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ABSTRACT 

Carbon sinks are recognised as an important environmental commodity, however are often assumed 

to be stable. Climate change, and in particular sea-level rise may alter the stability of coastal carbon 

sinks. Mangrove and saltmarsh are amongst the most efficient ecosystems at sequestering carbon; 

however the effect of sea-level rise on sediment accretion and carbon accumulation, and its 

subsequent effect on carbon sequestration and carbon retention remain unknown.  This study uses a 

range of isotopic techniques, including 210Pb-dating techniques to determine a core sediment 

chronology, and stable carbon isotope analyse, to determine the effect of rapid sea-level rise on the 

sources of carbon in a coastal carbon sink.  The study site, located at Chain Valley Bay, Lake 

Macquarie, underwent rapid submergence following the collapse of a long wall mine in the mid-

1980s; and this submergence was used as a surrogate for exploring the effects of rapid sea-level rise 

on a coastal carbon sink.  Temporal mapping of vegetation distribution highlighted the dieback of 

vegetation and subsequent recovery of vegetation following submergence; however areas in the 

lower intertidal zone remained permanently inundated.  The permanently submerged wetland area 

had a higher accretion rate following submergence than the recovery area that is now vegetated with 

mangrove.  The wetland has attempted to keep up with water level rise and as a result carbon 

sequestration increased in the submerged area from 300.0 g C m-2 yr-1 to 627.3 g C m-2 yr-1, and the 

mangrove area increased slightly from 56 g C m-2 yr-1 to 68 g C m-2 yr-1.  Both zones had an 

increase in sediment mass, indicating a shift in sediment sources to more mineral based following 

inundation.  Carbon isotope analyses reflected the changes in sediment sources in each zone.  

Isotopic values showed an obvious shift from marine sourced material to terrestrial material up the 

core and is indicated by the depletion of δ13C (values from -30‰ to -11.7‰).  Sediment 

characteristics and carbon store indicate central mud basin sediments within lower cores due to the 

dominance of muds and silts and lower carbon store and fluvial delta sediments located middle core 

contained more recalcitrant carbon and larger grains sizes with significant gravel components.  In 

the upper core there was a shift to high density of carbon.  The amount of carbon is more in 

mangrove and mixed forest vegetation than saltmarsh.  These results suggest that where 

hydrodynamic conditions are suitable and sediment supply is sufficient, coastal carbon sinks 

following sea-level rise will not become net carbon emitters but may increase their carbon storage 

capacity. 
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1. INTRODUCTION 

Coastal wetlands are low-energy environments within the coastal zone, and more specifically, 

found within an elevation that ranges between sub-tidal depths and the landward edge where 

the sea passes its hydrological influence to groundwater and atmospheric processes 

(Wollanski et al., 2009).  Wetlands provide numerous ecosystem services including 

biological productivity and diversity, coastal protection, erosion control, water purification, 

maintenance of fishers and carbon sequestration (Barbier et al., 2011).  They are increasingly 

being recognised for their ability to help mitigate climate change by acting as buffers to 

inundating floodwaters and acting as blue carbon sinks and sequestering large amounts of 

carbon from the atmosphere and oceans (McLeod et al., 2011).  Blue carbon is carbon stored 

from marine ecosystems.  Blue carbon within wetland vegetation is stored within the soil, the 

living biomass aboveground and belowground and the non-living biomass (Howard et al., 

2014).  Unlike terrestrial forest carbon stores, carbon sequestered in coastal soils can be 

extensive and remain trapped for centuries to millennia (Brevik and Homburg, 2004).  

Mangroves and saltmarshes are thought to release negligible amounts of greenhouse gases 

and have a unique ability to store more carbon per unit area than terrestrial forests (Chmura et 

al., 2003).  Mangrove and saltmarsh ability to store large amounts of carbon have been 

documented for 154 sites globally in literature by Chmura et al., (2003) and are thought to 

store at least 44.6 Tg C yr-1 and probably more.   

 

The effect of rapid sea level rise on wetland vegetation sequestration ability and the fate of 

carbon is little understood, and will depend on the response of vegetated shorelines to sea-

level rise and the fate of stored carbon following submergence (Choi and Wang, 2001; 

Mcleod et al., 2011).  Losses in carbon stored within wetlands has been related to sea-level 

rise, sediment accumulation, subsidence, storm events, rate of wetland loss and coastal 

restoration (DeLaune and White, 2012).  Carbon can be released from wetlands through 

erosion and dispersion of sediments enabling faster breakdown and conversion to greenhouse 

gases.  The available greenhouse gases can be released into the ocean and back into the 

atmosphere and contribute to ocean acidification and greenhouse gases (Nellemann et al., 

2009).  Ocean acidification can cause a large reduction in the ability of the ocean to absorb 

atmospheric CO2 and marine ecosystems are expected to be severely affected due to calcium 

carbonate saturation levels within the ocean reducing.  
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Research has addressed the driving processes and controls of carbon dynamics in coastal 

systems but less emphasis has been place on how anthropogenic influences and sea level rise 

may affect the carbon stored within vegetated systems (McLeod et al., 2011).  The role of 

humans in the reduction of blue carbon sinks due to disturbances like clearing, dredging and 

filling is revealing large losses in vegetation is occurring that would be having impacts on 

carbon sequestration and carbon stored in coastal systems.   

A global loss in blue carbon sinks is already being observed with estimates of 30-50% 

mangrove lost since the 1940s, 50% seagrass lost since the 1990s and 25% saltmarsh lost 

since the 1800s (McLeod et al., 2011).  Research on vegetated coastal ecosystems is needed 

to determine the combined effects of climate change, land-use practices and human impacts 

like pollution and eutrophication on the sequestration of Carbon (McLeod et al, 2001).   

Recent research proposes coastal wetlands may become net carbon emitters following 

submergence due to a collapse in peat with plant mortality and the erosion of soils due to 

increasing wave energy (DeLaune et al., 1994; DeLaune and White, 2012; Kirwan and Mudd 

2012).  This concept has not been fully tested and has only occurred within coastal areas that 

suffer high energy events like hurricanes.  Carbon sequestration studies in coastal 

environments that are relatively sheltered with low wave energy needs to be conducted to 

understand if these environments would also be net emitters or would keep up with sea level 

rise and continue to sequester carbon.   

A coastal wetland at Chain Valley Bay, Lake Macquarie, was impacted by subsidence of 0.85 

m since 1987 due to a the removal of pillars from the underlying mine (MSB, 1991).  This 

subsidence provides a unique opportunity to explore the consequences of accelerated sea-

level rise on sediments and carbon stored in coastal wetlands.  The Lake Macquarie estuary is 

located on south east Australia and is a low energy environment.   

 

This study investigated the fate of carbon and sediments using recent inundation as a 

surrogate for sea-level rise within the Chain Valley Bay wetland.  The study objectives are as 

follows: 

1. Undertake temporal mapping of vegetation distribution to determine the fate of 

vegetation following sea-level rise.   

2. Determine the effect of sea-level rise on sediment accretion and carbon accumulation 

using 210Pb isotope techniques. 
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3. Characterise sediments in different vegetation zones and identify any fluctuations 

with depth. 

4. Undertake stable carbon isotope analysis to determine the effect of rapid sea-level rise 

on carbon sequestration and carbon retention. 

Estimates of carbon stock and rates of accumulation have been conducted on sediment cores 

and rates of carbon accumulation has been estimated using dating techniques (Chmura et al., 

2003).  Radiocarbon dating of bulk peat from high marsh soils within north-west Florida 

were used in conjunction with carbon isotopic analysis to indicate the period of change 

between dominant species as a result of accelerated sae level rise over the last century (Choi 

et al., 2001).  This study uses both radiometric dating techniques and carbon isotopic analysis 

on sediments to determine the fate of carbon following rapid submergence and isotopic 

signatures within sediments to identify the sources of carbon before and after inundation.  In 

addition vertical accretion and mass accumulation analysis of sediments was undertaken in 

submerged and mangrove areas to quantify the carbon sequestration within wetlands 

suffering rapid inundation which is used as a surrogate to predict changes due to rapid sea 

level rise.   

 

Vegetation succession due to sea level rise has become a priority in the management of 

coastal environments.  Mangrove, saltmarsh and Casuarina vegetation located on south east 

Australia have been mapped using spatial analyst tools and predictions of vegetation zonation 

due to different sea level rise scenarios modelled (Rogers et al., 2006; Oliver et al., 2012).  

Using historical aerial photography this study had the unique opportunity to map vegetation 

change following rapid inundation.  Digital terrain modelling and bathymetry data are also 

used to indicate changes in elevation following subsidence and to show the morphodynamic 

characteristics of the wetland following submergence. 

The variety of analysis and approaches undertaken in this study are presented in chapters.  

Chapter 2 is a literature review and provides a background on wetlands and coastal systems, 

information on ecosystem services provided by wetlands, a characterisation of South East 

Australian wetlands.  It also provides background on techniques used for determining carbon 

accretion, carbon store and sequestration.  Chapter 3 is the regional setting of the study site 

including industrial activity, coastal geomorphology, climate, tides, winds and waves and 
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ecology.  Chapter 4 is the methodology used within this study and details spatial analysis 

techniques, wetland morphology methods and methods for determining accretion and carbon 

store.  Chapter 5 are results including vegetation dynamics, wetland morphology, vertical 

accretion, sediment characteristics and carbon storage.  Following this chapter 6 is a 

discussion of results and is presented in order of vegetation characteristics, wetland 

morphology, carbon accretion, changes in carbon sources, implications of sea level rise and 

limitations.  Chapter 7 includes conclusions and recommendations for future studies.  

Chapters 3, 4, 5 and 6 have summaries at the end of the chapter. 
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2. LITRATURE REVIEW 

1.1 Background 

It is becoming increasingly necessary to explain the geomorphic changes that are occurring 

within the coastal zone around the world for the management of coastal resources by the 

global community now and in the future.  Recent studies into climate change have shown 

evidence of increasing sea-level around Australia consistent with the global mean, within the 

past 50 years (White et al., 2014). 

A broad definition of the coastal zone is the area between the seaward limit of terrestrial 

influence and the landward limit of marine influence (Haslett, 2000).  This definition changes 

within individual coastal settings where coastal dynamics such as sediment supply and wave 

energy can cause different morphodynamics within estuaries (Roy et al., 2001).  Wetlands are 

within the coastal zone, and more specifically, found within an elevation that ranges between 

sub-tidal depths and the landward edge where the sea passes its hydrological influence to 

groundwater and atmospheric processes (Wollanski et al., 2009).  Within this region light 

should be able to penetrate and support photosynthesis of benthic plants such as seagrass 

(Wollanski et al., 2009).  At their seaward margin wetlands can be represented by microfauna 

including biofilms, benthic algae and vegetation such as seagrass. At the landward margin 

vegetation boundaries can range from occurrences on groundwater seeps, fens in humid 

climates to relatively barren salt flats in arid climates (Wollanski et al., 2009).  The 

geomorphic setting of wetlands greatly influences the ecology of many coastal zones.   

1.2 Ecosystem Services 

The ecological significance of mudflats, saltmarshes and mangroves that occur in many 

wetland areas is important for two reasons.  Wetland ecological areas are productive 

ecosystems and contribute to the near shore food web.  Wetlands are able to provide habitats 

and perform nursery role for a wide range of species including those that have a high rate of 

primary productivity (Woodroffe, 2003).  They are also able to provide a record of changing 

environments due to their preservation of fine sediments.  The coastal stratigraphic record is a 

form of archive and allows us to examine rates and directions of changes in the past and 

provide analogies for future changes, particularly in response to human influences and future 

sea levels (Woodroffe, 2003).    
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Between 1750 and 2011 cumulative CO2 emissions to the atmosphere were 2040 ± 310 

GtCO2 and about 40% has remained in the atmosphere  The remaining CO2 has been stored 

on land and in the oceans and ocean acidification has occurred as a result from the over 

absorption of CO2 since the beginning of the industrial era (IPCC, 2014).  Anthropogenic 

greenhouse gas emissions have continued to increase between 2000 and 2010 despite the 

increasing awareness and mitigation policies being implemented and has thought to be in part 

due to in part to the economic growth in this period (IPCC, 2014).  The importance of coastal 

ecosystems in the future climate scenario if similar trends are to follow become increasingly 

clear.   

Coastal wetland areas dominated by wetland vegetation such as mangroves, saltmarshes and 

seagrasses and act as carbon sinks.  These environments have recently been termed blue 

carbon sinks and provide efficient areas for the storage of large amounts of carbon per unit 

area and are thought to release negligible amounts of greenhouse gases (Chmura et al., 2003).  

When compared to terrestrial carbon stores, mangrove, saltmarsh and seagrass vegetation is 

more extensive in predominantly in soil organic carbon (SOC) (Figure 2-1).  Mangroves are 

the most productive carbon storage vegetation in both SOC and living biomass compared to 

Boral forest, tropical forest, seagrass and saltmarsh.  Blue carbon within wetland vegetation is 

stored within the soil, the living biomass aboveground and belowground and the non-living 

biomass (Howard et al., 2014).  These blue carbon areas play an important role in the global 

sequestration of carbon that is within the atmosphere and oceans (McLeod et al., 2011).  A 

unique ability of coastal carbon sinks is the extensive amount of carbon that can remain 

trapped for long periods of time (Duarte et al., 2005).  Recent and predicted sea level rise has 

caused many people to wonder what would happen to the vast carbon stores within blue 

carbon sinks and if they would they start to erode and become net carbon emitters.   
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Figure 2-1 A comparison of the mean carbon storage in the above and belowground biomass within 

terrestrial forests and coastal vegetation ecosystems (Fourqurean et al., 2014b). 

 

The rates of carbon burial, or sequestration, is determined by the rate of accretion and the 

density of carbon.  Despite their smaller coverage coastal vegetation ecosystems have the 

potential to contribute largely to the amount of carbon sequester.  Mangrove and saltmarsh 

and seagrass vegetation area sequestering more carbon per year than tropical forest, boral 

forests or temperate forests.  So not only are coastal vegetation ecosystems already areas of 

large carbon stores, they also have the capacity to sequester more carbon than terrestrial 

forests too. 
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Figure 2-2 Mean long-term rates of carbon sequestration (g C m-2 yr-1) within terrestrial forests and 

vegetated coastal ecosystems.  Error bars indicate maximum rates of accumulation (McLeod et al., 

2011). 

 

Wetlands are always evolving, but the wetlands we see today started to form after the last 

interglacial maximum approximately 20 thousand years ago where sea-levels reached 120-

140 metres below present. The Holocene Epoch started to occur from 10 thousand years ago 

and is a period when sea level rose at an average rate of approximately 10 millimetres per 

year.  From 7000 years ago most of the ice that had remained from the last glacial maximum 

had melted and sea levels around Australia stabilised close to our current levels about 6500 

years ago (Short and Woodroffe, 2009).  After natural variability, trends around most of 

Australia show an increased rate of rise in mean sea-level from the early 1990s, consistent 

with global mean trends (White, Haigh et al., 2014).  Recent sea level from 1986 to 2005 

indicate a rise in sea level and a continued trend of sea level increase (Figure 2-3).  Sea level 

will likely not be uniform across coastal zones due to different morphology.  Approximately 

70% of the coastlines around the world are projected to experience sea level change within 

±20% of the global mean which is predicted to likely be in the ranges of 0.26 to 0.55 m for 

model RCP2.6 and between 0.45 to 0.82 cm for model RCP8.5 (Figure 2-3). 

.  
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Figure 2-3Global mean sea level rise predicted using values from 1986 to 2005.  An obvious trend of 

increasing sea level is seen (IPCC, 2014).  

 

Wetlands can act as a buffer against inundation from sea-level rise and floodwaters, mostly 

from the presence of vegetation.  They have the capacity to regulate disturbances from 

storms, floods and drought recovery by the vegetation structure.  Coastal zones also provide 

erosion control and sediment retention services within their soil (Costanza et al., 1998).   

Coastal wetlands provide far-reaching ecosystem benefits by contributing to the carbon cycle.  

An effective carbon sink is one where the rate of carbon entry to a system via photosynthetic 

pathways or through allochthonous additions is greater than the rate at which it leaves via 

export or respiration (Breithaupt et al., 2012).  Wetland communities with mangroves have 

sediment surface areas less than 2% of the total marine environment, but they are estimated to 

store 10 to 15% of the total organic carbon burial in marine environments (Breithaupt et al., 

2012).   

Wetlands contribute to the carbon cycle through a vegetation and soil medium.  In Figure 2-4 

below, the carbon cycle showing inputs and outputs in gross tonnage of carbon per year (Gt C 

yr-1) is depicted for the 1990’s (Solomon, 2007).  Wetlands play a significant role in this 

cycle by sequestering carbon.   
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Figure 2-4 the global carbon cycle based on the 1990 decade.  Natural fluxes are shown in black and 

anthropogenic in red.  Wetlands specifically shown are not shown, but they are contributors to carbon 

stores and sequestration through vegetation and soil mediums (Solomon, 2007). 

 

Figure 2-5 depicts the method of carbon sequestration within vegetation both from 

atmospheric and ocean inputs (Kayranli, 2010).  Carbon dioxide is taken up by vegetation 

and is used in photosynthesis.  It indicates the interaction not only with the atmosphere and 

the plant but with the soil as well, where particulate and dissolved carbon is being stored and 

carbon is being removed.   

 

 

Figure 2-5 Major components of the carbon cycle surrounding vegetation and the pathways including 

respiration and fermentation causing CO2 to form.  In a wetland, organic carbon is converted to CO2 

and methane and/or stored in plants, dead plant matter, microorganisms, or peat (Kayranli, 2010). 

1.3 Wetland response to sea level rise 

Due to current sea-level fluctuations, wetlands are becoming more inundated which could be 

affecting carbon sequestration and storage.  The effect of sea-level rise on sediment accretion 
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and carbon accumulation and its subsequent effect on carbon sequestration and carbon 

retention remain unknown in many areas of the world (McLeod et al., 2011). 

  A recent study by DeLaune and White (2012) into the subsiding Mississippi deltaic plain in 

the USA modelled sediment behaviour due to sea level rise within a saltmarsh (figure 1). 

They estimated more carbon is being lost in the Mississippi Delta than is being stored or has 

previously been preserved due to subsidence (Figure 2-6). Carbon stored within wetlands can 

be lost through a variety of pathways including plant mortality, exportation through erosion 

and peat collapse.   

 

Figure 2-6 Estimated gains and losses of carbon (C) from different coastal processes in the Mississippi Delta 

(DeLaune and White, 2012). 

There method involved creating a model relating to sediment accumulation and then the 

resultant organic soil loss from subsidence of the deltaic plain.  They predict saltmarsh would 

accrete and eventually not be able to keep up sequestration with water level rise and any 

organic deposits would be lost within open water or ponding.  This model could potentially 

be related to wetland environments located on the east-coast of Australia, although different 

tidal velocities, rainfall, wave-energy and biological activity are seen.   
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Figure 2-7 Salt marsh organic content accretion and loss due to subsidence, Mississippi Delta, USA (DeLaune 

and White, 2012). 

 

A study by Mudd et al., (2012) simulated the carbon likely to be lost due to sea level rise 

within North American marshes dominated by Spartina alterniflora.  Their simulation 

suggested climate change will lead to an increase in burial rates in the first half of the twenty-

first century but would diminish thereafter and become net carbon emitters.  For most of the 

twenty-first century their model predicts warmer temperatures faster sea level rise and an 

increase in organic-matter production, carbon accumulation and vertical accretion.  By 2100 

marshes would be completely submerged and would therefore lose productivity.    

With sea level rise it has been estimated that many local changes will occur including altered 

wave refraction patterns and energy gradients, but estimating changes in wetlands in response 

to more frequent high tides and storms, seasonal and longer-term changes and on a decadal-

century scale remains a challenge (Woodroffe, 2003).  Mangrove ecosystems and other 

wetland communities have a general positive/negative morphodynamic feedback of 

sediments like the one seen in Figure 2-8 below.  Few studies have tried to examine the 

contribution of organic and inorganic sediments (Masselink and Gehrels, 2014).  
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Figure 2-8 Morphodynamic feedback on sedimentation in mangrove ecosystems (Masselink and Gehrels, 2014). 

