#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Advances in practical optimal coalition structure algorithms
Author: Chattrakul Sombattheera

Year: 2010

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2010

Advances in practical optimal coalition
structure algorithms

Chattrakul Sombattheera
University of Wollongong

Sombattheera, Chattrakul, Advances in practical optimal coalition structure algorithms,
Doctor of Philosophy thesis, School of Computer Science and Software Engineering - Faculty
of Informatics, University of Wollongong, 2010. http://ro.uow.edu.au/theses/3141

This paper is posted at Research Online.

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

U NIVERSITY]

OF
WOLLONGONG

Advances in Practical Optimal Coalition
Structure Algorithms

A thesis submitted in fulfillment of the
requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

Chattrakul Sombattheera

School of CS and SE.
June 2010

© Copyright 2010
by
Chattrakul Sombattheera

All Rights Reserved

Dedicated to

My Parents

Declaration

This is to certify that the work reported in this thesis wasielo
by the author, unless specified otherwise, and that no patt of
has been submitted in a thesis to any other university odaimi

institution.

Chattrakul Sombattheera
June 20, 2010

Abstract

This thesis presents a number of algorithms for formingitoak among cooperative agents
in pragmatic domains where traditional cooperative gamerth solution concepts do not
apply due to bounded rationality of agents. While previouskwio coalition formation in
multi-agent systems research operated on relatively smatlber of agents, e.g. less than
30 agents, this work explores coalition formation among a@énts, this is due to limited
computational resources not the performance of the ouritigts. We explore a best-
first search centralized algorithm for optimal coalitiorustures which is based on a novel
idea of deciding what is the best coalition to put into caatitstructure being generated.
Empirical results show that the solution reaches optimajitickly and terminates quickly
in pragmatic domains. We further explore on optimal caaitstructures with distributed
algorithms in linear and non-linear domains. For the lird@mnains, we explore linear pro-
duction and integer programming. For the non-linear dosaia explore logistic providers.
Based on existing algorithms, we explore a novel environraéfarming coalitions in sup-
ply networks involving buyers, sellers and logistics pd®mrs agents. In this setting, buyers
form coalitions to increase their negotiation power whééles's and logistics providers form
coalitions to aggregate their supply power and optimize tiesources usage.

List of Publications

The material of this thesis is based on the following pulbioces:

1. Chattrakul Sombattheera, Aditya Ghose: A best-first amg/algorithm for computing
optimal coalition structures. AAMAS (3) 2008: 1425-1428

2. Chattrakul Sombattheera, Aditya Ghose: A Pruning-Basgamthm for Computing
Optimal Coalition Structures in Linear Production Domai@anadian Conference on
Al 2006: 13-24

3. Chattrakul Sombattheera, Aditya Ghose: A Distributedotitym for Coalition For-
mation in Linear Production Domain. ICEIS (2) 2006: 17-22

4. Chattrakul Sombattheera, Aditya Ghose: Supporting Dyon&upply Networks with
Agent-Based Coalitions. IEA/AIE 2006: 1127-1137

5. Chattrakul Sombattheera, Aditya K. Ghose: A Distributedridh-and-Bound Algo-
rithm for Computing Optimal Coalition Structures. SETN 20884-344

6. Chattrakul Sombattheera and Aditya Ghose: Agent-baselitiGosin Dynamic Sup-
ply Chains. the international conference 9th Pacific Asia €a@rfce on Information
Systems (PACIS 2005).

7. Chattrakul Sombattheera, Aditya Ghose, Peter Hyland: @&miéwork to Support
Coalition Formation in Supply Chain Collaboration. ICEB 2004 1

Vi

Acknowledgements

First and foremost, | thank my supervisors: Professor Ad@hose, who introduced me to
the area of coalition formation, guided me to produce moshyfpublications, etc. There
are too many to mention here and | just want to say that | owe digneat deal. Asso-
ciate Professor Peter Hyland, who brought me to do this PRABdhongong, supported me
throughout the difficult times, and most importantly, help ta reach the end of this thesis.

| also would like to thank, Dr. Richard Booth and Mr. Evan Moons who have been
very sincere and very helpful in proofreading most of theteonof this thesis. | thank my
old DSL colleagues, Chee Fon “Chief”, Peter Harvey, Duc, Ahdaad many others) who
helped train me via so many presentations. Of course, newbaesmof DSL colleagues,
George Koliadis and Evan, are very generous. | thank my Téiadl§ (as far as | can remem-
ber): Noi, Mam, Tip, P’ Suay, Savanid, etc. for their friehgtsand help.

| thank my bosses (Deans of Faculty of Informatics, Mahddaa University, Thai-
land): Associate Prof Wanchai Rievpaiboon, Assistant Beafe Sangkom Pumpan, Assis-
tant Professor Sujin Butdeesuwan and Associate Professat Péngsiri, for being support-
ive throughout my study leave. | thank my colleagues in Managnt Information System
Department, Ajarn Preecha, Ajarn Boy, Ajarn Chumsak, Ajarmilkon, for being support-
ive and taking care of my teaching during my absence.

To my family, | thank my father, Khun Por Prayoon Sombatthe®rho contributed his
saving to my education. It has always be emotional whenetl@nk about what it means
to him and to me. | owe him a lot. | thank my mother, Khun Mae RenS8ombattheera,
who has been the best of the best supporter throughout thydorgg journey. | can never
come this far without her support. My thanks go to my broth&iboonseth and Paripat
Sombattheera for their support throughout these years.

The last but not the least, | thank Dr. Sujanya Sombattheayacousin sister who
inspired me to come to Australia and helped me a lot durinditbehalf of my 12 years in
down under.

vii

Contents

Abstract

List of Publications

Acknowledgements

1

Introduction

1.1

Introduction

1.2 Background e

1.3 Structure ofthethesis

Background

2.1

2.2

2.3

2.4
2.5

Introduction to Coalition Formation

2.1.1
2.1.2
2.1.3

Cooperative Game Theory
Example of Cooperative Game
Solution Concepts in Cooperative Games

Coalition Formation in Multi-agent Systems

2.2.1
2.2.2
2.2.3
224
2.2.5

Impractical Issues in Cooperative Game Theory
Early Dynamic Coalition Formation
Kernel in Multi-Agent Systems
Bounded Rational and Time-Constrained Coalition Foonati . .
Strategic Coalition Formation

Algorithms for Computing Optimal Coalition Structures

2.3.1
2.3.2

The Analysisofthe Problem
Coalition Value Distribution

Previous Centralized Algorithms in Optimal Coalitionstures

Coalition Formation in Combinatorial Settings

251

Linear Production Games

viii

Vi

vii

2.6 Coalition Formation in Supply Networks

2.6.1 CoalitionsofBuyers 32
2.6.2 Coalitionsof Buyersand Sellers 6 3
2.6.3 Coalitions of Logistics Providers 37
2.7 Qualitative Coalition Formation 39
2.8 Other Coalition FormationWork 41
2.9 Motivation to the Thesis and Research Question 41
2.9.1 Motivation 41
29.2 ResearchQuestions. 42
Computing Optimal Coalition Structures 45
3.1 Introduction 45
3.2 TheCHAIlgorithm 46
3.21 MainFunction 49
3.2.2 WorkingFunctions 51
3.2.3 Proof Completeness and Systematicity of the CH algorith . . . 54
3.2.4 Example of Coalition Structures Generation 57
3.2.5 Applying Branch and Bound Method 58
3.2.6 Example of Applying Branchand Bound 59
3.3 ExperimentalResults 9 5
3.3.1 EmpiricalResults 61
3.4 Conclusion 65
Computing OCS in Linear Production Domain 66
4.1 Introduction e 66
4.2 Coalition in a Linear ProductionDomain 67
4.3 Distributed Algorithm for Coalition Formation. 69
4.3.1 DeliberatingProcess 0o 69
4.3.2 Coalition Formation Algorithm 47
4.3.3 Best Coalition and Coalition Structure Pattern 77
4.3.4 Generating Coalition Structures 78
4.3.5 An Example of Generating Coalition Structure 78
4.4 EXperiments e e 80
441 Generating Coalitions 80
4.4.2 Generating Optimal Coalition Structures. 82
4.5 Conclusion 83

5 Non-Linear Optimal Coalition Structure

5.1 Introduction

5.2 Distributed Algorithm for Distributing Goods
5,21 Setting
5.2.2 MainAlgorithm
5.2.3 Algorithm to Deliberate Task-Plan
5.2.4 Algorithm to Deliberate Task-Agent
5.2.5 Algorithm to Choose the Best Assignment.

53 Example e e
5.3.1 Combinations of Tasks, Plans, Execution and AccessCast . .
5.3.2 ExampleofRun

5.4 EXperiments

55 Conclusion

6 Coalition Formation in Dynamic Supply Networks

6.1 Introduction

6.2 Coalitions in Dynamic Supply Networks

6.3 Coalition Formation
6.3.1 Setting e
6.3.2 Forming Primary Coalitions
6.3.3 Secondary Coalitions
6.3.4 Decision Mechanism

6.3.5 Algorithm

6.4 EXperiments
6.5 Conclusion

7 Conclusion and Future Work
7.1 Introduction e
7.2 Contribution
7.3 Significance ofthe Research
7.4 Limitations
7.5 Futuredirections e
7.6 Conclusion e

Bibliography

List of Tables

2.1 Search Space in Coalition Structure whebg™is the number of coalition

4.1

structures, “Largest;” is the largest layet, “S(n,:)” is the number olC'S
in that layer:, “# of Config.” is the number of configuration, “Conf Max”
Is the configuration which has the largest numbe€'éfs, “CS Max” is the
number ofCSsin“ConfMax”.

This table compares the average deliberation time df agent using our
algorithm against exhaustive search. Our algorithm ofmpeis exhaustive
search after the number of agents exceeds 35 (exhaustwadtitavailable—

Xi

List of Figures

2.1
2.2
2.3

3.1

3.2

3.3

3.4

ConfigurationBounds 24
Search Direction in Divided Search Space 27
ConfigurationBounds 28

Data Structure Coalitions are stored in 2-dimension ar@yAvailable can-

didate coalitions for all layers are kept tracks by 2-dimensrray5. The

CS being constructed is kept in 1-dimension a8y The remaining agents,
which can be candidates for the best coalition at the prdagat/ of CS,

are kept track by 1-dimensionarr®. 48
Generating Coalition Structure Coalitions are stored in array, where

rows represent the position of the coalitions in each catiyn represented

by column. Candidate coalitions for each layer C'S are stored in arraj3,

whose rows represent the layer@$ and columns represent the cardinality.
Attached to the left of the array are two additional columiibe first one
indicates the execution round, while the second one reptetee respective

layer of CS. The coalition structure is stored in one dimensional afi8y

As it appeared here, multiple rows are the current statéSowith respect

to the corresponding execution round appears.irRemaining agents are
stored in arrayR. Each row represents remaining agents after a candidate
coalition has been chosen f66 in the same execution round in the corre-
spondingrowsoBandCS. e 56
Empirical Results on STD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNSTDF1,
STDF5 and STDF10 distributions. 16
Empirical Results on IND Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNINDF1,

INDF5 and INDF10 distributions. 26

Xii

3.5

3.6

3.7

3.8

4.1

4.2

5.1

5.2

5.3

6.1

Empirical Results on DCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNDCDF1,
DCDF5 and DCDF10 distributions.
Empirical Results on CCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNCCDF1,
CCDF5 and CCDF10 distributions.
Empirical Results on CVD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNCVDF1,
CVDF5 and CVDF10distributions.
Empirical Results on RDD, NMD and UNI Distribution The graphs show
convergence and termination times of Algorithm CH againat tif algo-
Athm RN, . .

Ranking AgentsAgents are ranked by their potential profit per each resource

ofagood.
Empirical Results This graph shows the number of coalition structures gen-
erated and elapsed time for generating the optimal coal#iuctures of our

62

63

70

algorithm against those of exhaustive search. 83

Empirical Results NLRP-NLRP The graphs show reduced cost in raw fig-
ure and percentage achieved from the seven time allocataegies as per
elapsedtime.
Empirical Results NLRP-NLDL The graphs show reduced cost in raw fig-
ure and percentage achieved from the seven time allocatategies as per
elapsedtime.
Empirical Results NLDL-NLRP The graphs show reduced cost in raw fig-
ure and percentage achieved from the seven time allocdtategies as per
elapsedtime.

Empirical Results of V(CS) against FEV(CS)The graphs show conver-
gence versus termination time, and V(CS) versus FEV(CS) oV{gS)-

106

107

107

Oriented versus FEV(CS)-Oriented search.125

Xiii

Chapter 1

Introduction

1.1 Introduction

For over a decade, software agents have been used to soldeaamge of problems in
which agents represent the goals or behaviours of indepéhdenan agents. For the most
part, these problems have been intentionally limited irpscaising only small numbers of
agents with a limited degree of interaction between the gremselves. Agents have
often been used to model interactions between groups of inagants but, once again,
these interactions have typically focused on solving potd under only a single constraint.
Historically, research has been limited to these simpleblems due to the lack of computer
processing power and the lack of efficient algorithms to detd the enormous increase in
complexity when more and more agents are allowed to intéreety with one another to
solve problems under heterogeneous constraints i.e.ragrtston more than one variable.

However, real-world problems, which could be solved usiggrds, are unlike these sim-
ple problems because they often involve large numbers aftageach representing stake-
holders who may be organized into different groups, eachha¢lvmay be operating under a
different sets of constraints. Even more challenging aakwerld problems in which mem-
bers of a single stakeholder group may form a coalition tdadrynprove their performance
e.g. a group of manufacturers sharing raw materials to m&eta order which no single
manufacturer could supply. In even more complex probletagesiolders may form coali-
tions with stakeholders from other groups as well as frorhiwvitheir own group e.g. a group
of manufacturers who collaborate with logistics providerdistribute a product to multiple
buyers. All of these different stakeholders may have hgemeous constraints e.g. a logis-
tic provider (LP) may want to minimize traveling time, minia fuel use and maximize the
utilization of each truck.

Most of the methods used to solve such coalition formati@mblems have used deter-
ministic methods, in which every possible coalition is itised and the outcome for each of

1.2. Background 2

the members of a coalition is calculated for every coalitibnese exhaustive approaches are
computationally very demanding and will only work for smallmbers of agents, typically
less than 30. However, an alternative approach would be doaiin“anytime” solution i.e.

a method which identifies and stores good coalitions whiteiittinues to search for the op-
timal coalition. This method can be stopped at anytime ardlewit may not have reached
the optimal coalition, it will have found a coalition whicldequately meets the needs of
the stakeholders. This research aims to develop an anytietleoeh for Optimal Coalition
Structure (OCS) problems.

1.2 Background

Software agents can be used for a wide range of purposes sutiordtoring the status
of a system or a device, recording user interactions, oloauging a search on the Inter-
net. These agents may be resident on a single computer ormplb@ydd across networks,
particularly the World Wide Web. More advanced agents, telligent agents, are able
to communicate with other agents and to make decisions basdideir initial parameters
plus information gathered from the environment or from othgents. When a number of
intelligent agents share a common environment, they areliragent system (MAS).

One area of growing interest to MAS researchers are apjolitsatn which agents not
only communicate with one another but actually collaboraith one another to solve a
problem which they could not solve individually. This may lbecause the agent does not
have the functionality to carry out the whole task or becaumsagent lacks access to comput-
ing resources e.g. CPU time, RAM, storage etc. which anothetam a different computer
does have access to. When agents try to collaborate they wmstit their own resources
to the task.

When several agents make a binding agreement to cooperaseyvaecoalition has been
formed. The point of forming a coalition is to have every memd a coalition perform bet-
ter than each one might do individually. For example, out®liotal plumbers, 6 may decide
to band together to buy materials in bulk at a cheaper prie ¢dach might do individually.
The savings made by this coalition is called the coalitiolu@aThe 4 remaining plumbers
may have been excluded because they do not buy enough rsateriaake it worthwhile
for the original 6 to include them. This may seem odd, beca@sglumbers would almost
certainly get a better deal than 6 i.e. the coalition valualdide slightly higher.

However, coalitions come at a cost. When buying in bulk, it ineyecessary for all the
plumbers to meet to distribute their bulk purchase. Tragstor the amount of time taken

1.2. Background 3

to arrange the meetings or to divide up the order are all @sieing in the coalition which
might not have existed at all if the plumbers had all bougdependently. The costs of in-
cluding the additional 4 plumbers may exceed the benefitwihigaheir extra buying power,
in which case the 6 plumbers are actually better off if theylwde the other 4 plumbers. So,
the value of any given coalition depends on the benefit trattalition provides i.e. the
coalition value, and on the coalition costs.

However, when considering the outcome for a coalition, werte take into account the
effect of other agents which are not part of the coalitiorr. &@mple, given three agents 1,
2 and 3, possible coalitions might k&, 2} or {1, 2, 3} or {1}. In the first example we have
not accounted for agefB} which is, effectively, a coalition of 1 but may still have difeet
on the outcome. So the “complete” set of coalitions corradpw to the first case is actually
{{1, 2}, {3}}. This “complete” set of coalitions is known as a coalitiomusture. The second
example {1, 2, 3}, is itself a coalition structure because no agents are ouated for. In
the third example{1}, there are 2 possible coalition structures, each of which pnaduce
a different outcome. Possible coalition structures fordbelition {1} are {{1}, {2, 3}}
and{{1},{2},{3}}. Clearly, the outcome for agent 1 might be different if it wasnpeting
with each of the other two agents singly or both the other tgenés working together. So,
we can only determine the outcome of a coalition if we corrsségarately all the coalition
structures in which that agent can exist. For the 3 agentsealibe identification of all
coalition structures is trivial. However with 20 agentse task of even identifying all the
coalitions is not trivial. Calculating the outcome for aleie coalitions is computationally
intensive.

Given all of the coalition structures for a set of agentssityipical for one of those
coalition structures to give the best outcome i.e. to haeehighest coalition value. This
is called the Optimal Coalition Structure (OCS) and the beggiihed by the participants
in this OCS is called the Optimal Coalition Structure value (O@kie). The definition of
“best outcome” depends on the context and is left delibsrasgue here. It will be defined
more formally in Chapter 2.

In much of the previous research, an exhaustive or detestiar@pproach has been used
i.e. the algorithm meticulously generates every possibldiiton structure and calculates
the coalition structure value for each coalition structdreis approach works quite well for
small numbers of agents but as the number of agents increasmimputational demands
rapidly become intractable. The time taken to generateygvessible coalition structure
may be unacceptable in any practical application. For eXxantpvould be pointless to find
that an optimal route for a delivery truck was five minutesdaghan the next best option,

1.3. Structure of the thesis 4

if it took 3 hours to find that optimal solution. Moreover, && thumber of agents increase,
the amount of RAM used to carry out the calculations becomasagptably large. Practical
restrictions on time or computing resources create a raltioound on the size of problems
which exhaustive approaches can solve.

However, one approach which may be useful in solving OCS problis the “anytime”
approach, in which an algorithm keeps track of the “besttswiuso far” as it continues to
search for the optimal solution. Thus the algorithm can bpd at “anytime” and will be
able to return its “best solution so far”. While this is intuitly appealing, it relies on the
ability of the algorithm to find at least a “good solution” tpiguickly. If the algorithm labo-
riously plodded through millions of poor solutions, for semeason, then its “best solution
so far” could be completely unacceptable in practice.

A number of search algorithms may do away with these “pooutgwnis”. A branch
and bound search, for example, uses some heuristic to elienor prune large numbers of
“poor solutions” quickly. Consequently, a search of the rieying search space is likely to
produce at least a “good solution” quite quickly. Such skesare at the heart of a successful
“anytime” approach to solving problems involving large méespaces. Given the potentially
huge search spaces involved in finding Optimal Coalitionc@tmes, an anytime approach
may offer a viable solution.

1.3 Structure of the thesis

Chapter 1 provides a brief introduction to Optimal CoalitidruSture Problems (OCSP) and
proposes a possible solution based on an anytime- Best Eastis(BFS) approach.

Chapter 2 presents a review of the literature on OCSP, the st solutions to OCSP
and benchmarks against which to test the algorithms praliagbe remainder of the thesis.

The following 4 chapters each proposes a new anytime-BF Sitdgoand demonstrates
that this algorithm is better at providing solutions thaa turrent stat-of-the-art approaches.

Chapter 3 presents an anytime-BFS algorithm to solve a ge@€&8P i.e. one without
any specific domain requirements. As in most previous rebedhis algorithm assumes
that the coalition value is known a priori. We propose a sdtefristics that help us iden-
tify nearly Optimal Coalition Structures (OCS) quickly. Theunistics work in three steps:
setting configuration upper bounds, estimating the opticaallition structure value, and
searching for that optimal value using a branch-and-bound 8Fategy. Empirical results
show that this algorithm approaches the optimal coalitimacsure value in a reasonably
short period of time.

1.3. Structure of the thesis 5

Chapter 4 presents an adaptation of the algorithm in Chaptera3¢al-world setting,
namely, a linear production domain, in which each coaliwatue is not known a priori.
The common goal of the agents is to maximize the system’stptofour algorithm, agents
perform two tasks: i) identify profitable coalitions, anfddompute OCS. We show that our
algorithm outperforms exhaustive search in generating QC®rims of elapsed time and
number of coalition structures generated.

Chapter 5 adapts the general algorithm in Chapter 3 to theneddt domain of supply
chain networks. The agents take on the roles of three diltidifferent sets of stakehold-
ers, namely, buyers, sellers and logistics providers (LPPgents take two steps to form
coalitions: i) agents in each stakeholder "sector” seqakytorm primary coalitions in or-
der to increase bargaining power, selling capacity or sereificiency, and ii) agents form
secondary coalitions across sectors in order to finalizeltfa¢ and deliver goods to buyers.
We propose a negotiation protocol and deliberation meshaniThe negotiation protocol
allows thorough communication among agents within andsacsectors. The deliberation
mechanism allows agents to consider potential coalitiombers and attractive payoffs for
them. We provide examples of how they can help agents forritiona successfully.

Finally, Chapter 6 studies coalition formation in qualitatpreference games in which
agents carry out a number of different tasks. Each task isfsgubby a requirement which
is a number of constraints over a set of attributes. Thesst@nts are hard and soft ones.
The attributes include price to be paid to agents. The pacedch task is negotiable. Hence
agents have to trade off between their resources and exipeayeff. This kind of problems
exist in many real-world domains including electronic coenoe, composite web services,
supply chains and logistics, grid computing, etc. The allgor proposed in this chapter is a
combination of the algorithms in Chapters 4 and 5.

Chapter 2

Background

2.1 Introduction to Coalition Formation

This chapter surveys related work in coalition formationawacted by other researchers that
provides the background for the research presented inidsertiation. We firstly introduce
the concept of coalition formation in cooperative game théacluding a discussion on rel-
evant solution concepts. We introduce coalition formatiesearch in multi-agent systems
including negotiation and deliberation. We discuss pragnaspects that fail to be handled
adequately by both cooperative game theory and presetrobsi@ coalition formation, and
which are the motivation of this research. Lastly, we expletated work to our research top-
ics including centralized algorithms for computing optiroaalition structures, distributed
algorithms for computing optimal coalition structuresalition formation in dynamic supply
networks, and qualitative coalition formation.

Coalition formation is the process that leads to cooperaiong agents within a multi-
agent system. Coalition formation was first studied in coaper game theory by Von Neu-
mann and Morgenstetite89. With the growth and maturity of multi-agent systesgsaarch,
coalition formation has gained more attention from redsensand has been regarded as an
important area in multi-agent systems. We shall informakplore both cooperative game
theory and coalition formation in multi-agent systems felo

2.1.1 Cooperative Game Theory

Game theory studies decision making by multiple decisiokingaunits, which we shall
refer to asagentshenceforth, and whose decisions are inter-related. Theo§game theory

is to find stable states in which none of the agents will wamhtange their decisions. Such

a stable state is called a&uguilibrium A principle that describes reasons which lead agents
to an equilibrium is asolution concept Game theory can be divided intmn-cooperative
games anatooperativegames. In the non-cooperative game environment, agentsoare

2.1. Introduction to Coalition Formation 7

allowed to collaborate or communicate with each other. Aweald example is the anti-trust
law that prohibits agents from forming cartels. Researchan-cooperative game theory
seeks to identify strategies which are the best possibfres to other agents’ strategies
A well known solution concept in this area is Nash Equilibmif69] in which none of the
agents can benefit from changing their strategies.

In contrast to non-cooperative game theory, cooperatiugegheory allows for agents to
communicate that leads them to cooperation [42] from whiely tan benefit more individu-
ally. Agents communicate in order to negotiate with regaralthom they can cooperate and
how the joint benefits will be distributed among them. Wheresavagents make a binding
agreement to cooperate, we sagaalition has been formed. Hence, the cooperative game
theories are also known as the theories@dlition formation[42]. Mathematically, given
setN of n agents, a coalition is a non-empty subSeif N, S C N, S # (. The setV itself
is called thegrand coalitionwhile a coalition of one agent is callethgleton coalition Let
Sbe the set of all coalitions, whose size%is 2" — 1. Given a set of 3 agentd] = {1, 2, 3},
all the 7 coalitions aré¢1}, {2}, {3}, {1, 2}, {1,3},{2,3} and{1, 2, 3}. As in set theory, the
cardinality, |S|, of S is the size of (the number of agents ifl) Once agents have formed
coalitions, they can be viewed as if they have divided thévaesanto a mutually exclusive
and exhaustive partitions. We defineaalition structure C'S, as a partition ofV. A C'S can
be described b¢'S = {51, 5s,...,S,}. The setof allC'S is denoted by'S. For example,
givenN = {1,2,3},allCSinSare{{1},{2}, {3}}, {{1,2}, {3} }, {{1,3}, {2} }, {{2, 3}, {1}},
{{1}.{2}.{3}}.

Mathematically, aC'S has to satisfy three conditions [42]:

1)Sj7£®7j:1727"'7m7
2)S;NS; =0forall i # j, and
3)US; =N.

The joint benefit of a coalition is call theoalition value which is a numeric value that
usually represents the utility which accrues from theirpmation. It is quite common in
cooperative game theory that the coalition value is monéyeva.g., dollars. Cooperative
game theory assumes that there characteristic functiorj42], V' that assigns a real number
to eachS, V : 2" — R. We shall denote the coalition value 8fwith V5. Hence, a
cooperativer-person game in characteristic function form is defined leypiir (V; V) [42].
The portion ofls given to agent is thepayoff U;, of the agent for which the agent plays the
game. The collection of payoffs to each agent is the payafforeU = (U, Us,...,U,),
which specifies the payoff for each respective agent. Rutbgether a coalition structure
and a payoff vector is thpayoff configuratior{42], (U; C'S), which describes a possible

2.1. Introduction to Coalition Formation 8

outcome of the game. For example,the payoff configurationo, 5;{1,3}, {2}) means
agents 1 and 3 have formed a coalition and receive payoff finlars each while agent 2
remains a singleton coalition and receives 10 dollars gayoits own.

Games Environments

Classical research in cooperative game theory considersgyaithin thesuperadditivd42]
environment in which the value of a coalition is at least aglmas the sum of the values of
each pair of its subcoalitions, e.g.,

Vsur > Vg + Vpforall S, T C N suchthatS N7 = 0.

In contrast to superadditive, tisbadditiveenvironment is one in which the coalition value
of a given coalition is strictly less than the sums of the itioal value of each pair of its
subcoalitions, e.g.,

Vour < Vg + Vrpforall S, T C N suchthatS N7 = 0.

In both environments, there is monotonicity in coalitiohueabased on the size of coali-
tions. However, aon-superadditivg89] environment is one in which coalition values have
no relationship to the size of coalitions at all. They arateakily random. This environment
is similar to the real world. It is less explored in cooperatjame theory but has recently
received more attention in multi-agent systems reseaadntly [77, 48, 49, 84, 89, 86, 13,
88, 91].

2.1.2 Example of Cooperative Game

We now consider a classic game, the Sandal Maker game [48157In this game, there
are five agents (sandal makers). Agent 1 and 2 make only lefteds, while agents 3, 4, and
5 make right sandals. (Although no sandal maker in the woddldutilize such a special
way of production, this convincing example provides a fulimodel of cooperative game.)
In one cycle, a left sandal maker can produce 17 sandalseahiight sandal maker can
produce 10 sandals. Obviously, a single sandal is worthmgtonly a pair of left and right
sandals can be sold for 20 dollars. All the scrap leather anded sandals are thrown away
at the end of each cycle. In this game, agents need to forntiooalof left and right sandal
makers in order to create value to their coalitions thendéithe payoffs. Given this simple
information, we can determine coalition values below. 8ian agent alone cannot sell its
sandals, the value of a singleton coalition is 0. Also, aitoalof agents that produces the

2.1. Introduction to Coalition Formation 9

same side sandals is worth 0. Apart from this, a coalitiors=timg of both agents capabled
of producing each moiety (side) will be basically consteairby the smallest number of
either moiety. For example, the value of a coalition of twemtg, each of a moiety, is
limited by the smaller number of right sandals. The value gbalition of three agents,
one of which is of the left moiety, is limited by the number eftlsandals. The value of
a coalition of four members, one of which of the right moiesylimited by the number of
right sandals. Finally the coalition value of the grand taal is limited by the number of
left sandals. Note that we will denote a coalitiSrwith the list of its member to designate
the coalition value as well. For exampleé, refers to the value of coalitiof = {1} while
Vi 2 refers to the value of coalitio§ = {1,2}. Below is the characteristic function that
summarizes coalition values:

Vi=Vo=V3=V,=V;5=0
Vie=Vaa=V35=Vi5=V345=0
Vig=Vig=Vig="Va3="Voy=Vo5=200
Viga=Vigs =Vigs = Vaoga = Vo35 ="Va45 =340
Vips = Viga=Vigs =200

Vigas = Vagas = 340

Viesa = Vigss = Vigas =400

Viazas = 600

If agent 1 and 3 agree to make a deal, while player 2 and 4 agraeaiher deal, a payoff
configuration could b&100, 50, 100, 150, 0; {1, 3}, {2,4}, {5}). Is this, however, a solution
of the game? Since agents are self-interested, reachimgagmeement may not always be
this easy because there may be a chance that some ageniB l@kstg to increase their
payoffs. In the following, we shall explore solution contethat bring stability to the game.

2.1.3 Solution Concepts in Cooperative Games

The study of coalition formation seeks to find solutions tlead to a stable state in which
every agent is satisfied with its payoff and has no incentivddviate from its coalition.

Solution concepts established include Bargaining Set [@hl8 Set [60], Kernel [24], the
Core [53], Nucleolus [79] and Shapley value [82]. Among théafthough many of them

are not directly involved in our research) we briefly desetie following as they have also
been studied in multi-agent systems research as well.

2.1. Introduction to Coalition Formation 10

The Core

Von Neumann and Morgenstern [60] consider that searchirgjéble states in a cooperative
game is actually searching for payoff vectors that satidifyagents. Hence, there is no
incentive for any agent to deviate. They propose the ideadividual rationalitythat states
that an agent in a coalition will never accept any payoff tees what it could receive from
its singleton coalitionlJ; > V; for all 7. This individual rationality is virtually part of every
stable state otherwise there will be at least one agent whiatds in order to satisfy this
condition. Von Neumann et al. [60] also propose that agembsild form coalitions such
that the sum of coalition values is maximal. This is referr@@sgroup rationality [60].
Since the environment they study is superadditisejs the largest coalition value. It can be
claimed that agents should refuse any payoff configuratimh shat) " U; ;cy < V. Von
Neumann et al. [60] define group rationality as “the sum ofgegent’s payoff in the grand
coalition is equal to the the grand coalition’s valu®”,U; ;,cy = V. The implication of this
assumption into the general case is that agents shouldtmgx@nize the system’s utility. A
payoff vector that satisfies individual and group ratiotyak called anmputation

Based on these rationalities, Gillies [30] defines the lastllef rationality, i.e.,coali-
tional rationality which requires that the sum of payoffs of agents in any doalis not less
than the coalition valuey Uy > Vi for everyT C N. There is no incentive for any agent
to leave its coalition. Hence, it brings stability to the teys. Gillies [30] names the set of
payoff vectors that satisfy all three levels of rationabty theCore. Of all existing solu-
tion concepts in cooperative game theory, the core is sitipglynost beneficial concept that
brings the most wealth to individual agents, coalitiong] Hre system as a whole. However,
it is the hardest to satisfy as we shall cover in detail later.

Let us consider a simple game of 3 agents in a superadditvieoeament, explained
in [103]. The game is defined by the characteristic functielow:

Vi=Ve=V3=0
‘/172 = 025, ‘/1’3 == 05, ‘/273 = 075
Vips =1

A payoff vector(U;, Us, Us) is in the core of the game if

U1 + U2 Z ‘/1,2 - 025
U +Us>Vig=05
Uy 4 Us > Vo3 = 0.75

Payoff vector(0.25, 0.5, 0.25), for example, meets all three conditions, so it is in the core

2.1. Introduction to Coalition Formation 11

Let us consider another example, the House Selling gamastied in [60, 103] which
was analyzed by Von Neumann et al. [60]. Agent 1 has a househvithvalues at $100,000
and wants to sell it. Agents 2 and 3 are potential buyers, veoh élas $200,000 in cash
and values the house at $200,000. The coalition value,srctse, is actually the difference
between the amount that buyers and seller value the housau&zany singleton coalition
and a coalition of buyers cannot make any deal, hence thkievare 0. A coalition of
agent 1 and one of the buyers is $100,000. The grand coaditsm(theoretically) has the
value $100,000 (although the house can not be divided). élehe characteristic function
is shown below:

Vi=Vo=V3=0
Vi = Vi3 =100,000,V55 =0
Vias = 100,000

The core of this game is the set of payoff vectQis, U,, Us) with U; + Uy > 100,000

U, + Uz > 100,000, andU; + U3 > 0. The only payoff vector which satisfies these
conditions is(100000, 0, 0). It implies that agent 1 sells the house to either agent 1 aitf2 w
the maximum possible price of $200,000. The only agent whe gk the benefit of this
economic cooperation is agent 1. The negotiation that mey te this conclusion could be
agent 2 offers $150,000 to agent 1. Agent 3 then raises theybiadfering agent 1 $175,000,
and so on. As long as the offer is below $200,000, there is mgghboth agents can raise the
bids.

Now, let us consider the Sandal game. Since the largest anpogsible is $600, the
proposed payoff vectof100, 50, 100, 150, 0) is definitely not in the core because it is not
group rational. Payoff Vectof120, 120, 120, 120, 120) is in the core because it satisfies
individual, group and coalitional rationality. No agenhadeviate and be better off.

Shapley Value

Since agents are self-interested, a fair distribution afaiton value among coalition mem-
bers should satisfy agents very easily. Shapley [82] semkarf imputation that represents
a fair distribution of payoffs taking into account the capition each agent made into the
coalition value. This fair distribution is known as ti&hapley value In a game(N; V),
Shapley’s concept of a fair distribution of imputation= (U;, Us, ..., U,,) is based on three
axioms.

Axiom 1: U should only depend olr, and should respect symmetryin If agentsi
andj have symmetric roles thd, = U;.

2.1. Introduction to Coalition Formation 12

Axiom 2: If Vg = Vy_;, a coalition withouti, for all coalitionsS C N, thenU; = 0,
e.g, the payoff to dummy agentvho has no contribution to any coalition is 0. Also, adding
such a dummy agent does not change the véluer other agentg in the game.

Based on the first two axioms, Shapley proposes that any gambecéroken down
into a sum of symmetric games (a symmetric game is one wheegamt's payoff can be
transposed as the other agent’s payoff [60]) with dummieeddSuppose thatV; 1) and
(N; W) are two different games with the same set of agents. The som Gat- W can be
defined agV +W)s = Vs+ Wy for all coalitionsS. Now, we have 3 games, the imputations
to be assigned to them should be related as below:

Axiom 3: UV + W] =U[V]+ U[W]

The idea is that if it is fair for some agento getU;[V] in V andU;[W] in W (both
symmetric games), it would seem fair for the agent to gettine af these two payoffs in the
gameV + W.

Shapley [82] proposes a theorem that states that thereyi®palimputation that satisfies
the three axioms. To calculate the imputation, consideagieats forming the grand coalition
step by step. Start by one agent and add one additional aipetinge. As each agent joins,
award the new agent an additional value he contributes todhktion. By saying an agent
contributesa value to a coalition, we mean the agent increases theicoalidlue by the
difference between the coalition value with the presenckefgent and that of the coalition
value without the presence of the agent. Once this is doresfd of the:! grand coalitions’
permutation, divide the accumulated awards to each playet to give the fair imputation.
Consider the following game [103].

Vi=Va=V3=0
‘/1,2:27‘/1,3:47‘/2,3:6
Vips =7

The 6 ordered (3! of orderings) grand coalitions dre:2, 3}, {1, 3,2}, {2,1,3},{2,3,1},{3,1, 2}
and{3,2,1}. GivenS = {1, 2, 3}, the first member is agemt who contributes the valugto

the empty coalition(whose value is algp The second member is agéntwho contributes

the valueV;, — Vi = 2 — 0 = 2 to coalition{1,2}. The third member is agent who
contributes the valu&; ,; — V1,2 = 7 — 2 = 5 to coalition{1, 2, 3}. Consider coalition
{3,2, 1}, the value added by each player to the coalition is:

Agent3:V; — V3 =0—-0=0,
Agent2:V35 — Vo =6 —0 =6,
Agentl:Vs51 — V3o =7—-6=1

2.1. Introduction to Coalition Formation 13

Repeat the same process for each of the ordered coalitiohsisatcwe can obtain the
value each player contributes to each of the ordered amaditas shown below. The column
“Order” contains all the permutations of the grand coatitidhe column “Contribution of
Agents” contains all the contributions each individual mg®made to the existing coalition.
Note that the contribution of each agent illustrated belepahds on the order the agent joins
the coalition. GivenS = {1, 3,2}, agentl contributes the value to the existing coalition
(empty), agens contributes the valu¢ to the existing coalition, and agextontributes the
value3 to the coalition.

Contribution
of Agents
Order | 1| 2| 3
{123 /0| 2| 5
{132 /0| 3| 4
{21,3 /2| 0| 5
{234 /1| 0| 6
{312 (4| 1| 2
{3243 /1| 6| O
Total | 8| 14| 20

Then we find the average contribution of each player over themslered coalitions
for the Shapley value, i.e. =(8,14,20) = (1.33,2.33,3.33). Although the Shapley value
guarantees a "fair” distribution of payoffs to agents, iedmot tell which coalitions are

formed.

Kernel Solution Concept

While Shapley value finds a fair distribution by taking intacagnt every permutation of
the grand coalition, in many cases some agents’ contribusioeally low and affects their
average contribution. It can be argued that this is notydait to them because they are not
obliged to be part of those low valued coalitions. How canghgoffs for these agents be
really fair?

