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Abstract Abstract 
Metabotropic glutamate receptor 5 (mGluR5) has been identified as a potential therapeutic target for 
schizophrenia, primarily due to its ability to indirectly modulate glutamatergic signalling through the 
NMDA receptor (NMDAR). Despite its potential, molecular studies characterising mGluR5 in schizophrenia 
are limited. We therefore aimed to determine if the mGluR5 binding site or protein levels were altered in 
schizophrenia or by current antipsychotics. Using in-situ radioligand binding and immunoblot, we 
measured [3H]MPEP binding to mGluR5 and mGluR5 protein density in the post-mortem dorsolateral 
prefrontal cortex (DLPFC; BA46) of 37 schizophrenia and 37 matched control subjects. Subsequently, we 
measured [3H]MPEP binding in rat brains following typical (haloperidol) or atypical (olanzapine) 
antipsychotic treatment (n = 6/group). Subjects with schizophrenia showed no significant alteration in 
mGluR5 binding density or mGluR5 protein levels. Furthermore, mGluR5 binding in the rat cortex, 
thalamus, hippocampus and striatum was unaltered by short-, medium- and long-term antipsychotic 
treatment. Our data suggests that there are no alterations in mGluR5 in schizophrenia subjects. The lack 
of alteration in mGluR5 binding and protein in schizophrenia is advantageous because its ability to 
modulate the NMDAR is potentially unhindered, thereby supporting the development of novel 
antipsychotic agents that work through the mGluR5/NMDAR complex. 
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Abstract 

Metabotropic glutamate receptor 5 (mGluR5) has been identified as a potential therapeutic 
target for schizophrenia, primarily due to its ability to indirectly modulate glutamatergic 
signalling through the NMDA receptor (NMDAR). Despite its potential, molecular studies 
characterising mGluR5 in schizophrenia are limited. We therefore aimed to determine if the 
mGluR5 binding site or protein levels were altered in schizophrenia or by current antipsychotics. 
Using in-situ radioligand binding and immunoblot, we measured [3H]MPEP binding to mGluR5 
and mGluR5 protein density in post-mortem dorsolateral prefrontal cortex (DLPFC; BA46) of 37 
schizophrenia subjects (including 7 schizoaffective) and 37 matched controls. Subsequently, we 
measured [3H]MPEP binding in rat brains following typical (haloperidol) or atypical (olanzapine) 
antipsychotic treatment (n=6/group). Subjects with schizophrenia (n=30) showed no significant 
alteration in mGluR5 binding density or mGluR5 protein levels. However subjects with 
schizoaffective disorder (n=7) displayed a trend towards reduced mGluR5 binding (20%) 
compared to schizophrenia subjects (p=0.079), suggesting different underlying biochemistry of 
the disorder. In schizoaffective subjects of depressive subtype (n=4), mGluR5 binding was 
reduced by 39% compared to controls (p=0.022). Furthermore, mGluR5 binding in the rat cortex, 
thalamus, hippocampus and striatum was unaltered by short-, medium- and long-term 
antipsychotic treatment. Our data suggests that there are diagnostic specific alterations in 
mGluR5, with a molecular distinction between schizophrenia and schizoaffective disorder. The 
lack of alteration in mGluR5 binding and protein in schizophrenia is advantageous because its 
ability to modulate the NMDAR is potentially unhindered, thereby supporting the development 
of novel antipsychotic agents that work through the mGluR5/NMDAR complex.  
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1. Introduction 

 

Whilst the precise cause of schizophrenia is unknown, evidence suggests dysfunction of 

glutamatergic signalling contributes to all aspects of schizophrenia symptomatology including 

negative and cognitive deficits. Although the major theories relate to a hypofunction of the 

NMDA receptor (NMDAR) (Marek et al., 2010), metabotropic glutamate receptors (mGluR) have 

also been implicated (Niswender and Conn, 2010). Metabotropic glutamate receptor 5 (mGluR5) 

is one of eight known glutamate-specific G-protein coupled receptors which has been shown to 

uniquely modulate NMDAR activity through a physical and functional link (Tu et al., 1999; 

Alagarsamy et al., 2002; Luccini et al., 2007). Consequently, mGluR5 has become of interest as a 

potential target for antipsychotic treatment. However, evidence indicates that mGluR5 itself may 

also play a role in the pathophysiology of schizophrenia (Krivoy et al., 2008). 

