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Abstract 
 

 

The field of fracture mechanics can generally be divided into two groups: (i) the 

study of material behaviour prior to crack and (ii) the developing of crack opening 

criteria. Even though various studies have been done in both subjects there are still 

gaps that need to be bridged. This thesis aims at combining both groups of the 

modelling of dynamic fracture in crystalline materials at a reasonable cost of 

computational time. 

 

A model of crystal plasticity finite element method has been formulated to account 

for the effects of lattice structure in the crystalline materials. The model has been 

applied to simulate tensile deformation around a notch tip in both single crystals and 

polycrystalline aggregates. By comparing with observations from various 

experiments, the model has been proved to be able to accurately capture the 

material’s behaviours around a notch tip undergoing tensile load. Particularly, this  

model is among the very few, if not the first, that accurately predicts various 

experimental observations of two notch tip orientations ]101)[010(  and ]100)[010(  

that are widely found in the literature. 

 

This study has also developed a crack opening criterion that is dependent upon the 

evolution of the lattice structure. The core of this new criterion is an atomic 

interaction model that estimates energies of the interface of an fcc bicrystal. Results 

of grain boundary energy of <100> and <110> symmetrical tilt boundaries of an 

aluminum bicrystal obtained from the atomic interaction model agree very well with 

those from molecular dynamics simulations. 

 

The newly developed criterion has been applied to the modelling of crack opening 

and crack growth in a region around the notch tip in single crystals. Elements in the 

finite element mesh satisfying the criterion are removed from the mesh by using the 

element removal technique in Abaqus/Standard. Missing elements effectively act as 

voids in the material. Thus crack opening (in terms of void nucleation) and the 
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subsequent crack growth (in terms of coalescence of new and existing voids) are 

captured naturally. The newly developed methodology to model crack opening has 

been applied to predict mode I crack growth around a notch tip in Cube and Brass 

oriented fcc single crystals. The obtained results show similar behaviours of crack 

growth with those from molecular dynamics simulations of single crystals having the 

same lattice orientations. 

 

The methodology to model crack opening that has been proposed in this thesis is 

original. It enables the explicit modelling of crack growth without presuming a crack 

path. Also, a predefined crack opening criterion, which could be erroneous, that has 

been used in many finite element simulations of fracture is avoided. To the best of 

the author’s knowledge, the criterion of crack opening that depends on the structure 

of the interface of two misoriented lattices is presented in this study for the first time. 

 

The current thesis focuses into modelling tensile deformation and the subsequent 

fracture in fcc crystals. The methodology that has been proposed however can be 

readily applied to crystalline materials of various lattice structures with minor 

modifications.  
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Notations 

 

 

⊗  Tensor product 

αtilt
, βtilt

 Angles defining orientation of tilt axis in the global coordinate system 

Ω  Spin tensor 

Ω
*  

Lattice rotation of spin tensor 

Ω
p  

Plastic parts of spin tensor 

α
th  

A slip system α 

hklα   Angle of rotation about a global ][hkl  axis 

Γ0  Work of separation 

γ  Shear strain of a slip system 

γ0  Reference value of slip 

)(αγ&   Shear strain-rate caused by the plastic slip in the α
th

 slip system 

)(

0

αγ&      Reference value of shear strain rate 

δD Virtual form of the rate of deformation 

∆t  Time increment 

i

A∆d  , i

B∆d  Displacement vectors from time i-1 to time i at points A and B 

φ1, Φ, φ2 Three Euler angles 

δn  Corresponding crack opening 

δv  Kinematically admissible virtual velocity field 

δv
n  

Virtual nodal velocity field 

σ   Cauchy stress 

σmax  Peak separation stress 

σ&   Time derivative of Cauchy stress 

∇

σ   Jaumann rate of Cauchy stress on axes rotating with the material 

σA , σB  Cauchy stress tensor at points A and B 
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τ0  Initial critical resolved shear stress 

τ1  Breakthrough stress where large plastic flow initiates 

τ
(α)

  Resolved shear stress on slip system α. 

)(

c

ατ   Critical resolved shear stress of slip system α. 

 a1  Constants for fαβ (no junction) 

 a2  Constants for fαβ (Hirth lock) 

 a3  Constants for fαβ (coplanar junction) 

 a4  Constants for fαβ (glissile junction) 

a5  Constants for fαβ (sessile junction) 

C0  Tensor of elastic moduli 

i

Ad  , i

Bd  Coordinates of points A and B at time i 

D  Stretching tensor 

D
*  

Elastic part of stretching tensor 

D
p   

Plastic part of stretching tensor 

LD   Rate of the elastic stretching in the lattice coordinate system 

giD  Matrix transforming a vector in the global coordinate system to the 

coordinate system of crystal i 

D
damage  

Damage variable 
 

E  Green strain tensor 

critE   Interface fracture energy of a bicrystal 

E&   Rate of Green strain tensor 

f   Surface traction per unit of the current area 

F  Total deformation gradient 

F&   Time derivative of the total deformation gradient 

F
*  

Elastic deformation gradient 

F
p  

Crystallographic slip on the slip system (plastic deformation gradient) 

 f αβ  Strength of a particular slip interaction between two slip systems α and β 

F
(α)P  

Contribution of α
th

 slip system to F
p
  

g   Relaxation factor, which varies from 0 to 1 

g
iso

, h
iso

, r
iso 

Isoparametric element coordinates 



 x 

H  Fourth-order hardening parameter tensor 

h0  Hardening modulus just after initial yield 

hs  Hardening modulus during easy glide 

hαα  Self hardening moduli 

hαβ  Instantaneous hardening moduli including self hardening of each system 

I  A second-order unit tensor 

K  Jacobian matrix 

L  Velocity gradient 

L
*
 Component of velocity gradient due to elastic stretching and lattice 

rotation 

L
p  

Plastic contribution of velocity gradient L 

m
(α)  

Normal vector of slip plane of  slip system α
th

 in the current configuration 

)(

0

α
m  Normal vector of slip plane of slip system α

th
 in the reference 

configuration 

)(α
m&  Time derivative of the normal vector of a slip system α

th 
in the current 

configuration 

n
intf

 Normal vector of the interface of a bicrystal in the global coordinate 

system 

N  Number of slip systems 

0

iN   Initial normal vectors {111} in the global coordinate system 

k

iN   Normal vectors {111} in the global coordinate system at state k 

N
(1)

, N
(2)

, N
(3)

 Normal vectors of slip traces from Rice's solutions for fcc crystal 

lρ̂   Tilt axis with respect to the coordinate system of the fixed lattice 

gρ̂   Tilt axis in the global coordinate system 

)(α
P   Symmetric part of Schmid factor 

q  Latent hardening parameter 

R  Orthogonal rotation tensor 

R&   Time derivative of the orthogonal rotation tensor 

k

iR  Orientation matrix of crystal i at state k 
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k

jR  Orientation matrix of crystal j at state k 

k

ijR  Misorientation matrix between point i and point j 

RL Rotation tensor between the lattice coordinate system and the current 

configuration 

S
(1)

, S
(2)

, S
(3) 

Directions of slip traces from Rice's solutions for fcc crystal 

s
(α)  

Slip direction vector of a slip system α
th 

 in the current configuration. 

)(

0

αs   Slip direction vector of a slip system α
th

 in the reference configuration. 

)(αs&  Time derivative of slip direction vector of slip system α
th

 in the current 

configuration 

)()( αα
ms ⊗  Schmid factor 

t0  Kirchhoff stress in the current configuration at the time t 

tn  Normal stress ahead of crack tip for mode I crack 

t&   Material rate of Kirchhoff stress 

0t&    Stress rate in the reference configuration 

*

1t&   Rate of the Kirchhoff stress in the intermediate configuration 

Lt&  Material rate of the Kirchhoff stress in the lattice coordinate system 

∇

t   Jaumann rate of Kirchhoff stress on axes that rotate with the material 

∇
*

t   Jaumann rate of Kirchhoff stress on axes that rotate with the lattice 

U   Right stretch tensor 

v    Velocity in the current configuration 

V  Volume of the solid body in the current configuration 

v
n  

Nodal velocities 

n

iv   Nodal velocities at iteration step i
 

)(α
W   Asymmetric part of Schmid factor 

intfW   Net strain energy on the interface under the effects of external loading 

X  Position of material points in the current configuration 
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1. Introduction 

 

 

Fracture of a solid body is generally defined as the loss of contacts between parts of 

the body, which leads to significant decrement of its ability to undergo external load. 

Under the effects of various sources, e.g. mixed-mode loading, environment, defects 

in the materials, inadequate design and construction, fracture could occur with very 

little warning, either in brittle or ductile materials. Even though the cost of failure of 

components due to fracture in monetary terms is tremendous, the loss of human life 

and injuries is immeasurable. These factors have been the strong motivation for 

studies carried out in the last few decades toward a comprehensive understanding of 

the mechanisms of fracture, as well as the ability to accurately predict the material’s 

behaviours prior to and during cracking under various conditions. [1, 2] 

 

A starting assumption in many studies of fracture is that there are existing defects in 

the forms of voids or notches in the samples being considered. The investigations are 

then carried out to determine how likely further cracks occur at these sites and under 

which conditions. This chapter reviews works that have been conducted so far 

regarding (i) the strength of materials around a crack tip, (ii) techniques employed to 

model crack initiation and propagation, and (iii) criteria to determine crack opening. 

A brief review of some classical approaches to predict strength of a crack will be 

given first. With regard to techniques used in crack modelling, the current chapter 

will present works using continuous damage mechanics, models of fatigue crack 

initiation, and cohesive zone technique. Other modelling methods found in the 

literature are summarized in Section 1.5. Results of deformation around a crack tip in 

single crystals will be examined in more details because they will be used to verify 

the modelling results that will be presented in later chapters. Section 1.6 reviews 

simulations of the deformation of fcc polycrystalline aggregates under tensile 

loading. A review of works developing crack opening criteria, e.g. surface energy 

and fracture interface energy, is presented in Section 1.7. At the end of the chapter, 

the scope of the current study and structure of the thesis will be presented. 
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1.1 Classical theory of fracture mechanics 

 

1.1.1 Energy-balance approach 

 

Griffith’s formulation of an energy criterion that determined the conditions under 

which an existing crack becomes unstable and propagates has become one of the 

most well known developments in the field of materials science. Based on the 

assumption that the material was linear (elastic), Griffith [3] could determine the 

energy released from a small region around a crack tip when the crack had grown 

into the material a particular distance. The total energy involved in the process of 

crack opening was the sum of the positive broken bond energy and the negative 

strain energy released from the material. When crack grew beyond a critical crack 

length, the catastrophic fracture occurred. [3] 

 

Griffith’s original work applied only to brittle materials. For ductile materials, Irwin 

[4] and Orowan [5] independently developed models which suggested that a 

considerable amount of the released strain energy was transferred into plastic flow in 

the region around the crack tip, and only a small amount was observed to create new 

surfaces. It was also stated that the catastrophic crack happens only if the energy 

strain rate reached a critical value that overcame the energy dissipated into plastic 

deformation around the crack tip and the energy creating new surfaces. 

 

These energy-based formulations of crack opening have formed the basic framework 

to develop crack criteria in numerous theoretical analyses as well as numerical 

simulations, e.g. the cohesive zone technique [6-22], and the models of fatigue crack 

initiation by Mura and co-workers. [23-35] 

 

1.1.2 Stress intensity approach 

 

An alternative approach to the energy-based formulations is directly examining the 

stress states around a sharp crack tip. There are three types of fracture mode 

designating the separation of materials geometrically. Sketches of the modes are 

shown in Figure 1.1. Mode I denotes a symmetrical opening of the two parts of a 

body where the crack plane is perpendicular to the displacement direction (Figure 
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1.1a). Mode II and mode III denote anti-symmetrical deformation of the two parts of 

the sample where the displacement directions are in-plane with the crack plane 

(Figures 1.1b and 1.1c). 

 

 

Figure 1.1 Three modes of cracking. [2] 

 

The stresses in a small region around a crack tip undergoing a particular fracture 

mode could be expressed in terms of a stress intensity factor and the coordinates of 

the point being considered. Each fracture mode has a corresponding stress intensity 

factor, which is a function of the applied stress and the crack length. The stress 

intensity factors can be used to measure the strength of an existing crack by stating 

that the sample can withstand stresses around the crack tip up to a critical value of 

stress intensity. Beyond this critical value, crack propagates rapidly. [1] 

 

1.1.3 Continuous damage mechanics 

 

The model of creep rupture developed by Kachanov [36] was the first to introduce 

the concept of effective stress acting on an effectively resisting area. In a damaged 

body, the effectively resisting area represented the part of an original section area 

that remained after voids and cavities were formed. Since then, a series of work 

based on this effective stress concept has been conducted to develop the continuous 

damage mechanics, particularly those done by Lemaitre and co-workers [37-39] and 

those by Chow and co-workers [40-45]. Both groups defined a damage variable 

D
damage

 (0 ≤ D
damage

 ≤ 1) which characterized the deterioration of the strength of the 

material during fracture. At D
damage

 = 0, the material was undamaged, while D
damage

 = 

1 indicated the complete fracture of the body into two parts. The major difference 

between the two groups was the hypothesis used to derive constitutive equations. 

Please see print copy for image
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Lemaitre and co-workers assumed that the strain behaviour of the damaged material 

was only characterized through the effective stress (based on the hypothesis of strain 

equivalence). Meanwhile, Chow and co-workers assumed that the elastic energies of 

the damaged and undamaged material were equal when the stress tensor in the 

damaged material was replaced by the effective stress tensor (based on the 

hypothesis of elastic energy equivalence). 

 

Jiang and Sehitoglu [46] proposed a fatigue damage parameter that incorporated the 

effects of local mixed mode loading at a point. By applying this parameter to the 

predictive life of the materials, under pure rolling conditions, particularly Hadfield 

steel and Bainitic alloy, a new combined rachetting-multiaxial fatigue damage model 

was also developed. In a later study, Jiang and Feng [47] transferred the fatigue 

damage parameter into FEM simulations to investigate crack initiation and rate of 

crack growth under mode I fatigue loading. The effects of material microstructures, 

e.g. lattice orientation, were not accounted for. 

 

Later, Feng et al. [48] combined continuous damage mechanics with the theory of 

crystal plasticity to consider the anisotropic nature of crystalline materials and 

damage. The combined model was transferred into a user subroutine in Abaqus FEM 

software and an analysis was carried out to investigate how lattice orientations and 

hardening rates in slip systems would affect creep and damage development. 

However, a crack opening criteria was not proposed in this work and crack dynamics 

was not investigated. 

 

More recently, Xue [49] developed a damage plasticity model of ductile fracture, 

also based on the theory of continuous damage mechanics, in which the 

nonlinearities of damage was accounted for by applying a power function to dictate 

the evolution of damage variable. Material anisotropy, in terms of crystalline 

structure dependent behaviours, was not accounted for. The model was implemented 

into LS-DYNA in which simulations were carried out to emphasize the model’s 

ability to predict the crack path. The criterion of material fracture at a calculated 

point was assumed when the accumulated damage variable reaches unity.  
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However, our experience from finite element simulations of fracture dynamics, 

which combined the model of continuous damage mechanics and the theory of 

crystal plasticity, revealed that such fracture criterion (D
damage

 = 1) may result in bad 

convergence. The decrease in material stiffness from the evolution of damage 

variable causes numerical problems, which become more severe when damage 

variable approaches unity. We presume that it is because of such bad convergence 

that not many papers can be found that include both continuous damage mechanics 

and the theory of crystal plasticity when modelling dynamic fracture.  

 

 

1.2 Cohesive zone technique 

 

A modelling technique that handles effectly crack opening and has been widely used 

in FEM simulations is the cohesive zone technique, even though it also does not 

account for the effects of crystal orientations around crack tip. The technique was 

originally developed to model problems in which strength of an interface, which is 

approximated by a cohesive zone, is of interest, e.g. the behaviours of adhesive 

joints, and interfaces in composites. 

 

Needleman [6] developed a cohesive zone interface model which unified the 

description of void nucleation from the initial debonding to the complete decohesion 

and subsequent void growth. Since then, alongside other techniques or theory, e.g. 

crystal plasticity [7-9], representative volume element (RVE) [10], and discrete 

dislocation model [11-13], numerous numerical works have taken advantages of 

cohesive techniques in their models to simulate crack opening or crack tip behaviour. 

 

By setting up a cohesive zone in crack-tip front region, Tang et al. [7] modelled the 

propagation of the crack tip in ]101)[010(  orientation in an fcc single crystal under 

plane strain tensile loading. This was a step forward compared to previous studies by 

Rice [50], Saeedvafa and Rice [51], Shield et al. [52-54], Cuitino et al. [55-56] in 

which crack tip was assumed to be either static or quasi-static. This work was also 

claimed to be the first to include essential nonlinearities such as distortion gradients, 

crystalline orientations, and finite deformation when studying fractures in ductile 

single crystals. Tang et al. [7] specified a traction-separation constitutive law for any 
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cohesive elements used, in which normal stress ahead of the crack tip tn for mode I 

crack was related to crack tip opening δ by the exponential universal binding law 

specified by Rose et al. [14-15]. A schematic representation of the traction-separation 

relation is shown in Figure 1.2. Although various traction-separation relations, or 

cohesive laws, have been developed to satisfy various modelling purposes, their 

shapes are generally similar to that shown in Figure 1.2b. Γ0 is the work of 

separation. σmax and δn are the peak separation stress and corresponding crack 

opening, respectively. 

 

 

 

Figure 1.2 Sketch of the traction-separation law used by Tang et al. [7] 

 

Grujicic and co-workers [16-19] modelled cracking along the grain boundaries of 

polycrystalline lamellar γ+α2 titanium aluminide, as well as cracking along the 

interfaces of the titanium aluminide matrix and bcc β-phase precipitates. Traction-

separation relationships were developed for the particular grain boundaries and 

matrix-precipitate interface as a function of grain misorientation and orientation of 

the boundary-interface. These decohesion potential functions were then implemented 

into the user element subroutine UEL of the Abaqus FEM software so that the 

stiffness matrix of the boundary-interfacial elements could be derived.  

 

In a study where discrete dislocation was used to model the interface fracture of a bi-

material sample under mixed mode loading, O’Day and Curtin [12] briefly discussed 

the effects of the XN cohesive law (developed by Xu and Needleman [20]) and TH 

cohesive law (developed by Tvergaard and Hutchinson [21]), upon the modelling 

results of fracture under mixed mode loading. They stated that the XN cohesive law, 

which is compatible with mixed-mode loading and allows the normal and shear work 

Please see print copy for image
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of separation to be varied independently, may result in instabilities under moderately 

to highly mixed mode loading. These instabilities could manifest themselves in the 

form of brittle crack growth at very small loads, usually before the materials begin to 

harden. Because the TH cohesive law seemed to avoid such issues, it was the 

preferred choice of O’Day and Curtin for their simulations. 

 

Zavattieri and Espinosa [22] investigated the accuracy of cohesive models in 

capturing the dynamic microcrack growth of ceramic observed in experiments of 

plate impact recovery. A cohesive law was implemented into a 2D micro-mechanical 

stochastic finite element analysis to characterize microcrack initiation, propagation 

and coalescence, as well as microcrack interaction and branching. Experimental data 

such as the history of normal plate impact velocity was used to determine the 

parameters and conditions under which the models agreed with experiments. The 

authors concluded that simulated microcrack patterns and velocity histories match 

experimental observations only when the true geometry of the grain boundary and a 

particular set of cohesive model parameters was used. 

 

In an FEM analysis, special cohesive elements must be used in regions where the 

cohesive constitutive law is applied. Because the cohesive constitutive law is 

different to the constitutive law applied to the bulk material, obviously one cannot 

mesh the whole simulated region with such special elements so that completely 

explicit crack growth can be captured. This limits the application of cohesive models 

to simulating crack opening and propagation in brittle materials where crack is 

assumed to occur only in grain boundaries or in small regions around the crack tip. 

Zavattieri and Espinosa [22] assumed the crack initiation and subsequent growth 

were along the grain boundaries. This could partly explain their conclusions that true 

grain boundary morphology used in the model is crucial to achieve reasonable 

agreement between simulated and tested microcrack patterns. 

 

Zavattieri and Espinosa also pointed out another limitation of cohesive models. They 

are scale-dependent. Simulations taking place at different scales require different sets 

of cohesive interface parameters and different cohesive models. 
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1.3 Orientation-dependent behaviours of crack tip fields in single crystals 

 

The works that have been reviewed so far, either theoretical analyses or numerical 

modelling, neglected the effects of crystal orientation, particularly in the region 

around a notch tip. This points to the need to investigate and develop models 

characterizing fracture behaviours that incorporate the influences of lattice 

orientations of the sample. 

 

The fracture of polycrystalline materials involves firstly the initiation and 

propagation of microcracks, which dictate any subsequent growth of cracks either in 

a trans-granular or inter-granular manner. These microcracks mostly occur within a 

single grain. [57] Therefore an accurate understanding of fractures, particularly 

plastic deformation around the tip of the crack, in single crystals is mandatory. 

 

This area of study has attracted considerable amount of analytical, experimental, and 

numerical work. Rice [50] developed an analytical model of crack tip stress and 

deformation fields in perfectly plastic single crystals under tensile load. An 

asymptotic analysis was carried out for stationary and quasi-static growing cracks, 

assuming negligible lattice rotation. Two cases, ]101[  crack tip on (010) crack plane 

and ]010[  crack tip on (101) crack plane, were considered for both fcc and bcc 

crystals.  

 

Figure 1.3 Rice’s solutions for crack tip in ]101)[010(  orientation in an fcc single 

crystal. [50] 

 

Please see print copy for image
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Consider the case of a stationary crack in an fcc crystal where the crack tip is in 

]101)[010(  orientation, as shown in Figure 1.3. Assuming a plane strain deformation, 

which is approximately the case on the mid-thickness plane of the sample, a large 

plastic strain at the crack tip can only occur in three combinations of slip systems. 

The first comprises equal slips in ]011)[111(  and ]110)[111(  directions, which 

results in a total effective slip in ]121[ . The second and third combinations are of slip 

systems ]101)[111(  and ]101)[111(  resulting in a total slip in ]101[  direction, and of 

slip systems ]011)[111(  and ]110)[111(  resulting in a total slip in ]121[  direction. 

The intersections of these three combined slip systems with the sample surface, i.e. 

plane )101( , results in three slip traces inclined at 54.7
o
, 0

o
, and 125.3

o
 with notch 

tip orientation, respectively, as shown in Figure 1.3a. Let (S
(1)

, N
(1)

), (S
(2)

, N
(2)

), and 

(S
(3)

, N
(3)

), respectively denote the direction and normal vectors of the three slip 

traces obtained from Rice’s solutions. According to Rice’s analytical model, these 

vectors define boundaries of four angular sectors around crack tip in the half plane 

bounded by the line of the notch tip direction (Figure 1.3b). Stress states are 

constants in these sectors and change discontinuously from one sector to another. 

Even though the displacement (strain) fields were not uniquely determined, Rice’s 

solutions revealed that rays inclining 54.74
o
 and 125.26

o
 with crack tip direction are 

bands of displacement discontinuities formed by slip on octahedral slip planes. 

Because the ray inclined at 90
o
 with notch tip is perpendicular to slip trace ]101[ , it is 

the band of displacement discontinuity formed by concentrated kinks on the 

octahedral slip plane. In the theory of dislocation, a kink is defined as a displacement 

step of a dislocation on the same slip plane. A kink is hence perpendicular to a slip 

system. 

 

Saeedvafa and Rice [51] extended Rice’s model by allowing the crystal to undergo 

Taylor hardening with a power law relationship between stress and strain where the 

strain was large enough. The extended model resulted in fourteen angular sectors of 

constant-stress in the near-tip region, compared to seven constant-stress sectors by 

Rice’s model [50] where there was no hardening. 
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Mohan et al. [58] reported that their work extended Rice’s analysis of crack tip 

deformation and stress fields in a single crystal under mode I loading. This analysis 

accounted for three dimensional effects, and finite deformation and finite lattice 

rotations which had been assumed negligible in Rice’s solutions. These new results 

partially agreed with the previous analytical and numerical results, and matched with 

experimental observations quite well, particularly those reported by Shield and Kim 

[52]. From their analysis, Mohan et al. agreed with Shield and Kim [52] that 

deformation, lattice rotations, and lattice hardening strongly influence the structure 

of crack tip fields. 

 

Later, Drugan [57], while agreeing that the asymptotic solutions from Rice’s analysis 

[50] could predict important features of stationary and quasi-static crack tips fields, 

also argued that they still had significant deviations from the experimental 

observations and simulations. Drugan especially pointed out that the reported 

experimental observations, and the results from the discrete dislocation simulations, 

for the symmetric crack tip orientations did not reveal concentrations of kink-type 

shear predicted in Rice’s solutions. Drugan then reconsidered the analysis of crack 

tip fields for crack tip in ]101)[010(  and ]010)[101(  orientations, in both fcc and bcc 

crystals, i.e. similar to cases studied by Rice, and seeked for solutions for crack tip 

fields that were free of kink-type displacement discontinuities. The resulting 

solutions differed from Rice’s at some points. The major difference was that for the 

same crack tip orientations in fcc and bcc crystals, Rice’s analysis ended up with the 

same structure of angular constant-stress fields around the crack tip, while Drugan’s 

results revealed that these angular constant-stress fields are different for fcc and bcc 

crystals. Moreover, in an fcc crystal, Rice’s solutions of crack tip fields for two 

different crack tip orientations were the same but were different in Drugan’s 

solutions. 

 

A sketch of Drugan’s new asymptotic solutions for fcc crystals are shown in Figure 

1.4. Even though Drugan’s solutions for crack tip fields no longer contain the 

concentrated shear of kinking mode seen in Rice’s solutions, i.e. the 90
o
 

discontinuity line in Figure 1.3b, both solutions agree with each other at one point. 

They both have rays of displacement discontinuity at 54.7
o
 and 125.3

o
 with notch tip, 

which are traces of activated slips on crystal slip planes. 
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Figure 1.4 Drugan’s solutions for a 

stationary crack tip in ]101)[010(  

orientation in an fcc single crystal. [57] 

Figure 1.5 Solutions for crack tip in 

]100)[001(  orientation in fcc single 

crystal by Flouriot et al. [59] 

 

 

Also following on the analytical framework set out by Rice [50], Flouriot et al. [59] 

developed an asymptotic solution for the deformation field around the crack tip in fcc 

crystal with the crack tip in ]100)[001(  orientation. A basic form of the solutions had 

four independent constant-stress angular sectors around the crack tip. A sketch of 

these sector boundaries taken from [59] is shown in Figure 1.5. 

