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Abstract 
 

Far-infrared absorption spectroscopy was carried out on samples of germanium cut 

from single-crystal ingots doped with zinc. The ingots were grown in a hydrogen 

atmosphere and hence also contained the axial complex ZnH. Landau studies were 

made in the Voigt configuration for both the acceptors neutral zinc, Zn0, and ZnH with 

B oriented along <100> crystallographic directions. Measurements were made in a 

super-conducting magnet with field strengths up to 6 T for both ZnH and Zn0 using a 

modified slow-scan Polytec FTIR spectrometer. The incident radiation was plane 

polarised either parallel or perpendicular to the field. It was found that the main Landau 

features for both acceptors are the same as for the group III single-hole acceptor boron. 

The difference is in the fine-structure of the Landau lines which reflects the different 

natures of the acceptors boron, Zn0 and ZnH. 
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Chapter 1.  Introduction 
 

In 1930, de Haas and van Alphen [1] observed that the magnetic susceptibility of 

bismuth exhibited an oscillatory behaviour with changing magnetic field strength and 

different crystallographic orientations. In the same year Shubnikov and de Haas [2] 

reported a similar result associated with the electrical conductivity of the same material. 

Without knowing of the de Haas-van Alphen effect (dHvA), Landau [3] developed his 

theory of the diamagnetism of a free electron gas. He demonstrated that in a uniform 

magnetic field, B, the energy states of such electrons in their classical circular motion in 

the planes perpendicular to B were condensed into a series of equally-spaced, parabolic 

bands, giving a quantisation of the closed magnetic orbits of the electrons. The density 

of these states was essentially localised at the bottom of each band to give a very 

narrow, energy-wise, distribution of the electrons. This set of magnetic subbands have 

become known as Landau levels and strongly influence the magnetic properties of 

metals and semiconductors and their behaviour as a function of B (=|B|). Thus Landau 

predicted the dHvA effect. Both of these effects have been exploited extensively for 

probing the nature of the Fermi surfaces in solids. A history of the dHvA effect and its 

uses has been given by Shoenberg[4]. These and other oscillatory effects have been 

described by Kahn and Frederikse [5]. 

Another experimental technique based on the formation of Landau levels is that of 

cyclotron resonance. This phenomenon, classically, is the result of electromagnetic 

radiation being absorbed when its frequency matches that of the frequency of the 

electrons in their closed orbits; the latter frequency is that of an electron in a cyclotron, 

ωc, and is given by B/eme, where me is the inertial mass of the electron. Quantum 

mechanically, the resonance corresponds to transitions of electrons from one Landau 

level to the next higher, these being separated by ηωc (see Chapter 2). This process 

provides a means to measure the mass of the electron which, in solids, is not necessarily 

the inertial mass; it is usually designated as the effective mass which conceals the 

periodic potential of the crystal. The sharpness of the observed resonances requires that 

the broadening of the Landau levels by scattering mechanisms is small which, 

classically, means that the particle executes several revolutions before being scattered 

out of its orbit. Early cyclotron resonance experiments involved silicon and germanium 

[6 ,7] and measured in detail the anisotropy of the effective masses of the electrons at 

the bottom of the conduction bands and the holes at the top of the valence bands. 
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Cyclotron resonance was next reported for metals using the experimental procedure 

developed by Azbel’ and Kaner [8]. 

The Landau levels also play a role in magneto-optical effects. For example, the 

optical absorption spectrum at and near the absorption edge of a semiconductor exhibits 

oscillations due to transition of electrons from the valence band Landau levels to those 

in the conduction band. Early observations of these were reported in the 1950’s [9]. In 

addition, the photo-ionisation spectra of impurities in semiconductors under B contain 

oscillations due to transitions of electrons or holes from the ground states to the 

Coulomb-related Landau states. The first observation of these was for group V donors 

in germanium [10] while those for group III acceptors in this material were observed 

soon after [11]. Extensive measurements on the latter, particularly for boron, have been 

carried out by Takacs [12]. Recently, this technique has been extended to the study of 

neutral zinc, a double acceptor in germanium, and to axial acceptors in germanium [13]. 

It is the purpose of the present thesis to extend the previous studies of neutral zinc and 

the axial defect, ZnH, in germanium. 
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Chapter 2. Theoretical 

 
The treatment of the behaviour of electrons in a magnetic field in both a constant 

and a periodic potential has developed through several stages. A few, pertinent to the 

problem at hand, will be mentioned. First, as introduced earlier, there was that of 

Landau [3]. Later there was the work of Luttinger and Kohn [14], and Luttinger [15]; 

they extended the effective mass theorem [16] to complex semiconductor structures in 

which the conduction band minima did not occur at k = 0 and where the top of the 

valence band, although at the Brillouin zone centre, was degenerate. Both these 

situations exist for Si and Ge. Such calculations were particularly applicable in 

connection with cyclotron resonance and impurity states in semiconductors. The theory 

of Luttinger [15] was applied by Wallis and Bowlden [17] to give numerical results for 

the Landau levels of the valence band of Ge. Because of the complexity of the energy 

states, Suzuki and Hensel [18] and Hensel and Suzuki [19] recognised that the 

application of an external uniaxial force would lift the degeneracy at the top of the 

valence band and would simplify interpretation of the experimental results. They carried 

out both the theoretical and experimental work for this arrangement. 

