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Abstract 

Metabolic disorders are commonly investigated using knockout and transgenic mouse 

models. A variety of mouse strains have been used for this purpose. However, mouse strains 

differ in their inherent propensities to develop metabolic disease, and this may affect the 

experimental outcomes of metabolic studies. We have investigated strain-dependent 

differences in the susceptibility to diet-induced obesity and insulin resistance in five 

commonly used mouse strains (C57BL/6J, 129X1/SvJ, BALB/c, DBA/2 and FVB/N). BL6, 

129X1, DBA/2 and FVB/N mice were all susceptible to varying degrees to high-fat diet 

(HFD)-induced obesity, glucose intolerance and insulin resistance, but BALB/c exhibited 

some protection from the detrimental effects of a HFD. This protection could not be 

explained by differences in mitochondrial metabolism or oxidative stress in liver or muscle or 

inflammation in adipose tissue. Interestingly BALB/c mice were the only strain that did not 

accumulate excess lipid in the liver, which may be related to lower fatty acid uptake rather 

than differences in lipogenesis or lipid oxidation. Collectively, our findings indicate that aside 

from the BALB/c strain, the other mouse strains examined in this study are all suitable 

models for investigating metabolic defects induced by dietary lipid oversupply. 

Introduction 

In the past 30 years, the use of transgenic and knockout mouse strains to investigate the role 

of a specific protein in metabolic disease has become common place in medical research. 

However, when creating a genetically-manipulated mouse model, consideration must be 

given to the genetic background on which the mouse is created and the differences in 

metabolic phenotype that might be associated with investigating gene manipulation on mixed 

genetic backgrounds. Several previous studies have shown that mouse strains can differ 

substantially in their metabolic phenotype under normal low-fat diet conditions and in 

response to a high fat diet (1-3). Problems with these and other previous strain comparisons 



are the use of diverse high-fat diets varying in lipid and carbohydrate content, the 

investigation of limited parameters that may underpin the development of metabolic disease 

and importantly some contradictory findings. For example, FVB/N mice have been 

previously characterized as obesity-prone (4) or obesity-resistant (3), and similar 

contradictory observations have been reported for DBA/2 mice (1; 5).  

The C57BL/6 mouse strain is generally suggested to be the best strain for studying 

metabolic disease. However, it is worth noting that BL6 mice have also been described as 

“diabetes-prone” or “diabetes-resistant” depending on which other mouse strain was used in 

the comparison (6). The preference for the use of C57BL/6 mice probably stems from studies 

where it was shown that a high-fat and high-sucrose diet caused a 50% increase in fasting 

glucose and a 10-fold increase in plasma insulin levels (7), demonstrating obesity-induced 

insulin resistance in this particular strain. The susceptibility of C57BL/6 mice to develop 

glucose intolerance was later shown to be to some extent due to impaired insulin secretion (8; 

9). Because of the utility of using 129X1/SvJ mouse embryonic stem cells for the generation 

of gene manipulated strains, much of the original metabolic phenotyping in knockout and 

transgenic mice was performed using mice produced on this strain or more frequently using 

mice backcrossed to C57BL/6 for a defined or undefined number of generations (10). There 

is however clear evidence that genetically manipulated mice on a mixed 129/BL6 can display 

different phenotype to mice where the same genetic manipulation is performed on a pure 

genetic background (11).   

A number of mechanisms have been proposed to be responsible for obesity-related 

insulin resistance, lipid accumulation in non-adipose tissues, inflammation in adipose and 

other tissues, mitochondrial dysfunction, and/or oxidative stress. Much of the evidence 

supporting these various theories is based on studies in normal or genetically manipulated 

mice fed high-fat diets, however it is still not completely resolved to what extent these factors 



may be related to the genetic background of mice. Here, we report studies on the response of 

five commonly used mouse strains (C57BL/6, 129X1/SvJ, BALB/c, DBA/2 and FVB/N) to 

the same high-fat diet, examining glucose tolerance, whole-body and tissue-specific lipid 

accumulation, and aspects of tissue inflammation, mitochondrial function and oxidative 

stress.  

Research design and methods 

Eight-week old C57BL/6J, 129X1/SvJ, BALB/c, DBA/2 and FVB/N mice were purchased 

from the Australian Resource Centre (Perth, Australia). Mice were housed with 4 animals per 

cage in a temperature-controlled room (22°C ± 1°C) with a 12-hour light/dark cycle and ad 

libitum access to food and water. After one week on a standard low-fat laboratory diet (low 

fat; 8% calories from fat, 21% calories from protein, 71% calories from carbohydrate; 

Gordon’s Specialty Stock Feeds, Yanderra, NSW, Australia), mice from each strain were 

randomly allocated to remain on the low-fat diet (LFD) or to receive a high-fat diet (HFD) ad 

libitum for 8 weeks. The HFD was made in-house (12) and is based on rodent diet no. 

