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Abstract

We investigate the electronic and optical properties of various one
and two dimensional graphene based materials. Using the tight bind-
ing approximation, we calculate the electronic dispersions of these
systems. Using Green’s functions, we then evaulate the dielectric
function within the random phase approximation (RPA), and the
corresponding collective excitation spectrum for armchair graphene
nanoribbons. We also calculate the Kubo formula-based optical con-
ductivity of single layer graphene, bilayer graphene, graphene nanorib-
bons, bilayer graphene nanoribbons, and stretched graphene. For sin-
gle layer graphene within the Dirac approximation we also calculate
the third order nonlinear optical conductance (a nonlinear correction
to the ‘universal’ conductivity, as well as a frequency tripling term)
and finally the effect of electron-LO phonon scattering on the ‘univer-

sal’ conductivity at various temperatures and doping levels.

There are several results of particular interest. We predict a roton-
like mode in the collective excitation spectrum of non-Dirac armchair
graphene nanoribbons. We also demonstrate a two order of magni-
tude enhancement to the optical conductivity of an entire subclass of
bilayer graphene nanoribbons in the terahertz-far infrared regime. A
strong nonlinear conductance of single layer graphene under moder-
ate field strengths at room temperature is derived. Finally, stretching
induced hall optical conductivity and chirality dependent anisotropy
in single layer graphene under conservative stretching conditions are

predicted.

We find that the optical properties of graphene based materials are re-
markably robust and highly tunable, particularly within the terahertz



to far-infrared regime. Furthermore, the prediction of a roton-like
minimum in the collective excitation spectra of a subclass of armchair
ribbons makes these particular graphene based materials part of an
extremely small subclass of materials, and represents the opening of

a potentially huge new field of fundamental research.
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Introduction

The field of graphene research is huge (I 2; [3]). Since the invention of carbon
nanotubes in 1991 (4)), research into hexagonally arrayed graphitic carbon systems
has escalated. Despite being a simpler and more versatile system to consider
theoretically, graphene’s rise took place more than a decade later in 2003, when
the group of Novoselov and Geim reported that they had managed to create
and detect single and few layer graphite (5). Since this first seminal work was
performed, publications in the field of graphene based structures has exploded.

In 1946, long before its intentional fabrication, P.R. Wallace developed the
tight binding bandstructure theory of graphene and demonstrated its unusual
properties (6). The motivation for this work was the extension to a superlattice
which he would use to describe the properties of bulk graphite. In 2003 however,
this work took on new significance, and Wallace’s pioneering work turned out
to be 60 years ahead of its time. 20 years after this seminal work, Slonczewski,
Weiss, and McClure (SWM) developed the interlayer coupling theory for stacked
graphene (7; [§). The collective work of these three was remarkably successful
at the time, and again has resurfaced in the context of stacked graphene lay-
ers. Utilising the theories of Wallace and SWM, single layer graphene, bilayer
graphene, graphene nanoribbons, layered graphene nanoribbons, and the curved,
rolled, crumpled, rippled, stretched (and any other deformation imaginable) vari-
ations on these materials have been successfully and extensively studied over the
last few years.

The focus of much of the current research on graphene structures is concerned
with so-called ‘Dirac fermions’ (although the recent review by Geim expounds the
ever growing volume of work in other areas (2))). The low energy bandstructure

of graphene is conical, which immediately implies a constant density of states



INTRODUCTION

(DOS), a constant group velocity akin to the behaviour of photons or neutrinos,
and electron hole symmetry. The latter two have been confirmed experimentally
(9). This unusual ‘massless’ low energy bandstructure makes graphene a veritable
treasure-trove of never before seen properties, and also a potential low energy,
solid state laboratory for experiments in relativistic quantum electrodynamics in
2 + 1 dimensions. Therefore, since 2003 many interesting properties of graphene
have been predicted and observed, such as the half-integer quantum Hall effect
(@; 10), finite conductivity at zero charge-carrier concentration (9), the strong
suppression of weak localization (11 [12; 13), and the prediction of almost perfect
fluidity (14)), to name just a few. These properties can be attributed to the lin-
ear ‘Dirac’ bandstructure, and low dimensionality, which lead to aforementioned
QED-like effects, rather than particulate ones (15} [16).

There is a plethora of interesting phenomena pertaining to the unique prop-
erties of graphene based systems. They are outlined in detail in the excellent
review articles available on the subject (I} 2} 3)).

The ‘universal’ conductance of graphene is a remarkable ac phenomenon (17]).
It is a direct result of the linear energy dispersion of graphene. As already men-
tioned, linear subbands imply a constant density of states, but also consistent
transition matrix elements, which means that for as long as the Dirac approxi-
mation is valid, the conductance is a constant. The value of the universal con-
ductance of single layer graphene is 0y = e*/4h. This result is easily achieved by
several methods. In particular the Kubo formula yields this result for an intrinsic
system and neglecting electron-electron (or any other) interactions.

Deviations from ‘universal’ conductance have been shown to occur due to
variations in geometry (I8; [19)), field energy (20; 21), and field intensity (22}
23). It need not be demonstrated that the effect of finite temperature on the
distribution functions, as well as doping to create an effective band gap between
available states, will also alter the value of oq, especially at lower energies.

In fact, the optical properties of graphene based systems has become quite
an active field of research. After the initial flurry of excitement that followed
the demonstration of the universal conductivity at energies as high as the optical
regime — a direct demonstration of the accuracy of the Dirac bandstructure — there

has been increasing interest in graphene based materials for photonic applications,
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as well as the realization of graphene’s potential in the THz-FIR regime, which
have lead to some very interesting results.

With all these predictions and observations having emerged, the optical prop-
erties of graphene based systems appear to be more significant and more versatile
than perhaps previously believed. With this trend in mind we have proceeded to
calculate the optical properties of various graphene based systems under differ-
ent conditions. The motivation being based on the premise that the ‘interesting’
optical properties of graphene based systems have not yet been exhausted. As it
turns out, our intuition is confirmed, and graphene-based systems produce a rich
tapestry of optical properties which are often able to be tuned to one’s specific
needs, and are often quite unique in the broader field of the optical properties of
condensed matter systems.

Our focus has been largely restricted to the THz-FIR regime. The motivation
for this choice is the potential use of graphene in photonic device applications
in the increasingly important THz band, and the ubiquitous infrared, which is
so important for telecommunications purposes. The universal conductivity of
graphene has a value of oy = e*/4h, which leads to an optical absorption of
~ 3%. Although a remarkably strong value for a single atomic layer system, in
absolute terms this is a very weak response, which severely limits the potential
applicability of graphene based systems in photonic devices. Therefore we have
calculated the optical response for various graphene based systems to determine
whether this response can be improved, or whether interesting effects such as
anisotropy, nonlinear effects, or non-zero transverse conductivity can be obtained.
These results will be presented in due course.

Before delving into the main results of the thesis, we must discuss the geom-
etry of the different graphene systems investigated in this thesis. We will discuss
their various electronic properties within the tight binding formalism. This will
be the subject of chapter one. After this we will talk briefly about the dielec-
tric properties of one particular graphene system: non-Dirac armchair graphene
nanoribbons. This will be the subject of chapter two. The remaining chapters
will be devoted to the optical conductance of graphene based systems. We will

end with some concluding remarks.
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Some Interesting Properties

Unique Dispersions

Firstly however, it may be interesting to summarize some of the more striking
properties of graphene-based materials which make them so fascinating to study.
The obvious starting point is the electronic dispersions of single and bi-layer
graphene. These will be discussed in more detail in the next chapter, and so for
now we will consider just the results. The electronic dispersion of graphene near

the vertices of the hexagonal Brillouin zone (the K points), is

€sk = SUF‘k’, (1>

Where s = +, and vy is the Fermi velocity which is ~ 10°ms™!. This conical
dispersion, which is applicable up to energies of ~ 1eV, makes the fermions
in graphene behave as massless particles like photons or neutrinos, and make
the Dirac equation, rather than the Schrodinger equation, the natural formalism
to use to describe the system. As already mentioned, this opens the gateway
to potential “QED-in-a-lab” experiments (I}, and also may well revolutionalize
modern electronics.

Bilayer graphene, near the K points, also has a unique band structure in
materials science. The fermions in bilayer graphene can be described as massive
Chiral fermions with a symmetrical bandstructure about the neutrality point.

The low energy dispersion can be given by

€sx = SURk?/t) (2)

Where t, site-equivalent interlayer coupling (see next chapter). The unique-
ness of these two systems can be seen in the figure from the excellent recent
review article by A.K. Geim (2) which has been reproduced here in figure

The interlayer term in bilayer graphene can be viewed as contributing a mass
term to the Dirac equation in making the transition from one to two layers.

With these dispersions in mind, let’s look at a few of the interesting conse-

quences of these unique materials.
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Figure 1: The fermions in graphene are described by the conical massless Dirac
dispersion which is a low energy manifestation of an ultra-relativistic equivalent
dispersion. The fermions in bilayer graphene have no known equivalent, and can

be described as massive chiral fermions with a symmetrical bandstructure.

The Klein Paradox

An elegant example of the unusual chiral properties of graphene is in the deriva-
tion of the Klein paradox (L6} 24]). We first note that the wavefunction for Dirac

fermions in graphene can be given by

009 = = (o ©

Where ¢(k) = tan~! ky/kx. We now consider scattering by a finite potential well
of magnitude Vj and width D, as shown in figure |2l There are thus three regions

as marked in the figure. In region I, we have

1 1 ; r 1 ;
_ i(kzx+kyy) i(—kzz+kyy)
wl(r) - \/5 (Seid)(k)) € W+ \/5 (Sei(ﬁ_(ﬁ(k))) € v (4)
Which has a right and left moving component, where s = £1, and in polar

coordinates, and considering fermions with Fermi momentum kg, we have k, =
kpsin (k) and k, = kp cos ¢(k). In region II

a 1 ’ b 1 .
_ i(gez+k i(—qua-t+kyy)
brrlr) = V2 <8’ei9) efrthn) V2 <s’ei(“9)) el iy (5)
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Figure 2: The proposed setup to demonstrate the Klein paradox. An incoming
Dirac Fermion hits a finite potential well of magnitude Vj and width D. The
transmission is calculated as usual in elementary quantum mechanics by demanding

the continuity of the wavefunctions. Figure from reference (1))
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Figure 3: The transmission results from equation (7| for different values of V),
where D = 110nm (top), and D = 50nm (bottom). Aside from normal incidence
there are potentially other points of absolute transmission as well. This absolute

transmission is a manifestation of the Klein paradox. Figure from reference (1))

Were 6 = tan'(ky/qz), and ¢, = \/(VO — E)?/(vr)?* — k2, and for region I1I we

have only a right moving component

t 1 (ko ath
¢Ill(r) = E ($€i¢(k)) € (kzztkyy) (6)

Where s = sgn(F) and s’ = sgn(E — ;). According to the standard prescription,
the coefficients of the wavefunctions must be determined such that continuity is
preserved at the boundaries = 0, D, but the derivative need not be matched in
this case, unlike with the Schrodinger equation. The transmission as a function

of incident angle is T'(¢) = tt*, and is given by

cos? 0 cos? ¢

)= (cos(Dgy) cos ¢ cos 0)? + sin*(Dgy)(1 — s’ sin ¢ sin 0)? o

What is unusual about this result is that for Dgq, = nm, the barrier becomes

completely transparent (7'(¢) = 1), which includes normal incidence (¢ — 0).
This is the Klein paradox, and is unique for relativistic electrons. Some nice
results are reported in figure [3, where, depending on the value of Vj, there are
several points with complete transmission. This unusual behaviour is discussed
in some detail in reference (IJ), and most of the discussion up to here has followed

this reference closely.
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Anomalous Integer Quantum Hall Effect

The components of the resistivity and conductivity tensors are given by

p o O’w$
Py =
T 52 2
Oa + ny

Where o, is the longitudinal conductivity and o, is the Hall conductivity. When
the chemical potential is inside a region of localized states, there is no longitudinal
component to the conductivity. However, when the chemical potential crosses a
Landau level, it is in a region of de-localized states, and o,, # 0, and o, varies
continuously. Imagine an experimental setup of (essentially) a carbon nanotube
as proposed by Laughlin (25), and shown in figure . A magnetic field passes
normally through the surface of the tube, and a current passes circumferentially
around the loop. From the Lorentz force, the magnetic field induces a Hall
voltage perpendicular to both the field and current. There is thus a magnetic
flux travelling down the tube. The current is given by
oF
I = Ca_¢ 9)
Where E is the total energy of the system, and ¢ is the flux. The localized
states do not respond to changes in ¢, only the delocalized ones. Imagine we
now changed the flux by a single flux quantum A¢ = he/e. During the change of
flux, an integer number of states enter the cylinder at one edge and leave at the
opposite edge.
In general, due to the four fold degeneracy of the system (two equivalent
K points, and assuming spin degeneracy), when the flux changes by a single
quantum, the change in energy is 24 NeVy where V is the induced Hall voltage,
and the £ comes from whether they are holes of electrons. However what happens
when the chemical potential is at exactly half filling — the Dirac point? Acording
to our reasoning, there would be a Hall plateau at this level with o, = 0. However
this cannot be the case because there is a Landau level at this point, and as we

stated before this rules out the plateau due to the presence of extended states.
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Figure 4: Laughlin’s proposed experiment to probe the quantum Hall effect in
graphene. He suggested a carbon nanotube type configuration with a magnetic field
passing through the surface of the tube, and a current passing circumferentially
around the tube such that there is a flux ¢ down the axis of the tube, and a Hall
voltage Vi is induced perpendicular to the field. Figure from reference ()

This conundrum has been tackled by several authors, and has a rather simple
explanation which is very neatly and simply explained by Castro Neto et al in
reference (I)): “because of the presence of the zero mode that is shared by the
two Dirac points, there are exactly 2(2N + 1) occupied states that are transferred
from one edge to another. Hence, the change in energy is 0E = +2(2N + 1)eVH
for a change of flux of he/e. Therefore, the Hall conductivity is

2
Oay = VLH - xiijs — £2(2N + 1)% (10)
Without any Hall plateua at N = 0”!

This phenomenal and yet elegantly simple result has been realised experimen-

tally, as shown in figure

Universal Conductivity

The universal conductivity of graphene is an elegant and remarkably simple result,

which shows the peculiarity of the Dirac bandstructure. We shall calculate the



INTRODUCTION

P (k)

ay (471h)

10

4K
14T

o

|

+7/2

+5/2

—+3/2

—~+1/2

—1/2

-

0 2 4

n (10" cmr2)

Figure 5: The measurement of the anomalous integer Quantum Hall Effect for

graphene. As reasoned by several authors, there is no Hall plateau at N = 0. The

peak of the blue line at n = 0 shows that there is a Landau level when the chemical

potential at the neutrality point which draws states equally from the conduction

and valence bands. Figure from reference (1))
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Figure 6: The measurement of the universal conductivity of graphene performed
by Nair et al and published in Science magazine ?7. Amazingly, the universal
conductivity is directly proportional to the fine structure constant, and provides

an alternative (albeit less accurate) method for determining it.

universal conductivity of graphene using the time dependent Schrodinger equa-
tion in chapter 4, but here shall reproduce the most common derivation which
uses linear response theory, namely the Kubo Formula for optical conductivity.
This formula will be used extensively in chapters 3 and 5, and so will be properly
introduced later. For now however, we need the wavefunctions, corresponding
energy levels, and the Kubo Formula. The energy levels have already been pre-

sented. The wavefunctions within the Dirac regime are

1 .
(k,s| = ﬁ(l s(ky +iky)/k) =

And the Kubo formula is

(1 Seitanfl(l@y/kx)) (11>

Sl

Gonlw) = / " dte (11, (0), T () (12)

w

Where 0, = 8}?81{:# is the velocity operator with © = x,y. Due to the linear
dispersion, the velocity operator takes on off diagonal constant values. This leads

to the particularly simple result (including only interband transitions)

TR
We also mention in passing the breakdown of the universal conductivity

(k, s|d[k, —s) (13)

with increasing energies. As mentioned earlier, the massless Dirac bandstruc-

ture quoted for single layer graphene holds up to |e| ~ 1eV. Moving outside of

11
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Figure 7: The optical conductivity of graphene outside the Dirac regime contains
significant structure which is lost when confined to the linear approximation to the
Hamiltonian. The peak corresponds to a van-Hove singularity in the density of
states. The full energetic range is 0 < Aw < 9eV. The Dirac formalism is roughly
applicable up to ~ 1eV.

this ‘Dirac regime’, one can compute the optical conductivity after expanding
the Hamiltonian to second order in momentum (21)), or perform no expansions at
all and proceed numerically with the full dispersion relation (20). We choose to
quote the latter because this work was done within the same group as the other
works in this thesis, because it was published first of the two, and finally because
it is the most robust tight binding calculation performed to date (at the expense,
of course, of obtaining closed form analytic results). In figure m we present the
optical conductivity of single layer graphene over the full relevant energy range.
It can be seen from this figure at what energies the Dirac approximation is appro-
priate in calculating the universal conductivity. For energies outside this range
however, we can see that there is a peak, corresponding to a van-Hove singularity
in the density of states of graphene which in turn corresponds to a saddle point
in the bandstructure, followed by a gradually diminishing response for higher
energies.

The unusual properties mentioned here are just a few examples of the many
interesting properties of graphene based materials. The literature on graphene,

despite its relatively young age, is enormous, and it is almost impossible for one

12
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to keep abreast of the rapid progress that this field is currently undergoing. This
makes graphene an exciting field to be involved in. As experimental techniques
develop, one would expect that even more unexpected properties will arise with

time.

Current Status and Motivation

A final word before delving into the results of this thesis. Graphene research can
be, in my opinion, summarised by two major motivations: “The universe in a
Helium droplet”, and “Moore’s Law”.