 

2.1 Landau States for Free Electrons 

 

The total energy, ε, for an electron in a constant potential, V, is the same as the 

kinetic energy, T, if V is arbitrarily set to zero, i.e., for a non-relativistic electron of 

momentum p and wave vector k 

ε(k)  =  T(k)  =  p.p/2me  =  η2k.k/2me  =  η2(kx
2 + ky

2 + kz
2)/2me,     (2.1) 

where me is the inertial mass of the electron. Under an applied magnetic field B along 

the z-direction, the energy has been shown [3] to be  

En  =  (s + 1/2)ηωc  +  η2kz
2/2me; s = 0, 1, 2, 3,………           (2.2) 

This result is that obtained for the quantised states of a simple harmonic oscillator. The 

classical circular trajectories of the electron in the xy-plane can be resolved into two 

simple linear harmonic oscillators with angular frequency ωc quantised as shown in Eqn 

(2.2), while pz is unchanged. 
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The density of states for a three-dimensional free electron gas with B = 0 is given 

by                               g0(ε) � 2A ε ,                                       (2.3) 

while, for such gas in a uniform B, it is 

  

gL ε( )= A Oωc

[ε -  (n +  1/2)Oωc]
 ,            (2.4) 

where 
  
A = 1

4π2 (2me
O2 )3 / 2. The results of Eqns (2.1) – (2.4) are shown in Figure 2.1. 

Note that the plots of gL(ε) are for individual values of n. It is thus seen, as mentioned 

in the Introduction, that the electrons in the plane perpendicular to B are concentrated at 

the bottom of each sub-band, i.e., at kz ≈ 0, hence the origin of the term Landau level. 

 

2.2 Landau States for Electrons in Semiconductors 

 

The application of the effective mass theory to the cases of Si and Ge was carried 

out by Luttinger and Kohn [14]. In this theory, a mass tensor replaces the effect of the 

periodic potential of the crystal, the elements of which are determined by the 

unperturbed band structure. They show that, if the spin-orbit coupling is neglected, the 

energy levels of an electron at the top of the valence band in a magnetic field B are 

given by 

[Djj'
αβ

j'
∑ (pα + eAα )(pβ + eAβ)]Fj' (r) = EFj(r) .                      (2.5) 

Here j runs over the number of degenerate states at the band edge, while α and β are 

dummy suffixes and are summed over x, y and z; pα = 1
i

∂
∂xα

 and the Landau gauge is 

chosen for A, the magnetic vector potential. Also 

Djj'
αβ = 1

2m
δjj'δαβ + 1

m2

p ji
αpij

β

ε0 − εii
∑  .                             (2.6) 

Here the summation over i includes all those states of the unperturbed crystal other than 

the set j, ε0 is the energy of the degenerate set while εi is the energy of the ith 

unperturbed state. The wave function of the system is given by 

ψ = Fj
j
∑ (r)φj                       (2.7) 

where the φj are the degenerate Bloch functions of the unperturbed crystal. 



Fig. 2.1. Results of Landau's treatment [3] of the behaviour of free electrons in a homogeneous magnetic field.
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If a matrix is defined by D = Djj'[ ]= Djj'
αβkαkβ[ ] for the diamond structure at k = 0, 

without spin-orbit coupling and B = 0, assuming that the cubic axes of the crystal 

coincide with the coordinate axes, we have,  

D =
Akx

2 + B(ky
2 + kz

2 ) Ckxky Ckxkz
CkxkY Aky

2 + B(kz
2 + kx

2 ) Ckykz
Ckxkz Ckykz Akz

2 + B(kx
2 + ky

2 )

 

 

 
 
 

 

 

 
 
 
,        (2.8) 

where A,B and C are real constants given by the appropriate Djj'
αβ’s. Introduction of 

spin-orbit coupling lifts some of the degeneracy at k = 0 to give a four-fold degeneracy 

at the band edge separated from a band of two-fold degeneracy, the latter being of lower 

energy. The spin-orbit splitting of these bands is called λ. 

Cyclotron resonance experiments involved electromagnetic energies small 

compared to λ ��� thus the higher lying band could be treated separately. The 

resulting energy states are still described by the same set of constants A, B and C of the 

unperturbed bands. Luttinger and Kohn [14] did not solve the set of coupled differential 

equations to give the energies but recognise that for high quantum numbers these lead to 

equally spaced Landau levels but for low quantum numbers there are deviations from 

this. 

The next stage of this development was due to Luttinger [15]. He pointed out that 

in the derivation of Eqn. 2.5 by Luttinger and Kohn [14] that it was assumed that Djj'
αβ  = 

Djj'
βα . He demonstrates that this is not true in general, whereas what is true is that 

(Djj'
αβ)* = Dj' j

βα . Introduction of the difference Djj'
αβ  - D jj'

βα  requires a fourth constant, K, 

to be invoked when a magnetic field is present. When spin–orbit coupling is included 

with a magnetic field a fifth constant, designated by β5, is required. Thus, a total of five 

constants is now needed to describe the energies of the Landau levels. He finds it 

convenient to use the five dimensionless constants, γ1, γ1, γ1, κ and q, defined by 