 

The analytical results, particularly the asymptotic solutions by Rice [50], have 

attracted a considerable amount of numerical and experimental work. The objectives 

have been either to capture the basic features of the crack tip fields predicted in the 

analytical solutions or to investigate the effects of various hardening laws and sample 

thickness, and then evaluate the validity range of the plane-strain and plane-stress 

solutions. 

 

Rice et al. [60] summarised the analytical asymptotic results and then compared them 

with those from the numerical finite element simulations. By observing the 

distribution of the sum of the cumulative slip on all slip systems, it was concluded 

that finite element simulations predicted the important features of asymptotic 

solutions quite well, i.e. the existence and orientations of concentrated slip around 

the crack tip. 

 

Narasimhan et al. [61] reported on a numerical investigation using FEM simulations 

of the three dimensional effects in regions around a crack tip of a single crystal 

Please see print copy for image
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during three-point bending. In particular, the authors assessed the extent to which 

plane-strain and plane-stress solutions could be applied in actual 3D crack tip fields. 

The material was 4340 carbon steel, which was assumed to be homogenous, isotropic 

and obey Huber-Von Mises yield criterion. The effects of crack tip orientation were 

not clearly specified. The results revealed that plane-strain analytical solutions 

dominate the region very close to the crack tip inside the specimen. When the 

distance from crack tip is longer than about half of the thickness of the sample, then 

plane-stress conditions prevail. 

 

Subramanya et al. [62] also aimed at evaluating the validity range of plane-strain and 

plane-stress asymptotic solutions, but by using 3D and 2D finite element simulations 

of a ductile material under small strain mixed mode (mode I and mode II) loading. 

The 3D results of plastic zones and radial, angular and thickness dependence of 

stress fields around the crack tip were compared with the 2D simulations and 

analytical solutions to address the suitability of 2D (either plane stress or plane strain 

condition) approximations in other studies. Even though neither the effects of crack 

tip orientation nor the crystal structures (e.g. fcc or bcc) were clearly specified, the 

study concluded that at small loads and in a small region around the crack tip, the 2D 

results matched those from 3D simulations on the interior planes. On planes closer to 

the sample surface, the plastic zones were higher than the plane strain plastic zone. 

 

Cuitino et al. [55] developed a model that fully described the hardening of crystals 

under monotonic loading. They did this by formulating a statistical mechanical 

model of dislocation motion through forest dislocations combined with equations of 

evolution of dislocation densities. Forest dislocations are defined as dislocations 

crossing a slip plane and intersecting with dislocation(s) on that plane. The predictive 

capabilities of the hardening model were demonstrated by finite element simulation 

of stationary crack tip fields in single crystal copper and then comparing the 

numerical results with experimental observations and the analytical results of Rice et 

al. [50-51]. These simulations yielded results that closely matched Rice’s solutions in 

regions outside the plastic zone where strains and lattice rotations are small. The 

behaviour of the crystal could be approximated as perfectly plastic as assumed in 

Rice’s solutions [50]. The crystal entered stage II hardening, which was 

characterized by strong interactions between slip systems and the dramatic increase 
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of hardening in slip systems, near the crack tip. Therefore isotropic hardening models 

such as those considered by Rice [50] and Saeedvafa and Rice [51] are no longer 

accurate, which resulted in considerable differences between the numerical and 

analytical solutions. 

 

In a later study, Cuitino and Ortiz [56] simulated a single crystal undergoing four-

point bending to investigate (i) the dependence of crack tip fields upon various 

hardening laws, (ii) the reciprocal relationship between the crack tip fields on a free 

surface and those on interior surfaces, and (iii) the degree of relevance of plane strain 

and three dimensional fields. It was concluded that the slip patterns on the sample 

surface differ significantly from those on interior planes. Thus the ability of certain 

experimental techniques, e.g. Moiré interferometry [52-54], to predict the true 

responses of materials under load, as well as the applicability of the plane-strain 

asymptotic solutions proposed by Rice and co-workers [50-51] were not viable.  

 

Among the most extensive experiments studying crack tip fields were those 

conducted by Shield and co-workers [52-54]. Shield and Kim [52] reported on the 

experimental results of plastic deformation near the crack-tip in an iron -3% silicon 

(bcc) single crystal, with crack tip being in ]110[  direction, and the crack plane 

being (011). The sample was extensively deformed by four-point bending and then 

unloaded. Measurements of the surface strain were then carried out by microscopic 

Moiré interferometry. The in-plane Almansi strain components obtained by digitally 

processing Moiré fringes revealed asymptotic fields well-structured into angular 

sectors approximately 350-500 µm from the notch tips, where plastic strains reached 

9%. Three of these sectors had reasonably constant strain fields, while the fourth one 

had surface strains approximately inversely proportional to the distance from the 

notch tip. The borders of these sectors were narrow regions in which the strain 

changed drastically. The constant-strain sectors were analyzed and compared with 

analytical solutions found in the literature. It was concluded that there were two 

major deviations between the experimental and analytical results. Firstly, unloading 

regions existed near the crack tip in the constant-strain sectors where proportional 

loading in the analytical models was assumed. Secondly stress state ahead of the 

crack initiating plastic flow obtained from experiments differed from the theoretical 
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predictions. Shield and Kim commented that these differences were evidence that the 

extensive effects of lattice hardening and lattice rotations upon the crystal structure at 

large strains were not properly accounted for in the analytical models by Rice et al. 

[50-51]. 

 

Shield and co-workers [53-54] conducted further experimental observations of strain 

fields during four-point bending around the crack tip in single crystal copper (fcc) 

with crack tip orientation being ]101)[101( , and in single crystals of copper and 

copper-beryllium with crack tip orientation being ]101)[010( . These observations 

complemented the conclusions regarding the strain field around the crack tip 

previously made on iron -3% silicon (bcc) single crystal. Similar constant-strain 

angular sectors were also observed around the crack tips, the boundaries of which did 

not rotate during loading. However the angles between boundaries of the sector and 

the notch tip differed from those predicted in Rice’s model [50]. Although Rice [50] 

pointed out that the sector boundaries comprised kink or slip type deformation, for 

the experimental crystallographic orientations, the boundary angles did not match the 

angles where kink and slip bands could occur. 

 

Even so the strain observed at smaller loads agreed with the analytical results to 

some extent, which led to the conclusion that assumptions of negligible crystal 

rotation and perfect plastic crystal in Rice’s models do not apply at higher loads. 

Shield also suggested that a comprehensive understanding of plastic deformation 

around the crack tip in single crystals meant that factors such as crystal structures, 

orientation of the crack tip, and types of loading should be accounted for.  

 

It was later argued that the Moiré interferometry technique employed by Shield et al. 

could only provide a precise in-plane normal and shear strain on surfaces of the 

sample [63]. These results are neither in plane strain or plane stress conditions and 

therefore could not be compared with those from the analytical or numerical analyses 

where plane strain conditions were assumed. Kysar and Briant [63] reported that 

measurements of the in-plane rotation field accompanied the displacement field at a 

crack tip on the interface of a pure aluminum bi-crystal. EBSD technique was used to 

capture the lattice orientations around the crack tip on the centre line of a sectioned 
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specimen after deformation occurs. With the orientation of single crystals serving as 

a reference, a spatial mapping of in-plane lattice rotation around the crack tip in true 

plane strain conditions could be obtained. Because lattice rotation is associated with 

plastic deformation it was expected that the orientation of the crystal around the 

crack tip would also exhibit a discontinuity at the sector boundaries, similar to those 

in the analytical models. Kysar and Briant concluded that their experimental 

techniques helped observe a kink shear sector boundary which corresponds closely 

with those predicted by Rice’s models.  

 

Figure 1.6 Simulation and experimental results for ]001)[110(  crack tip [64]  

(a) Equivalent plastic slip around crack tip on sample surface from FEM modelling, 

(b) experimental view of slip traces around crack tip and discontinuity lines 

according to Rice’s analytical solutions. 

 

 

Later, the EBSD results of the compact tension experiments on pre-cracked single 

crystal nickel-based fcc alloy conducted by Flouriot et al. [64] also revealed the 

existence of a kink band near the crack tip that inclined 90
o
 to the crack tip, as shown 

in Figure 1.6b. The same authors used crystal plasticity FEM (CPFEM) to simulate 

two cases of notch tip in ]001)[110(  and ]100)[001(  orientations. The lattice 

orientations near the crack tip were generally in good agreement with the EBSD 

results. The best match was the notch tip in ]001)[110(  orientation where the 

equivalent plastic slip field predicted from the FEM modelling was in bands that 
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inclined about 54
o
 and 90

o
 to the notch tip, as seen on the surface of the sample. The 

shape of the deformation zone and set of active slip systems also agreed with the 

experiments. Both the simulation and experimental results for this case are shown in 

Figure 1.6. The agreement between the simulated and experimental results for the 

]100)[001(  notch tip was not good, as shown in Figure 1.7. The vertical band and 

plastic zone behind the crack tip could not be seen on the tested sample but the slip 

traces emanating from the crack tip on surface of the sample inclined by ± 45
o
 to 

notch tip. The secondary set of slip traces also inclined by ±90
o
 with the first set in 

the area in front of the notch tip. These observations well matched the discontinuity 

lines predicted from the analytical model derived earlier [59] for this case of notch 

tip, as shown in Figure 1.7b. 

 

Figure 1.7 Simulation and experimental results for the ]100)[001(  crack tip. [64] 

(a) Equivalent plastic slip around crack tip on sample surface from FEM modelling, 

(b) experimental view of slip traces around crack tip and discontinuity lines 

according to Flouriot’s analytical solutions. 

 

 

Patil et al. [65] conducted a combined experimental and computational study of crack 

tip fields on single crystal aluminum under small constraint mode I loading. The 

crack tip was effectively replaced by a narrow notch oriented to ]101)[010(  on a 

tensile specimen, for both experimental and simulation purposes. Scanning electron 

micrographs of the proximity of the crack tip at various loading stages are shown in 
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Figure 1.8. Slip traces appeared around the crack tip on the surface of the sample at a 

very early stage of loading (0.1 mm extension or 0.5% nominal strain), and inclined 

by ± 55
o
 to the notch tip. As the load increased the slip traces increased in number 

and the degree of severity. With reference to Rice’s asymptotic solutions [50], these 

slip traces were denoted by (S
(1)

, N
(1)

) in Figure 1.3. Interestingly, at an extension of 

0.2 mm or a nominal strain of 1%, although not explicitly described in the text, there 

were slip traces oriented at 0
o
 with the notch tip, which with respect to Rice’s 

solutions were denoted by (S
(2)

, N
(2)

) in Figure 1.3. 

 

Figure 1.8 SEM results of the sample surface around the ]101)[010(  crack tip at 

various extensions (a) 0 mm, (b) 0.1 mm, (c) 0.15 mm, (d) 0.2 mm [65]. 

 

 

One can already see traces around the notch tip for 0 mm extension, which were not 

not explain nor mention by Patil et al. [65] in their paper. My interpretations of their 

existence are as follows 

 

- The mechanical preparation of the notch might cause crystals around the 

notch tip deform as if it was done by a tensile load; or 

Please see print copy for image
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- More likely, the sample was slightly stretched when it was clamped to the 

tensile module inside the SEM chamber. 

 

Figure 1.9 (a) Inverse pole figure obtained from EBSD for sample surface around the 

]101)[010(  crack tip and (b) the color code used [65]. 

 

Figure 1.10 (a) Simulation results of plastic slip around the ]101)[010(  crack tip 

superposed on the experimental scanning electron micrograph, (b) Contour of 

misorientation angle. [65] 

 

 

A map of the inverse pole figure obtained from the EBSD for surface sample around 

the crack tip is shown in Figure 1.9a. The crystal orientation at one point is denoted 

by colour. The colour code used in the inverse pole figure in Figure 1.9a is shown in 

Figure 1.9b. The homogeneity of crystal around the crack tip represented by the 

colour green is divided into two misorientation bands which began from the crack 

tip. One band inclines 45
o
 with the notch tip direction, and the other 90

o. 
. Patil et al. 

Please see print copy for image
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[65] argued that these misorientation bands proved the existence of concentrated kink 

type shear similar to those predicted in Rice’s solutions. 

 

Simulated tensile tests were carried out by crystal plasticity theory transferred into 

the finite element analysis software Abaqus. Hardening of the slip systems was 

assumed to be isotropic. The results from the simulation work were then compared 

with the experimental observations at an extension of 2 mm (1% nominal strain), as 

shown in Figure 1.10. As with many other simulations of crack tip fields, the slip 

traces represented the sum of the slip accumulated on all the slip systems (Figure 

1.10a). The simulation results of plastic slip were superposed on the experimental 

scanning electron micrograph so that the deformed notch profile from the simulation 

matched that from the experiments. The distributed misorientation (Figure 1.10b) 

was determined with respect to the initial orientation of the crystal. 

 

 

1.4 Models of fatigue crack initiation 

 

The model of fatigue crack initiation based on dislocation pile-ups, which was first 

proposed by Tanaka and Mura [23], has been among the most widely used 

theoretical models that incorporate the effects of the microstructure of crystals. 

Indeed, works by Smith [66] and Lin and Ito [67] were among the first to formulate 

the formation of cleavage crack as a result of dislocation pile-up. The analytical 

model by Lin and Ito [67] described the build-up of large local plastic strains under 

cyclic loading within a favourably oriented crystal located close to the surface of the 

sample. The model presumed that a slip band created in fatigue testing comprised of 

two thin slip slices close together having an initial shear stress of opposite signs that 

had previously been resolved. These thin slices slide in opposite directions, one in 

forward loading and the other during reverse loading. The results from this model 

showed that the local plastic shear strains in each slice increased dramatically after a 

few hundred tension-compression cycles which created intrusions and extrusions on 

the surface which started the nucleation of a fatigue crack.  

 

Tanaka and Mura [23] later argued that the initial shear stress resolved within each 

slice was not always realistic but used the idea of slip bands comprising two opposite 
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slices sliding to develop a dislocation model for fatigue crack initiation. A grain 

located close to the surface was considered. The two thin slices that comprised a slip 

band in Lin and Ito’s model were then replaced by two adjacent layers of dislocation. 

Under fatigue loading, these layers accommodate equal, opposite, and irreversible 

motions of dislocation. The surface of the sample acted like an obstacle blocking the 

dislocation lines from moving, i.e. an accumulative dislocation dipoles result. These 

accumulative dislocation dipoles increase the internal tensile stress, making the slip 

bands energetically unstable. At a critical point stress is released in the form of a 

microcrack within the slip bands. This critical point was determined by comparing 

the magnitude of total strain energy within a slip band with the critical specific 

fracture energy. 

 

After this initial work, Mura and co-workers further developed a model to account 

for the effect of inclusions upon the reduction in fatigue strength [24], to produce a 

stress versus number of cycles (S-N) curve under various loading conditions [25-26], 

to investigate the early stage of fatigue microcrack propagation [27], and to 

investigate the effects of the environment and thin film coatings on materials [28]. 

Tanaka-Mura’s model of fatigue crack initiation has been implemented into 

simulations by various research groups [29-32]. Bruckner-Foit and co-workers [29-

30] implement the model into RVE simulations to predict the number of cracks 

initiated transgranularly. Tryon and Cruse [31-32] developed probability-based 

models to study statistical distribution in fatigue crack nucleation life. 

 

The same approach to modelling fatigue crack was also used by other researchers 

[33-35], even though Mura’s formulation was not used. For example, Andersson [33] 

investigated the influence of metal grain sizes upon fatigue lives. The short crack 

growth model by Navarro-de los Rios was modified and used to calculate the 

distribution of fatigue cracks during loading. This approach is similar to that used by 

Bruckner-Foit and co-workers [29-30], who assumed that if slips initiated at a point 

in a grain then the whole grain slipped. Once started, the crack would spread across 

the whole grain and would only be blocked by the boundaries. Depres et al. [35] 

conducted high cycle fatigue test and modelling on single crystal 316L austenitic 

stainless steels (fcc) using 3D discrete dislocation simulation. Their studies of elastic 

energies stored in the crystal revealed that a crack may nucleate somewhere close to 
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the boundary of a grain but then move quickly towards the free surface, i.e. the crack 

eventually begins at the intrusion after a critical number of cycles. Depres et al also 

concluded that plastic shear alone could produce fatigue cracks that began at the free 

surface, similar to those made from a slip-based model of initiation of fatigue cracks 

by Tanaka and Mura. [23] 

 

The common point of these modelling works was that they assumed that cracks 

originated along slip bands in a trans-granular manner, but their exact location within 

a grain was not predicted. It would also be difficult to specify the value of crack 

energy when using the Tanaka-Mura model, i.e. the energy required to create a new 

surface, because it must be compared with the total elastic strain energy to determine 

crack initiation, which is generally not readily available. They not only vary with 

materials but are also dependent upon the crystalline structures of the material being 

considered. A review of work determining this factor is presented in Section 1.7. 

 

Another difficulty is the assumption that cracks begin as a result of stress released 

within a persistent slip band made up of two slips moving in opposite directions. 

Hence, the basic principle of crack initiation of the model cannot be applied to 

predict damage of the materials under other types of loading which do not yield 

persistent slip bands. 

 

 

1.5 Other methods modelling crack initiation and crack growth 

 

Molecular dynamics (MD) [68-72] has been widely used to simulate crack growth. 

This approach requires no criteria for crack opening because it occurs “naturally” 

when two or amore atoms are separated beyond their interactive range. The 

disadvantages of this method are a limited modelling scale in terms of time and size. 

MD simulations of a real tensile test would be extremely expensive computationally. 

Another drawback is that the crack tip morphology could be ambiguous at the early 

stages of crack growth because the boundaries of the newly created surface formed 

by most outer atoms are not uniquely determined. Also, the results are sensitive to 

the applied potential. 
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An increasing number of research works [73-77] focused on multi-scale FEM 

combined with MD or molecular statics (MS) simulations, to model dynamic crack 

growth. By means of MD/MS simulations, this approach accounts for the effects of 

crystalline orientation and provides a sound physical base of crack tip opening when 

modelling macro-scale problems, i.e. eliminating the size-scale issues mentioned 

above in MD simulations. A highly flexible mesh with the ability to avoid re-

meshing at moderate loadings is also possible if meshless FEM is used. However, 

disadvantages, which mainly come from the MD/MS side of this approach, do exist, 

i.e. long computational time. 

 

Other common approaches to the problem of crack growth are cell models which 

have been widely used to model porous solids, fatigue crack with micro-defects, and 

rupture of multi-phase solid [78-80], or by using the extended FEM [81-83]. Even 

though these approaches could well handle the dynamics of crack growth and crack 

initiation in terms of void nucleation [78-80] to some extent, they have been 

restricted to isotropic or layered materials. The influence of the crystalline structures 

of the sample have not been accounted for. 

 

Watanabe and Yamamoto [84] introduced two types of fracture modes of 

microcracking, cleavage and shearing applied to FEM modelling. The basic idea was 

to apply a crack opening criterion to a node, which, if it satisfied such criterion, 

would be split into two nodes. The criterion was stress-based, i.e. a critical stress was 

presumed and assigned as a material property. This approach was similar to the 

cohesive zone model even though the technique used to split a node into two was not 

clearly specified. 

 

Another technique for modelling crack growth that could be found in the literature 

was element removal applied in FEM modelling, although only a handful of works 

have been reported [85-87]. This approach simulates dynamic crack growth without 

remeshing or pre-specifying some special elements that could be removed. Similar to 

many other techniques, crack opening criteria are required to determine which are 

elements to be removed from the original mesh. Other works in the literature that use 

the element removal technique with timber as the material and assumed to be 

isotropic. 
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1.6 Tensile deformation of fcc polycrystalline aggregates  

 

Various studies have used the crystal plasticity theory combined with finite element 

method to carry out simulations investigating the deformation of polycrystalline 

sample under tensile loading [88-92]. Some of these studies will be reviewed below. 

Very often, the polycrystalline aggregate is approximated by a Voronoi diagram, 

which is a set of convex polygons. The polygons can be in 2D or 3D space. Each of 

these polygons represents a grain. 

 

 

 

 

Figure 1.11 (a) Quasi three-dimensional Voronoi diagram and  

(b) Full three dimensional Voronoi diagram [88]. 

 

 

You et al. [88] performed 3D simulations of the tensile deformation of a thin 

316LVM stainless steel specimen. Quasi three-dimensional and full three 

dimensional Voronoi diagrams were used to approximate the fcc polycrystalline 

specimen. Sketches of these two Voronoi digrams are shown in Figure 1.11. The 

study concluded that both types of Voronoi diagram could predict very well the 

global stress-strain curve obtained from experiments, although the full 3D Voronoi 

diagram was slightly better. Simulations using both diagrams also produced the 

distribution of strain on the sample surface and the evolution of active slip systems at 

Please see print copy for image
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the grain level that qualitatively agreed with those observed in experiments. You et 

al. [88] reported that their models failed to predict the reorientation of crystals during 

deformation. They concluded that the deficiencies were due to the Asaro’s hardening 

law used in their models, and that a more accurate description of the material strain 

hardening would improve the accuracy of their models. 

 

Fulop et al. [89] studied the effects of initial grain orientations and sample thickness 

on the deformation of a pure aluminum polycrystalline aggregate. In order to avoid 

the complexity and time consuming in constructing a full 3D Voronoi diagram, 

Fulop et al. assumed that the geometry grain boundaries were unchanged along the 

sample thickness. A 2D Voronoi structure was constructed and extruded along the 

sample thickness. The effects of grains along the thickness of the sample were 

obtained by assigning different orientations to Voronoi cells within each layer along 

the thickness. From simulation results, Fulop et al. [89] concluded that the sample 

thickness affected the sample deformation in a couple of ways. Particularly, the 

thinner is the sample, i.e. the smaller number of grain along the sample thickness, the 

smaller are the initial yield limit and the hardening. They also observed that thinner 

samples appeared to be more affected by the inhomogeneity of the initial grain 

orientation. No conclusions were made regarding the lattice revolution in each grain. 

It is noted that Fulop et al. used a strain hardening law similar to Asaro’s 

formulation, i.e. it does not account for interactions between slip systems in the 

formulation of self hardening. 

 

Wei and Anand [90] developed a model based on the theory of crystal plasticity to 

account for the effects of grain boundary in an fcc nano-crystalline aggregate. 

Similar to Fulop et al. [89], Wei and Anand approximated the polycrystalline 

structure by a quasi three-dimensional Voronoi diagram. Using this Voronoi diagram 

and their newly developed constitutive law of grain boundary, Wei and Anand 

investigated effects of grain size on the tensile deformation of the aggregate, and 

demonstrated the capability of the new model to capture fracture along grain 

boundaries. Their simulations showed that the ultimate tensile stress of the aggregate 

increased with grain size, and then rapidly decreased after the grain size reached a 

threshold value.  
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Nakamichi et al. [91] developed a new hardening-softening law to characterize 

interactions of slip systems in an fcc crystal structure. The law was applied into 

modelling the deformation of fcc single crystals and polycrystalline aggregates. The 

single crystal had various initial orientations. The polycrystalline aggregate was 

approximated by a 2D Voronoi diagram, with various grain sizes. It was concluded 

from the numerical results that in single crystal, the initial orientation affects very 

much the initial yield stress, slip band formation and the localized necking. Results 

for polycrystalline aggregate showed that the larger the grain size (the smaller the 

number of grain), the higher the localized strain at a specific crystal and the less 

clearly the localized necking can be observed. 

 

Haldrup et al. [92] conducted simulations of tensile test on a full 3D Voronoi 

diagram of fcc polycrystalline aggregate. Two cases of boundary conditions, namely 

free and cyclic boundary conditions, were applied on a cubic polycrystalline sample. 

In both sets of boundary conditions, one surface was pinned and the opposite surface 

was stretched out (in the normal direction of the surfaces). For free boundary 

conditions, nodes on the other surfaces were set to deform freely. For cyclic 

boundary conditions, on each pair of surface in the other two directions, the 

displacements of nodes on one surface were equal to those on the opposite surface. 

Haldrup et al. concluded that cyclic boundary conditions made the sample slightly 

stiffer than free boundary conditions. Also, grain size did not affect the difference 

between slip activities on the sample surface and on an interior plane. It appeared 

that the difference depended only on the distance from the free surface. 

 

 

1.7 Surface energy and interface fracture energy 

 

Throughout the above discussions fracture energy plays a key role in most studies of 

fracture, either analytical or simulated. Apart from those that include MD or MS in 

their models, and those that use damage variables, fracture energy has been given in 

many studies as a constant material property. This could be erroneous because this 

parameter depends not only on material types but also on the crystalline structures, 

e.g. lattice orientation. 
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Numerous works determining fracture energy experimentally and numerically have 

been reported. Gilman [93] described the direct measurements of the surface energy 

of crystals and reported the results of various substances. A reasonably 

comprehensive summary of the experimental results of surface energy for a wide 

range of metals was later reported by Kumikov et al. [94]. The considerable 

uncertainty that accompanied these results makes them acceptable only for general 

approximations, and inappropriate for an accurate simulation of crack initiation. 

More precise results of fracture energy could be obtained by analytical atom-based 

models or molecular dynamic simulations, if an appropriate potential function is 

used. 

 

Howe [95] described the calculation of surface energy using the nearest-neighbor 

broken bond model where atoms were considered as hard spheres. The surface 

energy appears when an atom in a particular plane or surface loses one or some of its 

neighboring atoms and hence has higher energy than other atoms in the bulk 

material. The surface energy is then equal to the energy gained from the broken 

atomic bonds. In other words, if fracture energy is defined as the energy required to 

break atomic bonds along a plane, it is identical to the surface energy of that plane. 

Obviously, the surface energy depends on the orientation of the plane being 

considered and the potential function being used to describe the interaction between 

atoms. Various potential functions have been reported. Among the most commonly 

used are the Lennard-Jones potential [95], the Morse potential [96], and the 

embedded atom method (EAM) potential [97] and its variations [98-102]. 

 

The nearest-neighbor broken model has been used by numerous research groups to 

determine the surface energy of various materials in various planes, and with various 

potential functions [103-110]. It should be noted however that the concept of surface 

energy refers to the energy required to cleave a single crystal along a chosen lattice 

plane. It is therefore generally applicable to contexts where a single crystal is 

involved (e.g. fatigue crack initiation model by Mura and co-workers [23-35]) or 

where a change of lattice orientation is irrelevant (e.g. cohesive zone technique, 

where material properties in the cohesive zone are assumed to be isotropic).  
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For grain boundaries, or more generally, interfaces created by two lattices of 

different structures, the determination of fracture energy is more complicated, even 

though the principles remain unchanged, i.e. calculating the energy required to break 

the bonds between atoms along the interface. Unfortunately a majority of research 

work about grain boundaries found in the literature focused on estimating the 

interface energy rather than the interface fracture energy. In the context of a 

homophase interface, the interface energy could be interpreted as that required to 

create an interface from a single crystal. Nevertheless, calculation models in those 

works could help to develop a new model for determining the interface fracture 

energy. The results of the boundary energy could then be used to verify the accuracy 

of any newly developed model. 