The former is a broad approach to condensed matter that summarises one of
the most interesting aspects of modern condensed matter theory, and indeed, all
of physics (and is also the title of a book by Volovik ??). As mentioned above,
graphene may serve to investigate certain aspects of relativistic QED. This is not
the only area where graphene research may further fundamental physics. There
is a lot of interest in graphene as a quantum Hall system. The observation of
fractional statistics and non-abelian quasi-particles has so far remained elusive.
Quantum Hall systems are the most likely candidate systems where these are
expected to be observed. Graphene may play a major role in this in the future.
The quantum spin Hall effect was initially proposed for a graphene system (26]),
though unfortunately the intrinsic spin splitting of graphene may be too small for
this proposal to be realised for graphene. Nevertheless, this has opened the door
to a new class of topological insulators which are expected to be realised in other
systems that can be tuned to have the same Dirac dispersions but with much
larger spin-splitting. Graphene provides a solid-state laboratory with relativistic
massless particles, and oddly behaved massive chiral Fermions with which we
can tinker. Within the exciting field of emergent phenomena and the topological
states of matter, graphene promises to provide some interesting predictions for
fundamental physics.

The question of fundamental physics arising from emergent phenomena is
the motivation behind the results of chapter 2 of this thesis. We calculated
the collective excitation spectrum of non-Dirac armchair graphene nanoribbons

and found that these materials produced plasmons with a non-propagating roton

13
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minimum as their lowest energy excitation. This unusual result may uncover
some interesting outstanding questions concerning rotons, 1D vortices, and bulk-
edge coupling: questions of considerable import in the fields of Quantum Hall
systems and topological states of matter. Interestingly, the only other material
to display such a collective mode in the absence of an external magnetic field is
the apparently ‘universe containing’ Helium droplet alluded to earlier!

The latter major motivation for graphene research is much more down to
earth and practical: Moore’s Law. Everybody knows what Moore’s Law is, and
more importantly, it is becoming increasingly obvious that Moore’s Law is decel-
erating. Graphene’s amazing electronic and transport properties which include
dissipationless transport, the strong suppression of weak localization, and width
and chirality dependent band gaps and band-structures, make it a prime candi-
date for implementation in the next generation of electronic devices, and provide
some positive contribution to extending Moore’s Law into the next few years.
The outstanding questions in this area are being answered at a very rapid rate.
The questions are obvious: What properties of graphene will be most useful for
device application? Will disorder destroy these promising effects?

These sorts of questions form the basis for chapters 3-5 of this thesis. Chapters
3 and 4 are concerned with the optical properties of graphene based systems
with different geometries. The optical response of graphene is remarkably high
for a single atomic layer (=~ 3% absorption). Furthermore, the characteristic
energy scales of the coupling constants often fall within the terahertz—far-infrared
regimes, which are of considerable import at present. This makes the investigation
of the optical properties in different geometries an obvious path to take, and some
interesting results are found. Chapter 5 addresses this question of disorder, by
introducing phonons into the problem. For device application, room temperature
physics is of paramount importance, and so the first sensible addition to the clean
system is electron-phonon interactions.

So we can see that the work contained in this thesis arises from two broad
approaches to graphene research. We don’t know what the former approach will
yield in the years to come, with the outstanding questions being more speculative

than anything. Future progress with regard to the latter however, is quite ob-

14
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vious: the inclusion of many types of disorder, scattering, heat, non-equilibrium
approaches, exchange and correlation etc.

In any case, it is now time to explore the electronic properties of graphene
more closely, in order to lay the framework for the main results of the thesis

contained in chapters 2-5.

15



Chapter 1

Electronic Properties of

Graphene

In this thesis, we will investigate five graphene based systems:

1. Single Layer Graphene

2. Bilayer Graphene

3. Graphene Nanoribbons

4. Bilayer Graphene Nanoribbons
5. Stretched Graphene

For each system, we will discuss the peculiar geometry of each system and calcu-
late their electronic dispersion relations and wavefunctions using the tight binding
approximation. This is the subject of the present chapter.

The Hamiltonian for all systems considered is calculated using the tight bind-
ing approximation which is written in second quantised notation and momentum

(k) space by

H =" te™%al (k)a; (k) (1.1)

i7j7k
Where i and j denote the i and j™ atoms in the unit cell, ¢;; is the overlap

integral of the wavefunctions of the i*® and j'* atoms in the unit cell, and 3”-
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is the vector between those atoms. This is the most general form of a tight-
binding Hamiltonian, where all the physics of the system is captured by the phase
factors and overlap integrals. The overlap integrals can be calculated by density
functional theory, and can be confirmed experimentally by numerous methods.
The exact value of the coupling constants in graphene is by now means a closed
topic. Even the most important quantity — the first nearest neighbour overlap
integral — is not firmly agreed upon.

Nevertheless, only rough values are required for this thesis. Indeed, all overlap
integrals shall be normalised by the first nearest neighbour overlap integral, and
so only the approximate ratio of different constants will be required. All values
used shall be consistent with the majority of the literature, which shall also be
the justification for their use.

Usually only the vastly dominant first nearest neighbours are included in the
calculations, unless the second nearest neighbours are particularly relevant. The
value of the first nearest neighbour coupling is given by ¢ ~ 3eV. The second
nearest neigbour overlap integral is given by ¢’ ~ 0.0leV ~ t/30. The interlayer

coupling constants for layered systems will be introduced below.

17
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Figure 1.1: Single layer graphene contains two atoms per unit cell, generally
denoted by A and B. The first nearest neighbour vectors are shown (4;), as well
as the lattice vectors (at). The electronic structure is investigated via the tight

binding approximation.

1.1 Single Layer Graphene (SLG)

Single layer graphene is the basic bulding block of all the subsystems encountered
in this thesis. Graphene is a two dimensional honeycomb lattice of carbon atoms.
A slab of single layer graphene is shown in figure [[.IL As can be seen in the
figure, there are two atoms in the unit cell denoted A and B. There are also three

nearest neighbour vectors which are

Where b = 1.42A4 is the first nearest neighbour separation. This will be treated
as the intrinsic length scale throughout the thesis, and so all lengths will be

normalised by it. And the two lattice vectors are given by 61 — b5 and &y — 53,

18
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giving

1.3
V3b 3b (13)
a=|—\—=).

2 72
Using Bloch’s theorem and the tight binding approximation one can construct

the 2D electronic dispersion for single layer graphene.

1.1.1 Full Energy Description

The original formulation of the electronic properties of SLG was calculated by
P.R. Wallace in 1947 (6). Whilst he didn’t have graphene in mind as a material in
its own right, Wallace used the single layer formalism to determine the electronic
properties of bulk 3D graphite. For SLG with non-zero nearest neighbour hopping

only, the matrix elements are given by

_ —t —ik-(R'—R") ’ I "
sl =5 3 (RIR)(R + 6 R)

+mﬂwR+&—mm@+mmmR+&—mmm)
_t —ik- I_!
= W Z (6 k (R R ) (5RI7R6R+81,R” + 5RI7R5R+81 —al,R,”
R.R%RY (1.4)

+ 6RI7R5R+(§1 —az,R") )

—t (k<&> —ike(~81—a1) k(é))

= — et +el 1a1+ez 1—as
N R

_ _teik-Sl <1 4+ etkay 4 ez‘ka)

And

p(k|H[k) 4 =4 (k|H (k)% (1.5)
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The overlap of the atomic orbitals of neighbouring sites in graphene will be the
unit of energy by which all other energy values in this thesis will be normalised.
The value of t in graphene is agreed to be t &~ 3.0eV. The next nearest neigh-
bours can easily be incorporated into the formalism in a similar manner, giving

a Hamiltonian matrix of

t'Hyy (k) tH(K)
H = 1.
(th(k) ¥ Hyy (K) (1.6)
Where
Hip(k) = —e* (1 + ekar 4 eik'a) (1.7)
And

Hyy (k) = /3 — [Hiz(K)[? (1.8)

With ¢’ =~ ¢/30. The energy eigenvalues for this system are readily solved as

E(k) = t'Hii(k) + st|Hio(k)| (1.9)

Where s = +1. We will define the special case where next nearest neighbour

coupling is neglected (i.e. t' = 0) as

es(k) = st|Ho(k)|> = st\/l + 4 cos(k,V/3b/2) cos(k,/2) + 4 cos?(k,/2) (1.10)

The wavefunctions are then easily obtained (and are identical for zero and non-

zero t'), and are given by

(k) = % (StHE(l;)/ﬁs(k)) (1.11)

Which, by de-Moivres theorem, can be expressed as

o(k) = (5’56?(1‘)) (1.12)

Where ¢(k) = tan™' (S Hy2(k)/RHi2(k)).
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1.1.2 Low Energy Approximation

The energy dispersion curve is given by

es(k) = st|Hio(k)|* = st\/l + 4 cos(k,V/3b/2) cos(k,/2) + 4 cos?(k,/2) (1.13)

Whose zeroes can be solved by

es(k)? =t*(1 + 4 cos(k,V/3b/2) cos(k,/2) + 4 cos?(k,/2)) = 0 (1.14)

There are two inequivalent points that give zero energy, which are usually called
the K-points or charge neutrality points. They are K, K’ = (:I:;T’%, O). Expanding
around one of these points, we obtain a greatly simplified Hamiltonian matrix.
To do this, we will proceed as follows: near the K-point, the momentum is given
by k = (K, + A;, Ay) (since K, = 0). The Hamiltonian near the K-points then,

is given by (in terms of the nearest neighbour vectors SZ)

—Hyy(k) = e 42 cos(?(Kw + A,))et/?

2 A
~1—iA, + 2(:03(?7T + ?Ax)(l + z;y)
A, 1 3 V3 . V3
=1—iA, +2(1 +i-L)(—= —A,) — —sin(—A
I8y + 21 +i57) (=5 cos(5-As) = S sin(55-As)) (1.15)
A
=1—iA, 4+ (1+ z’Ty)(—1 - gAx)
. 3 1
zl—sz—l—EAI—z§Ay
3 .
= §<A:r —iAy)
If we define the group velocity to be vy = %, then we have
- 0 ky — ik,
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For k sufficiently small and near the K-points. This, in turn, leads to a very

simple conical energy dispersion

exc (k) = vpK] (1.17)

The velocity vg is vp ~ 10°ms~!. The wavefunctions are still given by the full
energy form described in equation [1.12] but with

o(k) = tan"'(k,/k,). (1.18)

The two K points are equivalent unless there is coupling between them in which
case a phase factor must be introduced. However this will not be relevant for any

of our subsequent work.
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1.2 Bilayer Graphene (BLG)

Bilayer graphene is constructed by stacking two single layers on top of one another
such that half the B atoms are directly above an A atom as shown in figure
[1.2] This so-called ‘Bernal’ type stacking is the most common configuration for
multilayer graphene. There are three main types of interlayer coupling in BLG.
The direct vertical A-B coupling, given by v =~ t/10 ~ 0.3¢V. Because the
coupling in this case is vertical, there is no induced phase factor in the k, — &,
wavefunction. This term causes the two single layer subbands to split into two
each, giving two valence bands and two conduction bands. The second dominant
coupling term, v, ~ 0.12eV, couples A — B sites between layers which are not
directly above and below each other, leading to a phase factor which is associated
with this term. This term is often called the ‘trigonal’ term. It causes the single
valley K-points of SLG to split into three very small valley K-points, thus causing
a ‘trigonal warping’ of the band structure. The third term, v3 ~ 0.1eV, couples
A — A and B — B sites between layers, and also induces a phase factor since the
sites are offsect in the x — y plane. This term causes a breaking of the x — y
isotropy of the system, as will be seen in the dispersion curves below.

The Hamiltonian then, including next nearest neighbours (NNN), and the

three interlayer coupling terms, is given by

tHy  tHy, vHi

tHyy tUHy vHyy, v3Hio

vsHYy voHiy VHy  tHY |7
M y3HYy, tHyy t'Hy

Hprg = (1.19)

The eigenvalues and eigenvectors in the absence of v3 are readily solved. With
~3 included however, the form of the solution is unwieldy. The eigenvalues in the

simpler case are given by the (relatively) concise form

Jr
exe =t (€d, —3) + /\\/egL + % + VT (1.20)

Where

(712)°
4

T'= e 7+ + 2717265, Re(Hi2) (1.21)

23



ELECTRONIC PROPERTIES OF GRAPHENE

Figure 1.2: The three interlayer terms included in the BLG Hamiltonian, as well
as the next nearest neighbour coupling term. o and 3 differ in that they connect,
respectively, different and equivalent points in the SLG Brillouin Zone. Whilst ~;
and 72 both represent coupling between different sites in the Brillouin zone, v is a
directly vertical transition, and so the overlap of the wavefunctions is much larger

(= 3x larger)

And ~f, = 42€; + 12, where A\, u = +1, g, are the regular eigenvalues for
the SLG system, and all coupling terms have been normalised by ¢. From this
result we see that there are two conduction bands and two valence bands which
are confined above and below the line €, , — (€3, — 3). respectively.

The low energy part of the electronic dispersion curves are seen in figures
and [[.4. The NNN coupling has plunged the extrema below the Fermi energy.
The effect of the dominant interlayer term ~; has caused a new pair of bands to
emerge which, in this part of the spectrum, are seperated from their pairs by an
amount ;. The effect of 75 and 3 is much more subtle. The trigonal warping
can be seen by the K-point pair in figure 1.4} and the ~3 induced loss of isotropy
between the two valleys can also be seen. Notice however, that the energy range

of these effects is & ~5/1000, which is extremely small.
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Figure 1.3: The k, dependence of the bandstructure near the K/K’ points with
all coupling terms included. The two arrows show the approximately constant (at

low energies) gap between similar bands.
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Figure 1.4: The k, dependence of the two inner bands near the K/K’ points
zoomed right in to see the effects of 49 and 3. The NNN interaction has shifted
these features well below the Fermi level. =9 causes the second dirac point to

emerge, and 3 causes one of the two Dirac points to occur at a lower energy.
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Figure 1.5: The two most typical GNRs are ¢ = 0, corresponding to zig-zag
ribbons, and ¢ = 1, corresponding to armchair ribbons. The elegance of Ezawa’s
construction is the simplicity of constructing infinite ribbons by placing consecutive
stacks of hexagon layers on top of each other, offset by ¢ hexagons. The zig-zag
and armchair edges can be readily seen. These are what determine the unique
electronic properties of each class of ribbon. The index p essentially determines

the width, and does not alter the electronic properties as much as q.

1.3 Graphene Nanoribbons (GNRs)

By cutting strips of single layer graphene, one can construct one dimensional
graphene nanoribbons (GNRs). The electronic properties of GNRs are both width
dependent and chirality dependent.

The construction of a GNR that we will use follows that introduced by Ezawa
(27), and can be seen in figure[I.5] A GNR can be described by two indices (p, ¢),
where ¢ determines the chirality, and p+ ¢ is the number of hexagons placed side-
by-side in the construction (see the figure). When constructed in this way, ¢ = 0
defines a Zig-Zag (Z7Z) edged GNR, and ¢ = 1 defines an Armchair (AC) edged
GNR. The chiral angle (6,) is defined as the angle between a zig-zag edge, and
the axis direction of the ribbon. From this definition, 0z, = 0, and 04¢c = /6,
and in general 6, = tan~/3/(2¢ + 1).
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The Hamiltonian for a GNR is given by

0 HAB) (1.22)

HGNR = (HBA 0

Where the elements of H4p are of the form te**3(0%a+¢) and Hp, = H% . Here

¢; is the chiral angle of the unit vector that joins A and B such that

¢1 = 7T/6
¢o = b1 /6 (1.23)
gbg = 371'/2
As an example, the hamiltonian matrix for a (2,1) AC-GNR is
0o HEY
Hpqy = AB 1.24
2.1) < HED (1.24)
Where
cikbV/3/2 eikb 0 0 0
64kln/§/2 eikb\/§/2 cikb 0 0
Hfén _ 0 o—ikbV3/2  ikbV/3/2 0 oikb (1.25)
0 0 e—ikb\/ﬁ/Q cikb eikb\/?’,/Q
0 0 0 eikb\/§/2 efikb\/g/Q

And H gﬁ = H1<42j91>*. The electronic dispersion curves for this GNR are shown
in figure [1.6[b). Note that the linear Dirac-like bandstructure has re-emmerged
for this ribbon. One third of AC-GNRs have Dirac subbands, with the condition
being p 4+ 1 € 3N where N denotes the integers.

A typical ZZ-GNR bandstructure is shown in figure [L.6{a). The low energy
bandstructure is no longer linear in this case, and all zig-zag ribbons have a
zero energy gap at the Fermi energy. This zero gap condition is met over an
extended region, which implies a very high density of states at the Fermi level.
By selecting the appropriate width and chirality, a ribbon can be chosen with the
desired electronic properties. One last example is shown in figure (C), which is
the bandstructure of the (3,3) chiral ribbon. Note that this too has a low energy
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slkt

0
K r K

Figure 1.6: (a) A typical zig-zag nanoribbon bandstructure (p = 2). Note that
at the brillouin zone edges the energy gap becomes zero. This is the case for all
7Z7-GNRs. The linear Dirac dispersion is, however, not present, in these structures.
(b) A typical armchair nanoribbon bandstructure (p = 2). The low energy linear
Dirac dispersion occurs in armchair ribbons where p + 1 € N. For all other AC-
GNRs, there is a small band gap. (c) A (3,3) chiral GNR. A small number of
GNRs with ¢ > 1 have a linear Dirac-like dispersion with no energy gap, but in
general this will not be the case, and the bandgaps and curvature of the bands will

vary dramatically from ribbon to ribbon.
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Dirac subband structure. This is not the norm, and there are only a handful of

cases where this is true for ¢ > 1.
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Figure 1.7: A selection of armchair and zig-zag lgnrs with the two distinct possible

stacking orientations. These cause different edge sites to couple between layers in

slightly different ways, leading to subtle changes in the electronic bandstructure.

1.4 Bilayer Graphene Nanoribbons (BLGNRs)

When constructing bilayer graphene using the normal ‘bernal’ type stacking, the
second layer is shifted along one of the three C-C lattice vectors relative to the
first. The choice as to which lattice vector the shift is to be made along, in 2D
bilayer graphene, is arbitrary, since a simple rotation of the entire system by an
amount 27 /3 or 47 /3 will obtain the alternative orientations.