To answer this question, Davis and Maschler [24] proposéhancsolution concept,
namely, thekernel The kernel stabilizes coalition structure by balancinghgaair of agents
payoffs in every coalition. For a gaméV; V') and a payoff configuratio(U; C'S), there
may be a subset aV (group of agents), which contemplate leaving their respedoali-
tions to form a new coalitiok. The difference between the value®find the sums of their

2.1. Introduction to Coalition Formation 14

collective payoffsUg, is defined by Davis et al. [24] as tlexcesse(R;U) = Vg — Ug.
Hence, the excess @i is the amount that the prospective coalition memberB afay gain
(or lose, depending on the sign of the excess value) if the ¥eeleave their current coali-
tions in the givenU; C'S) to form R. Now, consider any two agentsand; in a coalition

S € CS. Agenti may join any alternative coalition along,¢ C'S andj ¢ R. Each of these
coalitions will have an excess with respecttg C'S)as defined above. The largest of these
excesses is called tmeaximum surplusf agent; over ageny with respect tqU; CS), e.g.,

61'73‘ = mCLQZRﬁeR’ng €<R; U)

This maximum surplus is the maximum amount ageoan gain (or minimum amount it
must lose) if it deviates fromiU; C'S) to any alternative?. Hence, agent can claim that it
potentially could gain that much payoff. Similarly, agentan do the same and claim that
its maximum surplus i§5; ;. Now, if both

Gi,j > 6]"@' ande > ‘/j,

e.g., ageni’s maximum is greater than that of agenand agentj’'s payoff is greater than
its singleton coalition’s value, then it is said that agewutweighsagent;, with respect
to (U;CS) [24]. In other words, agent has greater maximum surplus and can ask for
compensation from ageritotherwise it may leave for better payoff . However, agent
cannot ask for all, it is bounded by individual rationalit§, e.g., agen§ would not accept
anything lower than this value.

If neither agent outweighs the other, then they are in douilm. An equilibrium be-
tween the two agents exists when a payoff configurationfestione of the following con-
ditions:

e 5,; = G;;; their maximum surpluses are equal and nullify each othe&snm for
compensation.

e G,; > G;,; andU; = Vj}; although agent's maximum surplus is greater than that of
agenty, it cannot claim compensation from aggriecause ageritmay deviate to its
own singleton coalition.

e 5;; < 6,; andU; = V;; this is the reverse case of the above condition.

For the global equilibrium, Davis et al. [24] define the Keof all payoff configurations
(U;CS) such that every pair of agentsj € S € CS are in equilibrium. Here, the sense
of fairness is different from Shapley value in that it comsglpotential coalitions that might

2.1. Introduction to Coalition Formation 15

raise agents’ payoffs. If agemtclaims that it can raise a higher payoff without aggnt
than vice versa, then agejis payoff in (U; CS) is too much. Hence, some of it should
compensate agent

Let us consider the game [42],

Vi=Vy=V3=0;
Vipg =90; Vi3 = 80; Va3 = T70;
‘/172’3 = 105

Suppose we have a configuration pay@ff, C'S) = (45,0, 35;{1,3},{2}) on offer. In
order to find if it is in the Kernel, we find its excesses, maximsurpluses, then equilibria
as follows. Suppose agemtand 3 are considering their coalitiofil,3}. There are two
coalitions that include 1 but exclude 3, e.gl} and{1,2}. The excesses and maximum
surplus are

e(1;U) =V; — Uy = 0 — 45 = —45.
e({1,2};U) = Vio — Uy = 90 — 45 = 45.
S13 = max(—45,45) = 45.
Similarly, 63, = 35. Since&,3 = 45 > G3; = 35, agent 1 outweighs agent 3,
ie. (U;C) = (45,0,35 : {1,3},2) is not in the Kernel. What about thg/; C'S) =
(50,30, 25; {1,2,3})? The excesses and maximum surplus between agent 2 and 3 are:

Gay = maz(Vy — Uz, Vi — Us) = maz(0 — 30,90 — 30) = 60,
Gs2 = max (Vs — Us, Vi 3 — Us) = max(0 — 25,80 — 25) = 55.

Agent 2 outweighs agent 3, i.€50, 30, 25; {1, 2,3}) is not in Kernel. What about the
(U;C) = (45, 35,25;{1,2,3})? The excesses and maximum surpluses are:

G120 = max(0 — 45,80 — 70) = 10 = maz(0 — 35,70 — 60) = G, 1,
i.e. player 1 and 2 are in equilibrium
G135 = maz(0 — 45,90 — 80) = 10 = maz(0 — 25,70 — 60) = S31,
l.e. player 1 and 3 are in equilibrium
Gy = max(0 — 35,90 — 80) = 10 = maz(0 — 25,80 — 70) = G,
i.e. player 2 and 3 are in equilibrium

Hence, theU; C) = (45, 35, 25; {1, 2, 3})is in the Kernel.

2.2. Coalition Formation in Multi-agent Systems 16

2.2 Coalition Formation in Multi-agent Systems

Taking into account the above mentioned points, coalitawmation in multi-agent systems
deals with more realistic environments. Instead of justsaigring the outcomes, we con-
sider coalition formation as a process, consisting of indéated activities, i.e., deliberation
and negotiation, that eventually helps agents reach agmtetmform coalitions. In delibera-
tion, agents deal with necessary calculations, includorguting coalition values, choosing
potential coalition members, and computing reasonableffgyln negotiation, agents fol-
low a protocol to exchange information, which was computedndj their individual delib-
eration, among each other to convince potential coalitiemivers to make a decision. Note
that coalition formation requires simultaneous multitateather than bilateral negotiation
[78].

2.2.1 Impractical Issues in Cooperative Game Theory

As we have covered so far, cooperative game theory ignorégphaypragmatic aspects. First
of all, it involves merely a very small number of agents (distlass than 10) whereas multi-
agent systems can involve a larger number of agents (can laegasas 1000 agents [21]).
The larger number of agents causes a lot of consequent@iatic issues. While the num-
ber of agents grows linearly, the number of coalitions aralitton structures grow exponen-
tially (as we shall discuss in greater detail later in 2.3ad8cally, in order to calculate them
repeatedly and rapidly retrieve coalition values for sodhadentsZ** or 4 x 102 coalitions)
would require the most powerful computer in the wadrltllote that this figure would leave
no memory left for any other operation at all. Let alone thenbar of coalition structures
(see 2.3.1). The fastest algorithm for generating coalisivuctures [69, 71] merely deals
with 27 agents on typical personal computers. The problecores intractable for even a
slightly larger number of agents.

Cooperative game theory assumes a characteristic functiostantly yield optimal [42]
coalition values. Combinatorial games that are studied megéheory assume coalition
values are given and focus on the aspect of coalition vaktelalition. However, it is known
that optimizing coalition values is also necessary in pratgrcoalition formations [75, 76].
The complexity of computing these values can be as compléresa (Linear Production
game [63]) or non-linear (Traveling Salesman game [66]théugh the computation of a

1IBM's BlueGene has memory of 32768 GB 2. Ref: http://www.top500.0rg/system/7747, accessed on
18 June 2009.

2.2. Coalition Formation in Multi-agent Systems 17

coalition value in linear games can be done in polynomiaktirhis not the case for non-
linear games which require exponential time. The computatif all coalition values can
become intractable very easily due to the exponential nuwibepalitions.

By considering a very small number of agents and assuminggeetionality and com-
plete information, important aspects such as dynamicitpalfition, deliberation of individ-
ual agents and negotiation among agents are not considdadeumann et al. [60](page
44) admitted that

“... our theory is thoroughly static. A Dynamic theory wouwidquestionably be
more complete and therefore preferable.”

Von Neumann et al. [60] focus on mathematical analysis ofjmae and the consequential
possible outcomes. Note that in many cases, the outcomessatgthe Core or Kernel) not
a single value. Furthermore, since the study focuses onayeffs, it is not known exactly
what coalitions are formed. On the other hand, given a latgaber of agents who are
realistically of bounded rationality and are often undereiconstraint, deliberation may not
be optimal. Negotiation can be important in that it can diseluseful information derived
from other agents’ deliberation and help agents make aeceppropriately.

By taking into account the above mentioned pragmatic aspegtdition formation in
multi-agent systems research proposes algorithms anogmistthat allow agents to deliber-
ate and negotiate. Most importantly, the outcome is a paymfifiguration, which describes
the payoff for each agent and what coalitions are formed. \Bele discuss the overview
of coalition formation in multi-agent systems. Detailedalission on related topics will be
presented in later sections.

2.2.2 Early Dynamic Coalition Formation

Dynamic coalition formation dates back to the studyfdnsfer Schemdsy Stearns [102].

It is a mathematical analysis of the dynamic process of toalthat leads to a final pay-
off configuration (a payoff vector for all agents and a caatitstructure of all agents) for a
given game with respect to a solution concept, such as theeKeEtearns provides algo-
rithms that begin with a payoff vector, repeatedly compuisesses of each pair of agents,
balance the differences, and eventually converges to atilegum. The algorithms can be
implemented in a “largest-excess-first” fashion or in a fraarobin” fashion. The study as-
sumes perfect rationality and complete information. Gitleat this work is an algorithmic
analysis, Stearns [102] shows that agents can eventuailyeoge to the Kernel with the cost
of exponential time.

2.2. Coalition Formation in Multi-agent Systems 18

The real implementation of dynamic coalition formation amgqcomputer software)
agents took place between the late 80's and the early 90’ 9Doh work was Zlotkin
and Rosenschien [119] which studies coalition formatiom @gents in subadditive task-
oriented domains. Agents are allocated parcels to deliver grid environment and they
have to finish their tasks within limited steps. Agents alevatd to cooperate. Hence, their
coalition values are the costs they can save by exchangsiig.td he payoffs to agents are
calculated based on the Shapley value. Because of the precetdcomputing the Shapley
value, Zlotkin et al. [119] argue that agents may be reludtabe the first in the permutation
because they will get payoff O by definition. Zlotkin et al1f] propose to deploy a simple
combination of private and public key (a cryptographic &ggh) to guarantee random per-
mutations of any coalition. Each agent chooses a permatafi@a coalition in which it is
interested. The permutation is then encrypted with the tgyprivate key and is broadcast
with its public key. Having received all messages, each agjamoses a message randomly
and decrypts it. The combination of all the permutations belused as the initial permuta-
tion. This work is a good example of applying a cooperativagaheory into a multi-agent
system. Agents can decide to form coalitions by applying ohthe proposed schemes
which will suggest the most appropriate coalition for eagérd.

Ketchpel [43] proposes a “two-agent auction” mechanismcfmalition formation that
prescribes an algorithm for agents to negotiate. The mobelhnKetchpel studies is a basic
economic model where rational agents join auctions to wirtre@ts from which they earn
guaranteed payments. In this model, agents play similasrwl the bargaining process.
Firstly, agents broadcast their individual offers to othgents. These offers are ranked in
preference orders by interested agents. Each interestetthgn chooses the most attractive
agent, as a potential coalition member, in order to form dittaa of 2 agents. These two
agents then enter the “two agent auction” phase where ar agkact as the manager. The
manager will propose to its potential coalition member agfflaysing the Shapley value. The
member agent receives a fixed payment for its role in thetomaliThe principle of ranking
potential coalition members for negotiation seems to beiastraam of coalition formation
algorithms derived in later research [90, 89, 86, 88, 91,885,48, 49]. Note that only a
small number of coalitions are formed due to the ranking.

Similar to Ketchpel [43], Shehory and Kraus [84] explore litma formation among
cooperative agents. These agents use resources, whicholagle materials, energy, in-
formation, communications, etc. to fulfill their tasks. Tiasks are to deliver parcels, but
the coalitions can be made of more than two agents at a timey plopose two ways of
forming coalitions: computing-oriented and negotiatmrented. With computing-oriented

2.2. Coalition Formation in Multi-agent Systems 19

coalitions, an agent will be appointed as the computing gemo will compute the pay-
offs for coalition members. With negotiation-oriented litt@ns, agents can negotiate about
their payoffs. In this environment, they define “strong” lttb@ns as ones whose potential
coalition values are high, thus is preferred by agents. @rother hand, “weak” coalitions
are ones whose potential coalition values are low. Stroagjtams are the ones which other
coalitions join to form larger ones. Each coalition will leaa representative, who values
the potential coalition higher and takes care of negotiaivith weaker coalitions. The ne-
gotiation is to distribute relevant information, i.e., péyand resource vectors. Shehory et
al. [84] also analyze the complexity of negotiation whict2{s — 1) operation for their
algorithm. The payoffs to agents in each coalition are baseithe “common extra” payoff,
i.e., the increased value of the joint pair of coalitions.isTtommon extra payoff will be
distributed equally among agents in the new coalition. &iagents operate in superadditive
environment, they eventually form the grand coalition.

2.2.3 Kernel in Multi-Agent Systems

So far, we have discussed some early work in coalition faonah multi-agent systems
that are more pragmatic than cooperative game theory. Wghect to stability, many of
them deploy the Shapley value. Here, we discuss the applicat the Kernel in dynamic
coalition formation.

It has been shown by Stearns [102] that the complexity of agimg the Kernel is ex-
ponential. However, Klusch and Shehory [47] show that then&lecan be reached in poly-
nomial time in some settings. They study coalition formateomong information agents.
An information agent is an active intelligent database tfiemd trying to satisfy its own ap-
plication specific tasks alone or in cooperation with othgerd to gather information. In
their setting, information agents try to rationally cocgterto discover intentionally relevant
information in non-local domains. The utility which eacheagjachieves is derived from
the search on the set of discovered interdatabase depeesl@ritch satisfy its own and/or
received requests. The utility achieved from the searchitoown request is the singleton
coalition value of each agent. The coalition value of contepasoalitions is the sum of the
singleton coalition values. They propose a detailed paittmr forming coalitions under a
predefined duration. Since the formation is done in a disteith fashion, they claim that the
complexity of computing Kernel is, in the worst case, of ar@¢n/Sm=!), wheres,,,,, is the
largest coalition being considered.

2.2. Coalition Formation in Multi-agent Systems 20

Another attempt to reduce the complexity of reaching thenkkis conducted by She-
hory and Kraus [87]. They study coalition formation in gealeznvironments, i.e., non-
superadditive, and propose an algorithm which can reackethé{in polynomial time. The
coalition formation is partitioned into two levels: the gddevel and the strategic level. The
social level is composed of the coordination regulatiorigrols which must be agreed upon
by different designers of agents in advance. The strategeal tonsists of strategies for the
individual agent to act in the environment for maximizatadiits own expected payoff, given
the social level, and can be decided upon by individual agéuating the coalition forma-
tion process. At the strategy level, a coalition will caktel a joint value of a new coalition
if its value will be increased. Given the increased valuatifeast the payoff vector of a
component coalition is increased, that coalition shouienapt to make an offer to the other
coalition. This strategy is not enforced but is recommended

Whereas other works assume that coalition values are knoweeftain, Blankenburg,
Klusch and Shehory [13] consider coalition formation witheal-world environments where
coalition values are known only to some degree of certaifttgy apply the concept of fuzzi-
ness to the Kernel to allow specification of uncertain cmadivalues. The fuzzified Kernel
extends the classical one to contain information aboutdigess of certainty to which a fuzzy
configuration is Kernel [24] stable. An example of such a cpifation is when information
agents have a task to deliver some information to their uSére agents’ evaluation of the
relevance of the available information to the task is urgertThis uncertainty is represented
by fuzzy numbers. In their example, however, they assummthemum coalition size of 2,
just half of the number of agents 4. The coalition protocthessame as Shehory et al. [87].
The complexity of the method to reach stability in generalesais exponential. However,
polynomial time can be achieved by limiting the size of coatis being considered as in
[47].

Blankenburg and Klusch [12] also extend their work to the sgcdomain. They con-
sider real world settings like health care andcommerce which require high preservation
of the privacy of user information. By using their algorithm [47], they show that such a
requirement of privacy preservation can be obtained. Materestingly, they show that, in
principle, fraudulent agents may try & unreasonably strengthen their bargaining power, or
b) play some cheating strategies but doing so is very computty costly in practice.

2.2. Coalition Formation in Multi-agent Systems 21

2.2.4 Bounded Rational and Time-Constrained Coalition Formation

Real world settings usually involve complex optimizatiorhigh raises two closely related
issues: bounded rationality and time constraints. Giveonaptex problem, solving it opti-
mally is hard to achieve because the available computdtomveer is limited. Furthermore,
a solution is needed by a certain point of time. In the follogyiwe shall explore previous
work in coalition formation research that also takes intocamt bounded rationality and
time constraint (which our work principally follows).

Sandholm and Lesser [75, 74] analyze coalition formatiooragrself-interested agents
in real world settings where agents are logistics dispagrtiers who try to cooperate, i.e.
forming coalitions, in order to reduce their costs. This kvaises the importance of solv-
ing combinatorial optimization problems as part of the tmad formation because it yields
the coalition value, i.e., cost reduction achieved by thenupation of appropriate routes
for trucks belonging to cooperative dispatch centers. Githe real world setting described
in [75, 74], computing coalition values is a very complexigem. Note that the coalition
value is needed in timely fashion, i.e., the optimizationinse constrained. Sandholm et
al. [75, 74] also take into account the cost of computatiocabise optimizing such com-
plex problems requires intensive computation power. Salndlet al. [75, 74] state that the
solution quality is a trade off against computation coste Pplerformance of the algorithm
deployed by the agents in the optimization affects sigmtigathe stability of coalitions
among agents due to their bounded rationality. Sandholrh [t 74] assume agents have
the same computation power and algorithm, hence agentshacbieve the same result for
a given problem. Agents form coalitions according to thargation result without real
negotiation. Based on the empirical results [75, 74], ageatsoften reach a stable state,
i.e., the “rational-bounded” Core. However, the final coatitstructure (see 2.3) may not
be the grand coalition.

Further work with respect to pragmatic constraints is gddly Tohm and Sandholm [107].
This work takes into account the costs of communication aglberation of rationally
bounded agents in order to model the dynamic process ofticoaformation in superad-
ditive environments. Agents are self-interested. Theydrgnaximize their payoffs. They
join coalitions if they have the chance to increase theioffay A novel idea deployed in
this work is the exchange of beliefs of agents during thegotiation, i.e. each agent tries to
convince other agents to join its coalition. The new infotiorawill be kept as agents’ new
beliefs replace the old ones. In each step of the negotiatiercosts of communication and
deliberation are taken into account in order to find the reggnt to negotiate with as well
as when to decide to form coalitions before the time has ranlouheir setting, agents can

2.2. Coalition Formation in Multi-agent Systems 22

reach a state of stability. They also note that the effecbahlded rationality depends on the
computation in the negotiation process is also intractable

Soh and Tsatsoulis [98] study coalition formation in a coapiee multiagent system in
an incomplete information environment. While lacking knedge of “noisy, dynamic, an
uncertain world”, agents need to respond to events under ¢onstraints. Soh et al. [98]
propose a model, which has two stages: (1) compiling a ligbténtial coalition members as
the candidate agents, and (2) negotiating with these catedajents to form coalitions. The
first stage takes place when when an agent detects an eveatimtld that it needs to form a
coalition and respond to the event. This stage is calleditcainitialization”. The second
stage allows for agents to negotiate with the candidatdsated in the first stage. Agents
negotiate in pairs by exchanging their information and tramsts. The negotiation may or
may not be successful. Each successful negotiation adds aneenber to the agent’s final
coalition. This second stage is called “coalition finaliaat. Soh and Tsatsoulis [96] also
study within a similar setting and consider coalition fotioa in a “dynamic, negotiation-
based” model where agents cannot form rationally optimalitons. With the two-stage
approach proposed in [98], the agent who initiates the toalheeds to determine the task
distribution among the members of the coalition and desigttategy to successfully form
the coalition. Having limited resources and incompletevidedge about noisy and dynamic
environments, agents need to form coalitions in order totreeevents instantly.

2.2.5 Strategic Coalition Formation

Modern coalition formation research takes into accountermmagmatic aspects such as
bounded rationality and time constraint. These pragmasaes, in turn, bring strategies
into perspective. Kraus, Shehory and Taase [48] explorkticoeformation in the Request
For Proposal (RFP) domain. In such a domain, a requesterdassagent issues an RFP, i.e.,
a description of a complex task, composed of sub-tasks. dsterequires “several service
provider agents” to cooperatively address the RFP. Althaagth agent knows the value of
the RFP and its private costs for performing a specific suk-iasloes not know the pri-
vate costs of other agents. Additionally, agents have toemddhe RFP within a given time
frame. Given these realistic constraints, Kraus et al. pt§lie that existing coalition for-
mation approaches are inappropriate because they assumpéet® information and no time
constraints. Kraus et al. [48] have developed a protocolahavs agents to form coalitions
within this environment. With the protocol, agents will useme heuristics for choosing
partners to form coalitions under this realistic settingcérding to their results, the overall
payoff for agents using their heuristics is very close togeementally measured optimal

2.3. Algorithms for Computing Optimal Coalition Structures 23

value.

Based on [48], Kraus, Shehory and Taase [49] study furtheh@radvantages of com-
promising in coalition formation with incomplete infornian”. Kraus et al. [49] study pro-
tocols and strategies for coalition formation with incogtgl information under time con-
straints. In such a setting, Kraus et al. [49] suggest thatdtrategies should preferably be
stable, lead to a fair distribution, and maximize the soselfare of the agents. These prop-
erties are not fully supported by existing coalition forroatapproaches.” Kraus et al. [49]
argue that “stability and the maximization of social wedfare supported only in the case of
complete information, and only at a high computational clexipy.” Furthermore, the pay-
off distribution in such a setting is done in a “naive manneéghder limited computational
resources and incomplete information, Kraus et al. [49}estigate various strategies for
payoff distribution, including the Kernel (balance in eyeoalition), self-interested (being
greedy and try to maximize payoffs), compromising (tryiadpe friendly by giving away an
agent’'s own payoff to persuade other agents), etc. The comping strategy was “specif-
ically examined”. The empirical results show that, undeirtfd9] setting, the compromise
strategy brings about stability and also raises the soaaltiv (maximal utility) to the sys-
tem. By emphasizing the importance of time constraint, the&kwo[48] suggests to us that
achieving empirically good results from a reasonably gdgdréghm is more achievable and
preferable than theoretical results. We shall follow thiection in this research.

Below, we will explore research works that are closely reldteour research. They in-
clude computing coalition structure which will allow forglsearch for the maximal wealth of
the system, coalition formation in combinatorial settingsalition formation among buyers,
sellers and logistics providers. Lastly, we also brieflylergworks in coalition formation
in various aspects although they are of related to our work.

2.3 Algorithms for Computing Optimal Coalition Struc-
tures

Searching for optimal coalition structures has gained matténtion from researchers re-

cently. It is so important for two reasons) it indicates the optimal solution of a given

system, andi) it helps determining the core of the system (collectiveorstlity). In the fol-

lowing, we shall discuss the overview of the problem as irespnted in the literature [77].
Given aC'S, we define its value,

V(cs)= > Vs,

SeCs

2.3. Algorithms for Computing Optimal Coalition Structures 24

Level 4 4 3+ 242 2+1+1 1+1+1+1

| ||{1,2,3,4H| s | baea| (a9 ‘\{1},{2},{3},{4”
. Level 2 zam| | e | |0.ee e
!{1},{2},{3,4}||{3},{4},{1,2}||_{1},{3},{2,4}||_{2},{4},{1,3}||_{1},{4},{2,3}||_{2},{3},{1,4}|| (2942 | |[H.a02.3] | |[0.92.02103]
| Level 2| {2,324} {1} {23} {1} {4}
!{1},{2,3,4}“{1,2},{3,4ﬂ|_{2},(1,3,4ﬂ|_{1,3},{2,4ﬂ|_{3},{1,2,4}“{1,4},{2,3}||(4},{1,2,3}! {243 {1)0%

Level 1 {343 {1 L2
| Grouped by pattern

Grouped by level

Figure 2.1:Configuration Bounds

which indicates the system'’s utility yielded by that paotiing. An optimal coalition struc-
ture is aC'S* such that

CS* = argmazxcse,V(CS)

The number of all coalition structures can be determineé&pj50], Bell Numbemwhich
is the size of the whole search space. Since the value,afan be very large for a small
value ofn, existing algorithms tend to divide the search space intallgmortions. There are
two divisional methods. Firstly, we can categoriZ&'s by the number of coalitions within
them [77]. We denote the set 61Ss, whose number of coalitions of ea€ly is 1 < i < n,
by L;. EachL; is known as a layer. The number 61Ss in L; is known as theStirling
Number of the Second Kirj@0],

S(n,i) = %Z (—1)%_, <;€) (i — k)”,where(li) = (Z_Z—;W

Hence, the set of all'SsisL = |J;_, L;.

Alternatively, we can categoriz€'Ss by the integer partition of. that describes the
number of coalitions and their cardinalities. Each inséanof such a partition is known
as a “pattern” [101, 100] or a “configuration” [62};;, which is usually written in the form
by + ...+ by, Wherer’:1 b, = n. Given a set of 4 agents, all the configurations are 4, 3+1,
2+2, 2+1+1 and 1+1+1+1. Figure 2.1 shows all coalition $tnes of 4 agents categorized
by level and by pattern (configurations).

2.3.1 The Analysis of the Problem

Sandholm et al. [77] show that computing the optimal caalistructures in a non-superadditive
environment is non-trivial; it is NP-hard becauBg can be very large for a small. Ta-
ble 2.3.1 shows approximate numbers of coalition strusttoell < n < 30. Forn = 11
agents,B;; is relatively small but is very large for 30 agenfs;, = 8.47 x 10%3. Let us

2.3. Algorithms for Computing Optimal Coalition Structures

25

Table 2.1: Search Space in Coalition Structure whétg'‘is the number of coalition struc-
tures, “Largest.;” is the largest layei, “S(n,)” is the number ofC'S in that layeri, “#

of Config.” is the number of configuration, “Conf Max” is the capration which has the

largest number of’'Ss, “CS Max” is the number of’Ss in “Conf Max”.

of Agents 11 12 13 14 15 16 17 18 19 20
B 6.79E+5 | 4.21E+6 | 2.76E+7 1.91E+8 1.38E+9 | 1.05E+10| 8.29E+10| 6.82E+11| 5.834E+12| 5.17E+13
LargestL; 5 5 6 6 6 7 7 7 8 8
S(n,i) 247E+5 | 1.38E+6 | 9.32E+6 | 6.34E+7 | 4.21E+8 | 3.28E+9 | 2.57E+10| 1.97E+11| 1.71E+12 | 1.52E+13
of Config. 56 77 101 135 176 231 297 385 490 627
ConfigMax | 3(3)+2 3(4) 3(3)+2(2) | 3(4)+2 3(5) 4+3(4) 3(5)+2 3(6) 4+3(5) 3(6)+2
CS Max 3.69E+3 | 1.54E+4 | 5.64E+4 | 2.66E+5 1.40E+6 | 5.60E+6 | 3.00E+7 | 1.90E+8 9.05E+8 4.86E+9
Agents 21 22 23 24 25 26 27 28 29 30
B 4. 75E+14 | 4.51E+15| 4.42E+16| 4.46E+17 | 4.64E+18| 4.96E+19| 5.46E+20| 6.16E+21| 7.13E+22 | 8.47E+23
LargestL; 8 9 9 9 10 10 10 10 11 11
S(n,1) 1.33E+14 | 1.24E+15| 1.23E+16| 1.21E+17 | 1.20E+18| 1.32E+19| 1.43E+20| 1.54E+21| 1.81E+22 | 2.15E+23
of Config. 792 1002 1255 1575 1958 2436 3010 3718 4565 5604
Config Max 3(7) 4+3(6) | 4(2)+3(5) 3(8) 4+3(7) | 4+4+3(6) 3(9) 4+3(8) | 4+4+3(7) 3(10)
CS Max 3.62E+10| 1.99E+11| 1.15E+12| 9.16E+12 | 5.73E+13| 3.72E+14 | 2.98E+15| 2.08E+16| 1.51E+17 | 1.21E+18

consider the size of search space by levels. Givagents, the number of coalition struc-
tures in each level increases exponentially, arotifidoughly), as the level gets higher. It

reaches the peak around the middle level and decreasesest@atiy towards the top level.
Forn = 11 agents, level 55, has the highest number of coalition structures, i.e.,@ppr

matelyS(11,5) = 2.74 x 10° coalition structures. Far = 30 agents, the largest level is 11

whose search space is approximatzlys x 10%3. The whole search space for any given

agents is slightly higher than that of largest level. In cafsdividing the search space into
configurations, each divided search space can be relatugyl. For 11 agents, there are 56
configurations. The largest configuration is 3+3+3+2 whasalrer of coalition structures
is approximatel\3.69 x 103. For 30 agents, there are 5604 configurations. The largest co
figuration is 3+3+3+3+3+3+3+3+3+3 whose number of coalitructures i4.21 x 108,

2.3.2 Coalition Value Distribution

In traditional algorithms of this problem, there are 4 fonvieonments that are considered:

normal, uniform, superadditive and subadditive. Thes&enments involve the distribution

of coalition values only. It is obvious that the structureCtd$* depends on the distribution

of coalition values and so does the performance of an algoritSmall coalitions (e.g.,
of size 1 or 2, for example) tend to be in the optimal coalitsdructures if forming larger

coalitions does not increase the value high enough. In #se,dt is better for the system

2.4. Previous Centralized Algorithms in Optimal CoalitionuStures 26

if most agents remain singleton coalitions. However, maay world environments involve
cooperation among agents. Small coalitions do have enasghurces to perform tasks or
create any coalition value. Composite web services is a sisygmple. Agents have to form
coalitions in order to create joint values which will be digd among coalition members.
Hence, coalitions of small cardinality tend to be uselesmposition of optimal coalition
structures. As shown in table 2.1, the number of coalitioncstires in certain areas, e.g.
LargestL; and Config. Max, can be very large. Hence, it is important thatigorithm be
consistently efficient compared with various distributforms. In the following section, the
previous algorithms for finding optimal coalition struasmwill be discussed.

2.4 Previous Centralized Algorithms in Optimal Coalition

Structures

Due to the fact that the search space of the optimal coaliarcture problem is very large
and the search terrain is arbitrarily random, the algoritbnsolve the problem needs to
perform efficiently. Previous algorithms tend to divide thieole search space into smaller
parts. The division is based on the structure of coalitionS$'s and a lexicographic order
of agents within coalitions.

Sandholm, Larson, Andersson, Shehory and Tohm [77] propaosanytime algorithm
(that can yield an approximate answer, whose quality dependhe computation executed,
at any time) that guarantees improvement of the worst-cagedas the algorithm proceeds.
The large search space of all coalition structures is diviteo levels, each of which is
L;;1 < i < n (alevel where each'S has: coalitions). The algorithm advances through
levels1,2,n,n — 1,...,3 and search through all'Ss in eachL; in the breadth-first search
manner. The algorithm can guarantee that the solutiontheg been found after finishing
the first two levels are within the bourid = n from the optimal solution. Although this
bounds drops as more levels have been completed, the s@@h is many levels is still
large. Dang and Jennings [22] improve the performance oflisa@m et al.’s algorithm.
Having finished the first three levels (1, 2 amg Dang et al.’s algorithm then generates a list
of indicators that will be used to determine various configions across levels — 1 and
3. The indicator is simply used to choose any configuratioh¢batains at least a coalition
of a certain cardinality. Given a set of 20 agents, for exanfile next cycle aftef,, is
to search through all coalition structures of any configarathat has at least one coalition
of cardinality 16, 15, 13 and 10. Dang et al.’s algorithm gudees that it reaches bounds
closest to the optimal faster than Sandholm et al.’s aligrit This is due to the greater

2.4. Previous Centralized Algorithms in Optimal CoalitionuStures 27

Figure 2.2:Search Direction in Divided Search Space
Sandholm et al. [77] divides search space into levels. Tieztion of search is
Ly,Ls,L,, L, 1,...Ls. Dang et al. [22] follow the first two steps of Sandholm et ait b
search through portions of remaining levels.

selectivity in searching through;. Although these two algorithms can guarantee improving
solutions as time elapses, they need to exhaustively sdamalgh the whole search space in
each cycle to guarantee optimality. Figure 2.2 illustralessearch direction in the divided
search space.

The common problem of Sandholm et al.'s and Dang et al.’srdlgos is that they rely
on the completion of the search on the first two levels. For allsnumber of agents, e.g.,
20-40 agents, the search space over the two levels is mthetsmall, e.g., around0® and
10*2 coalitions respectively. Once the number of agents grometae.g., 60 agents or more,
the search space of the first two levels becomes too largentiplete, e.g., arountd'®, let
alone the remaining layers. Moreover, the solution obthweéhin the elapsed time can
be bad. Furthermore, accessing the coalition values canpoelbdem. One can compute
coalition values every time a coalition structure is getestdout this can cost too much time
because the same coalition value has to be computed agaagamd An alternative to this
is to keep the coalition values in memory. This, howeverumes a large space of memory
that no single computer can offer.

Sombattheera and Ghose [100] propose the idea of partifathie search space into
smaller sections, referred to as “pattern”. Rahwan, Ramg¢teing and Jennings [70] fol-
low this idea by proposing a near optimal coalition struesualgorithm. To begin with, all
coalitions in the first two levels will be examined. Along lvihis, the upper bound and the
mean value for each configuration are established. The eoafign to be searched first is
either:) one whose ratio between the upper bound and the mean vahesvest, oi:) one
that is likely for the algorithm to prune the largest seanghce in its configuration. As the

2.4. Previous Centralized Algorithms in Optimal CoalitionuStures 28

cs cs

G, L L
G, . L,
G, Gy
Configurations Configurations
A) B)

Figure 2.3:Configuration Bounds
In general Rahwan et al.’s algorithm can prune portions otech space (A) when a
present solution is better than that of remaining configomat However, it may fail to do
so due to misleading upper bounds(B).

algorithm proceeds, the upper bound of each configuratitiroeiupdated and the configu-
ration will be eliminated if its upper bound is lower than thest solution found so far. Given
enough time, the algorithm terminates when there is no cordtgn left to be searched and
the solution is the optimal. Based on this work, Rahwan, Ranm;iRaing, Giovannucci and
Jennings [69, 71] develop an optimal algorithm that, to aestiknowledge, ishe state of
the art of anytime optimal coalition structure algorithifihey apply pruning over configura-
tions and within coalitions to cut the search space massamall generate optimal solutions
rapidly under a number of data distributions [51]. Howebis algorithm can be misled
by miscalculation of the bound. As shown in figure 2.3, thedeavill take place in all
configurations whose bounds are higher than the actualsialue

Yun Yeh [117] proposes a deterministic algorithm to compm#mal coalition struc-
ture based on the integer programming technique. His soligibased on the bi-partitioning
principle. A whole set of agents will be bi-partitioned irit6; pairs. Each coalition in each
pair will be recursively partitioned downward to the sirgle level where all coalitions are
of cardinality 1. The algorithm then works upwards for théim@l value of each coalition.
At each level, the pair whose combined value is the highdsbeithe optimal value of the
coalition. This algorithm guarantees optimal results véithtime and space complexities.
However, this algorithm is not appropriate for a multi-agsystems environment because
the problem becomes intractable for even a small numberesitagOn the other hand, Sen
and Dutta [80] use an order-based genetic algorithm (auBwalalgorithm, which deploys
the biological evolution concept, i.e., inheritance, niota selection, and crossover, to con-
stitute the search for approximate answer in large combiizdtproblems) as a stochastic

2.4. Previous Centralized Algorithms in Optimal CoalitionuStures 29

search process to identify the optimal coalition structukéhough their algorithm has no
performance guarantees, they claim that it is found to dateithe deterministic algorithm
in a significant number of problem settings. Due to the natfigeenetic algorithms, an addi-
tional advantage of their algorithm is its scalability toger problem sizes and to problems
where performance of a coalition depends on other coatditinrthe environment. Larson
and Sandholm [51] present experimental results for thrggraa algorithms that search the
space of coalition structures. They show that, in the average, all three algorithms do
much better than the recently established theoreticaltvoase results in [77]. They also
show that no one algorithm is dominant. Each algorithm’dqrarance is influenced by
the particular instance distribution, with each algoritbatperforming the others for differ-
ent instances. They present a possible explanation forehavior of the algorithms and
support their hypothesis with data collected from a cotdtbéxperimental run.

As we have discussed before, these algorithms have to seagttbf all coalitions, which
is of size2”, in order to observe their values. The size of the input canepg large for a
smalln, let alone the size of coalition structures. To this end, Rahand Jennings [67, 68]
develop an algorithm for computing coalition values in ariisited manner. The task of
computing coalition values is distributed evenly amongpsrative agents, who seem to be
involved in computingC'S*, with respect to communication and computation redundancy
They claim to have massively reduced the number of of messsg@ among agents and
memory usage. However, they have tested their algorithrmsig25 agents only, which is
practically small for multi-agent environments. As the renof agents increases linearly,
the size of the problen2”, increases exponentially. Even though the algorithm cadelthe
task among agents evenly and efficiently, the workload di @gent becomes unmanageable
for even a small number of agents. Even with 40, 60 and 80 agém size of the task
is approximately2.45 x 10'°,1.92 x 10%andl.51 x 10?2, respectively, let alone realistic
environments where the number of agents is much more than thi

In real world operation, computing .S* involves two stepsi) computing coalition val-
ues, andii) generating coalition structures. Since the existing rlgas for computing
C'S* need to scan all coalition values, they can precomputetamalralues and store them
in memory, if the size o2 is not too large. Alternatively, the precomputed values inay
stored in a database or other storage. This will definitelwslown computing the optimal
coalition structure because of the relatively slow acoessarage device. The last alternative
can be recomputing the coalition value every tim@%is being generated. This seems to be
a very low performance approach since computing coalitednes itself can be a complex
optimization problem. In addition to this, we also have tketénto account the need for

2.5. Coalition Formation in Combinatorial Settings 30

an on-time solution, which is not necessarily optimal. Nesy doubtful that existing algo-
rithms can guarantee such a quick response because theyohssen all the inputs under
limitation of resources. Hence, it is important that we pdeva solution in a timely fashion.

2.5 Coalition Formation in Combinatorial Settings

Optimization in combinatorial problems (or operationseaagh) has some degree of rela-
tionship with early studies of cooperative game theory [{@8hough it does not focus on
optimizing the combinatorial problem directly). In gamediny, as in optimization, decision
makers want to act in an optimal way. The main difference & there is one decision
maker (agent) in optimization, while in game theory theeeraultiple inter-related decision
makers. In the following, we will briefly explore works thaeaelated to combinatorial set-
tings. Although many of these works are in cooperative gdraery, they provide motivating
examples of how important optimization is to coalition faton.

2.5.1 Linear Production Games

A simple classic sample is the Sandal Maker game [42, 57, 8&f@vagents possesses par-
tial resources (either left or right sandals) and need tgpemaie to produce salable goods
(pairs of sandals). Obviously, the optimization in such mgas trivial but it reflects the un-
derlying fact that gathered resources of a coalition regusomplex optimization. In a more
complex setting, Owen [63] considers coalition formatiarthe linear production game.
This work is derived from the linear production problem wdan agent has to maximize
its profit by producing appropriate goods in the right amo@wen [63] takes this problem
one step towards cooperative game theory. Here, each aggsggses a number of resources
and produces goods to sell to the market to maximize its prafients can benefit more if
they pool their resources together. Owen [63] studies toalin superadditive domain,
i.e., there was no cost involved in the process. As the namegests, to find out what is
the most profitable productions, given available resoyrtesoptimization is basically lin-
ear programming. Hence, the coalition values can be oldtdigesolving linear programs.
Owen [63] uses “duality theory of linear programming to abtequilibrium price vectors
and to prove the non-emptiness of the Core”. However, Owehdé8umes a superadditive
environment and ignores other real world costs such as canaeatdion, transportation, etc.
In such a setting, the most profitable coalition is obviotls/grand coalition. Although the
payoffs to agents are Owen’s [63] interest, we are conviticatdapplying a little more real-
istic constraints to the problem will lead us to anotherction of research, i.e., to find the

2.5. Coalition Formation in Combinatorial Settings 31

optimal coalition structures will need a novel approachichinvolves complex algorithms.
Thus it is our motivation for work in chapter 4, where we redefhis setting as the basis of
our work. Note that Owen’s [63] goal is to analyze the outcavhéthe game whereas our
work is to invent an algorithm in order to search for optimadlition structures.