D12451 (containing 45% of calories from lard) (Research Diets, New Brunswick, NJ). 

During the 8-week feeding period, body weight and food intake was monitored on a bi-

weekly basis. As all mice were kept in cages of 4 animals, food intake per cage was averaged 

and is expressed in kJ/mouse/day. All experiments were carried out with the approval of the 

Garvan Institute/St. Vincent’s Hospital Animal Experimentation Ethics Committee, following 

guidelines issued by the National Health and Medical Research Council of Australia. 

Determination of body composition and energy expenditure.  

Fat and lean body mass were measured in mice using dual-energy X-ray absorptiometry 

(DXA) (Lunar PIXImus2 mouse densitometer; GE Healthcare) in accordance with the 

manufacturer’s instructions. Oxygen consumption rate (VO2) and respiratory control ratio 



(RER) of individual mice was measured using an eight-chamber indirect calorimeter 

(Oxymax series; Columbus Instruments, Columbus, OH) as previously described (13). 

In vivo glucose tolerance. 

Mice were fasted for 6 hours (from 8am) and then injected intraperitoneally with glucose (2 

g/kg) or insulin (0.75 U/kg), and blood glucose levels were monitored over time using an 

Accu-check II glucometer (Roche Diagnostics, Castle Hill, Australia). During the glucose 

tolerance test some samples were collected for plasma insulin determination by 

radioimmunoassay using a rat-specific kit (Linco Research, St. Charles, MO).  

Palmitate oxidation. 

Palmitate oxidation was measured in muscle and liver homogenates as described previously 

(13). CO2 produced during the incubation was collected in 100 μl of 1 M sodium hydroxide. 

14C counts present in the acid-soluble fraction were also measured and combined with the 

CO2 values to give the total palmitate oxidation rate. Protein content in the homogenates was 

measured using the Bradford method (protein assay kit; Bio-Rad Laboratories, Regents Park, 

Australia). 

 

Tissue lipid analyses. 

Lipids were extracted from tissues by standard methods (14). Plasma, muscle and liver 

triglyceride contents were determined using a colorimetric assay kit (Triglycerides GPO-

PAP; Roche Diagnostics, Indianapolis, IN) as previously described (15). Similarly, plasma 

NEFAs were measured using a colorimetric kit (WAKO diagnostics, Osaka, Japan). Full 

details of the methods for diacyglycerol (DAG) and ceramide measurements can be found in 

the Supplementary file. Briefly, lipids were extracted from muscle and liver in solvents 



containing 2 nmoles of ceramide (17:0) and 10 nmoles of DAG (17:0/17:0). DAG and 

ceramide levels were measured using a hybrid linear ion trap-triple quadrupole mass 

spectrometer (QTRAP® 5500, ABSCIEX, Foster City, CA, USA) and data were analyzed 

with LipidView® (ABSCIEX) version 1.1.  

SDS-PAGE and immunoblotting. 

Whole-tissue lysates were prepared from powdered muscle and liver by manual 

homogenization in RIPA buffer (16) followed by incubation for 2 hours at 4 °C and 

centrifugation for 10 min at 12,000 g. Protein content of supernatants was quantified using 

the Bradford method. 20 µg of protein were denatured in Laemmli buffer for 15min at 65 °C 

and then resolved by SDS-PAGE electrophoresis (Invitrogen). Protein was electrotransferred 

onto polyvinylidine difluoride membranes, immunoblotted and quantitated, as described 

previously (17). Detailed information on immunoblotting can be found in the Supplementary 

file. 

Enzyme activity measurements. 

Muscle and liver samples were manually homogenized 1:8 (wt/vol) in 50 mM Tris-HCl, 1 

mM EDTA and 0.1% Triton X-100, pH 7.2, followed by centrifugation for 10 min at 5,000 g. 

Supernatants were used to determine citrate synthase (CS) and β-hydroxyacyl CoA 

dehydrogenase (βHAD) activity at 30 °C as described previously (13) using a temperature-

controlled spectrophotometer (Spectra Max 250, Molecular Devices, Sunnyvale, CA). 

Glutathione peroxidase (GPx) activity was determined as the decrease in NADPH absorption 

at 340 nm and 30 °C, as described previously (18).  

 

 



Gene expression analysis. 