When constructing bilayer graphene nanoribbons however, the choice of lat-
tice vector along which to shift the second layer alters the elecronic properties of
the ribbon in various ways. Due to the C3 symmetry of single layer graphene’s
hexagonal lattice, there are three equivalent ways to cut out any particular chi-
rality ribbon. For example, cutting parallel to any of the three lattice vectors will
produce an armchair ribbon, and cutting perpendicular to any lattice vector will
produce a zig-zag ribbon.

With the second layer of bilayer graphene being shifted along one of the three
lattice vectors however, this creates, in general, three inequivalent ribbon cuts.
The C3 symmetry in this case, has been lost.

In the case of ZZ- and AC-BLGNRs however, due to their particular symme-
try, there are only two inequivalent ribbons. Consider a second layer shift along
&, for example as in figure . When constructing an armchair bilayer ribbon
out of this system, if the cut is parallel to 32, then flipping the system over (or
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viewing it from behind) will transform the ribbon to one cut parallel to d5. This
is due to the equivalence of the two layers, meaning which one is the top layer
and which one is the lower layer, in this case, is arbitrary. Similarly, consider a
zig-zag ribbon cut out of the same system. If the cut is made perpendicular to
32, and then the system is flipped (or viewed from behind), it will appear to have
been cut perpendicular to ds.

The high symmetry of these particular cases aside however, there are, in
general, three inequivalent ribbons, of equal chirality, which can be cut out of
bilayer graphene.

Including only the directly vertical interlayer coupling terms, one can deter-

mine the tight binding matrix elements from the Hamiltonian

H= tijcj’leJ + Z%jcillcj,b (1.26)
(. ]

Where 7 and j denote the lattice sites on layer {1 or Iy, t;; = t = 3.0eV is

the regular intralayer nearest neighbour overlap matrix if ¢ and j are nearest

neighbours, and zero otherwise, and ~;; = v = 0.13eV is the regular dominant

interlayer term for bilayer graphene if ¢ on [y is directly above j on [, and zero

otherwise.

Returning to the case of the (2, 1) ribbon, the Hamiltonian matrix is

HGNR HS
HBLGNR — ( (2,1) 'mter) (127)
o0 g, 1Y

Where S denotes the shift type : (V)ertical, (R)ight, or (L)eft. The vertical and
left shift interlayer coupling matrices are equivalent in the armchair case, and are

given by

vie (0 hyr
Hinter - (hg/L 0 ) (128)
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Figure 1.8: The bandstructures for the high symmetry bilayer ribbons (¢ = 0, 1),
with p = 2. In general, when going from a single to a bilayer ribbon, each single
layer subband becomes a subband pair which are separated from each other by
some amount determined by the interlayer edge state coupling. Note in particular

the key differences depending on stacking orientation are at the K and I' points.

Where

hi = (1.29)

OO OO
S oo O
o OO
o O OO
o OO O

0 v
Is the right shift interlayer coupling matrix, and the vertical/left shift interlayer

coupling matrix is given by

hvL = (1.30)

o O O O
SO O
o o O
O O OO
o O O O

0000 v

The two inequivalent shifts of the second graphene layer in armchair nanorib-
bons are parallel to the axis direction, and at an angle of /3 to the axis direction.

The former leads to complete coupling of potentially vertical sites. This unique
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situation in armchair ribbons causes the bandstructure to two simple sets of

curves with the simple form

e PN = iy  SPENR (1.31)

)

Where i = [0, 1]. This means that the bilayer armchair GNR with a parallel shift
of the second layer has a set of curves equal to the single layer armchair ribbon,
and a set of curves equal to the single layer ribbon but ~ larger in magnitude.

The second type of bilayer armchair ribbon has some uncoupled sites in the
unit cell which effects the bandgaps, making them, in general < =, and not
constant. Of particular interest are the low energy parts which are no longer two
linear bands but instead curved as in 2D bilayer graphene, and at the usually
degenerate points at |¢| = t, the points are no longer degenerate but a finite gap
has emerged.

727-BLGNRs are constructed the same way, except that the right and left shifts
are equivalent in this case. The two inequivalent shifts of the second graphene
layer in zig-zag nanoribbons are perpendicular to the axis direction, and at an
angle of 7/6 to the axis direction. The former leads to an entire overhanging edge
on each layer which is not coupled to the other. This in turn leads to a larger
deviation from the single layer electronic dispersion. The latter causes less sites
to be uncoupled between layers, and so a less drastic shift form for the regular
zig-zagribbon dispersion.

These single to bilayer and stacking dependent properties of the electronic
dispersions of armchair and zig-zag bilayer nanoribbons can be seen in figure|1.8|
When extending the system to three or more layers, the electronic properties
evolve in the same way, and there are many distinct stacking orientations, as the
different permutations are not, in general, equivalent.

However, we will not be particularly interested in these various stacking ori-
entations in general. The results obtained for the vertical shift contains all the
significant physics for this thesis, and from now on, it will be assumed that all
BLGNRs are vertically shifted ones.
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1.5 Stretched Single Layer Graphene

Stretched single layer graphene is exactly what it sounds like! We assume that in
stretching graphene, the bond lengths remain constant, but the bond angles bend.
This is equivalent to assuming that the electronic configuration will maintain a
constant energy with respect to the first nearest neighbours, and ignores all other
effects (ie the change in configuration with respect to second nearest neighbours).
For small angles this is a reasonable approximation. Therefore, we construct
stretched graphene as follows:

Assume the centre point of the three lattice vectors is fixed. If we apply a
(pseudo) force F' in some direction ¢ s.t. 0 < ¢ < m/2, then the three bonds will

rotate about the fixed point accordingly. We define the three unit vectors as

5 = (sinfy, — cos ty)
by = (—cos(m/6 — 0y), sin(/6 — 65)) (1.32)
b3 = (cos(m/6 4 03),sin(m /6 + 603))

The latter two can be expanded to give

023 = (FV3/2c08 05 — 1/25in b3, 1/2 cos by 3 F V/3/2 sin by 5 (1.33)

For most of the working these will denoted by d§; = (A;, B;). The three rotation
angles 6; are related by the magnitude of the pseudo-force F', and it’s direction
¢. Since the centre point is fixed, the pseudo force will apply a torque to the
bonds such that 7, = Sl x F. But because we are stretching the material, the
force is applied in both directions, and so the torque will only be applied to the
projection of the unit vector onto the force vector #; = F/|F|-d;. The latter
provides the fraction of the torque that is applicable. The final result will give
the angles #; in parametric form with ¢ and F' being the variables. The force
then, is given by F = F(cos ¢, sin ¢). So:

fbi = Az COS QZ5 + BZ sin Qb (134)
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And

7, = F(A;sin¢ — B; cos ¢) (1.35)

And so we have

0; = F(A;cos ¢+ B;sin¢)(A;sin ¢ — B; cos ¢)

2 _ 2 1.36
= F(% sin 2¢ — A,LBZ COSs Q(b) ( )

Of course these are for the unstretched unit vectors (6; = 0), which are

5(1) = (07 _1)
09 = (—=V/3/2,1/2) (1.37)
05 = (V3/2,1/2)

Which give (letting F'/2 — F'):

0, = Fsin2¢

0y = F/2(sin 2¢ + /3 cos 2¢) (1.38)

05 = F/2(sin 2¢) — V/3 cos 2¢)
When stretching along the zig-zag or armchair direction we get the same amount
of rotation on different bonds, ¢ = 0 is the ZZ direction, and we have 0y =
F/2(\/3), and so I = 1 corresponds to a rotation of v/3/2 radians (in this high
symmetry case). The resultant construction is shown in figure

The Hamiltonian matrix element then, is

— i kacAi+kyBi
hap = —tze( ) (1.39)

Where Ay = sinfy, By = —cosfy, and Asz = Fv/3/2cos O3 —sinby3/2, Bys =

/3 sin 23/2 + cosBy3/2. Now F' is necessarily small, and so we can expand

35



ELECTRONIC PROPERTIES OF GRAPHENE

(a) (B

Figure 1.9: The effect of stretching on the three nearest neighbour bond directions
when F'is applied along various high symmetry directions. The dotted lines in b,c
and d are the regular unstretched orientations. The magnitude of F' has been
chosen to be very large (F' = 15) to emphasise the effect of stretching, however our

numerical results will only go as high as F' = 2.5.

about this first:

A~ 0
By~ -1
Ay = :F\/§/2 — 023/2 (1-40)
Bys ~ FV3055/241/2
Therefore, for small I we have
Hap = —t|e (1 4 iFk,sin 2¢) + 2e*v/2(cos(v/3k, /2)
(1.41)

— iF /4 cos(V/3ky/2) (ke sin 2¢ + 3k, cos 2¢)
— F/4sin(V/3k,/2)(V/3k, sin 2¢ + k, cos 2¢))
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This leads to a full energy, small angle dispersion of

€s = st [1 +4 (COSQ(\/ﬁkx/Z) + cos 3k, /2 cos \/gkm/2)

+F <sin \/§kw(2 cos \/5/%/2 — €08 Sky/Q)(\/gky sin2¢ + k, cos2¢)  (1.42)

2

+ cos V/3k, /2((k, sin 2¢ + 3k, cos 2¢) — 4k, sin 3k, /2 sin 2¢)>}

Which reduces to the usual result if F' = 0. As usual for an off-diagonal 2 x 2

Hamiltonian, the eigenvectors are given by

) = 5 (/1) (1.43)

The effect of stretching is two-fold. Firstly, stretching breaks the x-y isotropy,
leading to a chiral dependence for the low energy velocity, as well as a chiral
dependence of the ‘universal’ conductivity. Secondly, stretching breaks the C3
symmetry of graphene, which in turn leads to a non-zero Hall optical conductivity.

These will all be discussed further in chapter 3.
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1.6 Conclusion

We can see from these results that the electronic properties of graphene based
materials vary significantly depending on dimensionality, layering, chirality, and
stretching.

We see that single layer graphene is a zero gap semiconductor. It stands in
stark contrast to normal metals which exhibit diffusive electron transport and
temperature dependent resistivity. The prediction and observation of a mini-
mum dc conductivity and a universal ac conductivity stand as testament to these
unique properties. In fact, graphene seems to be increasingly referred to as a su-
perfluid rather than any kind of ‘normal’ electronic system. This seems sensible,
as localization is suppressed, and so graphene is not highly correlated. It behaves
more like a dilute gas in this respect. The Klein effect makes the transport of
Dirac Fermions extremely robust to disorder, aiding the dissipationless transport
expected of superfluids. Band structure effects play the key role in all of these
phenomena. Graphene is truly a unique material with such varied properties that
categorisation into any conventional nomenclature is fruitless.

The derivation of the low energy Dirac Hamiltonian for single layer graphene
has been nothing short of a phenomenon in condensed matter physics in the last
few years. The Fermi energy in intrinsic graphene happens to lie precisely on the
bands-touching points. This is a very interesting feature of graphene as it means
that at the Fermi energy there is a vanishing density of states, and no bandgap.
It is worth mentioning that the low energy bilayer Hamiltonian, whose form has
not been considered as it is not relevant to this thesis, can essentially be described
by the Dirac Hamiltonian with a mass term (3).

The chirality of graphene nanoribbons in particular promises some very ex-
citing potential building blocks for electronic device implementation due to their
chirality dependent band gaps. In particular, one can imagine that two ribbons,
one armchair with zero-bandgap, and one chiral with a small finite band gap, can
be joined together by ‘simply’ cutting along one direction, then cutting along the
other. And so semiconductor-metal junctions can possibly be formed by simply
cutting graphene along different directions. The holy grail in this context would

be electronic device production on the smallest scale ever achieved, by simply
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‘stamping’ out patterned graphene into networks of various chirality graphene
nanoribons.

The main characteristic energies of layered graphene materials in particular
lie within the terahetz to far infrared regime. The second nearest neighbour
intralayer coupling, as well as all three major interlayer couplings are all within
this region of the spectrum. Because of this, it is not unreasonable to expect that
graphene will be quite active within this region. This is part of the motivation,
and cause for much of the success, for the results in chapter 3.

Before delving into the optical properties of these systems however, we will
take a short detour via the dielectric and collective excitation properties of one
of these materials - armchair graphene nanoribbons. Although not entirely un-
related to the optical properties of graphene, these results stand alone as a po-
tentially exciting new field of research for graphene, putting armchair graphene
nanoribbons in a class of only a couple of materials (together with *He and *He)
that exhibit a roton-like mode in their collective excitation spectra under no

external magnetic field.
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Chapter 2

Dielectric Properties of

Graphene Systems

The dielectric properties of single layer graphene, bilayer graphene, Dirac graphene
nanoribbons, and zig-zag armchair nanoribbons have been calculated in detail
elsewhere (28 29). Here, we are interested primarily in non-Dirac armchair
nanoribbons, although we will present results for Dirac ones as well, for com-
parison. The results we obtain here for these finite-gap armchair ribbons were
neglected in the previous two reports as they were based on expansions of the
Dirac Hamiltonian which can’t reproduce the fuller energy range results we are
here concerned with. However, before probing these systems, we must introduce

the dielectric function and collective excitations.

2.1 Dielectric Function

Consider the diagram shown in figure[2.1] The interaction in question (in this case
the electron-electron interaction) is represented by a wavy line. In the most bare
interaction form, the second quantised interaction Hamiltonian in momentum

space for the Coulomb interaction is given by the familiar form

Hp = Z (k1, 51|(ka, 52[vq|Ks, s3)[ka, Sa)cl, o, ch, o, CheprsyChpss (2:1)

81,82,53,84,K1,k2,k3 ka
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Figure 2.1: A hand waving approach to the screened interaction of an electronic
system. The infinite sum of intermediate interactions leads to a denominator which

is the RPA dielectric function of the system.

Which, neglecting exchange, becomes

_ E T T
H[ = F375/(k, q)vqck+q,slCk’—q,SQCk’,SSCk,M (22)
55" k,q

Where F; ¢ (k,q) = (k+ q, sk, s)(k' — q, s'|k/, §).

Treating electron-electron interactions by this simple model neglects interme-
diate scatterers. For instance, two electrons may scatter via a third electron, (ie.
electron 1 scatters with electron 2, which in turn scatters electron 3). Neglect-
ing intermediate interactions removes, potentially, a significant number of events.
There are many other intermediate interactions, including vertex corrections, ex-
change, phonon-modulated interactions etc. We will restrict our attention to the
first case. This is shown diagrammatically in figure 2.1, The bubble represents a
density fluctuation due to the intermediate scattering event. In this way, we can
build up a screened interaction which includes an infinite number of intermediate
scattering events. This infinite sum can be conventiently expressed in terms of a
single loop and a bare interaction as shown by the ‘algebra’ in figure[2.1} A more

formal derivation has been given many times (30).
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Algebraically, the single loop represents the polarizability of a system, and is

given by the Green’s functions

Greragn (& + am) G, (§1) (2.3)

Whose [ summation can be evaluated by the integral equation and residue theo-

rem using the standard approach, such that

[ () (=)
dz
2+ — €xign 2 = €k

1 1
= nr(€xrqn) + np(exa,)
€ktqr — €k — Oy €k o — €ktqr T Om

The two terms have the same denominator, and so the final form is given upon

(2.4)

analytic continuation (o — « + in) by

(g, a) = / aic " Gran) — nr(6is) (2.5)
€ktqr — k2 — a+ 1

And so we have the dynamic dielectric function

e(qw) = 1 - vqll(qw) (2.6)

The most important use we will have for this equation is to find it’s zeros. These
describe the collective excitation spectra of a system under some given perturba-
tion.

In this thesis we are only concerned with the dielectric properties and col-
lective excitation spectra of one type of graphene system: armchair graphene
nanoribbons. As already mentioned, at the time the research was undertaken,
the dielectric properties of 2D graphene had already been calculated (28)), as well
as GNRs (28 29). The latter explains that in the case of zig-zag GNRs, there
is no collective excitation spectra due to surface states. In the case of armchair
GNRs however, both works adopt approximations that miss some of the impor-
tant physics of the problem, and so they miss an important result: the existence
of a roton-like mode in the collective excitation spectra of a subclass of non-Dirac

armchair graphene nanoribbons (31).
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2.2 Collective Excitation Spectra of Armchair

Graphene Nanoribbons

Landau was the first to predict minima and maxima in the collective excitation
spectrum of liquid *He. He did this by an incredible intuitive extrapolation
from the known specific heat of the fluid (32)). Feynman extended this work into
quantum theory, producing a qualitatively accurate picture of the physics behind
what he coined the ‘roton’. This, he developed into the theory of superfluidity (33}
34)). Since this seminal work, * He has been studied extensively, and superfluidity
has become a prominent entity in Bose-Einstein condensate research.

The existence of a magneto-roton mode in a two dimensional electron gas
(2DEG) under a magnetic field was later found by Girvin and coworkers (35}
30). Since then, several materials with magneto-roton modes have been found,
including graphene (37).

These systems have provided a rich playing field for the investigation of ele-
mentary excitation interactions (32; B8 [39; [40)), and have played an important
role in the development of contemporary quantum theory, and in particular, the
quantum Hall effect. The question of what a roton actually is however, remains
under dispute.

In this chapter we reveal that a new roton-like mode is expected to exist in
a number of graphene nanoribbons. Aside from liquid Helium, this is the only
material we are aware of which displays a roton-like mode in the absence of an
external magnetic field. Interestingly, it is found that only non-Dirac armchair
ribbons exhibit this peculiar new mode. The collective excitation spectrum of
Dirac armchair ribbons is, as expected, similar to that found in a metal.

As stated earlier, we define the dielectric function as

erpa(q,w) =1 —v,ll(q,w) (2.7)

Where v, = 2e?Ky(q|x — x0|) is the Fourier transform of the Coulomb potential at
x due to a charge at xy, where Ky(z) is the modified Bessel function of the second

kind. TI(q,w) is the polarizability, which is a measure of the density fluctuation
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Figure 2.2: The collective excitation spectrum for Dirac armchair (¢ = 1) ribbons.
The linear behaviour akin to collective excitation in metals is present for low widths,
and low momentum transfers, as expected. At higher transfers and widths, the
non-metallic subbands are no longer suppressed and cause the spectra to become

curved.

due to an excitation of energy w, and momentum transfer ¢, and is given by

2 TP (€pvq,i) = Tr (€ny)

law) = 3 [ bl o 220 28)
Where g; is the spin degeneracy, F; ;(k,q) = (k+q, |k, ) is the transition matrix
element between subbands 7 and j with wavevectors k + ¢ and k respectively, €, ,
is the energy at wavevector x of the n'® subband, and ng(z) denotes the familiar
Fermi-Dirac distribution function. The collective excitation spectrum is found by
the zeroes of the dielectric function (both real and imaginary parts), and can be
viewed by S = %SRLA.