Another example of combinatorial domain in cooperative gdneory is the study of the
transportation game [73], which is derived from thensportation problenj23]. In such a
problem, it is important to the management that they needromze the transportation cost
of a certain product. The product is available at severgimsiand is to be transported to
several destinations according to their individual negdgn that the transportation cost per
unit of the product is fixed. (Note that although this problisnalso a linear programming
one, optimizing for the optimal route to minimize the costrahsportation is not, which we
shall discuss below.) Sanchez-Soriano, Lopez and Gancédd [73] further study the trans-
portation game in the cooperative game theory context. Téai@ purpose of the research
is to study the Core of the game which they [73] prove does .eXisis game is reversibly
also a superadditive game because reducing cost is actoalbasing profit, given that the
revenue is the same. A larger coalition can allow greataratoh of the cost as in the case
of linear production game.

A more complex problem that is similar to the transportajoablem is the traveling
salesman problem [4] where a salesman has to visit a numlo#iesf connected by a road
network. He has to make a route from a city, go through eackhefr@ities once only and go
back to the city where he started. The challenge for the m&ess to find a route that will
minimize his traveling distance, i.e., cost. Potters, Gunml Tijs [66] study the problem in
cooperative game theory context. In their setting, an aoadis to visit sponsoring institutes
who will cover the academic for the cost to visit them. Thelg®#o find a stable allocation
of traveling costs among the sponsoring institutes. Po#eal. [66] manage to find the core
of the game, however, this work is merely an analysis of a lsimstiance of a potentially
complex problem.

Research on coalition formation among transportation ageas conducted by Shehory
and Kraus [89]. Instead of having all the costs of travelingwn a priori, this work applies a
more realistic setting. Shehory et al. [89] study a scenahiere agents are taxis traveling on
a road network to pick up and drive passengers to variousitosa This work considers a
non-superadditive environment where the revenue of thetagethe price they charge their
customers and the cost includes taxes, fuel, etc. Each aglehéve a number of customers
awaiting their services. It may be better off for the ageittsay can cooperate, this is similar
to the postman problem in which agents exchange their ¢ettéere, agents may exchange

2.6. Coalition Formation in Supply Networks 32

their customers if they find any benefit, i.e., forming a doati to reduce their costs while
serving their customers. The revenue of the coalition isabléective prices charged to
their customers. The coalition value is the difference leetwthe collective revenue and
the collective cost. To minimize cost in order to maximize grofit is a hard optimization

problem which involves a combination of taxis in each caailitand the optimal route to

find and deliver their respective customers. However, thebar of agents being studied in
this work is relatively small. Shehory et al. [89] can find ternel stable for the agents in
reasonable time and find that forming more coalitions carefiesgents further.

It is widely known that ideas in operation research are wigelopted into coopera-
tive game theory because they are very close to each othé}. [The only difference is
optimization in operations research is done by a single taghareas in cooperative game
theory optimization involves multiples agents. Howevhg work we we have seen so far
is more about analyzing the outcome of the games, whichvevolerely a small number
of agents. Although Shehory et al. [89] have shown a good plgnwe want to push our
research further by examining larger number of agents vegorithmic approach.

2.6 Coalition Formation in Supply Networks

Supply networks can be viewed as sophisticated coalitiondtion. As stated in cooperative
game theory [42], a simple trading transaction betweenlarsahd a buyer is considered
coalition formation, whose coalition value is the diffecenbetween the buyer's and the
seller’s reserve prices. Coalition formation can takesekamong buyers in order to gain
negotiation power. Their coalition values are the discaumthe prices. Coalition formation
can take place among sellers in order to increase their gyggpler (not to form cartels)
and optimize the usage of their resources. Since transjorizosts play such an important
role in providing value to end customers, we need to condaigstic providers in supply
networks. Coalition formation can help logistic providersmimize their costs which in turn
can benefit end users in addition to benefiting themselvaselfollowing, we shall explore
coalition formation that take place in different sectorsopply networks.

2.6.1 Coalitions of Buyers

Agents can increase their buying power to gain discounts foolying large volumes of
goods and distributing discounts as payoffs among themselsvetovat, Sycara, Chen and
Ying [109] propose coalition formation among buyers in acé&lonic market. The example
in the real world being deployed in their work is a number oaideints, who enrolled in the

2.6. Coalition Formation in Supply Networks 33

same subjects, gather together to buy books in large numbegests, representing students,
can form coalitions either before or after the negotiatibthe prices with the suppliers.

In the former case, any agent who wants to buy a book can bgirbcess of forming a

coalition by acting as a leader of a coalition. The agent seaduests, stating the item it
wants to buy, for bids from suppliers through an auctiongenéa Each interested supplier
consults with online stores for competitive prices and trmuess its bid. Each bid is proposed
in a linear price function where price drops according taeasing quantity. The bid is sent
to the auctioneer who, after waiting for the expiry of thetaarctime, broadcasts the bids to
respective leaders. Each leader then applies its evatusitiategy to determine the winning
bidder. The leader uses the best bid to advertise for coaliiembers. If the number of
coalition members is lower than expected, the leader witesthe loss. On the other hand,
agents may form coalitions first, then negotiate with thepigps. In order to decide which

bid to be taken, agents in the coalition may vote on the bidsvéver, this can be impractical

because agents may not reach agreement so easily. Aletgatigents may decide to leave
the decision to the leader. In this setting, agents haveis tihe leader that it will do its best
for the sake of the coalition.

Coalitions of buyers can also take place in online shops inrtegnet. Hyodo, Tokuro
and Ito [37, 36] point out that the allocation of goods ava#eon the Internet can be much
more efficient with the application of coalition formatioithe motivation is that there are
too many online shops available on the Internet, hence buarer not aware of all of them
that sell their desired goods. More importantly, they usualy goods from some shops they
are aware of individually. This is inefficient because thal to utilize economy of scale,
i.e., they lose money that could have been saved by gaingoguant from bulk buying. The
method proposed in this work is a centralized approach. Blydl. [37, 36] apply genetic
algorithm to form coalitions of buyers, each of which is cased of buyers seeking the
same product. Hyodo et al. [37, 36] assume the price is arlifugetion. The algorithm
tries to generate coalitions of buyers searching for theegaroduct. However, if a member
of a coalition has a reserve price lower than the sellingepiscich a coalition is invalid and
cannot be considered. The unit of each product a seller sisdkite. If the stock is lower
than the requested quantity, the seller cannot sell itsymtodHence, some goods may not be
allocated to buyers. However, Hyodo et al. [37, 36] show tdimal coalitions for buyers
can be found.

In the same spectrum, Ito, Ochi and Shintani [40] considalitons of buyers in a more
pragmatic fashion. Instead of considering the formatiola agatic game where all buyers
are present all at once, they consider the scenario wheerdaye randomly present to the

2.6. Coalition Formation in Supply Networks 34

market. In their setting, sellers possess multiple pradudthey maintain information on
price, deadline and stock of each product. For each protheprice is based on discount
rate. The deadline specifies the duration in which the pecsfective. Furthermore, they
also allow substitutability for buyers’ preferences. A buyfor example, wants to buy a unit
of a good at $20. However, he will be indifferent if he can bwg wnits of another good at
$15. The payoff to an agent is the difference between itgvesend selling prices times the
guantity. During the negotiation on the price, a seller c®sothe best coalition of buyers
(one which offers the highest reserve price) and checkshirstock level of the product
after the deadline has passed. If it has enough quantityfaitrns the coalition if they want
to buy the product at the quoted price. The coalition willegaidhe offer if the price is lower
than the reserve price of every member in the coalition. @tise, the coalition will disband
and enter the market in the next round. In addition to thisy #lso advance other work by
considering cooperation among sellers as well.

Categories of product can be an important issue in coalibométion among buyers.
Yamamoto and Sycara [115] consider coalitions of buyers sewsk for products of the same
categories, which are considered no different to buyerseahworld example deployed in
this work is when a number of buyers want to buy cameras. Irexiaeple given, a buyer
may have a list of preference on the product. He, for exanyalees camera C1 for $100
while he values camera C2 for $150. He is indifferent betwéesd two. Another buyer
values camera C2 for $140 while values camera C3 for $150. Hheli§erent between the
two. Buyers of the same categories will be classified intoitoats of the same products.
Hence, both buyers may form coalitions for buying C2 whileythay form coalitions with
other agents for buying C1 and C3. Since goods are indiffecebuyers, they can only
buy one product, i.e., they belong to just one coalition. Tbalition value is the sum of
the difference between the reserve prices of all agents @liidgscost (selling price times
guantity) of the respective product. The coalition thatthashighest value will be pooled for
matching with the product. The largest coalition will be sép from the pooled coalitions
and the good will be allocated to its members. With regarcheopayoff, those members
whose reserve prices are lower than the selling pricesueoeithing; they pay their reserve
prices. Each of the agents whose reserve prices are highrethl selling price receives a
payoff which is the proportion of the difference betweernirtheserve prices, and the selling
price. Yamamoto et al. [115] claim that their solution ar¢hia Core.

Although large coalitions may offer higher payoffs (due igher bargaining power),
agents may sometimes prefer smaller coalitions. Asselah. ef6, 5, 7] argue that waiting

2.6. Coalition Formation in Supply Networks 35

for large coalitions may cost agents dearly because suclga tmalition cannot form be-
fore the expiration of the offer. In real world environmenth as the Internet, agents do
not know beforehand how many agents are buying the same gggod8ome agents may
prefer to form small coalitions quickly, execute transactand gain their payoffs. Asselin
et al. [6, 5, 7] propose a coalition formation protocol thahsists of customer agents who
represent human customers and a grouping agents who isg@sigcfor forming coalitions
of customer agents. In their setting, customers are limddaly just 1 unit of each product
they want to buy. Human customers create customer agenfgravide the agents a list of
wanted products. Each item is a combination of the produadsize preferred size of buyer
coalitions. Items in the list are ranked by preference othomers. Customer agents then
submit the list to the grouping agent. The grouping agemtasnediator who collects all the
requests from customer agents, allocates matched itenagliti@ans and matches coalitions
to sellers. Each coalition is composed of customer agentsamd buying the same product
and prefer the same coalition size. The payoff to the agetstisserve price for the product
which is exactly specified by the preferred coalition size.

So far we have seen coalitions of buyers who want to buy the gaoducts only. When
buyers want to buy a combination of products [55, 54, 35] @hs also common), they
have to split their orders. Having seen the growth of contoima auction in which an agent
can buy a combination of products and benefit from compleangytof its own order, Li
and Sycara [55, 54] propose algorithms for combinatorialiton formation and payoff
division in an electronic marketplace. They combine coratonal auction into coalition
formation to help improve the efficiency of the market. Li &t[&5, 54] consider an e-
market environment where a buyer buys a combination of uargroducts, which is quite
common in our daily life. The discount the seller can offehiswever, based on the quantity
of a particular product. They call coalition formation untl@s condition a “Combinatorial
Coalition Formation(CCF)” problem. This is because forminglitmns in this setting is
motivated by price discounts on single goods whose volumemareased by the size of the
coalitions. They claim to construct “optimal coalition Witespect to each item” which is the
division of the reverse price of each buyer appropriatehe ®dptimal coalitions are induced
by the complementarity of the items by transferring costiagtbe coalition members. They
present polynomial-time algorithms to find a semi-optinelison of CCF. With linear price
functions (the price drops at a constant level when the dyamaises by one unit), they can
also derive a payoff division scheme that is in the Core of taditton. They claim that that,
empirically, the solution derived by the algorithms is “irsatisfactory ratio to the optimal
value”.

2.6. Coalition Formation in Supply Networks 36

The domain of coalitions of buyers can expand to computatisources available on
the Internet. Maheswaran and Bacar [56] study coalition &iom in such an environ-
ment where agents form coalitions in order to bid for compomal resources. They do
not explain how exactly agents form coalitions but propasese “weighted proportionally
fair scheme” to divide payoff among agents. With their sceemembers of non-singleton
coalitions cannot be better off by deviating to join singletoalitions. The scheme ensures
stable coalition structures. Similar works on coalitiohbwyers, whose common idea about
payoffs to agents are the share of discounted prices, iac|@d, 92, 83, 10].

We have covered coalitions of buyers that do split the diston the prices, as the coali-
tion values, to agents as their payoffs. However, these sveelem to ignore one important
factor, the cost of transportation. It is quite common in daity life that we drive a distance
to buy some products whose prices are discounted witholly ing much whether it is
a wise action, taking into account time, fuel, etc. We shisltalss the role of transportation
(logistics) in coalition formation later in section 2.6.3.

2.6.2 Coalitions of Buyers and Sellers

Coalitions we have seen so far are among buyers. Agents faltions for a particular pur-
pose, e.g., buying goods for one transaction, then disbiéeictlaey have completed transac-
tion. Breban et al. [14] consider coalitions among a numbsetéér and buyer agents, which
may last longer. Their motivation is that in some settingsnag usually trade on certain cat-
egories of products and their transactions are committa@ witen among a certain number
of agents. The more they reach agreement to trade the mgorértisé each other, thus it is
more likely to reach agreement again between the same gaBtieban et al. [14] introduce
a model for long term coalitions between sellers and buy#rs.coalition is driven by trust
among agents. Trust is the belief that they have been sdatestheir previous transactions
and are more likely to be successful in the future. It is bettéorm long term coalitions. At
a point in time, an agent may or may not belong to a coalitiomcéla buyer agent wants to
buy a product, it looks for the most trusted seller, i.e., onthe same coalition. If there is
none, it chooses one who offer the best price. These pairgarita then negotiate on price.
The negotiation may end successfully, i.e. they agree tleted a certain price. Each agent
keeps track of success rate between itself and other agftes. a successful transaction,
the rate is increased. If the pair are not in the same coa|itieey may decide to form a long
term coalition. On the other hand, when they cannot reaclyeeeaent, the success rate is
decreased. This may lead to agents leaving their preselii@osif the rate is lowered to
certain points. They empirically show that the model brisggbility to the dynamic system

2.6. Coalition Formation in Supply Networks 37

and customers are satisfied all the time. The trade betwegesti trusted agents are more
beneficial to individual agents and market efficiency.

The encounter between sellers and buyers so far assunes $ellee enough products in
stock. What if sellers run low on their stocks and buyers’ dednia still high. Goldman
et al. [32, 31] search for appropriate strategies when toetafpe on goods is common in
the market. In such a situation, sellers may decide to chpageular buyers in order to
maximize their individual utility instead of selling prociis to buyers in the first-come-first-
serve fashion without being detected by buyers. At the same, tbuyers may choose to
approach particular sellers. In their experiment, seltarschoose buyers by random,iz)
the size of of the order, andi) the type of buyers. Buyers can choose sellers) mgndom,
i1) loyalty, andiii) probability. They set up three levels of stock: small, nnediand large.
The empirical results show that there are equilibria in medstock size when buyers play
loyal strategy and sellers play random strategy. Therelaceegyuilibria in large stock size
when buyers play probability strategy and sellers play oamdtrategy. Hence, sellers should
choose their buyers randomly.

2.6.3 Coalitions of Logistics Providers

The idea of deploying intelligent agents in logistics and@y chains is widespread. Work
in [61, 27, 28, 104, 118, 111] deploys agents as the repratsesg to the role of logis-
tics/supply chain management. A management role can begtutiate the allocation of the
tasks to the trucks [110]. Work in [112, 20, 26, 105, 9] deggents, who are responsible
on certain tasks, to cooperatively plan and schedule farqodar systems. Coalition for-
mation can also be be applied to solve complex problems ifotfistics domain. Complex
logistics in the military domain also deploy multi-agenssms technique as well [2]. Re-
cent research [25] pays attention to the invention of efficgrategies for intelligent agents
to manage supply chains on behalf of human beings. Howepart dom [89] which we
have covered and is our motivation on coalition formatioroagtransportation agents, we
explore a small number of related works on coalitions ofdtigs providers in the following.
Coalitions of real trucks traveling on a highway can also tpleze and be beneficial.
Khan and Boloni [44] study the dynamicity of convoys of truaksng simple agent tech-
nology. Trucks can form a convoy in a random fashion, twoksugathering together while
traveling. A truck can join and leave the convoy both by iecide or at will. Forming con-
voys on highway is an important problem because it has ecmneffects, e.g., overtaking
or influence of traffic signs can directly affect the fuel comption of the trucks. In this
research, simple agents, each of which is attached to a, tanelable to detect the vehicle

2.6. Coalition Formation in Supply Networks 38

speed, location, and have limited communication abilitthwdther agents. Each vehicle
is still controlled by the driver, who will be advised by thgemt what the person should
do, such as accelerate, decelerate, join a convoy or leaveotihvoy. The results from [44]
suggest that forming convoys can deliver safer and betiemdawated traffic. Furthermore,
their algorithm can also suggest how each convoy shouldrbetsted, i.e. the distance be-
tween vehicles, which is related to the traveling speeds Wark pays more attention on the
behavior of individual agents in the coalition rather thiaa behavior of the whole system.

The Contract Net protocol [94], described by Smith, is thenftation solution for coop-
eration among agents. It allows agents to negotiate by sgmdessages among them. Han,
Gu, Li, Yin and Zhang [34] improve the performance of the poal with global informa-
tion and applying iterative optimization. The domain ofdstwf [34] is the planing and task
allocation, which is usually done by a human being, amongageT heir experiment [34]
was done in a multi-agent system environment, in which thezeshipping and truck agents.
Shipping agents have to allocate tasks, with respect ta@nts imposed by customers, to
truck agents who will simply transport the allocated goddste that a truck agent will op-
erate solely with a shipping agent. Once given a job reqaesthjpping agent will consider
the most appropriate truck for the job. This operation iemefd to as a vertical coopera-
tion. Then the initial plan will be generated. Note that opting the plan at this point is
a complex knapsack problefnin order to solve this, Han, Gu, Li, Yin, and Zhang [34] ex-
tend the Contract Net protocol to have “temporary grant” aedporary reject” messages.
Then they apply an auction protocol to allocate tasks amaomgk tagents. Providing that
they have time remaining, the plans can be re-estimatedhétanore, the algorithm allows
for “horizontal cooperation”, in which the cooperation amgathe shipping agents can be
conducted.

Rehak, Volf and Pechoucek [72] study cooperative task dilme@mong self-interested
agents in a transportation domain. The goal of the system deliver humanitarian aid
from various sources to a destination. The resources are ttelivered by self-interested
agents who possess trucks. These agent are reluctant éotebarprivate information such
as capacity, availability, location, etc. There is a humamdp manager who is responsible
for dispatching the resources. Rehak et al. [72] argue thatiey agent-based technology
in transportation allocation is not efficient because theyanly applicable to small prob-
lems and are not scalable. Their contribution is to acconatedptimization technology
of operation research to multi-agent systems domain. Gaveask of transportation, their

2Given a set of items, each with a weight and a value, detegrttie number of each item to include in
a collection so that the total weight is less than a giventland the total value is as large as possible.” Ref:
http://en.wikipedia.org/wiki/Knapsacgroblem, accessed on 8 May 2009.

2.7. Qualitative Coalition Formation 39

algorithm will generate an initial plan, which will be fughoptimized during the abstract
plan using advanced technology (such as a graph plan [3diitido). The available plans

will be bidden by self-interested agents using Contract Ketggol [94]. After that the plans

of each agent will be evaluated and verified before beingugrelc The results show that the
overall performance is improved due to reduction in comroation, increase in parallelism
(of high performance optimization), etc.

At this point, we have seen coalitions among buyers, coalteamong sellers, coalitions
between sellers and buyers, and coalitions among logistaaders. However, transactions
in supply networks are committed by buyers, sellers andstag providers. The forms of
coalitions we have seen so far seem to be inadequate thatdhept be used to solve this
combined problem. This is a direction which our researckgak chapter 6.

2.7 Qualitative Coalition Formation

Coalition formation discussed so far is based just on coalitialue, which is regarded
as “quantitative” coalition formation [114]. What about ‘@itative” coalition formation?
There is also another setting in the literature, where agare assigned goals, which they
have to complete. Forming coalitions can help agents toesehinore goals. Achieving
more goals is considered, in this respect, achieving bagttality. Although being far less
studied, there are mechanisms to capture quality of thetiomalsuch asffective function
[1]. In the following, we will explore how coalition formain works in this situation.

One of the early works in coalition formation among goakated agents is the study of
overlapping coalitions by Shehory and Kraus [86, 88]. Whetgpical coalition formation
work allows each agent to be part of a single coalition onhgl®ry et al. [86, 88] argue that
task-oriented agents can be given a set of tasks, each ol wdmjciires cooperation among
agents and needs to be executed in a certain order, to c@nplatitations to cooperation
among agents can waste resources that agents in coalitayndenable to utilize. Thus,
it makes sense for the agents to have overlapping coalitibhgay propose algorithms that
allows agents to form coalitions and jointly execute thagks, disband the coalitions, and
form coalitions for their remaining tasks again. Given tiagk allocation problem is of class
non-polynomial complexity, they manage to propose a patyiabcomplex algorithm with
sub-optimal results. The algorithm is also an anytime atlgr and yields good results.

Wooldridge et al. [114] propose the idea of “qualitative ldamal games”. In this work,
there is a set of goals, some of which will be assigned to egehta Each agent will be
“happy” if any goal can be achieved, i.e., the agent has ‘ghisomething”. There is no

2.7. Qualitative Coalition Formation 40

preference over the set of goals assigned to each agent.géne ia satisfied as long as a
goal is achieved. In their setting, an agent does not aimyagaal in particular and there is
no need for the agent to maximize the number of goals it needslieve. A coalition is a
collection of agents and has a set of “choices”, from whi@dbalition may decide to act.
Taking a choice simply means a number of certain goals gagnts in the coalition. It is
up to an agent which coalition it would like to form, with resp to its goals. Given such a
setting, the goal which the research [114] pursues is toedne computational complexity.
They identify 14 decision problems, including “successfablition”, “selfish successful
coalition”, “minimal coalition” etc. They can assess thenputational complexities of those
decision problems, whose complexities are mostly of classpolynomial. Note that the
quality mentioned in this work is somewhat related to qugnte. minimal number of goals
to be achieve by each agent is one.

Based on the previous research, Wooldridge et al. [113],ystadalitional resource
games”, which is a variation of “qualitative coalitionalrgas” [114]. In this new setting,
agents require some resources in order to finish their tdsksh task requires at least one
resource and agents are given a set of resources. One ré@lof/euch a setting is a group
of academics who set up goals to finish their research. They mecessary resources to con-
duct their experiments. These resources are limited, thaisrgy them among researchers is
inevitable. This raises the question of which agent shoslditeen access to the resources.
This is known widely in Al and multi-agent systems researsheaource allocation prob-
lem[38]. In their research, Wooldridge et al. [113] have clsdithe complexity of ten
decision problems related to “coalitional resource gamdgdiey have also shown the re-
lationship between this work and the previous one. Againstnod the problems are of
non-deterministic polynomial complexity.

leong and Shoham [39] study coalition formation among agesiere attributes of the
agents designate the values of coalitions. They arguettisatery common in the real world
that each agent possess some qualities, referred to &sitEsy; necessary to execute its task.
In other words, their attributes constitute the coalitiatue. Such settings include a football
team which has a set of players who possess various skilledder winning a game, or
a mining company possesses a number of minerals which are eptimally produced to
maximize the company’s profit. leong et al. [39] define a fdrnegresentation of their
games which is very succinct and is applicable for otheirggt They can also apply the
Shapley value and the Core to their game. Furthermore, theeglsa propose a heuristic for
computing Shapley value for a large problem.

2.8. Other Coalition Formation Work 41

2.8 Other Coalition Formation Work

We have covered coalition formation works that are closelgted to this thesis. However,
there are many other works in coalition formation that atergsting, although they are less
related to this thesis. We shall explore them briefly in tHewing.

Rather than just deciding on the spot whether they shoulderatgor not, research sug-
gests that agents should learn from their cooperation irp#st as well. Merida-Campos
and Willmott [58] propose a model for forming coalitions oeeperiod of time. The model
allows for various strategies to be deployed by agents. Basétke repeated coalition forma-
tion, Gerber and Klusch [29, 45] propose a scheme for ageuiggitamically form coalitions.
They manage to apply a technique to ubiquitous computing asan-commerce. Soh and
Li [95, 97] propose a learning mechanism for agents whilenfag coalitions. Agents apply
an enforced learning approach to interact more efficientyy¢omplete information environ-
ment. Chalkiadakis and Boutilier [16] study learning coalitformation under uncertainty
by applying a Bayesian technique. They also introduce the &Biayr Core” as a new solu-
tion concept. Lastly, Pechoucek, Mark and Brta [65] apply eWedge-based approach to
coalition formation to reduce the complexity of the procassvell as to retain the privacy of
the agents involved.

Other aspects studied in coalition formation include ecoic@nalysis [15, 6], deception-
free model [11] where agents may not reveal the whole trutfgriation retrieval sys-
tem [46, 91], power transmission planning [18], securityeecommerce [116, 17], informa-
tion sharing [41], sensor network [93], robotic soccer [8jysics-oriented system [90, 52]
where principles of physics are applied, market modelir@j,[And policy evaluation [64].

2.9 Motivation to the Thesis and Research Question

In the following, we will discuss the motivation that lead tasresearch in the thesis. We
then raise research questions that we try to solve in laggstelns of the thesis.

2.9.1 Motivation

We have covered coalition formation in considerable detalt is a reasonable assump-
tion that applying coalition formation to any cooperatiystem, where agents may be self-
interested, can benefit the system a lot. While many solutorcepts, such as the Shapley
value and the Kernel, can bring the system to a stable stagejrowhich agents do not

change their strategies, by ensuring individual ratiapaie Core can also bring the wealth

2.9. Motivation to the Thesis and Research Question 42

(in addition to stability) to the system as well. Hence, theeCseems the most appropriate
solution concept be applied in any cooperative system.

However, bringing about the core to a system can be a diffiagk due to several rea-
sons. In a superadditive environment, although agentsaramthe grand coalition for max-
imizing the system’s wealth, it has been shown that the Corg lbeaempty [30]. In a
non-superadditive environment (where coalition valuesaabitrary and are independent of
their respective coalition sizes), finding the maximal vite&dr the system is to compute the
maximal sum of coalition values from all coalition struasrin the system. This has been
proved that it is a hard problem [77] (as we will explore ingjes details in section 2.3), let
alone the optimization for coalition values which can betsglf a hard problem. Further-
more, agents are practically rationally-bounded and adeuvarious real world constraints,
such as time, resources, etc., it is such an important ctgalto find a solution that can reach
the closest state possible to the Core.

We take the challenge in this research—to deliver a solwtioich will lead to the clos-
est state possible to the Core. Whereas previous studiesliticmoformation merely deal
with a small number of agents, assuming coalition valuesvkre priori (with characteristic
function), etc., we aim at conducting research in coalifmmmation under an environment
which is as close to real world setting as possible. Rather biading ourselves to classical
theories, we are investigating for algorithms that can bekgdition formation be more practi-
cable and useful in real world settings. In particular, watia explore coalition formation
which the system’s utility is maximal via optimal coaliti@ructure algorithm in various
settings.

2.9.2 Research Questions

Whereas the state of the art [69, 71] scan all the inputs anchaadle only 27 agents,
the question is how can we manage to find algorithm that isabtalto a larger number
of agent and can yield reasonably good results in anytimeidas This idea is not new

at all in solving hard problems, such as traveling salesnravebicle routing problems.

In this environment, optimal results cannot be guarantegdhe reasonably good result
achieved within the limited time is acceptable. The perianoe of algorithms for these hard
problems are evaluated by benchmarking against a stangjautiset. Since, searching for
OCS is a hard problem [77], we are interested in investigdting solution to cope with the

scalability issue of the problem and can yield reasonablydgesults in anytime fashion.
Given the same setting which is quite generic, we want tottessolution as thorough as
possible within various data distribution.

2.9. Motivation to the Thesis and Research Question 43

Given that the first problem has been solved, the next questimains how the solution
can be applied to any problem in particular, given that tioalivalues are not know a priori?
We adopt the classical game of linear production as our e$fdr this question. Whereas
the original problem deal with superadditive domain, wesider non-superadditive domain,
which is more complex and raises another level of difficudtyhte problem. Although linear
production is considered not a hard problem by itself, sghit can be time consuming
given a large number of agents involved. Note that existiggrdhms in OCS problem
require all the input be scanned for their values. When thebmurof agents become larger
than 30 agents, it seems impossible for any typical comgatkeandle the problem. Many
of previous work in coalition formation have deploy “bessfirstrategy to form coalitions,
we follow this direction.

We go further in terms of raising complexity, which is reisinto OCS problem. The
next level is how can we handle OCS problem when optimizingjttmavalue itself is a hard
problem, let alone the complexity of solving OCS. We investiggnto OCS in the non-linear
domain where agents have to solve for the (near) optimaltisoki (values) of coalitions.
We consider a domain where independent truck agents arepecatively distribute goods
from sources to various destinations. There are two le¥@graplexities::) solving the hard
problem of distributing goods from each source, a)dolving the the optimal allocation
of trucks to each sources, which is a OCS problem, such thabtakcost of the system is
minimal.

We have seen that coalition formation has been explored&@bain various parts of
the supply chains domains, such as coalitions among buy@aiitions between buyers and
sellers, coalition among logistics providers. It is instneg to us that if we combine these
parties together, how can we find a way to optimize the utdityhe system? We want to
address this problem via optimal coalition structures. dtedlenge in this problem is that it
involves 3 different parties, which none of any work in ctah has attempted before.

Thus the objectives of this research are:

1. to develop a best-first, anytime algorithm that is an effitsolution for OCS problems
in environments where coalition values are known a priore,hto adapt the algorithm
developed in objective 1:

2. to solve OCS problems in a linear environment where coali@alues and coalition
structure values are not known a priori but must be calcdlate

3. to solve OCS problems in an NP hard, non-linear environiwetre coalition costs
and coalition structure values are not known a priori

4. to solve OCS problems in complex environments such as ihoslich coalitions

2.9. Motivation to the Thesis and Research Question

44

involve 3 types of stakeholders, such as in the supply chammaih

Chapter 3

Computing Optimal Coalition Structures

3.1 Introduction

The previous chapter has identified 5 objectives of thisaese This chapter will address
the first of those objectives, namely: 1. to develop a best-fanytime algorithm that is
an efficient solution for OCS problems in environments wheaition values are known a
priori

Computing optimal coalition structures in multi-agent gys$ is an important research
problem both from theoretical [42] and practical perspesti The optimal coalition struc-
ture problem seeks to identify, given a set of agents andweual each subset, the optimal
partitioning of that set of agents (i.e., a partitioning¥drich the sum of the coalition values
is maximized). The optimal coalition structure problem &rapplication in a variety of real
world settings, including logistics and supply chains [85, 99], virtual organizations, [33]
team formation, [62] etc. This problem is proved to be NPeH&i7].

The number of all coalition structures can be determineBddy/Numbery B,, [50]. Since
the value ofB,, can be very large for a small value of existing algorithms tend to divide
the search space into small portions. Algorithms for sguims problem can be divided
into two main categoriesi) anytime algorithms that perform exhaustive search to ig¢ae
the optimal solution [77, 22], and) heuristic algorithms that do not provide a guarantee of
generating an optimal solution, but in ideal settings, gateea near-optimal solution [100,
70]. Algorithms of the first kind guarantee that a solutionianed after completion of a
certain part of search space would be within a bound of thienght Algorithms of the second
kind do not provide any guarantees of optimality at all, bidvde empirical evidence to
suggest that the solutions obtained are indeed near-dptima

In the research reported here, we have sought to developganthin (that we shall
refer to as the coalition bound heuristic or CH). This worksergs a best-first anytime
algorithm for computing optimal coalition structures. Qugorithm differs from others in

45

3.2. The CH Algorithm 46

two ways. First, the approach is novel in that it generateditoan structures based on
coalition values, while existing algorithms base theirg@tion on the structure (members
and configurations) of coalitions. With our algorithm, dgbah structures are generated
by repeatedly choosing the best coalition, as determineud @snovel metric calle@ggent
contribution ratiothat we define. Second, our algorithm can proceed towardsp@ality
beyond the boundary of the partitioning structure (suctoasiguration) of the whole search
space. The agent contribution ratio will identify (indedently of the partitioning structure)
the best candidate coalition, which contributes the molsteveo C'S and will be placed in
CS. As the consequence, the algorithm can converge to (reptihjality quickly.

We have compared the performance of our algorithm agaiasoftiRahwan et al [69, 71]
using 20 data distributions. Our results show that our #gor always converges on an
optimal coalition structure faster. Although our algonitherminates later (because of a
simple prune mechanism being used) in some cases, ourthlgalways yields a better, or,
at least, as good solution as the algorithm of Rahwan et al.

The content of this chapter structured as follows. First,explain how the algorithm
generates all’Ss. We introduce the novel idea, the agent contribution ratid followed
by the data structure used. We then explain the main and thiarngafunctions composing
the whole algorithm which guarantees the completenesé’'(&dlare generated) and system-
aticity (eachC'S is generated only once). Second, we explain how the algoitnverge to
optimality. We discuss applying branch and bound technwgieh can accelerate the algo-
rithm to converge to optimality quickly. We follow with ging an example of an execution
of the algorithm. Lastly, we show empirical results.

3.2 The CH Algorithm

In contrast to other algorithms [77, 51, 22, 70, 69, 71], thisk generates coalition struc-
tures based on coalition values rather than their coaliti@mbers. We consider generat-
ing coalition structures as a process of repeatedly chgdbkmm best coalition (i.e., one that
contributes the best value to the coalition structure) fevailable candidates such that for
each generated coalition structujé J S; = N (the exhaustivecondition [77, 51, 22]) and
ii)S; N S; = 0 for i # j (the disjoint condition [70, 69, 71]). The algorithm must be
systematigi.e., it must not generate/evaluate the same coalitiactstre more than once.
Best Coalition: In subadditive environments [51, 43}s.r < Vs + V7, coalition val-
ues are inversely proportional to their cardinalities. @igaany optimal coalition struc-
ture would be composed of small coalitions because theyichehlly have high values.

3.2. The CH Algorithm 47

Any algorithm that prunes larger coalitions can rapidly @agh the optimal solution. It is
more complex in superadditive environments wheter > Vs + Vp. In settings where
Vsur = Vs + Vi, and all coalition values arex | S| (for any constant), wherek € Z+, all
coalitions structures are optimal. In other superaddgiygems, wher&s r > Vs + Vi, a
coalition structure consisting only of the grand coalitisalways optimal. Both subadditive
and superadditive environment are similar in that theren®aotonic relationship between
coalition values and their cardinalities.

However, the problem is difficult in the general case [51fcdaese such monotonicity
does not exist—coalition values do not have any relatigngiith cardinalities. The highest
value coalition may not be the best coalition because it bbgla large coalition that leaves
little room for other coalitions (whose values might be vemy.) Hence, we need a metric
that would permit us to pick the next coalition to add to ami@mentally constructed) coali-
tion structure. We define a metric calladent contribution ratio to coalitionag, i.e., the
average value for each agentdin

_ Vs

as = E
and use this as a basis for our best-first search. We notesimgakat theagent contribution
ratio to coalition structureacg, i.e., the average value for each agentisi:

Z VSi

n

acs =

will always be maximal for any optimal coalition structure.

In order to be efficient in random environments, we define thst lsoalition,S*, is
the one whose is the highest. Given two coalitions, andS; and their respective agent
contributionsz; * andas, we defineS; is the best coalition (with respect to the algorithm) if:

e a1 > ay (the agent contribution ratio ¢ is higher), or
e a; = az and|S;| < |Ss| (the agent contribution ratios are equal yts smaller), or

e a; = a; and|S;| = |S:| (the agent contribution ratios and sizes are equalShus
merely precedent t8,).

We shall refer to these properties astbalition contributionproperties. Given a number
of agents, the algorithm will determine the best coalitiod ase it to construct a coalition
structure.

Iwe usen; instead ofazg, simply to avoid it looking clumsy.

3.2. The CH Algorithm 48

C x s g
Cardinality (IS Gardinality {|S]) Layer Remaining agents
1 2 3 4 1 2 3 4 1 2] 4 i 2 304
{4 1.4 {254 {1,234
1. ved | ver10 | vem0 | ved I | 1 1 1 i & b= & 1 213 |4
. {3 {24} |{1.23
T
05” ve6 | vel0 | v g" ojojoqjo
B w {3} {24 |[{1.2.% 2 o]0 (O] 0O
? V5= vy=9 V=5 w
‘w1 1.3 |{(1.24
2 v=1 VY50 vy=0 a0 0 0 0
@ 1.3
| vs6 |
@ {2.3
¥e=D

Figure 3.1: Data Structure Coalitions are stored in 2-dimension arrdy Available can-
didate coalitions for all layers are kept tracks by 2-dimemsrray8. The CS being con-
structed is kept in 1-dimension arré¥. The remaining agents, which can be candidates for
the best coalition at the present layef CS, are kept track by 1-dimension arr&y

Data Structures: Here, we define data structures to facilitate the generdieiaw.
Firstly, we need a data structure to store the coalitionctire being generated. We de-
fine CS a 1-dimensional array of coalitions, whose sizexis= | N|, the maximal number
of coalitions the coalition structure may contain. Eachradat is for a coalition chosen
so far. CS represents’S and will be used interchangeably. We shall refer to ittle in-
dex of CS as thel-th layer coalition. Element€£S[1] andCS|[2] are the coalitions at the
1** and the2"? layer of the coalition structure respectively. Since it @nenon in the lit-
erature that all coalitions must be observed before therigthgo can really proceed effi-
ciently [77, 51, 22, 101, 100, 70, 69, 71], we store all caais in a 2-dimensioned array,
The first dimension, depicted in Figure 3.1 as columns, sdfecardinalities of coalitions.
The second dimension, depicted in Figure 3.1 as rows, redaéhep-th coalition of a given
c cardinality. Coalitions in each cardinality will be sortegltheir value in descending order,
i.e., thel** position is the highest value or the best coalition,2tfeposition is second high-
est value or the second best coalition, and so on. Ele@|ejjt], for example, refers to the
1% coalition (or positiorp = 1) of cardinality 1, i.e.,5 = {1} in Figure 3.2, whileC[2][2]
refers to the2"? coalition (or positiorp = 2) of cardinality 2, i.e..S = {2,4} in Figure 3.1,
and so on.