1
2m

γ1 = −1
3

(A + 2B)                       1
m

(3κ + 1) = −K 

1
2m

γ2 = −1
6

(A −B)                         e
mc

q = −β5 ;                           (2.9) 

1
2m

γ3 = −1
6

C 
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these also give hole energy. These five constants are called Luttinger parameters. The 

values he quotes for the first three for Ge are 13.2, 4.4 and 5.4, respectively. In his 

discussion of the energy levels, Luttinger  considers an approximation for Ge based on 

taking γ2 = γ3 = (γ2 + γ3)/2, q = 0 and kz  = 0 and then uses perturbation theory to 

incorporate  γ3 - γ2 and a non-zero q. He does not give any numerical results or 

comparison with experiment but implies that the general prediction of quantum 

deviations in the Landau ladders are in agreement with the cyclotron resonance 

experiments of Fletcher, et. al., [20]. There are four Landau ladders at k = 0; this is 

where the two two-fold degenerate bands coincide. Two ladders are associated with the 

“light holes” and two with the “heavy holes”. 

The next application of the Luttinger theory was by Wallis and Bowlden [17] who 

give numerical results for the Landau levels of the valence band of Ge. In these 

calculations, the Luttinger parameters, γ2 and γ3, are again taken to be equal to the mean 

value of the two,  q = 0 and, initially, kz = 0. A quantitative diagram is given of the four 

Landau ladders. He then extends the calculations to show the effect of a small but non-

zero kz. 

Suzuki and Hensel [18] pointed out that advancement in this area was hampered by 

the extreme difficulty in identifying the cyclotron resonances because of the quantum 

deviations at the bottom of each ladder. The original results for Ge and Si [6, 7] were 

under experimental conditions which produced resonances higher up in the ladders 

where correspondence with the classical frequency prevailed. They also recognised that 

numerical computations to aid in the identification of the resonances were not reliable 

because the Luttinger parameters were not sufficiently precise. (A further problem was 

the neglect of kz.) They resolved this situation by applying a uniaxial stress to the Ge 

samples, thus decoupling the degenerate valence band to give easy identification of the 

resonances and determine the Luttinger parameters with high precision. With this 

information and the inclusion of kz they return to analysing the spectra of unstressed 

Ge. Their results for γ1, γ2, γ3, κ and q were 13.38±0.02, 4.24±0.03, 5.69±0.02, 3.41 and 

0.06, respectively [19]. This paper gives their calculated results for low-lying Landau 

levels at kz = 0. This data is reproduced in Figure 2.2 for B||<100>, <111> and <110>. 

 



Fig. 2.2. Valence band Landau levels in germanium as calculated by Hensel and Suzuki [x].
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The labels on the states in the four Landau ladders in Figure 2.2 have the following 

meaning. Suzuchi and Hensel [18] define an operator N = J3 + a†a + 3/2, where J3 = 

[J+, J−] and a† and a are the harmonic oscillator creation and annihilation operators, 

respectively, and J+ and J− are the raising and lowering angular momentum operators, 

respectively, for J = 3/2. The eigenvalues of N are 

N = MJ + n + 3/2.                    (2.10) 

Since MJ = ±1/2 and ±3/2, then N ≥ n = 0, 1, 2, 3, 4, . . . . . . . . .The states are labelled 

as Nn, the value of n distinguishing the four states with the same N, the Landau 

quantum number. An additional label is given to each state, viz., Vπ, where V = 

N(modulo ν) and π is the parity. Here ν is the foldedness of the rotational symmetry 

along the direction of B. Equation 2.10 shows that those levels with the same value of N 

– n have the same MJ, thus for N – n = 0, 1, 2 and 3, MJ = −3/2, −1/2, +1/2 and +3/2. It 

is interesting to note that in Figure 2.2 three of the ladders are characterised by a 

different but single value of MJ while the fourth, a light hole ladder, contains a mixture 

of MJ = −1/2 and +3/2. 

It has been demonstrated [12] that the dominant Landau absorption lines due to 

acceptors in Ge are transitions from the ground states of the impurities to the Coulomb-

related light hole Landau levels (LHLL) (see Section 2.3 below). The symmetries of the 

associated LHLL’s have been determined [12] by application of an equation due to 

Suzuki and Hensel [18]. For the case of B||<100>, for example, this equation is 

Cν | V〉 = e−(2K−3)iπ/ ν | V〉 ,                       (2.11) 

where the point group of the system is C4h and thus ν = 4. The symmetries of the LHLL 

have been tabulated by Takacs [12] and, for B||<100> at k = 0, are as follows: 

V = 0:         00, 41, 44, 85…….    ; Γ7
± (2.12a) 

V = 1:         10, 11, 52, 55,……   ; Γ6
± (2.12b) 

V = 2:        21, 22, 63, 66,……     ; Γ5
±  (2.12c) 

V = 3:        30, 33, 74, 77,……  ; Γ8
±. (2.12d) 
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Here the Γ’s are the double group representations of C4h (see, for example, Koster et al. 

[21]). 

2.3 Landau States and Bound Hole States 

 

The introduction of shallow acceptor impurities into a semiconductor produces 

bound hole states in the energy gap at kz = 0 and close to the top of the valence band. 