RNA was extracted using TRI-Reagent (Sigma-Aldrich) according to the manufacturer’s 

protocol, followed by DNAse treatment (RQ1 RNase-free DNase, Promega) and synthesis of 

complementary DNA using Random primer 9 (New England Biolabs) and Superscript III 

reverse transcriptase (Invitrogen) according to the manufacturer’s instructions. Real-time 

PCR was performed using the Lightcycler® 480 Probes Master mix on a real-time PCR 

System (7900HT; Applied Biosystems). The value obtained for each specific product was 

normalised to a control gene (Hypoxanthine-guanine phosphoribosyltransferase) and the 

results are expressed as fold-change of the HFD-fed mice vs. the LFD-fed mice for each 

strain. Primer sequences are shown in Supplementary Table 1.  

Oxidative damage biomarkers. 

Muscle and liver samples were homogenized as described above for the enzyme activity 

measures. TBARS were determined, as described previously (19). For the determination of 

protein carbonylation, nucleic acids were removed using 1% streptomycin (incubation at 

room temperature for 15 min, followed by centrifugation at 6000 g, 10 min, 4 °C) (20), and 

the supernatant used for the assay. Protein carbonyls were derivatized to 2,4-

dinitrophenylhydrazone by reaction with 2,4-dinitrophenylhydrazine (DNPH) as described 

previously (21). Lipid hydroperoxides (LOOH) were measured using the FOX2-Assay, as 

described previously (22).  

Statistical analysis 

Data analysis was performed using JMP 5.1 (Statistical Analysis System Institute Inc., Cary, 

NC, USA). All results are given as mean ± standard error with n being the number of animals 

used in each assay and P = 0.05 set as the level of significance. Data were tested for 



normality using the Shapiro–Wilk W test and homogeneity of variance using the O’Brien and 

Brown-Forsythe tests. Data not normally distributed were compared using non-parametric 

Wilcoxon/Kruskal–Wallis tests and any data showing unequal variance were compared using 

a Welch ANOVA. For each mouse strain, a one-way ANOVA was completed with low-fat or 

high-fat diet as the independent variable and the measured metabolic parameters as dependent 

variables. Means were then compared using the Tukey–Kramer honestly significant 

difference test.  

Results 

Body weight, fat mass and food intake during high-fat feeding 

Compared to animals remaining on a LF diet, body weight was significantly increased in Bl6, 

129X1, DBA/2 and FVB/N mice fed the high-fat, but remained unchanged in BALB/c mice. 

High-fat fed DBA/2 and 129X1 mice showed the largest increase in body weight in 

comparison to all other strains (25 % increase for both strains) (Fig. 1A). Whole-body 

adiposity measured by dual-energy X-ray absorptiometry was increased in all five mouse 

strains on the HFD, including the BALB/c mice, as was the size of the epididymal and 

inguinal fat depots (Table 1).  

Food intake was measured bi-weekly as an average of 2 cages with 4 animals per cage for 

each mouse strain. The energy intake (shown in kJ/day) during the 8-week feeding period 

was higher in HFD-fed 129X1 and DBA/2 mice compared to LF controls, but was not 

significantly different in BL6, BALB/c and FVB/N mice (Table 1). 

Whole-animal respiration and fuel selection, as well as tissue-specific lipid oxidation 

Whole-animal oxygen consumption, corrected for lean mass (as determined by DXA), was 

significantly increased to a similar extent in all mouse strains on the HFD (11-16% increase). 



Similarly, the respiratory exchange ratio (RER) was significantly decreased in all five strains 

consistent with increased lipid intake and catabolism (Table 1).   

Glucose tolerance and insulin sensitivity 

To determine the effect of HFD on whole-body glucose metabolism, we examined glucose 

clearance during an intraperitoneal glucose tolerance test (ipGTT) (Fig. 1B). In four of the 

mouse strains, the HFD-fed animals displayed a significant impairment in glucose tolerance, 

demonstrated by a substantial increase in the incremental glucose area under the curve (AUC) 

(BL6 +97%, 129X1 +284%, DBA/2: +130%, FVB/N +37%). In contrast, BALB/c mice 

exhibited no deterioration in glucose tolerance on the HFD, (AUC: -0.6% vs. LFD).  

To examine the insulin response to elevated blood glucose levels, we measured insulin levels 

during the ipGTT (Suppl. Fig. 1). Despite all five mouse strains (particularly DBA/2) having 

higher insulin levels during the ipGTT when on the HFD in comparison to their LFD-

counterparts, BALB/c mice on the HFD had the lowest plasma insulin levels for all time 

points during the GTT in comparison to all other HFD-fed mouse strains (see Table 2 for 

fasting insulin = zero time point during GTT). Similarly, fasting blood glucose and fasting 

plasma insulin were significantly increased in all mouse strains on the HFD except for 

BALB/c (Table 2). As an indicator of insulin sensitivity, ‘fasting glucose’ was multiplied by 