The collective excitation spectra are plotted in Figures and for Dirac

and non-Dirac armchair nanoribbons respectively. The armchair (¢ = 1) ribbons

with Dirac energy dispersions are those for which p+q € 3N, thatisp=2,5,8---.

The collective excitation spectrum in the case of Dirac and non-Dirac ribbons

varies greatly due to the difference between zero and finite bandgap materials.
Figure shows the collective excitation spectrum for Dirac armchair rib-

bons (p + ¢ € 3N). The excitation dispersion is found to be linear in general for
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Figure 2.3: Top: The collective excitation spectrum for non-Dirac armchair (¢ =
1) ribbons. The roton mode emerges here for p = 18, and for p > 21 there
is a region where no excitations occur. Bottom: The frequency and wavevector

dependent intensity distribution for a non-Dirac armchair (19,1) ribbon.
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small momentum transfers and small widths. This is due to the lowest energy
metallic Dirac subband, and is in good agreement with the usual collective ex-
citation spectra of metals. For higher momentum transfers and greater widths
however, the non-metallic, higher energy subbands become significant, and cause
the curvature of the excitation spectrum. Also interesting is that with increasing
width, the low energy excitations begin to occur at greater momentum transfers.
This leads to a momentum gap in the excitation dispersion. The widths where
this begins to occur correlates well with the widths where the emergence of the
roton modes for non-Dirac ribbons is observed, as discussed below.

In figure (a) we present the collective excitation spectra for non-Dirac arm-
chair ribbons. For very small widths, the excitation spectrum is monotonic in-
creasing. As the width increases however, a part of the spectrum begins to
plummet downwards. The roton mode emerges here for p = 18,19. There is a
distinct minimum in the excitation spectrum at ¢gb = 0.45,0.5 with an energy
gap of A = hw/t = 0.24,0.14. By further increasing the width, it is found that
the minimum disappears such that a region develops where there is no excita-
tion spectrum, and beyond that, the spectrum follows the regular log(q)-type
relationship.

The gradient of the excitation spectrum determines the group velocity of the
collective excitations. At the minimum of the curve then, the roton mode R will
have finite energy and momentum, but zero velocity. The modes to the left of the
roton minimum (denoted by R_) are also rather peculiar, having a negative group
velocity. Since there are no excitations allowed at lower energies than the roton
mode, there is no ‘phonon-like’ mode from the equivalent discussion of superfluid
helium, and the excitation population would be dominated by the zero velocity
roton modes, and R_ and R, states.

For p > 21 non-Dirac armchair nanoribbons, we observe still more peculiar
collective excitation spectra. These ribbons do not exhibit a roton-like minimum
in their spectra, but they do have extremely low energy R_ modes with very high
group velocities. These modes are expected to be quite significant in the deter-
mination of the electronic and transport properties of this subclass of armchair
graphene nanoribbons. Beyond these R_ modes there is a region with no excita-

tions until the re-emergence of an R, mode at higher momentum transfers, which
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Figure 2.4: The dielectric function of the armchair ribbon exhibiting a roton mode
is shown here for two values of fw/t. (a) is that for fuw/t = 0.35 which is within
the roton section of the spectrum. The two excitation peaks are clearly visible.
For higher energies, the imaginary part is no longer negligible, and suppresses the
excitations. This is seen in (b) where fw/t = 1. Note that the collective excitation
peaks have been normalized by the maximum magnitude of the real and imaginary

parts of e.

also have an extremely high group velocity for low energy excitations. These R
modes are similar to their phonon-like counterparts in liquid *He, having an ap-
proximately linear dispersion for small energies. However unlike in He, there are
both forward propagating and backward propagating modes observed here.

Further to the existence of the roton mode, is the intensity carried by the
mode Im[l/e(w,q)]. In figure 2.3(b), we have shown that over the whole w-¢
space, almost all intensities are located on the collective modes. Furthermore,
the intensity at the roton minimum is the strongest, indicating that the modes
are strongly coupled with the incident light.

Figure [2.4] shows the dielectric function for the p = 19 armchair ribbon for
two different values of hw/t. The zeroes can be clearly observed, and (1/€(q,w))
shows the corresponding excitation strength. The unusual aspect of the graphene
ribbons is easily seen from this figure. For particular energies, the imaginary part
of the dielectric function is negligible not only for one zero of the real part of

the dielectric function (as is usually the case, and can be seen in Fig. [2.3(b),
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but for both zeros. It is this fact that causes the double excitation peak for
hw/t = 0.18 shown in Fig. [2.3(a). As the energy is increased, the imaginary part
of the dielectric function returns to its usual behaviour, and only one excitation
is observed.

There is direct correlation between the inverse dielectric function and the
static structure factor S(q)(30). This correlation has been used by both Bijl-
Feynman and Girvin et al to develop their theories of roton modes in *He and
2DEGs. A direct consequence of the roton minimum is a peak in the static
structure factor. Since S(q) is the space Fourier transform of the pair correlation
function G(r,0), the maximum of S(g) which occurs at g, indicates that in
these non-Dirac ribbons, the strongest pair correlation occurs at a finite separa-
tion of o = 1/goton.

In conclusion a roton-like minimum in the collective excitation spectrum of
certain non-Dirac armchair graphene nanoribbons is predicted. These peculiar
quasi-particles are expected to shed further light on the nature of rotons in ma-
terials, and should lead to some very interesting properties of these particular
ribbons. Graphene nanoribbons can be added to an extremely small subclass of

materials that exhibit roton-like collective excitation spectra.
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Chapter 3

Optical Conductivity of
Graphene

The Kubo formula for optical conductivity is given by the current-current corre-

lation function in an electromagnetic field (30):

Oy (W) = 1 /OOO dte™([J,(t), J.(0)]) (3.1)

w
Where the time dependence of an operator is given by O(t) = e~#¢,J(0)e!. This
form of the Kubo formula allows us to calculate the longitudinal conductivities
0z and oy, and the transverse conductivity o,, = o0,,. The current operator

matrix elements are given by

OH ™

Jo =evid = e % (3.2)
The commutator can then be expressed as
. ok, ok
([Jo(), Jx(0)]) = " > (K, Ma_H“{’ A1) (k, Ma—;lka A2) o Gl 2y € 0 Gy, Ches
A1,A2
(3.3)

49



CHAPTER 3: OPTICAL CONDUCTIVITY OF GRAPHENE
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Figure 3.1: The single loop diagram descibing the linear optical conductivity in

the absence of interactions.

Where H =, H CL,,\lck,s- The creation/annihilation operators form just one

connected diagram, a single loop as shown in [3.1 with Green’s functions

1 1
G (& + wn) G, (&) = Z(fz T e ) (& . ) (3.4)

In

Which, converting the [ summation to an integral over the complex plain has

residues

Z (”F<€km1) ! + nr(exa,,) ! ) (3.5)

p €k Ny — €N — Wn €k — €k T W

Which, on analytic continuation gives

nF(Gk,,\Q) - nF(Ek,)q)
6k7)\2 — €k7)\1 —w + 277

(3.6)

And so the optical conductivity with no intermediate interactions is given by

(Fro(a) F5(q))np(exs,) — nre(ecn,)
Ek,Ag — Ek,Al —w + i77

(3.7)

Where Fia(q) = (K, )\1|gl;l” |k, \2) is the current transition matrix element. Intra-

subband transitions are forbidden in this case since there is no momentum shift.

So only inter-subband transitions will be considered.
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3.1 Single Layer Graphene

Proceeding then, with single layer graphene with the full energy formalism, the

current operators are readily solved for inter-subband transitions, giving

B —Qevpa Z cos k, — cos /3k, /2 cos k, /2
I 3+ a(k)

_ —Qevpzsm\/_/% smky/ZC .
V3tak) T

Proceeding with the solution obtained above for the Green’s functions then, we

) Cle.sChe s

(3.8)

obtain

e*vta (cos ky, — cos v/3k, /2 cos ky/Q)2
Opz = —— /dk
mw 3+ a(k)
% (nF(Gk,,\l) - nF('fk,)\l))
2B T ol -
e?v, / Ak (sin v/3/2k, sin ky/Z)2 '
3w 3+ ak)
% (nF(Gk,,\l) - nF<5k,)\1))
w+2t/3 + a(k)

This is readily solved numerically for any given temperature or chemical potential.

Oyy =

These results have been presented elsewhere (20)), but with a slightly different
form for J,. Equation is given shown here for comparison with the results
of subsequent chapters. Within the Dirac regime the results are even easier to
obtain as the current operators are constants. This leads to a constant, isotropic
‘universal’ conductivity og = e?/4h. This is the value by which all other optical

conductance results will be normalised.
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3.2 Bilayer Graphene

The ‘universal conductance’ reported in the last section is both a dc and an
ac phenomenon (although it must be pointed out that the static and dynamic
cases differ by a factor of 7). As discussed earlier, it is a direct result of the
linear energy dispersion of graphene. Linear subbands imply both a constant
density of states as well as consistent transition matrix elements, which means
that for as long as the linear (Dirac) approximation is valid, the conductance is
a constant. In the ac case, the value of the universal conductance of single layer
graphene is o; = e¢?/4h. In the layered case, a standard benchmark is simply
o, = noy. For a system of layers which are completely uncoupled, this will clearly
be true. However, this is not generally accurate, as the inerlayer coupling leads to
a subband curvature caused which in turn leads to a non-constant conductivity.
This raises an important question: in what energy range is o, = no; applicable?

Another question is: how many intersite coupling terms (interlayer and in-
tralayer) need to be included to replicate experimental results. In this chapter
we include three interlayer coupling terms (more than anyone else in the field) as
well as the next nearest neighbour linterlayer coupling (which is almost univer-
sally neglected).

The infrared conductance of BLG has been measured by several groups (18;
41)). These results rely upon the effects of an induced gate voltage on the band-
structure, and all assume a discrepancy in onsite energy between the two layers.
In ref. 17, Mak et al present the ‘expected’ IR conductance without the latter
assumption, and find that it differs markedly from their experimental results.
This demonstrates the need to assume an energetic discrepancy between the two
layers in BLG. Our theoretical results, however, show a strong correlation to the
results in ref.16 and 17, demonstrating that while an energetic discrepancy may
exist, it is not necessary in describing the IR response observed experimentally.

In this section it is shown that the interplay of the coupling terms included
leads to a significant deviation in the behaviour of the conductance at low fre-
quencies, which can, in turn, be tuned by electronic doping. For this reason we
will consider two important samples: Intrinsic (ie. undoped and unbiased) bi-

layer graphene, as well as a sample which is doped so as to drag the chemical
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potential to the bands crossing point (see fig.2). In the important ultraviolet fre-
quency band, this interplay leads to significant conductance anisotropy, i.e., the
absorption along the zig-zag direction is around 50% stronger than that along
the armchair direction.

The eigenvalues in BLG were calculated in chapter 1 and are

65,5’ - t/(E%LG - 3) + \/GSL + m _I_ S \/_ (310>
Where
F — 2 ,y—‘r (7;2)2

4

And 1§, = vae%; + %, with s, 8’ = £1, and €gy, are the regular eigenvalues for

(H) (3.11)

the SLG system given as

esc = t(1 + 4 cos(ak,/2) cos(ak,/2v/3)

. (3.12)
+ 4 cos®(ak,/3))?,

From this result we see that there are two conduction bands and two valence
bands which are confined above and below the line € ¢ — t'(€3 — 3) ~ 3¢’ near
the K points. This simple result will form the basis for much of the discussion
to follow.

In Fig[3.3] we examine the optical conductance of intrinsic bilayer graphene.
Near the higher energy valley points, the optical conductance exhibits two ex-
trema, similar to the single peak found in single layer graphene (20 21)). These
peaks correspond to the two dominant vertical transitions between the two sym-
metric pairs of saddle points. The Joint Density of States in these valleys reaches
a cusp-like maximum which leads to the extrema in the conductance. These
two energy peaks are separated by an amount iw = 27v;, as expected from the
bandstructure calculations. Finally note that the conductance along the zig-zag
direction is generally larger than that along the armchair direction, especially at
larger energies.

Fig[3.4 shows the low energy optical conductivity of the intrinsic sample
from the grey shaded region of Figl3.3|, as well as a sample doped to shift the
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Fermi level to the bands crossing point. The longitudinal conductance varies
greatly when including a non-zero NNN interaction in the model, and the effect
is equivalent to doping when NNN interactions are included. The effect of the
dominant interlayer term 7 (ie. setting v3 = 74 = t' = 0) at low energies has
been reported recently (42). This result has been retrieved in our NNN inclusive
result by doping the sample so as to force the Fermi energy to coincide with the
bands-crossing points. In the intrinsic case however, the previously reported re-
sult is entirely suppressed, and replaced by an approximately 2x larger, rounded
peak, followed by a significant trough. This correlates well with the behaviour
observed in IR experiments (I8} [41)), although without the added effects of an in-
duced gate voltage. In the doped sample, electron transitions from either valence
band into either conduction band are allowed, which is equivalent to intrinsic
bilayer graphene calculations with NNN coupling neglected, as shown in Fig.2.
The intrinsic bilayer sample with NNN interactions included in the model, how-
ever, suppresses transitions from the upper valence band to the lower conduction
band, since they are both filled, and yet a new set of transitions become allowed
between the two conduction bands. These similar bands are separated by an
approximately constant factor of ~;, which leads to the large peak centred at
hw = 7, in the intrinsic bilayer sample. The feature is in striking contrast with
that of SLG. For SLG, the effect of the NNN coupling is to suppress the universal
conductance at low frequencies (2I)). As is clearly seen in Fig, for BLG the
interplay of the interlayer coupling and the NNN coupling can suppress the con-
ductance at low frequencies. However, it also induces a strong absorption peak
in the far infrared before the onset of the universal conductance.

For this reason, the low energy approximations of the behaviour of bilayer
graphene are generally more relevant to carefully doped samples, with the in-
trinsic bilayer properties being drastically affected by the next nearest neighbor
hopping and additional interlayer terms. Whilst the existing low energy for-
malisms are capable of accurately reproducing the low energy bandstructures
with these terms, in intrinsic bilayer graphene those bands will be completely
filled, and predicted effects will be suppressed. In order to empty one of the two
inner bands, the system must be doped (or biased) in some way, and to a very

specific level. Furthermore, when using existing theories to explain experimental
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results, it needs to be noted that an energetic discrepancy between layers, as well
as the inclusion of a gate voltage, both cause some similar effects to the inclusion
of the NNN interaction. All of these will therefore need to be accounted for when
explaining any experimental result.

Furthermore, the conductance anisotropy observed in Figures and [3.4]
which is prominent even in the IR region when 74 and ¢’ are both included,
makes the polarization of the photon beam in experiments a relevant parameter.
This orientation dependence of the optical conductance makes determination of
the orientation of a BLG flake possible, and also makes BLLG a potential partial
polarizer. The doping dependence of the low energy conductance anisotropy
makes this feature quite versatile. We note, however, that this anisotropy is
stronger when the chemical potential lies above the Fermi level than when it is
below it. This partly explains the effect noticed by Li et al (I8]) which is that the
bias of the gate voltage breaks electron-hole symmetry.

Finally, as we have already mentioned, the value of the ‘universal’ conductivity
is a topic of great interest at the moment. According to these results, which have
been calculated from the most robust interlayer and intralayer model adopted
to date, the value of the universal conductivity for bilayer graphene is oo = 20,
where o; = e2/4h is the universal optical conductivity of single layer graphene
defined earlier. The range over which this value is applicable is greatly affected
by the inclusion of the NNN interaction in numerical calculations, and is strongly
dependent on the electronic doping of a real sample. In particular, the NNN
interaction causes the very low energy optical response to become negligible, and
around the observed peak, the optical conductance is opeax = 5.507.

From our results, it is clear that the universal conductivity is an approxima-
tion that applies only within certain energy ranges and is strongly dependent on
sample doping. For intrinsic BLG, the energy ranges where o, ~ 207 is hw > 0.4t.
However, this quickly becomes inaccurate with increasing energy, especially for
0.2. For a doped sample however, the approximation can be much more appro-
priate. In this case the applicable energy ranges are hw < 0.13¢, and hw > 0.25¢.

Before concluding, we mention in passing that the exact location of the Fermi
energy is not widely agreed upon as its determination involves many factors.

Within our model a Fermi level could be determined by half-filling the 7 orbitals
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via the DOS. This is by no means an accurate method, and a precise determi-
nation of the Fermi level requires a more fundamental approach. Therefore it is
outside the scope of the present work to attempt to determine the Fermi energy,
but instead we choose the natural e = 0 point that arises from the tight-binding
formalism adopted. However, the exact location of the Fermi energy is largely
irrelevant. The breaking of electron hole symmetry induced by NNN interactions
assures that the Fermi energy will not coincide with the bands-crossing points by
at least an amount of the order of ¢'. For Fermi energies above or below the neigh-
borhood of these points, the low energy peak conductance reported here varies
in magnitude from ~ 5.5 — 6.1, and the variation of the peak position is inde-
tectable within acceptable numerical accuracy. The former can be clearly seen in
the inset to Fig.5. Doped samples where the Fermi energy does not coincide with
the bands-crossing points have very similar optical responses to intrinsic BLG.
In conclusion, we have studied the longitudinal optical conductivity of BLG
with the inclusion of all relevant interlayer coupling terms and next nearest neigh-
bor intralayer interactions. The optical conductivity exhibits double peak reso-
nance separated by an amount 27y, and is centered around hw = 2t. At low
energies, the NNN interaction leads to entirely new behaviour of the optical con-
ductivity. The results obtained without NNN coupling, however, can be retrieved
by appropriate electronic doping. The interplay of the NNN-v4 couplings were
found to lead to significant low energy conductance anisotropy which is strongly
doping dependent. Finally, the value of the universal conductivity with the most
robust formalism used to date has also been determined, and is given by oo = 207.
The applicability of this approximation, however, is restricted to certain energy
ranges and is strongly doping dependent. These results will be crucial to the
experimental testing of accepted theories on bilayer graphene, and will be useful

for potential low energy electronic and photonic applications of bilayer graphene.
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Figure 3.2: The k, dependence of the bandstructure near the K/K’ points. The
effect of the NNN coupling is to shift the Fermi level (here ey = 0) off the bands-
crossing points. The other noticeable effect here is that of the dominant interlayer
coupling ~; which causes the gap of A =& 1 between similar bands. The red dashed
arrow represents a transition which is permitted in an intrinsic bilayer calculation if
NNN coupling is neglected in the model, but becomes forbidden when it is included.
The black solid arrow is the opposite: a previously forbidden transition becomes
allowed when NNNs are included in the model. The effect of doping is to raise or

lower the Fermi level, making the inclusion of NNNs partly equivalent to doping.

