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Abstract

Visual object tracking has been extensively investigated in the last two decades for

its attractiveness and profitability. It remains an active area of research because of

the lack of a satisfactory holistic tracking system that can deal with intrinsic and

extrinsic distortions. Illumination variations, occlusions, noise and errors in object

matching and classification are only a fraction of the problems currently encountered

in visual object tracking. The work developed in this thesis integrates contextual

information in a Bayesian framework for object tracking and abnormal behavior

detection; more precisely, it focuses on the intrinsic characteristics of video signals

in conjunction with object behavior to improve tracking outcomes.

The representation of probability density functions is essential for modeling stochas-

tic variables. In particular, parametric modeling is convenient since it makes possi-

ble the efficient storage of the representation and the simulation of the underlying

stochastic process. The Gaussian mixture model is employed in this thesis to rep-

resent the pixel color distribution for segregation of foreground from background.

The model adapts quickly to fast changes in illumination and resolves the problem

of “pixel saturation” experienced by some existing background subtraction algo-

rithms. The technique leads to better accuracy in the extraction of the foreground

for higher-level tasks such as motion estimation.

The solution of the Bayesian inference problem for Markov chains and, in particular,

the well-known Kalman and particle filters is also investigated. The integration of

contextual inference is of paramount importance in the aforementioned estimators;
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it results in object-specific tracking solutions with improved robustness. The vehicle

tracking problem is explored in detail. The projective transformation, imposed by

the environment configuration, is integrated into the Kalman and particle filters,

which yields the “projective Kalman filter” and the “projective particle filer”. Ex-

tensive experimental results are presented, which demonstrate that the projective

Kalman and particle filters improve tracking robustness by reducing tracking drift

and errors in the estimated trajectory. The constraint on the known nature of the

environment is then relaxed to allow general tracking of pedestrians. A mixture of

Gaussian Markov random fields is introduced to learn patterns of motion and model

contextual information with particle filtering. Such inference results in an increased

tracking robustness to occlusions.

The local modeling with the Markov random fields also provides inference on ab-

normal behavior detection. Since local patterns are unveiled by the Markov random

field mixture, detecting abnormal behavior is reduced to the matching of an object

feature vector to the underlying local distribution, whereas the global approach,

introducing generalization errors, involves complex, cumbersome and inaccurate de-

cisions. Experimental evaluation on synthetic and real data show superior results in

abnormal behavior detection for driving under the influence of alcohol and pedes-

trians crossing highways.



Résumé

Le suivi d’objets visuel a été un domaine de recherche intense durant ces deux

dernières décennies pour son attrait scientifique et sa rentabilité. Il reste un sujet de

recherche ouvert de par le manque de système de suivi holistique satisfaisant, prenant

en compte les distorsions intrinsèques et extrinsèques. Variations d’éclairement,

occlusions, bruits et erreurs dans la correspondance et la classification d’objets ne

sont qu’une partie des problèmes actuellement rencontrés en suivi d’objets. Le

travail développé dans cette thèse intègre l’information contextuelle dans le cadre

Bayesien pour le suivi d’objets et la détection de comportements anormaux. Plus

précisément, la recherche porte sur les caractéristiques intrinsèques du signal vidéo

en conjonction avec le comportement d’objets dans le but d’améliorer les résultats

du suivi.

La représentation de fonctions de densité de probabilité est cruciale pour modéliser

les variables aléatoires. En particulier, les modèles paramétriques sont pratiques

puisqu’ils permettent un stockage compact de la représentation ainsi que la simu-

lation du processus aléatoire sous-jacent. La mixture de Gaussiennes est utilisée

dans cette thèse pour représenter la distribution de couleur d’un pixel dans le but

de séparer l’avant-plan de l’arrière-plan. Le modèle s’adapte aux changements rapi-

des d’éclairements et résout le problème de “saturation de pixels” rencontré avec

certains algorithmes de soustraction d’arrière-plan. Il résulte de cette technique une

meilleure précision lors de l’extraction de l’avant-plan pour des tâches de plus haut

niveau telles que l’estimation du mouvement.
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La solution au problème d’inférence Bayesienne pour les chaines de Markov, et en

particulier, les filtres de Kalman et particulaire, est étudiée. L’intégration d’une

inférence contextuelle dans ces estimateurs est primordiale pour améliorer le suivi

d’objet. Il en découle des solutions propres à un contexte spécifique. Le problème de

suivi de véhicules est également exploré en détails dans cette thèse. La transforma-

tion projective, imposée par la configuration de l’environnement, est intégrée dans

les filtres de Kalman et particulaire, engendrant le “filtre de Kalman projectif” et le

“filtre particulaire projectif”. Des résultats expérimentaux exhaustifs sont présentés

pour démontrer l’amélioration de la robustesse au suivi par les filtres de Kalman et

particulaire projectifs. L’amélioration est caractrisée par la réduction de la dérive du

suiveur et la réduction de l’erreur dans l’estimée de la trajectoire. La contrainte sur

le caractère connu de l’environnement est ensuite supprimée pour permettre le suivi

de piétons. Une mixture de champs aléatoires de Markov Gaussiens est introduite

dans l’objectif d’apprendre les motifs de mouvements et de modéliser l’information

contextuelle pour le filtrage particulaire. Une augmentation de la robustesse du

suivi sous occlusion résulte d’une telle inférence.

La modélisation locale avec les champs aléatoires de Markov fournit également une

inférence pour la détection de comportements anormaux. Puisque les motifs locaux

sont révélés par la mixture de champs aléatoires de Markov, la détection de com-

portements anormaux est réduite à l’étude de la correspondance entre le vecteur de

caractéristiques et la distribution locale sous-jacente. L’approche globale, quant à

elle, introduit des erreurs de généralisation et implique des décisions complexes, peu

élégantes et imprécises. L’évaluation expérimentale de la méthode proposée sur des

données synthétiques et réelles présente des résultats supérieurs pour la détection des

comportements anormaux de conducteurs en état d’ébriété et de piétons traversant

les autoroutes.



Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except

where due reference is made in the text.

No work in this thesis has been submitted for a degree to any other university

or institution, to the exception of the University Paris 13 (France) with which a

cotutelle agreement (Joint Doctorate) has been signed.

Signed
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Chapter 1
Preliminaries

1.1 Introduction

Computer vision has become ubiquitous in recent years for its ability to model

human perception. Although there have been fundamental and groundbreaking

advances in the field, many problems remain unsolved to date, and computer vision

is, more than ever before, an active area of research. The thesis presented here

proposes an investigation into the object tracking field which gathers the different

techniques developed to mimic the natural process of tracking performed by human

beings in their daily life. Visual object tracking is based solely on videos and the

environment surrounding the object (called scene). Furthermore, analog videos do

not suit the tracking purpose since the process is carried out by digital architectures

such as computers or embedded systems. Computer vision therefore disposes of the

entire range of numerical tools available for processing digital signals.

This chapter first introduces the reader to basic notions of video signal processing.

The representation of videos is described from a signal processing perspective to

define the acquisition process as well as the degradations undergone by the signal

to form the video. Second, the motivation of the research and the assumptions

underlying the framework are presented. Finally, the contributions of the thesis to

the visual object tracking field are summarized.

1



Preliminaries 2

Real world 

Scenery

3D to 2D 

projection

Image 

formation
Compression Video file

Video

processing

External

Constraints

Resources

Constraints

Figure 1.1 Video formation process. The scene and the video undergo a number of
transformation altering the information acquired in the video file.

1.2 Representation of Video Signals

Video recordings are used for the purpose of entertainment, learning, training, be-

havior analysis, remote surgery, virtual reality, surveillance, etc. Although an ex-

haustive list of usages and applications is impossible to compile, any digital video

can be described in an accurate and generic manner from the viewpoint of signal

processing: a digital video is a temporal sequence of images which are represented

by a matrix of numbers. Analog video is out of the scope of this thesis and digital

video will be referred to as video hereafter. Although the thesis is focusing on visual

object tracking, it is necessary to introduce the pathway leading to the creation of a

video file to understand the object tracking framework and its challenges. Figure 1.1

presents an overview of the video formation process.

1.2.1 Concepts and Notation

A video is a sequence of images, referred to as frames, that generates a coherent

animation from the human point of view. Figure 1.2 displays the general structure

of a video. The matrix representing a frame in the sequence is of size W ×H ×N

where W is the width, or the number of columns in the matrix, H is the height, or

number of rows in the matrix, and N is the number of channels. The set of values

that characterizes a particular element given by its position in terms of rows and

columns is called a picture element (or pixel for short). The number of channels

defines the type of image and, subsequently, the type of video:
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Figure 1.2 Video Structure and representation. A video is decomposed into a sequence
of images which are composed of channels. In this example, there are three channels: R,
G and B. Each channel is represented by a 2D matrix of numbers.

• N = 1 - Grayscale video: This type of video was used in the early days

of Television. It is still used in specific applications where the transfer of

information is costly (e.g. some type of remote videosurveillance).

• N = 3 - Color video: This type of video is widely used today because the

rendering is close to human perception.

• N > 3 - Multispectral video: This type of video embeds information that is

not visual such as infrared images. They are found in very specific applications

(e.g.military day/night vision goggles and medical imaging).

In terms of time frame, a video starts at time Ts and stops at time Tf . However,

for convenience in the notation, the time Ts is taken as 0 and Tf is denoted T . For

live footage and real-time processing, T is the present time or latest available time.

The video represents a sequence of snapshots of the scene captured by the camera

at discreet time instants, t. Formally, if the image at time t is denoted It, a video
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(a) General View (b) Camera plane

Figure 1.3 Scene projection and distortion: display of a projection of the real world (3D)
to the camera plane. Projection affects the apparent size of objects: the blue box appears
smaller than the red one. Projection also causes occlusion: the green box has disappeared
in (b).

I is the concatenation of images at different times t such that

I = {It : t = 1..T} . (1.1)

However, the information regarding an object of interest in a video is not readily

accessible due to various degradations during data acquisition.

1.2.2 Video Acquisition

Video acquisition refers to the recording process of a real world scene onto a captur-

ing device. There are three factors to consider during this process: the projection

from the 3D world to a 2D camera plane, the influence of the framerate on the ap-

parent trajectory, and the motion of the camera. The type of video capture device

is irrelevant from a purely signal processing perspective. The two main technolo-

gies available are Charge-Coupled Device (CCD) and Complementary Metal Oxide

Semiconductor (CMOS) . The reader is referred to [40] for a comparative study of

the two technologies.

The planar nature of the sensor restricts the capture of real-world scene to its

projection on the sensor image plane. It results in the apparent distortion of objects,

partial or total occlusion, and scaling problems. These are illustrated in Fig. 1.3.

The figure shows that, in this particular setup, the blue box appears smaller than

the red box due to the characteristics of the projection imposed by the camera
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position. The real world scene undergoes a homographic transform onto the camera

plane. Another effect of the transform is the partial or total occlusion of objects.

In this scenario, the green box has disappeared from the captured image because

the projection support of the green box onto the camera plane is included in the

projection support of the red box.

Another factor to account for in the acquisition process is the framerate of the cap-

turing device. Recording devices capture images at discreet times only. The illusion

of motion is restored by the brain integrating the images displayed through time.

Let ∆t be the time elapsed between two frames. The framerate is therefore defined

as FS = 1/∆t. In terms of signal, this means that any sporadic information occur-

ring between two images is lost. An example of loss of information by inadequate

framerate is the stroboscopic effect. In this case, the frequency of the state of an

object is equal to the frequency of the image capture: the object seems static when

it is in fact dynamic. To a lesser extent, for fast moving objects, a low framerate can

create misleading apparent motion of an object (e.g. illusion of car wheels spinning

backwards in videos).

Finally, the camera observational reference frame plays an important role in the cap-

ture of the scene. Without loss of generality, there are two possible types of videos:

(i) videos captured with a fixed camera as shown in Fig. 1.4(a) (e.g. videosurveillance)

and (ii) videos captured with a camera in motion as shown in Fig. 1.4(b) (e.g. action

shots in movies). A duality regarding the object of interest of a scene is often ob-

served between the two cases: for a fixed camera, the background is static and the

foreground is dynamic, whereas for a moving camera, the background is dynamic

and the foreground is quasi static.

1.2.3 Information Distortion

Once the signal has arrived to the capturing device or sensor, it is compressed to be

efficiently stored on the digital media. At this stage, the signal may be degraded,

i.e. , some information is lost during compression to produce a data file of acceptable

size. Here, we omit the details of video coding because it is out of the scope of this

thesis. However, to be able to model the degradations and account for the loss in
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(a) Fixed camera

(b) Moving camera

Figure 1.4 Fixed camera versus moving camera. (a) Fixed camera: the background is
fixed while the foreground is in motion; (b) Moving camera: the background is in motion
while the foreground is fixed.

the modeling of the original signal, it is essential to characterize the type of noise

introduced in the process. One of the major issues encountered in video compression

(e.g.MPEG-2) is the so-called blocking artefact inherent to the decomposition of

the frame into blocks to perform efficient Discrete Cosine Transform (DCT) . Since

compression introduces errors in the signal on a block basis, errors can add up

at the edges of a block, leading to horizontal or vertical artefacts, typical of a

highly compressed video. Here, we propose a very simple yet effective experiment

to identify the nature of the noise introduced by compression. A video sequence is

captured with low compression ratio (11Mbps) in MPEG-2. Then, it is compressed

with a H.264/AVC codec at high compression ratio (128kbps). Figure 1.5 displays

a frame of the original and the compressed videos. Figure 1.5(b) presents some

artefacts that are not in Fig. 1.5(a). Figure 1.5(c) shows the squared error between

the two frames introduced by compression: the error is predominant around the

edges.

Now, is it possible to fit a model to the noise distribution? Let us first consider the

spatial noise, i.e. , the noise that is introduced in a given frame. The histogram rep-
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(a) Original frame (b) Compressed frame (c) Mean Square Error

Figure 1.5 Displays of an original video and its compressed version. Some degradations,
called artefacts, are present in the compressed video (b). (c) is the error between the
original and the compressed video (magnified 5 times for the purpose of display).

(a) Spatial Noise Histogram (b) Temporal Noise Histogram

Figure 1.6 Histogram representations of the spatial and temporal noise generated by
compression of a video. (a) The spatial noise is taken over the entire image for frame 210.
(b) The temporal noise is for 500 frames and for pixel [35,175].

resentation of the difference between the original frame and the compressed frame

is presented in Fig. 1.6(a). It can be inferred from the figure that the noise distribu-

tion is near Gaussian. The bin centered on 0 has a higher value because it contains

the quantization noise. The same experiment is run to determine the nature of the

temporal noise. A histogram representation of the difference between a pixel in the

original and in the compressed videos is displayed in Fig. 1.6(b). The difference is

taken over 500 frames. The distribution can be considered near Gaussian. The

shape of the noise come from compression and, in particular, prediction (Gaussian

noise) and quantization (uniform noise).
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To sum up, the degraded video Id can be approximated as:

Id = I + v , (1.2)

where v ∼ N (.,µ,Σ) and N (.,µ,Σ) denotes the normal distribution (also called

Gaussian distribution) with mean µ and covariance matrix Σ. Because the Gaussian

is centered at 0, the mean µ is equal to 0.

1.2.4 Research Motivation and Assumptions

The visual object tracking field is still an active area of research and optimal so-

lutions are yet to be found. Although simple scenarios are reliably and accurately

handled by existing methods, more complex scenarios such as tracking in clutter,

high density of similar objects or occlusions remain a challenge. The motivation

of this research is to improve the robustness of tracking by integrating contextual,

environment-dependent and local information in tracking. Indeed, the techniques

proposed to date lack context in the estimation of object tracks due to the use of

general, fit-everything models. While they offer the advantage of tracking all type of

variables, from vectors representing objects to financial market or weather forecast,

they make little use of information characteristic of video processing. Therefore, the

investigations conducted in this thesis will be based on the phenomena pertaining

to video processing and object characteristics described in this section.

The visual object tracking field starts from the compressed video file and aims to

provide robust and efficient tracking of objects. The field of study is extended to

the analysis of abnormal behavior. Since visual object tracking encompasses a wide

area of techniques, it is necessary to make specific yet weak assumptions on the

nature of objects and videos to narrow the scope of the thesis. Videosurveillance,

vehicle traffic surveillance and monitoring, in general, fall into the scope of these

assumptions, made in line with the observations presented in this section.

Slow object motion Objects in videos have a slow motion compared to the fram-

erate. Misleading apparent motion is discarded with this assumption and all

objects in motion are presumed to have a non-null apparent motion. The

disambiguation of adjacent object tracking is also ensured.
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Gaussian noises Gaussian noise enables the use of tracking techniques based on

closed-form derivations providing optimal tracking. The Gaussian context also

provides a parametric representation of the noise for statistical analysis;

Fixed camera video Most tracking and pre-processing techniques are based on

modeling regions of the scene with pixel per pixel processing. A moving camera

does not ensure the mapping of a region to specific pixels. Fixed camera

provides the track of an object in a fixed (terrestrial) reference frame;

Small object size The area covered by an object is small compared to the entire

image. The thesis aims to track objects with efficient algorithms that can run

in real- or near realtime. A large size object involves complex shape modeling

that violates this constraint.

1.3 Contributions of the Thesis

The contributions of the thesis are summarized below:

1. Transversal literature review. The literature review investigates visual object

tracking in a transversal or object-oriented approach. Previous contributions,

although very comprehensive, have focused on a top-down organization which

does not bring the modularity of the field into light [275]. Chapter 2 identifies

and describes modules which can be assembled together for efficient tracking.

2. Illumination-invariant background subtraction. A new technique for generat-

ing illumination-invariant background with a Gaussian mixture model is pre-

sented. The contribution lies in the update of the mixture parameters. While

proposed methods use pre-/post-processing, a semi-constrained Gaussian mix-

ture model is implemented in order to detect foreground in environments with

fast changes in illumination. The phenomenon of pixels saturation, occurring

with large and recurrent changes in illumination, is also addressed in Chap-

ter 3.

3. Projective Kalman filter. The extended Kalman filter performs the estimation

of a feature vector in a Gaussian environment. However, it does not make use
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of application-specific information. In Chapter 4, the projective Kalman filter

is developed in the framework of vehicle tracking, integrating the projective

transformation undergone by the vehicle tracks from the real-world onto the

camera plane. It is used in the aforementioned vehicle tracking framework.

The projective Kalman filter contributes to tracking drift reduction and pro-

vides accurate and robust vehicle tracking.

4. Projective particle filter. The particle filter relaxes the constraint on the Gaus-

sian environment imposed by the Kalman filter. However, its accuracy is in-

versely proportional to the number of particles. The projective particle filter

presented in Chapter 5 improves the tracking of vehicles by integrating the

projective transformation in the importance density. The contribution of the

projective particle filter lies in the reduction of the particle set size to track

vehicles.

5. Contextual Bayesian inference. Bayesian inference for particle filters is achieved

by the importance density. Traditionally, the inference is general to suit a wide

range of tracking problems. The introduction of contextual Bayesian inference

through the learning of local information with Markov random fields con-

tributes to the state of the art in visual object tracking. Chapter 6 presents the

Gaussian Markov random field mixture, which provides contextual Bayesian

inference from pedestrian and vehicle tracking. The technique improves the

tracking rate and the recovery after occlusion.

6. Contextual abnormal behavior detection. Abnormal behavior detection is im-

proved in Chapter 7 with the integration of contextual Bayesian inference. A

local approach is proposed which trains the Gaussian Markov random field

mixture with a stochastic clustering algorithm. While existing techniques

focus on a global approach, leading to complex decisions, the technique de-

veloped contributes to abnormal behavior detection by providing simple local

decisions. The system outperforms current techniques in terms of abnormal

behavior detection accuracy.
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Chapter 2
Roadmap for the Object Tracking Maze

2.1 Introduction

Object tracking is traditionally presented in a top-down approach starting from

object representation. Here, a different architecture is proposed since the object

tracking field has recently become extremely complex and ramified. Instead of de-

scribing each of the branches individually, we propose to investigate the different

modules involved in tracking. The presentation of the literature finds an analogy

with Object-Oriented Programming (OOP) : abstraction of the implementation de-

tails is omitted to focus on the function of each module. Nevertheless, key references

are provided to the reader for further details. This approach offers distinct advan-

tages:

• the broad area of visual object tracking can be presented succinctly with ab-

straction of complex implementation details;

• the modularity of visual object tracking is enlightened;

• the cumbersome enumeration of different implementation is avoided;

• the transversal approach precludes the redundancy of description imposed by

the use of the same technique for a different purpose.

However, background and technical analysis of particular fields of interest require

further investigation that will be provided in the relevant chapters.

13
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Figure 2.1 Functional diagram of visual object tracking, organized in modules.

The review of the literature is based on the diagram displayed in Fig. 2.1. The visual

object tracking field relies on three modules that interact with each other to perform

robust object tracking. First, Section 2.2 reviews the different techniques used for

object modeling and further details object features and representations. Second,

Section 2.3 presents object detection and, in particular, supervised learning, distri-

bution representations and segmentation. Third, Section 2.4 explores object tracking

techniques and occlusion handling. The reader is referred to the comprehensive sur-

vey on visual object tracking by Yilmaz et al. to complement the literature review

with a traditional top-down approach of the field [275].

2.2 Object Modeling

Object modeling plays a crucial role in visual tracking because it characterizes an

object of interest. Only the feature defined by the object model is used to maintain
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the estimate of the track. Object modeling therefore consists of two attributes: the

representation of the object, which delineates its span in the frame, and the features,

which characterize it. Consequently, a poor choice of object model inevitably leads

to poor tracking. The range of object representations encompasses various types

of models and is application dependent. Some applications only require a simple

model, while others require accurate and complex object models to achieve tracking.

This section presents the various model representations, in particular, parametric

and non-parametric shape representations and features used in tracking.

2.2.1 Parametric Representations

The parametric representation is simple because it characterizes the object with

basic geometric shapes defined by a limited number of parameters. Various signal

processing operations such as transforms, estimations or learning can be directly

applied to parameters in order to achieve tracking. Parametric representations are

desirable when more accurate information is not available or too time-consuming to

obtain, for instance. This subsection reviews the point representation, conventional

shape representations such as rectangles, ellipses and their trivial form, the square

and the circle, respectively. Finally, articulated shapes are presented.

Point Representation

In visual object tracking, the trivial shape is the point. An object is represented

with a pixel location representing either some statistics on the object, such as the

centroid, or a particular characteristic of interest. Point representation has been

used in a plethora of applications due to its processing simplicity and the ease of

point manipulation with complex algorithms. For instance, it has been used for point

tracking in radar imagery [185], distributed point tracking [133] or for Monte Carlo

techniques where the number of samples prohibits heavy calculations [7, 91, 143].

Point tracking also alleviates the uncertainty regarding the position of the object

of interest in the frame since it is based on a single point. It can be complemented

with various order moments describing the distribution of the shape, such as the

variance of pixels in the object of interest [47,240,268]. Points have also been used

to generate heuristics on some characteristics of the object. They are also used in
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Figure 2.2 Example of rectangular and elliptic shapes with their nomenclature. The
shapes are defined by a reduced number of parameters: 3 for the rectangle; 4 for the
ellipse.

the calculation of optical flow: due to the large number of vectors to estimate, only

the point representation can be afforded [41,140,244].

Conventional Shapes

Notwithstanding the aforementioned attractive properties, the point representation

of an object can lead to simplistic models that do not grasp the entire dynamics

of the object. For instance, rotation is not catered for with point representation.

More advanced parametric shapes are, therefore, necessary to address these types

of problems. Conventional shapes can be of any form as long as their representation

is parametric and compact. In practice, almost every tracking system based on

conventional shapes is designed around two representations: rectangular and elliptic.

Figure 2.2 displays the rectangular and elliptic representations. Rectangles are en-

tirely defined by their center (O), also called origin, and the height h and width

w. Trivially, when h = w, the rectangle becomes a square. The assumption further

reduces the number of parameters. The rectangle representation is ubiquitous in

geometric object tracking such as cars [172,228] or in low-distortion object tracking

such as people [61, 246, 274]. Traditionally, the object representation with a rect-

angle does not integrate a tilting parameter to enable rotation; the width and the
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height of the rectangle are set along the image axis. The ellipse is usually preferred

when rotation is required [42]. An ellipse is defined by its center point, (O), the

large and small axes, bx and by, and the angle of rotation, θ. The four shape param-

eters enable the ellipse to fit most object shapes and, in particular, non-geometric

objects for which the coarse outline provided by rectangles is not suitable. Indeed,

the projection of compact objects onto the camera plane can be assimilated to an

ellipsoidal blob. The ellipse offers the advantage of “rounding” the edges compared

to the rectangle when the object does not have sharp edges [43]. Finally, the ellipse

is the contour of equiprobability for a 2D Gaussian distribution. This property is ex-

ploited to generate samples from Gaussian distributions for sequential Monte Carlo

methods in a Gaussian environment. For instance, the covariance matrix can be de-

fined proportionally to the axes of the ellipse. Therefore, the probability distribution

of the target dispersion is conveniently modeled by the shape representation.

Articulated Shapes

Articulated shapes are employed for tracking if different portions of the object of

interest are to be described individually (e.g. , legs, arms and head). For instance,

Ramanan and Forsyth developed an articulated shape model to describe the body

configuration and disambiguate overlapping tracks [202]. Articulated shapes re-

quire the definition of interactions between the different parts of the object and

the learning of appearance from examples, resulting in a significant computational

load for tracking. However, it gives insight into the characterization of the gait,

which is essential for certain types of abnormal behavior detection. For instance,

the video-surveillance software “W4” marks the position of the different body limbs

to analyze the behavior of people [99]. Articulated shapes are therefore composed of

a system of basic conventional shapes such as rectangles, circles and ellipses tied up

with spatial and kinematic dependencies. As mentioned before, the main drawback

of articulated shapes is the inherent computational load that makes any stochastic

tracking algorithm prohibited. The processing time is multiplied by the number of

elementary shapes, in addition to the calculations due to the dependency require-

ments. This type of representation is out of the scope of the thesis since it violates

the requirement of near-real time tracking. Articulated shapes also provide little
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improvement, if any, to tracking since objects are assumed to be small in the image;

delineating the different parts of the object is therefore cumbersome.

Finally and for the sake of completeness, it is important to mention the object

skeleton that is presented by some authors (e.g. [275]) as a technique for object

representation. Skeletons model a set of dependencies between different parts of the

object; they do not represent nor delineate the object. We define the skeleton as

a set of articulations within an object that describes the dependencies and defines

constraints between the representation of the parts. Skeletons are therefore a tool

for describing articulated objects.

2.2.2 Non-parametric Representations

One of the major shortcomings of parametric representations is the accuracy of the

object spatial delineation. Indeed, the trade-off for limiting the number of parame-

ters describing the shape is the lack of adaptability to awkward, or non-conventional,

shapes. Non-parametric representations address this shortcoming with a pixel by

pixel delineation at the expense of an exhaustive description of the object. It is

worthwhile noting here that we define non-parametric representations as represen-

tations that are not purely parametric. In this sense, semi-parametric representa-

tions are included in non-parametric representations. Figure 2.3 illustrates the three

main types of non-parametric representation described in this subsection: templates,

blobs and contours.

(a) Original Image (b) Template (c) Blob (d) Contour

Figure 2.3 Non-parametric representations of a person. (a) The original image with
the object of interest. (b)–(d) The three techniques provide a delineation of the object
superior to parametric representations.
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Templates

A comprehensive description of the use of templates in computer vision can be

found in [32]. Templates aim to represent objects with a set of predefined mod-

els. In that sense, templates can be categorized as semi-parametric representations.

The predefined models are a priori non-parametric and can be of arbitrary form,

providing single or multiple views of the object of interest. However, the matching

of the model is performed by projection, distortion, scaling, etc., which are para-

metric transforms. One of the main tasks concerning templates is to maintain the

set of models to minimize their number and maximize their relevance to the scene.

First, if the appearance of the object is assumed to be static, the set of templates

can be generated at initialization and updates are not necessary [17]. If the object

changes appearance but is limited to a pre-defined range, the set of templates can

be learnt off-line [129], thereby limiting its size. Another approach is on-line update

and pruning of the set throughout time [145]. Templates are simple non-parametric

representations to manipulate due to the restriction in the set of models and the

parametrization of transforms used for matching.

Blobs and Silhouettes

When learning or updating is not possible because there is no pattern in the repre-

sentation, an exhaustive description of the spatial delineation of the object cannot

be avoided. Blobs, also called silhouettes, are used for this purpose. A blob is

merely defined in the general context as “a small lump, drop, splotch, or daub” [1].

In computer vision, a blob is a dense, non-disjoint, binary mask that represents an

object of interest. Blobs are of particular importance for pixel-wise processing. For

instance, background subtraction provides blobs identifying the foreground or the

moving objects in a scene [75, 279, 283]. Blobs can also result from classification

such as skin segmentation [115,196] or color segmentation [53,54].

Contours and Splines

Contours provide a convenient non-parametric trade-off between an exhaustive de-

scription of the object and storage requirements. Instead of storing the entire sil-

houette, contours only describe the edges enclosing the object. The gain in storage
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is counter-balanced by an increase in processing when retrieving the entire blob.

It is also necessary that the contour be closed in order to avoid ambiguity of re-

construction, although some closure [236, 273, 280] and tracking [205] techniques

handle small breaks in the continuity of the shape. Despite these requirements,

contours are widely used because a tracking framework based on splines has been

developed [244, 272]. Subsection 2.4.1 provides more insight into contour track-

ing techniques. Here, we limit the investigation to spline modeling, a technique

for contour parametrization. Splines are a piecewise function of polynomials with

smoothness constraints. They were introduced by Schoenberg in 1946 [219]. The

description of splines below is based on [245]. A spline s modeling the contour

C = {k1, .., kn} is uniquely described as

s(x) =
∑

k∈C

c(k)β(x− k) , (2.1)

where β is a B-spline function and c(k) are estimated coefficients. The objective

of contour tracking is the estimation of the parameters c(k) and the spline basis.

Applications of active contours for object tracking are varied, from tracking with

optical flow [244] or through severe occlusion [87, 272, 276] to Bayesian estimation

[206] or Gaussian mixture assisted segmentation [260].

2.2.3 Object Features

The term object feature encompasses every data that is employed to characterize

and discriminate an object from the rest of the image, including other objects. The

ideal feature for object tracking is an invariant of the object, i.e. , at least robust to

any type of transform, any change of illumination, any degradation. This feature,

if existent, has not been found yet. This subsection presents features characterizing

the object delineated by the object representation namely, color, edges, corners and

optical flow.

Colors Representation

Colors are the most intuitive features to describe an object since they are the most

obvious one for the human eye; they have been the primary source of identification

and discrimination. However, the perception of color by the human eye differs from
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the “perception” by a computer. The integration of color perception models for

video coding has been a field of research for many years [19,210]. One of the focuses

of attention is the transformation of the RGB channels into a different color space. A

practical description of the most common color spaces can be found in [113]. Many

transformations have been investigated all sharing the same objective: separate

the information into perceptually relevant channels. The Yxx group, encompassing

YUV, YIQ, and YCbCr, aims to isolate the luma component in the signal. The

Hxx group, including HSI, HLS and HSV, focuses on Hue and Saturation. Other

color spaces offer the advantage of representing the color in a perceptually linear

space (e.g.CIELUV, CIELAB), at the cost of non-linear transformations. While

humans naturally adapt to changes in illumination when tracking an object, this is

a major challenge in visual object tracking. Color space transforms aim to address

this issue by isolating the illumination component and processing the illumination-

independent components only. Color tracking is ubiquitous in different areas of

tracking. Some examples are kernel-based object tracking [52,56], Bayesian filtering

[94,96,150], Skin-color tracking [31] and texture tracking [135].

Edges

Edges, although less intuitive features than color, are widely used because they are

insensitive to illumination changes. Numerous filter masks have been designed to

detect edges in an image. The reader is directed to the review on edge detection by

Ziou and Tabbone in [297]. Edges can be detected with a bank of high-pass filters,

in horizontal and vertical directions, expressed as








−1 a −1

0 0 0

−1 a −1

















−1 0 −1

a 0 a

−1 0 −1









(2.2)

where a is a positive real number. The Prewitt filters (a = 1) and the Sobel filters

(a = 2) are two examples of these filters. However, they are sensitive to noise. The

Laplacian of Gaussians (LOG) has been introduced to increase the robustness to

noise with the smoothing property of the Gaussian: the Laplacian operator, which is

the second partial derivative in horizontal and vertical directions (mixed derivative

being equal to 0), is applied to the Gaussian function [231].
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(a) 1D LOG profile (b) 2D LOG profile

Figure 2.4 Profile of the 1D and 2D Laplacian of Gaussians.

Figure 2.4 presents the profile of the filter. Canny also proposed a technique to

improve the edge detection by suppressing the non-maximum edges [38]. A hys-

teresis thresholding is performed on the edges to this effect. Bowyer et al. evaluated

the performances of 11 edge detectors (incl. Sobel and Canny) on a set of images

and their ground truth via ROC curves [29]. They concluded that complex edge

detection shows little improvement compared to the Canny edge detector.

