1

C

1
2m Ys g



these also give hole energy. These five constants are called Luttinger parameters. The
values he quotes for the first three for Ge are 13.2, 4.4 and 5.4, respectively. In his

discussion of the energy levels, Luttinger considers an approximation for Ge based on
taking Y» = V3 = (Y2 + ¥3)/2, q = 0 and k, = 0 and then uses perturbation theory to

incorporate Y3 - Y» and a non-zero q. He does not give any numerical results or
comparison with experiment but implies that the general prediction of quantum
deviations in the Landau ladders are in agreement with the cyclotron resonance
experiments of Fletcher, et. al., [20]. There are four Landau ladders at k = 0; this is
where the two two-fold degenerate bands coincide. Two ladders are associated with the
“light holes” and two with the “heavy holes”.

The next application of the Luttinger theory was by Wallis and Bowlden [17] who

give numerical results for the Landau levels of the valence band of Ge. In these

calculations, the Luttinger parameters, Y» and Y3, are again taken to be equal to the mean
value of the two, q = 0 and, initially, k, = 0. A quantitative diagram is given of the four
Landau ladders. He then extends the calculations to show the effect of a small but non-
zero k.

Suzuki and Hensel [18] pointed out that advancement in this area was hampered by
the extreme difficulty in identifying the cyclotron resonances because of the quantum
deviations at the bottom of each ladder. The original results for Ge and Si [6, 7] were
under experimental conditions which produced resonances higher up in the ladders
where correspondence with the classical frequency prevailed. They also recognised that
numerical computations to aid in the identification of the resonances were not reliable

because the Luttinger parameters were not sufficiently precise. (A further problem was
the neglect of k;.) They resolved this situation by applying a uniaxial stress to the Ge

samples, thus decoupling the degenerate valence band to give easy identification of the

resonances and determine the Luttinger parameters with high precision. With this
information and the inclusion of k, they return to analysing the spectra of unstressed
Ge. Their results for yj, V2, V3, K and q were 13.38+0.02, 4.24+0.03, 5.69+0.02, 3.41 and
0.06, respectively [19]. This paper gives their calculated results for low-lying Landau

levels at k, = 0. This data is reproduced in Figure 2.2 for B||<100>, <111> and <110>.



Please see print copy for Figure 2.2

Fig. 2.2. Valence band Landau levels in germanium as calculated by Hensel and Suzuki [x].




The labels on the states in the four Landau ladders in Figure 2.2 have the following

T

meaning. Suzuchi and Hensel [18] define an operator N = J3 + a a + 3/2, where J3 =

i

[J+, J-] and a’ and a are the harmonic oscillator creation and annihilation operators,

respectively, and J4 and J- are the raising and lowering angular momentum operators,
respectively, for J = 3/2. The eigenvalues of N are

N=Mj+n+3/2. (2.10)
Since My =+1/2 and £3/2, then N2n=0,1,2,3,4,......... The states are labelled
as Np, the value of n distinguishing the four states with the same N, the Landau

quantum number. An additional label is given to each state, viz., Vn, where V =
N(modulo v) and 1t is the parity. Here v is the foldedness of the rotational symmetry
along the direction of B. Equation 2.10 shows that those levels with the same value of N
—n have the same Mj, thus for N—-n =0, 1, 2 and 3, My =-3/2, -1/2, +1/2 and +3/2. It
is interesting to note that in Figure 2.2 three of the ladders are characterised by a

different but single value of My while the fourth, a light hole ladder, contains a mixture

of My =-1/2 and +3/2.

It has been demonstrated [12] that the dominant Landau absorption lines due to
acceptors in Ge are transitions from the ground states of the impurities to the Coulomb-
related light hole Landau levels (LHLL) (see Section 2.3 below). The symmetries of the
associated LHLL’s have been determined [12] by application of an equation due to
Suzuki and Hensel [18]. For the case of B||<100>, for example, this equation is

C, |V) =e KMy vy, @.11)
where the point group of the system is Cy4p, and thus v = 4. The symmetries of the LHLL

have been tabulated by Takacs [12] and, for B||<100> at k = 0, are as follows:

V=0: 09, 41, 44, 8s....... ; F; (2128.)
V=1: 10, 11, 52, 55,...... T (2.12b)
V=2 21,263 66...... T (2.12¢)

V=3 30,33 74 T7pere... : TE. (2.12d)
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Here the [’s are the double group representations of Cyy, (see, for example, Koster et al.