 

 

Figure 1.12 Measured relative interface energy in aluminum (a) <001> symmetrical 

tilt boundary and (b) <011> symmetrical tilt boundary. Corresponding results from 

MD simulations for (c) <001> symmetrical tilt boundary and (d) <011> symmetrical 

tilt boundary. [111] 

 

Please see print copy for image
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Experimental measurements of the interface energies of aluminum <001> and <011> 

tilt boundaries reported by Hasson and Goux [111] were used to verify the many 

simulation models that follow. The same authors also conducted molecular dynamic 

simulations for the same tilt boundaries using Morse potential for aluminum. These 

experimental and modelling results are given in Figure 1.12. The term 

“misorientation” in Figure 1.12 refers to the tilt angle (in degrees). 

 

Wolf [112] determined the symmetrical tilt grain boundary energies of fcc single 

crystals numerically, particularly for Au and Cu, and compared the results obtained 

from the Lennard-Jones and EAM potential. Various cases of symmetrical tilt 

boundary (i.e. the orientation of the tilt axis with respect to the original crystal 

coordinate system), particularly <011>, <112>, <111> and <001>, were considered. 

For a comparison with the experimental and numerical results by Hasson and Goux, 

only the results of <001> and <011> tilt boundary energies by Wolf are given in 

Figure 1.13. The horizontal and vertical axes in plots, shown in Figure 1.13, refer to 

the tilt angle in degrees and boundary energy in mJ/m
2
, respectively. 

 

Figure 1.13 Boundary energies of Cu and Au using different potentials [112] (a) 

<001> symmetrical tilt boundary, (b) <011> symmetrical tilt boundary. 

 

 

Nishitani et al. [113] repeated the calculation of <011> symmetric tilt boundary in 

aluminum using their newly developed EAM potential, namely the environmental 

dependent EAM for Al. Their resulting plot of boundary energy versus tilt angle is 

given in Figure 1.14. 
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Figure 1.14 Energies of <011> 

symmetrical tilt grain boundary in Al 

using environment dependent EAM. 

[113] 

Figure 1.15 Energies of <011> 

symmetrical tilt grain boundary in Al 

using second nearest neighbor modified 

EAM [114] 

 

 

More recently, Lee and Choi [114] proposed a new method for calculating the grain 

boundary energy of the arbitrary tilt angle and tilt axis where the five degrees of 

freedom of an interface are fully accounted for. Their method was demonstrated by 

calculating the energy of <011> symmetrical tilt boundary in aluminum, using a 

semi-empirical atomic potential, namely the second nearest neighbor modified EAM. 

The result is given in Figure 1.15. 

 

Numerical simulations conducted by various groups resulted in quite different values 

of boundary energy, particularly those of <011> symmetrical tilt boundary in Al. The 

reasons may lie in the different potential functions used to characterize the atomic 

interaction or the different modelling methods; while Hasson and Goux, Wolf, and 

Nishitani et al. used MD, Lee and Choi chose MS simulation. 

 

Even so the results reviewed above possess common points that reveal interesting 

features of tilt boundary in fcc crystals. Firstly, the maximum energy of <001> 

symmetrical tilt boundary was generally higher than that of <001> symmetrical tilt 

boundary. Secondly, small energy cusps occur for <001> tilt boundary at tilt angles 

between 20
o
 and 70

o
, but are more severe for the <011> tilt boundary where two 

large cusps occur at 70
o
 and 129

o
. Howe [95] stated that such large cusps are 
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associated with low-energy {111} and {113} twin boundaries that result when tilting 

two fcc crystals around <011> axis at 70
o
 and 129

o
, respectively. 

 

 

1.8 Problem statement and thesis structure 

 

The above review has shown that the field of fracture mechanics could generally be 

divided into the study of material deformation leading to crack opening and crack 

opening criteria. Even though both subjects have been studied by various groups for 

some decades there are still gaps that must be bridged, particularly in the modelling 

of crack initiation and subsequent growth in crystalline materials. 

 

Most analytical works in this field (e.g. those pioneered by Rice and co-workers [50], 

models of fatigue crack initiation by Mura and co-workers [23-28], or continuous 

damage mechanics [37-45]), and the majority of numerical models (e.g. those using 

the cohesive zone technique) focused into explaining material behaviour that lead to 

cracks opening. If the strain energy at particular regions in the material reaches a 

critical value, which is mostly a predefined constant of surface energy, a crack is 

assumed to occur. The second aspect, determining the crack opening criteria, has 

been by-passed. Indeed, various studies concluded that crack opening criteria such as 

surface energy or interface fracture energy, vary with the materials and the crystal 

structures of the sample being considered. 

 

More recently, molecular dynamic (MD) simulations and multi-scale models that 

incorporate MD simulations are able to combine both fields. Material deformation 

before cracking was modelled by inter-action between atoms where the crack 

opening was predicted “naturally” by the dynamics of the atoms. This approach is 

better used to study material behaviour qualitatively rather than determine their 

properties quantitatively because the sizes and time frames are different to real 

applications. An MD simulation of a real tensile test would be extremely expensive 

computationally. 

 

This thesis combines both fields of the modelling of dynamic fracture in crystalline 

materials with a reasonable cost of computational time. Material behaviour before 
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cracking is modelled by implementing the theory of crystal plasticity into the 

traditional FEM analysis (CPFEM). The analysis of crack opening criteria is 

incorporated into the modelling procedure to account for changes in the crystal 

structures to the critical fracture energy. Elements in the FEM mesh satisfying the 

crack opening criteria are removed by the element removal technique. This combined 

approach allows the modelling of explicit dynamic crack growth without presuming 

a path or energy criterion. To the best of the author’s knowledge, this combined 

approach is original and such modelling capability have not been available 

anywhere. 

 

The current study is limited to the modelling of crack initiation and crack growth in a 

single-edge notched (SEN) aluminum single crystal under tensile test. The notch 

effectively acts as a defect in the material where concentrated deformations take 

place and cracks are likely to initiate. The numerical models and methodology 

proposed could, with minor modifications, also be used to predict crack nucleation 

and growth in crystals of various types under various loadings. 

 

Section 1.6 showed that numerous studies have used CPFEM simulations to 

investigate the effects of various factors, e.g. sample thickness, grain size and initial 

orientations, to the deformation of an fcc polycrystalline aggregate. In many of these 

studies the strain hardening of the crystal lattice was described by a constant 

hardening modulus or a simple function that monotonically decreased with shear 

strain [88-92]. These descriptions of strain hardening might cause inaccuracies in 

predicting the reorientation of crystals in a  polycrystalline aggregate [88]. A more 

accurate hardening law, which accounts for the influence of other slip systems in the 

lattice structure on the self hardening of a slip system [115], is used in this thesis. 

Using this hardening law, this thesis reports an initial investigation of the effects of 

initial orientation and notch shape to the evolution of crystals in the region around 

the notch tip in an SEN aluminum polycrystalline sample. 

 

The subsequent chapters are structured as follows. 
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Chapter 2 presents the formulation of the theory of crystal plasticity and its 

implementation into an FEM analysis in Abaqus/Standard. The hardening law 

formulated by Bassani and Wu [115] will be used. 

 

Chapter 3 presents the analyses of FEM results around the notch tip in a single 

crystal to verify the CPFEM model developed in Chapter 2. Particularly, the 

modelling results and analyses carried out in Chapter 3 are compared with the 

experimental observations found in the literature. 

 

Chapter 4 presents the analyses of FEM results investigating the deformation in the 

region close to notch tip in single crystals with Cube and Brass initial orientations. 

The results for single crystals in this chapter form a basis for the crack opening 

modelling carried out in Chapter 6. 

 

Chapter 5 investigates the effects of the geometry of the notch and initial orientation 

on the plastic deformation, particularly the evolution of microstructure, at the notch 

tip in a polycrystalline aggregate, using the hardening law formulated by Bassani and 

Wu [115]. 

 

Chapter 6 proposes a newly developed misorientation-dependent crack opening 

criterion, combined with the element removal technique in Abaqus/Standard. The 

chapter also presents the analyses and discussions of the modelling results of void 

nucleation and crack growth. 

 

The overall conclusions and suggestions for further developments are presented in 

Chapter 7.  
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2. Formulation of CPFEM 

 

 

This chapter presents a CPFEM model with Bassani and Wu’s hardening model [115, 

116] that has been developed in this study to investigate the fracture behaviour of pure 

aluminum. The implementation of the developed CPFEM model into Abaqus/Standard 

is also discussed. 

 

To simplify the writing, the bold-faced notation represents vectors, tensor and matrices 

in the subsequent context. The superscript -1 of a matrix denotes the inverse, while the 

superscript T of a matrix means its transposition. 

 

 

2.1 Theory of crystal plasticity 

 

2.1.1 Kinematics of crystalline deformation [117] 

 

Crystalline material under load undergoes crystallographic slip due to dislocation on the 

active slip systems and elastic deformation including stretching and rotating of the 

crystal lattice. These modes should occur simultaneously during deformation, from a 

reference to a current configuration. For mathematical convenience it is assumed that 

there is an intermediate configuration between the reference and current configuration, 

as shown in Figure 2.1. This crystallographic slip is assumed to occur firstly from the 

reference to the intermediate configuration, and secondly by an elastic stretching and 

rotation from the intermediate to current configuration. [117] Therefore, the total 

deformation gradient (F) can be decomposed into two components P
F  and *

F as  

 

 *P
FF

X

x
F =

∂

∂
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where X is the position of material points in the reference configuration and x is the 

position of material points in the current configuration. F
p
 describes crystallographic slip 

on the slip system, which is also referred to as the plastic deformation gradient. F
* 

represents the elastic deformation gradient. [117] 

 

 

Figure 2.1 Kinematics of deformation in crystalline material. 

 

 

The Green strain tensor (E) can be written as 
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A slip system α
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 in the reference configuration is specified by the slip direction vector 
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They should satisfy the orthogonal relationship  
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)(

0

αs  and )(

0

αm  do not change during crystallographic slip from the reference 

configuration to the intermediate configuration. The plastic deformation gradient (F
p
) 

can be written as [117] 

 

 ∑∑
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where F
(α)P

 is the contribution of α
th

 slip system to F
p
, γ is the shear strain of a slip 

system, ⊗ indicates the tensor product, I is a second-order unit tensor and N is the 

number of active slip systems. 

 

The slip direction vector and normal vector to the slip plane convect with the lattice 

when the lattice is stretched and rotated from the intermediate to the current 

configuration. They are defined as s
(α)

 and m
(α)

 in the current configuration, respectively. 

Under the total deformation gradient (F) the slip direction is transformed from )(

0

αs  to 

s
(α)

, such that 
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Substituting Equation (2.4) into Equation (2.5) gives 
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The above equation indicates that the slip direction vector only varies with the elastic 

stretching and rotation. Due to the orthogonal relationship between the slip direction 

vector and normal vector to the slip plane in any configuration, the latter )(α
m  in the 

current configuration is governed by [117] 

 

 
1)(

0

)( −∗= Fmm αα  (2.7) 
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The velocity gradient L is evaluated from the deformation gradient by 

  

 P1
LLFF

x

v
L +==

∂

∂
= ∗−&  (2.8) 

 

 
1−∗∗∗ = FFL &  (2.9) 

 

 
11PPP −∗−∗= FFFFL &  (2.10) 

 

where v is the velocity in the current configuration, F& expresses a time derivative of F, 

L
*
 is the contribution of the elastic stretching and lattice rotation to L, and L

p
 is the 

plastic contribution. Decomposing L into a symmetric part D (stretching tensor) and an 

asymmetric part Ω (spin tensor) yields 

 

 ΩDL +=  (2.11) 

 

 )(
2

1 T
LLD +=  (2.12) 

 

 )(
2

1 T
LLΩ −=  (2.13) 

 

D is also commonly called the rate of deformation. Same as L, D and Ω can also be 

decomposed into the elastic stretching and lattice rotation parts (D
*
 and Ω

*
) and plastic 

parts (D
p
 and Ω

p
), namely 

 

 PP ΩΩΩDDD +=+= ∗∗ ,  (2.14) 

 

Differentiating Equation (2.2) yields the rate of Green strain tensor E& , which refers to 

the reference configuration. 
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 DFFE T=&  (2.15) 

 

From Equation (2.4) L
p
 can be derived as 

 

 ∑
=α

ααα ⊗γ=
N

1

)()()(P
msL &  (2.16) 

 

where )(αγ&  is the shear strain-rate caused by the plastic slip in the α
th

 slip system. 

 

And then 

 

 ∑
=α

αα γ=+=
N

1

)()(TPPP )(
2

1
&pLLD  (2.17) 

 

 ∑
=α

αα γ=−=
N

1

)()(TPPP )(
2

1
&WLLΩ  (2.18) 

 

where )(
2

1 )()()()()( ααααα
smmsP ⊗+⊗=  (2.19) 

 

 )(
2

1 )()()()()( ααααα
smmsW ⊗−⊗=  (2.20) 

 

)()( αα ms ⊗  is called the Schmid factor. )(αP  and )(αW  are symmetric and asymmetric 

part of Schmid factor, respectively. [117] 

 

2.1.2 Lattice rotation [117] 

 

If the polar decomposition is performed on the deformation gradient, we have 

 

 RUF =  (2.21) 
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where R is the orthogonal rotation tensor and U the right stretch tensor, which is a 

positively defined symmetric tensor. They have the following properties 

 

 1T −= RR  (2.22) 

 

 T
UU =  (2.23) 

 

Substituting Equation(2.21) into Equation(2.8) yields  

 

 111 −−− += RUURRRL &&  (2.24) 

 

R&  is the time derivative of the orthogonal rotation tensor. Therefore, the asymmetric 

part Ω of the velocity gradient can be written as 

 

 ))()((
2

1 T1111
RUUUURRRRRΩ &&&& −−−− −+−=  (2.25) 

 

The derivative of IRR =−1  gives  

 

 11 −− −= RRRR &&  (2.26) 

 

If U in the reference configuration is a unit tensor, we can obtain 

 

 UUUU && 11 −− =  (2.27) 

 

Therefore, Ω becomes 

 

 1−= RRΩ &  (2.28) 

 

Accordingly we have 
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 1
)t

2

1
)(t

2

1
(

−∆−∆+= ΩIΩIR  (2.29) 

 

where ∆t is the time increment. Equation (2.30) can also be written as 

 

 1
))((

t

2 −+−
∆

= IRIRΩ  (2.30) 

 

The derivatives of Equations (2.6) and (2.7) yield 

 

 
)(*)()( )( ααα

sΩDsLs +== ∗∗
&  (2.31) 

 

 )( *)(*)()( ΩDmLmm +−=−= ∗ααα
&  (2.32) 

 

2.1.3 Constitutive law [117] 

 

Let t0 be the Kirchhoff stress in the reference configuration at the time t + ∆t, it is also 

the Kirchhoff stress in the current configuration at the time t. According to the 

description in Section 2.1.1, deformation occurs first by crystallographic slip from the 

reference to the intermediate configuration, and then the lattice stretching and rotation 

from the intermediate configuration to the current configuration. It is assumed that the 

change in stress caused by the slip and lattice stretching is t0∆t& , where 0t&  is the stress 

rate in the reference configuration. The stress (t0+ t0∆t& ) will be rotated to the current 

configuration. The rotation tensor is R. The Kirchhoff stress t in the current 

configuration can be expressed by 

 

 TRttRt )t( 00 ∆+= &  (2.33) 

 

Taking the time derivative then gives  
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tΩΩtRtR

RttRRttRRtRt

T

TTT

−+=

∆++∆++=
⋅

0

00000 )()(

&

&&&&& tt
 (2.34) 

 

where t&  is the material rate of Kirchhoff stress. TRtR 0
& is defined as the Jaumann rate of 

Kirchhoff stress (
∇

t ) on axes that rotate with the material. Therefore, we have 

 

 tΩΩttt +−=
∇

&  (2.35) 

 

If deformation from the intermediate to the current configuration alone is taken into 

account then Equation (2.35) can be rewritten as 

 

 ***
tΩtΩtt +−=

∇

&  (2.36) 

 

 T
RtRt

*

1

* &=
∇

 (2.37) 

where 
∇
*

t is the Jaumann rate of Kirchhoff stress on axes that rotate with the lattice and 

*

1t&  is the rate of the Kirchhoff stress in the intermediate configuration. 

 

The difference between Equation (2.35) and Equation (2.36) is 

 

 ∑
=α

αα
∇∇

∗ γ=−
N

1

)()(
&βtt  (2.38) 

 

where )()()( ααα −= tWtWβ  (2.39) 

 

The lattice is elastically stretched along the lattice axis. The lattice stretching can be 

described in the lattice coordinate system by 

 

 L0L : DCt =&  (2.40) 
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where 
Lt&  is the material rate of the Kirchhoff stress in the lattice coordinate system, 

LD
 

is the rate of the elastic stretching in the lattice coordinate system, C0 is the tensor of 

elastic moduli.  

 

Provided the rotation tensor between the lattice coordinate system and the current 

configuration is RL, the elastic deformation rate D
*
 in the current configuration can be 

linked to DL by the following equation 

 

 T
LLL

* RDRD =  (2.41) 

 

The rate of Kirchhoff stress *

1t&  in the intermediate configuration can be given by 

 

 RRtRRt T

LLL

T*

1
&& =  (2.42) 

 

Therefore, the Jaumann rate 
∇
*

t  can be expressed by 

 

 T
LLL

* RtRt &=
∇

 (2.43) 

 

Equations (2.41) and (2.43) can be rewritten as 

 

 *T

L

T

LL :)( DRRD ⊗=  (2.44) 

 

 
∇

⊗= *T

L

T

LL :)( tRRt&  (2.45) 

 

Substituting Equations (2.44) and (2.45) into Equation (2.40) yields 

 

 **
: DCt =

∇

 (2.46) 
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 )()( T

L

T

L0LL RRCRRC ⊗⋅⋅⊗=  (2.47) 

 

Substituting Equation (2.46) into Equation (2.36) gives 

 

 ∑
=α

ααα
∇

γ+−=
N

1

)()()( )( &βP:CD:Ct  (2.48) 

 

It was assumed that slip is the plastic deformation mechanism. The resolved shear stress 

on each slip system can be used as the vital variable to evaluate plastic flow. The 

resolved shear stress τ(α)
 can be calculated from 

 

 t:P
)()( αα =τ  (2.49) 

 

Taking the time derivative gives 

 

 t:Pt:P &&&
)()()( ααα +=τ  (2.50) 

 

Equation (2.50) can also be written as 

 

 )()(
N

1

)()()()()( ∑
=β

ββααα γ−+=τ && pD:βP:C  (2.51) 

 

The relationship of the Cauchy stress σ  and the Kirchhoff stress can be expressed by 

 

 σt J=  (2.52) 

 

 
F

1
J =  (2.53) 

 

The derivative of Equation (2.52) with time can be written as 
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σDσ

σσt

)(JtrJ

JJ

+=

+=

&

&&&

 (2.54) 

 

σ&  is the time derivative of Cauchy stress. Substituting Equations (2.52) and (2.54) into 

Equations (2.33), (2.35), (2.48), (2.51) gives the constitutive law based on Cauchy stress 

 

 t)))(tr1(( 00 ∆++=
∇

σRDσRσ
T  (2.55) 

 

 σΩΩσσσ +−=
∇

&  (2.56) 

 

 ∑
=α

ααα
∇

γ+−−=
N

1

)()(

1

)( )()(tr &βP:CσDD:Cσ  (2.57) 

 

 )()(
N

1

)()()(

1

)()( ∑
=β

ββααα γ−+=τ && pD:βP:C  (2.58) 

 

Where )()()(

1

ααα −= σWσWβ  (2.59) 

 

∇

σ  is the Jaumann rate of Cauchy stress on axes rotating with the material. 

 

2.1.4 Rate-dependent hardening model 

 

In this study, the rate-dependent hardening model with a power law, which dictates the 

relationship of the resolved shear stress (τ
(α)

) and the shear strain rate )(αγ&  on a slip 

system α, is used. Slip on a slip system also obeys Schmid’s law, which states that slip 

begins when the resolved shear stress reaches a critical value. [117] 

 

 

n

)(

c

)(
)()(

0

)(
)sgn(

α

α
ααα

τ

τ
τγ=γ && , for )(

c

)( αα τ≥τ  (2.60a) 
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 0)( =γ α
& , for )(

c

)( αα τ<τ  (2.60b) 

and   




<−

≥
=

1xfor1

1xfor1
)xsgn(  

 

where )(

0

αγ&  is the reference value of shear strain rate which is a constant for all slip 

systems, n is the rate sensitive exponent. Both )(

0

αγ&  and n are material parameters. )(

c

ατ  is 

the critical resolved shear stress of slip system α. 

 

A linear hardening is assumed and the rate of change of the critical resolved shear stress 

is expressed as [117] 

 

 ∑
=β

β
αβ

α γ=τ
N

1

)()(

c h &&  (2.61) 

 

After reviewing various experimental results of fcc single crystals undergoing uniaxial 

stressing, Wu et al. [116] described the revolution of the resolved shear stress in a slip 

system with respect to the shear strain as a three-stage process, as shown in Figure 2.2. 

In stage I, the hardening rate is low and is almost a constant. In stage II, rapid hardening 

occurs. The hardening rate in this stage is also almost constant and is about an order of 

magnitude larger than the hardening rate in stage I. In stage III (parabolic hardening), 

the hardening rate decreases continuously until fracture occurs. 

 

Figure 2.2 A typical curve of resolved shear stress versus shear strain in a slip system 

with three-stage hardening. [115] 

Please see print copy for image
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In various hardening laws, e.g. those proposed by Taylor [118], Budiansky and Wu 

[119], Hutchinson [120], Asaro [117], Havner and Shalaby [121], it was assumed that 

the self hardening modulus was either a constant or a simple function that monotonically 

decreased with shear strain. These assumptions obviously could not capture the shear 

stress – shear strain curve in Figure 2.2. Bassani and Wu [115] incorporated the history 

of slip into the development of a new hardening law. As a result, the new hardening 

modulus was able to capture the transition of stages of hardening (see Figure 2.2) and 

the orientation dependence of hardening. The self-hardening and latent hardening 

moduli are shown in Equation (2.62) 

 

















+











+








−

−
−= ∑

≠
=

N

s

s

s fh
hh

hhh

αβ
β

β

αβ

α

αα
γ

γ

ττ

γ

1 0

)(

01

)(

02

0 )tanh(1
)(

hsec)(  (2.62a) 

 αααβ qhh = , βα ≠   (2.62b) 

 

where hαβ are instantaneous hardening moduli including the self hardening of each 

system (α=β) and latent hardening (α≠β); hαα is the self hardening moduli; q is a latent 

hardening parameter; γ0 is the reference value of slip; γ is the shear strain; τ0 is the initial 

critical resolved shear stress; τ1 is the breakthrough stress where large plastic flow 

initiates; h0 is the hardening modulus just after initial yield, hs is the hardening modulus 

during easy glide and f αβ represents the magnitude of the strength of a particular slip 

interaction between two slip systems α and β. The factors f αβ depend on the geometric 

relation between two slip systems. There are five constants for fαβ, namely a1 (no 

junction), a2 (Hirth lock), a3 (coplanar junction), a4 (glissile junction) and a5 (sessile 

junction). [115] 

 

The nature of the function ( )( )
















+= ∑
≠
=

N

fG

αβ
β

β

αβ
β

γ

γ
γ

1 0

)(

)tanh(1  and the scalar value q are 

different and they serve different purposes. The function ( )( )βγG  is used to account for 

the effects of shear strain on other slip systems in the calculation of the self hardening 
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modulus of a system α (Equation 2.62a). Meanwhile, the scalar value q is used to 

determine latent hardening moduli of a slip system α based on its self hardening 

modulus (Equation 2.62b). 

 

 

2.2 CPFEM formulation 

 

2.2.1 Basic theory of the displacement-based FEM 

 

The equilibrium for problems neglecting the body forces can be expressed by the virtual 

work principle in rate form 

 

 ∫∫ ⋅=
SV

dSδdVδ: vfDσ  (2.63) 

 

where V is the volume of the solid body in the current configuration; S is the bounding 

surface of the volume V; σσσσ is the Cauchy stress; f is the surface traction per unit of the 

current area; δv is the kinematically admissible virtual velocity field, which is 

infinitesimal and completely arbitrary except that it must obey the boundary conditions 

on displacement; δD is the virtual form of the rate of deformation  

 

In FEM, the solid body is divided into n elements, where each element is associated with 

m nodal points. The velocity field in each element is interpolated by interpolation 

functions N (shape functions), which link the velocity field (v) to the nodal velocities 

(v
n
) as follows 

 

 nNvv =  (2.64) 

 

Based on Equation (2.64), the interpolation for the rate of the deformation D and the 

spin tensor Ω can be expressed as: 
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 nBvD =  (2.65) 

 

 n
GvΩ =  (2.66) 

 

where B and G are respectively the symmetric part and the skew part of the coefficient 

matrix of velocity gradient. 

 

Normally surface tractions f in Equation (2.63) are the force (or stress) boundary 

conditions. If f is the function of nodal velocities, it can be written as 

 

 f=Tv
n
 (2.67) 

 

where T is the coefficient matrix between stress boundary conditions and nodal velocity. 

 

Corresponding to Equations (2.64) and (2.65), the virtual velocity field δv and the 

virtual rate of deformation δD can be written as 

 

 n
vNv δ=δ  (2.68) 

 

 n
vBD δ=δ  (2.69) 

 

The equilibrium equation (Equation (2.63)) is discretized by substituting Equations 

(2.68) and (2.69) into Equation (2.63) 

 

 nTnT
vfNvσB δ=δ ∫∫ :dS:dV

SV
 (2.70) 

 

Since δv
n
 is arbitrary, one obtains 

 

 ∫∫ =
SV

dSdV fNσB
TT  (2.71) 
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The above non-linear equations are functions of the nodal velocities v
n
. They form the 

basis of the displacement-based FEM. Equation (2.71) can be rewritten as 

 

 0fNσBvF
TTn =−= ∫∫ SV

dSdV)(  (2.72) 

 

The Newton algorithm is generally used to solve non-linear equations (Equation (2.72)). 

An iteration process is performed. In the (i+1)
th

 iteration step the nodal velocities are 

updated by 

 

 )( n

i

1n

i

n

1i vFKvv −
+ −=  (2.73) 

 

 )( n

ivFK ′=  (2.74) 

 

where n

iv  and n

1i+v  are the nodal velocities at iteration steps i
th

 and (i+1)
th

, respectively; 

K is the Jacobian matrix, which is the derivative of )( nvF with respect to v
n
 at n

i

n vv = . 

