#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Solving very large distributed constraint satisfaction problems
Author: Peter Harvey

Year: 2009

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong

Research Online

%Jgisvéle_rzs&yf)of Wollongong Thesis Collection University of Wollongong Thesis Collections

2009

Solving very large distributed constraint satisfaction problems

Peter Harvey
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University
does not authorise you to copy, communicate or otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act
1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,
without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe
their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong.

Recommended Citation

Harvey, Peter, Solving very large distributed constraint satisfaction problems, Doctor of Philosophy thesis,
School of Computer Science and Software Engineering - Faculty of Informatics, University of Wollongong,
20009. https://ro.uow.edu.au/theses/3161

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F3161&utm_medium=PDF&utm_campaign=PDFCoverPages

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

Solving Very Large Distributed Constraint Satisfaction Problems

A thesis submitted in partial fulfilment of the

requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

Peter Harvey
Bachelor of Mathematics
Bachelor of Computer Science

School of Computer Science and Software Engineering
2009

CERTIFICATION

I, Peter A. Harvey, declare that this thesis, submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy, in the School of Computer Science and Software En-
gineering, University of Wollongong, is wholly my own work unless otherwise referenced
or acknowledged. The document has not been submitted for qualifications at any other aca-

demic institution.

Peter A. Harvey
8 December 2009

Abstract

This thesis investigates issues with existing approaches to distributed constraint satisfaction,
and proposes a solution in the form of a new algorithm. These issues are most evident when
solving large distributed constraint satisfaction problems, hence the title of the thesis.

We will first survey existing algorithms for centralised constraint satisfaction, and de-
scribe how they have been modified to handle distributed constraint satisfaction. The method
by which each algorithm achieves completeness will be investigated and analysed by appli-
cation of a new theorem.

We will then present a new algorithm, Support-Based Distributed Search, developed ex-
plicitly for distributed constraint satisfaction rather than being derived from centralised algo-
rithms. This algorithm is inspired by the inherent structure of human arguments and similar
mechanisms we observe in real-world negotiations.

A number of modifications to this new algorithm are considered, and comparisons are
made with existing algorithms, effectively demonstrating its place within the field. Empirical
analysis is then conducted, and comparisons are made to state-of-the-art algorithms most
able to handle large distributed constraint satisfaction problems.

Finally, it is argued that any future development in distributed constraint satisfaction will
necessitate changes in the algorithms used to solve small ‘embedded’ constraint satisfaction
problems. The impact on embedded constraint satisfaction problems is considered, with a
brief presentation of an improved algorithm for hypertree decomposition.

Previously published work includes [HGO03, HCGO05, HCG0O6a, HCG0O6b, HCGO06c¢].

This thesis is dedicated to

my dearest wife Emily,
my baby daughter Adelaide,
my parents Keith and Sandra,
and my siblings Sean and Danielle.

I love you. You mean the world to me.

I would like to thank

Professor Aditya Ghose for his guidance,
Chee Fon Chang for his fellowship,
Farzad Salim for his friendship,
and the partners and many friends

who helped me through these last years.

Two weddings, one divorce, and a beautiful baby. ..

who would have thought it would take this long?

il

Table of Contents

1 Introduction

2

1.1
1.2
1.3
1.4

Constraint Satisfaction Problem . .

Distributed Constraint Satisfaction Problem
Centralised vs Distributed Algorithms

Motivation

Analysis of Completeness Techniques

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

2.10 Distributed Breakout
2.11 Total, Partial, Dynamic and Static Orders

Common Proof Theorem

Chronological Backtracking

Chronological Backtracking with Reordering

Dynamic Backtracking

Weak Commitment Search

Asynchronous Backtracking

Asynchronous Backtracking with Dynamic Ordering

Asynchronous Weak Commitment Search

Breakout.

2.12 Categorisation

Support-Based Distributed Search

3.1
3.2

33

34

Introduction
Representation
3.2.1 Assignments as Arguments .
3.2.2 Interpretation of Arguments

Solving
3.3.1 Asynchronicity with Isgoods
3.3.2 Computation of Isgoods . .
3.3.3 Demonstration of Isgoods .
3.3.4 Postponement of Isgoods . .
Results.
3.4.1 Soundness of Algorithm . .