10

Figure 3.3: The optical conductance (in units of o1 = e%/h) vs the normalized
frequency Q2 = hw/t for bilayer graphene. Generally, o,, (the zig-zag direction)
has a larger optical response than oy, (the armchair direction). When NNN and
74 are neglected, and at low energies, 0;, = o,y. This is no longer the case here,

with NNNs and 74 included. The grey shaded area indicates the low energy region

plotted in Fig
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Figure 3.4: The low energy optical conductance at two different doping levels.
The blue dash-dot and black dashed lines are the optical conductance of intrinsic
BLG along the x and y directions respectively. The black solid and blue dotted
lines represent the optical conductance of a sample which is doped such that the
chemical potential is shifted to the bands crossing point. The NNN-v4 coupling
causes a new peak to emerge, and suppresses the previously reported one. This
new peak is much larger and shifted to a lower photon energy. In a suitably doped
sample, however, the t = 0 (no NNN) peak has been retrieved by an effective
shifting of the Fermi level. The inset shows the sensitivity of the intrinsic zig-zag
peak to the Fermi energy. A is the bands crossing point. If the Fermi energy
lies at least 0.6¢' from the bands-crossing points (in either direction), the peak

conductance lies within 15% of our result.
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3.3 Graphene Nanoribbons

As in the case of bilayer graphene, the nanoribbon optical conductances are cal-
culated numerically from scratch. This is due to the complexity of the problem.
In general, the nanoribbon eigenvalues and eigenvectors have not been calculated
exactly.

Nevertheless, the optical conductance is readily obtained numerically for any
arbitrary width or chirality of ribbon.

These have been calculated at length by others (43}, [44]), and so were not appli-
cable to this thesis. However, they will be presented in part in the next section in
order to introduce the significant enhancement obtained in bilayer ribbons. Also,
we have reported that in the presence of a magnetic field, the optical properties
of GNRs can be tuned to respond strongly in the THz-FIR regime (44). This
is primarily the work of a collaborator and so it is not appropriate to present it

here.
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3.4 Layered Graphene Nanoribbons

The optical responses presented so far for 2D graphene systems has been relatively
weak. The ‘universal’ conductance for single layer graphene oy = e*/4h corre-
sponds to an absorption of ~ 3%. The enhancement obtained when extending to
two layers was, in general, 20, and in parts of the spectrum was as much as 60
depending on doping levels. Although not explicitly presented here, the optical
conductance of graphene nanoribbons is not a continuum, but a set of resonant
peaks due to van-Hove singularities in the density of states. The optical response
of all ribbons remains very weak, with these peaks having approximately equiv-
alent strength to the universal conductivity of graphene sheets(43]). Despite the
presense of van-Hove singularities, the reason for the still poor optical response
is due to the relatively small interband transition amplitudes between valence
and conduction subbands. Because of this, potential application of graphene
structures in optoelectronics and photonics is severely limited.

However we demonstrate in this chapter, that there exists a sub-class of bi-
layer graphene nanoribbons (BLGNRs) which have an unusually strong optical
conductance in the terahertz (THz) to far infrared (FIR) regime. The height of
the conductance peak is about two orders of magnitude greater than the universal
conductance of graphene sheets. We found that this sub-class of BLGNRs can
be either armchair or chiral, but their energy dispersion near the I' point must
be that of a one-dimensional massless Dirac Fermion. This sub-class of graphene
structures are the first systems to show such a strong optical response in the
absence of any external field in the important frequency band of THz and FIR.

Moreover, it was recently reported that nanoribbons with widths less than
10nm have been successfully created in the lab (45]). These ribbons were identified
as single layer, bilayer, and trilayer ribbons. This remarkable experimental feat
demonstrates that, although not yet recognized, the class of strutures reported
can already be produced.

The construction of layered GNRs and their corresponding energy dispersions
was described in chapter 1.

We will use the model system of p = 2 ribbons, the system with the smallest

Hamiltonian matrix, to show the existence of a strong optical conductance peak
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Figure 3.5: The optical conductivity for the ZZ-BLGNR (a) and the AC-BLGNR
(b). The low energy activity in the bilayer ribbons is particularly significant, es-
pecially in the Dirac AC-BLGNR where the optical conductivity is approximately
1500¢. The temperature dependence of the large peak observed in all armchair
bilayer ribbons is shown in the inset. The peak is robust all the way up to room
temperature, decreasing rapidly to ~ 800 at 10K then decreasing very slowly with

increasing energy.

at low frequencies. Our full numerical result has been obtained for the entire
sub-class of ribbons.

We find here that the oscillator strength of the interband transition is strongly
dependent on the properties of the energy dispersion at the zero-gap point. It
will be shown that for ZZ-BLGNRs, where the zero gap position is at the K
point and the two low energy dispersions are close to parabolic, the oscillator
strength at low energy is very small. On the other hand, for AC-BLGNR, the
zero gap position is at the I' point. Furthermore, the two low energy dispersions
are very close to linear (or a one-dimensional massless Dirac Fermion). Near the
band minimum however, the bands are curved, displaying a rounded minimum as
opposed to a sharp one. This has two effects, firstly it greatly increases the DOS
at the band minimum, and secondly, the curvature allows transitions between
non-symmetric bands (as was the case for 2D bilayer graphene in the preceding
section).

The optical conductivity is calculated using the Kubo formula as usual, and
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the results are normalized by the single layer universal conductivity given by oy =
e? /4h. We determine the dependence of the optical conductance on the ribbon
widths and chiralities. In figure (a) we show that the optical conductivity
for the ZZ-BLGNR exhibits a spike centered on zero energy. This spike occurs
here because both low energy subbands approach zero energy at the Dirac-like
points. In the SLGNR case, the velocity operator approaches a constant, which
makes inter-symmetric-subband transitions forbidden. This is no longer the case
in bilayer ribbons, and there is also now the possibility of low energy inter-non-
symmetric-subband transitions.

Over the full energy spectrum, we see that some of the resonant peaks in the
single layer optical conductivity spectrum have split into three peaks. This will
not generally be the case. Most peaks will split into two as will be seen in the
armchair case. However, near {2 = 1, the subbands create a linear Dirac-like band
structure with features similar to the Dirac point in the proceeding armchair case,
as well as those observed in 2D bilayer graphene. This means that there are three
possible energy transitions with high density of states. The central, primary
peak corresponds to the original SLGNR peak, and the two secondary peaks,
one below, and and one above the original by an amount €2 = v, correspond to
the new curved subbands which don’t quite touch the degenerate point from the
single layer case.

The optical conductance of armchair BLGNRSs is shown in figure [3.5(b). In
the AC case it peaks sharply at /2 and trails off because of the linearity of the
band structure. In the armchair case, a peak is still observed as 2 — 0, but the
peak at /2 is about 2 orders of magnitude stronger. This peak corresponds to
vertical transitions between non-symmetric subbands which are far more proba-
ble than those between symmetric ones (see fig. and subsequent discussion).
This single low energy peak is larger than every other peak across the spectrum,
and, as can be seen from the inset to figure 3.6|(b), is robust across a wide range
of relevant temperatures. Of course, the correction due to electron-phonon inter-
actions must be considered with increasing temperature. However, the correction
at low energies has been found experimentally and deemed negligible, and even
for energies > 1eV, to be only a few percent (I7). As the width of the ribbons

increases, the strength of this peak remains approximately constant. This is an
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Figure 3.6: The width dependence of the energy of the low-energy peak for
BLGNRs with g = [1,4]. The strongest peaks occur in the lowest energy gaps in
the Dirac armchair ribbons. The inset shows the width dependence of the band gap
for Dirac BLGNRs with strong low energy optical response. This gap eventually

disappears, but in the 2D limit with no edges, it re-emerges at ~.

effect which is peculiar to one dimensional ribbons, which reflects the consistency
of the Dirac bandstructure with increasing width. In the case of an infinitely wide
ribbon, the strong optical response is lost completely, settling at ~ 40 at {2 = ~.
This universally enhanced response for arbitrarily wide ribbons is a remarkable
result which will certainly be instrumental in abolishing current limitations in
implementing graphene based systems into optoelectronic and photonic devices.

At higher energies, the single peaks observed in AC-SLGNRs generally have
split into two, and are separated by an amount ~ 2. This corresponds to two sets
of symmetric transitions, the non-symmetric transitions being largely suppressed.

For ¢ > 1 BLGNRs, the band gap between the two lowest energy symmetric
bands varies from zero to 1leV. Similarly the non-Dirac AC-BLGNRs (ie (p +
q)/3 ¢ I), have varying band-gaps for the lowest energy subbands.

For a given type of BLGNR, the conductance peak position can be tuned with
the ribbon width. Figure shows the width dependence of the peak position in
the THz/FIR regime. The peak position oscillates with the ribbon width. The
amplitude of the oscillation is of the same order of magnitude as the average peak

position, indicating a large range for tuning the resonance peak. The period of
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Figure 3.7: The p dependence of the low energy peaks for a (p,1) BLGNR. In
Dirac ribbons the symmetric transitions are suppressed and the non-symmetric ones
dominate. For non-Dirac ribbons the opposite is the case. Notice that the strength
of the peak in the Dirac cases is constant (within the specified computational

accuracy of the calculation).

the oscillation increases with the chirality (q). The inset of figure shows the
width dependence of the energy gap for Dirac BLGNRs. This gap decreases as
width increases making the location of the optical peak strongly width dependent.
The strength of the peak, however, remains constant as discussed earlier. This
makes Dirac bilayer graphene nanoribbons remarkably versatile in choosing the
desired optical response energy without compromising on response strength. The
bilayer ribbons that have recently been fabricated (45]) correspond to p < 100 in
our results. Furthermore, energy gaps in the THz regime correspond to bilayer
ribbons with p > 100. This demonstrates that the structures in question already
exist, and the gateway to graphene based THz devices is extremely close.
Figure |3.7] shows the width dependence of the magnitude of the low energy
peak for the (p,1) BLGNR. For (p + 1)/3 € I, the non-symmetric matrix ele-
ment dominates, causing the single low energy peak. The low-frequency peak
conductance for this class of BLGNRs is unusually strong having a value of ap-
proximately 1500(, much stronger than the universal conductance of graphene
sheets.(17) When the Dirac condition is not met however (ie (p+1)/3 ¢ I), the
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Figure 3.8: The width dependence of the magnitude of the low energy peak for the
7Z-BLGNRs decreases quickly with increasing width, and then increases steadily
for p > 6.

symmetric matrix elements dominate, and the non-symmetric matrix elements
are greatly suppressed, leading to a much weaker response to the low energy
spectrum.

The width dependence of the strength of the low energy peak for ZZ-BLGNRs
is given in Figure |3.8] For very narrow ribbons with p < 6 the peak quickly
decreases in magnitude at a decreasing rate. For p > 6 however, the peak mag-
nitude increases steadily, reflecting the low energy subband shape. As the width
increases, the low energy subbands remain lower, which increases the DOS, al-
lowing more transitions between subbands. For very narrow width ZZ-BLGNRs
however, the curvature in the subbands is so high that the velocity operator allows
strong coupling between the subbands, which makes the low energy magnitude
very strong.

In summary, we have shown that the interplay of ribbon’s chirality and the
inter-ribbon coupling can lead to significant enhancement in optical response.
We have identified a sub-class of BLGNRs where the inter-layer coupling causes
a finite band gap in the energy minimum and induces strong inter-subband tran-
sitions. The distinct feature of this sub-class of BLGNRs is that they have a
one dimensional massless Dirac Fermion dispersion near the I' point. The peak

conductance of this class of BLGNRs has a very large constant value of around
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1500¢, making them a class of materials for unique applications in optoelectron-
ics. The simple picture behind this phenomenon is that the density of states for
the 1D massless Dirac Fermions remains finite at zero energy, whereas that for
the 2D massless Dirac Fermions in a graphene sheet vanishes. The remarkable
role of the edge states is to cause the transition energy to decrease with increasing
width, but not the magnitude of response. In the 2D limit however, with edge
states removed, the strong optical response suddenly disappears completely.
These results open a gateway to the creation of graphene-based low energy
photon devices. The ribbon width and chirality selection for various applications
is crucial, as the optical responses of various ribbons change dramatically when

these properties are varied.
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3.5 Stretched Graphene

In this section we calculate both the longitudinal and Hall optical conductivity
of single layer graphene which has been stretched along some direction. We find
that stretching a single layer graphene sheet breaks the x-y isotropy, causing the
conical Dirac bandstructure at the K points to have elliptical rather than circular
cross sections. This leads to a discrepancy between the Fermi velocities along
the armchair and zig-zag directions, which in turn alters the relative universal
conductivities along each direction.

To model stretched graphene, we assume that the bonds will rotate relative
to each other, but that the bond length remains constant. This approximation is
equivalent to the first nearest neighbour approximation where next nearest neigh-
bours are neglected. The first nearest neighbours are kept in their energetically
minimum configuration, but next nearest neighbours are not. For large stretch-
ing magnitudes, the next nearest neighbour distance will approach the first, and
this approximation will break down. However, graphene is a very stiff material,
and breaks long before this condition is met. Therefore we restrict our attention
to very small bond bending angles, with no bond rotation exceeding a couple of

degrees. We model the system as described in chapter 1, where we obtain

0, = F'sin2¢
0y = F/2(sin 2¢ + /3 cos 2¢) (3.13)
05 = F/2(sin 2¢ — V/3 cos 20)
Where F' is the magnitude of the stretching force, and ¢ is the chiral angle along
which the force is applied.

The current operators are obtained, as usual, from J, = (V|v,|V), where
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v = x,y, where v, = 0H/0k,. We obtain

Jy = % {QF cos 3k, /2 (\/§/8 sin v/3k, /2(k, sin 26 + 3k, cos 2¢) — 1/4 cos V/3k, /2 sin 2
+ V/3ky, /2sin V/3k, /2 sin 2¢)
+ 2sin 3k, /2 (—\/5/2 sin v/3k, /2 — F(V/3/8 cos 3k, /2(V/3k, sin 26 + k, cos 2¢)
+1/4sinv/3k, /2 cos 2¢ + cos v/3k, /2 sin 2¢)>

+F <\/§/2 sin v/3k, (k, sin 2¢ + 3k, cos 2¢) — 1/4 cos V/3k, /2sin 2¢>}

(3.14)
And

—2
Jy = — {1 + cos 3k, /2 (COS V3ky /2 — F/4sin v/3k, /2(V3k, sin 2¢

€]

+ ky cos 2¢) + 3F/2 cos V/3k, /2 cos 2¢)

+ Fsin3k,/2 (k sin 2¢ cos V/3k, /2 + 1/4 cos v/ 3k, /2(V/3k, sin 2¢ + k, cos 2¢)
+3/2cos V/3k, /2 cos 2¢)

— 2cos 3k, /2 (cos V3k, /2 — F/2sin V/3k, /2(V/3k, sin 2¢ + k, cos 2¢)

+ 3F/2 cos V/3k,/2 cos 2¢>}
(3.15)

Which allows us to calculate the optical conductivity numerically. The optical
conductivity is given by Kubo’s formula (30)
1 > iwt

) = [t ([1,0), A(O)]). (3.16)

The components of the current operator can be calculated from J, ,(t) =

et ], (0)e~*! where J,,(0) = Ui(r)v,,¥(r'), in which v,y = z,y. The lon-
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Figure 3.9: The stretching induced anisotropy in the longitudinal conductivity
for three small pseudo force values. These correspond to bond stretching angles
of ~ 0.4,1.2,2 degrees for F' = 0.5,1.5,2.5 respectively. Despite the relatively
small stretching angle, the induced anisotropy is as much as 10%. The angular
dependence of this quantity is quite well behaved. When stretching along the zig-
zag direction, the zig-zag longitudinal conductivity is increased, and similarly for
stretching along the armchair direction. For stretching of 7 /4, the system remains

isotropic.

gitudinal (0,,, v = z,y) and Hall (o,,) optical conductivities are calculated
numerically.

In Figi3.9 we show the longitudinal conductivity along the x (zig-zag) and
y (armchair) directions for various pseudo-force values. These values are for
the ‘universal’ conductivity, where we have chosen hw = 0.05e¢V. These values
are approximately unversal up to hw = 1leV. Beyond this regime the effect of
stretching is negligible, and the optical conductivity agrees with other calculations
for intrinsic graphene (20; 21)). Within the Dirac regime however, we can see that
a significant anisotropy develops, which is greatest when the sample is stretched
along either the armchair or zig-zag directions. When stretched along the zig-zag
direction (¢ = 0), the optical conductivity along the zig-zag direction becomes
higher, and the conductivity along the armchair direction becomes smaller. This
discrepancy is as much as ~ 10% for F' = 2.5, which corresponds to bond bending
angles of §; = —0; ~ 2.16°. This is a large degree of anisotropy for such a small
angle. As the stretching angle changes, we see that at 45° of rotation, the regular

isotropic universal conductivity is regained. This is not wholly unexpected, but
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Figure 3.10: The transverse optical conductivity as a function of stretching angle.
Interestingly, even thought the C3 symmetry is broken for stretching along the
high symmetry directions, the transverse conductivity remains zero. For chiral
stretching this is not the case. Maximum stretching is reached for the longitudinally

isotropic value of ¢ = 7/4.

is interesting considering the distortions that graphene obtains on this angle of
stretching (see Fig.1(c)). As we continue to rotate the angle of stretching, we see
that at ¢ = 90°, the reverse situation is obtained as that seen for ¢ = 0.