As the algorithm proceeds, some agents have already bemdpie’’ S and are not avail-
able anymore. In order to maintain tdesjoint condition, we definéR a set ofremaining
agents who are available for being chosen for the preseetlay CS. A newC'S is com-
pletely generated oncR is empty, i.e., thexhaustiveeondition is satisfied. Each coalition
in CS is the member of”S. Furthermore, the algorithm needs to know what coalitiaes a

3.2. The CH Algorithm 49

available forCS[l]. We define3 a 2-dimensional array of integers for indexing coalitions
in C that are available fo€S[l]. The first dimension, depicted in Figure 3.1 as rows, refers
to thel-th layer ofCS. The second dimension, depicted in Figure 3.1 as columfessreo
the cardinalityc in each layer. The value of elemefitl][c] = p indicates that the candidate
coalition forCS|[l] from cardinalityc is the element|c|[p]. At layer!, all coalitions avail-
able forCS][l] are indexed by all elements in ralof 3. These coalitions are, of course,
subset ofR. We shall refer to each of these coalitions asmadidatecoalition of its respec-
tive cardinalityc for CS[l]. Consider in Figure 3.1, for example. Elemef{1][1] = 1,
refers to the candidate coalition from cardinality 1 @&S[1], which is thel-st coalition, i.e.
C[1][1] = {4}. ElementB[3][2] = 6 refers to the the candidate coalition from cardinality 2
for CS|[3], is the6-th coalition, i.e.C[2][6] = {3,4}. The value 0 of any element iiimplies
that there is no candidate coalition for the specified lag@nfthe respective cardinality.

Algorithm 1 Main Construct coalition structures by adding the best coalifchrosen from
available candidate coalitions) infi& /]

1. 1«1 > set the present layéto 1
2: S* « chooseNextS(l) > choose the best coalitio$r for layer!
3: while S* # () do > while S* exists
4: CS[l] « 5% > placeS™* in CS|l]
5: R—R\S* > updateR by removingS*
6: S* 10 > resetS* to ()
7: if R = (then > if there is no agent left iR
8: print “new C'S generated: "€S; > output newC'S
o: end if
10: S* «— Extend() > attempt to extendS
11 if S* 1= null then > if S* is found therCS can be extended
12: I —1+1, > extendCS to the next layer
13: else
14: S « Alter() > cannot extend then attempt for altering
15: if S* =0 then > cannot alter
16: S* «— Shrink() > attempt to shrink
17: end if
18: end if

19: end while

3.2.1 Main Function

Populating Data: At the beginning,C is populated. Its elements in each cardinality are
sorted by their values in descending order. Sorting coalitiin each cardinality can be
done in parallel using any efficient sort algorithm. In ouplementation, we usb®lerge

3.2. The CH Algorithm 50

sort algorithm?, which is very robust and efficient because its worst case tiamplexity is
among the best, i.em log m wherem is the size of input. Since sorting is done in parallel,
the largest value ofn is "C|,, /o) Which is slightly less than scanning alt — 1 coalitions.
The space complexity is also reasonable that i?(s:). (One may argue that sorting can
be costly to the performance of the algorithm. The empinieallts show that, taking into
account the sorting time, our algorithm still converges mauicker in all data distributions.)
All the coalitions inC are sorted by their values rather than their members as in &abtv
al [70, 69, 71]. The first coalition of each cardinality is thest, i.e., highest value, and so
on. All elements of botl8 andCS are initialized to 0 and il respectively. Then,is set to
1 indicating that the coalition structure is being builtagér 1 as the starting layer. At each
layer!, the algorithm will determine what are the candidate cimaig. At the beginning, the
first coalition in each cardinality is its candidate. ThE§l][1 < ¢ < n]is setto 1, indicating
that the candidate coalition fakS[1] of each cardinality is its first coalitiorR is set toN
because none of the agents are placeddn

Main Loop: The logic of the main loop is very simple. It keeps acquirffigand place it
in CS at the present layér Firstly, acquiringS* is done by calling functioi®'hoose NextS,
which determines the best coalition from available cartéslat the present layér= 1.
Then the algorithm determines if it can acquire anymrewhich can be done in one of the
following manners

e Extend the algorithm tries to extends, i.e. place the next* in theCS|[l + 1],
e Alter the algorithm tries to altefS[l] with its next best candidate coalition, or

e Shrink the algorithm repeatedly tries to rema¥s§|[l] (while! > 1) and replac€S|[l—
1] with its next best candidate coalition.

At the beginning of the execution, since the first coalittrhas just been chosen, the al-
gorithm enters the main loop in this first round and plageat layerl = 1 of CS. Remaining
agentsR is subtracted by™ because the agents who are the membef§ chnnot be part of
the next coalition. This will guarantee the disjointnesshef coalition structure [70, 69, 71].
S* is then reset to null. After that the algorithm determinesthiler a new coalition struc-
ture has been generated by examining if agents are exhaysised inCS, i.e., to examine
whetherR is empty. If that is the case, the algorithm outputs the ngyelyerated”’S. The
algorithm then tries to generated remainifi§g's by keeping acquiring the next to fill in
CS. First, ittries to extend'S (adding the best coalition @S), by calling functionEztend.

2Ref: http://en.wikipedia.org/wiki/Mergsort, accessed 12 May 20009.

3.2. The CH Algorithm 51

If a non-empty coalition is returned, the layas increased by 1 and the execution will go to
the start of the loop. IFztend returns null, the algorithm tries to acquire the best coalit
by calling Alter function. If a non-empty coalition is returned, the execatwill go to the
start of the loop. IfAlter returns null, the algorithm tries to acquire the best cmeliby
calling Shrink function after which the execution will go to the start of tbep. At the
start of the loop, the algorithm examines the valug'ofvhether it will continue in the loop.
The algorithm terminates when it cannot find any mgteThe 5 working functions that are
used to support the main algorithm will be discussed below.

Note that variables defined in the main algorithm are acbksby supportive functions
whereas variables defined in supportive functions are local

3.2.2 Working Functions

Algorithm 2 ChooseNextS Function

1: function CHOOSENEXTS(l)
2: bestS «— ()

3 a* 0

4 for c=1to|R|do > for each valid cardinality

5: if B[l][c] > 0then > if there is a candidate coalition

6: @ — Vesua/c > compute the candidate’s

7: if @ > a* then > if the newa is better thar*

8: bestS — C[c|[B]l][c]] > set the candidate coalition as the new best

coalition

o: a* —a > seta* to the new value
10: end if
11: end if

12: end for
13: return bestS
14: end function

Choosing (Next) Best Coalition (ChooseNextS)since we have sorted coalitions by
their values in each cardinality, this guarantees that et egcle in the main loop the best
coalition, one with the highegt can be identified from candidate coalitions without ambigu
ity. The search for the best coalition is very simple. Fydthe best coalition (local variable
bestS)is set to empty as well as its agents’ contributian) (s set to 0. The algorithm then
goes through each candidate coalition in ascending ord&eafardinality and compares its
agents’ contributiong againste*. Only if @ > a* then the respective candidate coalition is
set to be the newestS. This way, even multiple candidate coalitions have exatigysame
a, only the smallest coalition remains the best coalition.

3.2. The CH Algorithm 52

Algorithm 3 NextS Function
1: function NEXTS(c,p)

2: for j =pto"C.do > starting from positiorp towards™C,
3 if C[c][j] € R then > if the coalition atp is in R
4: return j > return its position
5: end if

6 end for

7 return O

8: end function

Search for Next Candidate Coalition (NextS):At any layerl, the algorithm needs to
prepare the candidate coalition in each valid cardinalityvalid cardinality is one whose
value is not greater than the number of remaining agents

dle< |R|. For each of these
cardinalities, we just need only the next available caatitii.e., the one whose members
are all in’R with the highest value, as the candidate of its cardinabtytfie next layer of
CS. (The value of each of these candidate coalitions can be tosddtermine the upper
bound of the optimality in order to decide whether the aldponi should terminate. We shall
cover this in later sections.) The search for the candidalieber done towards the last
coalition(position) in each cardinality. As the algorittproceeds through the main loop,
there might not be candidate coalitions left in some of tHel\aardinalities because at least
one of the members of all of the remaining coalitions is a@yem CS. In this case, the
respective element @ is assigned the value 0. Hence, the search is needed onbrd ith

a chance to find a candidate coalition, i.e., the value oféspectiveB is greater than O.

Algorithm 4 Extend Function
1: function EXTEND

2: if I <n then
3: for c=1to|R|do
4: p «— B[l][d] > set the beginning position for searching for candidate
5: if p > 0then > only cardinalities that have coalitions left
6: if ¢ =|CS][l]| then > for candidate of cardinality afS|/
7 p—p+1 > begin the search at the next position
8: end if
o: B[c][l+ 1] «— NextYc, p) > search for the next candidate of cardinality
10: end if
11: end for
12: return ChooseNext§ + 1) > acquire the best coalition and return it
13: end if

14: return ()
15: end function

3.2. The CH Algorithm 53

Extending Coalition Structures: The algorithm examines whether there will be a new
coalition which will extend (be inserted into the next layer 1 of) CS. The presentsS
can be extended if < n holds. In addition, the cardinality of the new coalition rmhost
be larger than the number of the remaining agents, i.e.dohn eardinalityc, ¢ < |R|. For
each of these cardinalities, we just need only the nextaailcoalition, i.e., the one whose
members are all irR, as the candidate of its cardinality for the next layeCét. We set
p to Bll][c] the position of the candidate of the respective layer andicality. The search
begins ait) Cc|[p + 1], the next positiorp + 1 of the cardinalityc, if ¢ = |CS[l]| (CS]I] is
just chosen from this cardinality), @) C|c|[p] otherwise. The search is done through calling
the functionNextS(c, p), wherec is the cardinality on which the search will be dopes
the starting position of the search@ic|. Once a proper coalition is found, its position is
returned and will be assigned Ric|[! + 1] as the candidate coalition. Otherwise the element
Blc][l+1] will be assigned 0 to indicate that there is no more candidates cardinality. The
algorithm acquires the best coalition from available cdatés by calling”hoose NextS()
and returns it.

In the casé >= n, the algorithm simply return

Algorithm 5 Alter Function
1: function ALTER

2: R — RUCS]]] > return the last coalition ¢S to R

3 p< B[S +1 > start to search for the alternative candidate at the next
position

4 B[|CS[l]]][]] — Next§|CS[l]|, p) > retrieve the alternative candidate

5. CS[l] <0 > resetCS[l]

6: return ChooseNext8) > acquire the best coalition and return it

7: end function

Altering the Body: This function is called when the algorithm cannot acquiteby
calling function Eztend, i.e. cannot extendS from layer/. Then the algorithm tries to
alter CS by discarding its last coalition and tries to acquire thetrimest coalition from
available candidates of this layerBefore it can actually do that, it has to ensure if there is
any candidate coalition beneath the discarded coalitidhérsame cardinality. However, it
has to return the member 65](] back toR before it can begin searching. The starting point
of the search is simply the next position of the last coaiitiB[|CS[l]|][/] + 1. Again, the
search is done through the call of functidfexztS(). Similar to the attempt to exter@sS,
the candidate will be assigned 8|CS[(]|][{] if there is one, otherwise O will be assigned to
the element. The last coalition of the coalition structwdiscardedCS[!] is set to empty.
The next best coalition will be acquired through the callwidtion C'hoose NextS(l) and

3.2. The CH Algorithm 54

will be returned.

Algorithm 6 Shrink Function

1: function SHRINK
2: if [> 1then

3 [—1-1 > shrink by decreasing value bby 1

4: R — RUCS]] > return members t&

5: p <« B[|CS[I]|][l] +1 > set the starting position for the search for alternative
candidate

6: B[|CS[1)|][I] < NextS|CS[l]|,p) > search for the alternative candidate

7: CSl] «— 0; > resetCS[l]

8: return ChooseNext8); > acquire the best coalition and return it

9: end if

10: return
11: end function

Shrinking Coalition Structures: This function is called when the algorithm cannot find
S* to extendCS to the next layel + 1 nor to alterCS|]. It then shrinksC'S and tries if
coalition structure can still be generated by trying toratte last coalition o€ S each time
CS is shrunk. This can be done only if the conditibr> 1 holds. Firstly, the algorithm
shrinksC'S by decreasing the value bby 1. The members @fS|l] are returned t&R. Then
the algorithm tries to acquire the next best coalitio€&fl] (C'S has just been shrunk). The
algorithm looks for the next candidate [@iS[/||. The starting point of the search is set to
the next position of th€S[], i.e. B[|CS[]|][/] + 1. The algorithm then searches for the next
candidate coalition by calling/extS. The last coalitionCS[l] can now be discarded. The
next best coalition will be acquired through the call of ftiae choose NextS and will be
returned.

3.2.3 Proof Completeness and Systematicity of the CH algorithm

In the following, we will prove that the CH algorithm genemtdl CSs (completeness) and
generates each of them once and only once (systematicity).thE completeness proof,
saying that any given valid CS will be generated by the alboriis logically equivalent
to saying that all CSs will be generated by the algorithm. Giv¥gandS;. We denote by
S; > S5 1f S; is the best (better thasy) coalition. Note that coalitions in each cardinality are
generated in lexicographic order. When being sorted, thetigas of each pair of coalitions
being compared do not change if the values of both coalitwasqual.

Firstly, we need to prove that any givért’ can be rearranged such that above properties
hold.

3.2. The CH Algorithm 55

Lemma: Let CS" = {51,5,,...,5..}, wherel < m < n be a valid CS, it can be
rearrange a€'S = {51, Ss,...,Sn}, whereS; >, Sy >, ... > Sp.

Proof: Since the member af'S’ are merely rearranged to make' such that the coali-
tion contribution properties hold, hen€&’ is equal toC'S because both are the same sets
whose members (coalitions) are the same.

Theorem: A given CS will be generated (completeness) once and only (system-
aticity) by the CH algorithm.

Proof: We will show thatS; will be placed in CS before the end of the execution and
other remaining coalitions will be placed in a strict order.

e Let S, islocated at positio < p <" C|g,| of its respective’[|.5, |]. S; will be chosen
as the candidate coalition of its respective cardinality pbint in time before the end
of the execution because thertend(line 6-9), Alter(line 3-4) andShrink(line 5-
6) functions skip the discarding coalition and call the fiimc NextS(line 2-6) which
searches for the next available coalition down the affg; || one by one. Once= 1,
S; will be the candidate of its respective cardinality. Theduon C'hoose N ext.S will
examine the best candidate f66[1]. Since the function will choose the best candidate
from the remaining candidates includilg, S; will always be put inC'S[1].

e Let's assume the algorithm has puK i < j < m coalitions in toC'S. Hence, the
next step is to put the best candidate coalitiof’'19)5]. Let.S;, 1 < j < m, is located
at positionl < ¢ <" Cig,| of its respectiveC'[|.S;[]. Similar to the above case
will be chosen as the candidate coalition of its respectardioality at a point in time
before the end of the execution becausefhgend Alter andShrink functions will
call the functionNeztS which searches for the next available coalition down thayarr
C[|S;]] one by one from the discarding position. At layerS; will be the candidate
of its respective cardinality fof'S[j]. The functionChooseNextS will examine the
best candidate fof'S[j]. Since the function will choose the best candidate from the
remaining candidates includirfty, S; will always be putinC'S[j]. This property holds
for the remaining coalitions fof'S[j], i < 7 < m.

e Since coalitions are placed @ in strict order, they will be chosen as candidate coali-
tions of their respective cardinalities, and they will b@sén as the best candidate by
the same process in the algorithm, a CS will never be regatkerat

3.2. The CH Algorithm

56

C ® CS R
Cardinality {|SD Cardinality (|Sh Layer Remaining agents
1 2 2 4 Layer 1 3 4 2 3 1 2 2 a
@y | (.8 [{234} [(1.2.3,4} _
S RS Y R R CI RN BN RN E) > @ @ 1]2]z]o0
, {5 {24y ({1.2.3% _
8 v 6 | v=10 | v D 2 =2)2 (42101 @ | (3 @ tlofs3|a
=]
{3 {34 ({124 =
%m el =g nl=alalalo]o {4 i % @ 1 olalo
' {1} 1.3 |[{1.3.4 _
Sal vt | v | Vis glalalofo]o|| @ | @ | @ [@ | o000
{1.2 =
o o3 » sliala]lalo]o “n @ |08 | @ o lof|olo
@ 2.5 cley|=3|a|o|o|o a o 3 o o loflz]|ao
vs=5 g_
olmlE2|alalalo 0 ! @ = 12|00
E s lea|a|s5]|o]o 0 3 | 1n | @ o lololao
Clam|=2(4 o |0 o 0 3 o o o230
E' el |z |4]4]4 2 @ @ @ 1oz a4
2|z |1]a]o @ I o o 1|oflo] a4
w@l=a|a |1]o]o o @ | g | e o lofola
sy (It |4 oo 3 3 @ @ o l2|3]4
syl o |o|o|1 |22 @ o 2 o lof|olo

Figure 3.2:Generating Coalition Structure Coalitions are stored in array, where rows

represent the position of the coalitions in each cardipnakipresented by column. Candidate

coalitions for each laydrin C'S are stored in arrag, whose rows represent the layerG#
and columns represent the cardinality. Attached to theolethe array are two additional

columns. The first one indicates the execution round, whiiesecond one represents the

respective layer of S. The coalition structure is stored in one dimensional afi8y As it

appeared here, multiple rows are the current statéSofvith respect to the corresponding

execution round appears /i Remaining agents are stored in arfdyEach row represents
remaining agents after a candidate coalition has been glfos€S in the same execution
round in the corresponding rows BfandCsS.

3.2. The CH Algorithm 57

3.2.4 Example of Coalition Structures Generation

This section will show how the algorithm runs in the exharesiearch. The CS whose value
is the highest is kept as the optimal one until the algorithmdia better CS. Figure 3.2
illustrates the execution of the algorithm on 4 agents. Tdta dhown in the figure is captured
from the real run. The first table on the left depicts coatisianC. In each cell, the coalition
members are shown as a set in the upper half while the coalitilve is shown in the bottom
half of the cell. Coalitions in each cardinality are sortedHsir values in descending order,
i.e., the coalition with highest value is in layer 1, the setbighest value is in layer 2, and
so on. The second table depicts the statu$ efuring the execution. Each row contains
data from each round through the main loop. The first columtihereft indicates the round
of execution. The second column indicates the present lafyéS in the corresponding
round. The remaining columns are candidate coalition8[iff1] to B[/|[4] from which
the best coalition can be chosen. The third table shows thatssofCS. Each column
represents a corresponding layelCifi. The best coalition from the candidates is placed in
the corresponding element 66. The last table on the right shows the remaining agents in
‘R after the best coalition is chosen. The algorithm will gatigh the three main working
functions to the end of the loop. In the next round, corredpundata are presented in the
next row.

In round 1), wheré = 1, candidate coalitions are order 1 in each cardinality. Thei
areagy = 9/1 =9,ap,4 = 10/2 =5, G434y = 10/3 = 3.333, anday 2343 = 4/4 = 1.
Hence the best coalition it} and is placed i€ S[l = 1]. The remaining agents are now 1,
2 and 3. The algorithm then determine€# can be extended by callingztend. Here, it
scans through each cardinality, whose value is not grelader 3, and callvV EXT in order
to search for the next candidate coalition. In cardinaljth# candidate coalition is the order
2, i.e.,C[1]]2] = {2}. In cardinality 2, the candidate coalition is the order &,,C[2][4] =
{1,3}. In cardinality 3, the candidate coalition is the order&,0/3][2] = {1, 2,3}. Among
these candidate coalition§2} has the highest = 6 and is chosen as the best coalition.
This extension repeats until round 4 wheh} is placed inCS[4]. The algorithm outputs
the newly generated’S. Now, it cannot extendS anymore because it is at the lowest
layer! = 4. Hence, it tries to alter the last coalition 65. Firstly, the algorithm returns
CS[4] = {1} back toR, reset3[4][1] = 0 and callN EXT to search for the next candidate
in cardinality 1. Sincg1} is already the last coalition, the alteration cannot be ddre
algorithm then tries the last option, shrinkiatp. It decreases layérby 1,/ =4 — 1 = 3.
CoalitionCS|[l = 3] = {3} is returned tdR. It then callsNextS for the successor candidate
coalition of {3}, which is{1}. Hence in round 4 at this layér= 3, candidate coalitions

3.2. The CH Algorithm 58

are{1}and{1,3}. The best coalition i§1,3} with @ = 4. It reaches the end of the loop
and goes to the next round. In round 5), this new coalitiorlasegx in layer 3 oS and its
members are removed froi&. There is no remaining agents. Hence, the n&Wis output.
During round 6) to 8), the algorithm alters its last coahtishrinks and extend'S where
the newC'S is generated.

In round 15),C'S is shrunk by 1 layer 1. Here, the algorithm reaches to toprlayk of
C'S. It changes the candidate coalition of this cardinalityrir6[1)[1] = {4} to C[1][2] =
{2}. Among all candidates in this layer, which are shown in ro@6) the best coalitions
is C[1][B][1][2]] = {2}. It reaches the end of the loop and goes to the next round.uimdro
16), the head of’S is now changed td2}. The algorithm keeps extendin@S until it
can generate the newS in round 18). The change of the head@fb to a lower order
coalition, similar to what happens in round 16), continugshe& as the execution proceeds.
This will lower the upper bound to optimality across the wehséarch space. The execution
continues until it reaches round 51) where the layef'sfis 1 and the best coalition chosen
in previous round from the only candidate is the grand doalit After outputting the new
C'S, the algorithm cannot extend nor alter. It tries the lasioppshrink. This leaves no more
candidate coalitions and leads the execution to the endk tHat the example discussed here
is to show that the algorithm generates@Hi's. TheC'S* is the second one.

3.2.5 Applying Branch and Bound Method

Branch and bound is a well known technique in computer sciemoeduce execution time
by ignoring some search space which is useless, i.e. we extmfind a better solution
in that portion of the whole search space. Here, we use a br@amd bound mechanism in
order to increase the performance of the algorithm, i.e.atgerithm can converge to the
optimality quickly.

LetC'Sg, i.e.CS[l], is a coalition being constructed at a pointin time. Its eald(C'Sg),
so far is the sum of the values of candidate coalitions chapeo the point. LetS* be the
best candidate whose average agent contributi@h iShe highest possible value the optimal
value can be is simply

V(CSg) + (n—|CSg)|) x a*.

Let V(CS*) be the present solution. The algorithm needs to searchefuftbm its
currentC' S if and only if

V(CSg) + (n— |CSp)|) x @ > V(CSY)

3.3. Experimental Results 59

holds. We can just apply this condition to th&oose NextS function when choosing
the best candidate. If the above condition is no longerfsadisthere is no need to search
any further from the currer@Sz. ChooseNextS simply returns null. Hence the algorithm
backtracks one step and proceeds with the available caedida

3.2.6 Example of Applying Branch and Bound

There are two modifications need to make in the algorithmstFaveryC'S that has been
generated must be compared to the*. If V(CS) > V(CS*) holds, thenl/(C'S*) is set

to V(CS) as the new solution. Second, the best coalition has to bendietd if there is

a chance it would raise the value B6{C'S*) before the functiorC'hoose NextS returns the
best coalition. This is to determineWf(C'Sg) + (n — |CSp)|) x a* > V(C'S*) holds.

With respect to the real execution in the same example altbedjrstC'S generated,
{{4},{2}, {3}, {1}} is set agC'S* with V(C'S*) = 21. After shrinkingC'S up to layer 3,
the newC'S* = {{4}, {2}, {1,3}} is found with the new value 23. After that the algorithm
will alter at CS[3] where it learns that the next best coalitiph} may raisel’ (C'S*) (up to
25). However, a new'S can never be generated because there is no more coalitiofhef
algorithm shrinks to layer 2 and altéS|[2] = {2} with {3}. However, it will not extend’S
to layer 3 becausél, 2} will never raiseV (C'S*) (the highest possible value is 9+5+6=20.)
The similar situation will also happen at level 2 where thgooathm shrinks to level 1 and
alter{4} with {2}. However, it will never extendS any further because there is no chance
{3} will raise V' (C'S*). These things will be repeated until there is no candidadditcan at
layer 1.

3.3 Experimental Results

Settings: Since we have already discussed that the distribution ditioravalues is relevant
to the optimal coalition structures because it suggeststhew patterns might be [70, 69,
71], this work categorizes coalition value distributiofffetiently from previous work [51],
where the coalition value distribution is based on coalitialue alone regardless of coalition
cardinalities. The categories of the distribution are sagéitive, subadditive, normal and
uniform distribution. Here, we consider the distributiontwo dimensions, by taking into
account coalition values and their cardinalities. In th& filimension, we consider the ranges
of coalition values in all cardinalities. The low ends of tla@ges are 0 while the high ends
are categorized into 8 cased.STD: The maximal coalition values in all cardinalities are
roughly stable. They may fluctuate slightly)IND: The maximal coalition values increase

3.3. Experimental Results 60

by the cardinalities. (Note that although this is similastgeradditive but it is not quite the
same.)iii) DCD: The maximal coalition values decrease by the cardiaali Again, it is
similar but is not subadditiveés) CCD: The maximal coalition values on cardinalities 1 and
n are high and decrease towards the medium cardinalities disiribution is concavew)
CVD: The maximal coalition values on cardinalities 1 andre low and increase towards
the medium cardinalities. This distribution is convex aadriore common in real world
settings. It reflects environments in which cooperatiorpfi@hcrease revenue and profit
until cooperation costs become too costly when coalitiatsap large [101, 100]4i) RDD:
coalition values are random. To generate a coalition valeerandomly choose cardinality,
randomly choose a coalition whose value is yet to be assjgmetirandomly choose a value.
vii) NMD: This is normal distribution as in previous work [5X}iii) UNI: This is uniform
distribution in previous work [51]. In the second dimensiam consider the distribution of
coalition values in each cardinality of the STD, IND, DCD, CCRI&WVD distribution. We
have three varieties in each of them, i.e., normal distigioLih each cardinality with the mean
leaning towards the highest(F10), the middle(F5) and tve$t(F1) coalition values. We do
this in order to observe the effect of distribution of caatitvalues within cardinalities.

Since Rahwan et.al.(RN) is apparently the state of the artgnelbmark the performance
of our algorithm (CH) against it.Similarly to RN, we are computationally bounded with just
2GB of RAM usable with Windows operating system on each of aunguters. The avail-
able memory on each computer allows space enough for onriexenting our centralized
algorithm for 26 agents. (We need x 8 bytes of memory to store all coalition values.) Note
that the main purpose of this algorithm is to demonstrateotréormance of the algorithm
for a reasonable number of agents. We will demonstrate hawepe with the problem with
larger number of agents in later chapters. For eack0ok n < 26 agents, we generate
100 samples for each of the distribution mentioned aboveaNge 15, 30, 45, 60, 75, 90
and 105 minutes of execution time far= 20,n = 21,n = 22,n = 23,n = 24,n = 25
andn = 26 respectively. These duration times are estimated valugsanslightly higher
than the termination times of RN’s worst case (normal digtidn) in order to ensure the the
allowed time is enough for RN to terminate.

3Both algorithms are implemented in Java 1.5. Note that wewet given RN implementation, we try our
best on several ways and find that using arrays allows for &lgibrithms to run at the fastest speed possible.
The representation of the coalitions and their values a¥estime as in our implementation. The executions
are done on 120 Pentium 4 2GHz with 2GB of ram machines runwimglows XP. These 120 machines are
distributed across 4 laboratories.

3.3. Experimental Results 61

TOF1 Distribution TOF5 Distribution TOF10 Distribution
9 T T T T T 9 T T T T T 9 T T T T T
@ @ N @ R
8 | A 8 | CH-Conv —+— . g | CH-Conv —— .
E ’ E CH-Term ---x--- E CH-Term ---x---
g 7 g 7r RN-Conv ---:--- b 2 7T RN-Conv - —
E 6 £ 6l RN-Term & o £ 6l RN-Term @ ,,x// |
kel kel = kel _x
g 5 2 st e g 5 % R
5] 5] X g BT 5] T .
w 4 w 4 ',/X"/.“mv”“% T] 4 @ 7]
5 3 5 3R - 5 3 F -
g 2 g 2 _’o—k"‘I/ 2 2 .
g 1 g 1} . g 1} e
- O 1 1 1 1 1 - O 1 1 1 1 1 - O 1 1 1 1 1
20 21 22 23 24 25 26 20 21 22 23 24 25 26 20 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.3: Empirical Results on STD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RN STDF1, STDF5 and
STDF10 distributions.

3.3.1 Empirical Results

For each sample data, we observe the elapsed time for i) gEnee (the solution reaches
the highest value but yet to terminate) and ii) terminatibwe @lgorithm terminates because
either there is no way to improve the solution or it is timgoutor each of these elapsed
time, we find the average, highest and lowest elapsed time8fo n < 26 agents for both
algorithms.

In STD, as shown in 3.3, our algorithm converge earlier irvatlations. We trace every
run of both algorithm and find that our algorithm always getes higher V(CS) at any point
in time until it reaches the highest value at which RN generatdater stage. In terms of
terminations, it varies. In variation F5 and F10, RN offenqadt the same time the for
convergence and termination. In F1, the convergence amdrtation of RN diverge slightly
and are higher than that of our algorithm and its own perforeean F5 and F10. This can
be easily interpreted as RN might misled by the upper bounawofigurations. In F5 and
F10, our algorithm converge earlier but terminates after Rblvever the termination times
in both cases are still lower than the worst case of RN in F10.

In IND, as shown in 3.4, our CH algorithm converges and tertemaarlier than RN in
variation F1 and F5. However, our algorithm converges eablut terminates later than RN
in variation F10. The convergence and termination of RN inaliations are quite different.

In DCD, as shown in 3.5, our algorithm converges and termatglier than RN in
variation F1. However, it terminates later than RN in vaaatF5 and F10. Note that IND
and DCD are not really superadditive and subadditive enmiemnts in which our algorithm
would perform well as discussed above.

3.3. Experimental Results 62

T1F1 Distribution T1F5 Distribution T1F10 Distribution
—_ 9 T T T T T —_ 9 T T T T T —_ 9 T T T T T
D () [2) CH-Conv —+—
8 I E 8 I E 8 I E
= . £ . E J [CiTem —x—
I I B 1 I I RN-Conv ------ 3
£ £ g BB £ . T
£ o6 Eoop 0% ed E e[RNTEM g
3 % sl sl 1 8 sk 5-®
S 5 @ Sg--x CH-Conv —+— @ 5% g IO
Q Q CH-Term ---x--- Q = kT
o 4 o o4Ar RN-Conv ---%---] o 4 e 7
5 3 s 3t RN-Term _---8:5----3 5 3% —
P -~ VIS S -~ M
S g 2p 1 22 1
& 1r 8 & 1r 8 & 1r .
- - -
O 1 1 1 1 1 O 1 1 1 1 1 O 1 1 1 1 1
20 21 22 23 24 25 26 20 21 22 23 24 25 26 20 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.4: Empirical Results on IND Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RN INDF1, INDF5 and
INDF10 distributions.

T2F1 Distribution T2F5 Distribution T2F10 Distribution
—_ 9 T T T T T —_ 9 T T T T T —_ 9 T T T T T
[4] L 4 [4] L 4 [4] I CH-Conv. —+—— 4
3 8 £ 8 CH-Conv —+— 3 8 CH-Term -—--x-——
2 7 2 7 F CH-Term ---x--- B g 7 F RN-Conv - %--- E
E 6 £ g RN-Conv - -3 E g | RN-Term —&-- -7
- - RN-Term - Re - e
$ 5 L 51 e o 5 T e
w4 m Lo 1w A e 1
5 3 S 3@ E 5 3® E
g 2 g 2 M g 2 M
8 1 2 1f - 2 1t 4
- O 1 1 1 1 1 - O 1 1 1 1 1 - O 1 1 1 1 1
20 21 22 23 24 25 26 20 21 22 23 24 25 26 20 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.5: Empirical Results on DCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RN DCDF1, DCDF5 and
DCDF10 distributions.

3.3. Experimental Results 63

T3F1 Distribution T3F5 Distribution T3F10 Distribution
—_ 9 T T T T T —_ 9 T T T T T —_ 9 T T T T T
2 L . 4 L] 2l I CH-Conv —+— i
E B E 81 cHconv —— E 8l ChTam -
g 7 g r gn-germ T] 2 7 RN-Conv -~ -
= = -Gonv. ---o--- g = RN-Term & LT
) F 6 ! 4 F 6 X E
- - RN-Term & X - X
s 5 s 5 . $ 5F x P
g 4 g 4 g 4 L @ i
w w - w BT
5 3 5 3 S 3§]
g g1 I -
O 1 1 1 1 1 O 1 1 1 1 1 O 1 1 1 1 1
20 21 22 23 24 25 26 20 21 22 23 24 25 26 20 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.6: Empirical Results on CCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RN CCDF1, CCDF5 and
CCDF10 distributions.

TA4F1 Distribution TA4F5 Distribution T4F10 Distribution
— 9 T T T T T — 9 T T T T T — 9 T T T T T
[%2) [%2) [%2)
E 81] E 81 7 E 87 cH-conv —— 7
g 7r - @ 7r : @ 7| CH-Term ---—- i
-E 6 s R E 6 g BB SR E 6 [RN-Conv - -
i - E i B E - . T
) S 2 RN-Term 8- ™
§ 5 P § 5 R § 5 /X//xf m--""'%"w
S 4t & 4 & 4b T T .
w B w w T
5 3 g 5 3 5 3@ -
> CH-Conv —— > >
S 2 CH-Term ---x---- S 2 9 2 M
= RN-Conv - = S
s 1r RN-Term & g 1 s 1r b
0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1
20 21 22 23 24 25 26 20 21 22 23 24 25 26 20 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.7: Empirical Results on CVD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RN CVDF1, CVDF5 and
CVDF10 distributions.

In CCD, as shown in 3.6, CH converges and terminates earlierRham variation F1
but it terminates later in variation F5 and F10. Note thatdtwevergence of our algorithm in
F1, when it terminates earliest, is higher than that in F5R@l

In CVD, as shown in 3.7, CH converges and terminates earliear®in F1 and F5. It
terminates later than RN in F10. Across all variations, thestvoase of average of CH is
still better than that of RN.

In RDD, as shown in 3.8, CH converges and terminates earlier . In NMD, in
which RN performs worst across the four distributions, CH esges and terminates earlier
in all variations. Both algorithms terminate shortly aftengergence. In UFD, CH con-
verges earlier RN but terminates about the same time as RN rg@svand terminates in all

3.3. Experimental Results 64

T5F5 Distribution T6F5 Distribution T7F5 Distribution

CH-Conv —+—
F CH-Term ---x--- _
RN-Conv ------
" RN-Term --&

Log(10) of Elapsed Time (ms)
O P N W » U1 O N 0O ©

Log(10) of Elapsed Time (ms)
O P N W » U1 O N 0O ©

Log(10) of Elapsed Time (ms)
O P N W » U1 O N 0O ©

N
o

20 21 22 23 24 25 26 20 21 22 23 24 25 26 21 22 23 24 25 26
Number of Agents Number of Agents Number of Agents

Figure 3.8: Empirical Results on RDD, NMD and UNI Distribution The graphs show
convergence and termination times of Algorithm CH agairat ¢t algorithm RN.

variations.

As shown in the graphs above, our algorithm always conveegelger than RN. This
implies that our algorithm guarantees better or, at leasgamd as RN’s result at anytime
(although our algorithm takes longer to terminate in sonmsesg The further implication
of this is that generating coalition structures from beslitions can help reach optimal
coalition faster. This complies with Aumann’s alpha corachirstates that optimal coalition
structures involve a small set of coalitions. This is basedh® simple fact that merely
generating coalitions alone can be intractable for a cergsystem because all the existing
algorithms (including ours) requires that all coalitionslaheir values must be observed
before the actual generation—let alone the coalition &trecgeneration. For example, it is
impossible to execute any of the existing centralized dgms for 60 agents because none
of the existing single computer systems can offer enough ongmin terms of anytime
algorithms which are more appropriate for multi-agent eys, our algorithm empirically
shows that it always generates better or, at least, as a gatibs as RN. Note that the
coalition value distribution within cardinalities affacthe performance of both algorithms
differently.

Across all 18 distribution variations, there are 8 casesrevlo&ir CH algorithm termi-
nates later than RN. These cases are STDF5, STDF10, INDF10FBARCDF10, CCDF5,
CCDF10 and CVDF10. With STDF10, INDF10, DCDF10, CCDF10 and CVDHi® av-
erage of coalition values in each cardinality is very clasthe upper bound of the coalition
values in each cardinality. This obviously results in tlimet tipper bound of each configura-
tion is very close to the exact optimal coalition structuaéue of that configuration. There-
fore, RN can find the optimal coalition structure value of thaftguration quickly and, as

3.4. Conclusion 65

a consequence, it can also determine if it needs to searatymae configuration quickly.
With STDF5, DCDF5 and CCDF5, the average of the coalition vatdiesnall coalitions are
larger than that of the large ones (this is common for all STEEDs and CCDs). This results
in that configurations containing small coalitions tend awdnboth higher upper bounds and
exact optimal coalition structure values. (Example of éhegnfigurations for 4 agents are
1+1+1+1, 1+1+2, etc.) Since, there are not many of them amdite (number of coalition
structures) of each of them is relatively small, the seaochidal optimal coalition structure
value in each configuration can be done quickly. As a consegpuef this, RN can prune and
terminate quickly. Note that these distributions are itgdrby us to show if an algorithm’s
performance is robust enough, i.e. reaching optimalitgkjuiregardless of the distribution
of coalition values.

3.4 Conclusion

In this chapter, we have sought to develop a best-first segmgiime algorithm that provides
a guarantee of generating the optimal solution, given itdrasugh time. The algorithm
advances the state of the art, in terms of anytime algorithsnalways generating a solution
better or, at least, as good as RN at any point in time. We presepirical results that
support our claims.

Thus, the work presented in this chapter has achieved theffijsctive of this research,
namely:

1. to develop a best-first, anytime algorithm that is an effitsolution for OCS problems
in environments where coalition values are known a priori

Having successfully met this objective, our goal is now tpldg the best-first anytime
algorithm to a number of more complex OCS domains, partiutaose in which the coali-
tion values and coalition structure values are not knownaipin the next chapter we will
adapt this algorithm to a linear production domain.

Chapter 4

Computing OCS in Linear Production Domain

4.1 Introduction

The previous chapter has achieved the first objective of#isisarch, namely:

1. to develop a best-first, anytime algorithm that is an effitsolution for OCS problems
in environments where coalition values are known a priori

The next four chapters will adapt the algorithm presentéhapter 3 to solve other more
difficult or more interesting problems in a variety of dom&iThis chapter will attempt to
solve OCS problems in a linear environment where coalitidnesaand coalition structure
values are not known a priori but must be calculated therehijeging the second objective
of this research.

Although the best-first search anytime algorithm presemt#iake previous chapter shows
that generating’'S from best coalitions can empirically reach optimality tedaly quickly, it
is not pragmatic in real world setting for several reasomstlly, it is a centralized approach
and is computationally bounded. Since coalition valueskamvn a priori, all the values
must be kept in memory in practice for prompt access. The mffisient algorithm can
work for only 27 agents on typical computers which have 4GB&AM. To handle 50
agents, it requires at least one Peta byt@$°j of RAM, which no single computer in the
world can offer. Secondly, given the huge number of coalg&jocomputing all coalition
values alone can take too much time because computing dicoalalue can be a complex
optimization problem. Hence, it may not be acceptable icte.