[21]).
2.3 Landau States and Bound Hole States

The introduction of shallow acceptor impurities into a semiconductor produces
bound hole states in the energy gap at k, = 0 and close to the top of the valence band.

The spectra of these, due to transitions between the bound states, have been studied
extensively with and without external perturbations [12]. The impurity states are
obtained from an adaptation of the effective mass theory to include the Coulomb
potential of the charged acceptor into the Hamiltonian. It is the inclusion of these
defects in the otherwise perfectly periodic crystal that allows the states to be in the
normally “forbidden energy” gap. These states are constructed from those at the top of
the valence band and the hydrogenic functions describing the motion of the hole bound
to the charged impurity.

Application of a magnetic field produces the Landau sub-bands, each of which has
Coulomb-related quasi-bound states associated with it. The transitions from the ground
state of such acceptors to these Coulomb-related Landau states is to be studied here for
two types of acceptors. The first observation of such spectra was for boron in Ge [11],
while more recently a very extensive study of this has been carried out [12].
Identification of the Coulomb-related Landau excited states involved has relied heavily
[12] on the predictions of Hensel and Suzuki shown in Figure 2.2, the predictions by
Wallis and Bowlden [22] for a non-degenerate parabolic band at k = 0 and Lin-Chung
and B. W. Henvis [23] for non-parabolic, degenerate bands; both the latter compare
their results with the experimental observations for donors in InSb. The aspect which
arises from these results is the binding energies of these states relative to the bottom of

their associated Landau level should increase with field.

2.4 Selection Rules for B||<100>

2.4.1 Zn—H in Ge
It 1s well known that Zn—H substitutional defects in Ge have their axes along the

four <111> covalent bond directions [24, 25]; this reduces the point group symmetry

from that of Ty(Oy) to C3y(D3q). (The two notations given here reflect the way the
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theory of bound acceptor states has developed. The Oy, notation is that introduced by

Baldereschi and Lipari [26] in their novel approach to the problem. The T4 point group
notation describes the true symmetry of substitutional defects in Ge). Thus, without

external perturbation the four-fold degenerate ground state, originally of symmetry

Me(Fg) 00 T d((_)h), is split into two two-fold Kramers’ doublets, [,(I';) and

F(rH+r, () of C,,(D .y)- The latter two one-dimensional double group

representations are complex conjugates of each other and their sum will be written as

|'5++6. Here the parity label introduced by Baldereschi and Lipari [26] via their spherical

approximation (and retained by them and others in subsequent calculations) has been
included; this labelling will be used in what follows. Figure 2.3 shows these results and

includes the case of a group III acceptor. Also shown is the effect of B|[<100> on both
types of acceptors. The internal splitting of the ground state of ZnH, defined as Ajy¢ in
Figure 2.3, is known [24, 25] to be large enough that at liquid He temperatures the I’:

ground state is not occupied to any extent and thus observed transitions are only from

the F5++6 ground state. Under BJ||<100>, all four axial types of ZnH are effected to the
same extent causing the ground state of each type to undergo the same Zeeman
splitting; the new symmetry is C; with each Zeeman state belonging to the same
irreducible representation in (see Figure 2.3). The selection rules for electric dipole
transitions permit these from both Zeeman sub-states to all other states for E||B and
EUB, where E is the electric field of the electromagnetic radiation. The splitting of the
I';L(, ground state with field has been determined previously [25]. Also shown in Figure

2.3 is the Zeeman splitting of the F; ground state of group three acceptors.

2.4.2 Neutral Zinc (Zno) in Ge

The symmetries of the ground states of double acceptors in Ge are given by the
antisymmetric direct product {{FS+ xl'; } = I'l+ + I'3+ + I'5+ of (_)h; the orbitals of the two

holes being each of symmetry ;' [27]. It has been shown both experimentally [28, 29]

and theoretically [30] that for Zno, the I'l+ state is the lowest in energy and is the only
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one significantly populated at liquid He temperatures. Thus all observed transitions for

samples at these temperatures are from 1F1+ . It has been demonstrated that the observed



r;l-((_:élh)

r;ig(éi)

s 3(Dyy)
H i ) 135G
int
IHCyp) 50w ‘ L5(C)
THCyp) THDyq) + TH(Daq) ()
B Il <100> B=0 B=0 B Il <100>
Substitutional Point Defect - Group III Acceptor Substitutional Axial Defect - Zn-H Acceptor
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optical absorption spectrum is due to the excitation of one of the holes to the various

excited states. The orbital of the remaining hole becomes that of the hole in the ground
state of singly ionised zinc, Zn ; this has been shown to be true experimentally [29, 31].

