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ABSTRACT

This work is the first comprehensive investigation of potential changes in the radio-

biological effectiveness of clinical photon beams caused by a redistribution of electrons

in a magnetic field. It is also a fundamental study of both the influence of magnetic fields

on the peak-to-valley dose ratio of microbeams and the accuracy of theoretical modelling

for dose planning in Microbeam Radiation Therapy (MRT).

The application of a strong transverse magnetic field to a volume undergoing irra-

diation by a photon beam can produce localised regions of dose enhancement and dose

reduction. Results from Monte Carlo PENELOPE simulation show regions of enhance-

ment and reduction of as much as 111% and 77% respectively for magnetic fields of

1 to 100 T applied to Co60, 6, 10, 15, and 24 MV photon beams. The dose redistribu-

tion is shown to occur predominantly through an alteration in the lower energy electron

population, which may correspond to a change in the relative biological effectiveness.

In MRT, an experimental and theoretical investigation of the influence of trans-

verse and longitudinal magnetic fields on the lateral dose profile and peak-to-valley dose

ratio (PVDR) of microbeams is presented. Results show that longitudinal magnetic fields

greater than 10 T are needed to produce an effect. Strong transverse magnetic fields, on

the other hand, have no influence on microbeam profiles. The radiation response of the

edge-on MOSFET and its ability to measure dose profiles of monoenergetic and polyen-

ergetic microbeams are also investigated.

Simulations investigating the dependence of microbeam dose profiles on the ac-

curacy of beamline modelling (i.e. synchrotron source, multislit collimator, and beam

divergence) are also presented. Results show the asymmetric collimator construction is

responsible for a 10% variation in the full-width at half-maximum of microbeams which

affects the PVDR. Modelling the distributed source and beam divergence increases the

penumbral dose by almost 30%. The influence of the collimator alignment, interaction

medium, and the height of scoring regions on the PVDR are also investigated.
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