‘fasting insulin’ and is presented as an Insulin Sensitivity Index (ISI) for each diet group and 

mouse strain. The ISI demonstrated substantial impairment in insulin sensitivity in all mouse 

strains, except the BALB/c (increase in ISI value vs. LFD group: BL6 +96%, 129X1 +128%, 

BALB/c: +4%, DBA/2: +234%, FVB/N +70%). An intraperitoneal insulin tolerance test 

(ipITT) was used as a second measure of insulin sensitivity (Suppl. Fig. 2). Similarly to the 

ISI, the AUC for the ipITT indicated the development of insulin resistance in all high-fat fed 



mouse strains, except BALB/c (increase in AUC values vs. LFD group: BL6 +22%, 129X1 

+16%, BALB/c: -8%, DBA/2: +56%, FVB/N +39%).  

Lipid accumulation in non-adipose tissues 

Due to the well-established link between insulin resistance and intracellular lipid 

accumulation in non-adipose tissues (23), we examined lipid accumulation in quadriceps 

muscle and liver of all LF- and HF-fed mice. All HF-fed mouse strains showed an increased 

triglyceride deposition in their muscles, while only the FVB/N strain also displayed elevated 

DAG and ceramide content (Fig 2). In the liver, triglyceride and DAG levels were 

significantly increased in BL6, 129X1, DBA/2 and FVB/N mice, with a decreased ceramide 

level also observed in liver from BL6 mice. Intriguingly, HF-fed BALB/c mice did not 

accumulate any excess triglyceride or DAG in their livers compared to LF controls, and also 

displayed a 25% reduction in ceramide levels (Fig. 2).  

Markers of mitochondrial oxidative metabolism in liver and skeletal muscle 

Causative links have been proposed between mitochondrial dysfunction and intracellular lipid 

accumulation and insulin resistance (24). To determine if insulin resistance and lipid 

accumulation in BL6, 129X1, DBA/2 and FVB/N mice on the HFD was accompanied by 

differences in mitochondrial fuel utilization, and to identify if the absence of lipid 

accumulation in BALB/c liver was due to an increase in mitochondrial oxidation, we have 

examined several markers of mitochondrial metabolism.  

Figures 3 and 4 show representative immunoblotting analysis of a variety of markers of 

mitochondrial metabolism. In skeletal muscle, there was a significant increase in PGC1α, 

UCP3, PDK4 and sub-units of the complexes of the electron transport chain (ETC) in all 

mouse strains on the HFD, except the BALB/c (for details in percentage changes refer to Fig. 

3A). In BALB/c muscle, mitochondrial proteins were either unchanged or decreased in the 



HFD-fed animals. A similar trend was observed with citrate synthase (CS) and β-hydroxyacyl 

CoA dehydrogenase (βHAD) activity in skeletal muscle, with BALB/c being the only strain 

that showed no increase in these enzyme activities on the HFD (Fig. 3B and 3C). 

Furthermore, to determine the effect of HFD on fatty acid oxidative capacity, we measured 

the rate of palmitate oxidation in muscle and liver. Skeletal muscle from fat-fed mice from all 

mouse strains, including the BALB/c mice, displayed an increased capacity for palmitate 

oxidation (Suppl. Fig. 4). Although there was a slight increase in fatty acid oxidation in 

BALB/c muscle, the collective findings suggest, that a HFD in Bl6, 129X1, DBA/2 and 

FVB/N mice leads to stimulation of mitochondrial oxidative pathways, whereas BALB/c 

mice show little change in the same skeletal muscle parameters in response to the HFD.  

In the liver, CS and βHAD enzymatic activity was significantly increased in 129X1, DBA/2 

and FVB/N mice, but not in BL6 and BALB/c mice (Suppl. Fig. 3). Western blot analysis in 

the liver showed a significant increase in PGC1α, CPT1 and complex II of the ETC in high-

fat fed BL6 mice, a decrease in a variety of mitochondrial markers in FVB/N mice, and no 

change in any other strain (Fig. 4). Furthermore, the palmitate oxidation rate, used as a 

marker of fatty acid oxidative capacity of the liver, was unchanged on the HFD in all mouse 

strains (Suppl. Fig. 4). These findings suggest that the absence of lipid accumulation in liver 

of HFD BALB/c mice is not due to an increase in mitochondrial lipid utilization.   

Lipid synthesis and uptake in the liver 

Because BALB/c mice did not accumulate liver lipid on a HFD and did not exhibit increased 

mitochondrial oxidative capacity, we examined the protein expression of several markers of 

lipogenesis and fatty acid uptake into the liver. The protein expression of FAS, ACC and 

SCD-1 was decreased in all strains except the DBA/2 which showed unchanged FAS and 

SCD-1 levels and an increased ACC protein expression on the HFD (Fig. 4). High-fat fed 



BALB/c mice showed a similar reduction in lipogenesis as other mouse strains, suggesting 

that a decrease in lipogenic capacity could not explain the lower liver lipid content in 

BALB/c mice.  

