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Abstract

This thesis presents a number of algorithms for forming coalitions among cooperative agents

in pragmatic domains where traditional cooperative game theory solution concepts do not

apply due to bounded rationality of agents. While previous work in coalition formation in

multi-agent systems research operated on relatively smallnumber of agents, e.g. less than

30 agents, this work explores coalition formation among 100agents, this is due to limited

computational resources not the performance of the our algorithms. We explore a best-

first search centralized algorithm for optimal coalition structures which is based on a novel

idea of deciding what is the best coalition to put into coalition structure being generated.

Empirical results show that the solution reaches optimality quickly and terminates quickly

in pragmatic domains. We further explore on optimal coalition structures with distributed

algorithms in linear and non-linear domains. For the lineardomains, we explore linear pro-

duction and integer programming. For the non-linear domains we explore logistic providers.

Based on existing algorithms, we explore a novel environmentof forming coalitions in sup-

ply networks involving buyers, sellers and logistics providers agents. In this setting, buyers

form coalitions to increase their negotiation power while sellers and logistics providers form

coalitions to aggregate their supply power and optimize their resources usage.
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Chapter 1

Introduction

1.1 Introduction

For over a decade, software agents have been used to solve a wide range of problems in

which agents represent the goals or behaviours of independent human agents. For the most

part, these problems have been intentionally limited in scope, using only small numbers of

agents with a limited degree of interaction between the agents themselves. Agents have

often been used to model interactions between groups of human agents but, once again,

these interactions have typically focused on solving problems under only a single constraint.

Historically, research has been limited to these simpler problems due to the lack of computer

processing power and the lack of efficient algorithms to dealwith the enormous increase in

complexity when more and more agents are allowed to interactfreely with one another to

solve problems under heterogeneous constraints i.e. constraints on more than one variable.

However, real-world problems, which could be solved using agents, are unlike these sim-

ple problems because they often involve large numbers of agents, each representing stake-

holders who may be organized into different groups, each of which may be operating under a

different sets of constraints. Even more challenging are real-world problems in which mem-

bers of a single stakeholder group may form a coalition to tryto improve their performance

e.g. a group of manufacturers sharing raw materials to meet alarge order which no single

manufacturer could supply. In even more complex problems, stakeholders may form coali-

tions with stakeholders from other groups as well as from within their own group e.g. a group

of manufacturers who collaborate with logistics providersto distribute a product to multiple

buyers. All of these different stakeholders may have heterogeneous constraints e.g. a logis-

tic provider (LP) may want to minimize traveling time, minimize fuel use and maximize the

utilization of each truck.

Most of the methods used to solve such coalition formation problems have used deter-

ministic methods, in which every possible coalition is identified and the outcome for each of

1



1.2. Background 2

the members of a coalition is calculated for every coalition. These exhaustive approaches are

computationally very demanding and will only work for smallnumbers of agents, typically

less than 30. However, an alternative approach would be to find an “anytime” solution i.e.

a method which identifies and stores good coalitions while itcontinues to search for the op-

timal coalition. This method can be stopped at anytime and, while it may not have reached

the optimal coalition, it will have found a coalition which adequately meets the needs of

the stakeholders. This research aims to develop an anytime method for Optimal Coalition

Structure (OCS) problems.

1.2 Background

Software agents can be used for a wide range of purposes such as monitoring the status

of a system or a device, recording user interactions, or customizing a search on the Inter-

net. These agents may be resident on a single computer or be deployed across networks,

particularly the World Wide Web. More advanced agents, or intelligent agents, are able

to communicate with other agents and to make decisions basedon their initial parameters

plus information gathered from the environment or from other agents. When a number of

intelligent agents share a common environment, they are a multi-agent system (MAS).

One area of growing interest to MAS researchers are applications in which agents not

only communicate with one another but actually collaboratewith one another to solve a

problem which they could not solve individually. This may bebecause the agent does not

have the functionality to carry out the whole task or becausean agent lacks access to comput-

ing resources e.g. CPU time, RAM, storage etc. which another agent on a different computer

does have access to. When agents try to collaborate they must commit their own resources

to the task.

When several agents make a binding agreement to cooperate, wesay a coalition has been

formed. The point of forming a coalition is to have every member of a coalition perform bet-

ter than each one might do individually. For example, out of 10 local plumbers, 6 may decide

to band together to buy materials in bulk at a cheaper price than each might do individually.

The savings made by this coalition is called the coalition value. The 4 remaining plumbers

may have been excluded because they do not buy enough materials to make it worthwhile

for the original 6 to include them. This may seem odd, because10 plumbers would almost

certainly get a better deal than 6 i.e. the coalition value would be slightly higher.

However, coalitions come at a cost. When buying in bulk, it maybe necessary for all the

plumbers to meet to distribute their bulk purchase. Travel costs or the amount of time taken
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to arrange the meetings or to divide up the order are all costsof being in the coalition which

might not have existed at all if the plumbers had all bought independently. The costs of in-

cluding the additional 4 plumbers may exceed the benefit of having their extra buying power,

in which case the 6 plumbers are actually better off if they exclude the other 4 plumbers. So,

the value of any given coalition depends on the benefit that the coalition provides i.e. the

coalition value, and on the coalition costs.

However, when considering the outcome for a coalition, we need to take into account the

effect of other agents which are not part of the coalition. For example, given three agents 1,

2 and 3, possible coalitions might be{1, 2} or {1, 2, 3} or {1}. In the first example we have

not accounted for agent{3} which is, effectively, a coalition of 1 but may still have an effect

on the outcome. So the “complete” set of coalitions corresponding to the first case is actually

{{1, 2}, {3}}. This “complete” set of coalitions is known as a coalition structure. The second

example,{1, 2, 3}, is itself a coalition structure because no agents are unaccounted for. In

the third example,{1}, there are 2 possible coalition structures, each of which may produce

a different outcome. Possible coalition structures for thecoalition {1} are{{1}, {2, 3}}

and{{1},{2},{3}}. Clearly, the outcome for agent 1 might be different if it was competing

with each of the other two agents singly or both the other two agents working together. So,

we can only determine the outcome of a coalition if we consider separately all the coalition

structures in which that agent can exist. For the 3 agents above, the identification of all

coalition structures is trivial. However with 20 agents, the task of even identifying all the

coalitions is not trivial. Calculating the outcome for all these coalitions is computationally

intensive.

Given all of the coalition structures for a set of agents, it is typical for one of those

coalition structures to give the best outcome i.e. to have the highest coalition value. This

is called the Optimal Coalition Structure (OCS) and the benefitgained by the participants

in this OCS is called the Optimal Coalition Structure value (OCSvalue). The definition of

“best outcome” depends on the context and is left deliberately vague here. It will be defined

more formally in Chapter 2.

In much of the previous research, an exhaustive or deterministic approach has been used

i.e. the algorithm meticulously generates every possible coalition structure and calculates

the coalition structure value for each coalition structure. This approach works quite well for

small numbers of agents but as the number of agents increase the computational demands

rapidly become intractable. The time taken to generate every possible coalition structure

may be unacceptable in any practical application. For example, it would be pointless to find

that an optimal route for a delivery truck was five minutes faster than the next best option,
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if it took 3 hours to find that optimal solution. Moreover, as the number of agents increase,

the amount of RAM used to carry out the calculations becomes unacceptably large. Practical

restrictions on time or computing resources create a rational bound on the size of problems

which exhaustive approaches can solve.

However, one approach which may be useful in solving OCS problems is the “anytime”

approach, in which an algorithm keeps track of the “best solution so far” as it continues to

search for the optimal solution. Thus the algorithm can be stopped at “anytime” and will be

able to return its “best solution so far”. While this is intuitively appealing, it relies on the

ability of the algorithm to find at least a “good solution” quite quickly. If the algorithm labo-

riously plodded through millions of poor solutions, for some reason, then its “best solution

so far” could be completely unacceptable in practice.

A number of search algorithms may do away with these “poor solutions”. A branch

and bound search, for example, uses some heuristic to eliminate or prune large numbers of

“poor solutions” quickly. Consequently, a search of the remaining search space is likely to

produce at least a “good solution” quite quickly. Such searches are at the heart of a successful

“anytime” approach to solving problems involving large search spaces. Given the potentially

huge search spaces involved in finding Optimal Coalition Structures, an anytime approach

may offer a viable solution.

1.3 Structure of the thesis

Chapter 1 provides a brief introduction to Optimal Coalition Structure Problems (OCSP) and

proposes a possible solution based on an anytime- Best First Search (BFS) approach.

Chapter 2 presents a review of the literature on OCSP, the best current solutions to OCSP

and benchmarks against which to test the algorithms proposed in the remainder of the thesis.

The following 4 chapters each proposes a new anytime-BFS algorithm and demonstrates

that this algorithm is better at providing solutions than the current stat-of-the-art approaches.

Chapter 3 presents an anytime-BFS algorithm to solve a generalOCSP i.e. one without

any specific domain requirements. As in most previous research, this algorithm assumes

that the coalition value is known a priori. We propose a set ofheuristics that help us iden-

tify nearly Optimal Coalition Structures (OCS) quickly. The heuristics work in three steps:

setting configuration upper bounds, estimating the optimalcoalition structure value, and

searching for that optimal value using a branch-and-bound BFS strategy. Empirical results

show that this algorithm approaches the optimal coalition structure value in a reasonably

short period of time.
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Chapter 4 presents an adaptation of the algorithm in Chapter 3 to a real-world setting,

namely, a linear production domain, in which each coalitionvalue is not known a priori.

The common goal of the agents is to maximize the system’s profit. In our algorithm, agents

perform two tasks: i) identify profitable coalitions, and ii) compute OCS. We show that our

algorithm outperforms exhaustive search in generating OCS in terms of elapsed time and

number of coalition structures generated.

Chapter 5 adapts the general algorithm in Chapter 3 to the real-world domain of supply

chain networks. The agents take on the roles of three distinctly different sets of stakehold-

ers, namely, buyers, sellers and logistics providers (LPs). Agents take two steps to form

coalitions: i) agents in each stakeholder ”sector” sequentially form primary coalitions in or-

der to increase bargaining power, selling capacity or service efficiency, and ii) agents form

secondary coalitions across sectors in order to finalize thedeal and deliver goods to buyers.

We propose a negotiation protocol and deliberation mechanism. The negotiation protocol

allows thorough communication among agents within and across sectors. The deliberation

mechanism allows agents to consider potential coalition members and attractive payoffs for

them. We provide examples of how they can help agents form coalitions successfully.

Finally, Chapter 6 studies coalition formation in qualitative preference games in which

agents carry out a number of different tasks. Each task is specified by a requirement which

is a number of constraints over a set of attributes. These constraints are hard and soft ones.

The attributes include price to be paid to agents. The price for each task is negotiable. Hence

agents have to trade off between their resources and expected payoff. This kind of problems

exist in many real-world domains including electronic commerce, composite web services,

supply chains and logistics, grid computing, etc. The algorithm proposed in this chapter is a

combination of the algorithms in Chapters 4 and 5.



Chapter 2

Background

2.1 Introduction to Coalition Formation

This chapter surveys related work in coalition formation conducted by other researchers that

provides the background for the research presented in this dissertation. We firstly introduce

the concept of coalition formation in cooperative game theory including a discussion on rel-

evant solution concepts. We introduce coalition formationresearch in multi-agent systems

including negotiation and deliberation. We discuss pragmatic aspects that fail to be handled

adequately by both cooperative game theory and present research in coalition formation, and

which are the motivation of this research. Lastly, we explore related work to our research top-

ics including centralized algorithms for computing optimal coalition structures, distributed

algorithms for computing optimal coalition structures, coalition formation in dynamic supply

networks, and qualitative coalition formation.

Coalition formation is the process that leads to cooperationamong agents within a multi-

agent system. Coalition formation was first studied in cooperative game theory by Von Neu-

mann and Morgensternc̃ite89. With the growth and maturity of multi-agent system research,

coalition formation has gained more attention from researchers and has been regarded as an

important area in multi-agent systems. We shall informallyexplore both cooperative game

theory and coalition formation in multi-agent systems below.

2.1.1 Cooperative Game Theory

Game theory studies decision making by multiple decision making units, which we shall

refer to asagentshenceforth, and whose decisions are inter-related. The goal of game theory

is to find stable states in which none of the agents will want tochange their decisions. Such

a stable state is called anequilibrium. A principle that describes reasons which lead agents

to an equilibrium is asolution concept. Game theory can be divided intonon-cooperative

games andcooperativegames. In the non-cooperative game environment, agents arenot

6
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allowed to collaborate or communicate with each other. A real world example is the anti-trust

law that prohibits agents from forming cartels. Research in non-cooperative game theory

seeks to identify strategies which are the best possible response to other agents’ strategies

A well known solution concept in this area is Nash Equilibrium [59] in which none of the

agents can benefit from changing their strategies.

In contrast to non-cooperative game theory, cooperative game theory allows for agents to

communicate that leads them to cooperation [42] from which they can benefit more individu-

ally. Agents communicate in order to negotiate with regard to whom they can cooperate and

how the joint benefits will be distributed among them. When several agents make a binding

agreement to cooperate, we say acoalition has been formed. Hence, the cooperative game

theories are also known as the theories ofcoalition formation[42]. Mathematically, given

setN of n agents, a coalition is a non-empty subsetS of N , S ⊆ N,S 6= ∅. The setN itself

is called thegrand coalitionwhile a coalition of one agent is calledsingleton coalition. Let

Sbe the set of all coalitions, whose size ofS is 2n−1. Given a set of 3 agents,N = {1, 2, 3},

all the 7 coalitions are{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and{1, 2, 3}. As in set theory, the

cardinality, |S|, of S is the size of (the number of agents in)S. Once agents have formed

coalitions, they can be viewed as if they have divided themselves into a mutually exclusive

and exhaustive partitions. We define acoalition structure, CS, as a partition ofN . A CS can

be described byCS = {S1, S2, . . . , Sm}. The set of allCS is denoted byCS. For example,

givenN = {1, 2, 3}, all CS in S are{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}},

{{1}, {2}, {3}}.

Mathematically, aCS has to satisfy three conditions [42]:

1) Sj 6= ∅, j = 1, 2, . . . ,m,

2) Si ∩ Sj = ∅ for all i 6= j, and

3)
⋃

Sj = N.

The joint benefit of a coalition is call thecoalition value, which is a numeric value that

usually represents the utility which accrues from their cooperation. It is quite common in

cooperative game theory that the coalition value is money value, e.g., dollars. Cooperative

game theory assumes that there is acharacteristic function[42], V that assigns a real number

to eachS, V : 2n → R. We shall denote the coalition value ofS with VS. Hence, a

cooperativen-person game in characteristic function form is defined by the pair (N ; V ) [42].

The portion ofVS given to agenti is thepayoff, Ui, of the agent for which the agent plays the

game. The collection of payoffs to each agent is the payoff vector, U = (U1, U2, . . . , Un),

which specifies the payoff for each respective agent. Putting together a coalition structure

and a payoff vector is thepayoff configuration[42], (U ; CS), which describes a possible
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outcome of the game. For example,the payoff configuration(5, 10, 5; {1, 3}, {2}) means

agents 1 and 3 have formed a coalition and receive payoff for 5dollars each while agent 2

remains a singleton coalition and receives 10 dollars payoff on its own.

Games Environments

Classical research in cooperative game theory considers games within thesuperadditive[42]

environment in which the value of a coalition is at least as much as the sum of the values of

each pair of its subcoalitions, e.g.,

VS∪T ≥ VS + VT for all S, T ⊆ N such thatS ∩ T = ∅.

In contrast to superadditive, thesubadditiveenvironment is one in which the coalition value

of a given coalition is strictly less than the sums of the coalition value of each pair of its

subcoalitions, e.g.,

VS∪T < VS + VT for all S, T ⊆ N such thatS ∩ T = ∅.

In both environments, there is monotonicity in coalition value based on the size of coali-

tions. However, anon-superadditive[89] environment is one in which coalition values have

no relationship to the size of coalitions at all. They are arbitrarily random. This environment

is similar to the real world. It is less explored in cooperative game theory but has recently

received more attention in multi-agent systems research recently [77, 48, 49, 84, 89, 86, 13,

88, 91].

2.1.2 Example of Cooperative Game

We now consider a classic game, the Sandal Maker game [42, 57,81]. In this game, there

are five agents (sandal makers). Agent 1 and 2 make only left sandals, while agents 3, 4, and

5 make right sandals. (Although no sandal maker in the world would utilize such a special

way of production, this convincing example provides a fruitful model of cooperative game.)

In one cycle, a left sandal maker can produce 17 sandals, while a right sandal maker can

produce 10 sandals. Obviously, a single sandal is worth nothing, only a pair of left and right

sandals can be sold for 20 dollars. All the scrap leather and unused sandals are thrown away

at the end of each cycle. In this game, agents need to form coalitions of left and right sandal

makers in order to create value to their coalitions then divide the payoffs. Given this simple

information, we can determine coalition values below. Since an agent alone cannot sell its

sandals, the value of a singleton coalition is 0. Also, a coalition of agents that produces the
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same side sandals is worth 0. Apart from this, a coalition consisting of both agents capabled

of producing each moiety (side) will be basically constrained by the smallest number of

either moiety. For example, the value of a coalition of two agents, each of a moiety, is

limited by the smaller number of right sandals. The value of acoalition of three agents,

one of which is of the left moiety, is limited by the number of left sandals. The value of

a coalition of four members, one of which of the right moiety,is limited by the number of

right sandals. Finally the coalition value of the grand coalition is limited by the number of

left sandals. Note that we will denote a coalitionS with the list of its member to designate

the coalition value as well. For example,V1 refers to the value of coalitionS = {1} while

V1,2 refers to the value of coalitionS = {1, 2}. Below is the characteristic function that

summarizes coalition values:

V1 = V2 = V3 = V4 = V5 = 0

V1,2 = V3,4 = V3,5 = V4,5 = V3,4,5 = 0

V1,3 = V1,4 = V1,5 = V2,3 = V2,4 = V2,5 = 200

V1,3,4 = V1,3,5 = V1,4,5 = V2,3,4 = V2,3,5 = V2,4,5 = 340

V1,2,3 = V1,2,4 = V1,2,5 = 200

V1,3,4,5 = V2,3,4,5 = 340

V1,2,3,4 = V1,2,3,5 = V1,2,4,5 = 400

V1,2,3,4,5 = 600

If agent 1 and 3 agree to make a deal, while player 2 and 4 agree on another deal, a payoff

configuration could be(100, 50, 100, 150, 0; {1, 3}, {2, 4}, {5}). Is this, however, a solution

of the game? Since agents are self-interested, reaching such agreement may not always be

this easy because there may be a chance that some agents are still looking to increase their

payoffs. In the following, we shall explore solution concepts that bring stability to the game.

2.1.3 Solution Concepts in Cooperative Games

The study of coalition formation seeks to find solutions thatlead to a stable state in which

every agent is satisfied with its payoff and has no incentive to deviate from its coalition.

Solution concepts established include Bargaining Set [8], Stable Set [60], Kernel [24], the

Core [53], Nucleolus [79] and Shapley value [82]. Among them,(although many of them

are not directly involved in our research) we briefly describe the following as they have also

been studied in multi-agent systems research as well.
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The Core

Von Neumann and Morgenstern [60] consider that searching for stable states in a cooperative

game is actually searching for payoff vectors that satisfy all agents. Hence, there is no

incentive for any agent to deviate. They propose the idea ofindividual rationalitythat states

that an agent in a coalition will never accept any payoff lessthan what it could receive from

its singleton coalition,Ui ≥ Vi for all i. This individual rationality is virtually part of every

stable state otherwise there will be at least one agent who deviates in order to satisfy this

condition. Von Neumann et al. [60] also propose that agents should form coalitions such

that the sum of coalition values is maximal. This is referredto asgroup rationality [60].

Since the environment they study is superadditive,VN is the largest coalition value. It can be

claimed that agents should refuse any payoff configuration such that
∑

Ui,i∈N < VN . Von

Neumann et al. [60] define group rationality as “the sum of every agent’s payoff in the grand

coalition is equal to the the grand coalition’s value”,
∑

Ui,i∈N = VN . The implication of this

assumption into the general case is that agents should try tomaximize the system’s utility. A

payoff vector that satisfies individual and group rationality is called animputation.

Based on these rationalities, Gillies [30] defines the last level of rationality, i.e.,coali-

tional rationalitywhich requires that the sum of payoffs of agents in any coalition is not less

than the coalition value,
∑

UT ≥ VT for everyT ⊆ N . There is no incentive for any agent

to leave its coalition. Hence, it brings stability to the system. Gillies [30] names the set of

payoff vectors that satisfy all three levels of rationalityas theCore. Of all existing solu-

tion concepts in cooperative game theory, the core is simplythe most beneficial concept that

brings the most wealth to individual agents, coalitions, and the system as a whole. However,

it is the hardest to satisfy as we shall cover in detail later.

Let us consider a simple game of 3 agents in a superadditive environment, explained

in [103]. The game is defined by the characteristic function below:

V1 = V2 = V3 = 0

V1,2 = 0.25, V1,3 = 0.5, V2,3 = 0.75

V1,2,3 = 1

A payoff vector(U1, U2, U3) is in the core of the game if

U1 + U2 ≥ V1,2 = 0.25

U1 + U3 ≥ V1,3 = 0.5

U2 + U3 ≥ V2,3 = 0.75

Payoff vector(0.25, 0.5, 0.25), for example, meets all three conditions, so it is in the core.
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Let us consider another example, the House Selling game discussed in [60, 103] which

was analyzed by Von Neumann et al. [60]. Agent 1 has a house which it values at $100,000

and wants to sell it. Agents 2 and 3 are potential buyers, who each has $200,000 in cash

and values the house at $200,000. The coalition value, in this case, is actually the difference

between the amount that buyers and seller value the house. Because any singleton coalition

and a coalition of buyers cannot make any deal, hence their values are 0. A coalition of

agent 1 and one of the buyers is $100,000. The grand coalitionalso (theoretically) has the

value $100,000 (although the house can not be divided). Hence, the characteristic function

is shown below:

V1 = V2 = V3 = 0

V1,2 = V1,3 = 100, 000, V2,3 = 0

V1,2,3 = 100, 000

The core of this game is the set of payoff vectors(U1, U2, U3) with U1 + U2 ≥ 100, 000

U1 + U3 ≥ 100, 000, andU2 + U3 ≥ 0. The only payoff vector which satisfies these

conditions is(100000, 0, 0). It implies that agent 1 sells the house to either agent 1 or 2 with

the maximum possible price of $200,000. The only agent who gets all the benefit of this

economic cooperation is agent 1. The negotiation that may lead to this conclusion could be

agent 2 offers $150,000 to agent 1. Agent 3 then raises the bidby offering agent 1 $175,000,

and so on. As long as the offer is below $200,000, there is a chance both agents can raise the

bids.

Now, let us consider the Sandal game. Since the largest amount possible is $600, the

proposed payoff vector(100, 50, 100, 150, 0) is definitely not in the core because it is not

group rational. Payoff Vector(120, 120, 120, 120, 120) is in the core because it satisfies

individual, group and coalitional rationality. No agent can deviate and be better off.

Shapley Value

Since agents are self-interested, a fair distribution of a coalition value among coalition mem-

bers should satisfy agents very easily. Shapley [82] seeks for an imputation that represents

a fair distribution of payoffs taking into account the contribution each agent made into the

coalition value. This fair distribution is known as theShapley value. In a game(N ; V ),

Shapley’s concept of a fair distribution of imputationU = (U1, U2, ..., Un) is based on three

axioms.

Axiom 1: U should only depend onV , and should respect symmetry inV . If agentsi

andj have symmetric roles thenUi = Uj.
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Axiom 2: If VS = VS−i, a coalition withouti, for all coalitionsS ⊆ N , thenUi = 0,

e.g, the payoff to dummy agenti who has no contribution to any coalition is 0. Also, adding

such a dummy agent does not change the valueUj for other agentsj in the game.

Based on the first two axioms, Shapley proposes that any game can be broken down

into a sum of symmetric games (a symmetric game is one where anagent’s payoff can be

transposed as the other agent’s payoff [60]) with dummies added. Suppose that(N ; V ) and

(N ; W ) are two different games with the same set of agents. The sum gameV + W can be

defined as(V +W )S = VS +WS for all coalitionsS. Now, we have 3 games, the imputations

to be assigned to them should be related as below:

Axiom 3: U [V + W ] = U [V ] + U [W ]

The idea is that if it is fair for some agenti to getUi[V ] in V andUi[W ] in W (both

symmetric games), it would seem fair for the agent to get the sum of these two payoffs in the

gameV + W .

Shapley [82] proposes a theorem that states that there is only one imputation that satisfies

the three axioms. To calculate the imputation, consider theagents forming the grand coalition

step by step. Start by one agent and add one additional agent at a time. As each agent joins,

award the new agent an additional value he contributes to thecoalition. By saying an agent

contributesa value to a coalition, we mean the agent increases the coalition value by the

difference between the coalition value with the presence ofthe agent and that of the coalition

value without the presence of the agent. Once this is done foreach of then! grand coalitions’

permutation, divide the accumulated awards to each player by n! to give the fair imputation.

Consider the following game [103].

V1 = V2 = V3 = 0

V1,2 = 2, V1,3 = 4, V2,3 = 6

V1,2,3 = 7

The 6 ordered (3! of orderings) grand coalitions are:{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}

and{3, 2, 1}. GivenS = {1, 2, 3}, the first member is agent1, who contributes the value0 to

the empty coalition( whose value is also0). The second member is agent2, who contributes

the valueV1,2 − V1 = 2 − 0 = 2 to coalition{1, 2}. The third member is agent3, who

contributes the valueV1,2,3 − V 1, 2 = 7 − 2 = 5 to coalition{1, 2, 3}. Consider coalition

{3, 2, 1}, the value added by each player to the coalition is:

Agent 3:V3 − V∅ = 0− 0 = 0,

Agent 2:V3,2 − V2 = 6− 0 = 6,

Agent 1:V3,2,1 − V3,2 = 7− 6 = 1
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Repeat the same process for each of the ordered coalitions such that we can obtain the

value each player contributes to each of the ordered coalitions as shown below. The column

“Order” contains all the permutations of the grand coalition. The column “Contribution of

Agents” contains all the contributions each individual agent made to the existing coalition.

Note that the contribution of each agent illustrated below depends on the order the agent joins

the coalition. GivenS = {1, 3, 2}, agent1 contributes the value0 to the existing coalition

(empty), agent3 contributes the value4 to the existing coalition, and agent2 contributes the

value3 to the coalition.

Contribution

of Agents

Order 1 2 3

{1,2,3} 0 2 5

{1,3,2} 0 3 4

{2,1,3} 2 0 5

{2,3,1} 1 0 6

{3,1,2} 4 1 2

{3,2,1} 1 6 0

Total 8 14 20

Then we find the average contribution of each player over the six ordered coalitions

for the Shapley value, i.e. =1
6
(8, 14, 20) = (1.33, 2.33, 3.33). Although the Shapley value

guarantees a ”fair” distribution of payoffs to agents, it does not tell which coalitions are

formed.

Kernel Solution Concept

While Shapley value finds a fair distribution by taking into account every permutation of

the grand coalition, in many cases some agents’ contribution is really low and affects their

average contribution. It can be argued that this is not really fair to them because they are not

obliged to be part of those low valued coalitions. How can thepayoffs for these agents be

really fair?

To answer this question, Davis and Maschler [24] propose another solution concept,

namely, theKernel. The kernel stabilizes coalition structure by balancing each pair of agents

payoffs in every coalition. For a game(N ; V ) and a payoff configuration(U ; CS), there

may be a subset ofN (group of agents), which contemplate leaving their respective coali-

tions to form a new coalitionR. The difference between the value ofR and the sums of their
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collective payoffs,UR, is defined by Davis et al. [24] as theexcess: e(R; U) = VR − UR.

Hence, the excess ofR is the amount that the prospective coalition members ofR may gain

(or lose, depending on the sign of the excess value) if they were to leave their current coali-

tions in the given(U ; CS) to form R. Now, consider any two agentsi andj in a coalition

S ∈ CS. Agenti may join any alternative coalition alone,R /∈ CS andj /∈ R. Each of these

coalitions will have an excess with respect to(U,CS)as defined above. The largest of these

excesses is called themaximum surplusof agenti over agentj with respect to(U ; CS), e.g.,

Si,j = maxR|i∈R,j /∈R e(R; U).

This maximum surplus is the maximum amount agenti can gain (or minimum amount it

must lose) if it deviates from(U ; CS) to any alternativeR. Hence, agenti can claim that it

potentially could gain that much payoff. Similarly, agentj can do the same and claim that

its maximum surplus isSj,i. Now, if both

Si,j > Sj,i andUj > Vj,

e.g., agenti’s maximum is greater than that of agentj and agentj’s payoff is greater than

its singleton coalition’s value, then it is said that agenti outweighsagentj, with respect

to (U ; CS) [24]. In other words, agenti has greater maximum surplus and can ask for

compensation from agentj otherwise it may leave for better payoff inR. However, agenti

cannot ask for all, it is bounded by individual rationality,Vj, e.g., agentj would not accept

anything lower than this value.

If neither agent outweighs the other, then they are in equilibrium. An equilibrium be-

tween the two agents exists when a payoff configuration satisfies one of the following con-

ditions:

• Si,j = Sj,i; their maximum surpluses are equal and nullify each other’sclaim for

compensation.

• Si,j > Sj,i andUj = Vj; although agenti’s maximum surplus is greater than that of

agentj, it cannot claim compensation from agentj because agentj may deviate to its

own singleton coalition.

• Sj,i < Si,j andUi = Vi; this is the reverse case of the above condition.

For the global equilibrium, Davis et al. [24] define the setK of all payoff configurations

(U ; CS) such that every pair of agentsi, j ∈ S ∈ CS are in equilibrium. Here, the sense

of fairness is different from Shapley value in that it considers potential coalitions that might
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raise agents’ payoffs. If agenti claims that it can raise a higher payoff without agentj

than vice versa, then agentj’s payoff in (U ; CS) is too much. Hence, some of it should

compensate agenti.

Let us consider the game [42],

V1 = V2 = V3 = 0;

V1,2 = 90; V1,3 = 80; V2,3 = 70;

V1,2,3 = 105.

Suppose we have a configuration payoff(U ; CS) = (45, 0, 35; {1, 3}, {2}) on offer. In

order to find if it is in the Kernel, we find its excesses, maximum surpluses, then equilibria

as follows. Suppose agent1 and3 are considering their coalition{1, 3}. There are two

coalitions that include 1 but exclude 3, e.g.,{1} and{1, 2}. The excesses and maximum

surplus are

e(1; U) = V1 − U1 = 0− 45 = −45.

e({1, 2}; U) = V1,2 − U1 = 90− 45 = 45.

S1,3 = max(−45, 45) = 45.

Similarly, S3,1 = 35. SinceS1,3 = 45 > S3,1 = 35, agent 1 outweighs agent 3,

i.e. (U ; C) = (45, 0, 35 : {1, 3}, 2) is not in the Kernel. What about the(U ; CS) =

(50, 30, 25; {1, 2, 3})? The excesses and maximum surplus between agent 2 and 3 are:

S2,3 = max(V2 − U2, V1,2 − U2) = max(0− 30, 90− 30) = 60.

S3,2 = max(V3 − U3, V1,3 − U3) = max(0− 25, 80− 25) = 55.

Agent 2 outweighs agent 3, i.e.(50, 30, 25; {1, 2, 3}) is not in Kernel. What about the

(U ; C) = (45, 35, 25; {1, 2, 3})? The excesses and maximum surpluses are:

S1,2 = max(0− 45, 80− 70) = 10 = max(0− 35, 70− 60) = S2,1,

i.e. player 1 and 2 are in equilibrium.

S1,3 = max(0− 45, 90− 80) = 10 = max(0− 25, 70− 60) = S3,1,

i.e. player 1 and 3 are in equilibrium.

S2,3 = max(0− 35, 90− 80) = 10 = max(0− 25, 80− 70) = S3,2,

i.e. player 2 and 3 are in equilibrium.