The spectra of these, due to transitions between the bound states, have been studied 

extensively with and without external perturbations [12]. The impurity states are 

obtained from an adaptation of the effective mass theory to include the Coulomb 

potential of the charged acceptor into the Hamiltonian. It is the inclusion of these 

defects in the otherwise perfectly periodic crystal that allows the states to be in the 

normally “forbidden energy” gap. These states are constructed from those at the top of 

the valence band and the hydrogenic functions describing the motion of the hole bound 

to the charged impurity.  

Application of a magnetic field produces the Landau sub-bands, each of which has 

Coulomb-related quasi-bound states associated with it. The transitions from the ground 

state of such acceptors to these Coulomb-related Landau states is to be studied here for 

two types of acceptors. The first observation of such spectra was for boron in Ge [11], 

while more recently a very extensive study of this has been carried out [12]. 

Identification of the Coulomb-related Landau excited states involved has relied heavily 

[12] on the predictions of Hensel and Suzuki shown in Figure 2.2, the predictions by 

Wallis and Bowlden [22] for a non-degenerate parabolic band at k = 0 and Lin-Chung 

and B. W. Henvis [23] for non-parabolic, degenerate bands; both the latter compare 

their results with the experimental observations for donors in InSb. The aspect which 

arises from these results is the binding energies of these states relative to the bottom of 

their associated Landau level should increase with field. 

 

2.4 Selection Rules for B||<100> 

 

2.4.1 Zn−H in Ge 

It is well known that Zn−H substitutional defects in Ge have their axes along the 

four <111> covalent bond directions [24, 25]; this reduces the point group symmetry 

from that of Td(Oh) to C3v(D3d). (The two notations given here reflect the way the 
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theory of bound acceptor states has developed. The Oh notation is that introduced by 

Baldereschi and Lipari [26] in their novel approach to the problem. The Td point group 

notation describes the true symmetry of substitutional defects in Ge). Thus, without 

external perturbation the four-fold degenerate ground state, originally of symmetry 

Γ8(Γ8
+)  ��  T

_
d (O

_
h ), is split into two two-fold Kramers’ doublets, Γ4 (Γ4

+) and 

Γ5(Γ5
+) + Γ6(Γ6

+) of C
_

3v (D
_

3d ) . The latter two one-dimensional double group 

representations are complex conjugates of each other and their sum will be written as 

Γ5+6
+ . Here the parity label introduced by Baldereschi and Lipari [26] via their spherical 

approximation (and retained by them and others in subsequent calculations) has been 

included; this labelling will be used in what follows. Figure 2.3 shows these results and 

includes the case of a group III acceptor. Also shown is the effect of B||<100> on both 

types of acceptors. The internal splitting of the ground state of ZnH, defined as ∆int in 

Figure 2.3, is known [24, 25] to be large enough that at liquid He temperatures the Γ4
+ 

ground state is not occupied to any extent and thus observed transitions are only from 

the Γ5+6
+  ground state. Under B||<100>, all four axial types of ZnH are effected to the 

same extent causing the ground state of each type to undergo the same Zeeman 

splitting; the new symmetry is Ci with each Zeeman state belonging to the same 

irreducible representation Γ2
± (see Figure 2.3). The selection rules for electric dipole 

transitions permit these from both Zeeman sub-states to all other states for E||B and 

E⊥ B, where E is the electric field of the electromagnetic radiation. The splitting of the 

Γ5+6
+  ground state with field has been determined previously [25]. Also shown in Figure 

2.3 is the Zeeman splitting of the Γ8
+ ground state of group three acceptors. 

 

2.4.2 Neutral Zinc (Zn0) in Ge 

The symmetries of the ground states of double acceptors in Ge are given by the 

antisymmetric direct product {{Γ8
+xΓ8

+} = Γ1
+ + Γ3

+ + Γ5
+ of O

_
h ; the orbitals of the two 

holes being each of symmetry Γ8
+ [27]. It has been shown both experimentally [28, 29] 

and theoretically [30] that for Zn0, the Γ1
+ state is the lowest in energy and is the only 
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one significantly populated at liquid He temperatures. Thus all observed transitions for 

samples at these temperatures are from 1Γ1
+. It has been demonstrated that the observed  



Fig. 2.3. Energy states of group III and axial defects in Ge for B||<100>.
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 3

optical absorption spectrum is due to the excitation of one of the holes to the various 

excited states. The orbital of the remaining hole becomes that of the hole in the ground 

state of singly ionised zinc, Zn−; this has been shown to be true experimentally [29, 31]. 

Consequently, although the lowest ground state of Zn0 is simple, its excited states are 

not. Their symmetry is given by the direct product of the symmetry of the orbital of the 

unexcited hole Γuh
+  and that of the excited hole, Γeh

− , where for Zn0, Γuh
+ = 1Γ8

+(Zn−). 

Under a magnetic field, 1Γ8
+(Zn−)  splits into its four Zeeman states which, for 

B||<100>, are 1Γ5
+, 1Γ6

+, 1Γ7
+ and 1Γ8

+ all of C
_

4h. This gives rise to four types of 

possible excited states for a given Γeh
− . The energy spacings of this quartet are just those 

of the Zeeman states of the J = 3/2 ground state of Zn−. The magnitudes of  these 

splittings are 0.25 cm-1/T for the ±1/2 states and 0.75 cm-1/T for the ±3/2 states [31]. 