Consequently, although the lowest ground state of 7n” is simple, its excited states are
not. Their symmetry is given by the direct product of the symmetry of the orbital of the

unexcited hole I':h and that of the excited hole, ', where for Zn’, I':hz Iry (Zn").

Under a magnetic field, 1F; (Zn") splits into its four Zeeman states which, for

B||<100>, are 1r5+, 1r6+, 1F7+ and 1r; all of Csh. This gives rise to four types of

possible excited states for a given Fe_h. The energy spacings of this quartet are just those

of the Zeeman states of the J = 3/2 ground state of Zn . The magnitudes of these

splittings are 0.25 cm /T for the +1/2 states and 0.75 cm™ /T for the £3/2 states [31].
The possible symmetries of I, for B|<100> are 15, 1, 1, and 1lg. Thus, the
Landau transitions to be presented in this thesis will have excited states whose
symmetries are F; xI[,, where n, m=5, 6, 7, 8 and I, is the symmetry of the Coulomb
states associated with a given Landau level. The selection rules for the transitions

1M - 1M xI ', are shown in Figure 2.4.
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Chapter 3. Experimental Techniques

3.1. Introduction

Fourier transform spectroscopy is based on the fact that an interferometer
produces an interference pattern due to all the waves which enter it simultaneously thus
giving a very high signal-to-noise ratio. Additionally, this signal-to-noise ratio can be
enhanced by taking multiple scans, or by using a slow-scan speed with a matched
electronic time constant. Measurements used in this thesis were made by either a
Bomem fast-scan or a modified Polytec slow-scan spectrometer.

Most FTIR spectrometers are built based on the Michelson interferometer
principle in which two beams of coherent radiation interfere to produce an
interferogram. The radiation is collimated before being split into two beams by a beam
splitter. One beam is reflected back to the beam splitter by a stationary mirror and the
other one by a moving mirror; these are superposed to produce the interferogram. The
interferogram will be a cosine wave if the source is monochromatic, and if
polychromatic, it will be the sum of the cosines for each frequency. There will be a
central maximum at zero optical path difference where all the cosines added
constructively. By placing the material of interest in the combined beam after it leaves
the interferometer modulation in the interferogram will be produced by any absorption
of the radiation in the material. A Fourier transform is executed on the interferogram to
obtain the transmitted spectrum.

The spectrum and the interferogram may be expressed as

2700

Interferogram 1(8)= j B(o)e do (3.1

Spectrum B(o) = J‘I(é')e_2 4o, (3.2)

where 0 = frequency
0 = retardation = 2vt
v = mirror travel speed
t = time, set at zero at zero path difference
The transmitted spectrum may be acquired by executing an inverse cosine Fourier

transform on I(d)
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B(o) = j 1(d)cos(27109) do (3.3)
which, if the function is even, is
B(o) = 2j 1(0)cos(2t0d do (3.4)
0

When measuring, the interferogram is sampled at a constant rate over a finite mirror

travel, thus the interferogram will be that of a truncated cosine function of which the
transform is a sinc function. The maximum theoretical unapodised resolution, AVua,

associated with this mirror travel is AVua = 0.74/Apax, Where Apayx is the maximum

optical path difference between the two beams; the latter is twice the maximum distance

travelled by the moving mirror. This expression is based on the criterion that the sum of

two equally intense spectral lines (two identical sinc functions) separated by AVua, will

have a dip of 20% of the total intensity of each peak at a point half-way between them.