Hence, the(U ; C) = (45, 35, 25; {1, 2, 3})is in the Kernel.
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2.2 Coalition Formation in Multi-agent Systems

Taking into account the above mentioned points, coalition formation in multi-agent systems

deals with more realistic environments. Instead of just considering the outcomes, we con-

sider coalition formation as a process, consisting of inter-related activities, i.e., deliberation

and negotiation, that eventually helps agents reach agreement to form coalitions. In delibera-

tion, agents deal with necessary calculations, including computing coalition values, choosing

potential coalition members, and computing reasonable payoffs. In negotiation, agents fol-

low a protocol to exchange information, which was computed during their individual delib-

eration, among each other to convince potential coalition members to make a decision. Note

that coalition formation requires simultaneous multilateral rather than bilateral negotiation

[78].

2.2.1 Impractical Issues in Cooperative Game Theory

As we have covered so far, cooperative game theory ignores multiple pragmatic aspects. First

of all, it involves merely a very small number of agents (usually less than 10) whereas multi-

agent systems can involve a larger number of agents (can be aslarge as 1000 agents [21]).

The larger number of agents causes a lot of consequential pragmatic issues. While the num-

ber of agents grows linearly, the number of coalitions and coalition structures grow exponen-

tially (as we shall discuss in greater detail later in 2.3). Practically, in order to calculate them

repeatedly and rapidly retrieve coalition values for some 44 agents (244 or 4×1012 coalitions)

would require the most powerful computer in the world.1 Note that this figure would leave

no memory left for any other operation at all. Let alone the number of coalition structures

(see 2.3.1). The fastest algorithm for generating coalition structures [69, 71] merely deals

with 27 agents on typical personal computers. The problem becomes intractable for even a

slightly larger number of agents.

Cooperative game theory assumes a characteristic function to instantly yield optimal [42]

coalition values. Combinatorial games that are studied in game theory assume coalition

values are given and focus on the aspect of coalition value distribution. However, it is known

that optimizing coalition values is also necessary in pragmatic coalition formations [75, 76].

The complexity of computing these values can be as complex aslinear (Linear Production

game [63]) or non-linear (Traveling Salesman game [66]). Although the computation of a

1IBM’s BlueGene has memory of 32768 GB or244. Ref: http://www.top500.org/system/7747, accessed on
18 June 2009.
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coalition value in linear games can be done in polynomial time, it is not the case for non-

linear games which require exponential time. The computation of all coalition values can

become intractable very easily due to the exponential number of coalitions.

By considering a very small number of agents and assuming perfect rationality and com-

plete information, important aspects such as dynamicity ofcoalition, deliberation of individ-

ual agents and negotiation among agents are not considered.Von Neumann et al. [60](page

44) admitted that

“... our theory is thoroughly static. A Dynamic theory wouldunquestionably be

more complete and therefore preferable.”

Von Neumann et al. [60] focus on mathematical analysis of thegame and the consequential

possible outcomes. Note that in many cases, the outcomes area set (the Core or Kernel) not

a single value. Furthermore, since the study focuses on the payoffs, it is not known exactly

what coalitions are formed. On the other hand, given a large number of agents who are

realistically of bounded rationality and are often under time constraint, deliberation may not

be optimal. Negotiation can be important in that it can disclose useful information derived

from other agents’ deliberation and help agents make decision appropriately.

By taking into account the above mentioned pragmatic aspects, coalition formation in

multi-agent systems research proposes algorithms and protocols that allow agents to deliber-

ate and negotiate. Most importantly, the outcome is a payoffconfiguration, which describes

the payoff for each agent and what coalitions are formed. Below, we discuss the overview

of coalition formation in multi-agent systems. Detailed discussion on related topics will be

presented in later sections.

2.2.2 Early Dynamic Coalition Formation

Dynamic coalition formation dates back to the study ofTransfer Schemesby Stearns [102].

It is a mathematical analysis of the dynamic process of coalition that leads to a final pay-

off configuration (a payoff vector for all agents and a coalition structure of all agents) for a

given game with respect to a solution concept, such as the Kernel. Stearns provides algo-

rithms that begin with a payoff vector, repeatedly compute excesses of each pair of agents,

balance the differences, and eventually converges to an equilibrium. The algorithms can be

implemented in a “largest-excess-first” fashion or in a “round-robin” fashion. The study as-

sumes perfect rationality and complete information. Giventhat this work is an algorithmic

analysis, Stearns [102] shows that agents can eventually converge to the Kernel with the cost

of exponential time.
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The real implementation of dynamic coalition formation among (computer software)

agents took place between the late 80’s and the early 90’s. One such work was Zlotkin

and Rosenschien [119] which studies coalition formation ofn agents in subadditive task-

oriented domains. Agents are allocated parcels to deliver in a grid environment and they

have to finish their tasks within limited steps. Agents are allowed to cooperate. Hence, their

coalition values are the costs they can save by exchanging tasks. The payoffs to agents are

calculated based on the Shapley value. Because of the procedure of computing the Shapley

value, Zlotkin et al. [119] argue that agents may be reluctant to be the first in the permutation

because they will get payoff 0 by definition. Zlotkin et al. [119] propose to deploy a simple

combination of private and public key (a cryptographic approach) to guarantee random per-

mutations of any coalition. Each agent chooses a permutation of a coalition in which it is

interested. The permutation is then encrypted with the agent’s private key and is broadcast

with its public key. Having received all messages, each agent chooses a message randomly

and decrypts it. The combination of all the permutations will be used as the initial permuta-

tion. This work is a good example of applying a cooperative game theory into a multi-agent

system. Agents can decide to form coalitions by applying oneof the proposed schemes

which will suggest the most appropriate coalition for each agent.

Ketchpel [43] proposes a “two-agent auction” mechanism forcoalition formation that

prescribes an algorithm for agents to negotiate. The model which Ketchpel studies is a basic

economic model where rational agents join auctions to win contracts from which they earn

guaranteed payments. In this model, agents play similar roles in the bargaining process.

Firstly, agents broadcast their individual offers to otheragents. These offers are ranked in

preference orders by interested agents. Each interested agent then chooses the most attractive

agent, as a potential coalition member, in order to form a coalition of 2 agents. These two

agents then enter the “two agent auction” phase where an agent will act as the manager. The

manager will propose to its potential coalition member a payoff using the Shapley value. The

member agent receives a fixed payment for its role in the coalition. The principle of ranking

potential coalition members for negotiation seems to be a mainstream of coalition formation

algorithms derived in later research [90, 89, 86, 88, 91, 85,83, 48, 49]. Note that only a

small number of coalitions are formed due to the ranking.

Similar to Ketchpel [43], Shehory and Kraus [84] explore coalition formation among

cooperative agents. These agents use resources, which may include materials, energy, in-

formation, communications, etc. to fulfill their tasks. Thetasks are to deliver parcels, but

the coalitions can be made of more than two agents at a time. They propose two ways of

forming coalitions: computing-oriented and negotiation-oriented. With computing-oriented
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coalitions, an agent will be appointed as the computing agent, who will compute the pay-

offs for coalition members. With negotiation-oriented coalitions, agents can negotiate about

their payoffs. In this environment, they define “strong” coalitions as ones whose potential

coalition values are high, thus is preferred by agents. On the other hand, “weak” coalitions

are ones whose potential coalition values are low. Strong coalitions are the ones which other

coalitions join to form larger ones. Each coalition will have a representative, who values

the potential coalition higher and takes care of negotiation with weaker coalitions. The ne-

gotiation is to distribute relevant information, i.e., payoff and resource vectors. Shehory et

al. [84] also analyze the complexity of negotiation which is2(n − 1)2 operation for their

algorithm. The payoffs to agents in each coalition are basedon the “common extra” payoff,

i.e., the increased value of the joint pair of coalitions. This common extra payoff will be

distributed equally among agents in the new coalition. Since, agents operate in superadditive

environment, they eventually form the grand coalition.

2.2.3 Kernel in Multi-Agent Systems

So far, we have discussed some early work in coalition formation in multi-agent systems

that are more pragmatic than cooperative game theory. With respect to stability, many of

them deploy the Shapley value. Here, we discuss the application of the Kernel in dynamic

coalition formation.

It has been shown by Stearns [102] that the complexity of computing the Kernel is ex-

ponential. However, Klusch and Shehory [47] show that the Kernel can be reached in poly-

nomial time in some settings. They study coalition formation among information agents.

An information agent is an active intelligent database front end trying to satisfy its own ap-

plication specific tasks alone or in cooperation with other agent to gather information. In

their setting, information agents try to rationally cooperate to discover intentionally relevant

information in non-local domains. The utility which each agent achieves is derived from

the search on the set of discovered interdatabase dependencies which satisfy its own and/or

received requests. The utility achieved from the search on its own request is the singleton

coalition value of each agent. The coalition value of composite coalitions is the sum of the

singleton coalition values. They propose a detailed protocol for forming coalitions under a

predefined duration. Since the formation is done in a distributed fashion, they claim that the

complexity of computing Kernel is, in the worst case, of order O(n|Smax|), whereSmax is the

largest coalition being considered.
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Another attempt to reduce the complexity of reaching the Kernel is conducted by She-

hory and Kraus [87]. They study coalition formation in general environments, i.e., non-

superadditive, and propose an algorithm which can reach th Kernel in polynomial time. The

coalition formation is partitioned into two levels: the social level and the strategic level. The

social level is composed of the coordination regulation protocols which must be agreed upon

by different designers of agents in advance. The strategic level consists of strategies for the

individual agent to act in the environment for maximizationof its own expected payoff, given

the social level, and can be decided upon by individual agents during the coalition forma-

tion process. At the strategy level, a coalition will calculate a joint value of a new coalition

if its value will be increased. Given the increased value, ifat least the payoff vector of a

component coalition is increased, that coalition should attempt to make an offer to the other

coalition. This strategy is not enforced but is recommended.

Whereas other works assume that coalition values are known for certain, Blankenburg,

Klusch and Shehory [13] consider coalition formation within real-world environments where

coalition values are known only to some degree of certainty.They apply the concept of fuzzi-

ness to the Kernel to allow specification of uncertain coalition values. The fuzzified Kernel

extends the classical one to contain information about the degree of certainty to which a fuzzy

configuration is Kernel [24] stable. An example of such a configuration is when information

agents have a task to deliver some information to their users. The agents’ evaluation of the

relevance of the available information to the task is uncertain. This uncertainty is represented

by fuzzy numbers. In their example, however, they assume themaximum coalition size of 2,

just half of the number of agents 4. The coalition protocol isthe same as Shehory et al. [87].

The complexity of the method to reach stability in general cases is exponential. However,

polynomial time can be achieved by limiting the size of coalitions being considered as in

[47].

Blankenburg and Klusch [12] also extend their work to the security domain. They con-

sider real world settings like health care andm-commerce which require high preservation

of the privacy of user information. By using their algorithm in [47], they show that such a

requirement of privacy preservation can be obtained. More interestingly, they show that, in

principle, fraudulent agents may try toa) unreasonably strengthen their bargaining power, or

b) play some cheating strategies but doing so is very computationally costly in practice.
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2.2.4 Bounded Rational and Time-Constrained Coalition Formation

Real world settings usually involve complex optimization, which raises two closely related

issues: bounded rationality and time constraints. Given a complex problem, solving it opti-

mally is hard to achieve because the available computational power is limited. Furthermore,

a solution is needed by a certain point of time. In the following, we shall explore previous

work in coalition formation research that also takes into account bounded rationality and

time constraint (which our work principally follows).

Sandholm and Lesser [75, 74] analyze coalition formation among self-interested agents

in real world settings where agents are logistics dispatch centers who try to cooperate, i.e.

forming coalitions, in order to reduce their costs. This work raises the importance of solv-

ing combinatorial optimization problems as part of the coalition formation because it yields

the coalition value, i.e., cost reduction achieved by the optimization of appropriate routes

for trucks belonging to cooperative dispatch centers. Given the real world setting described

in [75, 74], computing coalition values is a very complex problem. Note that the coalition

value is needed in timely fashion, i.e., the optimization istime constrained. Sandholm et

al. [75, 74] also take into account the cost of computation because optimizing such com-

plex problems requires intensive computation power. Sandholm et al. [75, 74] state that the

solution quality is a trade off against computation cost. The performance of the algorithm

deployed by the agents in the optimization affects significantly the stability of coalitions

among agents due to their bounded rationality. Sandholm et al. [75, 74] assume agents have

the same computation power and algorithm, hence agents would achieve the same result for

a given problem. Agents form coalitions according to the optimization result without real

negotiation. Based on the empirical results [75, 74], agentscan often reach a stable state,

i.e., the “rational-bounded” Core. However, the final coalition structure (see 2.3) may not

be the grand coalition.

Further work with respect to pragmatic constraints is studied by Tohm and Sandholm [107].

This work takes into account the costs of communication and deliberation of rationally

bounded agents in order to model the dynamic process of coalition formation in superad-

ditive environments. Agents are self-interested. They tryto maximize their payoffs. They

join coalitions if they have the chance to increase their payoffs. A novel idea deployed in

this work is the exchange of beliefs of agents during their negotiation, i.e. each agent tries to

convince other agents to join its coalition. The new information will be kept as agents’ new

beliefs replace the old ones. In each step of the negotiation, the costs of communication and

deliberation are taken into account in order to find the rightagent to negotiate with as well

as when to decide to form coalitions before the time has run out. In their setting, agents can
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reach a state of stability. They also note that the effect of bounded rationality depends on the

computation in the negotiation process is also intractable.

Soh and Tsatsoulis [98] study coalition formation in a cooperative multiagent system in

an incomplete information environment. While lacking knowledge of “noisy, dynamic, an

uncertain world”, agents need to respond to events under time constraints. Soh et al. [98]

propose a model, which has two stages: (1) compiling a list ofpotential coalition members as

the candidate agents, and (2) negotiating with these candidate agents to form coalitions. The

first stage takes place when when an agent detects an event in the world that it needs to form a

coalition and respond to the event. This stage is called “coalition initialization”. The second

stage allows for agents to negotiate with the candidates collected in the first stage. Agents

negotiate in pairs by exchanging their information and constraints. The negotiation may or

may not be successful. Each successful negotiation adds a new member to the agent’s final

coalition. This second stage is called “coalition finalization”. Soh and Tsatsoulis [96] also

study within a similar setting and consider coalition formation in a “dynamic, negotiation-

based” model where agents cannot form rationally optimal coalitions. With the two-stage

approach proposed in [98], the agent who initiates the coalition needs to determine the task

distribution among the members of the coalition and design astrategy to successfully form

the coalition. Having limited resources and incomplete knowledge about noisy and dynamic

environments, agents need to form coalitions in order to react to events instantly.

2.2.5 Strategic Coalition Formation

Modern coalition formation research takes into account more pragmatic aspects such as

bounded rationality and time constraint. These pragmatic issues, in turn, bring strategies

into perspective. Kraus, Shehory and Taase [48] explore coalition formation in the Request

For Proposal (RFP) domain. In such a domain, a requester business agent issues an RFP, i.e.,

a description of a complex task, composed of sub-tasks. The task requires “several service

provider agents” to cooperatively address the RFP. Althougheach agent knows the value of

the RFP and its private costs for performing a specific sub-task, it does not know the pri-

vate costs of other agents. Additionally, agents have to address the RFP within a given time

frame. Given these realistic constraints, Kraus et al. [48]argue that existing coalition for-

mation approaches are inappropriate because they assume complete information and no time

constraints. Kraus et al. [48] have developed a protocol that allows agents to form coalitions

within this environment. With the protocol, agents will usesome heuristics for choosing

partners to form coalitions under this realistic setting. According to their results, the overall

payoff for agents using their heuristics is very close to an experimentally measured optimal
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value.

Based on [48], Kraus, Shehory and Taase [49] study further on the “advantages of com-

promising in coalition formation with incomplete information”. Kraus et al. [49] study pro-

tocols and strategies for coalition formation with incomplete information under time con-

straints. In such a setting, Kraus et al. [49] suggest that the “strategies should preferably be

stable, lead to a fair distribution, and maximize the socialwelfare of the agents. These prop-

erties are not fully supported by existing coalition formation approaches.” Kraus et al. [49]

argue that “stability and the maximization of social welfare are supported only in the case of

complete information, and only at a high computational complexity.” Furthermore, the pay-

off distribution in such a setting is done in a “naive manner”. Under limited computational

resources and incomplete information, Kraus et al. [49], investigate various strategies for

payoff distribution, including the Kernel (balance in every coalition), self-interested (being

greedy and try to maximize payoffs), compromising (trying to be friendly by giving away an

agent’s own payoff to persuade other agents), etc. The compromising strategy was “specif-

ically examined”. The empirical results show that, under their [49] setting, the compromise

strategy brings about stability and also raises the social wealth (maximal utility) to the sys-

tem. By emphasizing the importance of time constraint, the work in [48] suggests to us that

achieving empirically good results from a reasonably good algorithm is more achievable and

preferable than theoretical results. We shall follow this direction in this research.

Below, we will explore research works that are closely related to our research. They in-

clude computing coalition structure which will allow for the search for the maximal wealth of

the system, coalition formation in combinatorial settings, coalition formation among buyers,

sellers and logistics providers. Lastly, we also briefly explore works in coalition formation

in various aspects although they are of related to our work.

2.3 Algorithms for Computing Optimal Coalition Struc-

tures

Searching for optimal coalition structures has gained muchattention from researchers re-

cently. It is so important for two reasons:i) it indicates the optimal solution of a given

system, andii) it helps determining the core of the system (collective rationality). In the fol-

lowing, we shall discuss the overview of the problem as it is presented in the literature [77].

Given aCS, we define its value,

V (CS) =
∑

S∈CS

VS,
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Figure 2.1:Configuration Bounds

which indicates the system’s utility yielded by that partitioning. An optimal coalition struc-

ture is aCS∗ such that

CS∗ = argmaxCS∈LV (CS)

The number of all coalition structures can be determined byBn [50], Bell Numberwhich

is the size of the whole search space. Since the value ofBn can be very large for a small

value ofn, existing algorithms tend to divide the search space into small portions. There are

two divisional methods. Firstly, we can categorizeCSs by the number of coalitions within

them [77]. We denote the set ofCSs, whose number of coalitions of eachCS is 1 ≤ i ≤ n,

by Li. EachLi is known as a layer. The number ofCSs in Li is known as theStirling

Number of the Second Kind[50],

S(n, i) =
1

i!

∑

(−1)ki

k=0

(

i

k

)

(i− k)n, where

(

i

k

)

≡
i!

(i− k)!k!

Hence, the set of allCSs isL =
⋃n

i=1 Li.

Alternatively, we can categorizeCSs by the integer partition ofn that describes the

number of coalitions and their cardinalities. Each instance j of such a partition is known

as a “pattern” [101, 100] or a “configuration” [62],Gj, which is usually written in the form

b1 + . . . + bk, where
∑k

l=1 bl = n. Given a set of 4 agents, all the configurations are 4, 3+1,

2+2, 2+1+1 and 1+1+1+1. Figure 2.1 shows all coalition structures of 4 agents categorized

by level and by pattern (configurations).

2.3.1 The Analysis of the Problem

Sandholm et al. [77] show that computing the optimal coalition structures in a non-superadditive

environment is non-trivial; it is NP-hard becauseBn can be very large for a smalln. Ta-

ble 2.3.1 shows approximate numbers of coalition structures for 11 ≤ n ≤ 30. Forn = 11

agents,B11 is relatively small but is very large for 30 agents,B30 = 8.47 × 1023. Let us
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Table 2.1: Search Space in Coalition Structure where “Bn” is the number of coalition struc-
tures, “LargestLi” is the largest layeri, “S(n, i)” is the number ofCS in that layeri, “#
of Config.” is the number of configuration, “Conf Max” is the configuration which has the
largest number ofCSs, “CS Max” is the number ofCSs in “Conf Max”.

# of Agents 11 12 13 14 15 16 17 18 19 20

Bn 6.79E+5 4.21E+6 2.76E+7 1.91E+8 1.38E+9 1.05E+10 8.29E+10 6.82E+11 5.834E+12 5.17E+13

LargestLi 5 5 6 6 6 7 7 7 8 8

S(n, i) 2.47E+5 1.38E+6 9.32E+6 6.34E+7 4.21E+8 3.28E+9 2.57E+10 1.97E+11 1.71E+12 1.52E+13

# of Config. 56 77 101 135 176 231 297 385 490 627

Config Max 3(3)+2 3(4) 3(3)+2(2) 3(4)+2 3(5) 4+3(4) 3(5)+2 3(6) 4+3(5) 3(6)+2

CS Max 3.69E+3 1.54E+4 5.64E+4 2.66E+5 1.40E+6 5.60E+6 3.00E+7 1.90E+8 9.05E+8 4.86E+9

# Agents 21 22 23 24 25 26 27 28 29 30

Bn 4.75E+14 4.51E+15 4.42E+16 4.46E+17 4.64E+18 4.96E+19 5.46E+20 6.16E+21 7.13E+22 8.47E+23

LargestLi 8 9 9 9 10 10 10 10 11 11

S(n, i) 1.33E+14 1.24E+15 1.23E+16 1.21E+17 1.20E+18 1.32E+19 1.43E+20 1.54E+21 1.81E+22 2.15E+23

# of Config. 792 1002 1255 1575 1958 2436 3010 3718 4565 5604

Config Max 3(7) 4+3(6) 4(2)+3(5) 3(8) 4+3(7) 4+4+3(6) 3(9) 4+3(8) 4+4+3(7) 3(10)

CS Max 3.62E+10 1.99E+11 1.15E+12 9.16E+12 5.73E+13 3.72E+14 2.98E+15 2.08E+16 1.51E+17 1.21E+18

consider the size of search space by levels. Givenn agents, the number of coalition struc-

tures in each level increases exponentially, around6n(roughly), as the level gets higher. It

reaches the peak around the middle level and decreases exponentially towards the top level.

For n = 11 agents, level 5,L5, has the highest number of coalition structures, i.e., approxi-

matelyS(11, 5) = 2.74× 105 coalition structures. Forn = 30 agents, the largest level is 11

whose search space is approximately2.15 × 1023. The whole search space for any givenn

agents is slightly higher than that of largest level. In caseof dividing the search space into

configurations, each divided search space can be relativelysmall. For 11 agents, there are 56

configurations. The largest configuration is 3+3+3+2 whose number of coalition structures

is approximately3.69× 103. For 30 agents, there are 5604 configurations. The largest con-

figuration is 3+3+3+3+3+3+3+3+3+3 whose number of coalition structures is1.21× 1018.

2.3.2 Coalition Value Distribution

In traditional algorithms of this problem, there are 4 four environments that are considered:

normal, uniform, superadditive and subadditive. These environments involve the distribution

of coalition values only. It is obvious that the structure ofCS∗ depends on the distribution

of coalition values and so does the performance of an algorithm. Small coalitions (e.g.,

of size 1 or 2, for example) tend to be in the optimal coalitionstructures if forming larger

coalitions does not increase the value high enough. In this case, it is better for the system
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if most agents remain singleton coalitions. However, many real world environments involve

cooperation among agents. Small coalitions do have enough resources to perform tasks or

create any coalition value. Composite web services is a simple example. Agents have to form

coalitions in order to create joint values which will be divided among coalition members.

Hence, coalitions of small cardinality tend to be useless incomposition of optimal coalition

structures. As shown in table 2.1, the number of coalition structures in certain areas, e.g.

LargestLi and Config. Max, can be very large. Hence, it is important that the algorithm be

consistently efficient compared with various distributionforms. In the following section, the

previous algorithms for finding optimal coalition structures will be discussed.

2.4 Previous Centralized Algorithms in Optimal Coalition

Structures

Due to the fact that the search space of the optimal coalitionstructure problem is very large

and the search terrain is arbitrarily random, the algorithmto solve the problem needs to

perform efficiently. Previous algorithms tend to divide thewhole search space into smaller

parts. The division is based on the structure of coalitions in CSs and a lexicographic order

of agents within coalitions.

Sandholm, Larson, Andersson, Shehory and Tohm [77] proposean anytime algorithm

(that can yield an approximate answer, whose quality depends on the computation executed,

at any time) that guarantees improvement of the worst-case bound as the algorithm proceeds.

The large search space of all coalition structures is divided into levels, each of which is

Li, 1 ≤ i ≤ n (a level where eachCS hasi coalitions). The algorithm advances through

levels1, 2, n, n − 1, . . . , 3 and search through allCSs in eachLi in the breadth-first search

manner. The algorithm can guarantee that the solutions thathave been found after finishing

the first two levels are within the boundk = n from the optimal solution. Although this

bounds drops as more levels have been completed, the search space in many levels is still

large. Dang and Jennings [22] improve the performance of Sandholm et al.’s algorithm.

Having finished the first three levels (1, 2 andn), Dang et al.’s algorithm then generates a list

of indicators that will be used to determine various configurations across levelsn − 1 and

3. The indicator is simply used to choose any configuration that contains at least a coalition

of a certain cardinality. Given a set of 20 agents, for example, the next cycle afterLn is

to search through all coalition structures of any configuration that has at least one coalition

of cardinality 16, 15, 13 and 10. Dang et al.’s algorithm guarantees that it reaches bounds

closest to the optimal faster than Sandholm et al.’s algorithm. This is due to the greater
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Figure 2.2:Search Direction in Divided Search Space
Sandholm et al. [77] divides search space into levels. The direction of search is

L1, L2, Ln, Ln−1, . . . L3. Dang et al. [22] follow the first two steps of Sandholm et al. but
search through portions of remaining levels.

selectivity in searching throughLi. Although these two algorithms can guarantee improving

solutions as time elapses, they need to exhaustively searchthrough the whole search space in

each cycle to guarantee optimality. Figure 2.2 illustratesthe search direction in the divided

search space.

The common problem of Sandholm et al.’s and Dang et al.’s algorithms is that they rely

on the completion of the search on the first two levels. For a small number of agents, e.g.,

20-40 agents, the search space over the two levels is practically small, e.g., around106 and

1012 coalitions respectively. Once the number of agents grows larger, e.g., 60 agents or more,

the search space of the first two levels becomes too large to complete, e.g., around1018, let

alone the remaining layers. Moreover, the solution obtained within the elapsed time can

be bad. Furthermore, accessing the coalition values can be aproblem. One can compute

coalition values every time a coalition structure is generated but this can cost too much time

because the same coalition value has to be computed again andagain. An alternative to this

is to keep the coalition values in memory. This, however, requires a large space of memory

that no single computer can offer.

Sombattheera and Ghose [100] propose the idea of partitioning the search space into

smaller sections, referred to as “pattern”. Rahwan, Ramchurn, Dang and Jennings [70] fol-

low this idea by proposing a near optimal coalition structures algorithm. To begin with, all

coalitions in the first two levels will be examined. Along with this, the upper bound and the

mean value for each configuration are established. The configuration to be searched first is

eitheri) one whose ratio between the upper bound and the mean value isthe lowest, orii) one

that is likely for the algorithm to prune the largest search space in its configuration. As the
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Figure 2.3:Configuration Bounds
In general Rahwan et al.’s algorithm can prune portions of thesearch space (A) when a

present solution is better than that of remaining configurations. However, it may fail to do
so due to misleading upper bounds(B).

algorithm proceeds, the upper bound of each configuration will be updated and the configu-

ration will be eliminated if its upper bound is lower than thebest solution found so far. Given

enough time, the algorithm terminates when there is no configuration left to be searched and

the solution is the optimal. Based on this work, Rahwan, Ramchurn, Dang, Giovannucci and

Jennings [69, 71] develop an optimal algorithm that, to our best knowledge, isthe state of

the art of anytime optimal coalition structure algorithm. They apply pruning over configura-

tions and within coalitions to cut the search space massively and generate optimal solutions

rapidly under a number of data distributions [51]. However,this algorithm can be misled

by miscalculation of the bound. As shown in figure 2.3, the search will take place in all

configurations whose bounds are higher than the actual values.

Yun Yeh [117] proposes a deterministic algorithm to computeoptimal coalition struc-

ture based on the integer programming technique. His solution is based on the bi-partitioning

principle. A whole set of agents will be bi-partitioned intonC2 pairs. Each coalition in each

pair will be recursively partitioned downward to the singleton level where all coalitions are

of cardinality 1. The algorithm then works upwards for the optimal value of each coalition.

At each level, the pair whose combined value is the highest will be the optimal value of the

coalition. This algorithm guarantees optimal results with3n time and space complexities.

However, this algorithm is not appropriate for a multi-agent systems environment because

the problem becomes intractable for even a small number of agents. On the other hand, Sen

and Dutta [80] use an order-based genetic algorithm (an evolution algorithm, which deploys

the biological evolution concept, i.e., inheritance, mutation, selection, and crossover, to con-

stitute the search for approximate answer in large combinatorial problems) as a stochastic
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search process to identify the optimal coalition structure. Although their algorithm has no

performance guarantees, they claim that it is found to dominate the deterministic algorithm

in a significant number of problem settings. Due to the natureof genetic algorithms, an addi-

tional advantage of their algorithm is its scalability to larger problem sizes and to problems

where performance of a coalition depends on other coalitions in the environment. Larson

and Sandholm [51] present experimental results for three anytime algorithms that search the

space of coalition structures. They show that, in the average case, all three algorithms do

much better than the recently established theoretical worst case results in [77]. They also

show that no one algorithm is dominant. Each algorithm’s performance is influenced by

the particular instance distribution, with each algorithmoutperforming the others for differ-

ent instances. They present a possible explanation for the behavior of the algorithms and

support their hypothesis with data collected from a controlled experimental run.

As we have discussed before, these algorithms have to scan the set of all coalitions, which

is of size2n, in order to observe their values. The size of the input can bevery large for a

smalln, let alone the size of coalition structures. To this end, Rahwan and Jennings [67, 68]

develop an algorithm for computing coalition values in a distributed manner. The task of

computing coalition values is distributed evenly among cooperative agents, who seem to be

involved in computingCS∗, with respect to communication and computation redundancy.

They claim to have massively reduced the number of of messages sent among agents and

memory usage. However, they have tested their algorithm against 25 agents only, which is

practically small for multi-agent environments. As the number of agents increases linearly,

the size of the problem,2n, increases exponentially. Even though the algorithm can divide the

task among agents evenly and efficiently, the workload of each agent becomes unmanageable

for even a small number of agents. Even with 40, 60 and 80 agents, the size of the task

is approximately2.45 × 1010, 1.92 × 1016and1.51 × 1022, respectively, let alone realistic

environments where the number of agents is much more than this.

In real world operation, computingCS∗ involves two steps:i) computing coalition val-

ues, andii) generating coalition structures. Since the existing algorithms for computing

CS∗ need to scan all coalition values, they can precompute coalition values and store them

in memory, if the size of2n is not too large. Alternatively, the precomputed values maybe

stored in a database or other storage. This will definitely slow down computing the optimal

coalition structure because of the relatively slow access to storage device. The last alternative

can be recomputing the coalition value every time aCS is being generated. This seems to be

a very low performance approach since computing coalition values itself can be a complex

optimization problem. In addition to this, we also have to take into account the need for
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an on-time solution, which is not necessarily optimal. It isvery doubtful that existing algo-

rithms can guarantee such a quick response because they haveto scan all the inputs under

limitation of resources. Hence, it is important that we provide a solution in a timely fashion.

2.5 Coalition Formation in Combinatorial Settings

Optimization in combinatorial problems (or operations research) has some degree of rela-

tionship with early studies of cooperative game theory [106] (although it does not focus on

optimizing the combinatorial problem directly). In game theory, as in optimization, decision

makers want to act in an optimal way. The main difference is that there is one decision

maker (agent) in optimization, while in game theory there are multiple inter-related decision

makers. In the following, we will briefly explore works that are related to combinatorial set-

tings. Although many of these works are in cooperative game theory, they provide motivating

examples of how important optimization is to coalition formation.

2.5.1 Linear Production Games

A simple classic sample is the Sandal Maker game [42, 57, 81] where agents possesses par-

tial resources (either left or right sandals) and need to cooperate to produce salable goods

(pairs of sandals). Obviously, the optimization in such a game is trivial but it reflects the un-

derlying fact that gathered resources of a coalition requires complex optimization. In a more

complex setting, Owen [63] considers coalition formation in the linear production game.

This work is derived from the linear production problem where an agent has to maximize

its profit by producing appropriate goods in the right amount. Owen [63] takes this problem

one step towards cooperative game theory. Here, each agent possesses a number of resources

and produces goods to sell to the market to maximize its profit. Agents can benefit more if

they pool their resources together. Owen [63] studies coalition in superadditive domain,

i.e., there was no cost involved in the process. As the name suggests, to find out what is

the most profitable productions, given available resources, the optimization is basically lin-

ear programming. Hence, the coalition values can be obtained by solving linear programs.