 

mGluR5 knock-out mice exhibit  deficits in prepulse inhibition, memory deficits, and 

hyperlocomotion (Kinney et al., 2003; Brody et al., 2004). Similarly, mGluR5 negative allosteric 

modulators (NAMs) induce social interaction deficits, impaired working memory and reduced 

instrumental learning (Homayoun et al., 2004; Koros et al., 2006), implying a direct relationship 

between reduced mGluR5 function and the manifestation of schizophrenia-like symptoms. 

Moreover, mGluR5 positive allosteric modulators (PAM) are effective in the attenuation of 

cognitive as well as negative and positive schizophrenia-like symptoms in NMDAR antagonist and 

dopaminergic animal models. (Vales et al., 2010). These studies highlight a possible role for 

mGluR5 in schizophrenia pathology as well as the therapeutic potential of targeting mGluR5 to 

regulate glutamatergic NMDAR signalling, particularly for the treatment of negative and 

cognitive aspects of schizophrenia symptomatology. 

 

Although animal studies suggest that mGluR5 is involved in the pathology of schizophrenia, 

studies characterizing mGluR5 in post-mortem human brain tissue have found minimal changes 

in mRNA (Ohnuma et al., 1998, 2000; Richardson-Burns et al., 2000; Volk et al., 2010) and 

protein (Gupta et al., 2005; Corti et al., 2011). This suggests that mGluR5 is unaltered in the 

pathological state, which is beneficial for novel therapeutics that modulate NMDAR signalling 

through mGluR5. However, alteration of the specific binding site(s) could render these 

therapeutics unsuitable.  Despite this, examination of binding to mGluR5, specifically at the 6-

methyl-2-(phenylethynyl)pyridine (MPEP) allosteric binding site (the specific target of mGluR5 

modulators), has never before been investigated in schizophrenia.  

 

It is crucial to characterize mGluR5, both in response to the pathological state and to current 

antipsychotics to decipher not only if it is a viable target for future therapeutics, but also to 

determine if mGluR5 is already affected by current antipsychotic drugs (APDs). For the first time, 

we measured the binding density as well as the protein density of mGluR5 in the dorsolateral 

prefrontal cortex (DLPFC), a brain region specifically involved in cognitive function (Eisenberg and 

Berman, 2010), in a large cohort of schizophrenia and control subjects. Furthermore, we 

analysed mGluR5 binding following typical and atypical APD treatment to determine if these 

agents have short- or long-term adaptive effects on mGluR5.  
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2. Methods 

2.1. Human Post-Mortem Brain Samples 

Tissue was acquired from the New South Wales Tissue Resource Centre (TRC) and its use in this 

investigation was approved by, and conducted under the guidelines of the Human Research 

Ethics Committees at the University of Wollongong (HE99/222) and the University of New South 

Wales (HREC07261). 37 schizophrenia subjects (including 7 schizoaffective) diagnosed according 

to DSM-IV and 37 controls were matched by the TRC and the Schizophrenia Research Laboratory 

(SRL) (Table 1). APD treatment premortem was standardised to lifetime chlorpromazine 

equivalent for each patient. Antidepressant drug (ADD) treatment history was also specified on a 

non-numeric scale (i.e. yes/no). Clinical and demographic characterisation of the cohort has been 

detailed previously (Weickert et al., 2010). 

 

2.2. Human Tissue Dissection and Preparation 

Anatomical identification of the DLPFC and preparation of the tissue has been previously 

described in detail (Fung et al., 2010; Weickert et al., 2010). For receptor autoradiography 

experiments, the DLPFC was coronally sectioned at -18oC, at 14µm thickness, thaw-mounted 

onto gelatinized slides and stored at -80oC. For western blot experiments, 40mg of frozen DLPFC 

tissue was homogenised in 400µL of buffer, containing 50mM Tris pH 7.5, 50% glycerol and 1:20 

protease inhibitor cocktail.  

 

2.3. Receptor Autoradiography 

mGluR5 binding was based on the protocol previously described by Samadi et al. (2008). Two 

sections per case were preincubated for 15min at room temperature (pH7.5) in 50mM TrisNaCl. 

Slides were then incubated in a solution containing 10nM [3H]MPEP (specific mGluR5 antagonist; 

specific activity 60Ci/mmol; American Radiolabelled Chemicals, USA) and 50mM TrisNaCl for 

90min at room temperature. Adjacent sections were incubated in the same solution with the 

addition of 10µM unlabelled MPEP (Sigma, Australia) to determine non-specific binding. Slides 

were washed in TrisNaCl (4oC, pH 7.5) for 2x 3min and briefly dipped in 4oC MilliQ-water.  