3.4.2 Completeness of Algorithm

il

N A W N

10
11
14
17
20
24
26
31
34
37
38
39
40

4 Variations and Relations

6

4.1
4.2
4.3
4.4

Minimising Conflicts
Minimising Communication
Minimising Storage e e e
Relation to Other Algorithms
4.4.1 Asynchronous Weak-Commitment Search (AWCS)
4.4.2 Distributed Breakout (DBO)
4.4.3 Asynchronous Backtracking With Dynamic Ordering (ABT-DO) . .

Empirical Analysis

5.1

52

53
54
5.5
5.6

5.7

Metrics e e e e
5.1.1 Total vs Non-Concurrent Measures
5.1.2 Constraint Checks
5.1.3 NogoodChecks
514 Byteso
5.1.5 Packets
5.1.6 BytesPerPacket,
517 CPUTIme
5.1.8 Concurrent Checks and Concurrent Traffic
Implementation
5.2.1 ABT and ABT-DO Implementation Notes
5.2.2 AWCS Implementation Notes
5.2.3 SBDS ImplementationNotes
5.2.4 SBDS Value Selection Heuristic
Problem Sets
Results for Smaller Problems
Results for Larger Problems
Discussion
5.6.1 Coordinated Approach
5.6.2 Non-Coordinated Approach
5.6.3 Unified Approach
Summary e e e e e

Multiple Variables Per Agent

6.1
6.2

Introduction
Hypertree Decompositions
6.2.1 GeneralForm,
6.22 NormalForm

v

71
71
74
76
79
79
80
81

82
82
83
84
84
84
85
85
85
85
86
86
87
88
88
90
91
99
105
105
106
107
108

6.2.3 Reduced Normal Form 114

6.3 Algorithm 118
6.3.1 optk-decomp 118

6.3.2 red-k-decomp 120

6.4 Performance 126
6.5 Application Within DisCSP Agents 128

7 Conclusion 129
7.1 Summary e e e e e 131

7.2 Future Work L 132

A Results 140

List of Figures

1.1
1.2
1.3

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10

2.11

It can never be clear which agent should take the greatest burden of search.

Adding links will increase the amount of communication between agents.

Distributed problems should not be treated in isolation, but in a wider network.

CBT: Making an assignment involves taking from the head of statically or-
dered list of unassigned variables and appending to the tail of an ordered list
of assigned variables o
CBT: Backtracking an assignment is the exact inverse, taking from the tail
of the assigned variables and appending to the head of an ordered list of
unassigned variables Lo L
CBT-R: Making an assignment involves choosing a variable from an un-
ordered list of unassigned variables and appending to the tail of an ordered
list of assigned variables L.
CBT-R: Backtracking an assignment is the exact inverse, taking from the tail
of the assigned variables and appending to an unordered list of unassigned
variables
DBT: ‘Eliminating explanations’ tell us which values are unusable, based on
current values for specific assigned variables.
DBT: When all values are eliminated, the last-assigned variable causing any
of the eliminations is unassigned, and a new eliminating explanation con-
structed. L e
WCS: Variables are assigned and partitioned into ‘current consistent’ and
‘tentative inconsistent’. Tentatively-assigned variables are iteratively given
consistent assignments.o .ol e e
WCS: When a tentatively-assigned variable cannot be given a consistent as-
signment, the current assignment is transformed into a nogood and all as-
signments become tentative.
ABT: Changes in assignment are broadcast from each agent to each lower-
ranked agent.o
ABT: Nogoods only contain assignments from higher-ranked agents, and are
sent to the lowest-ranked agent.o L.
ABT-DO: Changes in assignment are broadcast to all neighbours regardless
ofrank.

vi

6
7
8

14

14

18

18

20

20

24

24

27

27

2.12

2.13

2.14

2.15

3.1
3.2
33

4.1

5.1
52
53

54
5.5
5.6

5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

5.18

ABT: Changes in ordering only effect lower-ranked agents, and are sent to
allofthem. 32

AWCS: Changes in assignment are broadcast from each agent to each neigh-

bour, regardless of priorities. 34
AWCS: Nogoods are sent to all involved agents, and the priority of the sender

is raised above all its neighbours. 34
BO: Constraint violations are weighted and summed. Dynamic adjustments

of weights allow a simple hill-climbing algorithm to escape local minima. . 37
Example constraint model and graph 44
Constraint model and graph for the ring-ordering problem 61
Constraint model and graph demonstrating cyclic behaviour in SBDS . .. 63
Constraint model and support graph for a simple 5-node problem 72
Average feasibility of problem instances for Problem Sets and2 92