To solve Equation (2.72) K must be developed. It can be expressed by 

 

 ∫∫ −=
SV n

dSdV
d

d
TN

v

σ
BK

TT  (2.75) 

 

For rate-dependent materials, the constitutive relation can be described in incremental 

form as follows 

 

 DHσ :=
∇

 (2.76) 

 

where H is the fourth-order hardening parameter tensor. The derivative of the Cauchy 

stress with respect to v
n
 can be calculated by Equation (2.56) as follows 

 

 
nnnn

d

d

d

d

d

d

d

d

v

Ω
σσ

v

Ω

v

σ

v

σ
−+=

∇

 (2.77) 
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Substituting Equations (2.65), (2.66) and (2.76) into Equation (2.77) yields 

 

 σGGσBH
v

σ
−+= :

d

d
n

 (2.78) 

 

Therefore, the Jacobian matrix (K) can be expressed as 

 

 ∫∫ −+−=
SV

dSdV):( TNBHσGGσBK
TT

 (2.79) 

 

To determine K, the hardening parameter tensor H needs to be calculated based on the 

constitutive law. 

 

2.2.2 Implementing crystal plasticity into the FEM framework 

 

The implementation of the theory of crystal plasticity into FEM framework has attracted 

work by various research groups [142]. For the rate-independent crystal plasticity, 

McGinty and McDowell [143] developed a semi-implicit integration scheme to quantify 

the order of activation of slip systems and then determine their shear strain rates. Zamiri 

et al. [144] proposed a modified yield function for single crystal that was 

computationally efficient and flexible. Takahashi et al. [145] proposed a successive 

integration method to determine shear strain rates. Some other methods implementing 

the rate independent crystal plasticity into FEM included those proposed by Nemat-

Nasser et al. [146], Knockaert et al. [147], and Anand and Kothari [148]. 

 

In the rate dependent crystal plasticity model, all slip systems are assumed to be always 

active. The numerical integration of the model is highly unstable because of the high-

order nonlinear flow rule of slip systems [142]. Kalidindi et al. [149] and Delannay et al. 

[150] used the Newton-Raphson iteration method to overcome such numerical instability 

to solve the crystal constitutive laws. In order to improve numerical stability, Cuitino 

and Ortiz [55] later introduced a line search approach into the Newton-Raphson iteration 

to optimize the obtained convergent solutions. McGinty [151] later improved the 
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algorithm proposed by Cuitino and Ortiz by repeating the integration in two smaller time 

increments when the line search approach diverges. Other studies also focusing on 

numerically solving the constitutive law of the rate dependent crystal plasticity model 

were those done by Pierce et al. [152], Needleman et al. [153], Raphanel et al. [154], and 

Li et al. [142]. Some of the above rate dependent CPFEM models were examined by 

Busso and Cailletaud [155], Ling et al. [156], and Rousselier and Leclercq [157]. 

 

The crystal plasticity constitutive model described earlier is implemented into the 

implicit finite element code ABAQUS/Standard by using the user material subroutine 

(UMAT) [122]. ABAQUS/Standard is a displacement-based finite element code. In 

ABAQUS/Standard the loading history is divided into steps where deformation is 

assumed to be static in each step. The stresses, strains and other state variables are 

known at the beginning of each step. Equation (2.72) is solved using Newton’s method 

where an iterative algorithm (Equation (2.73)) is conducted until it reaches convergence. 

After iteration finishes the velocity field solution to Equation (2.72) and other variables 

can be obtained at the end of the step. All the calculated variables will be transferred to 

the next step as entries. This step-by-step procedure continues until the deformation is 

finished. 

 

When Equations (2.73) and (2.79) are implemented ABAQUS/Standard calls UMAT to 

calculate the hardening parameters and to update the stresses and the solution dependent 

state variables. In this study we follow the UMAT framework developed by Huang 

[123] and use the Bassani-Wu’s formulations [115] as the hardening model. The 

procedure in UMAT includes [123] 

 

1. Through ABAQUS/Standard user interface, inputs for UMAT are provided, 

including stresses (σσσσ), logarithmic strains ( ∫
t

0
dtD ), increments of logarithmic 

strains (D∆t), rotation increments (R), time increment (∆t), constants, solution 

dependent variables, etc.. The constants include elastic moduli, parameters 

characterizing slip systems, materials parameters in the hardening model and the 

forward gradient time integration parameter. All the constant can be modified in 
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the ABAQUS input file or through ABAQUS/CAE user interface. The solution 

dependent variables include the slip directions s
(α)

, normals to slip planes m
(α)

, 

shear strain rates γ& (α)
, resolved shear stresses τ

(α)
, and critical resolved shear 

stress τc on all slip systems.  

 

2. Determine the slip systems using input parameters characterizing the slip 

systems when UMAT is called the first time. 

 

3. Calculate the spin tensor (Ω) by Equation (2.30). 

 

4. Update s(α) and m(α) using Equations (2.31) and (2.32). 

 

5. Determine the rotation tensor R from the local lattice system to the global system 

using the slip directions s
(α)

 and normals to the slip plane m
(α)

. 

 

6. Calculate the elastic moduli C in the global system by Equation (2.47). 

 

7. Calculate P, W and β1 by Equations (2.19), (2.20) and (2.58). 

 

8. Calculate 
Dd

d )(αγ&
. The Taylor expansion of Equation (2.59a) at the time step 

(t+∆t) yields 
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&&  (2.80) 

 

A relaxation scheme is used to calculated ∆τ(α)
 and ∆g

(α)
, namely 

 

 )(

tt

)(

t

)( )1( α
∆+

αα τθ+τθ−=τ∆ &&  (2.81) 

 

 )(

tt

)(

t

)( gg)1(g α
∆+

αα θ+θ−=∆ &&  (2.82) 
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where g is the relaxation factor, which varies from 0 to 1. 

 

Substituting Equations (2.81) and (2.82) into Equation (2.80) gives 
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tt gaaa α
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α
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α
∆+ θ+τθ+=γ &&&  (2.83a) 
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 (2.83c) 
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g
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α

α

∂
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 (2.83d) 

 

Further substituting Equations (2.58) and (2.61) into the Equation(2.83a) yields 

 

 ∑∑
=β

β
∆+αβ

=β

β
∆+

βααα
∆+ γθ+γ−+θ+=γ

N

1

)(

tt3

N

1

)(

tt

)()(

1
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21

)(

tt ha)()(aa &&& PD:βP:C  (2.84) 

 

Therefore we obtain 
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 (2.85) 

 

9. Calculate 
D

σ

d

d
∇

 by differentiating Equation (2.57) which yields  

  

 ∑
=α

α
αα

∇

γ
⊗+−⊗−==

N

1

)(
)()(

d

d
)(

d

d

D
βP:CIσC

D

σ
H

&
 (2.86) 

 

10. Update stresses and the solution dependent state variables. 
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2.3 Parameters for CPFEM model and Bassani-Wu hardening law 

 

The parameters used for the hardening model, as described in Equation (2.60) to 

Equation (2.62) are shown in Table 2.1. They were found by fitting the simulated stress 

strain curve with the experimental results of single crystal alumnium under plane strain 

compression [124-126]. Three elastic moduli that form the tensor of elastic moduli C0 

which appears in Equation (2.40) are 11][ 0C  = 112,000 MPa, 12][ 0C  = 66,000 MPa, and 

44][ 0C  = 28,000 MPa. Other elements in C0 are zeros. In the deformed aluminum 

samples in this study slips occur on {111} planes and in <110> directions. Their 

combination defines 12 slip systems. Hence the value for N in equations in Sections 2.1 

and 2.2 is 12. These parameters characterize the properties of a pure aluminum single 

crystal and will be used throughout the simulations in this work. 

 

Table 2.1 Parameters used in the Bassani-Wu hardening model 

 

n 0γ& (1/s) H0(MPa) hs(MPa) τ1(MPa) Τ0(MPa) q γ0 

300 0.0001 100 0.01 6.3 6 0 0.001 

 

a1 a2 a3 a4 a5 

1.75 1.75 1.75 2 2.25 

 

 

The value of the latent hardening ratio q, as it appeared in Equation (2.62b), used during 

this work is 0. Note that the single slip hardening law described by Equation (2.62a) 

comprises of two parts ( )( )
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)tanh(1 , which describes the hardening of system α  due to 

slip on system β . The latent hardening effect is hence naturally adopted [115]. 
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2.4 Conclusions 

 

This chapter has described the basic theory of crystal plasticity and presented the step-

by-step implementation of this theory into Abaqus/Standard. The chapter has also 

discussed aspects of the Bassani-Wu hardening law. The number of parameters required 

to characterize this hardening law is greater than many other hardening laws, e.g. those 

proposed by Taylor [118], Budiansky and Wu [119], Hutchinson [120], Asaro [117], 

Havner and Shalaby [121]. This may be the reason that not many crystal plasticity 

models found in the literature incorporate the Bassani-Wu hardening law. However, by 

using the Bassani-Wu hardening law, the CPFEM model developed in this chapter can 

capture more accurately the three-stage hardening within slip systems. This capability is 

not available if other hardening laws are used. 

 

A single set of parameters will be used throughout simulations in this thesis to 

characterize the constitutive law of the crystal plasticity theory and the Bassani-Wu 

hardening law. These parameters have been determined by the current author and his co-

workers from fitting simulated stress strain curves with various experimental results of 

single crystal aluminum under plane strain compression. 
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3. Verification of the CPFEM Formulation 

 

 

The aim of this chapter is validating the CPFEM model developed in Chapter 2. Patil 

et al. [65] and Flouriot et al. [64] have conducted experiments to investigate 

behaviours of crack tip fields in fcc single crystal under tensile load. Details of their 

experimental results have been presented in Section 1.3. In this chapter the CPFEM 

model has been used to simulate these experiments. Qualitative comparison of the 

predicted slip trace direction and misorientation angle with the experimental 

observations clearly indicates that the developed CPFEM can accurately predict the 

texture evolution during the deformation of SEN single crystals aluminum under 

tensile test. 

 

 

3.1 CPFEM model 

 

Two experimental cases have been modelled and compared. They are denoted as 

Case I for experiments done by Patil et al. [65] and Case II for those done by Flouriot 

et al [64]. The sample dimensions and initial crystal orientation in the CPFEM model 

are identical to the experiments. The geometry of the sample, the boundary 

conditions, and crystal orientations with respect to the sample coordinate system are 

sketched in Figure 3.1. The sample thickness is 1 mm. The extension was applied at 

the rate of 0.1 mm/min, until it reached 0.1 mm. The sample was meshed by 114,320 

C3D8 elements (8-node linear brick), with ten elements along the sample thickness, 

and finer mesh in the region around the notch. The mesh is shown in Figure 3.2. 

 

To simulate Case I, the initial crystal orientation was arranged so that the ]101[  and 

]010[  orientations in the local coordinate system of the crystal were coincident with 

the X and Y axes in the sample coordinate system (Figure 3.1). For Case II sample, 

the X and Y global axes are coincident with the ]100[  and ]010[  lattice orientations 

respectively. The mesh, the load and the boundary conditions were not altered. 
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Figure 3.1 Sketch of the FEM model of tensile test sample for verification purposes. 

 

 

 

(a) Mesh of the whole sample 

 

 

(b) Mesh in region around notch 

Figure 3.2 Mesh of the FEM model for verification purposes. 
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3.2 Analyses and discussions of CPFEM results 

 

3.2.1 Slip traces 

 

Experimental observations of the slip trace reported by Patil et al. [65] are shown in 

Figure 3.3. It shows that slip traces appear around the notch tip on the sample surface 

at a very early stage of loading (0.1 mm extension or 0.5% nominal strain), and 

approximately incline ± 55
o
 to the direction of the notch tip. As the loading 

increases, slip traces increase both in number and degree of severity. At 0.2 mm 

extension or 1% nominal strain, another set of slip traces appear, which are parallel 

to the direction of the notch tip, as shown in Figure 3.3b. 

 

(b) Slip traces at 0.2 mm extension (1% nominal strain) 

Figure 3.3 Slip traces observed in tensile experiments [65]. 

Please see print copy for image
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Rice et al. [60] and Patil et al. [65] used contour plots of the sum of magnitude of 

slips over all the slip systems to represent the constant stress angular zones from 

Rice’s solutions for a stationary crack tip in the ]101)[010(  orientation [50]. These 

contour plots are shown in Figure 3.4. In Figure 3.4a, the notch lies along the 

horizontal axis with its tip at x = 0. The same approach was used by Flouriot et al. 

[64] to numerically verify their analytical solutions for a stationary crack tip in the 

]100)[001(  orientation. The contour plot of the sum of magnitude of slips in this case 

is shown in Figure 3.9a. Indeed these approaches do not exactly describe the nature 

of the slip traces involved in the theoretical analyses and those observed in the 

experiments. Slip traces are defined as intersections between slip planes on which 

major plastic slips occur and the plane being considered (in a plane strain analysis), 

or with the sample surface (in experimental observations where the deformed sample 

surface remains reasonably parallel with the original one, i.e. in small deformations). 

 

Figure 3.4 Contour plots of the sum of magnitude of slip over all the slip systems 

around a stationary ]101)[010(  notch tip by (a) Rice et al. [60] and (b) Patil et al. [65] 

 

 

Let us assume that the load is small enough so that moderate deformation occurs in 

the region around the notch tip, but not too close to the boundary where stress 

concentration may occur. The orientation of slip traces on the sample surface can be 

predicted based on the original orientation of the crystals. These analyses for slip 

traces are schematically demonstrated in Figures 3.5 and 3.10 for the notch tip in 

]101)[010(  (Case I) and ]100)[001(  (Case II) orientations, respectively. 

Please see print copy for image
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(a) Slip traces ]011)[121(  and ]011)[121(   (b) Slip trace ]011)[101(  

Figure 3.5 Sketch of traces on the sample surface for the ]101)[010(  notch tip.  

 

 

Using the normal vectors to slip plane from CPFEM results, the direction of slip 

traces of active slip systems can be plotted on the sample surface. At each integration 

point of those elements closest to the sample surface, the slip system with maximum 

absolute shear strain is picked out. It is also noted that slip value is weighted by a 

scalar product that reflects the relative orientations of the sample surface and the 

considered slip system. If this product vanishes (e.g. in the case where the slip 

system is parallel with the observation surface plane), the trace will not be visible on 

the surface even if the actual theoretical amount of slip is large. The orientation of 

the intersection of the corresponding slip plane and the plane of the sample surface is 

determined. The sample surface plane is determined via three corners of the sample 

surface. Each intersecting line is represented by a segment of straight line, the 

direction of which infers the orientation of the slip trace. Segments of straight line 

corresponding to the integration points in the same element are plotted at the same 

point, which is the centroid of that element at the current deformed state. Darker 

lines infer higher shear strains. 

 

Following the above discussions, the plots of slip traces around the notch tip on the 

sample surface in the final deformed state (extension 0.1 mm or 0.5% nominal strain) 
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are shown on the left of Figure 3.6. Slip traces in the upper half and lower half of the 

notch are symmetrical. Two insets (a) and (b), located at the top-right and front of the 

notch, respectively, are selected and separately shown on the right of the figure. 

Evidently, inset (a) shows that slip traces appear to incline at 54.5
o
 to the direction of 

the notch tip, which agree with the experimental results in Figure 3.3a very well. 

Inset (b) shows traces parallel to the direction of the notch tip while they do not seem 

to appear on the tested sample surface. It should be noted that these traces on the 

numerical plot are considerably lighter than others, which could be interpreted in the 

experimental context that they are not (yet) significant to be seen. Indeed, at a higher 

applied extension of 0.2 mm (1% nominal strain), the experimental images of the 

sample surface in Figure 3.3b clearly show the existence of these traces. In a region 

very close to the notch boundary, as shown in inset (c), concentrated stress exists. 

The crystal in this region deforms and rotates severely from the original orientation. 

Thus the direction of slip traces in this area deviates considerably from the three 

major directions, i.e. ± 54.7
o
 and 0

o
 shown in Figure 3.5. It is also noted that darker 

slip traces in inset (c) compared to slip traces in other regions indicate the existence 

of the concentrated deformation in this region around the boundary of the notch. 

 

 

inset (a) 

 

inset (b) 

 

inset (c) 

Figure 3.6 Numerical plots of slip traces on the sample surface around the ]101)[010(  

notch tip, at 0.5% nominal strain. 
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Figure 3.5 shows that traces on the sample surface are in directions ]121[ , ]121[  and 

]101[ . Trace ]121[  is the result of simultaneous and equal slips on the ]110)[111(  

and ]011)[111(  slip systems. Hence if we let ]121[Γ  be the resulting slip in ]121[  

direction we then have 

 

 
)30cos()30cos(

]011)[111(]110)[111(

]011)[111(

)011(

]110)[111(

)011(

]121[

oo γγ

γγ

+=

+=Γ
 (3.1) 

 

The notation α
βγ )(  indicates the absolute value of slip on system α projected to plane 

(β). Similarly, the resulting slips in the ]121[  direction (as a result of combined slips 

on ]011)[111(  and ]110)[111(  systems) and in the ]101[  direction (as a result of 

combined slips on ]101)[111(  and ]101)[111(  systems) are expressed respectively as 
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]101)[111(]101)[111(]101[ γγ +=Γ  (3.3) 

 

Contour plots of ]121[Γ , ]121[Γ  and ]101[Γ  on the sample surface and on the mid-

thickness plane for the ]101)[010(  notch tip are presented in Figures 3.7 and 3.8, 

respectively. Compared to the contour plots of the total of magnitude of slip in all 

slip systems in Figure 3.4, the plots in Figures 3.7 and 3.8 show more clearly the 

distribution of shear strain of each slip trace. Large values of ]101[Γ  distribute 90
o
 to 

the notch tip while the orientation of the distributions of ]121[Γ  and ]121[Γ  incline 

about ± 61
o
 to the notch tip direction. The shape of contours on the sample surface 

(Figure 3.7) and on the interior plane (Figure 3.8) is similar at every stage of loading. 

Superposing Figures 3.7a, 3.7b and 3.7c results in a contour plot that has the general 

shape similar with those in Figure 3.4. 
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(a) ]121[Γ  

 

 

(a) ]121[Γ  

 

(b) ]121[Γ  

 

 

(b) ]121[Γ  

 

(c) ]101[Γ  

 

 

(c) ]101[Γ  

Figure 3.7 Contour plots of ]121[Γ , 
]121[Γ  and ]101[Γ  on the sample surface, 

]101)[010(  notch tip, at 0.5% nominal 

strain. 

 Figure 3.8 Contour plots of ]121[Γ , 
]121[Γ  and ]101[Γ  on the mid-thickness 

plane, ]101)[010(  notch tip, at 0.5% 

nominal strain. 
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For a notch tip in the ]100)[001(  orientation, the experimental image of slip traces on 

the sample surface around the notch tip is shown in Figure 3.9b [64]. It is evident 

that the slip traces symmetrically incline 45
o
 to the notch tip direction. These traces 

are intersections of the activated slip plane )111(  and )111(  with plane )001( , as 

schematically demonstrated in Figure 3.10. 

 

Figure 3.9 Results around the ]100)[001(  crack tip [64] (a) Contour plot of the total 

of magnitude of slip on all slip systems, (b) Slip traces observed in experiments. 

 

 

Following the discussions used to produce Figure 3.6, slip traces on the sample 

surface for this case of notch tip (in the ]100)[001(  direction) are plotted in Figure 

3.11. Insets (a) and (b) located symmetrically ahead of the notch tip clearly show that 

traces incline ±45
o
 to the direction of notch tip. These results match very well with 

the image of slip traces obtained from experiments (see Figure 3.9b). Inset (c) in 

Figure 3.11 shows slip traces in a region close to the boundary of the notch. It reveals 

that large deformation occurs in this area, evinced by darker slip traces, compared to 

other regions, e.g. insets (a) and (b). However, the crystals do not appear to rotate 

much from the original orientation. This is evidenced by the direction of slip traces in 

this region, which incline approximately ±45
o
 to the direction of the notch tip. 

Please see print copy for image
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(a) Slip traces ]110)[001(  and ]011)[001(  

 

 

(b) Slip trace ]010)[001(  

Figure 3.10 Sketch of traces on the sample surface for the ]100)[001(  notch tip. 
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inset (a) 

 

inset (b) 

 
 

inset (c) 

Figure 3.11 Numerical plot of slip traces on the sample surface around the 

]100)[001(  notch tip at 0.5% nominal strain. 

 

As shown in Figure 3.10, traces around the notch tip in this case can be reasonably 

considered as the superpose of net slips occurring on systems ]101)[111(  and 

]101)[111(  (for the 45
o
 ray) and of net slips on systems ]011)[111(  and ]011)[111(  

(for the 135
o
 or -45

o
 ray). The vertical ray can be considered as the sum of 

simultaneous slips occurring on four octahedral systems ]110)[111( , ]110)[111( , 

]011)[111(  and ]011)[111( . Similar to the ]101)[010(  notch tip, the resulting slips of 

the above combinations are expressed mathematically as  

 

 
]110)[111(]110)[111(]110[ γγ +=Γ  (3.4) 

 

 
]011)[111(]011)[111(]011[ γγ +=Γ  (3.5) 
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(a) ]110[Γ  

 

 

(a) ]110[Γ  

 

(b) ]011[Γ  

 

 

(b) ]011[Γ  

 

(c) ]010[Γ  

 

 

(c) ]010[Γ  

Figure 3.12 Contour plots of ]110[Γ , 
]011[Γ , ]010[Γ  on sample surface, 

]100)[001(  notch tip, at 0.5% 

nominal strain 

 Figure 3.13 Contour plots of ]110[Γ , 
]011[Γ , ]010[Γ  on the mid-thickness 

plane, ]100)[001(  notch tip, at 

0.5% nominal strain 
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The contour plot of the total of magnitude of slip on all slip systems from FEM 

simulation by Flouriot et al. [64] is shown in Figure 3.9(a). It shows that bands of 

concentrated slip incline at about 60
o
 to the direction of the notch tip. The contour 

plots of ]110[Γ , ]011[Γ  and ]010[Γ  on the sample surface and the mid-thickness plane 

are shown in Figures 3.12 and 3.13, respectively. The use of ]110[Γ , ]011[Γ  and ]010[Γ  

to separately represent slip traces helps showing the distribution of shear strain in 

each slip trace more clearly. The maximum shear strain in slip trace ]110)[001(  

inclines -63.1
o
 to the notch tip while that in slip trace ]011)[001(  distributes in a 

band that inclines 61.7
o
 to the notch tip. Shear strain in slip trace ]010)[001(  forms 

two bands approximately symmetric around the notch tip direction. These bands 

incline 63.4
o
 and -64.2

o
 to the notch tip direction. The inclination of bands in contour 

plots in Figure 3.12 is similar to that in Figure 3.9(a). Also, contour plots in Figures 

3.12 and 3.13 have same shape and reveal that more slip activities generally occur on 

the sample surface (Figure 3.12) than on the interior plane (Figure 3.13).  

 

3.2.2 Crystal rotations 

 

Patil et al. [65] also reported the measuring of the inhomogeneity of crystal 

orientations around the notch tip in the ]101)[010(  direction by using an inverse pole 

figure, which revealed concentrated bands of misorientation that inclined 45
o
 and 90

o
 

with the notch tip direction (see Figure 3.14). 

 

Figure 3.14 (a) Inverse pole figure obtained from EBSD for sample surface around 

the ]101)[010(  notch tip and (b) the color code used [65]. 

Please see print copy for image
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Theoretically, such inhomogeneity is the result of different crystal rotations at 

various points. Numerically, if we characterize the evolution of crystal orientation at 

a crystal i by a matrix k

iR  which transforms the crystal lattice from the original state 

(no loading applied) to a later state k during loading, k

iR  can be expressed as 

 

 ( ) 1−
•= 0

i

k

i

k

i NNR  (3.7) 

 

0

iN  representing the initial orientation of the crystal lattice at a crystal i comprises 

any three of the four normal vectors of slip planes {111} in the global coordinate 

system. k

iN  is a set of the corresponding normal vectors in 0

iN  at a state k, 

representing the orientation of crystal i in the global coordinate system at this state. It 

is assumed in CP theory that the crystal structures remain unchanged during loading, 

i.e. the relative angles between normal vectors of {111} planes are reserved. Hence, 

if normal vectors in 0

iN  and k

iN  are normalized, the matrix k

iR  determined in 

Equation (3.7) becomes an orthogonal and normalized rotation matrix. This implies 

that three columns of k

iR  are coordinates of three unit vectors defining the local 

coordinate system of crystal i in the global coordinate system. Hence, k

iR  is called in 

this work the orientation matrix of crystal i at state k. The total rotation angle of 

crystal i from the initial orientation to that at state k can be determined from k

iR  by 
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A contour plot of θi could be used to capture the inhomogeneity in crystal orientation 

around the notch tip as observed experimentally by Patil et al [65]. For a notch tip in 

the ]101)[010(  direction, the initial crystal orientation was specified in Section 3.1. 

Hence, 0

iN  which is the same at all points as single crystal is being considered is 

determined as 
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Figure 3.15 Contour plot of the total rotation angle (in degrees) with respect to the 

initial state, ]101)[010(  notch tip, at 0.5% nominal strain. 

 

 

With k

iN determined at each integration point from CPFEM modelling, a contour 

plot of the total rotation angle with respect to the initial state is produced, as shown 

in Figure 3.15. The same plot is also produced for notch tip in ]100)[001(  direction 

as shown in Figure 3.16, with 0

iN  described by Equation 3.10. The unit in these plots 

is degrees. 
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Figure 3.15 reveals the same inhomogeneous features as seen in experimental results 

in Figure 3.14 with some deviations, i.e. concentration bands inclined at roughly 49
o
 

and 87
o
 to the notch tip. These predictions reasonably agree with the experimental 

observations (45
o
 and 90

o
). Even though the above contour plots do not give the 

orientation of crystals at the current state, as seen in an inverse pole figure, they 

provide a direct measurement of how intensive the crystal evolutions are in the 

material. For instance, the maximum rotation angle is about 24
o
 for the notch tip in 

]101)[010(  direction, while that for the notch tip in the ]100)[001(  direction is only 
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about 9
o
. So it can readily be concluded that crystal evolution is more severe in the 

first case. It is also noticed that the contour is slightly unsymmetrical around the line 

of the notch tip direction in Figure 3.16. This may be due to the scale of the contour 

plot is not fine enough to capture small changes of the rotation in the upper half and 

lower half of the notch. 

 

 

Figure 3.16 Contour plot of the total rotation angle (in degrees) with respect to the 

initial state, ]100)[001(  notch tip, at 0.5% nominal strain. 