 

Sections were exposed to tritium sensitive Kodak Biomax MR film (Kodak, UK) for 8 weeks, 

together with [3H] microscale autoradiographic standards (Amersham). Films were developed 

using the AGFA CP1000 film developer (Agfa-Gevaert N.V., Mortsel, Belgium), scanned using a 

GS800 densitometer (BioRad, USA) and analysed using Multi-Analyst software (BioRad).  

Histological standards for quantitative analysis were previously defined by immunostaining (Yang 

et al., 2010). Experiments and quantification were performed blind to diagnosis. 

 

2.4. Western Blot 

Protein density was measured within homogenates using mGluR5 polyclonal antibody (1:250, 

ABCAM ab27190). Samples were run in duplicate at a concentration of 5µg of total protein. 

Densitometry values for each of the samples were normalized to the respective pooled sample 

and beta-actin density, which has been reported as a reliable standard in this cohort (Weickert et 

al., 2010). This protocol is extensive and has been included in supplementary materials (S1). 

 

2.5. Animal Housing, Treatment and Receptor Autoradiography Analysis of Rat Tissue 
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All animal experiments in this study were approved by the University of Wollongong Animal 

Ethics Committee (AE10/18) and complied with the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes. 54 adult (10-weeks of age) male Sprague-Dawley rats 

were purchased from the Animal Resource Centre (Perth, Australia) and housed under standard 

conditions with food and water available ad libitum. After one week of acclimatization, rats 

(n=6/group) were fed prepared food pellets containing either:   

(1) Typical antipsychotic, haloperidol (0.1mg/kg, 3 times/day), 

(2) Atypical antipsychotic, olanzapine (1mg/kg, 3 times/day),   

(3) Vehicle (control), 

 for 8, 16, or 36 days. APD doses were chosen to model a clinical setting (S2). 

 

Rats were euthanized 48 hours following the final treatment using carbon dioxide asphyxiation. 

Brains were rapidly removed and sectioned at -17oC using a cryostat (Leica CM1950, Germany) 

into 14µm coronal sections at the levels of the PFC (Bregma+3.72mm), caudate-putamen 

(striatum; Bregma+1.2mm), hippocampus and thalamus (Bregma-3.14mm). Sections were thaw-

mounted onto PolysineTM microscope slides (Menzel GmbH & Co KG, Germany) and stored at -

20°C. 

 

[3H]MPEP binding to mGluR5 was performed in triplicate according to the protocol described 

above (section 2.3). Identification of regions for quantification was based on a standard rat brain 

atlas (Paxinos and Watson, 2007). Experiments and quantification were performed blind to 

treatment group. 

 

2.6. Statistical Analysis  

Parametric tests were employed to analyse the differences between patients with schizophrenia 

and control subjects as data was normally distributed. Independent t-tests and ANOVA (followed 

by Tukey post-hoc) were used to compare differences between mGluR5 binding/protein within 

the diagnostic groups. Correlations with demographic and post-mortem data were scrutinized, 

and these factors (pH/age at death/PMI/freezer storage time/RIN/brain weight/age of disease 

onset/duration of illness/lifetime chlorpromazine equivalent) were analysed for their effects 

over the data through ANCOVA testing. T-tests were used to determine the effects of 

antidepressant history/toxicology on binding/protein within the schizophrenia subjects. In the 

animal study, two-way MANOVA was performed for data within each brain region 

(PFC/caudate/putamen/thalamus/hippocampus) considering treatment type and duration. 

Statistical analyses were performed with SPSS software (19.0). 
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3. Results 

 

3.1 Analysis of Demographic and Clinical Data  

One case (control) was excluded from analysis for [3H]MPEP binding due to technical issues. 

Despite this, mean pH, age at death, PMI, freezer storage time, brain weight and RNA integrity 

number (RIN) did not differ between schizophrenia (including schizoaffective) and control groups 

(-1.525<t>1.264, 0.132<p>0.955) or schizophrenia, schizoaffective and control groups 

(0.003<F>1.957, 0.149<p>0.997). In addition, age of disease onset, duration of illness, and 

lifetime exposure to APD (lifetime chlorpromazine) did not differ between schizophrenia and 

schizoaffective subjects (-1.408<t>0.552, 0.168<p>0.762). All data were normally distributed. 

