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Abstract

Three separate credential systems, namely Secret Handshakes (SH), Oblivious Signature-

Based Envelopes (OSBE) and Hidden Credentials, have been introduced in recent years.

These credential systems are very useful in anonymous communication as they have

an interesting common feature which is the ability to combine encryption with access

control. This feature allows participants to protect their credentials from being dis-

closed while running the protocols, which makes these credential systems a natural fit

for privacy-preserving and anonymity-oriented applications.

Since these systems have many similarities, interest has arisen in converting them

from one to another. Consequently, a series of OSBE schemes based on ElGamal

family signatures was proposed, along with a generic construction of SH from OSBE.

According to this generic construction, any ElGamal family signature based OSBE

scheme can be converted to SH within three communication moves, with the exception

of the ElGamal and DSA signatures. To complement the previous result, we propose

two three-move SH schemes based on ElGamal and DSA signatures, respectively.

Furthermore, we consider the question of extending the two-party SH to a multi-

party setting. We observe that almost all of the SH schemes can be constructed from

particular key agreement schemes. Hence we implement an efficient ID-based Au-

thenticated Group Key Agreement (AGKA) scheme, from which we can construct a

multi-party SH scheme. Very recently, a new multi-party SH scheme has been proposed

based on an unauthenticated group key agreement scheme ahead of our implementa-

tion. However, we note that there exists a drawback in this scheme, which may cause

the leakage of a valid member’s group affiliation in a failed multi-party SH protocol.

Therefore, we propose a Group Secret Handshake (GSH) scheme that resists against

this attack, and prove that our scheme is secure.
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Chapter 1

Introduction

1.1 Background

A credential system is a set of authentication protocols assisted by a proof (credential)

of qualification, competence, or clearance that is attached to a user. Using these

protocols, users can prove their possession of the valid credentials but never required

to show their credentials to others. A credential system consists of several proposed

protocols, including Secret Handshakes (SH), Oblivious Signature-Based Envelopes

(OSBE) and Hidden Credentials.

Secret Handshakes

The concept of Secret Handshakes was introduced by Balfanz et al. [5] in 2003. This

system allows two group members to authenticate each other secretly. Assume that

party A is a member of group G1 with role rA, and B is a member of group G2 with

role rB. After they finish running an SH protocol,

• If G1 does not equal G2, neither A nor B learns anything about the other party.

• Both A and B learn the group affiliations of the other party only if G1 equals

G2.

• A can choose to only authenticate the group member with particular roles (e.g.,

B with role r′B). Neither A nor B learns anything about the other party if G1

does not equal G2 or rB does not equal r′B. The same is true for B.

• A third party observing the exchange between A and B does not learn anything

about these two parties, including whether they belong to the same group or not.

In addition to introducing the SH concept, Balfanz et al. [5] provided the first

solution of SH by using the bilinear pairing. Castelluccia et al. [29] introduced a new

1



1.1. Background 2

construction of SH scheme through the use of a CA-Oblivious encryption protocol, in

which they use a Schnorr signature [86] as the credential. The term “CA-Oblivious”

implies that a credential which is not issued by a Certification Authority (CA) will

not enable a user to guess whether another user (s)he interacts with has the credential

issued by the CA or not. Xu and Yung [98] also presented a SH scheme with reusable

credentials. Their scheme achieves unlinkability, and an invalid user can only infer

that a participant is one out of a certain number k users in the worst case. So it is

called k-anonymity. Finally, Vergnaud [93] constructed two SH schemes by using RSA

signature [84] as credentials.

Tsudik and Xu [91] extended the notion of SH to a multi-party setting by combin-

ing three main ingredients: a group signature scheme [8, 13, 62], a centralised group

key distribution scheme [97], and a distributed group key agreement scheme [9, 25] to

create a framework for multi-party SH. Jarecki, Kim and Tsudik [56] also provided a

solution to multi-party SH, which is constructed based on an un-authenticated group

key agreement protocol from Burmester and Desmedt [24].

Oblivious Signature-Based Envelopes

Oblivious Signature-Based Envelopes (OSBE) is a system introduced by Li, Du and

Boneh [66] in 2003. In this system, a sender S can encrypt a message and send it to

a receiver R. They both agree on a common message. When R receives the message

from S,

• R can decrypt the encrypted message from S only if R has a signature on the

agreed-upon message issued by a third party.

• S does not learn anything about R, including whether R has the valid signature

or not.

• A third party observing the exchange between S and R does not learn anything

about them, including what is the content of the message from S, and whether

R has the valid signature or not.

Li et al. also presented three concrete OSBE schemes. One is based on RSA

signature [84], and other two are based on Boneh-Franklin [19] and Cocks [33] identity-

based encryption systems respectively. Nasserian and Tsudik [72] proposed a series

of OSBE schemes based on the ElGamal family signatures schemes, including Schnorr
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signature [86], Nyberg/Rueppel signature [74], ElGamal signature [40] and DSA sig-

nature [75]. Nasserian and Tsudik also presented a generic construction of secret

handshake from their OSBE schemes.

Hidden Credentials

Holt et al. [54] introduced the concept of Hidden Credentials in 2003. Hidden Cre-

dentials use ideas from identity-based cryptosystems [88], but this system encrypts

messages against policies instead of identities. Suppose that party B encrypts a mes-

sage against a policy P , and sends it to party A. When A receives the message,

• A can only decrypt the message from B if A fulfills the policy P .

• B does not learn anything about the credential of A. Consequently, B will never

know if A fulfills the policy P .

• A does not know the public keys which B used to encrypt the message. A must

attempt decryption using each of her credentials. So A learns nothing about

the policy controlling access to the message, if (s)he does not possess the right

credentials.

Holt et al. [54] also constructed the Hidden Credential scheme by making use of

identity-based encryption [19]. Some other solutions [21,44] of Hidden Credential were

provided after then. Moreover, Bradshaw et al. [21] presented a secret splitting scheme,

which can extend indistinguishability of the system to complex policies.

1.2 Motivation

Authentication, a process of verifying the identity of a user, always plays an impor-

tant role in communications. For example, a privacy system may require a user to

authenticate himself first to a server before (s)he can access the system. To authen-

ticate, this user should be equipped with a certificate issued by a trusted authority.

However, several threats exist in authentication process. Eavesdropping is a serious

problem in authentication. Normally, people communicate over an insecure and open

network. Thus an invalid user can easily intercept the certificate when it is sent out for

authentication. Even if the certificate is securely delivered to the server of the system,

a corrupt server may also leak the certificate to an unqualified user. Once the invalid
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user obtains the certificate, (s)he can easily invade the systems which (s)he has no

permissions to enter.

The credential system mentioned in Section 1.1 was introduced to overcome these

threats. The first proposed system, called Secret Handshakes [5], allows two members

of the same group to authenticate each other secretly, which is very useful for main-

taining privacy against anonymous peers on a network. In an SH protocol, the group

affiliation of an valid member will not be disclosed unless the other party is also a valid

member of the same group. Subsequently, a system called Oblivious Signature-Based

Envelopes [66] was introduced, in which encrypted messages can only be recovered by

a third party’s signature on an agreed-upon message, and the valid receiver will never

reveal his possession of the signature during the interacting process. Finally, Hidden

Credentials [54] was proposed. The system allows messages to be encrypted against

complex policies, and protects policies from leaking to unqualified recipients.

The above-mentioned credential systems share many common features. These cre-

dential systems do not allow users to generate their own certificates. In other words,

credentials need to be issued and potentially logged by a trusted third party, called

Certificate Authority. Moreover, credentials used in these systems are all derived from

some digital signature schemes, to ensure that these credentials cannot be forged. In

addition, all of these credential systems have the ability to integrate encryption with

access control, which can protect the credentials of the user from being revealed to

adversaries.

With the increasing popularity of networks, two-party protocols become less suffi-

cient in being used in authentication. When a group of users wish to authenticate each

other over an open network, they still face threats from malicious users. Therefore,

the extension of the credential systems to a multi-party scenario is desired, which is

not straightforward. In the two-party scenario of SH, if each party does not know the

secret calculated by the other party in a failed protocol, we can assume neither of them

will learn the identity of opposite party. However, in a failed multi-party SH proto-

col, we should not only ensure that the unqualified user has no knowledge about the

secret computed by other parties, but also prevent valid parties from generating the

same secret. Because in that case, the same secret from them will disclose their group

affiliations. Consequently, much work with respect to credential systems is required in

the future.
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1.3 Problems and Challenges

Since the concept of SH was introduced, many SH schemes have been proposed based on

various signatures, and all of them can be completed in three moves. Recently, a series

of OSBE schemes was proposed by Nasserian and Tsudik [72] based on ElGamal family

signature schemes, where the authors also discussed the generic conversion from OSBE

to SH schemes. According to this generic construction, most OSBE schemes based

on ElGamal family signatures can be easily converted to SH schemes which require

only three moves. However, Nasserian and Tsudik’s construction of three-move SH

protocol does not work for ElGamal- and DSA-OSBE schemes, and an additional com-

munication move is required. This makes ElGamal-based and DSA-based SH schemes

from Nasserian and Tsudik’s generic construction [72] less efficient, compared to other

previously proposed SH schemes.

Most prior SH schemes in the literature focused on two-party scenarios. Hence

a consideration has emerged on extension from two-party SH to a multi-party set-

ting. We observed that SH schemes can be constructed from particular key agreement

schemes. Before seeking a multi-party SH scheme, we firstly move to the area of group

key agreement protocols, where we note that the ID-based Authenticated Group Key

Agreement (AGKA) is suitable for implementing the Group Secret Handshakes (GSH).

Group signatures [2,30] might appear to be an attractive method for implementing SH

schemes. However, they only offer anonymity and unlinkability for credentials of group

members, not secrecy of membership itself.

AGKA is a group key agreement protocol ensured with an authentication mecha-

nism, which can be classified into two categories: Certificate-based and ID-based. Here

we focus on the ID-based AGKA schemes. A number of ID-based AGKA protocols

have been proposed in recent years. Nevertheless, most efficient constructions require

two rounds to create a group session key. Some single round tripartite AGKA protocols

have been proposed but these methods cannot be extended to large groups consisting

of more than three parties. Recently, a single round ID-based AGKA protocol was

proposed by Shi et al. [89]. Although their construction is very efficient and takes only

one round, we note that this scheme is not an ID-based AGKA, rather than a public

key based scheme. Moreover, in their scheme, a group member can learn the group

session key even if (s)he is not involved in the protocol conducted by other members.

A GSH scheme was proposed by Jarecki et al. [56] recently. Their construction is

based on a previously proposed group key agreement protocol. However, we found a

disadvantage in their scheme. Following the definition of SH from Balfanz et al. [5], an
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honest party will never leak his group affiliation to other parties, if the group handshake

protocol fails. In contrast to this requirement, in Jarecki et al.’s scheme, an invalid

member has the ability to make other honest parties share a common group session

key in a failed protocol. Hence (s)he can learn that these parties belong to the same

group, which violates the security requirements of SH defined by Balfanz et al. [5].

1.4 Contributions of the Thesis

To cope with the challenges we are facing in implementing credential systems, we

provide several solutions, which will also be discussed further in the following chapters

of this thesis.

We first review Nasserian and Tsudik’s [72] OSBE schemes based on ElGamal family

signatures, and point out their DSA-based OSBE has not constructed correctly. Thus it

cannot be used to implement the DSA-based SH scheme. Subsequently, we construct

an ElGamal-based SH scheme following the idea of Nasserian and Tsudik [72], and

show that this scheme requires four moves to be completed. Since no three-move SH

scheme based on ElGamal or DSA signature exists in the literature, we propose two

novel SH schemes based on ElGamal and DSA signatures, respectively, to complement

the previous result. More precisely, we first construct an ElGamal signature based key

agreement scheme, and then introduce our SH scheme based on this primitive. For the

first time, we achieve three-move SH schemes based on these two signatures. We also

prove that our proposed schemes are secure.

In order to extend the SH scheme to a multi-party setting, we move to the area of

group key agreement, and search for a suitable ID-based AGKA scheme, from which

we can construct a multi-party SH scheme. Then we review two efficient ID-based

AGKA schemes in prior work, and show an attack to the single round ID-based AGKA

scheme introduced by Shi et al. [89]. This attack can make a malicious member in the

group learn the session key constructed by other group members in an AGKA protocol.

Therefore, a secure one-round ID-based AGKA protocol is desired to construct an

efficient multi-party SH scheme, just as we propose the three-move ElGamal-based SH

scheme from an key agreement protocol based on ElGamal signature.

Afterwards, for the first time in the literature, we present a provably secure one-

round ID-based AGKA scheme. The scheme is a contributory key agreement in which

each group member takes responsibility for contributing to the generation of group

session key. We also present an efficient two-round ID-based AGKA protocol, which is
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a variant of our one-round ID-based AGKA. Moreover, we show that the efficiency of

this scheme outperforms any other existing schemes in the literature. Then we provide

the security proof of these two schemes.

Subsequently, we present a defect in the GSH scheme proposed by Jarecki et al. [56],

which may cause a leakage of valid members’ group affiliation when an adversary is

involved in the protocol. To construct a GSH scheme, which is able to fulfill the security

requirements of SH system, we first define a security model. Then we propose our GSH

scheme, which overcomes this disadvantage, by using the pairing cryptography. Finally,

we provide a comprehensive security proof of our GSH scheme in the model we defined.

1.5 Structure of the Thesis

The rest of the thesis is organised as follows:

• In Chapter 2, we introduce the cryptographic primitives related to this thesis,

including the definitions and properties of the cryptographic techniques used

throughout. Then we review basic security requirements and categories of the

attacks to the digital signature schemes. We also provide the example of some

well-known digital signatures, which will be used in our proposed schemes. Then

we describe the identity-based encryption (IBE) and group key agreement, from

which credential schemes can be constructed. After that, we introduce the defin-

itions of two credential systems: OSBE and SH, and present the generic schemes

respectively. Finally, we discuss the conversion among these different systems.

• In Chapter 3, we focus on the existing schemes in cryptographic systems described

above. Firstly, we review several OSBE schemes based on a series of signature

schemes in discrete logarithm cryptosystem. Then we describe some efficient

constructions of SH existed in the literature. Subsequently, we discuss three

group key agreement schemes. Two of them are ID-based AGKA schemes, which

are all constructed by using pairing cryptography. We also point out these two

ID-based AGKA schemes are flawed. Finally, we describe a GSH scheme proposed

very recently, and show that this scheme has a problem which violates the security

requirements of SH.

• We present our first cryptographic construction in Chapter 4. We first review the

security requirements of SH scheme. Following the previously proposed generic

construction from OSBE to SH, we implement an ElGamal-based SH scheme
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from the OSBE based on ElGamal signature, which requires four moves. To

bring up our SH scheme based on ElGamal signature, we introduce a concrete

ElGamal-based key agreement protocol. Then we present our efficient construc-

tion of ElGamal-based SH scheme that can be completed in only three moves,

and provide the security proof. We also present our three-move SH scheme based

on DSA signature and prove that the scheme is secure.

• In Chapter 5, we describe our group key agreement schemes. We begin with

setting up the security model and introducing the security notions, which will

be used in proving the security of group key agreement scheme. Subsequently,

we present our two ID-based AGKA schemes. One is a single round group key

agreement protocol, which is considered as the first secure one-round ID-based

AGKA in the literature. Another is our two-round group key agreement scheme,

which is more efficient in communication costs than other previously known ID-

based AGKA protocols. We provide the security proofs of both two schemes.

Finally, we conduct a comparison over previously described AGKA schemes in

Section 3.3 and our proposed schemes. We show that our schemes are more

efficient than other schemes.

• The description of our GSH scheme is given in Chapter 6. We firstly formalise

the generic scheme of GSH. Since the disadvantage of previously described GSH

scheme makes it not satisfy the security properties of SH, here we extend the

security requirements of SH described in Chapter 4 to a multi-party version,

and redefine the model for security proof. Then we present our group secret

handshake scheme, along with a comprehensive security proof.

• In Chapter 7 we summarise the contributions of this thesis and make the conclu-

sion. In addition, we state some open problems in future work of this research

area.

1.6 Glossary
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ACK Acknowledgement
AGKA Authenticated Group Key Agreement
BD-GKA Burmester et al.’s Group Key Agreement Scheme
BDH Bilinear Diffie-Hellman
CA Certificate Authority
CDH Computational Diffie-Hellman
CHL-AGKA Choi et al.’s Group Key Agreement Scheme
DBDH Decisional Bilinear Diffie-Hellman
DBH DSA Based Secret Handshake Scheme
DDH Decisional Diffie-Hellman
DH Diffie-Hellman
DSA Digital Signature Algorithm
EBH ElGamal Based Secret Handshake Scheme
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
GA Group Administrator
Gi-SH Girault’s Key Agreement Based Secret Handshkae
GSH Group Secret Handshake
IBE Identity-Based Encryption
ID Identity
MAC Message Authentication Code
MD Message Digest Algorithm
NIST National Institute of Standards and Technology
O-AGKA One-round Authenticated Group Key Agreement Scheme
OSBE Oblivious Signature-based Envelope
OT-SH Okamoto et al.’s Key Agreement Based Secret Handshake
PK Public Key
PKG Private Key Generator
PKI Public Key Infrastructure
PPT Probabilistic Polynomial Time
ROM Random Oracle Model
SCL-AGKA Shi et al.’s Group Key Agreement Scheme
SH Secret Handshake
SHA Secure Hash Algorithm
SK Secret Key
T-AGKA Two-round Authenticated Group Key Agreement Scheme
PBH Pairing Based Secret Handshake Scheme

Table 1.1: Glossary



Chapter 2

Cryptographic Background

Recently, several cryptographic systems have been proposed, which allow credential

contents to be used directly in access control processes. These new constructions,

namely credential systems, include OSBE, SH, and Hidden Credential. In this chapter,

we introduce a set of cryptographic backgrounds, which plays a fundamental role in

construction and security proof of credential systems. Since the credentials used in

these systems are typically built from some digital signature schemes, we then briefly

describe the security requirements of digital signatures. Subsequently, we discuss the

definitions of OSBE and SH systems, and then the reconciliation of these systems.

Firstly, we start by introducing related cryptographic primitives including one-way

hash functions, the random oracle model, elliptic curve cryptography, and bilinear

pairing.

10
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2.1 Cryptographic Tools

2.1.1 Cryptographic Hash Functions

Cryptographic hash functions play a fundamental role in cryptography, data integrity

and digital signatures. The original purpose of a hash function is to generate a “fin-

gerprint” of a message or block of data. There are two main types of hash functions,

keyed hash functions and unkeyed hash functions. The keyed hash functions can be

used to generate Message Authentication Codes (MAC), which is a symmetric-key

method used to protect a message from unauthorized alteration.

It is usually assumed that the hash functions are public and not keyed. Therefore,

we mainly focus on unkeyed hash functions in this thesis. An unkeyed hash function is

a one-way function, which takes a string of bits with arbitrary length as input, and

generates a short digest of fixed length. A hash value h is produced by a hash function

H of the form

h = H(M)

where M is a variable-length message and h is the fixed-length hash value. Normally,

the hash functions should satisfy the following properties (adapted from a list in [73,

90]):

(1) Compression : H can be applied to a block of data of arbitrary size, and the size

of output should be fixed.

(2) Computable : For any given input x, H(x) must be computable in polynomial

time, making implementations practical in both hardware and software.

(3) Pre-image resistance : For any given hash value h, it is computationally infeasible

to find x such that H(x) = h.

(4) Weak collision resistance : For any given message x, it is computationally infeasible

to find y 6= x with H(y) = H(x).

(5) Strong collision resistance : It is computationally infeasible to find any pair (x, y)

such that H(x) = H(y).