3.2.  Polytec FTIR 25 Spectrometer

A diagram of the modified Polytec FTIR 25 spectrometer is shown in Fig.3.1. The
three main chambers are kept evacuated to remove atmospheric water vapour. In the
chamber on the top of right, the radiation produced by the globar source is amplitude
modulated with a mechanical chopper; this also controls the reference signal for
synchronous detection. The chopped radiation is collimated by the off-axis paraboloidal
mirror ahead of entering the interferometer. Several mylar beam splitters were used to
cover the specific range required. The mirror displacement is measured by a rotary
encoder, and there is a maximum displacement of 100 mm which limits the maximum
unapodised resolution of the spectrometer to 0.037 cm™. The beam splitter in the FTIR
25 was at 30° to the incident beam, as the Brewster angle for the mylar beam splitter is
~57°. This reduced polarisation due to reflections from the beam splitter surface. The
ratio of vertical (ELIB) to horizontal (E||B) polarisations is 1.7:1, where E is the electric
vector of the radiation. After leaving the interferometer, the beam is focussed to pass
though a wire grid polariser (consisting of gold evaporated onto a polyethylene replica
grating as substrate) before falling on the sample mounted in the Voigt configuration

between the split coils of an Oxford Instruments superconducting (SC) magnet.



Please see print copy for Figure 3.1
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Both the liquid helium and room temperature windows were polypropylene. The room
temperature entrance window was an 0.8 mm thick disc with a cone machined into it,
reducing the thickness to 0.4 mm at the apex to eliminate Edser-Butler fringes. The
three other windows were unwedged and 50 pm thick. The sample was cooled to liquid
helium temperature by syphoning He into the sample chamber of the magnet through a
needle valve. The detector was an Infrared Laboratories (IRL) silicon bolometer whose

output was connected to a PAR model 5209 lock-in amplifier. The cold filters of the

bolometer detector determined the spectral regions; these were 10-110 cm_l, 10-370

cm_1 and 50-700 cm_l. The output from this amplifier was converted in a 16 bit

analogue to digital converter before being recorded as an interferogram by a computer.
The angular position of the sample about the vertical axis was measured by a laser

mounted on the top of the sample stick.

3.3. Bomem FTIR Spectrometer

The Bomem spectrometer is a fast-scan interferometer producing a sinusoidal intensity
variation of the beam with a specific frequency for each spectral element. This is
amplified by a broad-band amplifer. The mylar beam splitter of this instrument is
coated to cover the spectral range 10-700 cm™'; either a globar or a mercury lamp was
used as a source.

A schematic of the Bomem FTIR is showed in Figure 3.2. An off-axis ellipsoidal
mirror located in the source chamber focuses the radiation onto an adjustable
mechanical iris. After divergence the beam is collimated and made incident on the beam
splitter to produce two beams. One beam goes to a stationary mirror directly, the other
to a moveable mirror. These two beams return to the beam splitter and are
superimposed, and the interfering collimated beams being refocused to a 1:1 image of
the iris. The sample to be studied is located at this image. The beam through the sample
is collected by a silicon bolometer through a light pipe. The cold filters in this detector
are the same as above. The sample cryostat consist of stainless steel with a He reservoir
into which the sample could be immersed. It could also be pumped to cool the sample
below 4.2 K. The signal from the detector was fed to a high speed vector processor
where a filter function was automatically generated for a particular spectral range and so

reject the unwanted frequencies by numerical filtering.
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Please see print copy for Figure 3.2

Figure 3.2. Schematic of Bomem FTIR spectrometer.




20

3.4. Sample Preparation

The samples used throughout this thesis were germanium single crystals doped
with zinc and Zn-H; these were grown using the Czochalski method at Purdue
University. The hall coefficients and resistivities were not measured. The hydrogen was
introduced when the Zn doped ingots were grown and as a result it produces the axial
complex Zn-H. The hydrogen gas was used as the ambient atmosphere for reduction
purpose. Initially, each sample was roughly cut from an ingot using a wire saw with a
glycerine-carborundum slurry; their widths were oriented along <100> directions. Next,
the samples were ground with 1000 grit silicon carbide powder to erase saw marks and
followed by 9u and 1p alumina powder for polishing. During grinding, the samples
were wedged along their lengths to prevent Edser-Bulter fringes. In order to maximise
the transmission of the samples in the spectral range of interest, several different surface
treatments were used. The results of these tests are shown in Figure 3.3, the spectra

being obtained using the Bomem instrument. The sample used here was first polished as
above and its spectrum recorded. Following this it was etched in HyO, (30%) at 85° C

for 6 mins. and the spectrum again recorded. After this it was again polished as before
and the spectrum observed. The final treatment was to immerse it in water in a 43 KHz
ultrasonic bath for 44 hrs (UST); this was to ensure that any bulk stress arising from the

grinding and polishing of the sample was removed [32]. The spectrum was again taken.
As can be seen from Figure 3.3, the transmission in the range between the ZnH and Zn0

spectra, where Landau lines for ZnH should occur, is essentially the same for the upper
two spectra. Thus, the Landau features of this defect were studied after the sample had

been treated in the above sequence. For the sample used to study the Landau lines of

Zno, only the sequence polish — etch — polish was used, it being assumed that the

Lyman lines of the Zno spectrum were sufficiently broad not to warrant the UST.