The possible symmetries of Γeh
−  for B||<100> are 1Γ5

−, 1Γ6
−, 1Γ7

− and 1Γ8
−. Thus, the 

Landau transitions to be presented in this thesis will have excited states whose 

symmetries are Γn
+xΓm

− , where n, m = 5, 6, 7, 8 and Γm
−  is the symmetry of the Coulomb 

states associated with a given Landau level. The selection rules for the transitions 

1Γ1
+ →1Γn

+xΓm
−  are shown in Figure 2.4. 
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Fig. 2.4. Allowed Landau transitions for neutral zinc for B||<100>.
Straight line shows E⊥B, and dash line shows E||B.
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Chapter 3. Experimental Techniques 
 

3.1. Introduction 
 

Fourier transform spectroscopy is based on the fact that an interferometer 

produces an interference pattern due to all the waves which enter it simultaneously thus 

giving a very high signal-to-noise ratio. Additionally, this signal-to-noise ratio can be 

enhanced by taking multiple scans, or by using a slow-scan speed with a matched 

electronic time constant. Measurements used in this thesis were made by either a 

Bomem fast-scan or a modified Polytec slow-scan spectrometer. 

Most FTIR spectrometers are built based on the Michelson interferometer 

principle in which two beams of coherent radiation interfere to produce an 

interferogram. The radiation is collimated before being split into two beams by a beam 

splitter. One beam is reflected back to the beam splitter by a stationary mirror and the 

other one by a moving mirror; these are superposed to produce the interferogram. The 

interferogram will be a cosine wave if the source is monochromatic, and if 

polychromatic, it will be the sum of the cosines for each frequency.  There will be a 

central maximum at zero optical path difference where all the cosines added 

constructively. By placing the material of interest in the combined beam after it leaves 

the interferometer modulation in the interferogram will be produced by any absorption 

of the radiation in the material. A Fourier transform is executed on the interferogram to 

obtain the transmitted spectrum. 

The spectrum and the interferogram may be expressed as 

 Interferogram  I δ( )= B σ( )e 2πiσδ

−∞

∞

∫ dσ                                   (3.1) 

 Spectrum  B σ( ) = I δ( )e−2πiσδ

−∞

∞

∫ dσ ,                                (3.2) 

where σ = frequency 

 δ = retardation = 2vt 

 v = mirror travel speed 

 t = time, set at zero at zero path difference 

The transmitted spectrum may be acquired by executing an inverse cosine Fourier 

transform on I(δ) 
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B σ( ) = I δ( )cos(2πσδ)
-∞

∞

∫  dσ                                                               (3.3) 

which, if the function is even, is 

B σ( ) = 2 I δ( )cos(2πσδ)
0

∞

∫  dσ                                                             (3.4) 

When measuring, the interferogram is sampled at a constant rate over a finite mirror 

travel, thus the interferogram will be that of a truncated cosine function of which the 

transform is a sinc function. The maximum theoretical unapodised resolution, ∆ ν
_

ua, 

associated with this mirror travel is ∆ ν
_

ua = 0.74/∆max, where ∆max is the maximum 

optical path difference between the two beams; the latter is twice the maximum distance 

travelled by the moving mirror. This expression is based on the criterion that the sum of 

two equally intense spectral lines (two identical sinc functions) separated by ∆ ν
_

ua, will 

have a dip of 20% of the total intensity of each peak at a point half-way between them. 

3.2. Polytec FTIR 25 Spectrometer 

 
A diagram of the modified Polytec FTIR 25 spectrometer is shown in Fig.3.1. The 

three main chambers are kept evacuated to remove atmospheric water vapour. In the 

chamber on the top of right, the radiation produced by the globar source is amplitude 

modulated with a mechanical chopper; this also controls the reference signal for 

synchronous detection. The chopped radiation is collimated by the off-axis paraboloidal 

mirror ahead of entering the interferometer. Several mylar beam splitters were used to 

cover the specific range required. The mirror displacement is measured by a rotary 

encoder, and there is a maximum displacement of 100 mm which limits the maximum 

unapodised resolution of the spectrometer to 0.037 cm-1. The beam splitter  in the FTIR 

25 was at 30o to the incident beam, as the Brewster angle for the mylar beam splitter is 

~57°. This reduced polarisation due to reflections from the beam splitter surface. The 

ratio of vertical (E⊥ B) to horizontal (E||B) polarisations is 1.7:1, where E is the electric 

vector of the radiation. After leaving the interferometer, the beam is focussed to pass 

though a wire grid polariser (consisting of gold evaporated onto a polyethylene replica 

grating as substrate) before falling on the sample mounted in the Voigt configuration 

between the split coils of an Oxford Instruments superconducting (SC) magnet. 
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Both the liquid helium and room temperature windows were polypropylene. The room 

temperature entrance window was an 0.8 mm thick disc with a cone machined into it, 

reducing the thickness to 0.4 mm at the apex to eliminate Edser-Butler fringes. The 

three other windows were unwedged and 50 µm thick. The sample was cooled to liquid 

helium temperature by syphoning He into the sample chamber of the magnet through a 

needle valve. The detector was an Infrared Laboratories (IRL) silicon bolometer whose 

output was connected to a PAR model 5209 lock-in amplifier. The cold filters of the 

bolometer detector determined the spectral regions; these were 10-110 cm-1, 10-370 

cm-1 and 50-700 cm-1.  The output from this amplifier was converted in a 16 bit 

analogue to digital converter before being recorded as an interferogram by a computer. 