An example of typical hash function is shown in Fig. 2.1.
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Figure 2.1: A Typical Hash Function

Birthday Attack

Firstly, let us review the birthday paradox: If there are 23 people in a room, the

chance that two of them have the same birthday is more than 50%. If we assume that

a birthday is a hash function, which takes a human as input and outputs a day in

one year, we can have a probability of more than 50% to find a collision of this hash

function only after 23 attempts. Therefore, many strategies were proposed to attack

the hash functions based on the birthday paradox [78,99].

The analysis on this paradox shows: Suppose there are m possible hash values. If

we evaluate the hash value of k randomly selected messages, the probability of at least

one collision is

[Pr(m, k)] > 1− e−k(k−1)/2m , where e ≈ 2.7

The above equation shows that the chance of success in this attack depends only

on:

• the size of the message

• the size of the hash digests

So the size of the message and hash space should be large enough to resist the

attacks based on birthday paradox.

The drive of hash algorithm started with public key cryptography. MD5 [83] and

SHA-1 [3] are two most well-known hash algorithms. MD5 hash algorithm was proposed

by Ron Rivest at MIT, and soon became the most widely used secure hash algorithm
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at that time. SHA-1 hash algorithm was developed by National Institute of Standards

and Technology (NIST). Compared with MD5, SHA-1 is a bit slower to perform and

presumably more secure. However, MD5 and SHA-1 were all broken recently [94–96].

A collision in MD5 can be found in several minutes and the time used to produce a

collision in SHA-1 has been reduced sharply. Consequently, migration to SHA-2 is

recommended by NIST.

2.1.2 Random Oracle Model

Many different models have been proposed to assist with security proofs of crypto-

graphic schemes, for example: random oracle model (ROM) [11], black box model [87],

etc. We only focus on random oracle mode in this thesis.

Random oracle model [11] is a mathematical technique used in cryptography to help

with simplifying proofs of security. It provides a bridge between cryptographic theory

and cryptographic practice. Generally speaking, a random oracle is a theoretical black

box that responds to every query with a random response chosen uniformly from its

output domain, except that for any specific query, it responds the same way every time

it receives that query. Proofs which make use of random oracles are referred to as secure

in the “random oracle model” which was formalised by Bellare and Rogaway [11], as

opposed to the “standard model”.

The idea of random oracle builds on the work of Goldreich, Goldwasser and Mi-

cali [49, 50] and Fiat-Shamir [42]. Suppose that all parties participating in a security

protocol have access to a public random function, which maps from {0, 1}∗ to {0, 1}∞,

and all oracle queries in the protocol are answered by this single function. Security

proofs of the cryptographic protocols are made assuming this function is chosen ran-

domly. Then this random function will be replaced by an object like a hash function.

In practice, random oracles are typically used to model cryptographic hash functions

in schemes where strong random assumptions are required for the hash function’s

output. However, not all usage of cryptographic hash functions require random oracles:

schemes which require only the property of collision resistance can be proven secure

in the standard model. Moreover, quite a few people dislike the ROM as a tool for

proving security, and the schemes without using random oracle are preferred.

The problem with the ROM is that it does not really model real life. In real life,

there are no random functions. Canneti, Goldreich and Halevi [27] constructed an

artificial counterexample: one that is provably secure in the random oracle model but

insecure when the random oracle is instantiated in real-life with any polynomial-time



2.1. Cryptographic Tools 14

computable function. Nevertheless, the proof in the random oracle model can still be

taken as evidence of security when the random oracle is replaced by a particular hash

function, and no practical protocol proven secure in the random oracle model has been

broken when used with a “good” hash function.

2.1.3 Elliptic Curves

Elliptic curves system have been studied in mathematics for a long time, but their use

in cryptographic applications as an alternative mechanism for implementing public-

key cryptography was first suggested by Miller [70] and Koblitz [65] in the mid 1980s.

Comparing with the discrete logarithm cryptosystems, the main benefit of using el-

liptic curve is that they offer a significantly greater level of security within the same

computational complexity.

An elliptic curve is an algebraic curve defined by an non-singular equation of the

form

y2 = x3 + ax + b (2.1)

A set of points (x, y) which satisfy the above equation, together with a special point

O called the point at infinity, make up of the elliptic curve group, denoted by E. For

applications to cryptography, we consider finite fields of q elements. Two families of

elliptic curves are used in cryptographic applications: prime curves defined over Zp

and binary curves constructed over GF (2n). Prime curves are pointed out to be the

best for software applications [41].

The elliptic curve group is a commutative group, we describe the group by using

additive notation in this thesis. Assume P = (xP , yP ) and Q = (xQ, yQ) are the two

points on the curve, and they are not negative of each other. Then we can define a

new point R = P + Q = (xR, yR) as follows:

xR = s2 − xP − xQ

yR = −yP + s(xP − xR)

where s = (yP − yQ)/(xP − xQ)

When we double the point P , we compute a new point R = 2P = (xR, yR) as follows:

xR = s2 − 2xP

yR = −yP + s(xP − xR)

where s = (3x2
P + a)/(2yP )
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Recall that a is one of the coefficients in equation (2.1). A geometric description of the

addition over elliptic curves is shown in Fig. 2.2.

Figure 2.2: Elliptic Curve Addition

From the above definitions and the accepted conventions as to point at infinity O,

we can have the following properties of points on elliptic curve:

(1) P + Q = Q + P for all points P, Q ∈ E;

(2) P + (Q + S) = (P + Q) + S for all points P, Q, S ∈ E;

(3) there exists a point at infinity O such that P +O = O + P = P for all P ∈ E;

(4) for every point P ∈ E there exists an opposite point −P ∈ E, such that P +

(−P ) = O.

The discrete logarithm problem is the basis for the security of many cryptosystems

including the Elliptic Curve Cryptosystem (ECC). More specifically, the ECC relies

upon the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP).

To utilize ECDLP in constructions of ECC, the cyclic subgroup of E is generated

by firstly choosing a point P ∈ E and an integer k where

kP = P + P + ... + P︸ ︷︷ ︸
k

We say n is the order of P if nP = O. Then the ECDLP is defined as follows:

Definition 1 Given points P and Q ∈ E, of which the order are n, find an integer k,

0 ≤ k ≤ n− 1, such that Q = kP .



2.1. Cryptographic Tools 16

The basic operation of ECDLP in ECC is elliptic curve scalar multiplication, which

is the main cryptographic operation on elliptic curve. Any discrete logarithms based

cryptosystem can be extended to elliptic curve easily. The basic principle is using

P = kQ to replace the operation y = gk (mod p). Therefore, the scalar multiplication

can be performed by using the same methods as for exponentiation in discrete logarithm

cryptosystem. Recently, some efficient methods for scalar multiplication have been

proposed [14,68], but the performance improvement is not very great and these methods

go beyond the scope of this thesis.

2.1.4 Bilinear Pairings

Bilinear pairing is a map which maps a point on an elliptic curve to a finite field, which

is defined as follows:

LetG1 be a cyclic additive group of a prime order q, andG2 be a cyclic multiplicative

group with a prime order p.

Definition 2 (Bilinear map). We say that a map ê : G1×G1 → G2 is bilinear if it

satisfies all the following properties:

(1) Bilinear: for all P, Q ∈ G1 and a, b ∈ Z∗q, we have ê(aP, bQ) = ê(P,Q)ab;

(2) Non-degenerate: there exists P, Q ∈ G1 such that ê(P,Q) 6= 1;

(3) Computable: for all P,Q ∈ G1, the pairing ê(P, Q) is computable in polynomial

time.

The Non-degeneracy property list above implies that when P is the generator of

G1, ê(P, P ) is also the generator of G2. We call such bilinear map as an admissible

bilinear pairing.

Although earlier work suggesting the use of pairings in cryptography was done

by [71] and [85], the pairing did not impress on most people until the publication

of “Identity-based encryption scheme” by Boneh and Franklin [19] in 2001, which

solves the long-standing open problem. A new implementation of pairing called Weil

pairing was also introduced in this paper. In fact, another implementation called Tate

pairing [43] is superior to the Weil pairing.

Now matter how these pairings are implemented, they all have following additional

properties:

• ê(P1 + P2, Q) = ê(P1, Q) · ê(P2, Q), for all P1, P2, Q ∈ G1;
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• ê(P,Q) = ê(Q,P ), for all P, Q ∈ G1;

• if for P ∈ G1 we have ê(P,Q) = 1 for all Q ∈ G1, then Q = O.

Because of the excellent properties, pairing is widely used in identity-based cryp-

tography, which makes it currently the most active research area in ECC [46,58].

2.2 Complexity Assumptions

In this section, we review some cryptographic assumptions that will be used throughout

the thesis. Firstly, we describe two well-known assumptions in discrete logarithm

cryptosystem.

Definition 3 (Computational Diffie-Hellman (CDH) Problem [34]). Given a

cyclic group G of the order q, g is a generator of group G, the Computational Diffie-

Hellman problem is (t, ε)-hard if for all t-time adversaries A we have

AdvCDH
A = Pr[A(g, ga, gb) = gab (mod p)|a, b ∈ Z∗P] < ε

CDH Assumption : Solving the Computational Diffie-Hellman problem in polyno-

mial time is infeasible. In other words, for a, b ∈ Z∗p, given ga and gb, compute gab is

infeasible.

Definition 4 (Decisional Diffie-Hellman (DDH) Problem [40]). Given a cyclic

group G of the order q, g is a generator of group G, for a, b, c ∈ Z∗p, the Decisional

Diffie-Hellman problem is (t, ε)-hard if for all t-time adversaries A we have

AdvDDH
A = |Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| < ε

DDH Assumption : No efficient algorithm can solve DDH problem with non-negligible

advantage. In other words, for a, b, c ∈ Z∗p, given ga, gb, and gc, decide whether c ≡ ab

mod q is infeasible.

As we mentioned above, assumptions in discrete logarithms based cryptosystem can

be easily extended to elliptic curve. In bilinear pairings, Computational Diffie-Hellman

problem is still hard. However, Joux and Nguyen [59] point out that Decision Diffie-

Hellman problem [16] is easy. To see this, observe that given P, aP, bP, cP ∈ G1, we

have
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c = ab mod q ⇐⇒ ê(P, cP ) = ê(aP, bP )

Then the assumptions in bilinear pairings are modified to preserve the security

which makes them a bit different from previously mentioned assumptions. The as-

sumptions are described as follows:

Definition 5 (Bilinear Diffie-Hellman (BDH) Problem [19,57]). Given a cyclic

group G1,G2 of the order q together with a bilinear map ê : G1 ×G1 → G2 , and P is

a generator of group G1. The Bilinear Diffie-Hellman problem is (t, ε)-hard if for all

t-time adversaries A we have

AdvBDH
A = |Pr[A(P, aP, bP, cP) = ê(P, P)abc]| < ε

BDH Assumption : We say that if there exists a polynomial time algorithm which can

solve BDH problem, the probability is negligible. In other words, given (P, aP, bP, cP )

for random P ∈ G1, and a, b, c ∈ Z∗q, compute ê(P, P )abc is infeasible.

Definition 6 (Decisional Bilinear Diffie-Hellman (DBDH) Problem [17,18]).

Given a cyclic group G1,G2 of the order q together with a bilinear map ê : G1 ×G1 →
G2, and P is a generator of group G1. The Decisional Bilinear Diffie-Hellman problem

is (t, ε)-hard if for all t-time adversaries A we have

AdvDBDH
A = |Pr[A(P, aP, bP, cP, ê(P, P)abc) = 1]−Pr[A(P, aP, bP, cP, ê(P, P)d) = 1]| < ε

DBDH Assumption : We assume that the probability of a polynomial time algo-

rithm to solve DBDH problem is negligible. In other words, for random P ∈ G1, and

a, b, c, d ∈ Z∗q, distinguish between tuples of the form (P, aP, bP, cP, ê(P, P )abc) and

(P, aP, bP, cP, ê(P, P )d) is infeasible.

Above system parameters can be obtained through running a probabilistic polynomial

time (PPT) algorithm, called the BDH Parameter Generator IGBDH , which takes

a security parameter k as input, runs in polynomial time in k, and outputs a prime

number q, the description of two groups G1,G2 of the same order q, and the description

of an admissible bilinear map ê : G1 ×G1 → G2.
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2.3 Digital Signatures

Digital signature, as the term suggests, is a sort of signature in electronic form. Like

traditional signatures, digital signatures can protect information from undesirable mod-

ification and prove the authorship of the information. Different from the traditional

handwritten signatures, digital signatures’ verification requires the assistance from

some authorised public information, which we will discuss in the following. Gener-

ally speaking, digital signatures can provide following security services :

• Authentication : authorisation of the identity. When a user in a group has been

issued a digital signature on his identity, (s)he can use this signature as a proof of

his identity’s validity, so that other parties can use the group public key to verify.

If the verification succeeds, one can assume that the signature was generated by

using the group private key, and the user is proved to be authorised.

• Data Integrity : assure that the data has not been modified since the digital

signature was generated. When a sender sends a message together with the

digital signature on it, receiver can use the public key of the sender to verify

the signature with the received message. Even a slight modification of message

will result in signature verification failure. Adversaries can alter the message in

communication easily, but they cannot forge a signature on it without knowing

the private key of the sender.

• Non-repudiation : providing evidence to a third-party that a party participated

in a transaction. When a sender sends out a message, (s)he can never deny

that the message was written by him once (s)he produces a digital signature on

the message, because nobody else can generate the signature for they have no

knowledge of the send’s private key.

2.3.1 Generic Schemes

Digital signature scheme is a cryptographic algorithm based on asymmetric key cryp-

tosystem. The main difference between digital signature and public key encryption is

that digital signature encrypts messages with private key, and decrypts with public

key. A digital signature scheme consists of three algorithms:

• Key generation algorithm : takes as input a security parameter and outputs a pair

(PK, SK) of matching public and private key.
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Figure 2.3: Creating a Digital Signature

Figure 2.4: Verifying a Digital Signature

• Signature creation algorithm : takes as input a message M , and produces a signa-

ture Sig(M). Usually we don’t sign the whole message, but just a hash value of

the message. The detail steps of the algorithm are as shown in Fig. 2.3. Firstly,

a sender calculates the hash value of the message, and generates the signature by

encrypting the hash value with his private key. The signature is attached to the

message to create a signed message.

• Signature verification algorithm : takes as input a message M and the correspond-

ing signature Sig(M), outputs true or false. We show the detail steps of the

algorithm in Fig. 2.4. When a signed message is received, the receiver calculates
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the hash value of the message, and decrypts the signature with the public key of

the sender. The receiver then compares these two value, and outputs true only if

they are identical.

2.3.2 Attacks to Digital Signatures

We describe the classification of different attacks to digital signature schemes by adopt-

ing the definitions in [80].

Attacks

We distinguish two basic kinds of attacks:

No Message Attack : The adversary knows only the public key of the signer.

Known Message Attack : The adversary has access to some signature corresponding

to known or chosen messages before his attempt to break the scheme.

According to the way how the messages are chosen, whose corresponding signatures

are accessed by adversary, the Known Message attack can be classified into four different

types:

Plain Known Message Attack : The adversary is given access to signatures for a set of

messages, which are not chosen by him.

Generic Chosen Message Attack : The adversary is allowed to obtain the signatures

corresponding to the messages, which are chosen by him. But the attacks should

be independent of the signer’s public key, which means the choice of the messages

must be made before (s)he knows the public key of the signer.

Oriented Chosen Message Attack : This is similar to the generic chosen message attack.

But the choice of the messages can be made after the adversary knows the public

key of the signer, but before (s)he obtains any signature.

Adaptive Chosen Message Attack : The adversary can ask the signer to sign any message

that (s)he wants, while (s)he knows the public key of the signer. (S)he can also

adapt his queries according to previous obtained signature.
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Forgeries

The expected results of an attack can be considered into four different types:

Total Break : The private key of the signer is disclosed, which is the most serious

attack.

Universal Forgery : An efficient signing algorithm is found to be functionally equivalent

to the original signing algorithm.

Selective Forgery : The signature of a particular message chosen by the adversary can

be forged.

Existential Forgery : The signature for at least one message can be forged, but the

adversary has no control over the message whose signature (s)he obtains. So in

many cases this attack is not dangerous, because the output message is likely to

be meaningless.

We adopt (s)he standard notion of security for a signature scheme which is called

existential unforgeability under a adaptive chosen message attack [48, 79].

2.3.3 Example of Digital Signature Schemes

Here we present three well-known digital signature schemes, which are related to our

proposed credential schemes. The message described below is regarded as the hash

value of the message to be signed.

RSA Digital Signature Scheme

The RSA signature scheme [84], introduced in 1978, is the first method discovered for

creating signature, which is described as follows:

Key Generation : Select two large prime p and q. Compute n = p · q, and m =

(p − 1) · (q − 1). Choose a number e, 1 ≤ e ≤ m − 1 such that gcd(e,m) = 1

to ensure that there always exists an inverse with respect to modulo m. Find

d = e−1 (mod m). Then the public key is (e, n), and private key is (d, p, q).

Sign : to sign a message M , simply compute the signature δ as:

δ = H(M)d (mod n)

Verify : to verify the signature, output true if the following equation holds:

M
?
= δe (mod n)
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ElGamal Family Digital Signature Schemes

Since the publication of ElGamal signature scheme [40] in 1985, a number of ElGamal

variants are proposed in the literature. The following six type are taken from [69].

Key Generation : Choose a large prime p and a generator g of group Zp. Select a

random number s, 1 < s < p− 1 as the secret. Compute y = gs (mod p). Then

the public key is (p, g, y), and private key is s.

Sign : to sign a message M , the signer first chooses a random number r < p− 1 such

that gcd(r, p− 1) = 1 to ensure that there always exists an inverse with respect

to modulo (p− 1). Compute the signature pair δ = 〈α, β〉 as:

α = gr (mod p)

β = (M − s · α) · r−1 (mod p− 1) (2.2)

β = (M − r · α) · s−1 (mod p− 1) (2.3)

β = s · α + r ·M (mod p− 1) (2.4)

β = s ·M + r · α (mod p− 1) (2.5)

β = (α− r ·M) · s−1 (mod p− 1) (2.6)

β = (α− s ·M) · r−1 (mod p− 1) (2.7)

Verify : to verify the signature, receiver checks following equations, and outputs true

if the following equations hold:

gM ?
= yα · αβ (mod p) for variant (2.2)

gM ?
= yβ · αα (mod p) for variant (2.3)

gβ ?
= yα · αM (mod p) for variant (2.4)

gβ ?
= yM · αα (mod p) for variant (2.5)

gα ?
= yβ · αM (mod p) for variant (2.6)

gα ?
= yM · αβ (mod p) for variant (2.7)
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DSA Digital Signature Scheme

The Digital Signature Algorithm (DSA) [75] was developed by NIST as a more efficient

alternative to ElGamal signature.

Key Generation : Choose a large prime q and find a prime p of the form kq + 1 for a

random k. Find a number g such that gq = 1 mod p. Select a random number

s, 1 < s < p− 1 as the secret. Compute y = gs (mod p). Then the public key is

(p, q, g, y), and private key is s.

Sign : The signer first chooses a random number r < q such that gcd(r, q) = 1 to

ensure that there always exists an inverse with respect to modulo q. Compute

the signature pair δ = 〈α, β〉 as:

α = (gr mod p) mod q

β = (M + s · α) · r−1 mod q

Verify : to verify the signature, the receiver first computes

w = β−1 mod q

t1 = (M · w) mod q

t2 = α · w mod q

then outputs true if the following equation holds:

α
?
= ((gt1 · yt2) mod p) mod q

2.4 Identity-Based Encryption

The concept of identity-based cryptography was first proposed by Shamir [88] in 1984.