On the other hand, this chapter approaches coalition faemat more realistic settings.
This chapter considers coalition formation where coalit@lues are not known a priori,
which is common in real world environments as we have alrehsigussed in Chapter 2.
These real world scenarios make coalition formation higidynplex because agents have
to 7) compute coalition values, and) compute the optimal coalition structures. Given
agents in a coalition formation process, the number of ptssioalitions is2”, which is

66

4.2. Coalition in a Linear Production Domain 67

also the number of coalition values to be computed. The gsooé computing coalition
values is complex, as is the process of deliberation. Thielgmo becomes intractable even
for relatively small values of.

Our goal in this research is to deal with this complexity. Wedify Owen’s linear
production game where agents have to agree to pool theiuneso together in order to
produce goods. The original work assumes a superadditiieoement, where agents can
simply form the grand coalition. Such an assumption is irofcal in the real world since
the cost of cooperation has to be taken into account whiletregg to form coalitions.

What we have learned is that the best-first anytime searchithigopresented in the
previous chapter shows that generatini§ from best coalitions can empirically reach opti-
mality relatively quickly. However, the limitation of thdgorithm is that it requires sorted
coalitions (which can be done in polynomial time) and regginiedicated memory allocation
during the execution. This prevents the algorithm from ggractical. However, we can use
this best-first approach to develop an algorithm that carigeaC'Ss quickly without the
need to scan all of the coalitions. Furthermore, thes generated must be very close to
optimality.

4.2 Coalition in a Linear Production Domain

Linear production games [63] are those in which agents arengiesources and try to
pool resources to produce goods in order to maximize theesystprofit. Owen [63]
studied linear production games in superadditive enviemm Here, we consider linear
production games in non-superadditive environments. Wegaen a set of agents} =
{ai1,as,...,a,}, whose goals are to maximize the system’s profit. We are alsm@ set
of resourceR = {ry,rs...,r,} and a set of good§ = {¢1, g2, . . ., 9o }. Resources them-
selves are not valuable but they can be used to produce gebuth are valuable to agents.
Let L = [ayj]nxo, Wherea;; € ZT, be the matrix that specifies the units of each resource
r; € R required to produce a unit of the gogg € G. Such a matrix is called bnear
technology matrix[63]. The price of each unit of goods produced is specifiecheywector
P = [p;]ix.- Each agent; € A is given a resource bundté = [bf],«;. In this setting,
some agents would have the incentive to cooperate, e.gneyf ¢annot produce a certain
good using only the resources at their disposal. Hence sipwe to cooperate, i.e. form
coalitions, in order to create value from their resourcest 4 C A be a coalition. It will

by =) b

kesS

have a total of

4.2. Coalition in a Linear Production Domain 68

of thei’" resource. The members of coalitihcan use all these resources to produce any
vectorz = (x4, s, . .., x,) Of goods that satisfies the following constraints:

S
bl’

Q1171 + Q9o + ...+ Q10T S
Q1T1 + QoaTg + ... + T, < b5,

"

IN

Ap1 T + Qoo + ...+ Qpoy bg

and

T1,To,...,Te > 0.

We assume that agents have to pool their resources togétheoalition member’s loca-
tion to produce these goods. Thus agents’ cooperationsrsmme costs, e.g., transportation
cost, etc. The cooperation cost among agents is specifideebygatrixC' = [cx]mxm, Which
assigns a cooperation cost between each(pai;) of agents such that

7t ifk#I
Ckl € .
{0} ifk=1I

We assume that all of the resources of agents are pooled &ateon, which can be the
location of any agent in the coalition. A singleton coalitigields cooperation cost of 0.
For a coalition of size twa$ = {a;, as}, pooling coalition resources at any of the two sites
yield the same cost for the coalition (i.e. the cooperatiost enatrix is symmetric). The
total cost for cooperation incurred by a coalition will b&ea to be the sum of the pairwise
cooperation costs between the agent at whose locatiortionalesources are pooled, and
the other members of coalition. For a coalition of size thwe&rger, there is at least one
agent,a,, such that N N

Z Crikr < Z cur

k=1 =1
for all ; € S. We shall call a coalition membey, who yields the minimal cooperation cost
for the coalition ecoalition center

Agents in the coalitiort' have to find a vector to maximize the revenue accruing to a

Pg = ZPZUCZ-
=1

be the maximal revenue the coalition can generate. Let

CS = chl-

lesS

coalition. Let

4.3. Distributed Algorithm for Coalition Formation 69

be the minimal cooperation cost for the coalition (obtaibgdelecting the optimal coalition
center). Obviously, the ultimate objective of agents in ¢balition is to maximize profit,
i.e., the coalition value g, where

ngps—cs.

The linear inequalities referred to above, together witk dlvjective function constitutes
a linear programming problem. We shall call the solutiom Wector(x;, z,, ..., x,) that
represents the optimal quantities of goggsy,, . . . , g, optimal product mix

4.3 Distributed Algorithm for Coalition Formation

Here, we consider a distributed algorithm that allows agjemtompute coalition values and
approach the optimal coalition structures as they procéadh agent has to do to two tasks:
i) Delibarating: deliberate over what coalitions it mightrfoby incrementally improving the
initial set of coalitions, and:) Forming coalitions: exchange information to form coalits
such that those coalitions yield maximal profit to the systéhe sets of such coalitions are
the optimal coalition structures. The main goal of the atyan is to reduce the search space
for finding the optimal coalition structures. This can beiaekd by reducing the number
of coalitions to be considered. In our setting, the optingalition structures must yield a
profit, a non-negative utility, to the system. In the worgesahe system’s profit is 0—each
agent is a singleton coalition and cannot produce anythiag.a

4.3.1 Deliberating Process

In the following, we will identify a coalition by the identdr of its coalition center agent.
Thus the coalitionS* will have agenta;, as its center. Henck® represents the resource
vector of S*. The reasoning described below is conducted by the caalitentre agent
for each coalition. Given a coalitiof*, let G* refer to the set of goods whose resource
requirements are fully or partially satisfied b, the resources available & (excluding
goods whose resource requirement might be trivially satidfiecause these dre For each
goodg; € G*, the coalition centre agent. ranks agents not currently in its coalition on
a per good basis. For each resourcef goodg;, agenta, ranks non-member agents by
computing for each; ¢ S*, whoseh! > 0, the valuer! —its proportional contribution to the
profit of the good (using its fraction of the resource requieats for that good provided by

4.3. Distributed Algorithm for Coalition Formation 70

9j

|

T1 71 T1
Q= Ay Aopg > Ugpg

T2 T2 T2
Q2; Ayt Aong A3rq

Figure 4.1:Ranking AgentsAgents are ranked by their potential profit per each resoairce
a good.

the ;) minus the (pair-wise) collaboration cost betweganday, i.e.,

The agent, uses this proportional contributiorf to construct a binary tree for eagh.
The only child of the rooy; is the first resource; ;, whose left child is the second resource
arp;, and so on. For eaahy;, its right child is eitheri) null if o} = 0, or i7) the agent’,,
whosepi! value is the greatest. The right childdf, is the agent ,, whoser? value is the
second greatest, and so on. Every tipevants to produce additional units g@f, it traverses
the tree down to the appropriate resourcand add more agents into its coalition based on
b°. Figure 4.1 depicts this structure.

The agent;, uses® to determine additional resources needed to produce adaliinits

of a goody;. For eachy; € G* and resource;,
B = I(ay) = b7,

wherel € Z* is the smallest integer such thﬁt> 0, represents the amountnfthat coali-
tion S* lacks to produce goog;, provided the amount is non-negativé € 0 otherwise).
Theindicative vector 3/ = [3/],.., represents un-met requirements for each resayree
goody;.

In this process, an agent may choose to do one of the folloimiogder to generate coali-
tions: 7) growing coalitions adding profitable agents to existing coalitions;Qrshrinking
coalitions removing costly agents from existing coalitions. Thedwling subsection de-
scribes both processes in details.

Growing Coalitions

The agenty;, uses the indicative vectg¥ to help collect additional coalition members into
its coalition. If the agent;, wants to produce an additional unitg@f it identifies the resource

4.3. Distributed Algorithm for Coalition Formation 71

that is needed the most.. = maz?_, (b}), from the indicative vector. It locates the noge

in 79 and collects the next available agefit into the coalition. The total resources of the
coalitionb® is updated. Each’ of indicative vector will be subtracted by it corresponding
bi. The agent,, keeps adding more agents into its coalition until there aceigh resources
to produce an additional unit gf, i.e.,ﬂf > 0 Vi. The algorithm to collect additional agents
into the coalition is shown in algorithm 7.

Algorithm 7 Select additional agents

Require: the present coalitioy
Require: the focused good
initialize additional agents’ = ()
get the coalition’s resourde’
get the indicative vectop?’
identify the most needed resource
while r;» > 0 do
locate next available ageaf’
if @,”j0then
break
end if
setS’ = S'Ua,’
for all 5/ do
sets! = 5! —]
end for
identify the most needed resounce
end while
return.S’

In the extended part, each agent ranks profitable coalitiits ranking tree. The root of
the tree is the singleton coalition of the age#it, So far, the agent;, knows that if it wants
to produce at least an additional unit@f it needs to acquire additional agenss, into its
Sk. The agenty, create a trial coalition by merging’ into S. Since each new agent may
posses other resources not required for produginghe trial coalitions may find a better
solution for producing goods. Hence the profitef trial coalitions vary. Eacty’” will be
added to the tree as the children%fThe sub algorithm for selecting profitable members is
shown in algorithm 8.

In the main algorithm, the agent considers itself a singleton coalition at the beginning
of deliberating. It create the ranking tré& of all agent for each good. At this point it is
only the root of the profitable-coalition treé;", and is the base of the growing coalition.
It acquires the additional agents™ into the coalition. Eactt] € S* will be added as
the children of the base coalition. Among als, the most profitable agents' are those

4.3. Distributed Algorithm for Coalition Formation 72

Algorithm 8 Select the most profitable members

Require: A coalition S
Require: ranking treeg®
set highest profit* = 0
set profitable membei$™ = null
for j:=1 do—S—
if S'is not capable of producing; then
continue
end if
get additional agentS’
set trial coalitionS}; = S U S]
compute trial coalition’s prof'rbS;_
setSt =StU S '
end for
returnS*

that provide the highest additional prafit and are kept as the base for the further growing
coalition. The coalition keeps growing in this fashion uttiere are no profitable members
left in 7¢. Then the next most profitable sibling of the bagewill be the new base. This
repetition goes on until it cannot find a new base. This wikkehe coalition’s marginal
profit growing while the size of the coalition is growing. Thamber of coalitions each
agenta, has to maintain is also much smaller compared to that of aawstive search. The
main algorithm is shown in algorithm 9.

Algorithm 9 Main Grow

setL™ =10
create a singleton coalitiott = {a; }
setA’ = A — {a;}
create ranking tre€g® for all goods
collect profitable members™
while S* #£ () do
locateS* € ST
setA' = A" — S*
setS = SuUS*
setL™ =LTUS
collect profitable members™
if ST = null then
setS* = the next profitable sibling ¢f
end if
end while

4.3. Distributed Algorithm for Coalition Formation 73

Shrinking Coalitions

Alternatively, coalitions can be generated by shrinking ¢nand coalition. The agent.
creates the grand coalition and tries to shrink it by prurting least profitable members.
The agent utilizes indicative vector's and the the tre&” in order to locate the agent
who is the least useful to its present coalition. For eachdgtize positive value o,f}{ in

the indicative vector indicates surplus resource that genawho possesses the equivalent
resource should be eliminated from the present coalititwe. dgent:, create a trial coalition

S’ for each good. The surplus agents will be eliminated ftofor the next smaller quantity
of the good possible. Each trial coalition will be insertatbithe pruning members—. The
sub-algorithm for selecting profitable members is showrdgorhm 10.

Algorithm 10 Select the least profitable members

Require: A coalition S
Require: ranking treeg'“
set highest profit* = 0
set pruning members— = S
forall g; € G do
if S'is not capable of producing then
continue
end if
get surplus agents’
set trial coalitionS}; = S U 5]
compute trial coalition’s prof'rvsé
setS™ =57 « S
end for
returnS—

In the main algorithm, the agent considers itself a virtual coalition center of the grand
coalition. at the beginning of deliberation. It create thaking treeT’“ of all agent for
each good. At this point, it is root and the only member of tteifable-coalition tred, . It
prunes the pruning agen$s from the coalition. Eacly’; € S~ will be added as the children
of the base coalition. Among afls, the most profitable agents are those that provide
the highest additional profit* and are kept as the base for the further shrinking coalitions
The coalition keeps shrinking in this fashion until there ao prunable members left #f".
Then the next most profitable sibling of the bagewill be the new base. This repetition
goes on until it cannot find the new base. The number of coafiteach agent, has to
maintain is also much smaller compared to that of an exhauséiarch. The main algorithm
is shown in algorithm 11.

4.3. Distributed Algorithm for Coalition Formation 74

Algorithm 11 Main Shrink
setL- =N
create ranking tre€g® for all goods
collect pruning memberS~
while S~ # () do
locateS* € S~
setA' = A" — 5*
setS = SuUS*
setL-=L"US
collect pruning memberS*
if ST = null then
setS* = the next profitable sibling of*
end if
end while

4.3.2 Coalition Formation Algorithm

At this point, each agent has a number of coalitions it hagigaead. It also needs to know
other coalitions generated by other agents before gengratialition structures. It is also
important that the number of coalitions to be input into thecess of generating coalition
structures must be relatively small in order to avoid intnadity.

The first thing is to prune the unuseful coalitions—those #re non-profitable. Once
each agent finishes its deliberation, it ranks all of its itioals by profit. LetS— be a non-
profitable coalition, whose values- < 0, andS™* be a profitable coalition, whose value
vg+ > 0.

Lemma 1 Any S~ coalition can be replaced by a set of its members’ singletmaditons,

whosev > 0, such that the coalition structure’s value will not be deed.

akes

Therefore, all non-profitable coalitions can be ignoredchEagent will remove all of
the non-profitable coalitions, if there are any, one by onée femaining coalitions are
profitable. In fact, our algorithm in the deliberation prese&an simply prevent this happen-
ing using its treel’“. It always generates profitable coalitions. Obviously,hesiagleton
coalition is non-negative. Hence, non-profitable coalgionust not exist in the coalition
structures.

Given that the deliberation algorithm generates all prolacoalitions among agents
inclusively, agents cai) exchange information about coalitions generated and siregleton
coalitions, and:) decide to form coalitions that yield the optimal coalitistnucture value.

Proposition 1 The optimal coalition structure can be constructed by pabfi coalitions
generated by agents and their singleton coalitions.

4.3. Distributed Algorithm for Coalition Formation 75

As for exchanging information about the profitable coaliiaamong agents, we use a
high-level algorithm since it is a common practice in therbiture for broadcasting informa-
tion among agents [77, 48, 32, 87, 47, 84, 46] during coalitammation. Once the agent
is ready, i.e. it has finished the pruning, it broadcastsistt®f profitable coalitions to other
agents one by one. After that, the agent just collects eatifedists sent over from all other
agents.

Having received all the coalitions, further improvement dill be achieved—keeping
only optimal coalitions. Note that at this point there wi# k5| variations ofS, each of
which is.S with different center (which generaté&$ and value. Given a coalition of agents,
S = {ax, a;}, for example, there is one variant that was generated, bgs the center, which
we denote byS,, and the other variant that was generated:fjyas the center, which we
denote bysS;. Both a;, anda; have these coalitions in their list after exchanging. Havev
among these variant coalitions, there will be just one oglicoalition,

S* = argmazg,csVs,,

wheres;, is a variant ofS.

In the process of finding™, agenta;, can simply seb;. as theS* and compares it against
other variants. If any of those variants has higher coalitialue, it will be set as the new
S*. Each agent will keep onlg*, i.e. otherS, # S* will be deleted from the list. After this,
each agent will have just one coalition with optimal value, (5*) [42]. Actually, this step
reduces a large number of possible redundancies duringtbelation for the optimal value
of a coalition. Otherwise, for each coalition, each memldghe coalition has to compute
for the optimal coalition value by choosing the all possitgaters, which is inefficient. The
main distributed algorithm for generating profitable ctatis among agents is shown in
algorithm 12. For the sake of illustration, we assume thgedihm be run at agent,.

One may raise a question regarding the communication cosh@magents as it seems
agents have to communicate extensively. Actually, the @gaerely send messages to each
other just once, i.e. after the deliberation. The numberefsages sent across communica-
tion network is relatively small, i.en?. The content of each message (containing coalitions
and their values) can be represented in plain text and caippedinto a small piece of
data. Given the present communication infrastructure,rgvineulti-million messages are
being sent across the communication network and the costliscavered, it is unlikely
that the algorithm would incur any significant burden, inrierof communication cost and
performance, to the system.

The other concern can be the synchronization during theaggeghof messages. While

4.3. Distributed Algorithm for Coalition Formation

76

Algorithm 12 Main Distributed Algorithm

Require: L, set of self-generated coalitions.
setl* = L,
for eachS;, in L;, do
if vg, < 0then
setS, =0
end if
end for
for eacha; € N anda; # a; do
a; sendL; to a
end for
for eacha; € N anda; # a; do
agenta,, collects all coalitions/.* U L,
end for
for eachS € L* do
setS* «— 5
for eachs; of S andS;neqS;, do
if v < vg, then
sets* «— 5
else
Sl — @
end if
end for
end for

> prune non-profit coalitions

> broadcast generated coalitions

> collect generated coalitions

> find optimal coalition

4.3. Distributed Algorithm for Coalition Formation 77

our high-level algorithm sends and collect lists of coahs consequently, one can deploy
any low-level technique, such as having a daemon progrartakimg care of sending and

receiving messages, in real implementation. This may dlew ghe sending and receiving

on each agent be done independently. However, we leaveottiie further development as

it is beyond the focus of this work.

At this point, these remaining coalitions kept at each ageltoe profitable and opti-
mal. Furthermore, their number is relatively small. Eachragan use these highly-valued
coalitions to generate coalition structures. The detalgdrithm will be discussed in the
next section.

4.3.3 Best Coalition and Coalition Structure Pattern

In previous studies [77, 22], coalition structures are gateel based on the size of coalition
structures and the cardinality of the coalitions. It appdhat the search space is very large.
Here, we try to reduce the search space. For each cardjredity agent tries to do local
search for a small number of coalitions. Firstly, we defiredhentu;’s best coalitionfor
the cardinalityx the coalitionS;;, whose members include,, that is found from a search
within a given time and yields the maximal. Within the same cardinality, the next coalition
that yields the second highest coalition valusasondbest coalition, and so on.

We introduce thepattern of generating coalition structures. A pattern of a coatitio
structure describes the number of coalitions and theiriigalitles in the coalition structure.
It is written in the form

B+ By+...+ B, whereB, € Z" and Y B, =m
=1

Our work proposes coalition structure pattern in breakimgner as the following. Given
a set of 6 agents, for example, the first pattern is 6 in layei here can be just one coalition,
which is the grand coalition, whose cardinality is 6. In tlextlayer,L-, the grand coalition
will be broken into 2 coalitions by splitting a member fronethrand coalition into the new
coalition. Hence the pattern is 5 + 1. The next pattern is 4¥233. The pattern in each
layer cannot grow once the difference between each pairalitioms’ cardinalities is< 1.
Then the pattern breaks into the next layer, i.e., 4 + 1 + 1, 3+122 + 2 + 2. The last
patternis obviously1+1+ 1+ 1+ 1+ 1. The pattern breakingess for 6 agents is shown
below:

4.3. Distributed Algorithm for Coalition Formation 78

No. of coalitions| 1 2 3 4 5 6
Patterns| 6 | 5+1|4+1+1| 3+1+1+1| 2+1+1+1+1| 1+1+1+1+1+1

4+2|3+2+1|2+2+1+1

3+3|2+2+2

Agents can use best coalitions to generate coalition stre€by following these patterns.
By using the best coalitions alone, agents will achieve somaditon structures whose best
one will be close to the optimal one. Using more coalitiorss, the second best, third best
and so on, coalition structure values can be improved.

4.3.4 Generating Coalition Structures

Once each agent finishes its deliberation in the first stagexchanges all the coalitions
generated with all other agents. It then uses the patterretergte coalition structures.
Starting with the best coalitions, it follows the patteragdr by layer from left to right and
from top to bottom in each layer. For each pattern, the agéhnthoose a combination of its
own best coalitions and those it received from other agenggenherate coalition structures.
For example, with a pattern of 4 + 3 + 2, the agent will placebgst coalition of cardinality
4 as the first coalition of that coalition structure. One @& best coalitions of cardinality 3,
whose members are not in the first coalition, will be placethassecond coalition. One of
the best coalitions of cardinality 2, whose members aremdite first two coalitions will
be placed as the coalition structure as the last coalitiorthé case the agent can not find
appropriate coalitions to fit in, it places an empty set iagteThe coalition structure value
is the sum of those coalition values. In each round of praoeetthrough all patterns, an
agent can extend the scope of best coalitions involved ormabylt, for example, generates
the coalition structure using only the best coalitions ia finst round. It then uses the best
plus the second best coalition for the second round, and .sdhanalgorithm for generating
coalition structures is shown in algorithm 13:

4.3.5 An Example of Generating Coalition Structure

This section gives an example of how this algorithm workd.the system be composed of a
set of four agentsA = {a4, as, as, as}. After the first deliberation process, all the coalition
values are computed and sent across. Their values are kheifag:

4.3. Distributed Algorithm for Coalition Formation 79

Algorithm 13 Generating Coalition Structures

exchange best coalitions with all other agents
sort coalitions for each cardinality by their coalitionwas in descending order
generate patterns for each layer
set bestcoal to 1
while time is availabledo
insert the bestcoal coalitions for each CScardinality
for all layersdo
for all patternsdo
generate combinations of best coalitions in CScardinality
end for
end for
increase bestcoal by 1
end while

vi = 8 vy = 13 vy = 21 vy = 22
v = 12 wvi3 = 16 vy = 23
vs = 13 vy = 10 vy = 16
Vg = 6 vy = 18 w3y = 19
voy = 20
vy = 15
After exchanging the coalitions generated among each ,otlaeh agent can select for

each cardinality its best coalition. Let's assume that tggenly operate on the best coali-
tions. Agents’ best coalitions are the following:

Cardinality | a; as as ay

1 U1 V2 V3 Vg
8 12 13 6
2 V13 Voy Va3 V24

16 20 18 20

3 U124 U124 U123 V124
23 23 21 23

4 V1234 | V1234 | V1234 | V1234
22 22 22 22

For the system of 4 agents, the breaking patterns of caaditiwe the following:

No. of coalitions| 1 2 3 4
Patterns| 4 | 3+1|2+1+1| 1+1+1+1
2+2

4.4. Experiments

80

Using the algorithm in the second deliberation procesd) agent’s coalition structures

computed are shown below. Each agent will achieve the sat@alpcoalition structure

whose value is 41.

a1

a2

CS1234 = 22

CSip13 =23+ 13 = 36
CSi93=8+0=28

CSy521 = 16 + 20 = 36
CSy304=16+12+6 =34
CS1934 =8+ 18+6 =32
CS1os1=8+12+40=20
CSfs0=8+13+20=41
CSy234=8+12+13+6 =239

CSi34 = 22

CSpp13 =23+ 13 = 36

CSy13 = 1240 = 12

CSyu13 = 20 + 16 = 36
CS3p15=20+8+13 =41
CSy134 =12+ 16+ 6 = 34
CSy314 =12+ 1340 =23
CSy130=12+8+0=20
CSy934=8+12+13+6 =239

as

aq

CS1a34 = 22

CSpp3q =21 46 =27

(85104 = 13423 =26

CSys14 =18 4+0 =18

CSy314 =18 +8+6 = 32
CSj100=13+8+20=41
CSs014 =13+ 1240 =25
CSi234=8+12+13+6 =239

CS1934 = 22

CSip13 =23+ 13 = 39

CSy193 = 6+ 21 = 27

CSyu13 = 20 + 16 = 36
CSjp15=20+8+13 =41
CSy139 =6+ 16+ 12 = 32
C'Syo31 =6+ 18 +8 = 32
CS1034=8+12413+6 =39

4.4 Experiments

4.4.1 Generating Coalitions

We tested of our algorithm within a range t — 100 agents. In each round, the agents

number increased by. The number of goods and resources are equal and incredsm by

every?2 rounds. In each round, the technology matrix, agents’ nessuand cooperation

costs among agents are randomly generated with uniformtdison. The number of each

resourcey;; in the technology matrix is in the range- 10. The prices of the goods are in the

range ofl0 — 20 while the cooperation costs are in the rang® ahd the number of agents

in that round, e.g.10, 15, As our algorithm deals with non-superadditive environtagn

this setting tends to increase the cooperation cost of aticoaas its size grows. Hence it

4.4. Experiments 81

No. of | No. of Goods| Exhaustive| Our
Agents| Resources Search | Search
10 4 781 121
15 4 42269 123
20 5 1272703 197
25 5 5092317 234
30 6 19384629 607
35 6 80429663 | 1608
40 7 NA 1696
50 8 NA 4730
60 9 NA 13346
70 10 NA 24298
80 11 NA 23276
90 12 NA 26933
100 12 NA 81845

Table 4.1: This table compares the average deliberatioa tifreach agent using our al-
gorithm against exhaustive search. Our algorithm outperfoexhaustive search after the
number of agents exceeds 35 (exhaustive time not availakhe—

forces agents to work harder to form profitable coalitiond smachieve optimal coalition
structure. Both algorithms use the Simplex algorithm to fimel dptimal solution for each
coalition. The revenue generated is subtracted to achievedalition’s profit.

The Table 4.1 compares the average deliberation time agpetst using exhaustive
search to that using our algorithm. The time is measured Ihsgtonds. We observed
that exhaustive search hardly makes any progress afteutnbar of coalitions generated
exceeded 2.5 millions. As shown in the table, the time spewiietiberation using exhaustive
search was approximately doubled as the number of agemeased by 1. With 20 agents,
the time spent on deliberation using exhaustive search larger than that using our algo-
rithm. Our computer system could not carry on experimenysfarther after we reached
35 agents using exhaustive search. We continued experimserg our algorithm until the
number of agents reached 100. (Although we carried on therarpnt up to 300 agents, the
results are not shown here.) Since the number of coalitiensigted are small, the optimal
coalition structure can be found more rapidly.

Having pruned a large number coalitions, the number of reimgicoalitions are small.
Hence the number of coalition structures are small. Apglyar algorithm can intuitively
achieve optimal coalition structure in timely fashion.

4.4. Experiments 82

4.4.2 Generating Optimal Coalition Structures

We conducted experiments where agents executing our gdgoagainst exhaustive search
within the range ofl0 — 50 agents. We compared the performance of both algorithms in
terms of number of partitions generated and elapsed timespémgting optimal coalition
structures. Since existing exhaustive search algoritlengs, [77], does not specify how
exactly the partitions are generated, we generate paitior exhaustive search by in-
creasing the number of blocks, e.b.2, . . ., n, andiq) for each block, the coalition size will
be propagated from left to right. For example, if there arg@nas, the partitions generated
will be {1,2,3}, {1,2}{3}, {1,3}{2}, {2,3}{1} and{1}{2}{3}. In each round, the number
of agents increases By The number of goods and resources are equal and increase by
in every2 rounds. The technology matrix, agents’ resources and cabpe costs among
agents are randomly generated with a uniform distributibhe number of each resource
a;; in the technology matrix is in the range— 10. The prices of the goods are in the
rangel0 — 20, while the cooperation costs are in the rang® aihd the number of agents
in that round, e.g.10, 15, As our algorithm deals with non-superadditive environtagn
this setting tends to increase the cooperation cost of aticoaas its size grows. Hence it
forces agents to work harder to form profitable coalitiond tmachieve optimal coalition
structures. Both algorithms use the Simplex algorithm to firedoptimal solution for each
coalitions. The revenue generated is subtracted to acthevepalition’s profit.

Figure 4.2 compares the performance of our algorithm ag#ias of exhaustive search.
The left y-axis is the number of coalition structures geteztavhile right y-axis is the elapsed
time spent for generating optimal coalition structures illiseconds. The empirical results
show that our algorithm performs significantly better thahaastive search. We observed
that the exhaustive algorithm hardly makes progress dfeentmber of agents exceeds 40.
As shown in the figure, the number of coalition structuresegeted by the exhaustive algo-
rithm is much larger than that of our algorithm. Furthermdne elapsed time for generating
optimal coalition structures by the exhaustive searchgs ahuch larger than that of our
algorithm. Since our computer system could not carry on exyants using the exhaustive
search for a large number of agents, we limit the comparistyfor 50 agents. However,
we continued experiment using our algorithm until the nundd@gents reached 100 but the
results are not shown here.)

4.5. Conclusion 83

1050 101 0
Elapsed Time for Generating /
—— "7~ Partitions by Exhaustive Search / /
40 Elapsed Time for G ti / 8

g 10— Partitons by Our Algorithm s P f0° om
© No of Coalition Structures ,/ / g 2
g ~—— 7~ by Exhaustive Search / / 2
@ 1034 Noof Coalition Structures e / 108 oo
S by Our Algorithm e e S CBD
=4 /s = 7
s e -~ So

S =
9 Lo e - ot o
5 ey R
9] ey - [}
2 s -~ S8
E .10 S o 2 g5
= 10 7 // - o —~ ”/’10 «Q

P A
10 == T T T 10
0 10 20 30 40 50

Number of Agents

Figure 4.2:Empirical Results This graph shows the number of coalition structures gener-
ated and elapsed time for generating the optimal coalitiarcires of our algorithm against
those of exhaustive search.

4.5 Conclusion

Coalition formation is an important area of research in magg@ent systems. The problem of
generating optimal coalition structures, the partitignaf a set of agents such that the sum
of all coalitions’ values within the partitioning is maxim& an important issue in the area.
The small number of existing studies assume each coaliaurevis known a priori. Such
assumption is impractical in real world settings. Furtheran finding all coalition values
becomes intractable for a relatively small number of agents

We proposed a distributed branch-and-bound anytime alhgorior computing optimal
coalition structure for linear production domains amorityfcooperative agents. Instead of
assuming that each coalition value is known a priori, ouo@aigm tries to reduce the num-
ber of coalitions. We extend our previous algorithm in thébaeation process in order to
improve the performance. Non-profitable coalitions aregesterated by the deliberation al-
gorithm. Then the information about remaining coalitiorif be exchanged among agents.
Lastly, each agent uses an existing algorithm [77] to compptimal coalition structures.

The empirical results show that our algorithm help gendteteoptimal coalition struc-
tures much faster than exhaustive search. Our algorithmatieally reduces the number
of coalitions generated hence reducing the number of cmalétructures. As a result, the
elapsed time of generating the coalition structures igively small.

So, the work presented in this chapter has achieved the detpective of this research,
namely, to adapt the algorithm presented in Chapter 3 so as:

2. to solve OCS problems in a linear environment where coalitialues and coalition

4.5. Conclusion 84

structure values are not known a priori but must be calcdlate

Having successfully met this second objective, our goa deploy the best-first anytime
algorithm to a number another complex OCS domains in whiclttiadition values are not
known a priori. In the next chapter we will adapt the algoritifior use in an NP hard,
non-linear environment where coalition costs and coaliftyucture values are not known a
priori.

Chapter 5

Non-Linear Optimal Coalition Structure

5.1 Introduction

The previous 2 chapters have achieved the first and secoedtivbs of this research by
developing a best-first, anytime algorithm that is an efficgolution for OCS problems in
environments where coalition values are known a priori, addpting that algorithm for
use in a linear environment, which is much more computalipamplex. This chapter
will continue our development of the original algorithm faese in an NP hard, non-linear
environment where coalition costs and coalition structtakies are not known a priori,
thereby achieving the third objective of this research.

So far, we have proposed a heuristics algorithm for gemeyaiptimal coalition struc-
tures in generic domains in chapter 3 and a distributed digorto compute (near) optimal
coalition structures in linear production domains. In thspter, we study optimal coalition
structures in non-linear domains. Here, we use an examptgatics providers distribut-
ing goods from manufacturing sites to end customers. THiggswuse optimizing routes for
logistics providers is a well known hard problem in real wiasktting.

Typical logistics providers operations are to distribut@ds from depots and try to min-
imize costs by deploying as smaller number of trucks as plessas well as try to meet with
the customers’ dateline requirements. Here, we consigepplration of small independent
logistics providers, whose individual resource is merdlyiek, in a small but complex econ-
omy system. Note that these trucks are independent econoitsytat they have to make
their own living. An example of this kind of setting is the wasf Shehory et.al. [89]. Hence
it is important that agents have fair opportunity and faarghon their contribution.

We consider distributing goods from a manufacturing sitetessk. Here, we allow agents
to form a non-overlapping coalition for a given task. We wiangxamine how economically
agents can address this problem in such a setting. We pragseteof distributed algorithms
to tackle the task. As commonly seen in the literature [48,84) 89, 91], agents begin

85

5.1. Introduction 86

by choosing the tasks it can perform most efficiently, i.ee tibtal distance of the routes
performed individually in the the coalition is minimal. @ a task, the size of the coalitions
who can perform the task varies. Hence, agents need to finddseappropriate coalitions
for all tasks. By assigning a coalition to each task, whileagknts are part of the coalitions
and all tasks are assigned with coalitions, we can conditeas a task-agent coalition. Each
task-agent coalition will incur a distribution cost. We amgerested in minimizing the total
cost of the system, which is another level of optimal caaditstructure.

Note that this problem shares some degree of similarity atitier problems in the liter-
ature. It is similar to the Traveling Salesman problem [gGn4hat a vehicle has to take a
circular route to deliver the goods. However, the vehickrehhas to collect the good from
the manufacturing site, first, before it can distribute theds. With regards to the Vehi-
cle Routing probleriGolden-2008, each vehicle has a set of certain capability constraints.
However, each agent, here, requires cooperation from atpents. With regards to Sand-
holm et.al.'s work [75], each agent in each possible caaliknows the set of the tasks they
are required to do (agents just need to optimize the coalatues and the optimal coalition
structures can be computed based on them.) However, eanh agee, seeks for a set of
coalitions that are efficient for a given task. The optimallttaon structures will be searched
from this larger set of coalitions. With respect to Shehdrgle[89], each agent is assigned
a small set of tasks and the number of agents in the systenitéssgoiall. On the other hand,
our agents need to find a set of the most appropriate taskai(fgrtask-oriented coalitions
before searching for optimal coalition structures) andhilmaber of agents involved is larger.

Rahwan et.al. [69] propose an algorithm for computing coalivvalues among coop-
erative agents. However, it is not applicable here becauwuselgorithm works in prac-
tice only for a small number of agents, i.e., it has to scarnhalcoalition values as input.
Here, the number of coalitions involved is much larger, saagall coalition values are im-
practical. For example, choosing a coalition of 10 agerdsf00 agents requires at least
1001y = 1.731F + 13 =~ 17.3 trillions bytes, while choosing a coalition of 11 agentsnfro
100 agents requires at lea&tC,; = 1.42F + 14 ~ 142 trillions bytes. We decide to fol-
low the same principle proposed in previous chapters, thad compute only a relatively
small number of coalitions whose values are more relevatitegrocess of computing op-
timal coalition structure values. Agents may choose any@pate heuristics to generate
coalitions.

We are interested in exploring the difference between

1. various time allocation strategies.

2. various data distributions.

5.2. Distributed Algorithm for Distributing Goods 87

It is common in the literatures on multi-agent systems tlyginés optimize their tasks
locally and deliberately exchange their tasks to increlasg@érformance of the systems [48,
49, 84, 89, 91]. Postman protocol, for example, allows agenexchange their task one by
one. The tasks being exchanged are usually costly for th&sgédno want to exchange. We
explore how the system performs if the numbers of tasks b®banged are larger.

5.2 Distributed Algorithm for Distributing Goods

Here, we propose a distributed anytime algorithm for agemisooperatively execute the
tasks. Each agent seeks the most efficient tasks it can peridris can be achieved quickly
by ranking all the tasks by the distance between the locafitimee agent and the locations of
the sources of the tasks in ascending order, i.e., the agefierpthe nearest source. For each
of the sorted tasks, the agent tries to match it with set dlitamas, each of which includes
itself, from the smallest one possible to the largest onessary to complete the task.

The cost to jointly execute a task can be different for ea@nagrhis is due to the fact
that agents’ capabilities and circumstances are differEiits simply means there are more
constraints governing the assignment of agents to the, taeskdting in there are fewer agents
available to particular tasks. In this case, it is relativehsy to compute optimal coalition
structures. On the other hand, if agents have equal cafyathkere more agents capabled of
executing particular tasks. Hence it is harder to computengp coalition structure. In this
chapter, we refer to assigning agents to execute tasks lsattie total cost of the system is
minimal as theoptimal task-agent coalition structu(©TCYS).

As we have done in the previous chapter, we compute the icvallues based on
heuristics that can lead to coalitions of high value. (ladtef following the lexicographic
order [50], we are interested in computing high-valueditioak under time constraints.) In
computing the optimal task-agent structure, there are éwel$ of intervening deliberation
agents have to do.

1. The first one is to optimize possible solutions for eack.tas

2. The second one is to compute OTCS.

Since optimization of possible solutions is a hard probleself, agents have to ensure
they do not spend too much time on this deliberation and ddvae¢ enough time to delib-
erate for OTCS.

We assume agents are under time constraints in order to firegttasks. Hence, agents
may consider a swapping strategy which it considers to beribst appropriate. It may

5.2. Distributed Algorithm for Distributing Goods 88

use the maximum change strategy to quickly achieve a salatiat may use the thorough
strategy to gradually swap the task.

The calculation of coalitions associated with the taskshmdone distributedly. Since
the computation for optimal distribution of the goods candbae by any computing unit,
agent can evenly share the computation for the optimal sdotecach task.

5.2.1 Setting

There are two levels of coalitions in our settinytask-plan in order to find the best solutions
for each task at each point in time, aijitask-agent in order to assign to each best task-plan
a coalition of agents such that the total cost is minimal.

Task-Plan Solution

We define a grapty = (V, £) whereV is a set of vertices anfl is a set of edges connecting
each pair of vertices with a certain distance. The graphesgmts an economic map of a
road network, i.e., a vertex represents a location in thé nedwork, a vertex represents the
cost in term of the shortest distance achieved optimallween each pair of locations. We
define a task as a tuplé = (S, {D}), whereS € V is the source andD} C V is a set
of destinations associated with We refer to the number dPs inT" as the size of" and
denote it by|T'|. We assume the smallg§t| = 1. The set of all tasks is denoted By

We definef a set ofn logistics provider (LP) agents. Each of these agefits, £, is
a truck with the same capacity load and travel distance. &sgam to cooperatively deliver
the goods as per requests. We assume the number of agenksastaqual to the number
of tasks and the maximal number of agents is not greaterYhan, |7'|. A taskT can be
partitioned intol < p < |T'| parts, each of which to be executed by an agent. The agents
assigned to a task is then a coalition. We shall refer to afgertitions of the same parts
aspartition P,. We shall refer to each instance Bf aspartition instanceand denote it by
P,.;, wherei is the lexicographical order index of the partitions of taeep size. We denote
by | P,| the number of all instances, ; in P,*. We shall denote thg-th part of P,; by P, ;,
starting from left to right. Hencé’,, ; is the index indicating the number of destinations in
the j-th part of P, ; and we denote such a number|8; ;|.