The angular position of the sample about the vertical axis was measured by a laser 

mounted on the top of the sample stick. 

3.3. Bomem FTIR  Spectrometer 
 

The Bomem spectrometer is a fast-scan interferometer producing a sinusoidal intensity 

variation of the beam with a specific frequency for each spectral element. This is 

amplified by a broad-band amplifer.  The mylar beam splitter of this instrument is 

coated to cover the spectral range 10-700 cm-1; either a globar or a mercury lamp was 

used as a source. 

A schematic of the Bomem FTIR is showed in Figure 3.2. An off-axis ellipsoidal 

mirror located in the source chamber focuses the radiation onto an adjustable 

mechanical iris. After divergence the beam is collimated and made incident on the beam 

splitter to produce two beams. One beam goes to a stationary mirror directly, the other 

to a moveable mirror. These two beams return to the beam splitter and are 

superimposed, and the interfering collimated beams being refocused to a 1:1 image of 

the iris. The sample to be studied is located at this image. The beam through the sample 

is collected by a silicon bolometer through a light pipe. The cold filters in this detector 

are the same as above. The sample cryostat consist of stainless steel with a He reservoir 

into which the sample could be immersed. It could also be pumped to cool the sample 

below 4.2 K. The signal from the detector was fed to a high speed vector processor 

where a filter function was automatically generated for a particular spectral range and so 

reject the unwanted frequencies by numerical filtering. 
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Figure 3.2. Schematic of Bomem FTIR spectrometer. 

 

 

 

.
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3.4. Sample Preparation 

 

The samples used throughout this thesis were germanium single crystals doped 

with zinc and Zn-H; these were grown using the Czochalski method at Purdue 

University. The hall coefficients and resistivities were not measured. The hydrogen was 

introduced when the Zn doped ingots were grown and as a result it produces the axial 

complex Zn-H. The hydrogen gas was used as the ambient atmosphere for reduction 

purpose. Initially, each sample was roughly cut from an ingot using a wire saw with a 

glycerine-carborundum slurry; their widths were oriented along <100> directions. Next, 

the samples were ground with 1000 grit silicon carbide powder to erase saw marks and 

followed by 9µ and 1µ alumina powder for polishing. During grinding, the samples 

were wedged along their lengths to prevent Edser-Bulter fringes. In order to maximise 

the transmission of the samples in the spectral range of interest, several different surface 

treatments were used. The results of these tests are shown in Figure 3.3, the spectra 

being obtained using the Bomem instrument. The sample used here was first polished as 

above and its spectrum recorded. Following this it was etched in H2O2 (30%) at 85o C 

for 6 mins. and the spectrum again recorded. After this it was again polished as before 

and the spectrum observed. The final treatment was to immerse it in water in a 43 KHz 

ultrasonic bath for 44 hrs (UST); this was to ensure that any bulk stress arising from the 

grinding and polishing of the sample was removed [32]. The spectrum was again taken. 

As can be seen from Figure 3.3, the transmission in the range between the ZnH and Zn0 

spectra, where Landau lines for ZnH should occur, is essentially the same for the upper 

two spectra. Thus, the Landau features of this defect were studied after the sample had 

been treated in the above sequence. For the sample used to study the Landau lines of 

Zn0, only the sequence polish – etch – polish was used, it being assumed that the 

Lyman lines of the Zn0 spectrum were sufficiently broad not to warrant the UST. 

The intensity of radiation absorbed by, or reflected from, the sample is determined 

by the combination of two optical constants. One is the refractive index, n, and the other 

one is the extinction coefficient, k. Assuming a perfect surface, the reflectivity, R, can 

be calculated from 
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R =
n - 1( )2 + k2

n +1( )2 + k2
                                                               (3.5) 

 

 

The transmission, T, can be written as 

T =
I

I0
≈

1- R( )2 e-αx

1 − R2e-2αx ,          (3.6) 

where I = transmitted intensity 

 I0 = incident intensity 

 x = sample thickness 

 α = absorption coefficient =
4πk
λ

 

 λ = wavelength of incident radiation; 

the approximation ignores the interference term since the sample is wedged. Inverse 

Fourier transforms were performed on the interferograms to obtain the spectra. These 

spectra were ratioed with I0 to obtain the transmission spectra. The I0 was measured by 

removing the sample from the beam. The absorption spectra were obtained by 

calculating the following inversion of Eqn. 3.6.  

α = −
1
x

ln
− 1− R( )2 + 1 − R( )4 − 4R2T2

2R2 T

 

 
 

 

 
  .               (3.7) 

The computer program IGOR Pro was used to process the data as above and to fit 

Lorentzian curves to determine the energy positions of the spectral lines. 
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Chapter 4.  Results and Discussion 

In this Chapter, the results obtained for the Landau lines of the defects ZnH and 

Zn0 in Ge for B||<100> are presented and analysed. 

4.1. ZnH 

The unperturbed transmission spectrum of ZnH in Ge, identified in Figure 3.3 as 

‘UST 44 hrs’, is shown in Figure 4.1 in absorption. The very strong absorption beyond 

the G line of Zn0 is due to the D, C, etc., lines of this impurity. The spectral range 65 – 

95 cm-1 of Figure 4.1. is shown in Figure 4.2, where it is seen that not only is ZnH 

present but also Al, Ga and P. 