  

 

Mangroves and other vegetation can act as an indicator for degrees of inundation and are 

considered to be in equilibrium with sea level, due to feedback process linked to water depth 

and accretion (Cahoon et al., 2006).  Following moderate sea level rise accretion increases 

and wetlands may keep pace with water level.  If accretion over comes sea level rise the rate 

of accretion would decline (Woodroffe et al., 2014).  Where large increases in sea level occur 

and sediment supply is reduced, from damming or other structures, it could lead to a loss in 

wetland area due to an inability of accretion to match sea-level rise (Woodroffe et al., 2014).  

Carbon sequestration could decline or increase, but the effects of sea level rise on 

sequestration is not well known (McLeod et al, 2011).  Paleoenvironmental reconstruction 

could provide insight into the response of past mangrove areas to sea level rise and give a 

clearer understanding to possible future patterns (Woodroffe et al., 2014). 

 

1.4 South-East Australian Wetlands 

 

The south-east coast of Australia is characterised by 42% wave-dominated estuaries, 35% 

coastal lagoons/strandplain creeks and 10 % wave-dominated deltas and feature large areas of 

saltmarsh and sparse mangroves (OzCoasts, 2013).  Compared to other estuaries around the 
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world, the South-East Australian estuaries are less exposed to relative sea level rise, hurricane 

impacts and enhanced wave energy like those located in the Gulf of Mexico where previous 

carbon sequestration and storage studies have been conducted (DeLaune and White 2012).  

 Chain Valley Bay at Lake Macquarie, NSW was selected as a study site and is located with 

the South-East Australian coastal zone.  According to Roy et al., (2001) the Lake Macquarie 

estuary are wave dominated, barrier estuaries.  In addition, Lake Macquarie is at a youthful 

evolutionary stage (Roy et al., 2001).  The estuarine characteristics seen at Lake Macquarie 

are also seen at 6 other estuaries on the south-east coast of Australia and together they have 

an average area of 1.16 (0.04) km2 mangrove and salt marsh vegetation per estuary and an 

average area of 8.85 (0.30) km2 seagrass vegetation per estuary (Roy et al., 2001).   

Chain Valley Bay was chosen as a study site due to the recent mining subsidence from 1986 

that caused inundation of the wetland located within the Bay area.  The rapid inundation 

provides the opportunity to use it as a surrogate for rapid sea-level rise.  A schematic diagram 

of the mining subsidence that occurred from the partial pillar extraction within the long wall 

mine under the wetland is shown in Figure 2-9.  Clay quickly shears causing load to fall onto 

the rock bands that eventually fail causing the roof to collapse (Mcnally, 2014).   
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Figure 2-9 Claystone roof and floor failure likely seen at Chain Valley Bay causing subsidence of the Wetland 

(Mcnally, 2014). 

 

1.5 Carbon Accretion 

The coastal zone is a constantly evolving medium but its evolution is recorded within its 

sediments as stratigraphic layers, i.e. clay, silt, sand and gravel (Masselink and Gehrels, 

2014).  More importantly sediment records show discontinuities which could indicate an 

erosional event.  By dating the stratigraphic layers within sediments in wetlands and other 

coastal deposits, the rate of accretion can be quantified and help in the reconstruction of sea-

level history (Masselink and Gehrels, 2014).   

Coupled with stable carbon isotope anaylsis, sources of carbon within organic material can be 

determined and a quantification of carbon sequestration capability of the wetland following 

submergence can be calculated.   

The lead-210 technique is used to calculate sedimentation rates by the determination of 

polonium-210 (210Po) and radium-226 (226Ra) activities within sediment cores.  Changes in 

mass accumulation and accretion can be determined using this technique.  Lead-210 was 

chosen as an aging technique for the Chain Valley Bay sediments because of its relatively 



 

Jane Curran | UOW | 2015 Page 28 

 

short half-life (t1/2=22.23 years) which is useful for applied environmental investigations 

(Dalrymple, 1992).   Isotope 137Cs was not used because its half-life was too short. 210Pb is a 

naturally occurring radioisotope and is a product of the 238U decay series below. 

 

238U → 226Ra → 222Rn → 218Po → 214Bi → 214Po → 210Pb 

 

226Ra and 210Pb are not in secular equilibrium within natural materials due to the diffusion of 

222Rn into the atmosphere and soil.  A fraction of 222Rn diffuses from geological and soil 

material into the atmosphere or upper soil layers, causing disequilibrium between 226Ra and 

226Rn.  During the atmospheric release of 226Rn daughter products are attached to the surfaces 

of aerosols and dust particles, including the 210Pb daughter isotope (Dalrymple 1992).  The 

daughter isotope reaches the ground by washout from the atmosphere, within eroded material 

and in-wash from catchments and accumulates within the surface layer (Figure 2-10).  The 

210Pb within the surface layer is supported 210Pb and is in equilibrium with 226Ra and will 

decrease with the half-life of 226Ra which is approximately 1600 years.  Unsupported 210Pb is 

excess and decays by the physical half-life of 210Pb.  The unsupported or excess 210Pb is the 

basis of most tracer applications.  

 

 

Figure 2-10 A schematic diagram of the movement of supported and unsupported daughter isotope 
210Pb into the sediments from the atmosphere, erosional material and in-wash (Oldfield and Appleby, 

1984). 
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1.6 Capacity to store and sequester carbon 

A useful characteristic of terrestrial vegetation is it can be separated according to 

photosynthetic pathways, these being C3, C4 and Crassulacean acid metabolism (CAM) plants 

(O'Leary, 1988).  For C3 plants the Calvin cycle is used where plants fix CO2 by the action of 

the enzyme ribulose biophotosynthetic carboxylase  and for C4 plants the Hatch-Slack cycle 

is used where CO2 is initially taken up through carboxylation of phosphoenolpyruvate 

(O'Leary, 1988).  Plants are able to differentiate between 12C and 13C isotopes which can be 

revealed through carbon isotope analysis where a δ 13C value is obtained using the formula 

below:  

 

A more negative δ 13C value means more 12C or lighter in mass and a more positive value 

means 13C or heavier in mass (figure 1).  

 

Figure 2-11 The distribution of δ 13C values of plant material where values approximately -14‰ are C3 plants 

and values approximately -28‰ are C4 plants (O'Leary 1988). 

 

Small differences in chemical and physical properties of plants allows then to discriminate 

against 13C and be assigned a photosynthetic pathway (O’Leary, 1988).  This differentiation 

between vegetation is useful in identifying the carbon sources within sediments and gives us 

the opportunity to create a history of accumulation within sediments like those found in 

wetlands (Choi et al., 2001).   

The amount of carbon within the core can be identified using isotopic techniques and bulk 

density.  This value coupled with accretion provides a rate of sequestration.   
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3. REGIONAL SETTING 

1.7 Study site location 

The Lake Macquarie tidal estuary is located on the central coast of New South Wales, 

Australia (33°5’36.145’’S 151°35’20.335’’E) (Figure 3-1).  The lake is highly valued by 

nearby residents and visitors to the area and is used for recreation activities such as fishing, 

sailing and swimming.  The focus area of this study is the Chain Valley Bay wetland located 

within the Lake Macquarie estuary at its most southern point (33° 10'S, 151° 34'E).  Chain 

Valley Bay is within the Wyong Local Government Authority (LGA).  The urban area of 

Chain Valley Bay adjacent to the wetland is relatively small, covering about 6 km
2
 with an 

approximate population of 2,500 people (Australian Bureau of Statistics, 2013).  

 

Figure 3-1 The study location Chain Valley Bay in its wider context on the New South Wales central 

coast and the wetland in 2014 (Basemap source: Esri, DigitalGlobe, GEOEye, i-cubed, Earthstar, 

Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community.  2014 aerial map source: Wyong Shire Council).  
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1.8 Industrial activity at Lake Macquarie 

Lake Macquarie is part of the Sydney Basin and is within the Newcastle coal formation 

(Figure 3-2).  Industrial development and mining at Lake Macquarie has allowed the region 

to expand in population and wealth, and has a history of coal mining since the late 1800’s.  

Large coal firms such as Centennial Coal which is the largest underground coal producer in 

NSW, are currently mining within the Lake Macquarie area today and utilise the Newcastle 

port approximately 15 km to the North of Lake Macquarie to export.   Current mining activity 

at Chain Valley Bay is being undertaken by LakeCoal at the Chain Valley colliery which is 

near the wetland study site (refer to Figure 3-4).  The Chain Valley Colliery became 

operational in 1962 and has conducted coal extraction within the Wallarah, Great Northern 

and Fassifern coal seams (Figure 3-3) (LakeCoal, 2012). 

 

 

Figure 3-2 Coalfields within the Sydney Basin, NSW.  Lake Macquarie is located in the Newcastle 

Coalfield (NSW Dept TIRE). 
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Figure 3-3 Local stratigraphy at Chain Valley Bay Colliery (diagram based on one by LakeCoal, 

2013).  Wallarah, Great Northern and Fassifern coal seams have been mined at the Chain Valley 

Colliery.  
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Lake Macquarie also has power stations located around the lake with Eraring Power Station 

located on the Western Shore of Lake Macquarie approximately 30 km south-west of 

Newcastle, Colongra Power Station located approximately 4 km south-west from the study 

site and the Vales Point Power Station located approximately 3 km north- east from the study 

site (refer to Figure 3-4).  The Vales Point Power Station draws water for condensate cooling 

from Chain Valley Bay (Delta Electricitym 2014).  

Elcom Collieries Pty Limited was operating under Chain Valley Bay including the area under 

the wetland and allegedly mining from the Newvale Colliery illegally (Aecomm 2011).  In 

1986 the Chain Valley Bay wetland and its surrounds started to encounter lateral and vertical 

subsidence due to a collapse in the underground long wall mine operating underneath (MSB, 

2007).  Rapid inundation occurred as elevation reduced and the wetland encountered 

environmental change.  Low lying areas of the foreshore including private residences became 

prone to flooding and inundation.  Initial measurements of the subsidence in 1986 were 

approximately 500 mm and grew to 607 mm in June of 1987.  Subsidence continued and by 

June 1988 the subsidence had increased to 750 mm and by December 1988 subsidence was 

recorded at 782 mm (MSB, 1991).  The remediation works at the site due to subsidence 

included (MSB, 1991): 

 

- Raising of 11 houses, and an additional 38 homes required varying degrees of repair 

or restoration. 

- The filling of 27 privately owned lots. 

- The filling of approximately 3 km of Karignan creek and Lake Macquarie frontage 

areas.  

- Restoration of an existing car park and boat ramp.  

- The relocation and modification of services (telephone, electricity, water and sewer 

lines). 

- Landscaping/tree planting programme. 

 

By 1989 subsidence had reached 818 mm and in 1991 850 mm of subsidence had occurred 

(MSB, 1991).  During a visit to the Chain Valley Bay site in 2014 a nearby resident (2014 

pers. comm., 8th September) verified subsidence was still occurring.  
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Figure 3-4 Approximate locations of collieries, mines and power stations surrounding the study site 

and Lake Macquarie (Base map source: Esri, DigitalGlobe, GEOEye, i-cubed, Earthstar, Geographics, 

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 

User Community.  2014 aerial map source: Wyong Shire Council). 

 

1.9 Coastal geomorphology and estuarine dynamics 

Estuaries are dynamic coastal environments that experience change from short term climatic 

conditions and long term geological change.  Longer term geological change is evident when 

we see a natural progression of large estuarine water bodies to terrestrial flood plains, levees 

and back swamps.  The ecology of estuaries is often affected by this geomorphic progression.  

  

Chain Valley Bay 
study site 
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Lake Macquarie and other South-East Australian estuaries can be classified based on a 

particular set of characteristics (Roy et al., 2001).  Two main types of estuaries, tide-

dominated and wave-dominated, are classified by geological criteria and entrance conditions 

controlling tidal exchange.  These factors control sediment infill amounts and the 

depositional environment within estuaries and play a further role in the substratum 

conditions, hydrological regimes and nutrient cycling behaviour demonstrated through 

biological activity.  Lake Macquarie is classified as a wave dominated, youthful barrier 

estuary because it is a large body of water within the early stages of infill and with a barrier at 

its entrance (Roy et al., 2001).  Barrier estuaries are separated from the open ocean by a sand 

barrier which has occurred due to landward reworking of sand from the shelf (Woodroffe, 

2003).  These types of estuaries support a diverse range of estuarine habitats including marine 

and brackish, sub-tidal, intertidal and supra-tidal (Ryan et al., 2003).  Lake Macquarie has 

low river flow with only several creeks draining into the central mud basin and low turbidity 

unless a high wind or rainfall event occurs.  The central basin of Lake Macquarie is a trap for 

sediments and pollutants and encourages denitrification of terrigenous nutrient load (Ryan et 

al., 2003).   

 

Lake Macquarie has tidal inlets that are constricted by beach sand deposited by wave action 

and flood-tidal deltas.  The tidal range within this type of estuary is usually significantly less 

than ocean tides and the tidal currents are usually weak, due to significant attenuation of tidal 

amplitudes as tides enter the expansive water body (Figure 3-5).  The dominant sediment 

transport mechanisms are wind and water movement from wind action.  The youthful stage of 

the lake means it is still experiencing infilling and it has been predicted when infilled Lake 

Macquarie would be a riverine estuary (Roy et al., 2001), much like the Shoalhaven River 

located approximately 200 km south.  The transformation from a barrier estuary to a riverine 

estuary is due to the depositional environment of Lake Macquarie and is represented through 

changes in water surface area characteristics as shown in Figure 3-6.  Marine flood-tidal delta, 

central mud basin, fluvial delta and riverine channel/alluvial plain are areas common to each 

type of estuary and correspond to readily mapped sedimentary environments in estuaries of 

South-East Australia.  These zones can be modified or separated based on estuary type, stage 

of sediment filling/maturity and development impacts. 
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The basic characteristics of the Lake Macquarie catchment area as of 2013 include an estuary 

area of 114.1 km2, a catchment area of 604.4 km2, an average water depth of 5.7 metres and 

an estuary volume of 646 274 ML  (OEH, 2013).   

 

 

 

Figure 3-5 Stage A or youthful stage of infilling in a barrier estuary like Lake Macquarie (Roy et al., 

2001).  The tidal range is smaller than evolutionary stages B, C and D. 

 

 

Figure 3-6 Changes in surface area of different depositional environments in the transition of an 

estuary from youthful to mature (Roy et al., 2001).  Note: COE = Cut-off embayment’s. 

 

1.10 Climate  

The Lake Macquarie estuary exists in a temperate climate (OzCoasts, 1998).  Like most of 

South-East Australia, Lake Macquarie has a decrease in air temperature from May to August 

and has an increase in temperatures over the summer months of November to February.  The 

closest weather station to Chain Valley Bay with a record of temperature is Cooranbong 
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(Lake Macquarie AWS), station number 61412, located 17.9 km away to the north-west and 

opened in 2008.  In 2014 the station recorded a mean maximum temperature of 23.9 °C and 

an annual mean minimum temperature of 11.6 °C (BOM, 2014a) .  A weather station at 

Swansea (Catherine St), station number 61377, is located 4.4 km from Chain Valley Bay and 

has a record of rainfall from 1993.  At this site in 2014 the highest mean rainfall was 

observed from Febraury to June and there was a total of 1252 mm of rainfall recorded for the 

entire year (BOM, 2014b). 

1.11 Tides 

Hydrological activity within Lake Macquarie plays a major role in sediment transport. Major 

focus has been placed on sedimentation, erosion, and the stability of the Lake Macquarie 

entrance.  Changing entrance conditions gives rise to issues relating to navigation, foreshore 

stability, tidal exchange and ecological sustainability (Witt et al., 1996).  Any changes to the 

entrance channel can affect ecological conditions.  For example, seagrass beds are located 

within the lake and are dependent on the lake water levels.  If there are changes to entrance 

conditions resulting in larger tidal movement or water inundation the seagrass beds will be 

affected by the active sediment movement and could be blanketed by sediments causing 

suffocation (Witt et al., 1996). 

It is suggest by Roy et al., (2001) the distribution of mangrove and saltmarsh vegetation is 

controlled by the tidal range.  Lake Macquaire is a barrier estuary and the fluvual delta zone 

is less extensive with more restricted areas of mangroves and saltmarshs.  When compared 

with the evolution of estuaries, mangrove and saltmarsh are less abundant in barrier estuaries.  

There is also a trend of expanding saltmarsh and mangrove area with increasing maturity 

(Roy et al., 2001).    

Tidal information for water bodies like Lake Macquarie can indicate the tidal prism of the 

estuary and circulation (Woodroffe, 2003).  The tidal prism is the volume of water moving 

past a cross section with tidal movement.  Tidal prisms are classified based on circulation and 

can either be salt-wedge, partially mixed or well-mixed. Tidal information has been recorded 

approximately 500 m upstream of the entrance to Lake Macquarie in 1996 (OEH, 2013).  A 

local tidal range of 1.18 m was recorded at ebb flow and at flood flow a local tidal range of 

1.16 m was recorded.  In comparison Sydney Harbour which is also included within the 

South-East Australia estuary group and located approximatly 90 km south of Lake Macquarie 

has higher ebb flows of 1.34 m and higher flood flows of 1.29 m.  This is due to the harbour 
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being a tide dominated drowned valley estuary, thefore having larger tidal ranges than Lake 

Macquaire which is mostly sheltered from tidal influence (OEH, 2013).  Both sites located on 

the south-east coast have low spring tidal ranges.  Most coastal zones in South-East Australia 

have high tides approxiamtly around 1.5 m and low tides around 0.3 m (BOM, 2015). 

 

At Lake Macquarie the tidal prism would likely be a combination of salt wedge and partially 

mixed circulation due to the low tidal exchange (Woodroffe, 2003).  Figure 3-5 above gives 

an indication of the small tide and the attenuating tidal power likely in Lake Macquaire.  

Lake Macquarie also has a semi-diurnal cycle where two high and two low tides of 

approximate equal size are experienced every lunar day. 

It is likley the tidal range within Lake Macquaire will increase with sea level rise.  Using two 

sites within Lake Macquaire, these being Belmont approximatly 17.5 km north-east and 

Marmong Point approximatly 22 km north of the Chain Valley Bay wetland, Watterson et al., 

(2009) have predicted the possible effect sea level rise.  Assuming a static ocean tidal range, 

the lake spring tidal range will likely steadly increase at a rate of 0.0012 per/yr at Belmont 

and 0.0011 per/yr at Marmong point (Watterson et al., 2009). 

1.12 Winds and waves 

The South-East Australian coast is dominated by southerly swells which help in the 

movement of sediments through littoral cells and within tidal inlets and deltas.  From wind 

data collected at 3pm from 1969 to 2004 at Norah Head Lighthouse, site number 061273 

located approximately 11.5 km south-east of Chain Valley Bay, the dominant wind direction 

is south and north-east.  Southerlies are seen from March to September in the cooler months 

and a north easterly is seen from October to February.  Wind is stronger at 3pm than those at 

9am, and is predominantly ≥ 20 and <30 km/h.  The average annual wind speed at 3pm is 

20.8 km/h and 14.4 km/h at 9am (BOM, 2014).  Assuming wind direction and speed recorded 

in this location corresponds to Lake Macquarie, waves within Lake Macquarie would likely 

travel in a north and south-westerly direction, depending on the season.  During site visits in 

late August and January to the Chain Valley Bay wetland wave direction was seen to be 

travelling in a south-westerly direction around the small headland/boat ramp towards the 

eastern section of the Chain Valley Bay wetland.   
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Even though Lake Macquarie is characterised as a wave dominated estuary by Roy et al., 

(2001) the impact of wave energy on sediment movement within the lake is limited.   

According to Adlam’s, (2014) theory on geologic evolution of lagoons like Lake Macquarie 

that remain unfilled despite thousands of years of sedimentation, they are unfilled due to the 

lagoons not reaching a threshold at which orbital motions of wind waves are able to suspend 

sediments within the central mud basin.  Other lagoons following infilling until the basin is 

sufficiently shallow, have wind orbital motions preventing deposition or entrainment of 

sediments as a results of a threshold shear strength being exceeded.  Lake Macquarie is 

limited by sediment supply and has wave orbital motions that do not interact with the central 

mud basin (Figure 3-7).   