The intensity of radiation absorbed by, or reflected from, the sample is determined
by the combination of two optical constants. One is the refractive index, n, and the other
one is the extinction coefficient, k. Assuming a perfect surface, the reflectivity, R, can

be calculated from
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Fig. 3.3. The effect of different surface treatments for Ge(ZnH)394A#5.2.



22

(n-1)* +k° (3.5)
R=—--*"
(n+1)? +k>

The transmission, T, can be written as

2 -ax
I I-R)"e
T:_:( 3 2ax > (3.6)
IO 1 -R”e
where [ = transmitted intensity
I = incident intensity

x = sample thickness

o = absorption coefficient = N

A = wavelength of incident radiation;
the approximation ignores the interference term since the sample is wedged. Inverse
Fourier transforms were performed on the interferograms to obtain the spectra. These
spectra were ratioed with I to obtain the transmission spectra. The Iy was measured by
removing the sample from the beam. The absorption spectra were obtained by

calculating the following inversion of Eqn. 3.6.

1 —(1-Rry +4(-R)* _4R2T2 |
a= nL R2T .

(3.7)
X

The computer program IGOR Pro was used to process the data as above and to fit

Lorentzian curves to determine the energy positions of the spectral lines.
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Chapter 4. Results and Discussion

In this Chapter, the results obtained for the Landau lines of the defects ZnH and

zn" in Ge for B||<100> are presented and analysed.

4.1. ZnH

The unperturbed transmission spectrum of ZnH in Ge, identified in Figure 3.3 as

‘UST 44 hrs’, is shown in Figure 4.1 in absorption. The very strong absorption beyond
the G line of Zn" is due to the D, C, etc., lines of this impurity. The spectral range 65 —
95 cm™ of Figure 4.1. is shown in Figure 4.2, where it is seen that not only is ZnH

present but also Al, Ga and P.
A series of spectra of ZnH in Ge at different values of B = |B| for B||<100> is

given in Figures 4.3. and 4.4. for ELJB and E|B, respectively. The group of Zeeman
components shown below ~100 em™ is due to transitions between bound states of ZnH,
and are reported in [25]. The lines labelled I,, I, and I, are the main features of the
Landau spectrum. Figure 4.5. shows spectra for both polarizations at 4 and 6 T. The

shifts of the Landau lines I, I, and I, from B=4 T to 6T in 0.25 T steps for both
polarizations are shown in Figure 4.6. The Landau line I, is shown in detail in Figures
4.7. and 4.8. for ELIB and E||B, at 5 and 6 T, while I}, is shown in Figure 4.9 for E||B at
these two fields; this feature does not show any structure for ELJB. It can be seen that I,
consists of two components, one a weak, lower energy feature presented as a I;; and a
higher energy intense feature labelled I,,. For I}, the more intense line is the one of
lower energy, I} and weak feature is Iy,. In these three figures double Lorenztians have
been fitted, simultaneously, to the experimental absorption lines.

Figure 4.10. gives the dependence of the energies of the Landau lines I, I}, and I

on B. Also shown are the data for boron in Ge for B|[<100> [12] and the result of
Hensel and Suzuki for light hole Landau levels [19] adapted to match the ionisation
energy of boron [12]. The ZnH data are fitted by straight lines for both polarizations;
these are the full lines in Figure 4.10. The boron data are fitted by the straight dashed

lines. It should be noted that for boron the lines also contain several components, only
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Fig. 4.1. Unperturbed spectrum of the sample used for studying the Landau lines of axial defect ZnH in Ge for Bll<100>.

Ve



Absorption Coefficient (cm'l)

Ge(ZnH)394A#5.2, T= 4.2 K
Unapodised resolution=0.11 cm

1

2p.(P)

B(ZnH) / i
\

80

Photon Energy (cm'l)

Fig. 4.2. Unperturbed spectrum of the sample of Figure 4.1 in the range of 65 - 95 cm’.

