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Abstract

We investigate the electronic and optical properties of various one

and two dimensional graphene based materials. Using the tight bind-

ing approximation, we calculate the electronic dispersions of these

systems. Using Green’s functions, we then evaulate the dielectric

function within the random phase approximation (RPA), and the

corresponding collective excitation spectrum for armchair graphene

nanoribbons. We also calculate the Kubo formula-based optical con-

ductivity of single layer graphene, bilayer graphene, graphene nanorib-

bons, bilayer graphene nanoribbons, and stretched graphene. For sin-

gle layer graphene within the Dirac approximation we also calculate

the third order nonlinear optical conductance (a nonlinear correction

to the ‘universal’ conductivity, as well as a frequency tripling term)

and finally the effect of electron-LO phonon scattering on the ‘univer-

sal’ conductivity at various temperatures and doping levels.

There are several results of particular interest. We predict a roton-

like mode in the collective excitation spectrum of non-Dirac armchair

graphene nanoribbons. We also demonstrate a two order of magni-

tude enhancement to the optical conductivity of an entire subclass of

bilayer graphene nanoribbons in the terahertz-far infrared regime. A

strong nonlinear conductance of single layer graphene under moder-

ate field strengths at room temperature is derived. Finally, stretching

induced hall optical conductivity and chirality dependent anisotropy

in single layer graphene under conservative stretching conditions are

predicted.

We find that the optical properties of graphene based materials are re-

markably robust and highly tunable, particularly within the terahertz



to far-infrared regime. Furthermore, the prediction of a roton-like

minimum in the collective excitation spectra of a subclass of armchair

ribbons makes these particular graphene based materials part of an

extremely small subclass of materials, and represents the opening of

a potentially huge new field of fundamental research.
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Introduction

The field of graphene research is huge (1; 2; 3). Since the invention of carbon

nanotubes in 1991 (4), research into hexagonally arrayed graphitic carbon systems

has escalated. Despite being a simpler and more versatile system to consider

theoretically, graphene’s rise took place more than a decade later in 2003, when

the group of Novoselov and Geim reported that they had managed to create

and detect single and few layer graphite (5). Since this first seminal work was

performed, publications in the field of graphene based structures has exploded.

In 1946, long before its intentional fabrication, P.R. Wallace developed the

tight binding bandstructure theory of graphene and demonstrated its unusual

properties (6). The motivation for this work was the extension to a superlattice

which he would use to describe the properties of bulk graphite. In 2003 however,

this work took on new significance, and Wallace’s pioneering work turned out

to be 60 years ahead of its time. 20 years after this seminal work, Slonczewski,

Weiss, and McClure (SWM) developed the interlayer coupling theory for stacked

graphene (7; 8). The collective work of these three was remarkably successful

at the time, and again has resurfaced in the context of stacked graphene lay-

ers. Utilising the theories of Wallace and SWM, single layer graphene, bilayer

graphene, graphene nanoribbons, layered graphene nanoribbons, and the curved,

rolled, crumpled, rippled, stretched (and any other deformation imaginable) vari-

ations on these materials have been successfully and extensively studied over the

last few years.

The focus of much of the current research on graphene structures is concerned

with so-called ‘Dirac fermions’ (although the recent review by Geim expounds the

ever growing volume of work in other areas (2)). The low energy bandstructure

of graphene is conical, which immediately implies a constant density of states
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INTRODUCTION

(DOS), a constant group velocity akin to the behaviour of photons or neutrinos,

and electron hole symmetry. The latter two have been confirmed experimentally

(9). This unusual ‘massless’ low energy bandstructure makes graphene a veritable

treasure-trove of never before seen properties, and also a potential low energy,

solid state laboratory for experiments in relativistic quantum electrodynamics in

2 + 1 dimensions. Therefore, since 2003 many interesting properties of graphene

have been predicted and observed, such as the half-integer quantum Hall effect

(9; 10), finite conductivity at zero charge-carrier concentration (9), the strong

suppression of weak localization (11; 12; 13), and the prediction of almost perfect

fluidity (14), to name just a few. These properties can be attributed to the lin-

ear ‘Dirac’ bandstructure, and low dimensionality, which lead to aforementioned

QED-like effects, rather than particulate ones (15; 16).

There is a plethora of interesting phenomena pertaining to the unique prop-

erties of graphene based systems. They are outlined in detail in the excellent

review articles available on the subject (1; 2; 3).