 

 

Figure 3-7 The Wave orbital motions within Lake Macquarie that is currently unfilled.  The lake is 

deeper than the threshold depth due to low sediment supply (Adlam, 2014).  

1.13 Ecology 

Lake Macquarie has characteristic barrier estuary vegetation with mangrove, salt marsh and 

seagrass coverage.  The approximate area of mangrove within the lake is 1.00 km2 with 

patchy cover, and extensive seagrass with approximate area of 13.39 km2 which is consistent 

with the distribution of estuarine vegetation within relatively immature barrier estuary.  Salt 

marsh area only covers approximately 0.71 km2 and is patchy (OzCoasts GeoScience 

Australia, 2012).  Sediment infilling of the youthful estuary will likely cause a transition from 

conditions with a lot of subaqueous area suitable for seagrass vegetation to the development 

of extensive intertidal surfaces suitable for mangrove and saltmarsh development and growth.  

The only mangrove species occurring at Lake Macquarie are Avicennia marina (Grey 

mangrove) and Aegiceras coniculatum (River mangrove) species.  Avicennia is the dominant 

species found at the Chain Valley Bay wetland. 
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The vegetation at Chain Valley Bay is not only mangrove but Coastal Saltmarsh which 

adjoins mangrove at Chain Valley Bay.  It occurs as groundcover in the upper intertidal zone 

on the landward side of the mangrove area at Chain Valley Bay. Common species include to 

Lake Macquarie include Juncus krausii subsp. Australiensis (Sea Rush), Sarcocornia 

quinueflora subsp. quinqueflora (Samphire) and Sporobolus virginicus (Marine Couch), 

Baumea juncea (Bare Twigrush), Ficinea nodosa (Club Rush), Selliera radicans 

(Swampweed), and in brackish areas tall reeds such as Phragmites australis (LRO, 2009).  

Mangrove occurs scattered through some of the saltmarsh area at Chain Valley Bay.   

The saltmarsh area transitions to Swamp Oak Floodplain Forest which is characterised by 

Casuaina glauca (Swamp Oak) and/or Melaleuca quinquenervia (Broad-leaved Paperbark).   

(LRO 2009).  

Seagrass species common to Lake Macquarie include Zostera capricorni (Eel Grass) 

Posidonia australis (Strap Weed), Halophila ovalis (Paddle Weed) and Ruppia megacarpa 

(Sea Tassels) (AWACS et al., 1995). The seagrass species Zostera capricorni was present at 

Chain Valley bay in extensive seagrass wrack located on the shore of the wetland. 

 

1.14 Chapter Summary 

Lake Macquarie is located on the central coast of NSW and has mixed land use with 

significant areas of natural vegetation, urbanisation and infrastructure.  The study site is 

located at the southernmost point of the lake at Chain Valley Bay.  Lake Macquarie is an area 

with high proportion of collieries and power stations due to the abundance of coal seams 

within the Newcastle coalfield.  The local region has moderate summers and winters and 

rainfall.  The lake is a wave-dominated barrier estuary and because of this has low tidal ebb 

and flow tides.  The local wind speed is general >=20 and 30 km/h and are predominantly 

southerlies and north-easterlies and change with the seasons.  Wave direction follows the 

direction of wind movement in the lake and waves are generally small and produced by the 

wind.  Waves travel towards the entrance to the Chain Valley wetland and encounter the front 

of the wetland on the eastern shore.  Predominate marine vegetation in the lake are sea grass 

species extending 13.39 km2 and terrestrial species of mangrove extending 1.00 km2. 
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4. METHODOLOGY 

The intent of this study is to measure carbon and analyse blue carbon systems at a regional 

scale at Chain Valley Bay, Lake Macquarie after a major inundation event due to mine 

subsidence.  The subsidence that has occurred from 1986 is a surrogate for rapid sea-level 

rise. This was achieved by undertaking spatial analysis using remote sensing techniques, 

using 210Pb radiometric dating techniques on sediments to determine rates of accretion and 

mass accumulation and using carbon isotopic methods to determine carbon sources and the 

percentage of carbon within the wetland with depth.  These methods are discussed below. 

1.15 Spatial Analysis 

Remote sensing is a useful tool to study distribution where no previous sampling and analysis 

have been undertaken and where a level of spatial detail cannot be captured readily with 

ground-based techniques.  Using spatial analysis techniques, information on wetland 

vegetation structure and coverage can be mapped where they previously could not.   

Remote sensing is an effective medium to estimate ecosystem extent, plot design and biomass 

measurements.  It has previously been used to analyse coastal land use and potential carbon 

sink change over time and could potentially be used for national carbon accounting (DeLaune 

and White 2012; Fourqurean et al., 2014).  The ESRI Geographic Information System 

mapping program ArcGIS was used for spatial analysis in this study. 

1.15.1 Vegetation Change mapping  

Vegetation distribution at various time intervals can provide an effective representation of 

wetland change over a short period of time due to external changes within the environment.  

At Chain Valley Bay the distribution of vegetation has been effected by inundation and 

vegetation is used as a representation of inundation zones.  Mangrove and saltmarsh roughly 

occupy the zone between mean sea level and highest astronomical tide.  

Mapping of vegetation change over time within the wetland at Chain Valley Bay was 

undertaken using ESRI ArcGIS version 10.2. Subsidence of the wetland caused rapid 

inundation from 1986 to 2014 (pers comm. Chain Valley Bay resident).  The time period 

from 1984 to 2014 was used to map changes in vegetation due to the event.  Historical aerial 

photography of the wetland were assigned projected coordinate system GDA-1994-MGA-

Zone 56 and geographic coordinate system GSC-GDA-1994.  Using the Georeferencing tool 
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on ArcGIS the imagery were aligned and adjusted using at least 12 control points and a RMS 

error below 1.5 was ensured.  Independent ground control points similar to each photo like 

edges of buildings, driveways, pools and tennis courts, were used as references in each aerial 

photograph.  Locations around Chain Valley Bay where change is likely to occur, for 

example in the wetland, were not used as references.  Photography was georeferenced in 

order from 2014 to 1984.  The 1996, 2003, 2006 and 2010 aerial photography was 

georeferenced to 2014 which was received from Wyong Shire Council already georeferenced.  

Historical photography from 1984, 1986, 1987 and 1990 were georeferenced using 1996 

photography because common control points could not be found for these images in more 

recent photography.   

The historical aerial photography was then digitised to show vegetation change over time 

following the subsidence event, using a maximum scale of 1:1500.  Four categories were 

assigned including a zone of impact and basic vegetation classes Mangrove, Saltmarsh and 

Mixed Forest.  The classification of each zone is shown below: 

 Zone of Impact: Where vegetation is predominantly dead or dying including dead 

saltmarsh, mangrove, casuarina and swamp paperbark. 

 Mangrove:  Mangrove forested areas where species like Avicennis marina (Grey 

mangrove) are dominant and an approximate density of 90% mangrove trees are 

present. 

 Saltmarsh: Open spaces and pools where species common to the saltmarsh like Juncus 

krausii subsp. Australiensis (Sea Rush) and Sarcocornia quinueflora subsp. 

Quinqueflora (Samphire) are dominant and cover approximately 90% of area. 

 Mixed Forest: Where Casuarina glauca (Swamp Oak) is the dominant vegetation 

species and is interspersed with Melaleuca quinquenervia (Broad Leafed Paperbark).  

This zone would include associated vegetation cover of approximately 90%. 

 

Each zone was delineated in accordance with the protocols of Wilton and Saintilan, (2000) 

which recommend a scale of 1:5000 or larger for differentiation of mangrove and saltmarsh 

and georectification using at least 6 ground control points.   

There is some Casuarina glauca vegetation spread randomly throughout the saltmarsh area 

and some sections of mangrove have saltmarsh patches.  It should be noted vegetation 
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zonation using aerial photography can create associated errors which cannot be avoided.  

Mapped zonations are only an indicator of vegetation zones at the time the photo was taken.     

 

Change in the extent of each vegetation class between available years was calculated by 

image subtraction and tabulated based on percentage of change per year.  A graph 

representing total change (m2) through time within each vegetation class was created.   

1.15.2 Ground Truthing  

Site reconnaissance conducted in September and December 2014 and earlier ground truthing 

advice provided by Kerrylee Rogers from visits in May and June 2014 allowed for the 

corroboration of the aerial photography vegetation classification and zonation.  The existing 

environment was recorded using digital photography and common vegetation types in each 

zone were observed.  During this exercise it was noted that some Melaleuca quinquenervis 

occurred in the areas thought to be Casuarina glauca alone.  As a consequence Casuarina 

and Melaleuca areas were combined in the spatial mapping as mixed forest.  During site 

inspections some Casuarina glauca species were observed intermittently through saltmarsh 

areas.  

1.16 Wetland Morphology 

1.16.1 Digital Elevation Model 

Ground topography is used to show areas likely to be inundated by tidal forces, high flood 

events or even sea-level rise.  It can also indicate sediment infill areas and areas likely to be 

in-filled in the future.  A digital elevation model (DEM) was created in ESRI ArcGIS using 

Light Detection and Ranging (LIDAR) data obtained from NSW Land and Property 

Information (LPI) allowing analysis of the ground topography within Chain Valley Bay.  For 

topographic work narrowly focused clear light is generated with a laser and beamed down to 

earth.  A receiver unit is located on an aircraft and collects the returning laser pulse energy 

reflected from land or water and is recorded in time.  The ground topography can be recorded 

because LIDAR collects multiple returns that are separated based on local relief (Jensen, 

2007).  The exact location of the LIDAR laser is accomplished using Differential Global 

Positioning Systems (DGPS).  A DEM map layer was created by converting the bare earth 

layer into multipoint and using TIN interpolation tools in ESRI ArcGIS.    
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The Lidar data was sourced from the NSE Government Department of Planning who 

conducted extensive high resolution terrain mapping of the NSW Central and Hunter coasts 

for the assessment of potential climate change impacts (Department of Planning, 2008).  The 

Lidar was used to derive a 2 m resolution DTM ESRI GRID that included all ground 

elevation returns with no non-ground features. The lidar returned a ±0.15 m vertical accuracy 

and ±0.6 m horizontal accuracy.  The lidar fly over was conducted by Fugro Spatial Solutions 

Pty Ltd and was undertaken in January 2007.  The DEM created using this data therefore has 

a vertical accuracy the same as the lidar data and would have 2 m resolution. 

The elevations for each vegetation zone through time was calculated using ESRI ArcGIS.  

Vegetation polygons were converted to raster and zonal statistics were calculated to represent 

the elevation dynamics for each vegetation zone before and following rapid inundation. 

1.16.2 RTK-GPS positioning 

Real Time Kinematic (RTK) is a method commonly used in surveying to improve accuracy 

by the use of carrier based ranging as opposed to code-based position used by a GPS 

(Novatel, 2014).  A RTK instrument was used on site to obtain geographic position and 

elevation in xyz file format at those core locations that could be accessed by land.  The 

purpose of collecting RTK-GPS values was to validate the efficacy of the DEM at core 

locations and to obtain more accurate positioning of core locations.  These values were 

compared to values obtained from the DEM in the exact same location to additionally 

determine if there are any difference in elevation from 2007, the year the DEM was sourced, 

to 2014.  The DEM and interpretations were verified with aerial photographs and field 

observations.  The RTK has a ±1-2 cm horizontal accuracy and a vertical accuracy of ±2-

4cm.  
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Figure 4-1 Real Time Kinematic (RTK) positioned to collect xyz data at Chain Valley Bay, Lake 

Macquarie for the purpose of obtaining geographic positions and elevations at core locations.  
 

1.16.3 Bathymetry 

Data obtained from the Office of Environment and Heritage (OEH) was used in the 

interpolation of data to show bathymetry.  The data was collected between July 2010 and 

March 2012 as part of the OEH Estuary Management Program.  The data obtained by 

surveyor S.Holtznagel was collected using a RTK GPS, Odom Echotrac MKIII echosounder 

and had a resolution of 100 m and accuracy of ± 0.18 m (Oceanscan, 2014). 

Vector points obtained from an xyz file of Lake Macquarie containing geographic positions 

and elevations were interpolated by the use of a Triangulated Irregular Network (TIN) in 

ESRI ArcGIS.  The data set was transformed using the nearest neighbour technique (also 

known as Delauney Triangulation).  Nearest neighbour generally produces better results than 

other interpolation techniques, in terms of accuracy and aesthetics.  It should be recognised 

using the TIN method creates some issues because it assumes a linear relationship between 

points and this may not be entirely accurate.   
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Bathymetry data obtained between 2010 and 2012 provides benthic morphodynamic 

information, in particular the elevation of previously vegetated areas at Chain Valley Bay, 

and provides insight into the sediment dynamics around the wetland.   

1.17 Accretion and Carbon Store 

1.17.1 Sample Collection 

Examination of historic aerial photography identified five inundation classes based on 

vegetation zonation but was reduced to four after field reconnaissance.  They include 

submerged vegetation area which had been previously heavily vegetated in 1984, mangrove, 

saltmarsh and mixed forest on the southern side of the path through the wetland (Figure 4-2).  

Two transects were established that dissected each zone (Figure 4-3).  Previous mapping of 

Lake Macquarie have used similar vegetation mapping units where mangrove and saltmarsh 

were distinguished from each other (Creese et al., 2009). 

 

Figure 4-2 Chain Valley Bay Wetland distribution of mangrove, saltmarsh mixed forest and 

submerged vegetation in 2014.  This map was used for plotting core locations.   

 

Submerged vegetation 

Mangrove 

Saltmarsh 

Mixed forest 
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A team from the University of Wollongong (UOW) attended the study site on the 8th and 9th 

of September 2014.  Two cores were extracted from the mangrove and submerged zones 

along transect 1 for further analysis of sedimentation rates at the Australian Nuclear Science 

and Technology Organisation (ANSTO), located at Lucas Heights, NSW Australia (Figure 

4-3).  An additional nine cores were extracted for analysis of carbon content and carbon 

source dynamics at ANSTO from transects 1 and 2. 

 

Figure 4-3 Core locations at Chain Valley Bay and transects 1 and 2 of which cores were 

collected along on the 8th and 9th September 2014. 

 

Care was taken during the extraction to minimise compaction.  Sharpened aluminium tubes of 

approximately 1.3 m in length and 55 cm in diameter were gently hammered vertically into 

the wetland surface.  The A-frame pulley and manual extraction techniques were used to 

remove cores from the wetland.  

Figure 4-4 (a) and (b) below show the extraction techniques at the site including the two 

person extraction method and the A-frame pulley system that was launched off the side of a 

boat.  The additional nine cores were collected in each identified vegetation zone (Figure 4-2).  
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One core was taken from the mapped submerged vegetation area, mangrove, saltmarsh and 

mixed forest in each transect and one additional core was collected from the back of the 

wetland on the southern side of the foot path running through the wetland (Figure 4-3).   

Cores were assigned labels and correspond to the vegetation zone outlined in Table 4-1. 

 

 

 

Figure 4-4 a) The A frame pully system of removing sediment cores used at Chain Valley Bay.  The 

tripod is launched off the boat and the core is hammered into the ground and a suction plug is added to the 

top before being pulled up. b) The core removal technique used on land at Chain Valley Bay.  The core is 

hammered into the ground and the suction plug is added to the top of the core before a clamp is attached 

and the core is gradually wiggled out.   c) Cores were cut open on site and subsampled before being 

placed directly in a 3-5ºC cold storage box. 

 

 

 

 

(a) 

(b) 

(c) 
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Mangroves and saltmarshes often have organic rich soils that range from 10 cm to over 3 m 

in depth.  A minimum depth of 1 m is the recommended standard for accurately quantifying 

soil carbon pools (Fourqurean et al, 2014).  Soil scientists have suggested 30 cm core depth is 

enough before reaching recalcitrant carbon but the depth of carbon is highly dependent upon 

evolution and site specific factors. Observations of significant seagrass wrack accumulation 

was evident along the front shoreline of the wetland.  

Table 4-1 The assigned labels to each core within Chain Valley Bay and the vegetation zone and 

transect they are located within. 

 

Core 

Identification 

Label 

Transect Vegetation Zone 

1A 1 Submerged area  

1B 1 Mangrove  

1C 1 Saltmarsh 

1D 1 Mixed Forest 

E 1 & 2 Mixed Forest 

2A 2 Submerged area 

2B 2 Mangrove 

2C 2 Saltmarsh 

2D 2 Mixed Forest 

Pb 1 
1 

Submerged core assigned for 210Pb 

analysis. 

Pb 2 
1 

Mangrove core assigned for 210Pb 

analysis. 

  

The nine cores assigned for carbon isotope analysis from each location were cut open and 

sliced in half and then subsampled in the field (Figure 4-4 (c)).  A 2 cm slice was removed 

from 0-2 cm and 5-7 cm and then every 10 cm down the core to the bottom.  Each core half 

was assigned half A or half B and samples were labelled appropriately and immediately put 

into a portable fridge set at 3-5ºC to prevent decomposition of organic carbon and diagenesis 

of stable carbon isotopes.  The remaining soil in the cores was not removed and the cores 

were placed in cold storage.  The two cores assigned for accretion analysis using Pb-210 

dating techniques were also put in cold storage for later sub-sampling. 
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1.17.2 Vertical Accretion 

In order to determine mass accumulation and accretion rates through time within two cores at 

Chain Valley Bay radiometric isotope lead-210 (210Pb) dating was used.  210Pb was chosen as 

an aging technique for the Chain Valley Bay sediments because of its ability to be retained in 

soils and the adequate half-life for testing sediments within 100 years (Appleby, 2008).  

Isotope 137Cs was not used because its half-life was too short.  Samples from core ‘Pb 1’ and 

‘Pb 2’ were sliced at laboratories located at the University of Wollongong, NSW.  The 

sediment was sampled from 0-30 cm at every 1 cm and were weighed and placed in a 60ºC 

oven for 2 days or until dry (Figure 4-5).  Samples were reweighed and the bulk density was 

calculated using Equation 1 below and the percentage of was moisture also calculated.  

 

  
Equation 1 

               Dry soil (MSoilds) 

Bulk density (g/cm3) =   

   Total soil volume (Vsoil)  

 



 

Jane Curran | UOW | 2015 Page 51 

 

Figure 4-5 (a) Top 30cm of the mangrove core sliced every 1cm and dried in a 60 ºC oven, 

(b) and the core samples just taken out of the oven and ready to be bagged and labelled to 

take to ANSTO. 

 

The 210Pb testing of the dry samples was conducted at laboratories located at ANSTO, Lucas 

Heights, NSW Australia and took place over a week.  Eight samples from each core were 

chosen for analysis based on the position within the core and the amount of sediment 

available for testing.  The selected samples were ground finely at ANSTO to provide a 

homogenous sample for the 210Pb analysis. 

1.17.2.1 Lead-210 ANSTO analysis method 

The Environmental Radioactivity Measurement Centre (ERMC) at ANSTO has created a 

method for the determination of sedimentation rates by the lead-210 method and 

encompasses sediment preparation pre-analysis and the methods for analysing polonium-210 

(210Po) and radium-226 (226Ra) by alpha spectrometry.   Sedimentation rates were calculated 

using Polonium (Po) and Radium (Ra) calculations in the most current 210Pb dating excel 

(a) (b) 
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spreadsheet at ANSTO.  Upon calculating results graphs were created to represent accretion 

and mass accumulation at the Chain Valley Bay wetland. The graphs were adjusted using the 

Constant Rate of Supply (CRS) model rather than CIC.  CRS suggests continuous source of 

210Pb fallout irrespective of any changes in the sedimentation rate and the CIC assumes 

constant initial concentration.  The CRS model initial concentration varies inversely with the 

sedimentation rate (Appleby, 2008).  Following graphing of results sediment information in 

the mangrove 210Pb core appeared to be missing and a further three samples were sent to 

ANSTO for analysis in January 2015. 

 

Sediment pre-analysis preparation 

Approximately 0.2-2 g of sediment was weighed accurately into a 150 mL beaker and 

approximately 5000 dpm of 133Ba and 10 dpm of 209Po mixed tracer solution was added.  10 

dpm of each tracer is required so the tracer stock usually has a concentration close to 50 

dpm/ml or 209Po and 25,000 dpm/g 133Ba so that the addition of 0.2g stock solution weighed 

by difference to 5 decimal places is sufficient.   