Furthermore, we measured protein expression of the major hepatic fatty acid transport 

proteins (FATP) 2 and 4 as markers of fatty acid uptake into the liver. High-fat fed BALB/c 

and BL6 mice were the only strains that did not show a consistent increase in liver fatty acid 

transport proteins in comparison to their LFD-counterparts. In fat-fed BALB/c mice, protein 

expression of FATP2 remained unchanged, whereas FATP4 was even lower compared to the 

LFD-fed mice (Fig. 4). These results suggest that lipid accumulation in BALB/c liver on a 

HFD might be limited by a reduced capacity for fatty acid uptake. 

Diet-induced changes in inflammation in adipose tissue and liver 

The reduced insulin action associated with diet-induced obesity has been frequently linked to 

increased inflammation in adipose and other tissues. To determine if differences in glucose 

tolerance and insulin resistance in the mouse strains was associated with macrophage 

infiltration in adipose tissue, we examined the gene expression of F4/80, CD68 and CD11c+, 

which are surface markers of M1- and M2-macrophages, as well as TNFα, MCP-1 and IL-6 

as markers of cytokine production by macrophages and adipocytes. F4/80, CD68 and CD11c+ 

increased in adipose tissue of all HFD-fed mouse strains (Fig. 5), indicating that leukocyte 

and macrophage infiltration into adipose tissue is already present after 8 weeks of high-fat 

feeding in all mouse strains including BALB/c mice (Fig. 5 A-C). Interestingly, increased 

TNFα, MCP-1 and IL-6 mRNA levels were only present in BALB/c, DBA/2 and FVB/N 

mice, demonstrating that not all strains respond to increased macrophage infiltration with 

increased cytokine expression after 8 weeks on the HFD (Fig. 5 D-F). Together, the gene 

expression analysis does not support adipose tissue inflammation as a major reason for the 



different glucose handling observed in HFD-fed BALB/c mice. In addition, we have 

measured protein expression of JNK, IKKα and IKKβ, IκB (total and phosphorylated for all 

except IκB) as markers of liver inflammation in the liver of LFD- and HFD mice  and found 

no changes in any liver inflammation marker after 8 weeks of high-fat feeding (data not 

shown).  

Diet-induced oxidative stress: Antioxidant protection & Oxidative damage 

To determine if lipid accumulation in muscle and liver correlates with oxidative damage to 

lipids and to examine if lower oxidative stress levels could partly explain the differences 

observed in BALB/c mice, we measured lipid hydroperoxides (LOOH) and TBARS 

(thiobarbituric acid reactive substances) in those two tissues. In muscle, LOOH and TBARS 

levels were significantly decreased in BALB/c mice on the HFD whereas there was a trend to 

increased oxidative damage in the other strains. (Fig. 6 A+B). In the liver however, HFD 

BALB/c mice were the only strain that displayed increased lip-oxidative damage compared to 

LFD-counterparts (Fig. 6 C+D). In addition to lower LOOH and TBARS levels in muscle of 

HFD BALB/c mice, protein carbonylation and glutathione peroxidase (GPx) activity were 

also significantly decreased (Suppl. Fig. 5), suggesting decreased oxidative stress in muscle 

of HFD BALB/c mice, but not in the other mouse strains. Low oxidative stress in skeletal 

muscle, but not in the liver, might be one of the mechanisms responsible to the lack of 

glucose intolerance and insulin resistance observed in BALB/c mice fed the HFD.  

Discussion 

The data obtained in this study gives a clear indication of the similarities and differences in a 

number of metabolic parameters in five commonly used mouse strains in response to eight 

weeks of feeding with a HFD. On a HFD all strains of mice gained a significant amount of 

body fat. All strains except BALB/c also exhibited a significant but variable deterioration in 



glucose tolerance. Intriguingly BALB/c mice maintained normal glucose tolerance despite 

increased adiposity, increased muscle triglyceride accumulation, oxidative stress in liver and 

elevated levels of adipose tissue inflammation. This is somewhat surprising because increases 

in all these parameters have previously been suggested to be key abnormalities predisposing 

to insulin resistance and increasing the risk of developing type 2 Diabetes. The most obvious 

difference in BALB/c mice that might explain their ability to maintain glucose tolerance on a 

HFD was the lack of lipid accumulation in liver in this strain. All other strains had significant 

accumulation of triglycerides and DAGs in liver on the HFD and significant glucose 

intolerance. 