In his paper, Shamir asked for a new model of asymmetric cryptography in which the

public key can be an arbitrary string. In this system, the sender can use any identity

information (e.g., e-mail address) of the receiver instead of some meaningless public key

to encrypt the message, which is very useful in simplifying the certificate management.

As shown in Fig. 2.5, when Alice wants to send message to Bob, she can choose

any identity information of Bob such as e-mail or IP address to encrypt the message.

When Bob receives the encrypted message, he authenticates himself to a trusted third

party and obtains the private key corresponding to his identity information to decrypt
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Figure 2.5: Identity-Based Encryption

the message. In this way, Alice can send encrypted information to Bob even if Bob has

not setup his public key certificate yet.

Since the introduction of the concept in 1984, IBE had long been viewed as an

open problem until it was solved by Boneh and Franklin [19] in 2001. Boneh and

Franklin, for the first time, proposed a concrete construction of the IBE scheme based

on bilinear maps, which used a technique due to Fujisaki-Okamoto [45] to achieve the

chosen ciphertext security [7, 35, 82].

The IBE scheme proposed by them consists of four algorithms: Setup, Extract,

Encrypt, Decrypt, which are described as follows:

Setup. The algorithm takes as input a security parameter and outputs a master key

s and a list of system parameters. The system parameters are publicly known,

while the master key s will be known only to the trusted third party, called Pri-

vate Key Generator (PKG).

Extract. The algorithm takes as input the system parameters, the master key s, an

arbitrary string ID ∈ {0, 1}∗, and outputs a private key d. ID can be any identity

information of the user, or the public key derived from the identity, which will

be used as a public key. After running this algorithm, a corresponding private
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key d will be extracted from the given public key.

Encrypt. The algorithm encrypts a message M by using the public key ID, and returns

a ciphertext C.

Decrypt. The algorithm takes as input a ciphertext C and the private key d, and

outputs the original message M .

Because the identity-based cryptography can reduce the system complexity and

the costs for generating, managing and storing the public key certificate, it is now

flourishing within the research community.

2.5 Key Agreements

In a secret key cryptosystem, two or more parties may need to construct a shared key for

communication. The key agreement protocols, also called key exchange, enable users

to share keys securely over any insecure medium, without the need for a previously-

established shared secret. For example, when Alice and Bob want to communicate

using an symmetric encryption algorithm, they will need to run the key agreement

protocol to establish a common secret key that can be useful for subsequent encryption

and decryption of messages.

2.5.1 Diffie-Hellman Key Exchange

Diffie and Hellman [34] proposed a simple key exchange scheme in 1976, so called

Diffie-Hellman (DH) key exchange. Assume that Alice and Bob want to construct a

shared secret key, as shown in Fig. 2.6, the original DH key exchange scheme proceeds

as follows:

• Alice and Bob agree on a common prime p and a generator g of the multiplicative

group Z∗p.

• Alice picks kA
R← Zp, computes gkA (mod p), and sends to Bob.

Bob picks kB
R← Zp, computes gkB (mod p), and sends to Alice.

• Now Alice can compute the shared secret s = (gkB)kA (mod p) and

Bob can compute the shared secret s = (gkA)kB (mod p).
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Figure 2.6: Diffie-Hellman Key Agreement

From the discussion above we can see that Alice and Bob share the same secret after

running the key exchange protocol. Security of the system depends on the difficulty of

computing discrete logarithm.

However, the original DH key exchange suffers from the man-in-the-middle attack.

In this attack, an adversary Eve intercepts the message which Alice sends to Bob,

substitutes it with Eve’s own message and sends it to Bob. When Bob sends his

message to Alice, Eve replaces the message and sends it to Alice. Eve and Alice thus

agree on one shared key, while Eve and Bob agreeing on another shared key. In this

way, Eve now can eavesdrop all the messages communicated between Alice and Bob

without being discovered. Therefore, in recent years, DH key exchange is only treated

as an traditional example of two-party key agreement protocols in most of time.

2.5.2 Group Key Agreements

Since the publication of the DH key exchange [34], many solutions have been proposed

to extend DH key exchange to the multi-party setting. Notable solutions, which can be

viewed as the first group key agreement schemes, have been proposed by Ingemarsson

et al. [55] in 1982.

Group key agreement is a protocol that allows a group of users communicating

over an insecure, open network to create a common session key. This session key,

which is only known to the users who are the valid members of the group, may later be

used to facilitate the communication among these users. By using group key agreement

protocols, the presence of a central authority is no longer required. Moreover, when the

group composition changes, one can employ supplementary key agreement protocols to

obtain a new group key. Thus, a transient secure channel can be constructed during

the lifetime of one session of a group.
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Authenticated group key agreement is a group key agreement protocol ensured with

an authentication mechanism, which is used to guarantee that no other users aside

from the valid members of the group can learn any information about the session key.

Authenticated group key agreement can be classified into two categories: Certificate-

based and ID-based [39].

The certificate-based protocols work by assuming that each user has a (long-term)

public/private key pair, and each user knows the public key of each other. Thus, the

problem of authenticating the session key is replaced by the problem of authenticating

the long-term public keys. Hence, in a certificate-based system, the participants must

firstly verify the certificate of the user before using the user’s public key. Consequently,

the system requires a large amount of computing time and storage.

The ID-based protocols allow each user using identities (IDs) of other users as their

public keys. Compared with the certificate-based group key agreement, users do not

need to search for the public keys of other users before running the protocol, which

makes the protocol simpler and more efficient.

2.6 Credential Systems

Recently, several separate credential systems were proposed which have very similar

features. The most typical properties of these systems are that they allow credential

contents to be used directly in access control processes, making the credentials in the

systems can be used without ever being disclosed. However, most of these systems do

not allow users to generate their own credentials, which are needed to be issued by

some trusted third parties.

2.6.1 Oblivious Signature-Based Envelopes (OSBE)

Oblivious Signature-Based Envelopes (OSBE) system was first proposed by Li, Du

and Boneh [66] in 2003, which was very similar to the IBE system. In this system,

when a sender sends an encrypted message to a receiver, the receiver can decrypt the

message only if (s)he has a third party’s signature (e.g., a signature from a certificate

authority) on a previous agreed-upon message. But the sender will never know whether

the receiver can decrypt the message or not. Meanwhile, no other party can have the

knowledge of the sender’s message and the receiver’s possession or lack of the credential.

Consequently, the receiver can prove to have the credential but do not need to disclose

it to others.
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Figure 2.7: Oblivious Signature-Based Envelopes

As shown in Fig. 2.7, there are four parties involved in an OSBE scheme: certificate

authority CA, sender S, receiver R1, and receiver R2. Receiver R1 has the CA’s

signature on message M . Receiver R2 does not have the signature. OSBE consists

of three communication phases among these four parties, Setup, Interaction and Open,

which are described as follows:

Setup. CA generates the system parameters required by taking the security parameter

and two messages M and P as input. Then CA runs key generation algorithm

to create a signing key and the corresponding public key denoted by PK.

The CA keeps the signing key as secret, gives the message P to S, and gives the

system parameters, the public key PK and the message M to S, R1, and R2.

Then CA signs the message M and gives the signature δ to R1.

Interaction. In this phase, the sender S communicates with R1 and R2. S encrypts

the message P and sends to R1 and R2 separately.

Open. After receiving the encrypted message from S, R1 can output the message P ,

but R2 cannot.
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OSBE scheme is very useful in anonymous communication since it allows the re-

ceiver to obtain the information from the sender but never need to worry about disclo-

sure of his own credential.

2.6.2 Secret Handshakes (SH)

The secret handshake scheme introduced by Balfanz et al. [5] allows two members of

the same group to identify each other secretly, but if one party does not belong to

the group, (s)he will learn nothing about group affiliation of the other party. One

scenario for SH is shown in Fig. 2.8: a CIA agent Alice wants to authenticate herself

to Bob, but Alice does not know whether Bob is a CIA agent or not. If Alice shows

Bob her credential directly, her CIA identity will be revealed to Bob, who could be an

adversary. The situation will be different if Alice authenticates with Bob via an SH

protocol; namely, Bob will learn nothing about Alice’s identity if (s)he is not a CIA

agent. Alice will never worry about the leakage of her CIA affiliation no matter whom

she authenticates to, even with other CIA servers. Even if there is an adversary Eve

eavesdropping on the communication channel between Alice and Bob, he will never

know the group affiliation of either Alice or Bob.

This secrecy property can be extended to ensure that group members’ affiliations

are revealed only to members who hold specific roles in the group. For example, Alice

wants to authenticate to Bob if and only if Bob is a CIA agent with security level one,

while herself as a CIA agent with security level two. Another important property of

the handshake is that even if a third party Eve observes the exchange between Alice

and Bob, (s)he can learn nothing about the process including whether Alice and Bob

belong to the same group, the specific identities of the group, and the roles of either

Alice or Bob.

The secret handshake scheme defined in [5] consists of five probabilistic algorithms

CreateGroup, AddUser, Handshake, TraceUser, and RemoveUser.

• CreateGroup, a key generation algorithm executed by the group administrator CA,

on input of params, outputs the group public key G , and the CA’s private key sG.

• AddUser is an algorithm executed between a group member and CA on CA’s pri-

vate key sG and shared inputs: params, G, and the identity of the group member

which is bit string ID of size regulated by params. After performing the algo-

rithm, the group member will be issued a secret credential produced by CA for
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Figure 2.8: Secret Handshake

the member’s identity ID.

• HandShake is the authentication protocol, executed between two parties A and B

who want to authenticate each other on the public input IDA, IDB, and params.

The private input of each party is their secret credential, and the output of the

protocol for either party is either reject or accept.

• TraceUser, an algorithm executed by the CA, given a transcript of the handshake

between a user U with one or more users, outputs the identity of the user U .

• RemoveUser: on input an identity of the user U and the revoked user list, inserts

U into the revoked user list.

Secret handshakes can be used to securely discover services which are restricted

to authorised users. It can also be used for privacy-preserving authentication. The

use of secret handshakes does not required users to blind, or withhold, part of their

credentials in order to achieve privacy. Instead, users can present all their credentials,
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and rest assured that the receiving party will not learn anything about credentials that

were issued by a different group.

2.7 Reconciling Key Agreements, OSBE and Secret

Handshakes

From what we discussed above, these systems can be converted from one to another,

so if a new scheme is introduced, it can be easily used to construct the scheme of

other systems, which makes finding a more efficient way to implement above system

easier. Holt discussed the conversion among several credential systems in [53]. Here

we focus on the transformation among three systems: Key Agreements, OSBE, and

Secret Handshakes.

2.7.1 Secret Handshakes from Key Agreements

In an SH protocol, completing the protocol is essentially equivalent to computing a key

that is particular to the two interacting group members. Thus the SH scheme can be

viewed as variant of key agreement scheme. However, not every key agreement schemes

are suitable to be converted into an SH scheme directly. If we select a key agreement

scheme to construct an SH scheme, it should satisfy the following properties:

ID-based Authentication : The secret handshake should be performed by the members

in the same group, so the protocol requires each participant authenticates his

identity before the exchange of the key. Thus a non ID-based key agreement

scheme cannot be used directly to construct the secret handshake scheme.

Collusion Resistance : In a secret handshake protocol, a coalition of corrupted group

members should not be able to perform the handshakes with group members

outside the coalition. For example, a scheme based on shared group key is not

collusion resistance. Furthermore, this scheme even has the additional drawback

of untraceable key leaks.

In addition, when we convert a key agreement scheme into a secret handshake

scheme, the new scheme should be able to protect the identities of the participants

from both eavesdroppers and active attackers, which usually is not the option for

key agreement scheme. For example, the standardised key exchange scheme IKE [52]
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does not provide identity protection from active attackers, and [1] provides protection

against eavesdroppers but does not preserve the privacy of the communicating parties.

2.7.2 Secret Handshakes from OSBE

The concept of OSBE are very closed to SH. From the definitions described above,

we can observe that OSBE can be viewed as a sort of one-side or asymmetric secret

handshakes. The simplest approach is to combine two OSBE interactions, which are

in opposite direction, to obtain a secret handshake. This kind of transformation was

shown in [72], and we will discuss the details in the following chapters.

2.8 Summary

Credential systems also include Hidden Credential [54], which is very similar to the

Identity-based encryption. However, Hidden Credential is more like a policy based

protocol. The sender in Hidden Credential encrypts message based on particular policy

or even complex policies [21,44] instead of simply using the identity. We only focus on

identity-based cryptography in this thesis, so we do not refer to any Hidden Credential

schemes and related policy-based protocol.

In this chapter, we described two kinds of credential systems: OSBE and SH. Since

the credentials used in these two systems are based on digital signatures, we also

discussed the classification of the attacks to the signature schemes. The security of

credential schemes relies on how strong the signature schemes are. Then we included

the key agreement protocols which can be used to construct the SH schemes. Finally, we

discussed the relationship between these three systems, and the possibility of converting

the schemes from one to another.



Chapter 3

Existing Cryptographic Schemes

In 2003, Secret Handshake was introduced by Balfanz et al. [5]. They also proposed

a secret handshake scheme based on the key agreement protocol of Sakai et al. [85].

Li, Du, and Boneh introduced the concept of OSBE, and implemented the schemes

in three ways. One is based on RSA signature [84] in which the two parties need to

communicate with each other before the receiver can decrypt the message. The other

two use the idea of the IBE systems: Boneh-Franklin [19] and Cocks [33] IBE systems,

which are based on BLS signature [20] and Rabin signature [81] respectively. Since the

introduction of these two credential systems, a flurry of papers have been written in

this new area of research. Recently, SH has been extended to a multi-party setting by

Tsudik and Xu [92]. In this chapter, we aim to briefly review the existing schemes of

these credential systems, together with several ID-based group key agreement schemes,

which can be used to construct the multi-party SH scheme.

34
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3.1 Oblivious Signature-Based Envelopes

In this section, we do not include the OSBE schemes based on IBE systems, because

they are not as efficient as schemes described following. Notations which will be used

throughout this section is defined as follows: ε denotes a semantically secure symmetric

encryption scheme [51], and H ′ is a cryptographic hash function for key derivation,

which maps a number in an abelian group of integers to the key space of ε. H is a

hash function which maps an arbitrary string {0, 1}∗ to a suitable commutative group

of integers.

3.1.1 OSBE based on RSA signature

The first proposed scheme is the RSA based OSBE scheme [66], which is as follows:

Setup. CA runs the RSA key generation algorithm to create an RSA key (n, e, d),

then sends S, R1, R2 the RSA public key (n, e) and the message M . In addition,

the CA gives the signature δ = (hd mod n) to R1, where h = H(M), and gives

to S the message P .

Interaction.

• R1 → S: η = δhx (mod n), in which x
R← [1, n].

R2 → S: η = hx′ (mod n), in which x′ R← [1, n].

• S receives η, checks that η /∈ {0, 1, n− 1}, picks z
R← [1, n],

computes γ = ηezh−z (mod n) and then

• S → R1 or R2: ζ = hze (mod n), C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. R1 computes γ′ = ζx (mod n), and decrypts C using H ′(γ′).

To see that this scheme is sound, observe that when η is sent by R1,

η = hd+x (mod n); therefore:

γ = ηzeh−z = h(d+x)ezh−z = hdezhxezh−z = hxze = ζx = γ′ (mod n)

Thus S and R1 share the same symmetric key.
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3.1.2 OSBE based on Schnorr signature

Recently, a series of OSBE schemes was proposed by Nasserian and Tsudik [72]. First

we describe the OSBE scheme based on Schnorr signature [86] presented by them.

Setup. CA runs the key generation algorithm to create a Schnorr key (p, q, g, y, s),

sends S, R1, R2 the Schnorr public key (p, q, g, y) and the message M . Then it

computes a Schnorr signature δ = 〈α, β〉 on message M as follows:

α = H(M, gk mod p), where k ∈R Z∗q,

β = sα + k (mod q)

Finally, it gives δ to R1, and gives the message P to S.

Interaction.

• R1 −→ S: η = gβ · y−α (mod p) = gk (mod p).

R2 −→ S: η = gk′ (mod p), in which k′
R← Z∗q.

• S receives η, checks that η(p−1)/q (mod p) /∈ {0, 1}, picks z
R← Zq with

z mod q 6= 0, computes γ = (yH(M,η)η)z and then

• S −→ R1 or R2: ζ = gz (mod p), C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. R1 computes γ′ = (ζβ mod p), and decrypts C using H ′(γ′).

To see that this scheme is sound, observe that when η is sent by R1:

γ = (yH(M,η)η)z = (yαgk)z = (gsα+k)z = gβz = ζβ = γ′ (mod p)

Thus S and R1 share the same symmetric key.

3.1.3 OSBE based on Nyberg/Rueppel signature

Nasserian and Tsudik also introduced an OSBE scheme based on Nyberg/Rueppel

signature [74] as follows:

Setup. CA runs the key generation algorithm to create a Nyberg-Rueppel key (p, q, g, y, s),

sends S, R1, R2 the Schnorr public key (p, q, g, y) and the message M . Then it

sets h = H(M) and computes a Schnorr signature δ = 〈α, β〉 on message M as

follows:

α = hg−k (mod p), where k ∈R Z∗q, α (mod q) 6= 0
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β = sα + k (mod q)

Finally, it gives δ to R1, and gives the message P to S.

Interaction.

• R1 −→ S: η = hg−k (mod p) = α.

R2 −→ S: η = hg−k′ (mod p), in which k′ R← Z∗q.

• S receives η, checks that (η/h)(p−1)/q (mod q) /∈ {0, 1}, picks z
R← Zq, com-

putes γ = (yαh/α)z and then

• S −→ R1 or R2: ζ = gz (mod p), C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. R1 computes γ′ = (ζβ mod p), and decrypts C using H ′(γ′).

To see that this scheme is sound, observe that when η is sent by R1:

γ = (yαh/α)z = (yαgk)z = (gsα+k)z = gβz = ζβ = γ′ (mod p)

Thus S and R1 share the same symmetric key.

3.1.4 OSBE based on ElGamal Family Signatures

Then we describe OSBE schemes based on ElGamal Family Signatures. Firstly, we

focus on the variant (2.2) introduced in Section 2.3.3, since it represents the original

ElGamal signature scheme [40] and also naturally leads to an OSBE scheme for DSA.

The OSBE scheme is as follows:

Setup. CA runs the key generation algorithm to create an ElGamal key: (p, q, g, s, y),

sends S,R1, R2 the ElGamal public key (p, q, g, y) and the message M . It also

chooses two messages M and P , set h = H(M), and computes the ElGamal

signature δ = 〈α, β〉 as follows:

α = gk (mod p) , where k ∈R Z∗q,

β = (h− sgk)k−1 (mod q)

Finally, it gives δ to R1, and gives the message P to S.

Interaction.
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• R1 −→ S: α = gk mod p

R2 −→ S: α = gk′ (mod p), in which k′
R← Z∗q.

• S receives α, checks that α (mod p− 1) 6= 0, generates z ∈R Z∗q,
computes γ = yαz · g−hz mod p.

• S −→ R1 or R2: ζ = αz mod p, C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. Upon receiving (Z,C), R1 computes γ′ = ζ−β, and decrypts C with H ′(γ′).

where the correctness is easy to see that:

γ = yαzg−hz = g(αs−h)z = gk(αs−h)k−1z = α−βz = ζ−β = γ′ (mod p)

The constructions of OBSE based on variants (2.4) and (2.5) were taken by Nasserian

and Tsudik [72] as the example of OSBE scheme based on the variants of ElGamal sig-

nature. We describe these two schemes as followings:

Setup. The step is identical to that for ElGamal-based OSBE. CA computes the

signature as follows:

α = gk (mod p) , where k ∈R Z∗q,

β = sgk + kh (mod q) for variant (2.4)

β = sh + kgk (mod q) for variant (2.5)

Interaction.