In the fumehood, 10-20 mL of 2M HNO3 was added to each beaker so the whole sample was 

dispersed and no sample was left on the sides of the beaker.  Some samples had a more 

vigorous reaction likely due to the presence of some carbonate material.  Samples were then 

heated for at least 5 minutes on a hotplate set at 40-50ºC.  Samples were cooled and 10 mL of 

concentrated HNO3 was slowly added and the sample swirled and then another 15 mL was 

added.  The concentrated HNO3 was added slowly so no vigorous reaction would occur.  Any 

sample left on the sides of the beakers was rinsed with 2M HNO3. The samples were then 

placed back on the hotplate at 60 ºC to digest until they evaporated close to dryness.  A few 

drops of n-octanol was added to those samples that reacted too vigorously and 2M HNO3 was 

used again to wash down the sides of the beakers.  The samples were cooled and 5-10 mL of 

10% H2O2 added so the sediment was covered and then swirled so there were no bubbles.  

The beakers were then placed back on the hotplate until the effervescence subsided.  Another 

5 mL of 10% H2O2 was added to the sediments like previously and continued to be added 

using the same method until the samples became less reactive.  The less reactive the samples 

became the less organic matter is in the samples.  The samples started to turn into a lighter 

colour and those that didn’t 30% H2O2 was added instead until the lighter colour was 

achieved.  Samples were left to reduce to a smaller volume and then let cool.  10 mL HNO3 

and 30 mL of HCl was added to each beaker and placed back on the hotplate with a 
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watchglass.  The HCl is added to produce an aceotrope (constant boiling point acid 

composition) to dissolve all authigenic phases, for example sulphides and carbonates, and to 

leach the surface of clays and primary minerals.  The beakers were left overnight on a 

hotplate at 50ºC to reflux.  Samples were found to be digested sufficiently if the residues 

appeared light (creamy grey) and the supernatant was yellow (not brown).  Lighter coloured 

samples are thought to provide better results. 

Cooled samples were then transferred to a 50 mL centrifuge tube using 6M HCL and 

centrifuged at 4500 rpm for 5 minutes.  The supernatants were decanted back into the original 

beaker and another 15 mL of 6M HCl was added to the samples and shaken to rinse the 

residues, then centrifuged for another 5 minutes.  The supernatant was then decanted again 

into the beaker and the residues discarded.  Samples were then placed on a hotplate at 60 ºC 

to evaporate to near dry where 10 mL of 6M HCl was used to rinse the beaker walls.  The 

samples were left to evaporate.  About 5 mL of concentrated HCl was added and samples 

were left to evaporate again.  This step was done twice as the repeated addition of 

concentrated HCl makes sure any nitrates are removed.  Samples were then left to cool before 

continuing with the polonium and radium isolation. 

 

Polonium isolation 

Samples were placed on a hot plate-stirrer unit and 30 mL of 0.1 HCl and 50 mL of reagent 

water was added.  The samples were stirred between 70-90 ºC and 1mL of 20% ascorbic acid 

solution was added to reduce Fe(III) to Fe(II) so the sample could eventually be deposited on 

silver disks.  After 3 minutes 100 L 1.0M citric acid solution was added to oxidising agents 

complex trace iron and chromium and then 10 mg of Bi3+ holdback carrier was added to 

inhibit autodeposition of Bismuth.  Adjust the pH of the samples to 1.5 with concentrated 

NH4OH using cresol red indicator.  About 1 g of hydroxylammonium chloride was added 

rapidly to each sample and a polyethylene holder containing a silver disk was immediately 

floated, and placed at an angle to prevent bubbles forming on the disk surface.  A watchglass 

was then placed on top of sample beakers and left for 4-6 hours to allow the autodeposit of 

polonium onto the silver disks and the stirrer was set so the disk holders floated without too 

much rocking.  Periodic spinning of the disk was essential to remove bubbles trapped 

underneath which can result in less that optimal autodeposition and reagent water was added 

to maintain the volume in the beaker so the solution would not become too acidic. 
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Once complete the disks were removed and rinsed with reagent water and so that washings 

were collected in the beaker.  Over a separate waste beaker the disks were rinsed with 95% 

ethanol and placed on a tissue gently so the deposited surface was not touched. 

Once dry the disks were labelled and taken for alpha spectrometry to count the prepared disk 

sources and determine the activity of 210Po. 

 

Radium isolation 

The remaining solution from the polonium isolation above was transferred into a 1 L beaker 

and diluted with approximately 800 mL of reagent water and placed on a magnetic stirrer at a 

high setting.  20 mL of concentrated H2SO4 was slowly added then 100 mL 20% Na2SO4.  10 

mL of 10mg/L Pb2+ carrier in 0.1 HNO3 was added slowly drop wise from a tube placed 

above the beaker.  The beakers were left overnight and a Pb/Ba/Ra sulphate precipitate 

formed.  The supernatant was decanted slowly to prevent any loss of the precipitate and the 

precipitate was then centrifuged with 50% ethanol at 5100 rpm for 2 minutes.  The 

supernatant was then decanted and the beaker was washed with 50% ethanol into the 

centrifuge tube and then centrifuged again.  After a second decanting 5 mL of 0.2M 

Na5DTPA and 1 drop of thymol blue was added and the tubes were placed in an ultrasonic 

bath to dissolve all the sulphate precipitate.  2 drops of methyl red indicator was added and 

the solution turned green.  The samples were then passed through a 0.45 m disposable 

membrane filter into a polycarbonate vial and 2 mL or 1:1 acetic acid/water and 1 mL BaSO4 

seeding suspension which had been ultra-somicated was simultaneously added and the 

solution turned pink.  The vial was then placed in cold water for 30 minutes and then passed 

through a smooth surfaced Millipore “VV” membrane filter in a lock-seal Gelman filter 

apparatus with 50% ethanol.  The colloidal Ba/Ra sulphate precipitate was swirled before 

being added and the vial and filter funnel walls rinsed thoroughly to ensure all the precipitate 

collected on the filter.  The filter was placed in a petri dish and placed on top of a HPGe 

gamma detector where gamma spectrum was collected for 10 minutes measuring the recovery 

of 133Ba via the 356 keV peak.  Each filter was then stuck onto a carbon tab and 226Ra was 

analysed by alpha spectrometry.   

1.17.3 Sediment Characteristics 

Sediment characteristics, colour and texture were recorded soon after the opening of each 

core.  Samples were then analysed for bulk density, % moisture and grain size at the 
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University of Wollongong, NSW Australia.  Samples already sub-sampled in the field and 

stored in cold storage at 3-5 ºC were removed for bulk density analysis similar to that seen in 

Figure 4-5 (b).  The sediment samples were weighed and then placed in a 60 ºC oven for at 

least 2 days and then reweighed and bulk density (g/cm
3
) calculated using equation 1.  Dried 

samples were then ground to a fine powder (< 250 μm) using a Retsch vibrator mill so they 

could then be used for carbon isotope analysis.  Particle size analysis of all subsamples was 

conducted at UOW on the Malvern Mastersizer 2000 on wet samples and gave values for 

sand, silt and clay content.  Gravel content was deduced visually as the sediment was too 

large for the Mastersizer.  Results were graphically represented together with carbon isotopic 

results and % carbon.   

1.17.4 Carbon dynamics and sources 

In order to determine carbon isotopic signatures and the percentage of carbon within the cores 

sampled from Chain Valley Bay, samples were prepared at the University of Wollongong and 

ANSTO, and eventually analysed using dry combustion at ANSTO.   

Dried and ground samples were acid washed once using 1M HCl to remove carbonate 

material from the subsamples.  Samples were left for approximately 2 days or until the 

reaction had stopped and then placed in a centrifuge for 3 minutes.  The acid was then 

decanted and samples were then rinsed using RO water and placed back into the centrifuge 

and again decanted.  Samples were transferred to tin trays using RO water and placed in a 

60ºC oven for 2 days, or until water had evaporated. 

 Carbonate material was not fully removed from samples 65 cm and down in the core, 

therefore only carbon isotope and carbon percentage results from 0 – 55 cm will be 

considered in this study.  All sub-samples from transect 1 were analysed for carbon and only 

subsamples 0-2, 5-7, 15-17, 25-27, 45-47, 65-67, 85-87, 105-107cm from transect 2 were 

analysed for carbon. 

The finely ground acid washed samples were taken to ANSTO and were weighed and 

pelletised in small tin capsules over 3 days and then analysed with a continuous flow isotope 

ratio mass spectrometer (CF-IRMS); model Delta V Plus (Thermo Scientific Corporation, 

USA), interfaced with an elemental analyser (Thermo Fisher Flash 2000 HT EA, Thermo 

Electron Corporation, USA).  In summary the sample is combusted into CO2 in a combustion 

furnace (silvered cobaltous/ic oxide, chromium oxide, quartz chips and quartz wool) at 1020 

ºC and then transferred to a helium carrier gas (100 mL/min) into a copper reduction furnace 
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at 600 ºC, where any excess O2 is removed.  The analyte gases are then passed through a 

water trap before the CO2 are separated by a Gas Chromatography column at 40 ºC and then 

are transferred to the mass spectrometer for δ13C measuring.  

Some samples needed to be reweighed after the initial run through because they were found 

to be either too small or too big to allow carbon to be determined.  

Values were reported according to IAEA secondary standards that have been certified relative 

to VPDB for carbon.  Data was normalised using a two point calibration, utilising standards 

that bracket the samples being analysed. To maintain quality control three references were 

also included in each run these being Sercon SC0419, USGS-40 L-Glutamic acid and USGS-

41 L-Glutamic acid.  The results obtained are accurate to 1% of the actual value for % C and 

± 0.3 permil for δ13C values.  The carbon isotope ratios are reported as δ13C values, which 

were calculated using Equation 2. 

 

 

 

The % carbon and δ13C results were graphed together with sediment characteristic results.  

Carbon volume (C.g/cm3) was also graphed with results and was calculated by multiplying 

bulk density and % carbon.   

The separation of δ13C into carbon sources was based on marine vegetation, carbonate 

material, terrestrial vegetation and terrestrial/marine vegetation and is represented in Table 4-2 

below.  Each vegetation was assigned a C3 or C4 value based on photosynthetic pathways.  

Material with lower δ13C values are generally located in marine areas, for example seagrass.  

Although seagrass is a C3 species, it commonly reflects C4 pathways due to absorbing 

carbonates HCO3- from the water column hence their lower isotopic signature.  Previous 

studies have used carbon isotope signatures to record the change in carbon sources (Saintilan 

et al.,  2013; Choi et al., 2001). 

 

 

 

 

        R (13C/12C)sample – R(13C/12C)reference 

δ13C =   

  R (13C/12C)reference  

 

Equation 2 
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Table 4-2 Marine and Terrestrial carbon sources possible at Chain Valley Bay and their carbon 13 

isotopic signature and vegetation classification.  

 Vegetation/Carbon Source δ13C C3 or C4 Source 

     

Marine 

vegetation 
Zostera capricornia 

-10.8 ± 2.3     -

11.7 
C3 (reflects C4) 

Hemminga & Mateo 

1996 

Guest et al. 2004 

 Posidonia australis -9.9 C3 (reflects C4) 

Hemminga & Mateo 

1996 

 

 Halophila ovalis -10.0 C3 (reflects C4) 

Hemminga & Mateo 

1996 

 

Carbonate 

Material 
Anadara trapezia 

Approaching 0 

(0.3, -0.8) 
 

Sean Ulm 2006 

     

Terrestrial 

vegetation 
Avicennia marina -24 (leaf) C3 

Rogers, per comm. (from 

Cararma Inlet) 

  -24 (stem) C3 
Rogers, per comm. (from 

Cararma Inlet) 

  -28 (leaf) C3 Saintilan et al. 2003 

  -24 (roots) C3 Saintilan et al. 2003 

 Juncas kraussii -27 C3 

Saintilan et al. 2013, 

Rogers, per comm. (from 

Cararma Inlet) 

 Casuarina glauca -30 C3 Piola et al. 2008 

 Melaleuca quinquenervia -31 C3 Piola et al. 2008 

     

Terrestrial/

marine 

vegetation 

Sporobolus virginicus -15, -17, -18 C4 

Saintilan et al. 2003, 

Rogers, per comm. (from 

Cararma Inlet) 

 

1.18 Chapter Summary 

The subsidence at Chain Valley Bay from 1986 onwards can be used as a surrogate for rapid 

sea level rise.  Spatial analysis of vegetation from 1984 to 2014 was used to determine 

changes in vegetation size and zonation due to inundation.  Wetland morphology analysis 

was undertaken using DEM and bathymetry mapping in conjunction with RTK-GPS 

elevation data.  All spatial analysis and wetland morphology analysis was undertaken using 

ESRI’s ArcGIS version 10.2.  Accretion and carbon store analysis was undertaken over many 

months.  Cores were collected in September 2014 and vegetation zones defined.  Vertical 

accretion was determined using radiometric isotope 210Pb dating and was prepared and then 

analysed at ANSTO using alpha spectrometry.  Sediment characteristics of the Chain Valley 

Bay wetland including colour, texture, bulk density, percent moisture and grain size were 

determined at the University of Wollongong, NSW Australia.  Dried sediments were ground 

finely and acid washed to remove carbonates.  Carbon dynamics and sources were 
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determined for acid washed sediments by analysis using the CF-IRMS machine at ANSTO.  

Carbon percentage and δ13C values were reported and carbon volume calculated (C. g/cm3).  

Carbon isotopic signatures from previous studies were used to identify carbon sources within 

the cores.  
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5. RESULTS 

Variations in vegetation extent, the existence of remnant wetland in submerged areas and 

elevation data within the wetland was analysed using spatial analysis techniques on aerial 

photography, xyz data, Lidar and field GPS points.  Using chronology isotopic techniques 

changes in accretion in submerged and mangrove areas of the wetland through time were 

found as was the change in mass accumulation.  Combined with carbon isotopic results and a 

characterisation of the sediments found in 1 metre cores, the changes in carbon sources and 

the percentage of carbon was observed before and after the inundation of the wetland.  This 

chapter presents vegetation succession, morphodynamics, accretion and carbon storage 

information with the Chain Valley Bay wetland. 

1.19 Vegetation Dynamics 

Vegetation within Chain Valley Bay were categorised into four groups: mangrove, saltmarsh, 

mixed forest and impact zone.  Each zone was based on dominant vegetation and shifts in 

vegetation over time provide an indication of inundation within the wetland following the 

removal of pillars within the long wall mine located under the wetland in 1986 which caused 

the mine to collapse.  The changing vegetation since 1984 to 2014 is represented in Figure 

5-1 to Figure 5-10.  A summary of the vegetation mapping is provided in Table 5-3 and the 

change in area of each vegetation zone through time is provided in (Table 5-1) 

In 1984 the dominate vegetation zone was mixed forest which is characterised by Casuarina 

glauca and Melaleuca quinquenervia tree species and had an approximately area of 39 000 

m2.  Some saltmarsh is behind mangrove areas and boarded by mixed forest.  Uncertainty 

surrounds the mapping of saltmarsh in 1984 imagery as the areas of standing water level are 

assumed to be natural tidal inundation of the saltmarsh rather than subsidence.  In 1984 no 

subsidence had been recorded at the site.   

In 1986 the Chain Valley Bay wetland and its surrounds started to encounter lateral and 

vertical subsidence due to a collapse in the underground long wall mine operating 

underneath.  Approximately 500 mm of subsidence was recorded.  Little change in vegetation 

occurred between 1986 and 1984 and mixed forest dominated followed by mangrove and 

saltmarsh.  Some small sections of saltmarsh areas appear in 1986 but not in 1984 and is due 

to the quality of the 1984 aerial photograph.  It should be assumed no change in vegetation 

has occurred in the two year period. 
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Figure 5-1 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 1984. 

Figure 5-2 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 1986. 

1984 

1986 
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Following the mine collapse in 1986 evidence of impacts on the wetland only became apparent in 

1987 when vegetation started to die.  The previous year in 1986 the dominate vegetation was 

mixed forest which extends from the back of the wetland to the northern section.  The mangrove 

forest had a large extent at the entrance of the wetland and was adjacent to small saltmarsh 

sections and small depressions suffering small inundation likely controlled by tides.  The first 

areas to suffer death were small sections of mangrove located at the northern point of the wetland 

and became evident in the 1987 imagery.   

In 1990 a large zone of impact (approximatly 30 000 m2) was identified on the imagery.  

Numerous dead tree trunks from the mixed forest are evident as are dead mangrove trees at the 

front section of the wetland.  The sudden and rapid loss of vegetation within the three year period 

from 1987 to 1990 would have been caused by the rapid permanent inundation of water which 

caused the site to no longer be intertidal and therefore not support mangroves for an extended 

period of time.  The mangrove pneumatophores would have attempted to counter inundation by 

extending vertically in response to water level increase but as the increase was rapid this response 

would have proven ineffective.  A small section of mangrove remained as did some mixed forest 

towards the back of the wetland.   
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Figure 5-4 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 1987. 

Figure 5-3 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 1990. 

1987 

1990 
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In 1996 the front section of the wetland no longer in existed and was now completely inundated.  

The zone of impact to appears smaller in 1996 because the wetland is no longer visible and there 

has also been a reduction in the amount of visible dead vegetation.  The zone of impact extends 

further back into the mixed forest area where trees would have slowly died because they were not 

suffering permant inundation conditions like the mixed forest area at the front of the wetland and 

would likely undergo less tidal impacts.  Small hillocks appear at the front of the wetland in 1996 

and are thought to be the remaining pillars in the collapsed mine under Chain Vally Bay.  The 

small mangrove area in the centre of the wetland has also died which could suggest the mine was 

still slowly subsiding from 1990 to 1996 and only fringing mangrove remains on the water 

channel to the south-east of the wetland. 

In 2003 the zone of impact is still extensive although mangrove started to recolonise the front of 

the wetland and small sections of saltmarsh appear behind the mangrove.   Over the next three 

years mangrove and saltmarsh zones extend into the impacted zone which suggests the wetland is 

trying to adapt to the new iundation regime.   
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Figure 5-5 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 1996. 

Figure 5-6 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 2003. 

1996 

2003 
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In 2006 the extent of saltmarsh and mangrove vegetation has increased and areas of impact 

located at the back of the wetland have been recolonised with some mixed forest vegetation.  The 

mangrove is surviving on the new shore line of the wetland and saltmarsh areas are returning 

behind mangrove.   

In 2010 the recovery becomes more apparent with more saltmarsh and mangrove area and 

sections of the mixed forest also starting to recover. The zone of impact is completely gone in the 

210 imagery. Saltmarsh vegetation has replaced most of the zone of impact and mangove and 

mixed forest have colonised on the boarder of the large impact zone.    
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2006 

2010 

Figure 5-8 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 2010. 

Figure 5-7 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 2006. 
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Between 2010 and 2014 mangrove incursion landward south-east into saltmarsh habitat occured 

and as a result a loss in saltmarsh area was observerd.  Observations made at the site show the 

growth of young Avicennia marina seedlings in gaps along the edge of the current mangrove zone 

bordering saltmarsh areas (Figure 5-9).  Mixed forest vegetation also appears to be encroaching on 

saltmarsh areas by moving north-west. 

 

 

Figure 5-9 Avicennia marina mangrove seedlings growing on the edge of the current mangrove area within 

gaps. 
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2014 

Figure 5-10 Aerial photography and spatial vegetation mapping of the Chain Valley Bay wetland in 2014. 
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The wetland has undergone rapid inundation causing large vegetation death due to subsidence 

caused by a collapse in the long wall mine underneath.  From 1984 when the mine collapsed to 

2014 there has been a decrease in mangrove extent of -0.9% per year, an addition in saltmarsh 

extent of 8.2% per year and a decrease in mixed forest by -2.6% per year (Table 5-1).  The 

wetland is still recovering from inundation and these values may change through time if the 

mangrove and mixed forest incursion into saltmarsh areas continue.  A gradual decline in mixed 

forest zone is seen in  

Figure 5-11 from 1986 to 2010.  From 2010 to 2014 area slightly increases at a rate of 18.3% per 

year.  The impact zone appears in 1990 and gradually declines in extent until 2010.  Mangrove 

and saltmarsh areas follow a similar pattern.  Vegetation death occurs in 1990 and doesn’t return 

until 1996.  From 1996 to 2010 both mangrove and saltmarsh increase in area until reaching 

approximatly 7500 m2 where saltmarsh starts to decline towards 2014 and mangrove and mixed 

forest increase slightly.   