Lipid accumulation in non-adipose tissues has been shown to be closely related to the 

development of glucose intolerance and insulin resistance (23; 25). In the current study 

BALB/c mice displayed a similar pattern of lipid accumulation in muscle to the other four 

mouse strains. This suggests that in the current investigation muscle lipid accumulation was 

not a major determinant of glucose tolerance across the different strains. Intriguingly, fat-fed 

BALB/c mice did display a disparate lipid profile to the other strains in the liver, with no 

excess triglyceride or DAG accumulation and a reduced ceramide content. This difference in 

liver lipid accumulation may partly explain the maintained glucose tolerance and insulin 

action in the BALB/c mice fed a HFD and is potentially due to lower rates of fatty acid 

uptake in BALB/c liver. In BALB/c, the expression of FATP2 and FATP4, which are the 

most abundant fatty acid transporters expressed in the liver (26), remained either unchanged 

(FATP2) or was decreased (FATP4) whereas in most other strains the amount of these 

transporters increased when fed a HFD. The BALB/c mice phenotype of increased fat mass 

but normal glucose tolerance seems similar to the recently described metabolically healthy 

obese (MHO) humans. MHO humans, despite having severe adiposity, remain relatively 

insulin sensitive, as indicated by HOMA-IR and euglycaemic-hyperinsulinemic clamps (27). 



Interestingly, one of the observed metabolic differences between MHO and obese insulin-

resistant humans was liver lipid content, with the metabolically-healthy obese individuals 

displaying low liver lipid accumulation, despite visceral adiposity (28). Obesity in BALB/c 

mice might well provide an opportunity to further investigate the links between lipid 

metabolism in liver and glucose tolerance. 

Each of the five mouse strains examined exhibited defined but different physiological 

responses to a high-fat diet. This difference in metabolic response was clearly apparent when 

comparing the GTT curves. Although HFD-fed BL6, 129X1, DBA2 and FVB/N mice all 

became glucose intolerant, the response of each strain to a glucose bolus differed 

substantially, both on low-fat and high-fat diets. For example, FVB/N mice on a standard 

LFD are relatively glucose intolerant in comparison to the other strains, and have similar 

glucose tolerance to BL6 mice on a HFD. BL6 mice are the most common mouse strain used 

in the study of metabolic disease, as they have been suggested to be the most susceptible to 

the development of diet-induced obesity and insulin resistance. In the present investigation 

BL6 mice displayed intermediate adiposity, insulin resistance and lipid accumulation in 

muscle and liver when compared to the other four mouse strains investigated. The strain that 

accumulated the most fat (37% of total body weight) and exhibited the greatest glucose 

intolerance on a HFD (3-fold increase in AUC) was the 129X1 strain. A large number of 

genetically manipulated mice are produced on the 129X1 background and then backcrossed 

to BL6 for varying generations. The clear difference in glucose tolerance and other metabolic 

parameters between BL6 and 129X1 suggest it is extremely important to know the extent of a 

mixed background in genetically manipulated mice before drawing conclusions about the 

influence of a specific gene on metabolic homeostasis.  

DBA/2 mice also displayed an interesting response to a high-fat diet. Although DBA/2 show 

the largest increase in body weight and also gained substantial amounts of fat mass, they 



become only marginally glucose intolerant on the HFD. DBA/2 exhibited similar differences 

in lipid accumulation, mitochondrial metabolism, inflammation and oxidative stress to other 

strains, however, DBA/2 mice did exhibit a large increase in fasting insulin, and the largest 

excursion of plasma insulin levels during the glucose tolerance test, suggesting that it is 

compensatory hyperinsulinemia that reduces HFD-induced glucose intolerance in this strain 

(1; 8).  

Mitochondrial dysfunction, oxidative stress and inflammation are commonly suggested as 

mediators of insulin resistance and glucose intolerance in obese animal models and obese 

humans (23; 24). In the current study all the of the mouse strains (except BALB/c) responded 

to a HFD as BL6 mice did in our previous study, with a modest increase in the expression, as 

well as activity of mitochondrial proteins, and an increase in capacity to oxidize fatty acids 

(13). BALB/c mice were the only mouse strain where mitochondrial oxidative capacity 

remained unchanged (enzyme activities) or was even decreased (protein expression) in high-

fat fed animals and glucose tolerance was preserved in this strain. These results suggest the 

HFD-induced changes in muscle mitochondrial capacity do not correlate with glucose 

tolerance in these mouse strains. Oxidative stress in liver and muscle of all strains was also 

assessed by examining levels of lipid hydroperoxides and TBARS. The only consistent effect 

was that HFD increased markers of lipid peroxidation in liver of BALB/c mice, but decreased 

these markers in muscle of the same animals, which again is difficult to reconcile against the 

observation that BALB/c mice maintain normal glucose tolerance and insulin action on a 