 

 

The total rotation angles in Equation (3.8) and in Figures 3.15 and 3.16 can be 

divided into three components about three axes of the global coordinate system. Such 

division is carried out following the analysis by Wert et al. [127], which is rewritten 

in Equation (3.11) 
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(a) Rotation about global ]001[  axis 

 
(a) Rotation about global ]001[  axis 

 
(b) Rotation about global ]010[  axis 

 
(b) Rotation about global ]010[  axis 

 
(c) Rotation about global ]100[  axis 

 
(c) Rotation about global ]100[  axis 

 

Figure 3.17 Contour plots of component 

rotations (in degrees) on the sample 

surface for ]101)[010(  notch tip, at 0.5% 

nominal strain. 

 

Figure 3.18 Contour plots of component 

rotations (in degrees) on the sample 

surface for ]100)[001(  notch tip, at 0.5% 

nominal strain. 

 

 

hklα  is the angle of rotation about a ][hkl  axis which is in the global coordinate 

system. To determine the rotation angles about the X, Y and Z axes, ][hkl  takes the 
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value of ]100[ , ]010[ , and ]001[ , respectively. The contour plots of these rotation 

angles on sample surface for the notch tip in the ]101)[010(  and ]100)[001(  

directions are shown in Figures 3.17 and 3.18. The unit in these plots is degrees. 

 

The larger rotation of crystals in the regions around ]101)[010(  notch tip compared 

to the ]100)[001(  notch tip is also reflected in the component rotations. Figure 3.17 

reveals that the upper half and lower half of the regions in front of the notch tip rotate 

equally in opposite directions around the global ]001[  and ]100[  axes. The maximum 

magnitudes of rotation, which occur at the boundary of the notch, are approximately 

16
o
 about the ]001[  axis (Figure 3.17a) and 17

o
 about the ]100[ axis (Figure 3.17c). 

For rotation about the global ]010[  axis (Figure 3.17b), the crystals in both halves 

revolve equally of approximately 19
o
 in the same direction. It can readily be 

concluded that the maximum magnitude of the rotation of crystals around the three 

global axes are not much different in regions around the ]101)[010(  notch tip. For a 

notch tip in the ]100)[001(  direction (Figure 3.18), the magnitudes of component 

rotations are lower than those in Figure 3.17. However, the rotations are qualitatively 

similar to those in the other case. Crystals in the upper and lower halves exhibit equal 

and opposite rotations about the global ]001[  and ]100[  axes (Figures 3.18a and 

3.18c, respectively), and rotate equally in the same direction about the global ]010[  

axis (Figure 3.18b). The rotation of crystal in this case is mainly about the global 

]001[  axis with the maximum angle being twice as large as those for the other two 

axes. 

 

 

3.3 Conclusions 

 

This chapter has successfully validated the CPFEM formulation and the parameters 

presented in Chapter 2. The CPFEM simulations of experimental tensile tests of an 

SEN single crystal have been carried out based on only one single set of parameters. 

To the best of the author’s knowledge, this CPFEM model is among the very few, if 

not the first, that provide results well matched with various experimental 

observations of two cases of notch tip orientation widely found in the literature. Also, 
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by plotting slip traces on the sample surface, this chapter presents direct comparisons 

(qualitatively) of numerical results with experimental observations, which generally 

are not available from other studies. 

 

In the first case, the notch tip is in the ]101)[010(  orientation. The CPFEM model 

adopt identical conditions to the experimental sample used by Patil et al. [65], in 

terms of the sample geometry, the boundary conditions, the applied strain load, and 

the initial crystal orientation. By comparing the slip traces on the sample surface and 

the inhomogeneity of crystal orientations around the notch tip, the analyses have 

shown that the simulation results agree very well with the experimental observations 

[65]. 

 

In the second simulation, only the initial crystal orientation is changed so that the 

notch tip is directed in the ]100)[001(  orientation. The results of slip traces on the 

sample surface in this case also match the experimental observations [64] very well. 

 

The difference between Figures 3.12 and 3.13 (also Figures 3.7 and 3.8), i.e. between 

results on a free surface and on an interior plane, may be due to the different 

deformation on the two planes. The material on the free surface could deform in a 

plane stress manner, while that on an interior plane deformed under plane strain 

condition. Two dimensional plane stress and plane strain simulations need to be 

carried out and compared with the current 3D results to confirm and fully explain 

these observations. 
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4. Microstructure Evolution in SEN Single 

Crystals Prior to Crack Initiation 

 

 

Theoretical analyses, particularly those done by Rice [50] and Flouriot et al. [59], 

have shown that the material’s behaviours, in both macro-scale and micro-scale, in a 

small region around a notch tip significantly affect how crack would nucleate in this 

region. This chapter numerically examines the deformation and the microstructure 

evolution in the proximity of a notch tip in Cube and Brass oriented single crystals 

prior to the initiation of cracks in these samples. The simulations are based on the 

CPFEM formulation incorporating Bassani-Wu hardening law that was validated in 

Chapter 3. The results and analyses carried out in this chapter are the first steps 

toward the modelling of cracking to be carried out in chapter 6. 

 

 

4.1 CPFEM model 

 

Figure 4.1 schematically shows the geometry of the SEN single crystal to be 

modelled. All dimensions are in millimeters. The sample is 0.5 mm thick. The 

rectangular notch locates at the middle of the right edge of the sample. The width and 

length of the notch are 0.8 mm and 1 mm, respectively. During the simulation, the 

bottom surface of the sample is fixed in Y direction, while the left wall of the sample 

is fixed in X direction. The constant strain rate of 0.01s
-1

 is applied to the top surface 

along the positive Y direction to simulate the tensile load. The single crystal model is 

meshed by 53,030 C3D8 elements (8-node linear brick) in the FEM software 

Abaqus/Standard. The mesh around the notch is shown in Figure 4.2. There are five 

layers of element along the sample thickness.  

 

Figure 4.1 shows the Cube oriented sample where the ]100[  and ]010[  lattice 

orientations are aligned with the X and Y axes, respectively. The lattice orientations 
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along the X and Y axes for the Brass oriented sample are ]110[  and ]111[ , 

respectively. In Cube oriented sample, the strain is applied in the positive Y direction 

until it reaches 4.5% while in the Brass oriented sample, the applied strain reaches 

the maximum of 3%. As will be shown in Chapter 6, cracks initiate in the Cube and 

Brass oriented samples at these strains. Thus in the following sections, for Cube 

oriented sample, the results at 1%, 3% and 4.5% nominal strains will be shown. For 

Brass oriented sample, the results at 1%, 2% and 3% nominal strains will be shown. 

 

 

Figure 4.1 Geometry of the single crystal SEN sample and the boundary conditions. 

 

 

Figure 4.2 Mesh around the notch. 
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Also, a small the region around the notch is divided into three sub-regions, namely, 

region I, region II and region III, as shown in Figure 4.3 in order to demonstrate 

clearly the effects of distance to the notch boundary upon the deformation (e.g. 

stress, strains) of the samples. Area of sub-regions thus must be large enough so that 

differences of deformation between them can be well captured, and yet small enough 

to save calculation time of analyses for those sub-regions (e.g. to determine 

misorientations or the change of surface roughness). The total simulation times are 

approximately 45 hours and 89 hours for Cube and Brass oriented samples, 

respectively, on a cluster computer of 96 CPUs. 

 

Figure 4.3 Three regions around notch. 

 

 

4.2 Analyses and discussions of CPFEM results 

 

4.2.1 Stress strain curve 

 

The stress versus nominal strain is plotted for both cases in Figure 4.4. The nominal 

strain is defined as the extension divided by the original length. The stress is 

determined as the average of vertical stresses on all nodes on the top surface of the 

sample. It can be seen that both cases exhibit similar curves to the normal tensile test. 

The stress increases rapidly at low strains, indicated by the steep slope of the stress 

strain curves. The slope becomes less steep at higher strains, until the ultimate tensile 

stress is reached. The corresponding ultimate tensile stresses are approximately 50 

MPa and 57 MPa for Cube oriented and Brass oriented samples, respectively. After 



 77 

reaching this point of ultimate stress, the stress decreases with strain, which 

corresponds to the necking. The nominal strains where the ultimate tensile stress 

occurs in Cube oriented and Brass oriented samples are 3% and 2%, respectively. 

These values are much smaller than those seen in a normal tensile test. This is due to 

the existence of the notch. The Brass oriented sample shows higher stress than the 

Cube oriented sample. The Young’s modulus of the two samples are approximately 

8.5 GPa and 14 GPa, respectively. This is consistent with the nature of anisotropy of 

Young’s modulus in metals [123]. 

 

   

(a) Cube oriented sample   (b) Brass oriented sample 

Figure 4.4 Stress strain curve from modelling results. 

 

 

4.2.2 Change of surface roughness 

 

In order to satisfy the compatible condition during deformation, the lattices in two 

small adjacent regions may rotate in opposite directions, which causes the surface 

roughness. A higher surface roughness indicates a higher lattice rotation. The change 

of average surface roughness over various regions around notch is another measure 

of sample deformation in macro-scale. It is assumed in this work that the initial 

surface roughness is zero. The average surface roughness is calculated as the sum of 

distances from all nodes (in the finite element mesh) within the region to a reference 
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plane divided by the number of nodes, as schematically demonstrated in Figure 4.5. 

The reference plane represents the sample surface at a particular loading step, and is 

approximated by three points with the original X, Y coordinates of (0,0), (11,0) and 

(0,11). 

 

 

Figure 4.5 Sketch of the calculation of the average surface roughness. 

 

 

(a) Cube oriented sample 

 

(b) Brass oriented sample 

Figure 4.6 Average surface roughness of four regions versus nominal strain (refer to 

Figure 4.3 for Regions I, II and III). 



 79 

During the calculation it was seen that roughness values are similar on the front and 

back surfaces of both samples. Therefore, only roughness values on the top surface 

are given. The plots of the surface roughness of the three regions versus nominal 

strain for two samples, Cube oriented and Brass oriented, are shown in Figure 4.6. 

Both figures reveal the values of roughness gradually increase with strain indicating 

that the lattices gradually rotate during deformation. Also, these figures show that the 

roughness is highest in Region I and lowest in Region III at every loading stage. 

Comparing Figures 4.6a and 4.6b shows that at the same nominal strain the Brass 

oriented sample (lattice plane )211(  on the surface) has a higher roughness than the 

Cube oriented sample (lattice plane )001(  on the surface). This agrees qualitatively 

with various studies that crystal orientation significantly affects the surface 

roughness, either in a chemical [128] or a mechanical process [129-134]. Yamasaki 

et al. [131] studied the effects of initial orientation on the surface roughness of Fe–

30%Cr alloy single crystals under cyclic loads. Their results indicated that a sample 

surface on a higher Miller index lattice plane tends to have higher roughness than a 

surface on a lower Miller index plane. Lee et al. [134] investigated the influence of 

surface texture on orange peel in a rolled polycrystalline aluminum sample. They 

observed that grains in Brass orientation tended to be located in the peaks of the 

surface of the deformed sample. 

 

Figures 4.7 and 4.8 show the deformed mesh at various stages of loading of the Cube 

and Brass oriented samples, respectively. Figures 4.9 and 4.10 show contour plots of 

distance to the reference plane at each stage of loading for the Cube and Brass 

oriented sample, respectively. A close observation of these figures of both samples 

disclose that such large average roughness in Region I are mainly due to large 

deformation of elements very close to the notch boundary (best observed in Figures 

4.7c and 4.8c), indicated by the dimples around the upper and lower corners of the 

notches. As will be presented in Section 4.2.3, deformation concentration exists in 

these areas. Figures 4.9c and 4.10c show that in both samples the upper half of the 

region around the notch appears more deformed than the lower half. The 

unsymmetry occurs in the Brass oriented sample at a smaller strain (1%) than in the 

Cube oriented sample (4.5%). This unsymmetry may be due to the unsymmetric 

boundary conditions as shown in Figure 4.1. Various studies have also applied same 
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boundary conditions to simulate tensile tests in single crystals with a notch and 

reported unsymmetric deformation around the notch tip [70, 135, 136]. 

 

 

 

(a) 1% nominal strain 

 

(a) 1% nominal strain 

 

(b) 3% nominal strain 

 

(b) 2% nominal strain 

 

(c) 4.5% nominal strain 

 

(c) 3% nominal strain 

Figure 4.7 Deformed mesh around the 

notch tip, Cube oriented sample. 

Figure 4.8 Deformed mesh around the 

notch tip, Brass oriented sample. 
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(a) 1% nominal strain 

 

(a) 1% nominal strain 

 

(b) 3% nominal strain 

 

(b) 2% nominal strain 

 

(c) 4.5% nominal strain 

 

(c) 3% nominal strain 

Figure 4.9 Contour plots of surface 

roughness (mm), Cube oriented sample. 

Figure 4.10 Contour plots of surface 

roughness (mm), Brass oriented sample. 
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The unsymmetric deformation of the mesh shown in Figures 4.9c and 4.10c directly 

relates to the unsymmetric distribution of plastic slip and crystal rotation presented in 

later sections. 

 

4.2.3 Slip traces 

 

The approach adopted in Section 3.2.1 is applied to plot traces of slip on the free 

surface of the two samples. The plots as shown in Figures 4.11 and 4.12, 

respectively, are produced at nominal strains of 1%, 3%, and 4.5% for the Cube 

oriented sample, and at nominal strains of 1%, 2%, and 3% for the Brass oriented 

sample. It is noted that slip traces appear on the surface of both samples at a very 

early stage of loading (1% nominal strain). As with the analysis in Section 3.2.1, the 

majority of slip traces that appear on the surface of the Cube oriented sample also 

incline at ± 45
o
 to the notch tip, with maximum variations of about ± 2

o
, as shown in 

insets (a) and (b) of Figure 4.11c. The variations are lowest at 1% nominal strain, and 

highest at 4.5% nominal strain. This is because the larger the material deforms, the 

larger the crystals rotate from their original orientations. 

 

The orientations of the local lattice along the global X and Y axes for the Brass 

oriented sample are ]110[  and ]111[ , respectively. And therefore the surface is 

parallel to the )211( lattice plane. The potential slip traces on the sample surface are 

intersections of slip planes {111} with plane )211( . The orientation of these traces 

are cross products of normal to slip planes and the normal to sample surface, as 

described in Equations (4.1a) to (4.1d). 

 

 [ ] [ ] [ ]TTT
213211111 −−=−⊗  (4.1a) 

 

 [ ] [ ] [ ]TTT
033211111 =−⊗−  (4.1b) 

 

 [ ] [ ] [ ]TTT
011211111 −−=−⊗−  (4.1c) 

 

 [ ] [ ] [ ]TTT
231211111 −−=−⊗−  (4.1d) 
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(a) 1% nominal strain   (b) 3% nominal strain 

 

  

 

inset (a) 

 

inset (b) 

 

 
inset (c) 

 
inset (d) 

 

(c) 4.5% nominal strain  

 

 

Figure 4.11 Slip traces on the surface of the Cube oriented sample. 
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(a) 1% nominal strain  (b) 2% nominal strain 

 

 
inset (a) 

 
inset (b) 

 

 

 
inset (c) 

 
inset (d) 

 
inset (e) 

 
(c) at 3% nominal strain  

 

 

Figure 4.12 Slip traces on the surface of the Brass oriented sample. 
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In the Brass oriented sample, the angles between slip traces presented by Equations 

(4.1a) to (4.1d) and the direction of the notch directed in ]011[  lattice orientation 

are 112.21
o
, 180

o
, 0

o
, and 67.79

o
, respectively. These approximate theoretical angles 

are captured very well in the simulation results. They are shown in insets (a), (b), and 

(c) in Figure 4.12c, where a maximum variation of about ± 2
o
 occurs at the highest 

nominal strain because of larger crystal rotations. At points very close to the corners 

of the notch, the trace orientations deviate more severely, as shown in insets (c) and 

(d) of Figure 4.11c and insets (d) and (e) of Figure 4.12c. This is due to large 

rotations of crystals in these points, which also indicates a stress concentration 

around the boundary of the notch. At these points the assumption of moderate 

deformation stated in Section 3.2.1 is not met. The analysis of slip trace based on the 

initial crystal orientation is no longer correct, and must be carried out numerically. 

 

The total of cumulative shear strain on all slip systems at each integration point are 

collected from CPFEM modelling and plotted in Figures 4.13 and 4.14. SDV121 is 

the 121
st
 state dependent variable defined in UMAT as the total of cumulative shear 

strain on all slip systems at an integration point. In other words, it represents the total 

plastic deformation at that point. The plots indicate that plastic deformation in Brass 

oriented samples are about two times higher than that in the Cube oriented sample, 

e.g. at 3% nominal strain, the maximum value of SDV121 in Brass sample is 2.539 

(Figure 4.14c), while only 1.331 in Cube sample (Figure 4.13b). Comparing Figures 

4.13 and 4.9 (for Cube oriented sample) shows that points having high plastic 

deformation (in Figure 4.13) correspond to those having high surface roughness (in 

Figure 4.9). Also, the unsymmetrical deformation in the upper half and lower half of 

the notch is observed in both figures. The same features can be observed in Brass 

oriented sample (Figures 4.14 and 4.10). These features are best observed at 4.5% 

nominal strain (for Cube oriented sample), and 3% nominal strain (for Brass oriented 

sample). 

 

As the samples are stretched out further the slip activities around the tip of the notch 

become more severe. This is indicated by the higher number of slip traces appearing 

(see Figures 4.11 and 4.12), and the magnitude of cumulative plastic shear (Figures 

4.13 and 4.14). Such an evolution of slip activities is better described in Figure 4.15. 
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(a) at 1% nominal strain 

 

 

(a) at 1% nominal strain 

 

(b) at 3% nominal strain 

 

 

(b) at 2% nominal strain 

 

(c) at 4.5% nominal strain 

 

 

(c) at 3% nominal strain 

Figure 4.13 Total cumulative shear 

strain around notch on the Cube 

oriented sample surface. 

 

Figure 4.14 Total cumulative shear 

strain around notch on the Brass 

oriented sample surface. 
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Figure 4.15 presents plots of the maximum of total cumulative shear strain that 

occurs in each region around the notch (regions I, II, and III) versus nominal 

(applied) strain. The trend seen in Figure 4.6 exists in Figure 4.15. The maximum of 

total cumulative shear strain in Region I is higher than those in regions II and III at 

every stage of loading for both Cube and Brass oriented samples. At the same 

applied strain, the maximum total cumulative shear strain in any region in the Brass 

oriented sample is always higher than that in the Cube oriented sample. 
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(a) Cube oriented sample 
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 (b) Brass oriented sample 

Figure 4.15 Plots of maximum of total cumulative shear strain versus nominal strain. 



 88 

4.2.4 Crystal rotations 

 

The total rotation angles of crystals with respect to their original orientation are 

determined following the discussions in Section 3.2.2, and are plotted in Figures 4.16 

and 4.17 for limited regions around the notch in the Cube and Brass oriented 

samples, respectively. The results on the free surface (left plots) and the mid-

thickness plane (right plots) are shown to demonstrate the effects of sample thickness 

on the crystal evolution. The unit in these plots is degrees. 

 

For both Cube and Brass oriented samples, the distributions of total rotation angle on 

the sample surface and on the midthickness plane have similar shapes. The 

magnitude of total rotation angles on the midthickness plane is generally smaller than 

that on the sample surface. This difference appears to be greater when the nominal 

strain increases. This supports the observations made in Section 3.2.1 that tensile  

deformation of crystals is larger on the free surface than on the interior plane. 

 

The distribution of total rotation angles follow to some extent the distribution of total 

cummulative shear strain in Figures 4.13 and 4.14. On the free surface of the Cube 

oriented sample, two regions of concentrated strain around the corners of the notch at 

1% nominal strain (Figure 4.13a) correspond to the darker regions at upper and lower 

notch corners in Figure 4.16a. At 3% nominal strain (Figure 4.13b) the distribution 

of large cumulative shear strain at the two corners extend in the direction parallel to 

the notch and slightly towards each other, which indicates that the region at the 

middle of the notch deforms less. This corresponds to the formation of two dark 

bands (large rotation angles) aligned in the direction of notch tip in Figure 4.16b. At 

4.5% nominal strain, both plots of the total cumulative shear strain (Figure 4.13c) 

and the total rotation angle (Figure 4.16c) possess large bands spanning from one 

corner of the notch to the other and are aligned in the direction of the notch. Finally, 

both figures 4.13c and 4.16c show that the upper corner of the notch has a wider 

band of concentrated shear strain and crystal rotation compared to the lower corner. 

Such unsymmetric distributions directly relate to the unsymmetric deformation of the 

mesh at the corners of the notch (see Figure 4.9c). 

 

 



 89 

On the free surface    On the mid-thickness plane 

    

(a) 1% nominal strain 

   

(b) 3% nominal strain 

   

(c) 4.5% nominal strain 

Figure 4.16 Contour plots of the total rotation (in degrees) of crystal in the Cube 

oriented sample. 
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On the free surface    On the mid-thickness plane 

   

(a) 1% nominal strain 

   

(b) 2% nominal strain 

   

(c) 3% nominal strain 

Figure 4.17 Contour plots of the total rotation (in degrees) of crystals in the Brass 

oriented sample. 



 91 

The concentration of total cumulative shear strain of the Brass oriented sample 

distributes in four bands, two are parallel to the notch tip direction, and two are 

symmetrically inclined at large angle to the notch tip (at 1% nominal strain, Figure 

4.14a). The corresponding plot of the total rotation angle reveals two bands parallel 

to the notch tip direction, while the other two bands are vertical (Figure 4.17a). The 

resemblance is better at higher nominal strains, where the inclined bands in Figures 

4.14b and 4.14c and the vertical bands Figures 4.17b and 4.17c become shorter, and 

bands parallel to notch tip direction eventually dominate. As with the Cube oriented 

sample, the Brass oriented sample possesses higher concentrations of shear strain and 

crystal rotation at the upper part of the notch. Again, this unsymmetry is relating to 

the unsymmetric deformation of the mesh around the corners of the notch (Figure 

4.10c). It is also noted that the crystal rotations in the Brass oriented sample are 

generally higher than those in the Cube oriented sample, both on the free surface and 

the mid-thickness plane. For example at 3% nominal strain, while the maximum 

rotations on the free surface and the mid-thickness plane in Cube oriented sample are 

17
o
 and 16

o
 (Figure 4.16b), respectively, the corresponding values in the Brass 

oriented sample are 24
o
 and 23

o
 (Figure 4.17c), respectively. 

 

In most experimental procedures studying crystal behaviour, the measurement of 

plastic slip is performed indirectly, by observing the slip traces on the sample 

surfaces by microscopic Moiré interferometry [52-54]. The direct measurement of 

local plastic deformation is not normally available. Determining crystal orientations 

is a fairly basic task using EBSD. Hence the above observations that the behaviour of 

the total cumulative shear strain resembles the rotation angle can provide an insight 

into plastic slip happening within a sample based on the observations of its current 

texture. This is at least applicable for samples undergoing tensile loading. 

 

The decomposition of the total angle of rotation into three components about the X, 

Y, and Z sample axes ( ]100[ , ]010[ , and ]001[  axes in the global coordinate system) 

is carried out by following the descriptions in Section 3.2.2. The contour plots of 

these component rotation angles are presented in Figures 4.18 to 4.20 for the Cube 

oriented sample at 1%, 3% and 4.5% nominal strains respectively, and in Figures 

4.21 to 4.23 for the Brass oriented sample at 1%, 2% and 3% nominal strains, 
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respectively. The results on the free surface and mid-thickness layer are included in 

each figure. The unit in these figures is degrees. 

 

The characteristic of the component rotation angles for the Cube oriented sample are 

generally similar to those observed in Section 3.2.2 for notch tip in the ]100)[010(  

orientation. It can be seen in Figures 4.18 and 4.19 (1% and 3% nominal strains, 

respectively) that the shape of the contour plots is fairly symmetrical. This implies 

that crystals in the upper and lower halves of the region around the notch rotate fairly 

equally in opposite directions around the global ]100[  and ]001[  axes (X and Z 

sample axes), and in the same direction around the global ]010[  axis (Y sample 

axis). This symmetry can also be observed in the contour plots of total rotation angle 

at 1% and 3% nominal strains (Figures 4.16a and 4.16b, respectively). In Figure 

4.20, the distributions are not quite symmetric. The magnitude of component 

rotations tends to be higher in the upper half of the notch. This matches with the 

unsymmetry in the contour plot of total rotation angle in Figure 4.16c. 

 

As seen in Figures 4.18 to 4.20, within upper half and lower half of the notch, there 

are equal rotations in opposite directions at the corner of the notch. Such equal and 

opposite rotations at the corner are apparent around the ]100[  and ]001[  global axes 

at 1% and 3% nominal strains, but become less obvious at 4.5% applied strain. These 

features exist on both the free surface and the interior plane. The rotations increase 

dramatically in magnitude with the strain load, e.g. the magnitude of rotation angles 

around the X, Y, and Z axes on the sample surface, which always appear very close 

to the notch, increase by factors of 8.27, 8.34 and 4.8 respectively from 1% to 4.5% 

nominal strain. The crystal rotations in the Cube oriented sample are mainly around 

the ]001[  global axis for low loading as was concluded in Section 3.2.2. However at 

nominal strains larger than 1%, the three rotations become more comparable, e.g. 

maximum angle around the X, Y, Z axes on the sample surface at 4.5% strain are 

20.5
o
, 22.1

o
, and 16.7

o
, respectively. The rotations on the sample surface are larger 

than those on the mid-thickness plane by various factors, depending on the axis of 

rotation and magnitude of nominal strain. The average factor is approximately 1.5.  
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.18 Component rotation angles in Cube oriented sample, 1% nominal strain. 
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.19 Component rotation angles in Cube oriented sample, 3% nominal strain. 
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.20 Component rotation angles in Cube oriented sample, 4.5% nominal 

strain. 
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.21 Component rotation angles in Brass oriented sample, 1% nominal strain. 
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.22 Component rotation angles in Brass oriented sample, 2% nominal strain. 
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 On the free surface On the mid-thickness plane 

  
(a) Rotations around the global ]001[  axis (in degrees) 

  
(b) Rotations around the global ]010[  axis (in degrees) 

  
(c) Rotations around the global ]100[  axis (in degrees) 

 

Figure 4.23 Component rotation angles in Brass oriented sample, 3% nominal strain. 
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The contour plots throughout Figures 4.21 to 4.23 for the Brass oriented sample are 

generally not as symmetrical as the Cube oriented sample, except for the rotation 

around the global ]001[  axis. Compared to the Cube oriented sample, the magnitude 

of three component rotations of crystals in the Brass oriented sample are larger. For 

example, at 1% nominal strain on the interior plane, magnitudes reach 4.1
o
, 4.4

o
, 6.9

o
 

for rotations about the global ]100[ , ]010[ , and ]001[  axes respectively. The 

magnitudes of crystal rotations on the interior plane and on the free surface at 1% 

nominal strain are of the same order, but the difference between magnitudes 

increases with an applied load. At 3% nominal strain the difference between 

magnitudes of rotations on the sample surface and those on the mid-thickness plane 

is greatest. At this loading the magnitudes of rotation around the global ]100[ , ]010[ , 

and ]001[  axes on the sample surface are 16.8
o
, 14.3

o
, and 18

o
 respectively. The 

corresponding values on the midthickness plane are only 7.3
o
, 9

o
, and 15.6

o
, 

respectively. Fairly equal and opposite rotations around ]100[  and ]001[  also occur 

near the corners of the notch at every stage of loading, which are similar to the Cube 

oriented sample. 

