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Abstract

This thesis investigates issues with existing approaches to distributed constraint satisfaction,

and proposes a solution in the form of a new algorithm. These issues are most evident when

solving large distributed constraint satisfaction problems, hence the title of the thesis.

We will first survey existing algorithms for centralised constraint satisfaction, and de-

scribe how they have been modified to handle distributed constraint satisfaction. The method

by which each algorithm achieves completeness will be investigated and analysed by appli-

cation of a new theorem.

We will then present a new algorithm, Support-Based Distributed Search, developed ex-

plicitly for distributed constraint satisfaction rather than being derived from centralised algo-

rithms. This algorithm is inspired by the inherent structure of human arguments and similar

mechanisms we observe in real-world negotiations.

A number of modifications to this new algorithm are considered, and comparisons are

made with existing algorithms, effectively demonstrating its place within the field. Empirical

analysis is then conducted, and comparisons are made to state-of-the-art algorithms most

able to handle large distributed constraint satisfaction problems.

Finally, it is argued that any future development in distributed constraint satisfaction will

necessitate changes in the algorithms used to solve small ‘embedded’ constraint satisfaction

problems. The impact on embedded constraint satisfaction problems is considered, with a

brief presentation of an improved algorithm for hypertree decomposition.

Previously published work includes [HG03, HCG05, HCG06a, HCG06b, HCG06c].
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Terminology

Constraint satisfaction literature often uses the same term but with differing definitions. The

following definitions will be used throughout this thesis.

complete The terms ‘complete’ and ‘incomplete’ will indicate whether concepts or

methods cover all possibilities. An assignment is complete if and only if

it provides values for all variables. An algorithm is complete if and only if

it provides an answer for all problems. Note that we are using ‘complete’

in the general algorithmic sense, and not to indicate that a constraint sat-

isfaction algorithm considers all possible assignments.

Example: A solution must be a complete assignment.

Example: Breakout is an incomplete algorithm.

consistent The terms ‘consistent’ and ‘inconsistent’ will refer to simple tests that can

be conducted with available information. The most common instance of

this in constraint satisfaction is to say that a particular combination of val-

ues is consistent/inconsistent with the set of constraint. If necessary, an

algorithm may redefine what it means to test an assignment for consis-

tency.

Example: The assignment is first tested for consistency.

Example: The current assignment may still be inconsistent.

feasible The terms ‘feasible’ and ‘infeasible’ will refer to more complex determi-

nations made by an algorithm during its execution. This is most often used

in constructive search algorithms once they prove, by exhaustive search,

that a partial assignment of values to variables cannot be extended into a

consistent assignment for all variables. Note that an assignment is feasible

if and only if it is a subset of a complete consistent assignment.

Example: Nogoods record which assignments are infeasible.

Example: Let T be the set of all feasible assignments.

solvable The terms ‘solvable’ and ‘unsolvable’ will refer to whether or not a con-

straint satisfaction problem has a solution. A solution is a complete, con-

sistent assignment of values to variables. By definition, an unsolvable

problem has no feasible assignments.

Example: If E = /0, we can conclude the problem is unsolvable.

Example: Breakout search is only suitable for solvable problems.
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Formal Notation

Formulas, algorithms and proofs will attempt to use a consistent lettering and numbering

scheme. When no additional information is provided, the following definitions should be

assumed.

V , C , D The symbols V , C , and D respectively refer to the variables, constraints,

and domain of a given problem. If more than one problem exists we will

subscript related symbols according. For example V1, C1 and D1.

V , C, D The letters V , C, and D will refer to subsets of V , C , and D respectively.

s, t In most instances the letters s and t refer to assignments. An assignment is

a function mapping some subset of V to D . They should not be assumed

to be complete assignments (mapping all of V to D) unless explicitly

stated.

ŝ We use ŝ to denote the set of variables assigned values by s. Formally, if s :

V → D then ŝ = V ⊆ V . Due to the nature of many constraint algorithms,

we will assume that there exists an ‘order of assignment’ for ŝ, and will

define the symbol for this order as needed.

s ↓V We use s ↓V to denote the assignment s projected on to some V ⊆ ŝ.

S The symbol S refers to the set of partial assignments for a problem. Note

that it does include all complete assignments s : V → D , and the empty

assignment s = /0.

c In most instances the letter c is used to refer to a constraint. A constraint

is seen as a mapping from the set of assignments to a value T or F. If

necessary an index such as i or j may be applied to differentiate between

constraints. For example, ci,c j ∈ C .

ĉ We use ĉ to denote the scope (set of variables) of a constraint c.

c(s) We use c(s) to denote the evaluation of an assignment s ↓ĉ by the constraint

c.

u, v, w In most instances the letters u, v and w refer to variables. If necessary an

index such as i or j may be applied to differentiate between variables. For

example vi,v j ∈ V .

d In most instances this symbol is used to refer to a value. If necessary an

index such as i or j may be applied to differentiate between values. For

example di,d j ∈ D .
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Pseudocode Notation

Algorithm pseudocode in this thesis will use some keywords and notation beyond the usual

‘if’, ‘for’, ‘while’ and ‘break’. These are presented below, along with a standardised inter-

pretation for other common keywords such as ‘set’ and ‘let’.

algorithm,

procedure

The label ‘algorithm’ is used to refer to the main function of a constraint

satisfaction algorithm. Component functions such as backtracking and

computing nogoods are labelled ‘procedure’ and are numbered accord-

ingly.

when The term ‘when’ is used to model event-driven programming commonly

found in distributed programs. It is assumed that the program pauses at

the beginning of a ‘when’ block until one of the conditions is satisfied,

and will not exit the ‘when’ block until none of the conditions are satis-

fied.

Example: when an assignment v → d is received from a neighbour

Example: when some random amount of time t has passed

let The term ‘let’ is used to declare variables, often stating their intent and

initial value. This is often also used to declare constants, or to define

useful terms to simplify formulas.

Example: let V be a set of variables, initially empty

Example: let v be the variable most recently added to ŝ

set The term ‘set’ is used to modify variables, describing the new value that

they will take. This is most often used to modify functions, but also can

be used in other circumstances.

Example: set s(v) to a value consistent with the assignments in t

Example: set N to N ∪{n}

unset The term ‘unset’ is used to give a variable no value. This is most often

used to remove a particular mapping from a function. Note that ‘unset

V ’ is different from the ‘set V to /0’. That is, if V is unset then V 6= /0.

Example: unset s(v), for all v appearing in ĉ

Example: unset the eliminating explanation e(v,d)
′ The decoration ′ is used only in algorithm proofs, and not in algorithm

bodies. It refers to the next value of a variable. For example, if s refers

to the current variable-value assignment, then s′ refers to the variable-

value assignment after one step or iteration of the algorithm.
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