Owen [63] uses “duality theory of linear programming to obtain equilibrium price vectors

and to prove the non-emptiness of the Core”. However, Owen [63] assumes a superadditive

environment and ignores other real world costs such as communication, transportation, etc.

In such a setting, the most profitable coalition is obviouslythe grand coalition. Although the

payoffs to agents are Owen’s [63] interest, we are convincedthat applying a little more real-

istic constraints to the problem will lead us to another direction of research, i.e., to find the
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optimal coalition structures will need a novel approach, which involves complex algorithms.

Thus it is our motivation for work in chapter 4, where we redefine his setting as the basis of

our work. Note that Owen’s [63] goal is to analyze the outcomeof the game whereas our

work is to invent an algorithm in order to search for optimal coalition structures.

Another example of combinatorial domain in cooperative game theory is the study of the

transportation game [73], which is derived from thetransportation problem[23]. In such a

problem, it is important to the management that they need to minimize the transportation cost

of a certain product. The product is available at several origins and is to be transported to

several destinations according to their individual needs,given that the transportation cost per

unit of the product is fixed. (Note that although this problemis also a linear programming

one, optimizing for the optimal route to minimize the cost oftransportation is not, which we

shall discuss below.) Sanchez-Soriano, Lopez and Garcia-Jurado [73] further study the trans-

portation game in the cooperative game theory context. The main purpose of the research

is to study the Core of the game which they [73] prove does exist. This game is reversibly

also a superadditive game because reducing cost is actuallyincreasing profit, given that the

revenue is the same. A larger coalition can allow greater reduction of the cost as in the case

of linear production game.

A more complex problem that is similar to the transportationproblem is the traveling

salesman problem [4] where a salesman has to visit a number ofcities connected by a road

network. He has to make a route from a city, go through each of other cities once only and go

back to the city where he started. The challenge for the salesman is to find a route that will

minimize his traveling distance, i.e., cost. Potters, Curiel and Tijs [66] study the problem in

cooperative game theory context. In their setting, an academic is to visit sponsoring institutes

who will cover the academic for the cost to visit them. The goal is to find a stable allocation

of traveling costs among the sponsoring institutes. Potters et al. [66] manage to find the core

of the game, however, this work is merely an analysis of a small instance of a potentially

complex problem.

Research on coalition formation among transportation agents was conducted by Shehory

and Kraus [89]. Instead of having all the costs of traveling known a priori, this work applies a

more realistic setting. Shehory et al. [89] study a scenariowhere agents are taxis traveling on

a road network to pick up and drive passengers to various locations. This work considers a

non-superadditive environment where the revenue of the agents is the price they charge their

customers and the cost includes taxes, fuel, etc. Each agentwill have a number of customers

awaiting their services. It may be better off for the agents if they can cooperate, this is similar

to the postman problem in which agents exchange their letters. Here, agents may exchange
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their customers if they find any benefit, i.e., forming a coalition to reduce their costs while

serving their customers. The revenue of the coalition is thecollective prices charged to

their customers. The coalition value is the difference between the collective revenue and

the collective cost. To minimize cost in order to maximize the profit is a hard optimization

problem which involves a combination of taxis in each coalition and the optimal route to

find and deliver their respective customers. However, the number of agents being studied in

this work is relatively small. Shehory et al. [89] can find theKernel stable for the agents in

reasonable time and find that forming more coalitions can benefit agents further.

It is widely known that ideas in operation research are widely adopted into coopera-

tive game theory because they are very close to each other [106]. The only difference is

optimization in operations research is done by a single agent whereas in cooperative game

theory optimization involves multiples agents. However, the work we we have seen so far

is more about analyzing the outcome of the games, which involve merely a small number

of agents. Although Shehory et al. [89] have shown a good example, we want to push our

research further by examining larger number of agents via analgorithmic approach.

2.6 Coalition Formation in Supply Networks

Supply networks can be viewed as sophisticated coalition formation. As stated in cooperative

game theory [42], a simple trading transaction between a seller and a buyer is considered

coalition formation, whose coalition value is the difference between the buyer’s and the

seller’s reserve prices. Coalition formation can takes place among buyers in order to gain

negotiation power. Their coalition values are the discounton the prices. Coalition formation

can take place among sellers in order to increase their supply power (not to form cartels)

and optimize the usage of their resources. Since transportation costs play such an important

role in providing value to end customers, we need to considerlogistic providers in supply

networks. Coalition formation can help logistic providers minimize their costs which in turn

can benefit end users in addition to benefiting themselves. Inthe following, we shall explore

coalition formation that take place in different sectors ofsupply networks.

2.6.1 Coalitions of Buyers

Agents can increase their buying power to gain discounts from buying large volumes of

goods and distributing discounts as payoffs among themselves. Tsvetovat, Sycara, Chen and

Ying [109] propose coalition formation among buyers in an electronic market. The example

in the real world being deployed in their work is a number of students, who enrolled in the
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same subjects, gather together to buy books in large numbers. Agents, representing students,

can form coalitions either before or after the negotiation of the prices with the suppliers.

In the former case, any agent who wants to buy a book can start the process of forming a

coalition by acting as a leader of a coalition. The agent sends requests, stating the item it

wants to buy, for bids from suppliers through an auctioneer agent. Each interested supplier

consults with online stores for competitive prices and constructs its bid. Each bid is proposed

in a linear price function where price drops according to increasing quantity. The bid is sent

to the auctioneer who, after waiting for the expiry of the auction time, broadcasts the bids to

respective leaders. Each leader then applies its evaluation strategy to determine the winning

bidder. The leader uses the best bid to advertise for coalition members. If the number of

coalition members is lower than expected, the leader will suffer the loss. On the other hand,

agents may form coalitions first, then negotiate with the suppliers. In order to decide which

bid to be taken, agents in the coalition may vote on the bids. However, this can be impractical

because agents may not reach agreement so easily. Alternatively, agents may decide to leave

the decision to the leader. In this setting, agents have to trust the leader that it will do its best

for the sake of the coalition.

Coalitions of buyers can also take place in online shops in theInternet. Hyodo, Tokuro

and Ito [37, 36] point out that the allocation of goods available on the Internet can be much

more efficient with the application of coalition formation.The motivation is that there are

too many online shops available on the Internet, hence buyers are not aware of all of them

that sell their desired goods. More importantly, they usually buy goods from some shops they

are aware of individually. This is inefficient because they fail to utilize economy of scale,

i.e., they lose money that could have been saved by gaining discount from bulk buying. The

method proposed in this work is a centralized approach. Hyodo et al. [37, 36] apply genetic

algorithm to form coalitions of buyers, each of which is composed of buyers seeking the

same product. Hyodo et al. [37, 36] assume the price is a linear function. The algorithm

tries to generate coalitions of buyers searching for the same product. However, if a member

of a coalition has a reserve price lower than the selling price, such a coalition is invalid and

cannot be considered. The unit of each product a seller stocks is finite. If the stock is lower

than the requested quantity, the seller cannot sell its product. Hence, some goods may not be

allocated to buyers. However, Hyodo et al. [37, 36] show thatoptimal coalitions for buyers

can be found.

In the same spectrum, Ito, Ochi and Shintani [40] consider coalitions of buyers in a more

pragmatic fashion. Instead of considering the formation asa static game where all buyers

are present all at once, they consider the scenario where buyers are randomly present to the
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market. In their setting, sellers possess multiple products. They maintain information on

price, deadline and stock of each product. For each product,the price is based on discount

rate. The deadline specifies the duration in which the price is effective. Furthermore, they

also allow substitutability for buyers’ preferences. A buyer, for example, wants to buy a unit

of a good at $20. However, he will be indifferent if he can buy two units of another good at

$15. The payoff to an agent is the difference between its reserve and selling prices times the

quantity. During the negotiation on the price, a seller chooses the best coalition of buyers

(one which offers the highest reserve price) and checks for the stock level of the product

after the deadline has passed. If it has enough quantity, it informs the coalition if they want

to buy the product at the quoted price. The coalition will accept the offer if the price is lower

than the reserve price of every member in the coalition. Otherwise, the coalition will disband

and enter the market in the next round. In addition to this, they also advance other work by

considering cooperation among sellers as well.

Categories of product can be an important issue in coalition formation among buyers.

Yamamoto and Sycara [115] consider coalitions of buyers whoseek for products of the same

categories, which are considered no different to buyers.. Areal world example deployed in

this work is when a number of buyers want to buy cameras. In theexample given, a buyer

may have a list of preference on the product. He, for example,values camera C1 for $100

while he values camera C2 for $150. He is indifferent between these two. Another buyer

values camera C2 for $140 while values camera C3 for $150. He is indifferent between the

two. Buyers of the same categories will be classified into coalitions of the same products.

Hence, both buyers may form coalitions for buying C2 while they may form coalitions with

other agents for buying C1 and C3. Since goods are indifferent to buyers, they can only

buy one product, i.e., they belong to just one coalition. Thecoalition value is the sum of

the difference between the reserve prices of all agents and selling cost (selling price times

quantity) of the respective product. The coalition that hasthe highest value will be pooled for

matching with the product. The largest coalition will be chosen from the pooled coalitions

and the good will be allocated to its members. With regard to the payoff, those members

whose reserve prices are lower than the selling prices receive nothing; they pay their reserve

prices. Each of the agents whose reserve prices are higher than the selling price receives a

payoff which is the proportion of the difference between their reserve prices, and the selling

price. Yamamoto et al. [115] claim that their solution are inthe Core.

Although large coalitions may offer higher payoffs (due to higher bargaining power),

agents may sometimes prefer smaller coalitions. Asselin etal. [6, 5, 7] argue that waiting
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for large coalitions may cost agents dearly because such a large coalition cannot form be-

fore the expiration of the offer. In real world environment such as the Internet, agents do

not know beforehand how many agents are buying the same products. Some agents may

prefer to form small coalitions quickly, execute transaction and gain their payoffs. Asselin

et al. [6, 5, 7] propose a coalition formation protocol that consists of customer agents who

represent human customers and a grouping agents who is responsible for forming coalitions

of customer agents. In their setting, customers are limitedto buy just 1 unit of each product

they want to buy. Human customers create customer agents andprovide the agents a list of

wanted products. Each item is a combination of the products and the preferred size of buyer

coalitions. Items in the list are ranked by preference of thecustomers. Customer agents then

submit the list to the grouping agent. The grouping agent is the mediator who collects all the

requests from customer agents, allocates matched items to coalitions and matches coalitions

to sellers. Each coalition is composed of customer agents who are buying the same product

and prefer the same coalition size. The payoff to the agent isits reserve price for the product

which is exactly specified by the preferred coalition size.

So far we have seen coalitions of buyers who want to buy the same products only. When

buyers want to buy a combination of products [55, 54, 35] (which is also common), they

have to split their orders. Having seen the growth of combinatorial auction in which an agent

can buy a combination of products and benefit from complementarity of its own order, Li

and Sycara [55, 54] propose algorithms for combinatorial coalition formation and payoff

division in an electronic marketplace. They combine combinatorial auction into coalition

formation to help improve the efficiency of the market. Li et al. [55, 54] consider an e-

market environment where a buyer buys a combination of various products, which is quite

common in our daily life. The discount the seller can offer is, however, based on the quantity

of a particular product. They call coalition formation under this condition a “Combinatorial

Coalition Formation(CCF)” problem. This is because forming coalitions in this setting is

motivated by price discounts on single goods whose volumes are increased by the size of the

coalitions. They claim to construct “optimal coalition with respect to each item” which is the

division of the reverse price of each buyer appropriately. The optimal coalitions are induced

by the complementarity of the items by transferring cost among the coalition members. They

present polynomial-time algorithms to find a semi-optimal solution of CCF. With linear price

functions (the price drops at a constant level when the quantity raises by one unit), they can

also derive a payoff division scheme that is in the Core of the coalition. They claim that that,

empirically, the solution derived by the algorithms is “in asatisfactory ratio to the optimal

value”.
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The domain of coalitions of buyers can expand to computational resources available on

the Internet. Maheswaran and Bacar [56] study coalition formation in such an environ-

ment where agents form coalitions in order to bid for computational resources. They do

not explain how exactly agents form coalitions but propose to use “weighted proportionally

fair scheme” to divide payoff among agents. With their scheme, members of non-singleton

coalitions cannot be better off by deviating to join singleton coalitions. The scheme ensures

stable coalition structures. Similar works on coalitions of buyers, whose common idea about

payoffs to agents are the share of discounted prices, include [36, 92, 83, 10].

We have covered coalitions of buyers that do split the discount on the prices, as the coali-

tion values, to agents as their payoffs. However, these works seem to ignore one important

factor, the cost of transportation. It is quite common in ourdaily life that we drive a distance

to buy some products whose prices are discounted without really caring much whether it is

a wise action, taking into account time, fuel, etc. We shall discuss the role of transportation

(logistics) in coalition formation later in section 2.6.3.

2.6.2 Coalitions of Buyers and Sellers

Coalitions we have seen so far are among buyers. Agents form coalitions for a particular pur-

pose, e.g., buying goods for one transaction, then disband after they have completed transac-

tion. Breban et al. [14] consider coalitions among a number ofseller and buyer agents, which

may last longer. Their motivation is that in some settings agents usually trade on certain cat-

egories of products and their transactions are committed more often among a certain number

of agents. The more they reach agreement to trade the more they trust each other, thus it is

more likely to reach agreement again between the same parties. Breban et al. [14] introduce

a model for long term coalitions between sellers and buyers.The coalition is driven by trust

among agents. Trust is the belief that they have been successful in their previous transactions

and are more likely to be successful in the future. It is better to form long term coalitions. At

a point in time, an agent may or may not belong to a coalition. Once a buyer agent wants to

buy a product, it looks for the most trusted seller, i.e., onein the same coalition. If there is

none, it chooses one who offer the best price. These pairs of agents then negotiate on price.

The negotiation may end successfully, i.e. they agree to trade at a certain price. Each agent

keeps track of success rate between itself and other agents.After a successful transaction,

the rate is increased. If the pair are not in the same coalition, they may decide to form a long

term coalition. On the other hand, when they cannot reach an agreement, the success rate is

decreased. This may lead to agents leaving their present coalitions if the rate is lowered to

certain points. They empirically show that the model bringsstability to the dynamic system
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and customers are satisfied all the time. The trade between highest trusted agents are more

beneficial to individual agents and market efficiency.

The encounter between sellers and buyers so far assume sellers have enough products in

stock. What if sellers run low on their stocks and buyers’ demand is still high. Goldman

et al. [32, 31] search for appropriate strategies when the shortage on goods is common in

the market. In such a situation, sellers may decide to chooseparticular buyers in order to

maximize their individual utility instead of selling products to buyers in the first-come-first-

serve fashion without being detected by buyers. At the same time, buyers may choose to

approach particular sellers. In their experiment, sellerscan choose buyers byi) random,ii)

the size of of the order, andiii) the type of buyers. Buyers can choose sellers byi) random,

ii) loyalty, andiii) probability. They set up three levels of stock: small, medium and large.

The empirical results show that there are equilibria in medium stock size when buyers play

loyal strategy and sellers play random strategy. There are also equilibria in large stock size

when buyers play probability strategy and sellers play random strategy. Hence, sellers should

choose their buyers randomly.

2.6.3 Coalitions of Logistics Providers

The idea of deploying intelligent agents in logistics and supply chains is widespread. Work

in [61, 27, 28, 104, 118, 111] deploys agents as the representatives to the role of logis-

tics/supply chain management. A management role can be to negotiate the allocation of the

tasks to the trucks [110]. Work in [112, 20, 26, 105, 9] deployagents, who are responsible

on certain tasks, to cooperatively plan and schedule for particular systems. Coalition for-

mation can also be be applied to solve complex problems in thelogistics domain. Complex

logistics in the military domain also deploy multi-agent systems technique as well [2]. Re-

cent research [25] pays attention to the invention of efficient strategies for intelligent agents

to manage supply chains on behalf of human beings. However, apart from [89] which we

have covered and is our motivation on coalition formation among transportation agents, we

explore a small number of related works on coalitions of logistics providers in the following.

Coalitions of real trucks traveling on a highway can also takeplace and be beneficial.

Khan and Boloni [44] study the dynamicity of convoys of trucksusing simple agent tech-

nology. Trucks can form a convoy in a random fashion, two trucks gathering together while

traveling. A truck can join and leave the convoy both by incidence or at will. Forming con-

voys on highway is an important problem because it has economic effects, e.g., overtaking

or influence of traffic signs can directly affect the fuel consumption of the trucks. In this

research, simple agents, each of which is attached to a truck, are able to detect the vehicle
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speed, location, and have limited communication ability with other agents. Each vehicle

is still controlled by the driver, who will be advised by the agent what the person should

do, such as accelerate, decelerate, join a convoy or leave the convoy. The results from [44]

suggest that forming convoys can deliver safer and better coordinated traffic. Furthermore,

their algorithm can also suggest how each convoy should be structured, i.e. the distance be-

tween vehicles, which is related to the traveling speed. This work pays more attention on the

behavior of individual agents in the coalition rather than the behavior of the whole system.

The Contract Net protocol [94], described by Smith, is the foundation solution for coop-

eration among agents. It allows agents to negotiate by sending messages among them. Han,

Gu, Li, Yin and Zhang [34] improve the performance of the protocol with global informa-

tion and applying iterative optimization. The domain of study of [34] is the planing and task

allocation, which is usually done by a human being, among agents. Their experiment [34]

was done in a multi-agent system environment, in which thereare shipping and truck agents.

Shipping agents have to allocate tasks, with respect to constraints imposed by customers, to

truck agents who will simply transport the allocated goods.Note that a truck agent will op-

erate solely with a shipping agent. Once given a job request,a shipping agent will consider

the most appropriate truck for the job. This operation is referred to as a vertical coopera-

tion. Then the initial plan will be generated. Note that optimizing the plan at this point is

a complex knapsack problem.2 In order to solve this, Han, Gu, Li, Yin, and Zhang [34] ex-

tend the Contract Net protocol to have “temporary grant” and “temporary reject” messages.

Then they apply an auction protocol to allocate tasks among truck agents. Providing that

they have time remaining, the plans can be re-estimated. Furthermore, the algorithm allows

for “horizontal cooperation”, in which the cooperation among the shipping agents can be

conducted.

Rehak, Volf and Pechoucek [72] study cooperative task allocation among self-interested

agents in a transportation domain. The goal of the system is to deliver humanitarian aid

from various sources to a destination. The resources are to be delivered by self-interested

agents who possess trucks. These agent are reluctant to share their private information such

as capacity, availability, location, etc. There is a human being manager who is responsible

for dispatching the resources. Rehak et al. [72] argue that existing agent-based technology

in transportation allocation is not efficient because they are only applicable to small prob-

lems and are not scalable. Their contribution is to accommodate optimization technology

of operation research to multi-agent systems domain. Givena task of transportation, their

2“Given a set of items, each with a weight and a value, determine the number of each item to include in
a collection so that the total weight is less than a given limit and the total value is as large as possible.” Ref:
http://en.wikipedia.org/wiki/Knapsackproblem, accessed on 8 May 2009.
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algorithm will generate an initial plan, which will be further optimized during the abstract

plan using advanced technology (such as a graph plan [34] algorithm). The available plans

will be bidden by self-interested agents using Contract Net protocol [94]. After that the plans

of each agent will be evaluated and verified before being executed. The results show that the

overall performance is improved due to reduction in communication, increase in parallelism

(of high performance optimization), etc.

At this point, we have seen coalitions among buyers, coalitions among sellers, coalitions

between sellers and buyers, and coalitions among logisticsproviders. However, transactions

in supply networks are committed by buyers, sellers and logistics providers. The forms of

coalitions we have seen so far seem to be inadequate that theycannot be used to solve this

combined problem. This is a direction which our research takes in chapter 6.

2.7 Qualitative Coalition Formation

Coalition formation discussed so far is based just on coalition value, which is regarded

as “quantitative” coalition formation [114]. What about “qualitative” coalition formation?

There is also another setting in the literature, where agents are assigned goals, which they

have to complete. Forming coalitions can help agents to achieve more goals. Achieving

more goals is considered, in this respect, achieving betterquality. Although being far less

studied, there are mechanisms to capture quality of the coalition, such aseffective function

[1]. In the following, we will explore how coalition formation works in this situation.

One of the early works in coalition formation among goal-oriented agents is the study of

overlapping coalitions by Shehory and Kraus [86, 88]. Whereas typical coalition formation

work allows each agent to be part of a single coalition only, Shehory et al. [86, 88] argue that

task-oriented agents can be given a set of tasks, each of which requires cooperation among

agents and needs to be executed in a certain order, to complete. Limitations to cooperation

among agents can waste resources that agents in coalitions may be able to utilize. Thus,

it makes sense for the agents to have overlapping coalitions. They propose algorithms that

allows agents to form coalitions and jointly execute their tasks, disband the coalitions, and

form coalitions for their remaining tasks again. Given thattask allocation problem is of class

non-polynomial complexity, they manage to propose a polynomial complex algorithm with

sub-optimal results. The algorithm is also an anytime algorithm and yields good results.

Wooldridge et al. [114] propose the idea of “qualitative coalitional games”. In this work,

there is a set of goals, some of which will be assigned to each agent. Each agent will be

“happy” if any goal can be achieved, i.e., the agent has “gained something”. There is no
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preference over the set of goals assigned to each agent. The agent is satisfied as long as a

goal is achieved. In their setting, an agent does not aim at any goal in particular and there is

no need for the agent to maximize the number of goals it needs to achieve. A coalition is a

collection of agents and has a set of “choices”, from which the coalition may decide to act.

Taking a choice simply means a number of certain goals satisfy agents in the coalition. It is

up to an agent which coalition it would like to form, with respect to its goals. Given such a

setting, the goal which the research [114] pursues is to derive the computational complexity.

They identify 14 decision problems, including “successfulcoalition”, “selfish successful

coalition”, “minimal coalition” etc. They can assess the computational complexities of those

decision problems, whose complexities are mostly of class non-polynomial. Note that the

quality mentioned in this work is somewhat related to quantity, i.e. minimal number of goals

to be achieve by each agent is one.

Based on the previous research, Wooldridge et al. [113], study “coalitional resource

games”, which is a variation of “qualitative coalitional games” [114]. In this new setting,

agents require some resources in order to finish their tasks.Each task requires at least one

resource and agents are given a set of resources. One real world of such a setting is a group

of academics who set up goals to finish their research. They need necessary resources to con-

duct their experiments. These resources are limited, thus sharing them among researchers is

inevitable. This raises the question of which agent should be given access to the resources.

This is known widely in AI and multi-agent systems research as resource allocation prob-

lem [38]. In their research, Wooldridge et al. [113] have classified the complexity of ten

decision problems related to “coalitional resource games”. They have also shown the re-

lationship between this work and the previous one. Again, most of the problems are of

non-deterministic polynomial complexity.

Ieong and Shoham [39] study coalition formation among agents where attributes of the

agents designate the values of coalitions. They argue that it is very common in the real world

that each agent possess some qualities, referred to as attributes, necessary to execute its task.

In other words, their attributes constitute the coalition value. Such settings include a football

team which has a set of players who possess various skills needed for winning a game, or

a mining company possesses a number of minerals which are to be optimally produced to

maximize the company’s profit. Ieong et al. [39] define a formal representation of their

games which is very succinct and is applicable for other settings. They can also apply the

Shapley value and the Core to their game. Furthermore, they can also propose a heuristic for

computing Shapley value for a large problem.
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2.8 Other Coalition Formation Work

We have covered coalition formation works that are closely related to this thesis. However,

there are many other works in coalition formation that are interesting, although they are less

related to this thesis. We shall explore them briefly in the following.

Rather than just deciding on the spot whether they should cooperate or not, research sug-

gests that agents should learn from their cooperation in thepast as well. Merida-Campos

and Willmott [58] propose a model for forming coalitions over a period of time. The model

allows for various strategies to be deployed by agents. Basedon the repeated coalition forma-

tion, Gerber and Klusch [29, 45] propose a scheme for agents to dynamically form coalitions.

They manage to apply a technique to ubiquitous computing such as m-commerce. Soh and

Li [95, 97] propose a learning mechanism for agents while forming coalitions. Agents apply

an enforced learning approach to interact more efficiently in a complete information environ-

ment. Chalkiadakis and Boutilier [16] study learning coalition formation under uncertainty

by applying a Bayesian technique. They also introduce the ”Bayesian Core” as a new solu-

tion concept. Lastly, Pechoucek, Mark and Brta [65] apply a knowledge-based approach to

coalition formation to reduce the complexity of the processas well as to retain the privacy of

the agents involved.

Other aspects studied in coalition formation include economic analysis [15, 6], deception-

free model [11] where agents may not reveal the whole truth, information retrieval sys-

tem [46, 91], power transmission planning [18], security one-commerce [116, 17], informa-

tion sharing [41], sensor network [93], robotic soccer [3],physics-oriented system [90, 52]

where principles of physics are applied, market modeling [19], and policy evaluation [64].

2.9 Motivation to the Thesis and Research Question

In the following, we will discuss the motivation that lead usto research in the thesis. We

then raise research questions that we try to solve in later chapters of the thesis.

2.9.1 Motivation

We have covered coalition formation in considerable details. It is a reasonable assump-

tion that applying coalition formation to any cooperative system, where agents may be self-

interested, can benefit the system a lot. While many solution concepts, such as the Shapley

value and the Kernel, can bring the system to a stable state, one in which agents do not

change their strategies, by ensuring individual rationality, the Core can also bring the wealth
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(in addition to stability) to the system as well. Hence, the Core seems the most appropriate

solution concept be applied in any cooperative system.

However, bringing about the core to a system can be a difficulttask due to several rea-

sons. In a superadditive environment, although agents can form the grand coalition for max-

imizing the system’s wealth, it has been shown that the Core may be empty [30]. In a

non-superadditive environment (where coalition values are arbitrary and are independent of

their respective coalition sizes), finding the maximal wealth for the system is to compute the

maximal sum of coalition values from all coalition structures in the system. This has been

proved that it is a hard problem [77] (as we will explore in greater details in section 2.3), let

alone the optimization for coalition values which can be by itself a hard problem. Further-

more, agents are practically rationally-bounded and are under various real world constraints,

such as time, resources, etc., it is such an important challenge to find a solution that can reach

the closest state possible to the Core.

We take the challenge in this research–to deliver a solutionwhich will lead to the clos-

est state possible to the Core. Whereas previous studies in coalition formation merely deal

with a small number of agents, assuming coalition values known a priori (with characteristic

function), etc., we aim at conducting research in coalitionformation under an environment

which is as close to real world setting as possible. Rather than binding ourselves to classical

theories, we are investigating for algorithms that can helpcoalition formation be more practi-

cable and useful in real world settings. In particular, we want to explore coalition formation

which the system’s utility is maximal via optimal coalitionstructure algorithm in various

settings.

2.9.2 Research Questions

Whereas the state of the art [69, 71] scan all the inputs and canhandle only 27 agents,

the question is how can we manage to find algorithm that is scalable to a larger number

of agent and can yield reasonably good results in anytime fashion. This idea is not new

at all in solving hard problems, such as traveling salesman or vehicle routing problems.

In this environment, optimal results cannot be guaranteed but the reasonably good result

achieved within the limited time is acceptable. The performance of algorithms for these hard

problems are evaluated by benchmarking against a standard input set. Since, searching for

OCS is a hard problem [77], we are interested in investigatingfor a solution to cope with the

scalability issue of the problem and can yield reasonably good results in anytime fashion.

Given the same setting which is quite generic, we want to testthe solution as thorough as

possible within various data distribution.
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Given that the first problem has been solved, the next question remains how the solution

can be applied to any problem in particular, given that coalition values are not know a priori?

We adopt the classical game of linear production as our test bed for this question. Whereas

the original problem deal with superadditive domain, we consider non-superadditive domain,

which is more complex and raises another level of difficulty to the problem. Although linear

production is considered not a hard problem by itself, solving it can be time consuming

given a large number of agents involved. Note that existing algorithms in OCS problem

require all the input be scanned for their values. When the number of agents become larger

than 30 agents, it seems impossible for any typical computerto handle the problem. Many

of previous work in coalition formation have deploy “best first” strategy to form coalitions,

we follow this direction.

We go further in terms of raising complexity, which is realistic, into OCS problem. The

next level is how can we handle OCS problem when optimizing coalition value itself is a hard

problem, let alone the complexity of solving OCS. We investigate into OCS in the non-linear

domain where agents have to solve for the (near) optimal solutions (values) of coalitions.

We consider a domain where independent truck agents are to cooperatively distribute goods

from sources to various destinations. There are two levels of complexities:i) solving the hard

problem of distributing goods from each source, andii) solving the the optimal allocation

of trucks to each sources, which is a OCS problem, such that thetotal cost of the system is

minimal.

We have seen that coalition formation has been explored separately in various parts of

the supply chains domains, such as coalitions among buyers,coalitions between buyers and

sellers, coalition among logistics providers. It is interesting to us that if we combine these

parties together, how can we find a way to optimize the utilityof the system? We want to

address this problem via optimal coalition structures. Thechallenge in this problem is that it

involves 3 different parties, which none of any work in coalition has attempted before.

Thus the objectives of this research are:

1. to develop a best-first, anytime algorithm that is an efficient solution for OCS problems

in environments where coalition values are known a priori Then, to adapt the algorithm

developed in objective 1:

2. to solve OCS problems in a linear environment where coalition values and coalition

structure values are not known a priori but must be calculated

3. to solve OCS problems in an NP hard, non-linear environmentwhere coalition costs

and coalition structure values are not known a priori

4. to solve OCS problems in complex environments such as thosein which coalitions
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involve 3 types of stakeholders, such as in the supply chain domain



Chapter 3

Computing Optimal Coalition Structures

3.1 Introduction

The previous chapter has identified 5 objectives of this research. This chapter will address

the first of those objectives, namely: 1. to develop a best-first, anytime algorithm that is

an efficient solution for OCS problems in environments where coalition values are known a

priori

Computing optimal coalition structures in multi-agent systems is an important research

problem both from theoretical [42] and practical perspectives. The optimal coalition struc-

ture problem seeks to identify, given a set of agents and a value to each subset, the optimal

partitioning of that set of agents (i.e., a partitioning forwhich the sum of the coalition values

is maximized). The optimal coalition structure problem finds application in a variety of real

world settings, including logistics and supply chains [75,85, 99], virtual organizations, [33]

team formation, [62] etc. This problem is proved to be NP-Hard [77].

The number of all coalition structures can be determined byBell Number, Bn [50]. Since

the value ofBn can be very large for a small value ofn, existing algorithms tend to divide

the search space into small portions. Algorithms for solving this problem can be divided

into two main categories:i) anytime algorithms that perform exhaustive search to generate

the optimal solution [77, 22], andii) heuristic algorithms that do not provide a guarantee of

generating an optimal solution, but in ideal settings, generate a near-optimal solution [100,

70]. Algorithms of the first kind guarantee that a solution obtained after completion of a

certain part of search space would be within a bound of the optimal. Algorithms of the second

kind do not provide any guarantees of optimality at all, but provide empirical evidence to

suggest that the solutions obtained are indeed near-optimal.

In the research reported here, we have sought to develop an algorithm (that we shall

refer to as the coalition bound heuristic or CH). This work presents a best-first anytime

algorithm for computing optimal coalition structures. Ouralgorithm differs from others in

45
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two ways. First, the approach is novel in that it generates coalition structures based on

coalition values, while existing algorithms base their generation on the structure (members

and configurations) of coalitions. With our algorithm, coalition structures are generated

by repeatedly choosing the best coalition, as determined using a novel metric calledagent

contribution ratiothat we define. Second, our algorithm can proceed towards theoptimality

beyond the boundary of the partitioning structure (such as configuration) of the whole search

space. The agent contribution ratio will identify (independently of the partitioning structure)

the best candidate coalition, which contributes the most value toCS and will be placed in

CS. As the consequence, the algorithm can converge to (reach)optimality quickly.

We have compared the performance of our algorithm against that of Rahwan et al [69, 71]

using 20 data distributions. Our results show that our algorithm always converges on an

optimal coalition structure faster. Although our algorithm terminates later (because of a

simple prune mechanism being used) in some cases, our algorithm always yields a better, or,

at least, as good solution as the algorithm of Rahwan et al.