A series of spectra of ZnH in Ge at different values of B = |B| for B||<100> is 

given in Figures 4.3. and 4.4. for E⊥ B and E||B, respectively. The group of Zeeman 

components shown below ~100 cm-1 is due to transitions between bound states of ZnH, 

and are reported in [25]. The lines labelled Ia, Ib and Ic are the main features of the 

Landau spectrum. Figure 4.5. shows spectra for both polarizations at 4 and 6 T. The 

shifts of the Landau lines Ia, Ib and Ic from B= 4 T to 6T  in 0.25 T steps for both 

polarizations are shown in Figure 4.6. The Landau line Ia  is shown in detail in Figures 

4.7. and 4.8. for E⊥ B and E||B, at 5 and 6 T, while Ib is shown in Figure 4.9 for E||B at 

these two fields; this feature does not show any structure for E⊥ B. It can be seen that Ia 

consists of two components, one a weak, lower energy feature presented as a Ia1 and a 

higher energy intense feature labelled Ia2. For Ib, the more intense line is the one of 

lower energy, Ib1 and weak feature is Ib2. In these three figures double Lorenztians have 

been fitted, simultaneously, to the experimental absorption lines. 

Figure 4.10. gives the dependence of the energies of the Landau lines Ia, Ib and Ic 

on B. Also shown are the data for boron in Ge for B||<100> [12] and the result of 

Hensel and Suzuki for light hole Landau levels [19] adapted to match the ionisation 

energy of boron [12]. The ZnH data are fitted by straight lines for both polarizations; 

these are the full lines in Figure 4.10. The boron data are fitted by the straight dashed 

lines. It should be noted that for boron the lines also contain several components, only  
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Fig. 4.10. Field dependence of the energies of the Landau lines of ZnH in Ge 
for both polarizations and boron in Ge with E⊥B for B||<100>. Also shown are 
the results of Hensel and Suzuki for light hole Landau levels adapted to boron 
in Ge.
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one is given in Figure 4.10. splittings of these have shown to be due to the Zeeman 

splitting of the ground state [12] of this impurity (see Figure 2.3). 

The labelling of ZnH Landau lines is based on the correlation between the field 

dependence of the ZnH and boron Landau data. For example, feature labelled Ia(ZnH) 

has essentially the same energy dependence on B as the boron Landau line Ia(B). The 

displacement in energy of Ia(ZnH) relative to Ia(B) at a given field is just the difference 

in the binding energies of these two, viz., ~13.6 cm-1. The same results are obtained for 

Ib(ZnH), Ic(ZnH) and Id(ZnH). These data are compared with the boron data in Table 

4.1; only the prominent lines are used. Similar correlations were obtained between ZnH 

and boron in Ge for B||<111> [13]. 

 

Table. 4.1. Field dependence of Landau transitions of ZnH and boron in Ge. B||<100>. 

Transition Field Dependence of Landau lines 
of ZnH (cm-1/T) 

Field Dependence of Landau lines 
of Boron (cm-1/T) 

Ia 7.38 ± 0.07 7.6 ± 0.4 

Ib 17.5 ± 0.06 17.6 ± 0.4 

Ic 24.33 ± 0.03 24.2 ± 0.4 

Id 35.81 ± 0.16 36.2 ± 0.5 
 

As already discussed, and shown in Figures 4.7 – 4.10, the Landau lines Ia and Ib of 

ZnH are split. The splitting of Ia(ZnH) as a function of B is shown in Figure 4.11. As 

this splitting is small, it can be observed only at the higher magnetic fields since its two 

components have half widths of ~0.7 cm-1. This splitting has not been seen for the 

higher energy Landau lines Ic(ZnH) and Id(ZnH), possibly because they are weak and 

have moved into the region of high absorption for the fields at which the splitting would 

be large enough to be observed. In Figure 4.12, the splittings of Ia and Ib are compared 

with the Zeeman splitting of the ground state of ZnH [25] which is given by the 

quadratic fit to the ZnH data. From this, taking into account the experimental error, it is 

apparent that the origin of the splitting of Ia(ZnH) and Ib(ZnH) is due to the Zeeman 

splitting of the ground state of ZnH, noting also that the selection rules for ZnH 
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BII<100> mentioned in Chapter 2 permit transitions from both Zeeman ground states 

to any excited state. 

 

4.2 Neutral Zinc (Zn◦) 

 The unperturbed absorption spectrum of the Ge sample used to observe the 

Landau lines of Zn◦ in Ge with BII<100> is shown in Figure 4.13; this was obtained 

using the Bomem spectrometer. The spectrum in the range from 65 to 95cm-1 is given 

in Figure 4.14. This is the sample whose optical faces had been polished, etched and 

then repolished but not subjected to any UST. At the resolution used for this 

measurement there no observable splitting of the sharp acceptor lines indicating that 

any remaining surface damage is small [32]. It can be seen that this sample not only 

contains Zn◦ but also Ga, ZnH, P and Zn¯. 