The ‘universal’ conductance of graphene is a remarkable ac phenomenon (17).

It is a direct result of the linear energy dispersion of graphene. As already men-

tioned, linear subbands imply a constant density of states, but also consistent

transition matrix elements, which means that for as long as the Dirac approxi-

mation is valid, the conductance is a constant. The value of the universal con-

ductance of single layer graphene is σ0 = e2/4~. This result is easily achieved by

several methods. In particular the Kubo formula yields this result for an intrinsic

system and neglecting electron-electron (or any other) interactions.

Deviations from ‘universal’ conductance have been shown to occur due to

variations in geometry (18; 19), field energy (20; 21), and field intensity (22;

23). It need not be demonstrated that the effect of finite temperature on the

distribution functions, as well as doping to create an effective band gap between

available states, will also alter the value of σ0, especially at lower energies.

In fact, the optical properties of graphene based systems has become quite

an active field of research. After the initial flurry of excitement that followed

the demonstration of the universal conductivity at energies as high as the optical

regime – a direct demonstration of the accuracy of the Dirac bandstructure – there

has been increasing interest in graphene based materials for photonic applications,

2



INTRODUCTION

as well as the realization of graphene’s potential in the THz-FIR regime, which

have lead to some very interesting results.

With all these predictions and observations having emerged, the optical prop-

erties of graphene based systems appear to be more significant and more versatile

than perhaps previously believed. With this trend in mind we have proceeded to

calculate the optical properties of various graphene based systems under differ-

ent conditions. The motivation being based on the premise that the ‘interesting’

optical properties of graphene based systems have not yet been exhausted. As it

turns out, our intuition is confirmed, and graphene-based systems produce a rich

tapestry of optical properties which are often able to be tuned to one’s specific

needs, and are often quite unique in the broader field of the optical properties of

condensed matter systems.

Our focus has been largely restricted to the THz-FIR regime. The motivation

for this choice is the potential use of graphene in photonic device applications

in the increasingly important THz band, and the ubiquitous infrared, which is

so important for telecommunications purposes. The universal conductivity of

graphene has a value of σ0 = e2/4~, which leads to an optical absorption of

≈ 3%. Although a remarkably strong value for a single atomic layer system, in

absolute terms this is a very weak response, which severely limits the potential

applicability of graphene based systems in photonic devices. Therefore we have

calculated the optical response for various graphene based systems to determine

whether this response can be improved, or whether interesting effects such as

anisotropy, nonlinear effects, or non-zero transverse conductivity can be obtained.

These results will be presented in due course.

Before delving into the main results of the thesis, we must discuss the geom-

etry of the different graphene systems investigated in this thesis. We will discuss

their various electronic properties within the tight binding formalism. This will

be the subject of chapter one. After this we will talk briefly about the dielec-

tric properties of one particular graphene system: non-Dirac armchair graphene

nanoribbons. This will be the subject of chapter two. The remaining chapters

will be devoted to the optical conductance of graphene based systems. We will

end with some concluding remarks.
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Some Interesting Properties

Unique Dispersions

Firstly however, it may be interesting to summarize some of the more striking

properties of graphene-based materials which make them so fascinating to study.

The obvious starting point is the electronic dispersions of single and bi-layer

graphene. These will be discussed in more detail in the next chapter, and so for

now we will consider just the results. The electronic dispersion of graphene near

the vertices of the hexagonal Brillouin zone (the K points), is

εs,k = svF |k|, (1)

Where s = ±, and vF is the Fermi velocity which is ≈ 106ms−1. This conical

dispersion, which is applicable up to energies of ≈ 1eV, makes the fermions

in graphene behave as massless particles like photons or neutrinos, and make

the Dirac equation, rather than the Schrodinger equation, the natural formalism

to use to describe the system. As already mentioned, this opens the gateway

to potential “QED-in-a-lab” experiments (1), and also may well revolutionalize

modern electronics.

Bilayer graphene, near the K points, also has a unique band structure in

materials science. The fermions in bilayer graphene can be described as massive

Chiral fermions with a symmetrical bandstructure about the neutrality point.

The low energy dispersion can be given by

εs,k = sv2
Fk

2/t⊥ (2)

Where t⊥ site-equivalent interlayer coupling (see next chapter). The unique-

ness of these two systems can be seen in the figure from the excellent recent

review article by A.K. Geim (2) which has been reproduced here in figure 1

The interlayer term in bilayer graphene can be viewed as contributing a mass

term to the Dirac equation in making the transition from one to two layers.