The Hall conductivity for single layer graphene is zero due to the C3 symmetry
of the system. In Fig[3.10] we report the variation of the Hall conductivity within
the Dirac regime as a function of ¢. We can see that for chiral angles, the
Hall conductivity is non-zero, reaching a maximum of ~ 0¢/20 at ¢ = 45° and
F = 2.5. Despite the broken C3 symmetry, when stretching along the zig-zag or
armchair directions, the Hall conductivity still gives zero. The magnitude of the
Hall conductivity increases linearly with F' for small magnitudes of F'.

Finally, in Fig[3.11] we show the Hall conductivity at ¢ = 45° over the entire
energy spectrum. For transitions between the two high density of states saddle
points at 2 = 2, both the longitudinal and Hall conductivity reach a maximum.
The Hall conductivity has changed sign near this point and remains positive for
the rest of the energy spectrum. For bond bending of =~ 2°, the Hall conductivity
reaches a maximum value of pr;ak ~ 0.850(p. The longitudinal conductivity at this

same point is almost identical to the unstretched value, which has been reported
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Figure 3.11: The transverse (Hall) conductivity for ¢ = 45° and F' = 2.5. The
transverse conductivity reaches a maximum of ~ 0.850¢ at the high density of
states saddle point €2 = 2.
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an order of magnitude smaller, the transverse conductivity is not insignificant.

elsewhere and reaches a maximum of o ~ 6 — 80p. Although approximately
In conclusion, we have calculated the optical conductivity of stretched graphene.
We have observed suprisingly large anisotropy in the universal longitudinal con-
ductivity of stretched graphene for small stretching amounts (= 10% anisotropy
for bond bending of &~ 2.16°). We also have observed that when stretched along
chiral directions, the Hall conducitvity is non-zero, and reaches a maximum value
when stretching at an angle of 45° from either the zig-zag or armchair direction.
Along these two high symmetry directions however, the Hall conductivity was still
zero as intrinsic graphene. We have also calculated the Hall conductivity across
the entire energy spectrum and found that near the high density of states saddle
points, the Hall conductivity changes sign and exhibits a strong peak (which is a

maximum when ¢ = 45°), for relatively small stretching magnitudes.
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3.6 Conclusions

The optical properties of graphene based materials have, in this chapter, been
shown to be quite diverse, robust, and highly tunable. The universal conducitivity
of graphene is a remarkable result in its own right, but for practical purposes is
impractically small.

Here we have shown that this response can be increased by an order of magni-
tude at characteristic frequencies in bilayer graphene which happen to fall within
the THz-FIR regime. When cutting graphene into ribbons, the optical response
is not significantly enhanced. However we have also shown in this chapter that
in the case of bilayer ribbons this is no longer true. We have demonstrated that
a two order of magnitude increase in the optical conductivity of bilayer graphene
nanoribbons can be achieved. These results eliminate the conditions that formerly
made graphene unsuitable for photonic device applications, and in particular will
be useful for potential THz-FIR emitters and detectors.

Furthermore, we have demonstrated that mechanical stretching can break
the C3 symmetry of single layer graphene, which in turn leads to a significant
anisotropy in the longitudinal optical conductivity of this material at modest
stretching angles, as well as quite a strong Hall conductivity to emerge. These
results will be useful, particularly the strong Hall response, for potential future
applications.

Having exhausted the linear response theory in the absence of interactions,
we now proceed to calculate, in the next chapter, the optical conductivity of
graphene nanoribbons within a magnetic field, then in chapter 5, the nonlinear
optical conductivity of single layer Dirac graphene, and, in chapter 6, the linear

response theory in the presence of electron-LLO phonon interactions.
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Chapter 4

Nonlinear Optical Conductivity
of Graphene

In the last chapter we discussed the optical conductance of a variety of graphene
based systems. So far we have only calculated the linear approximation to the op-
tical conductivity of these systems. Before the advent of strong light sources such
as the laser, this was a reasonable approximation. This is no longer universally
the case. In this chapter we will demonstrate that strong nonlinear effects can
exist in intrinsic (u = 0) graphene in the terahertz to infrared frequency regime
under a moderate electric field intensity. Within the classical picture, it has been
shown elsewhere that frequency up-conversion can be achieved within the Dirac
description(22)), although the field response has been restricted to the linear E
term. Here we shall adopt an approach that treats the coupling of the Dirac
electron to the time-dependent electric field quantum mechanically to calculate
the nonlinear terms, both in high order electrical field and in multiple frequen-
cies. We determine the required field strength to induce non-negligible nonlinear

effects, and investigate the temperature dependence of these terms as well.

4.1 Formalism

Let’s consider intrinsic graphene under an applied field, E(t) = FEe™! whose

direction is along the x-axis. The tight binding Hamiltonian in the low energy
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regime is given by,

B 0 p- +eA_
H—UF (p++€A+ 0 ) (41)

Where vp ~ ¢/300, pr = p, £ip,, and Ay = A = %ei“’t. We can use this form of
the electric field rather than the real part because the imaginary component adds
a correction to the wavefunction which is two orders smaller than the real part (ie
two expansion terms along), and so is deemed irrelevant. This form is much more
readily used, and so is chosen to be a more suitable choice. The time-dependent

two-component wavefunctions can be expanded in the basis set

¢(p> t) _ Z qb(p, n)eim.ntefiet7 (4.2>
n=0

where € = |p|, and ¢(p,n) is a spinor given by

oo = (0] 43

By substituting eq.(2) into the Schrédinger equation ihdy /0t = H1, we obtain

—h> (p,n)(nw — €)e’ ")
n=0
0 + el iwt o <44>
— . b-T e § : i(nw—o)t
(p+ + %ezwt 0 ) ~ ¢(p7 n)e :

n=0

The above equation contains information of all multiple photon process in intrinsic

inwt

graphene. Due to the orthonormal relation of e we can write the coupled

recursion relations for the spinor components,

(€ = nw)an(p) = p+Bn(p) + Tﬁn—l(p)
2&" (4.5)
(€ = nw)Ba(p) = p—an(p) + %an—l(p)

The recursion relation couples the n photon processes to the n — 1 photon pro-
cesses. From the solutions to equation (5) we can calculate the nth order total

current which is given by
1
Jy = — [ dpjuN(e). (4.6)

T Ag?
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Figure 4.1: A schematic illustration of linear and nonlinear optical processes in
intrinsic graphene. The universal conductance described by J;. The two third
order terms Jg(w) and J3(3w) are shown in blue and green colour. The latter is a

frequency tripling term which is the dominant nonlinear current.

Here N(¢) = ng(—€) — np(e) = tanh(e/2kpT), and j% = ¥14,4, where v, = ‘8%
is the current operator with v = x,y. The choice of v is arbitrary due to the

simplicity of the Hamiltonian. The nth order current becomes

1 ~ .

In the absence of the electric field, only n = 0 terms are nonzero and the
solution of eq.(5) is the usual wavefunctions for the massless Dirac Fermion,
ao(p) = 1/V2, Bo(p) =p-/V2p.

All that remains then, is to calculate «; and (; to our desired order. We are

interested in the third order current, so we need to calculate all terms up to i = 3.

4.2 Results

We explicitly write out the recursion relations stated earlier:

oy =

<p+ﬁn + Aﬂn—l)

p—nw

1
ﬁn = (p_()én + AOén_1>

p— nw
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We can form a useful relation for «a, which will help us apply the recursion

relations above:

Qn = (p-kﬁn + Aﬁn—l)
P — nw
_ 1 ( P+
pP—nw p—nw
LM
1—p*/(p—nw)? \p — nw
A

= m <p+an1 + (p — nw)ﬁn1)

(p_ay, + Aay—1) + ABp—1)

Qn—1 + Aﬂnl)

Now, noting that oy = %@, and Gy = \pf—gp, we can calculate subsequent values:

o= gy (prat 0= ) )
")
= oo (i o) (p+p +(p— w)p)
B ﬁwp(i — 2p) ((p toup - wp)

Solving for [3; then, we have

(4.10)

= E » (p—(ﬁwp(i o) ((p— +p)p — wp—)) + Aao)
A

= \/§(p — w)wp(w — 2p) (p_ ((p_ +p)p — wp_) + wp(w — 2]9))
_ A 2 3 2 2, _ 2)
V2(p — w)wp(w — 2p) (p_p +p° —wpZ +wp — 2wp
V20— Cv)ip(w —2p) (p(p* = 2wp +w?) +p2 (p — w))

B A
 V2wp(w — 2p)

(4.11)

(p> —wp+p>)

76



CHAPTER 4: NONLINEAR OPTICAL CONDUCTIVITY OF GRAPHENE

So we have
a; =Ci((p- +ps)p —wp_
1 1((2 +) ) ) (4.12)
pr=Ci(p” —wp+p2)
Where Cf = m. Now for the second order terms:
A
Qp = %0(20 — 2p) (p+a1 + (- 2”)51)
A01 2 2
J— - _ _ _ 2 .
ol —p) (p+((p +p4)p—wp-) + (p —2w)(p wp+p_))
AC
— L (2p* + pp? — dwp® + 2w7p + pPp — 2wp? (4.13)
dw(w = p)
AC, 2 2 2 2
— 2 _ _ .
T _p)( (p—w)(p” —pw +p2) +p(py —p2)
A
—_ 92 . 2,2
= (0= 2m et -
So

Gy = p_ag + 4Acw(w — p)
T dw(w—p)(p— 2w)
_ACI(2p_(p° — 4pPw + 5pw? — 2w°) + py (p® — dwp® + 4w’p) +p? (p — 2w))
B 4w(w —p)(p — 2w)
AC(2p-(p° — 4pPw + Spw® — 2w°) + pip(p — 2w)? + P’ (p — 2w))
B dw(w — p)(p — 2w)

(4.14)

It seems a fair choice to think that the 3rd order polynomial will divide by p — 2w,

which it turns out it does. So we have

_ACH(2p-(p — 2w)(p — w)* +pep(p — 2w)* + PP (p — 2w))
a 4w(w = p)(p — 2w)

~ACI(2p-(p — w)? + pip(p — 2w) +p?)

B 4w (w — p)

Ba
(4.15)
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And finally, for the third order terms:

A

S 3
o 30 (30 — 2p) (p+042 +(p W)52>

B A?Cy (p+(3p* — 9p*w + 8pw?) + p_(3p® — 12p°w + 14pw® — 6w?*) + p* (p — 3w) + p3p

B 12w?(3w — 2p)(w — p)

(4.16)
And finally
1

Ps = P (p-az + Aas)

_ APC(p2 (3p? = 9wp + 8w?) + pip(p — 3w) +p? + p(3p® — 12p°w + 1dpw® — 6w?))
B 12w?(3w — 2p)(w — p)

(4.17)
To calculate the current, consider the following terms:
G;00; + @00 = o B + By + i fi + B (4.18)
= 2Re (0} B + ) '
To calculate the third order term then, we have
J3 = 9p003 + Q093 + P10P2 + P3001 + P30 (4.19)
= 2Re(ags + Bjas + affa + fioz)
And the current is given by
1 i
Js = ) / dpjs
(4.20)

1
— 5r3 | PApd8 Re(af + Bia + aife + Fau)

First, we note that the integral over all p2" terms give zero. The first and second
terms only have a single contribution then which is immediately seen to be the

term in (53 which has no py prefactors, and the a3 term with the p_ prefactor
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which combines with 3}’s p, to give p?. All other terms cancel over angular

integration. So we have

A3p(3p® — 12pw + 14pw? — 6w?)
dpdf R * = d 4.21
| pavatetcisn) = [ pir oo —p)Ge—2) Y

Now for the third term:

« 2rC* — W)+ p_p)AC, (2p_(p — w)? + —2w) + 3
/pdpdeRe(alﬁg):/pdp F(p(p—w) +p-p)AC1(2p_(p — w)* + pp(p — 20) + 1)
dw(w —p)
_/ 1, 2T APACP (p — w)* + p'(p — 20))
= [ pap 8w3p?|w — 2p[2(w — p)

_ T|APPAQ(p — w)? + p*(p — 2w))
= / P A — 2w — p)

(4.22)

And finally, the complement to this term:

. 2 CY (p* — wp + pL)ACI(2(p — w)(p* —wp + p2) + p(p — P2

_ /pdp%!AIQA@(p —w)((p* —wp)* +p') —p°
8w?p?|w — 2p*(w — p)

_/ 1, MAPACKH — W)’ = 2p*(p —w) — p
- 1w — 2p]2(w — p)

_ / 1, APARK — w)” = 3p° + 2p°w
)7 4wl — 2pP(w — p)

(4.23)

Summing these last two terms, we get

T|APAA(p — w)? — 2p°)
4w|w — 2p[*(w — p)

/pdde Re(ajfBs + fiaz) = Re {/pdp (4.24)

Now to sum over the meagnitude of the momentum, we take the analytic contin-
uation of the denominators such that
1 1 1

- — — — — + i (z) (4.25)
T T+ T
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Calculating our final result first, the absolute value denominator is a magnitude,

so we don’t analytically continue this term, leaving only the final term, giving

: fo) — TlAPAMA(p -w)’ —2p%) 1
/pdpd9 Re(ajfs + fiasz) = Re [/pdp Tl — 2P (w — +imd(w — p)

(4.26)

But A is imaginary, therefore we only want to take the imaginary part in order

to retain only the real parts. Then we have

im?| APA(4(p — w)® — 2p°)

/pdpd9 Re(ajfs + Bias) = U pdp 1w — 2P 6(w —p)
— 22| A|? Aw?
4w (—w)?
_ —im?|APA
N 2w
(4.27)

The first two terms aren’t as simple. We wish to integrate

/ /d¢9 p(3p® — 12p%w + 14pw? — 6w?)
1203 (w — 2p)(w — p) (3w — 2p)

o /d A3p(3p® — 12p*w + 14pw? — 6w?)

12w3
( + imd(w — 2p)> <L + imd(w — p)> ( ! + im0 (3w — 2p))
w 3w —2p
o /d A3( — 12p%w + 14pw? — 6w?)
12w3
. d(w — 2p) §(w —p) J(3w — 2p)
: ”(w “p)Bo—2p)  (w—2p)(Bw—2p)  (w—2p)w —p>>
o (—13/16+2 — 45/16)w?  —2im2TA® 2727 APediot
1203 3w 3w

= 0w

(4.28)
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And our final result is (reintroducing —e from the current formula)

6’A‘3 27r2763iwt 27r2eiwt
Jg = 5 +

27 32w 4w
B e|A|3 7 3wt
C dw 8

(4.29)

+ 26“”}

Where oy is the ‘universal conductivity’ of graphene. In real units, we simply
set [A] — “£< (and p — vpp but they have been eliminated with the delta

functions) and we end up with

2,2 172 [, 3iwt
_Jietvp By |:7€

iwt
J3 = Rt 3 +e :| (430)

For a 1THz beam, for the third order term to be comparable to the first order

term we have

Js i E?R [Te3t
Jl h2wt 8
2.2 12

_ervpkyp
h2wt
hw?
B, =
(AW

+ eiwt:|

(4.31)

Where we have defined E, as the critical field needed to make the nonlinear terms
begin to dominate over the linear ones. Using h =~ 1E — 34Js, e = 1E — 19C,
w? = 1E24 x 412?52 =~ 1E25572, and vr ~ 1E6ms™! we get

Ey ~ 10000V/m (4.32)
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4.2.1 Temperature Dependence of Results

We need not redo the entire to obtain the equivalent finite temperature results.

Firstly consider

1 1
ee/T+1 e/ +1
1 ol
e/ + 1 /T +1
1—e/" (4.33)
e~ /T +1
nr(e)
np(—e)

= n(e)

Inserting the distribution function into the velocity operators, we have, from

np(e) —np(—e€) =

equation 17:

APAA(p — w)3 — 2p3) ] 1 — e—P/7
/pdpdeRe<a;52+5;a2):Re[ /pdpwu (4(p — w) p)} ‘

43w — 2pP2(w —p) JeP/m+1
(4.34)
Which follows the analysis quite simply, giving (equivalent to eqn. 20):
—im?|APA (1 — /T
Jy = 4.35
3 w (e‘w/ T+ 1) ( )
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For the other terms we start from eqn. 21

/ / — 12p%w + 14pw? — 6w3)n( )
12w3 —2p)(w — p)(Bw — 2p) b
A3p(3p® — 12p%w + 14pw? — 6w?)
=27
/d Lo n(p)

Lo (L o) (g i)

A3 p(3p® — 12p*w + 14pw? — 6w?)
. ( d(w — 2p) d(w —p) d(3w — 2p) )
X AT
(W=p)Bw—2p)  (w—2p)Bw—2p) (wv—2p)(w—p)
g2 (—13n(w/2)/16 + 2n(w) — 45n(3w/2)/16)w?
T 1205
(4.36)
And so we have
3y = AP [(Z130(0/2) | nle) _ 4506G/D) s
4w 48 3 48 (4.37)
~ Jie2R B [ —13n(w/2) N 2n(w) _ 45n(3w/2) 4 _ ()t '
- h2wt 48 3 48
And the critical field strength is given by
hw?
E.= , 4.38
evp N (4.38)
Where
Nj = 2n(w) (4.39)
And
13 2 45
3 _ _ 19 z _
Ny = 48n(w/2) + 3n(w) 48n(3w/2) (4.40)
Where
1— e~/
n(x) T (4.41)
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If EY is the field strength required at zero temperature, we have

ET 1
H— 4.42
EY ~ N§ (4.42)

Which gives the field strength required as a ratio of the zero temperature field’s

strength.

We have calculated the linear current term via this method and obtained the
same result as that obtained with the Kubo formula. As well as the linear term,
we have calculated the third order current contribution to the ‘universal’ con-
ductivity, as well as the frequency tripling term. It was found that the second
order contribution, due to time inversion symmetry, gave a zero contribution.
The third order current, then, is a superposition of a term oscillating with fre-
quency w, J3(w), and a frequency tripling term, J3(3w). The electronic processes
represented by these two terms are shown in Fig[d.I] The linear ‘universal con-
ductivity’ is a single photon process where an electron absorbs a photon making
causing a from the valence band to the conduction band. The two third order
terms are both three-photon processes. The term oscillation with frequency w cor-
responds to a process where two incoming photons are absorbed, followed by the
immediate emission of a third photon. The frequency tripling term corresponds
to simultaneous absorption of three photons and the total transition energy is
3hw. The latter two terms are inversely proportional to w?, and proportional to
E? which is the power of the field.