For example, a task of 5 destinations can have 5 partitiohghixcan be broken down to
7 partition instances altogether as shown below:

1The exact number aP, and integer partition are well explained in [50]

5.2. Distributed Algorithm for Distributing Goods 89

Partition | Partition| Integer Description
Instance| Partition
P, Py 5 One part of 5 destinations
b, Py 4+1 One part of 4 and one part of 1 destinations
P, 3+2 One part of 3 and one part of 2 destinations
Ps Ps1 3+1+1 One part of 3 and two parts of 1 destinations
Pss 2+2+1 Two parts of 2 and one part of 1 destinations
P, Py 2+1+1+1 One part of 2 and three parts of 1 destinations
Ps Py 1+1+1+1+1| Five parts of 1 destinations

Here, partitionP;, P, and P5; has just one instance, whilg, and P; which have two
instances each, i.é% 1, P» 2, P31 andPs 5 respectively. Giver?, 1, for example, we partition
the whole task into 2 parts: one part of 4 destinations andpanteof 1 destination. In other
words, we may assign a coalition of 2 agents for this task:agent to executé ; ; which
has 4 destinations, and the other one to exefute which has 1 destination. Alternatively,
we may assign 3 agents to execute the task: the first agenetute; ; ; which has 3
destinations, the second agent to exeddte, which has 1 destination, and the third agent
to executePs ; 3 which has 1 destination. We shall discuss how can we pantitie. group
destinations, below.

Note that partitioning a task itself is of the same complegifiss as partitioning coalition
in order to compute OCS as we have discussed in chapter 3. Véleaddional OCS works
assume coalition values are known a priori, this chaptezdakto account computational
time consumed to calculate coalition values.

In eachP, ; ;, a collection of| P, ; ;| destinations can be chosen to build a route on which
any agent can travel and distribute the goods. Dgt; be a set of destinations yet to be
chosen intaP,; ;. Hence there aré»+iIC, . | alternative combinations. For each of these,
we can havg P, ;|! alternative routes, which we denote Bg, ;. Given D, ;, we can
compute the number of alternative routgs, ; ;|, as follows:

| Dyp.ijl!
(1Dp.ijl = [BpiD! - [Poisl!
Hence, for eacl®, there are

| Pyl

‘Pp‘ p

H H<|Dijj|C|Ppli'j‘)

i=1 j=1
alternatives. We shall refer to each of these alternative @an, 7,. Given an opti-

mization technology and a computation timeve denoteR!

».i.; as the optimized route with

5.2. Distributed Algorithm for Distributing Goods 90

minimal cost (distance). We denote this optimal cosagyj. Hence, the execution cost of
a coalition of agents for &, is

p
CEp, =) Cpij
j=1

For each partition of task, we are interested in achieving the best gijn),, whose cost

C E}Sp = argmmC';;p

is minimal.

Agents are to cooperatively compute edc®,. Rahwan et.al. [67] propose an algorithm
for computing coalition values among cooperative agentswéver, that algorithm seems
inapplicable here because it computes the values of aliticwed, whose number is too large
in our setting.

Task-Agent Coalition

The next step is to assign appropriate coalitions of agentagks to achieve the overall
minimal cost for the system. We have defined a set of logistiwigers £. There is a
location functionLoc : £ — V which associates an agefite £ to a vertexn € V, where

the agent is located. LdtT C < be the set of tasks yet to be assigned with agents. Let
RL C £ be the set of agents yet to be assigned tasks. In order totexetaskl’, a coalition

S C gofl <|S| <(|RL| — (|RT| — 1)) agents have to travel the source of the task and
collect goods before distributing them. For each agénthis will incur theaccess cost
CAr , to the agent. Hence the access costStoo 7' is

CArs =Y CArp.
Leg

This cost is consistent and is independent of time.itqu@p C £ be the set of available
agents for assigning 187, ,, there aréﬁ:p;np |C’p§;7p ways of assigning a coalition of agents to
Pr,- We shall refer to each pair of assignifigc Lp; 10OPr,as atask-agentoalition and
denote it bySfp%p. Hence the total cost of executing pl@ , by S is

Cp; s = CArs + Cp,

5.2. Distributed Algorithm for Distributing Goods 91

Task Coalition Structure

Here, we are not only interested in finding the cheapest mssgt to eacl’, but we are
also interested in finding the cheapest assignmefit ¥&e define dask coalition structure

TCS = {Sp; |where| =T, andT;NT; = 0, and|] = £, ands; n 5; = 0},
T S

is a set of task-agent assignments where all tasks are adsigth a a unique coalition
of agents and all agents are assigned to tasks. We defingdhagsignment cost,

V(TCS) =Y Cp; s

the sum of all assignments in a task coalition structure. Yeerderested in finding a
task coalition structure such that the sum of total cost rsml, i.e.,

TCS* = argm,V(TCS)

Best Task-Agent Assignment

In chapter 3, we have defined tbestcandidate coalition, based on the ratio between the
coalition value and its cardinality, in order to place th&tremalition into CS. Here we apply
the same principle. In order to find the most appropr@;tTe as the next assignment to one
5P
of the remaining tasks, we define tregluction contributioras
Cp: s

A= i
5]

Hence theébest task-agerdssignment is

*
« = argminA
SPTJ) IminA,

whose reduction contribution is the lowest among all thesjibs assignments.

Time Allocation Strategy for Overall Deliberation

We define a time allocation strategy as a tuple = (7pa, 7ra), Where7p,4 is the per-
centage of remaining time to be allocated to the delibemnatbofind Pr, for eachT, 714
is the percentage of remaining time to be allocated to thibewition to findS;;;yp, and
Tpa + Tra < 100. Agents may choose to split the remaining time equally, 7e; =
(50, 50), which will give agent just one round of each deliberatiorowdver, this strategy

5.2. Distributed Algorithm for Distributing Goods 92

could also lead to a dangerous situation because the exaputing of the deliberation may
take more time than it is allocated and lead to the overtinodation. Alternatively, agents
may choose to spare some time for the exact computing, aeatrépe process of both de-
liberations for the remaining time. Such strategies majuite(50, 40), (40, 40), (40, 30),
(30, 30), (30,25), (25,25), which would recursively leave spare time for deliberagiom
later rounds a$0%, 20%, 30%, 40%, 50%, respectively.

Time Allocation for Task-Plan Deliberation

There are two issues for time allocation in the task-plarbdehtion.) Since planning for
optimal routes for each task is a variant of the Vehicle Rauprnoblem, which is a hard
problem, time allocation for each task has to be distribtibeglach task efficiently and has
to take into account the trade off between the time spent®cdmputation and the quality
of the result.77) The distribution of each task has to meet the time condsaequired by
customers and all agents have to play their parts in diging@oods. We invent a heuristic
strategy which will allocate time to each task based on themni@l computation workload
on each task, i.e. the sum of the size of the search spacehrpaddion of the task.

In general, the algorithm needs to work out how to slice treglable time for the opti-
mization of each task. This is depending on the size of eat) tehich specifies the size of
search space in each of its partition. Intuitively, the tiatlecation should be based on the
size of search space but we simply cannot do that directlsisscthe numbers involved will
be too large. For example, choosing 50 from 100 cities or tzg&auld involve

00C, = 1.00891345 x 10%
~ 1.0 x 10?-10%-10°- 106 - 106 - 108
~ 1.0 x 102210 X 220 . 220 . 220 X 220
~ 1.0 x 1022,

This number is too large to be computed efficiently in a typicanputer?

Instead, we consider just the partition numbers of each t&kcompute for the weight
of each partition and allocate the time to optimize the partibased on its proportional
weight to the total weight of the task. Firstly, we compute pinoduct of each pajitin each
partition instancg, [[| P...;|- The weight for each partition is then defined by

Y

w,— SR

d

2Java offers the class Biglnteger which can handle large eulmit the performance is relatively slow.

5.2. Distributed Algorithm for Distributing Goods 93

whereli| is the number of instances i,. The actual time allocation for the eaéh in
taskT' is
A(W,) = = —
Zk:l Wi
LetWr = ',Ql W, be the total weights of alP, T'. Let W = .. W be the total
weights of alll” € €. The proportional time allocation out of the available tifoetask-plan
deliberation is merely

Below is the example of how we can split the allocation timedgach partition of a task
T,|T| = 10. Note that the time will be allocated more to partitions, s#gearch space are
larger.

5.2. Distributed Algorithm for Distributing Goods

94

Py Py Ps
p=1 IT1P1.q5] p=2 I11P2.4.5] p=3 I11Ps.i.5]
10 10 9+1 9 8+1+1 8
8+2 16 7+2+1 14
7+3 21 6+3+1 18
6+4 24 6+2+2 24
5+5 25 5+4+1 20
5+3+2 30
4+4+2 32
4+3+3 36
wy = 2 L] 10 Wy = 2] 19 Wy = 2] 2275
A(Wy) = ZW;VP 9.154814691| A(W») = zw‘fvp 17.39414791| A(W3) = ZWV;P 20.82720342
Py Ps.i Ps.i
p=4 I 1 Pa.i.j p=35 I11Pp.i 4l p=6 I11Pp.ij
7+1+1+1 7 6+1+1+1+1 6 5+1+1+1+1+1 5
6+2+1+1 12 5+2+1+1+1 10 A4+2+1+1+1+1 8
5+3+1+1 15 4+3+1+1+1 12 3+3+1+1+1+1 9
5+2+2+1 20 4+2+2+1+1 16 242+42+2+1+1 12
4+4+1+1 16 3+3+2+1+1 18
4+3+2+1 24 3+2+2+2+1 24
3+3+3+1 27 242424242 32
3+3+2+2 36
wy = 2Pl T 19605 [wy = ZH5iil | 1685714 | W = 211176l 8.5
A(Wy) = ZWV;l,p 17.96632383| A(W;) = Zwvgp 15.43239929| A(Wg) = Zwvﬁvp 7.781592487
Pr.; Ps.i Py
p=7 [L1Pp.i 4l p=38 I Pp.i.sl p=9 [T |Pp.i4l
4+1+1+1+1+1+1 4 B+1+1+1+1+1+1+1 3 2+1+1+1+1+1+1+1+1 2
3+2+1+1+1+1+1 6 2+42+1+1+1+1+1+1 4
2+42+2+1+1+1+1 8
11 |§7.1.j\ 6 1T |2PB.1._7" 35 IT (59.7:._7’\ 2
A(Wy) = ZWVVVP 5.492888815| A(Wg) = zwv?/p 3.204185142| A(Wo) = vi%p 15.43239929
Pro.i
p=10 I118p.i.5l
1+1+1+1+1+1+1+1+1+1] 1
11 [11310.1'.]'\ 1
A(W10) = ZW‘IAEP 7.781592487

Heuristic for Choosing Shrinking and Altering Point

Although the algorithm to find@’C'S* is similar to algorithm 1 in principle, it cannot repeat
shrinking and altering too often without significant impeovent onl/(7'C'S) because the
number of agent coalitions can be much larger in this c4%€;,, for example, is too large
for any typical computer as we have discussed. We arguethahtrink and alter points have
to be different from algorithm 1. Instead of doing thoroughrch by altering and shrinking
once the algorithm cannot extend anymore, we introduce agtieuto find the alter and
shrink point which is more appropriate to our setting. Thesittistic repeatedly bi-partitions
T'SC into sections. We define a bi-partitioned of a numberI*, I > 1 atuple(HH, LH),
whereHH = LH = 1if I is and even number, di H = [1], LH = |1] otherwise. At

5.2. Distributed Algorithm for Distributing Goods 95

each time of the bi-partitioning, we refer to the partitiantiae level]. We refer to each part
of the partition as the section, The shrinking and altering &fC'S will take place at the
position indicated by this bi-partition. We compute the g¥gifor each bi-partition as the
following

14,
Wi, = :
I; Il
The most appropriate bi-partition is

*
I = argma:W1,

The present’C'S will be shrunk from taskj|, |j — 1,...,1. Each timeél'C'S is shrunk,
the alter takes place @}, in order to assign the next besto the task, replacing the previous
one.

Given,|%| = 20, we can bi-partition itinto 5 level as shown below. By compgtiveight
for each level [, is the most appropriate level. The shrinking TCS and altefiong newS
will take place atl'g, 111, T, 17

I | Bi-Partition I HI;IU
20 | =(10+10) I 12'420 =925
= (5+5)+(5+5) I | %% =39.0625
= ((3+2)+(3+2))+((3+2)*+(3+2)) I3 | 128% =5.0625
= (((2+1)+(A+L)H(2+1)+(X+1)))+H(((2+1)+(1+1))+((234(1+1)) Iy 21% =244 x 1074
= ((A+1)+1)+(1+1)+(((L+D)+1)HL+L))N+(((1+1)+1a+1)+(((L+1)+1)+(1+1))) | Is 2% ~ 9.54 x 10707

5.2.2 Main Algorithm

In the beginning, the algorithm requires the time allocaitrategy7s7) and the time avail-
able for deliberations, which we shall refer to as the remagirtime, 7z. The function
AllocPlanTime(Zs7, Tg) Will return the time allocated to the task plan deliberatpn-
cess byplanDelibTime = Tr/100 * Tp4. Agents spend at leagtan DelibTime to solve
the optimization problem in all tasks by calling the funatioOnce the solution deliberation
process in this round is done, agents spesidgn DelibTime = Tp/100 * 774 to compute
the most efficient assignment task-agent for the time beirge algorithm then computes
for 7 by deducting the time spent on both deliberation in that doinam 75. If there is
remaining time, the algorithm goes into the loop and regeatteliberation processes again
until 7z < 0. The details processes are shown in algorithm 14.

5.2. Distributed Algorithm for Distributing Goods 96

Algorithm 14 Main Algorithm: Construct task-agent structures by repdigitdeliberate for
optimal task-cardinality and task-agent assignment
Require: Zgr
Require: 7

1: elapsedTime +— 0
startTime «— presentTime
planDelibTime — AllocPlanTime(Zsr, Tr)
DelibTaskPlan(%, planDelibTime)
assignDelibTime «— AllocAssignTime(Tgr, Tr)
DelibTaskAssign(Tasks, assignDelibTime
elapsedT'ime «— presetTime — startTime
Tr «— Tr — elapsedTime
while (do7z > 0)

10: planDelibTime — AllocateTime(Tsr, Tg)
11: DelibTaskPlan(%, planDelibTime)

12: assignDelibTime «— AllocateTime(7Tsr, Tr)
13: DelibTask Assign(%, assignDelibTime

14: elapsedTime < presetTime — startTime
15: Tr <+ Tr — elapsedT'ime

16: end while

5.2.3 Algorithm to Deliberate Task-Plan

Here, agents have to split the available time to compute &jch In the simplest case,
wheren is equal to|¥| and|T'| is equal for eacll” € ¥, each agent may be responsible
for the task deliberation based on lexicographic order. hindase wheréT'| is different
for eachT € ¥, the computation should be distributed evenly [67]. Evesgnputed plan
Pr, needs to be distributed to every agent. Although the shaege from the source of
each task to go through all of its destinations can possielgdrived by a single agent, the
system is under time constraint as well as the agents theessale limited by their own
capabilities. Therefore, agents need to form coalitionsetax these constraints. On the
other hand, forming too large coalitions can lead to poofgoerance of the overall system
because the cost can be too high. Assigrjifipagents, for example, t& simply means
the execution cost of the task is as twice as much of the sutmeodlistance between each
pair of the source and each destination. Since there arg@ farmber of possibl@;. , to
be computed, agents can also apply strategies of time aivisi the computation of these
Pr,- One strategy agents can use to reduce the computatioreafdir®; is to allocate
time based on the size of the search space of the plan andygofthe solution it may
achieve. Agents may stop deliberating execution cost osetlogersizep, if it is certain
that the besPr. , it can achieve, with respect to time constraint, is worsh e solutions it

5.2. Distributed Algorithm for Distributing Goods 97

has already achieved with smaller plans. Note that we theapbptimization part foP;. , as
the underpinning precess. Any algorithm for the TraveliageSman problem or the Vehicle
Routing problem can be applied here. The main focus of thiptelnas on the assignment of
coalitions of agents to tasks.

The detailed process of allocating time to task-plan is dlesd in algorithm 15. It
takes theremainTime as an input. The algorithm initializes two arrays and onéalde
to store computed weights fdrs, T's, and¥. The algorithm then finds the weight of each
P,, total weight for eachl’, and total weight forf. In each of these processes, we do
not show details on how to compute the weights because itite gtraightforward from
what we have described in section “time allocation for tpia solution”. The function
computeW eight() serves this purpose as a black box that returns just the wefgthe
respectiveP. Both the total weight of eacti and¥ will also be accumulated at the same
time. Once all the weights are computed, the algorithm tlesdo eachl’, finds the exact
time for optimizing this7. The allocated time for thi§” will then be allocated to each
P, which will be optimized for the the best route by the funotigtimize Partn(). This
function is the call to the underpinning technology thaesk, P, and the available time as
inputs, and returrP for the givenP. The detailed processes are shown in algorithm 15.

Algorithm 15 Optimize for the best possible plans for each task

Require: remainTime
Require: maxzTaskSize
Require: ¥
1: init planWeight Array[|%||[mazTaskSize]
init taskWeight Array[|%|]
TotalW eight «— 0
for eachl’ € T do
for eachP € T do
planWeight Array|[T|[P] < computeW eight(%, T, P)
taskWeight Array[T| «— taskW eight Array[T| + planW eight Array[T][P]
TotalW eight < TotalWeight + planW eight Array[T|[P]
end for
end for
: for eachl’ € T do
taskAllocTime — getTaskAllocTime(remainTime, TotalW eight,
. taskWeight Array[T))
for eachP € T do
partnAllocTime — get PartnAllocTime(taskAllocTime, T, planW eight Array)
P — optimizePartn(T, P, partnAllocTime)
end for
: end for

B R R R R R R R R
N AR ®NREO

5.2. Distributed Algorithm for Distributing Goods 98

5.2.4 Algorithm to Deliberate Task-Agent

This algorithm repeatedly searches for the n@}%p to be placed in TCS, while meeting
with other requirements such as all agents must be assignaskss. In principle, it is similar
to algorithm 1 that it searches for the next best task-agesigament. However, there are
two main differences from algorithm %) the alter and shrink points, and) the process of
choosing best assignment is more complex than choosingesteandidate coalition.

We define an array'C'S of size |Z| to store the assignment of each task. Firstly, it
creates the first TCS by callinghoose Best Assignment() to receive the nexS;;%’p. This
new assignment will be placed in TCS by calliagsignT ask(), which will locate the next
available element for the new assignment. This processatepmtil all the tasks are as-
signed with coalitions of agents, i.ewnassigned(TC'S) = false. We treat the function
unassigned() as a black box which can simply scan the all elementS@F to locate the
first empty element and returns true. Once no empty eleméoingl, it returns false.

The algorithm then calculates for the remaining time befocan improve TCS. While
the remaining time is greater than zero, the algorithm ¢afistion
chooseT askToBelmproved(). The function will locate the taskuskT o Belmprove which
will be the shrinking point and alter the present agent tioaliwith the next best one. The
algorithm goes into another loop to assign agent coalitionise remaining unassigned task,
starting fromtaskT oBelmprove.

5.2.5 Algorithm to Choose the Best Assignment

For eachT’, all agents will be ranked by their access costs in descgrmhider, instead of
scanning and keeping all the coalitions as in chapter 3. Ex¢ available coalition with
minimal access cost aP, can be found by collecting available agent€ < £ from the
ranking.

The algorithm begins by initiatingptal Ratio as the benchmark for the best assignment.
It then goes through, from large to sméll
goes through all thé’s whose size is not greater thg®L| — (|RT'| — 1). For eachP, the
algorithm locates the next best coalitio$i, by calling functionNezt Avail(), which will

, all of the remaining tasks. In each task, it

start looking for the firstS| agents ranked by access cosftoNote that we start scanning
from the largest possiblg| down to 1. The access caStA s of S is then aggregated by
calling the functionAccessCost(T',S). The total costCp; s, for S executingT is then
computed and followed by the reduction contributidrof this assignmentT’, S). If Ais
smaller thand*, the value ofA is kept as the new benchmark as welk@sS) is kept is the

5.3. Example 99

Algorithm 16 Search for OTCS by assigning recursively the best task-agerthe existing
structure.
Require: remainTime
1: initTCS[|Z|]
2: elapsedTime «— 0
3: startTime «— presentTime
while unassigned(TCS) = true do
assignment «— choose Best Assignment(Tasks)
assignTask(T'CS, assignment)
end while
elapsedTime <« presentTime — startTime
remainTime «— remainTime — elapsedTime
10: while remainTime > 0 do
11: taskToBelmprove «— chooseTaskToBelmproved)
12: wnassignTask(taskToBelmproved)
13: while unassigned(Tasks) = true do

© N TOR

14: assignment < choose Best Assignment(Tasks)
15: assignTask(Tasks, assignment)

16: end while

17: elapsedTime < presentTime — startTime

18: remainTime «— remainTime — elapsedIime

19: end while

best assignment. After going through all the remainingdasid valid partitions, the best
assignment is returned.

5.3 Example

In the following, we will give a simple example and show howve #gorithm works. We
have just 2 tasks7; = (S1,{D1,D,,Ds}) and Ty = (S,,{D4, D5, Ds}). Below are the
costs between each pair of source and destination in bdtb: tas

S1| Dy | De | Ds Sy | Dy | Ds | Dg S1 So
S 1 0110|1520 S2 | O | 8 | 12| 7 || Li| 6 || L
D, |10 O | 12| 13 | Dy | 8 0 9 | 11 || Ly | 7 || Lo
Dy |15 12| 0 | 11| D5 | 12| 9 0 | 13| Ls | 10 || Ls
D3 |20 13| 11| O || Dg| 7 | 11|13 | O

Note that destinations in both tasks are ranked in lexiqugcal order. Inl7, all desti-
nations are co-incidentally ranked by their access cosasd@ending order. However, i,
the correct ranking i$)g, D, and Ds.

5.3. Example 100

Algorithm 17 Choose best assignment

1: A* «— MAX_DOUBLE
2: for eachT € RT do
3: for eachP € T'and|P| < (|RL| — (|[RT| — 1) do

4 S « NextAvail(T,|P))

5: CArs «— AccessCost(T, S)
6: Cp%,pﬁ — CAT’S + OE;;p

7: A — C’])}p7s/|5‘

8: if A< A*then

9: A" — A
10: assignment «— (T, S)
11 end if
12: end for
13: end for

14: return assignment

5.3.1 Combinations of Tasks, Plans, Execution and Access Costs

For the sake of simplicity, we will show all the combinatiarftasks, plans, execution and
access Costs, and assignments. We will go through detaiteigan in next section.

For each task, there are 3 partitions, each of which has jpstrtition instance, i.e. 3,
2+1, 1+1+1. In7;.P; 1, the only alternative combination 8, D, Ds. In 77.P; 1, there are
3 alternatives:D, D, + D3, D1Ds + Dy and D, D3 + D4. In 771.P5 1, the only alternative
combination isD; + Dy + Ds. Similarly, 7; can be partitioned in the same way. Note that
each of these alternative combination is actually a ffarrhe optimization algorithm will
search the best combination for a given time framad returriP’ as the optimal solution at
that point in time. Below are the tasks and all alternativapla

T Ty
Py Py Ps Py Py Ps
D1DsD3 | D1Dy+ D3 | D1+ D2+ Ds | DyDsDgd | DyDs + Dg | Dy + D5+ Dg
DDs + Do DyDg + D5
Dy D3 + Dy DsDg + Dy

For the sake of simplicity, we assume in this example thabgitamization algorithm is
merely a brute force algorithm which searches for the smhultiy lexicographic order. We
assume that the logistics providers have to collect theymtsdrom the manufacturing sites
(sources) and return the receipt dockets from customehetmainufacturing site to confirm
that the customers have received the products. We deéfwtewherel < ¢t < 6, as the
solution received from the optimization tool at timeThe best plarP;, , for eachp is the
bestSol; achieved so far. The cost for each plan in each task ati#tisishown below:

5.3. Example 101

Ti | Pyy | Soli = (S1D1D2D3S1) = (10 + 12 + 11 + 20) = 53
Pi 1 | Soly = (S1D1D3D3S1) = (10 415 + 11 4 15) = 51
Solz = (S1D2D1D3S1) = (15 + 12 4 15 + 20) = 62
Soly = (S1DyD3D1S;) = (154 11 4+ 15+ 10) = 51
Sols = (S1D3D1D3S1) = (20 + 15 + 12 + 15) = 62
Solg = (S1D3D3D1S1) = (20 + 11 + 12 4 10) = 53
P o | Soli = (51D1D2S1) 4 (S1DsS1) = (10 + 12+ 15) + (20 + 20) = 77
Pty o | Solz = (S1D1D351) + (S1D251) = (10 + 15+ 20) + (15 + 15) =75
Pj, o | Sols = (51D2D351) + (S1.D151) = (10 + 12 + 15) + (20 + 20) = 66
Pj, s | Soly = (51D151) + (S1D251) + (S1D351) = (10 + 10) + (15 + 15) + (20 + 20) = 80
Ty | Py, | Soli = (S2D4D5DS) = (8 + 9+ 134 7) = 37
Soly = (S3D4DgD5S2) = (8 + 11 + 13+ 12) = 43
Sols = (SaD5D4DgS) = (124+9+114+7) = 39
Soly = (S2D5DgD4So) = (12+ 13+ 11 +8) = 44
Sols = (S2DgDyD5S2) = (T+ 11+ 9+ 12) = 39
Solg = (S2DgD5D4S2) = (T+ 13+ 9+ 8) = 37
Pryo | Soli = (82D4D5S5) + (S2DgS2) = (8 + 9+ 12) + (7 +7) = 43
Soly = (82D4DS2) + (S2D552) = (8 + 11+ 7) + (12 + 12) = 50
Solz = (S2D5D5S2) + (S2D482) = (12+ 13+ 7) + (8 + 8) = 48
Pry3 | Soli = (82D452) + (S2D555) + (S2D6S2) = (8 +8) + (12 +12) + (7 +7) = 54

Note that we show all the possible solutions above. We artoyterough the execute of
our algorithm below.

Possible assignment of agent coalitions to tasks as welleaadcess costs for each task-
agent pair are shown below:

LPs Coalition T T
Task-Agent| Access Cost | Task-Agent| Access Cost

Ly LTy L,15,=6 LTy L155=8

Lo LoTy Ly S1=7 LTy L255=9

Lj L3Ty L35,=10 L3Ty L355=5
LyLo Ly LT L,11,5,=13 Ly LT, L1L555=17
LyLs Ly L3Ty L1L35,=16 Ly L3Ts L1L355,=13
LoLs LoLsTy LoL3S51=17 LoLsTs LoL355=14

LyLoLg LiLoL3Ty | L1 LoL3S2=23 | LiLoLsTy | LiLoL3S,=22

Appropriate assignments, where both tasks are assignbaugaint coalitions, are shown
below. Note that the grand coalition of agents can not bgassdito any task because other
tasks will be left unassigned.

5.3. Example

102

Singleton Coalitions Aggregated Cost Mixed Coalitions| Aggregated Cos
LiTh+LsTs 6+9=15 Ly LTy + LTy 13+5=18
LTy +L3Ts 6+5=11 Ly L3Ty + LoTs 16+9=25
LTy +L1Ts 7+8=15 LoLsTy + LTy 17+8=25
LoTy+L3Ts 7+5=12 Ly LTy + L3Ty 17+10=27
LT +LqTs 10+8=18 Ly L3Ty + LTy 13+7=20
L3Ty+LoTs 10+9=19 LoLsTy + LT 14+6=20

The aggregated costs, the sum of access cost and execidtarf ttee above assignments,

are shown below.

5.3.2 Example of Run

We assume the time allocation strategy58, 50). We refer to the allocated time as a number
of steps in order to match with this simple example. The atbéal time is 20 steps. The time
allocated for task-plan optimization and task-agent assant are 10 steps each. We assume
this simple optimization takes 1 step for each of the plan.rav# destinations in each task
based on their access costs to their respective sources. belo

S1| D1 | D2 | Ds Sy | Dg | Dy | Ds
S 1 0101520 Sy | O 7 8 12
D;|10| O 12 | 13 || Dg 11 | 13
Dy, | 15112 O 11 | Dy, | 8 | 11
Ds 20| 13 | 11| 0 | Ds |12 13| 9 | O

After the task-plan optimization is finished, the plans facletask are shown below:

Ty

T

RS

Po | Ps

53| 77|90 | 37| 43| 54

Note that the ranking of access costs in each task is in theniolg order: 7} : L4
6,Ly =7,L3=10;Ty: L3y =5, L1 = 8, Ly = 9. Since the valid plan size 55— (2—1)
the execution costs in each task are in the following order, = 77,7T,.P, = 51,15.P;

43,T2.P1 - 37

The next step is to repeatedly choose the best assignmelatc®ip7'C'S, which is an
array of size 2 in this case. The algorithm examines if therany task yet to be assigned
with agents. The functiomnassigned() returns true because no tasks have been assigned
with agents. The algorithm enters this loop and calls famethoose Best Assignment(). In
choose Best Assignment(), the algorithm initializesi* = M AX_DOU BLE as the bench-
mark for the best assignment. The algorithm then scansghreach of the valids. In this

5.3. Example 103

first round, validPs of 77 are those whose sizes are less than or equal to(2 — 1)) = 2,
i.e. {L;,L,} and{L;}. The total cost andA for (7}, {L,L,}) are then computed as
77+ 13 = 90 and % = 45 respectively. Since thisl = 45 is less than the benchmark
A*, A* is set to45 as the new benchmark amdsignment is set to(T},{L, L,}). The
algorithm tries with the next assignmefit;, {L,}) whoseAd = 59 > A* = 45. Hence,
assignment remains the same. The algorithm then tries for the bestrassigt with7s.
The first assignment it is (75, {L1, Ls}), whoseA = %12 = 28, Since thisA = 28 is
less than the benchmark = 45, A* is set t028 as the new benchmark andsignment is
set to(Ty, {L1, L3}). The last assignment to try {§5, {L3}), whoseA = 37 > Ax = 28:
no changes needed. Hence the functibnose Best Assignment() returns(1s, { Ly, L3})
as the best assignment, which will be placed in the first eltra€7'C'S in the function
delibTaskAssign(). Since there is yet another task to be assigned with agémtdunc-
tion delibTaskAssign() calls choose Best Assignment() again. The only pair left is ob-
viously, (71, {L.}), which is returned t@hoose Best Assignment(). The algorithm then
places(Ty, {L,}) at the last element &fC'S, whose total cost i§13+13) + (534 7) = 116.
Since this is the firsT'C'S, TC'S* is then set td’'C'S.

Let’'s assume there is remaining time for the functlehibT ask Assign() and the shrink-
ing pointtaskT oBelmproved return from the functiomhooseT askToBelmproved() is 1.
The functionunassignTask() will remove every element, from the position
taskToBelmproved = 1, from T'C'S. The algorithm calls the functiomnasignedT ask(),
which returngl’;. The algorithm enters the loop and calls the functibowse Best Assignment().
Here, the first possible assignmentis, { L, L2 }), which is set taissignment again. The
next possible assignment {$;, {L,}), which is not as good as the presentignment =
(T1,{L1, Ly}). The third assignment i&5, { L1, L3}) which has been used at this point, so
it is ignored in this round. The forth possible assignmen(lis {Ls}), whoseA = 37 <
Ax = 45. Hence, the newssignment is (Ty, {Ls}), which is returned to the function
delibTaskAssign. Here,(Ty,{Ls}) is placed in the first element @fC'S. The algorithm
tries with the next best assignment. Obviously, the onlyoopleft is (77, {L;, L»}) and is
placed in the last element @fC'S, whose total cost i$37 + 5) + (77 + 13) = 132. Since
TCS* offers lower cosfi 16, it remains unchanged.

If the remaining time is less than 0. The presgidt.S* will be the bounded-rational
solution. If the remaining time is greater than zero, th@atgm attempts to optimize plans
in each task for the given period of time. The nPw& of each task will be used to re-compute
the best assignment later.

5.4. Experiments 104

5.4 Experiments

We are interested in conducting experiments to test theidligoagainst various data setting,
as we have done in the previous chapter. Here, we want to seefficiently the algorithm
responds to various settings. In general, solutions yiefdem algorithm for solving hard
problems like TSP or VRP usually improve rapidly in the eathges of the execution and
improve slowly in later stages. We want to investigate if $léutions are produced differ-
ently, how well our algorithm cope with them.

There are two dimensions in the data generation with resp&tapsed time; the quality
of the solutions (agent-task assignments) and the numtsolofions generated. Since we
are interested in the cost, we refer to the cost reductiohasgtality of the solution. We
assign to both dimensions the distribution patterns pteseabove. Hence we have

1. NLRP-NLRP for an environment where the solutions are predineavily in the early
stage of the computation but are produced rarely in latgestand the costs are re-
duced rapidly in the early stage but are reduced slowly &r lstage of the computa-
tion.

2. NLRP-NLDL for an environment where the solutions are pasttbheavily in the early
stage of the computation but are produced rarely in latgestand the costs are re-
duced slowly in the early stage of the computation but araaed rapidly in later stage
of the computation.

3. NLDL-NLRP for an environment where the solutions are pastlrarely in the early
stage of the computation but are produced heavily in lategestand the costs are
reduced rapidly in the early stage of the computation buiced slowly in later stage
of the computation.

Among the aforementioned settings, NLRP-NLRP is the moststeaketting because
most of the algorithms for solving hard problems like TSPawehlike this. Other setting are
merely invented to test the robustness of the algorithm dsawéo explore the effectiveness
of different time strategies. With respect to the coaliti@tue distribution patterns used in
Chapter 3, it is limited to the CCD pattern because it is reflentgdrally from the setting,
i.e. too small coalitions cannot finish tasks in time (dueiteet constraints imposed by
customers) while too large coalitions incur too much ovachend are not profitable. Other
scenarios used in Chapter 3 are not sufficiently realistidH chapter and we consider
them inappropriate for conducting experiments (which westdone quite a number of them
already in Chapter 3). CVD, for example, is unlikely to happenduse it contradicts the

5.4. Experiments 105

scenario, i.e. small and large coalitions are profitable irDCW¥hich is not true as we have
just discussed above. We emphasize here again that vabagiigtributions (realistic or
unrealistic) in Chapter 3 are invented in order to test theisboiess of the principle of CH
algorithm which we follow throughout the thesis. Therefone decided not to have too
many of these unrealistic settings in this chapter.

We allowed 3,600,000,000 milliseconds (1 hour) for the #agémcompute OCSs. The
total cost at the beginning of each data distribution pattearound 100000. The time frame
will be allocated to both deliberations according to theetiallocation strategies. We used
strategies already specified earlier in this chapter(5@.40), (40, 40), (40, 30), (30, 30}, (30, 25),
(25, 25), which would recursively leave spare time for deliberagiamlater rounds as0%,
20%, 30%, 40%, 50%, respectively. We have 50 agents (logistics providers$otustomers,
each of which has at least 26 destinations. In the ultimase,cdere will 24 customers,
whom will be served by one agent, and there will be one custonteom will be served by
26 agent, each of which will do just one site. The distancevéeh each pair of locations is
in the range of 100 to 1000 units.

We show results in terms of reduced cost and percentage oteddcost. As for the
reduced cost, we show results only in the very last part oé¥periment because it is where
we can see the difference more clearly. We show the full msgyof the results for the per-
centage of reduced cost because we want to show the overfalirpance of the algorithm.
Across all the settings, the results are very consistant,the trends of the results in each
time allocation strategy are similar. The 40-30 time altaastrategy apparently is the best
strategy because it yields the highest cost reduction ptrge among all strategies in all
settings, i.e. 31.3171%, 32.9629% and 33.1223%. Howewerpttogress of the improved
solutions in each setting is interesting. In NLRP-NLRP, thst faolution of 26.5824% is
produced at 1800000ms. The second solution of 30.8369%dkiped at 3420000ms. Four
more results are produced with small improvement beforsitines the final (seventh) result
at 3599998ms. In NLRP-NLDL, the first result of 18.1271% iscarced at 1440000ms. The
second result is quite a stride, i.e. 28.5098% at 2952000e1s more results are produced
with small improvement until the final result at 3599999nmsNLDL-NLRP, the first result
of 16.3757% is produced at 1440000ms. The second resukiasaastride, i.e. 27.9425%
at 2952000ms. Ten more results are produced with small wepnents before the final
result is produced at 3599999ms. Other time allocatiortegjias are not as good as the
40-30. Strategies with larger portion of deliberation tiymeld quite good results originally
but the results hardly or slightly improve after that. Foample, 50-50 time allocation strat-
egy Yyields results after half of the elapsed time and theltseavre among the poorest ones,

5.5. Conclusion 106

Non-Linear 0-0-0 Non-Linear 0-0-0
800000 T 40

T T T T
Strategy 1 —+—
Strategy 2 ---*---

780000 |- ... g 35 | Strategy 3 ---%--- g
TR Strategy 4 & g
T T e Strategy 5 ——#— -
760000 [Hormem 30 | Strategy 6 ¢ ///:,4”% B
Strategy 7 - -®-- -
—_ B
X - . PR |
740000 [i < 25 . [vt
IR 2 - 7
3 - (8] - T o 7
o -0 -0 20 | g i
O 720000 ---mmee 3 3 — o
BT i S RV
. 3 S
&) < 15 - ST -
L By x s .
700000 F gpategy1 — T .
Strategy 2 ---*--- 0k L L |
Strategy 3 ---*--- s

680000 [Strategy 4 —& B 7
Strategy 5 —-#— '/ 7

Strategy 6 ---6-- 5F P T
660000 |- Strategy 7 -- - - 4

! 1 3 I I ! I I
3.4e+006 3.45e+006 3.5e+006 3.55e+006 3.6e+006 1e+006 1.5e+006 2e+006 2.5e+006 3e+006 3.5e+006
Elapsed Time Elapsed Time

Figure 5.1:Empirical Results NLRP-NLRP The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocatioregies as per elapsed time.

i.e. solutions are about 25% reduction of original costs.tl@nother hand, strategies with
smaller portion of deliberation time yield results quicklyt the final results are relatively
poor. Most of them produce results merely around 25% of @mhiiction. This tells us that,
for solving OCS in non-linear settings which are usually hamablems, we need to allocate
time appropriately between deliberation time (for solvihg task allocation problems) and
solving the OCS itself.
The results from our experiments are shown in Figure 5.1ur€i%.2 and Figure 5.3

respectively.