With these dispersions in mind, let’s look at a few of the interesting conse-

quences of these unique materials.
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Figure 1: The fermions in graphene are described by the conical massless Dirac
dispersion which is a low energy manifestation of an ultra-relativistic equivalent
dispersion. The fermions in bilayer graphene have no known equivalent, and can
be described as massive chiral fermions with a symmetrical bandstructure.

The Klein Paradox

An elegant example of the unusual chiral properties of graphene is in the deriva-

tion of the Klein paradox (16; 24). We first note that the wavefunction for Dirac

fermions in graphene can be given by

ψ(k) =
1√
2

(
1

±eiφ(k)

)
(3)

Where φ(k) = tan−1 ky/kx. We now consider scattering by a finite potential well

of magnitude V0 and width D, as shown in figure 2. There are thus three regions

as marked in the figure. In region I, we have

ψI(r) =
1√
2

(
1

seiφ(k)

)
ei(kxx+kyy) +

r√
2

(
1

sei(π−φ(k))

)
ei(−kxx+kyy) (4)

Which has a right and left moving component, where s = ±1, and in polar

coordinates, and considering fermions with Fermi momentum kF , we have ky =

kF sinφ(k) and kx = kF cosφ(k). In region II

ψII(r) =
a√
2

(
1

s′eiθ

)
ei(qxx+kyy) +

b√
2

(
1

s′ei(π−θ)

)
ei(−qxx+kyy) (5)
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Figure 2: The proposed setup to demonstrate the Klein paradox. An incoming
Dirac Fermion hits a finite potential well of magnitude V0 and width D. The
transmission is calculated as usual in elementary quantum mechanics by demanding
the continuity of the wavefunctions. Figure from reference (1)
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Figure 3: The transmission results from equation 7 for different values of V0,
where D = 110nm (top), and D = 50nm (bottom). Aside from normal incidence
there are potentially other points of absolute transmission as well. This absolute
transmission is a manifestation of the Klein paradox. Figure from reference (1)

Were θ = tan−1(ky/qx), and qx =
√

(V0 − E)2/(vF )2 − k2
y, and for region III we

have only a right moving component

ψIII(r) =
t√
2

(
1

seiφ(k)

)
ei(kxx+kyy) (6)

Where s = sgn(E) and s′ = sgn(E−V0). According to the standard prescription,

the coefficients of the wavefunctions must be determined such that continuity is

preserved at the boundaries x = 0, D, but the derivative need not be matched in

this case, unlike with the Schrodinger equation. The transmission as a function

of incident angle is T (φ) = tt∗, and is given by

T (φ) =
cos2 θ cos2 φ

(cos(Dqx) cosφ cos θ)2 + sin2(Dqx)(1− ss′ sinφ sin θ)2
(7)

What is unusual about this result is that for Dqx = nπ, the barrier becomes

completely transparent (T (φ) = 1), which includes normal incidence (φ → 0).

This is the Klein paradox, and is unique for relativistic electrons. Some nice

results are reported in figure 3, where, depending on the value of V0, there are

several points with complete transmission. This unusual behaviour is discussed

in some detail in reference (1), and most of the discussion up to here has followed

this reference closely.
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Anomalous Integer Quantum Hall Effect

The components of the resistivity and conductivity tensors are given by

ρxx =
σxx

σ2
xx + σ2

xy

ρxy =
σxy

σ2
xx + σ2

xy

(8)

Where σxx is the longitudinal conductivity and σxy is the Hall conductivity. When

the chemical potential is inside a region of localized states, there is no longitudinal

component to the conductivity. However, when the chemical potential crosses a

Landau level, it is in a region of de-localized states, and σxx 6= 0, and σxy varies

continuously. Imagine an experimental setup of (essentially) a carbon nanotube

as proposed by Laughlin (25), and shown in figure 4. A magnetic field passes

normally through the surface of the tube, and a current passes circumferentially

around the loop. From the Lorentz force, the magnetic field induces a Hall

voltage perpendicular to both the field and current. There is thus a magnetic

flux travelling down the tube. The current is given by

I = c
∂E

∂φ
(9)

Where E is the total energy of the system, and φ is the flux. The localized

states do not respond to changes in φ, only the delocalized ones. Imagine we

now changed the flux by a single flux quantum ∆φ = hc/e. During the change of

flux, an integer number of states enter the cylinder at one edge and leave at the

opposite edge.