 

 

 

Figure 5-11 Vegetation area change (m2) in the Chain Valley bay wetland from before inundation 

to 2014. 
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Table 5-1 Vegetation change and rate of change through time for available time periods. 

   
Study Period Vegetation Area at time 1 

(m2) 

Area at time 2 

(m2) 

Change 

(%) 

Rate of change 

(% yr-1) 

1984-1986 Mangrove 10416 10643 2.2 1.1 

  Saltmarsh 4809 5382 11.9 5.9 

  Mixed Forest 38873 42846 10.2 5.1 

            

1986-1987 Mangrove 10643 8854 -16.8 -16.8 

  Saltmarsh 5382 4809 -10.6 -10.6 

  Mixed Forest 42846 41269 -3.7 -3.7 

            

1987-1990 Mangrove 8854 680 -92.3 -30.8 

  Mixed Forest 41269 24803 -39.9 -13.3 

  Impact Zone 1905 29067 1425.9 475.3 

            

1990-1996 Mangrove 680 876 28.8 4.8 

  Mixed Forest 24803 19479 -21.5 -3.6 

  Impact Zone 29067 12744 -56.2 -9.4 

            

1996-2003 Mangrove 876 3432 292.0 41.7 

  Mixed Forest 19479 10436 -46.4 -6.6 

  Impact Zone 12744 12385 -2.8 -0.4 

  Saltmarsh 0 946     

            

2003-2006 Mangrove 3432 6239 81.8 27.3 

  Mixed Forest 10436 3851 -63.1 -21.0 

  Saltmarsh 946 3851 307.1 102.4 

  Impact Zone 12385 12910 4.2 1.4 

            

2006-2010 Mangrove 6239 7280 16.7 4.2 

  Mixed Forest 3851 6665 73.1 18.3 

  Saltmarsh 12910 2315 -82.1 -20.5 

  Impact Zone 3892 0 -100.0 -25.0 

            

2010-2014 Mangrove 7280 7753 6.5 1.6 
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  Mixed Forest 6665 5303 -20.4 -5.1 

  Saltmarsh 2315 8062 248.3 62.1 

            

Overall (1984-

2014) 

Mangrove 10416 7753 -25.6 -0.9 

  Saltmarsh 4809 5303 10.3 8.2 

  Mixed Forest 38873 8062 -79.3 -2.6 

 

Following the rapid iundation, within 10 years there was no impact zone and mangrove, saltmarsh 

and some mixed forest vegetation have provided rehabilitation of the wetland.  

During site visits to the wetland in 2014 remnant dead vegetation was still observed throughout all 

vegetation areas (Table 5-2).  Mixed forest vegetation Casuarina glauca were observed to be 

present randomly throughout some areas of the saltmarsh zone which could indicate brackish 

water source perhaps from groundwater. 

 

Table 5-2 Photographs taken on the 18th December 2014 (a) showing remnant dead tree trunks previously 

of the mixed forest but now within saltmarsh (b) left- remnant dead tree trunks in the submerged area of 

the mangrove at the front of the wetland, right- small Casuarina trees within the mixed forest zone with a 

species of wetland grass underneath. (c) mangrove areas previously populated by paperbark trees 

(Melaleuca quinquenervia) which only exist now as dead tree trunks.   

(a) 

Swampy saltmarsh Saltmarsh 
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(b) 

Submerged mangrove in front of the 

wetland 

The back of the wetland within the mixed 

forest 

  

 

(c) 

Mangrove Mangrove 
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Table 5-3 Vegetation zonation change through due to rapid inundation. 

 

 
 
 

2014 2010 2006  

2003 1996 1990  

1987 1986 1984  
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1.20 Wetland morphodynamics 

1.20.1 Digital elevation model (DEM) 

The lidar derived DEM provides bare earth elevation of the Chain Valley Bay wetland in 

2007 (Figure 5-12).  Elevation data provided by the DEM was used in conjunction with zonal 

statistics to provide likely elevations of vegetation zones through time from 1984 to 2014.  

Figure 5-12 below gives an indication of the lower elevation within the wetland area 

compared to nearby houses and streets.  The elevation of the wetland is between 0 and 1.4 m 

and shows a general transition from high elevation values at the back of the wetland to low 

elevation values north-east towards the shoreline. 

 

 

Figure 5-12 DEM of the Chain Valley Bay wetland derived using Lidar data collected in 2007.  
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Figure 5-13 Elevation (m) of vegetation zones through time derived using a DEM created using Lidar 

collected in 2007. 

 

Vegetation zone elevation through time are estimated through time based on DEM sourced 

for one year (2007) and should be used as a guide for elevation values.  Elevations predicted 

using the DEM provide characteristic elevations for wetland vegetation for those areas the 

Lidar has been gathered.  Some older vegetation zones could not have elevation calculated 

because they were inundated in 2007. 

In Figure 5-13 the mixed forest zone has highest elevation values and range between 0.52 m 

and 0.72 m.  A decrease in elevation appears to have occurred following inundation from 

1986 but increases again in 2003, and remains around 0.7 m elevation.  Saltmarsh and 

mangrove elevation are very similar although mangrove vegetation generally seems to be 

slightly less.  Saltmarsh elevation ranges from 0.32 m to 0.5 m and mangrove elevations 

range from 0.2 m to 0.6 m.  Recent elevation values show saltmarsh and mangrove around 
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similar elevations.  Impact zones through time have appeared to fluctuate from 0.3 m to 0.62 

m.   

RTK-GPS elevations obtained from the wetland in late 2014 have elevations values different 

to those predicted using the DEM.  The mangrove vegetation zone had values ranging from -

0.029 m to 0.144 m whilst DEM predicted values for 2014 has a mean elevation of 0.36 m.  

This could likely be suggesting the 2007 DEM lidar information is not adequate to provide 

elevations for later years because more subsidence has occurred since or other processes have 

occurred.  There has been a 7 year gap between the time the lidar data was collected and the 

GPS elevations gathered and elevation gains could have been quickly lost to surface 

autocompaction or subsurface processes like organic productivity and groundwater flux 

(Rogers et al, 2006).  The elevations recorded in the saltmarsh vegetation zone ranged from 

0.03 m to 0.118 m and mixed forest had elevations from 0.22 m to 1.199 m.  The very high 

mixed forest upper range value recorded at core location 2D could be due to the area being 

above a remaining pillar from the remnant long wall mine underneath the wetland.   

The discrepancy between the DEM values in 2007 and the RTK derived values in 2014 are 

tabulated in Table 5-4 and could suggest subsidence has occurred since 2007.   

Table 5-4 Average elevation values were created based on RTK and DEM 2007 elevations and mean 

elevation defined for the period between 2007 and 2014.   

Vegetation 

Zone/Core ID 

RTK derived 

Elevation (m) 

2014 

DEM derived 

Elevation (m) 

2007 

Average of RTK and 

DEM elevation 

values (m) 

Mean 

elevation 

(m) 

Mangrove    0.112 

2B -0.144 0.376 0.116  

1B -0.029 0.244 0.1075  

Saltmarsh    0.153 

1C 0.03 0.221 0.1255  

2C 0.118 0.242 0.18  

Mixed Forest    0.674 

2D 1.199 1.080 1.1395  

1D 0.247 0.404 0.3255  

E 0.22 0.896 0.558  
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1.20.2 Bathymetry  

Bathymetry provides information on the current shape and depth of the Chain Valley Bay 

wetland in areas permantly inundated.  There is evidence of the remant wetland that has 

undergone inundation due to the mine collapse (Figure 5-14).   

Aerial imagery from 1894 depecting the submerged area corroborates that a large section of 

the wetland has become inundated rapidly and it appears some still remains.  The highest 

edge of the remnant wetland that is now permantly inundated has a maxiumum elevation of -

0.25m and is now collonised by mangrove.  Previously before the mine collapse the area was 

collonised by mixed forest.  The latest elevation levels of the mixed forest zone that have 

been derived using the 2007 DEM and 2014 GPS data show mixed forest occurs 

approximately at 0.674 m elevation.  If it is assumed these elevations are a characteristic of 

the mixed forest zone then there has been a reduction in elevation of approximatly -0.924 

metres.  The fact that sediment still remain is likley due to the wave energy in Lake 

Macquaire not interacting with the sediments at depth.  This is a characteristic of the Lake 

Macquarie youthful barrier estuary. 

The 1984 remant submerged mangrove zone indicated by the dotted line on Figure 5-14, 

follows the bathymetry contours with elevation -0.75 m.  Using the estimated elevation for 

0.112m for the mangrove zone, the elevation has reduced by approximatly -0.862 m.  The 

most recent subsidence value for Chain Valley Bay is 0.850 m recorded in 1991.  Mangrove 

areas appear to have contiuned to submerge by 12 mm from 1991.  Mixed forest areas have 

suffered more subsidence since 1991, with a difference of 74 mm.   
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Figure 5-14 Bathymetry at Chain Valley Bay (contour interval 0.25 m).  Remnant wetland is 

evident from before the mine collapse.   
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1.21 Vertical Accretion 

1.21.1 Accretion and Carbon Storage 

The submerged core (Id: Pb 1) has transitioned from mixed forest to completely inundated 

and the mangrove core (Id: Pb 2) has transitioned from mixed forest to mangrove and has had 

no period of sustained inundation like the submerged core.  This vegetation transition in the 

cores can be related to the accretion at the sites where an increase in accretion within the 

submerged core is recorded following the mine collapse but the mangrove core has remained 

relatively stable (Figure 5-15).  

The accretion trend within the submerged core has always been greater before and following 

inundation.  The submerged core is lower in the inundation profile for the entire period of this 

study and it is reflected in the accretion values.  The accretion trend with the mangrove core 

has remained relatively stable, with values between 1mm and 3 mm per year.  In comparison, 

there has been a significant increase in accretion within the submerged core following mine 

subsidence. 

The core obtained from the submerged area has accretion occurring at a rate of 3 mm y-1 from 

1909 to 1979 but this increases in the period of 1979 to 2013 to a value  13 mm y-1 and is 

within the period when inundation occurred.  The high accretion values in the submerged 

zone of the wetland is indicative of rapid carbon sequestration and has implications for 

carbon storage within the Chain Valley Bay wetland.  The submerged areas of the wetland is 

likely attempting to catch-up and organic matter is being deposited in the space made 

available possibly due to the removal of organic matter and sediment from the top layer of 

stratigraphy when inundation occurred.  The initial rapid inundation of the wetland could 

have allowed erosion from wave action to occur.  The accretion results show no net loss has 

occurred since inundation suggesting the wetland is still adjusting.   

The little change and only slight decrease in accretion seen in the mangrove core since the 

mine collapse suggest organic carbon sources have transitioned from one vegetation source to 

another with no prolonged period of inundation.  The mangrove core would likely not have 

been impacted by wave energy to the degree that the submerged core has because of its 

position at higher elevation and would therefore have retained most of its below ground 

carbon.  
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Figure 5-15 Accretion (mm y-1) (±SD) at Chain Valley Bay within mangrove and submerged areas 

calculated use 210Pb radiometric isotopes. 

 

1.21.2 Mass Accumulation 

Cores obtained in the mangrove area and in the submerged area at Chain Valley Bay in 2014 

were tested using 210Pb radiometric dating techniques to obtain mass accumulation data from 

1905 to 2014 and are represented in Figure 5-16 below.   

There has been a steady increase in mass accumulation since approximately 1905 to 1960.  A 

rapid drop in accumulation to 0.06 g cm-2y-1 occurs between 1974 and 1979 in both cores.  

This could be due to the wetland changing from mineral based sediments to more organic 

based material.  A jump in mass accumulation in the mangrove core is seen in 1998 and is 

likely due to more mass from mineral sediments perhaps in response to accretion.  It then 

declines again until 2004.  The mass accumulation in both areas of the wetland increases 

rapidly around 2003 and 2004.  In the mangrove core it moves from 0.09 ± 0.01 g cm-2y-1 to 

0.14 ± 0.01 g cm-2y-1 and in the submerged core it moves from 0.07 ± 0.01 g cm-2y-1 to 0.16 ± 

0.01 g cm-2y-1.  This rapid change in mass accumulation following the mine collapse likely 

indicates a change in sediment type from predominantly organic to mineral based material.  

IN both cores mass accumulation appears to not be reducing and could indicate the continued 
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accretion of material since inundation.  Evidence of inundation in aerial photography and 

massive vegetation death indicated by the zone of impact corresponds to the likely reduction 

in the source of organic based material.   

 

Figure 5-16 Mass Accumulation (g cm-2 y-1) (±SD) at Chain Valley Bay within mangrove and 

submerged areas calculated use 210Pb radiometric isotopes. 
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1.22 Sediment Characteristics and Carbon Storage 

Bulk Density, % Moisture, and sediment composition analysis was undertaken to help 

characterise the wetland stratigraphy and upper organic layer.  These results are represented 

in Figure 5-18 to Figure 5-24. 

Sediment characteristics and carbon storage in each vegetation zone changes with depth.   

Cores A1 and A2 obtained from submerged areas have dark organic material consisting of 

mangrove roots (Figure 5-18 and Figure 5-17).  Gravel was more abundant at 15cm in core 

1A than core 2A, although some gravel was found in the upper 15 cm mixed with sand.  

From 15 cm- 75 cm the cores are filled with grey sand indicating the fluvial delta.  Following 

the sand area the cores transition to grey clay to the bottom of the core and is likely part of 

the central mud basin.  The core located in transect 1 also had some yellow clay at 75 cm and 

some shell material occurs in both cores around 75 cm.  Bulk density starts at 0.6 g and 

decreases to approximately 0.2 g at 15 cm and gradually decreases down the core and 

represents the reduction in organic matter.  In the upper 15 cm sediments core 2A is 

composed of 70% silt and 20% sand and some clay and core 1A is composed of 60% silts and 

35% sand.  A switch from mainly silt to sand occurs from 25 – 95 cm.  Core 2A has silt 

dominating from 105 to 115 cm and switches to mainly sand briefly at 125 cm and then 

continues as predominantly silt.  Core 1A also has this switch within 85 – 105cm down the 

core. 
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Figure 5-18 Submerged core 2A located in the submerged section of the wetland located at the front. 

2A 

 

Figure 5-17 Submerged core 1A located in the submerged section of the wetland located at the front. 

1A 
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Cores located within the mangrove area have dark organic material consisting of mangrove 

roots and soil that transitions at 35 cm down the core into grey sand with some small rocks .  

At 75 cm sticky yellow orange and grey clay appear and at 85 cm a little shell material was 

found.  Below 85 cm the shell material increases and the mud is dark grey.  It appears the 

fluvial delta appears between 35 cm and 75 cm and the central mud basin continues to the 

bottom of the core.  Bulk density starts at 0.2 g cm-3 and increases to 1.5 g cm-3 at the 

transition point from organic material to sand.  Silt dominate the organic section and the 

marine lower section in the core and sand dominates the fluvial delta middle section of the 

core.  Lots of gravel was found at 65 cm within the mangrove core obtained from transect 1, 

and may correspond to the gravel layer at 15 cm within the submerged core in transect one.  

Clay slightly increases down core in 2B. 

 

 

 

 

 

1B 

Figure 5-19 Mangrove core 1B located in the mangrove section of the wetland on transect 1. 
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Within the saltmarsh area cores have dark organic material mixed with fine sediments from 

0-25 cm down the core (Figure 5-21 and Figure 5-22).  Grey fluvial delta sediments occur 

from 25 – 65 cm and marine central mud basin sediments occur from 65cm down the core 

and are characterised as dark grey and stodgy.  Some shell material was found at 65 cm 

within the saltmarsh core 2C.  Bulk density increases from approximately 0.3 to 2.0 g cm-3 at 

75 cm within the core from transect 1 and 45cm in the core from transect 2.  A high amount 

of gravel is located at 65cm within core 1C and could likely correspond to the gravel layers in 

the other transect 1 cores.  In 1C sand and silt dominate the upper 25 cm of the core.  Sand, 

silt and clay fluctuate between 45 and 75 cm and then are dominated by silt within the lower 

core. 

2B 

Figure 5-20 Mangrove core 2B located in the mangrove section of the wetland on transect 2. 
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Figure 5-21 Saltmarsh core 1C located in the salt marsh area of the wetland within transect 1.  

Figure 5-22 Saltmarsh core 2C located in the salt marsh area of the wetland within transect 2. 

1C 

2C 



 

Jane Curran | UOW | 2015 Page 87 

 

Dark organic material occurs from 0 – 35 cm in core 1D, from 0-25 cm in core 2D and E all 

located within the mixed forest zone (Figure 5-23, Figure 5-24 and Figure 5-25).  Grey 

sediments from the fluvial basin occur after the organic layer until 65 cm in cores 2D and 1D 

but appears at 45 cm in core 1D.  The sediments after the sandy material consist of dark grey 

sticky mud from the central mud basin.  Yellow clay appears from 35 to 85 cm within core E, 

and 45-65 cm within core 1D.  Bulk density increases down the core within the organic 

material from 0.2 to 1.7 g cm
-3

.  Bulk density within core 2D increases to 2.5 g cm
-3

 at 75 cm 

and decreases there after.  Cores 1D and E retain bulk density values around 1.5 g cm
-3

.  Core 

1D is dominated by silt sediments within the organic upper core and transition to sand 

dominated where the fluvial sourced sediments reside.  Silt increases from 65 cm and clay 

content also increases.  Core 2D is silt dominated with some sand in the upper organic 

material section of the core and transitions to sand and then silt.  Clay increase at 75 cm and 

then increases again at 115 cm within core 2D.  Within core E silt dominates the upper 

organic section of the core and transitions to sand dominated from 25 cm to 40 cm and then 

sand and clay fluctuate inversely down the core until it is mostly clay and silt dominated from 

115 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1D 

Figure 5-23 Core 1D located in the mixed forest zone of the wetland in transect 1. 
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2D 

Figure 5-24 Core 2D located in the mixed forest zone of the wetland in transect 2. 

Figure 5-25 Core E located in the mixed forest zone of the wetland between transects 1 and 2 and is the 

furthest landward core. 

 

E 
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The upper dark organic section of the cores are predominantly composed of silt particles and 

transitions to fluvial delta sediments dominated by sand and then transitions to marine central 

mud basin sediments to the bottom of the core.  The submerged cores have less organic 

material within their upper core and it has perhaps been removed during the rapid subsidence. 

Bulk density gradually moves from small values of 0.2-0.3 g cm3 from the surface of cores to 

values of 1.5-2.0 g cm3 at the transition to fluvial delta and central mud basin sediments.  

This pattern is seen in all cores but at different depths and is indicated by a dotted line on the 

figures above.  Cores from submerged areas have the transition to fluvial sediments at 15 cm, 

mangroves cores from 25 to 35 cm, saltmarsh cores at 25 cm and mixed forest cores from 25 

to 35 cm.  Moving down the core the bulk density fluctuates between values of 1.00 and 3.00 

g cm3.  The percent moisture moves from a maximum of 80% to 20% at the transition to 

marine sediments and indicates the moisture held by organic material.   

1.22.1 Carbon Sources 

Carbon content and stable isotope analysis was undertaken at Chain Valley Bay to estimate 

the carbon sequestered and the carbon sources within different zones of the wetland and the 

changes due to inundation.  In all cores there is a transition from one carbon sources to 

another. 

Carbon isotope signatures divided into four groups; marine carbonates, terrestrial C3, 

terrestrial C4 and terrestrial/marine vegetation which are terrestrial vegetation but source 

carbon from the water column.  Common species present within the Chain Valley Bay 

wetland were recorded as likely carbon sources.  The possible signatures are used as a 

reference for carbon isotopic results obtained from Chain Valley Bay (Table 4-2).   