• R1 −→ S: α = gk mod p

R2 −→ S: α = gk′ (mod p), in which k′
R← Z∗q.

• S receives α, picks z
R← Z∗q, computes:

γ = (yα · αh)z = gz(sgk+kh) (mod p) for variant(2.4)

γ = (yh · αα)z = gz(sh+kgk) (mod p) for variant(2.5)

• S −→ R1 or R2: ζ = gz (mod p), C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. R1 computes γ′ = (ζβ mod p), and decrypts C using H ′(γ′).
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3.1.5 OSBE based on DSA Signature

In order to avoid repetition, the full description of OSBE based on DSA signature was

not presented in [72], and Nasserian and Tsudik only gave the arithmetic of computing

the secret. However, their construction is flawed due to the confusion of the modular in

DSA signature scheme. Firstly, we present the OSBE scheme based on DSA signature

following the idea of Nasserian and Tsudik [72].

Setup. CA runs the key generation algorithm to create an DSA key: (p, q, g, s, y), sends

S, R1, R2 the DSA public key (p, q, g, y) and the message M . It also chooses two

messages M and P , set h = H(M), and computes the DSA signature δ = 〈α, β〉
as follows:

α = (gk mod p) mod q , where k ∈R Z∗q,

β = (h + s · α) · k−1 mod q

Finally, it gives δ to R1, and gives the message P to S.

Interaction.

• R1 −→ S: α = (gk mod p) mod q

R2 −→ S: α = (gk′ mod p) mod q, in which k′ R← Z∗q.

• S receives α, checks that α (mod q) 6= 0, generates z ∈R Z∗q,
computes γ = (yαgh)z mod p.

• S −→ R1 or R2: ζ = αz mod p, C = εH′(γ)[P ].

• R1 and R2 receive 〈ζ, C〉 from S.

Open. Upon receiving (Z,C), R1 computes γ′ = ζβ, and decrypts C with H ′(γ′).

Similar to the handshake scheme from ElGamal-OSBE, only if

γ
?
= γ′

holds then the scheme is sound. Unfortunately, this verification is incorrect. We check

first equation:

γ = (yα · gh)z = g(αs+h)z

which is correct. The problem is because of ζβ:

γ′ ≡ ζβ = αzβ = gk(αs+h)k−1z = g(αs+h)z
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The authors of the original paper [72] believe γ = γ′. However, the problem is as

follows:

((gk mod p) mod q)(αs+h)k−1z 6= ((gk)(αs+h)k−1z mod p) mod q.

Obviously, the equality does not hold. Hence the DSA-OSBE scheme in [72] is flawed.

3.2 Two-Party Secret Handshakes

3.2.1 SH based on Pairing-Based Key Agreements

When the concept of Secret Handshake was proposed by Balfanz et al [5], a concrete

implementation of SH was provided based on pairing cryptography, which is described

as follows:

PBH.CreateGroup. The administrator CA runs parameter generation algorithm to

generate a prime q, two groupsG1,G2 of order q, and a bilinear map ê : G1×G1 →
G2. Then CA picks two hash functions: H1 : {0, 1}∗ → G1 maps arbitrary strings

to points in G1, and H2 is a collision resistant hash function taking arbitrary

strings as input. In addition, CA also chooses a random generator P ∈ G1.

Then CA picks a random s ∈ Z∗q, sets Ppub = sP . CA keeps s secret as the

master secret key and publishes system parameters

params = {G1,G2, ê, q, Ppub, P}

PBH.AddUser. To add a user U to the group, the administrator CA first allocates a

list of random “pseudonyms” IDU1 , . . . , IDUt ∈ {0, 1}∗ for U , where t is chosen

to be larger than the number of handshakes U will execute before receiving new

user secret. The CA then computes a corresponding list of secret SU1 , . . . , SUt as

SUi
= sH1(IDUi

)

PBH.Handshake. Let A and B be two users who would like to conduct the secret

handshake. A chooses an unused pseudonym IDA ∈ {IDA1 , . . . , IDAt}, together

with the corresponding secret SIDA
. B chooses IDB and SIDB

likewise. Then they

run the handshake protocol as follows:

• A −→ B: IDA, kA, where kA
R← {0, 1}∗

• B −→ A: IDB, kB, V0

V0 = H2(ê(H1(IDA), SIDB
)‖IDA‖IDB‖kA‖kB‖0)
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• A −→ B: V1

V1 = H2(ê(SIDA
, H1(IDB))‖IDA‖IDB‖kA‖kB‖1)

A verifies the V0 and accepts only if the following equation holds

V0
?
= H2(ê(SIDA

, H1(IDB))‖IDA‖IDB‖kA‖kB‖0)

B verifies the V0 and accepts only if the following equation holds

V1
?
= H2(ê(H1(IDA), SIDB

)‖IDA‖IDB‖kA‖kB‖1)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.

PBH.TraceUser. Given a transcript of a handshake between user A and B, the admin-

istrator can easily recover the pseudonyms IDA and IDB and look up which users

these pseudonyms had been issued to.

PBH.RemoveUser. To remove a user U from the group G, the administrator looks

up the user secret (IDU1 , . . . , IDUt , SU1 , . . . , SUt) it has issued to U and publishes

them on the revoked user list. Whenever other users perform the protocol, they

can abort the handshake with the user whose secret is on the list.

3.2.2 SH based on CA-Oblivious Encryption

Castelluccia et al. introduced a new system, called CA-Oblivious Encryption [28, 29].

They constructed a concrete scheme by using the Schnorr signature as the credential.

After running the protocol, each party can recover a ElGamal public key correspond to

the secret of the other party, which can make the protocol be viewed as an asymmetric

key exchange scheme. Based on the CA-Oblivious Encryption scheme, Castelluccia et

al. proposed an SH scheme as follows:

CreateGroup. The administrator CA runs parameter generation algorithm to generate

a standard discrete logarithm parameters (p, q, g). g is a generator of a subgroup

in Z∗p of order q. CA also defines hash functions: H : {0, 1}∗ → Zq and H ′ :

{0, 1}∗ → {0, 1}k. Then CA picks random private key s ∈ Zq and sets public key

y = gs mod p. ε denotes the ElGamal encryption scheme.

AddUser. To add a user U to the group, the administrator computes the Schnorr

signature δ = 〈α, β〉 on his identity IDU as follows:

α = gk (mod p), where k ∈R Zq,
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β = sH(α, IDU) + k (mod q)

Handshake. Let A and B be two users who would like to conduct the secret handshake.

Then they run the handshake protocol as follows:

• B −→ A: IDB, αB

• A −→ B: IDA, αA, Ca, chA

A recovers PKB = αByH(αB ,IDB)

A picks rA, chA
R← {0, 1}∗

A computes CA = εPKB
[rA]

• B −→ A: CB, respB, chB

B recovers PKA = αAyH(αA,IDA)

B decrypts rA from CA and picks rB, chB
R← {0, 1}∗

B computes CB = εPKA
[rB]

B computes respB = H ′(rA, rB, chA)

• A −→ B: respA

A decrypts rB from CB

A computes respA = H ′(rA, rB, chB)

A verifies the respB and accepts only if the following equation holds

respB
?
= H ′(rA, rB, chA)

B verifies the respA and accepts only if the following equation holds

respA
?
= H ′(rA, rB, chB)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.

Castelluccia et al. [29] also eliminating one communication round in above protocol

by using the zero-knowledge signature [26] and presented an efficient scheme. Thus SH

based on CA-Oblivious Encryption can still be completed in three rounds.

3.2.3 SH based on RSA signature

Vergnaud presented two SH schemes based on RSA signature [93] in 2005.
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OT-SH

The OT-SH was constructed from Okamoto and Tanaka’s Identity-based key agreement

[77] scheme, whose security relies on the RSA problem [63,64,67].

OT-SH.CreateGroup. The administrator CA runs the RSA key generation algorithm

to create an RSA key (n, e, d). Then CA picks a random g ∈ Zn, and chooses two

hash functions: H : {0, 1}∗ → Zn, and H ′ is a collision resistant hash function

taking arbitrary strings as input. CA keeps d secret as the master secret key

and publishes system parameters params = {n, e, g}.

OT-SH.AddUser. To add a user U to the group, the administrator CA first allocates

a unique identity IDU ∈ {0, 1}∗ for U . The CA then computes a corresponding

secret SIDU
= h−d

U (mod n), where hU = H(IDU), and sends it to U .

OT-SH.Handshake. Let A and B be two users who would like to conduct the secret

handshake. They run the handshake protocol as follows:

• A −→ B: IDA, CA

CA = SIDA
· gkA mod n, where kA

R← {0, 1}∗

• B −→ A: IDB, CB, V0

CB = SIDB
· gkB mod n, where kB

R← {0, 1}∗
V0 = H ′((hA · Ce

A)kB mod n‖IDA‖IDB‖CA‖CB‖0)

• A −→ B: V1

V1 = H ′((hB · Ce
B)kA mod n‖IDA‖IDB‖CA‖CB‖1)

A verifies the V0 and accepts only if the following equation holds

V0
?
= H ′((hB · Ce

B)kA mod n‖IDA‖IDB‖CA‖CB‖0)

B verifies the V0 and accepts only if the following equation holds

V1
?
= H ′((hA · Ce

A)kB mod n‖IDA‖IDB‖CA‖CB‖1)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.

To check the correctness of the scheme, observe that

(hA · Ce
A)kB = (hA · h−de

A · gkAe)kB = gkAkBe = (hB · h−de
B · gkBe)kA = (hB · Ce

B)kA
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Gi-SH

The second scheme based on RSA signature is implemented from Girault’s self-certified

key agreement scheme [47], whose security is also based on the difficulty of solving

RSA [76].

Gi-SH.CreateGroup. The administrator CA runs the RSA key generation algorithm to

create an RSA key (n, e, d). Then CA picks a random g ∈ Zn, and chooses two

hash functions: H : {0, 1}∗ → Zn, and H ′ is a collision resistant hash function

taking arbitrary strings as input. CA keeps d secret as the master secret key

and publishes system parameters params = {n, e, g}.

Gi-SH.AddUser. To add a user U to the group, the administrator CA first allocates

a unique identity IDU ∈ {0, 1}∗ for U . The CA picks a random rU
R← Zn, and

sends U the rU as a secret. Then CA computes PU = (grU ⊕hU)d (mod n), where

hU = H(IDU), and sets it to public.

Gi-SH.Handshake. Let A and B be two users who would like to conduct the secret

handshake. They run the handshake protocol as follows:

• A −→ B: IDA, kA

A picks a random kA
R← {0, 1}∗

• B −→ A: IDB, kB, V0

B picks a random kB
R← {0, 1}∗

V0 = H ′((P e
A ⊕ hA)rB mod n‖IDA‖IDB‖kA‖kB‖0)

• A −→ B: V1

V1 = H ′((P e
B ⊕ hB)rA mod n‖IDA‖IDB‖kA‖kB‖1)

A verifies the V0 and accepts only if the following equation holds

V0
?
= H ′((P e

B ⊕ hB)rA mod n‖IDA‖IDB‖kA‖kB‖0)

B verifies the V0 and accepts only if the following equation holds

V1
?
= H ′((P e

A ⊕ hA)rB mod n‖IDA‖IDB‖kA‖kB‖1)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.

To check the correctness of the scheme, observe that

(P e
A ⊕ hA)rB = ((grA ⊕ hA)de ⊕ hA)rB = grArB = ((grB ⊕ hB)de ⊕ hB)rA = (P e

B ⊕ hB)rA
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3.3 Group Key Agreement Schemes

In this section, we describe three group key agreement schemes related closely to the

following chapters: one is a non-authenticated protocol in discrete logarithm cryptosys-

tem, and two are ID-based authenticated protocols by using pairing-based cryptogra-

phy. In the following description H : {0, 1}∗ → G1 and H1 : G1 → Zq are cryptographic

hash functions.

Burmester-Desmedt Group Key Agreement

This group key agreement scheme is proposed by Burmester-Desmedt [24] in 1994. The

protocol runs as follows:

GKA(∆) : Let ∆ denote the group of users involved in the group key agreement

scheme. ∆ = {U1, . . . , Un}, where Ui are members of a group G that want to

create a group key. g is a generator in Z∗p.

[Round 1] : Each user Ui picks a random ri ∈R Zq and then computes and

broadcasts zi = gri mod p.

[Round 2] : On receiving zi, each user Ui computes and broadcasts Xi =

(zi+1/zi−1)
ri .

Then Ui can compute the same group key,

Ki = (zi−1)
nri ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2 (mod p)

Choi-Hwang-Lee ID-based Group Key Agreement

Choi et al. [32] proposed a new ID-based AGKA scheme from bilinear maps, which is

based on Burmester-Desmedt group key agreement scheme [24].

Setup. GA runs BDH parameter generator to generate a prime q, two groups G1,G2

of order q, and an bilinear map ê : G1 × G1 → G2. Choose a random generator

P ∈ G1. Then GA picks a random s ∈ Z∗q and sets Ppub = sP . GA keeps

s secret as the master secret key and publishes system parameters params =

{ê,G1,G2, q, P, Ppub, H, H1}.

Extract. When a user Ui with identity IDi wishes to obtain a key pair, GA computes

Qi = H(IDi) and the long-term private key Si = sQi, and returns Si to the user
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Ui.

Let U1, . . . , Un be the n users who want to establish a session key. The protocol

is as follows:

Round 1 Each user Ui picks a random number ri ∈R Z∗q and computes Pi = riP , and

hi = H1(Pi) and Ti = riPpub + hiSi. Each Ui broadcasts 〈Pi, Ti〉 to all others and

keeps ri secret.

Round 2 Upon receiving 〈Pi−1, Ti−1〉, 〈Pi+1, Ti+1〉 and 〈Pi+2, Ti+2〉, each user Ui checks

if the following equation holds:

ê(
∑

k∈{−1,1,2} Ti+k, P )
?
= ê(

∑
k∈{−1,1,2}(Pi+k + hi+kQi+k), Ppub)

If the above equation is satisfied, then Ui computes and broadcasts

Xi = ê(ri(Pi+2 − Pi−1), Pi+1)

to all others.

Key Computation. Each Ui now can compute the common session key as follows:

Ki = ê(riPi−1, Pi+1)
n ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2

However, the above scheme was shown to be flawed soon after the construction of

the scheme. Zhang and Chen [100] proposed an impersonation attack on above scheme,

in which any two malicious users can impersonate an entity to agree some session keys in

a new group if these two malicious users have the previous authentication transcripts

of this entity. Hence an fixed solution was proposed by Du et al. [37] later. In the

improved ID-based AGKA scheme, each user in a group holds a synchronous counter,

which is increased by one after a successful group key agreement, and the users’ static

key pairs are updated along with the counters, which make the scheme resist the

collusive impersonation attack in [100].

Shi-Chen-Li ID-based Group Key Agreement

A single round ID-based AGKA protocol was proposed by Shi et al. [89] in 2005.

However, we note that the scheme requires the user to keep a public key issued by the
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group administrator (GA) and verify each other’s public key before using it, which is

the idea of a certificate-based group key agreement protocol. This means, that their

scheme is not an ID-based scheme, rather than a public key based scheme. Moreover,

the scheme in the paper [89] is flawed in fact.

Firstly, we review the one round ID-based AGKA in [89].

Setup. GA generates a prime q, two groups G1,G2 of order q, and an bilinear map

ê : G1 × G1 → G2. Choose a random generator P ∈ G1. Then GA randomly

picks s1, s2 ∈ Z∗q and sets Ppub = s1P, P ′
pub = s2P . GA then publishes system

parameters params = {ê,G1,G2, q, P, Ppub, P
′
pub, H}.

Extract. When a user Ui with identity IDUi
wishes to obtain a key pair, GA computes

Ii = H(IDi), Qi = (Iis1 + s2)P and the secret Si = (Iis1 + s2)
−1P , and returns

Si to the user Ui. Qi is the user’s public key.

Let U1, . . . , Un be the n users who want to establish a session key. The protocol

is as follows:

Interacting Each user Ui picks ai
R← Z∗p. Then Ui computes T j

i = aiQj, where 1 ≤ j ≤ n

and j 6= i. Now Ui can check public key of each user:

Qj
?
= IjPpub + P ′

pub

If the above equation holds, Ui can assume that Uj is a valid member of the

group. Then Ui sends T j
i to Uj.

Key Computation. Upon receipt of T i
j , each Ui now can compute the common session

key as follows:

K = Ki = ê(T i
1 + · · ·+ T i

i−1 + aiQi + T i
i+1 + · · ·+ T i

n, Si) = ê(P, P )(a1+···+an)

We observe that if Ui wants to authenticate a user Uj, he has to obtain the public

key of Uj in advance, which makes the scheme not an ID-based one. This scheme is

indeed a public key based scheme. The public key needs to be certified, and hence, the

advantage of having an ID-based protocol has vanished.

Next we show how to attack the protocol above. An adversary A asks the GA for

a key pair, and thus (s)he obtains IA = H(IDA), QA = (IAs1 + s2)P and the secret

SA = (IAs1 + s2)
−1P , where IA 6= Ii, 1 ≤ i ≤ n. Then A chooses T 1

i and T 1
j which are

two messages sent to Ui and Uj by U1, and computes:
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a1s1P = (Ii − Ij)
−1(T 1

i − T 1
j ) = (Ii − Ij)

−1(a1Qi − a1Qj)

= (Ii − Ij)
−1(a1(Iis1 + s2)P − a1(Ijs1 + s2)P )

= (Ii − Ij)
−1(a1(Ii − Ij)s1P )

a1s2P = (I−1
i − I−1

j )−1(I−1
i T 1

i − I−1
j T 1

j )

= (I−1
i − I−1

j )−1(I−1
i a1Qi − I−1

j a1Qj)

= (I−1
i − I−1

j )−1(I−1
i a1(Iis1 + s2)P − I−1

j a1(Ijs1 + s2)P )

= (I−1
i − I−1

j )−1(a1(I
−1
i − I−1

j )s2P )

In the same way, A can obtain a2s1P, . . . , ans1P and a2s2P, . . . , ans2P . Then A
continues to compute:

TA
i = ais1P · IA + ais2P = ai(IAs1 + s2)P

A now can compute the group session key as follows:

K = Ki = ê(TA
1 + · · ·+ TA

n , SA) = ê(P, P )(a1+···+an)

From the description above, we can observe that if there is a user who is belong to this

group and has the valid group key pair, (s)he can know the group session key of any

execution of the group key agreement protocol even if (s)he is not involved in it.

3.4 Group Secret Handshakes

A construction of GSH scheme was proposed by Jarecki et al. [56] in 2006, which

extends the SH protocol to a multi-party setting based on Burmester-Desmedt group

key agreement scheme [24]. The definition of SH requires that if a handshake among all

participants fails, the group affiliation of each party will not be disclosed. However, we

show an attack to Jarecki et al.’s scheme [56], which makes the honest parties involved

in the protocol share a same session key, even if there is an adversary in the protocol.

Firstly, we review Jarecki et al.’s GSH scheme [56].

CreateGroup. The administrator GA runs key generation algorithm, which takes as in-

put a security parameter k, to generate the discrete logarithm parameters (p, q, g).

g is a generator of a subgroup in Zp of order q. Then GA picks a random s
R← Z∗q,

sets it the group secret, and computes the public key y = gs mod p.
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AddUser. To add a user U to the group, the administrator GA first allocates a

list of random “pseudonyms” IDU1 , . . . , IDUt ∈ {0, 1}∗ for U , where t is cho-

sen to be larger than the number of handshakes U will execute before receiving

new user secret. The GA then computes a corresponding list of Schnorr signa-

ture (α1, β1), . . . , (αt, βt), where αk = grk (mod p), and βk = rk + sH(αk, IDUk
)

(mod p), for random rk
R← Zq.