 

3.2. Diagnosis Related Effects 

[3H]MPEP binding density was highly expressed, with a homogenous distribution across the 

cortical layers (Fig. 1a). Independent t-tests revealed no significant change in [3H]MPEP binding 

density in all schizophrenia subjects (including schizoaffective subjects) compared to controls 

(t71=-0.003, p=0.998). ANCOVA confirmed this finding (F1,65=0.708, p=0.403). A trend was 

observed whereby binding density was reduced by 20% in schizoaffective (SZA) (n=7) compared 

to schizophrenia subjects (n=29) (SZ: 10.07±0.48, SZA: 8.01±1.19; t34=1.807, p=0.079). On further 

examination, [3H]MPEP binding density showed a significant 39% reduction in schizoaffective 

subjects of depressive subtype (n=4) compared to controls (n=37) (p=0.023) and a 42% reduction 

compared to schizophrenia subjects (p=0.011) (Fig. 2a). Despite the clear reduction observed in 

Fig. 2a, this analysis is preliminary due to sample size constraints. No differences in [3H]MPEP 

binding were observed in other schizophrenia diagnostic subgroups 

(residual/disorganized/undifferentiated/paranoid) compared to controls (F4,61=0.897, p=0.471). 

 

mGluR5 protein was detected in the DLPFC as a single band at the expected molecular weight 

and was normalized to beta-actin (Fig. 1b). Independent samples t-tests showed no significant 

changes in mGluR5 protein between schizophrenia subjects and controls (CT: 0.91±0.4, SZ: 

0.91±0.03; t72=0.081, p=0.935), as confirmed by ANCOVA (F1,66=0.244, P=0.784). Unlike the 

[3H]MPEP binding data, there was no significant change in mGluR5 protein between 

schizoaffective subtypes, schizophrenia subjects and controls (F3,70=0.261, p=0.771) (Fig. 2b). No 

significant changes in receptor protein levels were observed between any of the schizophrenia 

diagnostic subgroups compared to controls (F4,62=0.165, P=0.955). Although it appeared that 

there was an outlier within the schizoaffective subjects of depressive type (see Fig. 2b), the data 

point was not a statistical outlier. Additionally, removal of the data point did not affect the 

significance of the data (data not shown). 

 

3.1.3. Effects of Demographic and Clinical Variables 

Examination revealed no main effect of hemisphere on mGluR5 binding (F1,71=0.105, p=0.747) or 

protein (F1,72=2.010, p=0.161) and no interaction between hemisphere and diagnosis ([3H]MPEP: 

F3,69=0.345, p=0.559; mGluR5 protein levels: F3,70=0.732, p=0.537). In addition, no effect of 

gender was found on [3H]MPEP binding (F1,71=0.009, p=0.924) or mGluR5 protein (F1,72=0.886, 

p=0.350) and no interaction between gender and diagnosis on mGluR5 protein (F3,70=1.918, 

p=0.170). Whilst a significant interaction between gender and diagnosis was found for [3H]MPEP 
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binding density (F3,69=5.308, p=0.024), post-hoc tests failed to detect significant differences 

within the four groups (schizophrenia male/schizophrenia female/control male/control female). 

 

Pearson’s correlations for continuous variables (pH/age at death/PMI/freezer storage time/ 

brain weight/RIN/age of disease onset/duration of illness/lifetime chlorpromazine equivalent) 

are presented in Table 2. mGluR5 binding correlated positively with age at death in control 

subjects, an effect that was not seen in schizophrenia or schizoaffective subjects. mGluR5 

binding correlated negatively with pH in control and schizoaffective subjects, but not in 

schizophrenia subjects. mGluR5 binding also correlated negatively with brain weight in 

schizophrenia subjects, and trending in schizoaffective subjects. mGluR5 protein levels 

correlated negatively with PMI in control and schizophrenia subjects (and trending in 

schizoaffective subjects) and positively with freezer storage time in control and schizophrenia 

subjects. These variables were accounted for in the ANCOVA analyses. Furthermore, as stated 

above, age at death, RIN, pH, brain weight and PMI did not differ between control, schizophrenia 

and schizoaffective subjects. Importantly, no correlation was found between mGluR5 

binding/protein and lifetime APD dosage, as measured by lifetime chlorpromazine equivalent. 

There was no effect of ADD treatment history (yes: n=19, no: n=18; binding: t34=-1.039, p=0.306; 

protein: t35=0.044, p=0.965) or ADD toxicology post-mortem (yes: n=12, no: n=25; binding: t34=-

0.531, p=0.598; protein: t35=1.037, p=0.307).  