 

The characteristics of crystal rotation discussed above can also be presented 

qualitatively by pole figures of normal vectors of slip planes for Cube and Brass 

oriented samples, respectively, as shown in Figures 4.24 and 4.25. The pole figures 

include data of crystals throughout the sample thickness within each of the three 

regions defined in Figure 4.3. The directions ]100[  and ]010[  in Figures 4.24 and 

4.25 are in the global coordinate system, and correspond to the sample X and Y axes, 

respectively. Observations similar to those in the disscussions regarding component 

rotation can be made from the above pole figures. For example the amplitude of 

crystal evolution for the Cube oriented sample increases with strain load and 

decreases with distance from the notch, i.e. crystals in region I at 4.5% strain rotate 

most severely, while those in region III at 1% strain mostly remain in the initial cube 

orientation. Crystals rotating in regions II and III with up to 3% strain are still not 

noteworthy while considerable rotation in region I occurs. The distribution of poles 

in this region is symmetrical around the ]100[  axis, which implies that crystals rotate 

about this axis an equal amount in the opposite direction. It is also symmetrical 

around ]010[  which denotes symmetrical rotation about the ]010[  direction. As a 
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result, we have a pole figure that is symmetrical around the centre point. Crystals 

rotating in equal and opposite directions about the ]100[  axis in regions II and III 

become more obvious at 4.5% strain, evidenced by the stretching of pole distribution 

along the ]010[  while remaining symmetrical around the centre point. Furthermore, 

the pole distribution thickens and splits into two bands that are aligned in the ]100[  

direction in the pole figures of regions II and III, which denotes a larger rotation 

about ]010[ . 

 

 

(a) 1% nominal strain 

 

(b) 3% nominal strain 

 

(c) 4.5% nominal strain 

Figure 4.24 <111> pole figures of crystals around notch in Cube oriented sample. 
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(a) 1% nominal strain 

 

(b) 2% nominal strain 

 

(c) 3% nominal strain 

Figure 4.25 <111> pole figures of crystals around notch in Brass oriented sample. 

 

 

4.3 Conclusions 

 

This chapter has numerically examined the material behaviours around the notch tip 

in an SEN single crystal aluminum under tensile load. The CPFEM model 

incorporating Bassani-Wu hardening law, which was validated in Chapter 3, has 

been used. The deformation has been examined in both macroscale (via the change 
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of surface roughness and slip traces on the sample surface) and microscale (via the 

plastic slip and crystal rotation). Deformation in both scales appeared to be most 

severe in the region very close to notch (region I) than outer regions (regions II and 

III). Simulation results (e.g. evolution of lattice orientation, 

stress/strain/displacement fields) obtained from this chapter form a basis for analyses 

of crack opening carried out in Chapter 6. 

 

The current simulation results show that the change of surface roughness in the Brass 

oriented sample (lattice plane )211(  on the surface) is higher than the Cube oriented 

sample (lattice plane )001(  on the surface). This qualitatively agrees with other 

experimental and numerical studies [128-134] which indicated that  a sample surface 

on a high Miller index lattice plane tends to have higher roughness than a surface on 

a low Miller index plane [131]. 

 

Plots of slip traces on the free surface of Cube and Brass oriented samples match 

very well with analytical predictions based on the initial crystal orientation (Figures 

4.11 and 4.12). At high loads and at locations very close to the boundary of the 

notch, crystals rotate severely from the initial orientation. Thus the orientation of slip 

traces in these cases must be determined numerically. 

 

In both Cube and Brass oriented samples, the current simulation results show that 

magnitudes of the total plastic slip and crystal rotation are higher on the sample 

surface than on the mid-thickness plane. This may be due to different deformation 

conditions on the two planes, i.e. the free surface deforms under plane stress 

condition, while the mid-thickness plane deforms under plane strain condition. Two 

dimensional plane stress and plane strain simulations need to be done and compared 

with the current 3D results to properly explain these observations. 

 

For both Cube and Brass oriented samples, the distribution of surface roughness 

(Figures 4.9 and 4.10) generally has the same patterns with those of total plastic 

deformation (Figures 4.13 and 4.14) and total crystal rotation (Figures 4.16 and 

4.17). At every stage of loading, points having the highest values of surface 

roughness appear to have the highest crystal rotation and highest plastic deformation. 
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These features are best observed at 4.5% nominal strain for the Cube oriented 

sample, and at 3% nominal strain for the Brass oriented sample.  



(*) The results in this chapter have been published in reference [138] 104 

 

5. Microstructure Evolution in SEN 

Polycrystalline Aggregates
(*)

 

 

 

Chapter 4 used the CPFEM model incorporating the Bassani-Wu hardening law 

developed in Chapter 2 to study the deformation around the notch tip in an SEN 

single crystal. This chapter extends the study to simulate plastic deformation and 

evolution of microstructure at the notch tip in an SEN polycrystalline sample having 

same dimensions with samples considered in Chapter 4. Section 5.1 briefly presents 

the properties of the Voronoi diagram, which will then be used to construct the 

polycrystalline aggregate. Two sets of initial orientations will be assigned to the 

aggregate to study the influence of initial material textures. For geometrical effects, 

notch of different shapes will be considered. 

 

 

5.1 Voronoi diagram and the construction of polycrystalline aggregates 

 

5.1.1 Basic theory of the Voronoi diagram 

 

Let S
V
 denote a set of n coplanar points (or seeds). For any two different seeds p

V
 and 

q
V
 that belong to S

V
, the dominance of p

V
 over q

V
 is defined as the part of the plane 

that is at least as close to p
V
 as to q

V
, and is expressed mathematically as [137] 

 

 ( ) { }),(),(|, 2 VVVV qxdistpxdistRxqpdom ≤∈=  (5.1) 

 

dist() denotes a function of distance. Obviously dom(p
V
, q

V
) specifies the half plane 

that contains the seed p
V
, and is bounded by the perpendicular bisector of p

V
 and q

V
. 

This perpendicular bisector will be referred to as the separator of p
V
 and q

V
. The 

region of the seed p
V
 is defined as the portion of the plane closer to p

V
 as to the rest 

of S
V
, and is mathematically expressed as  
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A region cannot be empty, because at least it contains the seed that forms it. Since 

the regions of n seeds are made from intersecting n-1 half planes, they are convex 

polygons. Also, the boundary of each region comprises of at most n-1 segments of 

straight line and n-1 vertices. Points along the boundary of a region are equidistant 

from exactly two seeds. Each vertex is equidistant from at least three seeds, i.e. it is 

the centre of a circle going through at least three seeds but not containing any seed. 

In other words, regions of n seeds form a polygonal division of the plane, which is 

called the Voronoi diagram V(S
V
) of the set S

V
. Because S

V
 contains n seeds, V(S

V
) 

comprises of n regions. A sample of a planar Voronoi diagram with eight seeds is 

shown in Figure 5.1. 

 

Figure 5.1 Sample of a planar Voronoi 

diagram with eight seeds. [137] 

Figure 5.2 Dual relationship between a 

Voronoi diagram and the Delaunay 

triangulation. [137] 

 

 

From the mathematical viewpoint, the Delaunay triangulation is very closely related 

to the Voronoi diagram. A planar Delaunay triangulation comprises of triangles 

connecting seeds of a planar Voronoi diagram so that no seed is contained within any 

triangle. A sample that demonstrates the relationship between a Voronoi diagram and 

the Delaunay triangulation is shown in Figure 5.2. A Delaunay edge (solid line) is 

perpendicular to the corresponding edge in the Voronoi diagram (dashed line), but 

they do not necessarily intersect each other. 

 

Please see print copy for image
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5.1.2 Construction of the polycrystalline structure 

 

In this study, the polygons in a planar Voronoi diagram will be used to represent 2D 

grains. Because each polygon in the Voronoi diagram contains only one seed, if the 

total planar area is fixed, the number of seeds will determine the average size of the 

polygons. The distribution of the distances between seeds will determine the 

distribution of the size of the polygons. Therefore the average value and distribution 

of the grain size is controlled by adjusting the number and relative position of the 

seeds. An algorithm to control the grain size distribution is proposed as follows. 

 

   

(a) sub-region     (b) control sub-region 

Figure 5.3 Demonstration of the algorithm to control the grain size distribution. 

 

- Assuming a total number of (m x n) grains are to be generated. The whole 

planar region is equally divided into m rows and n columns of rectangular 

sub-regions, as shown in Figure 5.3a. The width and height of each sub-

region are 2a and 2b, respectively. Coordinates of the centre of the sub-region 

(i, j) are denoted by (xij, yij). 

- Within each sub-region, a rectangle which measures 2βa wide and 2γb high is 

created (0 < β, γ ≤ 1). This rectangle is called the control sub-region, and 

shares the same centre with the outer sub-region. 

- A seed is assigned randomly within a control sub-region. Increasing the 

values of β or γ increases the size of the control sub-region, which changes 

the distribution of distances between seeds, which in turn, changes the 

distribution of grain size. 
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Based on the given set of seeds S
V
, the Voronoi diagram can be constructed based on 

the Delaunay triangulation. Each Delaunay edge belongs to two triangles, except 

those connecting seeds on the boundary of the convex hull of S
V
 (Delaunay boundary 

edges). Each of these Delaunay boundary edges belongs to only one triangle. For 

each Delaunay edge belonging to two triangles, the centres of the circumcircles of 

the triangles are connected by a straight line. For each Delaunay boundary edge, a 

line is drawn from the centre of the circumcircle of the corresponding triangle 

perpendicular to the Delaunay edge. The resulting set of straight lines forms the 

Voronoi diagram. 

 

Implementing the above procedure via Matlab codes, a list of Voronoi edges together 

with the coordinates of the corresponding vertices is created. From this list of 

Voronoi edges and vertices, Python codes (an object oriented programming language 

accompanied Abaqus software) is used to create an FEM model of a polycrystalline 

aggregate directly in Abaqus/Standard. Figure 5.4 shows the flow chart of the Python 

program that generates the geometry of the polycrystalline aggregate.  

 

 

Figure 5.4 Flow chart of the Python code generating the polycrystalline aggregate. 

 

Start 

(1) Import Abaqus parameters 

(4) Input list of Voronoi edges and vertices 

(3) Build part 

(5) Use command mdb.models.Sketch.Line to link vertices 

(6) Use command mdb.models.parts.PartitionFaceBySketch to partition the part into grains 

End 

(2) Assign parameters of part 
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Details of each step in Figure 5.4 are described as follows. 

 

- Step (1) makes objects in Abaqus available to the Python script. Some of 

these objects include Abaqus basic objects, ‘Symbolic Constants’ defined by 

Abaqus, and objects related to Python modules ‘sketch’, ‘part’, ‘material’, 

‘section’, etc. 

- Step (2) assigns parameters related to the part (e.g. the outer boundary of the 

sample (11mm x 11mm), two dimensional deformable body), and plot the 

outer boundary of the part. 

- Step (3) creates (builds) the part from the parameters defined in step (2). 

- Step (4) reads in the data file of Voronoi edges and vertices which was 

generated from Matlab codes. 

- Step (5) uses the Python command mdb.models.Sketch.Line to draw lines 

(edges) between vertices as specified in the data file read in step (4). 

- Step (6) uses the Python command mdb.models.parts.PartitionFaceBySketch 

to partition the part into grains based on lines (edges) drawn in step (5). 

 

Figure 5.5 presents the flow chart of the Python code that assigns the initial 

orientation into each grain. Details of each step in the flow chart are described as 

follows. 

 

- Step (1) makes objects in Abaqus available to the Python script, as described 

in step (1) of Figure 5.4. 

- Step (2) reads in the data file specifying initial orientation and location of the 

seed of each grain. The location of seeds is determined following the 

procedure described earlier. Initial orientations can be randomly generated as 

discussed in Section 5.2. 

- Step (3) creates a set of material properties P that are unchanged from grain 

to grain, e.g. the elastic moduli, parameters for the Bassani-Wu hardening 

law, constants related to the lattice structure. Indeed, the only material 

properties that are different between grains are the initial orientations. 

- Step (4) extracts the initial orientation of grain i
th

, which is determined by the 

location of its seed, and assigns this initial orientation to the set of unchanged 

material properties P. The newly created set is saved as ][iA . 
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- Step (5) uses the Python command mdb.models.Material to create the 

material section for grain i
th

. 

- Step (6) uses the Python command mdb.models.materials.UserMaterial to 

assign ][iA  to the material section of grain i
th

. 

- Step (7) uses the Python command mdb.models.materials.Depvar to set the 

number of state dependent variables for grain i
th

. These state dependent 

variables are results from the CPFEM model, e.g. resolved shear stress, 

direction of slip systems, coordinates of calculation points. 

- Steps (4) to (7) are repeated for each grain until the number of grains is 

reached. 

 

Figure 5.5 Flow chart of the Python code assigning initial orientations into grains. 

Start 

(1) Import Abaqus parameters 

(2) Input crystal orientations 

 

(3) Input initial set of material properties P 

i = 0 

(7) Use mdb.models.materials.Depvar to set the number 

of state dependent variables for grain i
th

 

 

End 

i = i+1 

(4) Change the orientation in the initial parameter set P, save the new set in A ][i  

(5) Use mdb.models.Material to create the material section for grain i
th

 

(6) Use mdb.models.materials.UserMaterial to assign A ][i  to grain i
th

 

i = number of grains 

Y 

N 
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5.2 CPFEM model [138] 

 

The geometry of the polycrystalline aggregate is shown in Figure 5.6. The 

dimensions are based on the microscope observation of an annealed high-purity 

aluminum sample of dimensions 11 mm x 11 mm. These dimensions are similar to 

those of the single crystal sample used in Chapter 4. Three notch types, namely 

triangular notch, rectangular notch and circular notch are considered. The three 

notches are slightly smaller than those used in Chapter 4 so that they are completely 

contained within two grains A and B as shown in Figure 5.6. The notches have the 

same 1 mm wide by 0.5 mm deep opening. 

 

   

(a) Rectangle-notched sample  (b) Triangle-notched sample 

 

(c) Circle-notched sample 

Figure 5.6 Model of polycrystalline aggregate with three notch types 
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It is assumed in this study that there is only one grain across the thickness of the 

tensile test sample. Therefore, a two-dimensional (2D) FEM model has been used. 

Other concerns are the use of a 2D FEM model reduces the computing time and 

avoids the complexity of building three-dimensional (3D) grain microstructure. The 

Voronoi diagram approach is used to generate a number of 2D cells where each cell 

represents a virtual grain. The average grain size is 1.13 mm. An image of the 

observed sample is shown in Figure 5.7a and a sample of the Voronoi diagram 

having the same average grain size is shown in Figure 5.7b. 

 

  

(a) Annealed high-purity polycrystalline aluminum. 

  

(b) Voronoi diagram approximating the 

annealed polycrystalline aluminum. 

(c) FEM mesh of the Voronoi diagram. 

Figure 5.7 Geometry of polycrystalline aluminum samples. 

 

It is assumed that the orientation distribution function is uniformly distributed in 

Euler space. Using this assumption a randomly generated orientation is assigned to 

each grain of the polycrystalline aggregate. The misorientation between any two 
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grains is greater than 15
o
. Two sets of this randomly generated orientation are used to 

demonstrate the effect of initial orientation on plastic deformation at the notch tip in 

a polycrystalline aggregate. This effect will be analyzed by using two grains 

surrounding the notch, denoted as grains A and B in Figure 5.6. The Euler angles for 

grains A and B in two sets of orientation are shown in Table 5.1. Pole figures of 

crystals in these grains are shown in Figure 5.8. 

 

Table 5.1 Euler angles for Grain A and Grain B 

 Orientation set φ1 Ф φ2 

I 29.26
o
 1.48

o
 73.89

o
 Grain A 

II 77.25
o
 85.84

o
 50.85

o
 

I 65.08
o
 38.15

o
 77.66

o
 Grain B 

II 18.01
o
 24.33

o
 22.72

o
 

 

 

Grain A Grain B 

Set I Set II Set I Set II 

    

Figure 5.8 Pole figures of sets of initial orientation of grains A and B. 

 

Each grain is meshed by a number of plane stress four-node bilinear elements. A 

sample of the finite element mesh with a rectangular notch is shown in Figure 5.7c. 

The total number of elements is approximately 12,000. During the simulation a 

constant velocity of 1 mm/s is applied upward to the top edge until a total nominal 

strain of 10% is reached. The bottom edge is fixed in the vertical direction, and the 

middle point of the bottom edge is fixed in the horizontal direction to avoid rigid 

body displacement. Left and right sides of the samples are set free (see Figure 5.6). 

 

 

5.3 Analyses and discussions of CPFEM results [138] 

 

Figures 5.9 and 5.10 illustrate the deformed grains around notches with set I initial 

orientation and set II initial orientation, respectively. It is obvious that the initial 
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orientation has a significant influence on the deformed shapes of the notches. The 

deformation with set II initial orientation is more severe than that with set I, for all 

notches. This is indicated the greater change of roughness of the edge of notches in 

Figure 5.10 (set II initial orientation) compared to notches in Figure 5.9. The initial 

roughness of the edges is assumed zero. In Figure 5.10, roughness of the edge of 

notches changes from the initial state by approximately 0.0394 mm, 0.0570 mm, and 

0.7166 mm for the rectangular, triangular, and circular notches, respectively. The 

combined effect of notch shape and crystal orientation is also observable in Figure 

5.10. The lower half of the edge of rectangular notch (Figure 5.10a), which belongs 

to grain B, is more deformed than the upper half. On the other hand, the upper half of 

the edge of triangular notch, which belongs to grain A, is rougher than the lower half 

which belongs to grain B (Figure 5.10b). Meanwhile, both halves of the circular 

notch appear to undergo equivalent deformations (Figure 5.10c). 

 

Table 5.2 Values of maximum shear stress plotted in Figures 5.9 and 5.10 

 Rectangular notch Triangular notch Circular notch 

Set I 19.08 MPa 21.48 MPa 19.46 MPa 

Set II 27.86 MPa 46.84 MPa 39.34 MPa 

 

 

The position and orientation of maximum shear stress that occurs in grains A and B 

are also shown in Figures 5.9 and 5.10. The dotted lines represent grain boundaries. 

The black dot at one end of the bold solid straight line segments represents the 

location of maximum shear stress. The direction of the bold solid straight line 

segments represents the slip directions and their length indicates the relative 

magnitude of maximum shear stress. In other words, these straight line segments are 

traces on the sample surface of slip systems that have maximum shear stress. Values 

of maximum shear stress are listed in Table 5.2. It is clear from Figure 5.9 that the 

maximum shear stress does not always occur on the boundaries or corners of a notch. 

The shear stress on a slip system α can be calculated by Equation (5.3), which is 

another form of the Equation (2.49).  

 

 )(α(α
σsmτ

ρ

ρα 0))( =  (5.3) 
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(a) rectangular notch 

 

 
(a) rectangular notch 

 

 
(b) triangular notch 

 

 
(b) triangular notch 

 

 
(c) circular notch 

 

 
(c) circular notch 

 

Figure 5.9 Deformed samples with Set 

I initial orientation, 10% nominal 

strain. 

Figure 5.10 Deformed samples with Set 

II initial orientation, 10% nominal 

strain. 



 115 

0ρ  and ρ  are the mass density of in the reference and the current states. Because the 

time increments used in the simulations are small (in the order of 1e-4) these mass 

densities can be considered identical which makes 1/0 =ρρ . Thus the resolved 

shear stress on slip system α is influenced by Cauchy stress σ  and the geometry of 

that system, i.e. the slip direction )(αs and normal to slip plane )(αm . The orientation 

of crystals changes significantly after deformation, as depicted later in the <111> 

pole figures of grains adjacent to notches. Hence the points at which the rotated 

orientation ( )(αs , )(αm ) would maximize the shear stresses are not necessarily on the 

boundary of the notch. On the contrary, the Cauchy stress σ  around the notch is still 

much larger than in other areas because of stress concentration. This explains why 

maximum shear stress might not be exactly on the boundary, but would be 

somewhere around the notch. 

 

It can be found from Figures 5.9 and 5.10 that the shape of the notches significantly 

affects the location of maximum shear stress for both sets of initial orientations. 

Different types of notches lead to different locations of maximum shear stress. These 

maximum shear stresses vary irregularly with notch geometries. However, the values 

of maximum shear stress of set I initial orientation are larger than those of set II, 

which again proves that the initial orientation plays an important role in the local 

plastic deformation around the notches. 

 

Figure 5.11 shows the contour plots of cumulative shear strain on all the slip systems 

at each integration point for the initial orientation of set I. The general tendency is 

area with higher equivalent plastic strain aligns at 45
o
 to the loading axis, while the 

plastic behaviour of each grain is highly influenced by its initial orientation. Figure 

5.12 presents the same results for the initial orientation of set II. The general 

tendency of the equivalent plastic strain mentioned before is much more obvious in 

this case. Besides, for all notch shapes with set I initial orientation (Figure 5.11), the 

maximum cumulative shear strain seems to occur at an inner site of the sample rather 

than on the boundary of the notches. However for set II initial orientation (Figure 

5.12) it seems that the maximum cumulative shear strain occurs at a point on the 

notch boundary for all notch shapes. This observation supports the above conclusions 

regarding the location of maximum resolved shear stresses. 
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(a) rectangular notch 

 

(a) rectangular notch 

 

(b) triangular notch 

 

(b) triangular notch 

 

(c) circular notch 

 

(c) circular notch 

Figure 5.11 Cumulative shear strains 

around the notches, set I initial 

orientation, 10% nominal strain. 

Figure 5.12 Cumulative shear strains 

around the notches, set II initial 

orientation, 10% nominal strain. 
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(a) rectangular notch (a) rectangular notch 

(b) triangular notch (b) triangular notch 

(c) circular notch (c) circular notch 

 

Figure 5.13 <111> pole figures for Set I 

initial orientation in grain A, 10% 

nominal strain. 

 

Figure 5.14 <111> pole figures for Set 

II initial orientation in grain A, 10% 

nominal strain. 
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The orientation distributions in grain A after deformation are shown by using the 

<111> pole figures in Figures 5.13 and 5.14, which correspond to set I and set II 

initial orientation, respectively. The conventional rolling terms, RD, TD, and ND are 

used to denote the elongation, transverse, and thickness directions, respectively. The 

hollow circle symbols represent the initial orientations. It is clear that the crystal 

orientations profoundly rotate around ND, namely the thickness direction of the 

samples, for all the notches and all the initial orientations. The crystal orientations 

after deformation are scattered fairly widely, but generally centred on the original 

orientation. Comparing the results of three notches indicates that the spread of the 

orientation of the rectangular notch is greater than the other two notches. The pole 

figures for grain B are not displayed as the same phenomena as those in grain A are 

observed. 

 

The method proposed by Wert et al. [127] was used to quantitatively analyze the 

microstructure evolution around the notches during deformation in grain A by 

determining the rotation angles of the crystal orientation around RD, TD, and ND. 

Figures 5.15 and 5.16 depict the rotation angles against the nominal strain, which is 

determined from the displacement of the top edge (u) divided by the initial height of 

the sample (L), at the point of maximum shear stress for the initial orientations of Set 

I and Set II, respectively. 

 

Figures 5.15 and 5.16 show that rotation angles increase with increasing strain except 

for some decreases in Figures 5.16b and 5.16c. For all types of notch geometry and 

both sets of initial orientations, crystal rotations about three axes appear to evolve in 

three stages. The rotation around ND (axis normal to the sample surface) is larger 

than those around the other two directions. For all types of notch geometry, rotations 

of crystals in Set II initial orientations appear to be greater than those in Set I. This 

observation reinforces the results mentioned at the beginning of this section that the 

samples with an initial orientations of set II deform more severely than the samples 

oriented in set I. Figures 5.15 and 5.16 reinforce the effects of notch shape to the 

evolution of microstructures around the notch tip, which were observed earlier in this 

section. Having same initial orientations, crystals around the rectangular notch, 

triangle notch and circular notch evolve quite differently, which are best observed in 

Figures 5.16a, 5.16b and 5.16c, respectively. 
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(a) rectangular notch 

 

 
(a) rectangular notch 

 
(b) triangular notch 

 

 
(b) triangular notch 

 
(c) circular notch 

 

 
(c) circular notch 

 

Figure 5.15 Rotation angles about three 

global axes versus the nominal strain for 

Set I initial orientation, 10% nominal 

strain. 

 

 

Figure 5.16 Rotation angles about three 

global axes versus the nominal strain for 

Set II initial orientation, 10% nominal 

strain. 
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Figure 5.15a shows that crystals in the rectangular notched sample with set I initial 

orientation rotate slowly around ND for strains up to 0.05, more rapidly for strains up 

to 0.08, then slowly again for strains larger than 0.08. The same behaviour is 

observed for the rectangular notch with set II initial orientation. The crystal rotation 

about ND in the triangular notched samples for both sets of initial orientation 

comprises of two stages (Figures 5.15b and 5.16b). The first stage is for nominal 

strains up to 0.04 and 0.07, for orientation set I and set II, respectively, and then a 

slightly faster rotation (stage 2). Rotations of crystals in the triangle-notched samples 

probably has not reached stage 3, because a closer look at the end of the ND rotation 

curve in Figure 5.15b shows that the slope slightly decreases. This indicates that 

stage 3 would take place if higher strains were applied. The circular notched samples 

also show a clear three-stage rotation about ND for both sets of initial orientations. 

For initial orientation of set I, Figure 5.15c shows that stage 1 occurs at strains 

smaller than 0.04, stage 2 for strains between 0.04 and 0.08, and stage 3 for strains 

larger than 0.08. For set II initial orientation, as shown in Figure 5.16c, limits of each 

stage are nominal strain lower than 0.02 for stage 1, from 0.02 to 0.07 for stage 2, 

and larger than 0.07 for stage 3.  