Submerged core 1A transitions from Avivennia marina values of -25‰ to marine Zonstera 

Capricornia of values of -11‰ between 15 and 25 cm.  The upper terrestrial C3 mangrove 

vegetation has likely been sourced from dead mangrove vegetation that is remaining since 

inundation.  The Submerged core 2A transitions from mangrove vegetation to a carbon 

isotopic value of -16‰ which could indicate Sporobolus virginicus carbon sources.  This 

could suggest the area was populated by saltmarsh vegetation and following submergence 

mangrove material, either dead or from nearby plants, became the main source of carbon.  As 

both cores have mangrove material as sources following inundation it could reflect the 

obvious remaining material from the tree that died from inundation and also the new material 
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they produced after recolonising the wetland soon after inundation.  Isotopic values at lower 

depths within the cores appear to be skewed by the presence of Andara trapezia carbonate 

material.   

In the mangrove core 1B the carbon isotopic value starts at -28‰ (Avicennia marina) and 

transitions to -11‰ (Zostera Capricornia) marine C4 vegetation.  This is an obvious 

transition from marine vegetation to terrestrial vegetation up the core and would indicate the 

transition from the fluvial delta.  The mangrove core 2B has a transition from isotopic values 

of -25‰ indicating Avicennia marina to -18‰ isotopic values indicating Sporobolus 

virginicus.  The inclusion of saltmarsh vegetation Sporobolus would indicate the area was 

saltmarsh and has been taken over by mangrove following inundation.  Below the saltmarsh 

section the isotopic values approach zero indicating the likely presence of Anadara trapezia 

carbonate material from the fluvial delta and central mud basin.   

The saltmarsh core 1C transitions from -30‰ to -24‰ δ13C values at 15 cm indicating a 

transition from mixed forest vegetation to mangrove.  Down the core the mangrove 

vegetation becomes saltmarsh Sporobolus virginicus at 25 cm with isotopic value of -17 and 

then at 35cm has values corresponding to Zostera capricornia.  The transition of carbon 

sources suggests the area was once fluvial delta and has been colonised by saltmarsh and then 

mangrove.  Following inundation carbon has been sourced from Casurina and Melaleuca 

perhaps from dead vegetation falling or settling into the area.  The area the core was collected 

is swampy with permanent water approximately 40 cm deep and dead leaves and vegetation 

could easily settle within the water.  Saltmarsh core 2C has carbon isotopic values of -27‰ 

corresponding to saltmarsh vegetation Juncas kraussii at the top of the core.  This transitions 

to mangrove sources at 15 cm and then marine seagrass Zostera sources at 25 cm.  The 

succession indicates the area was fluvial delta and has been colonised by mangrove and then 

saltmarsh following the inundation event. 

In the mixed forest 1D carbon values of -30‰ and -28‰ corresponding to Casuarina and 

Melaleuca vegetation transition to mangrove isotopic values at 35 cm and then marine 

seagrass values at 45 cm.  Core 2D shows a similar trend but transitions to mangrove at 15 

cm.  Core E located furthest south also has a transition to mangrove vegetation sources at 15 

cm but transitions to saltmarsh vegetation Sporobolus virginicus at 35cm and marine carbon 

sources at 45 cm.  There is a mangrove signature at 28 cm but this is thought to be a product 

of sediment mixing during extraction.   
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1.22.2 Carbon Dynamics 

In each core there was a noticeable difference between the sediment composition, bulk 

density and amount of carbon between the terrestrial sourced carbon and the marine sourced 

carbon.  Most carbon is within the upper core above the transition zones identified in Table 

5-5 below. 

Table 5-5 Transition point between changes in bulk density, % carbon, isotopic signatures and 

sediment characteristics. 

Core 
Transition 

Zone (cm) 

1A 15 

2A 15 

1B 35 

2B 25 

1C 25 

2C 25 

1D 35 

2D 25 

E 25 

 

The percent carbon differs for each vegetation zone which suggests some areas of the wetland 

have a better capacity to store below ground carbon.  Mixed forest cores which suffered the 

least amount of inundation had a high value carbon of37% at the top of the cores.  Mangrove 

cores had maximum values of 30%, saltmarsh had values ranging from 32% to 20%, and 

submerged areas only had maximum value of 12 – 17% carbon.  At the transition to marine 

sediments in all cores the % carbon eventually reduces to 0%.  The amount of carbon stored 

in each core above the delineated transition zone was calculated using bulk density and % 

carbon values.  Bulk density and % carbon values have an inverse relationship the occurrence 

of organic material.  The mixed forest zone has the most carbon followed by mangrove, 

saltmarsh and submerged areas.  Vegetation mapping of the wetland from 2010 to 2014 show 

a reduction in saltmarsh due to mixed forest and mangrove expansion.  This expansion may 

be an attempt by the wetland to sequester more carbon as saltmarsh within the wetland do not 
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appear to store carbon as effectively (Figure 5-26).  Below the transition point recalcitrant 

carbon within the central mud basin sediments remain.   

 

 

Figure 5-26 Carbon values (±SD) in each vegetation zone of the Chain Valley Bay wetland 

determined using bulk density and % carbon information.  Mixed forest and mangrove appear to be 

storing the most carbon. 

 

1.23 Chapter Summary 

In summary vegetation transitions is an indicator of impacts due to inundation.  A zone of 

impact and rapid death in vegetation is seen after inundation occurs but mangrove 

recolonizes.  The current mangrove expansion is moving up to higher elevations colonised by 

saltmarsh.  Bathymetry data shows a remnant wetland exists and combined with DEM data a 

maximum of -0.924 m elevation decrease has thought to have occurred in the mixed forest 

area.    

Terrestrial carbon sources are located in the upper sections of the cores and transitions to 

marine sources.  The terrestrial upper section of the cores have higher % carbon, higher % 

moisture, higher bulk density and higher grain size than those found in the marine section of 

the core at the transition point.  

Mass accumulation in both the mangrove core and the submerged core increased rapidly 

since inundation of the wetland started to occur and indicates mixing of mineral based 

sediments with silt.   Current rates of accretion in the submerged core indicate terrestrial 

organic carbon has been rapidly accreting in submerged zones and at a constant rate in 
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mangrove areas since inundation.  The mangrove area that was not submerged has had steady 

accretion and therefore a steady rate of carbon sequestration of mangrove sourced material 

since the mine collapse.  The submerged area has had rapid accretion and all carbon in the 

upper terrestrial section of the core has been stored after inundation.  Carbon sequestration 

has increased from 300 g C m-2 yr-1  to 627.3 g C m-2 yr-1  and appears to indicate the 

wetlands attempt to keep up with water level rise.  Isotopic results have revealed a transition 

from vegetation from marine sources to terrestrial sources.  Terrestrial vegetation is the 

dominant vegetation within the upper depths in cores and is indicated by a transition point.  

Nearby mangrove vegetation is the dominant source of carbon in the submerged zone.  The 

amount of carbon in each vegetation zone reflects the capability of mixed forest and 

mangrove to store more carbon than saltmarsh areas.   
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6. DISCUSSION 

The Chain Valley Bay wetland located at the southern end of Lake Macquarie on the NSW Central 

Coast has suffered rapid inundation since 1986 when a long wall mine collapsed due to pillar 

removal (Yee et al., 1991).  This event has created the opportunity to use it as surrogate for rapid 

sea-level rise and analyse the changes within a wetland.  These ecosystems help mitigate climate 

change by sequestering and storing significant amounts of carbon and are known as coastal blue 

carbon sinks (McLeod et al., 2011).  Blue carbon sinks account for approximately half of global 

carbon burial in marine sediments (Nellemann et al., 2009).  Losses of carbon stored within 

wetlands has been related to sea-level rise; accumulation rate; subsidence; storm events; rate of 

wetland loss and coastal restoration (DeLaune and White, 2012; Kirwan and Mudd, 2012).   The 

effect of rapid sea level rise on wetland vegetation sequestration ability and the fate of carbon is 

little understood (Choi and Wang 2001; Mcleod et al., 2011). 

1.24 Vegetation characteristics 

There is an obvious change in vegetation following rapid inundation and a successive die back and 

return of vegetation.  Following inundation due to subsidence, the front of the wetland suffered 

extensive vegetation death likely due to inundation reaching a critical rate and drowning vegetation.  

The vegetation death continued to move south-east through the wetland over time where the effects 

of inundation were less noticeable due to higher elevation.  Mangrove species Avicennia marina 

colonised previously dead zones after approximately 16 years.  Following the return of mangrove, 

saltmarsh areas started to also colonise but mangrove encroachment landward has consequently 

caused saltmarsh decline.  This trend has occurred elsewhere in coastal wetlands located on South-

East Australia and the cause has been related to sea level rise (Rogers et al., 2006; Saintilan and 

Williams, 1999; Oliver et al., 2012).  Mixed forest zones started to return together with mangrove 

and saltmarsh but as with mangrove encroachment, mixed forest has begun colonising in saltmarsh 

areas.  If this is to continue the saltmarsh areas could encounter reduced species variability with sea-

level rise (Thomas et al., 2012; Saintilan and Williams, 1999).  Chmura (2013) suggests vegetation 

acting as a carbon sink may survive if allowed to migrate inland uninhibited by barriers such as 

high slope or development.   

 

Implications for rapid sea-level rise suggests wetland vegetation like that seen at Chain Valley Bay 

located in a wave-dominated barrier estuary can recover at higher elevations after inundation 
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occurs.  The degree of carbon associated with mangroves compared to saltmarshes is more within 

mangroves of the Chain Valley Bay wetlands.  Mangrove vegetation increases below ground carbon 

store, elevating the wetland surface by increasing the soil volume with roots.  Within the active 

carbon storage layer in the upper stratigraphy, the mangroves of Chain Valley Bay store 22 g cm-3 

and saltmarshes store 17 g cm-3 of carbon.  The mixed forest area stores the most carbon within the 

entire wetland with 25 g cm-3.  The mixed forest and mangrove encroachment into saltmarsh areas 

is likely an indication of the wetland attempting to accrete to catch up with water level and as a 

result is sequestering carbon more efficiently and could be an indicator the wetland is still adjusting 

to the water level rise (Kirwin and Mudd, 2012).  The growth in high carbon sequestration 

vegetation like the mangrove and mixed forest areas will likely provide benefits to our future 

climate and the removal of carbon from the atmosphere and oceans. 

1.25 Wetland morphology 

Elevation within the wetland increases from the shore to the landward side successively through 

vegetation zones.  Elevation of vegetation zones through time show mangrove and saltmarsh 

vegetation have similar elevations but mixed forest appears at higher elevations at the back of the 

wetland.  RTK-GPS derived elevation points were combined with DEM points to give an 

approximate elevation for each vegetation zone in the wetland.  Mangrove vegetation had 0.112 m 

elevation, saltmarsh 0.153 m elevation and mixed forest 0.674 m elevation.   

Using elevation level characteristic of mixed forest and the bathymetry of the remnant of the 

wetland obtained in 2011, it was estimated -0.924 m current subsidence has occurred within the 

mixed forest area at the front of the wetland.  In comparison, a value from 1991 of -0.85 m 

subsidence is reported and it appears subsidence has continued to occur from 1991 to 2011.  

Bathymetry mapping reveals evidence of the remnant wetland that has undergone inundation due to 

the mine collapse.  

 

1.26 Carbon Accretion 

As the ocean heats and CO2 is absorbed its ability to buffer atmospheric change reduces, causing 

impacts to ecosystems.  The ability of the wetland to continue to sequester carbon after inundation 

is important, as freeing carbon stored below ground causes CO2 to be released and dissolve into sea 

water (Nellemann et al., 2009).   

Accretion and mass accumulation within mangrove areas in 2014 at Chain Valley Bay suggest 

following inundation and death of vegetation, colonising mangroves are able to keep pace and 
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continue to accrete at a constant rate.  An increase in mass accumulation in this stable accretion 

zone is likely due to an enrichment of mineral based sediments immediately following 

submergence.  Wetlands that have suffered inundation and do not have adequate sediment supply 

can lose wetland area (Mudd et al., 2009; Woodroffe et al., 2014). The rapid period of colonisation 

by mangroves after mass vegetation death in higher elevation zones indicates they are relatively 

adaptable to inundation and can survive by landward extension when there are no barriers (Chmura, 

2013).   

Areas that have endured permanent inundation due to subsidence, recent accretion indicates 

sediment supply is sufficient to sequester carbon.  Mass accumulation indicates rapid recent organic 

and mineral based deposition in submerged areas with an increase of 0.09 g cm-2 y-1 from before 

inundation to 2014.  The results suggest no net loss has occurred and the wetland is likely still 

adjusting to the inundation level.  The amount of carbon stored in the upper organic layer in 

submerged areas is much less than those in higher elevations and 210Pb dating indicates all below 

ground carbon located in the upper 16 cm has been deposited following inundation.  Although the 

amount of carbon is less than the mangrove area, the rate of accumulation is greater, suggesting 

carbon sequestration could have increased as well.  The rate of carbon sequestration before 

inundation in the submerged area was 300 g C m-2 y-1 and the rate in the mangrove area was 56 g C 

m-2 y-1.  Following the occurrence of inundation the mangrove carbon sequestration only increased 

to 68 g C m-2 y-1 but the submerged area had a massive increase in the sequestration of carbon to 

627.3 g C m-2 y-1.  The increase in the submerged area is more than double what it was previously 

and could be indicating the wetlands attempt to keep up with water level rise.  DeLaune and White 

(2012) found high energy environments that encounter large hurricane events like those found in 

coastal Louisiana, cause marshes to become net carbon emitters following sea level rise.  Kirwan 

and Mudd’s (2012) study also predicted marshes would become net carbon emitters following 

submergence with their study into protected micotidal-mesotidal North American marshes 

dominated by Spartina alterniflora.  They believe with sea level rise burial rates would decline after 

an initial increase and the marshes would not be able to recover.  The Chain Valley Bay wetland, 

which is located on a fluvial delta entering a central mud basin and where hydrodynamic conditions 

are low energy, has sequestered carbon in the submerged area at a rate on average of 10 mm y-1 

since submergence in 1986. This is 7 mm y-1 greater than the rate prior to submergence and 

indicates that following a short period of erosion, the site has a greater capacity to sequester carbon 

than prior to submergence and is in fact not a net emitter of carbon to the atmosphere. The Chain 

Valley Bay site is typical of South-East Australian estuaries that have low energy micro-tides with a 
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temperate climate, low sediment supply and small stream discharge.  The findings may suggest 

wetlands located within this region would not become net carbon emitters following sea level rise 

and would be able to continue sequestering carbon.   

 

1.27 Changes in carbon sources 

The δ13C values within each core transitions from marine to terrestrial in the upper section of cores 

where there is a high % carbon content.  A transition point in each core was delineated based on a 

shift within sediment composition, bulk density, % moisture and % carbon.  Carbon isotopic values 

were matched with vegetation carbon signatures and each vegetation was separated into different 

photosynthetic-type plants C3 and C4. 

Vegetation above the transition zone is C4 and corresponds to dominant vegetation within the 

wetland at which the core was extracted.  Within the mixed vegetation zone current C4 vegetation 

Casuarina glauca and Melaleuca quinquenervia correspond with the δ13C value at the top of the 

cores but at the transition point between 25-35 cm moves to mangrove.  Within the mixed 

vegetation core E located the furthest south-east it transitions to Sporobolus virginicus C4 saltmarsh 

vegetation after mangrove and could suggest mangrove vegetation has replaced saltmarsh.  All 

mixed forest cores suggest mangrove vegetation has moved out of this area to allow for mixed 

forest colonisation perhaps as a result in sea level fluctuations.  

The mangrove zone had a transition from mangrove vegetation at the top of the core to C3 marine 

vegetation sources which gather carbon from the water column rather than atmospheric CO2.  The 

saltmarsh cores both transition to C3 marine vegetation likely sourced from Zostera Capricornia 

with a δ13C value of -10.8 to -11.7 from terrestrial C4 vegetation.  The saltmarsh core 2C moved 

from saltmarsh sources to mangrove and then marine sources suggesting saltmarsh has colonised a 

previously mangrove zone since inundation.  The saltmarsh core 1C transitions from mixed forest to 

mangrove and then to saltmarsh Sporobolus virginicus values followed by marine.  This different 

transition could suggest this area was saltmarsh and was replaced by mangrove and following mass 

vegetation death, dead Casuarina and Melaleuca organic material has collected in the depression.   

The submerged zone is currently not vegetated but does have organic material corresponding to C4 

mangrove δ13C values within the top 10 to 15cm which has likely been sourced from drowned 

mangrove vegetation.  The 1A submerged core indicates a transition to seagrass like the majority of 

locations but core 2A indicates a transitions similar to the δ13C value of C4 saltmarsh vegetation 
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Sporobolus virginicus.  This shift could suggest saltmarsh was occurring sporadically in this section 

before inundation occurred and is seen in vegetation zone mapping. 

The eventual transition of all cores to marine based C3 vegetation could suggest past sea-level rise 

and inundation.  It could also be part of the marine central mud basing and the fluvial delta that 

have since undergone, and still is undergoing, sedimentation in accordance with its youthful barrier 

estuary status (Roy et al., 2001).  

Carbon stored within the upper core differed in each vegetation zone.  It was found mangrove had 

the most terrestrial based carbon stored in the upper stratigraphy followed by mixed forest, 

saltmarsh and the submerged area.  The submerged area and the mangrove area have been 

accumulating carbon rapidly since inundation occurred which is indicated by mass accumulation 

values at the site.  

1.28 Implications of sea-level rise 

With increasing sea level rise it is possible inundated areas will suffer loss of upper soil organic 

carbon and become carbon sources rather than sinks (Choi and Wang, 2001; McLeod et al., 2011).  

Vegetation zonation movement appears to be driven by the degree of inundation into a wetland and 

the ability of vegetation to sequester carbon.  Carbon sequestration within the inundated wetland 

increased; likely due to the availability of sediments and good hydrodynamic conditions.  It appears 

the wetland is trying to keep up with water level increases and as a result is increasing 

sequestration.  Accretion of sediments within the mangrove area didn’t change noticeably although 

mass accumulation increased; likely due to mineral based sediment additions.  Sources of carbon 

stored within the wetland is terrestrial but was previously marine sourced and could suggest past 

sea-level fluctuations and the movement of terrestrial vegetation into an estuary.  The upper layer of 

the submerged cores has recent accumulation showing it has begun to sequester carbon rapidly.  

The source of carbon within the submerged area is mangrove material which was revealed using 

carbon isotopic analysis and could have been sourced from drowned mangrove vegetation within 

the surrounding area.  DeLaune and White (2012) and Kirwan and Mudd (2012) research suggests 

coastal environments would become net carbon emitters following sea level rise.  This study 

suggests following rapid sea level rise wetlands like Chain Valley Bay located on the south-east 

coast of Australia would not become net carbon emitters.   

1.29 Limitations 

The characterisation of morphodynamics of the Chain Valley Bay wetland was inhibited by the 

inability to obtain older bathymetry data to allow for the comparison between sediment removal and 
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additions.  Carbon isotopic analysis below the obvious transition from terrestrial to marine sources 

could not be used due to the remaining presence of carbonate material and a longer history of 

sequestration and carbon sources could not be constructed.  More acid washing of sediments to 

remove remaining carbonate material is to be conducted following submission.  Nitrogen isotope 

analysis was also undertaken but results were received too late to be included.  The addition of 

above-ground biomass data to the current results of carbon sequestration in Chain Valley Bay 

would have been added to determine the total amount of carbon lost to inundation but time 

constraints limited this.  Allometric equations using non-invasive methods would have been used.        