<S¢



Relative Absorption

L L L DL L B
- Ge(ZnH)394A#5.2 Bll<100>

[ 2 1
gg

T
%

g_

EIILI

=— ==

6T

55T

5T

26

80 100 120 140 160 180 200

Photon Energy (cm_l)

Fig. 4.3. Set of spectra of ZnH in Ge for ELB.
T= 4.5 K. Unapodised resolution = 0.37 cm’



Relative Absorption

‘ Ge(ZnH)394A#5.2 BlI<100>

6T

05T

80

100 120 140 160 180 200

Photon Energy (cm'l)

Fig. 4.4. Set of spectra for ZnH in Ge for ElIB.
T= 4.5 K. Unapodised resolution = 0.37 cm’

220

27



28

Ge(ZnH)394A#5.2

E1B 6T
---- EIB

f.Eov juardIyjeo)) uondiosqy

220

180

160

140

120

Photon Energy (cm'l)

Ge(ZnH)394A#5.2

I

E1B 4T

.....

ﬁ.Eov juardIyeo)) uondiosqy

0 180 200 220

16

-1

140

120

)

Photon Energy (cm

Fig. 4.5. Landau spectra of Ge(ZnH) Bll<100> for both polarizations.

Dashed spectra are for ElIB. Full lines are for ELB. T= 4.5 K.

0.37 cm.

Unapodised resolution



1.6IIIIIII|IIIIIIIII|IIII|IIII|IIII|III‘I|

- Ge(ZnH)394A#5.2 Bll<100> Ao

R ElB o

12+ I,
10 1

0.8 —

06 {1

Absorption Coefficient (cm’l)

0.4 —

Th W
\:,\ o \\,'r\,l-“a o

‘s‘ A
Ve

02 Foiad ".‘ g ".(-‘\-)' x|l ‘: “ N AT
‘ i . WA i'?t v§’\ ':'“\\N"%;% ‘%qyﬁ&'&‘%!ﬁﬂnn o

\\\\\\\
,W
v

Sl e
oV

AN

A
P TRos e

= =

0y

A '(/l‘!

:n h3</P

[
B :

= < 2

1S RS ~.
S

2

oS

=0
.
e
T
2=
P
> 2
B
— 55
S
7
e
S
<
s —
R

k. kk?

0.0

Photon Energy (crn'l)

Fig. 4.6. Series of Landau spectra of Ge(ZnH) for Bll<100> for both polarizations. Magnetic field strength from 4 T to 6 T.
Full lines show E1B and dashed lines show ElIB. Unapodised resolution = 0.37 cm’

6¢



Absorption Coefficient (cml)

Absorption Coefficient (cml)

1.0

1.0

I Ge(ZnH) 394A#5.2 Bll<100>
RN B=6T,ELB 1

133.5

134.0

134.5 135.0 135.5 136.0

Photon Energy (cm'l)

I . Ge(ZnH)394A#5.2 Bll<100>
a B=5T,ELB

125.5

126.0

126.5 127.0 127.5 128.0

Photon Energy (cm'l)

Fig. 4.7. Two Lorentzian fits to Landau line I, of Ge(ZnH), with magnetic field of
5and 6 T for ELB. T= 4.5 K. Unapodised resolution = 0.37 em’.

30



08_I 1 1 I 1 1 1

0.7 —

0.6 —

0.5

04—

Absorption Coefficient (cml)

03

0.2 S

=z=—"

.
.

o/ _/‘

-/_

Ge(ZnH)394A#5.2 Bll<100>
B=6T, EIIB

e eme—

133.5

134.0 134.5 135.0 135.5

Photon Energy (cm'l)

08—‘ T T I T T T

Absorption Coefficient (cml)

Ge(ZnH)394A#5.2 Bll<100>
B=5T, EIB

125.5

126.0 126.5 127.0 127.5

Photon Energy (cm'l)

Fig. 4.8. Two Lorentzian fits to Landau line I, of Ge(ZnH), with magnetic field of
Sand 6 T for ElIB. T= 4.5 K. Unapodised resolution = 0.37 em’.