In general, due to the four fold degeneracy of the system (two equivalent

K points, and assuming spin degeneracy), when the flux changes by a single

quantum, the change in energy is ±4NeVH where VH is the induced Hall voltage,

and the ± comes from whether they are holes of electrons. However what happens

when the chemical potential is at exactly half filling – the Dirac point? Acording

to our reasoning, there would be a Hall plateau at this level with σxy = 0. However

this cannot be the case because there is a Landau level at this point, and as we

stated before this rules out the plateau due to the presence of extended states.
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Figure 4: Laughlin’s proposed experiment to probe the quantum Hall effect in
graphene. He suggested a carbon nanotube type configuration with a magnetic field
passing through the surface of the tube, and a current passing circumferentially
around the tube such that there is a flux φ down the axis of the tube, and a Hall
voltage VH is induced perpendicular to the field. Figure from reference (1)

This conundrum has been tackled by several authors, and has a rather simple

explanation which is very neatly and simply explained by Castro Neto et al in

reference (1): “because of the presence of the zero mode that is shared by the

two Dirac points, there are exactly 2(2N+1) occupied states that are transferred

from one edge to another. Hence, the change in energy is δE = ±2(2N + 1)eVH

for a change of flux of hc/e. Therefore, the Hall conductivity is

σxy =
1

VH
=

cδE

VHδφ
= ±2(2N + 1)

e2

h
(10)

Without any Hall plateua at N = 0”!

This phenomenal and yet elegantly simple result has been realised experimen-

tally, as shown in figure 5.

Universal Conductivity

The universal conductivity of graphene is an elegant and remarkably simple result,

which shows the peculiarity of the Dirac bandstructure. We shall calculate the

9
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Figure 5: The measurement of the anomalous integer Quantum Hall Effect for
graphene. As reasoned by several authors, there is no Hall plateau at N = 0. The
peak of the blue line at n = 0 shows that there is a Landau level when the chemical
potential at the neutrality point which draws states equally from the conduction
and valence bands. Figure from reference (1)
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Figure 6: The measurement of the universal conductivity of graphene performed
by Nair et al and published in Science magazine ??. Amazingly, the universal
conductivity is directly proportional to the fine structure constant, and provides
an alternative (albeit less accurate) method for determining it.

universal conductivity of graphene using the time dependent Schrodinger equa-

tion in chapter 4, but here shall reproduce the most common derivation which

uses linear response theory, namely the Kubo Formula for optical conductivity.

This formula will be used extensively in chapters 3 and 5, and so will be properly

introduced later. For now however, we need the wavefunctions, corresponding

energy levels, and the Kubo Formula. The energy levels have already been pre-

sented. The wavefunctions within the Dirac regime are

〈k, s| = 1√
2

(1 s(kx + iky)/k) =
1√
2

(1 sei tan−1(ky/kx)) (11)

And the Kubo formula is

σν,κ(ω) =
1

ω

∫ ∞
0

dteiωt〈[Jν(t), Jκ(0)]〉 (12)

Where v̂µ = ∂Ĥ∂kµ is the velocity operator with µ = x, y. Due to the linear

dispersion, the velocity operator takes on off diagonal constant values. This leads

to the particularly simple result (including only interband transitions)

〈k, s|v̂|k,−s〉 =
kx
k2

(13)

We also mention in passing the breakdown of the universal conductivity

with increasing energies. As mentioned earlier, the massless Dirac bandstruc-

ture quoted for single layer graphene holds up to |ε| ≈ 1eV. Moving outside of

11
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Figure 7: The optical conductivity of graphene outside the Dirac regime contains
significant structure which is lost when confined to the linear approximation to the
Hamiltonian. The peak corresponds to a van-Hove singularity in the density of
states. The full energetic range is 0 < ~ω < 9eV. The Dirac formalism is roughly
applicable up to ≈ 1eV.

this ‘Dirac regime’, one can compute the optical conductivity after expanding

the Hamiltonian to second order in momentum (21), or perform no expansions at

all and proceed numerically with the full dispersion relation (20). We choose to

quote the latter because this work was done within the same group as the other

works in this thesis, because it was published first of the two, and finally because

it is the most robust tight binding calculation performed to date (at the expense,

of course, of obtaining closed form analytic results). In figure 7 we present the

optical conductivity of single layer graphene over the full relevant energy range.

