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Abstract 
 

 

The field of fracture mechanics can generally be divided into two groups: (i) the 

study of material behaviour prior to crack and (ii) the developing of crack opening 

criteria. Even though various studies have been done in both subjects there are still 

gaps that need to be bridged. This thesis aims at combining both groups of the 

modelling of dynamic fracture in crystalline materials at a reasonable cost of 

computational time. 

 

A model of crystal plasticity finite element method has been formulated to account 

for the effects of lattice structure in the crystalline materials. The model has been 

applied to simulate tensile deformation around a notch tip in both single crystals and 

polycrystalline aggregates. By comparing with observations from various 

experiments, the model has been proved to be able to accurately capture the 

material’s behaviours around a notch tip undergoing tensile load. Particularly, this  

model is among the very few, if not the first, that accurately predicts various 

experimental observations of two notch tip orientations ]101)[010(  and ]100)[010(  

that are widely found in the literature. 

 

This study has also developed a crack opening criterion that is dependent upon the 

evolution of the lattice structure. The core of this new criterion is an atomic 

interaction model that estimates energies of the interface of an fcc bicrystal. Results 

of grain boundary energy of <100> and <110> symmetrical tilt boundaries of an 

aluminum bicrystal obtained from the atomic interaction model agree very well with 

those from molecular dynamics simulations. 

 

The newly developed criterion has been applied to the modelling of crack opening 

and crack growth in a region around the notch tip in single crystals. Elements in the 

finite element mesh satisfying the criterion are removed from the mesh by using the 

element removal technique in Abaqus/Standard. Missing elements effectively act as 

voids in the material. Thus crack opening (in terms of void nucleation) and the 
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subsequent crack growth (in terms of coalescence of new and existing voids) are 

captured naturally. The newly developed methodology to model crack opening has 

been applied to predict mode I crack growth around a notch tip in Cube and Brass 

oriented fcc single crystals. The obtained results show similar behaviours of crack 

growth with those from molecular dynamics simulations of single crystals having the 

same lattice orientations. 

 

The methodology to model crack opening that has been proposed in this thesis is 

original. It enables the explicit modelling of crack growth without presuming a crack 

path. Also, a predefined crack opening criterion, which could be erroneous, that has 

been used in many finite element simulations of fracture is avoided. To the best of 

the author’s knowledge, the criterion of crack opening that depends on the structure 

of the interface of two misoriented lattices is presented in this study for the first time. 

 

The current thesis focuses into modelling tensile deformation and the subsequent 

fracture in fcc crystals. The methodology that has been proposed however can be 

readily applied to crystalline materials of various lattice structures with minor 

modifications.  
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Notations 

 

 

⊗  Tensor product 

αtilt
, βtilt

 Angles defining orientation of tilt axis in the global coordinate system 

Ω  Spin tensor 

Ω
*  

Lattice rotation of spin tensor 

Ω
p  

Plastic parts of spin tensor 

α
th  

A slip system α 

hklα   Angle of rotation about a global ][hkl  axis 

Γ0  Work of separation 

γ  Shear strain of a slip system 

γ0  Reference value of slip 

)(αγ&   Shear strain-rate caused by the plastic slip in the α
th

 slip system 

)(

0

αγ&      Reference value of shear strain rate 

δD Virtual form of the rate of deformation 

∆t  Time increment 

i

A∆d  , i

B∆d  Displacement vectors from time i-1 to time i at points A and B 

φ1, Φ, φ2 Three Euler angles 

δn  Corresponding crack opening 

δv  Kinematically admissible virtual velocity field 

δv
n  

Virtual nodal velocity field 

σ   Cauchy stress 

σmax  Peak separation stress 

σ&   Time derivative of Cauchy stress 

∇

σ   Jaumann rate of Cauchy stress on axes rotating with the material 

σA , σB  Cauchy stress tensor at points A and B 
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τ0  Initial critical resolved shear stress 

τ1  Breakthrough stress where large plastic flow initiates 

τ
(α)

  Resolved shear stress on slip system α. 