31



1.4

1.2

1.0

0.8

Absorption Coefficient (cml)

0.6

0.4

1.2

Absorption Coefficient (cml)

Ge(ZnH)394A#5.2 Bll<100>
B=6T, EIIB

S
Seal

p—
————

195.0 195.5 196.0 196.5

Photon Energy (cm'l)

Ge(ZnH)394A#5.2 Bll<100>
B=5T, EIIB

——

177.0 177.5 178.0

Photon Energy (cm'l)

Fig. 4.9. Two Lorentzian fits to Landau line I}, of Ge(ZnH), with magnetic field of
Sand 6 T for ElIB. T= 4.5 K. Unapodised resolution = 0.37 em’

32



Photon Energy (cm'l)

250

200

Fig. 4.10. Field dependence of the energies of the Landau lines of ZnH in Ge

4

T [ T [ T [ 7
l/l
e m — Ge(ZnH) ELB, EIB

— Vv - Boron [Experimental] /
—-- Boron [Hensel and Suzuki]

Bll<100>

Magnetic Field (T)

33

for both polarizations and boron in Ge with ELB for Bll<100>. Also shown are
the results of Hensel and Suzuki for light hole Landau levels adapted to boron
in Ge.
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one is given in Figure 4.10. splittings of these have shown to be due to the Zeeman
splitting of the ground state [12] of this impurity (see Figure 2.3).

The labelling of ZnH Landau lines is based on the correlation between the field

dependence of the ZnH and boron Landau data. For example, feature labelled I,(ZnH)
has essentially the same energy dependence on B as the boron Landau line I;(B). The
displacement in energy of I,(ZnH) relative to I;(B) at a given field is just the difference

in the binding energies of these two, viz., ~13.6 cm’'. The same results are obtained for

Iy(ZnH), I(ZnH) and I3(ZnH). These data are compared with the boron data in Table

4.1; only the prominent lines are used. Similar correlations were obtained between ZnH

and boron in Ge for B||[<111>[13].

Table. 4.1. Field dependence of Landau transitions of ZnH and boron in Ge. B||<100>.

Transition Field Dependence of_ 1Landau lines | Field Dependence of Eandau lines
of ZnH (cm™ /T) of Boron (cm™/T)
I 7.38 +£0.07 7.6+0.4
Iy 17.5+0.06 17.6 £ 0.4
I, 24.33 +£0.03 242+04
Ig 35.81+0.16 36.2+0.5

As already discussed, and shown in Figures 4.7 — 4.10, the Landau lines I, and Iy, of

ZnH are split. The splitting of [,(ZnH) as a function of B is shown in Figure 4.11. As
this splitting is small, it can be observed only at the higher magnetic fields since its two
components have half widths of ~0.7 cm™. This splitting has not been seen for the
higher energy Landau lines I.(ZnH) and I4(ZnH), possibly because they are weak and
have moved into the region of high absorption for the fields at which the splitting would
be large enough to be observed. In Figure 4.12, the splittings of I, and I, are compared

with the Zeeman splitting of the ground state of ZnH [25] which is given by the

quadratic fit to the ZnH data. From this, taking into account the experimental error, it is
apparent that the origin of the splitting of I,(ZnH) and I,(ZnH) is due to the Zeeman

splitting of the ground state of ZnH, noting also that the selection rules for ZnH
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BII<100> mentioned in Chapter 2 permit transitions from both Zeeman ground states

to any excited state.

4.2 Neutral Zinc (Zn°)

The unperturbed absorption spectrum of the Ge sample used to observe the
Landau lines of Zne in Ge with BII<100> is shown in Figure 4.13; this was obtained
using the Bomem spectrometer. The spectrum in the range from 65 to 95cm™ is given
in Figure 4.14. This is the sample whose optical faces had been polished, etched and
then repolished but not subjected to any UST. At the resolution used for this
measurement there no observable splitting of the sharp acceptor lines indicating that
any remaining surface damage is small [32]. It can be seen that this sample not only
contains Zne but also Ga, ZnH, P and Zn .

A series of spectra with BII<100> for different values of B is given in Figures
4.15 and 4.16 for E 1 and EIIB, respectively. The group of Zeeman components at
energies below ~280cm™ are due to transitions between bound states and has been
reported elsewhere [29]. The two strong, broad features centred at ~350cm™ are the
main lattice vibration bands of Ge; the Landau lines can not be followed as they pass
through these bands. The main Landau lines are labelled I, to I;. Figure 4.17 shows the
spectra for both polarizations of 6 T on a larger scale with more detailed labelling of
the Landau lines. Each Landau line has one component for EIIB lying between two
components for E L B. Figure 4.18 gives the dependence of the energies of the Landau
spectral features on B; these data are combined with those of boron in Ge for
BII<100> and the result of Hensel and Suzuki for light hold Landau levels. As was
the case for ZnH, the correlation obtained between the Zne and boron Landau data
justifies the labelling of the features of Zne. In Table 4.2, the field dependence of each
Landau line of Zne is different to that of, for example, line I, of boron in that the
splittings at a given B of the Landau lines of Zne are more than twice those of boron.
As already stated above, the splittings of the Landau lines of boron have been shown