The content of this chapter structured as follows. First, weexplain how the algorithm

generates allCSs. We introduce the novel idea, the agent contribution ratioand followed

by the data structure used. We then explain the main and the working functions composing

the whole algorithm which guarantees the completeness (allCSs are generated) and system-

aticity (eachCS is generated only once). Second, we explain how the algorithm converge to

optimality. We discuss applying branch and bound techniquewhich can accelerate the algo-

rithm to converge to optimality quickly. We follow with giving an example of an execution

of the algorithm. Lastly, we show empirical results.

3.2 The CH Algorithm

In contrast to other algorithms [77, 51, 22, 70, 69, 71], thiswork generates coalition struc-

tures based on coalition values rather than their coalitionmembers. We consider generat-

ing coalition structures as a process of repeatedly choosing the best coalition (i.e., one that

contributes the best value to the coalition structure) fromavailable candidates such that for

each generated coalition structurei)
⋃

Si = N (the exhaustivecondition [77, 51, 22]) and

ii)Si ∩ Sj = ∅ for i 6= j (the disjoint condition [70, 69, 71]). The algorithm must be

systematic, i.e., it must not generate/evaluate the same coalition structure more than once.

Best Coalition: In subadditive environments [51, 42],VS∪T < VS + VT , coalition val-

ues are inversely proportional to their cardinalities. Clearly, any optimal coalition struc-

ture would be composed of small coalitions because they individually have high values.
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Any algorithm that prunes larger coalitions can rapidly approach the optimal solution. It is

more complex in superadditive environments whereVS∪T ≥ VS + VT . In settings where

VS∪T = VS + VT , and all coalition values arek ∗ |S| (for any constantk), wherek ∈ Z
+, all

coalitions structures are optimal. In other superadditivesystems, whereVS∪T > VS + VT , a

coalition structure consisting only of the grand coalitionis always optimal. Both subadditive

and superadditive environment are similar in that there is amonotonic relationship between

coalition values and their cardinalities.

However, the problem is difficult in the general case [51], because such monotonicity

does not exist–coalition values do not have any relationship with cardinalities. The highest

value coalition may not be the best coalition because it might be a large coalition that leaves

little room for other coalitions (whose values might be verylow.) Hence, we need a metric

that would permit us to pick the next coalition to add to an (incrementally constructed) coali-

tion structure. We define a metric calledagent contribution ratio to coalition, aS, i.e., the

average value for each agent inS:

aS =
VS

|S|

and use this as a basis for our best-first search. We note in passing that theagent contribution

ratio to coalition structure, aCS, i.e., the average value for each agent inCS:

aCS =

∑

VSi

n

will always be maximal for any optimal coalition structure.

In order to be efficient in random environments, we define the best coalition,S∗, is

the one whosea is the highest. Given two coalitionsS1 andS2 and their respective agent

contributionsa1
1 anda2, we defineS1 is the best coalition (with respect to the algorithm) if:

• a1 > a2 (the agent contribution ratio ofS1 is higher ), or

• a1 = a2 and|S1| < |S2| (the agent contribution ratios are equal butS1 is smaller), or

• a1 = a2 and |S1| = |S2| (the agent contribution ratios and sizes are equal butS1 is

merely precedent toS2).

We shall refer to these properties as thecoalition contributionproperties. Given a number

of agents, the algorithm will determine the best coalition and use it to construct a coalition

structure.
1We usea1 instead ofaS1

simply to avoid it looking clumsy.
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Figure 3.1:Data Structure Coalitions are stored in 2-dimension arrayC. Available can-
didate coalitions for all layers are kept tracks by 2-dimension arrayB. The CS being con-
structed is kept in 1-dimension arrayCS. The remaining agents, which can be candidates for
the best coalition at the present layerl of CS, are kept track by 1-dimension arrayR.

Data Structures: Here, we define data structures to facilitate the generationbelow.

Firstly, we need a data structure to store the coalition structure being generated. We de-

fine CS a 1-dimensional array of coalitions, whose size isn = |N |, the maximal number

of coalitions the coalition structure may contain. Each element is for a coalition chosen

so far. CS representsCS and will be used interchangeably. We shall refer to thel-th in-

dex of CS as thel-th layer coalition. ElementsCS[1] andCS[2] are the coalitions at the

1st and the2nd layer of the coalition structure respectively. Since it is common in the lit-

erature that all coalitions must be observed before the algorithm can really proceed effi-

ciently [77, 51, 22, 101, 100, 70, 69, 71], we store all coalitions in a 2-dimensioned array,C.

The first dimension, depicted in Figure 3.1 as columns, refers to cardinalities of coalitions.

The second dimension, depicted in Figure 3.1 as rows, refersto thep-th coalition of a given

c cardinality. Coalitions in each cardinality will be sorted by their value in descending order,

i.e., the1st position is the highest value or the best coalition, the2nd position is second high-

est value or the second best coalition, and so on. ElementC[1][1], for example, refers to the

1st coalition (or positionp = 1) of cardinality 1, i.e.,S = {1} in Figure 3.2, whileC[2][2]

refers to the2nd coalition (or positionp = 2) of cardinality 2, i.e.,S = {2, 4} in Figure 3.1,

and so on.

As the algorithm proceeds, some agents have already been placed inCS and are not avail-

able anymore. In order to maintain thedisjoint condition, we defineR a set ofremaining

agents who are available for being chosen for the present layer l in CS. A newCS is com-

pletely generated onceR is empty, i.e., theexhaustivecondition is satisfied. Each coalition

in CS is the member ofCS. Furthermore, the algorithm needs to know what coalitions are
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available forCS[l]. We defineB a 2-dimensional array of integers for indexing coalitions

in C that are available forCS[l]. The first dimension, depicted in Figure 3.1 as rows, refers

to thel-th layer ofCS. The second dimension, depicted in Figure 3.1 as columns, refers to

the cardinalityc in each layer. The value of elementB[l][c] = p indicates that the candidate

coalition forCS[l] from cardinalityc is the elementC[c][p]. At layer l, all coalitions avail-

able forCS[l] are indexed by all elements in rowl of B. These coalitions are, of course,

subset ofR. We shall refer to each of these coalitions as acandidatecoalition of its respec-

tive cardinalityc for CS[l]. ConsiderB in Figure 3.1, for example. ElementB[1][1] = 1,

refers to the candidate coalition from cardinality 1 forCS[1], which is the1-st coalition, i.e.

C[1][1] = {4}. ElementB[3][2] = 6 refers to the the candidate coalition from cardinality 2

for CS[3], is the6-th coalition, i.e.C[2][6] = {3, 4}. The value 0 of any element inB implies

that there is no candidate coalition for the specified layer from the respective cardinality.

Algorithm 1 Main Construct coalition structures by adding the best coalition(chosen from
available candidate coalitions) intoCS[l]

1: l← 1 ⊲ set the present layerl to 1
2: S∗ ← chooseNextS(l) ⊲ choose the best coalitionS∗ for layerl
3: while S∗ 6= ∅ do ⊲ while S∗ exists
4: CS[l]← S∗ ⊲ placeS∗ in CS[l]
5: R ← R \ S∗ ⊲ updateR by removingS∗

6: S∗ ← ∅ ⊲ resetS∗ to ∅
7: if R = ∅ then ⊲ if there is no agent left inR
8: print “newCS generated: ”+CS; ⊲ output newCS
9: end if

10: S∗ ← Extend() ⊲ attempt to extendCS
11: if S∗ != null then ⊲ if S∗ is found thenCS can be extended
12: l← l + 1; ⊲ extendCS to the next layer
13: else
14: S ← Alter() ⊲ cannot extend then attempt for altering
15: if S∗ = ∅ then ⊲ cannot alter
16: S∗ ← Shrink() ⊲ attempt to shrink
17: end if
18: end if
19: end while

3.2.1 Main Function

Populating Data: At the beginning,C is populated. Its elements in each cardinality are

sorted by their values in descending order. Sorting coalitions in each cardinality can be

done in parallel using any efficient sort algorithm. In our implementation, we useMerge
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sort algorithm2, which is very robust and efficient because its worst case time complexity is

among the best, i.e.,m log m wherem is the size of input. Since sorting is done in parallel,

the largest value ofm is nC⌊n/2⌋ which is slightly less than scanning all2n − 1 coalitions.

The space complexity is also reasonable that it isO(m). (One may argue that sorting can

be costly to the performance of the algorithm. The empiricalresults show that, taking into

account the sorting time, our algorithm still converges much quicker in all data distributions.)

All the coalitions inC are sorted by their values rather than their members as in Rahwan et.

al [70, 69, 71]. The first coalition of each cardinality is thebest, i.e., highest value, and so

on. All elements of bothB andCS are initialized to 0 andnull respectively. Then,l is set to

1 indicating that the coalition structure is being built at layer 1 as the starting layer. At each

layerl, the algorithm will determine what are the candidate coalitions. At the beginning, the

first coalition in each cardinality is its candidate. Thus,B[1][1 ≤ c ≤ n] is set to 1, indicating

that the candidate coalition forCS[1] of each cardinality is its first coalition.R is set toN

because none of the agents are placed inCS.

Main Loop: The logic of the main loop is very simple. It keeps acquiringS∗ and place it

in CS at the present layerl. Firstly, acquiringS∗ is done by calling functionChooseNextS,

which determines the best coalition from available candidates at the present layerl = 1.

Then the algorithm determines if it can acquire anymoreS∗, which can be done in one of the

following manners

• Extend the algorithm tries to extendCS, i.e. place the nextS∗ in theCS[l + 1],

• Alter the algorithm tries to alterCS[l] with its next best candidate coalition, or

• Shrink the algorithm repeatedly tries to removeCS[l] (while l > 1) and replaceCS[l−

1] with its next best candidate coalition.

At the beginning of the execution, since the first coalitionS∗ has just been chosen, the al-

gorithm enters the main loop in this first round and placesS∗ at layerl = 1 of CS. Remaining

agentsR is subtracted byS∗ because the agents who are the members ofS∗ cannot be part of

the next coalition. This will guarantee the disjointness ofthe coalition structure [70, 69, 71].

S∗ is then reset to null. After that the algorithm determines whether a new coalition struc-

ture has been generated by examining if agents are exhaustively used inCS, i.e., to examine

whetherR is empty. If that is the case, the algorithm outputs the newlygeneratedCS. The

algorithm then tries to generated remainingCSs by keeping acquiring the nextS∗ to fill in

CS. First, it tries to extendCS (adding the best coalition toCS), by calling functionExtend.

2Ref: http://en.wikipedia.org/wiki/Mergesort, accessed 12 May 2009.
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If a non-empty coalition is returned, the layerl is increased by 1 and the execution will go to

the start of the loop. IfExtend returns null, the algorithm tries to acquire the best coalition

by callingAlter function. If a non-empty coalition is returned, the execution will go to the

start of the loop. IfAlter returns null, the algorithm tries to acquire the best coalition by

calling Shrink function after which the execution will go to the start of theloop. At the

start of the loop, the algorithm examines the value ofS∗ whether it will continue in the loop.

The algorithm terminates when it cannot find any moreS∗. The 5 working functions that are

used to support the main algorithm will be discussed below.

Note that variables defined in the main algorithm are accessible by supportive functions

whereas variables defined in supportive functions are local.

3.2.2 Working Functions

Algorithm 2 ChooseNextS Function

1: function CHOOSENEXTS(l)
2: bestS ← ∅
3: a∗ ← 0
4: for c = 1 to |R| do ⊲ for each valid cardinality
5: if B[l][c] > 0 then ⊲ if there is a candidate coalition
6: a← VC[c][B[l][c]]/c ⊲ compute the candidate’sa
7: if a > a∗ then ⊲ if the newa is better thana∗

8: bestS ← C[c][B[l][c]] ⊲ set the candidate coalition as the new best
coalition

9: a∗ ← a ⊲ seta∗ to the new value
10: end if
11: end if
12: end for
13: return bestS
14: end function

Choosing (Next) Best Coalition (ChooseNextS):Since we have sorted coalitions by

their values in each cardinality, this guarantees that at each cycle in the main loop the best

coalition, one with the highesta, can be identified from candidate coalitions without ambigu-

ity. The search for the best coalition is very simple. Firstly, the best coalition (local variable

bestS)is set to empty as well as its agents’ contribution (a∗) is set to 0. The algorithm then

goes through each candidate coalition in ascending order ofthe cardinality and compares its

agents’ contribution,a againsta∗. Only if a > a∗ then the respective candidate coalition is

set to be the newbestS. This way, even multiple candidate coalitions have exactlythe same

a, only the smallest coalition remains the best coalition.
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Algorithm 3 NextS Function

1: function NEXTS(c,p)
2: for j = p to nCc do ⊲ starting from positionp towardsnCc

3: if C[c][j] ⊆ R then ⊲ if the coalition atp is inR
4: return j ⊲ return its position
5: end if
6: end for
7: return 0
8: end function

Search for Next Candidate Coalition (NextS):At any layerl, the algorithm needs to

prepare the candidate coalition in each valid cardinality.A valid cardinality is one whose

value is not greater than the number of remaining agents, i.e. |S| < |R|. For each of these

cardinalities, we just need only the next available coalition, i.e., the one whose members

are all inR with the highest value, as the candidate of its cardinality for the next layer of

CS. (The value of each of these candidate coalitions can be usedto determine the upper

bound of the optimality in order to decide whether the algorithm should terminate. We shall

cover this in later sections.) The search for the candidate will be done towards the last

coalition(position) in each cardinality. As the algorithmproceeds through the main loop,

there might not be candidate coalitions left in some of the valid cardinalities because at least

one of the members of all of the remaining coalitions is already in CS. In this case, the

respective element ofB is assigned the value 0. Hence, the search is needed only if there is

a chance to find a candidate coalition, i.e., the value of the respectiveB is greater than 0.

Algorithm 4 Extend Function

1: function EXTEND

2: if l < n then
3: for c = 1 to |R| do
4: p← B[l][c] ⊲ set the beginning position for searching for candidate
5: if p > 0 then ⊲ only cardinalities that have coalitions left
6: if c = |CS[l]| then ⊲ for candidate of cardinality ofCS[l]
7: p← p + 1 ⊲ begin the search at the next position
8: end if
9: B[c][l +1]← NextS(c, p) ⊲ search for the next candidate of cardinalityc

10: end if
11: end for
12: return ChooseNextS(l + 1) ⊲ acquire the best coalition and return it
13: end if
14: return ∅
15: end function
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Extending Coalition Structures: The algorithm examines whether there will be a new

coalition which will extend (be inserted into the next layerl + 1 of) CS. The presentCS

can be extended ifl < n holds. In addition, the cardinality of the new coalition must not

be larger than the number of the remaining agents, i.e., for each cardinalityc, c ≤ |R|. For

each of these cardinalities, we just need only the next available coalition, i.e., the one whose

members are all inR, as the candidate of its cardinality for the next layer ofCS. We set

p to B[l][c] the position of the candidate of the respective layer and cardinality. The search

begins ati) C[c][p + 1], the next positionp + 1 of the cardinalityc, if c = |CS[l]| (CS[l] is

just chosen from this cardinality), orii ) C[c][p] otherwise. The search is done through calling

the functionNextS(c, p), wherec is the cardinality on which the search will be done,p is

the starting position of the search inC[c]. Once a proper coalition is found, its position is

returned and will be assigned toB[c][l +1] as the candidate coalition. Otherwise the element

B[c][l+1] will be assigned 0 to indicate that there is no more candidatein this cardinality. The

algorithm acquires the best coalition from available candidates by callingChooseNextS()

and returns it.

In the casel >= n, the algorithm simply returns∅

Algorithm 5 Alter Function

1: function ALTER

2: R ← R∪ CS[l] ⊲ return the last coalition ofCS toR
3: p← B[|(CS[l])|][l] + 1 ⊲ start to search for the alternative candidate at the next

position
4: B[|CS[l]|][l]← NextS(|CS[l]|, p) ⊲ retrieve the alternative candidate
5: CS[l]← ∅ ⊲ resetCS[l]
6: return ChooseNextS(l) ⊲ acquire the best coalition and return it
7: end function

Altering the Body: This function is called when the algorithm cannot acquireS∗ by

calling functionExtend, i.e. cannot extendCS from layer l. Then the algorithm tries to

alter CS by discarding its last coalition and tries to acquire the next best coalition from

available candidates of this layerl. Before it can actually do that, it has to ensure if there is

any candidate coalition beneath the discarded coalition inthe same cardinality. However, it

has to return the member ofCS[l] back toR before it can begin searching. The starting point

of the search is simply the next position of the last coalition, B[|CS[l]|][l] + 1. Again, the

search is done through the call of functionNextS(). Similar to the attempt to extendCS,

the candidate will be assigned toB[|CS[l]|][l] if there is one, otherwise 0 will be assigned to

the element. The last coalition of the coalition structure is discarded,CS[l] is set to empty.

The next best coalition will be acquired through the call of functionChooseNextS(l) and
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will be returned.

Algorithm 6 Shrink Function

1: function SHRINK

2: if l > 1 then
3: l← l − 1 ⊲ shrink by decreasing value ofl by 1
4: R ← R∪ CS[l] ⊲ return members toR
5: p← B[|CS[l]|][l] + 1 ⊲ set the starting position for the search for alternative

candidate
6: B[|CS[l]|][l]← NextS(|CS[l]|, p) ⊲ search for the alternative candidate
7: CS[l]← ∅; ⊲ resetCS[l]
8: return ChooseNextS(l); ⊲ acquire the best coalition and return it
9: end if

10: return ∅
11: end function

Shrinking Coalition Structures: This function is called when the algorithm cannot find

S∗ to extendCS to the next layerl + 1 nor to alterCS[l]. It then shrinksCS and tries if

coalition structure can still be generated by trying to alter the last coalition ofCS each time

CS is shrunk. This can be done only if the conditionl > 1 holds. Firstly, the algorithm

shrinksCS by decreasing the value ofl by 1. The members ofCS[l] are returned toR. Then

the algorithm tries to acquire the next best coalition ofCS[l] (CS has just been shrunk). The

algorithm looks for the next candidate of|CS[l]|. The starting point of the search is set to

the next position of theCS[l], i.e.B[|CS[l]|][l] + 1. The algorithm then searches for the next

candidate coalition by callingNextS. The last coalition,CS[l] can now be discarded. The

next best coalition will be acquired through the call of function chooseNextS and will be

returned.

3.2.3 Proof Completeness and Systematicity of the CH algorithm

In the following, we will prove that the CH algorithm generates all CSs (completeness) and

generates each of them once and only once (systematicity). For the completeness proof,

saying that any given valid CS will be generated by the algorithm is logically equivalent

to saying that all CSs will be generated by the algorithm. Given Si andSj. We denote by

Si ≥b Sj if Si is the best (better thanSj) coalition. Note that coalitions in each cardinality are

generated in lexicographic order. When being sorted, the positions of each pair of coalitions

being compared do not change if the values of both coalitionsare equal.

Firstly, we need to prove that any givenCS ′ can be rearranged such that above properties

hold.



3.2. The CH Algorithm 55

Lemma: Let CS ′ = {S ′
1, S

′
2, . . . , S

′
m}, where1 ≤ m ≤ n be a valid CS, it can be

rearrange asCS = {S1, S2, . . . , Sm}, whereS1 ≥b S2 ≥b . . . ≥ Sm.

Proof: Since the member ofCS ′ are merely rearranged to makeCS such that the coali-

tion contribution properties hold, henceCS ′ is equal toCS because both are the same sets

whose members (coalitions) are the same.

Theorem: A given CS will be generated (completeness) once and only once(system-

aticity) by the CH algorithm.

Proof: We will show thatS1 will be placed in CS before the end of the execution and

other remaining coalitions will be placed in a strict order.

• Let S1 is located at position1 ≤ p ≤n C|S1| of its respectiveC[|S1|]. S1 will be chosen

as the candidate coalition of its respective cardinality ata point in time before the end

of the execution because theExtend(line 6-9), Alter(line 3-4) andShrink(line 5-

6) functions skip the discarding coalition and call the function NextS(line 2-6) which

searches for the next available coalition down the arrayC[|S1|] one by one. Oncel = 1,

S1 will be the candidate of its respective cardinality. The functionChooseNextS will

examine the best candidate forCS[1]. Since the function will choose the best candidate

from the remaining candidates includingS1, S1 will always be put inCS[1].

• Let’s assume the algorithm has put1 ≤ i < j ≤ m coalitions in toCS. Hence, the

next step is to put the best candidate coalition toCS[j]. Let Sj, 1 < j ≤ m, is located

at position1 ≤ q ≤n C|Sj | of its respectiveC[|Sj|]. Similar to the above case,Sj

will be chosen as the candidate coalition of its respective cardinality at a point in time

before the end of the execution because theExtend Alter andShrink functions will

call the functionNextS which searches for the next available coalition down the array

C[|Sj|] one by one from the discarding position. At layerj, Sj will be the candidate

of its respective cardinality forCS[j]. The functionChooseNextS will examine the

best candidate forCS[j]. Since the function will choose the best candidate from the

remaining candidates includingSj, Sj will always be put inCS[j]. This property holds

for the remaining coalitions forCS[j], i < j ≤ m.

• Since coalitions are placed inC in strict order, they will be chosen as candidate coali-

tions of their respective cardinalities, and they will be chosen as the best candidate by

the same process in the algorithm, a CS will never be regenerated.
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Figure 3.2:Generating Coalition Structure Coalitions are stored in arrayC, where rows
represent the position of the coalitions in each cardinality, represented by column. Candidate
coalitions for each layerl in CS are stored in arrayB, whose rows represent the layer ofCS
and columns represent the cardinality. Attached to the leftof the array are two additional
columns. The first one indicates the execution round, while the second one represents the
respective layer ofCS. The coalition structure is stored in one dimensional arrayCS. As it
appeared here, multiple rows are the current state ofCS with respect to the corresponding
execution round appears inB. Remaining agents are stored in arrayR. Each row represents
remaining agents after a candidate coalition has been chosen for CS in the same execution
round in the corresponding rows ofB andCS.
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3.2.4 Example of Coalition Structures Generation

This section will show how the algorithm runs in the exhaustive search. The CS whose value

is the highest is kept as the optimal one until the algorithm finds a better CS. Figure 3.2

illustrates the execution of the algorithm on 4 agents. The data shown in the figure is captured

from the real run. The first table on the left depicts coalitions inC. In each cell, the coalition

members are shown as a set in the upper half while the coalition value is shown in the bottom

half of the cell. Coalitions in each cardinality are sorted bytheir values in descending order,

i.e., the coalition with highest value is in layer 1, the second highest value is in layer 2, and

so on. The second table depicts the status ofB during the execution. Each row contains

data from each round through the main loop. The first column onthe left indicates the round

of execution. The second column indicates the present layerof CS in the corresponding

round. The remaining columns are candidate coalitions inB[l][1] to B[l][4] from which

the best coalition can be chosen. The third table shows that status ofCS. Each column

represents a corresponding layer inCS. The best coalition from the candidates is placed in

the corresponding element ofCS. The last table on the right shows the remaining agents in

R after the best coalition is chosen. The algorithm will go through the three main working

functions to the end of the loop. In the next round, corresponding data are presented in the

next row.

In round 1), wherel = 1, candidate coalitions are order 1 in each cardinality. Their a

area{4} = 9/1 = 9, a{1,4} = 10/2 = 5, a{2,3,4} = 10/3 = 3.333, anda{1,2,3,4} = 4/4 = 1.

Hence the best coalition is{4} and is placed inCS[l = 1]. The remaining agents are now 1,

2 and 3. The algorithm then determines ifCS can be extended by callingExtend. Here, it

scans through each cardinality, whose value is not greater than 3, and callNEXT in order

to search for the next candidate coalition. In cardinality 1, the candidate coalition is the order

2, i.e.,C[1][2] = {2}. In cardinality 2, the candidate coalition is the order 4, i.e.,C[2][4] =

{1, 3}. In cardinality 3, the candidate coalition is the order 2, i.e.,C[3][2] = {1, 2, 3}. Among

these candidate coalitions,{2} has the highesta = 6 and is chosen as the best coalition.

This extension repeats until round 4 when{1} is placed inCS[4]. The algorithm outputs

the newly generatedCS. Now, it cannot extendCS anymore because it is at the lowest

layer l = 4. Hence, it tries to alter the last coalition ofCS. Firstly, the algorithm returns

CS[4] = {1} back toR, resetB[4][1] = 0 and callNEXT to search for the next candidate

in cardinality 1. Since{1} is already the last coalition, the alteration cannot be done. The

algorithm then tries the last option, shrinkingCS. It decreases layerl by 1, l = 4 − 1 = 3.

CoalitionCS[l = 3] = {3} is returned toR. It then callsNextS for the successor candidate

coalition of {3}, which is{1}. Hence in round 4 at this layerl = 3, candidate coalitions
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are{1}and{1, 3}. The best coalition is{1, 3} with a = 4. It reaches the end of the loop

and goes to the next round. In round 5), this new coalition is placed in layer 3 ofCS and its

members are removed fromCS. There is no remaining agents. Hence, the newCS is output.

During round 6) to 8), the algorithm alters its last coalition, shrinks and extendCS where

the newCS is generated.

In round 15),CS is shrunk by 1 layer 1. Here, the algorithm reaches to top layer l=1 of

CS. It changes the candidate coalition of this cardinality from C[1][1] = {4} to C[1][2] =

{2}. Among all candidates in this layer, which are shown in round16), the best coalitions

is C[1][B[1][2]] = {2}. It reaches the end of the loop and goes to the next round. In round

16), the head ofCS is now changed to{2}. The algorithm keeps extendingCS until it

can generate the newCS in round 18). The change of the head ofCS to a lower order

coalition, similar to what happens in round 16), continues as the as the execution proceeds.

This will lower the upper bound to optimality across the whole search space. The execution

continues until it reaches round 51) where the layer ofCS is 1 and the best coalition chosen

in previous round from the only candidate is the grand coalition. After outputting the new

CS, the algorithm cannot extend nor alter. It tries the last option, shrink. This leaves no more

candidate coalitions and leads the execution to the end. Note that the example discussed here

is to show that the algorithm generates allCSs. TheCS∗ is the second one.

3.2.5 Applying Branch and Bound Method

Branch and bound is a well known technique in computer scienceto reduce execution time

by ignoring some search space which is useless, i.e. we will never find a better solution

in that portion of the whole search space. Here, we use a branch and bound mechanism in

order to increase the performance of the algorithm, i.e. thealgorithm can converge to the

optimality quickly.

LetCSB, i.e.CS[l], is a coalition being constructed at a point in time. Its value,V (CSB),

so far is the sum of the values of candidate coalitions chosenup to the point. LetS∗ be the

best candidate whose average agent contribution isa∗. The highest possible value the optimal

value can be is simply

V (CSB) + (n− |CSB)|)× a∗.

Let V (CS∗) be the present solution. The algorithm needs to search further from its

currentCSB if and only if

V (CSB) + (n− |CSB)|)× a∗ > V (CS∗)
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holds. We can just apply this condition to theChooseNextS function when choosing

the best candidate. If the above condition is no longer satisfied, there is no need to search

any further from the currentCSB. ChooseNextS simply returns null. Hence the algorithm

backtracks one step and proceeds with the available candidates.

3.2.6 Example of Applying Branch and Bound

There are two modifications need to make in the algorithm. First, everyCS that has been

generated must be compared to theCS∗. If V (CS) > V (CS∗) holds, thenV (CS∗) is set

to V (CS) as the new solution. Second, the best coalition has to be determined if there is

a chance it would raise the value ofV (CS∗) before the functionChooseNextS returns the

best coalition. This is to determine ifV (CSB) + (n− |CSB)|)× a∗ > V (CS∗) holds.

With respect to the real execution in the same example above,the firstCS generated,

{{4}, {2}, {3}, {1}} is set asCS∗ with V (CS∗) = 21. After shrinkingCS up to layer 3,

the newCS∗ = {{4}, {2}, {1, 3}} is found with the new value 23. After that the algorithm

will alter at CS[3] where it learns that the next best coalition{1} may raiseV (CS∗) (up to

25). However, a newCS can never be generated because there is no more coalition left. The

algorithm shrinks to layer 2 and alterCS[2] = {2} with {3}. However, it will not extendCS

to layer 3 because{1, 2} will never raiseV (CS∗) (the highest possible value is 9+5+6=20.)

The similar situation will also happen at level 2 where the algorithm shrinks to level 1 and

alter{4} with {2}. However, it will never extendCS any further because there is no chance

{3} will raiseV (CS∗). These things will be repeated until there is no candidate coalition at

layer 1.

3.3 Experimental Results

Settings:Since we have already discussed that the distribution of coalition values is relevant

to the optimal coalition structures because it suggests howtheir patterns might be [70, 69,

71], this work categorizes coalition value distribution differently from previous work [51],

where the coalition value distribution is based on coalition value alone regardless of coalition

cardinalities. The categories of the distribution are superadditive, subadditive, normal and

uniform distribution. Here, we consider the distribution in two dimensions, by taking into

account coalition values and their cardinalities. In the first dimension, we consider the ranges

of coalition values in all cardinalities. The low ends of theranges are 0 while the high ends

are categorized into 8 cases.i) STD: The maximal coalition values in all cardinalities are

roughly stable. They may fluctuate slightly.ii)IND: The maximal coalition values increase
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by the cardinalities. (Note that although this is similar tosuperadditive but it is not quite the

same.) iii) DCD: The maximal coalition values decrease by the cardinalities. Again, it is

similar but is not subadditive.iv) CCD: The maximal coalition values on cardinalities 1 and

n are high and decrease towards the medium cardinalities. This distribution is concave.v)

CVD: The maximal coalition values on cardinalities 1 andn are low and increase towards

the medium cardinalities. This distribution is convex and is more common in real world

settings. It reflects environments in which cooperation helps increase revenue and profit

until cooperation costs become too costly when coalitions get too large [101, 100].,vi) RDD:

coalition values are random. To generate a coalition value,we randomly choose cardinality,

randomly choose a coalition whose value is yet to be assigned, and randomly choose a value.

vii) NMD: This is normal distribution as in previous work [51].viii) UNI: This is uniform

distribution in previous work [51]. In the second dimension, we consider the distribution of

coalition values in each cardinality of the STD, IND, DCD, CCD and CVD distribution. We

have three varieties in each of them, i.e., normal distribution in each cardinality with the mean

leaning towards the highest(F10), the middle(F5) and the lowest(F1) coalition values. We do

this in order to observe the effect of distribution of coalition values within cardinalities.

Since Rahwan et.al.(RN) is apparently the state of the art, we benchmark the performance

of our algorithm (CH) against it.3 Similarly to RN, we are computationally bounded with just

2GB of RAM usable with Windows operating system on each of our computers. The avail-

able memory on each computer allows space enough for only experimenting our centralized

algorithm for 26 agents. (We need2n×8 bytes of memory to store all coalition values.) Note

that the main purpose of this algorithm is to demonstrate theperformance of the algorithm

for a reasonable number of agents. We will demonstrate how tocope with the problem with

larger number of agents in later chapters. For each of20 ≤ n ≤ 26 agents, we generate

100 samples for each of the distribution mentioned above. Weallow 15, 30, 45, 60, 75, 90

and 105 minutes of execution time forn = 20, n = 21, n = 22, n = 23, n = 24, n = 25

andn = 26 respectively. These duration times are estimated values and are slightly higher

than the termination times of RN’s worst case (normal distribution) in order to ensure the the

allowed time is enough for RN to terminate.

3Both algorithms are implemented in Java 1.5. Note that we were not given RN implementation, we try our
best on several ways and find that using arrays allows for bothalgorithms to run at the fastest speed possible.
The representation of the coalitions and their values are the same as in our implementation. The executions
are done on 120 Pentium 4 2GHz with 2GB of ram machines runningWindows XP. These 120 machines are
distributed across 4 laboratories.
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Figure 3.3: Empirical Results on STD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNon STDF1, STDF5 and
STDF10 distributions.

3.3.1 Empirical Results

For each sample data, we observe the elapsed time for i) convergence (the solution reaches

the highest value but yet to terminate) and ii) termination (the algorithm terminates because

either there is no way to improve the solution or it is timeout). For each of these elapsed

time, we find the average, highest and lowest elapsed times for 20 ≥ n ≤ 26 agents for both

algorithms.

