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Abstract

The field of fracture mechanics can generally be divided into two groups: (i) the
study of material behaviour prior to crack and (ii) the developing of crack opening
criteria. Even though various studies have been done in both subjects there are still
gaps that need to be bridged. This thesis aims at combining both groups of the
modelling of dynamic fracture in crystalline materials at a reasonable cost of

computational time.

A model of crystal plasticity finite element method has been formulated to account
for the effects of lattice structure in the crystalline materials. The model has been
applied to simulate tensile deformation around a notch tip in both single crystals and
polycrystalline aggregates. By comparing with observations from various
experiments, the model has been proved to be able to accurately capture the
material’s behaviours around a notch tip undergoing tensile load. Particularly, this
model is among the very few, if not the first, that accurately predicts various

experimental observations of two notch tip orientations (010)[101] and (010)[100]

that are widely found in the literature.

This study has also developed a crack opening criterion that is dependent upon the
evolution of the lattice structure. The core of this new criterion is an atomic
interaction model that estimates energies of the interface of an fcc bicrystal. Results
of grain boundary energy of <100> and <110> symmetrical tilt boundaries of an
aluminum bicrystal obtained from the atomic interaction model agree very well with

those from molecular dynamics simulations.

The newly developed criterion has been applied to the modelling of crack opening
and crack growth in a region around the notch tip in single crystals. Elements in the
finite element mesh satisfying the criterion are removed from the mesh by using the
element removal technique in Abaqus/Standard. Missing elements effectively act as

voids in the material. Thus crack opening (in terms of void nucleation) and the



subsequent crack growth (in terms of coalescence of new and existing voids) are
captured naturally. The newly developed methodology to model crack opening has
been applied to predict mode I crack growth around a notch tip in Cube and Brass
oriented fcc single crystals. The obtained results show similar behaviours of crack
growth with those from molecular dynamics simulations of single crystals having the

same lattice orientations.

The methodology to model crack opening that has been proposed in this thesis is
original. It enables the explicit modelling of crack growth without presuming a crack
path. Also, a predefined crack opening criterion, which could be erroneous, that has
been used in many finite element simulations of fracture is avoided. To the best of
the author’s knowledge, the criterion of crack opening that depends on the structure

of the interface of two misoriented lattices is presented in this study for the first time.

The current thesis focuses into modelling tensile deformation and the subsequent
fracture in fcc crystals. The methodology that has been proposed however can be
readily applied to crystalline materials of various lattice structures with minor

modifications.
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