to be due to the Zeeman splitting of its fourfold degenerate ground state [12].
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The dependence on B of the splittings of the components of the Landau lines of Zn® is
given in Figures 4.19. The upper set of data points is the average of the spacings of
I3 and Iy, where a=a, b, c, d, e (see Fig 4.17). The lower set of data points is the
average of the spacings of Iy3 and of Iy, and also of Iy, and of Ix;. The straight lines in
this figures are not fits to the data but are the Zeeman splittings of the ground state of
Zn as obtained from Zeeman measurements on the D line of this singly ionised
impurity [31] (Figure 4.13 shows this feature at ~605 cm™). Thus, it is clear that
structure of the I lines of Zn® is due to the four different Zeeman excited states of Zn°.
As discussed in  Chapter 2, there are four sets of Landau excited states for Zn°; these
are seen in Figure 2.4 each depending upon which Coulomb-related final state the
excited hole occupies. Also shown in Figure 2.4 are the three allowed transitions for
each of these cases. The experimental data shown in Figure 4.17 reveal three
transitions for all of the I lines as permitted by the selection rules. However, in each
case the parallel component falls between the two perpendicular components. Only
two of the cases in Figure 2.4 allow this disposition. This implies that a Landau state
involved in a given excitation is either of I'sor I' ¢ symmetry. In the work on boron
[12] for BII<100>, from the selection rules it was deduced unambiguously that the
final Landau state for I, ‘belonged’ was 1,. Correlation between the Landau levels
shown in Figure 2.2 and their symmetries is given in Eqns 2.12; it is seen that 1; has
I' "¢ symmetry. It was thus assumed that, except for the parity, the Coulomb state at
the bottom of each Landau sub-band has the same symmetry as that of the associated
sub-band. Since I, and I ., for example, were deduced to be transitions associated with
the Landau levels 2; and 3, respectively, then, according to Eqns 2.12, their
symmetries should be I's and Tg, respectively. Of these, the former agrees with the
present results but the latter does not. The origin of this discrepancy is not clear,
however, ti may be simply that the assumed relationship between the symmetry of the

Landau impurity states and that of their related Landau sub-bands is not correct.
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Chapter S. Conclusions.

A study has been made of the Coulomb-related Landau excitation lines of the axial
defect ZnH and the double acceptor neutral zinc, Zno, in germanium; in both cases the
magnetic fields were applied along <100> crystallographic directions. The observations
involved measurement of their optical absorption spectra. The results obtained have
been compared with those for boron in germanium for the same orientation of field and
covering a similar range of magnetic field strengths. It has been determined that each of
the main features of the spectra from the three acceptors, boron, ZnH and Zno, is
associated with the same Landau level. This has been deduced from the almost identical
field dependence of a given Coulomb-related Landau line in the spectrum of each
impurity. The difference between the spectra lies in the fine structure corresponding
features exhibit.

Previous detailed studies of this type for boron in germanium demonstrate that any
complexity in a given feature is due to the Zeeman splitting of the ground state of
boron. Since this state is fourfold degenerate, it separates into four magnetic states
whose splittings are known quantitatively as a function of field. These splittings at the
fields used are not linear functions of field and are reflected directly in the splittings of
the Landau lines of boron. The impurity states related to the Landau sub-bands are
Zeeman singlets.

In the case of ZnH, the Zeeman splitting of its ground state is also known as a
function of field strength. However, the ground state of this defect is only twofold
degenerate with a simpler dependence on field than for boron. As for boron, this
splitting is manifested in the Landau lines of ZnH while again the impurity states related
to the Landau sub-bands are Zeeman singlets.

For neutral zinc, it is the complexity of the excited states which is revealed in the
observed splitting of the Landau lines and not the ground state. The symmetries of the
impurity states associated with the related Landau sub-bands have been narrowed from
four to two choices for all the observed Landau lines. Some of these are in agreement
with those deduced for the case of boron. Why not all agree is of interest and needs to

be explored further.
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