Handshake. Let ∆ = {U1, . . . , Un) be n users who would like to conduct the secret

handshake. Each user Ui chooses an unused pseudonym IDi ∈ {ID1, . . . , IDt},
together with the corresponding secret 〈αi, βi〉. Then the group of users run the

handshake protocol as follows:

Round 1: Each user Ui broadcasts (IDi, αi)

• When a user Ui finds a collision in the group of IDs, or finds a ID in

the revoked user list, the protocol terminates.

• If there are no collision or revoked ID, Ui determines the order of each

user based on their identities. Assume that the order of users in the

group is (U1, U2, . . . , Un), and Un+1 = U1.

Round 2: Ui computes

zi+1 = αi+1y
H(αi+1, IDi+1) = gβi+1 (mod p)

zi−1 = αi−1y
H(αi−1, IDi−1) = gβi−1 (mod p)

Xi = H ′(zβi

i+1)/H
′(zβi

i−1) (mod p)

Each Ui broadcasts Xi.

Round 3: Ui computes Ki = H ′(zβi

i−1)
n ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2 (mod p).

Then each user Ui in the group outputs “accept” if they hold a common shared

key. All the steps of the SH are finished, and the handshake has been successful.

To see that this scheme is sound, let:

Ci−1 = H ′(zβi

i−1) = H ′(gβi−1βi) (mod p)

Ci = H ′(zβi

i−1) ·Xi = H ′(gβiβi+1) (mod p)

Ci+1 = H ′(zβi

i−1) ·Xi ·Xi+1 = H ′(gβi+1βi+2) (mod p)

· · ·
Ci−2 = H ′(zβi

i−1) ·Xi ·Xi+1 · · ·Xi−2 = H ′(gβi−2βi−1) (mod p)
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It is obvious that

Ki = Ci−1CiCi+1 · · ·Ci−2 = H ′(zβi

i−1)
n ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2

= gβ1β2+β2β3+···+βnβ1 (mod p)

Then if all the users involved in the protocol are valid, they will share the same

symmetric key.

RemoveUser. To remove a user U from the group G, the administrator GA looks up

the user pseudonyms (IDU1 , . . . , IDUt) it has issued to U and publishes them on

the revoked user list.

Note that if Ui is not a valid member of the group, the group secret handshake will

not succeed, because Ui cannot produce a valid Xi without having the knowledge of

βi, which corresponds to the αi broadcasted at the beginning of the protocol.

However, we observe that Ui can wait till (s)he receives all the Xj, where j 6= i,

before (s)he broadcasts Xi in Round 2. Then Ui computes

X ′
i = (

j 6=i∏

j∈[1,n]

Xj)
−1 = (

j 6=i∏

j∈[1,n]

(H ′(zβj

j+1)/H
′(zβj

j−1)))
−1

= (

j 6=i∏

j∈[1,n]

(H ′(gβj+1βj)/H ′(gβj−1βj)))−1 = (H ′(gβi−1βi)/H ′(gβi+1βi))−1

= H ′(gβi+1βi)/H ′(gβi−1βi) = H ′(zβi

i+1)/H
′(zβi

i−1)

From the discussion above, we can see that Ui computes the valid value X ′
i and

broadcasts it to other parties. Without knowing βi, Ui cannot calculate the common

group key Ki, but we observe that other valid members still can share the same sym-

metric key. Then Ui can know that these parties belong to a same group, which makes

the honest parties leak their group affiliation even if the handshake fails.

3.5 Summary

In this chapter, we first reviewed several OSBE schemes based on a series of signature

schemes. Then we described some different constructions of SH schemes. We note that

each signature scheme used in OSBE can also be used to implement an SH scheme.

Even if the SH schemes based on some signatures have not been proposed formally yet,

we can still convert an OSBE scheme based on these signatures into an SH scheme.
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For example, Nasserian and Tsudik [72] proposed a generic construction of SH from

OSBE based on ElGamal family signatures. We also reviewed some efficient group

key agreement schemes. Though some of them were proved to be flawed, we can still

consider the efficiency of these schemes and compare with other schemes proposed later.

Finally, we introduced a GSH scheme proposed recently.



Chapter 4

Secret Handshake Schemes based on
ElGamal and DSA signatures

The SH system was introduced by Balfanz et al. [5] in 2003. In addition to introducing

the concept of the SH, Balfanz et al. also presented an SH scheme based on pairing

cryptography, where the computation is not as efficient as the schemes in discrete log-

arithm cryptosystem. Subsequently, an SH scheme based on CA-Oblivious Encryption

was introduced by Castelluccia et al. [29]. In their scheme, ElGamal encryption and

Schnorr signature are combined to construct a CA-oblivious PKI-enabled encryption

secure under the CDH assumption. Based on this primitive, they proposed a new SH

scheme. Xu and Yung [98] also proposed an SH schemes that achieve unlinkability with

reusable credentials. However, their schemes require users to know the information of

other groups. We do not discuss their schemes in this thesis. Another SH scheme based

on RSA was proposed by Vergnaud [93]. Recently, a series of OSBE schemes based on

the ElGamal family signatures schemes was proposed by Nasserian and Tsudik [72],

where they also discussed the generic conversion from OSBE to SH schemes. Accord-

ing to their generic construction, any ElGamal family signatures based OSBE scheme

can be converted to secret handshake within three communication moves, except the

ElGamal and DSA signatures based ones. In this chapter, we propose two novel SH

schemes based on ElGamal and DSA signature schemes [103], respectively. For the

first time, we achieve three-move SH based on these two signature schemes, which was

believed infeasible following the generic construction of Nasserian and Tsudik [72]. We

also prove that our proposed schemes are secure. Part of this chapter has appeared

in [103].

52
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4.1 Security Arguments

Following the definition in [5], an SH scheme must satisfy the properties of complete-

ness, impersonator resistant, and detector resistant. The adversary is allowed to run

the protocols several times and be able to make additional queries after each attempt,

before (s)he announces that (s)he is ready for the true challenges. The adversary is

also allowed to ask for signatures on additional IDi 6= IDA strings during the hand-

shake protocol with honest member. (S)he can see all exchanged messages, can delete,

modify, inject and redirect messages, can communicate with other party, and can reuse

messages from past communications.

Completeness. If honest members A, B of the same group run Handshake with valid

certificates from the group administrator, which are the signatures generated for

their ID strings IDA, IDB and for the same group GA = GB, then both parties

output “accept”.

Impersonator Resistance. The impersonator resistance property is violated if an

honest party V who is a member of group G authenticates an adversary A as a

group member, even though A is not a member of G. We denote the probability

that the property is not violated as follows:

Pr[A succeeds in making V output “accept” | V ∈ G ∩ A /∈ G] ≤ ε,

where ε is negligible.

Detector Resistance. An adversary A violates the detector resistance property if

it can decide whether some honest party V is a member of some group G by

determining the relationship between the public message of the member and the

public key of the group, even though A is not a member of G. The probability

that the property is not violated is as follows:

Pr[A knows whether V is the valid member | public messages of V ∩A /∈ G] ≤ ε
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4.2 Constructions from previously proposed OSBE

schemes

As we discussed above, an OSBE scheme can be easily converted into an SH scheme.

Nasserian and Tsudik [72] have introduced a generic construction, and mentioned that

the SH schemes transformed from ElGamal-OSBE and DSA-OSBE cannot be com-

pleted in three moves following their generic construction. Since we have already shown

that the DSA-OSBE introduced by Nasserian and Tsudik [72] is not correct, even we

transform it into a DSA-based SH, the scheme will not be correct as well. Hence we

only review the SH scheme constructed from the ElGamal-based OSBE according to

the generic construction of Nasserian and Tsudik [72].

CreateGroup. The administrator CA runs the ElGamal key generation algorithm to

create the set of all keys {(p, g, y, s) | y ≡ gs (mod p)}, in which s is the group

secret.

AddUser. Select two collision-resistant cryptographic hash functions H : {0, 1}∗ →
Zp−1, and H ′ : {0, 1}∗ → {0, 1}n for some n. To add a user U to the group, the

administrator CA first allocates a unique identity IDU to user, and generates a

random nonce rU ∈ Zp−1. The CA then computes the hash value hU = H(IDU),

and gives the user U the corresponding signature 〈αU , βU〉, where αU = grU

(mod p), βU = ((hU − αU · s) · rU
−1) (mod p− 1).

Let A and B be two users who would like to perform the protocol.

Handshake.

• A → B: IDA, αA

αA = gkA (mod p), where kA ∈R Z∗p.

• B → A: IDB, αB, ζB

αB = gkB (mod p), where kB ∈R Z∗p
B computes ζB = αA

zB , where zB ∈R Z∗p
B computes KB = yαAzB · g−hAzB mod p

• A → B: ζA, V0

A computes ζA = αB
zA , where zA ∈R Z∗p
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A computes KA = yαBzA · g−hBzA mod p

A computes V0 = H ′(KA‖ζ−βA

B ‖0)

• B → A: V1

V1 = H ′(ζ−βB

A ‖KB‖1)

As shown in the OSBE scheme in Section 3.1.4, KA = ζ−βB

A and KB = ζ−βA

B , so

that A verifies the V1 and accepts only if V1 = H ′(KA‖ζ−βA

B ‖1). B verifies the V0 and

accepts only if V0 = H ′(ζ−βB

A ‖KB‖0).

If both verification are successful, then A and B finish all the steps of the SH, and

the handshake succeeds. From this SH scheme, we can observe that four moves are

required to complete the new SH scheme.

4.3 Efficient Construction of ElGamal-based SH

In this section, we present our three-move SH scheme based on ElGamal signature in

two stage. Firstly, we present an ElGamal-based key agreement scheme, and then, we

construct a three-move SH scheme based on it.

4.3.1 ElGamal-based Key Agreement Scheme

The first step is key generation. Pick a large prime p such that p− 1 has a large prime

divisor q, and g which is an element of order q in Z∗p. Then, choose a random number

s ∈ Z∗q, and compute y ≡ gs (mod p). The public key is PK = 〈p, q, g, y〉 and the

private key is s.

Assume that there are two parties A and B whose unique identifications are IDA

and IDB. Their identifications are signed with the third party’s ElGamal signature.

Consequently, A obtains the signature 〈αA, βA〉, where

αA = grA (mod p) , where rA ∈R Z∗q
βA = (hA − αA · s) · rA

−1 (mod q) , where hA = H(IDA)

B obtains the signature 〈αB, βB〉. The key agreement is carried out as follows:

• B chooses kB ∈ Zq at random, and computes ζB = αB
(kB+1) (mod p · q), ηB =

βB · (kB + 1)−1 · αB
kB (mod q). Then, B sends 〈ζB, ηB〉 to A.
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• Upon receiving 〈ζB, ηB〉 from B, A chooses kA ∈ Zq at random and computes

the shared key K = ((y(ζB mod q) · (ζB mod p)ηB)hB
−1

)αA
kA (mod p), where hB =

H(IDB). A computes ζA = αA
(kA+1) (mod p · q), ηA = βA · (kA + 1)−1 · αA

kA

(mod q). Then A sends the pair 〈ζA, ηA〉 to B.

• Upon receiving the pair 〈ζA, ηA〉 from A, B computes the shared key K =

((y(ζA mod q) · (ζA mod p)ηA)hA
−1

)αB
kB (mod p), where hA = H(IDA).

Note that the value (〈αA, βA〉, kA) is unknown to B and (〈αB, βB〉, kB) is unknown

to A. To check the correctness of the scheme, we show that the shared key that A and

B will compute are equal.

A : K = ((y(ζB mod q) · (ζB mod p)ηB)hB
−1

)αA
kA

= ((y(αB
(kB+1) mod q) · (αB

(kB+1) mod p)
βB ·(kB+1)−1·αB

kB

)hB
−1

)αA
kA

= ((g(αB
(kB+1)·s) · (g(hB−αB ·s)·αB

kB ))hB
−1

)αA
kA

= gαA
kA ·αB

kB (mod p)

B : K = ((y(ζA mod q) · (ζA mod p)ηA)hA
−1

)αB
kB

= ((y(αA
(kA+1) mod q) · (αA

(kA+1) mod p)
βA·(kA+1)−1·αA

kA

)hA
−1

)αB
kB

= ((g(αA
(kA+1)·s) · (g(hA−αA·s)·αA

kA ))hA
−1

)αB
kB

= gαA
kA ·αB

kB (mod p)

4.3.2 ElGamal based Secret-handshake Scheme

As shown in the above scheme, when A and B finish running the key agreement proto-

col, they will share a common key K. Now we add another step, in which each party

constructs a new message V by combining the common key and the identities of both

parties and sends it to each other. V is computed as follows:

V = H(K‖IDA‖IDB)

Then A and B output “accept” only if the message V from the other party is identical

to V of its own. By simply adding this step for authentication after the key agreement

protocol described above, we can obtain an SH scheme. We call this scheme ElGamal-

Based Handshake (EBH). We adapt the definition of an SH scheme of Balfanz et al. [5]

to our SH scheme, which might potentially restrict the notion of a secret handshake

scheme, but both the SH scheme of Balfanz et al. [5] and our SH scheme fall into

this category. Our SH scheme is constructed as a triple of probabilistic algorithms
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CreateGroup, AddUser, Handshake describe as follows:

EBH.CreateGroup. The administrator CA runs the ElGamal key generation algorithm

to create the set of all keys {(p, q, g, y, s) | y ≡ gs (mod p)}, in which s is the

group secret.

EBH.AddUser. Select two collision-resistant cryptographic hash functions H1 : {0, 1}∗ →
Z∗q, and H2 : {0, 1}∗ → {0, 1}n for some n. To add a user U to the group, the

administrator CA first allocates a unique identity IDU to user, and generates a

random nonce rU ∈ Zq. The CA then computes the hash value hU = H1(IDU),

and gives the user U the corresponding signature 〈αU , βU〉, where αU = grU

(mod p), βU = ((hU − αU · s) · rU
−1) (mod q).

EBH.Handshake. Let A and B be two users who would like to conduct the secret

handshake. The three-move handshake protocol is given as follows.

• B → A: IDB, ζB, ηB

ζB = αB
(kB+1) (mod p · q)

ηB = βB · (kB + 1)−1 · αB
kB (mod q)

• A → B: IDA, V0, ζA, ηA

V0 = H2(((y
(ζB mod q) · (ζB mod p)ηB)hB

−1
)αA

kA mod p‖IDA‖IDB‖0)

ζA = αA
(kA+1) (mod p · q)

ηA = βA · (kA + 1)−1 · αA
kA (mod q)

• B → A: V1

V1 = H2(((y
(ζA mod q) · (ζA mod p)ηA)hA

−1
)αB

kB mod p‖IDA‖IDB‖1)

A verifies the V1 and accepts only if the following equation holds

V1
?
= H2(((y

(ζB mod q) · (ζB mod p)ηB)hB
−1

)αA
kA mod p‖IDA‖IDB‖1)

B verifies the V0 and accepts only if the following equation holds

V0
?
= H2(((y

(ζA mod q) · (ζA mod p)ηA)hA
−1

)αB
kB mod p‖IDA‖IDB‖0)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.
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4.3.3 Security Proof

An adversary A who can forge a valid signature can surely attack the SH protocol just

as an honest member. Obviously, the probability to attack the SH scheme cannot be

smaller than the probability to forge a valid signature.

Theorem 1 The above ElGamal-based SH scheme is Impersonator Resistant under

the assumption that ElGamal signature is existentially unforgeable in the random oracle

model.

Proof. ElGamal-based SH is impersonator resistant if no polynomially bounded adver-

sary wins the following game against the Challenger with non-negligible probability:

The Challenger randomly picks a public key (g, p, q, y), and gives it to the adversary.

The adversary responds with an IDA. The Challenger then picks a random pair 〈ζA, ηA〉,
where ζA ∈ Zp·q and ηA ∈ Zq. The adversary then outputs k′A ∈ Zq, and the adversary

wins the game if (ghA)k′A = yζA · ζA
ηA (mod p).

Given an attacker A that wins the above game with probability ε. We construct

another attacker B that can successfully forge the ElGamal signature with probability

ε. B does the following:

1. B, when given (g, p, q, y), passes (g, p, q, y) to A and gets IDA back.

2. B then computes hA = H(IDA), picks a random pair 〈ζA, ηA〉, and sends to A.

Then B gets k′A from A.

3. Note that yζA · ζA
ηA = (ghA)k′A (mod p). If B uses ghA as the generator, 〈ζA, ηA〉

can be viewed as the ElGamal signatures of k′A in (ghA , p, q, y).

Then B succeeds in forging the signature if and only if A wins the above game.

Hence, we can see that if the adversary A can impersonate a user with valid creden-

tial, a polynomial time algorithm can be constructed to forge the ElGamal signature.

There is a assumption that ElGamal signature is existentially unforgeable. So we can

see that if this assumption holds, the probability ε that A can impersonate a valid user

in the protocol should be a negligible value.

Theorem 2 The above ElGamal-based SH scheme is Detector Resistant under the

Computational Diffie-Hellman (CDH) assumption in the Random Oracle Model.

Proof. Firstly, let us review the CDH assumption: given a cyclic group G, a generator

g ∈ G, and group elements ga, gb, the probability to compute gab is negligible. Then we
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consider the proof as follows. ElGamal-based SH is detector resistant if no polynomially

bounded adversary wins the following game against the Challenger with non-negligible

probability: The group administrator holds a key set for ElGamal (g, p, q, y, s), and

the Challenger gets the (g, p, q), and gives it to the adversary. The Challenger first

asks the member for a triple 〈IDA, ζA, ηA〉, where ζA = αA
(kA+1) (mod p · q) and ηA =

βA·(kA + 1)−1·αA
kA (mod q). 〈αA, βA〉 is the ElGamal signature on IDA. The adversary

then outputs y′ ∈ Zp, and the adversary wins the game if y′ = y.

Given an attacker A that wins the above game with probability ε. We construct

another algorithm B that can successfully break the CDH assumption with probability

ε. Algorithm B is as follows:

1. Given (g, p, q), B passes (g, p, q) to A.

2. Given 〈ζA, ηA〉, B can compute gαA
−(kA+1)

= gζA
−1

and gαA
kA = (yζA · ζA

ηA)hA
−1

.

Let a be αA
−(kA+1) mod q and b be αA

kA mod q as defined in the CDH problem.

3. B sends the pair 〈ζA, ηA〉 to A. Subsequently, B obtains y from A.

4. B can compute gαA
−1

= (ζA
ηA·ζA

−1 · y)hA
−1

.

Then, B has successfully broken the CDH assumption with probability ε by comput-

ing gαA
−1

= gab = gαA
−(kA+1)·αA

kA mod p. Thus we can see that if this CDH assumption

holds, the probability ε that A can violate the detector resistant property should be a

negligible value.

4.4 Efficient Construction of DSA-based SH

In this section, we construct an SH Scheme based on DSA signature using a similar

idea as above. DSA-based [75] scheme is a bit complex since there are two modulus

used in the scheme. The Digital Signature Algorithm (DSA) was developed by NIST

as a more efficient alternative to ElGamal.

From the description in Section 2.3.3, we notice that the DSA signature is very

similar to the ElGamal, but they have different modulus. Therefore, we cannot con-

struct a DSA-based handshake (DBH) scheme in a straightforward manner. The idea

is to convert the DSA signature into the form of one modulus first, and then apply the

ElGamal based SH scheme to the DSA signature based handshake.