 

 

5.4 Conclusions 

 

Section 1.6 showed that numerous simulations using CPFEM model have been done 

to investigate the behaviour of an fcc polycrystalline aggregate under tensile load, in 

both 2D and 3D space. However, a study that uses a CPFEM model incorporating the 

Bassani-Wu hardening law to examine the combined effects of notch shape and 

initial orientation on the tensile deformation around a notch tip in a polycrystalline 

aggregate is still lacking. This chapter presents some preliminary results of such a 

study. The CPFEM model incorporating the Bassani-Wu hardening law was 

validated in Chapter 3. Besides, this chapter can also be regarded as an extension of 

simulations and analyses carried out in Chapter 4 for the case of a polycrystalline 

aggregate. 

 

The polycrystalline aggregate has been approximated by a 2D Voronoi diagram. The 

analyses carried out in this chapter have shown that the deformation of a 
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polycrystalline aggregate with an existing notch is influenced by not only the notch 

geometry, but also by the initial crystal orientation. In particular, initial orientation 

greatly influences the location and values of maximum shear stress and cumulative 

shear strain, and the deformation of the edge of the notch. 

 

The rotation of crystals close to notch tip appears to comprise of three stages. This 

behviour is more obvious for rotations around ND axis, for all types of notch shape 

and initial orientation considered. This may be directly attributed to the Bassani-Wu 

hardening law, which describes the evolution of shear stress in a single slip system as 

a three stage process. 

 

Review of other studies (Section 1.6) showed that other factors, such as grain size (or 

the number of grains), sample thickness, type of Voronoi diagram (2D, quasi-3D, full 

3D) also influence the behaviours of a polycrystalline aggregate under tensile load. 

Further works need to be done to examine how these factors affect the conclusions 

made above regarding crystal rotations and plastic deformation around the notch tip. 
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6. Misorientation-Dependent Cracking Criterion 

 

 

In this chapter, the data of orientation evolution obtained from Chapter 4 is further 

exploited to investigate misorientation, defined as the difference in orientation of two 

adjacent crystals in the proximity of the notch tip. Misorientation provides us with a new 

interpretation for lattice rotation of regions around the crack tip. With regards to the fact 

that crystalline structures along the interfaces (e.g. grain boundaries, phase boundaries) 

are not as strong as the bulk material, this information serves as a first step toward a new 

approach to modelling crack initiation and propagation. A methodology for modelling 

crack opening based on the energy of two misoriented lattices is proposed. This 

methodology is original and, to the best of the author’s knowledge, has not been 

reported in the literature. The resulting modelling capability allows explicit prediction of 

crack growth without presuming a crack path, which is essential in the studying of 

cleavage in ductile materials.  

 

Section 6.1 presents the development and verification of an atomic interaction model 

which is the core for estimating of the misorientation dependent crack opening criterion. 

Sections 6.2 to 6.4 present further analyses and discussions of FEM modelling results to 

determine the nucleation of voids and subsequent crack growth around a notch. 

 

 

6.1 Atomic interaction model estimating interface fracture energy 

 

6.1.1 Atomic interaction model 

 

An interface between two tilted lattices is uniquely determined in 3D space by five 

degrees of freedom: two represent the tilt axis orientation, one represents the tilt angle, 
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and two represent the orientation of interface normal. The tilt axis and interface normal 

are unit vectors and are perpendicular to each other. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

 

Figure 6.1 Schematic presentation of a sphere made of two tilted lattices. 
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The geometry of a system of two tilted lattices in the current model is similar to that 

used by Lee et al. [114]. The generation of a sphere comprising two tilted lattices is 

schematically shown in Figure 6.1.  

 

- Two concentric spherical samples of fcc lattice are built, the diameter of each is 

40.5 Angstroms (10 times of lattice constant of fcc crystal). Figure 6.1a shows 

these two concentric spheres separately. Each sphere has its own local coordinate 

system located at the centre of the spheres. Two coordinate systems, denoted by 

(X1,Y1,Z1) and (X2,Y2,Z2) for the fixed lattice and rotated lattice respectively, are 

originally coincident.  

- The left sphere is fixed, while the right sphere is tilted around a tilt axis by a 

predefined tilt angle. Figure 6.1b demonstrates the rotation of the right sphere 

around the axis Z1 (which is coincident with axis Z2). lρ̂  denotes the tilt axis 

with respect to the coordinate system of the fixed lattice. The resulting interface 

is represented by an arbitrary unit vector n
intf

 which is normal to the tilt axis lρ̂  

and is rooted at the centre of the spheres. 

- In Figure 6.1c, half the fixed sphere on the positive side of the interface is 

removed, and so is half of the rotated sphere on the negative side of the interface. 

- We finally obtain a sphere halved by two misoriented lattices with an interface 

that is on the equatorial plane (Figure 6.1d). 

 

The orientation of the interface normal is determined as follows. 

 

- The interface is swept around the tilt axis starting from the mirror plane of X axis 

of two local coordinate systems (i.e. a sweeping angle of 0
o
) to 180

o
 with a 1

o
 

interval. This arrangement results in symmetric tilt boundaries at sweeping 

angles of 0
o
 and 180

o
. 

- At each sweeping angle, the sphere halved by two misoriented lattices as 

described above is generated. 

- In other works modelling crystal interfaces using MD or MS [111, 113, 114, 

139], the lattices do not normally undergo external loading, relaxation is mainly 
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affected and determined from the equilibrium conditions of the atomic 

interactions around the interface. In the context of the current work, 

misorientations are derived from the CPFEM results, so the lattices are assumed 

to be subjected to external loadings. Therefore relaxation at the interface is 

approximately obtained by separating two lattices until the total potential energy 

reaches a minimum. 

 

 

 (a) (b) (c) (d) (e) 

 

 

Figure 6.2 Schematic presentation of the determination of relaxation at the interface. 

 

 

A schematic presentation of the determination of relaxation at the interface is 

shown in Figure 6.2, together with a sample of the curve of total potential energy 

of two hemispheres versus the separation distance between them. The shape of 

the curve was observed during the calculation in this work. Points (a) to (e) on 

the curve are demonstrated by the corresponding figures of the position of the 

hemispheres. The two hemispheres are pulled apart along the direction of the 

interface normal vector. At each position of separation, the integrated EAM 
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potential function for Al [101] is used to calculate the total potential energy of 

the system of two hemispheres. The resulting plot of total potential energy versus 

separation distance has the shape as shown in Figure 6.2. 

Point (a) on the curve in Figure 6.2 corresponds to the state in which two 

misoriented hemispheres are at their original positions (no separation). As the 

two hemispheres move apart, the total potential energy of the whole system 

decreases until it reaches a minimum value at point (b). The energy at this point 

is called total potential energy at relaxation. Further separation of the two 

hemispheres results in increasing the total potential energy of the system (point 

(c) on the curve), toward a negative asymptote (points (d) and (e) on the curve). 

The energy at this asymptote is the sum of free energy of two hemispheres. 

During the calculation in this thesis, it was observed that system energy reaches a 

minimum value (point (b)) when the two hemispheres are about 1 Angstroms 

apart, and reaches 99% of the asymptotic value when the two hemispheres are 

about 5 Angstroms to 6 Angstroms apart, which is approximately the cut-off 

distance in various EAM potential functions for aluminum [98-102]. 

- For the given tilt axis and tilt angle, the true interface of two misoriented lattices 

is determined as the results in the lowest total potential energy at relaxation, i.e. 

this interface orientation provides the most stable geometry of the system of the 

two lattices being considered. 

 

  

Figure 6.3 Angles defining tilt axis with respect to the reference coordinate system. 
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In this thesis we define misorientation energy as the energy required to create the stable 

misoriented structure of two lattices from a single crystal. It is calculated as the 

difference between the total potential energy of the original single crystal sphere (i.e. at 

a tilt angle of 0
o
) and the lowest total potential energy at relaxation, as determined 

above. This definition is similar to the definition of grain boundary energy used in MD 

or MS simulations [114]. However, grain boundary is defined as the interface of two 

lattices misoriented greater than 15
o
. For misorientations smaller than 15

o
, the interface 

is commonly called subgrain boundary. Thus the definition of misorientation energy in 

this thesis generally refers to the energy of both grain and subgrain boundaries. 

 

The difference between the lowest total potential energy at relaxation (point (b) on the 

curve in Figure 6.2) and the total free energy of two hemispheres (point (e) on the curve 

in Figure 6.2) is the energy required to break the atomic bonds and bring the system of 

two lattices from a stable structure to two halves fully apart. In this thesis it is called the 

interface fracture energy and plays a vital role in developing an explicit microstructure-

based and computationally inexpensive criterion for crack opening. Such a criterion is 

still lacking in simulations of crack growth and/or crack initiation to date. 

 

6.1.2 Verifications of the atomic interaction model 

 

The model described above is applied to the calculation of the grain boundary energy of 

<100> and <110> tilt boundaries in fcc aluminum. The results are compared with those 

from MD simulations found in the literature [111, 139], as shown in Figure 6.4. 

 

The curves from the model developed in this work and the MD models are generally in 

good agreement with both cases of tilt boundaries. The current model can predict small 

cusps in boundary energy curve of <100> tilt boundary even though there are some 

deviations in absolute values (Figure 6.4a). The agreement is even better for <110> tilt 

boundary (Figure 6.4b), where large cusps at about 70
o
 and 129

o
 tilt angles are captured 

quite accurately. Cusps occur on boundary energy curves because of uniformly spaced 

dislocations created on the tilt boundaries at particular tilt angles. The two large cusps in 



 128 

<110> tilt boundary energy plots are due to low-energy {111} and {113} twin 

boundaries that result from tilting two lattices around <110> axis angles of 70
o
 and 129

o
, 

respectively. [95]  

 

Deviations between the results may come from different relaxation conditions as well as 

the potential functions employed. As mentioned above, relaxation in the current model is 

obtained by pulling the two lattices apart until they reach a minimum total energy, rather 

than from equilibrium conditions in MD or MS simulations. 
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(a) <100> tilt boundary 
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(b) <110> tilt boundary 

Figure 6.4 Computed grain boundary energy using the current atomic interaction model 

(solid lines) and from the literature using MD [111, 139] (dashed lines). 
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Simpler assumptions of relaxation in the current model compared with other MD or MS 

models result in considerably less expensive computational time. This advantage allows 

us to construct a database of misorientation energy, interface fracture energy and 

interface normal vector of an aluminum tilted bicrystal (dependent variables) with tilt 

axis and tilt angle as independent variables. The tilt axis orientation is represented by a 

unit vector, which can be fully described in the 3D space by two angles, as shown in 

Figure 6.3, where 0 ≤ α
tilt

, β
tilt

 ≤ 180. We assume that the fixed lattice described in 

Section 6.1.1 to be the reference, the local coordinate system of which coincides with the 

global XYZ system (Figure 6.3), and so becomes the reference system. Tilt axis 

orientation is expressed with respect to coordinate system of the fixed lattice as 

 

 [ ] [ ]TtilttilttilttilttiltT

zyx βαβαβρρρ cossinsincossinˆˆˆˆ ==lρ   (6.1) 

 

Let θ be the total tilt angle. The total rotation matrix transforming the tilted lattice from 

the fixed (reference) lattice is 
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Figure 6.5 Euler angles of rotations of the reference lattice toward the tilted lattice. [140] 

Please see print copy for image
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The misorientation described by tilt axis/angle pair as above can also be described by 

Euler angles φ1, Φ, φ2, following Bunge notation [140], as shown in Figure 6.5. The 

XYZ system in Figure 6.5 is the reference system identical to that shown in Figure 6.3; 

<100> orientations represent the coordinate system of the tilted lattice. φ1, Φ, φ2, in that 

order, are rotations transforming the reference lattice toward the tilted lattice. In the 

matrix form, the total rotation transforming reference lattice to tilted lattice is 
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  (6.3) 

 

Equating Equation (6.2) to Equation (6.3) allows us convert the three angles 

representing axis/angle pair to Euler angles, and vice versa. 

 

In the constructed database the angles α
tilt

 and β
tilt

 sweep from 0
o
 to 180

o
 with 5

o
 

intervals, tilt angle θ sweeps from 0
o
 to 180

o
 with 2

o
 intervals. The contour plots of 

misorientation energy and interface fracture energy versus angles αtilt
 and βtilt

 (Figure 

6.3) for tilt angles 5
o
, 10

o
, and 15

o
 are shown in Figures 6.6, 6.7 and 6.8, respectively. 

The contours are symmetric around <100> orientations of tilt axes, hence only data 

corresponding to α and β within 0
o
 to 90

o
 is presented. At these moderate misorientation 

angles the interfaces between the two lattices are considered in the literature as sub-grain 

boundaries. 
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Figure 6.6 (a) Interface fracture energy and (b) Misorientation energy at tilt angle 5
o
. 
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Figure 6.7 (a) Interface fracture energy and (b) Misorientation energy at tilt angle 10
o
. 
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Figure 6.8 (a) Interface fracture energy and (b) Misorientation energy at tilt angle 15
o
. 
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As predicted in the results from previous MD simulations as well as from the theory of 

dislocations for sub-grain boundaries [95], the current results show that misorientation 

energy increases with the increment of tilt angle. This trend applies to every orientation 

of the tilt axis. Interface fracture energy, on the contrary, decreases when the tilt angle 

increases. As defined in Section 6.1.1, the interface fracture energy in this work is the 

energy required to break atomic bonds at the interface and bring two lattices completely 

apart. At lower tilt angles the lattices require less energy to create a new interface from 

the original single crystal. The geometry of the system is also closer to single crystal 

structure which makes it harder (more energy required) to break the whole structure into 

two independent parts. 

 

 

6.2 Misorientation angle and misorientation energy 

 

6.2.1 Misorientation angle 

 

Any two adjacent points i and j in CPFEM model initially having the same orientation 

could become significantly misoriented after some loading. This misorientation matrix 

k

ijR  between point i and point j can be defined as 

 

 ( ) 1−
•= k

i

k

j

k

ij RRR  (6.4) 

 

where k

iR  and 
k

jR  are the orientation matrices of crystals at point i and j, respectively. 

As both k

iR  and 
k

jR  are orthogonal and normalized, so is 
k

ijR . If we assume the rotation 

to crystal j from crystal i pure tilt, the axis gρ̂  (in the global coordinate system) and the 

angle θij (misorientation angle) of tilt can then be determined from k

ijR  by 
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 ( ) ( ) ( )
332211

1cos2 k

ij

k

ij

k

ij RRR ++=+ijθ  (6.6) 

 

In the CPFEM modelling full integration 8-node linear brick elements are used. Each 

element contains eight integration points. The misorientation angle between any two 

integration points will be considered. The total number of misorientation to be examined 

in an element is 28. Results of distribution of misorientation angles for Cube and Brass 

oriented samples, which have been modelled in Chapter 4 with 53,030 elements, are 

shown in Figures 6.9 and 6.10, respectively. 

 

On the Cube oriented sample, at 1% nominal strain, almost 95% of misorientation angles 

in regions II and nearly 100% of those in region III are between 0
o
-0.2

o
 (misorientation 

angles distribute around 0.1
o
 with ±0.1

o
 deviation). While the maximum misorientation 

angle in region I is up to 4
o
, less than 2% of the misorientation angles in region I are 

larger than 2
o
. The same trends occur for misorientations in all three regions at 3% 

strain. At this stage of loading, even though the maximum tilt angles in regions I 

increases up to 15
o
, and that in regions II, III up to about 3

o
, more than 95% of 

misorientations appearing in region II and III and almost 90% of those in region I are 

still lower than 2
o
. As the sample is stretched further the crystals in all three regions 

become more misoriented, and the regions closer to the notch have higher increments of 

maximum misorientation. In particular, the maximum misorientation angle in region I 

reaches 21
o
 at 4.5% strains while the corresponding values for regions II and III are only 

9
o
, and 7

o
, respectively. 

 

The same tendency is observed for misorientations around the notch in the Brass 

oriented sample, i.e. the maximum magnitude of misorientation angles increases with 

load, and decreases with distance away from the notch. The maximum misorientation 

angle in region I at 3% nominal strain (where voids nucleate) is about 18
o
, which is less 

than that in the Cube oriented sample which is 21
o
 at void nucleation. However in the 

Brass oriented sample the maximum misorientation angles at 1% strain in three regions 

are approximately 8
o
, 3

o
 and 2

o
, respectively, which are larger than those in the Cube 

oriented sample (about 4
o
, 1

o
 and 1

o
, respectively).  
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(a) 1% nominal strain 
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(b) 3% nominal strain 
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(c) 4.5% nominal strain 

Figure 6.9 Distribution of misorientation angle (in degrees) in regions around the notch 

tip in the Cube oriented sample. 
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(a) 1% nominal strain 
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(b) 2% nominal strain 
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(c) 3% nominal strain 

Figure 6.10 Distribution of misorientation angle (in degrees) in regions around the notch 

tip in the Brass oriented sample. 
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It is noteworthy that in both Cube and Brass oriented samples, more than 90% of all 

misorientations are lower than 15
o
 at every loading stage, i.e. the majority of new 

interfaces created in the region around the notch tip are sub-grain boundaries. 

 

The distribution of misorientation between crystals in regions around the notch in the 

two samples is better observed in Figures 6.11 and 6.12 where the contour plots of 

misorientation angles on the sample surface (left plots) and on the mid-thickness layer 

(right plots), are shown. The unit in these contour plots is degrees.  

 

The characteristics of the distribution of misorientation angles in the Cube and Brass 

oriented samples are different in a couple of ways. The contour plots of misorientations 

in the Cube sample take the general shape of the distribution of Mises stress at the 

corresponding nominal strain. Figure 6.13 shows the contour plots of Mises stress on the 

surface of this sample at three stages of loading. Both large Mises stress and large 

misorientation angle spread along three bands parallel to the notch tip direction, which 

are best observed at 4.5% nominal strain. Meanwhile the distribution of large 

misorientation in the Brass oriented sample is similar in shape to the cumulative shear 

strain (Figure 4.14) and particularly with the distribution of the total rotation of crystals 

from the initial orientation (Figure 4.17), i.e. two parallel bands originating from notch 

corners with values of misorientation in the upper band are generally larger than those in 

the lower band. These similarities are most obvious at 3% nominal strain (see Figures 

4.14c, 4.17c and 6.12c). 

 

Finally, the misorientations on the free surface of the Cube oriented sample are larger 

than those on the mid-thickness plane (Figures 6.11b and 6.11c), except at 1% nominal 

strain where they are approximately equal (Figure 6.11a). Also, the difference between 

misorientation angles on the two planes appears to increase with a higher load. On the 

other hand, in the Brass oriented sample (Figure 6.12) the maximum misorientation 

angles that occur on sample surface and on the interior plane seem to be equal at every 

stage of loading. 
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On the free surface   On the mid-thickness plane 

  

(a) 1% nominal strain 

  

(b) 3% nominal strain 

  

(c) 4.5% nominal strain 

Figure 6.11 Contour plots of misorientation angle (in degrees) between two adjacent 

crystals in the Cube oriented sample. 



 138 

On the free surface   On the mid-thickness plane 

  

(a) 1% nominal strain 

  

(b) 2% nominal strain 

  

(c) 3% nominal strain 

Figure 6.12 Contour plots of misorientation angle (in degrees) between two adjacent 

crystals in the Brass oriented sample. 
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(a) 1% nominal strain    (b) 3% nominal strain 

 

(c) 4.5% nominal strain 

Figure 6.13 Mises stress (MPa) on the surface of the Cube oriented sample. 

 

 

6.2.2 Misorientation energy 

 

Misorientation energy could be estimated from the atomic interaction model described in 

Section 6.1.1. As mentioned in Section 6.1.2, from the atomic interaction model 

developed in this work a database of interface fracture energy and misorientation energy 

was constructed with either tilt axis (characterized by two angles α
tilt

 and β
tilt

) and tilt 

angle θ or three Euler angles φ1, Φ, φ2 as independent variables. This allows us to 
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calculate the boundary energy of the newly created interfaces around the notch from the 

tilt axis and angles determined by Equations (6.5) and (6.6). While constructing the 

database, one lattice was assumed to rotate while the other which was fixed and used as 

the reference. Tilt axis orientation and Euler angles in the database, therefore, are 

expressed according to the coordinate system of the fixed lattice. The orientation of a tilt 

axis obtained from Equation (6.5) is in the global coordinate system attached to the 

modelling sample, and needs to be transformed into the coordinate system of crystal i so 

that it is compatible with the database, as follows [141] 
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Matrix giD  transforms coordinates of a tilt axis in the global coordinate system, 

[ ]T
gkjig ρρρ ˆˆˆˆ =ρ , to those in the local coordinate system of crystal i, 

[ ]T
lkji ρρρ ˆˆˆˆ =lρ . ( )T

lll kji  is the set of unit vectors along the coordinate axes of 

the local coordinate system of crystal i, which are identical to the three columns of 

matrix k

iR . ( )T

ggg kji  is the set of unit vectors along coordinate axes the global 

coordinate system, which are T]001[ , T]010[ , T]100[ . 

 

Angles α
tilt

 and β
tilt

 are determined from [ ]T
lkji ρρρ ˆˆˆˆ =lρ  by Equation (6.1). Each set 

of (α
tilt

, β
tilt

, θ) corresponds to three pairs ][ maxmin

tilttilt αα , ][ maxmin

tilttilt ββ  and ][ maxmin θθ  

in the database that define an eight-node element surrounding the data point (αtilt
, βtilt

, θ). 

Dependent variables, e.g. misorientation energy, interface fracture energy, and interface 

normal, at this data point are determined by isoparametric interpolation, similar to that 

applied in Abaqus for first-order brick elements [122]. Isoparametric element 

coordinates g
iso

, h
iso

, r
iso

 of the data point are defined by 
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The trilinear interpolation for value of a dependent variable u
var

 is carried out based on 

g
iso

, h
iso

, r
iso

 by Equation (6.9). iso

ig , iso

ih , iso

ir  and var

iu , respectively are isoparametric 

coordinates and value of the dependent variable at node i of the data element. 
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Misorientation energy in the Cube and Brass oriented samples prior to crack initiations 

can be interpolated from the database using Equation (6.9). Calculation results showed 

that on both samples, the distribution and magnitude of misorientation energy on the free 

surface and on the mid-thickness plane are similar at every stage of loading. Thus only 

the contour plots of misorientation energy on the sample surface will be presented. 

Figure 6.14 shows results at nominal strains of 1%, 3%, and 4.5% for the Cube oriented 

sample. Figure 6.15 shows results at nominal strains of 1%, 2%, and 3% for the Brass 

oriented sample. The plots show that the maximum of the required energy to create new 

interfaces from the original single crystal is approximately 1.2 J/m
2
, which is reached at 

a very early stage of loading (1% nominal strain) for both samples (Figures 6.14a and 

6.15a). Even though the maximum misorientation angles increase with higher loads (see 

Figures 6.11b-c and 6.12b-c), the maximum misorientation energy remains mostly 

unchanged (Figures 6.14b-c and 6.15b-c). As a higher load is applied, the amount of 

strain energy from the external load spent to create new interfaces increases, indicated 

by the wider distribution of maximum interface energy around the notch tip. 
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(a) 1% nominal strain 

 

 

(a) 1% nominal strain 

 

(b) 3% nominal strain 

 

 

(b) 2% nominal strain 

 

(c) 4.5% nominal strain 

 

 

(c) 3% nominal strain 

Figure 6.14 Misorientation 

energy (J/m
2
) on the free surface 

of the Cube oriented sample. 

 
Figure 6.15 Misorientation 

energy (J/m
2
) on the free surface 

of the Brass oriented sample. 
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The maximum misorientation energy of 1.2 J/m
2
 in Figures 6.14 and 6.15 is in the same 

order of magnitude with values of grain boundary energy of various crystal structures 

that are summarized in [95]. The seemingly opposite trends of misorientation angle and 

energy can be explained qualitatively by looking at plots of misorientation energy versus 

tilt angle of the <100> and <110> tilt boundaries (Figure 6.4) as examples. These plots 

reveal that misorientation energy evolves with tilt angles in three stages. The first and 

the third stages occur within a small range of tilt angle (around 15
o
 and 20

o
 in Figures 

6.4a and 6.4b, respectively) in which the misorientation energy increases (in the first 

stage) or decreases (in the third stage) linearly with the tilt angle. The second stage 

occurs within a wider range of misorientation angles in which the misorientation energy 

varies around an average value of approximately 0.6 J/m
2
 and 0.5 J/m

2
 in Figures 6.4a 

and 6.4b, respectively, except for a few particular tilt angles (e.g. 70
o
 and 129

o
 in Figure 

6.4b) where the tilted lattices create low energy crystal structures. It should be noticed 

that the <100> and <110> tilt boundaries are special cases in terms of the resulting 

lattice structures being periodic and closely related to the single crystal structure. For 

misorientations that result from experiments or numerical modelling, the lattices rotate 

relative to each other around arbitrary axes. The chances that the newly formed lattice 

structures have such special geometry are miniscule. Hence, the wide range of 

misorientation angles in stage 1, as well as the special tilt angles forming low energy 

crystal structures in stage 2 (as in Figure 6.4b), are less likely to happen. Maximum 

misorientations in the current simulation results (Figures 6.11-6.12) could be considered 

to occur in the second stage, which explains why maximum misorientation energy does 

not change with maximum misorientation angle. 

 

 

6.3 Misorientation-dependent cracking criterion 

 

The interface fracture energy is defined in Section 6.1.1 as the energy required to pull 

two points away from each other along the direction normal to their interface until they 

are fully apart. A strain energy having the same nature must be estimated for pairs of 

points in the CPFEM modelling samples so that it is comparable to the interface fracture 
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energy, in order to determine whether a crack occurs along the interface of a particular 

point pair. The estimation of such strain energy is schematically described in Figure 

6.16. 

 

 

Figure 6.16 Sketch of the estimation of strain energy on the interface of two lattices. 

 

 

The lattices are represented by two integration points A and B at the current time step i. 

σA and σB are Cauchy stress at integration points A and B, as obtained directly from 

Abaqus simulations. Points A’ and B’ represent the positions of points A and B at time 

step i-1, respectively. The displacement vectors A’A and B’B are represented by 

[ ]1−−= i

A

i

A

i

A dd∆d  and [ ]1−−= i

B

i

B

i

B dd∆d , respectively. i

Ad  and i

Bd denote the 

coordinates of points A and B. The user-defined subroutine UMAT was modified to 

provide i

A∆d  and i

B∆d  at each increment step as state dependant variables. The interface 

normal vector is denoted by n
intf

, which was tabulated in the database determined from 

the atom interaction model in Section 6.1.1. The values of a specific n
intf

 could be 

interpolated from the database following Equations (6.8) and (6.9).  