In STD, as shown in 3.3, our algorithm converge earlier in allvariations. We trace every

run of both algorithm and find that our algorithm always generates higher V(CS) at any point

in time until it reaches the highest value at which RN generates at later stage. In terms of

terminations, it varies. In variation F5 and F10, RN offers almost the same time the for

convergence and termination. In F1, the convergence and termination of RN diverge slightly

and are higher than that of our algorithm and its own performance in F5 and F10. This can

be easily interpreted as RN might misled by the upper bound of configurations. In F5 and

F10, our algorithm converge earlier but terminates after RN.However the termination times

in both cases are still lower than the worst case of RN in F10.

In IND, as shown in 3.4, our CH algorithm converges and terminates earlier than RN in

variation F1 and F5. However, our algorithm converges earlier but terminates later than RN

in variation F10. The convergence and termination of RN in allvariations are quite different.

In DCD, as shown in 3.5, our algorithm converges and terminates earlier than RN in

variation F1. However, it terminates later than RN in variation F5 and F10. Note that IND

and DCD are not really superadditive and subadditive environments in which our algorithm

would perform well as discussed above.
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Figure 3.4: Empirical Results on IND Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNon INDF1, INDF5 and
INDF10 distributions.
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Figure 3.5: Empirical Results on DCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNon DCDF1, DCDF5 and
DCDF10 distributions.
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Figure 3.6: Empirical Results on CCD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNon CCDF1, CCDF5 and
CCDF10 distributions.
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Figure 3.7: Empirical Results on CVD Distribution The graphs show convergence and
termination times of Algorithm CH against that of algorithm RNon CVDF1, CVDF5 and
CVDF10 distributions.

In CCD, as shown in 3.6, CH converges and terminates earlier thanRN in variation F1

but it terminates later in variation F5 and F10. Note that theconvergence of our algorithm in

F1, when it terminates earliest, is higher than that in F5 andF10.

In CVD, as shown in 3.7, CH converges and terminates earlier than RN in F1 and F5. It

terminates later than RN in F10. Across all variations, the worst case of average of CH is

still better than that of RN.

In RDD, as shown in 3.8, CH converges and terminates earlier than RN. In NMD, in

which RN performs worst across the four distributions, CH converges and terminates earlier

in all variations. Both algorithms terminate shortly after convergence. In UFD, CH con-

verges earlier RN but terminates about the same time as RN converges and terminates in all
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Figure 3.8: Empirical Results on RDD, NMD and UNI Distribution The graphs show
convergence and termination times of Algorithm CH against that of algorithm RN.

variations.

As shown in the graphs above, our algorithm always convergesearlier than RN. This

implies that our algorithm guarantees better or, at least, as good as RN’s result at anytime

(although our algorithm takes longer to terminate in some cases.) The further implication

of this is that generating coalition structures from best coalitions can help reach optimal

coalition faster. This complies with Aumann’s alpha core which states that optimal coalition

structures involve a small set of coalitions. This is based on the simple fact that merely

generating coalitions alone can be intractable for a centralized system because all the existing

algorithms (including ours) requires that all coalitions and their values must be observed

before the actual generation–let alone the coalition structure generation. For example, it is

impossible to execute any of the existing centralized algorithms for 60 agents because none

of the existing single computer systems can offer enough memory. In terms of anytime

algorithms which are more appropriate for multi-agent systems, our algorithm empirically

shows that it always generates better or, at least, as a good solution as RN. Note that the

coalition value distribution within cardinalities affects the performance of both algorithms

differently.

Across all 18 distribution variations, there are 8 cases where our CH algorithm termi-

nates later than RN. These cases are STDF5, STDF10, INDF10, DCDF5, DCDF10, CCDF5,

CCDF10 and CVDF10. With STDF10, INDF10, DCDF10, CCDF10 and CVDF10, the av-

erage of coalition values in each cardinality is very close to the upper bound of the coalition

values in each cardinality. This obviously results in that the upper bound of each configura-

tion is very close to the exact optimal coalition structure value of that configuration. There-

fore, RN can find the optimal coalition structure value of the configuration quickly and, as
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a consequence, it can also determine if it needs to search in anymore configuration quickly.

With STDF5, DCDF5 and CCDF5, the average of the coalition valuesof small coalitions are

larger than that of the large ones (this is common for all STDs, DCDs and CCDs). This results

in that configurations containing small coalitions tend to have both higher upper bounds and

exact optimal coalition structure values. (Example of these configurations for 4 agents are

1+1+1+1, 1+1+2, etc.) Since, there are not many of them and the size (number of coalition

structures) of each of them is relatively small, the search for real optimal coalition structure

value in each configuration can be done quickly. As a consequence of this, RN can prune and

terminate quickly. Note that these distributions are invented by us to show if an algorithm’s

performance is robust enough, i.e. reaching optimality quickly regardless of the distribution

of coalition values.

3.4 Conclusion

In this chapter, we have sought to develop a best-first searchanytime algorithm that provides

a guarantee of generating the optimal solution, given it hasenough time. The algorithm

advances the state of the art, in terms of anytime algorithms, by always generating a solution

better or, at least, as good as RN at any point in time. We present empirical results that

support our claims.

Thus, the work presented in this chapter has achieved the first objective of this research,

namely:

1. to develop a best-first, anytime algorithm that is an efficient solution for OCS problems

in environments where coalition values are known a priori

Having successfully met this objective, our goal is now to deploy the best-first anytime

algorithm to a number of more complex OCS domains, particularly those in which the coali-

tion values and coalition structure values are not known a priori. In the next chapter we will

adapt this algorithm to a linear production domain.



Chapter 4

Computing OCS in Linear Production Domain

4.1 Introduction

The previous chapter has achieved the first objective of thisresearch, namely:

1. to develop a best-first, anytime algorithm that is an efficient solution for OCS problems

in environments where coalition values are known a priori

The next four chapters will adapt the algorithm presented inChapter 3 to solve other more

difficult or more interesting problems in a variety of domains. This chapter will attempt to

solve OCS problems in a linear environment where coalition values and coalition structure

values are not known a priori but must be calculated thereby achieving the second objective

of this research.

Although the best-first search anytime algorithm presentedin the previous chapter shows

that generatingCS from best coalitions can empirically reach optimality relatively quickly, it

is not pragmatic in real world setting for several reasons. Firstly, it is a centralized approach

and is computationally bounded. Since coalition values areknown a priori, all the values

must be kept in memory in practice for prompt access. The mostefficient algorithm can

work for only 27 agents on typical computers which have 4GBs ofRAM. To handle 50

agents, it requires at least one Peta bytes (1015) of RAM, which no single computer in the

world can offer. Secondly, given the huge number of coalitions, computing all coalition

values alone can take too much time because computing a coalition value can be a complex

optimization problem. Hence, it may not be acceptable in practice.

On the other hand, this chapter approaches coalition formation in more realistic settings.

This chapter considers coalition formation where coalition values are not known a priori,

which is common in real world environments as we have alreadydiscussed in Chapter 2.

These real world scenarios make coalition formation highlycomplex because agents have

to i) compute coalition values, andii) compute the optimal coalition structures. Givenn

agents in a coalition formation process, the number of possible coalitions is2n, which is

66
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also the number of coalition values to be computed. The process of computing coalition

values is complex, as is the process of deliberation. The problem becomes intractable even

for relatively small values ofn.

Our goal in this research is to deal with this complexity. We modify Owen’s linear

production game where agents have to agree to pool their resources together in order to

produce goods. The original work assumes a superadditive environment, where agents can

simply form the grand coalition. Such an assumption is impractical in the real world since

the cost of cooperation has to be taken into account while negotiating to form coalitions.

What we have learned is that the best-first anytime search algorithm presented in the

previous chapter shows that generatingCS from best coalitions can empirically reach opti-

mality relatively quickly. However, the limitation of the algorithm is that it requires sorted

coalitions (which can be done in polynomial time) and requires dedicated memory allocation

during the execution. This prevents the algorithm from being practical. However, we can use

this best-first approach to develop an algorithm that can generateCSs quickly without the

need to scan all of the coalitions. Furthermore, theCSs generated must be very close to

optimality.

4.2 Coalition in a Linear Production Domain

Linear production games [63] are those in which agents are given resources and try to

pool resources to produce goods in order to maximize the system’s profit. Owen [63]

studied linear production games in superadditive environment. Here, we consider linear

production games in non-superadditive environments. We are given a set of agents,A =

{a1, a2, . . . , am}, whose goals are to maximize the system’s profit. We are also given a set

of resourcesR = {r1, r2 . . . , rn} and a set of goodsG = {g1, g2, . . . , go}. Resources them-

selves are not valuable but they can be used to produce goods,which are valuable to agents.

Let L = [αij]n×o, whereαij ∈ Z
+, be the matrix that specifies the units of each resource

ri ∈ R required to produce a unit of the goodgj ∈ G. Such a matrix is called alinear

technology matrix[63]. The price of each unit of goods produced is specified by the vector

P = [pj]1×o. Each agentak ∈ A is given a resource bundlebk = [bk
i ]n×1. In this setting,

some agents would have the incentive to cooperate, e.g., if they cannot produce a certain

good using only the resources at their disposal. Hence agents have to cooperate, i.e. form

coalitions, in order to create value from their resources. Let S ⊆ A be a coalition. It will

have a total of

bS
i =

∑

k∈S

bk
i
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of the ith resource. The members of coalitionS can use all these resources to produce any

vectorx = 〈x1, x2, . . . , xo〉 of goods that satisfies the following constraints:

α11x1 + α12x2 + . . . + α1oxo ≤ bS
1 ,

α21x1 + α22x2 + . . . + α2oxo ≤ bS
2 ,

...
...

...,

αn1x1 + αn2x2 + . . . + αnoxo ≤ bS
n

and

x1, x2, . . . , xo ≥ 0.

We assume that agents have to pool their resources together at a coalition member’s loca-

tion to produce these goods. Thus agents’ cooperation incurs some costs, e.g., transportation

cost, etc. The cooperation cost among agents is specified by the matrixC = [ckl]m×m, which

assigns a cooperation cost between each pair(ak, al) of agents such that

ckl ∈

{

Z
+ if k 6= l

{0} if k = l

We assume that all of the resources of agents are pooled at onelocation, which can be the

location of any agent in the coalition. A singleton coalition yields cooperation cost of 0.

For a coalition of size two,S = {a1, a2}, pooling coalition resources at any of the two sites

yield the same cost for the coalition (i.e. the cooperation cost matrix is symmetric). The

total cost for cooperation incurred by a coalition will be taken to be the sum of the pairwise

cooperation costs between the agent at whose location coalition resources are pooled, and

the other members of coalition. For a coalition of size threeor larger, there is at least one

agent,ak, such that
m

∑

k′=1

ckk′ ≤
m

∑

l′=1

cll′

for all al ∈ S. We shall call a coalition memberak who yields the minimal cooperation cost

for the coalition acoalition center.

Agents in the coalitionS have to find a vectorx to maximize the revenue accruing to a

coalition. Let

PS =
o

∑

l=1

plxl.

be the maximal revenue the coalition can generate. Let

CS =
∑

l∈S

ckl.
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be the minimal cooperation cost for the coalition (obtainedby selecting the optimal coalition

center). Obviously, the ultimate objective of agents in thecoalition is to maximize profit,

i.e., the coalition valueυS, where

υS = PS − CS.

The linear inequalities referred to above, together with this objective function constitutes

a linear programming problem. We shall call the solution, the vector〈x1, x2, . . . , xo〉 that

represents the optimal quantities of goodsg1, g2, . . . , go optimal product mix.

4.3 Distributed Algorithm for Coalition Formation

Here, we consider a distributed algorithm that allows agents to compute coalition values and

approach the optimal coalition structures as they proceed.Each agent has to do to two tasks:

i) Delibarating: deliberate over what coalitions it might form by incrementally improving the

initial set of coalitions, andii) Forming coalitions: exchange information to form coalitions

such that those coalitions yield maximal profit to the system. The sets of such coalitions are

the optimal coalition structures. The main goal of the algorithm is to reduce the search space

for finding the optimal coalition structures. This can be achieved by reducing the number

of coalitions to be considered. In our setting, the optimal coalition structures must yield a

profit, a non-negative utility, to the system. In the worst case, the system’s profit is 0—each

agent is a singleton coalition and cannot produce anything at all.

4.3.1 Deliberating Process

In the following, we will identify a coalition by the identifier of its coalition center agent.

Thus the coalitionSk will have agentak as its center. HencebS represents the resource

vector of Sk. The reasoning described below is conducted by the coalition centre agent

for each coalition. Given a coalitionSk, let Gk refer to the set of goods whose resource

requirements are fully or partially satisfied bybS, the resources available inSk (excluding

goods whose resource requirement might be trivially satisfied because these are0). For each

goodgj ∈ Gk, the coalition centre agentak ranks agents not currently in its coalition on

a per good basis. For each resourceri of goodgj, agentak ranks non-member agents by

computing for eachal /∈ Sk, whosebl
i > 0, the valueπj

i —its proportional contribution to the

profit of the good (using its fraction of the resource requirements for that good provided by
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α1j
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- ar1

1st
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2nd
- ar1
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α2j
- ar2
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-ar2

2nd
- ar2

3rd

Figure 4.1:Ranking AgentsAgents are ranked by their potential profit per each resourceof
a good.

theal) minus the (pair-wise) collaboration cost betweenal andak, i.e.,

πj
i =

bl
i

αij

pj − ckl.

The agentak uses this proportional contributionπj
i to construct a binary tree for eachgj.

The only child of the rootgj is the first resourceα1j, whose left child is the second resource

α2j, and so on. For eachαij, its right child is eitheri) null if αi
j = 0, or ii) the agentari

1st,

whosepiji value is the greatest. The right child ofari

1st is the agentari

2nd, whoseπj
i value is the

second greatest, and so on. Every timeak wants to produce additional units ofgj, it traverses

the tree down to the appropriate resourceri and add more agents into its coalition based on

bS. Figure 4.1 depicts this structure.

The agentak usesbS to determine additional resources needed to produce additional units

of a goodgj. For eachgj ∈ Gk and resourceri,

βj
i = I(αij)− bS

i ,

whereI ∈ Z
+ is the smallest integer such thatβj

i > 0, represents the amount ofri that coali-

tion Sk lacks to produce goodgj, provided the amount is non-negative (β = 0 otherwise).

The indicative vector, βj = [βj
i ]1×n, represents un-met requirements for each resourceri of

goodgj.

In this process, an agent may choose to do one of the followingin order to generate coali-

tions: i) growing coalitions: adding profitable agents to existing coalitions, orii) shrinking

coalitions: removing costly agents from existing coalitions. The following subsection de-

scribes both processes in details.

Growing Coalitions

The agentak uses the indicative vectorβj to help collect additional coalition members into

its coalition. If the agentak wants to produce an additional unit ofgj, it identifies the resource
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that is needed the most,βj
i∗ = maxn

i=1(b
j
i ), from the indicative vector. It locates the nodeβj

i∗

in T gj and collects the next available agentai∗

l into the coalition. The total resources of the

coalitionbS is updated. Eachβj
i of indicative vector will be subtracted by it corresponding

bl
i. The agentak keeps adding more agents into its coalition until there are enough resources

to produce an additional unit ofgj, i.e.,βj
i > 0 ∀i. The algorithm to collect additional agents

into the coalition is shown in algorithm 7.

Algorithm 7 Select additional agents

Require: the present coalitionS
Require: the focused goodg

initialize additional agentsS ′ = ∅
get the coalition’s resourcebS

get the indicative vectorβg′

identify the most needed resourceri∗

while ri∗ > 0 do
locate next available agenta

rj

l

if a
rj

l ¡0 then
break

end if
setS ′ = S ′ ∪ a

rj

l

for all βj
i do

setβj
i = βj

i − bl
i

end for
identify the most needed resourceri∗

end while
returnS ′

In the extended part, each agent ranks profitable coalitionsin its ranking tree. The root of

the tree is the singleton coalition of the agent,Sk. So far, the agentak knows that if it wants

to produce at least an additional unit ofgj, it needs to acquire additional agents,S ′, into its

Sk. The agentak create a trial coalition by mergingS ′ into S. Since each new agent may

posses other resources not required for producinggj, the trial coalitions may find a better

solution for producing goods. Hence the profitsυ of trial coalitions vary. EachS ′ will be

added to the tree as the children ofS. The sub algorithm for selecting profitable members is

shown in algorithm 8.

In the main algorithm, the agentak considers itself a singleton coalition at the beginning

of deliberating. It create the ranking treeTG of all agent for each good. At this point it is

only the root of the profitable-coalition tree,L+, and is the base of the growing coalition.

It acquires the additional agentsS+ into the coalition. EachS ′
j ∈ S+ will be added as

the children of the base coalition. Among allS ′
js, the most profitable agentsS∗ are those
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Algorithm 8 Select the most profitable members

Require: A coalitionS
Require: ranking treesTG

set highest profitυ∗ = 0
set profitable membersS+ = null
for j:=1 do—S—

if S is not capable of producinggj then
continue

end if
get additional agentsS ′

set trial coalitionS ′
j = S ∪ S ′

j

compute trial coalition’s profitυS′
j

setS+ = S+ ∪ S ′
j

end for
returnS+

that provide the highest additional profitυ∗ and are kept as the base for the further growing

coalition. The coalition keeps growing in this fashion until there are no profitable members

left in TG. Then the next most profitable sibling of the baseS ′
j will be the new base. This

repetition goes on until it cannot find a new base. This will keep the coalition’s marginal

profit growing while the size of the coalition is growing. Thenumber of coalitions each

agentak has to maintain is also much smaller compared to that of an exhaustive search. The

main algorithm is shown in algorithm 9.

Algorithm 9 Main Grow

setL+ = ∅
create a singleton coalitionS = {ak}
setA′ = A− {ak}
create ranking treesTG for all goods
collect profitable membersS+

while S+ 6= ∅ do
locateS∗ ∈ S+

setA′ = A′ − S∗

setS = S ∪ S∗

setL+ = L+ ∪ S
collect profitable membersS+

if S+ = null then
setS∗ = the next profitable sibling ofS∗

end if
end while
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Shrinking Coalitions

Alternatively, coalitions can be generated by shrinking the grand coalition. The agentak

creates the grand coalition and tries to shrink it by pruningthe least profitable members.

The agent utilizes indicative vectorsβjs and the the treeT j in order to locate the agent

who is the least useful to its present coalition. For each good, the positive value ofβj
i in

the indicative vector indicates surplus resource that the agent who possesses the equivalent

resource should be eliminated from the present coalition. The agentak create a trial coalition

S ′ for each good. The surplus agents will be eliminated fromS for the next smaller quantity

of the good possible. Each trial coalition will be inserted into the pruning membersS−. The

sub-algorithm for selecting profitable members is shown in algorithm 10.

Algorithm 10 Select the least profitable members

Require: A coalitionS
Require: ranking treesTG

set highest profitυ∗ = 0
set pruning membersS− = S
for all gj ∈ G do

if S is not capable of producinggj then
continue

end if
get surplus agentsS ′

set trial coalitionS ′
j = S ∪ S ′

j

compute trial coalition’s profitυS′
j

setS− = S− ← S ′
j

end for
returnS−

In the main algorithm, the agentak considers itself a virtual coalition center of the grand

coalition. at the beginning of deliberation. It create the ranking treeTG of all agent for

each good. At this point, it is root and the only member of the profitable-coalition tree,L−. It

prunes the pruning agentsS− from the coalition. EachS ′
j ∈ S− will be added as the children

of the base coalition. Among allS ′
js, the most profitable agentsS∗ are those that provide

the highest additional profitυ∗ and are kept as the base for the further shrinking coalitions.

The coalition keeps shrinking in this fashion until there are no prunable members left inTG.

Then the next most profitable sibling of the baseS ′
j will be the new base. This repetition

goes on until it cannot find the new base. The number of coalitions each agentak has to

maintain is also much smaller compared to that of an exhaustive search. The main algorithm

is shown in algorithm 11.
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Algorithm 11 Main Shrink

setL− = N
create ranking treesTG for all goods
collect pruning membersS−

while S− 6= ∅ do
locateS∗ ∈ S−

setA′ = A′ − S∗

setS = S ∪ S∗

setL− = L− ∪ S
collect pruning membersS+

if S+ = null then
setS∗ = the next profitable sibling ofS∗

end if
end while

4.3.2 Coalition Formation Algorithm

At this point, each agent has a number of coalitions it has generated. It also needs to know

other coalitions generated by other agents before generating coalition structures. It is also

important that the number of coalitions to be input into the process of generating coalition

structures must be relatively small in order to avoid intractability.

The first thing is to prune the unuseful coalitions–those that are non-profitable. Once

each agent finishes its deliberation, it ranks all of its coalitions by profit. LetS− be a non-

profitable coalition, whose valueυS− ≤ 0, andS+ be a profitable coalition, whose value

υS+ > 0.

Lemma 1 AnyS− coalition can be replaced by a set of its members’ singleton coalitions,

whoseυak∈S
≥ 0, such that the coalition structure’s value will not be decreased.

Therefore, all non-profitable coalitions can be ignored. Each agent will remove all of

the non-profitable coalitions, if there are any, one by one. The remaining coalitions are

profitable. In fact, our algorithm in the deliberation process can simply prevent this happen-

ing using its treeTG. It always generates profitable coalitions. Obviously, each singleton

coalition is non-negative. Hence, non-profitable coalitions must not exist in the coalition

structures.

Given that the deliberation algorithm generates all profitable coalitions among agents

inclusively, agents cani) exchange information about coalitions generated and their singleton

coalitions, andii) decide to form coalitions that yield the optimal coalitionstructure value.

Proposition 1 The optimal coalition structure can be constructed by profitable coalitions

generated by agents and their singleton coalitions.
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As for exchanging information about the profitable coalitions among agents, we use a

high-level algorithm since it is a common practice in the literature for broadcasting informa-

tion among agents [77, 48, 32, 87, 47, 84, 46] during coalition formation. Once the agent

is ready, i.e. it has finished the pruning, it broadcasts the list of profitable coalitions to other

agents one by one. After that, the agent just collects each ofthe lists sent over from all other

agents.

Having received all the coalitions, further improvement can still be achieved–keeping

only optimal coalitions. Note that at this point there will be |S| variations ofS, each of

which isS with different center (which generatesS) and value. Given a coalition of agents,

S = {ak, al}, for example, there is one variant that was generated byak, as the center, which

we denote bySk, and the other variant that was generated byal, as the center, which we

denote bySl. Both ak andal have these coalitions in their list after exchanging. However,

among these variant coalitions, there will be just one optimal coalition,

S∗ = argmaxSk∈SVSk
,

whereSk is a variant ofS.

In the process of findingS∗, agentak can simply setSk as theS∗ and compares it against

other variants. If any of those variants has higher coalition value, it will be set as the new

S∗. Each agent will keep onlyS∗, i.e. otherS∗ 6= S∗ will be deleted from the list. After this,

each agent will have just one coalition with optimal value, i.e. (S∗) [42]. Actually, this step

reduces a large number of possible redundancies during the calculation for the optimal value

of a coalition. Otherwise, for each coalition, each member of the coalition has to compute

for the optimal coalition value by choosing the all possiblecenters, which is inefficient. The

main distributed algorithm for generating profitable coalitions among agents is shown in

algorithm 12. For the sake of illustration, we assume this algorithm be run at agentak.

One may raise a question regarding the communication cost among agents as it seems

agents have to communicate extensively. Actually, the agents merely send messages to each

other just once, i.e. after the deliberation. The number of messages sent across communica-

tion network is relatively small, i.e.n2. The content of each message (containing coalitions

and their values) can be represented in plain text and can be zipped into a small piece of

data. Given the present communication infrastructure, where multi-million messages are

being sent across the communication network and the cost is well covered, it is unlikely

that the algorithm would incur any significant burden, in terms of communication cost and

performance, to the system.

The other concern can be the synchronization during the exchange of messages. While
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Algorithm 12 Main Distributed Algorithm

Require: Lk set of self-generated coalitions.
setL∗ = Lk

for eachSk in Lk do ⊲ prune non-profit coalitions
if υSk

≤ 0 then
setSk = ∅

end if
end for
for eachal ∈ N andal 6= ak do ⊲ broadcast generated coalitions

ak sendLk to a
end for
for eachal ∈ N andal 6= ak do ⊲ collect generated coalitions

agentak collects all coalitions,L∗ ∪ Ll

end for
for eachS ∈ L∗ do ⊲ find optimal coalition

setS∗ ← Sk

for eachSl of S andSlneqSk do
if υ∗

S < υSl
then

setS∗ ← Sl

else
Sl ← ∅

end if
end for

end for
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our high-level algorithm sends and collect lists of coalitions consequently, one can deploy

any low-level technique, such as having a daemon program fortaking care of sending and

receiving messages, in real implementation. This may also allow the sending and receiving

on each agent be done independently. However, we leave this to the further development as

it is beyond the focus of this work.

At this point, these remaining coalitions kept at each agentwill be profitable and opti-

mal. Furthermore, their number is relatively small. Each agent can use these highly-valued

coalitions to generate coalition structures. The detailedalgorithm will be discussed in the

next section.

4.3.3 Best Coalition and Coalition Structure Pattern

In previous studies [77, 22], coalition structures are generated based on the size of coalition

structures and the cardinality of the coalitions. It appears that the search space is very large.

Here, we try to reduce the search space. For each cardinality, each agent tries to do local

search for a small number of coalitions. Firstly, we define the agentak’s best coalitionfor

the cardinalityκ the coalitionSκ
k , whose members includeak, that is found from a search

within a given time and yields the maximalυS. Within the same cardinality, the next coalition

that yields the second highest coalition value issecondbest coalition, and so on.

We introduce thepattern of generating coalition structures. A pattern of a coalition

structure describes the number of coalitions and their cardinalities in the coalition structure.

It is written in the form

B1 + B2 + . . . + Bκ, whereBι ∈ Z
+ and

κ
∑

ι=1

Bι = m

Our work proposes coalition structure pattern in breaking manner as the following. Given

a set of 6 agents, for example, the first pattern is 6 in layerL1. There can be just one coalition,

which is the grand coalition, whose cardinality is 6. In the next layer,L2, the grand coalition

will be broken into 2 coalitions by splitting a member from the grand coalition into the new

coalition. Hence the pattern is 5 + 1. The next pattern is 4+2 and 3+3. The pattern in each

layer cannot grow once the difference between each pair of coalitions’ cardinalities is≤ 1.

Then the pattern breaks into the next layer, i.e., 4 + 1 + 1, 3 + 2+ 1, 2 + 2 + 2. The last

pattern is obviously 1 + 1 + 1 + 1 + 1 + 1. The pattern breaking process for 6 agents is shown

below:
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No. of coalitions 1 2 3 4 5 6

Patterns 6 5 + 1 4 + 1 + 1 3+1+1+1 2+1+1+1+1 1+1+1+1+1+1

4 + 2 3 + 2 + 1 2+2+1+1

3 + 3 2 + 2 + 2

Agents can use best coalitions to generate coalition structures by following these patterns.

By using the best coalitions alone, agents will achieve some coalition structures whose best

one will be close to the optimal one. Using more coalitions, i.e., the second best, third best

and so on, coalition structure values can be improved.

4.3.4 Generating Coalition Structures

Once each agent finishes its deliberation in the first stage, it exchanges all the coalitions

generated with all other agents. It then uses the pattern to generate coalition structures.

Starting with the best coalitions, it follows the patterns layer by layer from left to right and

from top to bottom in each layer. For each pattern, the agent will choose a combination of its

own best coalitions and those it received from other agents to generate coalition structures.

For example, with a pattern of 4 + 3 + 2, the agent will place it’s best coalition of cardinality

4 as the first coalition of that coalition structure. One of the best coalitions of cardinality 3,

whose members are not in the first coalition, will be placed asthe second coalition. One of

the best coalitions of cardinality 2, whose members are not in the first two coalitions will

be placed as the coalition structure as the last coalition. In the case the agent can not find

appropriate coalitions to fit in, it places an empty set instead. The coalition structure value

is the sum of those coalition values. In each round of proceeding through all patterns, an

agent can extend the scope of best coalitions involved one byone. It, for example, generates

the coalition structure using only the best coalitions in the first round. It then uses the best

plus the second best coalition for the second round, and so on. The algorithm for generating

coalition structures is shown in algorithm 13:

4.3.5 An Example of Generating Coalition Structure

This section gives an example of how this algorithm works. Let the system be composed of a

set of four agents:A = {a1, a2, a3, a4}. After the first deliberation process, all the coalition

values are computed and sent across. Their values are the following:
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Algorithm 13 Generating Coalition Structures

exchange best coalitions with all other agents
sort coalitions for each cardinality by their coalition values in descending order
generate patterns for each layer
set bestcoal to 1
while time is availabledo

insert the bestcoal coalitions for each CScardinality
for all layersdo

for all patternsdo
generate combinations of best coalitions in CScardinality

end for
end for
increase bestcoal by 1

end while

v1 = 8 v12 = 13 v123 = 21 v1234 = 22

v2 = 12 v13 = 16 v124 = 23

v3 = 13 v14 = 10 v134 = 16

v4 = 6 v23 = 18 v234 = 19

v24 = 20

v34 = 15

After exchanging the coalitions generated among each other, each agent can select for

each cardinality its best coalition. Let’s assume that agents only operate on the best coali-

tions. Agents’ best coalitions are the following:

Cardinality a1 a2 a3 a4

1 v1 v2 v3 v4

8 12 13 6

2 v13 v24 v23 v24

16 20 18 20

3 v124 v124 v123 v124

23 23 21 23

4 v1234 v1234 v1234 v1234

22 22 22 22

For the system of 4 agents, the breaking patterns of coalitions are the following:

No. of coalitions 1 2 3 4

Patterns 4 3 + 1 2 + 1 + 1 1+1+1+1

2 + 2
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Using the algorithm in the second deliberation process, each agent’s coalition structures

computed are shown below. Each agent will achieve the same optimal coalition structure

whose value is 41.

a1 a2

CS1234 = 22 CS1234 = 22

CS124,3 = 23 + 13 = 36 CS124,3 = 23 + 13 = 36

CS1,234 = 8 + 0 = 8 CS2,134 = 12 + 0 = 12

CS13,24 = 16 + 20 = 36 CS24,13 = 20 + 16 = 36

CS13,2,4 = 16 + 12 + 6 = 34 CS∗
24,1,3 = 20 + 8 + 13 = 41

CS1,23,4 = 8 + 18 + 6 = 32 CS2,13,4 = 12 + 16 + 6 = 34

CS1,2,34 = 8 + 12 + 0 = 20 CS2,3,14 = 12 + 13 + 0 = 23

CS∗
1,3,24 = 8 + 13 + 20 = 41 CS2,1,34 = 12 + 8 + 0 = 20

CS1,2,3,4 = 8 + 12 + 13 + 6 = 39 CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

a3 a4

CS1234 = 22 CS1234 = 22

CS123,4 = 21 + 6 = 27 CS124,3 = 23 + 13 = 39

CS3,124 = 13 + 23 = 26 CS4,123 = 6 + 21 = 27

CS23,14 = 18 + 0 = 18 CS24,13 = 20 + 16 = 36

CS23,1,4 = 18 + 8 + 6 = 32 CS∗
24,1,3 = 20 + 8 + 13 = 41

CS∗
3,1,24 = 13 + 8 + 20 = 41 CS4,13,2 = 6 + 16 + 12 = 32

CS3,2,14 = 13 + 12 + 0 = 25 CS4,23,1 = 6 + 18 + 8 = 32

CS1,2,3,4 = 8 + 12 + 13 + 6 = 39 CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

4.4 Experiments

4.4.1 Generating Coalitions

We tested of our algorithm within a range of10 − 100 agents. In each round, the agents

number increased by5. The number of goods and resources are equal and increase by1 in

every2 rounds. In each round, the technology matrix, agents’ resources and cooperation

costs among agents are randomly generated with uniform distribution. The number of each

resourceαij in the technology matrix is in the range0−10. The prices of the goods are in the

range of10− 20 while the cooperation costs are in the range of0 and the number of agents

in that round, e.g.,10, 15, . . .. As our algorithm deals with non-superadditive environments,

this setting tends to increase the cooperation cost of a coalition as its size grows. Hence it
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No. of No. of Goods Exhaustive Our
Agents Resources Search Search

10 4 781 121
15 4 42269 123
20 5 1272703 197
25 5 5092317 234
30 6 19384629 607
35 6 80429663 1608
40 7 NA 1696
50 8 NA 4730
60 9 NA 13346
70 10 NA 24298
80 11 NA 23276
90 12 NA 26933
100 12 NA 81845

Table 4.1: This table compares the average deliberation time of each agent using our al-
gorithm against exhaustive search. Our algorithm outperforms exhaustive search after the
number of agents exceeds 35 (exhaustive time not available—NA).

forces agents to work harder to form profitable coalitions and to achieve optimal coalition

structure. Both algorithms use the Simplex algorithm to find the optimal solution for each

coalition. The revenue generated is subtracted to achieve the coalition’s profit.