To a higher level of abstraction, it is of interest to detect edges that are correlated

together to extract meaning in the image. The Hough transform [72] performs a

search of linear edges at every edge pixels location (x, y) by fitting a line with the

affine equation y = mx + b. For computation purposes, the polar representation

is adopted. For each edge pixel, the distance ρ and the angle θ of the intersection

between the line passing through the pixel and the perpendicular passing through

the origin are recorded. The two variables ρ and θ are quantized and an accumulator

counts the number of occurrences for each pair. Lines in the image are thus detected

by selecting the largest accumulator values for {ρ, θ}. Ballard later introduced the

Generalized Hough Transform detecting any shape which can be parameterized [12].

Corners and Salient Features

Corners, and salient features in general, are simple yet robust object feature. This

subsection focuses on the three main techniques for identifying corners: the Moravec
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[177], the Harris and Stephens [100] and the Trajkovic and Hedley [242] corner

detectors.

The Moravec algorithm is a basic corner detector that computes the intensity sum

of squared differences (SSD) between two sub-images to find the degree of similarity.

For each pixel at location (x, y), the SSD is calculated between a sub-image and its

shifted version such that:

SSD(x, y) =
∑

(δx,δy)∈D

(I(x, y)− I(x + δx, y + δy))
2 , (2.3)

where D is a domain to be defined. The SSD is small for homogeneous regions and

large for heterogeneous regions. In this sense, Moravec corner detector measures the

dissimilarity or the cornerness of a pixel location. A feature with high dissimilarity

is a good feature to track since the tracker will be less distracted by the neighboring

pixels.

The Harris and Stephens corner detector is based on the calculations of a weighted

SSD. Harris and Stephens proposed to linearize the SSD using the first order Taylor

series expansion to allow a matrix formulation of the problem. Equation (2.3) is

therefore rewritten as

SSD(x, y) = (x, y)A(x, y)T , (2.4)

with

A =
∑

(δx,δy)

w(δx, δy)





I2
x IxIy

IyIx I2
y



 . (2.5)

Finally, the magnitudes of the eigenvalues for the matrix A are analyzed. Large

values mean that the pixel is a feature of interest because it expresses an important

dissimilarity of the pixel feature with the neighboring ones, hence saliency. The

Harris and Stephens algorithm is found in different applications where robust feature

tracking is necessary, e.g. , optical flow [97,156].

A different approach, conserving the geometric structure of the neighborhood, has

been proposed by Trajkovic and Hedley. They examine the dissimilarity of radially

opposed pixels on a circle C with regards to the pixel of interest as the minimum of

the sum of the distances to the feature of interest. This is expressed as:

C(x, y) = min
(

(Ip− Ic)2 + (Ip′ − Ic)2
)

, (2.6)
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where p ∈ C and p′ is the pixel diametrally opposed. This technique is very fast

compared to others and provides directionality of the corner.

Optical Flow

Finally, on object can be modeled by its optical flow, or loosely speaking, by its

internal and external apparent motion. We chose to include optical flow as a feature

rather than a detection or tracking technique, since optical flow provides information

on the characteristics of an object independently of the calculation method. A review

of optical flow techniques is available in [14]. Many techniques have been proposed

to estimate the optical flow such as phase correlation [102], energy-based techniques

or block-matching (used in video standards, e.g. , MPEG2 and H.264). However,

differential methods are the most employed techniques due to their accuracy and

robustness. Without loss of generality, differential methods estimate the optical flow

under constant illumination assumption. If the intensity of a pixel at position (x, y)

and time t is denoted I(x, y, t), the constraint on illumination is written as

I(x, y, t) = I(x + δx, y + δy, t + δt) , (2.7)

where δx, δy and δt are variations in x, y and t, respectively. Assuming that the

variations are small and developing Eq. (2.7) in Taylor series yields

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 . (2.8)

This problem is ill-posed since two variables Vx and Vy are to be estimated with one

equation. An additional constraint would therefore determine the problem. Horn

and Schunck used a global smoothness condition [105], and Lucas and Kanade

introduced a constraint on the velocity in the neighborhood of the point of interest

to find the solution to Eq. (2.8) [159]. Nagel was the first to include second order

derivative constraints on the vector flow [181].

2.2.4 Summary of Object Modeling

An object can be represented by different techniques, from a point to non-parametric

representation, depending on: (1) its shape and complexity; (2) the requirement of

the application; and (3) the system resources. The framework of the thesis as well
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as the assumptions articulated in Chapter 1 limit the shape representation to point

or conventional parametric shape representations such as rectangles or ellipses. In

particular, the assumption pertaining to the size of objects render articulated shapes

representation cumbersome and unreliable. The second attribute of object modeling

is the discrimination of the object itself. Features model the object of interest and

differentiate it from others in the image. Features encompass colors, edges, corners

and optical flows.

2.3 Object Identification

Object identification, also called object detection, is a preliminary step towards

tracking; the object of interest needs to be identified in the frame before estimation

of its characteristics can be performed. Object identification can either provide

the initialization for a tracking algorithm only or be integrated into the tracking

algorithm to provide object identification. Detection is based on object modeling

and is therefore dependent on the feature selection. We investigate in this section the

different techniques employed for object identification, namely, supervised learning,

distribution representation and segmentation.

2.3.1 Object Detection using Supervised Learning

Supervised learning techniques aim to learn complex patterns from a set of exemplars

for which the class label is given (e.g. , face/non-face classes). Learning provides

high-level decisions from the available data based on the analysis of low-level, simple

elementary features. Several theses, books and journal articles are entirely dedicated

to supervised learning techniques [22,215,107,199]. This subsection provides a short

introduction to artificial neural networks, support vector machines and adaptive

boosting, the main algorithms used for object detection nowadays.

Artificial Neural Networks

Artificial Neural Networks (ANNs) for pattern recognition has started with the in-

vention of the perceptron in 1957 by Rosenblatt [214]. ANNs can be decomposed
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into a structure composed of atomic elements, the neuron, and its associated ac-

tivation function which can be of different forms: step function, piecewise linear,

sigmoid, radial basis function (e.g. , Gaussian), shunting inhibitory [27], etc. The

Multi Layer Perceptron (MLP) is the basic ANN. In object recognition, the input

vector is a set of features. The learning phase aims to teach the desired behavior to

the ANNs using a supervised learning algorithm. Traditionally, the minimization

of the empirical risk is used in the training process. For sample n in the training

dataset, let us denote the desired output d(n) of the ANN to a given input x(n). If

the actual output is y(n), the empirical risk is expressed as

R(y) =
N
∑

n=1

φ (y(n)− d(n)) p(x(n)) , (2.9)

where φ(.) is a cost function and p(x(n)) is the probability density function of x(n).

The minimization of the empirical risk R(n) is achieved through the adjustment of

the set of weights in the neural network. Empirical risk minimization has, as its

objective, the convergence of the output y to the desired output d via minimization

of the cost function R(y).

Artificial neural networks are found in a wide variety of applications from object

detection, such as faces [160,215] and pedestrians [152], to vehicles [262,284] or skin

detection [45, 24]. Also, different types of neural networks exist, depending on the

type of connections such as recurrent networks (e.g. , Hopfield networks [104]), the

choice of activation functions (e.g. , Radial Basis Function networks) or dimension

of the input (convolutional networks).

Support Vector Machines

Contrary to artificial neural networks, support vector machines (SVMs) do not

minimize the cost R(y) but minimize the structural risk. In a 2-class problem, this

is equivalent to maximizing the distance between the two hyperplanes lying between

the two classes as shown on Fig. 2.5.

Support vector machine provides a subset of samples from each class, called support

vectors, that describes the separating hyperplanes. Intuitively, those are the vectors

closest to the boundary separating two classes, the other vectors can be discarded.
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d

(a) Non-maximum

d

(b) Maximum

Figure 2.5 Maximization of the distance d between two hyperplanes lying between two
classes.

It can be shown that training an SVM is equivalent to solving a linear constrained

quadratic problem [190]. The reader is referred to [258] for a comprehensive in-

troduction on SVMs and to [34] for a practical tutorial on SVM implementation.

Support vector machines have been successfully applied to object detection with

infrared cameras [217,230], pedestrian [5], eyes [141] and moving object [294].

Viola and Jones Classifier

The Viola and Jones classifier is presented herein. The inherent concepts of integral

image and adaptive boosting are also described. The reader is referred to [256] for

more details.

The Viola and Jones technique is similar to the summed-area table introduced by

Crow for texture mapping [58]. The integral image ii is an image in which each

pixel represents the sum of the pixel values that are in the upper top-left rectangle

of a feature image f 1. It can be expressed as:

ii(x, y) =
x
∑

i=1

y
∑

j=1

f(i, j) . (2.10)

1Images and frames are usually indexed starting from the top-left corner
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With this technique, the sum of pixels in a rectangular area is computed in con-

stant time through the integral image. Sum of features inside a rectangular area

is therefore performed with 3 additions/subtractions once the integral image has

been formed. The features of the rectangular area are then fed into weak classifiers

selected by adaptive boosting (ADABOOST) [81] to create a strong classifier. AD-

ABOOST is a meta-classifier in this sense since the structure of the weak classifiers is

irrelevant. Weak classifiers can be perceptron, dot products, ANNs, SVMs, etc. The

idea underlying ADABOOST is to test all the weak classifiers for different features

and perform a weighted average of the classifiers providing the lowest classification

error that defines the final classification. In their seminal paper [81], Freund and

Schapire compared ADABOOST to betting on a pool of horses to maximize gains

in a race.

The Viola and Jones classifier has been extensively employed for its ability to detect

objects of different natures, from detection of facial expressions [64], hand [164] or

pedestrian [122, 257] to detection of vehicles with triangular features [101]. The

technique is also implemented for crater detection in geophysics [168]. Beyond the

Viola and Jones classifier, ADABOOST has been used with color features for face

detection [282] or edge density for pedestrian detection [195].

2.3.2 Distribution Representation for Object Detection

Distribution representation is one of the cornerstones in robust object tracking.

A convenient and discriminative representation of an object is the distribution of

its features. If an object of interest is known by its feature distribution, implicit

detection can be performed by distribution matching in the frame. Two different

types of distribution representations exist: parametric and non-parametric. The first

one assumes a pre-set functional to model the distribution, e.g. , Gaussian mixture

models, whilst the second one relaxes this constraint at the expense of computation

load. The different techniques pertaining to the modeling, the comparison and

the degree of discrimination of distributions are presented hereafter. This includes

object detection via histograms, including the Bhattacharyya measure and the “good

feature” theory, and object detection by background subtraction.
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Histogram representation for Object Detection

(a) Synthetic image (b) Lena

Figure 2.6 Color histogram representation: the original image and the histogram repre-
sentation. (a) Histogram representation on a synthetic image. Each bar of the histogram
represents the proportion of the feature space falling into the bin width. (b) Original and
histogram of gray scale Lena.

The histogram is a non-parametric representation of the features, sampling the

feature space in m bins. Histograms can model the distribution of object features

such as colors, edges, corners, vector flows, and so on. Figure 2.6 displays examples

of color histograms. Let us now assume that a prior model of the object feature q,

also called the target, is known. A candidate histogram p(s) can be defined by the

representation of the features in a patch centered on s. To detect the object in the

image, the minimization of a simple distance measure between the target histogram

q and a candidate histogram p(s) can be performed. There are many measures that

estimate the distance between two histograms [248]. The Bhattacharyya measure,

traditionally employed due to its simplicity and good results, is expressed as follows:

ρ(s) =
m
∑

u=1

√

pu(s)qu . (2.11)

Trivially, the position of the object of interest is at sO = argmin
s

ρ(s). Histogram

representation is seldom employed alone but usually in conjunction with a tracking

algorithms to reduce the search of the object of interest. However, histograms

have also been used for object detection (and subsequently, tracking). Bradski

developed the camshift algorithm that finds the position of the object sO of interest

with a 1-D histogram based on the hue component [30]. Comaniciu et al. and,
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later, Han et al. used histograms to segregate the object in an image and perform

tracking [56, 94, 96]. Birchfield and Rangarajan proposed to incorporate the mean

and covariance of the pixel position into the histogram for more robust tracking

[20]. Finally, Shen et al. used color histogram and annealing to detect the object

[225,226,224].

Good Features for Tracking

The problem of selecting the best features to model the appearance of an object is

explored here. Indeed, the detection of the object and the selection of the features

are concomitant; if the features are not unique and do not characterize the object,

the robustness of the tracker is affected. “Good features to track” is the terminology

used to define discrimination in visual object tracking. Shi and Tomasi proposed

a qualitative analysis of features through affine motion fields and pure translation

models [227]. However, the dissimilarity measures introduced do not set a clear

framework to track the so-called good features.

An alternative to these dissimilarity measures is the condition number that defines

whether a problem is numerically well conditioned, i.e. , a small change in the in-

put data would lead to a small change in the output, or, on the other hand, ill

conditioned, i.e. , a small change in the input data would lead to a large change

in the output. This numerical analysis as been conducted for histogram represen-

tations with the Bhattacharyya measure ρ(s). It has been shown that maximiz-

ing the Bhattacharyya measure is equivalent to minimizing the Matusita metric

O(s) = ||√q −
√

p(s)||2 [92]. Therefore, if a correction ∆s is introduced to max-

imize ρ(s), the Matusita metric should be minimized. Assuming that the feature

representation of an object is smoothed with a kernel K, the first order Taylor

expansion of
√

p(s + ∆s) is

√

p(s + ∆s) =
√

p(s) +
1

2
diag(p(s))−

1

2UtJK(s)∆s , (2.12)

where diag(p(s)) is a square matrix with p(s) on its diagonal, U is the catenation
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of the histogram intervals and

JK(s) =









∇sK(x1 − s)
...

∇sK(xn − s)


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, (2.13)

with {x1, ..,xn} the features in the kernel support. Minimizing the Matusita metric

after integration of the Taylor expansion requires a full rank on the matrix JU =

diag(p)−
1

2UtJK. The full derivation can be found in [93]. In terms of features, the

condition number offers a numerical, and therefore quantitative, method to describe

the “goodness” of the tracked features. The technique has been implemented in [93,

78,77]. The condition number also appears in [134] for performing the detection of

salient points for image registration. Finally, Dewan and Hager proposed a criterion

for determining the optimal kernel for tracking [68]. Although achieving good

results in the feature selection, all the aforementioned techniques require significant

calculation time.

Background Modeling

Background modeling is a technique used in computer vision to extract relevant

foreground motion from the video sequence. In the early days of computer vision,

Jain and Nagel proposed a frame differencing algorithm subtracting two consecu-

tive images from one another, thus canceling static areas in the scene [114]. Since

then, the research effort has focused on improving the modeling of the background.

Without loss of generality, the background is defined as the most probable surface(s)

in the scene at a given location, whether the probability is based on the average

time of presence, clues of the surface to be an irrelevant object with regards to

the processing task, and so on. Consequently, distribution estimation techniques

are ubiquitous in background modeling. However, they restrict background sub-

traction to fixed cameras since they are pixel or region-based techniques. For non-

parametric models, kernel density estimation methods [176, 167] are traditionally

implemented with Bayesian probabilities [223, 266]. It is worthwhile noting that

some other techniques are also available such as the eigenbackground proposed by

Oliver et al.which processes the entire image as a vector and performs Principle

Component Analysis (PCA) over time to retain the K first vectors as background
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models [189]. Even though the use of non-parametric techniques can model a wider

range of distributions, they are prohibitively costly in terms of computation time

for most applications. Parametric models are preferred as the processing time can

be controlled through the adjustment of the model complexity.

Parametric techniques aim to estimate the pixel distribution over time via the cal-

culation of a limited set of parameters. Wren et al. developed a unimodal running

Gaussian to model the color distribution [267]. Stauffer and Grimson proposed in

their seminal paper a K-Gaussian mixture model to represent the distribution of

a pixel over time and a classification criterion differentiating between foreground

and background based on prior knowledge on the proportion of background over

time [233, 234]. This technique updates the mixture model with first order recur-

sive difference equation for the sake of reduction in computation. Such a method

integrates recurrent motion, e.g. , branch swaying in the wind, thanks to the multi-

modal representation. The expectation-maximization (EM) procedure can replace

the first order filter to provide a maximum likelihood estimate of the means and

variances [138]. However, this technique is costly in terms of memory storage and

calculations. Finally, several works have successfully combined the Gaussian mix-

ture model with different techniques to increase the robustness of the foreground

detection. For instance, Zhou and Zhang merged the foreground extracted by the

mixture of Gaussians algorithm with the Lucas-Kanade optical flow to obtain better

segmentation of foreground objects [293]. The multi-scale approach has been used to

enhance the discrimination between the background and the foreground [193, 283].

Active contours [260] and skin detection [209] have also been combined with the

Gaussian mixture model to provide better delineation of the foreground blob. In

this thesis, a new technique to handle fast changes in illumination will be presented

in Section 3.4.

2.3.3 Object Segmentation

Segmentation is an efficient technique to detect objects since it delineates different

shapes in an image. Segmentation aims to label each feature depending on the

object it belongs to; all features in the same object are attributed the same label.
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Segmentation is applied to patches or dense and homogeneous areas of an image.

Therefore, features such as color and optical flow are suitable for segmentation. In

this subsection, we present the most common segmentation techniques: principle

component analysis (PCA) , mean-shift, watershed and diffusion methods.

Principle Component Analysis

Principle component analysis is used to generate uncorrelated features (principal

components) from correlated features. It is defined as an orthogonal linear trans-

formation that provides a new coordinate system where projection of the feature

on the first principal component minimizes the largest variance in the data. The

second minimizes the second largest variance, and so on. Formally, PCA performs

an eigen decomposition on the covariance matrix of the centered data, that is, if C

is the covariance matrix of the data in the feature space, C = VTDV. The column

vectors in V represent the eigenvectors, or the principal components, and the values

on the diagonal of D, their eigenvalue. The first K eigenvalues are retained with

their eigenvectors being the basis vectors.

With the assumption that the noise is small, PCA provides a good modeling of

the object since noise is discarded with the last N − K components. Objects are

then detected by projecting the features onto the new components. This technique

achieves outstanding results when the appearance of the object varies within a

given category. The detection of the object is determined as the minimum of the

projection of the features on the principal components. PCA is employed in [284]

to extract relevant features for detection of vehicles. Pedestrians have been detected

in images based on edges and color detection [162]. PCA was also implemented to

generate eigenimages or eigenspaces. Bischof et al. proposed an algorithm that is

insensitive to illumination changes by finding the principal components of images

passed through a filter bank [21]. In [119], Jogan and Leonardis proposed to detect

a portion of a 360◦ image by projection on the principal components of the entire

image. Ali and Shah built an eigentemplate based on kernel PCA to model different

objects for detection in images [2,3]. Kernel PCA is a projection of the features in

a higher dimension space that enables fast PCA.
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Mean-shift

Mean-shift is a widely used non-parametric algorithm for object segmentation. As

an explorative technique, mean-shift seeks local maxima in a distribution by kernel

estimation. Let us assume that a set of N samples X = {x1, ...,xN} is available

(e.g. , xi is a pixel color in an image), it is possible to estimate the distribution at

each location x of the sample space as

f̂K(x) =
1

N

∑

xi∈X

K(x− xi) , (2.14)

where K is a kernel as defined in [48]. For example, K can follow a Gaussian

distribution. Now, if a location x is randomly selected as starting point in X, it can

be shown that by iteratively shifting x with the mean-shift vector

mK(x) =

∑

xi∈X
xi.K (x− xi)

∑

xi∈X
K (x− xi)

− x , (2.15)

the location x will reach the local mode (see [55] for example). If the procedure

is iterated for each pixel in X, and the value of the local mode is used to label

the starting point pixel, the image is segmented by exploration of the density and

objects with similar features will be identified as the same object.

This technique was first introduced by Fukunaga and Hostetler [83] in 1975, and was

generalized by Cheng in 1995 [48]. Comaniciu and Meer have greatly contributed

to the analysis and understanding of the mean-shift for object segmentation [53,55,

54]. The mode seeking property of mean-shift algorithm has also been thoroughly

exploited in object tracking [226,4], object identification such as edge detection [51],

color [116, 53] or spatio-temporal segmentation [125] as well as non-photorealistic

rendering [79]. Its popularity is due to the wide range of distributions that can be

modeled.

Diffusion Methods

Diffusion methods for object segmentation are techniques identifying homogeneous

regions in a feature image by diffusion. Starting from a pre-determined set of points

with a unique label, the algorithm defines similar regions by processing neighborhood

pixels. Once every pixel has been visited, the image is segmented.
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The simplest diffusion technique is the region growing algorithm [103]. Starting

from selected points in the image, the algorithm associates neighboring pixels to the

same class if the cost between the reference pixel and the neighbor is below a given

threshold. The cost function can be of different nature such as Euclidian distance

or absolute error. If a pixel does not belong to any class, a new class is created.

Constraints are added on the regions so that the relevance of the segmentation

is increased. For instance, Ying-Tung et al. use morphological edge detection to

partially delineate the regions [280]. Recursive median filtering is included in the

region growing process in [88] and graphs between different segments are used to

constrain the growth in [243].

Graphs and dynamic trees have also been successfully employed to segment objects.

Graphs model the inter-dependence of different segments in order to classify pix-

els. In the probabilistic framework, maximum likelihood is used to determine the

label of the pixels with a graph. Hidden Markov models and Markov random fields

are examples of statistical graph modeling for image segmentation [49, 178]. Dy-

namic trees are graphs for top-down decisions; a multi-scale approach is traditionally

adopted. Specifically, a low resolution image is segmented and used to determine

the segmentation in higher level images. Discrete wavelet transform (DWT) pro-

vides a convenient framework for multi-scale approach. Successful segmentation has

been reported with a probabilistic affection model in [255] and with a texture model

in [208].

Watershed algorithms are based on region growing techniques inspired by natural

flooding. A description of different watershed techniques can be found in [213].

The process is initialized at different points called markers. Crests and valleys are

defined as the highest and lowest points of the intersection of two or more surfaces.

Images can be seen as a surface with crests and valleys. The watershed process is

often described as filling the surface, starting from valleys, with water until crests

are reached yielding basins of homogeneous and plane surfaces. Watershed has

produced good results in internal edge suppression for object segmentation [229],

or multiscale image segmentation [127].
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2.3.4 Summary of Object Identification

Identification is based upon the representation of an object and results in the dis-

crimination of unique features that enable tracking and differentiate an object from

the others. Identification revolves around algorithms that seek characteristics of the

object. Supervised learning techniques such as artificial neural networks, support

vector machines or ADABOOST lead to robust identification from prior training.

However, the training requirement renders these techniques prohibitively costly in

terms of computation time when applied to multi-category object identification.

Distribution representation offers an efficient alternative for object detection. In

particular, histograms combined with prior inference on the object efficiently ad-

dress this problem but can lead to less robust results if the modeled features are

not selected adequately. Finally, segmentation performs the grouping of similar re-

gions. Principle component analysis, mean-shift or diffusion methods have yielded

to good results in segmenting different object in a frame, and thus providing object

identification.

2.4 Object Tracking

Object tracking is the main focus of this thesis. As described in Section 2.1, there

is a very strong interaction between object representation, object identification and

tracking because tracking is performed on discriminative features of the object de-

fined by the first two tasks. Also, because tracking is the centerpiece of this thesis,

this section only focuses on the description of existing tracking algorithms and their

characteristics: the formal introduction of the theory underlying the tracking tech-

niques as well as its framework is omitted or limited to a minimum here. However,

we will refer to the relevant sections and chapters when appropriate for an in-depth

analysis. The aim is to provide a clear and simple overview of the field. The reader

is referred to the book on multitarget-multisensor tracking by Bar-Shalom and Li

for more insights on tracking theory [13].

Tracking algorithms provide generic estimation tools applicable to a wide range of

fields, including financial market estimation [170,264], meteorology and climatology
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[173] or quantum mechanics [46]. It is thus necessary to clearly define the framework

of object tracking algorithms from a video processing perspective. The object is

represented by a feature vector that includes some characteristics to track. The

feature vector at time t is denoted xt. Without loss of generality, if it is assumed

that tracking of an object starts at time t = 1. The feature track X at time t = T

is defined as

X = {xt|t = 1..T} . (2.16)

Some models assume that the feature vector xt, and subsequently the track X are

not accessible, but only an observation zt is. In this case, the observation track can

be defined in a similar fashion

Z = {zt|t = 1..T} . (2.17)

Finally, we denote a portion of feature track from start time ts to finish time tf as

xts:tf = {xt|t = ts..tf}, and likewise for the observation track zts:tf = {zt|t = ts..tf}.
Note that X and Z can be trivially denoted by X = x1:T and Z = z1:T .

Before further investigations into object tracking, it is essential to clarify the differ-

ence between tracking and real-time object identification. Indeed, although some

techniques described in Section 2.3 can be performed in real-time, they do not pro-

vide tracking of the object per se. In this section, we present deterministic and

probabilistic tracking, the two main approaches in the field. The handling of oc-

clusions which relies upon object representation, identification and tracking is also

introduced.

2.4.1 Deterministic Tracking

Deterministic tracking has been widely used in the literature due to its simplic-

ity. The terminology “deterministic” means that the tracking algorithm does not

integrate any uncertainty in the modeling of the problem. Nevertheless, this does

not mean that problems including noise or other types of uncertainty cannot be

tackled by deterministic algorithms; the uncertainty is simply not catered for. De-

terministic algorithms are convenient because they require little computation. They

traditionally rely on simple parametric tracking for points and contours. However,
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more advanced models and in particular kernel-based tracking have also been im-

plemented.

Parametric Tracking

Parametric tracking relies on a set of samples to determine the state of the feature

vector at time t from a portion of the feature track. Without loss of generality and

because the feature vector depends at most on the entire feature track at time t−1,

xt is written as

xt = f(x1:t−1, Θ) , (2.18)

where Θ is the vector of parameters. Classically, the problem is reduced to a linear

or locally linearized transform to simplify calculations so that the tracking can

be formulated in matrix form, i.e. , xt = Ax1:t−1. Parametric tracking embeds a

set of motion constraints to determine the state of the feature vector. Kinematic

models are generally used for their relevance to tracking based on position and speed.

Blair presents in [23] a parametric tracking based on an Alpha-Beta filter, i.e. ,

quasi constant velocity and acceleration with zero-mean noise. However, parametric

techniques were essentially employed in the early to mid 90s because of the great

performance they offered for a low computational cost; Yilmaz et al. give examples of

such tracking [275, Section 5.1]. A first category is defined on rigidity constraints to

find the optimum match of the feature vector state [109,203,221,216]. The second

category, which is the ground work for most probabilistic tracking algorithms, is

based on motion constraints, often directly derived from Newton’s laws [222,253].

Snakes and Contour Tracking

Contour tracking estimates the variation in the contour of an object at time t. The

contour is described by a spline consisting of a set of control points (see Subsec-

tion 2.2.2) and the tracking is performed recursively on the contour at time t − 1

through minimization of an energy functional. The functional is composed of an

internal energy Einternal and an image energy Eimage. The total energy E is given

by

E =

∮

(Einternal + Eimage) . (2.19)
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Contour tracking algorithms differ in their representations of the energies and the

minimization techniques. For instance, Eimage is traditionally based on the gradient

image that represents the edge energy [174, 191, 207, 206]. The internal energy

Einternal models the constraints on the active contour. Such constraints can be

smoothness [179] or contour speed [276]. Contour tracking has been employed

in numerous fields of application, including tracking [184, 211, 276], segmentation

[238,280,260,273] or higher level tasks such as shape classification [236].

Kernel-based Tracking - Mean-shift

Kernel-based tracking has been the focus of attention in recent years due to the

convenient framework it provides for object tracking. Here, only an overview of

the widespread mean-shift technique for object tracking is presented. Kernel-based

techniques rely on a smoothing operator, a kernel, to locally estimate a distribu-

tion. The aim is to climb a gradient of feature probability distribution to reach the

maximum probability of an object feature representation. Traditionally, mean-shift

relies on color representation, and histograms in particular, to track the object. Han

and Comaniciu have been major contributors in this field with numerous publica-

tions [56,94,96]. However, because mean-shift is a local gradient ascent algorithm,

the convergence to a global maximum is not guaranteed and the technique is still an

active field of research. One of the major problems with mean-shift is the adjustment

of the kernel bandwidth. Multi-scale approaches [10] and direct kernel bandwidth

tuning have been proposed in recent years [52]. Multiple kernel tracking has also

been proposed to tackle the problem [93,192]. Finally, Bouttefroy et al. proposed to

estimate the kernel bandwidth and initialization through the Kalman filter for the

purpose of vehicle tracking [26]. This work is presented in Section 4.4 of this thesis.

2.4.2 Probabilistic Tracking

Probabilistic tracking has emerged from the need to account for uncertainty in

tracking. There are several sources of uncertainties in a video. First, the signal

is degraded with noise. Second, the information on the object of interest can be

inaccessible due to occlusion, clutter or simply because the information is hidden.

Finally, it might be required to estimate the state of the feature vector with a
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Figure 2.7 Representation of the hidden Markov chain model. The hidden state (in red)
is not accessible. The observation (in green) is accessible.

precision greater than what is available. For instance, probabilistic estimation is

used in super-resolution or tele-medicine to achieve sub-pixel accuracy in tracking.

This subsection provides the reader with an overview of probabilistic tracking. The

hidden Markov model and the recursive Bayesian approach as well as the Kalman

filter and the particle filter are developed below.

Hidden Markov Model and Recursive Bayesian Approach

The hidden Markov model (HMM) is employed in visual object tracking for its

ability to handle degradations introduced during the acquisition process, which was

described in Section 1.2. The hidden Markov model is composed of two layers: a

hidden layer, representing the Markov chain on the state, and an observation layer,

providing inference on the state of the hidden Markov chain. Figure 2.7 displays

a schematic view of the system. The diagram can be mathematically expressed as

follows:

xt = ft−1(xt−1,vt−1) , (2.20)

zt = ht(xt,nt) , (2.21)
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where ft−1 and ht are vector functions; they are assumed to be known, possibly

nonlinear and time dependent. The functions depend on the states xt−1 and xt and

the process and observation noises, vt−1 and nt, respectively. The hidden Markov

model sets up the framework for recursive Bayesian filtering. The Bayesian approach

is based on Eqs. (2.20) and (2.21); it aims to provide some degree of belief for the

state xt from the set of observations Zt = {z1, z2, ..., zt} available at time t. In other

words, the Bayesian recursion estimates the posterior density p(xt|Zt) to estimate

the state of an object using Bayes rule. Let us assume that the posterior probability

density function p(xt−1|Zt−1) at time t − 1 is known. The Bayesian recursion is

performed in two steps: prediction and update.

Prediction step Considering the observation zt is not available, the predicted

pdf p(xt|Zt−1) is derived via the Chapman-Kolmogorov equation that enables

the marginalization of a variable in the joint pdf p(xt,xt−1,Zt−1). Assuming

the Markov property on the process yields

p(xt|Zt−1) =

∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1 . (2.22)

The random variable xt−1 is therefore marginalized. Equation (2.22) describes

the predicted density p(xt|Zt−1) in terms of the posterior pdf at time t−1 and

the prior density p(xt|xt−1) defined by the process equation (2.20).

Update step When the observation zt becomes available, the predicted pdf is up-

dated via Bayes theorem, to obtain the posterior pdf at time t

p(xt|Zt) =
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)
, (2.23)

with p(zt|Zt−1) =
∫

p(zt|xt)p(xt|Zt−1)dxt being a normalizing constant (in-

dependent of the marginalized variable xt). The posterior density therefore

depends on the prior density p(xt|xt−1) and the likelihood function p(zt|xt)

using the observation equation (2.21). The posterior density at each time is

derived from the pair of recursive equations presented above. To perform

tracking, i.e. , update the estimate of the posterior, only the initial density

p(x0), the prior density p(xt|xt−1) and the likelihood p(zt|xt) are required.
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In the Bayesian framework, the system collects clues to corroborate or reject a

prior hypothesis. This accumulation is called the Bayesian inference. The Bayesian

probabilistic approach has been implemented for data analysis and classification

[39,137,278], object segmentation [49,60,146], surface reconstruction [69], behavior

recognition [47,189,36,271,288], etc.

Kalman Filters

The Kalman filter provides the optimal solution for tracking in a linear and Gaussian

environment [130]. This result is admitted here and will be shown in Section 4.3.

The Gaussian context allows the recursive estimation of the state from the observa-

tion in closed form. The distribution of the state in the feature space is Gaussian;

therefore, it is only necessary to keep track of the mean vector and covariance matrix

of the state to characterize the entire distribution. Consequently, the Kalman filter

performs estimation for a low computational cost. The Kalman filter can be applied

to any object representation and tracking technique, from kinematic models [183] to

entropy based methods [67,298] or elastic matching (B-splines) [272]. The Kalman

filter is also used in 3D object or track modeling [144,197,232].