 

The net displacement of the two lattices in the direction normal to the interface is 

( ) intfn∆d∆d i

B

i

A − . The net stress acting on the interface in the interface normal direction 

is ( ) ( ) intfintfintfintf
nσnnσn B

T

A

T
− , where ( ) intfintf

nσn A

T
 is the Cauchy stress at integration 

point A projected on the interface normal direction. The net strain energy on the 

interface under the effects of external loading is 
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 ( ) ( )[ ]( ) intfintfintfintfintf

intf n∆d∆dnσnnσn i

B

i

AB

T

A

T
W −−=  (6.10) 

 

Positive intfW  implies two lattices being pulled apart while negative intfW  means them 

being pushed against each other. Let critE  denote the interface fracture energy or the 

critical energy of crack opening, which could be interpolated from the database 

constructed in Section 6.1.2 for the given interface orientation. It is noted that the value 

of 
critE  is positive. Then, ( )critEW −intf

 readily becomes a direct indication of crack 

opening. The energy criterion of crack opening is 

 

 ( ) 0intf ≥− critEW  (6.11) 

 

Prior to crack opening, ( )critEW −intf
 is negative and regions having higher ( )critEW −intf

 

(i.e. smaller in magnitude) are more likely to have cracks nucleated. Plots of maximum 

( )critEW −intf
 and average ( )critEW −intf

 that occurs in regions around the notch tip in the 

Cube and Brass oriented samples versus nominal strain are shown in Figure 6.17. These 

plots show results prior to crack initiations in both samples, thus the nominal strain is up 

to 4.5% for the Cube oriented sample, and 3% for the Brass oriented sample. 

 

Figure 6.17 reveals that the maximum and the average values of ( )critEW −intf
 of 

interfaces in region I are higher than or at least equal to those of interfaces in regions II 

and III in both samples at all stages of loading. This observation combined with the 

conclusion made in Chapter 4 that deformation is most severe in regions very close to 

notch tip makes it reasonable to limit the analysis of crack opening in a small region 

around the notch tip, at least at early stages of crack opening. In both samples, while 

values of the maximum ( )critEW −intf  in regions II and III increase gradually and 

reasonably closely with each other, the increments of the maximum ( )critEW −intf
 in 

region I appear to be in three stages. Stage 1 for the Cube oriented sample is from the 

beginning of loading to 1.5% nominal strain. In stage 2, nominal strains from 1.5% to 

4%, the values of maximum ( )critEW −intf  vibrate around -0.2 J/m
2
. At 4.5% nominal 
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strain, maximum ( )critEW −intf  jumps to 1.3 J/m
2
 when cracking occurs (stage 3). For the 

Brass oriented sample stage 1 ends earlier at 0.5%. Stage 2 is between 0.5% and 2.5% 

nominal strains, with the average value is at -0.6 J/m
2
, lower than that in Cube oriented 

sample. Stage 3 is also a large jump at 3% strain to 0.8 J/m
2
 when cracks initiate. 
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(a) Cube oriented sample 
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(b) Brass oriented sample 

Figure 6.17 Plots of the maximum and average ( )critEW −intf  versus applied strain prior 

to crack nucleation. 
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6.4 Applying the misorientation-dependent cracking criterion into CPFEM 

 

To model crack opening at initiation and the subsequent growth, the element removal 

technique in Abaqus/Standard is employed. The procedure to implement this technique 

is summarized as follows. 

 

- The total strain load is divided into a series of small loading step. Each small 

loading step is applied in an analysis (loading analysis), which is saved when 

finished so that it could be continued (restarted) in the subsequent loading 

analysis. The Abaqus keywords *Model change, activate is included in 

the loading step in the current Abaqus input file to specify that elements may 

need to be removed in the subsequent loading analysis. 

- At the end of each loading analysis, a misorientation-dependent crack opening 

analysis is carried out to determine if any element reaches the crack opening 

criteria (dead element). 

- Dead elements, if any, are removed in the next loading analysis. In the input file 

of this loading analysis, two steps need to be specified. The first step removes 

dead elements by means of keywords *Model change, remove, followed 

by the labels of dead elements. Forces exerted by the removed elements on the 

remaining part of the mesh are ramped down to zero gradually, so that the effect 

of these elements on the whole model is completely absent at the end of the 

removing step. The second step is the loading step, which also includes *Model 

change, activate as mentioned above. The calculations for this loading step are 

performed on the newly formed mesh. 

 

As mentioned in Section 6.2.1, there are 28 lattice pairs in an 8-node element being used 

in the current simulations. It is approximated in this study that if at least one pair of 

integrations points satisfy the energy criterion described above, the corresponding 

element is marked as “dead” and removed from the mesh by the element removal 

technique in Abaqus/Standard, as outlined above. The missing space at the position of 

the removed element effectively acts as a void in the material. The images of the front 
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view of all voids nucleated throughout the thickness of the sample relative to the notch 

boundary in the Cube oriented sample (at 4.5% nominal strain) and Brass oriented 

sample (at 3% nominal strain) are shown in Figures 6.18a and 6.19. A larger number of 

removed elements that are side by side with each other form a larger void than that 

results from a single removed element. Figures 6.18 and 6.19 show that voids nucleate in 

the Cube and Brass oriented samples with various sizes at separate positions. While they 

appear only in the upper part of notch in the Cube oriented sample (Figure 6.18a), voids 

spread all over the place around notch in the Brass oriented sample (Figure 6.19). Even 

so, it is noteworthy that both samples have voids that nucleate on the notch boundary, 

even though such nucleation could be at separate locations (Figures 6.18a and 6.19). 

 

   

(a) 4.5% nominal strain (b) 5.3% nominal strain (c) 5.8% nominal strain 

Figure 6.18 Voids nucleated around the notch tip in the Cube oriented sample. 

 

 

Figure 6.19 Voids nucleated around the notch tip in the Brass oriented sample (at 3% 

nominal strain). 
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Figure 6.20 Evolution of the maximum and average ( )critEW −intf  with nominal strain. 

 

 

Figure 6.21 Stress strain curve of Cube oriented sample up to 6% nominal strain. 
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Under higher loads, the evolution of maximum and average values of ( )critEW −intf  in the 

Cube oriented sample is shown in Figure 6.20 up to 6% nominal strain. The stress strain 

curve of the Cube oriented sample prior to cracking, as shown in Figure 4.4a is 

continued by a section that corresponds to strains applied after void nucleation (higher 

than 4.5%), as shown in Figure 6.21. Points on ( )critEW −intf  curves that exceed the dash 

line (on which ( )critEW −intf  equals zero) indicate the nucleation of new voids. These 

points are marked as (a), (b) and (c) on Figures 6.20 and 6.21 at 4.5%, 5.3% and 5.8% 

nominal strains, respectively. The locations of newly created voids at these nominal 

strains are shown respectively in Figure 6.18, where the connections of new voids to the 

existing ones essentially describe the nature of the growth or expansion of a crack in 

materials. As more voids appear, the stress strain curve in Figure 6.21 shows a continued 

decrease of stress (i.e. the sample ability to withstand external load) with respect to the 

strain applied. 
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Figure 6.22 Section of maximum ( )critEW −intf
 curves versus applied strains after crack 

nucleation. 

 

 

A closer look at Figure 6.20 in the section corresponding to strains higher than 4.5% 

shows that the maximum ( )critEW −intf
 curve in three regions behaves similar to an 



 151 

under-damped sinusoidal oscillator. This section is redrawn in Figure 6.22, together with 

a sample of the general shape of the response of an under-damped sinusoidal oscillator. 

The overshoots occur at 4.5% nominal strain where crack openings are first detected. 

The highest overshoot belongs to the maximum ( )critEW −intf  curve of region I. The 

second highest and lowest overshoots occur on curves of region II and region III, 

respectively. The curves then oscillate with their amplitudes gradually decrease to zero. 

After reaching critical points at 4.5%, 5.3% and 5.8% nominal strains where voids 

nucleate, the curves slope downward until they reach a minimum value, then start going 

upward. At this stage, this observation is explained in this work that the sample 

undergoes energy restoration after each time new voids nucleate. In other words, the 

crystal lattice in the sample, particularly around the notch tip, is ‘restructured’ (for 

example via rotation of crystals) to make it more stable (lower energy). As further voids 

nucleate, the energy restorations become shorter, indicated by smaller amplitudes of the 

curve below the dashed line. Further simulations need to be done to justify this 

observation, and further analyses are required to fully explain the phenomenon. 

 

The nature of cracking initiating from a void, which might not be on a free surface, and 

the subsequent propagation by connections of voids, as being considered in the current 

work has been observed in various MD simulations [69-72]. Shimomura et al. [69] 

reported MD simulation of a tensile test on a single crystal Cu thin film. The X, Y, and Z 

sample axes initially were in ]110[ , ]112[ , and ]111[  lattice orientations. The film was 

elongated up to 8% along ]111[  direction. The so-called (111) islands were observed as 

atoms moved along the stretching direction <111> on two adjacent (111) planes. These 

migrations of atoms resulted in vacancies which accumulated and merged with each 

other to form small voids. These small voids if reaching a critical dimension would 

initiate crack. Shimomura et al. claimed that the same mechanism could also occur in 

bulk materials if dislocations in the deformed metals cannot move fast enough, which 

leads to the appearance of voids, i.e. crack initiation. 

 

Figures 6.18a and 6.19 show that voids nucleate in the Cube oriented sample in a 

different manner compared to voids in the Brass oriented sample, which indicates the 
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effect of initial orientation. Numerous studies have reported the same conclusions [70-

72]. Gao et al. [71] and Lu et al. [72] conducted MD simulations of propagation of Mode 

I crack in bcc single crystal iron samples. Various lattice orientations were considered. 

For all orientations, voids resulted from the inhomogeneous displacement of atoms 

appeared both inside the bulk material (i.e. away from the crack tip) and close to the 

crack tip. Gao et al. concluded that the initial lattice orientation significantly affects the 

behaviours of the crack growth. Also, their results showed that <111>{1-10} are 

favourable directions along which cracks in a bcc single crystal iron sample propagate 

more readily. 

 

Particularly, Farrisey et al. [70] reported MD simulations of void growth from an 

existing notch in fcc single crystal copper samples under tensile load. Two cases of 

initial orientation were considered. In the first orientation, the loading axis was along the 

]010[  lattice direction and the sample surface was along the )001(  lattice plane (Cube 

orientation). In the second orientation, the loading axis was along the ]110[  lattice 

direction and the sample surface was along the )211(  lattice plane (Brass orientation). 

These two cases are similar to the two orientations of SEN single crystal aluminum 

samples being considered in this work. Thus the behaviours of crack opening from 

simulation results of Farrisey el al. [70] can be qualitatively compared with results in 

this chapter. 

 

These MD results are shown in Figures 6.23 and 6.25 for the Cube orientation and Brass 

orientation, respectively. The initial circular notch was located in the middle of the 

sample in both cases to stimulate crack growth. There were six atoms along the 

thickness of the samples. The tensile load was applied in the vertical direction up to 30% 

nominal strain (frame (8) in Figure 6.23 and frame (6) in Figure 6.25). The 

corresponding stress strain curves are shown in Figures 6.24 and 6.26. Points (1) to (8) 

on the curve in Figure 6.24 correspond to frames (1) to (8) in Figure 6.23. The same 

numbering order was applied for the Brass orientation (Figures 6.25 and 6.26). 
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Figure 6.23 Void growth in an fcc single crystal (copper) with Cube orientation from 

MD simulations [70]. 

 

 

Figure 6.24 Tensile stress-strain curve from MD simulations of void growth in an fcc 

single crystal (copper) with Cube orientation [70]. 

Please see print copy for image

Please see print copy for image
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Figure 6.25 Void growth in an fcc single crystal (copper) with Brass orientation from 

MD simulations [70]. 

 

 

Figure 6.26 Tensile stress-strain curve from MD simulations of void growth in an fcc 

single crystal (copper) with Brass orientation [70]. 

Please see print copy for image

Please see print copy for image
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MD simulations predicted that voids in an fcc single crystal with Cube orientation 

(Figure 6.23) start growing from the four corners of the notch, then steadily propagate in 

the direction normal to the loading direction. This trend is captured reasonably well in 

the preliminary results of crack growth using CPFEM modelling in this work, as shown 

in Figure 6.18. This figure shows that the propagation of voids in the Cube oriented 

sample appears to align in the horizontal direction (i.e. normal to the direction of tensile 

load). 

 

In Figure 6.25, MD simulations predicted that the growth of voids in an fcc single 

crystal with Brass orientation does not follow any particular direction. The notch in 

Figure 6.25 appears to expend approximately the same amount in all directions, and thus 

keeps a fairly rounded shape throughout the deformation. This behaviour of void growth 

is captured to some extent by the current CPFEM modelling, as shown in Figure 6.19. In 

this figure, the nucleation of voids in the Brass oriented sample occurs at various 

locations around the notch tip. 

 

The corresponding stress-strain curves from MD simulations (Figures 6.24 and 6.26) do 

not match curves obtained from the current CPFEM modelling. Values of maximum 

tensile stress for Cube and Brass orientations from MD simulations were 8000MPa and 

11000 MPa, respectively. The corresponding values from the current CPFEM model are 

only approximately 55 MPa. The deviations are from different materials (copper versus 

aluminum) and the nature of the two modelling techniques (MD versus CPFEM). 

Another possible source of deviation is the rate of the applied tensile load. Farrisey et al. 

[70] also concluded that stress levels predicted from their MD simulations were an order 

of magnitude higher than those from a crystal plasticity model. 

 

 

6.5 Conclusions 

 

This chapter has proposed a criterion for crack opening based on the data of lattice 

evolution. The chapter has also successfully demonstrated the implementation of this 
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newly developed criterion into a CPFEM model to predict crack initiation (in terms of 

the nucleation of voids) and crack growth (in terms of coalescence of new voids and 

existing voids). The effect of the newly formed voids on the FEM mesh is captured by 

using the element removal technique in Abaqus/Standard. This combined approach 

enables the modelling of explicit crack growth without presuming a crack path. Also, 

because the crack opening criterion is evaluated based on the lattice evolution during the 

loading period, a predefined energy criterion for crack opening, which could be 

erroneous, is avoided. The development of the methodology to model crack opening in 

this chapter is original and is presented here for the first time. 

 

The core of the new crack opening criterion is a model of atomic interaction for a pair of 

lattices with a simplified relaxation at their interface. The results of interface energy 

obtained from this model for symmetrical <100> and <110> tilt boundaries match very 

well with results from MD simulations found in the literature. This atomic interaction 

model is used to construct a database of fracture energy and normal vector of the 

interface of pure aluminum bicrystals. The tilt axis/angle pair of the interface is used as 

independent variables for the database. 

 

As part of the new methodology to model crack opening, misorientation angle which is 

defined as the angle between two misoriented (tilted) adjacent crystals is determined 

from the data of lattice evolution from CPFEM modelling. Analyses show that over 90% 

of misorientation angles around the notch tip in Cube and Brass oriented fcc single 

crystals are lower than 15
o
, i.e. the majority of newly formed interfaces are sub-grain 

boundaries. These analyses for misorientation provide new insights into the lattice 

evolution within a single crystal. To the best of the author’s knowledge, these analyses 

of CPFEM modelling results have not been reported in the literature.  

 

Each tilt axis/angle pair from the misorientation data defines an interface, the energy of 

which is a minimum. Fracture energy and normal vector of the corresponding interface 

are interpolated from the above database. Strain energy on this interface is calculated 

from the stress and displacement fields from CPFEM simulation. The strain energy is 
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then compared with the fracture energy to determine whether the fracture occurs on the 

interface. This is the crack opening criterion used in this work. Elements containing 

interface(s) satisfying this criterion are removed from the FEM mesh by using the 

element removal technique. 

 

Preliminary results of void nucleation and void growth around the notch tip in Cube and 

Brass oriented samples using CPFEM modelling appear to agree with MD simulations 

of void growth in fcc single crystals [70]. However, further simulations need to be done 

to justify and fully explain the observations of crack path and energy restoration. 
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7. Conclusions and Suggestions for Further 

Developments 

 

 

7.1 Conclusions 

 

This thesis numerically investigates the deformation of single crystals aluminum as well 

as aluminum polycrystalline aggregates in regions around a notch tip of an SEN tensile 

sample. The notch, of various shapes and sizes, can effectively be considered as an 

existing crack in materials where large deformation and cleavage are likely to occur 

even at a fairly early stage of loading. To account for the effects of crystal orientations, a 

CPFEM formulation incorporating the Bassani-Wu hardening law has been developed in 

Chapter 2. Even though this hardening law [115] requires more parameters in its 

formulation compared with other laws [117, 118-121], it enables a CPFEM model to 

capture more accurately the three-stage hardening within slip systems. This capability is 

not available if other hardening laws are used. 

 

The theory of crystal plasticity has been implemented into the user-defined subroutine 

UMAT in Abaqus/Standard. The element removal technique in Abaqus/Standard is also 

used to model void nucleation and the subsequent crack growth based on a newly 

developed misorientation-dependent energy criterion for crack opening. The results are 

summarized as follows. 

 

7.1.1 Verification of the CPFEM formulation 

 

A CPFEM simulation model that has same dimensions, boundary conditions, and the 

applied load with the experiments done by Patil et al. [65] has been used. Two cases of 
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the orientation of the notch are considered in Chapter 3 to validate the CPFEM 

formulation incorporating the Bassani-Wu hardening law developed in Chapter 2. 

 

- For notch tip in the ]101)[010(  orientation, the analyses of simulation results from the 

current study reveal sets of slip traces on the sample surface inclining 54.5
o
 and 0

o
 to the 

notch tip direction. These results agree very well with the analytical solution by Rice 

[50] and experimental observations by Patil et al. [65]. Analyses of rotation of crystals 

from initial orientations show bands of concentrated rotations that are aligned at 49.1
o
 

and 86.6
o
 to the notch tip direction, which also matches with EBSD results reported by 

Patil et al. [65]. 

 

- For notch tip in ]100)[010( , analyses of FEM results show that slip traces on sample 

surface inclining ±45
o
 to the notch tip direction, which agree very well with the 

analytical solution by Flouriot et al. [59] and experimental results [64]. 

 

Rice’s asymptotic solutions for a notch tip in the ]101)[010(  orientation have attracted 

verifications by various experimental and numerical works. Meanwhile, no simulation 

works has been found so far attempting to model and successfully verifying the 

analytical solutions and experimental observations of Flouriot and co-workers [59, 64] 

for a crack tip in the ]100)[010(  direction. The simulations and analyses carried out in 

Chapter 3 are among a very few, if not the first, attempts that accurately predict 

experimental observations of both cases of notch tip orientation by a single model (one 

set of material parameters). 

 

7.1.2 Deformation around a notch tip in single crystals prior to cracking 

 

Chapter 4 examines the tensile deformation, in both macro-scale and micro-scale, in a 

small region around a notch tip in Cube and Brass oriented samples prior to crack 

initiations. The simulations are based on the CPFEM model incorporating Bassani-Wu 

hardening law that was validated in Chapter 3. Results from these simulations form a 

basis for further analyses for crack opening to be carried out in Chapter 6. 
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Tensile deformation in both macro-scale (e.g. change of the average roughness and slip 

traces on the sample surface) and micro-scale (e.g. lattice rotations and plastic slip) 

appears to be more severe in the region right around the notch boundary than outer 

regions. In three regions around the notch and at every stage of loading, plastic slip and 

the change of average surface roughness in the Brass oriented sample are approximately 

1.5 times higher than those in the Cube oriented sample.  

 

Following the analyses described in Chapter 3, slip traces on a sample surface can be 

predicted based on the initial crystal orientation. Using results of lattice orientation from 

CPFEM modelling, slip traces are plot on the surface of Cube and Brass oriented 

samples which agree well with analytical predictions. However at a higher load (e.g. 

4.5% nominal strain for Cube sample and 3% nominal strain for Brass sample) and at 

locations where stress concentration occurs (e.g. around corners of the notch), crystals 

rotate severely from their original direction. Analytical predictions are no longer correct 

and thus slip traces in these cases must be determined numerically. 

 

For both Cube and Brass oriented samples, results of crystal rotation and plastic slip 

appear to be higher on the free surface than on the mid-thickness plane. Also in both 

samples, the distribution of surface roughness generally has the same patterns with those 

of the total plastic deformation and the total crystal rotation. This is best observed at 

4.5% nominal strain for the Cube oriented sample, and at 3% nominal strain for the 

Brass oriented sample. 

 

7.1.3 Deformation around a notch tip in a polycrystalline aggregate 

 

Chapter 5 extends the study in Chapter 4 to investigate the plastic deformation and 

microstructure evolution at the notch tip in an SEN polycrystalline aluminum. The 

polycrystalline sample has same dimensions with single crystal samples considered in 

Chapter 4 and is approximated by a 2D Voronoi diagram. While numerous works have 

numerically examined the behaviours of polycrystalline aggregates, a study that 
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investigates the combined effects of notch geometry and initial orientation using the 

CPFEM incorporating Bassani-Wu hardening law similar to that presented in Chapter 5 

is still lacking. 

 

The deformation of an fcc polycrystalline aggregate with an existing notch appear to be 

influenced by not only the notch geometry, but also by the initial orientations. 

Particularly, the initial orientation greatly influences the location and magnitudes of the 

maximum shear stress and cumulative shear strain around the notch. Crystals around the 

notch tip evolve from the initial orientation in three stages, most obviously for the 

component of rotation about the axis normal to the sample surface. This may be directly 

attributed to the Bassani-Wu hardening law, which describes the evolution of shear 

stress in a single slip system as a three stage process. 

 

7.1.4 Simulations of crack initiation and crack growth 

 

Chapter 6 further exploits the data of lattice rotation obtained from Chapter 4 to develop 

a crack opening criterion that depends on the evolution of lattice structure. The core of 

the criterion is a model estimating atomic interactions between two fcc lattices, with 

simplified relaxation conditions at the interface. The results of misorientation energy for 

<100> and <110> tilt boundaries obtained from the model match with those from MD 

simulations very well. 

 

Misorientation, defined as the difference in orientation of two adjacent lattices, has been 

estimated. The analysis has shown that around the notch tip in both Cube and Brass 

oriented samples, over 90% of misorientation angles are less than 15
o
 at every stage of 

loading. That said, for nominal strains up 4.5% and 3% for Cube and Brass oriented 

samples respectively, the majority of deformation induced interfaces in the region 

around the notch tip are sub-grain boundaries. This analysis for misorientation together 

with the obtained results provides new insights into the evolution of crystals. 
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Based on the newly developed atomic interaction model and the data of misorientation 

obtained from the CPFEM modelling, the interface fracture energy critE , which is 

defined as the energy required to bring two misoriented lattices to complete separation, 

is calculated. The net strain energy in the direction normal to the interface intfW  is 

estimated based on Cauchy stress and displacement fields of the pair of lattices forming 

the interface. The energy criterion for crack opening employed in this study is stated as 

( ) 0intf ≥− critEW . 

 

Chapter 6 has also successfully demonstrated the implementation of the new crack 

opening criterion into the CPFEM model that was developed in Chapter 2. Elements in 

the finite element mesh satisfying this criterion are removed from the mesh using the 

element removal technique available in Abaqus/Standard. While missing elements 

effectively act as voids in the material, crack opening (in terms of void nucleation) and 

the subsequent crack growth (in terms of coalescence of new and existing voids) are 

captured naturally without presuming a crack path. This capability to explicitly model 

crack path is essential in the studying of cleavage in ductile materials. 

 

The initial results in Chapter 6 qualitatively agree with conclusions made from MD 

simulations regarding behaviours of crack growth in Cube and Brass oriented fcc single 

crystals [70]. Also, the response of the maximum ( )critEW −intf
 with strain applied after 

voids nucleate closely resembles that of an under-damped sinusoidal oscillator. 

 

The development of the methodology to model crack opening presented in Chapter 6 is 

original. To the best of the author’s knowledge, (i) the simplified relaxation at the 

interface of a bicrystal (in the atomic interaction model), (ii) the estimation of 

misorientation, and (iii) the misorientation-dependent energy criterion combined with 

element removal technique in Abaqus/Standard are presented in this thesis for the first 

time. 
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7.2 Suggestions for further developments 

 

- Results of plastic slip and crystal rotation on the free surface of a single crystal 

sample are generally higher than those on an interior plane (see Chapter 4). This may 

be attributed to different deforming conditions on the two planes, i.e. plane stress 

versus plane strain conditions. This difference could be properly explained by 

carrying out 2D plane stress and plane strain simulations of the same models and 

comparing 2D results with the current 3D results. 

 

- Reviewing other studies (Section 1.6) showed that various factors (e.g. grain size, 

type of Voronoi diagram, sample thickness) affect simulation results of tensile 

deformation of a polycrystalline aggregate. Thus a parametric study should be done 

to examine how above factors influence the results of crystal deformation obtained 

in Chapter 5. 

 

- Longer simulations (higher applied tensile loads) on samples having various initial 

orientations would fully characterize the behaviour of mode I crack growth in SEN 

single crystals. Also, these simulations would justify and fully explain the 

observations made in Chapter 6 regarding the response of the maximum 

( )critEW −intf
 versus nominal strain after cracks/voids initiate. 

 

- Currently the misorientation based energy criterion for crack opening is carried out 

after each loading step. Meanwhile, there might be elements satisfying the criterion 

somewhere in the middle of a loading step. As the crystals evolve under the 

continuing loading, input parameters of the criterion at these elements (e.g. interface 

normal vector and interface fracture energy) also change. Hence at the end of the 

analysis, those elements might no longer satisfy the criterion, and are missed out, i.e. 

not removed from the mesh.  

 

The prediction of crack opening would be improved if the atom interaction model is 

implemented directly into Abaqus/Standard, so that the crack opening criterion is 
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judged at the end of each time increment. This results in a “real-time” modelling of 

void nucleation. From the technical viewpoint, such modification is possible by 

using Python codes accompanied the Abaqus model to call an external program, 

which is the atom interaction model, at the end of each time increment. The 

computational time would be longer, but it is still much shorter than a full MD 

simulation or a multi-scale simulation incorporating MD. 

 

- Regarding the analysis of slip traces presented in Chapter 3, it can be inversely 

implemented to predict the crystal orientation from the observation of slip traces on a 

sample surface. If combined with an SEM facility that can capture images of a 

sample surface during a tensile test, the slip trace analysis in this work can be used to 

determine the evolutions of crystal during the test. This saves time re-preparing 

samples and running EBSD scanning for crystal orientation. 

 

- The methodology to model crack opening proposed in Chapter 6 can be readily 

applied to model fracture in various problems where the evolution of the crystal 

lattice is provided. Minor modifications need to be made in UMAT (for the crystal 

plasticity theory) and the atomic interaction model (for the misorientation-dependent 

fracture energy) if crystal structures other than fcc are used. 

 

- The analysis for misorientation (Section 6.2) also provides orientation of the 

interface of a bicrystal. Using this information, a methodology can potentially be 

developed to numerically determine the formation of grain boundaries from an 

original single crystal (single grain) under mechanical deformations. 
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