 

3.2. [
3
H]MPEP binding to mGluR5 in APD Treated Rat Brain Tissue 

[3H]MPEP binding density was highly expressed in all examined rat brain regions (Fig. 3). Two-

way MANOVA comparing haloperidol, olanzapine and control treated rats for different 

treatment durations (8, 16 or 36 days) revealed no significant main effects of treatment or 

treatment duration, or interaction between the two factors in the PFC, hippocampus, striatum or 

thalamus (Table 3). 

 

4. Discussion 

mGluR5 is a potential therapeutic target for several neuropsychiatric disorders, including 

schizophrenia (Vinson and Conn, 2012). For the first time we have examined binding to mGluR5 

in schizophrenia and schizoaffective patients and in the brains of rats following APD treatment. 

We report no change in mGluR5 binding or protein density in schizophrenia subjects compared 

to controls. Furthermore, we found that olanzapine and haloperidol, APDs commonly used in a 

clinical setting to treat schizophrenia, do not alter mGluR5 binding density. We propose that the 

lack of change in mGluR5 binding and protein levels in schizophrenia subjects is beneficial, as the 

effectiveness of novel mGluR5-targeted therapeutics will not be affected. In addition, 

confirmation that current schizophrenia therapeutics do not alter mGluR5 further supports that 

this should be considered as a novel drug target, especially to treat those symptoms that current 

therapeutics do not. 

 

4.1. mGluR5 binding density and protein levels are unaltered in the DLPFC in Schizophrenia 

In line with our results, no change in mGluR5 protein (Gupta et al., 2005; Corti et al., 2011) or 

mRNA (Ohnuma et al., 1998, 2000; Richardson-Burns et al., 2000; Volk et al., 2010) levels have 

been reported in the PFC of schizophrenia subjects. Together, this suggests that mGluR5 
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expression is not altered in the pathology of schizophrenia, at least within the PFC. The DLPFC is 

a sub-region of the PFC highly involved in cognitive function, and disruptions to circuitry within 

this brain region are believed to underlie the cognitive deficits seen in patients with 

schizophrenia (Eisenberg and Berman, 2010). Our findings suggest that there are no pathological 

alterations of mGluR5 expression in the DLPFC, and therefore mGluR5 expression does not 

contribute to these cognitive deficits. These findings may extend to other mGluRs, such as 

mGluR2/3, which have been previously reported as unchanged in the same cohort (Frank et al., 

2011). 

 

There is strong evidence that dysfunction of glutamatergic NMDARs underlies many of the 

cognitive, negative and positive symptoms of schizophrenia (Kantrowitz and Javitt, 2010). Due to 

the global distribution and rapid synaptic transmission of the NMDAR, it is not suited as a 

therapeutic target as its effects are widely excitotoxic (Ellenbroek, 2012). However mGluR5 and 

NMDAR are connected by a scaffolding link (Tu et al., 1999) and are known to functionally 

interact, particularly in the PFC (Pisani et al., 2001; Alagarsamy et al., 2002, 2005; Benquet et al., 

2002; Homayoun and Moghaddam, 2006). Hence, mGluR5 is of current interest as a novel 

therapeutic target for the treatment of schizophrenia. Studies of mGluR5 positive allosteric 

modulators (PAMs) have repeatedly reported antipsychotic-like effects in rodent models of 

schizophrenia (see Vinson and Conn, 2012), which have been shown, in part, to be mediated 

through the frontal cortex (Homayoun and Moghaddam, 2008). Most interestingly, PAMs of 

mGluR5 reverse drug-induced negative and cognitive impairments in rodents, which are aspects 

of schizophrenia symptomatology mostly untreated by current therapeutics in a large 

percentage of patients. Specifically, mGluR5 PAMs improve performance in sucrose preference, 

recognition memory, set-shifting, Y-maze, Morris water maze, inhibitory avoidance learning and 

conditioned aversion tasks whilst also reversing hyperlocomotive and PPI deficits in 

phencyclidine, apomorphine and/or amphetamine treated rodents, models routinely used to 

test antipsychotic drug potential (see Vinson and Conn, 2012). Most mGluR5 PAMs interact with 

the MPEP allosteric binding site (Chen et al., 2007), which was the target of the radioligand used 

in the present study to characterize mGluR5 binding. As we report that this specific allosteric 

binding site and mGluR5 protein levels are unaltered in schizophrenia pathology, this suggests 

that the binding potential of mGluR5 PAMs will not be affected in patients with schizophrenia. 