One of the main limitations of the Kalman filter is the inability to handle non-

linear models. The extended Kalman filter (EKF) and the unscented Kalman filter

(UKF) [126] address this issue by approximation of the non-linearities. The first

one uses a local linear estimator based on the Jacobian of the non-linear functions.

The Jacobian provides a first-order approximation of the non-linearities. To include

the second order term, the unscented transform is employed leading to the UKF.

The unscented transform captures the non-linearities through the transformation of

sigma points [8]. Chosen adequately, sigma points give a local numerical approx-

imation of the non-linear functions that are assumed for tracking. Furthermore,

different variants of these algorithms have also been proposed such as the Gaussian

mixture probability hypothesis density filter (GMPHDF) that offers multi-modality

via a mixture of Kalman filters [259].
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Particle Filters

Particle filters offer the advantage of relaxing the Gaussian and linearity constraints

imposed upon Kalman filters. The range of problems tackled is therefore increased.

On the downside, particle filters only provide a suboptimal solution which statis-

tically converges to the optimal solution. The asymptotic convergence is ensured

by Monte Carlo methods and follows the central limit theorem. An introduction to

Monte Carlo methods can be found in [84]. As for Kalman filters, the framework

and derivations related to particle filters are omitted here and will be presented in

Section 5.2. One of the drawbacks of particle filters is the computational complexity

for high dimensional state vectors. For this reason, particle filters have only been in-

troduced in the object tracking field with the increase of computation power. It was

first applied to splines estimation with the Conditional Density Propagation (CON-

DENSATION) algorithm proposed by Isard and Blake in 1998 (see [110] and [112]).

The same year, Doucet proposed a technical report setting the framework of particle

filtering for visual object tracking in [70]. It is also worthwhile directing the reader

to a tutorial on particle filters by Arulampalam et al. that provides an introduction

to Bayesian filtering [9].

Within the last decade, the interest in particle filters has been growing exponentially.

Early contributions were based on the Kalman filter models; for instance, Van Der

Merwe et al. discussed an extended particle filter (EPF) and proposed an unscented

particle filter (UPF) , using the unscented transform to capture second order non-

linearities [247]. Later, a Gaussian sum particle filter was introduced to reduce

the computational complexity [139]. As far as applications are concerned, particle

filters are ubiquitous from head tracking via active contours [286, 80] or edge and

color histogram tracking [274,150] to sonar [246] and phase [296] tracking. Audio-

visual fusion has been proposed in the particle filter framework [182] and particle

filters have also been used for object discrimination [61, 265]. There has also been

a plethora of theoretic improvements to the original algorithm such as the kernel

particle filter [42,43], the iterated extended Kalman particle filter [153], the adaptive

sample size particle filter [142,143] and the augmented particle filter [225].
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2.4.3 Occlusion Handling

The ability of tracking algorithms to handle occlusion is crucial to provide a good

estimate of the object state. Occlusion handling aims to reduce the effects of the lack

of information on an object under occlusion. This subsection presents the definition

and the detection of occlusion before investigating the two main techniques employed

to resolve the problem, namely, the integration of prior inference and the use of

multi-camera tracking.

Definition and Detection of Occlusion

Occlusion is defined as the lack of visual clues on part of or on the totality of an

object. In the framework of tracking, the alteration of the observations is the result

of occlusion and it can be mathematically expressed, following from Eq. (2.17), as:

Ẑ = {zt|t ∈ TN , ẑt|t ∈ TO} . (2.24)

where zt is the observation with no occlusion, that is for “normal” time step TN ,

and ẑt is the observation under partial or total occlusion, for “occlusion” time step

TO. Note that TN ∩ TO = ∅. There exist three different cases of occlusion:

Self occlusion (Fig. 2.8(a)) The object of interest is articulated and the con-

straints on motion do not prevent the overlap when the object is projected

on the camera plane. Self occlusion will not be dealt with since articulated

objects are out of the scope of this thesis.

Inter-object occlusion (Fig. 2.8(b)) The object of interest is occluded by an-

other object in the frame. Inter-object occlusion can occur at any time since

the environment in which the object evolves is not controlled. Inter-object

occlusion can be of any duration.

Occlusion from a background object (Fig. 2.8(c)) The object of interest is

occluded by the background. Typically, the object passes behind a tree, a

house, etc. The background is usually static and therefore enables the learn-

ing of inference on occlusion. However, occlusion is usually total and the

observation ẑt does not exist, i.e. ẑt = ∅.
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(a) Self Occlusion (b) Inter-Object Occlusion (c) Background Occlusion

Figure 2.8 The three different types of occlusion. (a) The face is occluded by hands; (b)
the person is occluded by another person; (c) the tree occludes the person.

The analysis of the altered observation Ẑ leads to the detection of occlusion. For

instance, incoherent observations are a clue to occlusion. More precisely, if the

probability of an observation drops rapidly, the object can face partial or total

occlusion. Simple analysis of the observation such as probability of occurrence

thresholding provides a criterion to potential occlusion. The degree of occlusion can

also be inferred from observations. Occlusion detection is crucial since it provides

an indicator of the tracking confidence.

Occlusion Resolving

Occlusion resolving is performed to estimate the state of the object when observa-

tions are altered or lacking. To date, two different approaches have been proposed

to resolve occlusion: estimating the state from prior inference and using multiple

cameras to alleviate the occlusion. A third alternative, although not resolving the

occlusion but allowing recovery of the track, is presented as data association.

Prior inference traditionally substitutes observation in the case of occlusion. Indeed,

when there is a shortage of observations, the prior behavior of the object can provide

clues on the current feature state. However, the closer the estimation is from the ac-

tual behavior, the better the recovery of tracking is after occlusion. The techniques

developed to handle occlusion differ, depending on the nature of the tracking. Kine-

matic models have been used to handle self-occlusion in 3D vehicle tracking [118] or

inter-object occlusion [241, 33, 290] while prior shape modeling has been employed

for self-occlusion [235] and inter-object/background occlusion [276,281].
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For difficult occlusions, and in particular when the prior information is not suitable

to estimate the state of the object under occlusion, it is necessary that a substitute

for the observation is obtained. A solution is provided by the use of multiple views

or multiple camera tracking. Multiple views of the scene can originate from stereo-

vision where images from the scene are captured from slightly different angles [124,

175,18,155]. Multiple view systems synthesize the state of an object from images of

different cameras with overlapping or non-overlapping fields of view [254, 201, 223,

295,44].

Finally, data association is necessary to identify tracks when multiple objects are

under occlusion. Even though this technique does not resolve the occlusion problem,

it improves recovery of the tracks after occlusion. The different techniques available

in the literature are algorithm dependent. The joint probability data association

filter (JPDAF) is a generalization of the Kalman filter to multi-target tracking where

the final probability of a state is the weighted sum of the posterior probability

over each observation [205]. The same framework can be applied to particle filters

by computing the statistical distance between different tracks. It results in the

merged probabilistic data association (MPDA) introduced in [131]. In contrast with

the previous techniques, the probability hypothesis density (PHD) handles data

association directly in the update of the posterior density [259]. Finally, Chang

et al. proposed a deterministic motion correspondence matrix (MCM) where the

maximum a posteriori fitness of an observation to the state of the object associates

a track to an observation; correspondence is therefore carried out [43].

2.4.4 Summary of Object Tracking

Object tracking brings together object representation and object modeling to pro-

vide an estimate of the object state. Tracking is therefore dependent upon the

description of the object and is subject to uncertainties. Deterministic tracking is a

powerful and efficient method to estimate the state of an object. General paramet-

ric tracking, based on kinematic models, contour tracking and kernel-based tracking

provide efficient and fast solutions when noise is negligible. To handle uncertainties,

probabilistic tracking has been developed in visual object tracking. The Bayesian
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filtering framework allows tracking through noise. In particular, Kalman and parti-

cle filters have been extensively employed. Finally, the descriptions and solutions for

occlusion handling have been presented in this section. Occlusion can be divided

into three categories: self-occlusion, inter-occlusion and occlusion from the back-

ground. Occlusion can be resolved with prior knowledge or multi-view tracking.

Data association is necessary in case of occlusion.

We will focus on probabilistic modeling and occlusion handling in this thesis: de-

terministic tracking is not suitable since it does not fit into the framework of this

study and in particular does not cater for the uncertainties described in Chapter 1.
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Chapter 3
Semi-Constrained Gaussian Mixture

Model for Background Subtraction

3.1 Introduction

Noise, pixel value evolution through time, object representation or behavior can be

modeled with probability distributions. A particularity of visual object tracking

is that the information received stems from unknown or unaccessible probability

density functions (pdfs) and only observations of samples are readily accessible. For

instance, the value of a pixel through time can be seen as a stream of incoming

samples of an underlying density characterizing the presence of different surfaces

(objects) in a particular area of the image. Therefore, there is an interest in knowing

the density for subsequent tasks, such as noise reduction or segmentation. On

a global scale, learning the pdf of motion patterns can lead to the detection of

abnormal behavior.

The objective of density representation is to model the probability density func-

tion of a random variable over a support D. The pdf is defined as a real function

fX(x), f : D 7→ ℜ+. In the discrete case, the probability density function is a prob-

ability mass function. To allow a common framework for continuous and discrete

case, the probability mass function is defined as fX(x) = Pr[X = x]. We are inter-

ested in recovering an estimate p of the probability density function with a set of N

49
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samples X = {xi}Ni=1, of dimension n× 1, drawn from the underlying pdf f .

The representation of probability density functions can be divided into two main

categories: non-parametric representation such as histograms and Parzen windows

or other kernel-based representations, and parametric representation such as the

Poisson, Gaussian or Gaussian mixture models. This chapter develops the Gaussian

mixture model (GMM) for background subtraction and presents a new Gaussian

mixture algorithm handling fast changes in background distribution. Section 3.2

introduces the general formulation along with an online technique for estimating the

optimal values of the set of parameters. Section 3.3 describes the implementation

of the GMM for background subtraction and presents the current shortcomings

of the technique in environments with fast changes in illumination. Section 3.3.3

focuses on the analysis of the GMM parameters and Section 3.4 proposes a new,

semi-constrained, Gaussian mixture model handling illumination changes. Finally,

Section 3.5 presents the experimental setup and provide some results for various

scenarios with illumination changes.

3.2 Density Representation with Gaussian Mix-

ture Model

The study of parametric representations for visual object tracking is crucial in that

they provide an accurate estimate with a priori knowledge on the shape of the

density of interest. In contrast with non-parametric techniques, parametric repre-

sentations are based upon the assumption that the density f follows a pre-defined

functional that can be entirely characterized by a vector of parameters that forms

Θ = {θ1, ..., θk}. A parametric estimate is represented as a function p(x|Θ) depen-

dent on the set of parameters Θ.

The maximum-likelihood estimator provides the optimal value of the set of param-

eters Θ. If a closed form expression cannot be derived from the density estimate

pΘ(x), the Expectation-Maximization algorithm is used to recursively approximate

the optimal set of parameters. There are numerous books on the topics and the

reader is referred to [71] and [169] for a comprehensive introduction to these tech-
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niques. The most common functional is the Gaussian density; this chapter focuses

on the Gaussian mixture model, for its ubiquity in computer vision and its attrac-

tive characteristics such as fast update and compactness of representation through

the vector of parameters Θ. Assuming that the pdf f is completely defined by a

mixture of K Gaussians, the estimate p(x|Θ) becomes

p(x|Θ) =
K
∑

k=1

P (k)p(x|k, θk) , (3.1)

with Θ = {θ1, ...θK}. The probability P (k) is called mixing parameter or weight,

the density p(x|k,Θk) is a component. The component density is given by

p(x|k, θk) = N (x; µk,Σk) =
|Σk|−1/2

(2π)n/2
exp

(

−1

2
(x− µk)

TΣ−1
k (x− µk)

)

, (3.2)

where µk is the mean vector, Σk is the covariance matrix, T is the transpose operator,

|Σk| is the determinant of the covariance matrix and n is the dimension of the column

vector x. The optimal set of parameters for the Gaussian mixture model is given by

the ML estimator derived from the joint probability p(x1, ..xn|Θ). Considering that

the samples xi are independent and identically distributed, the maximum likelihood

estimator yields [71]

P (k) =
1

N

N
∑

i=1

P (k|xi,Θ) , (3.3)

µk =

N
∑

i=1

P (k)xi

N
∑

i=1

P (k)

, (3.4)

and

Σk =

N
∑

i=1

P (k)(xi − µk)(xi − µk)
T

N
∑

i=1

P (k)

, (3.5)

where P (k|xi,Θ) is the posterior probability of being in the presence of the kth com-

ponent knowing the estimate of the set of parameters and the sample xi. However,

Eqs. (3.3), (3.4) and (3.5) are seldom used if the size of the sample set X is large

due to the memory requirements for storing the entire history information. Instead,

recursive online approximations are used, reducing the storage to the previous value
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of the parameters:

P (k, t) = (1− α) P (k, t− 1) + α P (k|xi,Θ) , (3.6)

µk(t) = (1− β) µk(t− 1) + β xi , (3.7)

and

Σk(t) = (1− β)Σk(t− 1) + β (xi − µk)(xi − µk)
T . (3.8)

The online form is adopted hereafter in the derivation of the Gaussian mixture

model for background subtraction.

3.3 Background Modeling using the Gaussian Mix-

ture Model

Background modeling by Gaussian mixtures is a pixel based process. In a video

sequence, a given pixel is presented with surfaces corresponding to different states,

e.g. different objects, changes in illumination conditions, etc. Each pixel in the video

sequence is assumed to follow a random process with underlying density f . This sec-

tion presents the Gaussian mixture model for background subtraction and the clas-

sification background/foreground as proposed by Stauffer and Grimson [233]. Let

us denote by x the switching random variable taking the value of a pixel throughout

the sequence; the presence of different surfaces causes the switching of x to different

states. The surface from which the sample xi is drawn is labeled with an index

k ∈ [1..K] where K is the total number of surfaces. Assuming the noise around

each mode is Gaussian, the probability density of the random variable x is fully

recovered with a mixture model composed of K Gaussians. For a given pixel, the

pdf of the value x is modeled by the sum of a set of independent Gaussian densities.

Figure 3.1 shows the evolution of a pixel intensity density over time along with the

probability density estimate. The probability density function of a Gaussian mix-

ture comprising K Gaussian component densities is given by Eq. (3.1). Therefore,

the mixture can effectively be modeled with a set of weights P (k) and a set of

parameters Θ = θk with θk = {µk,Σk}. The aim in background modeling is to

estimate the set of parameters Θ over time to obtain an estimate of the pixel value
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Figure 3.1 Probability density function of a pixel intensity in a video sequence over time
and associated Gaussian mixture model. (a) Global view of the pixel value over time
and the inherent probability density of the pixel intensity. (b) View of the pixel intensity
over time. The value switches between the different modes of the pdf . (c) Gaussian
components and Gaussian mixture model.
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density. The Gaussian mixture model offers an adequate framework for such an esti-

mation as it makes possible the coexistence of several hypothesis for the background

and the foreground: bimodal (e.g. blinking traffic lights) or, more generally, multi-

modal densities, where the weight of each component accounts for its probability of

occurrence.

The Gaussian mixture model is updated with Eqs. (3.6), (3.7) and (3.8) where the

posterior probability P (k|x,Θ) of a pixel to be drawn from the kth component can

be rewritten from Eq. (3.3) as

P (k|x,Θ) =
P (k)p(x|k,Θ)

p(x|Θ)
=

P (k)N (x; θk)
K
∑

k=1

P (k)N (x; θk)

. (3.9)

Also, since background subtraction by Gaussian mixture model is an on-line process,

it is necessary to cater for new surfaces. To enable a fast integration of a previously

unseen surface, the posterior needs to be truncated when the probability falls below

a set threshold τ . The Mahalanobis distance between the switching random vari-

able x, representing the pixel value, and each component of the Gaussian mixture

is compared to τ to determine whether or not the pixel is a member of the kth

component:

(x− µk)
TΣ−1

k (x− µk) ≤ τ . (3.10)

The threshold value τ sets the boundary between a match and a non-match of the

pixel value with each mixture component. If the Mahalanobis distance is smaller

than the threshold, there is a match and the component of the mixture model is

updated with the value of the pixel. If the pixel value does not match with any of the

Gaussians, a new Gaussian component is created. Because the number of Gaussians

in the model is fixed to K, the new component replaces the Gaussian with the lowest

probability of occurrence, P (k), since it contributes the least to the density estimate

as it is the less likely to match an incoming pixel. The suppression of the least

probable component in the density leads to minimal estimation error. Furthermore,

to lower the computation cost of the algorithm, it is commonly assumed that the

pixel values are isotropically distributed. This assumption results in a diagonal

covariance matrix Σk = σ2
k I, where I is the identity matrix. Even though this

assumption reduces the degrees of freedom of the Gaussian, and hence the capability
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of adapting to the true density, it significantly lowers the computation complexity

of the algorithm, avoiding a costly computation of the inverse of a full matrix Σ−1
k .

The set of parameters Θ and the probabilities P (k) are updated according to the

Gaussian mixture algorithm described in Algorithm3.1— for the sake of clarity, the

mixing parameters, P (k), and the posterior probabilities, P (k|x,Θ), are denoted

by wk and qk, respectively.

Algorithm 3.1 Generic Gaussian Mixture Algorithm

Require: 0 < α < 1 and 0 < β < 1
Initialization

wk = α , µk = x0 , σ2
k = σ2

0 , (3.11)

where x0 is the vector of pixel values at time t = 0, and σ2
0 > 0.

while incoming image i do
for each pixel s in the image do

for each Gaussian component k do
Compute the posterior probability qk as follows:

qk =

{

wkN (xs

i ; θk) if(xs

i − µk)
TΣ−1

k (xs

i − µk) ≥ τ ,
0 otherwise .

(3.12)

if
∑K

k=1 qk 6= 0 then

qk =
qk

∑K
k=1 qk

, (3.13)

wk(t) = (1− α) wk(t− 1) + α qk , (3.14)

µk(t) = (1− β)µk(t− 1) + βxs

i , (3.15)

σ2
k(t) = (1− β) σ2

k(t− 1) + β (xs

i − µk(t))
T (xs

i − µk(t)) , (3.16)

Note: There are different techniques for the selection of β (details in
Subsection 3.3.3, Eqs. (3.23) and (3.24)).

else

j = argmin
k

(wk) , (3.17)

wk(t) = (1− α)wk(t− 1) for k 6= j , (3.18)

wj = α , µj = xt , σ2
j = σ2

0 . (3.19)

end if
end for

end for
end while



Semi-Constrained Gaussian Mixture Model for Background Subtraction 56

3.3.1 Background/Foreground Classification

The aim of the background/foreground classification is to separate the subset of

Gaussians modeling the background from the subset representing the foreground.

The classification is necessary since the Gaussian mixture models all surfaces seen

by the pixels. Indeed, the pseudo-code described in Algorithm3.1 estimates a den-

sity but does not provide information about the classification of the Gaussians; a

Gaussian can represent the probability of occurrence of either the background or

the foreground. Stauffer and Grimson [233] proposed an efficient method to per-

form such classification. The K Gaussians of the model are sorted by decreasing

weight-to-standard-deviation ratio, wk/σk. Intuitively, Gaussians with the highest

probability of occurrence, wk, and lowest variability in the density, measured by σk,

indicating a greater stability, are the most likely to model the background. However,

because the number of components of the background is not known, it is assumed

that the background is present with a ratio λ. After sorting the weight-to-standard-

deviation ratios, the background (B) is defined as

B = argminKB

(

KB≤K
∑

k=1

wk > λ

)

. (3.20)

For a small value of λ, the background is most likely unimodal, whilst a larger value

of λ leads to multimodal background. In [148], Lee has also proposed a method to

model the background by training a sigmoid function on a set of ratios wk/σk such

that

P (B|θk) =
1

1 + e−a.wk/σk+b
. (3.21)

where a and b are trained parameters. The sigmoid thus offers a soft boundary

between foreground and background. A pixel is deemed to belong to the foreground

if

P (B) =

∑K
k=1 µk.P (B|θk)wk
∑K

k=1 P (B|θk)wk

< λ. (3.22)

where λ is empirically found to be equal to 0.5. However, Lee narrows the scope of

the algorithm by training the sigmoid on a set of data representative of the back-

ground. This assumption forces the training of the system on the dataset before

background extraction and limits the scope of the foreground extraction to off-line



Semi-Constrained Gaussian Mixture Model for Background Subtraction 57

use. The approach provides good results on the trained dataset. However, the back-

ground detection described in Eq. (3.20) is used to provide a common framework and

therefore a fair comparison between Lee’s and Stauffer and Grimson’s algorithms.

3.3.2 State of the Art and Current Shortcomings

Since the original Gaussian mixture model proposed by Stauffer and Grimson [233],

there has been little change to the update of the Gaussian mixture model itself; ex-

cept the technique proposed by Lee to increase the learning rate of the recursive

filters in order to accelerate the convergence of the parameters to their steady-state

value [148]. However, several works have successfully combined the mixture model

with different techniques to increase the robustness of the foreground detection. For

instance, Zhou and Zhang merged the foreground extracted by the mixture of Gaus-

sians algorithm with the Lucas-Kanade vector flow to obtain better segmentation

of foreground objects [293]. The multi-scale approach has been used to enhance

the discrimination between the background and the foreground [193, 283]. Active

contours [260] and skin detection [209] have also proven better delineation of the

foreground blob when combined with the Gaussian mixture model.

Most of the recent works based on the mixture of Gaussians introduced by Stauffer

and Grimson, focus on shadow removal. There is no specific algorithm dedicated to

change in illumination to date. The main difference between shadow and change in

illumination is that shadow of moving objects generally occurs on background pix-

els whereas change in illumination encompasses both background and foreground.

Shadow suppression usually relies on transformation of the color-space [270,239] or

analysis of the intensity in the RGB color-space through a 3D cone model [285]. Wu

et al. proposed to remove shadow with graph cut and DFT [269]. Martel-Brisson

and Zaccarin introduced the Gaussian Mixture Shadow Model that differentiates

pixel density from cast shadows [165, 166]. Finally, Liu et al. proposed to extract

reflectance from irradiance by homomorphic filtering [158]. Since the shadow is car-

ried by the irradiance, the mixture model estimates shadow-free foreground through

reflectance. These techniques rely on pre- or post-processing of the video sequence

or on the classification of the background pixels but fail to provide an insight into
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the pixel density modeling by the Gaussian mixture model.

3.3.3 Analysis of Background Substraction with GMM

In this subsection, we conduct an investigation into the effects of the Gaussian mix-

ture parameters, in particular the influence of the variance, on the performance

of background subtraction. Our objective is to suppress the effects of illumination

changes without using a pre- or post-processing stage that would slow down the seg-

mentation dramatically. The update of the covariance matrix in Eq. (3.16) is subject

to the inherent trade-off between speed of adaptation and accuracy of the estimate

caused by the on-line update of the learning rate. This section provides a study of

the effect of parameter update along with the description of the inherent saturated

pixels phenomenon occurring in environments with fast changes in illumination.

The common learning rate between the mean and variance updates in Eqs. (3.15)

and (3.16) leads to a trade-off between the error in the estimate and the time of

adaptation. In their seminal paper [233], Stauffer and Grimson use a single learning

rate β defined as

β = αN (x|k; θk) . (3.23)

Even though the algorithm is robust in controlled environments, and in particular

when background changes are slow, the algorithm fails to maintain an accurate

pdf when the scene undergoes severe illumination changes. This limitation has been

acknowledged by the authors [233]:

“The tracker was relatively robust to all but relatively fast lighting

changes.”

Lee proposed a modified approach to address the aforementioned shortcoming with

the implementation of a variable learning rate β [148]. The rate β is increased in the

initial learning phase of the algorithm, hence providing a quicker adaptation when a

new surface appears and, in particular, in the first few frames after the initialization

of a new Gaussian. The modified learning rate proposed by Lee is as follows:

βk =

(

1− α

ck

+ α

)

qk . (3.24)
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where ck is a counter incremented with the posterior probability, i.e. , ck ← ck + qk.

After the initial learning phase, the adaptive rate tends toward the value defined by

Stauffer and Grimson.

Lee’s formulation of the GMM parameter update raises an issue regarding the up-

date of the variance. Indeed, whilst increasing the learning rate in the transient

phase is adequate for the update of the mean, it becomes problematic with the

variance as it is updated with a quadratic quantity, (x − µ)T (x − µ), which tends

to increase rapidly. A large value of β thus leads to a quick degeneracy of the Gaus-

sian when the variance becomes too large. The degeneracy means that any incoming

pixel matches a Gaussian component. A temporary overestimation of a Gaussian

component variance jeopardizes the stability of the variance estimate: the large

value of the variance increases the spread of the Gaussian component and reduces

the Mahalanobis distance that defines a match between a pixel and the Gaussian

density. In turn, the matching pixel increases the variance estimate. The Gaussian

expands until it covers the entire range of possible values for the given pixel. Every

value will then match a unique Gaussian, and the pixel location reaches a saturated

state; that is, the pixel will always be assigned to the same Gaussian component

regardless of whether it belongs to the background or foreground. For lack of better

term, we denote this phenomenon a saturated pixel. The pixel can either become a

false foreground or a false background pixel, depending on the weight of the Gaus-

sian. The phenomenon is illustrated in Fig. 3.2. The sequence of images from the

video HighwayII displays the foreground extraction of a vehicle blob throughout

time. The zone marked by the square is saturated, i.e. , most of the pixels inside

the square have a degenerated variance, resulting in an absence of object detection

since the underlying Gaussian is classified as background. The vehicle is not de-

tected in the saturated zone because the value of the variance with Lee’s approach

is overestimated. The system recovers the detection of the moving object only after

it leaves the saturated zone.

Fig. 3.3 represents the detection mask over time: Fig. 3.3(a) presents the initial

position of the object in frame 140 and Fig. 3.3(b), the final position in frame 149.

The object is segmented in both frames. Fig. 3.3(c) is the marginal mask over time,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.2 Original (a, c, e, g, i) and foreground segmentation (b, d, f, h, j) of an object
passing through a saturated zone in the HighwayII sequence (frames 140, 142, 144, 146
and 148). The red rectangle delineates a particular saturated region.
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Object
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Figure 3.3 The pixel saturation phenomenon of Lee’s method. 3.3(a) and 3.3(b) show the
position of the object before entering the saturated zone (frame 140) and after leaving the
saturated zone (frame 149) in the video sequence HighwayII, respectively. 3.3(c) displays
the sum of foreground mask for frames 140 to 149 and the saturated zone delineated by
the red square.
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Figure 3.4 Percentage of saturated pixels in a video sequence, i.e. , pixels classified as
foreground or background regardless of the surface in presence. The trade-off between
speed of adaptation and saturated pixel imposes: (a) a slow adaptation for a low per-
centage of saturated pixels (Stauffer and Grimson) or (b) a high percentage of saturated
pixels for fast adaptation (Lee).
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i.e. , the summation of the masks for time 140 to 149 during which the object passes

through the saturated zone. The zone delineated by the square does not present

any detection throughout the sequence.

Figure 3.4 presents the percentage of saturated pixels in the video sequence; the

fast alternation of different surfaces leads to large variation of the variance resulting

in pixel saturation for large learning rate β. The increase of the learning rate for

the first few frames with Lee’s method yields a large variance that saturates the

pixels. After 100 frames, Lee’s method presents a percentage of saturation close

to 20% (Fig. 3.4(b)) while Stauffer and Grimson’s method displays 0.5% saturation

(Fig. 3.4(a)). The saturation is particularly strong in case of large variance due

to the frequent change of surfaces from the flow of vehicles. To the best of our

knowledge, this phenomenon has never been investigated and was considered as an

adaptation of the background to a changing density.

Furthermore, the analysis of the time to background adaptation developed hereafter

shows that a new surface is integrated in the background only after a minimum time

has elapsed, rejecting the hypothesis of fast background adaptation. Let us first

assume that a foreground pixel generates a new Gaussian with wk = α. This is a

reasonable assumption since the occurrence of a foreground pixel is not predictable

and does not obey any periodic pattern; therefore, it is not modeled by the density

estimate.

Consider the solution of the difference equation in (3.14) for a constant posterior

probability, qk. Without loss of generality, we can omit the subscript k. Since

|1− α| < 1, the solution of (3.14) for t > 0, is given by

w(t) = (w(0)− q) (1− α)t + q , (3.25)

where w(0) is the initial value of w(t). The time tmin required for w(t) to reach or

exceed a particular value wmin, is given by the following inequality:

w(t) = (w(0)− q) (1− α)tmin + q ≥ wmin . (3.26)

Let’s consider a mixture of K Gaussians with KB Gaussians belonging to the back-

ground. Let’s assume their respective weights are ordered, i.e. , w1 ≥ w2 ≥ ... ≥
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wKB
≥ ... ≥ wK . The weight wKB

= wmin is then the minimum weight of the Gaus-

sian components belonging to the background. We have, by definition (Eq. (3.20)):

KB−1
∑

i=1

wi + wKB
< λ. (3.27)

Since all the weights sum up to 1,

K
∑

i=KB+1

wi ≥ 1− λ. (3.28)

Minimizing the weight wKB
imposes that wKB

= wi, ∀i ≥ KB. Therefore,

K
∑

i=KB+1

wi = (K −KB)wKB
≥ 1− λ. (3.29)

Trivially,

wmin = wKB
≥ 1− λ

K −KB

. (3.30)

Solving the inequality in Eq. (3.26) yields

tmin ≥
1

ln(1− α)
ln

[

wmin − q

w(0)− q

]

(3.31)

Using the above equation, we can find the elapsed time required for a Gaussian

component to be included in the background. Let us denote wmin the minimum

weight of a Gaussian to be part of the background model. From Eq. (3.30), the

minimum weight is wmin = (1− λ)/(K −KB), and, assuming that w(0) = α, q = 1

and α≪ 1, the time required is given by

tmin ≥
1

ln(1− α)
ln

[

(1−K)− λ + KB

(K −KB)(α− 1)

]

≈ 1

α
ln

[

K −KB

K + λ− (KB + 1)

]

. (3.32)

Figure 3.5 shows the plot of tmin versus α for different values of K, KB = 2 (bi-modal

background) and λ = 0.7.

It is important to note that the curves represented in Fig. 3.5 set the lower bound

of the time adaptation and are reached when qk = 1 at all time (for a constant λ

equal to 0.7). In terms of pixel value, the probability qk = 1 implies the mean of the

Gaussian matches exactly the pixel value at all time (which is highly implausible).

In that case, for K = 3, the background will adapt only after 72 frames. For K = 5,
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Figure 3.5 Minimum background adaptation time for a new mixture component versus
the learning rate α for different values of K. The minimum time is a decreasing function
of α and K.

this value drops to 33 frames. In a video sequence, it is very unlikely that an object

has exactly the same value during such a number of frames, unless it is effectively

static. For instance, the vehicle in Fig. 3.2 crosses the saturated zone in less than 10

frames. It follows from Eq. (3.32) that the saturated zones are not a consequence of

the background adaptation but of the variance degeneracy.

To conclude, the method proposed by Stauffer and Grimson handles background

subtraction with a great efficiency provided that there is no rapid changes in the

background. Lee proposed an accelerated adaptation of the parameters for the early

updates of a new Gaussian. However, after the transient phase, Lee’s algorithm is

unable to efficiently update the parameters in case of abrupt changes because the

variable learning rate βk converges to the rate β of Stauffer and Grimson’s method.

Furthermore, the variable learning rate also leads to variance degeneracy if the

learning rate α is not set to a very low value, which defeats the purpose of Lee’s

method, whose aim is to accelerate learning.

3.4 Semi-Constrained Gaussian Mixture Model

In the following, we propose a new algorithm capable of handling changes in the

pixel density via a fast adaptation of the mixture model. The proposed method
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relies on a variable learning rate for the mean, β, and a fixed learning rate or the

variance, γ. A constraint on the range of the variance is also imposed.

3.4.1 Mean Variable Learning Rate

As shown in Section 3.3.3, learning rates play a critical role in the quality of the

background model. They determine how fast the Gaussian parameters can adapt to

changes in the background. Consequently, the sensitivity of the algorithm as well

as the speed of adaptation the background model are affected. It is therefore of

paramount importance to decouple the different learning rates. While Stauffer and

Grimson proposed a fixed learning rate for the mean and Lee extended the algorithm

to an adaptive learning rate for the learning phase only, we propose to define an

adaptive learning rate βk for each Gaussian component, updating the parameter

µk that includes clues of the relative probability of a pixel belonging to the kth

Gaussian as

βk ← min

(

max

(

βk + qk −
1

K

K
∑

j=1

qj, 0

)

, 1

)

. (3.33)

As a result, a Gaussian already trained and with a high posterior probability qk will

have a faster rate of update than a Gaussian in the learning stage. The rate βk is

increased if the hypothesis represented by the kth Gaussian is above the expectation

of the posterior probability over the K hypotheses, and decreased otherwise. The

learning encourages the less probable modes to update slower whilst modes with

higher probability are updated faster. This strategy is contrary, in essence, of Lee’s

method. As shown earlier, a fast update rate in the learning stage jeopardizes the

stability of the filter; a slow learning rate does not. If the entire mixture model is

considered, the need for a fast update of the mean is unnecessary. Indeed, incoming

pixels with large Mahalanobis distances from the mean, requiring a fast learning

rate to improve convergence, must be modeled with a new Gaussian component.