Firstly, we compute γ as follows: γ = (gh ·yα)β−1
mod p. Now we can use the 〈γ, β〉

as the certificates of the member to conduct the handshake. We describe the scheme

as follows:
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DBH.CreateGroup. The administrator CA runs the DSA key generation algorithm to

create the set of all keys {(p, q, g, y, s) | y ≡ gs (mod p)}, in which s is the group

secret.

DBH.AddUser. Select two collision-resistant cryptographic hash functions H1 : {0, 1}∗ →
Z∗q, and H2 : {0, 1}∗ → {0, 1}n for some n. To add a user U to the group,

the administrator CA first allocates a unique identity IDU to user, and gener-

ates a random nonce rU ∈ Zq. The CA then computes the hash value hU =

H1(IDU), and gives the user U the corresponding signature 〈αU , βU〉, where

αU = (grU mod p) mod q, and βU = ((hU + αU · s) · rU
−1) (mod q).

DBH.Handshake. Let A and B be two users who would like to conduct the secret

handshake. The three-move DSA-based handshake protocol runs as follows:

• B → A: IDB, ζB, ηB

γB = (ghB · yαB)β−1
B mod p

ζB = γB
(kB+1) (mod p · q)

ηB = βB · (kB + 1)−1 · γB
kB (mod q)

• A → B: IDA, V0, ζA, ηA

V0 = H2(((y
(−ζB mod q) · (ζB mod p)ηB)hB

−1
)γA

kA mod p‖IDA‖IDB‖0)

γA = (ghA · yαA)β−1
A mod p

ζA = γA
(kA+1) (mod p · q)

ηA = βA · (kA + 1)−1 · γA
kA (mod q)

• B → A: V1

V1 = H2(((y
(−ζA mod q) · (ζA mod p)ηA)hA

−1
)γB

kB mod p‖IDA‖IDB‖1)

A verifies the V1 and accepts only if the following equation holds

V1
?
= H2(((y

(−ζB mod q) · (ζB mod p)ηB)hB
−1

)γA
kA mod p‖IDA‖IDB‖1)

B verifies the V0 and accepts only if the following equation holds

V0
?
= H2(((y

(−ζA mod q) · (ζA mod p)ηA)hA
−1

)γB
kB mod p‖IDA‖IDB‖0)

If both verification succeed, then A and B finish all the steps of the SH, and the

handshake has been successful.
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4.4.1 Security Proof

Theorem 3 The above DSA-based SH scheme is impersonator resistant under the as-

sumption that DSA signature is existentially unforgeable in the Random Oracle Model.

Proof. Similar to the proof in ElGamal-based SH, DSA-based SH is impersonator

resistant if no polynomially bounded adversary wins the following game against the

Challenger with non-negligible probability: The Challenger randomly picks a public

key (g, p, q, y), and gives it to the adversary. The adversary responds with an IDA.

The Challenger then picks a random pair 〈ζA, ηA〉, where ζA ∈ Zp·q and ηA ∈ Zq.

The adversary then outputs k′A ∈ Zq, and the adversary wins the game if (ghA)k′A =

y−ζA · ζA
ηA (mod p).

Given an attacker A that wins the above game with probability ε. We construct

another attacker B that can successfully forge the DSA signature with probability ε.

B does the following:

1. B, when given (g, p, q, y), passes (g, p, q, y) to A and gets IDA back.

2. B then computes hA = H(IDA), picks a random pair 〈ζA, ηA〉, and sends to A.

Then B gets k′A from A.

3. Note that y−ζA ·ζA
ηA = (ghA)k′A (mod p). If B uses ghA as the generator, 〈ζA mod

q, ηA〉 can be used as the DSA signatures on k′A in (ghA , p, q, y).

Then B succeeds in forging the signature if and only if A wins the above game.

Hence, we can see that if the adversary A can impersonate a user with valid cre-

dential, a polynomial time algorithm can be constructed to forge the DSA signature.

Consequently, The above DSA-based SH scheme is impersonator resistant under the

assumption that DSA signature is existentially unforgeable.

Theorem 4 The above DSA-based SH scheme is detector resistant under the Compu-

tational Diffie-Hellman (CDH) assumption in the Random Oracle Model.

Proof. DSA-based SH is detector resistant if no polynomially bounded adversary

wins the following game against the Challenger with non-negligible probability: The

group administrator holds a key set for DSA (g, p, q, y, s), and the Challenger gets the

(g, p, q), and gives it to the adversary. The Challenger first asks the member for a

triple 〈IDA, ζA, ηA〉, where ζA = αA
(kA+1) (mod p · q) and ηA = βA · (kA + 1)−1 · αA

kA

(mod q). 〈αA, βA〉 is the DSA signature on IDA. The adversary then outputs y′ ∈ Zp,
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and the adversary wins the game if y′ = y.

Given an attacker A that wins the above game with non-negligible probability ε.

We construct another algorithm B that can successfully break the CDH assumption

with probability ε. Algorithm B is as follows:

1. Given (g, p, q), B passes (g, p, q) to A.

2. Given 〈ζA, ηA〉, B can compute gαA
−(kA+1)

= gζA
−1

and gαA
kA = (y−ζA · ζA

ηA)hA
−1

.

Let a be αA
−(kA+1) mod q and b be αA

kA mod q as defined in the CDH problem.

3. B sends the pair 〈ζA, ηA〉 to A. Subsequently, B obtains y from A.

4. B can compute gαA
−1

= (ζA
ηA·ζA

−1 · y−1)hA
−1

.

Hence, B has successfully broken the CDH assumption by computing gαA
−1

= gab =

gαA
−(kA+1)·αA

kA mod p.

4.5 Summary

In this section, we proposed two three-move secret handshake schemes based on the

ElGamal signature and DSA signature. Our work answered the open problem of con-

structing three-move SH schemes using ElGamal signature affirmatively. We also

showed that our ElGamal (DSA) based scheme is secure against impersonator and

detector attacks under the assumption the existentially unforgeable of the ElGamal

(DSA) signature.



Chapter 5

Group Key Agreement Schemes

Many ID-based AGKA protocols have been proposed in recent years. Nevertheless,

some efficient results in [15,32,36,38,61] require two rounds to construct a session key

and some of these protocols are found to be flawed [32, 36]. In addition, some single

round tripartite authenticated key agreement protocols [31,57,101] have been proposed

but these methods cannot be extended to large groups consisting of more than three

parties since these methods rely on the bilinearity property of bilinear pairing. Barua

et al. [6] attempted to extend Joux’s tripartite protocol [57] to an ID-based AGKA,

but the scheme requires dlog3ne rounds. Very recently, a single round ID-based AGKA

protocol was proposed by Shi et al. [89]. However, their scheme is flawed in fact, which

was shown in Section 3.3. In this chapter, we describe our single round ID-based AGKA

protocol, and an efficient two-round ID-based AGKA scheme [102], which is a variant

of our one-round ID-based AGKA. We then prove that our ID-based AGKA protocols

are secure against active adversary under the assumption of DBDH in the ROM. Part

of this chapter has appeared in [102].

63
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5.1 Security Arguments

In this section, we first describe the security model in which we prove the security of

our group key agreement protocol. Then, we define some security notions related to

this model.

5.1.1 Security Model

The model described below follows Bresson et al.’s [22] formal security model, which

builds on prior work from the two-party setting [9,10,12]. We restrict to recalling some

details of their cryptographic proof model used for the security proof below. A more

detailed discussion of this model can be found in [22,23].

Participants. A finite set U of PPT Turing machines Ui models the users that con-

stitute the (potential) protocol participants. In this model we allow each user

Ui ∈ U to execute a protocol many times with different users. A user may execute

a polynomial number of protocol instances in parallel. We denote the instance

t ∈ N of principal Ui ∈ U by Πt
i.

Initialization. During this phase, which is conducted before the first execution of

the key establishment protocol, the master secret key s and global parameters

Params are generated by algorithm Setup. Each user Ui ∈ U gets public and

private keys from a group administrator GA by using algorithm Setup, while the

long-term private key SUi
is only revealed to Ui, the corresponding public key is

given to all users.

Adversarial model. Normally, the security of a protocol is related to the adversary’s

ability. The abilities are formally modeled by queries issued by adversaries. We

assume that a probabilistic polynomial time adversary A controls the communi-

cations completely and can make queries to any instance. The list of queries that

A can make is summarised below:

• Execute({U1, U2, . . . , Ur}): This query executes a protocol run between the

users {U1, U2, . . . , Ur}, and the adversary A gets the complete transcripts of

all the messages sent during the protocol execution.
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• Send(Πt
i,M): This query allows the adversary A to send a message M to

instance Πt
i, and A gets back the reply generated by this instance.

• Reveal(Πt
i): This query returns the session key. A is allowed to use this

query only if the oracle Πt
i has accepted, then A gets the session key.

• Corrupt(Ui): This query allows the adversary A to obtain the long-term

private key corresponding to Ui. But the adversary A does not get the

internal data of any instance of Ui executing the protocol.

• Test(Ui, t): The adversary A can use this query only once. This query mod-

els the semantic security of a session key. A can ask any of the above queries,

and once, asks a Test query. Then, a random bit b is drawn and the session

key is returned if b = 1, otherwise a random value is returned.

In the model, we consider two types of adversaries according to their attack

types. The attack types are simulated by the queries issued by adversaries.

A passive adversary is not allowed to use Send and Corrupt queries, while an

active adversary can issue all the above queries.

5.1.2 Security Notions

We define session IDS (SIDS) for oracle Πt
i in a execution protocol as SIDS(Πt

i) =

{SIDij, j ∈ U} where SIDij is the concatenation of all messages exchanged by oracle

Πt
i with Πw

j . The partner ID for an oracle Πt
i, denoted by PIDS(Πt

i), is a set of the

users with whom Πt
i intends to establish a session key.

Definition 7 Partnering Now we define instances Πt
i and Πw

j are partnered if and

only if PIDS(Πt
i) = PIDS(Πw

j ) and SIDS(Πt
i) = SIDS(Πw

j ).

Definition 8 Freshness Following [22,60,61], we define a user instance Πt
i that has

accepted fresh if:

• For a Uj ∈ U , a Corrupt(Uj) query was never executed before a query of the

form Send(Πt
i, ∗) or Send(Πw

j , ∗), where Πt
i and Πw

j are partnered, has taken

place.

• Πt
i has accepted a session key K 6= NULL and neither Πt

i nor one of its partners

has been asked for a Reveal query.
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Before we look into the security of the protocol, we first define the following game

between the adversary A and a set of oracles Πt
i for Ui ∈ U .

1. Each user is given a long-term private key during the initialization phase.

2. Adversary A interacts with some queries and gets back the reply generated by

the corresponding oracles.

3. A executes a Test(Πt
i) query for a fresh oracle Πt

i, and finally outputs a guess

bit b′.

In above game, we denote by Succ the probability that the bit b′ outputs by A
satisfies b = b′.

Definition 9 Protocol Security We denote the advantage of the adversary A at-

tacking the protocol as AdvA(k) = |2 · Succ − 1|. We say the group key establishment

protocol secure if for all PPT adversary A AdvA(k) is negligible.

Definition 10 Authentication A key agreement protocol is said to provide authen-

tication if for a user Ui, no other users except partners can learn the value of a session

key.

Definition 11 Forward Secrecy Forward secrecy means that an adversary gets neg-

ligible advantage in knowing information about previously established session keys when

making a Corrupt query.

5.2 One-Round Group Key Agreement Scheme

In this section, we present our one-round ID-based AGKA scheme, which we called O-

AGKA. The protocol involves a group administrator GA. In the following description

H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n and H3 : {0, 1}n → {0, 1}n are cryptographic

hash functions. H1, H2 and H3 are considered as random oracles in the security analy-

sis.

5.2.1 The Scheme

Our O-AGKA scheme consists of four probabilistic algorithms Setup, Extract, Interact-

ing, and Key Computation.
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Setup. GA runs BDH parameter generator to generate a prime q, two groups G1,G2

of order q, and an bilinear map ê : G1 × G1 → G2. Choose a random generator

P ∈ G1. Then GA picks a random s ∈ Z∗q and sets Ppub = sP . GA keeps

s secret as the master secret key and publishes system parameters params =

{ê,G1,G2, q, P, Ppub, H1, H2, H3}.

Extract. When a user Ui with identity IDi wishes to obtain a key pair, GA computes

Qi = H1(IDi) and the long-term private key Si = sQi, and returns Si to the user

Ui.

Let U1, . . . , Un be the n users who want to establish a session key. The protocol

is as follows:

Interacting. Each user Ui picks δi
R← G2 and ri, ki

R← {0, 1}n. Then Ui computes

P j
i = H2(ê(Si, Qj) · δi)⊕ ri, where 1 ≤ j ≤ n and j 6= i. Ui then computes

Xi = 〈δi, P 1
i , . . . , P i−1

i , P i+1
i , . . . , P n

i , H3(ri)⊕ ki, L〉,

where L is a label that contains information about how “P j
i ” is associated with

each receiver. Then Ui broadcasts Xi to all others.

Key Computation. Let Xj = 〈Rj, P
1
j , . . . , P n

j , Vj,L〉. Upon receiving Xj, each respon-

der Ui, using L, finds appropriate P i
j and computes

k′j = H3(H2(ê(Qj, Si) ·Rj)⊕ P i
j )⊕ Vj

Each Ui can now compute the common session key as follows:

K = Ki = k′1 ⊕ · · · ⊕ k′i−1 ⊕ ki ⊕ k′i+1 ⊕ · · · ⊕ k′n

From the scheme we described above, we can observe that each participant involved

broadcasts message only once, as shown in Fig. 5.1, so that the protocol can be

completed in one round.

5.2.2 Security Proof

In this section, we show that the protocol O-AGKA is secure against an active adversary

under the DBDH assumption. In other words, if there exists an active adversary who

has non-negligible probability of breaking the the DBDH assumption, then (s)he also

has non-negligible probability of breaking protocol O-AGKA.



5.2. One-Round Group Key Agreement Scheme 68

Figure 5.1: One-Round ID-based Group Key Agreement

Theorem 5 The above O-AGKA protocol is secure against an active adversary under

the DBDH assumption in the Random Oracle Model. Concretely,

AdvA ≤ 2n · qex · AdvDBDH
A

Proof. Let A be an active adversary that can get an advantage in breaking O-AGKA.

We first consider the case that an adversary A makes only one Execute query and then

extend this to the case that A makes multiple Execute queries. Let n be the number of

users chosen by the adversary A. The distribution of the transcript T and the resulting

group session key K is given by:

params =




(G1,G2, ê) ← IGBDH ; P ← G1; s ← Z∗q; Ppub = sP

Q1, . . . , Qn ← G1; S1 = sQ1, . . . , Sn = sQn :

(G1,G2, ê, P, Ppub)



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Real =




δ1, . . . , δn ← G2; r1, . . . , rn, k1, . . . , kn ← {0, 1}n;

R1 = δ1, . . . , Rn = δn

P i
1 = H2(ê(S1, Qi) · δ1)⊕ r1, . . . , P

i
n = H2(ê(Sn, Qi) · δn)⊕ rn

V1 = H3(r1)⊕ k1, . . . , Vn = H3(rn)⊕ kn;

k′j = H3(H2(ê(Qj, Si) ·Rj)⊕ P i
j )⊕ Vj

T = 〈R1, . . . , Rn, P i
1, . . . , P

i
n, V1, . . . , Vn〉;

K = k′1 ⊕ · · · ⊕ k′i−1 ⊕ ki ⊕ k′i+1 ⊕ · · · ⊕ k′n




Consider the distributions Fakei defined as follows:

Fake1 =




δ1, . . . , δn ← G2; r1, . . . , rn, k1, . . . , kn ← {0, 1}n; b1, . . . , bn ← Z∗q
R1 = δ1, . . . , Rn = δn

P i
1 = H2(ê(b1Ppub, biP ) · δ1)⊕ r1, . . . , P

i
n = H2(ê(Sn, Qi) · δn)⊕ rn

V1 = H3(r1)⊕ k1, . . . , Vn = H3(rn)⊕ kn;

k′1 = H3(H2(ê(b1P, biPpub) ·R1)⊕ P i
1)⊕ V1

k′j = H3(H2(ê(Qj, Si) ·Rj)⊕ P i
j )⊕ Vj|2 ≤ j ≤ n, j 6= i

T = 〈R1, . . . , Rn, P
i
1, . . . , P

i
n, V1, . . . , Vn〉;

K = k′1 ⊕ · · · ⊕ k′i−1 ⊕ ki ⊕ k′i+1 ⊕ · · · ⊕ k′n




· · ·

Continuing in this way, we obtain the distribution:

Faken =




δ1, . . . , δn ← G2; r1, . . . , rn, k1, . . . , kn ← {0, 1}n; b1, . . . , bn ← Z∗q
R1 = δ1, . . . , Rn = δn

P i
1 = H2(ê(b1Ppub, biP ) · δ1)⊕ r1, . . . , P

i
n = H2(ê(bnPpub, biP ) · δn)⊕ rn

V1 = H3(r1)⊕ k1, . . . , Vn = H3(rn)⊕ kn;

k′j = H3(H2(ê(bjP, biPpub) ·Rj)⊕ P i
j )⊕ Vj

T = 〈R1, . . . , Rn, P
i
1, . . . , P

i
n, V1, . . . , Vn〉;

K = k′1 ⊕ · · · ⊕ k′i−1 ⊕ ki ⊕ k′i+1 ⊕ · · · ⊕ k′n




Let ε = AdvDBDH
A . Assume that A made qse times Send queries and qex times

Execute queries. Then A randomly chooses (T , K) pairs to make a Test query and out-

puts b′. Since A can obtain b1P, . . . , bnP by using multiple H1 queries, and Ppub = sP

is public, it is obviously that A can distinguish ê(SU1 , QUi
) from ê(b1sP, biP ) with prob-

ability ε′, where ε′ ≤ ε. Hence A can correctly guess b = b′ with probability ε′. The

remaining steps continue in the same way and we obtain:
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|Pr[T ← Real; K ← Real;A(T , K) = 1]−
Pr[T ← Fake1; K ← Fake1;A(T , K) = 1]| ≤ ε

|Pr[T ← Fake1; K ← Fake1;A(T , K) = 1]−
Pr[T ← Fake2; K ← Fake2;A(T , K) = 1]| ≤ ε

...

|Pr[T ← Faken−1; K ← Faken−1;A(T , K) = 1]−
Pr[T ← Faken; K ← Faken;A(T , K) = 1]| ≤ ε

Combining the above equations, we obtain the following.

ε′′ = |Pr[T ← Real; K ← Real;A(T , K) = 1]−
Pr[T ← Faken; K ← Faken;A(T , K) = 1]| ≤ n · ε

Hence ε′′ is the probability that the session key can be correctly guessed when A
make the Test query. Assume that A has made qh times H1 queries during the breaking

process, then there will be a H-list which contains all the messages that A has queried

before. Let Ask be the event that what A make to the Hash query is on the H-list

when A make the Test query. The advantage A in breaking the protocol conditioned

by the fact that the session key is correctly guessed, is:

AdvA = 2 · Succ− 1 = 2Pr[b = b′]− 1

= 2Pr[b = b′|¬Ask]Pr[¬Ask] + 2Pr[b = b′|Ask]Pr[Ask]− 1

= 2Pr[b = b′|¬Ask] + 2Pr[b = b′|Ask]− 1

= 2Pr[b = b′|Ask] = 2ε′′

In the random oracle model, 2Pr[b = b′|¬Ask] − 1 = 0, since A cannot gain any

advantage on a random oracle without asking for it. Then we can have the probability

that A breaks the O-AGKA, which is less than 2n ·AdvDBDH
A . By adapting a standard

hybrid argument, we obtain the probability that an active adversary A breaks the

protocol O-AGKA as follows:

AdvA ≤ 2n · qex · AdvDBDH
A

5.3 Efficient Group Key Agreement Scheme

Then we present our two-round ID-based AGKA protocol called T-AGKA, which is

more efficient in communiacation costs than other previously known AGKA protocols.
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The T-AGKA protocol is a variant of O-AGKA protocol presented above. As shown in

Fig. 5.2, an initiator will broadcast message to other users firstly before all the parties

start communicating with each other. We describe the scheme as follows:

5.3.1 The Scheme

Setup. As in the O-AGKA scheme. In addition, we pick three new hash functions

H4 : G2 → {0, 1}n, H5 : {0, 1}n → Z∗
q and H6 : G1 → {0, 1}n.