By using the same method we can obtain «,(p) and /3,,(p) for any n, and thus
the full nonlinear current of the system at arbitrary electric field can be obtained.
In general the nth order term is proportional to Eg_l Jw?™. This means that at
sufficiently high field strength and low frequency, the nonlinear terms are relevant.

In Fig[.2] we plot the frequency dependent nonlinear current relative to the
linear current. Both nonlinear terms decrease rapidly with the frequency, and
at low frequencies, are approximately an order of magnitude lower at room tem-
perature than at zero temperature. For weak fields and high frequencies, the
linear current dominates and the two nonlinear terms are approximately equal in

magnitude.
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Figure 4.2: The frequency dependent nonlinear current. Both the single frequency

and frequency tripling terms decrease as w4

, and also with increasing tempera-
ture. At low frequencies, low temperatures, and sufficiently high field strengths,
the nonlinear terms will contrubute to the optical conductance of graphene. In
particular, the single frequency term will abolish the universality of the ‘universal

conductance’ under the right conditions.

The point at which the nonlinear conductance dominates over the linear con-
ductivity is given by the simple expression ¢4/co; > 1 which gives a critical field

strength of

7%)2
evpy/N;
For a beam of frequency w=1THz, at zero temperature, this gives a critical field
strength of E¥ & 1600V /cm for the single frequency term, and EX &~ 1700V /cm

for the frequency tripling term. These field strengths can easily be achieved in a

Ev = (4.43)

laboratory. For the same beam at room temperature, the critical field strength
becomes F¢ =~ 2350V /cm, and EX ~ 2250V /cm. This means there is a crossover
point where the single frequency term ceases to dominate over the tripling term.

2

At zero temperature, both critical fields increase as w*. At room temperature,

the two critical fields have rather different w-dependence. Fig[i.3(a). shows the
change of critical field AEc = E¢(300K) — E¢(0K) as a function of frequency.
Both critical fields increase as temperature increases, indicating that thermal
excitation can reduce the nonlinear effect. For each AF(, there exists a frequency

at which the thermal effect is strongest. For AFs(w), this frequency is around
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kpT/4 and for AEq(3w) it is around 3kgT'/4.

Fig(b) shows the temperature dependence of the critical field at w =1THz.
There are two distinctive temperature regimes separated by the temperature T7.
Below Ti, J3(w) dominates the nonlinear effect while above Ty, J3(3w) is more
dominant. This behaviour is useful for frequency up-conversion device appli-
cations since the use of the frequency tripling term is more effective at room
temperature than at low temperature.

These results demonstrate that graphene is a rather strong nonlinear mate-
rial. There are two third order nonlinear terms, J;(w) and J5(3w) . The first
contributes to the current oscillating with w. This adds a correction to the re-
sponse function of w, o(w) = o9 + E?/w. Therefore the universal conductance
will be destroyed at a field strength of around 10® V/cm and frequency around
1THz. This effect is rather robust from low to room temperatures. The sec-
ond nonlinear contribution is a frequency tripling term. This term is similar in
strength to its complement, and at higher frequencies is higher than the single
frequency term. This term’s relative strength makes graphene a potential candi-
date as a THz emitter/detector at frequencies which are traditionally difficult to
obtain by using an existing emitter at one third the frequency. For sufficiently
strong fields the loss rate could be minimised even in a cascading situation.

These results are particularly significant as materials with a regular parabolic
dispersion will not exhibit any kind of nonlinear response: linear response theory
is exact in these cases. Nonlinearities are introduced to a parabolic system via
disorder scattering. The slight distortion of the bandstructure can then cause
non-zero higher order terms to arise. Graphene has no such restriction however

due to its unique linear bandstructure.
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Figure 4.3: (a) The difference between the critical fields at 0K and 300K as a
function of frequency (ile. AE. = E.(0K) — E.(300K)). There is a maximum
discrepancy for each nonlinear contribution which indicates the frequency where
thermal effects are most significant. (b) The temperature dependence of the critical
field strength at fixed frequency. At low temperatures the single frequency nonlin-
ear current dominates over the frequency tripling term. At = 180K however, the
situation is reversed such that at room temperature, the frequency tripling term is

the dominant nonlinear contribution.
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Chapter 5

High Frequency Conductivity of
Graphene

With all the predictions of chapters three and four having emerged, the optical
properties of graphene based systems appear to be more significant and more
versatile than perhaps previously believed. However, a rather fundamental is-
sue remains unsolved: What is the effect of electron-phonon coupling on these
properties? Will the predicted properties remain at, say, room temperature?

With these questions in mind, we will now investigate the impact of electron-
phonon coupling on the ac conductivity of graphene based systems. While these
calculations are only strictly relevant for 2D single layer graphene, the results will
inform our understanding of the contribution of electron-phonon interactions to
the ac conductivity of graphene systems in general, and serve as a starting point
for further theoretical and experimental investigation.

In this chapter we evaluate the finite temperature effect of the contribution
to the optical conductivity obtained when electron-LO phonon interactions are
included in the optical conductance calculation. The choice of which terms to
include in the calculation will be determined diagrammatically with a simple
high-frequency approximation. The electron-LLO phonon interaction contribution
to the universal conductivity of graphene that we obtain is relatively small, but
becomes significant as temperature is sufficiently increased. Moreover, the nature
of electron-LLO phonon interactions in graphene is further understood by these

results.
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5.1 Phonon Spectrum

Before delving into the calculation of the optical conductivity of graphene with
electron-phonon scattering included, we must determine the phonon spectrum
of graphene. This has already been done quite competently (46). There are
two methods which are primarily utilised. The first is the force constant tensor
method up to fourth nearest neighbours. The second is a similar force constant
tensor method up to only second neaerest neighbours with a bond bending term
incorporated to account for the effect of further neighbours.

We have used the former, and reproduced the phonon spectrum for the sake of
future calculations. An excellent summary of the calculation is given in the book
by Saito, Dresselhaus, and Dresselhaus (46)), and is summarised briefly here.

The equation of motion for the ith atom in the unit cell is

J
Where the summation is over all relevant neighbours k. The force constant ten-
sor K% then, contains the strength and direction of the coupling between the

neighbours ¢ and j. Fourier transforming the displacements using the usual pre-

scription we arrive at

(Y~ M) YR = KU e (52
k

7 K j
Where w is the eigenfrequency which we have reasonably assumed to be constant
over all sites. The exponential terms can be combined on the RHS to give the

position of the ith atom relative to the jth (AR;;), and we obtain

(D K7 = Mw?) 3wy = 3K Y e ARy (5.3)
j Kk j Kk

We are thus left with a dynamical matrix which is a function of the 3 x 3 force
constant tensors. There are two atoms per unit cell in graphene, which means we

have a 6 x 6 dynamical matrix, with quadrants

Daa Dap
D = . 5.4
<DBA DBB) (5-4)
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acC

y¥4

Figure 5.1: The fourth nearest neighbours for graphene. We include up to fourth
nearest neighbours so that the bond-bending effect of the third and fourth neigh-

bours will be included.

All that remains is to determine the force constant tensors for each pair, up to the
desired number of nearest neighbours. In the literature cited, the three axes are
denoted by radial (r), in-plane tangential (ti), and out-of-plane tangential (to).
This is generally misleading for our present case because we won’t be considering
the case of carbon nanotubes. For this reason we shall depart from the cited text
slightly and denote those three same directions by armchair (ac), zig-zag (zz),
and normal (n). For coupling between an A atom and its neighbour along the ac

axis, the force constant tensor is given by

¢ 0 0
K% =10 ¢, 0 (5.5)
0 0 o

ac
Where the superscript denotes that we are talking about first nearest neighbours.
Whatever the values of ¢!, the strengths will be equivalent for all equivalent
neighbours, but rotated. So we obtain the other two first nearest neighbour
force constant tensors by rotating the above matrix by 27 /3 and 47 /2 about the
normal axis. We now have all the information we need except the actual values
of ¢. These are given in table [5.1]

There are three first nearest neighbours, six second nearest neighbours, three
third nearest neighbours, and six fourth nearest neighbours, as shown in figure

5.1} The dispersion curves have been solved numerically and the results are shown
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Table 5.1: Force constant tensor values ¢ up to fourth NN

Neighbour Normal Zig-Zag Armchair

1 9.82 24.50 36.50
2 -0.40 -3.23 8.80
3 0.15 -5.25 3.00
4 -0.58 2.29 -1.92
1600
T@ 800 1 o
3
400 | K
0 H H
r M K T

Figure 5.2: The phonon spectrum of graphene obtained using the fourth nearest

neighbour force constant tensor method.

below in figure [5.2
For results in this thesis we will only be concerned with the longitudinal optical
mode at small q (ie. near the I' point), which is one of the two highest energy

modes in figure 5.2 and has an energy in electron-volts of hwro =~ 0.2meV .

5.2 Many Particle Formalism

Let’s now consider electrons in graphene whose energy is relatively low and is
given by the massless Dirac fermion dispersion. The Hamiltonian of electrons is

given by

H = Hy+ H, (5.6)

where Hj is the Hamiltonian of noninteracting electrons and phonons,

Hy=—tY k| jCi—s + Y _ wqblibq. (5.7)
k,s q
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Here t =~ 2.7¢V is the first nearest neighbor hopping amplitude, s = +1, and
ky = k, £ ik,, and cx(by) is the electron (phonon) annihilation operator whose
hermitian conjugate is a creation operator, and w, is the LO phonon frequency.
Hj is the electron-LO-phonon interaction term,

Hi= Y geaMylq s (b +00y), (5.8)

K,q,s,s'

where gi q is the electron transition matrix element, M, is the electron phonon
coupling strength which, in the case of LO phonons, has no q dependence but is
given by a constant. We shall neglect the spin degree of freedom in our calculation.

The single particle eigenvalues and eigenvectors can be written as,

ks = svur|K]| (5.9)

Ys(k) = % (86?0{)) : (5.10)

where ¢(k) = tan~*(k,/k;). The corresponding Fermion field operators have

and

the form W,(r) = >, ¥s(k)e™® ey, from which the current operator is given as
4, = €2 2578,’1{,1{, (K',s'|0Hy/ 0k, |k, s).
The Kubo formula for electrical conductivity is given by (30),

mula) = < [ e (e 0.0, 00, G.11)
The time dependence of an operator is given by O(t) = eo!Oe~Hot . In order
to represent the Kubo formula in terms of Green’s functions, we need to find the
ensemble average with the complete ground state. Of course this is not possible,
and the usual approach is to exploit the existence of a Dyson’s equation for the
correlation function of equation [5.11] which is done by performing the S-matrix
expansion of the perturbed state functions in terms of the known ground state
functions of the non-interacting Hamiltonian Hy. This leads to a Green’s function

representation of equation of

Moo = 5 30 S0 08 0 (K)

$1,82,53,54 kk’ (5.12)

%0 {T(Ch 105y CpsaChtic s CossU (9))o

92



CHAPTER 5: HIGH FREQUENCY CONDUCTIVITY OF GRAPHENE

k+q )y

S +amt wn

Figure 5.3: The five diagrams which contribute to the high frequency correction

to the optical conductivity.

where v; ;(k) = (k,i|0Hy/0k|k, j), and T is the time ordering operator. U([)

carries the interaction terms and is given by

U(B) = exp [— /0 ’ duHI(u)} (5.13)

Our system is isotropic, and so we will drop the indices u, v, and expect the
Hall contribution to be zero. The Green’s function described above will give
us the phonon contribution to the longitudinal conductivity of graphene within
the Dirac regime and under the high frequency approximation. Using this we
can write out the Green’s function M(p,u) to any order of interaction. We
restrict our attention to terms with equal numbers of bubbles and interaction
lines which is the five diagrams given in figure |5.3| The interactions are given by
the RPA series (which simply retains the same approximation used to obtain the

five diagrams) and is shown in figure . The effective interaction obtained via
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Figure 5.4: The effective interaction is given by the bare phonon propagator
plus an intermediate electron-phonon interaction, which causes a density fluctua-
tion described by the electron propagator loop, followed by an effective interaction.
This diagram describes the infinite sum implied by equations & Tak-
ing the effective interaction to be of this form is equivalent to adopting the RPA

approximation.

the RPA approximation is

V(a, am) = VO, o) + VO(a, )T, )V (a, i)
_ VO(q, am) (5.14)
1= V9(q, )T, )

Here II(q, ay,) is the electronic polarizability given by,

(5.15)

) = 3 16 @16 9P (era) = np(e)

€ — € —
K5,/ k+q,s’ k,s m

In eq. (| - V0 = M?D%q, a,,,), where D is the bare phonon propagator given by
D%q,am) = f“iﬁido for the LO branch. The effective interaction from eq.(5.14

AU

can then be Written as,

2
V(Qa am) - Lo

5.16
a2 —wio — 2wroll(q, ay,) (5.16)

Using the five diagrams from figure |5.3 we obtain five separate Green’s func-
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tions:

Z ‘/51,52,53,34 (qv QM)Gk,Al (fl + wn)Gk-I—q,)\g (gl + oy, + Wn)

Il,m

X Gieras (§1 1 am) Gion, (§) Fan (@) Fx, 0 (Q) V5,0, Vrahs
Z V91,82,82,S3 (q, am)Gk,)q (fl + Wn)Gk—i—q,)\Q (é.l + (0777 + wn)

lym

X G (&1 W) Gren, (§) Faox, (@) FXn, (@) VasaUagn,
Z V92,83753,84 (qv am)Gk,)\l (fl + Wn)Gk—i—q,)\z (gl)

lym

X G (81 + @m) Greng (§) Fasag (@) Fign, (@) 0a0, Va0
D Vit orseuss (U O 4 0n) Gre, (€ + W) Gierars (€ + 0m) Gier, (§)

LlU'm
F)\Q/\l (q)F:\kQ/\g (q)vA3A1UA5A6
X ‘/52733756735 <k7 O‘m)Gk’+q,)\4 (gll + O‘m)Gk/,AE’) (fl/ =+ wn)Gk',Ae (fl/)FM/\e (Q)F;4A5 (q)
Z ‘/;1,32,54,55 (qa am>Gk,A1 (gl + wn)Gk—l-q,)\g (é-l + oy + wn)Gk,)\g (gl)

LI'm

F>\2>\1 (CI) F;:Q)\S (q)v>\3)\1 Uxs e
X Vg s3,56,85 (A Om + Wn) Gieyqn (fl/ + Qp + W) G s (gl, + wn) G xg (gl,)

F)\4/\G (q) F;\(4/\5 (q) ( )
5.17

Here G is the electron Green’s function given by Gy », (&) = rer—

5.3 Momentum Frequency Summation (&)

Having obtained the form of the electron Green’s function, the [ summation is
readily performed by the residue theorem. We can do this, up to a point, for any
general system, by writing down general transition matrix elements and general
energy bands. The calculations are straightforward, but long and cumbersome,
so we will only show the calculations for diagrams two and three from figure [5.3]

purely for pedagogical purposes.
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5.3.1 Diagrams two and three

Next we will consider the single loop diagrams with the interaction on the left
and right hand sides together. These two terms are particularly symmetric and so
it is most convenient to proceed in this way. First, the left hand side interaction

diagram has the Green’s function

D VGion, (6 4 wn)Gicran (§ + am +wy)
I (5.18)

X Giens (& Wn) Gieng (§) Faor, (@) FX, 0, (@) Uasag Urang

The Green’s functions can be written in integral form as (dropping the subscripts

for w, and o)

1 1 1 1
dz
/ (Z‘{'U) — Ek,)\l) (z+a+w — €k+q,,\2) (z+w — 6k7)\3) (Z — 6k7)\4)

(5.19)

Which has residues

( ) 1 1 1
nNp(€kx
€k — €kigre T O €k A — €k g €k A — €k — W
( ) 1 1 1
nF €k+q7>\2
€k+qre — kN T O Ck+q2 — CkAg — X €kt+qhe — CkAy T W T O

1 1 1
np(€x ;)
€k — €k )\ €k — €ktqre T O €k Ay — €k g — W

( 4)<E — €k - U/)<Ek 4 k+q,\2 )( 4 )
n €k € —I— (0% + w €k €k w
F 7)\ k,>\4 ’>\1 ,)\ 7>\ 7>\ 7A3

And the Green’s function for the right hand side interaction diagram is

;VGk,)q (& + wn) Grcran (&) (5.21)

X Giexs (& 4 m) Gien, (§) Fagxg (@) Fx, o, () Ua 20000
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The Green’s functions can be written in integral form as (again, dropping the

subscripts for w,, and «;)

1 1 1 1
foelma ) (=a )=o) e
Z+w—€k’)\1 Z — €k A9 Z+ ap, — €k+q,)\3 2 — €k Ny

Which has residues

1 1 1
nr(exn)
€k, N\ — €k — W €k — €kigr; — Wt @ €k — €k — W

F( )(1 + )(E — €k+ a)(ek €k )
Np\€k o €k Mo — €k, w k,A2 k+q,A3 A2 A4

F ( ) ( 1 — ) ( — € Oé) ( )
n €k+q,)\3 € As — € A1 6% —|— w €k+q,>\3 k, Ao €k+q,>\3 kA4

F(E )<E] — €] (7)( )(5 €+ a)
n k,\4 A €k + Ek,)\4 €k,>\2 kA4 k+q,As

Now, in order to match up the transition matrix element indices, for the second

(5.23)

of these diagrams, set 2 — 1,3 — 2,4 — 3,1 — 4, so we have then,

nF ( ) ( C )) < a) (Ek Ek 3 )
6k,)\ ’)\1 € ,A _l’_ 6k,>\1 €k+q,)\2 7)‘1 ’)\
nF(e +q )( ) ( — € —Od) (€k+q 2 Ek CK)
k 7)‘2 6] 7A — €k7)\1 (6% w €k+q,)\2 k,)\l ’)\ 7)\3
( ) ( - - 6]: 4 ) ( ) (6 2 )
nF Ek,)\3 ’A 7A _j’_ w Ek,)\S €k’)\1 k,)\g 6k+q,A (

1 1 1
nr(€xa,)
€k g — €N — W €k Ay — €kigr — Wt O €k Ny — €k Ny — W

(5.24)
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Combining the two equations then, and concentrating on the np(ex ;) terms, we

have

nNe(€k
! €k — €k )3 €k — €k T W €k — €k, — W

€k — €kigr, T O

( ) 1 1 1 n 1
NE(€k ;3
€k N3 — €kigr, T QO €k — €k )\ €kNg — €k T W Ekny — €k, — W

nel€ + — Tw
Fitk €k, A4 €k,\1 +w €Ay — Ck+qAe atw €k, €k As

(5.25)

And for the np(exiq,;) terms, we have

1 1 1
nr(€krqr) T
€ktqhe — EkA T X €k+q2 — €Ay — & €k+qA2 — CkAy T X T W

1 1
= nr(errqr,) n
€k, — €k)3 €k+qh2 — €kN, — X T W

( : : )
X J—
€k+q,)\2 — Ek,)\l — €k+q,)\2 — Gk’)\3 —atw
1
= nr(eicrgn) | ————
€k, A1 T €k
1

1 1
X —
€k — €y T W/ \€kiqro — €kay — O €kiqry — €k — @ T W

1 1 1
(ﬂms — €k W) (€k+q,A2 — €k — QO €kpgqr, — €y — O W)
(5.26)

Now, looking at the second and fourth terms of this last expression:

1 1
€k — €kds /) \Ekiqrs — €kpy — @ EW

X ( ! ! ) (5.27)
€k, 23 — €k )\ +w €k, 1 — €k +w '

1 1 1
€k — ko TW/ \ kg — €y W/ \kigr, — €k — O Ew
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Combining the np(ex ;) and np(exiqy,) terms, we get

" 1 1
F)\z)q (q)F)\g)\g (q)’l])\3)\41))\4,\1 [( ) (Ek \ )Q21 (cb am)
sN1

€\ — €k — €k Tw

1 1
- Q23 q, Om
<€k,A1 - Gk,As) <€k,A3 — €k T w) ( )

1 1
+ Q' (q, am + wy,
(Ek,A1 — e T W) (Ek,xs — e T w) ( )

(5.28)

All five diagrams can be calculated following the same procedure. Before writing
down the final result however, we need to determine the form factors (transition

matrix elements) for graphene specifically.