1.30 Chapter Summary 

Coastal environments provide ecosystem and carbon storage benefits.  Wetlands like Chain Valley 

Bay, Lake Macquarie, NSW Australia are known as blue carbon sinks and sequester large amounts 

of carbon.  The effects on the storage potential within these systems following sea level is not well 

known.  This study found following rapid inundation large amounts of vegetation died and was later 

replaced with mangrove and saltmarsh vegetation.  Accretion increased in submerged areas 

following inundation and the sequestration of carbon doubled.  Mass accumulation increased 

dramatically in both submerged and mangrove areas and is likely due to mineral based sediment 

increase.  Carbon sources within the submerged area indicate the area has been storing mangrove 

material following inundation and is likely from remaining dead mangrove material and material 

sourced from nearby vegetation that has colonised the front of the wetland.  Increased sequestration 

within the wetland has likely occurred as a results of the wetland attempting to keep up with water 

level rise.  The study suggests following sea-level rise the wetland is not a net carbon emitter. 
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7. CONCLUSIONS AND RECOMMENDATIONS  

1.31 Conclusions 

Blue carbon sinks are beginning to be recognised for their ability to sequester large amounts of 

carbon from the atmosphere and oceans which could help mitigate climate change (Nellemann et 

al., 2009; McLeod et al., 2011; Chmura, 2013; Duarte et al., 2010; Duarte et al., 2005; Pendleton et 

al., 2012).  Carbon sequestered in coastal soils can be extensive and can remain trapped for long 

periods of time (Duarte et al., 2005).  The possible impacts due to sea-level rise have not been 

extensively recognised and there is a gap in our understanding of the fate of buried carbon when 

wetlands become submerged or eroded (McLeod et al., 2011).  Some studies indicate that sea level 

rise lead to wetlands becoming net carbon emitters (DeLaune and White, 2012; Kirwan and Mudd, 

2012) as they become submerged or eroded.  This study used mine subsidence as a surrogate for 

rapid sea level rise to determine whether this was indeed the case for a wetland located within a low 

energy environment. 

The Chain Valley Bay wetland experienced rapid inundation due to mining subsidence resultant of 

partial pillar extraction in a long wall mine under the wetland in 1986.  Subsidence of -0.846 m was 

recorded in June 1991 near the wetland (Yee et al., 1991).   

Vegetation spatial mapping indicate the sudden death and later recolonization by mangroves and 

then saltmarsh.  Mangrove and mixed forest mapping since 2010 indicate encroachment into 

saltmarsh and could be indicating the wetland trying to increase sequestration to keep up with water 

level rise.  

Accretion increased rapidly after the subsidence within inundated areas by 7 mm y-1 and appears to 

relate to an increased accumulation of sediment and organic material.  Accretion within the 

mangrove areas increased slightly due to the subsidence but returned to previous levels of stability.  

The stable accretion indicates the limited impact the mangrove received due to inundation.  The 

wetland saw an increase in mass accumulation approximately from 0.07 g cm-2 y-1 to 0.16 g cm-2 y-1 

in inundated areas and an increase from 0.06 g cm-2 y-1 to 0.14 g cm-2 y-1 in mangrove areas which 

indicates the wetlands attempt to keep up with inundation levels.  The increased mass accumulation 

values also indicate an increase in mineral based sediments.   

Recent carbon values within the submerged area indicate the wetland has been able to continue to 

sequester carbon following rapid relative sea-level rise (or subsidence).  Sequestration prior to the 
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subsidence event was 300 g C m-2 y-1 and following relative sea level rise increased to 627.3 g C m-

2 y-1, perhaps indicating the ability of the wetland to keep up with water level rise and not become a 

net carbon emitter.  The mangrove area only increased carbon sequestration slightly following 

inundation from 56 g C m-2 y-1 to 68 g C m-2 y-1.  Isotopic values from the submerged cores indicate 

new carbon material is being sourced from mangrove material likely from nearby mangrove 

vegetation and possibly from remaining dead mangrove material from mangroves that have 

drowned.  Vegetated zones within the wetland are sequestering material sourced from terrestrial 

vegetation and an obvious transition to marine carbonate dominated material was seen within each 

core.  The succession from marine to terrestrial carbon sources was also reflected in sediment 

characteristics that show a transition from central mud basin to fluvial delta and to intertidal 

terrestrial organic material in the upper core which is reflected in a change from grey muds to 

coarse sandy organic material followed by an organic dominated horizon.  Bulk density and % 

carbon values also indicate most carbon is located in the upper core and only recalcitrant carbon 

remains in the fluvial and central mud basin sediments.  If similar results are found in other areas of 

South-East Australia the protection of coastal vegetation for their ability to continue sequestration 

of carbon following sea level rise should become of high importance.  

1.32 Recommendations 

1. The protection and management of coastal wetlands should become a priority for natural 

resource managers, scientists, community groups and local and national governments.  The 

sequestration potential of saline coastal wetlands was found in this study to be far greater 

than terrestrial forest carbon sinks and with increasing sea levels the movement of 

vegetation up slope will likely cause coastal squeeze in coastal zones where dykes, seawalls, 

urban developments and other infrastructure exist (Woodroffe et al., 2014). 

Increased studies into the fate of carbon in study sites globally and within other wetlands 

along the South-East coast of Australia need to be undertaken.  It has been shown that on a 

local scale inundated wetlands that may suffer a reduction in elevation relative to mean 

water level due to inundation can recover and sequester carbon within available 

accommodation space.  Some studies have been conducted around the world into the 

sequestration potential of coastal environments in relation to sea level rise but little research 

has been conducted in sequestration potential of wetlands in Australia.  With our current 

climate and predicted sea-level rise it has become even more of a priority to quantify carbon 

and determine the fate of carbon.   
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2. Despite the lack of research concerning the loss of carbon due to inundation, wetlands are 

evidently good at sequestering carbon and should be protected for this purpose where 

possible.   Blue carbon sinks like the wetland in this study are commodities that should be 

protected in our future climate scenario as they account for approximately half of global 

carbon burial in marine sediments (Nellemann et al., 2009).  Mangroves, saltmarshes and 

seagrass meadows have relatively high rates of sediment burial and represent a much 

smaller area than terrestrial forest but they are still comparable to carbon sinks in terrestrial 

ecosystem types (McLeod et al., 2011).  Chain Valley Bay has given us an opportunity to 

predict what might happen in similar Australian estuary environments (Roy et al., 2001) and 

more analysis and comparisons of other estuaries located in South-East Australia should be 

considered.  

3. The capacity of wetlands to adapt to sea level rise shouldn’t be limited by their mitigation 

potential.  Sediment supply and addition should be promoted and activities such as damming 

that limit these processes should be reduced or engineered to allow for an adequate source of 

sediment. A lack of adequate sediment supply could lead to a loss in wetland area due to an 

inability of accretion to match sea-level rise (Mudd et al., 2009, Woodroffe et al., 2014).   
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APPENDIX A – RADIOMETRIC ISOTOPE LEAD-210 REPORT.  

 

Please refer to excel file called: ANSTO Pb210 dating results CVB. 
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APPENDIX B – CARBON ISOTOPE RESLUTS PROVIDED BY ANSTO 

 

Excel file format has been included outside of this document.  Please refer to excel file 

called: ANSTO carbon isotope results CVB. 



Institute for Environmental Research

Stable Isotope Analysis Report
Final Report 23.03.2015

Client Details
Company Name: ANSTO

Address: Locked Bag 2001, Kirrawee DC NSW 2232

Contact Name: Debashish Mazumder & Kerrylee Rogers
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Sample Details
Number: 224
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Registration Date: 17/12/2014
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C

Method(s): δ
15

N by combustion

δ
13

C by combustion
Initial Report Date: 23/03/2015

Name: Barbora Gallagher
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Analysis of δ13C and δ15N

This report contains determinations of relative difference of isotope ratios, δ,  of 
(13C/12C) and (15N/14N), elsewhere referred to as δ13C and δ15N respectively . The 
values will be reported as parts per thousand (‰ or per mil).

Samples were run using an established on-line combustion, continuous-flow IRMS 
method. 

In brief, the crushed and dried samples are weighed into tin capsules and introduced 
sequentially into an elemental analyser (Thermo Fisher Flash 2000 HT EA) using an 
autosampler. Each sample is then combusted into CO2 and N2 in a combustion 
furnace (silvered cobaltous/ic oxide, chromium oxide, quartz chips and quartz wool) at 
1020ºC before being transferred with a helium carrier gas (100 mL/min) into a 
reduction furnace (copper) at 600ºC, where any excess nitrous oxides are converted 
into N2 and excess O2 is removed. The analyte gases are then passed through a 
water trap before the CO2 and N2 are separated by a GC column at 40ºC. The gases 
are then transferred to a Thermo Fisher Conflo IV and into a Thermo Fisher Delta V 
Plus isotope ratio mass spectrometer for δ13C and δ15N measurements.

The data reported relative to IAEA secondary standards that have been certified 
relative to VPDB for carbon and air for nitrogen.  A two point calibration is employed to 
normalise the data, utilising standards that bracket the samples being analysed.  Two 
quality control references were also included in each run; see page 5 for details of the 
standards used.

Results are accurate to 1% for both N % and C % and +/- 0.3 permil for δ15N and 
δ13C.

Reference: Ohlsson K, Wallmark P. 1999. Novel calibration with correction for drift and non-linear response for 
continuous flow isotope ratio mass spectrometry applied to the determination of delta N-15, total nitrogen, delta C-13 
and total carbon in biological material. Analyst 124: 571–577.

( ) ( )
( )

13 12 13 12

13 13 12 P reference
P/reference 13 12

reference

C / C – C / C
C ( C / C)

C / C
= =

R R

R

δ δ

( ) ( )
( )

15 14 15 14

15 15 14 P reference
P/ reference 15 14

reference

N / N – N / N
N ( N / N)

N / N
= =

R R

R
δ δ



N % δ
15

N AIR
C % δ

13
C V-PDB

‰ ‰

2014/0368J-1 SW1.1, ACIDIFIED 1 - - 21.0 -29.0 SA15FEB26

2014/0368J-2 SW1.2, ACIDIFIED 2 - - 21.1 -28.4 SA15FEB26

2014/0368J-3 SW1.3, ACIDIFIED 3 - - 7.0 -26.4 SA15FEB26

2014/0368J-4 SW1.4, ACIDIFIED 4 - - 1.0 -17.7 SA15FEB26

2014/0368J-5 SW1.5, ACIDIFIED 5 - - 0.7 -12.7 SA15FEB26

2014/0368J-5(2) SW1.5, ACIDIFIED 5 - - 0.7 -11.9 SA15MAR04(1)

2014/0368J-6 SW1.6, ACIDIFIED 6 - - 1.4 -18.1 SA15FEB27

2014/0368J-7 SW1.7, ACIDIFIED 7 - - 1.0 -7.3 SA15FEB27

2014/0368J-8 SW1.8, ACIDIFIED 8 - - 0.6 -11.1 SA15FEB27

2014/0368J-9 SW1.9, ACIDIFIED 9 - - 1.4 -24.8 SA15FEB27

2014/0368J-10 SW1.10, ACIDIFIED 10 - - 1.3 -25.2 SA15FEB27

2014/0368J-11 SW1.11, ACIDIFIED 11 - - 3.0 -26.1 SA15FEB27

2014/0368J-12 SW1.12, ACIDIFIED 12 - - 2.2 -27.2 SA15FEB27

2014/0368J-13 SW1.13, ACIDIFIED 13 - - 1.6 -27.2 SA15FEB27

2014/0368J-14 SW1.14, ACIDIFIED 14 - - 1.7 -24.3 SA15FEB27

2014/0368J-15 MN2.1, ACIDIFIED 15 - - 17.5 -25.2 SA15FEB27

2014/0368J-16 MN2.2, ACIDIFIED 16 - - 30.7 -26.7 SA15FEB27

2014/0368J-16(2) MN2.2, ACIDIFIED 16 - - 31.5 -26.8 SA15MAR04(1)

2014/0368J-17 MN2.3, ACIDIFIED 17 - - 26.5 -24.2 SA15FEB27

2014/0368J-18 MN2.4, ACIDIFIED 18 - - 3.1 -18.7 SA15FEB27

2014/0368J-19 MN2.5, ACIDIFIED 19 - - 0.7 -4.1 SA15FEB27

2014/0368J-20 MN2.6, ACIDIFIED 20 - - 0.7 -9.4 SA15FEB27

2014/0368J-21 MN2.7, ACIDIFIED 21 - - 2.2 -11.1 SA15FEB27

2014/0368J-22 MN2.8, ACIDIFIED 22 - - 1.7 -15.2 SA15FEB26

2014/0368J-22(2) MN2.8, ACIDIFIED 22 - - 2.0 -14.5 SA15MAR04(1)

2014/0368J-23 MN2.9, ACIDIFIED 23 - - 1.4 -12.0 SA15FEB26

2014/0368J-24 CAS1.1, ACIDIFIED 24 - - 38.1 -28.2 SA15MAR04(1)

2014/0368J-25 CAS1.2, ACIDIFIED 25 - - 19.7 -28.1 SA15MAR04(1)

2014/0368J-26 CAS1.3, ACIDIFIED 26 - - 20.2 -27.6 SA15MAR04(1)

2014/0368J-27 CAS1.4, ACIDIFIED 27 - - 3.7 -27.0 SA15JAN19

2014/0368J-28 CAS1.5, ACIDIFIED 28 - - 0.3 -23.8 SA15MAR03

2014/0368J-29 CAS1.6, ACIDIFIED 29 - - 0.7 -11.9 SA15MAR03

2014/0368J-30 CAS1.7, ACIDIFIED 30 - - 0.7 -22.5 SA15MAR03

2014/0368J-31 CAS1.8, ACIDIFIED 31 - - 0.6 -22.7 SA15MAR03

2014/0368J-32 CAS1.9, ACIDIFIED 32 - - 1.1 -22.1 SA15MAR03

2014/0368J-33 CAS1.10, ACIDIFIED 33 - - 1.3 -24.7 SA15MAR03

2014/0368J-34 CAS1.11, ACIDIFIED 34 - - 3.6 -27.6 SA15MAR03

2014/0368J-35 CAS1.12, ACIDIFIED 35 - - 2.3 -28.7 SA15MAR03

2014/0368J-35(2) CAS1.12, ACIDIFIED 35 - - 2.3 -28.5 SA15MAR04(1)

2014/0368J-36 CAS1.13, ACIDIFIED 36 - - 1.8 -28.3 SA15MAR03

2014/0368J-37 CAS1.14, ACIDIFIED 37 - - 1.1 -28.1 SA15MAR03

2014/0368J-38 SUB D 1.1, ACIDIFIED 38 - - 16.5 -24.7 SA15MAR03

2014/0368J-39 SUB D 1.2, ACIDIFIED 39 - - 10.7 -23.2 SA15MAR03

2014/0368J-40 SUB D 1.3, ACIDIFIED 40 - - 0.5 -23.4 SA15MAR03

2014/0368J-41 SUB D 1.4, ACIDIFIED 41 - - 0.4 -10.4 SA15MAR03

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.
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N % δ
15

N AIR
C % δ

13
C V-PDB

‰ ‰

2014/0368J-42 SUB D 1.5, ACIDIFIED 42 - - 0.7 -13.0 SA15MAR03

2014/0368J-43 SUB D 1.6, ACIDIFIED 43 - - 0.8 -21.2 SA15MAR04(1)

2014/0368J-44 SUB D 1.7, ACIDIFIED 44 - - 1.3 -9.4 SA15FEB27

2014/0368J-45 SUB D 1.8, ACIDIFIED 45 - - 1.1 -14.7 SA15MAR04(1)

2014/0368J-46 SUB D 1.9, ACIDIFIED 46 - - 1.3 -13.1 SA15FEB27

2014/0368J-47 SUB D 1.10, ACIDIFIED 47 - - 1.8 -11.1 SA15FEB27

2014/0368J-48 SUB D 1.11, ACIDIFIED 48 - - 1.3 -11.3 SA15FEB27

2014/0368J-48(2) SUB D 1.11, ACIDIFIED 48 - - 1.3 -10.9 SA15MAR04(1)

2014/0368J-49 SUB D 1.12, ACIDIFIED 49 - - 2.2 -14.0 SA15FEB27

2014/0368J-50 SUB D 1.13, ACIDIFIED 50 - - 2.0 -13.1 SA15FEB27

2014/0368J-51 SUB D 1.14, ACIDIFIED 51 - - 1.8 -15.4 SA15FEB27

2014/0368J-52 SUB A 1.1, ACIDIFIED 52 - - 9.2 -23.2 SA15MAR04(1)

2014/0368J-53 SUB A 1.2, ACIDIFIED 53 - - 17.6 -23.7 SA15MAR04(1)

2014/0368J-54 SUB A 1.3, ACIDIFIED 54 - - 0.6 -16.8 SA15MAR04(1)

2014/0368J-55 SUB A 1.4, ACIDIFIED 55 - - 1.8 -22.3 SA15FEB27

2014/0368J-56 SUB A 1.5, ACIDIFIED 56 - - 0.6 -17.3 SA15MAR04(1)

2014/0368J-57 SUB A 1.6, ACIDIFIED 57 - - 1.7 -19.3 SA15FEB27

2014/0368J-58 SUB A 1.7, ACIDIFIED 58 - - 1.6 -15.8 SA15FEB27

2014/0368J-59 SUB A 1.8, ACIDIFIED 59 - - 1.8 -19.0 SA15FEB27

2014/0368J-60 SUB A 1.9, ACIDIFIED 60 - - 2.0 -17.8 SA15FEB27

2014/0368J-61 SUB A 1.10, ACIDIFIED 61 - - 2.5 -18.2 SA15FEB27

2014/0368J-62 FAR 1.1, ACIDIFIED 62 - - 38.1 -28.3 SA15MAR04(1)

2014/0368J-63 FAR 1.2, ACIDIFIED 63 - - 23.4 -27.1 SA15MAR04(1)

2014/0368J-64 FAR 1.3, ACIDIFIED 64 - - 9.8 -24.6 SA15MAR04(1)

2014/0368J-65 FAR 1.4, ACIDIFIED 65 - - 1.5 -19.8 SA15FEB27

2014/0368J-66 FAR 1.5, ACIDIFIED 66 - - 3.2 -26.6 SA15FEB27

2014/0368J-67 FAR 1.6, ACIDIFIED 67 - - 0.6 -18.0 SA15MAR03

2014/0368J-68 FAR 1.7, ACIDIFIED 68 - - 1.1 -9.1 SA15MAR03

2014/0368J-69 FAR 1.8, ACIDIFIED 69 - - 0.7 -7.5 SA15MAR03

2014/0368J-70 FAR 1.9, ACIDIFIED 70 - - 0.6 -17.4 SA15MAR03

2014/0368J-71 FAR 1.10, ACIDIFIED 71 - - 1.0 -12.3 SA15MAR03

2014/0368J-72 FAR 1.11, ACIDIFIED 72 - - 0.9 -22.8 SA15MAR03

2014/0368J-73 FAR 1.12, ACIDIFIED 73 - - 1.2 -24.8 SA15FEB26

2014/0368J-73(2) FAR 1.12, ACIDIFIED 73 - - 1.1 -24.7 SA15MAR04(1)

2014/0368J-74 FAR 1.13, ACIDIFIED 74 - - 2.1 -26.6 SA15FEB26

2014/0368J-75 FAR 1.14, ACIDIFIED 75 - - 1.2 -28.6 SA15FEB26

2014/0368J-76 FAR 1.15, ACIDIFIED 76 - - 0.4 -27.0 SA15MAR03

2014/0368J-77 FAR 1.16, ACIDIFIED 77 - - 0.4 -26.2 SA15MAR03

2014/0368J-78 FAR 1.17, ACIDIFIED 78 - - 0.4 -25.5 SA15MAR03

2014/0368J-79 MAN1.1, ACIDIFIED 79 - - 29.0 -27.4 SA15MAR03

2014/0368J-80 MAN1.2, ACIDIFIED 80 - - 25.0 -27.1 SA15MAR03

2014/0368J-81 MAN1.3, ACIDIFIED 81 - - 23.6 -26.9 SA15MAR03

2014/0368J-82 MAN1.4, ACIDIFIED 82 - - 3.1 -10.9 SA15FEB26

2014/0368J-83 MAN1.5, ACIDIFIED 83 - - 0.6 -22.2 SA15MAR03

2014/0368J-84 MAN1.6, ACIDIFIED 84 - - 0.2 -23.9 SA15MAR03

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.
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No.