Extract. As in the O-AGKA scheme.

Interacting.

• Round 1 The initiator U1 picks δ
R← G2, r

R← {0, 1}n and k1
R← Z∗p. Then U1

computes D1 = 〈R, P2, . . . , Pn, V,W,L〉 such that

D1 = 〈δ, r⊕H4(ê(S1, Q2)·δ), . . . , r⊕H4(ê(S1, Qn)·δ), H5(r)·k1P, k1Ppub, L〉,

where L is a label that contains information about how “Pi” is associated

with each receiver, and broadcasts D1 to all others.

• Round 2 Upon receiving D1, each responder Ui, 2 ≤ i ≤ n, using L, finds

appropriate Pi, and computes r′ = H4(ê(Q1, Si) ·R)⊕ Pi. If D1 is the valid

message, it is obvious that r′ = r. Then Ui picks ki
R← Z∗p, computes

Di = 〈H5(r) · kiP, kiPpub〉

and broadcasts Di to all others.

Key Computation. Let Dj = 〈Xj, Yj〉. When received Dj, each Ui, including the

initiator U1, computes z1 = H5(r)
−1 · V and zj = H5(r)

−1 ·Xj, 2 ≤ j ≤ n. Then

each Ui can hold a list of zj, and Ui can verify all the zj:

ê(P,

n∑
j=1

Yj)
?
= ê(Ppub,

n∑
j=1

zj)

If the above equation holds, Ui can assume that all the parties involved are valid

members of the group with the corresponding long-term private keys.

Each Ui now can compute the common session key as follows:

K = Ki = H6(z1)⊕ · · · ⊕H6(zn)
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Figure 5.2: Two-Round ID-based Group Key Agreement

5.3.2 Security Proof

Theorem 6 The two-round group key agreement protocol T-AGKA is secure against

an active adversary under the DBDH assumption in the Random Oracle Model. Con-

cretely,

AdvA ≤ 2qex · AdvDBDH
A

Proof. Let A be an active adversary that can get an advantage in breaking O-

AGKA. The distribution of the transcript T and the resulting group session key K is

given by:

params =




(G1,G2, ê) ← IGBDH ; P ← G1; s ← Z∗q; Ppub = sP

Q1, . . . , Qn ← G1; S1 = sQ1, . . . , Sn = sQn :

(G1,G2, ê, P, Ppub)



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Real =




δ ← G2; r ← {0, 1}n; k1, . . . , kn ← Z∗q;
R = δ; Pi = r ⊕H4(ê(S1, Qi) · δ); V = H5(r) · k1P ; W = k1Ppub

X2 = H5(r) · k2P, . . . , Xn = H5(r) · knP

r′ = H4(ê(Q1, Si) ·R)⊕ Pi

z1 = H5(r
′)−1 · V ; zj = H5(r

′)−1 ·Xj

T = 〈R, Pi, X1, . . . , Xn, Yi, V, W 〉;
K = H6(z1)⊕ · · · ⊕H6(zn)




Consider the distributions Fake defined as follows:

Fake =




δ ← G2; r ← {0, 1}n; a, b2, . . . , bn, k1, . . . , kn ← Z∗q;
R = δ; Pi = r ⊕H4(ê(aPpub, biP ) · δ); V = H5(r) · k1P ; W = k1Ppub

X2 = H5(r) · k2P, . . . , Xn = H5(r) · knP

r′ = H4(ê(aP, biPpub) ·R)⊕ Pi

z1 = H5(r
′)−1 · V ; zj = H5(r

′)−1 ·Xj

T = 〈R,Pi, X1, . . . , Xn, Yi, V,W 〉;
K = H6(z1)⊕ · · · ⊕H6(zn)




Let ε = AdvDBDH
A . Assume that A made qse times Send queries and qex times

Execute queries. Then A randomly chooses (T , K) pairs to make a Test query and out-

puts b′. We observe that once A can distinguish r from a random number, then he can

distinguish the session key from a random number. Since A can obtain aP, b2P, . . . , bnP

by using multiple H1 queries, and Ppub = sP is public, it is obvious that A can dis-

tinguish ê(SU1 , QUi
) from ê(asP, biP ) with probability ε′, where ε′ ≤ ε. Hence A can

correctly guesses b = b′ with probability ε′. Then we can have:

ε′ = |Pr[T ← Real; K ← Real;A(T , K) = 1]−
Pr[T ← Fake; K ← Fake;A(T , K) = 1]| ≤ ε

ε′ is the probability that the session key can be correctly guessed when A make

the Test query. Assume that A has made qh times Hash queries during the breaking

process, then there will be a H-list which contains all the messages that A has queried

before. Let Ask be the event that what A make to the H1 query is on the H-list when

A make the Test query. The advantage A in breaking the protocol conditioned by the

fact that the session key is correctly guessed, is
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AdvA = 2 · Succ− 1 = 2Pr[b = b′]− 1

= 2Pr[b = b′|¬Ask]Pr[¬Ask] + 2Pr[b = b′|Ask]Pr[Ask]− 1

= 2Pr[b = b′|¬Ask] + 2Pr[b = b′|Ask]− 1

= 2Pr[b = b′|Ask] = 2ε′

In the random oracle model, 2Pr[b = b′|¬Ask] − 1 = 0, since A cannot gain any

advantage on a random oracle without asking for it. Then we can have the probability

that A breaks the T-AGKA, which is less than 2 · AdvDBDH
A . By adapting a standard

hybrid argument, we obtain the probability that an active adversary breaks the protocol

T-AGKA as follows:

AdvA ≤ 2qex · AdvDBDH
A

5.4 Efficiency Comparison

In this section, we compare our protocols O-AGKA, T-AGKA with two previously de-

scribed AGKA protocols, the CHL-AGKA by Choi et al. [32], and the SCL-AGKA by

Shi et al. [89]. The CHL-AGKA scheme [32] is proved to be flawed, but an improved

scheme [37] fixes the problem of CHL-AGKA, which is very similar to the CHL-AGKA.

So we still treat CHL-AGKA as secure. We use the following notations:

n total number of the users in the group

Round total number of rounds

Pairing total number of pairing computations for all users

Ucasts total number of unicast of all members

Bcasts total number of broadcast of all members

Msize total number of the messages of all members
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Then, we obtain the following comparison.

Protocol Round Pairing Ucasts Bcasts Msize Remark
CHL-AGKA 2 4n 0 2n 3n ID-based
SCL-AGKA 1 n (n-1)2 0 n2 flawed

Our O-AGKA 1 n2 0 n n(n+2) ID-based
Our T-AGKA 2 4n 0 n 3n ID-based

Table 5.1: AGKA Scheme Efficiency Comparison

As shown in Table 5.1, our T-AGKA protocol is the most efficient one as compared to

other protocols. Our O-AGKA protocol requires to involve more messages compared

to other protocols, but it only requires one round. We noted that SCL-AGKA actually

is flawed and is not an ID-based protocol, which was presented in Section 3.3, and

hence, our O-AGKA protocol is the only provably secure protocol that requires one

round that is known to date.

5.5 Summary

In this section, we presented a provably secure one-round ID-based AGKA protocol for

the first time in the literature. The protocol is a contributory key agreement in which

each group member takes responsibility for contributing to the generation of group

session key. We also provided an alternative way of achieving an efficient two-round

ID-based AGKA protocol. The scheme itself requires two rounds. However, as we

showed , this scheme is very efficient in communication costs, compared with other

previously known ID-based AGKA protocols, and hence, this scheme outperforms any

other existing schemes in the literature. We provided security proofs for our schemes,

and showed that they are secure against active adversaries under the DBDH assump-

tion in the random oracle model. Our protocols provide forward secrecy in the sense

that any exposure of any user’s long-term private keys does not compromise the secu-

rity of previous session keys.



Chapter 6

Group Secret Handshakes

Most two-party secret handshakes in literature are based on key agreement protocols.

Once two parties can construct the same shared key, they complete the handshake

successfully. Now we look into the group secret handshake. Recently, a framework

of multi-party secret handshakes was introduced by Tsudik and Xu [91, 92]. They

proposed a framework called GCD, which is essentially a compiler that transforms three

main ingredients, including a group signature scheme [8,13,62], a centralised group key

distribution scheme [97], and a distributed group key agreement scheme [9, 25], into

a secure secret handshake scheme. They also constructed two instantiations following

this framework. However, Tsudik and Xu [91, 92] mentioned that they only aimed

to construct a framework of multi-party secret handshake, and never optimize the

efficiency of the framework. Another efficient GSH scheme was proposed by Jarecki,

Kim and Tsudik [56], but their scheme has a defect, which was shown in Section

3.4. Adversary involved in the protocol can know the group affiliation of other honest

parties, which violates the security requirement of SH. In this chapter, we present

our GSH scheme, which is motivated by the multi-receiver identity-based encryption

scheme by Baek et al. [4]. Then we prove that our scheme does not have this defect

and is secure under the BDH and DBDH assumptions.

76
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6.1 Generic Scheme

In this section we extend the generic scheme of SH to a multi-party setting. The model

consists of a set U of possible users, and a set G of groups, where each group is a set of

members managed by a group administrator GA. We define a group secret handshake

scheme GSH by the following algorithms:

• GSH.CreateGroup: a key generation algorithm executed by the group administra-

tor GA to establish a group G. It takes as input security parameters, and outputs

the group public key pG, the GA’s private key sG, and a revoked user list RUL,

which is originally set to empty. The RUL is made known only to current group

members.

• GSH.AddUser: an algorithm executed between GA and a group member on GA’s

private key sG and shared inputs: params, pG, and the identity of the group

member which is bit string ID of size regulated by params. After performing the

algorithm, the group member will be issued a secret credential produced by GA

for the member’s identity ID.

• GSH.HandShake: an authentication protocol, executed by a set ∆ of n users pur-

porting to be members of a group G, where ∆ = {U1, . . . , Un} and n ≥ 2. The

protocol takes as public input the identities IDU1 , . . . , IDUn of all the users in ∆,

and params, and the private input is their secret credentials. The output of the

protocol for each party is either reject or accept.

• GSH.TraceUser: an algorithm executed by the GA, on input of a transcript of a

successful handshake between the set ∆ of users, outputs the identities of all the

users involved in the handshake.

• GSH.RemoveUser: an algorithm executed by GA on input an identity of the user

U and the RUL, inserts U into the RUL and sends the updated RUL to the

existing group members through the authenticated anonymous channel.
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6.2 Security Arguments

A GSH scheme must satisfy the properties of completeness, impersonation resistant,

and detection resistant. The adversary is allowed to run the protocols several times and

be able to make additional queries after each attempt, before the adversary announces

that (s)he is ready for the true challenges.

We denote the set of users involved in the GSH as ∆. {U1, . . . , Un} each denotes a

user U ∈ ∆. Consider that A may join the set ∆, and perform a GSH protocol with

the valid users in G.

Completeness. If all the participants {U1, . . . , Un} involved in the group secret hand-

shakes are honest members of the same group with valid certificates from the

group administrator. Then both parties output “accept”, otherwise output “re-

ject”.

Impersonation Resistance. If an adversary A /∈ G does not corrupt any member

of its target group G, it has only a negligible probability in impersonating as an

honest member of G.

Let A denote an attacker, and B denote a challenger. Consider the following

game in which A interacts with B:

Phase 1: A outputs target multiple identities ∆ = (ID∗
1, . . . , ID

∗
n), where IDA =

ID∗
i and i ∈ [1, n].

Phase 2: B runs a key generation algorithm to generate the group public key

pG, the GA’s private key sG, and sends pG to A while keeping sG secret from

A.

Phase 3: A makes a number of credential extraction queries. To answer each

query made by A, B runs the GSH.AddUser algorithm, and outputs SID

which is the group credential for identity ID, where ID /∈ ∆.

Phase 4: A triggers a handshake protocol. B acts as honest parties in the

protocol, who have valid credentials for their identities.

Phase 5: B answers A’s credential extraction / random oracle queries as in Phase

2 and 3.

Phase 6: A returns the messages 〈XA, YA〉, which can make other parties output

“accept” after running the protocol.
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We define the probability that attacker A impersonates successfully in the hand-

shake protocol as AdvImpersonate
A , which is identical to the probability that A

outputs the valid pair 〈XA, YA〉.

Detection Resistance. If an adversary A /∈ G, who does not corrupt any member of

its target group G, is involved in the group secret handshakes, each participant

in handshakes has only a negligible probability in distinguishing an interaction

with any honest user Ui ∈ G from the one with a simulator.

Let A denote an attacker, and B denote a challenger. Phases 2, 3, 5 of the attack

game are identical to those for impersonation resistant. We only describe Phase

1, 4, 6 in the following:

Phase 1: A outputs two target multiple identities ∆ = (ID∗
1, . . . , ID

∗
i−1, ID

∗
i+1, ID

∗
n)

and ID0
i , ID

1
i , where IDA 6= ID∗

i , i ∈ [1, n]. ID0
i is a member, who holds an

valid credential. ID1
i is a unqualified member, who does not have the valid

group credential.

Phase 4: A triggers a handshake protocol. B randomly chooses a β ∈ {0, 1},
and set ID∗

i = IDβ
i . Then B simulates the handshake protocol with A.

Phase 6: A outputs its guess β′.

We denote the probability that the attacker A can distinguish an interaction with

any honest user Ui ∈ G from the one with a simulator in the handshake protocol

as AdvDetect
A = |Pr[β′ = β] − 1

2
|. In other words, an attacker involved in the

handshake protocol has a probability of AdvDetect
A to know the group affiliation of

other participants.

Indistinguishability to eavesdropper. An adversary A, who does not participate

in a handshake protocol, has only a negligible probability in learning any knowl-

edge about whether the handshake is successful or not, even if A ∈ G.

Let A denote an attacker, and B denote a challenger. Phases 2, 3, 5 of the attack

game are identical to those for impersonation resistant. We only describe Phase

1, 4, 6 in the following:

Phase 1: A outputs two target multiple identities ∆0 = (ID∗
1, . . . , ID

∗
n) and

∆1 = (ID1, . . . , IDn), where IDA 6= ID∗
i and IDA 6= IDi, i ∈ [1, n]. ∆0 is a

group, in which each user holds an valid credential. ∆1 is a group, in which

one or some users do not have the valid group credential.
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Phase 4: B randomly chooses a β ∈ {0, 1}, and simulates a handshake protocol

among the group ∆β. An additional copy will be sent to A every time B
simulates an interaction in GSH protocol.

Phase 6: A outputs its guess β′ ∈ {0, 1}.

We denote the probability that the attacker A can distinguish an successful pro-

tocol from an unsuccessful one as AdvDistinguish
A = |Pr[β′ = β]− 1

2
|. If an attacker

does not take part in a handshake protocol, (s)he has a probability of AdvDistinguish
A

to know whether the handshake protocol is successful or not.

Unlinkability. No adversary A is able to associate two handshakes involving a same

honest user or a same set of honest users, even if A ∈ G and A participated in

both executions.

Traceability. Given a transcript of a successful handshake execution, group adminis-

trator GA can trace all users involved.

6.3 Concrete Construction from Bilinear Pairings

In this section, we present our group secret handshake scheme called GSH. The protocol

involves a group administrator GA. In the following description H1 : {0, 1}∗ → G1 and

H2 : G2 → {0, 1}n are cryptographic hash functions. H1 and H2 are considered as

random oracles in the security analysis.

6.3.1 The Scheme

GSH.CreateGroup. GA runs BDH parameter generator to generate a prime q, two

groups G1,G2 of order q, and an bilinear map ê : G1 × G1 → G2. Choose

three random generators P, Q, N ∈ G1. Then GA picks a random s ∈ Z∗q, sets

Ppub = sP and Qpub = sQ. GA keeps s secret as the master secret key and

publishes system parameters

params = {G1,G2, ê, q, Ppub, P,Qpub, Q, N,H1, H2}

GSH.AddUser. When a user Ui with identity IDi wishes to obtain a secret credential

for his identity, GA computes the corresponding credential SIDi
= sH1(IDi), and

returns SIDi
to the user Ui.
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GSH.HandShake Let U1, . . . , Un be the n users who want to conduct a group secret

handshake. The protocol runs as follows:

• Each user Ui picks ki
R← G2 and ri

R← Z∗p. Then Ui computes T j
i =

riH1(IDj) + riN , where 1 ≤ j ≤ n and j 6= i. Ui then computes

Ci = 〈riH1(IDi), T
1
i , . . . , T n

i , riP, riQ, L〉,

where L is a label that contains information about how “T j
i ” is associated

with each receiver. Then Ui broadcasts Ci to all others.

• Let Cj = 〈Rj, T
1
j , . . . , T n

j , Vj,Wj,L〉. Upon receiving Cj, each responder Ui

computes Ki = ki · ê(SIDi
,−H1(ID1) − · · · − H1(IDi−1) + H1(IDi+1) + · · · +

H1(IDn)) and K ′
i = ki · ê(riSIDi

,−R1−· · ·−Ri−1 +Ri+1 + · · ·+Rn). Ui then

computes

Di = 〈ê(N,Ppub)
ri ·Ki, ê(N, Qpub)

ri ·K ′
i〉,

and broadcasts Di to all others.

Let Dj = 〈Xj, Yj〉. Now each user Ui, using L, finds appropriate T i
j and computes

K1K2 · · ·Kn =
ê(SIDi

, V1 + · · ·+ Vn)

ê(T i
1 + · · ·+ T i

n, Ppub)
· (X1X2 · · ·Xn)

K ′
1K

′
2 · · ·K ′

n =
ê(SIDi

,W1 + · · ·+ Wn)

ê(T i
1 + · · ·+ T i

n, Qpub)
· (Y1Y2 · · ·Yn)

It is easy to see that the above equations are consistent. If Ci, Di are valid

messages,

ê(SIDi
,
∑n

j=1 Vj) ·
∏n

j=1 Xj

ê(
∑n

j=1 T i
j , Ppub)

=
ê(sH1(IDi),

∑n
j=1 rjP ) ·∏n

j=1 Xj

ê(
∑n

j=1(rjH1(IDi) + rjN), sP )

=
ê(

∑n
j=1 rjH1(IDi), sP ) ·∏n

j=1 Xj

ê(
∑n

j=1(rjH1(IDi) + rjN), sP )
=

∏n
i=1 ê(N, Ppub)

ri ·Ki

ê(
∑n

i=1 riN, sP )
=

n∏
i=1

Ki

The same as above, we can also obtain

ê(SIDi
,
∑n

j=1 Wj) ·
∏n

j=1 Yj

ê(
∑n

j=1 T i
j , Qpub)

=
n∏

i=1

K ′
i
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Then each user Ui verifies and accepts only if the following equation holds

K1K2 · · ·Kn
?
= K ′

1K
′
2 · · ·K ′

n (6.1)

If the above verification succeed, then U1, . . . , Un finish all the steps of the GSH,

and the handshake has been successful.

Each Ui can also create a shared secret key for future communication as follows:

K = H2(K1K2 · · ·Kn)

GSH.TraceUser. Given a transcript of a handshake among U1, . . . , Un, the adminis-

trator GA can easily recover the SIDi
of each user Ui by iterating over all the

credentials GA has issued, and adding each attempt at simulating the verification

of the handshake protocol. If GA outputs “accept” after the verification, then

GA can look up which user this credential had been issued to.