Constraint checks for Problem Sets 1 and 2. Full results on pages 141 and 159. 92
Constraint checks for Problem Sets 1 and 2, broken down by feasibility. Full
results on pages 142, 143, 160 and 161. 93
Nogood checks for Problem Sets 1 and 2. Full results on pages 144 and 162. 94
Network traffic for Problem Sets 1 and 2. Full results on pages 147 and 165. 95
Numbers of packets for Problem Sets 1 and 2. Full results on pages 150 and

168, . . e 96
Packet sizes for Problem Sets 1 and 2. Full results on pages 153 and 171. . 97
Concurrent checks for Problem Sets 1 and 2. Full results on page 192. . . . 98
CPU time for Problem Sets 1 and 2. Full results on pages 153 and 171.. . . 99
Average feasibility of problem instances for Problem Set3 99
Constraint checks for Problem Set 3. Full results on page 177. 101
Nogood checks for Problem Set 3. Full results on page 180.. 101
Number of packets for Problem Set 3. Full results on page 186. 101
Packet sizes for Problem Set 3. Full results on page 189. 103
Network traffic for Problem Set 3. Full results on page 183. 103
CPU time for Problem Set 3. Full results on page 189. 103
Concurrent checks for Problem Set 3, broken down by feasibility. Full results

onpages 193and 194. L Lo 104
Concurrent traffic for Problem Set 3, broken down by feasibility. Full results

onpages 193and 194. L Lo 105

vii

6.1 A demonstration of how hypertree decomposition forms a new acyclic prob-

lem from a cyclicproblem. oL 111
6.2 Transforming a normal form hypertree decomposition to reduced normal form.117
6.3 Graphs of the CPU time of opt-k-decomp, and comparisons to its best-case

and worst-case complexity functions. Each point represents a single run of

opt-k-decomp. L 127
6.4 Graphs of the CPU time of red-k-decomp, and comparisons to its best-case

and worst-case complexity functions. Each point represents a single run of

red-k-decomp. 127
6.5 A comparison of CPU times for random CSP instances. Values are computed

as the CPU time for opt-k-decomp divided by the CPU time for red-k-decomp. 128

A.1 Number of constraint checks for all instances in problemset1. 141
A.2 Number of constraint checks for feasible instances in problem set 1. . . . 142
A.3 Number of constraint checks for infeasible instances in problem set 1. . . 143
A.4 Number of nogood checks for all instances in problemset1. 144
A.5 Number of nogood checks for feasible instances in problemset 1. 145
A.6 Number of nogood checks for infeasible instances in problemset1. . . . 146
A.7 Network traffic for all instances in problemset1. 147
A.8 Network traffic for feasible instances in problemset1.. 148
A.9 Network traffic for infeasible instances in problemset1. 149
A.10 Number of packets for all instances in problemset1. 150
A.11 Number of packets for feasible instances in problemset1.. 151
A.12 Number of packets for infeasible instances in problemset1. 152
A.13 Average packet size and CPU time for all instances in problemset1. . . . 153

A.14 Average packet size and CPU time for feasible instances in problem set 1. 154
A.15 Average packet size and CPU time for infeasible instances in problem set 1. 155

A.16 Other measures of concurrency for all instances in problem set1. 156
A.17 Other measures of concurrency for feasible instances in problem set 1. . . 157
A.18 Other measures of concurrency for infeasible instances in problem set 1. . 158
A.19 Number of constraint checks for all instances in problemset2. 159
A.20 Number of constraint checks for feasible instances in problemset2. . . . 160
A.21 Number of constraint checks for infeasible instances in problem set2. . . 161
A.22 Number of nogood checks for all instances in problemset2. 162
A.23 Number of nogood checks for feasible instances in problem set 2. 163
A.24 Number of nogood checks for infeasible instances in problem set2. . .. 164

A.25 Network traffic for all instances in problemset2. 165

viii

A.26 Network traffic for feasible instances in problemset2..
A.27 Network traffic for infeasible instances in problemset2.
A.28 Number of packets for all instances in problemset2.
A.29 Number of packets for feasible instances in problemset2.
A.30 Number of packets for infeasible instances in problemset2.
A.31 Average packet size and CPU time for all instances in problem set 2. . . .
A.32 Average packet size and CPU time for feasible instances in problem set 2.
A.33 Average packet size and CPU time for infeasible instances in problem set 2.
A.34 Other measures of concurrency for all instances in problem set 2.
A.35 Other measures of concurrency for feasible instances in problem set 2. . .
A.36 Other measures of concurrency for infeasible instances in problem set 2. .
A.37 Number of constraint checks for all instances in problem set3.
A.38 Number of constraint checks for feasible instances in problem set 3.