To sum up, our point of view diverges from Lee’s because we believe that large

corrections to the means should be carried out in the matching process and not in

the update of the Gaussian mixture. It is only after several occurrences of matching

pixel values that the component can be considered as modeling a relevant surface.

Then, the update can be accelerated if the posterior probability P (k|x,Θ) is high. It
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is important to note that the value of βk is bounded in order to retain the stability

of the filter. However, the bounds are not reached in practice due to the small

variations of the posterior qk. The value of β is initialized with a small value α.

However, the initialization has little impact on the segmentation results as long as

it remains small.

3.4.2 Standard Deviation Learning Rate

In previous implementations of the mixture of Gaussians for background subtraction,

the variance is updated at the same rate as the mean. Here, we propose to decouple

the learning rates for the mean and variance and to limit the variance range. Indeed,

the update of the variance should be restrained to a maximum speed of adaptation

in order to limit the effect of transient states which cause the variance degeneracy

as described in Section 3.3.3. A semi-parametric variance is thus to be designed,

enabling a quasi-linear adaptation in case of small adjustments and a flattened

response for large adjustments. The sigmoid function is used to this aim:

fa,b(x,µk) = a +
b− a

1 + e−sε(x,µk)
, (3.34)

where ε(x,µk) is defined as ε(x,µk) = (x − µk)
T (x − µk) and the update of the

variance, Eq. (3.16), is modified as:

σ2
k(t) = (1− γ) σ2

k(t− 1) + γ fa,b(x,µk(t− 1)) . (3.35)

By definition, the function ε(x,µk) is ℜ2 → ℜ+ and imposes a restriction on the

function fa,b(x,µk). Consequently, the function fa,b(x,µ) bounds the variance value

to the domainD ∈ [a+b
2

, b]. The upper bound of the variance is justified by the nature

of the mixture of Gaussian. When the value becomes too large, the Gaussian spreads

over most of the pixel value range and the mixture of Gaussian becomes ineffective as

all the pixels will be “phagocytosed” and merged in a unimodal density. This leads

to saturated pixels. On the other extreme, a variance converging toward 0 would

represent a very stable surface. The probability of a matching pixel to be part of

the surface is thus very high. In this case, the incoming surface is systematically

considered as a non-match when the Mahalanobis distance between the Gaussian

and the value of the pixel is greater than τ (see Eq. (3.10)). This distance will
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increase to ∞ when σ2
k tends to 0. The noise present in videos prohibits the use of

such a restrictive condition. A too small variance would thus lead to the starvation

of the Gaussian, and a decay of the weight wk until it is replaced by a new hypothesis,

even though the low variance shows a highly probable mode. To compensate for

the large variations in the variance value, Lee decreased the learning rate α, hence

giving less importance to incoming values. Unfortunately, this is to the detriment of

the adaptation speed of the pixel density estimate. The semi-parametric definition

of the variance enables fast linear update for small values and a quasi-constant rate

for large values.

3.4.3 Performance Analysis on Synthetic Data

The system has been tested on different sets of synthetic data. A pool of synthetic

data has been drawn from a normal density N (x, µ = m(t), σ). The mean m(t)

is a switching process generated by different functions modeling the behavior of

a changing background. It is a concatenation of bi-modal signals with different

periods, modeling trees’ moving in the wind or other abrupt changes in surface,

and smoother signals such as a first order filter response, representing a change of

illumination for instance. The three algorithms, Stauffer and Grimson, Lee and

the proposed algorithm, are tested on a controlled environment to evaluate their

intrinsic performance; Section 3.5 provides an evaluation in various uncontrolled

environments from videos sequences.

The algorithms have been tested over 20 sequences. The learning ability of the

three algorithms is evaluated on the sequences described above. The Gaussian

mixture for each algorithm is composed of K = 3 components, initialized with the

same parameter values, that is, a standard deviation σ2
0 = 5, a mean learning rate

β = 0.005, a variance learning rate γ = 0.6 and a match threshold τ = 0.7. Here,

the standard deviation σ of the synthetic data density is equal to 0.2. Stauffer

and Grimson’s, Lee’s and the proposed algorithm are evaluated on the synthetic

sequences. The plots in Fig. 3.6 represent the adaptation of the background model

over time for one of the sequences. It can be inferred that, although the density is

always adequately modeled throughout the sequence with the three methods, the
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(a) Stauffer and Grimson
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(b) Lee
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(c) Proposed

Figure 3.6 Performance of Lee, Stauffer and Grimson and the proposed approach on syn-
thetic data. The cloud of crosses represents the samples from a normal density N (x, s, 0.2)
through time. The Gaussian mixture model is composed of K = 3 components. The means
µk are represented by the lines.
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Figure 3.7 MSE between the true mean and the estimated mean of the sequence with the
Gaussian mixture model for Stauffer and Grimson’s, Lee’s and the proposed algorithm.

proposed approach adapts faster to changes and the allocation of the Gaussians is

optimized over time. Indeed, the proposed approach introduces a new Gaussian

only when a new surface appears, while in the two other methods the algorithm

keeps adjusting to the density. The mixture components of Stauffer and Grimson’s

algorithm slowly adapt to the current mode, resulting in a slow convergence. The

degeneracy of the variance of Lee’s technique leads to the Mahalanobis distance

reduction, making the mixture component switch mode because Eq. (3.10) does not

holds. The switching is the result of a lack of constraint on the standard deviation

and a fast adaptation of the mean. The three algorithms have also been compared

in terms of speed of adaptation and accuracy of background model. Figure 3.7

displays the mean square error (MSE) defined as the Euclidian distance between

the true mean and the mean of the Gaussian modeling the data density. Firstly,

it should be noted that the variable learning rate introduced in [148] improves the

convergence time of Lee’s model in the initial learning phase compared to Stauffer

and Grimson’s model. However, after the initial learning phase, Lee’s method shows

the same adaptation rate as Stauffer and Grimson’s method. Secondly, the proposed

algorithm performs better throughout the entire sequence. It is also more robust
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to the variability in the density due to more efficient estimation of the Gaussian

parameters for each mode (Fig. 3.6(c)). It is worthwhile noting that Stauffer and

Grimson’s method displays a smaller error from frame 2560 onwards due to the

algorithm limited speed of adaptation. Indeed, it can be observed from Fig. 3.6(a)

that the slow adaptation of the algorithm to the gradual change happens to make

the mean of a Gaussian perfectly match the new mean of the sequence at frame

2560. The lack of adaptation of the algorithm makes the true mean of the switching

process converge to one of the Gaussian means. Nevertheless, the proposed method

still presents a steeper slope than the two others due to the variable learning rate:

at frame 3000, the proposed algorithm shows an error comparable to Stauffer and

Grimson’s while Lee’s method is still recovering.

3.5 Experiment Results

The proposed system has been tested on video sequences to evaluate the qual-

ity of foreground segmentation. A comparative analysis with Stauffer and Grim-

son’s and Lee’s methods is conducted. First, a short description of the dataset,

highlighting the characteristics of each video sequence, is provided. Second, back-

ground/foreground segmentation is performed on controlled changes in illumina-

tion for objective qualitative and quantitative comparison between the algorithms.

Third, the algorithms are run on uncontrolled environment, i.e. , natural changes in

illumination for qualitative analysis and validation of the proposed technique.

3.5.1 Experimental Setup

The three algorithms have been tested on indoor and outdoor data. The data

is divided into four subsets: outdoor publicly available sequences, people walking

surveillance, vehicle traffic surveillance and a collection of indoor video sequences.

The entire dataset represents several hours of footage with different camera settings

and illumination conditions.

Publicly available sequences These sequences are available on the Internet1 and

1e.g. http://www.openvisor.org
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Table 3.1 GMM Parameter Initializing Values

K σ0 w0 τ α λ γ a b s

5 5 0.05 2.5 0.05 0.7 0.7 -8 20 0.005

have been used as benchmarks in various research projects. The dataset is

composed of five videos: HighwayII, Campus, Laboratory, Office 1 and Cam-

pus. HighwayII and Laboratory video sequences were already used for fore-

ground segmentation purposes in [283] and are therefore processed for compar-

ison purposes. Office 1, exhibits a large portion of the background covered by

the foreground throughout the video, making the learning of the background

more challenging.

People walking sequences The dataset is composed of ten videos and represents

pedestrians walking in open environments. The People Walking x subset has

been chosen in the experiments for the artefacts introduced by the compression

and the automatic cuts operated by the video surveillance system, when no

motion is detected in the scene.

Vehicle traffic surveillance sequences The dataset is composed of fifteen videos

of vehicles on a highway. The Traffic Monitoring x subset includes video-

surveillance sequences selected for the sudden changes in weather conditions

and changes in illumination due to the activation of the white balance (WB)

setting on the camera. This dataset will be further described in Subsec-

tion 4.6.1.

Indoor video sequences The dataset includes four video sequences of meeting

room in indoor environment. The Long Room x subset is composed of indoor

scenes with ceiling lighting variations, resulting in severe changes in illumina-

tion of the background and the moving objects.

The video sequences are segmented with Stauffer and Grimson’s, Lee’s and the

proposed algorithm. It should be noted that for comparison purposes all constants

are set to the same value in all algorithms. Table 3.1 summarizes the parameter

values used in the experiments.
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3.5.2 Controlled Environment

The three systems have been tested on the videos described above for foreground

extraction. The illumination is artificially modeled in the set of video sequences

to control the performances of each system with regard to the changes. First,

the original video sequences are segmented to provide a pseudo ground truth of the

foreground. Then, the videos are modified by embedding changes in illumination. A

framework to analyze the changes in illumination is thus set up. Because the lighting

variations are controlled, it is possible to qualitatively and quantitatively analyze the

influence of the changes in illumination on the performance of the algorithms. The

process also ensures that poor segmentation resulting from difficult extractions of

the motion is detected (in the original video sequence). The changes in illumination

represent intermittent partial occlusion of the source of light such as a series of clouds

covering the sun or people passing before the lamp in an indoor environment. Such

disturbances are modeled as a fast but smooth change due to the gradual transition

from penumbra and umbra as described in [158]. Consequently, a bi-modal density

cannot effectively describe the change. We model the illumination variations over

the entire frame I as an additive sinusoidal component:

I(t)←















255 if I(t) + 20 cos( 2π
100

t) ≥ 255,

0 if I(t) + 20 cos( 2π
100

t) ≤ 0,

I(t) + 20 cos( 2π
100

t) Otherwise .

(3.36)

The results presented in this subsection are the raw foreground segmentations of the

video sequences with no additional post-processing but a median filtering performed

by a kernel of size 3×3. Figure 3.8 compares the performance of the three algorithms

on the original and the modified HighwayII video. HighwayII has been selected for

the excellent segmentation on the original sequence. The foreground extraction is

evaluated by summing the number of pixels classified as foreground throughout the

video sequence. The foreground extraction from the original sequence serves as

the reference segmentation, i.e. , pseudo ground truth. The segmentation results

were consistent with all three methods on the original video. By contrast, only the

proposed method was able to accurately segment the modified video (Fig. 3.8(c)).

Indeed, Stauffer and Grimson’s algorithm is incapable of updating the background
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Figure 3.8 Plots of the number of foreground pixels for the original (dashed line) and
the modified (plain line) HighwayII video sequence.

model fast enough and portions of sines, deemed to represent the changes in illu-

mination, are falsely detected as foreground (Fig. 3.8(a)). Conversely, the Gaussian

variances in Lee’s algorithm quickly degenerate, resulting in partial saturation of

the image and partial foreground detection (Fig. 3.8(b)). Figure 3.8(d) displays the

average MSE in the pixel count between the original and the modified video se-

quence.

Figure 3.9 displays the results of segmentation for frame 328 of the HighwayII video

sequence and shows the limitation of the two other methods in adapting to fast

changes. Figure 3.9(a) is the foreground segmentation of the original image and Fig-

ure 3.9(b) is the segmentation of the video sequence with changes in illumination.

Figure 3.10 presents segmentation results of the video sequence People Walking 1.
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(a) Original (b) Modified

Figure 3.9 Foreground segmentation of the HighwayII video sequence. For each column
and from top to bottom: original image; foreground extraction with the proposed method;
foreground mask with the proposed method; foreground mask with Stauffer and Grimson’s
method; foreground mask with Lee’s method.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10 Foreground segmentation of the People Walking 1 video sequence. For
each row and from left to right: original image; foreground mask with the proposed
method; foreground mask with Stauffer and Grimson’s method; foreground mask with
Lee’s method.
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Figures 3.10(a) and 3.10(b) show that Stauffer and Grimson’s method is not ade-

quate for fast changes in illumination; after 28 frames, the algorithm has still not

recovered from the change in illumination. It can also be inferred from Figs. 3.10(a),

3.10(b) and 3.10(c) that Lee’s algorithm fails to detect motion when there is a high

rate of surface changes due to the constant flow of people. The video-surveillance se-

quence exhibits recurrent non-periodic patterns of walking tracks, presenting a large

diversity of surfaces to the pixel. Consequently, the variance will increase rapidly

resulting in saturated zones. Lee’s method is incapable of recovering throughout

the video sequence. Figures 3.10(d), 3.10(e) and 3.10(f) display the segmentation of

the foreground after recovery of the illumination change by Stauffer and Grimson’s

algorithm: the segmentation is altered compared to the proposed approach.

The three algorithms have also been evaluated on indoor scenes. Figure 3.11 shows

that the proposed algorithm provides the best segmentation results. In Fig. 3.11(a),

the segmentation of the person presents the same alteration as in Fig. 3.10(e) for the

reason stated before. Figure 3.11(b) emphasizes the ability of the proposed algorithm

to adapt to a new density. During the Laboratory sequence, a closet door is open,

presenting a new surface to the related pixels. The change is quickly integrated by

the proposed algorithm, but not by the other two algorithms. It is also worthwhile

noting that Lee’s algorithm has better performance on video sequences that show

low foreground/background ratio, especially in the initialization phase. For instance,

Laboratory sequence does not present any foreground in the first few seconds of the

video whilst People Walking 1 sequence does, leading to better segmentation in the

first case (see, e.g. , Fig. 3.11(a)) than in the second one (e.g.Fig. 3.10(a)). Finally,

Fig. 3.11(c) displays a person walking slowly in the Office 1 video sequence. The

proposed method provides a complete capture of the motion. The person is not

included in the background despite the homogeneity of the color of the clothes.

To conclude, it has been observed that the algorithm proposed by Lee provides

robust segmentation when a complete representation of the background is available

in the initialization phase. However, if there are recurrent changes in the video

(e.g. path or illumination), it will lead to saturated zones and, consequently, poor

segmentation of the foreground. Stauffer and Grimson’s algorithm is unable to
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(a) (b) (c)

Figure 3.11 Foreground segmentation for office scenes. (a) and (b) are from Laboratory ;
(c) is from Office 1. For each column and from top to bottom: original image; foreground
extraction with the proposed method; foreground mask with the proposed method; fore-
ground mask with Stauffer and Grimson’s method; foreground mask with Lee’s method.
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model the density with lighting changes due to the non-adaptive learning rate. The

proposed algorithm is the only one that can consistently handle fast changes in

illumination.

3.5.3 Natural Changes in Illumination

The proposed technique is tested on video sequences showing changes in illumina-

tion. In this case, the lighting conditions are not controlled and the underlying true

surface density is not known. This makes the analysis of the algorithm difficult

because it is impossible to guarantee that the falsely extracted foreground is actu-

ally due to the changes in illumination; some other phenomena, spatio-temporally

aligned with the changes in illumination, could be the cause of poor segmentation.

Nevertheless, we will consider this situation improbable in the sequel and focus on

two different types of background subtraction: indoor and outdoor scenes. The pa-

rameters for the algorithms remain the same as in Table 3.1, except that the learning

rate α is lowered to 0.005 to decrease the number of the saturated pixel with Lee’s

algorithm.2

Outdoor Scenes

The outdoor scenes analyzed here are extracted from the vehicle traffic surveillance

dataset. The camera was fixed above the highway. Apart from challenges due to the

low quality and low resolution of the video sequences, there are a number of observed

changes in illumination reducing the quality of foreground segmentation. Figure 3.12

displays the results of segmentation. Figures 3.12(a) to 3.12(c) show different frames

of the video sequence Traffic Monitoring 11 where the White Balance (WB) of the

camera yields a global change in illumination. Stauffer and Grimson’s as well as

Lee’s technique result in poor segmentation during and after the WB change while

the proposed technique is insensitive to such changes. Figures 3.12(d) to 3.12(f) show

changes in illumination due to the weather in video Traffic Monitoring 12 : half of

the scene is shaded by a cloud while the other half is in the sunlight. The horizontal

edge between shade and light (not to be confused with the lines of the road which

are also detected due to the small jitter of the camera support) is moving downward

2Note that the value of α = 0.005 is the learning rate adopted by Lee in [148].
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.12 Foreground segmentation in outdoor environment. For each row and from
left to right: original image; foreground mask with the proposed method; foreground
mask with Stauffer and Grimson’s method; foreground mask with Lee’s method. (a) to
(c) represent false foreground detection imputable to the lighting changes of automatic
White Balance setting of the camera; (d) to (f) exhibits false foreground detection for a
moving sahdow/sunlight edge.
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which leads to false foreground detection in the transition area with Stauffer and

Grimson’s and Lee’s method.

Indoor Scenes

Indoor scenes are usually considered more challenging than outdoor scenes because

noise is higher and illumination is weaker. Also, moving objects have more impact on

the segmentation result due to the cluttered and confined nature of the environment;

direct lighting and projectors create shadows impoverishing foreground segmenta-

tion. Figure 3.13 presents some results for videos Long Room 3 and Long Room 4.

The videos undergo severe changes in illumination in a dark and noisy environment;

the toughest setting for foreground extraction. The segmentation of the objects is

incomplete with the three methods because the level of lighting is very low; dark

pixels are misclassified as background. However, the proposed method handles the

fast changes in illumination better than the two other techniques as it is able to

adapt quickly to changing density without generating saturated pixels. The trade-

off imposed by a common learning rate for Stauffer and Grimson’s and Lee’s method

precludes their use in such difficult environments.

3.6 Summary of the Gaussian Mixture Model for

Background Modeling

This chapter was dedicated to the parametric representation of densities with Gaus-

sian mixture model, where the pdf estimate is characterized by a set of parameters

Θ. We investigated the use of the parametric representation to model background

in videos. A new algorithm for foreground extraction handling fast changes in back-

ground density was presented.

An investigation was conducted on the limitations of a shared learning rate for the

parameters (mean and variance) of the Gaussians in the mixture. It was shown

that a trade-off was imposed on the speed of adaptation and the accuracy of the

parameter estimates by a common update rate. A fast update of the parameters

creates saturated pixels while a slow update fails to adapt to fast changes in the
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(a)
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(c)

(d)

(e)

Figure 3.13 Foreground segmentation in indoor environment. For each row and from left
to right: original image; foreground mask with the proposed method; foreground mask
with Stauffer and Grimson’s method; foreground mask with Lee’s method. The changes
in illumination provoke background surfaces to be detected as foreground with Stauffer
and Grimson’s and Lee’s algorithm.
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pixel density. To address this issue, the parameters of the mixture are updated with

independent learning rates, improving the convergence of estimated parameters to

their true value. The proposed algorithm handles fast changes in pixel density for

controlled and uncontrolled environments better than two existing algorithms. In

particular, Stauffer and Grimson’s and Lee’s algorithms are unable to accurately

segment the background from the foreground with lighting changes (e.g.white bal-

ance adjustments, sunlight/shadow edges or global variations in illumination).

The proposed method provides better motion segmentation consistently on indoor

and outdoor sequences. This improvement is fundamental because subsequent tasks

will be carried out more accurately, since foreground detection is a low-level process.

In particular, vehicle tracking can benefit from the segmentation to achieve bet-

ter performance in challenging environments. The proposed foreground extraction

method will be integrated in the vehicle tracking system presented in Chapter 4.



Chapter 4
Projective Kalman Filter for Vehicle

Tracking

4.1 Introduction

Vehicle tracking has been a focus of attention in recent years due to increasing de-

mand in visual surveillance and security on highways. The increase in computing

power as well as the low cost of video processing embedded systems have made

real-time vehicle tracking in video sequences an accessible technology. The area

of Intelligent Transportation Systems covers a wide range of automated tasks for

which robust vehicle tracking is crucial. Vehicle tracking is an elementary task at the

bottom-end of the system. Accurate trajectory extraction provides essential statis-

tics for traffic control, such as speed monitoring, vehicle count and average vehicle

flow. The current infrastructure for the acquisition of such statistics is prohibitively

costly to implement. For example, the installation of inductive loop sensors gen-

erates traffic perturbations that cannot always be afforded in high traffic areas.

Also, robust video tracking opens new prospects such as vehicle identification and

customized statistics that are not available with current technologies, e.g. , suspect

vehicle tracking or differentiated vehicle speed limits. At the top-end of the system

are high level-tasks such as event detection (e.g. , accident and animal crossing) or

traffic regulation (e.g. , dynamic adaptation and lane allocation). Robust vehicle

tracking is therefore necessary to ensure effective performance of high-level tasks.

83
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In the framework of hidden Markov chains, recursive Bayesian filtering has been

extensively implemented for vehicle tracking; in particular Kalman filters [16, 65,

128, 149] and particle filters [135, 171]. Kalman filters have been a particular focus

of attention because of their implementation simplicity and relatively low com-

putation cost. Some authors have modeled the state vector with data such as

kinematic parameters [16, 89, 136, 172, 289] or scale [128], directly available from

foreground blobs. Other authors proposed to further process the image and ex-

tract corners [200] or contours [136, 154] that are then fed into the Kalman filter.

Tracking can also be achieved without an explicit recursive kinematic model. For in-

stance, Choi et al. [50] used a quad-tree scale invariant segmentation and a template

matching technique to achieve tracking of vehicles.

This chapter presents a new tracking algorithm based on background subtraction,

mean-shift and the Kalman filter to improve the quality and robustness of vehicle

tracking on highways. The main contribution is the implementation of the projec-

tive Kalman filter (PKF) integrating inference on the characteristics of the traffic

surveillance system. The linear fractional transformation that maps the real tra-

jectory of the vehicle to the apparent trajectory on the camera plane is developed

in Section 4.2. The Kalman filter and its extensions are then introduced in Sec-

tion 4.3. The framework of the projective Kalman filter integrating the fractional

linear transformation into the Kalman filter is set up in Section 4.4. The vehicle

tracking system is presented in Section 4.5 and the tracking results are presented in

Section 4.6.

4.2 Constraining the Tracking with the Environ-

ment

The task of vehicle tracking can be approached as a specific application of object

tracking in a constrained environment. Indeed, vehicles do not evolve freely in their

environment but follow particular trajectories. This section presents the motiva-

tions, that is, the constraints imposed upon the vehicle trajectories in the image,

and introduces the linear fractional transformation, also called projective transfor-
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mation, mapping the scene onto the camera plane.

4.2.1 Motivations

Vehicle tracking from traffic monitoring presents particular characteristics due to

the nature of the video sequences and the vehicle trajectories compared to other

object tracking tasks:

Low definition and highly compressed videos. Traffic monitoring video sequences

are often of poor quality because of the inadequate infrastructure of the acqui-

sition and transport system. Therefore, the result is a restricted bandwidth

only allowing low bit flows and the presence of artefacts generated by com-

pression;

Very low frame rate. The very low frame rate is also due to the infrastructure

of the network. It makes the information about the position of the vehicle

sparse due to the restricted bandwidth. A fine estimation of the position is

thus necessary to ensure robust tracking;

Slowly-varying vehicle speed. A common assumption in vehicle tracking is the

uniformity of the vehicle speed. The narrow angle of view of the scene and the

short period of time a vehicle is in the field of view justify this assumption,

especially when tracking vehicles on a highway;

Constrained real-world vehicle trajectory. Normal driving rules impose a par-

ticular trajectory on the vehicle. Indeed, the curvature of the road and the

different lanes constrain the position of the vehicle. Figure 4.1 also points

out the pre-defined pattern of vehicles trajectories resulting from projective

constraints that can be used for vehicle tracking; and

Projection of vehicle trajectory on the camera plane. The trajectory of the

vehicles on the camera plane undergoes severe distortion due to the low ele-

vation of the traffic surveillance camera. The curve described by the position

of the vehicle is asymptotic and converges to the vanishing point.
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Figure 4.1 Examples of vehicle trajectories from a traffic monitoring video sequence.
Most vehicles follow a pre-determined path: (a) Vehicle trajectories in the image; (b)
Vehicle positions in the image w.r.t. the distance from the monitoring camera.

We propose to exploit the aforementioned characteristics in this chapter in order to

improve the robustness and accuracy of vehicle tracking.

4.2.2 Linear Fractional Transformation

An important characteristic of traffic video sequences is the severe distortion in

the vehicle trajectory caused by the low elevation of the surveillance camera. The

linear fractional transformation, also called homographic transformation, has been

implemented to compensate for the distortion of the projection on the camera plane

[186,194,287]. In [149], a calibration of the system is performed in order to linearize

the trajectory of the vehicle. Recently, Kanhere and Birchfield have considered a

homographic transformation to recover the 3 dimensions of the real world [133]

from the 2 dimensions projection on the camera plane through the so-called Plumb-

Line Projection. The height of the vehicle center is thus recovered and the ground

distance of the object can be evaluated. This method results in a better estimation of

the vehicle position. The linear fractional transformation has also been extensively

used in feature matching [90, 129], image registration [37, 76, 163], and 3-D scene

modeling [85,86,188,198,218]. The fractional transformation is used to compensate

the homographic projection of the position of the vehicle on the road (d-axis) onto

the camera plane (dp-axis) as shown on Fig. 4.2. In this subsection, we show that
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vp

p

C

Figure 4.2 Projection of the vehicle on a plane parallel to the image plane of the camera.
The graph shows a cross section of the scene along the direction d (tangential to the road).

the trajectory of a vehicle follows a homographic transformation of the form:

z =
λ1x + λ2

λ3x + λ4

, (4.1)

where λi’s are constant coefficients. The distortion of the vehicle trajectory on

the camera plane happens along the d-axis. The homography projects the physical

trajectory onto the camera plane as shown in Fig. 4.2. For practical implementation,

it is useful to express the projection in terms of video footage parameters that are

easily accessible. The projection of trajectories along the tangential direction d onto

the dp axis is determined by the following parameters:

• Angle of view (θ),

• Height of the camera (H), and

• Ground distance (D) between the camera and the first location captured by

the camera.
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It can be deduced from Fig. 4.2 that

ẑ2 = x2 + ℓ2 − 2xℓ cos α , (4.2)

and

ℓ2 = ẑ2 + x2 − 2xẑ cos β , (4.3)

where cos α = D + x/
√

(H2 + (D + x)2) and β = arctan(D/H) + θ/2. After sub-

stituting Eq. (4.3) in Eq. (4.2) and squaring, we obtain

(x cos α)2
(

ẑ2 + x2 − 2xẑ cos β
)

=
(

x2 − xẑ cos β
)2

. (4.4)

Grouping the terms in ẑ to get a quadratic form leads to:

ẑ2x2(cos2 α− cos2 β) + 2ẑx3 cos β(1− cos2 α)

+ x4(cos2 α− 1) = 0 . (4.5)

After discarding the non-physically acceptable solution, one gets

ẑ(x) =
xH

(D + x) sin β + H cos β
. (4.6)

Furthermore, because D ≫ H and θ is small in practice, the angle β is approximately

equal to π/2 and, consequently, Eq. (4.6) simplifies to ẑ = xH/(D + x). Note that

this result can be verified using the triangle proportionality theorem. Finally, we

scale ẑ with the position of the vanishing point Zvp in the image to find the position

of the vehicle in terms of pixel location1, and define the projection function hx as

z = hx(x) = ẑ(x)× Zvp

lim
x→∞

ẑ(x)
= ẑ(x)× Zvp

H
. (4.7)

The projected speed and the observed size of the vehicle in the camera plane are also

important variables for the problem of tracking and are thus necessary to derive.

These measures are integrated in the projective Kalman filter (see Subsection 4.4).

They can be directly extrapolated from the position of the object in the camera

plane. The observed speed of the vehicle ż is defined as:

ż = zt − zt−1 =
Dẋ

(x + D)(x− ẋ + D)
. (4.8)

1The position of the vanishing point can be approximated either manually or automatically
[220]. Here, we manually estimate the vanishing point.
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where t refers to time. When the real size of the vehicle s is known, its observed

size b can also be derived from the position z as follows:

b = hx(x +
s

2
)− hx(x− s/2)

=
sD

(x + D)2 − (s/2)2
. (4.9)

The variables z, ż and b are introduced in the Kalman filter to track vehicles using

the projective Kalman filter, a Kalman filter integrating the projective transforma-

tion.

4.3 The Kalman Filter

The Kalman filter is presented in this section to introduce the projective Kalman

filter developed in Section 4.4. The Kalman filter provides the optimal solution to

the Bayesian problem stated in Subsection 2.4.2 in Gaussian and linear environment.

The Gaussian framework refers to:

• Gaussian posterior density at time t − 1, including the initial density p(x0),

such that:

p(xt−1|Zt−1) = N (xt−1; x̂t−1|t−1,Pt−1|t−1) , (4.10)

where x̂t−1|t−1 refers to the estimate of the state at time t− 1 given the obser-

vation at time t− 1;

• additive Gaussian process noise at time t− 1:

N (vt−1; 0,Qt−1) ; (4.11)

• additive Gaussian observation noise at time t:

N (nt; 0,Rt) ; (4.12)

where

N (x; µ,Σ) = |2πΣ|−1/2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

, (4.13)
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with mean µ and covariance matrix Σ. This section presents the derivation of the

Kalman filter, its analytical extension, the extended Kalman filter, and its numerical

extension, the unscented Kalman filter.

4.3.1 Closed-form Solution to the Bayesian Problem

The linear and Gaussian environment of the Kalman filter is used to derive a closed-

form solution of the Bayesian problem. The linearity constraint infers that the

process and observation functions be linear, possibly time-variant, in x. This yields

the following matrix representation for the system

xt = Ft−1xt−1 + vt−1 , (4.14)

zt = Htxt + nt , (4.15)

where Ft−1 and Ht are the matrix representations of the process and observation

functions. The Gaussian framework is maintained with Eqs. (4.14) and (4.15) since

a Gaussian posterior pdf at time t − 1 ensures a Gaussian posterior pdf at time t

through linearity. The Gaussian environment allows a Gaussian representation of

the predicted density from the state space equations. Considering Eqs. (4.10) and

(4.14), the predicted density is given by

p(xt|Zt−1) = N (xt; x̂t|t−1,Pt|t−1) (4.16)

where the predicted state x̂t|t−1 and covariance matrix Pt|t−1 are

x̂t|t−1 =Ft−1x̂t−1|t−1 , (4.17)

Pt|t−1 =Qt−1 + Ft−1Pt−1|t−1F
T
t−1 . (4.18)

The subscript t|t−1 denotes the prediction of the state x̂ at t given the observation

at time t− 1. The posterior pdf is then

p(xt|Zt) = N (xt; x̂t|t,Pt|t) , (4.19)

with

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1) , (4.20)

Pt|t = Pt|t−1 −KtStK
T
t , (4.21)

where St = HtPt|t−1H
T
t + Rt . (4.22)
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The term St is sometimes called the covariance matrix of the innovation process

et = zt −Htx̂t|t−1. The optimal Kalman gain is given by

Kt = Pt|t−1H
T
t S−1

t . (4.23)

The Kalman filter recursively updates the mean x̂t|t and the covariance Pt|t which

entirely characterize the Gaussian posterior pdf p(xt|Zt).

Although the Kalman filter is the optimal solution for the Bayesian filtering prob-

lem, it is seldom used in this form in visual object tracking. Indeed, the restrictive

constraints on the system functions prevent its use in non-linear problems. The ex-

tended and the unscented Kalman filters have been developed to relax the linearity

constraint and widen the scope of the Kalman filter. The extended Kalman filter

provides a sub-optimal solution to the Bayesian problem by analytic approximation

of the system functions, while the unscented Kalman filter offers a numerical solu-

tion. The Gaussian framework is conserved but the system equations can now be

generalized as

xt = ft−1(xt−1) + vt−1 , (4.24)

zt = ht(xt) + nt . (4.25)

4.3.2 The Extended Kalman Filter

The extended Kalman filter linearizes the system functions using the Jacobian ma-

trix. The Jacobian of a function g evaluated at x is denoted ∇xg. To recover the

derivation of the Kalman filter, the process function is locally linearized at xt−1 by

the approximation F̂t−1 = ∇x̂t−1|t−1
ft−1(x̂t−1|t−1) replacing Ft−1 in the Kalman filter

framework. The observation function is linearized as Ĥt = ∇x̂t|t−1
ht(x̂t|t−1). The

derivation of the EKF is identical to that of the Kalman filter, after substitution of

the system function approximations, except Eqs. (4.17) and (4.20) where the terms

Ft−1x̂t−1|t−1 and Htx̂t|t−1 need not be approximated and are therefore evaluated as

ft−1(x̂t−1|t−1) and ht(x̂t|t−1), respectively.