)(

c

ατ   Critical resolved shear stress of slip system α. 

 a1  Constants for fαβ (no junction) 

 a2  Constants for fαβ (Hirth lock) 

 a3  Constants for fαβ (coplanar junction) 

 a4  Constants for fαβ (glissile junction) 

a5  Constants for fαβ (sessile junction) 

C0  Tensor of elastic moduli 

i

Ad  , i

Bd  Coordinates of points A and B at time i 

D  Stretching tensor 

D
*  

Elastic part of stretching tensor 

D
p   

Plastic part of stretching tensor 

LD   Rate of the elastic stretching in the lattice coordinate system 

giD  Matrix transforming a vector in the global coordinate system to the 

coordinate system of crystal i 

D
damage  

Damage variable 
 

E  Green strain tensor 

critE   Interface fracture energy of a bicrystal 

E&   Rate of Green strain tensor 

f   Surface traction per unit of the current area 

F  Total deformation gradient 

F&   Time derivative of the total deformation gradient 

F
*  

Elastic deformation gradient 

F
p  

Crystallographic slip on the slip system (plastic deformation gradient) 

 f αβ  Strength of a particular slip interaction between two slip systems α and β 

F
(α)P  

Contribution of α
th

 slip system to F
p
  

g   Relaxation factor, which varies from 0 to 1 

g
iso

, h
iso

, r
iso 

Isoparametric element coordinates 



 x 

H  Fourth-order hardening parameter tensor 

h0  Hardening modulus just after initial yield 

hs  Hardening modulus during easy glide 

hαα  Self hardening moduli 

hαβ  Instantaneous hardening moduli including self hardening of each system 

I  A second-order unit tensor 

K  Jacobian matrix 

L  Velocity gradient 

L
*
 Component of velocity gradient due to elastic stretching and lattice 

rotation 

L
p  

Plastic contribution of velocity gradient L 

m
(α)  

Normal vector of slip plane of  slip system α
th

 in the current configuration 

)(

0

α
m  Normal vector of slip plane of slip system α

th
 in the reference 

configuration 

)(α
m&  Time derivative of the normal vector of a slip system α

th 
in the current 

configuration 

n
intf

 Normal vector of the interface of a bicrystal in the global coordinate 

system 

N  Number of slip systems 

0

iN   Initial normal vectors {111} in the global coordinate system 

k

iN   Normal vectors {111} in the global coordinate system at state k 

N
(1)

, N
(2)

, N
(3)

 Normal vectors of slip traces from Rice's solutions for fcc crystal 

lρ̂   Tilt axis with respect to the coordinate system of the fixed lattice 

gρ̂   Tilt axis in the global coordinate system 

)(α
P   Symmetric part of Schmid factor 

q  Latent hardening parameter 

R  Orthogonal rotation tensor 

R&   Time derivative of the orthogonal rotation tensor 

k

iR  Orientation matrix of crystal i at state k 



 xi 

k

jR  Orientation matrix of crystal j at state k 

k

ijR  Misorientation matrix between point i and point j 

RL Rotation tensor between the lattice coordinate system and the current 

configuration 

S
(1)

, S
(2)

, S
(3) 

Directions of slip traces from Rice's solutions for fcc crystal 

s
(α)  

Slip direction vector of a slip system α
th 

 in the current configuration. 

)(

0

αs   Slip direction vector of a slip system α
th

 in the reference configuration. 

)(αs&  Time derivative of slip direction vector of slip system α
th

 in the current 

configuration 

)()( αα
ms ⊗  Schmid factor 

t0  Kirchhoff stress in the current configuration at the time t 

tn  Normal stress ahead of crack tip for mode I crack 

t&   Material rate of Kirchhoff stress 

0t&    Stress rate in the reference configuration 

*

1t&   Rate of the Kirchhoff stress in the intermediate configuration 

Lt&  Material rate of the Kirchhoff stress in the lattice coordinate system 

∇

t   Jaumann rate of Kirchhoff stress on axes that rotate with the material 

∇
*

t   Jaumann rate of Kirchhoff stress on axes that rotate with the lattice 

U   Right stretch tensor 

v    Velocity in the current configuration 

V  Volume of the solid body in the current configuration 

v
n  

Nodal velocities 

n

iv   Nodal velocities at iteration step i
 

)(α
W   Asymmetric part of Schmid factor 

intfW   Net strain energy on the interface under the effects of external loading 

X  Position of material points in the current configuration 
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