The Table 4.1 compares the average deliberation time agentsspent using exhaustive

search to that using our algorithm. The time is measured in milliseconds. We observed

that exhaustive search hardly makes any progress after the number of coalitions generated

exceeded 2.5 millions. As shown in the table, the time spent on deliberation using exhaustive

search was approximately doubled as the number of agents increased by 1. With 20 agents,

the time spent on deliberation using exhaustive search is far larger than that using our algo-

rithm. Our computer system could not carry on experiments any further after we reached

35 agents using exhaustive search. We continued experimentusing our algorithm until the

number of agents reached 100. (Although we carried on the experiment up to 300 agents, the

results are not shown here.) Since the number of coalitions generated are small, the optimal

coalition structure can be found more rapidly.

Having pruned a large number coalitions, the number of remaining coalitions are small.

Hence the number of coalition structures are small. Applying our algorithm can intuitively

achieve optimal coalition structure in timely fashion.
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4.4.2 Generating Optimal Coalition Structures

We conducted experiments where agents executing our algorithm against exhaustive search

within the range of10 − 50 agents. We compared the performance of both algorithms in

terms of number of partitions generated and elapsed time of generating optimal coalition

structures. Since existing exhaustive search algorithms,e.g., [77], does not specify how

exactly the partitions are generated, we generate partitions for exhaustive search byi) in-

creasing the number of blocks, e.g.,1, 2, . . . , n, andii) for each block, the coalition size will

be propagated from left to right. For example, if there are 3 agents, the partitions generated

will be {1,2,3}, {1,2}{3}, {1,3}{2}, {2,3}{1} and{1}{2}{3}. In each round, the number

of agents increases by5. The number of goods and resources are equal and increase by1

in every2 rounds. The technology matrix, agents’ resources and cooperation costs among

agents are randomly generated with a uniform distribution.The number of each resource

αij in the technology matrix is in the range0 − 10. The prices of the goods are in the

range10 − 20, while the cooperation costs are in the range of0 and the number of agents

in that round, e.g.,10, 15, . . .. As our algorithm deals with non-superadditive environments,

this setting tends to increase the cooperation cost of a coalition as its size grows. Hence it

forces agents to work harder to form profitable coalitions and to achieve optimal coalition

structures. Both algorithms use the Simplex algorithm to findthe optimal solution for each

coalitions. The revenue generated is subtracted to achievethe coalition’s profit.

Figure 4.2 compares the performance of our algorithm against that of exhaustive search.

The left y-axis is the number of coalition structures generated while right y-axis is the elapsed

time spent for generating optimal coalition structures in milliseconds. The empirical results

show that our algorithm performs significantly better than exhaustive search. We observed

that the exhaustive algorithm hardly makes progress after the number of agents exceeds 40.

As shown in the figure, the number of coalition structures generated by the exhaustive algo-

rithm is much larger than that of our algorithm. Furthermore, the elapsed time for generating

optimal coalition structures by the exhaustive search is also much larger than that of our

algorithm. Since our computer system could not carry on experiments using the exhaustive

search for a large number of agents, we limit the comparison only for 50 agents. However,

we continued experiment using our algorithm until the number of agents reached 100 but the

results are not shown here.)
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Figure 4.2:Empirical Results This graph shows the number of coalition structures gener-
ated and elapsed time for generating the optimal coalition structures of our algorithm against
those of exhaustive search.

4.5 Conclusion

Coalition formation is an important area of research in multi-agent systems. The problem of

generating optimal coalition structures, the partitioning of a set of agents such that the sum

of all coalitions’ values within the partitioning is maximal, is an important issue in the area.

The small number of existing studies assume each coalition value is known a priori. Such

assumption is impractical in real world settings. Furthermore, finding all coalition values

becomes intractable for a relatively small number of agents.

We proposed a distributed branch-and-bound anytime algorithm for computing optimal

coalition structure for linear production domains among fully cooperative agents. Instead of

assuming that each coalition value is known a priori, our algorithm tries to reduce the num-

ber of coalitions. We extend our previous algorithm in the deliberation process in order to

improve the performance. Non-profitable coalitions are notgenerated by the deliberation al-

gorithm. Then the information about remaining coalitions will be exchanged among agents.

Lastly, each agent uses an existing algorithm [77] to compute optimal coalition structures.

The empirical results show that our algorithm help generatethe optimal coalition struc-

tures much faster than exhaustive search. Our algorithm dramatically reduces the number

of coalitions generated hence reducing the number of coalition structures. As a result, the

elapsed time of generating the coalition structures is relatively small.

So, the work presented in this chapter has achieved the second objective of this research,

namely, to adapt the algorithm presented in Chapter 3 so as:

2. to solve OCS problems in a linear environment where coalition values and coalition
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structure values are not known a priori but must be calculated.

Having successfully met this second objective, our goal is to deploy the best-first anytime

algorithm to a number another complex OCS domains in which thecoalition values are not

known a priori. In the next chapter we will adapt the algorithm for use in an NP hard,

non-linear environment where coalition costs and coalition structure values are not known a

priori.



Chapter 5

Non-Linear Optimal Coalition Structure

5.1 Introduction

The previous 2 chapters have achieved the first and second objectives of this research by

developing a best-first, anytime algorithm that is an efficient solution for OCS problems in

environments where coalition values are known a priori, andadapting that algorithm for

use in a linear environment, which is much more computationally complex. This chapter

will continue our development of the original algorithm foruse in an NP hard, non-linear

environment where coalition costs and coalition structurevalues are not known a priori,

thereby achieving the third objective of this research.

So far, we have proposed a heuristics algorithm for generating optimal coalition struc-

tures in generic domains in chapter 3 and a distributed algorithm to compute (near) optimal

coalition structures in linear production domains. In thischapter, we study optimal coalition

structures in non-linear domains. Here, we use an example oflogistics providers distribut-

ing goods from manufacturing sites to end customers. This isbecause optimizing routes for

logistics providers is a well known hard problem in real world setting.

Typical logistics providers operations are to distribute goods from depots and try to min-

imize costs by deploying as smaller number of trucks as possible, as well as try to meet with

the customers’ dateline requirements. Here, we consider the operation of small independent

logistics providers, whose individual resource is merely atruck, in a small but complex econ-

omy system. Note that these trucks are independent economy units that they have to make

their own living. An example of this kind of setting is the work of Shehory et.al. [89]. Hence

it is important that agents have fair opportunity and fair share on their contribution.

We consider distributing goods from a manufacturing site isa task. Here, we allow agents

to form a non-overlapping coalition for a given task. We wantto examine how economically

agents can address this problem in such a setting. We proposea set of distributed algorithms

to tackle the task. As commonly seen in the literature [48, 49, 84, 89, 91], agents begin

85
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by choosing the tasks it can perform most efficiently, i.e. the total distance of the routes

performed individually in the the coalition is minimal. Given a task, the size of the coalitions

who can perform the task varies. Hence, agents need to find themost appropriate coalitions

for all tasks. By assigning a coalition to each task, while allagents are part of the coalitions

and all tasks are assigned with coalitions, we can consider this as a task-agent coalition. Each

task-agent coalition will incur a distribution cost. We areinterested in minimizing the total

cost of the system, which is another level of optimal coalition structure.

Note that this problem shares some degree of similarity withother problems in the liter-

ature. It is similar to the Traveling Salesman problem [66, 4] in that a vehicle has to take a

circular route to deliver the goods. However, the vehicle, here, has to collect the good from

the manufacturing site, first, before it can distribute the goods. With regards to the Vehi-

cle Routing problem{Golden-2008}, each vehicle has a set of certain capability constraints.

However, each agent, here, requires cooperation from otheragents. With regards to Sand-

holm et.al.’s work [75], each agent in each possible coalition knows the set of the tasks they

are required to do (agents just need to optimize the coalition values and the optimal coalition

structures can be computed based on them.) However, each agent, here, seeks for a set of

coalitions that are efficient for a given task. The optimal coalition structures will be searched

from this larger set of coalitions. With respect to Shehory et.al. [89], each agent is assigned

a small set of tasks and the number of agents in the system is quite small. On the other hand,

our agents need to find a set of the most appropriate tasks (forming task-oriented coalitions

before searching for optimal coalition structures) and thenumber of agents involved is larger.

Rahwan et.al. [69] propose an algorithm for computing coalition values among coop-

erative agents. However, it is not applicable here because the algorithm works in prac-

tice only for a small number of agents, i.e., it has to scan allthe coalition values as input.

Here, the number of coalitions involved is much larger, scanning all coalition values are im-

practical. For example, choosing a coalition of 10 agents from 100 agents requires at least
100C10 = 1.731E + 13 ≈ 17.3 trillions bytes, while choosing a coalition of 11 agents from

100 agents requires at least100C11 = 1.42E + 14 ≈ 142 trillions bytes. We decide to fol-

low the same principle proposed in previous chapters, that is to compute only a relatively

small number of coalitions whose values are more relevant tothe process of computing op-

timal coalition structure values. Agents may choose any appropriate heuristics to generate

coalitions.

We are interested in exploring the difference between

1. various time allocation strategies.

2. various data distributions.
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It is common in the literatures on multi-agent systems that agents optimize their tasks

locally and deliberately exchange their tasks to increase the performance of the systems [48,

49, 84, 89, 91]. Postman protocol, for example, allows agents to exchange their task one by

one. The tasks being exchanged are usually costly for the agents who want to exchange. We

explore how the system performs if the numbers of tasks beingexchanged are larger.

5.2 Distributed Algorithm for Distributing Goods

Here, we propose a distributed anytime algorithm for agentsto cooperatively execute the

tasks. Each agent seeks the most efficient tasks it can perform. This can be achieved quickly

by ranking all the tasks by the distance between the locationof the agent and the locations of

the sources of the tasks in ascending order, i.e., the agent prefers the nearest source. For each

of the sorted tasks, the agent tries to match it with set of coalitions, each of which includes

itself, from the smallest one possible to the largest one necessary to complete the task.

The cost to jointly execute a task can be different for each agent. This is due to the fact

that agents’ capabilities and circumstances are different. This simply means there are more

constraints governing the assignment of agents to the tasks, resulting in there are fewer agents

available to particular tasks. In this case, it is relatively easy to compute optimal coalition

structures. On the other hand, if agents have equal capability, there more agents capabled of

executing particular tasks. Hence it is harder to compute optimal coalition structure. In this

chapter, we refer to assigning agents to execute tasks such that the total cost of the system is

minimal as theoptimal task-agent coalition structure(OTCS).

As we have done in the previous chapter, we compute the coalition values based on

heuristics that can lead to coalitions of high value. (Instead of following the lexicographic

order [50], we are interested in computing high-valued coalitions under time constraints.) In

computing the optimal task-agent structure, there are two levels of intervening deliberation

agents have to do.

1. The first one is to optimize possible solutions for each task.

2. The second one is to compute OTCS.

Since optimization of possible solutions is a hard problem itself, agents have to ensure

they do not spend too much time on this deliberation and do nothave enough time to delib-

erate for OTCS.

We assume agents are under time constraints in order to finishtheir tasks. Hence, agents

may consider a swapping strategy which it considers to be themost appropriate. It may
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use the maximum change strategy to quickly achieve a solution or it may use the thorough

strategy to gradually swap the task.

The calculation of coalitions associated with the tasks canbe done distributedly. Since

the computation for optimal distribution of the goods can bedone by any computing unit,

agent can evenly share the computation for the optimal routes for each task.

5.2.1 Setting

There are two levels of coalitions in our setting:i) task-plan in order to find the best solutions

for each task at each point in time, andii) task-agent in order to assign to each best task-plan

a coalition of agents such that the total cost is minimal.

Task-Plan Solution

We define a graphG = (V , E) whereV is a set of vertices andE is a set of edges connecting

each pair of vertices with a certain distance. The graph represents an economic map of a

road network, i.e., a vertex represents a location in the road network, a vertex represents the

cost in term of the shortest distance achieved optimally between each pair of locations. We

define a task as a tupleT = 〈S, {D}〉, whereS ∈ V is the source and{D} ⊆ V is a set

of destinations associated withS. We refer to the number ofDs in T as the size ofT and

denote it by|T |. We assume the smallest|T | = 1. The set of all tasks is denoted byT .

We defineL a set ofn logistics provider (LP) agents. Each of these agents,L ∈ L, is

a truck with the same capacity load and travel distance. Agents are to cooperatively deliver

the goods as per requests. We assume the number of agents is atleast equal to the number

of tasks and the maximal number of agents is not greater than
∑

T∈T |T |. A taskT can be

partitioned into1 ≤ p ≤ |T | parts, each of which to be executed by an agent. The agents

assigned to a task is then a coalition. We shall refer to a set of partitions of the samep parts

aspartition Pp. We shall refer to each instance ofPp aspartition instanceand denote it by

Pp.i, wherei is the lexicographical order index of the partitions of the samep size. We denote

by |Pp| the number of all instancesPp.i in Pp
1. We shall denote thej-th part ofPp.i by Pp.i.j,

starting from left to right. HencePp.i.j is the index indicating the number of destinations in

thej-th part ofPp.i and we denote such a number by|Pp.i.j|.

For example, a task of 5 destinations can have 5 partitions, which can be broken down to

7 partition instances altogether as shown below:

1The exact number ofPp and integer partition are well explained in [50]
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Partition Partition Integer Description

Instance Partition

P1 P1.1 5 One part of 5 destinations

P2 P2.1 4+1 One part of 4 and one part of 1 destinations

P2.2 3+2 One part of 3 and one part of 2 destinations

P3 P3.1 3+1+1 One part of 3 and two parts of 1 destinations

P3.2 2+2+1 Two parts of 2 and one part of 1 destinations

P4 P4.1 2+1+1+1 One part of 2 and three parts of 1 destinations

P5 P5.1 1+1+1+1+1 Five parts of 1 destinations

Here, partitionP1, P4 andP5 has just one instance, whileP2 andP3 which have two

instances each, i.e.P2.1, P2.2, P3.1 andP3.2 respectively. GivenP2.1, for example, we partition

the whole task into 2 parts: one part of 4 destinations and onepart of 1 destination. In other

words, we may assign a coalition of 2 agents for this task: oneagent to executeP2.1.1 which

has 4 destinations, and the other one to executeP2.1.2 which has 1 destination. Alternatively,

we may assign 3 agents to execute the task: the first agent to executeP3.1.1 which has 3

destinations, the second agent to executeP3.1.2 which has 1 destination, and the third agent

to executeP3.1.3 which has 1 destination. We shall discuss how can we partition, i.e. group

destinations, below.

Note that partitioning a task itself is of the same complexity class as partitioning coalition

in order to compute OCS as we have discussed in chapter 3. Whereas traditional OCS works

assume coalition values are known a priori, this chapter takes into account computational

time consumed to calculate coalition values.

In eachPp.i.j, a collection of|Pp.i.j| destinations can be chosen to build a route on which

any agent can travel and distribute the goods. LetDp.i.j be a set of destinations yet to be

chosen intoPp.i.j. Hence there are|Dp.i.j |C|Pp.i.j | alternative combinations. For each of these,

we can have|Pp.i.j|! alternative routes, which we denote asRp.i.j. Given Dp.i.j, we can

compute the number of alternative routes,|Rp.i.j|, as follows:

|Dp.i.j|!

(|Dp.i.j| − |Pp.i.j|)! · |Pp.i.j|!
· |Pp.i.j|!

Hence, for eachPp there are

|Pp|
∏

i=1

p
∏

j=1

(|Dp.i.j |C|Pp.i.j |)

alternatives. We shall refer to each of these alternative asa plan, Pp. Given an opti-

mization technology and a computation timet, we denoteRt
p.i.j as the optimized route with
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minimal cost (distance). We denote this optimal cost byCt
p.i.j. Hence, the execution cost of

a coalition of agents for aPp is

CEt
Pp

=

p
∑

j=1

Ct
p.i.j

For each partition of taskT , we are interested in achieving the best planP∗
T,p, whose cost

CE∗
Pp

= argminC
t
Pp

is minimal.

Agents are to cooperatively compute eachT.Pp. Rahwan et.al. [67] propose an algorithm

for computing coalition values among cooperative agents. However, that algorithm seems

inapplicable here because it computes the values of all coalitions, whose number is too large

in our setting.

Task-Agent Coalition

The next step is to assign appropriate coalitions of agents to tasks to achieve the overall

minimal cost for the system. We have defined a set of logistic providersL. There is a

location functionLoc : L → V which associates an agentL ∈ L to a vertexn ∈ V, where

the agent is located. LetRT ⊆ T be the set of tasks yet to be assigned with agents. Let

RL ⊆ L be the set of agents yet to be assigned tasks. In order to execute a taskT , a coalition

S ⊆ L of 1 ≤ |S| ≤ (|RL| − (|RT | − 1)) agents have to travel the source of the task and

collect goods before distributing them. For each agentL, this will incur theaccess cost,

CAT,L, to the agent. Hence the access cost forS to T is

CAT,S =
∑

L∈L

CAT,L.

This cost is consistent and is independent of time. LetLP∗
T,p
⊆ L be the set of available

agents for assigning toP∗
T,p, there are|LP∗

T,p
|CP∗

T,p
ways of assigning a coalition of agents to

P∗
T,p. We shall refer to each pair of assigningS ⊆ LP∗

T,p
toP∗

T,p as atask-agentcoalition and

denote it bySP∗
T,p

. Hence the total cost of executing planP∗
T,p by S is

CP∗
T,p

,S = CAT,S + C∗
Pp
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Task Coalition Structure

Here, we are not only interested in finding the cheapest assignment to eachT , but we are

also interested in finding the cheapest assignment toT. We define atask coalition structure,

TCS = {SP∗
T,p
| where

⋃

T

= T, andTi ∩ Tj = ∅, and
⋃

S

= L, andSi ∩ Sj = ∅},

is a set of task-agent assignments where all tasks are assigned with a a unique coalition

of agents and all agents are assigned to tasks. We define the total assignment cost,

V (TCS) =
∑

CP∗
T,p

,S

the sum of all assignments in a task coalition structure. We are interested in finding a

task coalition structure such that the sum of total cost is minimal, i.e.,

TCS∗ = argminV (TCS)

Best Task-Agent Assignment

In chapter 3, we have defined thebestcandidate coalition, based on the ratio between the

coalition value and its cardinality, in order to place the next coalition into CS. Here we apply

the same principle. In order to find the most appropriateS∗
P∗

T,p
as the next assignment to one

of the remaining tasks, we define thereduction contributionas

Ā =
CP∗

T,p
,S

|S|
.

Hence thebest task-agentassignment is

S∗
P∗

T,p
= argminĀ,

whose reduction contribution is the lowest among all the possible assignments.

Time Allocation Strategy for Overall Deliberation

We define a time allocation strategy as a tupleTST = 〈TPA, TTA〉, whereTPA is the per-

centage of remaining time to be allocated to the deliberation to findP∗
T,p for eachT , TTA

is the percentage of remaining time to be allocated to the deliberation to findS∗
P∗

T,p
, and

TPA + TTA ≤ 100. Agents may choose to split the remaining time equally, i.e., TST =

〈50, 50〉, which will give agent just one round of each deliberation. However, this strategy
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could also lead to a dangerous situation because the exact computing of the deliberation may

take more time than it is allocated and lead to the overtimed solution. Alternatively, agents

may choose to spare some time for the exact computing, and repeat the process of both de-

liberations for the remaining time. Such strategies may include 〈50, 40〉, 〈40, 40〉, 〈40, 30〉,

〈30, 30〉, 〈30, 25〉, 〈25, 25〉, which would recursively leave spare time for deliberations in

later rounds as10%, 20%, 30%, 40%, 50%, respectively.

Time Allocation for Task-Plan Deliberation

There are two issues for time allocation in the task-plan deliberation. i) Since planning for

optimal routes for each task is a variant of the Vehicle Routing problem, which is a hard

problem, time allocation for each task has to be distributedto each task efficiently and has

to take into account the trade off between the time spent on the computation and the quality

of the result.ii) The distribution of each task has to meet the time constraints required by

customers and all agents have to play their parts in distributing goods. We invent a heuristic

strategy which will allocate time to each task based on the potential computation workload

on each task, i.e. the sum of the size of the search space in each partition of the task.

In general, the algorithm needs to work out how to slice the available time for the opti-

mization of each task. This is depending on the size of each task, which specifies the size of

search space in each of its partition. Intuitively, the timeallocation should be based on the

size of search space but we simply cannot do that directly because the numbers involved will

be too large. For example, choosing 50 from 100 cities or agents would involve

100C50 = 1.00891345× 1029

≈ 1.0× 102 · 103 · 106 · 106 · 106 · 106

≈ 1.0× 102210 · 220 · 220 · 220 · 220

≈ 1.0× 102290.

This number is too large to be computed efficiently in a typical computer.2

Instead, we consider just the partition numbers of each task. We compute for the weight

of each partition and allocate the time to optimize the partition based on its proportional

weight to the total weight of the task. Firstly, we compute the product of each partj in each

partition instancej,
∏

|Pp.i.j|. The weight for each partition is then defined by

Wp =

∑∏

|Pp.i.j|

|i|
,

2Java offers the class BigInteger which can handle large number but the performance is relatively slow.
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where|i| is the number of instances inPp. The actual time allocation for the eachPp in

taskT is

A(Wp) =
Wp

∑|T |
k=1 Wk

Let WT =
∑|T |

k=1 Wk be the total weights of allPp T . Let WT =
∑

T∈T
WT be the total

weights of allT ∈ T. The proportional time allocation out of the available timefor task-plan

deliberation is merely

A(WT ) =
WT

WT

.

Below is the example of how we can split the allocation time foreach partition of a task

T, |T | = 10. Note that the time will be allocated more to partitions, whose search space are

larger.
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P1.i P2.i P3.i

p = 1
∏

|P1.i.j | p = 2
∏

|P2.i.j | p = 3
∏

|P3.i.j |

10 10 9+1 9 8+1+1 8

8+2 16 7+2+1 14

7+3 21 6+3+1 18

6+4 24 6+2+2 24

5+5 25 5+4+1 20

5+3+2 30

4+4+2 32

4+3+3 36

W1 =
∑ ∏

|P1.i.j |

1
10 W2 =

∑ ∏

|P2.i.j |

5
19 W3 =

∑ ∏

|P3.i.j |

8
22.75

A(W1) = W1
∑

Wp
9.154814691 A(W2) = W2

∑

Wp
17.39414791 A(W3) = W3

∑

Wp
20.82720342

P4.i P5.i P6.i

p = 4
∏

|P4.i.j | p = 5
∏

|Pp.i.j | p = 6
∏

|Pp.i.j |

7+1+1+1 7 6+1+1+1+1 6 5+1+1+1+1+1 5

6+2+1+1 12 5+2+1+1+1 10 4+2+1+1+1+1 8

5+3+1+1 15 4+3+1+1+1 12 3+3+1+1+1+1 9

5+2+2+1 20 4+2+2+1+1 16 2+2+2+2+1+1 12

4+4+1+1 16 3+3+2+1+1 18

4+3+2+1 24 3+2+2+2+1 24

3+3+3+1 27 2+2+2+2+2 32

3+3+2+2 36

W4 =
∑ ∏

|P4.i.j |

8
19.625 W5 =

∑ ∏

|P5.i.j |

7
16.85714 W6 =

∑ ∏

|P6.i.j |

4
8.5

A(W4) = W4
∑

Wp
17.96632383 A(W5) = W5

∑

Wp
15.43239929 A(W6) = W6

∑

Wp
7.781592487

P7.i P8.i P9.i

p = 7
∏

|Pp.i.j | p = 8
∏

|Pp.i.j | p = 9
∏

|Pp.i.j |

4+1+1+1+1+1+1 4 3+1+1+1+1+1+1+1 3 2+1+1+1+1+1+1+1+1 2

3+2+1+1+1+1+1 6 2+2+1+1+1+1+1+1 4

2+2+2+1+1+1+1 8
∑ ∏

|P7.i.j |

3
6

∑ ∏

|P8.i.j |

2
3.5

∑ ∏

|P9.i.j |

1
2

A(W7) = W7
∑

Wp
5.492888815 A(W8) = W8

∑

Wp
3.204185142 A(W9) = W9

∑

Wp
15.43239929

P10.i

p = 10
∏

|Pp.i.j |

1+1+1+1+1+1+1+1+1+1 1
∑ ∏

|P10.i.j |

1
1

A(W10) = W10
∑

Wp
7.781592487

Heuristic for Choosing Shrinking and Altering Point

Although the algorithm to findTCS∗ is similar to algorithm 1 in principle, it cannot repeat

shrinking and altering too often without significant improvement onV (TCS) because the

number of agent coalitions can be much larger in this case,100C50, for example, is too large

for any typical computer as we have discussed. We argue that the shrink and alter points have

to be different from algorithm 1. Instead of doing thorough search by altering and shrinking

once the algorithm cannot extend anymore, we introduce a heuristic to find the alter and

shrink point which is more appropriate to our setting. This heuristic repeatedly bi-partitions

TSC into sections. We define a bi-partitioned of a numberI ∈ I
+, I > 1 a tuple〈HH,LH〉,

whereHH = LH = I
2

if I is and even number, orHH = ⌈ I
2
⌉, LH = ⌊ I

2
⌋ otherwise. At
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each time of the bi-partitioning, we refer to the partition as the level,l. We refer to each part

of the partition as the section,s. The shrinking and altering ofTCS will take place at the

position indicated by this bi-partition. We compute the weight for each bi-partition as the

following

WIl
=

∏

Il,j

Il

The most appropriate bi-partition is

I∗
l = argmaxWIl

The presentTCS will be shrunk from task|j|, |j − 1|, . . . , 1. Each timeTCS is shrunk,

the alter takes place atT|j| in order to assign the next bestS to the task, replacing the previous

one.

Given,|T| = 20, we can bi-partition it into 5 level as shown below. By computing weight

for each level,I2 is the most appropriate level. The shrinking TCS and alteringfor a newS

will take place atT16, T11, T6, T1.

I Bi-Partition Il

∏

Il,j

Il

20 = (10+10) I1
100

22
= 25

= (5+5)+(5+5) I2
625

24
= 39.0625

= ((3+2)+(3+2))+((3+2)+(3+2)) I3
1296

28
= 5.0625

= (((2+1)+(1+1))+((2+1)+(1+1)))+(((2+1)+(1+1))+((2+1)+(1+1))) I4
16

216
= 2.44 × 10−4

= ((((1+1)+1)+(1+1))+(((1+1)+1)+(1+1)))+((((1+1)+1)+(1+1))+(((1+1)+1)+(1+1))) I5
1

220
≈ 9.54 × 10−07

5.2.2 Main Algorithm

In the beginning, the algorithm requires the time allocation strategy〈TST 〉 and the time avail-

able for deliberations, which we shall refer to as the remaining time, TR. The function

AllocP lanT ime(TST , TR) will return the time allocated to the task plan deliberationpro-

cess byplanDelibT ime = TR/100 ∗ TPA. Agents spend at leastplanDelibT ime to solve

the optimization problem in all tasks by calling the function . Once the solution deliberation

process in this round is done, agents spendassignDelibT ime = TR/100 ∗ TTA to compute

the most efficient assignment task-agent for the time being.The algorithm then computes

for TR by deducting the time spent on both deliberation in that round from TR. If there is

remaining time, the algorithm goes into the loop and repeat the deliberation processes again

until TR ≤ 0. The details processes are shown in algorithm 14.
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Algorithm 14 Main Algorithm: Construct task-agent structures by repeatedly deliberate for
optimal task-cardinality and task-agent assignment

Require: TST

Require: TR

1: elapsedT ime← 0
2: startT ime← presentT ime
3: planDelibT ime← AllocP lanT ime(TST , TR)
4: DelibTaskP lan(T, planDelibT ime)
5: assignDelibT ime← AllocAssignT ime(TST , TR)
6: DelibTaskAssign(Tasks, assignDelibT ime
7: elapsedT ime← presetT ime− startT ime
8: TR ← TR − elapsedT ime
9: while ( doTR > 0)

10: planDelibT ime← AllocateT ime(TST , TR)
11: DelibTaskP lan(T, planDelibT ime)
12: assignDelibT ime← AllocateT ime(TST , TR)
13: DelibTaskAssign(T, assignDelibT ime
14: elapsedT ime← presetT ime− startT ime
15: TR ← TR − elapsedT ime
16: end while

5.2.3 Algorithm to Deliberate Task-Plan

Here, agents have to split the available time to compute eachP∗
T,p. In the simplest case,

wheren is equal to|T| and |T | is equal for eachT ∈ T, each agent may be responsible

for the task deliberation based on lexicographic order. In the case where|T | is different

for eachT ∈ T, the computation should be distributed evenly [67]. Every computed plan

P∗
T,p needs to be distributed to every agent. Although the shortest route from the source of

each task to go through all of its destinations can possibly be derived by a single agent, the

system is under time constraint as well as the agents themselves are limited by their own

capabilities. Therefore, agents need to form coalitions torelax these constraints. On the

other hand, forming too large coalitions can lead to poor performance of the overall system

because the cost can be too high. Assigning|T | agents, for example, toT simply means

the execution cost of the task is as twice as much of the sum of the distance between each

pair of the source and each destination. Since there are a large number of possibleP∗
T,p to

be computed, agents can also apply strategies of time division to the computation of these

P∗
T,p. One strategy agents can use to reduce the computational time forP∗

T,p is to allocate

time based on the size of the search space of the plan and quality of the solution it may

achieve. Agents may stop deliberating execution cost on these oversizePp if it is certain

that the bestP∗
T,p it can achieve, with respect to time constraint, is worst than the solutions it
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has already achieved with smaller plans. Note that we treat the optimization part forP∗
T,p as

the underpinning precess. Any algorithm for the Traveling Salesman problem or the Vehicle

Routing problem can be applied here. The main focus of this chapter is on the assignment of

coalitions of agents to tasks.

The detailed process of allocating time to task-plan is described in algorithm 15. It

takes theremainT ime as an input. The algorithm initializes two arrays and one variable

to store computed weights forPs, Ts, andT. The algorithm then finds the weight of each

Pp, total weight for eachT , and total weight forT. In each of these processes, we do

not show details on how to compute the weights because it is quite straightforward from

what we have described in section “time allocation for task-plan solution”. The function

computeWeight() serves this purpose as a black box that returns just the weight of the

respectiveP . Both the total weight of eachT andT will also be accumulated at the same

time. Once all the weights are computed, the algorithm then goes to eachT , finds the exact

time for optimizing thisT . The allocated time for thisT will then be allocated to each

P , which will be optimized for the the best route by the function optimizePartn(). This

function is the call to the underpinning technology that takesT , P , and the available time as

inputs, and returnP for the givenP . The detailed processes are shown in algorithm 15.

Algorithm 15 Optimize for the best possible plans for each task

Require: remainT ime
Require: maxTaskSize
Require: T

1: init planWeightArray[|T|][maxTaskSize]
2: init taskWeightArray[|T|]
3: TotalWeight← 0
4: for eachT ∈ T do
5: for eachP ∈ T do
6: planWeightArray[T ][P ]← computeWeight(T, T, P )
7: taskWeightArray[T ]← taskWeightArray[T ] + planWeightArray[T ][P ]
8: TotalWeight← TotalWeight + planWeightArray[T ][P ]
9: end for

10: end for
11: for eachT ∈ T do
12: taskAllocT ime← getTaskAllocT ime(remainT ime, TotalWeight,
13: taskWeightArray[T ])
14: for eachP ∈ T do
15: partnAllocT ime← getPartnAllocT ime(taskAllocT ime, T, planWeightArray)
16: P ← optimizePartn(T, P, partnAllocT ime)
17: end for
18: end for
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5.2.4 Algorithm to Deliberate Task-Agent

This algorithm repeatedly searches for the nextS∗
P∗

T,p
to be placed in TCS, while meeting

with other requirements such as all agents must be assigned to tasks. In principle, it is similar

to algorithm 1 that it searches for the next best task-agent assignment. However, there are

two main differences from algorithm 1:i) the alter and shrink points, andii) the process of

choosing best assignment is more complex than choosing the best candidate coalition.