5.5 Conclusion

The work presented in this chapter has achieved the thirectiag of this research, namely,
to adapt the algorithm presented in Chapter 3 so as: 3. to &B& problems in a an NP-
hard non-linear environment where coalition values anditoma structure values are not
known a priori but must be calculated Having successfullytimie third objective, our goal
is now to deploy the best-first anytime algorithm to solve O@bfems in which coalitions
involve more than two types of stakeholders, such as thelgppin domain

5.5. Conclusion

107

800000
780000 F
760000 [B
740000 [T E
-0~
z 1O 0 o]
i]
O 720000 [V-
()
L Oy
700000 Strategy 1 —+—
Strategy 2 ---%---
Strategy 3 ---*---
680000 |- Strategy 4 & b
Strategy 5 —-#-—
Strategy 6 ---6--
660000 - Strategy 7 - -e-- - -
Il Il Il
3.4e+006 3.45e+006 3.5e+006 3.55e+006 3.6e+006

Non-Linear 0-0-1

Elapsed Time

Reduced Cost (%)

40

35

30

25

20

15

10

Non-Linear 0-0-1

T T T
Strategy 1 —+—
Strategy 2 ---*---
Strategy 3 ---%---
Strategy 4 &
Strategy 5 ——#—
Strategy 6 ---6--

Strategy 7 - @ &
T

1e+006 1.5e+006 2e+006 2.5e

Elapsed Time

Il Il
+006 3e+006 3.5e+006

Figure 5.2:Empirical Results NLRP-NLDL The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocatioiegtes as per elapsed time.

800000

780000

760000

Non-Linear 0-1-0

740000 |-

Cost

720000

700000

680000

660000

T

Fro<®me i

rrrrrrrrrr R A o e Beyme

- “o-]

0o

e =

e T e -

o

- " o
Strategy 1 —+—
Strategy 2 ———x---
Strategy 3 ---*---

- Strategy 4 & i
Strategy 5 —-#-—

Strategy 6 -—-o--
L Strategy 7 - - - 1

Il
3.4e+006 3.45e+006 3.5e+006 3.55i

Elapsed Time

e+006 3.6e+006

Reduced Cost (%)

40

35

30

25

20

15

10

Non-Linear 0-1-0

T T T
Strategy 1 ——
Strategy 2 ---%---
Strategy 3 ---*---
Strategy 4 &
Strategy 5 —-#-—
Strategy 6 ---6--

Strategy 7 - :g;_;,-/"’”/’ .

==

o %
L]

Il
1e+006 1.5e+006 2e+006 2.5e+006 3e

Elapsed Time

Il
+006 3.5e+006

Figure 5.3:Empirical Results NLDL-NLRP The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocatioiegtes as per elapsed time.

Chapter 6

Coalition Formation in Dynamic Supply
Networks

6.1 Introduction

The previous 3 chapters have achieved the first three olgsaif this research by developing
a best-first, anytime algorithm that is an efficient solufimnOCS problems in environments
where coalition values are known a priori, and adapting akgrithm for use in both linear
and non-linear environments, which are much more compunally complex. We have
extensively experimented our algorithms against vari@ia slettings and taking into account
realistic factors. In this Chapter, we will use algorithmsivawe developed so far to tackle the
OCS problem in a complex environment such as supply chain teihere by achieving
the fourth objective of this research. Furthermore, we mwiéstigate the performance of the
system from economic perspective, in addition to algorithome.

It is widely recognized that the current business enviraminie characterized by large,
complex supply networks that are often global in reach aatidhe highly adaptive, being
frequently re-configured to respond to dynamic businestegtsr Collaboration across the
supply networks is widely recognized as a key prerequisitestipply networks efficiency.
Collaboration can be any form of cooperation/coordinatioroag firms (and these two al-
ternatives will be used interchangeably hereafter). CoHlation in supply networks can take
various forms. Suppliers might collaborate to increasinggbower or to aggregate capacity.
Buyers might collaborate to increase buying power or to redagistics costs. LPs might
collaborate to increase efficiency in services. From bssimperspective, it is interesting to
know how collaboration among various parties in complexpgupetworks can bring about
a wealthy system. Furthermore, it also interesting to kndvetiver such a wealth can be
achieved in such a way that it is distributiedkly andefficientlyto all parties in the system.

As a potential tool to bring about collaboration, coalitifmrmation has been widely
studied in supply networks research [14, 49, 31, 45, 54, @8].1A common scenario is

108

6.1. Introduction 109

coalition formation among buyers, who form coalitions id@rto increase their bargaining
power and gain some discounts. Such coalitions can be asesaspuying a single good

or can be as complex as combinatorial goods [54]. Each agemats to seek the most
likely formable coalitions and the most attractive paydéfscoalition members in order to

reduce the complication in negotiation [88]. These stusidsly address the problem of how
the discounts achieved from sellers can be distributed grbagers without addressing the
delivery cost of the goods. Another common scenario is irstagdomains, where agents are
fully cooperative and commonly seek the maximal utility fioe system [77, 75]. Based on
these previous works, we have extended our research tetaekh more complex problems
in characteristic function game, linear and non-lineatirsgs, where different types of agents
can form coalitions.

However, we argue that there are missing links in recenitamaformation research in
supply networks. Firstly, delivery cost is a serious issuefdrming coalitions. Although it
is quite common in practice that sellers can provide fre&veigl for buyers that are located
at neighboring locations, dispersed geographic proxiwiitguyers in a coalition can incur
an additional delivery cost to those members who are notéh auwcondition. Furthermore,
the goods may be sold by themselves, without free delivemnyicebeing offered at all. In
this case, buyers seriously need to take into account suast avbile negotiating with others
or they suffer a total high cost. Secondly, the problem omiiog coalitions among sellers
in response to a large order is an important issue but hasrbgemally studied [18]. A
seller may not be able to cope with the requirement on its oWnus it needs to form a
coalition to increase it's selling power. This creates a meadel of coalition formation
between buyers and sellers that brings various issueséngpgective. Lastly, the new model
has brought a more complex and challenging problem to whihieed to react in order to
increase their service efficiency. They can seek collalmratith others when they want to
increase service or economical efficiency. Hence, colktimrT across supply networks can
be characterized as highly complex coalitions of buyes@)er(s) and LP(s).

This chapter offers rich support for dealing with this coaxpty [99] in two levels: coali-
tions and coalition structures. For the coalition level, prepose a mechanism for agents
to form coalitions. This can be done in two steps. Firstlydyg form primary coalitions
and send their requests to sellers and LPs. Up on receivingetiuests, sellers and LPs
try to form primary coalitions. Once formed, they can regptmbuyers to form secondary
coalitions. This makes the model more dynamic and refleetsddlity more correctly. For
the coalition structure level, we propose a new concepfghwvtake into account fairness and
efficiency of the system.

6.2. Coalitions in Dynamic Supply Networks 110

In the followings, we describe coalitions in dynamic suppdtworks. We explain coali-
tion settings in our work and how agents form primary coati§i, which include negotiation
among agent of the same sectors and the deliberation meohasifter that is the expla-
nation of how agents form secondary coalitions across secie then propose the new
concept which will be examined and reported in experimecti@e.

6.2 Coalitions in Dynamic Supply Networks

A coalition is a group of agents who unanimously agree to cooperate,te.guy, sell or
deliver. Agents are divided according to their roles intgdrs, sellers and LPs. The roles
of buyer and seller are interchangeable depending on thesept activity. An agent can act
as a seller in one transaction while becoming a buyer in anathnsaction. Although it is
easy to view LPs as sellers, the role of LPs are quite distioot other sellers that they sell
delivery services. Furthermore, the effect of LPs’ role barcaptured more easily.

A simple example of coalition formation is a small market gg0], where a seller has
a product on sale and two buyers are bidding for it. The sbbera value for the product
in mind and is unwilling to accept offers below this pricefereed to as the sellerieserve
price. Each buyer also has a private evaluation of the value of tbeéuet and will not pay
higher than this value, called the buyereserve price Buyers compete with each other by
offering a price for the product to the seller. When a buyeersffa price that the others
cannot compete with, that buyer then can buy the product frenseller at that price. This
can be viewed as their having reached an agreement to ct®peea they have formed a
coalition to trade the product. The value of a coalition is tlifference between the buyers
and the sellers reserve prices. The payoffs for both ageatha differences between their
reserve prices and the selling price. A simple coalitionup@y networks is one where a
buyer forms a coalition with a seller and an LP. A more comitexn of such a coalition
involves multiple agents in each sector.

There are multiple distinct drivers for coalition formatidcseveral small buyers with sim-
ilar needs coming together to obtain greater bargaininggpo®ellers form coalitions with
other sellers to aggregate selling power. In some settihgse are legal impediments to
certain forms of such coalitions (specifically cartels)ia form of anti-trust laws. However,
such coalitions are common for small sellers, such as ircalgural cooperatives (e.g. for
micro-producers of dairy products). Sellers sometimesfooalitions to aggregate/augment
capabilities. LPs may want to form coalitions to aggreghtartservice capacities or effi-
ciency. We note that we have only listed the basic driversstMeal-life supply network

6.3. Coalition Formation 111

coalitions tend to have more than one motivating factoridgwheir formation. Multiple
factors play a role in coalition formation decisions. In therent work, we focus on quan-
titative factors, e.g., price, delivery cost and lead tinMost decisions typically involve
trade-offs among several attributes. One may be willingay more for a shorter lead time
and vice versa. One may, in some settings, be willing to adoeger lead times for the
purpose of getting higher quality. Several other instaméesich trade-off are common, but
we do not list them all here.

Although negotiation can be either bilateral or multilalerwe can in most instances
reduce negotiation to the bilateral case without loss okgaity. An agent that stands to
benefit the most from forming a coalition usually acts as thaliton leader Firstly, a
coalition leader negotiates bilaterally with multiple atgeof its own sector to establish a
sectoral coalition. An agent might find itself forming a d&tgn primary coalition because
it cannot find suitable coalition members nor there is needot@o. We call this type of
coalitionsprimary coalition Firstly, buyers form primary coalitions and the coalitleaders
send request to sellers and LP(s). Interested sellers afg] ttfén form primary coalitions
among themselves. The coalition leaders then negotiatsssectors to establish a cross-
sectoral coalition involving a coalition of buyer(s), s#(s) and LP(s). We call the type of
coalitionssecondary coalitionThis secondary coalition is where the real trade is findlize
The buying leader collects money from its members and pajfsetcelling leader and LP
leader, who in turn distribute among their members. Therdaditions will break. Members
can form coalitions later on should they need to do so. We thatiethese negotiations must
occur within stringent time constraints.

6.3 Coalition Formation

Supply networks are very complex systems. In order to stwdyitcon formation in such
systems, we create a small system composed of three kindgenfsa buyers, sellers, and
logistics providers. Each of these agents is merely a sroali@mic entity of a small econ-
omy. A buyer can be a typical consumer. A seller can be a smadiyzer, whose number of
member can be just one. A logistics provider is, as in theipusvchapter, merely a small
company, whose only resource is a truck. However, the matebe scalable. Our main
aim is to use the model as a testbed to study coalition foomatmong buyers, sellers and
logistics providers by applying techniques presented @vipus chapters.

6.3. Coalition Formation 112

6.3.1 Setting

Let B, & and £ be set of agents who act as buyers, sellers and LPs respectigyers
order productsg, from sellers. LPs distribute the products over a trangpiort network,

G = {V,&}, whereV is a set of vertices andl is a set of edges, each of which connects a
pair of vertices, for them. The location of each buyer B, sellers € G, and LPl € £ are
specified by functionLoc, : B — V, Locs : S — V, andLoc; : L — V respectively. These
three functions are accessible to all agents. Agents hawddnal goals and constraints. A
goal is represented by the product that an agent may seely torlsell. Constraints are the
time/deadline and the price at which they wish to conclugettansaction. The amounts of
specific products required by specific buyers are giveby: : B x § — NT. The budgets

of buyers and the due times by which the buyers want the ptedue determined by the
function Bud : B — RT andDue : B x § — NT, respectively. Here the output of the time
function denotes the elapsed times from a commonly agreed apgin). The amounts of
certain products that sellers can produce are giveR#hyl : §x & — N*. The times which
sellers require to produce products are determineBhyiTime : § x & — N*. The costs

of producing products are governed ByodCost : § x & — R*. The load capacities of
LPs are determined bfoad : £ — N*. For the sake of simplicity, we assume the load
capacity is measured by weight. The costs of delivery batweeations are determined
by DelCost : V x V — R*. The time of traveling between locations are determined by
TraTime:V x VY — NT,

We define a requirement as a tugteq = (f,q,t), wheref € § is a product an agent
wants to buy,gy € NT is the quantity of the product which is needed, @and N is the
(elapsed) time by which the buyer wants the product be deliieWe define a pickup re-
quirement as a tupl®ick = (f, q, v, t), wheref € F is the product to be picked up,c N*
is the quantity of the respective produet,c V is the location from which the product is
to be picked up, and € N7 is the elapsed time by which the product need to be picked
up. Corresponding to this, we define a delivery requiremeattaple Deli = (f', ¢, v, t'),
where /' € § is product to be deliveredy’ € N* is the quantity of the respective prod-
uct,v’ € V is the location from which the product is to be picked up, &ndg¢ Nt is the
elapsed time by which the product need to be picked up. Wealafjab descripte as a tuple
Job = ({f,q,v,t),(f',q,v 1)), composed oPick and Deli

6.3. Coalition Formation 113

6.3.2 Forming Primary Coalitions

In our setting, buyers need to form coalitions in order tanghie benefit from bulk buys.
Sellers also form coalitions to increase their producinpdalities.

Buyer to Buyer Negotiation

A buyer, who wants to buy products and foresees an oppoyttngain some discounts from
buying a large quantity, acts as a coalition leader by nagiog with other buyers. We shall
call it the leading buyer. The following is the protocol fariming a coalition of buyers.

1. Every buyerb sends a messadé, {(f,q,t)},v,p), whereb is the identifier of the
agent,{(f,q,t)} is a collection of requirements vectar,c V is the location where
the product will be delivered; is the price, and is the due time it wants the product
to be delivered.

2. Based on its deliberation, any buyer can act as a leadingrlhgy and initiates the
process of forming a primary coalition of buyers. (See sedieliberation for Joining
Primary Coalition for more details).

3. Leading buyeb, sends a messadeusg, bo, (f, q,t),v,p, z), wheremsg is the mes-
sage id,p is the price, and is the expiry time to potential buyers in its current best
potential coalition.

4. Any buyer, who is satisfied with the offer, sends a mes$age, b, ACK, x) back to
by stating that it will wait for a confirmation until time.

5. Leading buyeb, sends a message:sg, by, ACK) to inform all interested buyers that
the new primary coalition has now been formed.

6. Leading buyeb, sends a messade2S(msg, by, (f,q,t),p) to sellers, wheréf, q,t)
is the order details compiled from its members, amithe available time.

7. Atthe same time, the leading buyer sends mesBadéid, by, (f, q, v, t), {f', ¢, v, t'), p),
where(f, q,v,t) and(f’, ¢',v',t') specifies job description for picking up from sellers
and delivering the products to buyers, to LPs.

The leading buyer may find itself being a singleton coalitiog., it can not agree with
other buyers or there is no need to do so. Once the coalitioniged,b,s can negotiate with
sellers and LPs to form secondary coalitions by sending agessto them.

6.3. Coalition Formation 114

Seller to Seller Negotiation

Upon receiving the message from a leading buyer, interestiters react. If the order is
within it's capability, it may form a singleton coalition ats own. If the order is beyond
its capability, it can act as a coalition leader and try torf@ coalition of sellers in order to
increase it’s selling power. We shall call it a leading sellehe following is the protocol for
forming coalitions among sellers.

1. Interested sellers send a mességag, s, (f, ¢, p,t,v)), wheremsg is the message
id sent byby, p is specified by functiomrod, ¢ is specified by functiorDem, and
(f,q,p,t,v) is the list of capability vectors, to all other sellers.

2. Any seller can act as a leading sellgr,and try to form a primary coalition with other
sellers. It selects a number of sellers, who might help emeats selling power (See
section Deliberation for Joining Primary Coalition for maletails).

3. Leading selles, sends a messadeusg, so, (s, f,v),x), where(s, f,v) is a collection
of preferred capability vectors, to selected sellers.

4. Any seller, who is satisfied with the offer, replies witle thessagémsg, s, ACK, z)
and waits for the confirmation by time

5. Agents, confirms that a primary coalition is now formed with the megsansg, so, ACK).

The leading seller may find itself being a singleton coatitiecause it cannot agree with
other sellers. It can begin negotiation with the leadingdsug form secondary coalition.

LP to LP negotiation

Upon receiving the message from leading buygiinterested LPs react. Any interested LP
may try to form a primary coalition with other LPs. We shalllcach an LP the leading LP.
Following is the protocol for forming coalitions among legics providers.

1. Every interested LP sends a mess@geg, [, [,v), wheremsg is the message id sent
by by, [is the load capacity specified by functidgnto all other LPs.

2. Any interested LP can act leading Lf2,and try to form a primary coalition with other
LPs. It selects a number of LPs, who might help increase peaaty and service
efficiency. (See section Deliberation for Joining Primanalitmn for more details).

6.3. Coalition Formation 115

3. Leading LP, sends a messagesg, ly, v,), to selected LPs to ask if they would like
to form a primary coalition.

4. Any LP, who is satisfied with the offer, replies with the m&ge(msg, |, ACK, z) and
waits for the confirmation by time.

5. Agentl, confirms to its primary coalition members with the messagey, [y, ACK).

The leading LP may find itself being a singleton coalitionthién can negotiate with the
leading buyeb, on behalf of it's members to form a secondary coalition.

Deliberation for Joining a Primary Coalition

Agents have a common view when forming primary coalitionsal@y of Coalition (QoC).
QoC indicates the likelihood to achieve the goal of the ¢imali The common goal of every
agent is to maximize its payoff. Buyers need members who ciniinarease their bargain-
ing power. Sellers need members who can help increasegpltwer, which in turn helps
maximize their payoffs. LPs needs member who can help isersarvice efficiency, which
in turn helps maximize their payoffs. Based on its status,gamacan create an ideal coali-
tion, the one with the highest QoC. The agent creates a teepp¥aich is an ideal coalition
member of the ideal coalition. Each agent measures thebditjtaof another agent to the
the ideal coalition in terms of the distance between thahtgad this template. It uses
the distance to rank other agents in a table, which will belusehelp select appropriate

agents for forming high QoC coalitions. Ldt= {a;, as, ..., a,} be a set of attributes. Let
B = {L,,Uy,Ly,Us,..., Ly, U,} be a set of lower bounds and upper bounds of quanti-
tative attributesiy, ao, ..., a,. A template is a vector = (q1,q2, - - ., Gm, W1, W2 . . ., Wy,),

whereg; is a quantitative attribute;, andwy, is the weight for each,, of m attributes. The
agentay, who wants to form a primary coalition, uses the attributeassed over in the first
step of the negotiation to measure the distance between ageats and its templates. The
closer distance signifies the more suitability for the damliof the agents. The distance can
be considered as the sum of the difference of each pair cdgjponding attributes in the tem-
plate and the agents’ attributes. For each attribute, stamite should be 0O if the attribute’s
value are equal. Otherwise the distance is the multipboatif the difference between the
values of corresponding attributes, and the weight for dtiibute. Lety; be the value of
attribute;j of the template, the distance between an agent and a tencplatiee derived as
follows:

6.3. Coalition Formation 116

d =) Diff (q;,y;)wn

7j=1
where
00 if y;)U; ory;(U;
L4 if g;)y; andy; is > L,

Diff (q;, ;) = %“~% .
o= i gi(y; andy;is < U;

Let us consider an example o\f how this mechanism works. Sgtiere are four at-
tributes, A = {f,q,p,t}, to describe a quality of primary coalition of buyers. LBt=
{1, 10, 10, 20, 10, 30,0, 100} be the set of upper and lower bounds for, p andt, respec-
tively. LetT = (1,15,20,30,00,10,1,5) be a template of buydr,, who is considering
forming a primary coalition. There are two buyessandb, being considered whether they
should be invited to join the coalition. Their attributesheeved from the messages, are
{1,13,18,28} and{1, 17,23, 34}, respectively. The distance between ader#nd template
Tis

di = (0%00)+(2/5) * 10+ (2/10) * 1 4+ (2/300) * 5
=0+4+4+4+0.240.33

=4.53
The distance between agéntand templatd’ is

d2 =(0%00)+(2/5)* 10+ (3/10) * 1 4+ (4/70) 5
=0+4+0.3+0.57

=4.87
Since 4.53 is less than 4.87, agénts obviously closer to the template than Hence,

agenth; sits higher in the ranking table.

Each agent uses its own ranking table to compute poteniiapy coalitions, those it
might try to form, and keeps them in a list. The agent sets uerig of time for deliber-
ation, i.e., generating coalitions and adding them to téte It computes, for each potential
coalition, the aggregated distance, which is the sum oflahambers’ distance to the tem-
plate. It then ranks those coalitions by the coalitions’raggted distance in ascending order.
In each potential coalition, the agent computes potenéigbfis for the members. The agent
considers each potential coalition one by one from the tapefist. For the best potential
coalition being considered, the agent decides to be a Igadjent if it's potential payoff
is the greatest. It then follows the primary protocol to rtegge with others. If the agent’s
potential payoff is not the greatest, it will wait for sommé&. Upon receiving an invitation
message, it computes its potential payoff and comparegtietpotential payoff in the sec-
ond best potential coalition of its own list. If the the inkmg potential payoff is not lower,

6.3. Coalition Formation 117

the agent accepts the offer, or rejects it otherwise. In#se the coalition cannot be formed.
The next potential coalition will be considered. More padircoalitions will be computed
as needed.

6.3.3 Secondary Coalitions

A secondary coalition is composed of three primary coalgiduyer, seller and LP primary
coalitions. The negotiation occurs among coalition leadsrd within primary coalition

members as an ongoing process. They try to agree on theiffpayal tasks (to supply
product for sellers and to deliver products for LPs). Agevtis are not satisfied with payoffs
being offered may decide to deviate from their present piyroaalitions and try to form new
ones.

Buyers to Sellers and LPs

Firstly, leading sellers and leading LPs try to agree on &r ér the corresponding buyer.
The negotiation involves their payoffs and tasks. The maltor forming such coalitions is

as follows:

1. Each member seller evaluates its present capability emdkst’s
sp a message2S(msg, b, (f,q,t),p) bidding for the supply task.

2. Leading selleg, may have to negotiate on product, quantity, time and pritie mem-
ber sellers with message25(id, b, (f,q,t), p) until every member seller is satisfied
and the total quantity, available time and price is satisfigd the request.

3. Leading selles, accumulates the bids from its member sellers and createffeanio
then sends message@ B(msg, so, {f,q, v,t), p) back toby.

4. Similarly, member LR bids for the task by sending message
L2L(id, (f,q,v,t), (f', ¢, V', '), p) to its leading LF,.

5. Leading LP, may have to negotiate over quantity, pickup location, @ejnocation,
pickup time, delivery time, and price with its members.

6. The leading LR, accumulate all the bid from its members in order to createfan o
for the delivery job.

\I

. It sends a message, i.e., propoé&al, so, (f, q,v,t), p) back tob.

6.3. Coalition Formation 118

8. The leading buyeli, accumulates the proposals from the leading sellers andhipad
LPs and finds the best combination of a selling and a LP propdisthen creates a
proposal to its members and sends messgage,, (f, q, v, t), p) to the members.

9. Members who are satisfied with the proposal send a me$gageACK) to [.

10. Members who are not satisfied can negotiate over quatmtity and price by sending
messagéid, s, (f, q,v,t),p) back to the leading agent.

11. Once all member buyers are satisfied, the leading bugeisttnds messag®l, by, ACK)
to the selected leading seller and leading LP.

12. The leading buyer, seller, and LP send mess$agje,, CON FIRM) to their coali-
tion members confirming that the secondary coalition has beened.

LPs are to pickup the product from sellers and deliver to miy&ellers and LPs get
paid when the product is delivered. The negotiation witimd among primary coalitions
can keep going until agents are satisfied or the time is over.

6.3.4 Decision Mechanism

In our setting, each agent has their individual reserveeptor a buyer, the reserve pricge
is the maximum price he is willing to pay for acquiring a buraétproducts, i.e., including
prices of products and costs of delivery. For a seller, ttseme pricer, is the costc,
of producing products and the minimum profit it expects. FHolL®, the reserve price
would be the sum of the estimated cost of operation and themam profit it expects. Let
B C B,S C S,andL C L be a set of buyers in a primary coalition, a set of sellers in a
primary coalition, and a set of LPs in a primary coalitiorspectively.

For a secondary coalitio@ = {B, S, L}, the reserve price @ is

B = E Tb,

beB

rs = E Ts,

SES

re = E Tr.

leL
The coalition value of a secondary coalitions

the reserve price & is

and the reserve price afis

Ve=rg+rs+r,

6.3. Coalition Formation 119

which is to be distributed among agents. Betbe the price that sellers charge buyers. Let
P. be the price that LPs charge buyers. The payoff for buyeBsi:

UB:TB—Ps—PL.

The payoff for sellers ity is
Us == PS — Ts.

The payoff for LPsirL is
U|_ = PL —TL.

From now on, we shall refer to the secondary coalition as htmyabecause it is the true
coalition in a supply chain domain.

The price each agent uses to negotiate may be higher thamebkerve prices. Knowing
the bidding price of every agent in its primary coalitiorg teading agent can use a fair divi-
sion of their coalition payoff by using the Shapley value][d@ncept. Agents in the primary
coalition may find that the shares offered by the leading agenbelow than their own re-
serve price. Hence they may have to deviate from their ptgsanary coalitions. Although
Shapley value does exist in every coalition structure, @sloot guarantee system’s stability
nor efficiency. In addition to Shapley value, there are ssa&slution concepts in coalition
formation theory [42], e.g., core kernel, etc. These sohgiare based the assumption that
agents are self-interested. Kernel, for example, guagargwbility to the system and indi-
vidual satisfaction to agents. However, it is computatilgr@omplex and does not guarantee
system’s efficiency. The Core guarantees stability to théeeaysnd efficiency in both the
system and individual level.

Here, we propose to use a compromising solution. We invemtvalrconcept in order
for agents to settle down their negotiation based on two n@@nceptdair andefficient

1. Fair To ensure that each agent has a fair share of such a solutiorsayByg “fair
share”, we mean the difference of each pair of agents’ payaffoss the whole system
is minimal.

2. Efficient To maximize the social welfare, i.e. the utility of the whaelgstem should

be maximized.

As a very first step of this novel fair and efficient concept,adept the Shapley value (for
the fairness) and our OCS algorithms (for efficiency) we hasectbped throughout this
thesis. Shapley value guarantees fairness in a giveniooallVe extend it to another level

6.3. Coalition Formation 120

by taking into account the fairness across the CS. Given atiooab with coalition value

Vs, we define theverage payoff
vy~ 2V
n
wherea; € S, andV,, is the agent’s payoffs achieved by applying the Shapleyevalve

defineaverage payoff difference

DVs =Y |AVs = V,|.

This DV reflects the fairness in each coalition that the less valbast the less differ-
ence among agents’ payoff. Further, it tells us how muchabadition is valued in terms of
fairness and efficiency. This brings us a new coalition vaid@ch we namdairly efficient
value,

FEVs = AVs — DV,

With respect to a CS, we then have the CS’s fairly efficient value

FEV(CS)= Y FEVs.
SeCsS

We are interested to find the optimal fairly efficient coalitistructure,
FECS* = argmazcse, FEV(CS).

We follow the fairness principle provided by Shapley beeaiiss the only solution
concept in cooperative game that does exist in every CS.

6.3.5 Algorithm

So far, we have developed a couple of solid algorithms fommgdtcoalition structures. In
Chapter 3, we have shown that with the concept of choodnegtcoalition as the new
coalition to place in coalition structure, we can reachroptity very quickly in characteristic
function game. However, we are merely limited to 26 agem<Chapter 4, we have shown
that for larger number of agents, i.e. 50 agents, and in moagnpatic settings such as
a linear production domain, we can choose only a small nurabagents (by applying a
heuristic approach) and can reach (near) optimal coalgtanctures, quickly. In Chapter
5, we have shown that for very hard problem, such as non+linggstics domain, which is
usually intractable for even a small number of agents, we lagpropriate time allocation
strategy to search for optimal coalition structure.

In this Chapter where we aim at optimal coalition structure isupply chain domain,
we need not an absolutely new algorithm but we can simply lsesét of algorithms we

6.4. Experiments 121

have developed so far. This is because these algorithms cover all the needs to solve a hard
problem in relatively larger scale and have proved themselves with empirical results. We will
follow the principle (proposed in Chapter 3) of choosing a relatively small number of best
coalitions from available candidates and placing it at each level of CS. We will follow the
heuristics (proposed in Chapter 4) to locates appropriate coalition members. We will follow
the time allocation strategy (proposed in Chapter 5) to solve this hard problem of searching
for optimal coalition structure in constrained time environment. We have also proposed in
this Chapter the new type of coalition in supply chain domain as well as the new principle
for considering optimal coalition structure.

Therefore, the only thing that is needed (as the condition for forming coalition has
changed: a coalition is composed of buyers, sellers, and logistics providers) is the condi-
tion of disjointness of agents in a coalition structure. That is we need to satisfy this condition
in all types of agents. To cope with this, we add three variables to represent remaining
buyers, sellers and logistics providers. When the new coalition is placed in CS, respective
buyers, sellers and logistics providers will be removed from the variables. Similarly, re-
spective agents will be added to the variables when a coalition is removed from CS. The
criteria for choosing the next best coalition is also changed according to the new concept we
proposed in previous section.

However, for the sake of completeness, we show the algorithms below Algorithm 18-22).
Note that we denote remaining buyers, sellers and logistics providers by R.B, R.S5, R.L,

respectively (and vice versa for CS[l]).

6.4 Experiments

We are interested in comparing the typical OCS and the new concept we proposed that how
much different could it be between the system’s utility, the agents’ payoffs, and the elapsed
time from convergence to termination.

We experimented for 100 agents which composed of 3 sets of agents. We designed 7
settings, each of which specifies the number of buyers, sellers, and logistic providers, as
follow: 60-30-10, 50-40-10, 40-50-10, 30-60-10, 50-30-20, 40-40-20, and 30-50-20. These
settings will be referred to as setting 1, 2, 3,4, 5, 6 and 7, respectively. We used these figures
based on the experiments in previous chapters that we do not allow too many or too few
logistics providers that will not be profitable for all parties. For each of these settings, we ran
experiment 100 times. In each time, we search for the solution both by V(CS) and FEV(CS).
The experiments were conducted in AMD Turion 64 machine with 2GB RAM. We recorded

6.4. Experiments

122

Algorithm 18 Main Construct coalition structures by choosing best coalitiinb{yers,
sellers and logistics providers) and place it into the pre€é§|(]

10«1
2: S* « chooseBestS(l)

3

: whi

© N0

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21: end while

le S* # () do
CS[l] « S*
R.B«— R.B\ S*
R.S —R.S\ 5"
R.L—R.L\S*
S* 10
if R.B=R.S=R.L=0]then
print “new C'S generated: "€S;
end if
S* «— Euxtend|)
if S* !1=null then
l—1+4+1;
else
S «— Alter()
if S* =0 then
S* «— Shrink()
end if
end if

> the present laydris setto 1

> the best coalitiorb™ is placed intadCS|!]
> while S* exists

> placeS* in CS[l]

> update remaining B, S, and L witt
> resetS* to ()

> no agents left outsidéS

> output newC'S

> attempt to extendS
> CS can be extended $* is found
> CS is to be extended

> try for altering when cannot extend
> cannot alter, nothing to substitute
> then try to shrink

Algorithm 19 ChooseBestS Function

1: function CHOOSEBESTS(l)
2:

10:
11:
12:
13:
14: end function

bestS «— ()
a* 0
for c=1to|R|do
if B[l][c] > 0then
@ — Veqsmie) /¢
if @ > a* then
bestS «— C[c|[B[l][c]]
a*—a
end if
end if
end for
return bestS

> for each valid cardinality
> if there is a candidate coalition
> compute the candidate’s
> if the newa is better tham*
> set the new best coalition
> seta* to the new value

6.4. Experiments 123

Algorithm 20 NextS Function

1: function NEXTS(c,p)
2: for j = pto C[c].length do > starting fromp towards the last element 6fc]

3 if C[c][j].B € R.B and

4: Clc][y].S € R.S and

5: Clc][j].L € R.L then > if the coalition atp is valid
6: return j > return its position
7 end if

8: end for

o: return O
10: end function

Algorithm 21 Extend Function
1: function EXTEND

2: if I <n then

3: for c=1to|R|do

4: p «— B[l][c] > set the beginning position for searching for candidate
5: if p > 0then > only cardinalities that have coalitions left
6: if ¢ =|CS]]| then > for candidate of cardinality afS!]

7 pe—p+1 > begin the search at the next position
8: end if

o: Blc][l + 1] < NextYc, p) > search for the next candidate of cardinality

10: end if

11: end for
12: return ChooseBest3 + 1) > acquire the best coalition and return it
13: end if

14: return
15: end function

Algorithm 22 Alter Function
1: function ALTER
2: R.B— R.BUCS|.B
: R.S — R.SUCS]].S

3

4 R.L— R.LUCSI.L > return the last coalition @S to R

5 p<« B[|(CS[l)|][l] + 1 > start to search for the another candidate at the next positio
6: B[|CS[l]]][l]] < Next§|CS[l]|,p) > retrieve the alternative candidate
7. CS[l] 0 > resetCS[l]

8: return ChooseBestd) > acquire the best coalition and return it
9: end function

6.4. Experiments 124

Algorithm 23 Shrink Function

1: function SHRINK

2 if [> 1 then

3 le1-1 > shrink by decreasing value of [by 1
4: R.B — R.BUCS[l].B

5: R.S « R.SUCS[].S

6: R.L —R.LUCS[].L > return members to R
7 p < B[|CS[]]]JlI] +1 b set the starting point to search for alternative candidate
8 BlICS[I][l] — NextS(|CS[1]], p) > search for the alternative candidate
9: CS[l] « 0; > reset CS[1]
10: return ChooseNextS(l); b acquire the best coalition and return it
11 end if
12: return ()

13;: end function

the convergence and termination times as well as the V(CS) and FEV(CS) of each run. The
average values of recorded data for each setting are then crafted out.

We show the results in 6.1 with two graphs. The first graph show convergence against
termination time for each of the settings achieved from searching by V(CS) and FEV(CS),
respectively. This is to show the performahce of the algorithm to generate OCS as we have
done in previous chapters. The second one shows V(CS) against FEV(CS) for each of the
settings, achieved from searching for the solution by V(CS) and FEV(CS), respectively. This
is to show the efficiency of the algorithm from economic perspective, i.e. to see how agents
can be affected from V(CS) and FEV(CS).

From the first graph, the results show that termination times of V(CS)-oriented and
FEV(CS)-oriented runs are not much different. This tells us that differences in numbers
of buyers, sellers and logistics providers do not affect much on termination times. However,
there are significant differences in convergence times (which 1s more important than termi-
nation time as we have discussed in previous chapters). In setting 1, convergence time of
V(CS)-oriented run is closest to termination time but is furthest from termination time in set-
ting 2 and 3. It gets closer to termination time (but still not the closest) and is quite consistent
in setting 4, 5, 6 and 7. The implication from V(CS)-oriented runs is that the convergence
time is shorter when the number of buyers and sellers are not much different, i.e. 50 buyers
versus 40 sellers and vice versa for 10 logistics providers. When the number of logistics
providers increases to 20, the convergence times are also not much different for S0 buyers
versus 30 sellers and vice versa, and 40 buyers versus 40 buyers.

However, the convergence times of FEV(CS)-oriented runs are very interesting. For 10

logistics providers, the convergence times of FEV(CS)-oriented runs are opposite to those

6.4. Experiments 125

Convergence and Termination Time Results V(CS) and FEV(CS) Search ResLits
300020 T T T T T T T T T
300015 o s R s e R 4000
300010
2000 &
£ 300005 & 4
K] T a a a
E E
: 300000 - Convergence V(CS) ———— " : or]
g Termination V(CS) ---x- S S Moo e X R S
e 200995 |- Convergence FEV(CS) - -* i 2
o Termination FEV(CS) = w
-2000 - 5
259990 1 1 V(CS) of V(CS)-Oriented Search ——
FEV(CS) of V(CS)-Oriented Search ---x---
00085 L V(CS) of FEV(CS)-Oriented Search ---x--
2 W 4000 |- FEV(CS) of FEV(CS)-Oriented Search - & T
299980 L 2 L L 1 s s) .
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Agent Settings Agent Setlings

Figure 6.1: Empirical Results of V(CS) against FEV(CS) The graphs show conver-
gence versus termination time, and V(CS) versus FEV(CS) of the V(CS)-Oriented versus
FEV(CS)-Oriented search.

of V(CS)-oriented runs, i.e. the convergence times of 60 buyers versus 30 sellers and vice

versa are shorter than that of 50 buyers versus 40 sellers and vice versa. In other words, for

a small number of logistics providers, settings with greater difference in number of buyers
and sellers can reach convergence earlier. For larger number of logistics providers, i.e. 20,

convergence times decrease when number of buyers decrease, i.e. dropping from 50, 40, to

30. Note that FEV(CS)-oriented runs are driven by the value of FEV(CS) which are less than

V(CS). This causes the search to converge quicker (based on the principle of dest coalition

used throughout this thesis.

From the second graph, the results show that V(CS)-oriented runs yield higher-valued
solutions. The V(CS) values are quite consistent in setting 1, 2, 3 and 4. In setting 5, 6, and
7, the values are increased, although they are slightly different (with the value of setting 7
is the lowest). This implies that, for higher number of logistics providers (20), the solutions
are also better. However, the FEV(CS) values are very low, i.e. minus values. This reflects
the fact that accumulated difference between each agent’s payoff and the average payoff is
high. In other words, the agents’ payoffs vary very much although V(CS) is high. This leads
to the situation where some agents earn high payoffs while some agents earn low payoffs.

With FEV(CS)-oriented runs, the FEV(CS) values of scttings with 10 logistics providers
(setting 1, 2, 3 and 4) are quite consistent but are lower than that of settings with 20 logistics
providers (setting 5, 6 and 7). Similarly, the V(CS) values of settings with 10 logistics

providers (setting 1, 2, 3 and 4) are consistent but are lower than that of settings with 20

6.5. Conclusion 126

providers (setting 1, 2, 3 and 4) are consistent but are |¢tlgar that of settings with 20
logistics providers (setting 5, 6 and 7). Note that the FEV}(Gues of FEV(CS)-oriented
runs are higher than that of V(CS)-oriented runs. On the dihed, the V(CS) values of
FEV(CS)-oriented runs are lower than that of V(CS)-orientetsr A simple implication of
this is that with FEV(CS)-oriented run, agents’ payoff assldifferent compared to that of
V(CS)-oriented runs. Although the system’s utility, i.e.Gf), of FEV(CS)-oriented are not
as high, the difference of agents’ payoff is less, which iegpthat every has better chance
survive in highly competitive environment.

Note that none of other solution concepts consider thiaésis from the system perspec-
tive, i.e., the more agents survive the better for the syst€his is important because the
well being is distributed as much as possible among all age€rttis brings security to the
system that agents can make their own livings and will noturddns of the system or other
agents.