It can be seen from this figure at what energies the Dirac approximation is appro-

priate in calculating the universal conductivity. For energies outside this range

however, we can see that there is a peak, corresponding to a van-Hove singularity

in the density of states of graphene which in turn corresponds to a saddle point

in the bandstructure, followed by a gradually diminishing response for higher

energies.

The unusual properties mentioned here are just a few examples of the many

interesting properties of graphene based materials. The literature on graphene,

despite its relatively young age, is enormous, and it is almost impossible for one
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to keep abreast of the rapid progress that this field is currently undergoing. This

makes graphene an exciting field to be involved in. As experimental techniques

develop, one would expect that even more unexpected properties will arise with

time.

Current Status and Motivation

A final word before delving into the results of this thesis. Graphene research can

be, in my opinion, summarised by two major motivations: “The universe in a

Helium droplet”, and “Moore’s Law”.

The former is a broad approach to condensed matter that summarises one of

the most interesting aspects of modern condensed matter theory, and indeed, all

of physics (and is also the title of a book by Volovik ??). As mentioned above,

graphene may serve to investigate certain aspects of relativistic QED. This is not

the only area where graphene research may further fundamental physics. There

is a lot of interest in graphene as a quantum Hall system. The observation of

fractional statistics and non-abelian quasi-particles has so far remained elusive.

Quantum Hall systems are the most likely candidate systems where these are

expected to be observed. Graphene may play a major role in this in the future.

The quantum spin Hall effect was initially proposed for a graphene system (26),

though unfortunately the intrinsic spin splitting of graphene may be too small for

this proposal to be realised for graphene. Nevertheless, this has opened the door

to a new class of topological insulators which are expected to be realised in other

systems that can be tuned to have the same Dirac dispersions but with much

larger spin-splitting. Graphene provides a solid-state laboratory with relativistic

massless particles, and oddly behaved massive chiral Fermions with which we

can tinker. Within the exciting field of emergent phenomena and the topological

states of matter, graphene promises to provide some interesting predictions for

fundamental physics.

The question of fundamental physics arising from emergent phenomena is

the motivation behind the results of chapter 2 of this thesis. We calculated

the collective excitation spectrum of non-Dirac armchair graphene nanoribbons

and found that these materials produced plasmons with a non-propagating roton

13
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minimum as their lowest energy excitation. This unusual result may uncover

some interesting outstanding questions concerning rotons, 1D vortices, and bulk-

edge coupling: questions of considerable import in the fields of Quantum Hall

systems and topological states of matter. Interestingly, the only other material

to display such a collective mode in the absence of an external magnetic field is

the apparently ‘universe containing’ Helium droplet alluded to earlier!

The latter major motivation for graphene research is much more down to

earth and practical: Moore’s Law. Everybody knows what Moore’s Law is, and

more importantly, it is becoming increasingly obvious that Moore’s Law is decel-

erating. Graphene’s amazing electronic and transport properties which include

dissipationless transport, the strong suppression of weak localization, and width

and chirality dependent band gaps and band-structures, make it a prime candi-

date for implementation in the next generation of electronic devices, and provide

some positive contribution to extending Moore’s Law into the next few years.

The outstanding questions in this area are being answered at a very rapid rate.

The questions are obvious: What properties of graphene will be most useful for

device application? Will disorder destroy these promising effects?

These sorts of questions form the basis for chapters 3-5 of this thesis. Chapters

3 and 4 are concerned with the optical properties of graphene based systems

with different geometries. The optical response of graphene is remarkably high

for a single atomic layer (≈ 3% absorption). Furthermore, the characteristic

energy scales of the coupling constants often fall within the terahertz–far-infrared

regimes, which are of considerable import at present. This makes the investigation

of the optical properties in different geometries an obvious path to take, and some

interesting results are found. Chapter 5 addresses this question of disorder, by

introducing phonons into the problem. For device application, room temperature

physics is of paramount importance, and so the first sensible addition to the clean

system is electron-phonon interactions.

So we can see that the work contained in this thesis arises from two broad

approaches to graphene research. We don’t know what the former approach will

yield in the years to come, with the outstanding questions being more speculative

than anything. Future progress with regard to the latter however, is quite ob-
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vious: the inclusion of many types of disorder, scattering, heat, non-equilibrium

approaches, exchange and correlation etc.

In any case, it is now time to explore the electronic properties of graphene

more closely, in order to lay the framework for the main results of the thesis

contained in chapters 2-5.
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