We define an arrayTCS of size |T| to store the assignment of each task. Firstly, it

creates the first TCS by callingchooseBestAssignment() to receive the nextS∗
P∗

T,p
. This

new assignment will be placed in TCS by callingassignTask(), which will locate the next

available element for the new assignment. This process repeats until all the tasks are as-

signed with coalitions of agents, i.e.unassigned(TCS) = false. We treat the function

unassigned() as a black box which can simply scan the all elements ofTCS to locate the

first empty element and returns true. Once no empty element isfound, it returns false.

The algorithm then calculates for the remaining time beforeit can improve TCS. While

the remaining time is greater than zero, the algorithm callsfunction

chooseTaskToBeImproved(). The function will locate the tasktaskToBeImprove which

will be the shrinking point and alter the present agent coalition with the next best one. The

algorithm goes into another loop to assign agent coalitionsto the remaining unassigned task,

starting fromtaskToBeImprove.

5.2.5 Algorithm to Choose the Best Assignment

For eachT , all agents will be ranked by their access costs in descending order, instead of

scanning and keeping all the coalitions as in chapter 3. The next available coalition with

minimal access cost ofPp can be found by collectingp available agentsL ∈ L from the

ranking.

The algorithm begins by initiatingtotalRatio as the benchmark for the best assignment.

It then goes through, from large to small|T |, all of the remaining tasks. In each task, it

goes through all thePs whose size is not greater than(|RL| − (|RT | − 1). For eachP , the

algorithm locates the next best coalition,S, by calling functionNextAvail(), which will

start looking for the first|S| agents ranked by access cost toT . Note that we start scanning

from the largest possible|S| down to 1. The access costCAT,S of S is then aggregated by

calling the functionAccessCost(T, S). The total cost ,CP∗
T,p

,S, for S executingT is then

computed and followed by the reduction contributionĀ of this assignment〈T, S〉. If Ā is

smaller thanĀ∗, the value ofĀ is kept as the new benchmark as well as〈T, S〉 is kept is the
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Algorithm 16 Search for OTCS by assigning recursively the best task-agentinto the existing
structure.
Require: remainT ime

1: initTCS[|T|]
2: elapsedT ime← 0
3: startT ime← presentT ime
4: while unassigned(TCS) = true do
5: assignment← chooseBestAssignment(Tasks)
6: assignTask(TCS, assignment)
7: end while
8: elapsedT ime← presentT ime− startT ime
9: remainT ime← remainT ime− elapsedT ime

10: while remainT ime > 0 do
11: taskToBeImprove← chooseTaskToBeImproved()
12: unassignTask(taskToBeImproved)
13: while unassigned(Tasks) = true do
14: assignment← chooseBestAssignment(Tasks)
15: assignTask(Tasks, assignment)
16: end while
17: elapsedT ime← presentT ime− startT ime
18: remainT ime← remainT ime− elapsedT ime
19: end while

best assignment. After going through all the remaining tasks and valid partitions, the best

assignment is returned.

5.3 Example

In the following, we will give a simple example and show how the algorithm works. We

have just 2 tasks:T1 = 〈S1, {D1,D2,D3}〉 andT2 = 〈S2, {D4,D5,D6}〉. Below are the

costs between each pair of source and destination in both tasks:

S1 D1 D2 D3 S2 D4 D5 D6 S1 S2

S1 0 10 15 20 S2 0 8 12 7 L1 6 L1 8

D1 10 0 12 13 D4 8 0 9 11 L2 7 L2 9

D2 15 12 0 11 D5 12 9 0 13 L3 10 L3 5

D3 20 13 11 0 D6 7 11 13 0

Note that destinations in both tasks are ranked in lexicographical order. InT1, all desti-

nations are co-incidentally ranked by their access costs inascending order. However, inT2,

the correct ranking isD6, D4 andD5.
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Algorithm 17 Choose best assignment

1: Ā∗ ←MAX DOUBLE
2: for eachT ∈ RT do
3: for eachP ∈ T and|P | ≤ (|RL| − (|RT | − 1) do
4: S ← NextAvail(T, |P |)
5: CAT,S ← AccessCost(T, S)
6: CP∗

T,p
,S ← CAT,S + CE∗

Pp

7: Ā← CP∗
T,p

,S/|S|

8: if Ā < Ā∗ then
9: Ā∗ ← Ā

10: assignment← 〈T, S〉
11: end if
12: end for
13: end for
14: return assignment

5.3.1 Combinations of Tasks, Plans, Execution and Access Costs

For the sake of simplicity, we will show all the combinationsof tasks, plans, execution and

access Costs, and assignments. We will go through detailed execution in next section.

For each task, there are 3 partitions, each of which has just 1partition instance, i.e. 3,

2+1, 1+1+1. InT1.P1.1, the only alternative combination isD1D2D3. In T1.P2.1, there are

3 alternatives:D1D2 + D3, D1D3 + D2 andD2D3 + D1. In T1.P3.1, the only alternative

combination isD1 + D2 + D3. Similarly, T2 can be partitioned in the same way. Note that

each of these alternative combination is actually a planP. The optimization algorithm will

search the best combination for a given time framet and returnP t as the optimal solution at

that point in time. Below are the tasks and all alternative plans.

T1 T2

P1 P2 P3 P1 P2 P3

D1D2D3 D1D2 + D3 D1 + D2 + D3 D4D5D64 D4D5 + D6 D4 + D5 + D6

D1D3 + D2 D4D6 + D5

D2D3 + D1 D5D6 + D4

For the sake of simplicity, we assume in this example that theoptimization algorithm is

merely a brute force algorithm which searches for the solution by lexicographic order. We

assume that the logistics providers have to collect the products from the manufacturing sites

(sources) and return the receipt dockets from customers to the manufacturing site to confirm

that the customers have received the products. We denoteSolt, where1 ≤ t ≤ 6, as the

solution received from the optimization tool at timet. The best planP∗
T,p for eachp is the

bestSolt achieved so far. The cost for each plan in each task at timet is shown below:
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T1 P∗

T1,1 Sol1 = (S1D1D2D3S1) = (10 + 12 + 11 + 20) = 53

P∗

T1,1 Sol2 = (S1D1D3D2S1) = (10 + 15 + 11 + 15) = 51

Sol3 = (S1D2D1D3S1) = (15 + 12 + 15 + 20) = 62

Sol4 = (S1D2D3D1S1) = (15 + 11 + 15 + 10) = 51

Sol5 = (S1D3D1D2S1) = (20 + 15 + 12 + 15) = 62

Sol6 = (S1D3D2D1S1) = (20 + 11 + 12 + 10) = 53

P∗

T1,2 Sol1 = (S1D1D2S1) + (S1D3S1) = (10 + 12 + 15) + (20 + 20) = 77

P∗

T1,2 Sol2 = (S1D1D3S1) + (S1D2S1) = (10 + 15 + 20) + (15 + 15) = 75

P∗

T1,2 Sol3 = (S1D2D3S1) + (S1D1S1) = (10 + 12 + 15) + (20 + 20) = 66

P∗

T1,3 Sol1 = (S1D1S1) + (S1D2S1) + (S1D3S1) = (10 + 10) + (15 + 15) + (20 + 20) = 80

T2 P∗

T2,1 Sol1 = (S2D4D5D6S2) = (8 + 9 + 13 + 7) = 37

Sol2 = (S2D4D6D5S2) = (8 + 11 + 13 + 12) = 43

Sol3 = (S2D5D4D6S2) = (12 + 9 + 11 + 7) = 39

Sol4 = (S2D5D6D4S2) = (12 + 13 + 11 + 8) = 44

Sol5 = (S2D6D4D5S2) = (7 + 11 + 9 + 12) = 39

Sol6 = (S2D6D5D4S2) = (7 + 13 + 9 + 8) = 37

P∗

T2,2 Sol1 = (S2D4D5S2) + (S2D6S2) = (8 + 9 + 12) + (7 + 7) = 43

Sol2 = (S2D4D6S2) + (S2D5S2) = (8 + 11 + 7) + (12 + 12) = 50

Sol3 = (S2D5D5S2) + (S2D4S2) = (12 + 13 + 7) + (8 + 8) = 48

PT2,3 Sol1 = (S2D4S2) + (S2D5S2) + (S2D6S2) = (8 + 8) + (12 + 12) + (7 + 7) = 54

Note that we show all the possible solutions above. We are yetto through the execute of

our algorithm below.

Possible assignment of agent coalitions to tasks as well as the access costs for each task-

agent pair are shown below:

LPs Coalition T1 T2

Task-Agent Access Cost Task-Agent Access Cost

L1 L1T1 L1S1=6 L1T2 L1S2=8

L2 L2T1 L2S1=7 L2T2 L2S2=9

L3 L3T1 L3S1=10 L3T2 L3S2=5

L1L2 L1L2T1 L1L2S1=13 L1L2T2 L1L2S2=17

L1L3 L1L3T1 L1L3S1=16 L1L3T2 L1L3S2=13

L2L3 L2L3T1 L2L3S1=17 L2L3T2 L2L3S2=14

L1L2L3 L1L2L3T1 L1L2L3S2=23 L1L2L3T2 L1L2L3S2=22

Appropriate assignments, where both tasks are assigned with agent coalitions, are shown

below. Note that the grand coalition of agents can not be assigned to any task because other

tasks will be left unassigned.
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Singleton Coalitions Aggregated Cost Mixed Coalitions Aggregated Cost

L1T1+L2T2 6+9=15 L1L2T1 + L3T2 13+5=18

L1T1+L3T2 6+5=11 L1L3T1 + L2T2 16+9=25

L2T1+L1T2 7+8=15 L2L3T1 + L1T2 17+8=25

L2T1+L3T2 7+5=12 L1L2T2 + L3T1 17+10=27

L3T1+L1T2 10+8=18 L1L3T2 + L2T1 13+7=20

L3T1+L2T2 10+9=19 L2L3T2 + L1T1 14+6=20

The aggregated costs, the sum of access cost and execution cost of the above assignments,

are shown below.

5.3.2 Example of Run

We assume the time allocation strategy is〈50, 50〉. We refer to the allocated time as a number

of steps in order to match with this simple example. The available time is 20 steps. The time

allocated for task-plan optimization and task-agent assignment are 10 steps each. We assume

this simple optimization takes 1 step for each of the plan. Werank destinations in each task

based on their access costs to their respective sources below.

S1 D1 D2 D3 S2 D6 D4 D5

S1 0 10 15 20 S2 0 7 8 12

D1 10 0 12 13 D6 7 0 11 13

D2 15 12 0 11 D4 8 11 0 9

D3 20 13 11 0 D5 12 13 9 0

After the task-plan optimization is finished, the plans for each task are shown below:

T1 T1

P1 P2 P3 P1 P2 P3

53 77 90 37 43 54

Note that the ranking of access costs in each task is in the following order: T1 : L1 =

6, L2 = 7, L3 = 10; T2 : L3 = 5, L1 = 8, L2 = 9. Since the valid plan size is3−(2−1) = 2,

the execution costs in each task are in the following order:T1.P2 = 77, T1.P1 = 51, T2.P2 =

43, T2.P1 = 37.

The next step is to repeatedly choose the best assignment to place inTCS, which is an

array of size 2 in this case. The algorithm examines if there is any task yet to be assigned

with agents. The functionunassigned() returns true because no tasks have been assigned

with agents. The algorithm enters this loop and calls functionchooseBestAssignment(). In

chooseBestAssignment(), the algorithm initializes̄A∗ = MAX DOUBLE as the bench-

mark for the best assignment. The algorithm then scans through each of the validPs. In this



5.3. Example 103

first round, validPs ofT1 are those whose sizes are less than or equal to(3− (2− 1)) = 2,

i.e. {L1, L2} and {L1}. The total cost and̄A for 〈T1, {L1, L2}〉 are then computed as

77 + 13 = 90 and 90
2

= 45 respectively. Since this̄A = 45 is less than the benchmark

Ā∗, Ā∗ is set to45 as the new benchmark andassignment is set to〈T1, {L1, L2}〉. The

algorithm tries with the next assignment〈T1, {L1}〉 whoseĀ = 59 > Ā∗ = 45. Hence,

assignment remains the same. The algorithm then tries for the best assignment withT2.

The first assignment inT2 is 〈T2, {L1, L3}〉, whoseĀ = 43+13
2

= 28. Since thisĀ = 28 is

less than the benchmark̄A∗ = 45, Ā∗ is set to28 as the new benchmark andassignment is

set to〈T2, {L1, L3}〉. The last assignment to try is〈T2, {L3}〉, whoseĀ = 37 > Ā∗ = 28:

no changes needed. Hence the functionchooseBestAssignment() returns〈T2, {L1, L3}〉

as the best assignment, which will be placed in the first element of TCS in the function

delibTaskAssign(). Since there is yet another task to be assigned with agents, the func-

tion delibTaskAssign() calls chooseBestAssignment() again. The only pair left is ob-

viously, 〈T1, {L2}〉, which is returned tochooseBestAssignment(). The algorithm then

places〈T1, {L2}〉 at the last element ofTCS, whose total cost is(43+13)+(53+7) = 116.

Since this is the firstTCS, TCS∗ is then set toTCS.

Let’s assume there is remaining time for the functiondelibTaskAssign() and the shrink-

ing pointtaskToBeImproved return from the functionchooseTaskToBeImproved() is 1.

The functionunassignTask() will remove every element, from the position

taskToBeImproved = 1, from TCS. The algorithm calls the functionunasignedTask(),

which returnsT1. The algorithm enters the loop and calls the functionchooseBestAssignment().

Here, the first possible assignment is〈T1, {L1, L2}〉, which is set toassignment again. The

next possible assignment is〈T1, {L1}〉, which is not as good as the presentassignment =

〈T1, {L1, L2}〉. The third assignment is〈T2, {L1, L3}〉 which has been used at this point, so

it is ignored in this round. The forth possible assignment is〈T2, {L3}〉, whoseĀ = 37 <

Ā∗ = 45. Hence, the newassignment is 〈T2, {L3}〉, which is returned to the function

delibTaskAssign. Here,〈T2, {L3}〉 is placed in the first element ofTCS. The algorithm

tries with the next best assignment. Obviously, the only option left is 〈T1, {L1, L2}〉 and is

placed in the last element ofTCS, whose total cost is(37 + 5) + (77 + 13) = 132. Since

TCS∗ offers lower cost116, it remains unchanged.

If the remaining time is less than 0. The presentTCS∗ will be the bounded-rational

solution. If the remaining time is greater than zero, the algorithm attempts to optimize plans

in each task for the given period of time. The newPs of each task will be used to re-compute

the best assignment later.
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5.4 Experiments

We are interested in conducting experiments to test the algorithm against various data setting,

as we have done in the previous chapter. Here, we want to see how efficiently the algorithm

responds to various settings. In general, solutions yielded from algorithm for solving hard

problems like TSP or VRP usually improve rapidly in the early stages of the execution and

improve slowly in later stages. We want to investigate if thesolutions are produced differ-

ently, how well our algorithm cope with them.

There are two dimensions in the data generation with respectto elapsed time; the quality

of the solutions (agent-task assignments) and the number ofsolutions generated. Since we

are interested in the cost, we refer to the cost reduction as the quality of the solution. We

assign to both dimensions the distribution patterns presented above. Hence we have

1. NLRP-NLRP for an environment where the solutions are produced heavily in the early

stage of the computation but are produced rarely in later stage, and the costs are re-

duced rapidly in the early stage but are reduced slowly in later stage of the computa-

tion.

2. NLRP-NLDL for an environment where the solutions are produced heavily in the early

stage of the computation but are produced rarely in later stage, and the costs are re-

duced slowly in the early stage of the computation but are reduced rapidly in later stage

of the computation.

3. NLDL-NLRP for an environment where the solutions are produced rarely in the early

stage of the computation but are produced heavily in later stage, and the costs are

reduced rapidly in the early stage of the computation but reduced slowly in later stage

of the computation.

Among the aforementioned settings, NLRP-NLRP is the most realistic setting because

most of the algorithms for solving hard problems like TSP behave like this. Other setting are

merely invented to test the robustness of the algorithm as well as to explore the effectiveness

of different time strategies. With respect to the coalitionvalue distribution patterns used in

Chapter 3, it is limited to the CCD pattern because it is reflectednaturally from the setting,

i.e. too small coalitions cannot finish tasks in time (due to time constraints imposed by

customers) while too large coalitions incur too much overhead and are not profitable. Other

scenarios used in Chapter 3 are not sufficiently realistic forthis chapter and we consider

them inappropriate for conducting experiments (which we have done quite a number of them

already in Chapter 3). CVD, for example, is unlikely to happen because it contradicts the
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scenario, i.e. small and large coalitions are profitable in CVD, which is not true as we have

just discussed above. We emphasize here again that various data distributions (realistic or

unrealistic) in Chapter 3 are invented in order to test the robustness of the principle of CH

algorithm which we follow throughout the thesis. Therefore, we decided not to have too

many of these unrealistic settings in this chapter.

We allowed 3,600,000,000 milliseconds (1 hour) for the agents to compute OCSs. The

total cost at the beginning of each data distribution pattern is around 100000. The time frame

will be allocated to both deliberations according to the time allocation strategies. We used

strategies already specified earlier in this chapter, i.e.〈50, 40〉, 〈40, 40〉, 〈40, 30〉, 〈30, 30〉, 〈30, 25〉,

〈25, 25〉, which would recursively leave spare time for deliberations in later rounds as10%,

20%, 30%, 40%, 50%, respectively. We have 50 agents (logistics providers) for25 customers,

each of which has at least 26 destinations. In the ultimate case, there will 24 customers,

whom will be served by one agent, and there will be one customer, whom will be served by

26 agent, each of which will do just one site. The distance between each pair of locations is

in the range of 100 to 1000 units.

We show results in terms of reduced cost and percentage of reduced cost. As for the

reduced cost, we show results only in the very last part of theexperiment because it is where

we can see the difference more clearly. We show the full progress of the results for the per-

centage of reduced cost because we want to show the overall performance of the algorithm.

Across all the settings, the results are very consistent, i.e., the trends of the results in each

time allocation strategy are similar. The 40-30 time allocation strategy apparently is the best

strategy because it yields the highest cost reduction percentage among all strategies in all

settings, i.e. 31.3171%, 32.9629% and 33.1223%. However, the progress of the improved

solutions in each setting is interesting. In NLRP-NLRP, the first solution of 26.5824% is

produced at 1800000ms. The second solution of 30.8369% is produced at 3420000ms. Four

more results are produced with small improvement before it reaches the final (seventh) result

at 3599998ms. In NLRP-NLDL, the first result of 18.1271% is produced at 1440000ms. The

second result is quite a stride, i.e. 28.5098% at 2952000ms.Ten more results are produced

with small improvement until the final result at 3599999ms. In NLDL-NLRP, the first result

of 16.3757% is produced at 1440000ms. The second result is also a stride, i.e. 27.9425%

at 2952000ms. Ten more results are produced with small improvements before the final

result is produced at 3599999ms. Other time allocation strategies are not as good as the

40-30. Strategies with larger portion of deliberation timeyield quite good results originally

but the results hardly or slightly improve after that. For example, 50-50 time allocation strat-

egy yields results after half of the elapsed time and the results are among the poorest ones,
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Figure 5.1:Empirical Results NLRP-NLRP The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocation strategies as per elapsed time.

i.e. solutions are about 25% reduction of original costs. Onthe other hand, strategies with

smaller portion of deliberation time yield results quicklybut the final results are relatively

poor. Most of them produce results merely around 25% of cost reduction. This tells us that,

for solving OCS in non-linear settings which are usually hardproblems, we need to allocate

time appropriately between deliberation time (for solvingthe task allocation problems) and

solving the OCS itself.

The results from our experiments are shown in Figure 5.1, Figure 5.2 and Figure 5.3

respectively.

5.5 Conclusion

The work presented in this chapter has achieved the third objective of this research, namely,

to adapt the algorithm presented in Chapter 3 so as: 3. to solveOCS problems in a an NP-

hard non-linear environment where coalition values and coalition structure values are not

known a priori but must be calculated Having successfully met this third objective, our goal

is now to deploy the best-first anytime algorithm to solve OCS problems in which coalitions

involve more than two types of stakeholders, such as the supply chain domain
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Figure 5.2:Empirical Results NLRP-NLDL The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocation strategies as per elapsed time.
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Figure 5.3:Empirical Results NLDL-NLRP The graphs show reduced cost in raw figure
and percentage achieved from the seven time allocation strategies as per elapsed time.



Chapter 6

Coalition Formation in Dynamic Supply
Networks

6.1 Introduction

The previous 3 chapters have achieved the first three objectives of this research by developing

a best-first, anytime algorithm that is an efficient solutionfor OCS problems in environments

where coalition values are known a priori, and adapting thatalgorithm for use in both linear

and non-linear environments, which are much more computationally complex. We have

extensively experimented our algorithms against various data settings and taking into account

realistic factors. In this Chapter, we will use algorithms wehave developed so far to tackle the

OCS problem in a complex environment such as supply chain domains, there by achieving

the fourth objective of this research. Furthermore, we willinvestigate the performance of the

system from economic perspective, in addition to algorithmic one.

It is widely recognized that the current business environment is characterized by large,

complex supply networks that are often global in reach and that are highly adaptive, being

frequently re-configured to respond to dynamic business contexts. Collaboration across the

supply networks is widely recognized as a key prerequisite for supply networks efficiency.

Collaboration can be any form of cooperation/coordination among firms (and these two al-

ternatives will be used interchangeably hereafter). Collaboration in supply networks can take

various forms. Suppliers might collaborate to increase selling power or to aggregate capacity.

Buyers might collaborate to increase buying power or to reduce logistics costs. LPs might

collaborate to increase efficiency in services. From business perspective, it is interesting to

know how collaboration among various parties in complex supply networks can bring about

a wealthy system. Furthermore, it also interesting to know whether such a wealth can be

achieved in such a way that it is distributedfairly andefficientlyto all parties in the system.

As a potential tool to bring about collaboration, coalitionformation has been widely

studied in supply networks research [14, 49, 31, 45, 54, 75, 108]. A common scenario is

108
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coalition formation among buyers, who form coalitions in order to increase their bargaining

power and gain some discounts. Such coalitions can be as simple as buying a single good

or can be as complex as combinatorial goods [54]. Each agent attempts to seek the most

likely formable coalitions and the most attractive payoffsfor coalition members in order to

reduce the complication in negotiation [88]. These studiessolely address the problem of how

the discounts achieved from sellers can be distributed among buyers without addressing the

delivery cost of the goods. Another common scenario is in logistic domains, where agents are

fully cooperative and commonly seek the maximal utility forthe system [77, 75]. Based on

these previous works, we have extended our research to tackle even more complex problems

in characteristic function game, linear and non-linear settings, where different types of agents

can form coalitions.

However, we argue that there are missing links in recent coalition formation research in

supply networks. Firstly, delivery cost is a serious issue for forming coalitions. Although it

is quite common in practice that sellers can provide free delivery for buyers that are located

at neighboring locations, dispersed geographic proximityof buyers in a coalition can incur

an additional delivery cost to those members who are not in such a condition. Furthermore,

the goods may be sold by themselves, without free delivery service being offered at all. In

this case, buyers seriously need to take into account such a cost while negotiating with others

or they suffer a total high cost. Secondly, the problem of forming coalitions among sellers

in response to a large order is an important issue but has beenminimally studied [18]. A

seller may not be able to cope with the requirement on its own.Thus it needs to form a

coalition to increase it’s selling power. This creates a newmodel of coalition formation

between buyers and sellers that brings various issues into perspective. Lastly, the new model

has brought a more complex and challenging problem to which LPs need to react in order to

increase their service efficiency. They can seek collaboration with others when they want to

increase service or economical efficiency. Hence, collaboration across supply networks can

be characterized as highly complex coalitions of buyer(s),seller(s) and LP(s).

This chapter offers rich support for dealing with this complexity [99] in two levels: coali-

tions and coalition structures. For the coalition level, wepropose a mechanism for agents

to form coalitions. This can be done in two steps. Firstly, buyers form primary coalitions

and send their requests to sellers and LPs. Up on receiving the requests, sellers and LPs

try to form primary coalitions. Once formed, they can respond to buyers to form secondary

coalitions. This makes the model more dynamic and reflects the reality more correctly. For

the coalition structure level, we propose a new concept, which take into account fairness and

efficiency of the system.
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In the followings, we describe coalitions in dynamic supplynetworks. We explain coali-

tion settings in our work and how agents form primary coalitions, which include negotiation

among agent of the same sectors and the deliberation mechanism. After that is the expla-

nation of how agents form secondary coalitions across sectors. We then propose the new

concept which will be examined and reported in experiment section.

6.2 Coalitions in Dynamic Supply Networks

A coalition is a group of agents who unanimously agree to cooperate, e.g., to buy, sell or

deliver. Agents are divided according to their roles into buyers, sellers and LPs. The roles

of buyer and seller are interchangeable depending on their present activity. An agent can act

as a seller in one transaction while becoming a buyer in another transaction. Although it is

easy to view LPs as sellers, the role of LPs are quite distinctfrom other sellers that they sell

delivery services. Furthermore, the effect of LPs’ role canbe captured more easily.

A simple example of coalition formation is a small market game [60], where a seller has

a product on sale and two buyers are bidding for it. The sellerhas a value for the product

in mind and is unwilling to accept offers below this price, referred to as the seller’sreserve

price. Each buyer also has a private evaluation of the value of the product and will not pay

higher than this value, called the buyer’sreserve price. Buyers compete with each other by

offering a price for the product to the seller. When a buyer offers a price that the others

cannot compete with, that buyer then can buy the product fromthe seller at that price. This

can be viewed as their having reached an agreement to cooperate, i.e., they have formed a

coalition to trade the product. The value of a coalition is the difference between the buyers

and the sellers reserve prices. The payoffs for both agents are the differences between their

reserve prices and the selling price. A simple coalition in supply networks is one where a

buyer forms a coalition with a seller and an LP. A more complexform of such a coalition

involves multiple agents in each sector.

There are multiple distinct drivers for coalition formation. Several small buyers with sim-

ilar needs coming together to obtain greater bargaining power. Sellers form coalitions with

other sellers to aggregate selling power. In some settings,there are legal impediments to

certain forms of such coalitions (specifically cartels) in the form of anti-trust laws. However,

such coalitions are common for small sellers, such as in agricultural cooperatives (e.g. for

micro-producers of dairy products). Sellers sometimes form coalitions to aggregate/augment

capabilities. LPs may want to form coalitions to aggregate their service capacities or effi-

ciency. We note that we have only listed the basic drivers. Most real-life supply network
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coalitions tend to have more than one motivating factor driving their formation. Multiple

factors play a role in coalition formation decisions. In thecurrent work, we focus on quan-

titative factors, e.g., price, delivery cost and lead time.Most decisions typically involve

trade-offs among several attributes. One may be willing to pay more for a shorter lead time

and vice versa. One may, in some settings, be willing to accept longer lead times for the

purpose of getting higher quality. Several other instancesof such trade-off are common, but

we do not list them all here.

Although negotiation can be either bilateral or multilateral, we can in most instances

reduce negotiation to the bilateral case without loss of generality. An agent that stands to

benefit the most from forming a coalition usually acts as the coalition leader. Firstly, a

coalition leader negotiates bilaterally with multiple agents of its own sector to establish a

sectoral coalition. An agent might find itself forming a singleton primary coalition because

it cannot find suitable coalition members nor there is need todo so. We call this type of

coalitionsprimary coalition. Firstly, buyers form primary coalitions and the coalitionleaders

send request to sellers and LP(s). Interested sellers and LP(s) then form primary coalitions

among themselves. The coalition leaders then negotiate across sectors to establish a cross-

sectoral coalition involving a coalition of buyer(s), seller(s) and LP(s). We call the type of

coalitionssecondary coalition. This secondary coalition is where the real trade is finalized.

The buying leader collects money from its members and pays tothe selling leader and LP

leader, who in turn distribute among their members. Then thecoalitions will break. Members

can form coalitions later on should they need to do so. We notethat these negotiations must

occur within stringent time constraints.

6.3 Coalition Formation

Supply networks are very complex systems. In order to study coalition formation in such

systems, we create a small system composed of three kinds of agents: buyers, sellers, and

logistics providers. Each of these agents is merely a small economic entity of a small econ-

omy. A buyer can be a typical consumer. A seller can be a small producer, whose number of

member can be just one. A logistics provider is, as in the previous chapter, merely a small

company, whose only resource is a truck. However, the model can be scalable. Our main

aim is to use the model as a testbed to study coalition formation among buyers, sellers and

logistics providers by applying techniques presented in previous chapters.
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6.3.1 Setting

Let B, S andL be set of agents who act as buyers, sellers and LPs respectively. Buyers

order products,F, from sellers. LPs distribute the products over a transportation network,

G = {V , E}, whereV is a set of vertices andE is a set of edges, each of which connects a

pair of vertices, for them. The location of each buyerb ∈ B, sellers ∈ S, and LPl ∈ L are

specified by functionLocb : B → V, Locs : S → V, andLocl : L → V respectively. These

three functions are accessible to all agents. Agents have individual goals and constraints. A

goal is represented by the product that an agent may seek to buy or sell. Constraints are the

time/deadline and the price at which they wish to conclude the transaction. The amounts of

specific products required by specific buyers are given byDem : B×F→ N
+. The budgets

of buyers and the due times by which the buyers want the products are determined by the

functionBud : B → R
+ andDue : B× F→ N

+, respectively. Here the output of the time

function denotes the elapsed times from a commonly agreed upon origin). The amounts of

certain products that sellers can produce are given byProd : F×S→ N
+. The times which

sellers require to produce products are determined byProdT ime : F×S→ N
+. The costs

of producing products are governed byProdCost : F × S → R
+. The load capacities of

LPs are determined byLoad : L → N
+. For the sake of simplicity, we assume the load

capacity is measured by weight. The costs of delivery between locations are determined

by DelCost : V × V → R
+. The time of traveling between locations are determined by

TraT ime : V × V → N
+.

We define a requirement as a tupleReq = 〈f, q, t〉, wheref ∈ F is a product an agent

wants to buy,q ∈ N
+ is the quantity of the product which is needed, andt ∈ N

+ is the

(elapsed) time by which the buyer wants the product be delivered. We define a pickup re-

quirement as a tuplePick = 〈f, q, v, t〉, wheref ∈ F is the product to be picked up,q ∈ N
+

is the quantity of the respective product,v ∈ V is the location from which the product is

to be picked up, andt ∈ N
+ is the elapsed time by which the product need to be picked

up. Corresponding to this, we define a delivery requirement asa tupleDeli = 〈f ′, q′, v′, t′〉,

wheref ′ ∈ F is product to be delivered,q′ ∈ N
+ is the quantity of the respective prod-

uct, v′ ∈ V is the location from which the product is to be picked up, andtt ∈ N
+ is the

elapsed time by which the product need to be picked up. We define a job descripte as a tuple

Job = 〈〈f, q, v, t〉, 〈f ′, q′, v′, t′〉〉, composed ofPick andDeli
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6.3.2 Forming Primary Coalitions

In our setting, buyers need to form coalitions in order to gain the benefit from bulk buys.

Sellers also form coalitions to increase their producing capabilities.

Buyer to Buyer Negotiation

A buyer, who wants to buy products and foresees an opportunity to gain some discounts from

buying a large quantity, acts as a coalition leader by negotiating with other buyers. We shall

call it the leading buyer. The following is the protocol for forming a coalition of buyers.

1. Every buyerb sends a message(b, {〈f, q, t〉}, v, p), whereb is the identifier of the

agent,{〈f, q, t〉} is a collection of requirements vector,v ∈ V is the location where

the product will be delivered,p is the price, andt is the due time it wants the product

to be delivered.

2. Based on its deliberation, any buyer can act as a leading buyer, b0, and initiates the

process of forming a primary coalition of buyers. (See section Deliberation for Joining

Primary Coalition for more details).