6.5 Conclusion

This chapter proposes a model of agents-based coalitionslhas optimal coalition struc-
ture in dynamic supply networks. In our setting, agents takesteps to form coalitions)
agents in each sector form loosely-coupled coalitions deoto decrease the complexity of
the negotiation, andj) agents form coalitions across sectors in order to delivedyrcts to
end customers. We propose a framework, which involves regwt protocol and decision
mechanism. The negotiation protocol allows thorough comipation, i.e., buyers to buy-
ers, buyers to sellers, sellers to sellers, buyer to LPsl.Bsdo LPs. With respect to optimal
coalition structure, we propose a new approach for achgesimore compromising solution,
taking into account both fairness and efficiency to the syste

The work presented in this chapter has achieved the fourtctde of this research,
namely, to adapt the algorithm presented in Chapter 3 so ato 4olve OCS problems
in complex environments such as those in which coalitiouslire 3 types of stakeholders,
such as in the supply chain domain.

Chapter 7

Conclusion and Future Work

7.1 Introduction

Optimal coalition structure is a hard problem. It is knowattits complexity is NP-hard.
For a small input, the problem can be intractable. Researctumted so far in this area
has dealt with considerably small number of agents in cleratic function form, where
coalition value is known a priori. However, multiagent st can involve a larger number
of agents. Furthermore, coalition value is not known a pimreal world setting and solving
optimization problems for coalition values can be hard bglit Therefore, it is a challenge
to deal with larger number of agents and more realisticragti

We then set out the objectives of this research as follows:

1. to develop a best-first, anytime algorithm that is an effitsolution for OCS problems
in environments where coalition values are known a priother, to adapt the algorithm
developed in objective 1:

2. to solve OCS problems in a linear environment where coaliialues and coalition
structure values are not known a priori but must be calcdlate

3. to solve OCS problems in an NP hard, non-linear environiwéetre coalition costs
and coalition structure values are not known a priori

4. to solve OCS problems in which coalitions involve more ttvam types of stakehold-
ers, such as the supply chain domain.

The work in the preceding 4 chapters has achieved thesetwbg@s set out in the
following section.

7.2 Contribution

In Chapter 3, we lay down a foundation work for the whole theSi® consider the char-
acteristic function environment where coalition value mWwn a priori. We argue that the

127

7.2. Contribution 128

state-of-the-art in the area can be misled by some typestafdistribution. We want to
achieve an algorithm which performs consistently and ismisled by any type of data
distribution. We define a novel concept of best coalitionalihis most likely valuable to
coalition structure. We invent a best-first search algorithat repeatedly chooses the best
candidate coalition from available coalitions to place in&8s present level. We invent 5
extra data distribution types, in addition to existing sk ones existing in the literature,
to evaluate the performance consistency. We are inter@stechieving an algorithm that
can reach (near) optimality in timely fashion, which is eveore desirable than termination
when solving NP-hard problem. We consider environmentsrevliee number of agents is
ranged up to 26 agents, by which most typical computers cem imaximal resources. We
benchmarked the performance of our algorithm with the stéthe-art approach of Rah-
wan et al [111], and show that our approach compares faviyyiiad our algorithm reach
optimality more quickly in all settings. We conducted expents extensively to be certain
that the algorithm is robust even though some of the datengstare unrealistic. This work
has achieved our first objective:

1. to develop a best-first, anytime algorithm that is an effitsolution for OCS problems
in environments where coalition values are known a priori

Having achieved a generic algorithm which performs coastty well in all data dis-
tributions, we move forward to deal with more realistic sefs in Chapter 4. We consider
linear production domain where coalition value is not knaavpriori-the coalition values
need to be computed before optimal coalition structure Gamcdmputed. We also con-
sider a larger number of agents, which typical computersatdhave enough resources to
handle. Therefore, it is desirable to quickly search for alsmumber of good coalitions,
from which best coalitions can be determined and be plac&iSnWe invent a heuristic
for the agents to quickly locate good coalitions, and onlglatively small number of them
(compared to all the possible coalitions). From these tioaliwe proposed a distributed
branch-and-bound algorithm for computing optimal coatitstructure for linear production
domains. We extended our previous algorithm in the deltim®rgrocess in order to im-
prove the performance. The non-profitable coalitions ategeaerated by the deliberation
algorithm. Then the information of remaining coalitiondivile exchanged among agents.
Lastly, each agent uses an existing algorithm [86] to compptimal coalition structures.
The empirical results show that our algorithm helps geretta¢ optimal coalition struc-
tures much faster than an exhaustive search. Our algoritamatically reduces the number
of coalitions generated hence reducing the number of cwaldtructures. As a result, the
elapsed time of generating the coalition structures idivellg small. In doing so, we have

7.2. Contribution 129

achieved objective 2 of this research, namely:

2. to solve OCS problems in a linear environment where coali@alues and coalition
structure values are not known a priori but must be calcdlate

We move one step further in Chapter 5, i.e. we consider optomalition structure in
non-linear logistics domains. We retain the assumption agih Chapter 4, i.e., coalition
value is not known a priori and the number of agents is abaeitsime. Therefore, the
problem involves two steps) achieving coalition values, and) solving optimal coalition
structure problem. Since optimizing non-linear logisticenains is a hard problem by itself,
(near) optimal solution for the coalition is expected toiach in timely fashion. However,
solving optimal coalition structure is also a hard probleiiherefore, we are facing the
problem of time allocation for solving both problem undendi constraint. We investigated
the performance of different time allocation strategiebe Empirical results show that the
strategy that allows more time to solve both problems yiélelter results. In doing so, we
have achieved objective 3 of this research, namely

3. to solve OCS problems in an NP hard, non-linear environiwéetre coalition costs
and coalition structure values are not known a priori.

Finally, we use invented knowledge (algorithms) to solverenmomplex problems. In
Chapter 6, we proposed a model for agents to form coalitiorsupply chain networks.
We also consider a new concept for considering the wealtheosystem and whether it is
distributed fairly and efficiently. For forming coalitionagents take two steps: i) agents
in each sector form loosely-coupled coalitions in order ¢éardase the complexity of the
negotiation, and, ii) agents form coalitions across sedtorder to deliver goods to end
customers. We proposed a framework, which involves netiymtigorotocol and decision
mechanism. The negotiation protocol allows thorough comioation, i.e., buyers to buyers,
buyers to sellers, sellers to sellers, buyer to LPs, and bAsPs. For the fairness and
efficiency, we propose a new solution, which measure theevailgoalition in both respects.
Based on the algorithms we have developed, we conductediergrés to investigate the
results of various runs, each of which is to compare the tesighieved by either choosing
best coalition based on typical coalition values or the newcept. The empirical results
show that proportion of number of various types of agents@dfect both the performance
of the algorithm and the quality of the solutions. In doingwe have achieved objective 4
of this research, namely:

4. to solve OCS problems in which coalitions involve more ttvam types of stakehold-
ers, such as the supply chain domain

7.3. Significance of the Research 130

7.3 Significance of the Research

Clearly, this work is important to researchers in the mujiesat systems (MAS) research
field, particularly to those focusing on Optimal Coalitiom&tures (OCS), as it presents a
number of algorithms which are significantly better thandteent state-of-the-art solutions
in that field. The main contribution of this research is thepasition of definingestcoali-
tion, which is used to determine the next best coalition tplaeed in CS, and algorithm to
generate coalition structures in a value-oriented fashibins concept is unique and different
from other existing algorithm which is mostly based on derfaattern, such as configura-
tion. This novelty has laid down a concrete foundation faegrch in other chapters of this
thesis as well as the research in multiagent system or catygegame theory. This novel
approach has been shown to be effective in four domains iochMAS and OCS approaches
offer efficient solutions to often intractable problems.thii those real-world domains, the
research has also experimented with novel pruning, deliteer and negotiation techniques,
thereby extending the set of solutions available to MAS a@EQ@esearchers. Finally, the
research has established a new benchmark against whiaghQ@# solutions can be tested.

Because the research has been applied in a number of domasnslso of significance
to researchers in those domains as well as. The applicatiooraalgorithm to the linear
production game offers new insights into the solution ofrsgames. Application of the
algorithm to the non-linear problems in the logistics damtaas demonstrated that the best-
first anytime approach could be used to solve some instarfogdassic problems such as
the Vehicle Routing Problem or the Traveling Salesman ProblEurther developing this
work on logistics, we have applied the algorithm to more claxpogistics tasks involving
stakeholders from 3 separate sectors. This work significadtzances the ability of logistics
researchers to solve real-world problems which are of padr interest in extended supply
chains, and indeed supply networks. Finally, the researdignificant to researchers in
broader domains, i.e. qualitative optimal coalition stowes, which has more applications
in the real world. Some of these research communities haweitidustrial counterparts and
the current research could be immediately used by thosestnes. Both of the logistics
solutions presented in this research could be applied bystiog Providers (LPs) or by
supply chain managers in a wide range of industries.

7.4 Limitations

While our algorithm significantly increases the number ofragéhat can be studied in OCS
problems, it too has its limitations. Because multi-agesteys are rationally bounded, our

7.5. Future directions 131

algorithm cannot deal with huge numbers of agents. Furtbexnother specific domains
involving large number of agents may need additional thesighorder to take into account
additional details that are relevant to the performancéefagorithms. To deal with large
number of agents, it is very important that high-valued itiogls must be known before the
generation of coalition structure can be generated. Thiggevalued coalitions need to be
stored in memory as many as possible because the value dfaoatructures depend on
their values.

7.5 Future directions

Since the most important algorithm is presented in Chaptien@oving it means improving
other algorithms. The algorithm can still be improved diigantly. At the moment, it has
to search to the last available coalitions in CS even thougtait not be able to finish CS.
This leads to too many wasteful repetition. The other imprognt can also be achieved
by using a better pruning approach. The linear productigorahm, presented in Chapter
4, helps reduce the number of coalitions involved in geiggaiptimal coalition structures,
but it needs to be able to deal with larger numbers of agentsdsfto be truly useful in
real-world settings. Ideally, it should be able to deal witindreds of agents. In addition,
this algorithm shows much promise for use in areas such agenprogramming and non-
linear programming. Additional work in the area of supphachmanagement is suggested.
Since one of the most important issues in supply chains ignomwize logistics costs, future
work could focus on finding a mechanism that helps buyers ndrabthe logistics process
rather than leaving it to the sellers or to coalitions ofexsll We believe that with efficient
negotiation protocol and decision making mechanism, thestics costs can be significantly
reduced.

7.6 Conclusion

Notwithstanding the limitations described above, the @entrresearch has achieved all 4 of
its objectives and in doing so has made a significant corioibuo the fields of MAS/OCS
research. It has demonstrated the efficacy of a best firstinaapproach to MAS/OCS
problems. Moreover, it has done so in a number of real-wattingys which are significantly
more complex than those used in many previous studies. Thieig/gignificance to both
academia and to industry and has opened up what promisesaovéwy fruitful field for
further research.

Bibliography

[1] Joseph Abdou and Hans Keidingffectivity Functions in Social ChoiceSpringer—
Verlag, Berlin / Heidelberg, Germany, 1991.

[2] David Allsopp, Patrick Beautement, Jeffrey Bradshaw, BdthDurfee, Michael Kir-
ton, Craig Knoblock, Niranjan Suri, Austin Tate, and Craig fifpson. Coalition
agents experiment: Multiagent cooperation in internai@oalitions.Intelligent Sys-
tems 17(3):26—-35, May-June 2002.

[3] John Anderson, Brian Tanner, and Jacky Baltes. Dynamiditmyaformation in
robotic soccer. IfProceedings of the AAAI-04 Workshop on Forming and Maintain
ing Coalitions and Teams in Adaptive Multiagent Systgrages 1-10, San Jose, CA,
USA, July 2004. AAAI Press.

[4] David Applegate, Robert Bixby, Vasek Chvatal, and Williama&o The Traveling
Salesman Problem: A Computational StudBrinceton University Press, Princeton,
2006.

[5] Frederick Asselin and Brahim Chaib-draa. Toward a prdtéoothe formation of
coalitions of buyers. IfProceedings of the 5rd International Conference on Elegtron
Commerce Research (ICERC-pages 1-10, Montreal, Canada, 2002.

[6] Frederick Asselin and Brahim Chaib-draa. Coalition forim@atvith non-transferable

payoff for group buying. IrProceedings of the 2nd International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMASA8Es 922-923, Mel-
bourne, Australia, 2003. ACM Press.

[7] Frederick Asselin and Brahim Chaib-draa. Performanceoftivare agents in non-
transferable payoff group buyingournal of Experimental and Theoretical Artificial
Intelligence 18(1), 2006.

132

BIBLIOGRAPHY 133

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Robert Aumann and Michael MaschléFhe Bargaining Set for Cooperative Games
Princeton University Press, 1964.

Moshe Babaioff and William E. Walsh. Incentive-compé&ibbudget-balanced, yet
highly efficient auctions for supply chain formationDecision Support Systems
39(1):123-149, 2005.

Alexander Belenky. Cooperative games of choosing pestard forming coalitions
in the marketplace Mathematical and Computer Modellin6(11-13):1279-1291,
December 2002.

Maria-Victoria Belmonte, Ricardo Conejo, J. Léfez-de-la Cruz, and Francisco
Triguero. A robust deception-free coalition formation rebdin Proceedings of the

2004 ACM Symposium on Applied Computing (SAC,'@épes 469-473, Nicosia,
Cyprus, 2004. ACM Press.

Bastian Blankenburg and Matthias Klusch. On safe kertaddle coalition forming
among agents. IfProceedings of the 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMASpdes 580-587, New York,
USA, 2004. ACM Press.

Bastian Blankenburg, Matthias Klusch, and Onn Shehougz¥ kernel-stable coali-
tions between rational agents. Rroceedings of the 2nd International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAIGAPages 9-16,
Melbourne, Australia, 2003. ACM Press.

Silvia Breban and Julita Vassileva. A coalition fornzatimechanism based on inter-
agent trust relationships. FProceedings of the 1st International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS@g8es 306—307, Bologna,
Italy, 2002. ACM Press.

Philippe Caillou, Samir Aknine, and Suzanne Pinson. Atiragent method for form-
ing and dynamic restructuring of pareto optimal coalitiohnsProceedings of the 1st
International Joint Conference on Autonomous Agents andidfignt Systems (AA-
MAS 02) pages 1074-1081, Bologna, Italy, 2002. ACM Press.

Georgios Chalkiadakis and Craig Boutilier. Bayesian i@icément learning for coali-

tion formation under uncertainty. Proceeding of the 3rd International Joint Confer-
ence on Autonomous Agent and Multi Agent Systems (AAMAB&adBs 1090-1097,

New York, USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 134

[17] Eve Cohen, Roshan Thomas, William Winsborough, and Deb8hands. Models for
coalition-based access control (cbac).Pioceedings of the 7th ACM Symposium on
Access Control Models and Technologipages 97-106, Monterey, CA, USA, 2002.
ACM Press.

[18] Javier Contreras, Felix Wu, Matthias Klusch, and Onntfaimng Coalition formation in
a power transmission planning environment Phoceedings of the 2nd International
Conference on Practical Applications of Agents and MulteAigSystems (PAAM 97)
London, UK, April 1997. Practical Application Co Ltd.

[19] David Cornforth, Michael Kirley, and Terry Bossomaier.gént heterogeneity and
coalition formation: Investigating market-based coopeegproblem solving. IrPro-
ceedings of the 3rd International Joint Conference on Autooas Agents and Multi-
agent Systems (AAMAS 0pages 556-563, New York, USA, 2004. ACM Press.

[20] Jeffrey Cox and Edmund Durfee. Efficient mechanisms faltiagent plan merging.
In Proceedings of the 3rd International Joint Conference oroAatnous Agents and
Multiagent Systems (AAMAS 04)ages 1342-1343, New York, New York, 2004.
IEEE Computer Society.

[21] Viet Dung Dang and Nicholas Jennings. Generating tioalistructures with finite
bound from the optimal guarantees. Pnoceedings of the 3rd International Joint
Conferrence of Autonomous Agent and Multi Agent System (AA0AA pages 564—
571, New York, USA, 2004. IEEE Computer Society.

[22] Viet Dung Dang and Nicholas Jennings. Generating toalistructures with finite
bound from the optimal guarantees. Pmoceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent SystemsABSAK) pages 564—
571, New York, USA, 2004. IEEE Computer Society.

[23] Gorge Dantzig.Linear Programming and Extensions, 10th EditioRrinceton Uni-
versity Press, Princeton, 1963.

[24] Morton Davis and Michael Maschler. The kernel of a caapige game.Naval Re-
search Logistics Quarter|y12(3):223—-259, 1965.

[25] Joakim Eriksson, Niclas Finne, and Sverker Janson. [UBen of a supply chain
management game for the trading agent competitdhCommunications19(1):1—
12, 2006.

BIBLIOGRAPHY 135

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Amy Fedyk, Gary Kratkiewicz, Jeff Berliner, Mark DavBeth DePass, Rich Lazarus,
and Rusty Bobrow. Adaptive optimization of solution time inistdbuted multi-agent
system. InProceedings of the International Conference on IntegrabbKnowledge
Intensive Multi-Agent Systems 2005 (KIMAS, 08altham, MA, USA, April 2005.
IEEE Computer Society.

Mark Fox, Mihai Barbuceanu, and Rune Teigen. Agent-aedrsupply-chain man-
agement. International Journal of Flexible Manufacturing Systeni®:165-188,
April 2000.

Mark. Fox, John Chionglo, and Mihai Barbuceanu. The irdéggd supply chain man-
agement system. Technical report, Deparment of Indugingineering, University
of Toronto, 1993.

Andreas Gerber and Matthias Klusch. Forming dynamatlitions of rational agents
by use of the dcf-s scheme. Rroceedings of the 2nd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAPaYRs 994995,
Melbourne, Australia, 2003. ACM Press.

Donald Gillies. Some Theorems on n-Person Gamé*hD thesis, Department of
Mathematics, Princeton University, Princeton, New Jerg&A, 1953.

Claudia Goldman, Sarit Kraus, and Onn Shehory. Ageateggies: for sellers to sat-
isfy purchase-orders, for buyers to select seller®rbteedings of the 10th European
Workshop on Modeling Autonomous Agents in a Multiagent #fivlaamaw '01)
pages 166—-177, Annecy, France, 2001. Springer—Verlag.

Claudia Goldman, Sarit Kraus, and Onn Shehory. On erpartal equilibria strate-
gies for selecting sellers and satisfying buyé&scision Support Systenmages 329—
346, 2003.

Nathan Griffiths and Michael Luck. Coalition formatidméough motivation and trust.
In Proceedings of the 2nd International Joint Conference orAoinous Agents and
Multiagent Systems (AAMAS 03)ages 17-24, Melbourne, Australia, 2003. ACM
Press.

Yi Han, Wen-Xiang Gu, Yang Li, Ming-Hao Yin, and Jing-Bdn@ng. Flexible graph-
plan based on heuristic searching. Rroceedings of The International Conference
on Machine Learning and Cybernetics 20@&ges 160-163, Dalian, China, August
2006. IEEE Computer Society.

BIBLIOGRAPHY 136

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Hiromitsu Hattori, Tadachika Ozono, and Toramatsun&mi. Applying a combina-
torial auction protocol to a coalition formation among aigein complex problems.
In Proceedings of the 2nd International Joint Conference oroAamnous Agents
and Multiagent Systems (AAMAS 0Bages 1008—-1009, Melbourne, Australia, 2003.
ACM Press.

Masaki Hyodo, Tokuro Matsuo, and Takayuki Ito. An opgintoalition formation
algorithm for electronic group buying. Proceedings of the Society of Instrument and
Control Engineers Annual Conference 2003 (SICE 20papes 3402—-3407, Fukui
Japan, August 2003. IEEE Computer Society.

Masaki Hyodo, Tokuro Matsuo, and Takayuki Ito. An opgintoalition formation
among buyer agents based on a genetic algorith®rdneedings of the 16th Interna-
tional Conference on Developments in Applied Atrtificial lidence (IEA/AIE’2003)
pages 759-767, Laughborough, UK, 2003. Springer—Verlag.

Toshihide Ibaraki and Naoki KatoliResource Allocation Problems: Algorithmic Ap-
proaches MIT Press, Boston, 1998.

Samual leong and Yoav Shoham. Multi-attribute coaditil games. IiProceedings
of the 7th ACM conference on Electronic commerce (EC payes 170-179, Ann
Arbor, Michigan, USA, 2006. ACM Press.

Takayuki Ito, Hiroyuki Ochi, and Toramatsu Shintanigfoup buy protocol based on
coalition formation for agent-mediated e-commerteternational Journal of Com-
puter and Information Science (IJC[S$)(1):11-20, 2002.

Charles Phillips Jr., T. Ting, and Steven Demurjianonfation sharing and security
in dynamic coalitions. IfProceedings of the 7th ACM Symposium on Access Control
Models and Technologigpages 87-96, Monterey, CA, USA, 2002. ACM Press.

James Kahan and Amnon Rapopoitheories of Coalition Formatian Lawrence
Erlbaum Associates, Hillsdale, NJ, USA, 1984.

Steven Ketchpel. Forming coalitions in the face of utaie rewards. IfProceedings
of the 12th National Conference on Artificial Intelligence 64A4), volume 1, pages
414-419, Seattle, WA, USA, 1994. AAAI Press.

Majid Khan and Ladislau Boloni. Convoy driving throughthdc coalition formation.
In Proceedings of the 11th Real Time and Embedded TechnolayApplications

BIBLIOGRAPHY 137

Symposium (RTAS 200%pges 98-105, San Francisco, CA, USA, March 2005. IEEE
Computer Society.

[45] Matthias Klusch and Andrea Gerber. Dynamic coalitiomfation among rational
agents.IEEE Intelligent System47(3):42—-47, 2002.

[46] Matthias Klusch and Onn Shehory. Coalition formationogugy rational information
agents. InProceedings of the 7th European Workshop on Modelling Autmus
Agents in a Multi-Agent Wor|drolume 1038, pages 204-217, Eindhoven, Netherland,
1996. Springer—Verlag.

[47] Matthias Klusch and Onn Shehory. A polynomial kerngented coalition algorithm
for rational information agents. IRroceedings of the 2nd International Conference
on Multi-Agent Systems (ICMAS 96pges 157-164, Kyoto, Japan, 1996. MIT Press.

[48] Sarit Kraus, Onn Shehory, and Gilad Taase. Coalitioméiiron with uncertain het-
erogeneous information. IRroceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (A AMA$88es 1-8, Melbourne,
Australia, 2003. ACM Press.

[49] Sarit Kraus, Onn Shehory, and Gilad Taase. The advaastaigcompromising in coali-
tion formation with incomplete information. IRroceedings of the 3rd International
Joint Conference on Autonomous Agent and Multi Agent SyseAMAS 04) pages
588-595, Washington DC, USA, 2004. IEEE Computer Society.

[50] Donald Kreher and Douglas Stinsddombinatorial Algorithms Generation, Enumer-
ation and SearchCRC Press, FA, USA, 1999.

[51] Kate Larson and Tuomas Sandholm. Anytime coalitiomdtire generation: an
average case studyJournal of Experimental & Theoretical Artificial Intelligee
12(1):23-42, January 2000.

[52] Kristina Lerman and Onn Shehory. Coalition formatiom farge-scale electronic
markets. InProceedings of the 4th International Conference on Multe#tgSystems
(ICMAS 00) pages 167-174, Boston, MA, USA, 2000. IEEE Computer Society.

[53] Cuihong Li, Uday Rajan, Shuchi Chawla, and Katia Sycaractaisms for coalition
formation and cost sharing in an electronic marketplacePrbteedings of the 5th
International Conference on Electronic Commerce (EC @papes 68—77, Pittsburgh,
PA, USA, 2003. ACM Press.

BIBLIOGRAPHY 138

[54] Cuihong Li and Katia Sycara. Algorithms for combina#&drcoalition formation and
payoff division in an electronic marketplace. Technical &¢EMU-RI-TR-01-33,
Robotics Institute, Carnegie Mellon University, PittsburghA, November 2001.

[55] Cuihong Li and Katia Sycara. Algorithm for combinatdr@alition formation and
payoff division in an electronic marketplace. Rmoceedings of the 1st International
Joint Conference on Autonomous Agents and Multiagent SygeAMAS 02)pages
120-127, Bologna, Italy, 2002. ACM Press.

[56] Rajiv Maheswaran and Tamer Bacar. Coalition formatiorropprtionally fair divisi-
ble auctions. IflProceedings of the 2nd International Joint Conference ommAoInous
Agents and Multiagent Systems (AAMAS, G&ges 25-32, Melbourne, Australia,
2003. ACM Press.

[57] Michael Maschler. An advantage of the bargaining sedrdhe core. Journal of
Economic Theoryl3(2):184-192, October 1976.

[58] Carlos Merida-Campos and Steven Wilimott. Modellingliaan formation over time
for iterative coalition games. IRroceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMASp@des 572-579, New
York, USA, 2004. ACM Press.

[59] John NashNon-Cooperative GaméhD thesis, Department of Mathematics, Prince-
ton University, Princeton, USA, May 1950.

[60] John Von Neumann and Oskar Morgensteitheory of Games and Economic Be-
haviour. Princeton University Press, Princeton, New Jersey, 19983 printing).

[61] Mark Nissen. Agent-based supply chain integratidnformation Technology and
Management2(3):289-312, July 2001.

[62] Timothy Norman, Alun Preece, Stuart Chalmers, Nichdsnings, Michael Luck,
Viet Dang, Thuc Nguyen, Vikas Deora, Jianhua Shao, Alex Gaag Nick Fiddian.
Agent-based formation of virtual organisation&nowledge-Based Systenis/(2-
4):103-111, 2004.

[63] Guillermo Owen. On the core of linear production gambrathematical Program-
ming, 9(1):358-370, 1975.

[64] Praveen Paruchuri, Milind Tambe, and Fernando Ordofexrvards a formalization
of teamwork with resource constraints. Pnoceedings of the 3rd International Joint

BIBLIOGRAPHY 139

Conference on Autonomous Agents and Multiagent SystemsABSAK) pages 596—
603, New York, USA, 2004. ACM Press.

[65] Michal Pechoucek, Vladimr Mark, and Jaroslav Brta. A kiedge-based approach
to coalition formation.Intelligent Systemd.7(3):17-25, May-June 2002.

[66] Jos Potters, Imma Curiel, and Stef Tijs. Traveling sal@s games.Mathematical
Programming 53:199-211, January 1992.

[67] Talal Rahwan and Nicholas Jennings. Distributing daadal value calculations
among cooperating agents. Broceedings of the 25th National Conference on Ar-
tificial Intelligence (AAAI 05)pages 152-157, Pittsburgh, USA, 2005. AAAI Press.

[68] Talal Rahwan and Nicholas Jennings. An algorithm fotridigting coalitional value
calculations among cooperating agentttificial Intelligence 171 (8-9):535-567,
2007.

[69] Talal Rahwan, Sarvapali Ramchurn, Viet Dang, Andrea @moncci, and Nicholas
Jennings. Anytime optimal coalition structure generatiorProceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 0ppges 1184-1190, Vancou-
ver, Canada, July 2007. AAAI Press.

[70] Talal Rahwan, Sarvapali Ramchurn, Viet Dang, and Nichd&nnings. Near-optimal
anytime coalition structure generation. Rfnoceedings of the 20th International Joint
Conference on Atrtificial Intelligence (IJCAI 200 pages 2365-2371, Hyderabad, In-
dia, January 2007. Kaufman Morgan.

[71] Talal Rahwan, Nicholas Jennings Sarvapali Ramchurn Aaitda Giovannucci. An
anytime algorithm for optimal coalition structure generat 34:521-567, 2009.

[72] Martin Rehk, Premysl Volf, and Michal Pechoucek. Mutiél approach to agent-
based task allocation in transportation. @ooperative Information Agents X, Pro-
ceedings of the 10th International Workshop on Cooperatif@mation Agents (CIA
2006) volume 4149/2006 dfecture Notes in Computer Scienpages 273-287, Ed-
inburg, UK, 2006. Springer—\erlag.

[73] Joaquin Sanchez-Soriano, Marco Lopez, and Ignaciei&durado. On the core of
transportation gameddathematical Social Science$l(2):215-225, March 2001.

[74] Tuomas Sandhlom and Victor Lesser. Coalitions amongpedationally bounded
agents Artificial Intelligence 94(1-2):99-137, July 1997.

BIBLIOGRAPHY 140

[75] Toumas Sandholm and Victor Lesser. Coalition formatgomong bounded rational
agents. InProceedings of the 14th International Joint Conference ofifidial In-
telligence (IJCAI 95) pages 662—-669, Montreal, Canada, January 1995. Kaufman
Morgan.

[76] Tuomas Sandholm. Negotiation Among Self-Interested Computationally Limited
Agents PhD thesis, Department of Computer Science, University a§$dchusetts
(Amherst), September 1996.

[77] Tuomas Sandholm, Kate Larson, Martin Andersson, Oneh8ty, and Fernando
Tohm. Coalition structure generation with worst case guaem Artificial Intelli-
gence 111(1-2):209-238, 1999.

[78] Tuomas Sandholm and Nir Vulkan. Bargaining with deaglininProceedings of the
16th National Conference on Artificial Intelligence (AAAI 98ages 44-51, Orlando,
FA, USA, 1999. AAAI Press.

[79] David Schmeidler. The nucleolus of a characteristicfion game SIAM Journal of
Applied Mathematicsl7, 1969.

[80] Sandip Sen and Partha Sarathi Dutta. Searching fomapttoalition structures. In
Proceedings of the 4th International Conference on Multiggystems (ICMAS 00)
pages 287-292, Boston, MA, USA, 2000. IEEE Computer Society.

[81] Lloyd Shapley and Martin Shubik. On market gamédsurnal of Economic Theoyy
1(21):9-25, June 1969.

[82] Loyld Shapley. A value for n-person gameSontributions to the Theory of Games,
volume 2 of Annals of Mathematics Studigsges 307-317, 1953.

[83] Onn Shehory, Gal Kaminka, and Eran Shoham. Multi-ageatition re-formation
and league ranking. IRroceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMASpad)es 1348—-1349, New
York, USA, 2004. IEEE Computer Society.

[84] Onn Shehory and Sarit Kraus. Coalition formation amamg@aomous agents: Strate-
gies and complexity. Ifrrom Reaction to Cognition, Selected Papers from the 5th
European Workshop on Modelling Autonomous Agents in a Mgjént World (MAA-
MAW 93) volume 957/1995, pages 55-72. Springer Berlin / Heide|dE§5.

BIBLIOGRAPHY 141

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Onn Shehory and Sarit Kraus. Task allocation via cmadiformation among au-
tonomous agents. IRroceedings of the 14th International Joint Conference aii Ar
ficial Intelligence (IJCAI 95)pages 655-661, Acapulco, Mexico, August 1995. Mor-
gan Kaufman.

Onn Shehory and Sarit Kraus. Formation of overlappioglitions for precedence-

ordered task-execution among autonomous agenirolceedings of the 2nd Interna-
tional Conference on Multiagent Systems (ICMAS péyes 330-337, Kyoto, Japan,
December 1996. AAAI Press.

Onn Shehory and Sarit Kraus. A kernel-oriented modetéalition-formation in gen-
eral environments: Implementation and resultsPtaceedings of the 13th National
Conference on Artificial Intelligence (AAAI 968)olume 1, pages 134-140, Portland,
Oregon, 1996. AAAI Press.

Onn Shehory and Sarit Kraus. Methods for task allocatia agent coalition forma-
tion. Artificial Intelligence 101(1-2):165-200, 1998.

Onn Shehory and Sarit Kraus. Feasible formation ofitoak among autonomous
agents in non-super-additive environmen@omputational Intelligencel5(3):218—
251, August 1999.

Onn Shehory, Sarit Kraus, and Osher Yadgar. Emergegerative goal-satisfaction
in large-scale automated-agent systen#stificial Intelligence 110(1):1-55, May
1999.

Onn Shehory, Katia Sycara, and Somesh Jha. Multi-aggordination through coali-
tion formation. InProceedings of the 4th International Workshop on Inteliggents
IV, Agent Theories, Architectures, and Languages (ATAL7)198umber 1365 in
Lecture Notes on Computer Science, pages 143-154, Proed&ic USA, 1998.
Springer-Verlag.

Leonid Sheremetov and JmRomero Co#és. Agent organizations with utility-based
fuzzy coalitions. InProceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS fi)es 461-462, Bologna,
Italy, 2002. ACM Press.

Mark Sims, Claudia Goldman, and Victor Lesser. Selfamigation through bottom-
up coalition formation. InProceedings of the 2nd International Joint Conference

BIBLIOGRAPHY 142

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

on Autonomous Agents and Multiagent Systems (A AMAS@8gs 867-874, Mel-
bourne, Australia, 2003. ACM Press.

Reid Smith. The contract net protocol: High-level commuation and control in a
distributed problem solvetEEE Transactions On ComputerS-29(12):1104-1113,
1980.

Leen-Kiat Soh and Xin Li. An integrated multilevel lesng approach to multiagent
coalition formation. InProceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI 03) pages 619-624, Acapulco, Mexico, 2003. Morgan
Kaufman.

Leen-Kiat Soh and Costas Tsatsoulis. Allocation akions in dynamic negotiation-
based coalition formation. IRroceedings of the Workshop on Teamwork and Coali-
tion Formation, AAMAS 20Q%ages 1-8, Bologna, Italy, 2002. ACM Press.

Leen-Kiat Soh and Costas Tsatsoulis. Learning to forgotiation coalitioins in a
multiagent system. IiProceeding of the AAAI Spring Symposium on Collaborative
Learning Agents 20Qages 106-112, Standford, CA, USA, 2002. AAAI Press.

Leen-Kiat Soh and Costas Tsatsoulis. Ultility-basedtmgént coalition formation

with incomplete information and time constraints.Rroceedings of the IEEE Inter-
national Conference on Systems Man and Cybernatics (SMC 2BE} Computer

Society, 2003.

Chattrakul Sombattheera and Aditya Ghose. Agent-basatitions in dynamic sup-
ply chains. InThe 9th Pacific Asia Conference on Information SysteBasmgkok,
Thailand, 2005.

Chattrakul Sombattheera and Aditya Ghose. A pruniageld algorithm for comput-
ing optimal coalition structures in linear production donsa InAdvances in Atrtificial
Intelligence, Proceedings of the 19th Conference of the Canasociety for Compu-
tational Studies of Intelligence (Al 20Q@)ecture Notes in Computer Science, pages
13-24, Quebec, Canada, 2006. Springer—\Verlag.

Chattrakul Sombattheera and Aditya K. Ghose. A disted branch-and-bound al-
gorithm for computing optimal coalition structures. Aalvances in Artificial Intel-
ligence, Proceedings of the 4th Helenic Conference grvélume 3955 oflLecture
Notes in Computer Sciengeages 334-344, Crete, Greece, 2006. Springer—\erlag.

BIBLIOGRAPHY 143

[102] Richard Sterns. Convergent transfer schemes for repg@amesTransactions of the
American Mathematical Society34(3), December 1968.

[103] Philip Straffin. Game Theory and Strateg¥he Mathematical Association Of Amer-
ica, NY, USA, 1993.

[104] Jayashankar Swaminathan and Sridhar Tayur. Modes&faply chains in e-business.
Management Sciencé9(10):1387-1406, 2003.

[105] Katia Sycara, Steven Roth, Norman Sadeh-Koniecpal Mark Fox. Managing re-
source allocation in multi-agent time-constrained dommainn Proceedings of the
1990 DARPA Workshop on Innovative Approaches to Planniciggdiling and Con-
trol, pages 240-250, San Diego, CA, USA, 1990. Morgan Kaufmann.

[106] Stef Tijs. LP-games and combinatorial optimizaticemges. Cahiers du Centre
d’Etudes de Recherche Oprationel8(2-3), 1992.

[107] Fernando Tohm and Toumas Sandholm. Coalition formgbimcesses with belief
revision among bounded-rational self-interested ageddsrnal of Logic and Com-
putation 9(6):793-815, 1999.

[108] Maksim Tsvetovat and Katia Sycara. Customer coalitionthe electronic market-
place. InProceedings of the 4th International Conference on Autonmgents
(ICMAS 05) pages 263—-264, Barcelona, Spain, 2000. ACM Press.

[109] Maksim Tsvetovat, Katia P. Sycara, Yian Chen, and Jarives Customer coalitions
in electronic markets. lMgent-Mediated Electronic Commerce Ill, Current Issues
in Agent-Based Electronic Commerce Systegrages 121-138. Springer-Verlag, Lon-
don, UK, 2001.

[110] Sander van der Putten, Valentin Robu, Han La Foutmnemiek Jorritsma, and
Margo Gal. Automating supply chain negotiations using aatoous agents: a case
study in transportation logistics. Proceedings of the 5th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (A AMAS0@s 1506—1513,
Hakodate, Japan, 2006. ACM Press.

[111] William Walsh and Michael Wellman. Decentralized plypchain formation: A mar-
ket protocol and competitive equilibrium analysidournal of Artificial Intelligence
Research19:513-567, 2003.

BIBLIOGRAPHY 144

[112] Te-Wei Wang and Suresh K. Tadisina. Simulating iné¢fmased collaboration:
A cost-benefit case study using a multi-agent mod&lecision Support System
43(2):645—-662, 2007.

[113] Michael Wooldridge and Paul Dunne. On the computaticomplexity of coalitional
resource gamedirtifitial Intelligence 170(10):835-871, 2006.

[114] Michael Wooldridge and Paul E. Dunne. On the compateti complexity of quali-
tative coalitional gamedAtrtificial Intelligence 158(1):27—73, 2004.

[115] Junichi Yamamoto and Katia Sycara. A stable and effidi@yer coalition formation
scheme for e-marketplaces. Rroceedings of the 5th International Conference on
Autonomous Agents (ICMAS Qprages 576-583, Montreal, Quebec, Canada, 2001.
ACM Press.

[116] Yiming Ye and Xun Yi. Coalition signature scheme in nnalgent systems. IRro-
ceeding of the 11th International World Wide Web Confereidé@&/{\V2002)Sheraton
Waikiki Hotel, Honolulu, Hawaii, USA, May 2002. ACM Press.

[117] Yun Yeh. A dynamic programming approach to the congodett partitioning problem.
BIT Numerical Mathematic6(4):467-474, 1986.

[118] Dong Won Yi, Soung Hie Kim, and Nak Hyun Kim. Combined nebdg with multi-
agent systems and simulation: Its application to harboplyughain management.
In Proceedings of the 35th Annual Hawaii International Confegon System Sci-
ences (HICSS 200(pages 1615-1624, Hawaii, USA, January 2002. IEEE Computer
Society.

[119] Gilad Zlotkin and Jeffrey Rosenschein. Coalition, ¢cography, and stability: Mech-
anisms for coalition formation in task oriented domainsMarking Notes of the AAAI
Spring Syposium on Software Agemages 87—94, Stanford, CA, USA, 1994. AAAI
Press.

	University of Wollongong - Research Online
	Cover page

	Copyright warning

	Title page

	Dedication

	Declaration

	Abstract

	List of publication

	Acknowledgements

	Contents

	List of tables
	List of figures

	Chapter one

	Chapter two

	Chapter three

	Chapter four

	Chapter five

	Chapter six

	Chapter seven

	Bibliography