HFD. Investigation of the inflammatory state of adipose tissue in the different strains of 

HFD-fed mice, produced substantial evidence of macrophage infiltration (increased F4/80 

and CD11c gene expression) in all strains and evidence of increased cytokine expression 

(TNF and MCP-1) in 3 of the 5 strains including BALB/c. These results demonstrate that 

adipose tissue inflammation can be observed within 8 weeks of a HFD, even in the presence 



of normal glucose tolerance and insulin action in BALB/c mice, and thus support the notion 

that inflammation may only contribute to glucose tolerance and insulin action after long-term 

high fat feeding (29; 30). 

Altogether, this extensive comparison of the effects of a HFD on different mouse strains 

demonstrates that all strains accumulate body fat and show signs of adipose tissue 

inflammation and muscle lipid accumulation. However, the effect of fat accumulation on 

markers of glucose homeostasis is variable and strain dependent. In particular, BALB/c mice 

remain glucose tolerant on a HFD and this seems directly related to the lack of accumulation 

of fat in liver of these mice, despite lipid accumulation in muscle. The results suggest that 

liver lipid content is a major determinant of glucose tolerance and also highlight the need for 

caution when comparing results of dietary interventions in studies involving different or 

mixed strains of mice. 
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Tables 

Table 1: Animal characteristics, including tissue weights, food intake and whole-animal 
respiration, separated by mouse strain and diet group 

 

  C57Bl/6 129X1 BALB/c DBA/2 FVB/N 
Body weight 

(g) 

LFD 30.3±0.4 27.6±0.4 26.0±0.6 31.2±0.7 31.1±0.5 

HFD 35.4±0.9 ‡ 34.7±0.6 ‡ 27.8±0.5 39.0±0.8 ‡ 34.5±0.6 ‡ 

Fat mass  

(%) 

LFD 15.6±1.1 22.2±1.9 20.6±0.4 23.7±0.8 18.3±1.2 

HFD 29.4±1.3 ‡ 36.6±2.7 ‡ 29.2±1.3 ‡ 38.8±1.8 ‡ 30.0±1.4 ‡ 

Tissue weights (g) 

eWAT 
LFD 0.34±0.02 0.33±0.01 0.54±0.02 0.79±0.07 0.39±0.06 

HFD 1.42±0.15 ‡ 1.38±0.05 ‡ 1.09±0.10 ‡ 1.82±0.10 ‡ 1.17±0.06 ‡ 

iWAT 
LFD 0.24±0.01 0.34±0.04 0.36±0.04 0.56±0.06 0.33±0.03 

HFD 0.74±0.14 ‡ 0.94±0.07 ‡ 0.54±0.03 † 1.55±0.11 ‡ 0.63±0.03 ‡ 

BAT 
LFD 0.12±0.01 0.12±0.01 0.15±0.03 0.17±0.01 0.17±0.02 

HFD 0.13±0.01 0.21±0.02 † 0.15±0.01 0.34±0.04 ‡ 0.23±0.01 † 

Liver 
LFD 1.48±0.07 1.20±0.02 1.31±0.05 1.63±0.05 1.70±0.04 

HFD 1.21±0.08 1.25±0.07 1.17±0.02 * 1.64±0.04 1.71±0.04 

Food Intake 

 (kcal/day) 
LFD 13.73±0.55 11.31±0.01 12.82±1.18 11.26±0.57 13.69±2.50 

HFD 14.17±1.20 18.00±2.71 * 12.89±0.23 16.10±2.28 * 13.65±0.50 

Whole-body respiration 

(ml O2/g/h) 
LFD 4.27±0.08 4.46±0.15 4.71±0.10 4.63±0.09 4.19±0.10 

HFD 4.86±0.13 † 5.14±0.12 † 5.23±0.09 † 5.16±0.17 * 4.88±0.17 † 

RER 
LFD 0.97±0.03 0.94±0.01 0.97±0.02 0.88±0.02 0.95±0.01 

HFD 0.84±0.01 † 0.87±0.01 * 0.86±0.03 ‡ 0.83±0.01 0.84±0.02 ‡ 

LFD vs. HFD: * p<0.05, † p<0.01 and ‡ p<0.001, n=6-8 for each strain and diet group; 
whole-animal oxygen consumption is corrected for lean mass; BAT = brown adipose tissue; 
eWAT = epididymal white adipose tissue; HFD = high-fat diet; iWAT = inguinal white 
adipose tissue; LFD = low-fat diet; RER = respiratory exchange ratio 

 

 