3. Leading buyerb0 sends a message(msg, b0, 〈f, q, t〉, v, p, x), wheremsg is the mes-

sage id,p is the price, andx is the expiry time to potential buyers in its current best

potential coalition.

4. Any buyer, who is satisfied with the offer, sends a message(msg, b, ACK, x) back to

b0 stating that it will wait for a confirmation until timex.

5. Leading buyerb0 sends a message(msg, b0, ACK) to inform all interested buyers that

the new primary coalition has now been formed.

6. Leading buyerb0 sends a messageB2S(msg, b0, 〈f, q, t〉, p) to sellers, where〈f, q, t〉

is the order details compiled from its members, andt is the available time.

7. At the same time, the leading buyer sends messageB2L(id, b0, 〈f, q, v, t〉, 〈f ′, q′, v′, t′〉, p),

where〈f, q, v, t〉 and〈f ′, q′, v′, t′〉 specifies job description for picking up from sellers

and delivering the products to buyers, to LPs.

The leading buyer may find itself being a singleton coalition, i.e., it can not agree with

other buyers or there is no need to do so. Once the coalition isformed,b0s can negotiate with

sellers and LPs to form secondary coalitions by sending messages to them.
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Seller to Seller Negotiation

Upon receiving the message from a leading buyer, interestedsellers react. If the order is

within it’s capability, it may form a singleton coalition onits own. If the order is beyond

its capability, it can act as a coalition leader and try to form a coalition of sellers in order to

increase it’s selling power. We shall call it a leading seller. The following is the protocol for

forming coalitions among sellers.

1. Interested sellers send a message(msg, s, 〈f, q, p, r, v〉), wheremsg is the message

id sent byb0, p is specified by functionprod, r is specified by functionDem, and

〈f, q, p, r, v〉 is the list of capability vectors, to all other sellers.

2. Any seller can act as a leading seller,s0, and try to form a primary coalition with other

sellers. It selects a number of sellers, who might help increase its selling power (See

section Deliberation for Joining Primary Coalition for moredetails).

3. Leading sellers0 sends a message(msg, s0, 〈s, f, v〉, x), where〈s, f, v〉 is a collection

of preferred capability vectors, to selected sellers.

4. Any seller, who is satisfied with the offer, replies with the message(msg, s, ACK, x)

and waits for the confirmation by timex.

5. Agents0 confirms that a primary coalition is now formed with the message(msg, s0, ACK).

The leading seller may find itself being a singleton coalition because it cannot agree with

other sellers. It can begin negotiation with the leading buyer to form secondary coalition.

LP to LP negotiation

Upon receiving the message from leading buyerb0, interested LPs react. Any interested LP

may try to form a primary coalition with other LPs. We shall call such an LP the leading LP.

Following is the protocol for forming coalitions among logistics providers.

1. Every interested LP sends a message(msg, l, l, v), wheremsg is the message id sent

by b0, l is the load capacity specified by functionL, to all other LPs.

2. Any interested LP can act leading LP,l0, and try to form a primary coalition with other

LPs. It selects a number of LPs, who might help increase its capacity and service

efficiency. (See section Deliberation for Joining Primary Coalition for more details).
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3. Leading LPl0 sends a message(msg, l0, v, x), to selected LPs to ask if they would like

to form a primary coalition.

4. Any LP, who is satisfied with the offer, replies with the message(msg, l, ACK, x) and

waits for the confirmation by timex.

5. Agentl0 confirms to its primary coalition members with the message(msg, l0, ACK).

The leading LP may find itself being a singleton coalition. Itthen can negotiate with the

leading buyerb0 on behalf of it’s members to form a secondary coalition.

Deliberation for Joining a Primary Coalition

Agents have a common view when forming primary coalitions: Quality of Coalition (QoC).

QoC indicates the likelihood to achieve the goal of the coalition. The common goal of every

agent is to maximize its payoff. Buyers need members who can help increase their bargain-

ing power. Sellers need members who can help increase selling power, which in turn helps

maximize their payoffs. LPs needs member who can help increase service efficiency, which

in turn helps maximize their payoffs. Based on its status, an agent can create an ideal coali-

tion, the one with the highest QoC. The agent creates a template, which is an ideal coalition

member of the ideal coalition. Each agent measures the suitability of another agent to the

the ideal coalition in terms of the distance between that agent and this template. It uses

the distance to rank other agents in a table, which will be used to help select appropriate

agents for forming high QoC coalitions. LetA = {a1, a2, . . . , am} be a set of attributes. Let

B = {L1, U1, L2, U2, . . . , Lm, Um} be a set of lower bounds and upper bounds of quanti-

tative attributesa1, a2, . . . , am. A template is a vectort = 〈q1, q2, . . . , qm, w1, w2 . . . , wm〉,

whereqi is a quantitative attributeqj, andwk is the weight for eachak of m attributes. The

agenta0, who wants to form a primary coalition, uses the attributes passed over in the first

step of the negotiation to measure the distance between other agents and its templates. The

closer distance signifies the more suitability for the coalition of the agents. The distance can

be considered as the sum of the difference of each pair of corresponding attributes in the tem-

plate and the agents’ attributes. For each attribute, the distance should be 0 if the attribute’s

value are equal. Otherwise the distance is the multiplication of the difference between the

values of corresponding attributes, and the weight for thatattribute. Letyj be the value of

attributej of the template, the distance between an agent and a templatecan be derived as

follows:
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d =
m

∑

j=1

Diff (qj, yj)wm

where

Diff (qj, yj) =



























∞ if yj〉Uj or yj〈Uj

qj−yj

qj−Lj
if qj〉yj andyj is ≥ Lj

yj−qj

Uj−qj
if qj〈yj andyj is ≤ Uj

0 if qj = yj

Let us consider an example of how this mechanism works. Suppose there are four at-

tributes,A = {f, q, p, t}, to describe a quality of primary coalition of buyers. LetB =

{1, 10, 10, 20, 10, 30, 0, 100} be the set of upper and lower bounds forf, q, p andt, respec-

tively. Let T = 〈1, 15, 20, 30,∞, 10, 1, 5〉 be a template of buyerb0, who is considering

forming a primary coalition. There are two buyers,b1 andb2 being considered whether they

should be invited to join the coalition. Their attributes, achieved from the messages, are

{1, 13, 18, 28} and{1, 17, 23, 34}, respectively. The distance between agentb1 and template

T is
d1 = (0 ∗∞) + (2/5) ∗ 10 + (2/10) ∗ 1 + (2/300) ∗ 5

= 0 + 4 + 0.2 + 0.33

= 4.53
The distance between agentb2 and templateT is

d2 = (0 ∗∞) + (2/5) ∗ 10 + (3/10) ∗ 1 + (4/70) ∗ 5

= 0 + 4 + 0.3 + 0.57

= 4.87
Since 4.53 is less than 4.87, agentb1 is obviously closer to the template thanb2. Hence,

agentb1 sits higher in the ranking table.

Each agent uses its own ranking table to compute potential primary coalitions, those it

might try to form, and keeps them in a list. The agent sets up a period of time for deliber-

ation, i.e., generating coalitions and adding them to the list. It computes, for each potential

coalition, the aggregated distance, which is the sum of of all members’ distance to the tem-

plate. It then ranks those coalitions by the coalitions’ aggregated distance in ascending order.

In each potential coalition, the agent computes potential payoffs for the members. The agent

considers each potential coalition one by one from the top ofthe list. For the best potential

coalition being considered, the agent decides to be a leading agent if it’s potential payoff

is the greatest. It then follows the primary protocol to negotiate with others. If the agent’s

potential payoff is not the greatest, it will wait for some time. Upon receiving an invitation

message, it computes its potential payoff and compares it tothe potential payoff in the sec-

ond best potential coalition of its own list. If the the inviting potential payoff is not lower,
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the agent accepts the offer, or rejects it otherwise. In the case the coalition cannot be formed.

The next potential coalition will be considered. More potential coalitions will be computed

as needed.

6.3.3 Secondary Coalitions

A secondary coalition is composed of three primary coalitions: buyer, seller and LP primary

coalitions. The negotiation occurs among coalition leaders and within primary coalition

members as an ongoing process. They try to agree on their payoffs and tasks (to supply

product for sellers and to deliver products for LPs). Agentswho are not satisfied with payoffs

being offered may decide to deviate from their present primary coalitions and try to form new

ones.

Buyers to Sellers and LPs

Firstly, leading sellers and leading LPs try to agree on an offer for the corresponding buyer.

The negotiation involves their payoffs and tasks. The protocol for forming such coalitions is

as follows:

1. Each member seller evaluates its present capability and sends it’s

s0 a messageS2S(msg, b, 〈f, q, t〉, p) bidding for the supply task.

2. Leading sellers0 may have to negotiate on product, quantity, time and price with mem-

ber sellers with messageS2S(id, b, 〈f, q, t〉, p) until every member seller is satisfied

and the total quantity, available time and price is satisfiedwith the request.

3. Leading sellers0 accumulates the bids from its member sellers and creates an offer. It

then sends messageS2B(msg, s0, 〈f, q, v, t〉, p) back tob0.

4. Similarly, member LPl bids for the task by sending message

L2L(id, 〈f, q, v, t〉, 〈f ′, q′, v′, t′〉, p) to its leading LPl0.

5. Leading LPl0 may have to negotiate over quantity, pickup location, delivery location,

pickup time, delivery time, and price with its members.

6. The leading LPl0 accumulate all the bid from its members in order to create an offer

for the delivery job.

7. It sends a message, i.e., proposal,(id, s0, 〈f, q, v, t〉, p) back tob0.
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8. The leading buyerb0 accumulates the proposals from the leading sellers and leading

LPs and finds the best combination of a selling and a LP proposal. It then creates a

proposal to its members and sends message(id, s0, 〈f, q, v, t〉, p) to the members.

9. Members who are satisfied with the proposal send a message(id, s, ACK) to l0.

10. Members who are not satisfied can negotiate over quantity, time and price by sending

message(id, s, 〈f, q, v, t〉, p) back to the leading agent.

11. Once all member buyers are satisfied, the leading buyer then sends message(id, b0, ACK)

to the selected leading seller and leading LP.

12. The leading buyer, seller, and LP send message(id, a0, CONFIRM) to their coali-

tion members confirming that the secondary coalition has been formed.

LPs are to pickup the product from sellers and deliver to buyers. Sellers and LPs get

paid when the product is delivered. The negotiation within and among primary coalitions

can keep going until agents are satisfied or the time is over.

6.3.4 Decision Mechanism

In our setting, each agent has their individual reserve price. For a buyer, the reserve pricerb

is the maximum price he is willing to pay for acquiring a bunchof products, i.e., including

prices of products and costs of delivery. For a seller, the reserve pricers is the costcp

of producing products and the minimum profit it expects. For an LP, the reserve pricerl

would be the sum of the estimated cost of operation and the minimum profit it expects. Let

B ⊆ B, S ⊆ S, andL ⊆ L be a set of buyers in a primary coalition, a set of sellers in a

primary coalition, and a set of LPs in a primary coalition, respectively.

For a secondary coalitionC = {B, S, L}, the reserve price ofB is

rB =
∑

b∈B

rb,

the reserve price ofS is

rS =
∑

s∈S

rs,

and the reserve price ofL is

rL =
∑

l∈L

rl.

The coalition value of a secondary coalitionC is

VC = rB + rS + rL,
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which is to be distributed among agents. LetPS be the price that sellers charge buyers. Let

PL be the price that LPs charge buyers. The payoff for buyers inB is

UB = rB − PS − PL.

The payoff for sellers inS is

US = PS − rS.

The payoff for LPs inL is

UL = PL − rL.

From now on, we shall refer to the secondary coalition as a coalition because it is the true

coalition in a supply chain domain.

The price each agent uses to negotiate may be higher than their reserve prices. Knowing

the bidding price of every agent in its primary coalition, the leading agent can use a fair divi-

sion of their coalition payoff by using the Shapley value [42] concept. Agents in the primary

coalition may find that the shares offered by the leading agent are below than their own re-

serve price. Hence they may have to deviate from their present primary coalitions. Although

Shapley value does exist in every coalition structure, it does not guarantee system’s stability

nor efficiency. In addition to Shapley value, there are several solution concepts in coalition

formation theory [42], e.g., core kernel, etc. These solutions are based the assumption that

agents are self-interested. Kernel, for example, guarantees stability to the system and indi-

vidual satisfaction to agents. However, it is computationally complex and does not guarantee

system’s efficiency. The Core guarantees stability to the system and efficiency in both the

system and individual level.

Here, we propose to use a compromising solution. We invent a novel concept in order

for agents to settle down their negotiation based on two major conceptsfair andefficient:

1. Fair To ensure that each agent has a fair share of such a solution. Bysaying “fair

share”, we mean the difference of each pair of agents’ payoffs across the whole system

is minimal.

2. Efficient To maximize the social welfare, i.e. the utility of the wholesystem should

be maximized.

As a very first step of this novel fair and efficient concept, weadopt the Shapley value (for

the fairness) and our OCS algorithms (for efficiency) we have developed throughout this

thesis. Shapley value guarantees fairness in a given coalition. We extend it to another level
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by taking into account the fairness across the CS. Given a coalition S with coalition value

VS, we define theaverage payoff

AVS =

∑

Vai

n
,

whereai ∈ S, andVai
is the agent’s payoffs achieved by applying the Shapley value. We

defineaverage payoff difference

DVS =
∑

|AVS − Vai
|.

This DVS reflects the fairness in each coalition that the less value ithas, the less differ-

ence among agents’ payoff. Further, it tells us how much thiscoalition is valued in terms of

fairness and efficiency. This brings us a new coalition value, which we namefairly efficient

value,

FEVS = AVS −DVS.

With respect to a CS, we then have the CS’s fairly efficient value,

FEV (CS) =
∑

S∈CS

FEVS.

We are interested to find the optimal fairly efficient coalition structure,

FECS∗ = argmaxCS∈LFEV (CS).

We follow the fairness principle provided by Shapley because it is the only solution

concept in cooperative game that does exist in every CS.

6.3.5 Algorithm

So far, we have developed a couple of solid algorithms for optimal coalition structures. In

Chapter 3, we have shown that with the concept of choosingbestcoalition as the new

coalition to place in coalition structure, we can reach optimality very quickly in characteristic

function game. However, we are merely limited to 26 agents. In Chapter 4, we have shown

that for larger number of agents, i.e. 50 agents, and in more pragmatic settings such as

a linear production domain, we can choose only a small numberof agents (by applying a

heuristic approach) and can reach (near) optimal coalitionstructures, quickly. In Chapter

5, we have shown that for very hard problem, such as non-linear logistics domain, which is

usually intractable for even a small number of agents, we have appropriate time allocation

strategy to search for optimal coalition structure.

In this Chapter where we aim at optimal coalition structure ina supply chain domain,

we need not an absolutely new algorithm but we can simply use the set of algorithms we
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Algorithm 18 Main Construct coalition structures by choosing best coalition (of buyers,
sellers and logistics providers) and place it into the present CS[l]

1: l← 1 ⊲ the present layerl is set to 1
2: S∗ ← chooseBestS(l) ⊲ the best coalitionS∗ is placed intoCS[l]
3: while S∗ 6= ∅ do ⊲ while S∗ exists
4: CS[l]← S∗ ⊲ placeS∗ in CS[l]
5: R.B ← R.B \ S∗

6: R.S ← R.S \ S∗

7: R.L ← R.L \ S∗ ⊲ update remaining B, S, and L withS∗

8: S∗ ← ∅ ⊲ resetS∗ to ∅
9: if R.B = R.S = R.L = ∅ then ⊲ no agents left outsideCS

10: print “newCS generated: ”+CS; ⊲ output newCS
11: end if
12: S∗ ← Extend() ⊲ attempt to extendCS
13: if S∗ != null then ⊲ CS can be extended ifS∗ is found
14: l← l + 1; ⊲ CS is to be extended
15: else
16: S ← Alter() ⊲ try for altering when cannot extend
17: if S∗ = ∅ then ⊲ cannot alter, nothing to substitute
18: S∗ ← Shrink() ⊲ then try to shrink
19: end if
20: end if
21: end while

Algorithm 19 ChooseBestS Function

1: function CHOOSEBESTS(l)
2: bestS ← ∅
3: a∗ ← 0
4: for c = 1 to |R| do ⊲ for each valid cardinality
5: if B[l][c] > 0 then ⊲ if there is a candidate coalition
6: a← VC[c][B[l][c]]/c ⊲ compute the candidate’sa
7: if a > a∗ then ⊲ if the newa is better thana∗

8: bestS ← C[c][B[l][c]] ⊲ set the new best coalition
9: a∗ ← a ⊲ seta∗ to the new value

10: end if
11: end if
12: end for
13: return bestS
14: end function
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Algorithm 20 NextS Function

1: function NEXTS(c,p)
2: for j = p to C[c].length do ⊲ starting fromp towards the last element ofC [c]
3: if C[c][j].B ⊆ R.B and
4: C[c][j].S ⊆ R.S and
5: C[c][j].L ⊆ R.L then ⊲ if the coalition atp is valid
6: return j ⊲ return its position
7: end if
8: end for
9: return 0

10: end function

Algorithm 21 Extend Function

1: function EXTEND

2: if l < n then
3: for c = 1 to |R| do
4: p← B[l][c] ⊲ set the beginning position for searching for candidate
5: if p > 0 then ⊲ only cardinalities that have coalitions left
6: if c = |CS[l]| then ⊲ for candidate of cardinality ofCS[l]
7: p← p + 1 ⊲ begin the search at the next position
8: end if
9: B[c][l +1]← NextS(c, p) ⊲ search for the next candidate of cardinalityc

10: end if
11: end for
12: return ChooseBestS(l + 1) ⊲ acquire the best coalition and return it
13: end if
14: return ∅
15: end function

Algorithm 22 Alter Function

1: function ALTER

2: R.B ← R.B ∪ CS[l].B
3: R.S ← R.S ∪ CS[l].S
4: R.L ← R.L ∪ CS[l].L ⊲ return the last coalition ofCS toR
5: p← B[|(CS[l])|][l]+ 1 ⊲ start to search for the another candidate at the next position
6: B[|CS[l]|][l]← NextS(|CS[l]|, p) ⊲ retrieve the alternative candidate
7: CS[l]← ∅ ⊲ resetCS[l]
8: return ChooseBestS(l) ⊲ acquire the best coalition and return it
9: end function
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providers (setting 1, 2, 3 and 4) are consistent but are lowerthan that of settings with 20

logistics providers (setting 5, 6 and 7). Note that the FEV(CS) values of FEV(CS)-oriented

runs are higher than that of V(CS)-oriented runs. On the otherhand, the V(CS) values of

FEV(CS)-oriented runs are lower than that of V(CS)-oriented runs. A simple implication of

this is that with FEV(CS)-oriented run, agents’ payoff are less different compared to that of

V(CS)-oriented runs. Although the system’s utility, i.e. V(CS), of FEV(CS)-oriented are not

as high, the difference of agents’ payoff is less, which implies that every has better chance

survive in highly competitive environment.

Note that none of other solution concepts consider this fairness from the system perspec-

tive, i.e., the more agents survive the better for the system. This is important because the

well being is distributed as much as possible among all agents. This brings security to the

system that agents can make their own livings and will not be burdens of the system or other

agents.

6.5 Conclusion

This chapter proposes a model of agents-based coalitions aswell as optimal coalition struc-

ture in dynamic supply networks. In our setting, agents taketwo steps to form coalitions:i)

agents in each sector form loosely-coupled coalitions in order to decrease the complexity of

the negotiation, and,ii) agents form coalitions across sectors in order to deliver products to

end customers. We propose a framework, which involves negotiation protocol and decision

mechanism. The negotiation protocol allows thorough communication, i.e., buyers to buy-

ers, buyers to sellers, sellers to sellers, buyer to LPs, andLPs to LPs. With respect to optimal

coalition structure, we propose a new approach for achieving a more compromising solution,

taking into account both fairness and efficiency to the system.

The work presented in this chapter has achieved the fourth objective of this research,

namely, to adapt the algorithm presented in Chapter 3 so as: 4.to solve OCS problems

in complex environments such as those in which coalitions involve 3 types of stakeholders,

such as in the supply chain domain.



Chapter 7

Conclusion and Future Work

7.1 Introduction

Optimal coalition structure is a hard problem. It is known that its complexity is NP-hard.

For a small input, the problem can be intractable. Research conducted so far in this area

has dealt with considerably small number of agents in characteristic function form, where

coalition value is known a priori. However, multiagent systems can involve a larger number

of agents. Furthermore, coalition value is not known a priori in real world setting and solving

optimization problems for coalition values can be hard by itself. Therefore, it is a challenge

to deal with larger number of agents and more realistic settings.

We then set out the objectives of this research as follows:

1. to develop a best-first, anytime algorithm that is an efficient solution for OCS problems

in environments where coalition values are known a priori. Then, to adapt the algorithm

developed in objective 1:

2. to solve OCS problems in a linear environment where coalition values and coalition

structure values are not known a priori but must be calculated

3. to solve OCS problems in an NP hard, non-linear environmentwhere coalition costs

and coalition structure values are not known a priori

4. to solve OCS problems in which coalitions involve more thantwo types of stakehold-

ers, such as the supply chain domain.

The work in the preceding 4 chapters has achieved these objectives as set out in the

following section.

7.2 Contribution

In Chapter 3, we lay down a foundation work for the whole thesis. We consider the char-

acteristic function environment where coalition value is known a priori. We argue that the

127
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state-of-the-art in the area can be misled by some types of data distribution. We want to

achieve an algorithm which performs consistently and is notmisled by any type of data

distribution. We define a novel concept of best coalition which is most likely valuable to

coalition structure. We invent a best-first search algorithm that repeatedly chooses the best

candidate coalition from available coalitions to place in CSat its present level. We invent 5

extra data distribution types, in addition to existing standard ones existing in the literature,

to evaluate the performance consistency. We are interestedin achieving an algorithm that

can reach (near) optimality in timely fashion, which is evenmore desirable than termination

when solving NP-hard problem. We consider environments where the number of agents is

ranged up to 26 agents, by which most typical computers can have maximal resources. We

benchmarked the performance of our algorithm with the state-of-the-art approach of Rah-

wan et al [111], and show that our approach compares favourably, i.e. our algorithm reach

optimality more quickly in all settings. We conducted experiments extensively to be certain

that the algorithm is robust even though some of the data settings are unrealistic. This work

has achieved our first objective:

1. to develop a best-first, anytime algorithm that is an efficient solution for OCS problems

in environments where coalition values are known a priori

Having achieved a generic algorithm which performs consistently well in all data dis-

tributions, we move forward to deal with more realistic settings in Chapter 4. We consider

linear production domain where coalition value is not knowna priori-the coalition values

need to be computed before optimal coalition structure can be computed. We also con-

sider a larger number of agents, which typical computers do not have enough resources to

handle. Therefore, it is desirable to quickly search for a small number of good coalitions,

from which best coalitions can be determined and be placed inCS. We invent a heuristic

for the agents to quickly locate good coalitions, and only a relatively small number of them

(compared to all the possible coalitions). From these coalition, we proposed a distributed

branch-and-bound algorithm for computing optimal coalition structure for linear production

domains. We extended our previous algorithm in the deliberation process in order to im-

prove the performance. The non-profitable coalitions are not generated by the deliberation

algorithm. Then the information of remaining coalitions will be exchanged among agents.

Lastly, each agent uses an existing algorithm [86] to compute optimal coalition structures.

The empirical results show that our algorithm helps generate the optimal coalition struc-

tures much faster than an exhaustive search. Our algorithm dramatically reduces the number

of coalitions generated hence reducing the number of coalition structures. As a result, the

elapsed time of generating the coalition structures is relatively small. In doing so, we have
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achieved objective 2 of this research, namely:

2. to solve OCS problems in a linear environment where coalition values and coalition

structure values are not known a priori but must be calculated

We move one step further in Chapter 5, i.e. we consider optimalcoalition structure in

non-linear logistics domains. We retain the assumption we had in Chapter 4, i.e., coalition

value is not known a priori and the number of agents is about the same. Therefore, the

problem involves two steps:i) achieving coalition values, andii) solving optimal coalition

structure problem. Since optimizing non-linear logisticsdomains is a hard problem by itself,

(near) optimal solution for the coalition is expected to achieve in timely fashion. However,

solving optimal coalition structure is also a hard problem.Therefore, we are facing the

problem of time allocation for solving both problem under time constraint. We investigated

the performance of different time allocation strategies. The empirical results show that the

strategy that allows more time to solve both problems yieldsbetter results. In doing so, we

have achieved objective 3 of this research, namely

3. to solve OCS problems in an NP hard, non-linear environmentwhere coalition costs

and coalition structure values are not known a priori.

Finally, we use invented knowledge (algorithms) to solve more complex problems. In

Chapter 6, we proposed a model for agents to form coalitions insupply chain networks.

We also consider a new concept for considering the wealth of the system and whether it is

distributed fairly and efficiently. For forming coalitions, agents take two steps: i) agents

in each sector form loosely-coupled coalitions in order to decrease the complexity of the

negotiation, and, ii) agents form coalitions across sectors in order to deliver goods to end

customers. We proposed a framework, which involves negotiation protocol and decision

mechanism. The negotiation protocol allows thorough communication, i.e., buyers to buyers,

buyers to sellers, sellers to sellers, buyer to LPs, and LPs to LPs. For the fairness and

efficiency, we propose a new solution, which measure the value of coalition in both respects.

Based on the algorithms we have developed, we conducted experiments to investigate the

results of various runs, each of which is to compare the results achieved by either choosing

best coalition based on typical coalition values or the new concept. The empirical results

show that proportion of number of various types of agents does affect both the performance

of the algorithm and the quality of the solutions. In doing so, we have achieved objective 4

of this research, namely:

4. to solve OCS problems in which coalitions involve more thantwo types of stakehold-

ers, such as the supply chain domain
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7.3 Significance of the Research

Clearly, this work is important to researchers in the multi-agent systems (MAS) research

field, particularly to those focusing on Optimal Coalition Structures (OCS), as it presents a

number of algorithms which are significantly better than thecurrent state-of-the-art solutions

in that field. The main contribution of this research is the proposition of definingbestcoali-

tion, which is used to determine the next best coalition to beplaced in CS, and algorithm to

generate coalition structures in a value-oriented fashion. This concept is unique and different

from other existing algorithm which is mostly based on certain pattern, such as configura-

tion. This novelty has laid down a concrete foundation for research in other chapters of this

thesis as well as the research in multiagent system or cooperative game theory. This novel

approach has been shown to be effective in four domains in which MAS and OCS approaches

offer efficient solutions to often intractable problems. Within those real-world domains, the

research has also experimented with novel pruning, deliberation and negotiation techniques,

thereby extending the set of solutions available to MAS and OCS researchers. Finally, the

research has established a new benchmark against which other OCS solutions can be tested.

Because the research has been applied in a number of domains, it is also of significance

to researchers in those domains as well as. The application of our algorithm to the linear

production game offers new insights into the solution of such games. Application of the

algorithm to the non-linear problems in the logistics domain has demonstrated that the best-

first anytime approach could be used to solve some instances of classic problems such as

the Vehicle Routing Problem or the Traveling Salesman Problem. Further developing this

work on logistics, we have applied the algorithm to more complex logistics tasks involving

stakeholders from 3 separate sectors. This work significantly advances the ability of logistics

researchers to solve real-world problems which are of particular interest in extended supply

chains, and indeed supply networks. Finally, the research is significant to researchers in

broader domains, i.e. qualitative optimal coalition structures, which has more applications

in the real world. Some of these research communities have their industrial counterparts and

the current research could be immediately used by those industries. Both of the logistics

solutions presented in this research could be applied by Logistics Providers (LPs) or by

supply chain managers in a wide range of industries.

7.4 Limitations

While our algorithm significantly increases the number of agents that can be studied in OCS

problems, it too has its limitations. Because multi-agent systems are rationally bounded, our



7.5. Future directions 131

algorithm cannot deal with huge numbers of agents. Furthermore, other specific domains

involving large number of agents may need additional thoughts in order to take into account

additional details that are relevant to the performance of the algorithms. To deal with large

number of agents, it is very important that high-valued coalitions must be known before the

generation of coalition structure can be generated. These high-valued coalitions need to be

stored in memory as many as possible because the value of coalition structures depend on

their values.

7.5 Future directions

Since the most important algorithm is presented in Chapter 3,improving it means improving

other algorithms. The algorithm can still be improved significantly. At the moment, it has

to search to the last available coalitions in CS even though itmay not be able to finish CS.

This leads to too many wasteful repetition. The other improvement can also be achieved

by using a better pruning approach. The linear production algorithm, presented in Chapter

4, helps reduce the number of coalitions involved in generating optimal coalition structures,

but it needs to be able to deal with larger numbers of agents ifit is to be truly useful in

real-world settings. Ideally, it should be able to deal withhundreds of agents. In addition,

this algorithm shows much promise for use in areas such as integer programming and non-

linear programming. Additional work in the area of supply chain management is suggested.

Since one of the most important issues in supply chains is to minimize logistics costs, future

work could focus on finding a mechanism that helps buyers to control the logistics process

rather than leaving it to the sellers or to coalitions of sellers. We believe that with efficient

negotiation protocol and decision making mechanism, the logistics costs can be significantly

reduced.

7.6 Conclusion

Notwithstanding the limitations described above, the current research has achieved all 4 of

its objectives and in doing so has made a significant contribution to the fields of MAS/OCS

research. It has demonstrated the efficacy of a best first, anytime approach to MAS/OCS

problems. Moreover, it has done so in a number of real-world settings which are significantly

more complex than those used in many previous studies. The work is significance to both

academia and to industry and has opened up what promises to bea very fruitful field for

further research.
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Margo Gal. Automating supply chain negotiations using autonomous agents: a case

study in transportation logistics. InProceedings of the 5th International Joint Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS 06), pages 1506–1513,

Hakodate, Japan, 2006. ACM Press.

[111] William Walsh and Michael Wellman. Decentralized supply chain formation: A mar-

ket protocol and competitive equilibrium analysis.Journal of Artificial Intelligence

Research, 19:513–567, 2003.



BIBLIOGRAPHY 144

[112] Te-Wei Wang and Suresh K. Tadisina. Simulating internet-based collaboration:

A cost-benefit case study using a multi-agent model.Decision Support System,

43(2):645–662, 2007.

[113] Michael Wooldridge and Paul Dunne. On the computational complexity of coalitional

resource games.Artifitial Intelligence, 170(10):835–871, 2006.

[114] Michael Wooldridge and Paul E. Dunne. On the computational complexity of quali-

tative coalitional games.Artificial Intelligence, 158(1):27–73, 2004.

[115] Junichi Yamamoto and Katia Sycara. A stable and efficient buyer coalition formation

scheme for e-marketplaces. InProceedings of the 5th International Conference on

Autonomous Agents (ICMAS 01), pages 576–583, Montreal, Quebec, Canada, 2001.

ACM Press.

[116] Yiming Ye and Xun Yi. Coalition signature scheme in multi-agent systems. InPro-

ceeding of the 11th International World Wide Web Conference (WWW2002), Sheraton

Waikiki Hotel, Honolulu, Hawaii, USA, May 2002. ACM Press.

[117] Yun Yeh. A dynamic programming approach to the complete set partitioning problem.

BIT Numerical Mathematics, 26(4):467–474, 1986.

[118] Dong Won Yi, Soung Hie Kim, and Nak Hyun Kim. Combined modeling with multi-

agent systems and simulation: Its application to harbor supply chain management.

In Proceedings of the 35th Annual Hawaii International Conference on System Sci-

ences (HICSS 2000), pages 1615–1624, Hawaii, USA, January 2002. IEEE Computer

Society.

[119] Gilad Zlotkin and Jeffrey Rosenschein. Coalition, cryptography, and stability: Mech-

anisms for coalition formation in task oriented domains. InWorking Notes of the AAAI

Spring Syposium on Software Agents, pages 87–94, Stanford, CA, USA, 1994. AAAI

Press.


	University of Wollongong - Research Online
	Cover page

	Copyright warning

	Title page

	Dedication

	Declaration

	Abstract

	List of publication

	Acknowledgements

	Contents

	List of tables 
	List of figures

	Chapter one

	Chapter two

	Chapter three

	Chapter four

	Chapter five

	Chapter six

	Chapter seven

	Bibliography