5.4 Form Factor Determination

Up until now, the calculation has been for any general multiband system with
non-trivial transition matrix elements. We are interested in terms like that in
equation but with the specific transition matrix elements of Dirac graphene.

For single layer graphene, these non-trivial form factors are given by

* —1 1
FAi)\j (q)F)\kAz<q) = (1 >\i€ ¢(k+q)) <)\j€i¢(k)>

; 1
% (1 e ¢(k+q)) <)\le_i¢(k)> (5.29)

= (1 + )\i)\jeiiA)(l + )\k)\leiA)
=1+ /\1)\j>\k/\l + )\i/\jeiiA + )\k>\leiA
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Where A = ¢(k+q) — ¢(k). There are eight possible band combinations if

)\1:>\

Fu(@F(q) = o (1 + cos A)

[\]

1. .
Fu(q)Fy_\(q) = 5 sin A

1. .
Fun(Q)F*,,(q) = 5@ sin A

1. .
Fy_x(q)F5y\(q) = —§ZSIHA

Which in general can be described by

; (5.30)
Fn(@F?, (@) = 5(1+ cosA)
Py (@) Fy_y(q) = %(1 — cos A)
Fx (@) Fy,(q) = %(1 —cosA)
Fy (@) F*,_,(q) = —%isinA
Fy@) Fi(a) = 5 Zgu(1 + ie™) (5.31)

Where Z;ji.. = R(S) if ijk - - - = 1(—1). Also, note that Q~7(q,z) = QY(q, —x),

and Q"7 (q,z) = Q" “(q, —z). The other term to consider is the current matrix

elements of the velocity operator

(5.32)
=cospk) (M=) =1)

=—cosp(k) A=\ =-1)
= —ising(k) (A =-X\;=1)
=ising(k) (A =—-)j =-1)
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This can also be described quite generally by

Uij = ijjeiA (533)
Proceeding with these factors then, we now need only calculate the momentum

transfer summation.

5.5 Momentum Transfer Summations (a,,)

Before calculating the interaction summation, it is worth establishing some rules
for the boson and fermion distribution functions, as well as summations over

density fluctuations:

Firstly
1 e P11
= = =1 — _
w(t) = G T i e nr(=2) 5.34
pe (5.34)
1 e 1+1
nl) = Gy = e - sl

Also, for systems with symmetric subbands, the density fluctuation is given by

Qs,s’ (Z‘) _ Z nF(S/ek-i-Q) - nF(SEk)

S'€xtq — S€k — T

8,8’

_ Z 1 —np(—5ekrq) — (1 — np(—sex))
o S'€icrq — SO (5.35)

(—8'€xrq — (—s)ex +

_ Z —(ilF(—S €k+q) — np(—sex))

= Q" (~7)
Since s,s’ = £1. On integration, the indices s, s’ become irrelevant here and so
[ Q(z) = [ Q(—x). However, if we impose this condition, then we must switch
all 5,8 — —s,—s’ in the form factors. The only ones that make a difference are

in the filling factors such that the following transformations must be adopted:

np(exiq — ) = Ny — —1 — N, (5.36)

np(exrq =€) =ng — 1= N,
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Finally, we will define some shorthand notation

Q(qv wLO) = QO
Q(q,w, Twro) = Q+

To proceed with the momentum transfer (m) summation, we cannot use the

(5.37)

residue method because the interactions are dressed (they have continuous poles
rather than simple singular poles). We use the method adopted by Perel and
Eliashberg (47), which essentially leads to the relation

%Z P )t (am + wy) = % /dxH(x)

(5.38)
< (<¢+<x> (@)U (@ 4 wn) + 6 (@ + wn) (U (&) — w—<x>>)

Where ¢(z)* = ¢(x & 4n), with n — 0, can be any combination of products of
Q(x) and V(x) terms, and H (z) is the Bose-Einstein distribution function.

Flwn) = dlam)ih(am + wy)

= /dfv coth(z/2)(¢"(x) — ¢~ (2)) " (z + wy) + ¢" (z + wu) (P (2) — P~ (2))
(5.39)
Where ¢ = ¢(z & in) with n — 0. The final step will be the sum over n, which

will simply be the analytic continuation of w,. With all these rules in place, we
can write down the Green’s function for the five diagrams shown in figure [5.3
with effective interactions as given by equation [5.16, The result is given in the

next section.

5.6 Results and Discussions

We now have the final result for the electron-phonon scattering effect on the

optical conductivity of Dirac graphene. The contribution is given by
1
o(w) = op(w) [1 + ﬁ} (5.40)

w
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Where

I(w):/(;gZ%/dan(ﬁ)—xF(aj,q) (5.41)
In which

1
F(z,q) = 162 [@ /dk {—(1 + 55’ cos A)

y <COS Prtq oS P (48 exerrq — w?) Sin P Sin gbk)

w? (4ei +w?) (46 o +w?)
Lsin A cos gbl;rq sin ¢y _ sin ¢;k+q COS P
AT+ (et o?)
1[(1+ ss'cosA)?cos¢i  sin A?sin ¢
A + 2 2
4 w? de; +w

x V(g,a+w) Q" (q,a+ w)*} (V(q, a)* Q" (q,a)" = V(q,a)"Q"*(a, a)‘)

1
+— dk((l + ss' cos A)

42
o (oSO8 Peracos P (48 Ebirg + w?) sin Py g Sin P cos gy
w2 (deg + w?) (46}, o + w?) 7
2 2

o (4G —w?)
+ (1 — ss' cos A) sin ¢k(4612<+—w2)2
T e e L )

(4€; + w?) (4ep g +w?) (42 + w?)

) ((V(q’ a)t = V(q,a0)7)Q*" (q,a + w)* + (Q*(q,a)" — Q*(q,a))V(q,a+ W)+>

1 [/ dk((l + 88/ COS A)2 COS ¢12( + (4€i — w2> sin AQ sin ¢12()

 64nt w? (4€2 + w?)?

xvaﬁr>w«q@wvmﬂ+wﬁ@“mﬂ+wﬁ2

+ (V(q,a)"Q"*(q,a)™ = V(q,a)"Q"*(q,a) *)V(q,a + w)*)] ]

(5.42)
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Where A = ¢(k + q) — ¢(k), and

Q**(q, ) = 1rlGkras) = nrlch) (5.43)

€k+q,s’ — €ks — @

The form given by equation is cumbersome, but readily calculated numer-
ically. The electron-phonon interaction strength for LO-phonons is well known,
and is given by M? ~ 0.035/4 for small ¢, in our dimensionless units, which are
normalized by vg ().

In figure we present the correction to the optical conductivity which can
be attributed to scattering by screened electron-phonon interactions. Firstly, we
point out that the difference between the screened results and the unscreened
results is negligible. Therefore, the effective interaction given in equation ([5.16|)
can be approximated by the bare electron-phonon interaction with almost no loss
of precision. The spectra contains both interband and intraband terms. For an
intrinsic sample, these are characterised by a resonant and continuous spectrum
respectively.

Both the continuum (intraband) and resonant (interband) spectra are shown
in figure [5.5(a). The 30K results are shown in the inset due to their low mag-
nitude. At 30K it can be seen that the primary interband term (w = wrp) is
relatively strong, but the multi-phonon processes are negligible. For tempera-
tures > 100K, the continuum results dominate so strongly that the resonant
terms cannot be seen. At room temperature, it can be seen that the correction to
the universal conductivity due to electron-phonon scattering is as much as 0.20y.
The resonant (interband) spectrum is shown in figure [5.5|(b), and contains terms
at w = nwro/3 where n = [1,4]. The n = 1 peak is barely noticeable in the
figure, but can become quite prominent at higher temperatures. However, the
magnitudes in figure (b) are negligible, with the continuum spectrum shown
in figure [5.5|(a) vastly dominating for all but the lowest (1" < 100K ) and highest
(T > 500K) temperatures.

The temperature dependence of the continuum and resonant peaks at w =
wro/2 and w = wr respectively is shown in figure . It can be seen in (a) that
with increasing temperature there is an increased phonon population that facil-

itates both intra- and inter-band transitions, and so the relationship is roughly
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Figure 5.5: The electron-phonon scattering mediated conductivity of graphene.

In (a) we present both the intraband and interband contributions. It is found that
for T > 100K the intraband contributions dominate. The T = 30K results are

shown in the inset due to their relatively small magnitude. In (b) we show the

interband part which is shown to have several multi-phonon processes, but the

magnitude of this contribution is relatively negligible except at very low and very

high temperatures.
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Figure 5.6: The temperature dependence of the magnitude of the conductivity
at w = wro/2 (the continuum peak), and w = wro, (the dominant resonant peak)
from figure In (a) we show the inter- and intraband contributions together
and obtain a roughly linear relationship. When plotted in log-log form (inset), we
see that there is a significant ‘kink’ at T' =~ 30K . When considering only interband

transitions as in (b), both peaks display an exponential temperature dependence.
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Figure 5.7: The two dominant response peaks increase in magnitude for doped
samples, and are symmetric about zero doping due to electron-hole symmetry. This
can be attributed to the increased availability of intraband transitions, which are

the dominant mechanism.

linear with increasing temperature. In the inset to figure [5.6(a) we show the
log-log relationship of the same data, and it can be seen that there is a signifant
kink at T' ~ 30K, above which the roughly linear increase slows somewhat. In
figure (b) we present the temperature dependence of the interband part of the
same two dominant peaks. It can be seen that the resonant peak at w = wro
increases exponentially with temperature, with the interband part of the contin-
uum peak doing the same, only much more slowly. The interband transitions
then, follow an exponential increase in transition rates, whereas the intraband
transitions (which are the most dominant) are roughly linear. This explains the
condition that interband terms dominate at both high and low temperatures as
the linear relationship will, in general, cross the exponential one at two distinct
points.

It is worth noting that the qualitative behavior of the phonon scattering me-
diated conductance is similar at different doping levels. The continuum and reso-
nant structures are essentially identical, however the interband terms also adopt
a continuum as well as a resonant structure at finite doping. This is due to the
peculiar gapless and linear band-structure of low energy graphene. The doping

dependence of the continuum and resonant peaks are shown in figure[5.7], and are
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not suprisingly shown to increase with increasing doping magnitude. This is due
to the extra availability of intraband transitions. Due to electron-hole symmetry,

the doping dependence is symmetric about = 0.

5.7 Conclusion

In this chapter we have studied the effect of electron-LO-phonon interaction on the
high frequency conductivity of graphene in the regime of massless Dirac fermion.
The correction due the LO phonon scattering to the universal optical conduc-
tivity of graphene has been calculated which can be as much as 20% at room
temperature. The scattering cnductivity is dominated by a continuum intraband
spectrum which displays a peak at w = wro/2. We have found that the effect of
screening (within the RPA approximation) is insignificant, and that the electron-
phonon interaction can be approximately described by a bare phonon propagator.
This greatly simplifies calculations, and is in good agreement with the dominant
consensus within the field.

It was noted that there are also resonant interband terms observed at w =
nwro/3 where n = [1, 4], which represent single and multi-phonon processes. The
single phonon process w = wyp is dominant over the continuum results only at
T < 50K, beyond which the continuum results vastly dominate. However it
should be noted that the results for 7' < 50K are extremely small, at around
00/1000 or less.

The temperature and doping dependence of these results was also investi-
gated, and it was found that the spectra scale roughly linearly with increasing
temperature, and also increase with doping magnitude. The doping dependence
was found to be symmetric about p = 0 due to electron-hole symmetry.

In conclusion, we have presented a qualitative and quantitative result on the
electron-LO phonon interaction in graphene under the massless Dirac fermion
approximation. The temperature and frequency dependence of the eletron-LO-
phonon scattering mediated conductivity has been obtained and various multi-

phonon processes have been identified.
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It is pertinent at this stage to make some concluding remarks. The optical prop-
erties of intrinsic graphene-based systems have here been calculated in some
detail. We have considered various geometries for flat graphene systems (ie. we
have ignored entirely systems such as carbon nanotubes and buckey balls), and
performed calculations within the tight-binding approximation.

The relevance of the tight-binding approximation is quite well established.
Nevertheless, there has been some first-principles calculations performed over the
past couple of years which show that various optical and electronic properties
of graphene may deviate from the tight-binding approximation by around 10%.
In particular, these calculations incorporate excitonic effects, which can alter the
band-gaps in both 2D and 1D graphene. These corrections will not significant
alter the two order of magnitude enhancement observed in Dirac bilayer ribbons,
but may become significant for smaller scale results, or band-structure specific
results. Questions of particular import in this context are: Will the roton mode
observed in some non-Dirac armchair ribbons survive the transition to first prin-
ciples calculations? Will the strong nonlinear response observed in 2D graphene,
which is so dependent on the linear bandstructure, survive this same transition?
We suspect the answers to these questions will be ‘yes’! Nevertheless, they must
be asked, and at the end of the day, experiment will resolve the matter once-and-
for-all.

Furthermore, the intrinsic approximation deserves some attention. Graphene
is renowned for being a remarkably defect-free material. The electron-electron
coupling is amazingly small in most cases, making screening effects relatively
unimportant. However, defects such as rippling have been shown to be extremely

important, and have resolved more than one outstanding discrepancy between
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theory and experiment. For this reason, defects are important, and, in the case
of effects such as rippling, perhaps must even be considered part of an ‘intrinsic’
system. The expected effect of defects is, again, small. But the same questions
must be asked as before, particularly in the context of relatively ‘small’ or delicate
results. And once again, experiments will end any outstanding dispute.

With these two points in mind, we can say that we have thoroughly investi-
gated the optical properties of intrinsic graphene-based systems within the tight-
binding regime. The optical properties of these systems have been shown to
be remarkably versatile and, at times, suprisingly strong. They are tunable by
stretching, cutting at various widths and along different chiral angles, layering,
and heating or cooling. It is expected that, as a result of these predictions, further
experimental work will be carried out with the final goal being the incorporation
of these materials into future photonic devices.

We have also predicted a roton-like mode in the collective excitation spectrum
of some non-Dirac armchair graphene nanoribbons. This mode is the first mode
of its kind seen since superfluid Helium over 50 years ago. It is expected to shed
some light on the physics of rotons, and will undoubtedly have various fascinating
consequences that will be revealed in the coming years.

The set of remarkable properties of graphene-based systems has, once again,
expanded into new fields of investigation. Graphene is truly a multi-disciplinary
material, being researched in many different fields for various potential applica-
tions. The optical and superfluid-like properties of graphene represent yet two
more potential fields of significant research and application.

A sensible research direction from here which uses the results of this thesis
as a starting point is the optical properties of disordered graphene systems. The
role of disorder in graphene is currently being studied by several groups, but the
specific application to the optical properties of graphene based materials remains
open. There have been sufficiently significant predictions that have emerged from
this work that warrant confirmation and extension into the theory of disorder.
Furthermore, the role of disorder within the context of the roton minimum would
be particularly interesting, as the roton-like behaviour begs the question of the
presence of vortices (or at least their 1D equivalent) and bulk-edge coupling, both

of which are stongly affected by disorder.
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Finally, it is worth mentioning that some further work has been completed
since the initial submission of this thesis. We have demonstrated some unusual
electronic properties of semi-hydrogenated single and bi-layer graphene with vari-
able sized A- or B-hydrogenated domains. We find that the band gap scales lin-
early with the ratio of the number of A- to B-hydrogentated atoms, reaching zero
gap in the case of a single layer at Ny = Np, and at Ny = 0 for a bilayer, but
independent of the domain size. We also found that the phase at Ny = Np is
an insulator with zero band gap. We confirm this gapless insulator by the zero
optical conductance at low frequencies. This gapless insulator is a curious state
of matter which ensures robust transport properties and even long term state
retention. This work is currently under review for publication in Physical Review
Letters.
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