The extended Kalman filter provides an estimate of the posterior pdf to the first

order of non-linearities through the estimation of the Jacobian. The EKF is the most
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employed filter in object tracking since it handles non-linearities and has a relatively

low computation cost. The analytic solution makes possible the computation of the

Jacobians before the process starts if tracking is restricted to time-invariant system

functions. This is the case in most visual object tracking applications.

4.3.3 The Unscented Kalman Filter

The Unscented Kalman Filter provides a solution to relax the linearity constraint

imposed on the Kalman filter by numerical approximation. The UKF captures

the first and second order non-linearities of the system equations and, therefore,

offers better performance than the EKF for highly non-linear problems. The filter

is named after the unscented transform (UT) that it relies upon [8].

The unscented transform is a linearization of the system function that carries the

statistics of the density undergoing the transform via sigma points. In the Gaussian

framework, an appropriate choice of sigma points capture the mean and the covari-

ance of the density. Sigma points are samples of the density at particular values. Let

us assume a generic random variable x of dimension nx with mean µ and covariance

matrix Σ. The UT produces a set of 2nx + 1 sigma points {X0, ...,X2nx
}, selected

around the mean, and an associated set of weights {W0, ...,W2nx
} as follows

X0 = µ W0 =
κ

(nx + κ)
i = 0 (4.26)

Xi = µ +
(

√

(nx + κ)Σ
)

i
Wi =

κ

2(nx + κ)
i = 1, ..., nx (4.27)

Xi = µ−
(

√

(nx + κ)Σ
)

i
Wi =

κ

2(nx + κ)
i = nx + 1, ..., 2nx (4.28)

where κ is a scaling parameter and
(

√

(nx + κ)Σ
)

i
represents the ith row of the

covariance matrix square root J such that JTJ = (nx + κ)Σ. In the unscented

Kalman filter, the sigma points X i
t−1 are spread around the estimate of the mean

x̂t−1|t−1 at time t− 1. This yields the predicted density given in Eq. (4.16) with

X i
t|t−1 = ft−1(X i

t−1) , (4.29)

x̂t|t−1 =
2nx
∑

i=0

W i
t−1X i

t|t−1 , (4.30)
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Pt|t−1 = Qt−1 +
2nx
∑

i=0

W i
t−1

(

X i
t|t−1 − x̂t|t−1

) (

X i
t|t−1 − x̂t|t−1

)T
, (4.31)

ẑt−1|t =
2nx
∑

i=0

W i
t−1ht(X i

t|t−1) . (4.32)

The update step leads to the posterior density in (4.19) with

x̂t|t = x̂t|t−1 + Kt(zt − ẑt|t−1) , (4.33)

Pt|t = Pt|t−1 −KtStK
T
t . (4.34)

The innovation covariance matrix and the Kalman gain are given by

St =
2nx
∑

i=0

W i
t−1

(

ht(X i
t|t−1)− ẑt|t−1

) (

ht(X i
t|t−1)− ẑt|t−1

)T
+ Rt , (4.35)

Kt =

(

2nx
∑

i=0

W i
t−1

(

X i
t|t−1 − x̂t|t−1

) (

ht(X i
t|t−1)− ẑt|t−1

)T

)

S−1
t . (4.36)

The Kalman filter and its extensions are used in the following section to develop

the projective Kalman filter.

4.4 Projective Kalman Filter

The projective Kalman filter is designed to cater for the non-linear nature of the

homographic transformation. Indeed, a slight change in the observation is the re-

sult of a large change in the state for distant objects. The traditional approach

for tackling this problem is to perform a homographic transformation followed by

Kalman filtering. However, this technique fails to maintain an accurate estimate

of the state vector because the error due to the physical trajectory and the error

due to the projection on the plane are not differentiated. We propose to integrate

the homographic transformation in the extended Kalman filter to compensate the

distortion due to projection on the camera plane. The projective Kalman filter

provides a better estimate because these two errors are modeled by two separate

Gaussian processes, vt−1 and nt, respectively. The position and speed of the vehicle

along the direction of the road are estimated. The projection severely distorts the

observations and is highly non-linear. The projection on the normal direction, also
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non-linear, does not require such a fine estimation because the distortion is not as

drastic. A non-linear model in the normal direction would bring little improvement

to the estimation but would increase the computation complexity of the algorithm.

The state vector is defined as

x =









x

ẋ

s









, (4.37)

where x and ẋ are the position and speed of the vehicle following the tangential

direction and s is the size of the vehicle. The observation vector z is composed of

the apparent position, speed and size on the camera plane, i.e. ,

z =









z

ż

b









. (4.38)

The process equation, Eq. (4.24), models the physical process applying to the vehicle

(Newton’s laws), and the observation equation, Eq. (4.25), models the observed

trajectories projected on the image plane via the projective transformation, hence

the name projective Kalman filter. Therefore, assuming that the vehicle speed varies

slowly, the system equation f is written as:

f(xt−1,vt−1) =









xt

ẋt

st









=









xt−1 + ẋt−1∆t

ẋt−1

st−1









+ vt−1. (4.39)

The observation function h is the homographic transformation derived in Subsec-

tion 4.2.2 applied to the position, the speed and the size of the vehicle:

h(xt,nt) =









zt

żt

bt









=









xtZvp/(xt + D)

Dẋt

(xt+D)(xt−ẋt+D)

stD
(xt+D)2−(st/2)2









+ nt . (4.40)

Note that the vector-valued function h depends on H and θ implicitly through the

vanishing point Zvp.
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4.4.1 State and Observation Updates

The projective Kalman filter must be able to tackle non-linear problems due to the

nature of the observation function. The extended Kalman filter is preferred over

the Unscented Kalman filter (see discussion in Subsection 4.4.3). Let F̂ and Ĥ be

the respective Jacobian matrices of the process and observation functions f and h.

The traditional EKF recursively estimates the state vector in two steps: prediction

and update. However, because the apparent position is not directly accessible in

the frame, the mean-shift procedure performs a search of the maximum likelihood

of the apparent position between the prediction and update steps. The mean-

shift procedure implemented here is described in Subsection 4.4.2. The projective

Kalman filter is thus divided into three steps.

Prediction The state vector x̂ and its covariance matrix P̂ are estimated from the

posterior density at time t− 1:

x̂ = f(xt−1, 0) , (4.41)

P̂ = Qt−1 + F̂t−1Pt−1F̂
T
t−1 . (4.42)

Apparent position estimation Mean-shift is applied to reach the mode of the

apparent position z in the frame. The center ĉx and the bandwidth b are

initialized with the predicted observations ẑ and b̂ from ẑ = h(x̂, 0). The

observation at time t is then available as zt = [cx ż b̂]T .

Update When a new observation zt becomes available, i.e. , when the mean-shift

tracker has converged to the center of the blob, the state vector is updated as

follows:

xt = x̂ + Kt

[

zt − ẑ
]

, (4.43)

Pt = P̂−KtStK
T
t . (4.44)

where

St = ĤtP̂ĤT
t + Rt and Kt = P̂ĤT

t S−1
t .

The Jacobians F̂t−1 and Ĥt are evaluated at xt−1 and x̂, respectively, with

process and observation noise equal to 0.
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(a) (b)

Figure 4.3 Background subtraction on a low definition image (128 × 160): (a) original
image; (b) motion mask comprising moving objects.

4.4.2 The Mean-shift Procedure

Mean-shift is applied to the motion mask, representing the foreground detection, in

order to determine the position of a blob center. The binary motion mask is obtained

with the background subtraction techniques proposed in Section 3.3. Figure 4.3

displays an image and its corresponding motion mask extracted using background

subtraction. Let us denote the approximate position of the blob center ĉ = [cx cy]
T ,

the set of N motion pixel locations M = {m1, ...,mN} and K a Gaussian isotropic

kernel with bandwidth b as defined in [48]. The new position of the blob center c

is defined as

c =

N
∑

n=1

K
(

‖(ĉ−mn)/b‖2
)

mn

N
∑

n=1

K
(

‖(ĉ−mn)/b‖2
)

. (4.45)

The mean-shift vector defining the shift in the center estimation is

−→pb (ĉ) = c− ĉ . (4.46)

The mean-shift vector −→pb (ĉ) points toward the blob center. Equation (4.45) is iter-

ated until ||−→pb (ĉ)|| < γ with ĉ← c.



Projective Kalman Filter for Vehicle Tracking 97

The convergence to the true blob center is ensured under two conditions:

1. the estimated center ĉ is initialized in the basin of attraction of the blob. The

basin of attraction of a blob is defined as the set of locations for which the

mean-shift converges to the blob center. In particular, the area delineated by

the blob is included in the basin of attraction. Failing to initialize the mean-

shift in the basin of attraction causes the divergence of the mean-shift tracker

and the loss of the object track.

2. the bandwidth b of the kernel matches the size of the blob. The match between

the bandwidth of the kernel and the size of the blob is also essential to ensure

convergence. Indeed, a too large bandwidth would cause divergence in the

presence of neighboring blobs; on the other hand, a too small bandwidth

would lead to uncertainty in the blob location.

The estimated center and bandwidth are provided by the prediction step of the

projective Kalman filter. After convergence, the estimated center is fed into the

update step.

4.4.3 Extended versus Unscented Kalman Filter

Let us consider the system described by Eqs. (4.39) and (4.40). Because Eq. (4.39)

is linear, the first order estimation of the process equation is exact and the use

of the unscented transformation is unnecessary. On the other hand, higher order

non-linearities are present in the observation equation. Let us consider the vector-

valued function described by Eq. (4.40) which is continuously differentiable. The

expansion of h(xt, 0) in Taylor series for the vector point p leads to the following

approximations for the extended TEKF , and the Unscented, TUKF , Kalman filters,

respectively:

TEKF (h) = h(p) + Jh(p)(xt − p) + o(xt − p) , (4.47)

and

TUKF (h) = h(p) + Jh(p)(xt − p)

+
1

2
(xt − p)THh(p)(xt − p) + o

(

(xt − p)2
)

, (4.48)
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where Jh and Hh denote the Jacobian and the Hessian matrices of h, respectively.

The Unscented Kalman filter takes into account the second order nonlinearity; the

difference in estimation between the EKF and the UKF lies in the Hessian matrices.

Consequently, to evaluate the algorithms performance, we can evaluate the Hessian

matrices in p. The vector-valued function h is of size [3 × 1]. Consequently, the

Hessian is a tensor of order 3 and size [3× 3× 3].

The Hessian tensor is derived with regards to the three real-world variables, namely

xt, ẋt and st, and forms a tensor of 27 partial derivatives. Assuming the vanishing

point Zvp is fixed for a given video sequence, the Hessian tensor depends only on

the parameter D. Figure 4.4 displays the theoretical improvement of the UKF over

the EKF for the second derivatives with regards to the ground distance for a value

of D equal to 43m (low value of the dataset, see Table 4.1). The 27 second partial

derivatives representing the second order nonlinearity captured by the UKF account

for subpixel accuracy (< 10−2) of the position, speed and size of the object in the

framework of our experiments. The second order nonlinearity becomes significant

(> 0.5) for values of D below 7, which is not suitable for vehicle tracking. As a result,

the UKF does not improve the quality of vehicle tracking compared to the EKF.

Figure 4.5 presents the square error on the position estimation for both the EKF

and the UKF for synthetic data generated with parameters derived from the video

sequences Video 013 (see Table 4.1, Section 4.6). The mean square error is 0.3835

for the UKF and 0.3862 for the EKF. These results were confirmed on the vehicle

tracking sequence: the UKF does not improve the performance of the tracking

algorithm compared to the EKF which already achieves subpixel accuracy. To

conclude, the EKF is preferred for tracking vehicles because it does not require the

estimation of sigma points and the Jacobian can be pre-computed; the computation

complexity of the EKF is lower than that of the UKF.

4.5 Vehicle Tracking System

This section develops the vehicle tracking system based on the projective Kalman

filter. The system is based on a sequential approach that processes incoming frames

to update the trajectory of the vehicles in the scene. First, the foreground image is
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Figure 4.4 Contribution of the Hessian matrix Hh to the Unscented Kalman filter for
value of x from 0 to 1000 meters for the parameters of video Video 011.
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(a) Extended Kalman filter
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(b) Unscented Kalman filter

Figure 4.5 Mean square error of the pixel position of the object on the camera plane
w.r.t. the ground distance x. Average computed on synthetic data over 500 trials.

extracted from the incoming video stream with a background subtraction algorithm

using the Gaussian mixture model. The set of foreground pixel location M is fed

into a blob labeling procedure to detect new vehicles in the frame in the detection

zone. The features of all vehicles tracked (existing and new) are stored in a structure

for further processing. The structure is called “objects” hereafter. The estimation of

the vehicle state vector is performed conjointly by the projective Kalman filter and

the mean-shift algorithm. Finally, a pruning step reduces the number of objects

detected and merges adjacent blobs. An overview of the system is presented in

Fig. 4.6 and the sequential pseudo-code is described in Algorithm4.1.

Algorithm 4.1 Generic Projective Kalman Filter Algorithm

objects = Initialization() (see Subsection 4.5.1)
while incoming frame do

M = background subtraction(incoming frame)
objects = tracker initialisation(M, detection zone)
for i = 1 to number of objects do

(x̂, ẑ) = KF prediction(objects(i).x)
z = mean shift(ẑ)
objects(i).x = KF update(z, ẑ)
tracker pruning(objects)
display results

end for
end while
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Figure 4.6 Overview of the vehicle tracking algorithm with projective Kalman filter.

4.5.1 Tracker Initialization and Pruning

A tracker is the feature vector of each object. By definition, the tracker includes

at least the position of the object in the video frame. Tracker initialization and

pruning are essential steps of the algorithm: the first one enables tracking of the

objects and the second one removes redundant tracking of objects, which impairs the

efficiency of the algorithm. A connected component procedure initializes the object

position in the frame. Connected components usually finds labels in two passes.

The first pass labels the components and the second one eliminates redundancy in

labeling within connected components. The literature on the topic is abundant (see

e.g. [11,82,98,237]). For vehicle tracking on highways, the entrance zone of objects

is known for a given sequence. The vehicle detection can thus be performed on a

small area of the frame, reducing the computation load. The detection of new blobs

is performed on each frame. However, this procedure does not ensure a unique

tracker per object; a simple but efficient pruning operation is performed on the set

of trackers. This procedure merges adjacent trackers, suppresses tracks of small

sized objects and lost trackers, i.e. ,trackers that are not in the blob vicinity.

4.5.2 PKF Initialization and Vehicle Detection

The initialization of the variables is essential since the projective Kalman filter esti-

mates the value of the state recursively. The vehicle is detected with the connected
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Figure 4.7 Example of tracking in dense vehicle flow. The incoming vehicles are well
delineated due to their large size. Each vehicle is thus uniquely labeled by the tracking
algorithm.

component procedure described in Subsection 4.5.1. We assume here that the vehi-

cle blobs in the detection zone are well delineated. This condition is met in most

practical cases since the gap between vehicles is large in the detection zone. In the

experiments, the rare cases where two vehicles are merged in the same blob occur

when the traffic is very dense and there is a continuous flow of vehicles. Most of the

time, the dense flow of vehicles is correctly segmented.

Figure 4.7 shows a case of successful tracking of a dense flow of vehicles. The center

c of each blob in the detection zone is computed as the mean location of the set of

pixels with identical label. The initial state vector value x0 is set as

x0 =









h−1
x (cx)

ẋ0

s0









, (4.49)

where cx is the position of the object on dp-axis and h−1
x is the inverse function of

hx (see Eq. (4.7)). The values ẋ0 and s0 are set to the speed and the size of vehicles,

respectively. We found that ẋ0 = 25m/s and s0 = 5m provide good results for the

tested sequences. The initial state covariance matrix P0 is set to 0 because the state
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is assumed known with certainty at time t = 0. The process noise and measurement

covariance matrices, Q and R respectively, are initialized as follows:

Q =









0.2 0 0

0 0.01 0

0 0 0.1









R =









1 0 0

0 0.5 0

0 0 1









. (4.50)

4.6 Performance Analysis on Vehicle Tracking

The performance of the proposed technique is tested on vehicle tracking on highways.

The results aim to evaluate the projective Kalman filter in different scenarios on the

dataset of traffic surveillance. First, we compare the performances of the projective

Kalman filter with the extended Kalman filter for a frame rate of 30 fps (frames/s).

Second, we compare the two Kalman filters for different frame rates, from 30 fps

down to 3 fps. The second scenario provides an accurate evaluation of the algorithm

performances for traffic monitoring where the frame rate is usually low. Finally,

the number of mean-shift iterations necessary for both algorithms is discussed. It

provides a qualitative measure of the Kalman filters estimation accuracy.

4.6.1 Experimental Setup and Data

The algorithm is tested on 15 traffic monitoring video sequences. The number of

vehicles, the duration of the video sequences as well as the parameters of the ho-

mographic transformation are summarized in Table 4.1. Around 2600 vehicles are

recorded on the set of video sequences. The videos range from clear weather to

cloudy with weak illumination conditions. The camera was positioned above high-

ways at a height of 5.5m to 8m. The video sequences are low-definition (128× 160)

to comply with the characteristics of traffic monitoring sequences. The threshold

γ on the norm of the mean-shift vector is arbitrarily set to 0.2 to achieve subpixel

accuracy. A lower value for γ does not improve the tracking accuracy in our ex-

periments. The different parameters used for the experiments are summarized in

Table 4.2.

The extended Kalman filter has been implemented in several traffic monitoring and
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Table 4.2 Vehicle Tracking System and PKF Parameter Initializing Values

Parameters γ s0 ẋ0

Value 0.2 5m 25m/s

analysis systems, see e.g. [16] and [200]. The extended Kalman filter implements the

same process function as Eq. (4.39). However, the observation function is modeled

with the identity matrix whereas the proposed projective Kalman filter uses the

observation function described in Eq. (4.40). The main problem encountered in

vehicle tracking is the phenomenon of tracker drift. We propose here to estimate

the robustness of the tracking by introducing a drift measure and to estimate the

percentage of vehicles tracked without severe drift, i.e. , for which the track is not

lost. Since the vehicles are converging to the vanishing point, the trajectory of the

vehicle along the tangential axis is monotonically decreasing. As a consequence, we

propose to measure the number of steps where the vehicle position decreases (pd)

and the number of steps where the vehicle position increases or is constant (pi),

which is characteristic of drift of a tracker. The rate of vehicles tracked without

severe drift is then calculated as

Correct Tracking Rate =
pd

pd + pi

. (4.51)

4.6.2 Comparison of the PKF and the EKF

The average over the entire dataset shows a percentage of correct tracking of 84.5%

for the extended Kalman filter and 98.3% for the projective Kalman filter. The

proposed tracker shows more robust tracking, especially when vehicles are in the

long distance. Visually, it translates as a migration of a tracker from one vehicle

to another one in the neighborhood. Fig. 4.8 is an example of a tracker that drifts.

With the EKF, the tracker on vehicle 1 slowly drifts away onto vehicle 2 because it

is initialized on the edge of the two basins of attraction. After 25 frames, the tracker

has changed basin of attraction and tracks vehicle 2. The drifting of the tracker is

due to the failure of the extended Kalman filter to estimate accurately the distribu-

tion of the state vector in the particular non-linear environment. The homographic

transformation integrated in the projective Kalman filter enables the proposed al-
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Figure 4.8 Sequence showing the drift of a tracker on vehicle 1: the positions of each
tracked object is indicated by a dark cross. The tracker initialized on vehicle 1 drifts on
vehicle 2 throughout the sequence.

gorithm to successfully track the vehicle throughout the sequence. Fig. 4.9 shows

a successful tracking with the projective Kalman filter where the extended Kalman

filter fails.

4.6.3 Effects of the Frame Rate on Tracking

In this subsection, the two algorithms are evaluated for different frame rates. Aside

from their low-definition, traffic monitoring video sequences present a very low frame

rate due to the difficulty of transmitting the video stream to the traffic agency. We
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Figure 4.9 Comparison of the standard tracking algorithm (left) and the proposed al-
gorithm (right). The proposed algorithm presents better ability to track long distance
vehicles.

Tracking rate for the data set
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Figure 4.10 Effects of the frame rate on the tracking performances. Average tracking
rate over the dataset for projective and extended Kalman filters are displayed with the
minimum and maximum rate for the dataset.

propose here to evaluate the performances of the extended Kalman filter and the

projective Kalman filter on video sequences with decreasing frame rates, from 30fps

to 0.5fps. Note that even though rates below 3fps are unusual, they are presented

here for the sake of completeness. The tracking robustness is evaluated in terms

of tracking rate as defined in Eq. (4.51). Figure 4.10 displays the average rate of

tracking over the entire dataset with the maximum and the minimum tracking
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rate for the extended and the projective Kalman filters. The extended Kalman

filter shows a quick rate of decay with the frame rate. The tracking rate for the

projective Kalman filter is also decreasing with the frame rate; however, the tracking

rate of the projective Kalman filter is less sensitive to the frame rate compared to

that of the extended Kalman filter. For example, at 3 frames per second, the PKF

presents a tracking rate of 89% whilst the EKF tracking rate is 7.4%. Indeed, when

the number of frames per second decreases, the displacement of the vehicle and,

more importantly, the uncertainty of the vehicle location in the frame increases.

As a consequence, the standard method is unable to track the vehicles because the

algorithm fails to initialize the mean-shift in the basin of attraction.

Figure 4.11 displays the tracking rate over the set of video sequences for a frame

rate of 30 and 3fps. Some examples of vehicle tracking are presented in Fig. 4.12.

Tracking with the extended Kalman filter fails for distant objects because the basin

of attraction is small and the extended Kalman filter does not provide a fine estima-

tion of the position for the initialization of the tracker. The projective Kalman filter,

on the other hand, provides an accurate estimation of the vehicle position in the

image via a fine adjustment of the vehicle speed when the frame rate decreases and

the information becomes sparse. Therefore, the proposed approach is less sensitive

to frame rate.

4.6.4 Mean-shift Convergence Speed at Low Frame Rates

The speed of convergence of the mean-shift is a key factor in the proposed algorithm.

As the mean-shift is a gradient ascent procedure, the speed of convergence represents

the proximity of the feature vector to the mode of the distribution in the feature

space. The distance is the error between the kernel density estimation of the mode

by mean-shift and the prediction of the state value in Eq. (4.41) by the projective

Kalman filter. Figure 4.13 displays the number of iterations of the mean-shift for

the first 3000 runs of the procedure. A run represents the convergence of one vehicle

in one frame. The results displayed are also smoothed with a sliding window of size

100 for clarity of presentation. The average rate calculated over 33,000 runs for the

video sequence Video 012 is 4.19 for the projective Kalman filter and 7.00 for the

extended Kalman filter, which represents a gain of 67%.
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Correct tracking rate for the Projective Kalman Filter
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Correct tracking rate for the Extended Kalman Filter
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Figure 4.11 Comparison of the tracking rate for the projective Kalman filter and the
extended Kalman filter at 30 and 3 frames per second. The results are displayed for the
15 videos of the dataset. (a) Tracking rate for the projective Kalman filter at 30 and 3
frames per second; (b) Tracking rate for the extended Kalman filter at 30 and 3 frames
per second.
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Figure 4.12 Tracking robustness in low frame rate (3fps) for the standard (left) and the
proposed method (right). With the standard method, the tracker drifts quickly and is
unable to track the vehicle.
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Figure 4.13 Average number of mean-shift iterations for the Projective Kalman filter
and the extended Kalman filter. The data is smoothed with a sliding window of size 100
for clarity.

4.7 Summary of the Projective Kalman Filter

This chapter proposed a tracking algorithm based on a tracker/estimator pair. The

mean-shift coupled with the projective Kalman filter achieves robust tracking due

to the integration of the homographic projection of the real-world vehicle trajecto-

ries on the camera plane. In particular, the observation function of the projective

Kalman filter models the trajectory of vehicles with respect to their ground dis-

tance to the camera. It results in a fine estimation of the vehicle position both in

the real-world and on the camera plane, providing a tracking with reduced drift.

The combination of the mean-shift and the PKF also leads to more accurate ob-

servations, which reduces the error in the distribution of the state estimate. The

results showed that both the extended and the projective Kalman filter algorithms

achieve robust tracking at a rate of 30fps even though the projective Kalman filter

performs better. At very low frame rates (e.g. , 3 fps), the extended Kalman filter

provides very poor results whereas the proposed algorithm still tracks vehicles with

89% accuracy. The robustness of the extended Kalman filter drops quickly with the

frame rate compared to the projective Kalman filter. Finally, we showed that the
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number of iterations required for the convergence of mean-shift is lower with the

proposed method, thereby reducing the computation load.



Chapter 5
Projective Particle Filter for Vehicle

Tracking

5.1 Introduction

This chapter investigates the integration of the projective transformation, developed

in Chapter 4, with particle filters. The particle filter is a suboptimal solution, based

on Monte Carlo simulations, to the Bayesian problem since it approximates the

density of interest instead of providing an exact representation. However, it relaxes

the Gaussian and linearity constraints, and therefore copes with a wider range of

pdfs for tracking. The particle filter has the property of achieving an accuracy

in the state estimate proportional to the square root of the number of particles.

The number of particles and their distribution in the feature space become critical

elements in the development of tracking algorithms with particle filtering.

The vehicle tracking algorithm has already been introduced in Chapter 4. This

chapter therefore focuses on the particle filter algorithm and the integration of the

homographic transformation. We propose to refine the importance density, from

which samples are drawn, with the projective transformation to increase tracking

accuracy for a given number of samples. More specifically, the projective particle

filer aims to reduce the size of the particle set for a given mean square error, or,

maintain the latter while reducing the former. Section 5.2 develops the sequential

113
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Monte Carlo framework and particle filtering approach. It also introduces to the

notion of sample degeneracy and resampling. Section 5.3 describes the projective

particle filter (PPF) implementation for vehicle tracking. Section 5.4 presents the

performance analysis of the projective particle filter.

5.2 Sequential Monte Carlo and Particle Filtering

Monte Carlo methods encompass a range of techniques based on stochastic simu-

lations. They estimate complex and often analytically intractable problems. Con-

sequently, the study of Monte carlo methods has developed with the increase of

computer power. Monte carlo simulations are based on numerical approximation of

a system of interest by sampling. The process is sequential and is composed of three

steps: particle generation, particle diffusion and statistical interpretation.

Particle generation. Monte Carlo simulations rely on the sampling of probability

density. The initial density of the samples is designed either arbitrarily or

based on prior inference. The particles carry the statistics of the density

via sampling as the unscented transform did for the UKF in the Gaussian

framework (see Section 4.3.3). However, a larger number of particles is required

since the density is unknown.

Particle diffusion through the system. The particles are fed into the system

and the output is a set of samples individually transformed by the studied

process. Although an analytical solution of the system output for the initial

density is not available, the set of samples represents the transformation of the

input density by the system. For instance, output particles will agglomerate

around the modes of the output density.

Statistics generation and interpretation. The set of output samples provides

information on the output density although the latter one is not readily avail-

able. Different statistics can be drawn to characterize the system such as the

expected value or other higher order moments. If the output density is to

be reconstructed, traditional techniques for kernel density estimation can be
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employed. For instance, the regularized particle filter uses kernel estimation

to reconstruct the output density [180,42].

Monte Carlo methods rely on the theory of large numbers for statistical estimation

of systems or functions. The main result of interest in this section is called the

Monte Carlo integration, which is described hereafter. We follow to some extent the

derivation proposed by Ristic et al. in [212] for the derivation of the theory. Let us

consider a function g, integrable on its domain D:

I =

∫

D

g(x)dx . (5.1)

Assume now that the function g(x) can be factorized as

g(x) = f(x)π(x) . (5.2)

where π(x) is a probability density function. Given NS samples xi drawn from the

density π(x), with NS large, the integral in Eq. (5.1) can be approximated with a

sum INS

INS
=

1

NS

NS
∑

i=1

f(xi) . (5.3)

Monte Carlo integration states that there is asymptotic statistical convergence or,

in other words almost sure convergence, between the integral I and the sum INS
,

i.e. ,

lim
NS→∞

1

NS

NS
∑

i=1

f(xi) =

∫

D

g(x)dx . (5.4)

This result holds if the variance of f(x), σ2
f(x) =

∫

D
(f(x)− I)2 π(x)dx, is finite. In

this case, the central limit theorem also ensures that the estimation error from the

Monte Carlo simulation converges with a speed O(
√

NS) to the normal density

lim
NS→∞

√

NS(INS
− I) ∼ N (0, σ2) . (5.5)

Monte Carlo simulations are an elegant solution to circumvent the direct and some-

times impractical calculation of an integral in a system by drawing a number of

samples that carry the statistics of the density underlying the process. Markov

chains associated with the Bayesian problem described in Subsection 2.4.2 take ad-

vantage of the asymptotic property. An excellent introduction to the use of Markov

chains with Monte Carlo simulations can be found in [84].
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5.2.1 A Sub-optimal Bayesian Solution: The Particle Filter

The particle filter (PF) is a technique for approximating the recursive Bayesian so-

lution while relaxing the Gaussian and linear constraints on the system. Recalling

the fundament of the recursive Bayesian solution lies in the pair of prediction and

update equations (2.20) and (2.21), the particle filter aims to estimate the posterior

density p(xt|Zt) through Monte Carlo simulations. The main hindrance to relax-

ing the Gaussian constraint in the Bayesian solution is the Chapman-Kolmogorov

integral in the prediction step, Eq. (2.22). The comparison with Eq. (5.2) leads to

f(x) = p(xt|xt−1) and π(x) = p(xt−1|Zt−1). For the moment, we keep the notations

f(x) and π(x) for the sake of clarity.

Importance Sampling

Bearing in mind that π(x) is unknown since it is the posterior density (to be esti-

mated), a proposal density q(x), referred to as the importance density in the rest

of the thesis, is used to draw the set of samples. The importance density shall be

as close as possible to the posterior and in particular have the same support, i.e. ,

π(x) > 0 ⇒ q(x) > 0,∀x ∈ D. This leads to the reformulation of the Monte Carlo

integration as

I =

∫

D

f(x)π(x)dx =

∫

D

f(x)
π(x)

q(x)
q(x)dx , (5.6)

yielding

INS
=

1

NS

NS
∑

i=1

f(xi)
π(xi)

q(xi)
=

1

NS

NS
∑

i=1

f(xi)w̃(xi) . (5.7)

where w̃(xi) are weights given by

w̃(xi) = π(xi)/q(xi) . (5.8)

The weights readjust the error introduced by the sampling from the importance

density. Also, the weights need to be normalized and the Monte Carlo estimate

becomes

INS
=

NS
∑

i=1

f(xi)w(xj) , (5.9)
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where

w(xi) =
w̃(xi)

NS
∑

j=1

w̃(xi)

. (5.10)

Sequential Importance Sampling

Sequential importance sampling (SIS) maintains the pdf of interest in the form

of a set of samples and associated weights, together called particles, to recursively

approximate the posterior density of a state. This provides a solution to the Bayesian

problem that asymptotically converges to the optimal estimator. In practice, the

solution is sub-optimal since it is impossible to have an infinite set of samples. To

derive the solution, let us first consider that a set of particles, composed of a set

of samples {xi
t−1, i = 1..NS} and a set of associated weights {wi

t−1, i = 1..NS}, is

available and approximates the posterior density at time t− 1 such that

p(xt−1|Zt−1) ≈
NS
∑

i=1

wi
t−1δ(xt−1 − xi

t−1) , (5.11)

where δ(.) is the Dirac delta function. The notation in Eq. (5.11) is a discretization

of the posterior pdf at time t − 1. Here, we differentiate our reasoning from Ristic

et al. [212] to show the recursive update of the set of particles. Considering the

update step in the Bayesian problem, and integrating the predicted and likelihood

densities with the Monte Carlo estimation, we have from Eq. (2.23)

p(xt|Zt) =
p(zt|xt)p(xt|Zt−1)

p(zt|Zt)
, (5.12)

=
p(zt|xt)

∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1

p(zt|Zt)
, (5.13)

≈
p(zt|xt)

NS
∑

i=1

wi
t−1p(xi

t|xi
t−1)δ(xt−1 − xi

t−1)

p(zt|Zt)
, (5.14)

≈

NS
∑

i=1

wi
t−1p(zi

t|xi
t)p(xi

t|xi
t−1)δ(xt−1 − xi

t−1)

p(zt|Zt)
. (5.15)

If the importance density is chosen as

q(xt|Zt) = q(xt|xt−1,Zt)q(xt−1|Zt−1) , (5.16)
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the update of the samples from time t− 1 to t is given by the importance transition

density q(xi
t|xi

t−1,Zt). Updating the set of samples in Eq. (5.15) yields

p(xt|Zt) ≈

NS
∑

i=1

wi
t−1p(zi

t|xi
t)p(xi

t|xi
t−1)δ(xt − xi

t)

p(zt|Zt)q(xi
t|xi

t−1,Zt)
. (5.17)

≈
NS
∑

i=1

wi
tδ(xt − xi

t) . (5.18)

Equation (5.18) is identical to (5.11) for time t. The new set of weights that appears

in Eq. (5.18) is as follow

wi
t = wi

t−1

p(zi
t|xi

t)p(xi
t|xi

t−1)

p(zt|Zt)q(xi
t|xi

t−1,Zt)
, (5.19)

∝ wi
t−1

p(zi
t|xi

t)p(xi
t|xi

t−1)

q(xi
t|xi

t−1,Zt)
. (5.20)

Another derivation of the Bayesian problem with Monte Carlo simulations can be

found in Chapter 3 of [212] and in [9], where the authors work with the joint pos-

terior pdf p(Xt|Zt) instead of the posterior pdf p(xt|Zt).