 



Table 2: Plasma characteristics 

 

  C57Bl/6 129X1 BALB/c DBA/2 FVB/N 
Glucose 

(mM) 

LFD 9.14±0.36 6.59±0.28 7.96±0.34 8.21±0.36 9.67±0.36 

HFD 10.51±0.29† 7.31±0.25 7.74±0.16 9.90±0.50* 10.95±0.43*  

Insulin 

(ng/ml) 

LFD 0.72±0.04 0.54±0.05 0.63±0.06 1.32±0.11 0.90±0.05 

HFD 1.26±0.14† 1.08±0.09‡ 0.64±0.05 2.41±0.32† 1.19±0.08* 

Adiponectin 

(μg/ml) 

LFD 3.84±0.36 4.17±0.36 3.99±0.47 10.24±1.00 7.59±1.02 

HFD 3.59±0.50 4.62±0.48 3.97±0.35 9.45±0.54 7.48±0.42 

TAG 

(μmol/ml) 

LFD 4.39±0.34 5.84±0.17 6.13±0.44 10.76±0.82 10.14±0.92 

HFD 4.52±0.27 7.22±0.40† 6.82±0.42 13.20±1.03 6.57±0.70* 

NEFA 

(μmol/ml) 

LFD 0.76±0.05 0.87±0.05 0.79±0.05 0.97±0.10 0.71±0.04 

HFD 0.79±0.02 0.85±0.08 0.85±0.06 1.01±0.08 0.66±0.04 

LFD vs. HFD: * when p<0.05, † when p<0.01 and ‡ when p<0.001, n=8 for each strain and diet group; HFD = 
high-fat diet; LFD = low-fat diet; NEFA = non-esterified fatty acids; TAG = triglycerides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure legends 

Figure 1: Body weight during the 8-week feeding period (A) and intraperitoneal glucose 

tolerance test (B) in low-fat (LF) and high-fat (HF) fed mice. Glucose (2g/kg) was injected at 

the 0 time point and blood glucose levels were monitored for 90min post-injection. black dots 

= LF mice, white dots = HF mice; end point body weight p<0.0001 for BL6, 129X1, DBA/2 

and FVB/N; n = 6-8 for each strain and diet group.  

Figure 2: Muscle (A) and Liver (B) triglyceride levels in low-fat (LF) and high-fat (HF) fed 

mice; white bars = LF mice, black bars = HF mice; † p<0.01, ‡ p<0.001; n = 6-8 for each 

strain and diet group.  

Figure 3: Markers of mitochondrial oxidative metabolism in skeletal muscle. (A) 

Representative immunoblotting results on muscle oxidative proteins in low-fat (LF) and high-

fat (HF) fed mice. Shown is n=2, but percentage differences underneath the corresponding 

lanes represent n=6-8 for each strain and diet group. Only significant (p<0.05) differences 

between the diet groups are shown. Complex I-V represent subunits of the complexes of the 

ETC chain. Skeletal actin in muscle was used as loading control and shows similar 

distribution between LF- and HF- groups in each strain. (B and C) citrate synthase  and β-

hydroxyacyl CoA dehydrogenase (βHAD) activity in low-fat (LF) and high-fat (HF) fed 

mice; white bars = LF mice, black bars = HF mice; * p<0.05, † p<0.01; n = 6-8 for each 

strain and diet group. 

Figure 4: Markers of oxidative metabolism, lipid synthesis and lipid uptake in the liver. 

Representative immunoblotting results on oxidative and lipogenic enzymes and fatty acid 

transporters in low-fat (LF) and high-fat (HF) fed mice. Shown is n=2, but percentage 

differences underneath the corresponding lanes represent n=6-8 for each strain and diet 

group. Only significant (p<0.05) differences between the diet groups are shown. 14-3-3 was 



used as loading control and shows similar distribution between LF- and HF- groups in each 

strain. 

Figure 5: Inflammation in adipose tissue. Gene expression analysis of (A) F4/80, (B) CD68 

and (C) CD11c+, (D) TNFα, (E) MCP-1 and (F) IL-6 in epididymal adipose tissue of low-fat 

(LF) and high-fat (HF) fed mice; white bars = LF mice, black bars = HF mice; * p<0.05, † 

p<0.01, ‡ p<0.001; n = 5 for each strain and diet group.  

Figure 6: Markers of lipid peroxidative damage in muscle and liver. Lipid hydroperoxides 

(LOOH) (A and C) and TBARS (B and D) were measured in low-fat (LF) and high-fat (HF) 

fed mice as marker of oxidative stress; white bars = LF mice, black bars = HF mice; * 

p<0.05, † p<0.01; n = 6-8 for each strain and diet group.  
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