 A series of spectra with B‌II<100> for different values of B is given in Figures 

4.15 and 4.16 for E ┴  and EIIB, respectively. The group of Zeeman components at 

energies below ~280cm-1 are due to transitions between bound states and has been 

reported elsewhere [29]. The two strong, broad features centred at ~350cm-1 are the 

main lattice vibration bands of Ge; the Landau lines can not be followed as they pass 

through these bands. The main Landau lines are labelled Ia to Ii. Figure 4.17 shows the 

spectra for both polarizations of 6 T on a larger scale with more detailed labelling of 

the Landau lines. Each Landau line has one component for EIIB lying between two 

components for E ┴ B. Figure 4.18 gives the dependence of the energies of the Landau 

spectral features on B; these data are combined with those of boron in Ge for 

BII<100> and the result of Hensel and Suzuki for light hold Landau levels. As was 

the case for ZnH, the correlation obtained between the Zn◦ and boron Landau data 

justifies the labelling of the features of Zn◦. In Table 4.2, the field dependence of each 

Landau line of Zn◦ is different to that of, for example, line Ia of boron in that the 

splittings at a given B of the Landau lines of Zn◦ are more than twice those of boron. 

As already stated above, the splittings of the Landau lines of boron have been shown 

to be due to the Zeeman splitting of its fourfold degenerate ground state [12]. 
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The dependence on B of the splittings of the components of the Landau lines of Znº is 

given in Figures 4.19.  The upper set of data points is the average of the spacings of 

Ix3 and Ix1, where a=a, b, c, d, e (see Fig 4.17). The lower set of data points is the 

average of the spacings of Ix3 and of Ix2 and also of Ix2 and of Ix1. The straight lines in 

this figures are not fits to the data but are the Zeeman splittings of the ground state of 

Zn¯ as obtained from Zeeman measurements on the D line of this singly ionised 

impurity [31] (Figure 4.13 shows this feature at ~605 cm-1). Thus, it is clear that 

structure of the I lines of Znº is due to the four different Zeeman excited states of Znº. 

As discussed in  Chapter 2, there are four sets of Landau excited states for Znº; these 

are seen in Figure 2.4 each  depending upon which Coulomb-related final state the 

excited hole occupies. Also shown in Figure 2.4 are the three allowed transitions for 

each of these cases. The experimental data shown in Figure 4.17 reveal three 

transitions for all of the I lines as permitted by the selection rules. However, in each 

case the parallel component falls between the two perpendicular components. Only 

two of the cases in Figure 2.4 allow this disposition. This implies that a Landau state 

involved in a given excitation is either of  Γ¯5 or Γ¯6 symmetry. In the work on boron 

[12] for BII<100>, from the selection rules it was deduced unambiguously that the 

final Landau state for Ib ‘belonged’ was 1b. Correlation between the Landau levels 

shown in Figure 2.2 and their symmetries is given in Eqns 2.12; it is seen that 11 has  

Γ  +
6 symmetry. It was thus assumed that, except for the parity, the Coulomb state at 

the bottom of each Landau sub-band has the same symmetry as that of the associated 

sub-band. Since Ia and I c, for example, were deduced to be transitions associated with 

the Landau levels 21 and 30, respectively, then, according to Eqns 2.12, their 

symmetries should be  Γ¯5 and  Γ¯8, respectively. Of these, the former agrees with the 

present results but the latter does not. The origin of this discrepancy is not clear, 

however, ti may be simply that the assumed relationship between the symmetry of the 

Landau impurity states and that of their related Landau sub-bands is not correct. 
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Chapter 5. Conclusions. 

 
 A study has been made of the Coulomb-related Landau excitation lines of the axial 

defect ZnH and the double acceptor neutral zinc, Zn0, in germanium; in both cases the 

magnetic fields were applied along <100> crystallographic directions. The observations 

involved measurement of their optical absorption spectra. The results obtained have 

been compared with those for boron in germanium for the same orientation of field and 

covering a similar range of magnetic field strengths. It has been determined that each of 

the main features of the spectra from the three acceptors, boron, ZnH and Zn0, is 

associated with the same Landau level. This has been deduced from the almost identical 

field dependence of a given Coulomb-related Landau line in the spectrum of each 

impurity. The difference between the spectra lies in the fine structure corresponding 

features exhibit. 

 Previous detailed studies of this type for boron in germanium demonstrate that any 

complexity in a given feature is due to the Zeeman splitting of the ground state of 

boron. Since this state is fourfold degenerate, it separates into four magnetic states 

whose splittings are known quantitatively as a function of field. These splittings at the 

fields used are not linear functions of field and are reflected directly in the splittings of 

the Landau lines of boron. The impurity states related to the Landau sub-bands are 

Zeeman singlets. 

 In the case of ZnH, the Zeeman splitting of its ground state is also known as a 

function of field strength. However, the ground state of this defect is only twofold 

degenerate with a simpler dependence on field than for boron. As for boron, this 

splitting is manifested in the Landau lines of ZnH while again the impurity states related 

to the Landau sub-bands are Zeeman singlets. 

 For neutral zinc, it is the complexity of the excited states which is revealed in the 

observed splitting of the Landau lines and not the ground state. The symmetries of the 

impurity states associated with the related Landau sub-bands have been narrowed from 

four to two choices for all the observed Landau lines. Some of these are in agreement 

with those deduced for the case of boron. Why not all agree is of interest and needs to 

be explored further. 
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