We showed in this subsection that the Bayesian problem can be recursively approx-

imated with a sub-optimal solution that converges to the optimal solution when

NS →∞. The recursive update lies in Eqs. (5.16) and (5.20).

5.2.2 Samples Degeneracy and Resampling

The choice of the importance density is crucial to obtaining a good estimate of the

posterior pdf p(xt|Zt). The optimal choice for the importance density is the poste-

rior itself. However, because this density is not available, it has been shown that

the set of particles and associated weights {xi
k, w

i
k} will eventually degenerate, i.e. ,

most of the weights will be carried by a small number of samples and a large num-

ber of samples will have negligible weight [137]. This phenomenon is also known

as sampling impoverishment. Resampling is necessary to circumvent the degener-

acy problem. Intuitively, the set of particles does not represent the density under

estimation when the distribution of the weights is not homogeneous anymore, i.e. ,

when the variance becomes large. An evaluation of the effective sample size has
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been reported in [9] as

N̂eff =
1

NS
∑

i=1

(wi
t)

2

. (5.21)

The effective sample size is a value between 1 and NS that represents the degree of

suitability of the particle set. Traditionally, a threshold Nth is applied on N̂eff to

make the resampling decision. Resampling can be performed with the cumulative

function of the weights and a random variable uniformly distributed in the interval

U [0, N−1
S ]. Algorithm5.1 shows a sequential implementation of the technique. This

technique is called systematic resampling. It is generally adopted because it is

the fastest algorithm to resample the set of particles. Other methods have been

implemented and are reviewed in [247].

5.2.3 Particle Filter Summary

The particle filter relies on a set of particles [{xi, wi}NS

i=1] to estimate the posterior

density at time t from the posterior density at time t − 1 through an unknown

system based on the hidden Markov model. The particle filter, based on Monte

Carlo simulations, relaxes the assumptions made on the nature of the noise or the

system equations for the Kalman filter. However, the particle filter is a sub-optimal

solution because the number of particles is finite. There are numerous variations

of the particle filter in the literature and the reader is referred to Subsection 2.4.2

for examples. Most of these techniques aim to refine the importance density to

obtain a better approximation of the underlying density. For instance, extended

Algorithm 5.1 Resampling Algorithm

l = 0
ǫ = U [0, N−1

S ]
for i = 1 to NS do

σi = cumsum(wi
k)

while ǫ + l
NS

< σi do

xl
k = xi

k

wl
k = 1/NS

l = l + 1
end while

end for
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and unscented particle filters use the EKF and UKF to estimate the state of the

samples. The regularized particle filter smoothes the posterior density at time t− 1

from which the samples are drawn.

5.3 Projective Particle Filter

The projective particle filter is based on the linear fractional transformation intro-

duced in Subsection 4.2.2. The difference between projective Kalman and particle

filters resides in the tracking algorithm and the state vector. The first one is based on

vehicle blobs obtained with background subtraction and the second one on kernel-

based color tracking. Therefore, only the tracking implementation of the system

is described here. The proposed particle filter is named projective particle filter

because the vehicle position is projected on the camera plane. The projection is

used as an inference to diffuse the particles in the feature space. One of the par-

ticularities of the PPF is to differentiate between the importance density and the

prior pdf whilst the sampling importance resampling (SIR) filter, also called stan-

dard particle filter, does not. Therefore, we need to define the importance density

q(xt|xt−1, zt) from the fractional transformation as well as the prior p(xt|xt−1) and

the likelihood p(zt|xt) in order to update the weights in Eq. (5.20).

5.3.1 Importance Density and Prior

The projective particle filter integrates the linear fractional transformation into the

importance density q(xt|xt−1, zt). The state vector is modeled with the position,

the speed and the size of the vehicle in the image:

x =





















x

y

ẋ

ẏ

b





















, (5.22)

where x and y are the Cartesian coordinates of the vehicle, ẋ and ẏ are the respective

velocity components along the x- and y-axes, respectively, and b is the size of the
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vehicle in the image. From Subsection 4.2.2, the apparent speed ẋ and size of the

vehicle b can be derived in terms of apparent position of the vehicle for the projective

particle filter. Considering the real speed is constant, Eqs. (4.8) and (4.9) yield

ẋ = fż(z) =
(H − z)2v

H(D − v) + zv
, (5.23)

and

b = fb(z) =
sD

( HD
H−z

)2 − ( s
2
)2

. (5.24)

It is worthwhile noting that for the projective particle filter the state is the apparent

trajectory of the vehicle, while for the projective Kalman filter the state is the real

trajectory. Object tracking is traditionally performed using a standard kinematic

model (derived from Newton’s Laws of motion), taking into account the position, the

speed and the size of the object1. For the projective particle filter, the kinematic

model is refined with the estimation of the speed and the object size via linear

fractional transformation. Let us define the vector-valued process function f as

xt = f(xt−1) =





















xt

yt

ẋt

ẏt

bt





















=





















xt−1 + fẋ(xt−1)

yt−1 + ẏt−1

fẋ(xt−1)

ẏt−1

fb(xt−1)





















. (5.25)

It is important to note that, as for the projective Kalman filter, the distortion

is severe along the x-axis and the function fẋ provides a better estimate than

a simple kinematic model taking into account the speed of the vehicle. On the

other hand, the distortion along the y-axis is much weaker and the compensa-

tion is not necessary. The novelty of the PPF resides in the estimation of the

vehicle position along the x-axis and its size through fẋ and fb(x), respectively.

It is worthwhile noting that the standard kinematic model of the vehicle is re-

covered when fẋ(xt−1) = ẋt−1 and fb(x) = bt−1. Let xt = g(xt−1) denote the

standard kinematic model assuming zero acceleration. The vector-valued function

g(xt−1) = {f(xt−1)|fẋ(xt−1) = ẋt−1, fb(x) = bt−1} denotes the standard kinematic

1The size of the object is maintained for the purpose of likelihood estimation.
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model

g(xt−1) =





















xt−1 + ẋt−1 ∆t

yt−1 + ẏt−1 ∆t

ẋt−1

ẏt−1

bt−1





















. (5.26)

Consequently, the samples are drawn from the importance density q(xt|xt−1, zt) =

N (xt, f(xt−1), Σq), and the standard kinematic model is used in the prior distri-

bution p(xt|xt−1) = N (xt,g(xt−1), Σp), where N (.,µ, Σ) denotes the normal dis-

tribution of covariance matrix Σ centered on µ. The distributions are considered

Gaussian and isotropic to evenly spread the samples around the estimated state

vector at time t.

5.3.2 Likelihood Estimation

The estimation of the likelihood p(zt|xt) is based on the distance between color

histograms as in Comaniciu et al. [56]. Let us define an mn-bin histogram H =

{H[u]}u=1..mn
, representing the distribution of J color pixel values c, as follows:

H[u] =
1

J

J
∑

i=1

δ[κ(ci)− u] , (5.27)

where u is the set of bins, regularly spaced on the interval [1,mn], κ is a linear

binning function providing the bin index of pixel value ci, and δ(.) is the Kronecker

delta function. The pixels ci are selected from a circle of radius b centered on (x, y),

coordinates of the center of vehicle in the frame. Indeed, after projection on the

camera plane, the circle is the standard shape that delineates the vehicle best. Let

us denote the target and the candidate histograms by Ht and Hx, respectively. The

Bhattacharyya distance between two histograms is defined as

∆(x) =

(

1−
mn
∑

u=1

√

Ht[u]Hx[u]

)

. (5.28)

Finally, the likelihood p(zt|xi
t) is calculated as p(zt|xi

t) ∝ exp (−∆(xi
t)).
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5.3.3 System Implementation

The implementation of the projective particle filter algorithm is summarized in Al-

gorithm6.1. Because most approaches to tracking take the prior distribution as

importance density, the samples xi
t are directly drawn from the standard kinematic

model. In this subsection we differentiate between the prior and the importance den-

sity to obtain a better distribution of the samples. The initial state x0 is chosen as

x0 = [x0, y0, 10, 0, 20]T where x0 and y0 are the initial coordinates of the object. The

value x0 is thus used to draw the set of samples xi
0 ∼ q(x0|z0) = N (xi

0, f(x0), Σq).

The prior p(xt|xt−1) and the importance density q(xt|xt−1, zt) are both modeled

with Gaussians. The covariance matrices Σp and Σq are initialized as follows:

Σp =




















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0 0 0 1 0

0 0 0 0 4
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






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


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





(5.29)

Algorithm 5.2 Projective Particle Filter Algorithm

Require: xi
0 ∼ q(x0|z0) and wi

0 = 1/NS

for i = 1 to NS do
Compute f(xi

t−1) from Eq. (5.25)
Draw xi

t ∼ q(xi
t|xi

t−1, zt) = N (xi
t, f(x

i
t−1), Σq)

Compute ratio γt = N (xt|xt−1,µγ, Σγ)
Update weights wi

t = wi
t−1 × γtp(zt|xt)

end for
Normalize wi

t

if Neff < N then
l = 0
for i = 1 to NS do

σi = cumsum(wi
t)

while l
NS

< σi do

xl
t = xi

t

wl
t = 1/NS

l = l + 1
end while

end for
end if
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and the mean vectors are initialized as follows: µp = g(x0) and µq = f(x0). As

a result, the variable γt is itself drawn from a Gaussian process N (xt|xt−1,µγ, Σγ)

with covariance matrix Σγ = (Σ−1
p − Σ−1

q )−1 and µγ = Σ (Σ−1
p µp − Σ−1

q µq) and

Σp 6= Σq.

A resampling scheme is necessary to avoid the degeneracy of the particle set. System-

atic resampling, as introduced in Subsection 5.2.2, is performed when the variance

of the weight set is too large, i.e.when the number of the effective sample size N̂eff

falls below a given threshold Nth, arbitrarily set to 0.6NS in the implementation.

5.4 Experiments and Results

In addition to the drift measure introduced in Eq. (4.51), an important measure

in vehicle tracking with particle filters is the variance of the trajectory since it

directly depends on the particle set size. Indeed, high-level tasks, such as abnormal

behavior detection or driving under the influence of alcohol (DUI) detection, require

an accurate tracking of the vehicle and, in particular, a low mean square error for the

position. The standard and the projective particle filters are evaluated in this section

on the traffic surveillance data introduced in Subsection 4.6.1. The video sequences

are footage of vehicles traveling on a highway. Although the roads are straight in

the dataset, the algorithm can be applied to curved roads with approximation of the

parameters on short distances because the projection tends to linearize the curves

on the camera plane. The parameters θ, H and D defining the linear fractional

transformation are recalled in Table 5.1. The reduced dataset used here is composed

of 205 vehicles assumed to have a constant speed of v = 25m.s−1. Note that the

constraint on the speed can be relaxed as long as the variations are slow.

Figure 5.1 displays a track estimated with the projective (Fig. 5.1(b)) and the stan-

dard particle filter (Fig. 5.1(a)). Qualitatively, it is clear that the projective particle

filter shows a smaller variability in the track estimation. We run two experiments to

evaluate the variance for the standard and the projective particle filters: one with

automatic variance estimation and the other one with ground truth labeling. A third

experiment is conducted to evaluate the suitability of the importance pdf . Finally,
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(a) Standard (b) Projective

Figure 5.1 Vehicle track for (a) the standard and (b) the projective particle filter. The
projective particle filter exhibits a lower variance in the position estimation.

Table 5.1 Linear Fractional Transformation Parameters

Video Sequence H θ D

Video 5 5.5 m 12.5± 0.15 deg 80 m
Video 6 5.5 m 19.2± 0.2 deg 57 m
Video 8 5.5 m 19.2± 0.2 deg 57 m

a summary of the drift rate characterizing the suitability of the different algorithms

to accurately track vehicles is presented along with a discussion on projective and

extended Kalman filters, and projective and standard particle filters.

5.4.1 Mean Square Error Performance

In the first experiment, the performance of each tracker is evaluated in terms of MSE

using the reduced dataset. In order to avoid the tedious task of manually extracting

the ground-truth of every track, a synthetic track is generated automatically based

on the parameters of the real world projection of the vehicle trajectory on the

camera plane. Figure 5.2 shows that the calculated and the manually extracted

tracks match very well. The initialization is performed as for the projective Kalman

filter (Section 4.5). However, because the initial position of the vehicle when the

tracking starts may differ from one track to another, it is necessary to align the

calculated and the manually extracted tracks in order to cancel the bias in the
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Figure 5.2 Alignment of calculated and extracted trajectories along the d-axis. The
difference between the two tracks represents error in the estimation of the trajectory.

Table 5.2 MSE for the Standard and the Projective Particle Filters

Video Sequence Video 5 Video 6 Video 8
Avg. MSE Std PF 2.26 0.99 1.07

Avg. MSE Proj. PF 1.89 0.83 1.02

estimation of the MSE. The average MSE for each video sequence is summarized

in Table 5.2. It can be inferred from the table that the projective particle filter

performs better on the entire dataset than the standard particle filter.

In the second experiment, we evaluate the performance of the two tracking algo-

rithms w.r.t. the number of particles. Here, the ground truth is manually labeled in

the video sequence. We arbitrarily decide to ground truth the first 5 trajectories of

the first video to ensure the impartiality of the evaluation. Figure 5.3 displays the

average MSE over 10 runs for the first trajectory and for different values of NS. In

theory, the MSE decreases at a rate O(
√

NS) which is not the case here. Figure 5.3

shows a decrease in the MSE towards a constant rate. This is imputable to the

change in the car model (color) through time that imposes a lower bound on the

MSE. Figure 5.4 presents the average MSE for 10 runs on the 5 manually extracted

tracks for NS = 20 and NS = 100. It is clear that the projective particle filter

outperforms the standard particle filter in terms of MSE. The superior accuracy
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Figure 5.3 Position mean square error versus number of particles for the standard and
the projective particle filter.
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Figure 5.4 Position mean square error for 5 ground truth labeled vehicles using the
standard and the projective particle filter. Top: with 20 particles; bottom: with 100
particles.
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of the PPF is due to the finer estimation of the sample distribution by the impor-

tance density and the consequent adjustment of the weights since all parameters are

identical in the comparison.

5.4.2 Importance Sampling Evaluation

We propose to compare the standard and the projective particle filters without the

resampling step. This evaluation determines the suitability of the importance den-

sity to the problem. Indeed, the closer the importance density is to the posterior

density, the less resampling is needed. However, because the importance and the

posterior density are different, a larger number of particles is required for the ex-

periment to avoid losing track after a few iterations. We choose NS = 300 for the

evaluation. Figure 5.5 shows the position MSE for the standard and the projective

particle filters for the 80 successfully tracked trajectories in Video 8; the average

MSEs are 1.10 and 0.58, respectively. For the problem of vehicle tracking, the im-

portance density q used in the projective particle filter is therefore more suitable to

draw samples from compared to the prior density used in the standard particle filter.

Less resampling is required as a consequence of the adequate choice of importance

density. It is also worth noting that the lower MSE in this experiment compared to

the one exhibited in Table 5.2 for Video 8 is due to the higher number of particles.

5.4.3 Tracking Performance and Discussion

The drift tracking rate, defined in Eq. (4.51), is evaluated for the projective and

standard particle filters developed in this chapter. Figure 5.6 displays the results

for the entire (15 videos) traffic surveillance dataset. It shows that the projective

particle filter yields better tracking rate than the standard particle filter across the

entire dataset. Therefore, it can be inferred that the integration of the homographic

transformation improves the tracking rate. Furthermore, it can be observed that

the PPF does not perform as well as the PKF in tracking vehicles (see Fig. 4.11 for

comparison). Two hypotheses are brought forward to explain this result:

• the vehicle tracking environment is, in reality, Gaussian or quasi-Gaussian. In

this case, the Kalman filter provides the optimal solution while the particle
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Figure 5.5 Position mean square error for the standard and the projective particle filter
without resampling step.

Vehicle tracking performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
id

eo
_0

01

V
id

eo
_0

02

V
id

eo
_0

03

V
id

eo
_0

04

V
id

eo
_0

05

V
id

eo
_0

06

V
id

eo
_0

07

V
id

eo
_0

08

V
id

eo
_0

09

V
id

eo
_0

10

V
id

eo
_0

11

V
id

eo
_0

12

V
id

eo
_0

13

V
id

eo
_0

14

V
id

eo
_0

15

Projective particle filter Standard particle filter

Figure 5.6 Drift tracking rate for the projective and standard particle filters on the traffic
surveillance dataset.
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filter is only suboptimal. It is then expected that the projective Kalman filter

yields better results than the projective particle filter.

• the two tracking algorithms are based on different techniques. The PKF relies

on background subtraction providing reliable segmentation of the object. The

PPF relies on a histogram-based color tracker without target update. When

the color distribution changes, the tracking algorithms can be distracted by

the background. An algorithm to update the target appearance, although

computationally expensive, can be implemented to address this issue (see e.g.

[95]).

The comparison between the projective Kalman and particle filters is therefore dif-

ficult and somewhat unfair because the two algorithms are based on different tech-

niques, each with their own advantages and disadvantages. However, the PKF is

selected for the trajectory extraction that will be used in Chapter7 because it pro-

vides a better output tracking rate.

5.5 Summary of the Projective Particle Filter

A new particle filter integrating the linear fractional transformation in the impor-

tance density is proposed. This projection maps the real world position of a vehicle

onto the camera plane providing a better distribution of the samples in the feature

space. However, because the prior is not used to sample, the weights of the designed

Projective Particle Filter have to be readjusted. The standard and the projective

particle filters have been evaluated on traffic surveillance videos. It has been shown

that the MSE on the trajectory of the vehicles is reduced with the projective par-

ticle filter. Furthermore, the proposed technique outperforms the standard particle

filter in terms of MSE regardless of the number of particles. It has also been shown

that the degeneracy of the sample set is reduced when the importance density is

based on the linear fractional transformation. However, the projective particle filter

is outperformed by the projective Kalman filter in terms of drift tracking rate. The

projective Kalman filter is therefore selected for the extraction of trajectories in

Chapter 7.



Chapter 6
Tracking Through Occlusion with Markov

Random Fields

6.1 Introduction

This chapter is dedicated to the study of Markov random fields (MRFs) to produce

Bayesian inference for object tracking. Chapters 4 and 5 developed the enhancement

of tracking accuracy and robustness in the framework of traffic surveillance, i.e. , in a

constrained environment. However, in the general case, the environment constraints

are not readily available and hence must be learnt. Therefore, we propose to widen

the framework of tracking to any model presenting explicit or implicit patterns

in trajectories through Markov random fields. The sequel focuses on the design

of Markov random fields for improving the robustness of tracking by optimizing

the distribution of samples for particle filtering. A local importance density is

therefore learnt in order to generate inference for the particle filter. This algorithm

is used for general purpose tracking. The implementation of the particle filter is

therefore necessary to convey the multi-modality diffusion of the posterior density—

the Kalman filter is not adequate in this framework.

Markov random fields have been used for their ability to model the probability dis-

tribution of a random variable at a location given its neighborhood distribution.

Therefore, the learning is dependent on adjacent locations. Applied to tracking,

131
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Markov random fields provide a convenient framework for modeling smooth pat-

terns such as trajectory paths. In this chapter, we show that the trajectory of the

feature vector in the feature space can be learnt from the local pattern of previ-

ous objects and be used as inference for the particle filter through the importance

density. The main contribution is the design of a local model that can be used to

increase the robustness of tracking in case of occlusion. The work presented in the

sequel also sets the framework for abnormal behavior detection that will be investi-

gated in Chapter 7. Section 6.2 introduces the notion of context integration in visual

object tracking and the suitability of Markov random field in this task. Section 6.3

develops the proposed mixture of Markov random fields and its update with sparse

realizations and simulated annealing. Section 6.4 presents the performance of the

tracking system based on Markov random fields and in particular, the performance

in terms of mean square error and tracking through occlusion before concluding in

Section 6.5.

6.2 Integration of Contextual Information

Contextual information is introduced in tracking to improve the accuracy of the par-

ticle filter. In particular, it provides robust recovery of tracking after occlusion. The

context provides Bayesian inference through Markov random fields. This section in-

troduces the handling of occlusion, shows the importance of contextual information

and presents the Markov random fields.

6.2.1 Occlusion Handling

Traditional Bayesian filtering does not provide a framework to occlusion handling,

which is of particular importance to ensure the robustness of object tracking. Occlu-

sion is defined as the total or partial lack of visual clues over an arbitrary period of

time on the object of interest. Because object tracking techniques rely upon visual

information in computer vision, an occlusion leads to uncertainty, and, in the worst

case, to the track loss. To handle occlusion, prior information is to be integrated

in the tracking system. Currently, four main approaches to occlusion handling have

been proposed. First, prior knowledge on the shape of the object has been used to
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achieve successful tracking through occlusion [276,57,15,87]. For instance, physical

constraints on the shape improve the fitting of the contour to the object of interest.

General Hough transform has also been employed to model the shape for template

matching [187]. Second, occlusion reasoning is applied to the object of interest.

A set of independent features are employed to solve occlusion with information

fusion [281]. Also, trees and semantics are used to describe the nature of the oc-

clusion with high-level track descriptors (e.g. split, merge, disappear) [108]. Third,

multi-cameras techniques handle occlusion by merging information from sources

with different angles of view of the scene [124, 254]. Fourth, dynamic linear and

nonlinear models have been used to estimate the state vector of the object during

occlusion [111]. Kinematic models are integrated in the tracker to estimate the

position of the object. The main advantage of this technique is that the intrinsic

dynamic of the shape is irrelevant to the recovery of the track; it can handle better

the occlusion of objects with large variation in shape dynamics. In all aforemen-

tioned techniques, visual inference is required to ensure the recovery of the track is

not due to chance; total occlusion is therefore precluded. The technique developed

in this chapter belongs to the latter category in that non-linear dynamic models are

catered for. However, our approach is based on local object behavior rather than

general kinematic models. We propose to use inference from a Markov random field

to estimate the dynamics of the object of interest under total occlusion. The object

is tracked in the traditional framework of particle filtering but total occlusion is

handled due to adequate modeling of the importance density. The contribution of

this chapter is the development of a parametric importance density model relying

on contextual information from previous behaviors through a Markov random field.

6.2.2 Importance of Contextual Information

Here, we present a simple scenario to illustrate the importance of contextual infor-

mation. Let us consider a person A living in her/his house and a person B who

has never been to the house before. Person A wants to switch off the light in the

living room. With visual clues and knowledge of the house, Person A would go

directly and switch off the light. Person B, with only visual clues, would also find

the switch. Now, let us consider the same scenario but A and B have to switch
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the light on in a dark room. Even without visual clues, A would still be able to

reach the switch thanks to the knowledge of the house acquired over time. Person

B, without visual clues and contextual knowledge, will rely on chance in the search

for the switch. However, if the same experiment is run in person B’s house, person

B would certainly find the switch and person A would likely fail. Two key aspects

to tracking can be inferred from this scenario:

1. Knowledge of the past is essential when visual clues are lacking (e.g. , in the

presence of occlusion);

2. Knowledge acquired through time provides local inference only.

These observations are corroborated by the results presented in [25] showing that a

local mixture model can better characterize the behavior of objects than its global

counterpart and that the integration of the neighborhood accelerates the learning of

the behavior. Figure 6.1 presents the various distributions of vehicle displacements

in a scene, depending on the context (e.g. straight line, T-junction, crossroads). For

each site of interest, the local pdf of the displacement is modeled by a mixture of

Gaussians. The feature vector is composed of the horizontal (dx) and the vertical

(dy) displacements. It is clear that the probability density functions vary largely

from one site to another. An accurate global representation of vehicle displacement

is unrealistic since the size of the feature vector is augmented with the position,

leading to a complex and cumbersome model.

6.2.3 Markov Random Fields

Markov random fields are an extension of Markov chains. The Markov chain is

a sequence of one-dimensional dependencies of random processes inheriting of the

Markov property. Markov random fields are of higher order and, therefore are

a mesh of dependencies instead of a chain. For this reason, the causality of the

Markov property is not transferable to MRFs and the dependency of a given ran-

dom variable must be redefined as a noncausal property. Let us first introduce the

framework of Markov random fields and, in particular, the notions of undirected

graph, neighborhood and clique.
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Figure 6.1 Representation of vehicle motion on a road network by local mixture of
Gaussians. The diversity of distributions prohibits the use of a global estimate. Instead,
local contextual information can be used to describe vehicle behavior.

Undirected Graph

An undirected graph Ω is a collection of N vertices, also called sites, S = {s1, .., sN}
and edges E = (si, sj){i,j}∈[1..N ]×[1..N ]. The graph is said undirected if and only

if (sj, si) = (si, sj). In visual object tracking, a graph can describe the inter-

dependencies among pixels in an image. For example, pixels of the same object

can present color similarities represented as dependencies. The undirected graphs

of interest in this thesis are arranged in a 2-D lattice forming a mesh over the image.

Neighborhood

The neighborhood ηsi
of a vertex si is defined as the set of vertices sj for which

there exists an edge (si, sj) from site si to site sj. It is a subset of Ω describing

the spatial contiguity of site si. A site cannot be a neighbor of itself, that is,

there cannot be an edge (si, si). Furthermore, the neighborhood of si must satisfy:

si ∈ ηsj
⇔ sj ∈ ηsi

. Consequently, the neighborhood of a site si in an undirected

graph is symmetric around the site since (si, sj) = (sj, si). Figure 6.2 displays

examples of neighborhoods.

Clique

A clique C is a subgraph of Ω in which every node is connected to every other node,
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s

(a) 4-Neighborhood

s

(b) 8-Neighborhood

s

(c) 12-Neighborhood

Figure 6.2 Examples of neighborhoods in a graph.

(a) (b) (c) (d) (e)

Figure 6.3 Examples of cliques for the 8-neighborhood. The entire set is composed of 8
cliques; the missing ones are rotations of the displayed cliques.

i.e.∃(si, sj),∀{si, sj} ∈ C. A clique can be composed of a single node or a subset

of the graph. Figure 6.3 displays examples of cliques. The pairwise cliques are of

particular importance in our study since they will be used in the Markov random

fields described hereafter.

Based on Fig. 6.1, we propose to model the distribution of the local feature vector of

an object with a parametric model that will later be used as the importance density

of the particle filter. The distribution is maintained to represent the local importance

pdf via a Gaussian Markov random field mixture (GMRFM) . Markov random fields

dispose of two desirable proprieties for the modeling of the importance density: local

estimation and integration of the neighboring information. Random fields are sets

of random variables Xs over an undirected graph representing dependencies between

sites. A random field R is defined over a set of sites Ω as R = {Xs,∀s ∈ Ω}. For

the purpose of our study, the sites are arranged in a 2-D lattice, representing the

pixel locations in the image or in a downsampled version of the image. Also, for the
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sake of conciseness, we use r to denote the realization of the field R = r.

Definition 6.1 R is a Markov random field on (Ω, η) if the probability of the real-
ization r depends only on the neighborhood ηs, i.e.∀s ∈ Ω:

Pr(rs|rΩ−{s}) = Pr(rs|rηs
) . (6.1)

The Hammersley-Clifford theorem defines the equivalence between a Markov ran-

dom field and a Gibbs random field. The probability density function in a Markov

random field is of the form

p(r) =
1

Z
exp

(

− 1

T
U(r)

)

, (6.2)

where

Z =

∫

exp

(

− 1

T
U(r)

)

dr . (6.3)

The temperature T is used during the learning phase for simulated annealing and

U(r) is the energy function. The normalizing constant Z is intractable in practice.

However, since p(r) will model the importance density, it needs to be known up to

a proportionality constant only. The energy function U(r) can take a large variety

of forms and be partially or fully dependent on the clique C. As mentioned before,

we restrict our study to pairwise cliques since the aim is to model the interaction

between two sites only. Without loss of generality, the energy function is decomposed

into a clique-wise potential Vc(r) and a site-wise potential Vηs
(r) such that

U(r) =
∑

c∈C

Vc(r) +
∑

s∈Ω

Vηs
(r) . (6.4)

The function Vηs
(r) carries spatial dependencies and Vc(r) models the local depen-

dencies among the sites of a clique. The clique potential Vc(r) is a function of the

clique c and the realization r.

6.3 Gaussian Markov Random Field Mixture

Because particle filters require samples to be easily drawn from the importance den-

sity and to reduce storage requirements, a compact and efficient representation of

the density p(r) is to be built. A practical representation of probability density
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functions is the Gaussian function where a few parameters characterize the distri-

bution estimate. Let θc represent the set of parameters θc = {µc,Σc}. A unimodal

pdf p(r) can be approximated by a Gaussian pdf p(r|θc). Consequently, the clique

potential Vc(r|θc) is defined as the Mahalanobis distance

Vc(r|θc) =
1

2
(r − µc)

TΣ−1
c (r − µc) . (6.5)

Furthermore, the spatial potential Vηs
(r|n) models the dependencies of the site s on

the neighborhood site n ∈ ηs. A penalty proportional to the square of the Euclidian

distance between s and n yields

Vηs
(r|n) =

(s− n)2

2σ2
, (6.6)

where σ is a scaling parameter. The spatial penalty gives more importance to sites

n that are close to s. The two inherent probabilities, namely the clique and spatial

probabilities, are defined as

Pc(r|θc) =
1

λc

exp

(

−Vc(r|θc)

T

)

, (6.7)

and

Pηs
(r|n) =

1

λn

exp

(

−Vηs
(r|n)

T

)

, (6.8)

where λc and λn are normalizing constants. The aforementioned assumptions yield

a Gaussian distribution to the MRF, leading to the so-called Gaussian Markov

random field (GMRF) . The density p(r|θc) ∝ exp (−U(r|θ)/T ) is a Gaussian dis-

tribution with spatial penalty on the neighborhood ηs. However, a single Gaussian

distribution narrows the scope of particle filters because it only provides a unimodal

estimate of the importance density. To address this shortcoming and maintain a

parametric representation of the importance density, we introduce the Gaussian

Markov random field mixture. Let Θ be the set of parameters of K GMRFs such

that Θ , {θ1, ...,θK}. The pdf of the Gaussian Markov random field mixture

p(r|Θ) is then defined as

p(r|Θ) =
K
∑

k=1

P (k)p(r|θc,k) . (6.9)

The distribution p(r|Θ) can be seen as a local spatio-temporal mixture of Gaussians

modeling the pdf of the random field R.
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6.3.1 Learning and Posterior Diffusion for Sparse Random
Fields

For the Gaussian MRF mixture to provide an accurate modeling of the importance

sampling, a learning phase is necessary where the set of parameters Θ is adjusted

so that the mean square error E[(RΘ − R)2] between the estimated random field

RΘ and the true random field R is minimized. Furthermore, the problem modeled

here presents the particularity of dealing with sparse realization of the random

field which requires a different approach to the field update. At a given time t

only a few sites lt, where objects are located, will provide new information. The

realizations are therefore composed of sporadic occurrences of random variables

Xs = xs localized in a limited number of sites lt ∈ Ωlt , where Ωlt ⊆ Ω, and #(Ωlt)≪
#(Ω)1. Consequently, the realization is reduced to rlt = {x1, ..,xlt}. The sparsity

of the random field allows the fast update of the estimated pdf p(r|Θ) for each

realization {xj : j ∈ lt}.

Markov random fields are traditionally updated by integration of neighboring in-

formation at site s. We propose in this chapter to updated the MRF by diffu-

sion of information at site s onto the neighborhood ηs. Recalling that, for MRFs,

s ∈ ηn ⇔ n ∈ ηs and that Vηs
and Vc are symmetric ensures the equivalence of the

two methods in terms of convergence to the true random field equilibrium. Figure 6.4

is an illustration of the two different approaches. The two methods are also equiva-

lent in terms of computation for fully populated realizations. However, when events

are sparse, diffusion avoids exhaustive and inefficient update of the random field.