N % δ
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C % δ

13
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2014/0368J-85 MAN1.7, ACIDIFIED 85 - - 0.7 -6.1 SA15MAR03

2014/0368J-86 MAN1.8, ACIDIFIED 86 - - 0.6 -6.5 SA15MAR03

2014/0368J-87 MAN1.9, ACIDIFIED 87 - - 1.0 -12.2 SA15MAR03

2014/0368J-88 MAN1.10, ACIDIFIED 88 - - 1.3 -13.1 SA15FEB26

2014/0368J-89 MAN1.11, ACIDIFIED 89 - - 1.5 -19.1 SA15FEB26

2014/0368J-90 MAN1.12, ACIDIFIED 90 - - 1.6 -24.0 SA15FEB26

2014/0368J-91 MAN1.13, ACIDIFIED 91 - - 2.8 -27.6 SA15FEB26

2014/0368J-91(2) MAN1.13, ACIDIFIED 91 - - 2.7 -28.0 SA15MAR04(1)

2014/0368J-92 CAS2.1, ACIDIFIED 92 - - 37.9 -29.5 SA15MAR03

2014/0368J-93 CAS2.2, ACIDIFIED 93 - - 27.1 -29.1 SA15MAR03

2014/0368J-94 CAS2.3, ACIDIFIED 94 - - 6.4 -26.5 SA15FEB26

2014/0368J-95 CAS2.4, ACIDIFIED 95 - - 2.6 -26.3 SA15FEB26

2014/0368J-96 CAS2.5, ACIDIFIED 96 - - 0.3 -20.4 SA15MAR03

2014/0368J-97 CAS2.6, ACIDIFIED 97 - - 0.4 -12.5 SA15MAR03

2014/0368J-98 CAS2.7, ACIDIFIED 98 - - 0.9 -19.5 SA15MAR03

2014/0368J-99 CAS2.8, ACIDIFIED 99 - - 1.2 -22.7 SA15FEB26

2014/0368J-100 SM1.1, ACIDIFIED 100 - - 31.3 -26.8 SA15MAR03

2014/0368J-101 SM1.2, ACIDIFIED 101 - - 20.8 -27.2 SA15MAR03

2014/0368J-102 SM1.3, ACIDIFIED 102 - - 4.1 -23.9 SA15FEB26

2014/0368J-103 SM1.4, ACIDIFIED 103 - - 0.6 -12.6 SA15MAR03

2014/0368J-104 SM1.5, ACIDIFIED 104 - - 0.3 -13.6 SA15MAR03

2014/0368J-105 SM1.6, ACIDIFIED 105 - - 2.0 -5.7 SA15FEB26

2014/0368J-106 SM1.7, ACIDIFIED 106 - - 2.2 -15.7 SA15FEB26

2014/0368J-107 SM1.8, ACIDIFIED 107 - - 2.0 -13.5 SA15FEB26

2014/0368J-107(2) SM1.8, ACIDIFIED 107 - - 1.9 -13.2 SA15MAR04(1)

2014/0368J-108 PEAT 1.1, ACIDIFIED 108 - - 28.3 -24.7 SA15MAR03

2014/0368J-109 PEAT 1.2, ACIDIFIED 109 - - 27.6 -21.0 SA15MAR04(1)

2014/0368J-110 PEAT 1.3, ACIDIFIED 110 - - 24.7 -21.7 SA15MAR04(1)

2014/0368J-111 PEAT 1.4, ACIDIFIED 111 - - 19.4 -19.0 SA15MAR04(1)

2014/0368J-112 PEAT 1.5, ACIDIFIED 112 - - 19.2 -24.7 SA15MAR04(1)

2014/0368J-113 SW1.1 113 0.8 1.7 - - SA15MAR04(2)

2014/0368J-114 SW1.2 114 0.8 1.4 - - SA15MAR04(2)

2014/0368J-115 SW1.3 115 0.6 2.3 - - SA15MAR04(2)

2014/0368J-115(2) SW1.3 115 0.7 2.5 - - SA15MAR20

2014/0368J-116 SW1.4 116 <0.1 0.7 ± 0.7 - - SA15MAR04(2)

2014/0368J-117 SW1.5 117 <0.1 0.3 ± 1.4 - - SA15MAR04(2)

2014/0368J-118 SW1.6 118 <0.1 -0.3 ± 0.7 - - SA15MAR04(2)

2014/0368J-119 SW1.7 119 <0.1 0.9 ± 1.4 - - SA15MAR04(2)

2014/0368J-120 SW1.8 120 <0.1 -3.4 ± 1.6 - - SA15MAR04(2)

2014/0368J-121 SW1.9 121 <0.1 1.1 ± 1.0 - - SA15MAR04(2)

2014/0368J-122 SW1.10 122 <0.1 0.2 ± 1.1 - - SA15MAR04(2)

2014/0368J-123 SW1.11 123 0.1 1.1 ± 0.4 - - SA15MAR04(2)

2014/0368J-123(2) SW1.11 123 0.1 1.5 ± 0.4 - - SA15MAR20

2014/0368J-124 SW1.12 124 <0.1 0.2 ± 0.7 - - SA15MAR06

2014/0368J-125 SW1.13 125 <0.1 -0.9 ± 0.9 - - SA15MAR06

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.
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C V-PDB
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2014/0368J-126 SW1.14 126 <0.1 -0.9 ± 1.0 - - SA15MAR06

2014/0368J-127 MN2.1 127 1.0 1.3 - - SA15MAR20

2014/0368J-128 MN2.2 128 1.3 0.1 - - SA15MAR20

2014/0368J-129 MN2.3 129 1.3 1.7 - - SA15MAR20

2014/0368J-130 MN2.4 130 0.1 1.4 - - SA15MAR06

2014/0368J-130(2) MN2.4 130 0.1 1.9 - - SA15MAR20

2014/0368J-131 MN2.5 131 <0.1 - - SA15MAR06

2014/0368J-132 MN2.6 132 <0.1 1.3 ± 1.5 - - SA15MAR06

2014/0368J-133 MN2.7 133 0.1 2.1 - - SA15MAR06

2014/0368J-134 MN2.8 134 0.1 2.3 - - SA15MAR06

2014/0368J-135 MN2.9 135 0.1 1.3 ± 0.5 - - SA15MAR06

2014/0368J-136 CAS1.1 136 1.5 0.6 - - SA15MAR20

2014/0368J-137 CAS1.2 137 0.7 0.5 - - SA15MAR06

2014/0368J-138 CAS1.3 138 0.7 1.3 - - SA15MAR06

2014/0368J-139 CAS1.4 139 0.3 2.4 - - SA15MAR06

2014/0368J-140 CAS1.5 140 <0.1 2.0 ± 1.5 - - SA15MAR06

2014/0368J-141 CAS1.6 141 <0.1 0.8 ± 1.3 - - SA15MAR06

2014/0368J-142 CAS1.7 142 <0.1 0.9 ± 1.1 - - SA15MAR06

2014/0368J-143 CAS1.8 143 <0.1 1.7 ± 1.2 - - SA15MAR06

2014/0368J-143(2) CAS1.8 143 <0.1 - - SA15MAR20

2014/0368J-144 CAS1.9 144 <0.1 1.1 ± 0.9 - - SA15MAR06

2014/0368J-145 CAS1.10 145 <0.1 2.0 ± 0.9 - - SA15MAR06

2014/0368J-146 CAS1.11 146 0.1 1.0 - - SA15MAR06

2014/0368J-147 CAS1.12 147 0.1 -0.2 ± 0.4 - - SA15MAR06

2014/0368J-148 CAS1.13 148 <0.1 0.01 ± 0.7 - - SA15MAR06

2014/0368J-149 CAS1.14 149 <0.1 -2.0 ± 1.1 - - SA15MAR06

2014/0368J-150 SUB D 1.1 150 0.8 2.2 - - SA15MAR06

2014/0368J-151 SUB D 1.2 151 0.6 1.7 - - SA15MAR06

2014/0368J-152 SUB D 1.3 152 <0.1 - - SA15MAR06

2014/0368J-153 SUB D 1.4 153 <0.1 - - SA15MAR06

2014/0368J-154 SUB D 1.5 154 <0.1 - - SA15MAR06

2014/0368J-155 SUB D 1.6 155 <0.1 0.8 ± 1.0 - - SA15MAR06

2014/0368J-156 SUB D 1.7 156 <0.1 1.2 ± 1.0 - - SA15MAR06

2014/0368J-157 SUB D 1.8 157 <0.1 2.0 ± 0.6 - - SA15MAR06

2014/0368J-157(2) SUB D 1.8 157 0.1 1.5 ± 0.7 - - SA15MAR20

2014/0368J-158 SUB D 1.9 158 <0.1 2.6 ± 0.6 - - SA15MAR06

2014/0368J-159 SUB D 1.10 159 0.1 1.3 - - SA15MAR20

2014/0368J-160 SUB D 1.11 160 <0.1 2.3 ± 0.7 - - SA15MAR20

2014/0368J-161 SUB D 1.12 161 0.1 1.5 - - SA15MAR20

2014/0368J-162 SUB D 1.13 162 0.1 1.8 - - SA15MAR20

2014/0368J-163 SUB D 1.14 163 0.1 1.8 - - SA15MAR20

2014/0368J-164 SUB A 1.1 164 0.6 2.1 - - SA15MAR20

2014/0368J-165 SUB A 1.2 165 1.0 2.1 - - SA15MAR20

2014/0368J-166 SUB A 1.3 166 <0.1 - - SA15MAR20

2014/0368J-167 SUB A 1.4 167 <0.1 - - SA15MAR20

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.
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Nitrogen Data Carbon Data

LIMS Number Client Identification
Sample 

No.



N % δ
15

N AIR
C % δ

13
C V-PDB

‰ ‰

2014/0368J-168 SUB A 1.5 168 <0.1 - - SA15MAR20

2014/0368J-169 SUB A 1.6 169 <0.1 -0.2 ± 0.6 - - SA15MAR20

2014/0368J-170 SUB A 1.7 170 0.1 0.7 ± 0.4 - - SA15MAR20

2014/0368J-171 SUB A 1.8 171 0.1 1.2 - - SA15MAR20

2014/0368J-172 SUB A 1.9 172 0.1 1.4 - - SA15MAR20

2014/0368J-173 SUB A 1.10 173 0.2 2.0 - - SA15MAR20

2014/0368J-174 FAR 1.1 174 1.6 1.1 - - SA15MAR20

2014/0368J-175 FAR 1.2 175 0.9 0.4 - - SA15MAR20

2014/0368J-176 FAR 1.3 176 0.6 1.7 - - SA15MAR20

2014/0368J-177 FAR 1.4 177 0.2 2.2 - - SA15MAR13

2014/0368J-178 FAR 1.5 178 0.1 1.4 - - SA15MAR13

2014/0368J-178(2) FAR 1.5 178 0.1 1.0 - - SA15MAR20

2014/0368J-179 FAR 1.6 179 <0.1 1.6 ± 1.3 - - SA15MAR13

2014/0368J-180 FAR 1.7 180 <0.1 2.5 ± 1.1 - - SA15MAR13

2014/0368J-181 FAR 1.8 181 <0.1 4.0 ± 1.3 - - SA15MAR13

2014/0368J-182 FAR 1.9 182 <0.1 3.0 ± 1.1 - - SA15MAR13

2014/0368J-183 FAR 1.10 183 <0.1 2.9 ± 1.0 - - SA15MAR13

2014/0368J-184 FAR 1.11 184 <0.1 2.0 ± 0.9 - - SA15MAR13

2014/0368J-185 FAR 1.12 185 <0.1 2.1 ± 0.9 - - SA15MAR13

2014/0368J-186 FAR 1.13 186 0.1 1.4 - - SA15MAR13

2014/0368J-187 FAR 1.14 187 <0.1 1.0 ± 1.0 - - SA15MAR13

2014/0368J-188 FAR 1.15 188 <0.1 0.5 ± 1.4 - - SA15MAR13

2014/0368J-189 FAR 1.16 189 <0.1 2.5 ± 1.1 - - SA15MAR13

2014/0368J-190 FAR 1.17 190 <0.1 2.7 ± 1.0 - - SA15MAR13

2014/0368J-191 MAN1.1 191 1.4 1.3 - - SA15MAR20

2014/0368J-192 MAN1.2 192 1.0 1.2 - - SA15MAR20

2014/0368J-193 MAN1.3 193 0.8 1.1 - - SA15MAR20

2014/0368J-194 MAN1.4 194 0.1 2.2 - - SA15MAR13

2014/0368J-195 MAN1.5 195 <0.1 0.2 ± 1.2 - - SA15MAR13

2014/0368J-196 MAN1.6 196 <0.1 -2.9 ± 1.6 - - SA15MAR13

2014/0368J-197 MAN1.7 197 <0.1 -0.1 ± 1.5 - - SA15MAR13

2014/0368J-197(2) MAN1.7 197 <0.1 - - SA15MAR20

2014/0368J-198 MAN1.8 198 <0.1 - - SA15MAR13

2014/0368J-199 MAN1.9 199 <0.1 1.2 ± 0.9 - - SA15MAR13

2014/0368J-200 MAN1.10 200 <0.1 1.6 ± 1.0 - - SA15MAR13

2014/0368J-201 MAN1.11 201 0.1 2.1 ± 0.5 - - SA15MAR13

2014/0368J-202 MAN1.12 202 0.1 2.3 ± 0.5 - - SA15MAR13

2014/0368J-202(2) MAN1.12 202 0.1 2.1 ± 0.6 - - SA15MAR20

2014/0368J-203 MAN1.13 203 0.1 1.2 - - SA15MAR13

2014/0368J-204 CAS2.1 204 1.9 -0.03 - - SA15MAR20

2014/0368J-205 CAS2.2 205 1.0 0.8 - - SA15MAR20

2014/0368J-206 CAS2.3 206 0.6 2.4 - - SA15MAR13

2014/0368J-206(2) CAS2.3 206 0.6 2.2 - - SA15MAR20

2014/0368J-207 CAS2.4 207 0.2 1.8 - - SA15MAR13

2014/0368J-208 CAS2.5 208 <0.1 -0.7 ± 1.4 - - SA15MAR13

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.
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‰ ‰

2014/0368J-209 CAS2.6 209 <0.1 0.5 ± 1.4 - - SA15MAR13

2014/0368J-210 CAS2.7 210 <0.1 1.2 ± 0.7 - - SA15MAR13

2014/0368J-211 CAS2.8 211 <0.1 2.0 ± 0.7 - - SA15MAR13

2014/0368J-212 SM1.1 212 1.4 2.0 - - SA15MAR20

2014/0368J-213 SM1.2 213 1.0 1.5 - - SA15MAR20

2014/0368J-214 SM1.3 214 0.3 2.8 - - SA15MAR13

2014/0368J-214(2) SM1.3 214 0.3 2.9 - - SA15MAR20

2014/0368J-215 SM1.4 215 <0.1 1.7 ± 1.4 - - SA15MAR13

2014/0368J-216 SM1.5 216 <0.1 - - SA15MAR13

2014/0368J-217 SM1.6 217 <0.1 1.6 ± 1.4 - - SA15MAR13

2014/0368J-218 SM1.7 218 0.1 1.5 - - SA15MAR13

2014/0368J-219 SM1.8 219 0.1 1.4 - - SA15MAR13

2014/0368J-220 PEAT 1.1 220 1.2 1.4 - - SA15MAR20

2014/0368J-221 PEAT 1.2 221 1.5 3.3 - - SA15MAR20

2014/0368J-222 PEAT 1.3 222 1.3 2.5 - - SA15MAR20

2014/0368J-223 PEAT 1.4 223 1.2 2.8 - - SA15MAR20

2014/0368J-224 PEAT 1.5 224 0.9 1.3 - - SA15MAR20

Legend: Take results as guide only. The Nitrogen values were at the limit of detection.

The following Standard Reference Materials (SRM) were used for data normalisation in this report

SRM Lot #
Percentage                 

Nitrogen
δ

15
N relative to Air 

(‰)

Percentage              

Carbon
δ

13
C relative to 

VPDB (‰)

Sercon SC0419 192702 9.4 ± 0.1 -2.0 ± 0.1 40.3 ± 0.3 -30.3 ± 0.1

USGS-40 L-Glutamic acid - 9.52 -4.52 ± 0.06 40.8 -26.39 ± 0.04

USGS-41 L-Glutamic acid - 47.57 ± 0.11 37.63 ± 0.05
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Nitrogen Data Carbon Data

LIMS Number Client Identification
Sample 

No.



QC CHECKS

N % δ
15

N V-PDB δ
13

C V-PDB

‰ ‰

0.62 ± 0.02 4.42 ± 0.29 9.15 ± 0.12 -26.27 ± 0.15

SA15JAN19 B2151 1 - - 9.2 -26.4

SA15FEB26 B2151 2 - - 9.0 -26.5

SA15FEB26 B2151 3 - - 8.9 -26.6

SA15FEB26 B2151 4 - - 9.3 -26.6

SA15FEB26 B2151 5 - - 9.3 -26.4

SA15FEB26 B2151 6 - - 8.9 -26.6

SA15FEB27 B2151 7 - - 9.3 -26.6

SA15FEB27 B2151 8 - - 9.3 -26.6

SA15FEB27 B2151 9 - - 9.2 -26.6

SA15MAR03 B2151 10 - - 9.2 -26.5

SA15MAR03 B2151 11 - - 9.6 -26.6

SA15MAR03 B2151 12 - - 9.1 -26.6

SA15MAR03 B2151 13 - - 9.3 -26.6

SA15MAR04(1) B2151 14 - - 9.1 -26.6

SA15MAR04(1) B2151 15 - - 9.3 -26.5

SA15MAR04(1) B2151 16 - - 9.3 -26.6

SA15MAR04(2) B2151 17 0.6 4.4 - -

SA15MAR06 B2151 18 0.6 4.7 - -

SA15MAR06 B2151 19 0.6 4.6 - -

SA15MAR06 B2151 20 0.6 4.4 - -

SA15MAR13 B2151 21 0.6 4.7 - -

SA15MAR13 B2151 22 0.6 4.1 - -

SA15MAR13 B2151 23 0.6 4.6 - -

SA15MAR13 B2151 24 0.6 4.6 - -

SA15MAR20 B2151 25 0.6 4.7 - -

SA15MAR20 B2151 26 0.6 4.5 - -

SA15MAR20 B2151 27 0.6 4.6 - -

0.6 4.5 9.2 -26.5

0.01 0.2 0.2 0.1

0.01 -0.1 -0.1 0.3
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S.D.

Difference from Actual

C%

CERTIFIED VALUES for B2151

AVERAGE



QC CHECKS

N % δ
15

N V-PDB C% δ
13

C V-PDB

‰ ‰

0.3 ± 0.02 6.3 ± 0.4 3.2 ± 0.1 -27.7 ± 0.1

SA15JAN19 B2178 1 - - 3.2 -28.0

SA15FEB26 B2178 2 - - 3.3 -27.5

SA15FEB26 B2178 3 - - 3.2 -27.6

SA15FEB26 B2178 4 - - 3.2 -27.5

SA15FEB26 B2178 5 - - 3.2 -27.5

SA15FEB26 B2178 6 - - 3.2 -27.5

SA15FEB27 B2178 7 - - 3.2 -27.5

SA15FEB27 B2178 8 - - 3.2 -27.6

SA15FEB27 B2178 9 - - 3.3 -27.6

SA15FEB27 B2178 10 - - 3.2 -27.4

SA15MAR03 B2178 11 - - 3.2 -27.4

SA15MAR03 B2178 12 - - 3.2 -27.6

SA15MAR04(1) B2178 15 - - 3.2 -27.6

SA15MAR04(1) B2178 16 - - 3.1 -27.7

SA15MAR04(1) B2178 17 - - 3.2 -27.6

SA15MAR04(2) B2178 18 0.2 6.5 - -

SA15MAR04(2) B2178 19 0.3 6.4 - -

SA15MAR06 B2178 20 0.2 6.6 - -

SA15MAR06 B2178 21 0.3 6.3 - -

SA15MAR13 B2178 22 0.3 6.6 - -

SA15MAR13 B2178 23 0.3 6.7 - -

SA15MAR13 B2178 24 0.3 6.6 - -

SA15MAR13 B2178 25 0.3 6.6 - -

SA15MAR20 B2178 26 0.3 6.7 - -

SA15MAR20 B2178 27 0.3 6.7 - -

SA15MAR20 B2178 28 0.3 6.6 - -

0.3 6.6 3.2 -27.6

0.01 0.1 0.04 0.1

0.0 -0.3 -0.02 -0.1
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Difference from Actual

RUN NO. ID # SAMP

CERTIFIED VALUES forB2178

AVERAGE

S.D.
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