 

We report a positive correlation between mGluR5 binding and age at death in control subjects 

but not in schizophrenia or schizoaffective subjects. Whilst this suggests that an age-interaction 

may be concealing a pathological effect, our findings are in contrast to other studies on mGluR5 

binding (Deschwanden et al., 2011), protein (Gupta et al., 2005; Corti et al., 2011) and mRNA 

(Ohnuma et al., 1998; Richardson-Burns et al., 1999; Ohnuma et al., 2000; Volk et al., 2010), 

which report that mGluR5 remains stable with age. Furthermore, Corti et al. (2011) reported a 

negative correlation between mGluR5 protein and age in both control and schizophrenia 

subjects. As we are the first to examine [3H]MPEP binding in the schizophrenia brain, this 

association may be genuine; however, considering it is in contrast to previous protein and mRNA 

studies, these results must be interpreted with caution. 

 

4.2. mGluR5 binding density is reduced in schizoaffective subjects of the depressive type  
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Although mGluR5 was unaltered in schizophrenia subjects, a significant 39% reduction was 

observed in [3H]MPEP binding in the DLPFC of schizoaffective subjects of depressive type 

compared to controls. Importantly, there was no significant effect of ADD treatment history or 

ADD post-mortem toxicology on mGluR5 binding/protein. Whilst this finding must be interpreted 

with caution due to the small sample size, it is consistent with a recent study reporting reduced 

(5.7%) mGluR5 mRNA expression in the PFC of schizoaffective patients (n=14) compared to 

schizophrenia patients (n=28) (Volk et al., 2010).  Furthermore, Deschwanden et al. (2011) 

recently reported decreased mGluR5 binding in the PFC of subjects with major depression. It is 

plausible that the mood component may be driving this consistent reduction in mGluR5 seen in 

schizoaffective subjects but not schizophrenia subjects. These findings support previous studies 

indicating that schizophrenia and schizoaffective disorder have differing underlying 

neurobiologies (Volk et al., 2010; Bychkov et al., 2011), which may indicate the need for tailored 

therapeutics. Previous studies have often combined schizoaffective with schizophrenia subjects 

to increase power for analysis. These findings highlight the importance of examining 

schizoaffective disorder as separate to schizophrenia.  

4.3. Effects of Antipsychotic Drug Treatment on mGluR5 

A concern with the use of post-mortem human brain tissue is the effects of pharmacotherapy 

pre-mortem (Hynd et al., 2003; Weickert et al., 2010). In the present study, there was no 

correlation between mGluR5 binding/protein with APD treatment in the schizophrenia human 

brain. We examined mGluR5 following varying periods in rats treated with haloperidol or 

olanzapine. Neither olanzapine nor haloperidol altered mGluR5 binding, although there is 

evidence to suggest that mGluR5 and D2 receptors form heterodimers in the striatum (Agnati et 

al., 2010), indicating a possible mechanism for APD-induced mGluR5 alterations. Our findings are 

consistent with previous studies that have reported mGluR1 (Volk et al., 2010) and 2/3 (Crook et 

al., 2002; Gupta et al., 2005) are not altered by current antipsychotic therapeutics. Current APDs 

are widely effective in treating positive symptoms, however they have minimal effects on 

negative symptoms and very limited therapeutic potential for cognitive symptoms. As 

glutamatergic signaling in the PFC is a major contributor to the cognitive impairments associated 

with schizophrenia (Deakin et al., 1989; Perlstein et al., 2001), our findings support that mGluR5 

is unlikely to be affected by current APD treatment. As current therapeutics do not influence 

mGluR5, this provides further impetus to target this receptor for new therapeutics.  

 

4.4. Conclusion 

The present study investigated for the first time (1) diagnosis related alterations of mGluR5 in 

schizophrenia/schizoaffective disorder and (2) the effects of current antipsychotics on mGluR5 

binding. It was demonstrated that mGluR5 binding density was unaltered in schizophrenia, but 

was greatly reduced (39%) in schizoaffective subjects of depressive type. Due to small power in 

the schizoaffective group, further investigation is needed in a larger cohort to validate these 

findings. In line with our hypotheses, APD treatment did not affect mGluR5 binding in an animal 

model, which we posit is due to APDs having minimal direct effects on glutamatergic signaling 

and subsequently cognitive function. This study supports the potential of targeting mGluR5 to 

selectively modulate the NMDAR for the treatment of schizophrenia, particularly negative and 

cognitive symptoms mediated by the PFC. Further studies are now required to characterize the 
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chronic effects and efficacy of mGluR5 modulators in animal models, and in due course, a clinical 

setting. 
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