Considering that each realization xj is independent, the MRF can be updated se-

quentially with the lt realizations. This results in the following equivalence for the

update of the MRF:

p(r|Θ)⇔ {p(xj|Θ) : j ∈ Ωlt} . (6.10)

It is worthwhile mentioning the case where the neighborhood of two or more real-

izations xj are not disjoint. In such case, the estimate is dependent on the order

of update. Although this does affect the transient state of R, it does not affect the

asymptotic convergence. A technique to circumvent the issue regarding the order of

1# denotes the cardinality of a set.
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(a) Integration (b) Diffusion

Figure 6.4 MRFs update with integration and with diffusion. With integration, the site
s is updated with the neighborhood ηs. With diffusion, the neighborhood is updated
with the local information at site s. Integration and diffusion are equivalent in terms of
convergence.

update is to work with non-pairwise cliques (e.g. cliques with three sites) where the

two events can be dealt with simultaneously. However, the non-disjoint case seldom

occurs and we decided to update the random field arbitrarily in that situation noting

that the convergence of the random field remains unchanged.

Similarly to Gaussian mixtures, we aim to estimate the maximum likelihood for

the set of parameters Θ. However, since the value of the state xj,t is not accessible

directly, the maximum a posteriori (MAP) criterion is used instead. The MAP crite-

rion is a regularization of the maximum likelihood with prior inference. It determines

the optimal value k∗ for the parameter index as k∗ = argmaxk[p(xj,t|Θt)]. The aim

is to build an online importance density p(xj,t|Θt) from the density p(xj,t|zj,t) at

each time step t and the set of parameters Θt−1 at time step t−1. Recalling that the

random variable Xj is not accessible, the realization xj,t is conditionally dependent

on the observation zj,t. The optimal realization x̄j of the random variable, in the

MSE sense, is given by the minimum mean square error (MMSE) x̄j,t = E[xj|zj]

which leads to the MAP k∗ = argmaxk[x̄j|θk],∀k ∈ [1..K]. Taking the logarithm

and noting that k∗ is independent of the spatial potential Vηs
yields

k∗ = argmax
k

∑

c∈C

Vc(x̄j,t|θk) . (6.11)
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Equation (6.11) defines the optimal index k∗ that minimizes the KL-divergence be-

tween the pdf p(xj,t|Θt) and the posterior density p(xj,t|zj,t). The expectation-

maximization (EM) algorithm has been extensively employed for this optimization

problem [66]. However, EM requires the storage of the full history xj,0:t which is

prohibitively costly. We thus opt for an online learning of the parameters Θ as for

the Gaussian mixture model (see Section 3.2). Also, the diffusion process enables

us to restrict the clique set C to pairwise cliques composed of the site s and the site

n ∈ ηs where the pdf is evaluated. Consequently, Eq. (6.11) can be further simplified

as

k∗
n = argmax

kn

(

(x̄j − µn)TΣ−1
n (x̄j − µn)

)

, ∀n ∈ ηs . (6.12)

6.3.2 Simulated Annealing

Derived from the Gibbs random field, the Markov random field enables simulated

annealing in order to increase the convergence rate to the true field R. The energy

function U(r) is scaled by the temperature T . A cooling process is applied in order to

improve the speed of convergence of the GMRFM to its true value. The temperature

is updated with the number of visits vj at site j according to a logarithmic cooling

schedule

Tj =
λT

log(1 + vj)
, (6.13)

where λT is an arbitrary constant. Since the update is processed by diffusion, the

visit count must integrate the spatial dependency probability Pηs
(s|n), such that

vs ← vs+Pηs
(s|n) for each visit. The cooling schedule allows a fast estimation of the

local pdf for the first visits and a fine estimation based on local context afterwards,

hence increasing the convergence rate to the true local pdf . This is crucial due to

the restricted and incomplete dataset available for behavior modeling.

6.3.3 MRF Parameters Update

As for the Gaussian mixture model in Section 3.2, the update of the parameters

follows an online technique instead of the traditional maximum likelihood to avoid

the costly storage of field realizations. The parameters µk∗,n and Σk∗,n, as well as the

mixing parameter αk∗,n = P (k∗) are sequentially updated with a first order difference
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equation for each realization x̄j,t. The parameters are updated with the clique and

spatial probabilities. Considering that the two probabilities are independent, the

learning rate is thus defined as

βn = λ
∏

i={s,c}

Pi = λPc(x̄i|θk∗,n) Pηs
(s|n) . (6.14)

where λ is an arbitrary constant representing the update rate. The parameters µk∗,n

and Σk∗,n and αk∗,n are then updated with first order difference equations

αk∗,n,t = (1− βn)αk∗,n,t−1 + βn , (6.15)

µk∗,n,t = (1− βn)µk∗,n,t−1 + βnx̄j,t , (6.16)

Σk∗,n,t = (1− βn)Σk∗,n,t−1

+ βn(x̄j,t − µk∗,n,t)
T (x̄j,t − µk∗,n,t) . (6.17)

6.4 Performance Analysis and Discussion

The Gaussian Markov random field mixture is tested on data to compare the perfor-

mance of the modeled importance density for particle filtering against traditional,

kinematic inference. First, the implementation of the tracking system is developed.

Second, the experimental procedure is described along with the set of data. Then,

the two algorithms are compared in terms of MSE and occlusion handling. Finally,

the limitations of the system are discussed.

6.4.1 Object Tracking System Implementation

The proposed algorithm uses a GMRFM to model the local importance density

from which samples are drawn. For each object tracked j, we assume that the set

of samples xi
j,t−1 and the set of weights wi

j,t−1 estimating the distribution of the

random variable Xj at time t− 1 are known.2 To maintain the recursive estimation

of the weights in Eq. (5.20), the likelihood p(zj,t|xi
t), the prior p(xj,t|xj,t−1) and

the importance density q(xi
j,t|xi

j,0:t−1, zj,1:t) must be defined. We consider the prior

2Note that the subscript j denotes the jth random variable while the superscript i denotes the
ith sample from Monte Carlo method.
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as the intrinsic evolution of the object, regardless of the contextual information,

i.e. , represented with kinematic model p(xj,t|xj,t−1) = N (xj,t, Axj,t−1, B
2). The

importance density is modeled with the GMRFM presented in Section 6.3 such that

q(xi
j,t|xi

j,0:t−1, zj,1:t) = p(xi
j,t|Θt), the update of Θt being conditionally dependent on

xi
j,0:t−1 and zj,1:t. The importance density is therefore local, integrating contextual

information through the neighborhood and the history of x and z.

The computation of the likelihood p(zj,t|xi
j,t) follows the procedure described in Sub-

section 5.3.2. However, the color pixels are taken from an elliptic zone defined by

the horizontal x-axis (bx) and the vertical y-axis (by) of the image and the incli-

nation (φ) of the ellipse. The resampling is also performed as in Subsection 5.2.2.

Algorithm6.1 presents a sequential pseudo-code of the proposed algorithm.

Algorithm 6.1 GMRFM Particle Filter Algorithm

Require: xi
0,j ∼ q(x0,j|z0,j) and wi

0,j = 1/NS

for j = 1 to l do
for i = 1 to NS do

xi
j,t ∼ q(xi

j,t|xi
0:t−1,j, z1:t,j) = p(xi

j,t|Θ)

wi
j,t = wi

j,t−1 γi
j,kp(zi

j,t|xi
j,t)

end for
Compute x̄t,j = E[xt,j|zt,j]
Normalize wi

j,t

Find MAP k∗
n,j with Eq. (6.12)

Compute learning rate βn from Eq. (6.14)
Update p(r|Θ) via parameter Θ with Eqs. (6.14)-(6.17)
Resample {xi

j,t, w
i
j,t} if necessary [9]

end for

6.4.2 Experimental Procedure

The Gaussian Markov random field mixture is tested on video sequences from various

semi-constrained environments which are typical of most video-surveillance scenar-

ios (e.g. , airports or shopping centers). A semi-constrained environment is defined

as any place where the trajectory of the object follows a well-defined path, whether

explicitly defined or not. The algorithm was tested on two different datasets, char-

acteristic of object tracking.
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Table 6.1 GMRFM Particle Filter Parameter Initializing Values

Symbol σ λ Ns λT µ
0

Σ0

Value 0.5 0.8 200 10 0 I

Vehicle Tracking Dataset The data presented in Subsection 4.6.1 is used in the

experiments. The tracking is challenging because total occlusions occur in the

data due to the severe distortion of the vehicle projection on the camera plane.

People walking in a courtyard The data represents 8 hours of video surveillance

footage of over 170 instances of people walking, running, cycling or wandering

around in a courtyard. The difficulty with this dataset lies in the range of

different behaviors and paths.

Unless stated otherwise, the algorithm is initialized with the parameter values sum-

marized in Table 6.1 where I is the identity matrix and 0 represents the zero-column

vector. The state vectors x0,j are manually initialized. The state vector x is com-

posed of the position (x, y), speed (ẋ, ẏ) and ellipse parameters (bx, by, φ) of the

object

x = [x, y, ẋ, ẏ, bx, by, φ]T . (6.18)

Evaluation of tracking quality is a challenge in its own right because the hidden

state is by definition not accessible. Usually, visual object tracking is evaluated

on the expectation of the posterior sample set x̄ = E[x|z], either subjectively by

visual inspection or objectively, through a measure comparing the estimated track

with a reference track. In all cases, the evaluation is performed on observations. In

this work, we propose to include the likelihood measure in the validation process

to discard false correct tracking due to the distribution of the samples; thereby

ensuring that the tracker is locked on the object. Correct tracking is achieved when

the MSE is below a given threshold (fixed to 5 in our experiments) and when the

likelihood is significant. We consider significant a jump in the value, from a residual

value to a value sustained through time. Likelihood is represented by a change of

color on the track: high likelihood corresponds to a white track, low likelihood is

black. The Gaussian Markov random field mixture particle filter algorithm (called

GMRFMPF for short) is compared with the CONDENSATION algorithm. They are
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Figure 6.5 Tracking rate (in %) versus the number of samples (N) for the GMRFMPF
and CONDENSATION algorithms.

differentiated by the choice of importance density: GMRFMPF uses the GMRFM

while CONDENSATION uses the prior.

6.4.3 Mean Square Error Analysis

The evaluation of the mean square error is crucial to determining the quality of

object tracking. The ground truth of the trajectory of 50 vehicles has been performed

manually to compare with the track extracted automatically. Tracks have been

extracted with the GMRFMPF and CONDENSATION algorithms. The GMRFM

has been trained with the rest of the dataset as described in Subsection 6.3.3. To

reduce bias in the tracking rate due to the stochastic nature of the particle filter,

each track is fed into the algorithms 10 times. The tracking rate versus the number

of samples N is displayed in Fig. 6.5 for the two algorithms. The proposed algorithm

shows a higher tracking rate over the entire range of sample number. Furthermore,

the GMRFMPF show a lower MSE on the correctly extracted tracks, characteristic

of a more stable tracking. The MSE for both algorithms is summarized in Table 6.2.
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Table 6.2 Comparison of the MSE for GMRFMPF and CONDENSATION

Particles Num 20 50 100 200 300 500

GMRFMPF 1.65 1.56 1.53 1.52 1.53 1.52
CONDENSATION 1.73 1.86 1.74 1.71 1.79 1.76

6.4.4 Performance with Total Spatio-temporal Occlusion

Total occlusion is challenging to resolve because visual clues are absent and the

likelihood, based on observations, is unreliable. However, when samples from the

importance density are efficiently spread according to contextual information, the

posterior probability distribution is better estimated. Figure 6.6 (p. 149) shows the

ability of GMRFMPF and CONDENSATION in handling a total occlusion of 90

frames. Figures 6.6(b) and 6.6(c) show the spread of samples through occlusion.

Samples efficiently span the area of high probability of object location with the GM-

RFMPF and the trajectory is eventually recovered (Fig. 6.6(d)), while it is lost with

CONDENSATION (Fig. 6.6(e)). The occlusion underwent 200 iterations for each

sample numbers to reduce the variability due to the particle filter algorithm. The

results are summarized in Table 6.3. It can be observed that the GMRFMPF consis-

tently outperforms the CONDENSATION algorithm. The first algorithm samples

particles more efficiently than the second one since the recovery rate of the object

after occlusion is superior with a particle set reduced by 25 times. Figure 6.7 (p. 150)

displays some results on people tracking for different occlusion scenarios: the recov-

ery of the object is increased with the GMRFMPF and successful tracking presents

a lower MSE, corroborating results in Table 6.2.

Table 6.3 Recovery Rate Under Occlusion

Particles Num 20 50 100 200 300 500

GMRFMPF 8.5% 20.5% 39% 63% 65.5% 65.5%
CONDENSATION 1% 1% 3.5% 4% 5% 8%

The case of inter-object occlusion, when an object occludes another one, is presented

here for completeness. This scenario is particularly challenging because objects can

share color attributes that are similar. In the case of vehicle tracking, windows and

windscreens as well as plate numbers can lead to drift in the tracker from one vehicle

to another. Two examples of total occlusion, along with the likelihood, are presented
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in Figs. 6.8 and 6.9 (p. 151 and p. 152). In Fig. 6.8(a), the likelihood decreases rapidly

because the appearance of the vehicle changes and occlusion occurs in region (1).

Between region (1) and region (2), there is total occlusion and the likelihood is

quasi-null. The vehicle reappears in region (3) and the track is recovered. The

same can be observed from Fig. 6.9(a), except that the tracker is distracted by the

occluding vehicles because the likelihood remains non-null, although smaller. After

recovery in region (2), the tracker is distracted by surrounding vehicles and shadows

in region (3). However, the particle sampling via the GMRFM proves to be efficient

and enables the recovery of tracks after over 100 frames of occlusion.

6.4.5 When Will the Algorithm Fail?

One limitation of the proposed algorithm is the lack of implicit path in the scenery.

In this context, the GMRF will show little improvement compared to CONDENSA-

TION because the random field R will not converge to a steady-state. Nevertheless,

the GMRF will not perform worse than the CONDENSATION algorithm without

a kinematic model because the GMRF is initialized to provide an importance sam-

pling q(xi
t|xi

0:t−1, z1:t) = p(xt|xt−1) = N (x, 0, B2). This situation occurs in open

environments, where object trajectories are not constrained. Tracking of people on

an esplanade or on a football pitch are practical examples. However, the number

of scenarios displaying a true open environment is very limited. For instance, it

can be argued that players on a soccer field follow some predefined paths due to

team strategies or, that pedestrians on an esplanade follow a path from one point

of interest to another, hence creating a semi-constrained environment.

The other limitation to the GMRF is the number of paths for a given site. If

this number exceeds the number of Gaussians modeling the local distribution, the

GMRF will provide a sub-optimal solutions because the importance density will not

be represented accurately. For instance, two modes can be modeled by one Gaussian

distribution. To overcome this issue, a GMRF with a large number of Gaussians or

a Dirichlet process could be designed. However, these solutions are computationally

intensive and prohibits any near-realtime tracking.
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6.5 Summary of Tracking Through Occlusion

This chapter has investigated the integration of contextual information for visual

object tracking. The trajectory of an object is highly correlated with the envi-

ronment in which it evolves. For instance, a pedestrian will follow paths, whether

explicit or implicit. We proposed to model the local context through the learning

of patterns via Markov random fields. The energy function is the sum of the clique

and the spatial potentials modeling the local behavior and the spatial dependencies

between sites, respectively. A mixture of Gaussian MRFs has been adopted to cater

for multi-modality in the pdf of the feature vector. Furthermore, since the realiza-

tions of the field are sparse (limited to a few objects), the Markov random field is

locally updated and an online estimation of the parameters is performed.

With the proposed technique, the learning of local patterns is ensured and provides

inference for the particle filter; the importance density is locally modeled and yields

a better distribution of the particles in the feature space. The results show that,

after learning the local distribution of feature vectors, the tracking of objects is

significantly improved, in particular through occlusion. More specifically, the MSE

of the particle filter is reduced for a given number of particles and the recovery of

tracks after large spatio-temporal occlusion is increased.
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Figure 6.6 Tracking with GMRFMPF and CONDENSATION through occlusion. With
the same initialization of the tracker (a), the importance density modeled with the GM-
RFM provides a better span of samples (b) than with CONDENSATION (c), resulting in
a recovery of the track (d) after 90 frames. CONDENSATION does not recover from the
occlusion (e).
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Figure 6.7 Examples of pedestrian tracking through occlusion with GMRFMPF and
CONDENSATION. For each scenario (row), the GMRFMPF (left column) provides ac-
curate tracking throughout the sequence while CONDENSATION (right column) fails
to recover tracking or provides poor quality tracks for further processing (e.g. abnormal
behavior detection).
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Figure 6.8 Vehicle tracking through large spatio-temporal occlusion. (a) The likelihood
shows the transitional occlusion (from partial to total) of the object (1→2), the 100 frames
of total occlusion (2→3) and the recovery of the track (3). (b) Tracking initialization. (c)
Tracking through occlusion. (d) and (e) Tracking recovery.
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Figure 6.9 Vehicle tracking through large spatio-temporal occlusion. (a) The likelihood
shows the total occlusion of the object (1→2), the recovery of the track (2) and distraction
by visually similar objects and shadows (3). (b) Tracking initialization. (c) Tracking
through partial occlusion. (d) and (e) Tracking recovery.



Chapter 7
Abnormal Behavior Detection with

Markov Random Fields

7.1 Introduction

Abnormal behavior detection (ABD) via video sequence analysis has been an active

topic of research over the last decade in computer vision, video surveillance and

security because of the need for automation of behavior supervision. The neces-

sity to increase security around or inside buildings has become a major priority for

governments and private businesses. Airports, train stations, supermarkets, hotels

or even road traffic surveillance companies are increasing their demand for ABD

solutions, either to secure their infrastructure or to ensure the safety of their per-

sonnel and customers. In the long term, the outcomes of ABD developments are of

the utmost importance, leading to the automatic detection of abnormal events and

the notification of the relevant authority. ABD will eventually replace the passive

video surveillance performed by a human operator nowadays. However, detecting

abnormal behavior remains a challenging task because it is a high-level process.

In this chapter, we develop a system to detect abnormal behavior from vehicle tracks

based on the Markov random fields presented in Chapter 6. The track of vehicles

from the traffic surveillance dataset, extracted with the projective Kalman filter, are

fed into the system to generate a map of displacements modeled by the Gaussian

Markov random field mixture. The learning is performed by a stochastic clustering

153
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algorithm to ensure a good estimate of the displacement density modes. The aim

of the system is to detect abnormal behavior on highways in the form of people

walking, running or cycling on the road. Section 7.2 presents some of the challenges

encountered during the detection, starting with the definition of abnormal behavior

in object tracking. Section 7.3 briefly reviews the work on abnormal behavior detec-

tion in object tracking. Section 7.4 introduces the proposed technique for behavior

modeling. In particular, the stochastic clustering algorithm is developed in Sub-

section 7.4.3. Section 7.5 focuses on the analysis of the parameters for the proposed

system, compares the proposed contextual approach with its global counterpart and

with the Kohonen self-organizing map, another contextual approach. Section 7.6

uses the tracks from the projective Kalman filter to evaluate the performance of the

system on abnormal behavior detection before concluding in Section 7.7.

7.2 Abnormal Behavior Modeling

Detecting abnormal behavior involves making high-level decisions from low-level in-

formation. There are three main challenges to ABD. First, behavior depends on

both endogenous and exogenous variables describing the object. Only exogenous

variables are available. Second, the definition of abnormality is subjective and de-

pends on non-measurable factors such as culture. Third, technical constraints reduce

the accuracy of low-level processes, making final, high-level decision on abnormal

behavior detection a challenge.

Endogenous and Exogenous Variables

Accurate modeling of the behavior is a crucial step for ABD. The behavior of a per-

son is defined by endogenous and exogenous variables. Endogenous variables display

the behavior of the object to internal stimuli. Among others, feelings or cultural dif-

ferences have a direct impact on the behavior of a person. For instance, the walking

side on a path is directly influenced by the country of origin (e.g. , Commonwealth:

left; Europe, except England: right). Although endogenous variables are undoubt-

edly accountable for an important part of the behavior description, they are not
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directly accessible in video sequences and, therefore, cannot be used to model the

behavior. Exogenous variables are more accessible because they are external to the

person and thus observable. Exogenous variables range from the environment set-

tings to the shape or the trajectory of the object. While this is clearly a limitation

to the ability of behavior modeling, only exogenous variables are used to model the

behavior due to the lack of information available on endogenous variables.

Subjectivity of Normal Behavior

The character of abnormality for a behavior is subjective to appreciation; a specific

action can be considered as normal in some situations and abnormal in others. For

example, running in a library is interpreted differently from running in a stadium.

This leads to the following questions regarding the definition of abnormal behavior:

how are the same type of actions interpreted in different settings? is it necessary to

understand the context in which the action takes place? If yes, what is the minimum

set of variables that should be taken into account? Although these questions are

fundamental to ABD, it is difficult to get answers based on concrete and tangible

criteria. Zhong et al. considered unusual events as “rare, difficult to describe, hard

to predict and [can be] subtle” [291]. Accordingly, they defined two criteria for an

unusual event. First, it must be hard to describe because it is unforeseen. Second,

it must be easy to verify because it does not follow the same behavior as usual

events. The definition of an unusual event can be stretched to abnormal behavior

in the sense that it is hard to describe. However, the hypothesis of easy verification

is too restrictive because it does not take into account the potential incomplete

representation of the behavior in case of small training sets. The second condition,

justified in the framework of usual/unusual event detection, cannot be applied to

abnormal behavior detection. Here, an ab-normal behavior is defined as a behavior

that diverges from normality. In terms of classification, the abnormal behavior is an

outlier in the sample set. This generic definition offers the advantage of discarding

any subjectivity in the discrimination of normal/abnormal behavior because it does

not depend on the nature of the features modeling the object or the completeness

of the data set.
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Technical Constraints

Abnormal behavior is a high level task dependent on prior processing of the data. Er-

rors generated during the capture of the sequence (e.g. , camera jitter, compression,

camera settings, etc.) or during lower level processing (e.g. , background subtraction,

trajectory extraction, and rounding errors) add up to provide noisy measurements

on the trajectory. Also, detecting abnormal behavior requires a training set of nor-

mal behaviors, a test set of normal behaviors and a test set of abnormal behaviors.

While the first 2 are easily accessible, the third one is rare and usually smaller than

the first two which results in an imbalanced dataset. The sparsity of data for the

abnormal behavior datasets is the primary reason for training systems on normal

behavior and considering as abnormal all behaviors rejected by the system.

7.3 Related Work

Abnormal behavior detection is based on low-level tasks and an optimal solution

is yet to be found. The plethora of techniques available to perform the low-level

tasks does not allow a common framework for ABD. It is therefore crucial to define

the major steps of the system in order to perform abnormal behavior detection.

There are numerous studies on abnormal behavior detection in the literature; only

an overview is presented in this section. The reader is referred to the survey on

visual surveillance and behaviors proposed by Hu et al. for a comprehensive review

on abnormal behavior detection [106]. This section presents a review of existing

techniques to address the four main steps in ABD: object descriptor extraction,

complexity reduction, activity modeling and behavior classification.

7.3.1 Object Descriptor Extraction

Abnormal behavior detection is based on the distribution analysis of objects descrip-

tors. The descriptors are features extracted from the video sequences to uniquely

identify an object and characterize its behavior. Most descriptors utilized for ABD

are drawn from visual object tracking. They include the kinematic or trajectory

information such as position and speed [36, 62, 117, 121, 161]. They are of primary

importance because they define the object track which characterizes the behav-
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ior at a low computational cost, hence their widespread use. Global positioning

system coordinates have also been used for the same purpose [132]. Higher-level

features have been employed to characterize an object. For example, Xiang and

Gong not only included kinematic information but also took into account the size

and first order moments of the object blob in the feature vector to provide better

discrimination [271]. Templates and silhouettes are similarly processed to draw

statistics by calculating the distance to the blob center or by projection on orthog-

onal axes [99, 268]. Histograms are also widely used to gather information on the

distribution of features, and in particular, color and edge histograms [47, 147, 263].

Finally, transforms provide a convenient tool to describe the feature vector distribu-

tion. Time-frequency transforms such as discrete wavelet transform [292] or Fourier

transform [62, 268], R-transform [261] and projections [99, 240] result in a denser

representation of the descriptor distribution, thus simplifying the representation.

7.3.2 Activity Modeling

There are three types of activity modeling in the literature: stochastic modeling,

graph modeling and holistic modeling. Stochastic modeling measures the probability

that the object moves from one state to another in a feature space. Hidden Markov

models are very convenient for modeling this transition [63,261,288]. Some variants

are also used to change models throughout time (e.g. , switching semi-Markov mod-

els [73]). Sequential Monte Carlo methods also provide accurate techniques to model

the activity [59]. In particular, Vaswani et al. proposed to estimate the transition

via particle filtering [251,252]. Bayesian networks were introduced to model activity

because they have the advantage of both being structured as a graph and having

probabilistic transition between nodes [36,47,271]. A deterministic graph was pro-

posed by Joo and Chellappa, called attribute grammar, to categorize each type of

action [123]. Zhong et al. introduced crowd energy, in a holistic method [292]. The

energy is calculated through the Lucas-Kanade vector flow. A weighted average

of the squared flow field represents the energy of the scene. Therefore, the energy

in the image is analyzed without the explicit tracking of the object and abnormal

behavior is detected via abnormal energy patterns. Cui et al. proposed to model

pixel-wise activity via pixel change frequency and pixel change retainment [59].
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7.3.3 Complexity Reduction

Complexity reduction is necessary when the feature vector consists of a large num-

ber of descriptors to avoid the curse of dimensionality. Without complexity re-

duction, the feature space dimension is high and the distribution of the feature

vector is sparse. In the literature, base change, clustering, support vector machine

and neural networks are utilized for this purpose. Space transformations aim to

find a space where the feature distribution is better delineated. Xiang and Gong

used the eigendecomposition, and Vaswani and Chellappa [249], and Calderara et

al. [35] implemented singular value decomposition (SVD) to reduce the complexity

of the feature vector distribution [271]. Principal component analysis also offers

an alternative by setting an orthogonal base onto which the feature vector can be

projected [268]. The principal components retain most of the signal energy, i.e. ,

most of the information; the remaining components can be discarded, hence re-

ducing the dimensionality of the feature vector. Principal component null space

analysis (PCNSA) provides the approximate null space of the feature vectors for

classification [250]. Clustering reduces the complexity of the distribution because

it attributes a class to each feature vector. A variety of clustering algorithms have

been proposed, ranging from deterministic k-means [204] and graph clustering [291]

to probabilistic clustering such as dynamic hierarchical clustering [117] or spectral

clustering [6]. Finally, SVMs [47, 277] and neural networks [120] have been imple-

mented and, in particular, self-organizing maps have been used to assign a class to

data in the same fashion as the k-means clustering algorithm [62,151].

7.3.4 Behavior Classification

Behavior classification aims to determine whether a behavior is normal or abnormal.

The classification is often narrowed to a binary decision with possibly a confidence

interval on the decision. In some cases, complexity reduction and classification are

done in a single step. Typically, SVMs and neural networks provide classification

along with complexity reduction. Similarity measures, thresholding, maximum and

Bayesian probabilities are utilized in abnormality decision. Yin et al. determine

abnormal behavior via log-likelihood [277] while Vaswani et al. relied on the al-
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ternative expected log-likelihood [249, 252], Kullback-Leibler [251] or Mahalanobis

distance [250]. All these measures determine the distance between a feature vec-

tor and the reference descriptors. Bayesian inference also provides information to

evaluate the probability of abnormality [47,73]. Eventually, thresholding is applied

to obtain a binary decision [6, 74, 271]. Zhong et al. implemented a time-varying

threshold to cope with jumps in the crowd energy [292]. Finally, when the ab-

normal behavior detection system produces a vector output, techniques such as

maximum a posteriori and maximum-likelihood can be applied [62,151].

7.4 Modeling Behavior with MRFs

The technique presented in this section focuses on trajectory-based ABD, that is,

abnormal behavior detection concerned with modeling the density of feature vectors

consisting of the object coordinates and behavioral features such as vector flow, ob-

ject size, color pixels, etc. Let us consider the feature vector as a random variable

X with realization x and further refine the analysis by differentiating between the

spatial component S with realization s and the behavioral component φ with real-

ization ϕ. Therefore, the feature vector can be rewritten as X = {S, φ}. Markov

random fields provide a convenient framework for the representation of the feature

vector. As seen in Subsection 6.2.3, the non-causal dependency amongst sites allows

a fast and accurate learning of patterns by integration of neighboring information.

It is therefore possible to model the behavior of objects through Markov random

fields in order to recognize abnormal events.

7.4.1 Feature Vector Dimensionality Reduction

Let us introduce the general framework of abnormal behavior detection before dis-

cussing the motivations for dimensionality reduction. It was illustrated in Subsec-

tion 6.2.2 that the spatial configuration of a scene was predominant in the behavior

of an object. Suppose that the problem of ABD can be described as a Markov

random field; one can determine the density p(r) of the feature vector with condi-

tional dependencies on the neighborhood. Furthermore, the analysis of the marginal

density components provides an insight into the effect of the spatial configuration
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Figure 7.1 Example of marginal densities for the feature vector [x, y, dx, dy]. (a) Marginal
density of the spatial component s representing the position of objects in the scene; (b)
Marginal density of the behavioral component ϕ, representing the density of the displace-
ment of objects in the scene (vector flow).

on the density of the feature vector. Let us introduce the definition of the spatial

marginal density pS(s) and the behavioral marginal density pφ(ϕ):

pS(s) =

∫

Dϕ

p(r) dϕ =

∫

Dϕ

p(s,ϕ) dϕ ; and (7.1)

pφ(ϕ) =

∫

Ds

p(r) ds =

∫

Ds

p(s,ϕ) ds . (7.2)

where Ds and Dϕ are the respective definition domains of the components S and

φ. The marginal densities provide a representation of the spatial and behavioral

component spans over their respective subspaces, namely Ds and Dϕ.

The sparsity of the spatial component due to the constraints of the environment

on the objects motivates the distinction between behavioral feature and spatial

features. The behavioral component is a priori dense. Figure 7.1 shows an example

of marginal densities in a vehicle traffic sequence. The set of object position is sparse

and clearly follows specific patterns (called routes) while its behavior, represented by

the vector flow, is dense. Consequently, the spatial marginal density p(s) is difficult

to approximate and the error in the estimation is large. In contrast, the behavioral

marginal density p(ϕ) is usually dense and can be estimated accurately. Although

the spatial component of the feature vector accounts for most of the estimation error
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on the density, it plays an important role in the analysis of the behavior because it

provides information on the local environment and, thus, has to be considered for

abnormal behavior detection. Markov random fields cater for the distinct roles of

the two components of the feature vector since the energy function can be expressed

as a combination of the behavioral component and the spatial component with

different degrees of dependency. The spatial and behavioral components are handled

simultaneously by Markov random fields, reducing the complexity of processing.

A local characterization of the behavior yielding context-based abnormal behavior

detection is therefore possible.

7.4.2 Integration of Contextual Information in the MRF

In trajectory-based tracking, the state of a feature vector xt at time t can be con-

sidered smooth and be recursively updated from the state at xt−1. As noticed by

Johnson and Hogg [121], the feature vector undergoes a small variation from time

t− 1 to time t:

xt = xt−1 + fs(ϕ) , (7.3)

where fs(ϕ) is a local function of the behavioral component. Such a function is dif-

ficult to estimate directly because there is no knowledge of behaviors in the scene.

Instead, we propose to approximate the recursive relationship in Eq. (7.3) with a

Markov random field to capture the probability density in both the spatial and the

behavioral domains. The MRF therefore models the necessary knowledge pertaining

to the local function fs(ϕ). The density p(r) is modeled with a parametric estimate

p(r|Θ), recursively updated from the knowledge accumulated over time. The prob-

ability density of the field is therefore represented by a mixture model comprising

K components p(r|θc,k) such that

p(r|Θ) =
K
∑

k=1

P (k)p(r|θc,k) . (7.4)

The mixture model is identical to the one proposed in Eq. (6.9). Following the

reasoning in Subsection 6.3.1 and because the purpose of MRF is to estimate the

behavior of objects from trajectories, that is, the collection of states X = {x0, ..xt},
the update of the field for sparse realization is adopted. However, the clique po-

tential, being critical in the learning and the detection of abnormal behavior, will
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be further investigated in Section 7.5. The two clique potentials of interest are the

Euclidian distance and the Mahalanobis distance:

Vc(r|µc) =
1

2
(r − µc)

T (r − µc) , (7.5)

Vc(r|θc) =
1

2
(r − µc)

TΣ−1
c (r − µc) . (7.6)

The temperature T in Eq. (6.2) is replaced by stochastic learning taking place outside

of the density estimate p(r|Θ). Consequently, an additive shaking process substi-

tutes the relaxation method provided by simulated annealing. The Markov random

field represents the probability density of the behavioral component for a particular

spatial component. Because objects in the same neighborhood tend to have the

same behavior, the feature vectors at neighboring locations are highly correlated.

Based on this hypothesis, we propose an algorithm that integrates information from

a local neighborhood in order to update the mixture model.

7.4.3 Stochastic Clustering Algorithm

The update of the parameters for the Gaussian Markov random field is performed

according to the stochastic clustering algorithm introduced by Bouzerdoum [28].