GSH.RemoveUser. To remove a user U from the group G, the administrator can simply

add the identity of the user to the RUL, and encrypts the update information by

using an Identity-Based Encryption scheme. Then GA distributes the informa-

tion to the members of the group, alerting them to abort any handshake should

they find themselves performing the handshake with a user using any identity on

the RUL.

Correctness

To check the correctness of the scheme, now we show that both sides of equation 6.1

are equal. Assume that each user has the correct credential from the GA.
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First, we look into the left side of the equation:

n∏
i=1

Ki =
n∏

i=1

(
ki · ê(SIDi

,−
i−1∑
j=1

H1(IDj) +
n∑

j=i+1

H1(IDj))
)

=
n∏

i=1

(
ki ·

i−1∏
j=1

ê(H1(IDj), H1(IDi))
−s ·

n∏
j=i+1

ê(H1(IDi), H1(IDj))
s
)

=
n∏

i=1

ki ·
n∏

i=1

( i−1∏
j=1

ê(H1(IDj), H1(IDi))
−s ·

n∏
j=i+1

ê(H1(IDi), H1(IDj))
s
)

=
n∏

i=1

ki

Then we look into the right side:

n∏
i=1

K ′
i =

n∏
i=1

(
ki · ê(riSIDi

,−
i−1∑
j=1

Rj +
n∑

j=i+1

Rj)
)

=
n∏

i=1

(
ki ·

i−1∏
j=1

ê(rjH1(IDj), riH1(IDi))
−s ·

n∏
j=i+1

ê(riH1(IDi), rjH1(IDj))
s
)

=
n∏

i=1

ki ·
n∏

i=1

( i−1∏
j=1

ê(rjH1(IDj), riH1(IDi))
−s ·

n∏
j=i+1

ê(riH1(IDi), rjH1(IDj))
s
)

=
n∏

i=1

ki

6.3.2 Security Proof

Theorem 7 The above GSH scheme is impersonation resistant under the Bilinear

Diffie-Hellman assumption in the Random Oracle Model.

Proof. Assume that an adversary A violates the impersonation resistant property. Now

we show how to construct an attacker B for solving the BDH problem. Suppose that

B is given (q,G1,G2, P, aP, bP, cP ) as an instance of the BDH problem. Attacker B
interacts with A as follows:

Phase 1: Suppose that A outputs target multiple identities ∆ = (ID∗
1, . . . , ID

∗
n), where

IDA = ID∗
i and i ∈ [1, n].

Phase 2: B sets Ppub = cP , and gives {G1,G2, ê, q, Ppub, P, Qpub, Q, N, H1} to A as the

system parameters, where H1 is a random oracle controlled by B as follows:
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Upon receiving a random oracle query IDj to H1:

- If there exists (IDj, lj, Lj) in H1List, return Lj. Otherwise, do the following:

* If IDj = IDA, where IDA is the identity of the adversary A, randomly

choose lj ∈ Z∗q and set Lj = aP .

* Else if IDj 6= ID∗
n, choose lj ∈ Z∗q uniformly at random and compute

Lj = ljP .

* If IDj = ID∗
n, search H1List to get lj that corresponds to ID∗

i for i ∈ [1, n),

and compute Lj = (
∑i−1

j=1 lj −
∑n−1

j=i+1 lj)P + bP .

* Put (IDj, lj, Lj) in H1List and return Lj as answer.

Phase 3: B answers A’s private key extraction queries as follows:

Upon receiving a private key extraction query on IDj:

- If there exists (IDj, lj, Lj) in H1List, compute SIDj
= ljPpub. Otherwise, do

the following:

* Choose lj ∈ Z∗q uniformly at random and compute SIDj
= ljPpub.

* Put (IDj, lj, Lj) in H1List and return SIDj
as answer.

Phase 4: B acts as honest parties and broadcasts messages as follows:

- Choose rj ∈ Z∗q, where j ∈ [1, n).

- Compute Rj = rjP , and Rn = (
∑i−1

j=1 rj −
∑n−1

j=i+1 rj)P .

- Randomly choose T 1
j , . . . , T n

j , Vj,Wj for j ∈ [1, n] and j 6= i.

- Return Cj = (Rj, T
1
j , . . . , T n

j , Vj,Wj) to A.

Phase 5: B answers A’s random oracle/private key extraction queries as in Phase 2

and 3.

Phase 6: A returns the messages 〈XA, YA〉.

Analysis: Note that if 〈XA, YA〉 is the valid response, ID∗
j , where j ∈ [1, n), can extract

the (KA, K ′
A). Then KA·K ′−1

A should be identical to (kA·ê(SIDA ,−∑i−1
j=1 H1(ID

∗
j)+
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∑n−1
j=i+1 H1(ID

∗
j) + H1(ID

∗
n)) · (kA · ê(rASIDA ,−∑i−1

j=1 Rj +
∑n−1

j=i+1 Rj + Rn))−1 =

ê(SIDA , bP ). Since SIDA = caP , B now gets ê(P, P )abc = ê(caP, bP ). Conse-

quently, we obtain

AdvImpersonate
A < |Pr[B(P, aP, bP, cP ) = ê(P, P )abc]| = AdvBDH

A

Theorem 8 The above GSH scheme is Detection Resistant under the Decisional Bi-

linear Diffie-Hellman assumption in the Random Oracle Model.

Proof. Assume that one party Uv identified by IDv is involved in a failure handshake

protocol. An attacker A, who also participates the handshake, can know whether Uv

is an honest party or not.

Now we show how to construct an attacker B for solving the DBDH problem. Sup-

pose that B is given (q,G1,G2, P, aP, bP, cP, γ) as an instance of the DBDH problem.

Attacker B interacts with A as follows:

Phase 1: Suppose that A outputs two target multiple identities ∆ = (ID∗
1, . . . , ID

∗
i−1,

ID∗
i+1, ID

∗
n) and ID0

i , ID
1
i , where IDA 6= ID∗

i , i ∈ [1, n]. ID0
i is a member, who holds

an valid credential. ID1
i is a unqualified member, who does not have the valid

group credential.

Phase 2: B sets Ppub = cP , and gives {G1,G2, ê, q, Ppub, P, Qpub, Q, N, H1} to A as the

system parameters, where H1 is a random oracle controlled by B as follows:

Upon receiving a random oracle query IDj to H1:

- If there exists (IDj, lj, Lj) in H1List, return Lj. Otherwise, do the following:

* If IDj = IDv, randomly choose lj ∈ Z∗q, and set Lj = aP .

* Else if IDj 6= ID∗
n, choose lj ∈ Z∗q uniformly at random and compute

Lj = ljP .

* If IDj = ID∗
n, search H1List to get lj that corresponds to ID∗

j for j ∈ [1, n),

and compute Lj = (
∑i−1

j=1 lj −
∑n−1

j=i+1 lj)P + bP .

* Put (IDj, lj, Lj) in H1List and return Lj as answer.

Phase 3: B answers A’s private key extraction queries as follows:

Upon receiving a private key extraction query on IDj:



6.3. Concrete Construction from Bilinear Pairings 86

- If there exists (IDj, lj, Lj) in H1List, compute SIDj
= ljPpub. Otherwise, do

the following:

* Choose lj ∈ Z∗q uniformly at random and compute SIDj
= ljPpub.

* Put (IDj, lj, Lj) in H1List and return SIDj
as answer.

Phase 4: B now simulates the handshake protocol as follows:

B choose (k0
v , k

1
v , kv), where k0

v = kv and k1
v 6= kv.

- Choose β ∈ {0, 1} at random.

- Choose tj, rj ∈ Z∗q, where j ∈ [1, n), j 6= i.

- Compute Rj = tjP , and Rn = (
∑i−1

j=1 tj −
∑n−1

j=i+1 tj)P .

- Compute T k
j = rjlkP + rjN, Vj = rjP, Wj = rjQ, for j, k ∈ [1, n].

- Return Cj = (Rj, T
1
j , . . . , T n

j , Vj,Wj) to A.

- Return Dj following the valid scheme for j 6= i.

- Return Di = (ê(N, Ppub)
rv · γkβ

v , ê(N, Qpub)
rv · kv).

Phase 5: B answers A’s random oracle/private key extraction queries as in Phase 2

and 3.

Phase 6: A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.

Analysis: Let ε denote the probability AdvDetect
A . We note that if γ = ê(P, P )abc,

γkβ
v = ê(acP, bP )kβ

v = ê(SIDv , bP )kβ
v

= kβ
v · ê(SIDv ,−

i−1∑
j=1

H1(ID
∗
j) +

n∑
j=i+1

H1(ID
∗
j)) · ê(rvSIDv ,−

i−1∑
j=1

Rj +
n∑

j=i+1

Rj)
−1

It is clear that from the construction above, B simulates the random oracle H1 and

the private key extraction in Phase 3 and 5. Hence, we obtain Pr[B(P, aP, bP, cP,

ê(P, P )abc) = 1] = Pr[β = β′], where |Pr[β′ = β]− 1
2
| > ε, and then Pr[B(P, aP,

bP, cP, γ) = 1] = Pr[β = β′] = 1
2
, where γ is uniform. Consequently, we obtain

AdvDBDH
A = |Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1]− Pr[B(P, aP, bP, cP, γ) = 1]|

> |(1
2
± ε)− 1

2
| = AdvDetect

A



6.3. Concrete Construction from Bilinear Pairings 87

Theorem 9 The above GSH scheme is Indistinguishable to eavesdropper under the

Decisional Bilinear Diffie-Hellman assumption in the Random Oracle Model.

Proof. Assume that if an adversary A is able to eavesdrop all the transcripts in a

secret handshake protocol, A can distinguish between a successful handshake and an

unsuccessful one.

Now we show how to construct an attacker B for solving the DBDH problem. Sup-

pose that B is given (q,G1,G2, P, aP, bP, cP, γ) as an instance of the DBDH problem.

Attacker B interacts with A as follows:

Phase 1: Suppose that A outputs two target multiple identities ∆0 = (ID∗
1, . . . , ID

∗
n)

and ∆1 = (ID1, . . . , IDn), where IDA 6= ID∗
i and IDA 6= IDi, i ∈ [1, n]. ∆0 is a

group, in which each user holds an valid credential. ∆1 is a group, in which one

or some users does not have the valid group credential.

Phase 2: B sets N = bP, Ppub = cP+Qpub, and gives {G1,G2, ê, q, Ppub, P, Qpub, Q, N, H1}
to A as the system parameters, where H1 is a random oracle controlled by B as

follows:

Upon receiving a random oracle query IDj to H1:

- If there exists (IDj, lj, rj, Lj) in H1List, return Lj. Otherwise, do the follow-

ing:

* If IDj = ID∗
i for some i ∈ [1, n], compute Lj = ljP −N .

* Else choose lj, rj ∈ Z∗q uniformly at random and compute Lj = ljP .

* Put (IDj, lj, rj, Lj) in H1List and return Lj as answer.

Phase 3: B answers A’s private key extraction queries as follows:

Upon receiving a private key extraction query on IDj:

- If there exists (IDj, lj, rj, Lj) in H1List, compute SIDj
= ljPpub. Otherwise,

do the following:

* Choose lj, rj ∈ Z∗q uniformly at random and compute SIDj
= ljPpub.

* Put (IDj, lj, rj, Lj) in H1List and return SIDj
as answer.
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Phase 4: B now simulates the handshake protocol as follows:

B constructs three sequences (K0
1 , K

0
2 , . . . , K

0
n), (K1

1 , K
1
2 , . . . , K

1
n) and (K1, K2,

. . . , Kn), where K0
1K

0
2 · · ·K0

n = K1K2 · · ·Kn, K1
1K

1
2 · · ·K1

n 6= K1 K2 · · ·Kn and

K0
i 6= K1

i 6= Ki.

- Choose β ∈ {0, 1} at random.

- Search H1List to get lj, rj that corresponds to ID∗
j for j ∈ [1, n].

- Compute ljriP for i ∈ [1, n), j ∈ [1, n].

- Compute lj(aP −∑n−1
i=1 riP ), γKβ

i for i = n, j ∈ [1, n], and choose e ∈ Z∗q
at random.

- Return Ci = (liriP, l1riP, . . . , lnriP, aP + eP, eP ) and Di = (Kβ
i , Ki) for

i ∈ [1, n) as transcripts in handshake protocol.

- Return Cn = (lnrnP, l1(aP−∑n−1
i=1 riP ), . . . , ln(aP−∑n−1

i=1 riP ), aP +eP, eP )

and Dn = (γKβ
n , Kn) as transcripts in handshake protocol.

Phase 5: B answers A’s random oracle/private key extraction queries as in Phase 2/3.

Phase 6: A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.

Analysis: Let ε denote the probability AdvDistinguish
A . We note that if γ = ê(P, P )abc,

γ

n∏
i=1

Kβ
i = ê(bP, cP )a

n∏
i=1

Kβ
i = ê(

n∑
i=1

riN,Ppub −Qpub)
n∏

i=1

Kβ
i

Note also that

liriP = liriP − riN + riN = ri(liP −N) + riN = riH1(ID
∗
i ) + riN

for i ∈ [1, n) and

ln(aP −
n−1∑
i=1

riP ) = ln(aP −
n−1∑
i=1

riP )− (aN −
n−1∑
i=1

riN) + (aN −
n−1∑
i=1

riN)

= (a−
n−1∑
i=1

ri)(lnP −N) + (a−
n−1∑
i=1

ri)N = (a−
n−1∑
i=1

ri)H1(ID
∗
n) + (a−

n−1∑
i=1

ri)N

Hence Ci, Di are valid messages. It is clear that from the construction above, B
simulates the random oracle H1 and the private key extraction in Phase 3 and
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5. Hence, we obtain Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] = Pr[β = β′], where

|Pr[β′ = β]− 1
2
| > ε, and Pr[B(P, aP, bP, cP, γ) = 1] = Pr[β = β′] = 1

2
, where γ

is uniform. Consequently, we obtain

AdvDBDH
A = |Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1]− Pr[B(P, aP, bP, cP, γ) = 1]|

> |(1
2
± ε)− 1

2
| = AdvDistinguish

A

6.4 Summary

A GSH is an extension of the SH model which allows members of the same group to

authenticate each other secretly, and the group affiliation of each member will never be

disclosed if the handshake protocol fails. In this chapter, we firstly defined the security

requirements of GSH scheme. Then we presented a group secret handshake scheme by

using pairing on elliptic curves. We also proved that our scheme is secure under the

BDH and DBDH assumption in the ROM.



Chapter 7

Conclusions and Future Work

In this thesis, we focused on the implementation of efficient credential schemes. The

credential systems were proposed to protect the certificates of users while using in

authentication. We briefly described the recent work on credential systems, and iden-

tified the challenges that we faced. To assist in understanding the descriptions in this

thesis, we introduced a set of related cryptographic primitives. For the reason that

credential systems are constructed based on digital signatures, so the security of the

credential systems relies on how strong the signature schemes are. Hence we reviewed

the basic security requirements of the digital signature. In order to illuminate the

standard notion of security for a signature scheme that we adopted in this thesis, we

also introduced the classification of different attacks to the signature schemes.

After introducing the definitions and generic schemes of different credential systems,

we reviewed a list of credential schemes in literature. We analysed the OSBE schemes

based on ElGamal family signatures, and found that their DSA-based OSBE scheme

is flawed. Following the generic construction from OSBE to SH introduced along

with the ElGamal family signature based OSBE scheme, we presented the ElGamal-

based SH scheme from their ElGamal-based OSBE, where we noted that the scheme

required four moves to be completed. Consequently, compared with other SH schemes,

ElGamal-based SH scheme is less efficient in communication costs.

In order to complement the previous result, we constructed an ElGamal signature

based key agreement protocol first. Based on this primitive, we proposed a new con-

struction of ElGamal-based SH scheme, which requires only three moves. Since DSA

signature is very similar to the ElGamal signature, but with different modulus, we

firstly converted the DSA signature into the format of one modulus, then applied the

ElGamal-based SH scheme to the DSA signature with a minor modification, and obtain

a DSA-based SH scheme. We then proved these two SH schemes are secure.

To extend the SH scheme from the two-party scenario to the multi-party setting,

90
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we considered implementing the multi-party SH scheme based on key agreement pro-

tocol, like the construction of our three-move SH scheme from the ElGamal-based key

agreement scheme. When we reviewed the existing group key agreement scheme, we

found that ID-based AGKA scheme is most suitable in implementing GSH scheme, and

then we listed two efficient constructions found in literature. After analysing these two

ID-based AGKA schemes, we observed that both schemes are flawed, and no existing

secure ID-based AGKA protocol can be completed in a single round.

Therefore, we proposed our single round ID-based AGKA scheme. However, the

one-round scheme involves more messages than prior work. Then we provide an alter-

native way of achieving an efficient two-round ID-based AGKA protocol. Comparing

these two schemes, the first scheme costs more computing time, and involves more

messages, but requires only one round, whereas the second scheme is more efficient in

communication costs, even compared with the prior work in the literature. Thus, when

these two schemes are implemented in some applications, the appropriate one can be

chosen according to the function of the applications.

Subsequently, Jarecki et al. proposed a new GSH scheme by adding affiliation

hiding authentication to a previously proposed group key agreement scheme. They

also gave a definition of GSH scheme and described the security properties it should

satisfy. However, they neglected the difference between two-party version and the group

version. When a group of users wish to create a common session key, they may choose

to conduct a group key agreement protocol. If an invalid user is involved in the protocol,

there will be two results after they run the protocol: valid users share a common key,

while the unqualified user learn nothing about this key; the keys calculated by all users,

good and bad, are different from the one of each other. In the first case, though the

invalid user cannot know the session key agreed on among other valid users, (s)he may

learn that these users belong to the same group if they conduct further interactions.

Hence (s)he is able to know that they are valid users.

The GSH scheme proposed by Jarecki et al. goes into the first case that we discussed

above, in which an adversary can have knowledge of the group affiliation of other

participants involved after they run the protocol. We emphasized this property when

we redefined the security requirements of GSH scheme. Afterwards, we presented a

GSH scheme without having this weakness, and provided a comprehensive security

proof of our GSH scheme.



92

Future Works

We proposed two ID-based AGKA schemes by using bilinear pairing. The single round

scheme is less efficient in computation, and another efficient scheme takes two rounds.

We suggest that there may exist an efficient construction of ID-based AGKA scheme

which only takes one round.

Furthermore, the size of the messages transferred in our ID-based AGKA schemes

will grow with the increase in the numbers of participants involved in the protocol.

The implementation of a constant size ID-based AGKA scheme is therefore desirable.

In a constant size scheme, the length of the messages communicated in the protocol

will not be affected by the increased scale of the group of participants. Hence how to

construct a constant size ID-based AGKA, which is suitable for large-scale network, is

still an open problem.

Additionally, our ID-based AGKA schemes are constructed by using pairing cryp-

tography. Compared to classical public key cryptosystems, like RSA and Diffie-Hellman,

the bilinear pairing operations are known to be costly operations. Hence, an interesting

and challenging construction of one-round ID-based AGKA scheme based on classical

public key cryptosystem remains an open problem.

Our proposed GSH scheme faces the similar problems. Thus the following work is

expected to be done in the area of GSH:

• Implement a constant size GSH scheme, in which the size of the messages will

not increase with the growing scale of the group.

• Propose an efficient GSH scheme based on traditional public key cryptosystem,

which can make implementation easier and more efficient in both hardware and

software.

Implementing an efficient credential system is a useful and interesting research

area. We hope that our work has provided some valuable ideas, which can benefit

future researchers.
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