The density p(r|Θ) is temporally adjusted via the update of the set of parameters

Θ = {θ1, ..,θK} with θk = {µk,Σk}. The parameter µk represents the center

(mean) of a cluster while Σk is the covariance matrix of the available samples be-

longing to the cluster. A stochastic procedure is adopted to allocate the clusters

in the feature space for neighboring sites n. This algorithm is similar in nature

to a deterministic algorithm. First, the affinity of an incoming feature vector to

each cluster is computed. Second, the winning cluster is determined by maximum-

likelihood. Third, the winning cluster is updated with the new feature vector. The

stochastic procedure differs in that a stochastic value, drawn from a normal dis-

tribution, is added to the affinity and acts as a shaking process. The competitive

learning process is defined as follows. Consider the cluster center affinity yk,n to the

incoming feature vector xi:

yk,n = Pc(xi|θk,n) + rk,n, (7.7)
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where rk,n is a centered normal random variable with standard deviation sk,n and

Pc(xi|θk,n) = λ−1
c exp (−Vc(xi|θk,n)) is the clique probability. The winning cluster

ℓ∗ is determined by competitive learning as:

ℓ∗ = argmax
k

(yk,n) . (7.8)

Assuming the spatial dependency of the neighboring sites follows a normal distri-

bution, the spatial probability is defined as Pηs
(xi|n) = λ−1

ηs

exp (−Vηs
(xi|n)). The

update rate α of the field parameters is defined as

αn = λPc(xi|θℓ∗,n) Pηs
(xi|n) . (7.9)

The mixing component of the winning cluster is incremented with the spatial prob-

ability

Pn(k)← Pn(k) + Pηs
(xi|n) , (7.10)

and the mixing components P (k) are renormalized. The mean µℓ∗ of the winning

cluster is updated by a first-order difference equation with learning rate α

µℓ∗,n ← (1− αn) µℓ∗,n + αn xi , (7.11)

and the covariance matrix Σℓ∗,n corresponding to the cluster center µℓ∗,n is updated

as follows:

Σℓ∗,n ← (1− αn)Σℓ∗,n + αn (xi − µℓ∗,n)T (xi − µℓ∗,n) . (7.12)

As the cluster learns, the standard deviation of the random variable rk,n in Eq. (7.7)

is reduced to allow convergence. The cooling schedule is performed by a counter

cℓ∗,n incremented with the spatial probability Pηs
(xi|n)

cℓ∗,n ← cℓ∗,n + Pηs
(xi|n) , (7.13)

and the standard deviation of the shaking process is updated as follows:

sℓ,n = s0/cℓ∗,n . (7.14)

The “shaking” process introduced in the clustering algorithm improves the conver-

gence of the cluster centers to the modes of the density [28]. Indeed, because of

the on-line nature of the learning algorithm, the initialization of the center value is

critical. For example, if the center is initialized on an outlier, a standard learning
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algorithm may not converge to a relevant mode of the density. It should also be

noted that if the number of outliers increases, the stochastic algorithm performs

better in its ability to find the cluster center [28]. In such a case, the standard

deviation rate of decrease can be lowered to allow more shaking in the learning

phase. This provides a better convergence of the parameters µℓ∗,n to the modes; on

the other hand, the convergence will be slower. With the randomness introduced

by the stochastic clustering algorithm, the cluster center is shifted around until the

number of samples is large enough for an accurate estimation of the mode position.

7.5 Analysis of the Stochastic Learning Algorithm

on Synthetic Data

This section is dedicated to the evaluation of the stochastic learning algorithm

for different parameters and clique functions. The stochastic learning algorithm

is tested on synthetic data to detect abnormal behavior. The scope of abnormal

behavior is narrowed in this section to the detection of drivers under the influence of

alcohol on highways. After tuning of the parameters, a first experiment is conducted

to compare the performance of the local behavior modeling with MRFs and the

global behavior modeling with a Gaussian mixture model. A second experiment

aims to evaluate the performance of the stochastic learning algorithm versus the

Kohonen self organizing map.

7.5.1 Experimental Setup

The system is tested on synthetic data modeling the behavior of driving under

the influence of alcohol as abnormal behavior. Synthetic data is used due to the

difficulty of obtaining real data. It has been shown that consumption of alcohol to a

rate of 0.05% of breath alcohol content (BAC), the standard limit in most European

countries, increases the variance in trajectory by 3.2 on average [41, 157]. For the

experiments, different scenarios of car flows are generated representing typical car

trajectories; e.g. , roundabouts, intersections crossing, etc. An example of sequence

used for the simulation is displayed in Fig. 7.2. The set of data is divided into 3

subsets of 11,900 samples (feature vectors), each representing 50 tracks of 238 steps.
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Figure 7.2 Example of generated vehicle tracks used in the experiments. The synthetic
sequences are generated on road maps in order to provide realistic scenarios; e.g. , inter-
sections, roundabouts, turns, etc. The dots represent cars on the road. From left to right :
frames 10, 14, 18, 22 and 28.

Two sets of trajectories with variance equal to 2 are used to train and test the

system on normal behavior. The third set with variance equal to 6.4 is used to test

abnormal behavior. The algorithm described in Section 7.4 is tested with a feature

vector x composed of a spatial component s (position) and a behavioral component

ϕ (vector flow)

x =





s

ϕ



 =















xt

yt

xt − xt−1

yt − yt−1















, (7.15)

where x and y are the cartesian coordinates of the object position.

The criterion of abnormality is of primary importance in the evaluation of behav-

ior. There are two different approaches for estimating abnormal behavior from the

stochastic learning algorithm. The first one is to consider that the Markov random

field models the density of normal behavior, i.e. each component of the mixture

model contributes to the modeling of the density at site s. In such a case, the

behavior is classified as






p(r|Θ) > T → “normal” ,

p(r|Θ) ≤ T → “abnormal” ,
(7.16)

where T is a constant threshold. The estimation of the probability density p(r|Θ)

determines whether a behavior is abnormal or not. The higher the probability is,
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the higher are the chances for an object to have a normal behavior. Indeed, the

probability is high when the feature vector fits well the model, that is, when the

object behavior is predictable. On the contrary, low probability means the behavior

is unpredictable, hence considered as abnormal.

A second approach consists in thresholding the clique probability, i.e. the distance

of the feature vector x to the winning cluster ℓ∗ as follows






Vc(x|.) ≤ T → “normal” ,

Vc(x|.) > T → “abnormal” ,
(7.17)

where Vc(x|.) represents either the Euclidian or the Mahalanobis distance. The

components of the mixture model are considered independently here. Indeed, the

normal or abnormal character of a behavior is estimated based on a unimodal hy-

pothesis. While the first approach considers the fit of the feature vector to the entire

density, this approach rather estimates the fit to the closest cluster in terms of clique

potential Vc(x|.). The definition of a normal and abnormal zone for each component

of the model motivates such an approach. Here, each mode of the density models

a possible behavioral transition, and then only, the abnormality test is carried out.

The two approaches are fundamentally different in the essence of abnormal behavior

detection.

7.5.2 Distance Measure Selection

The performances of the two different techniques are compared in Figs. 7.3 and

7.4 with the two different clique potentials Vc(x|θ) and Vc(x|µ), respectively. The

displays represent the correct detection rate versus the false detection rate (ROC

curves) for different values of the parameter σ2 for the spatial potential (see Sec-

tion 6.3) and for the two definitions of abnormal behavior introduced in Eqs. (7.16)

and (7.17). The top rows display the ROC curves with the implementation of the

Euclidian distance Vc(x|µ) and the bottom rows with the implementation of the Ma-

halanobis distance Vc(x|θ), i.e.when the covariance matrix is taken into account.

The figures show that the correct detection rate for a given false detection rate in-

creases with the value of σ2. Indeed, the larger the value of σ2 is, the more weight

neighboring locations have in the estimation of the density. In general, this rate also
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(c) σ2 = 0.1

Figure 7.3 ROC curves for the stochastic clustering algorithm and for abnormal behavior
detection based on distance from the cluster for different values of neighborhood variance.
Left column: Euclidian distance ABD-based; right column: Mahalanobis distance ABD-
based.
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(b) σ2 = 0.5
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(c) σ2 = 0.1

Figure 7.4 ROC curves for the stochastic clustering algorithm and for abnormal behavior
detection based on probability density p(r|Θ) for different values of neighborhood variance.
Left column: Euclidian distance ABD-based; Right column: Mahalanobis distance ABD-
based.
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increases with the number of iterations on which the system is trained. However,

the right column of Figs. 7.3(c) and 7.4(c) present a decreasing correct rate with the

number of iterations. This is due to the faster learning of the stochastic algorithm

with the Mahalanobis distance. Indeed, it can be seen that the number of iterations

has less influence on the ROC curves when the Mahalanobis distance is implemented

than when the Euclidian distance is. The degradation of the performance displayed

in the right column of Fig 7.3(c) is imputed to over training of the system with

normal behavior. Even though the Mahalanobis distance has the desirable property

to scale the density of each mixture component, it decreases the performance of the

algorithm when trained with a large number of iterations. Indeed, the covariance

matrix does not converge to its true value because the algorithm is trained with sam-

ples of the normal behavior subset and not the entire true set, which is not known.

With the Euclidian distance, the covariance matrix is ignored and the number of

iterations fine tunes the cluster center. The implementation of a variable variance

σ2 addresses the problem of over training. Setting the variance to be large for the

first iterations increases the influence of the neighborhood on the estimation of the

density; the update of the mixture component parameter is accelerated providing a

fast convergence with few iterations. The neighboring variance is then reduced with

learning such that σ2 ← σ2/(1 + c), where c is the counter defined in Eq. (7.13).

The reduction of the variance limits the over training as shown in Fig. 7.5.

The comparison between Fig. 7.3 and Fig. 7.4 show that the cluster distance ap-

proach provides slightly better results than the probability density approach. The

detection of abnormal behaviors as normal is accountable for the decrease in perfor-

mance. Indeed, a behavior deemed to be abnormal with regards to each cluster can

be considered as normal when the overall probability density is considered because

the probabilities of belonging to each component add up. The poor results shown

in Fig. 7.4(c), bottom row, corroborates this comment: the more the neighborhood

is integrated in the density, the more components will be added up, leading to an

increase of false detection rate for a given correct detection rate.
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Figure 7.5 ROC curves for the stochastic learning algorithm based on the Mahalanobis
distance measure. Top: implementation with a fixed neighborhood variance σ2 = 1.
Bottom: implementation with a variable variance.
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Figure 7.6 ROC curves of stochastic learning algorithm for abnormal behavior detection.
Comparison between the local implementation and the global implementation.

7.5.3 Performance Analysis

The algorithm is tested on the dataset described in Subsection 7.5.1. The stochastic

learning algorithm using the Mahalanobis distance with a variable rate σ2 is im-

plemented. Also, since ABD based on the entire density increases the computation

load and does not improve the results, the detection based on distance is imple-

mented. The results displayed in this subsection were run on the entire dataset for

10 iterations.

Global versus Local Stochastic Clustering

In this subsection, we propose to compare the performance of the local stochastic

learning implemented through the Markov random field with its global counterpart,

a mixture of Gaussians modeling the entire feature space as proposed by Johnson

and Hogg in [121]. The global stochastic learning consists of a set of 714 clusters.

The feature vector x, for the global approach, is composed of the spatial and the

behavioral components. Figure 7.6 presents the ROC curve for both implementa-

tions. It is clear that the local approach performs better for the entire range of false

detection. For instance, a false detection rate of 10% leads to a correct detection

rate of 39% for the global approach and 89% for the local approach. The latter

performs better because the Markov random field integrates spatial and behavioral
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dependencies in a common framework.

For the global approach, an error is introduced during the estimation of the marginal

spatial density pS(s). Indeed, for a given number of clusters, the global approach

shows a larger average distance between the cluster centers and the feature vectors

than the local approach. The global approach fails to reach a correct detection rate

of 90% for a false detection rate of 40%. The inadequate estimation of local feature

densities is mostly responsible for such a low performance. The strength of our

abnormal behavior detector resides in its ability to model the normal behavior from

an incomplete dataset. Indeed, in car traffic surveillance, a large and complete set

of training data is not always available. It is then critical that the system adapts

quickly. The proposed method is particularly well suited to such a scenario due to

the diffusion of probability density modes to neighboring sites.

Local Distribution Learning vs. Self Organizing Maps

The proposed algorithm is compared with the self organizing map (SOM) developed

by Dahmane and Meunier [62]. The Euclidian distance is implemented in the clique

potential and the behavioral component of the feature vector is taken as the vector

flow. The feature vector for the SOM is as in Eq. (7.15). SOMs have proven to give

good results on abnormal behavior detection because of their property of topology

conservation [62,151]. This characteristic is particularly desirable when the feature

vector is based on position since the neighborhood of the winning neuron is updated

with the feature vector. The inclusion of the neighborhood in the modeling pro-

cess confers the proposed approach with the topology advantage of SOMs, whilst

decreasing the feature vector size by the dimensionality of the spatial coordinates.

The performance of the proposed algorithm is compared to that of a SOM which

models the global probability density. The proposed approach models the local

probability density with a fixed number of clusters K; thus, the total number of

clusters required is K × Ns, with Ns being the number of sites. For the SOM, the

number of neurons is h×w where h and w are the height and the width of the map.

For comparison purposes, the SOM is composed of 729 neurons (size [27× 27]) and

the proposed algorithm is trained with 714 clusters (K = 3 and NS = 238).
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Figure 7.7 ROC curves for the proposed technique and the SOM.

Table 7.1 Correct ABD Rate with MRFs

False Detection 7.5% 10% 12.5% 15% 17.5% 20%

238 clusters 76.8% 83.5% 86.0% 88.0% 89.2% 90.4%
476 clusters 77.7% 85.6% 89.7% 92.0% 93.6% 94.9%
714 clusters 81.0% 89.1% 92.9% 94.7% 95.6% 96.5%
952 clusters 81.7% 89.9% 94.0% 96.2% 97.1% 97.5%
1190 clusters 82.7% 90.2% 95.5% 98.0% 99.0% 99.3%

Figure 7.7 displays the ROC curves of both algorithms. It can be inferred that the

proposed algorithm gives better performance, for correct detection rates of 60% and

higher. Note that a high rate of correct detection takes precedence over low false

detection in most applications. The SOM and the proposed method have also been

compared for different number of clusters/neurons; the results are presented in Ta-

bles 7.1 and 7.2. The detection rate increases with the number of clusters/neurons

for a given false detection rate in both cases. However, the local approach system-

atically outperforms the SOM, except for a false detection rate of 7.5% with 1190

clusters.
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Table 7.2 Correct ABD Rate versus Size of SOM

False Detection 7.5% 10% 12.5% 15% 17.5% 20%

Size [15 16] (240 Clusters) 50.5% 55.6% 61.1% 64.7% 68.2% 70.6%
Size [22 22] (484 Clusters) 63.3% 67.7% 71.6% 74.4% 77.1% 79.4%
Size [27 27] (729 Clusters) 64.6% 69.9% 73.9% 76.7% 79.6% 82.0%
Size [31 31] (961 Clusters) 81.5% 85.0% 87.6% 89.3% 90.7% 91.8%
Size [34 35] (1190 Clusters) 85.8% 89.6% 91.7% 93.2% 94.3% 95.0%

7.6 Abnormal Behavior Detection on Highways

This section is dedicated to the evaluation of the system developed in Section 7.4 on

real video sequences of highway traffic. The challenges encountered with vehicle traf-

fic video dataset as well as the experimental setup are described in Subsection 7.6.1.

The performances of the algorithm is presented in Subsection 7.6.2. Finally, we dis-

cuss the performances of the proposed algorithm and propose further improvements

in Subsection 7.6.3.

7.6.1 Experimental Setup

The proposed algorithm is tested on a set of trajectories extracted from the video

surveillance dataset described in Subsection 4.6.1. Also, as mentioned previously,

the wide range of settings can be a source of errors that reduce the performance

of the ABD system. The projective Kalman filter, proposed in Section 4.4, is im-

plemented to reduce the error in trajectory estimation by integrating the camera

calibration settings into the tracking algorithm. The trajectories are extracted with

this technique and directly fed into the proposed algorithm; no postprocessing is

performed on the data because of computation load constraints. The trajectories

are learnt for each sequence individually since the settings vary from one video to

another. The trajectory-based feature vector is composed of the position and the

vector flow of the vehicle (see Eq. (7.15)). The 15 videos in the dataset contain

only normal behaviors, which are used to train and test the system. In addition to

this data, a video (Video 016) containing both normal and abnormal behaviors is

tested. Sample frames from Video 016 sequence, representing abnormal behaviors

on a highway, are displayed in Fig. 7.8.
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Figure 7.8 Examples of abnormal behavior on highways.

Normal behavior is learnt with cars driving on the highway at normal speed (≈
25 m.s−1). Abnormal behavior consists of a person walking or riding a bike on the

highway. There are 20 recorded trajectories for abnormal behavior while more than

300 vehicles represent normal behavior in the video sequence. Consequently, normal

behavior is modeled and abnormal behavior is detected as defined in Eq. (7.17), that

is, trajectories not fitting the learnt model are considered abnormal. The threshold

T in Eq. (7.17) considerably simplifies the problem in terms of abnormal behavior

definition and computation.

7.6.2 Performance Analysis

In this subsection, the threshold T in Eq. (7.17) is fixed so that an average 10% false

detection rate is allowed. The variable neighboring parameter is implemented and

the system is trained with 10 iterations. A preliminary experiment on the video

sequence containing abnormal behavior showed that a threshold of T = 0.0344
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Figure 7.9 ROC curve for the video sequence including abnormal behavior. The curve
is explored by tuning the parameter T . The value of 10% false detection rate gives a
threshold value T = 0.0344.

achieves a 10% false detection rate; the expected correct detection rate is about

82% as shown in Fig. 7.9.

The algorithm is first tested on a pool of 15 videos representing normal behavior.

The training for the estimation of the correct detection rate follows a 5-fold cross

validation process. More precisely, four fifths of the trajectory dataset for each

sequence is used for training and one fifth for testing. The five subsets are shifted

around to either train or test the system. The results are then averaged over the 5

runs. The 5-cross validation process ensures that all data have been used in training

and test sets. The results are summarized in Table 7.3. The average correct detection

rate is 86.2%. The variation in the tracking rate for each video is due to the errors

introduced by low-level tasks as described in Section 7.2. Video 004 presents the

lowest correct tracking rate. The weak performance of the system on this video

is due to the speed variation of vehicles. Indeed, because Video 004 captures a

close view of the highway, since D = 29m (see Table 4.1), the accuracy of the

object position is reduced and the classification by the systems is impaired. Normal

behavior is characterized by a specific speed and direction of displacement of the
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Table 7.3 Correct ABD Rate on the Video Dataset

Videos Correct Det.

Video 001 88.4%
Video 002 78.5%
Video 003 80.5%
Video 004 70.5%
Video 005 80.0%
Video 006 88.4%
Video 007 80.8%
Video 008 83.0%
Video 009 90.3%
Video 010 86.6%
Video 011 93.0%
Video 012 96.5%
Video 013 94.4%
Video 014 90.6%
Video 015 91.6%

Average 86.2%

vehicles. After sufficient training every object not matching with these conditions

is considered as abnormal.

Figure 7.10 displays the classification of each displacement in Video 016. It can be

observed that the tracks of the vehicles (vertical) are considered normal (blue) in

most cases. The false positive detections (normal behaviors considered abnormal)

are due to tracking errors. Two cases can be differentiated: track loss and track

uncertainty. In the first case, the tracker on the vehicle undergoes large variations

in position when the track is lost because the mean-shift does not converge to the

vehicle center with the projective Kalman filter. This results in displacements that

do not fit the estimate of the density, hence abnormal classification. The second

occurs if the bandwidth and the center estimates of the vehicle position are not

accurate. This leads to smaller errors because the track is not lost. However,

these variations are sufficient to misclassify the behavior as abnormal. Solutions to

overcome these temporary misclassifications are discussed in Subsection 7.6.3. On
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Figure 7.10 Abnormal behavior detection rendering for a system trained and tested on
real data. Blue represents the normal behavior; red the abnormal behavior.

the other hand, the person walking and cycling on the highway has an abnormal

behavior. The system correctly detects the abnormality because the trajectories do

not fulfill the conditions on speed and direction.

7.6.3 Discussion

The performance on the video sequence dataset shows the efficiency of the proposed

technique based on local mixture models. The variable neighboring variance σ2

limits the over training and reduces the number of normal behavior considered as

abnormal. The correct detection rate of 82% obtained from Fig. 7.9 for Video 016

is surpassed, on average, when the entire dataset is tested. However, it can be

observed that the performance varies largely from one video sequence to another.

Because the parameters are identical, the difficulty of trajectory extraction and

the number of vehicle tracks available for training are the primary causes of such
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variations. Indeed, even though the Projective Kalman filter improves the tracking

of vehicles, some noise is still present in the trajectory extraction, hence reducing

the performance of ABD system. Despite the error accumulated from lower level

processing, the system is still highly discriminative and provides good results for

such a challenging problem. It can be noted from Fig. 7.8 that the pedestrian is

running along a path tangential to the vehicle track in some cases. However, the

system still detects the path as abnormal because the speed is too low.

The local approach to detecting abnormal behavior addresses the issue of severe

distortion when the scene is projected onto the camera plane. In the application

of ABD on highways, the projection induces large variation in apparent speed that

could not be efficiently modeled in a global approach. The local approach can

also provide the framework for more advanced discrimination. In this chapter, the

feature vector has been limited to the position and the vector flow of objects for

comparison purposes. However, an increase in the feature vector can improve the

discrimination and lead to even more accurate decisions. Typically, the feature

vector can be augmented with a color representation providing information on the

context. A concrete example is the integration of the traffic light color at an in-

tersection. Regarding abnormal behavior detection, the study was restricted to the

classification of elementary displacements. Elementary displacements provides low

level analysis of the behavior. In the same way as data can be filtered to remove the

noise or clustered to remove outliers, the elementary behavior can be post-processed

to classify the overall object behavior as normal or abnormal. Techniques described

in Section 7.3 can be used for this purpose. For instance, filtering can be applied

if online behavior analysis is required or maximum-likelihood for batch analysis,

i.e. , when the entire track is already available. Post-processing would increase the

discrimination and thus improve the rate of correct detection while decreasing the

rate of false detection.

The local modeling of densities with the Markov random field also presents specific

characteristics. First, the local modeling is scalable. If each pixel of the camera

plane is a site s, the system requires a very large amount of memory preventing the

implementation on embedded systems. This is clearly a limitation of the proposed
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algorithm. To handle this problem, the arrangement of the 2D-lattice set of sites

can be restricted to a subset of positions through scaling; the memory requirement

will thus be reduced. On the other hand, the local property offers some advantages

compared to the global model. For instance, the local model required less compu-

tation than its global counterpart because only the neighborhood ηs is updated in

the MRF. The algorithm can also be implemented on a distributed system and, in

particular, sensor networks, because the density of behavior is updated locally. In

this case, the computation and storage requirements for each node are small. Dis-

tributed systems widen the field of applications for the local model. Not only can it

be generalized to all sorts of tracking (e.g. , vehicles, people, objects, etc.) but it can

also open prospects to new applications of Markov random fields such as abnormal

event detection on networks and grid-based systems (e.g. , attacks, unusual power

surge detection, etc.).

7.7 Summary of Abnormal Behavior Detection

Abnormal behavior detection has been in increasing demand in a broad range of

fields, including vehicle traffic monitoring. Nevertheless, the problem remains open

due to the inherent high level tasks and the difficulty of defining abnormal behaviors.

A framework dividing the abnormal behavior into four main steps, namely feature

selection, dimensionality reduction, feature vector density modeling and behavior

classification, has been proposed. The algorithm introduced includes these four steps

through a local modeling of abnormal behavior by a stochastic mixture model. The

density of the feature vector is learnt locally via the implementation of a Gaussian

Markov random field. The modes of the density are represented by cluster centers

estimated by a stochastic learning algorithm.

The system was tested on a synthetic dataset modeling the trajectory of vehicles

with occupants driving under the influence of alcohol. This experiment showed that

the type of distance measure, the criterion for abnormal behavior classification and

the neighboring variance play an important role in the performance of the algorithm.

It has been inferred from the experiments that the right combination of these factors,

namely the Mahalanobis distance in the clique potential and a variable neighboring
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variance, provide the best results. The system has then been tested on traffic video

sequences. The correct classification reaches 86.2%. Abnormal behavior has been

tested to evaluate the suitability of the system to detect illegal crossings on highways.

Finally, it has been suggested that the scope of the algorithm can be extended to a

wider range of problems due to its high adaptability.
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Chapter 8
Conclusions and Future Research

The thesis has been dedicated to the development of a contextual Bayesian infer-

ence for visual object tracking. The research conducted integrates the information

pertaining to tracking in the Bayesian framework in order to improve the tracking

robustness. The work makes use of broad assumptions on the nature of the video

signal to set up the framework. The tracking was therefore inscribed in a Gaussian

or near Gaussian noise environment with a video framerate allowing the capture

of motion for analysis. The research has been limited to fixed cameras and small

object size to make possible the implementation of site-based (e.g. , pixel-based)

techniques such as background subtraction with mixture of Gaussians or Markov

random fields. The project has involved the development of tracking algorithms for

vehicle and pedestrian tracking in order to support the basis of our research. The

aim of the thesis was to set a new path in the tracking chain, from the low level

task of illumination-invariant background subtraction to tracking with integration

of local context. Ultimately, abnormal behavior detection was performed in order to

prove the efficiency of the techniques developed. This chapter presents conclusions

on the research conducted in the thesis in Section 8.1 and proposes directions for

future research in Section 8.2.

183
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8.1 Thesis Summary

Low level tasks are crucial in the development of a tracking system since their reli-

ability and quality impact the entire bottom-up chain. One of the most challenging

problems encountered when segmenting objects with background subtraction is the

robustness in varying illumination environments. Chapter 3 addresses this issue by

providing a new update technique of the Gaussian mixture model. We first show

the existence of saturated pixels, caused by a local variance degeneracy when abrupt

changes in the background occur. Intuitively, the variance could be controlled by

slowing down the update rate. Unfortunately, this yields a slower update of the

model and, therefore, a decrease in illumination adaptation. The trade-off was re-

solved by using two separate update rates: a variable learning rate for the mean

and a semi-constrained learning rate for the variance. The results show that the

update of the model could be accelerated while the degeneracy of the variance is

prevented. Indoor and outdoor changes in illumination are thus handled better than

with existing techniques. Moreover, the foreground extraction for subsequent tasks

is improved since the artefacts from illumination changes are well suppressed.

Traffic videos present specific characteristics due to the constrained nature of the

environment such as slowly-varying vehicle speed, bounded trajectories and projec-

tion of the real-world scene on the camera plane. In Chapter 4, a projective Kalman

filter is proposed, which integrates these characteristics through the projective trans-

formation, the mean-shift algorithm and the foreground mask to provide fine and

robust vehicle trajectory extraction. The projective Kalman filter was tested on an

extensive traffic monitoring dataset including more than 2,600 vehicles. The results

show that the technique achieves a tracking rate of 98% at 30 fps and 89% at 3

fps, whereas the extended Kalman filter reaches only 84% and 7%, respectively. In

terms of computation, it was shown that the projective Kalman filter reduces the

number of mean-shift iterations by 67%. The developed system therefore provides

outstanding tracking performance on vehicle tracking.

The projective Kalman filter provides the optimal solution to vehicle feature esti-

mation in Gaussian environment. This constraint could be relaxed with the use of
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the particle filter, based on Monte Carlo simulations. However, the main issue with

particle filters is the computation load since the accuracy is a function of the num-

ber of particles. In Chapter 5, we integrated the projective transformation into the

importance density to improve the distribution of particles into the feature space.

The technique was tested on the traffic monitoring dataset. The experimental re-

sults led to two conclusions. First, they show that the integration of the projective

transformation into the PPF improves the tracking error compared the standard

particle filter and that the number of particles necessary for a given tracking error

is reduced. Second, we evaluate the projective particle filter in terms of tracking

rate. For this purpose, the system developed in Chapter 4 was used with the PPF

replacing the PKF. The results show an improvement in the performance compared

to the standard particle filter.

Chapter 6 generalized the integration of contextual information with the implemen-

tation of Markov random fields. The constraint on the prior knowledge of the

trajectory was relaxed to allow the learning of patterns in unknown environments.

The local information was therefore learnt through a mixture of Gaussian Markov

random fields. In turn, the patterns were used to distribute the particles in the

feature space for tracking with the particle filter: the local distribution provided

an accurate model of the importance density. The system was compared with the

CONDENSATION algorithm on the traffic monitoring dataset and a pedestrian

dataset. The results proved that the distribution of particles provided by the im-

portance density is improved with the inference from the Markov random fields,

leading to a reduction in tracking error. The adequate modeling of the importance

density also led to robust recovery of prolonged spatio-temporal occlusions, where

the CONDENSATION algorithm fails.

The mixture of Gaussian Markov random fields introduced in Chapter 6 was adapted

and trained to detect abnormal behavior. The technique relied solely on the position

and the displacement of the object, two features directly accessible from the track

extraction. Contrary to traditional techniques, the displacements were modeled

locally, providing fast and efficient estimate of the distribution for each position.

A stochastic clustering algorithm was adapted to train the Markov random fields.
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The experiments were conducted on synthetic and real data containing abnormal

behavior. The detection of abnormal behavior was found to be maximum when the

clique potential is modeled with the Mahalanobis distance and when the detection is

based on clusters. The proposed technique was compared with its global counterpart

and with a SOM. The experiments showed that a higher accuracy in the detection

of abnormal behavior is achieved with the proposed method. On traffic monitoring

dataset, results showed that abnormal behavior, represented by people walking,

running or cycling on a highway, was detected with 86% accuracy for a 10% false

detection rate.

The thesis explored the different steps of object tracking and abnormal behavior de-

tection, offering improvements in terms of accuracy and robustness. Throughout the

bottom-up chain, the development of new techniques contributed to the particular

area of research and to the overall improvement of abnormal behavior detection.

8.2 Suggestions for Improvements and Future Re-

search

The thesis addressed several issues pertaining to visual object tracking which were

summarized in the previous section. However, new topics of research can be defined

with the work proposed herein serving as starting point. The use of Markov random

fields for behavior modeling and tracking improvement with contextual inference is a

breakthrough in the proposed form. Although Markov random fields are extensively

used for image processing (e.g. , segmentation, noise reduction, image restoration,

etc.), they have seldom been used for activity modeling. Markov random fields

provide contextual information for both tracking and abnormal behavior detection.

We investigated local stationary inference in this thesis, based on a parametric

model. The rest of this section outlines the research that can be conducted to

further improve the robustness of tracking and behavior modeling with contextual

information.

First, the learning of contextual information in this thesis was limited to the dis-

placement of objects (position and speed). The approach was suitable for recovery
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after occlusion and detection of abnormal behavior which required the modeling of

trajectories. With the development of powerful architectures, the feature vector can

include other characteristics of the object such as color and size. The interest of

increasing the dimension of the feature vector is to provide more complex decisions

such as the detection of small vehicles in bus lanes, etc. However, the complexity of

the algorithm would increase.

Second, a theoretical analysis of non-stationary inferences should be conducted.

Indeed, the underlying local densities can evolve through time, leading to problems

concerning transient phase, statistical convergence, etc. Markov random fields are

suitable for the modeling of non-stationary inferences. Although the transient state

of the random fields is out of the scope of the thesis, tracking and abnormal behavior

detection in crowds require an accurate modeling of the distributions for this phase.

Indeed, in the presence of dense flow of objects, the realizations cannot be considered

sparse and independent anymore. The non-stationary case occurs in a large number

of situations. For instance, behaviors can be normal or abnormal depending on the

time in the day; and local changes in the scene such as roadworks can induce a

temporary modification of the underlying distribution.

Finally, and most importantly, we believe that this thesis has opened an area of

research in Bayesian inference with contextual information, where the MRFs are

adapted to model local information. The representation can be completed with a

global modeling of event detection. Information fusion could then be used to draw

more complex decisions with low computation cost. A concrete example is the in-

tegration of traffic context with global information: traffic congestion, based on the

average speed, could justify small vehicle displacements. Even more elaborated,

the detection of traffic light color brings a global context to the monitoring of an

intersection. With the current system, pedestrians crossing a road are either consid-

ered as a normal or an abnormal event, at all time. Contextual information could

discriminate between green lights for vehicles, that is, when pedestrian crossing is

abnormal, and red lights, when it is normal. The integration of a global model would

enable the weighting of different fields in the mixture. Ultimately, a multi-resolution

collection of Markov random fields can provide multi-scale inference.
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The two major fields suggested for future research are non-stationary and multi-

scale inferences. However, another field of investigation, pertaining to practical

implementation is the computation load. The accuracy of tracking systems is al-

ways limited by the complexity of the implementation. One of the advantages of a

local approach which has not been explored in this work is the use of distributed

architectures to manage the entire system. The possibility of dispatching the com-

putation load on different nodes in a mesh is eased by the structure of the existing

Markov random field. For example, neighboring sites can be clustered and managed

by one single node in the mesh of computers, communicating with others only when

local update is necessary. A distributed Markov random field can thus be designed.
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