A.39 Number of constraint checks for infeasible instances in problem set 3.
A.40 Number of nogood checks for all instances in problemset3.
A.41 Number of nogood checks for feasible instances in problemset 3.
A.42 Number of nogood checks for infeasible instances in problem set 3.

A.43 Network traffic for all instances in problemset3.
A.44 Network traffic for feasible instances in problemset3..
A.45 Network traffic for infeasible instances in problemset3.
A.46 Number of packets for all instances in problemset3.
A.47 Number of packets for feasible instances in problemset3..
A.48 Number of packets for infeasible instances in problemset3.
A.49 Average packet size and CPU time for all instances in problem set 3. . . .
A.50 Average packet size and CPU time for feasible instances in problem set 3.
A.51 Average packet size and CPU time for infeasible instances in problem set 3.
A.52 Other measures of concurrency for all instances in problem set 3.
A.53 Other measures of concurrency for feasible instances in problem set 3. . .

A.54 Other measures of concurrency for infeasible instances in problem set 3. .

X

List of Tables

2.1

6.1
6.2

Classification of algorithms according to their completeness mechanism . . 41

Complexity results for red-k-decomp 124
Results of red-k-decomp on successively larger ‘spider webs’ constraint graphs.
‘Cond 2’ and ‘Cond 3’ shows the number of k-vertices discarded due to con-
ditions 2 and 3 of RNF. Run-times (in seconds) for init-vertices and init-

graph are given asacombined value. 125

Terminology

Constraint satisfaction literature often uses the same term but with differing definitions. The

following definitions will be used throughout this thesis.

complete The terms ‘complete’ and ‘incomplete’ will indicate whether concepts or
methods cover all possibilities. An assignment is complete if and only if
it provides values for all variables. An algorithm is complete if and only if
it provides an answer for all problems. Note that we are using ‘complete’
in the general algorithmic sense, and not to indicate that a constraint sat-
isfaction algorithm considers all possible assignments.
Example: A solution must be a complete assignment.

Example: Breakout is an incomplete algorithm.

consistent The terms ‘consistent’ and ‘inconsistent’ will refer to simple tests that can
be conducted with available information. The most common instance of
this in constraint satisfaction is to say that a particular combination of val-
ues is consistent/inconsistent with the set of constraint. If necessary, an
algorithm may redefine what it means to test an assignment for consis-
tency.
Example: The assignment is first tested for consistency.

Example: The current assignment may still be inconsistent.

feasible = The terms ‘feasible’ and ‘infeasible’ will refer to more complex determi-
nations made by an algorithm during its execution. This is most often used
in constructive search algorithms once they prove, by exhaustive search,
that a partial assignment of values to variables cannot be extended into a
consistent assignment for all variables. Note that an assignment is feasible
if and only if it is a subset of a complete consistent assignment.
Example: Nogoods record which assignments are infeasible.

Example: Let T be the set of all feasible assignments.

solvable The terms ‘solvable’ and ‘unsolvable’ will refer to whether or not a con-
straint satisfaction problem has a solution. A solution is a complete, con-
sistent assignment of values to variables. By definition, an unsolvable
problem has no feasible assignments.
Example: 1If E = 0, we can conclude the problem is unsolvable.
Example: Breakout search is only suitable for solvable problems.

X1

Formal Notation

Formulas, algorithms and proofs will attempt to use a consistent lettering and numbering
scheme. When no additional information is provided, the following definitions should be

assumed.

V,C,D The symbols V, C, and D respectively refer to the variables, constraints,
and domain of a given problem. If more than one problem exists we will
subscript related symbols according. For example 1, C; and D.

V,C,D Theletters V, C, and D will refer to subsets of V, C, and D respectively.

s, t In most instances the letters s and ¢ refer to assignments. An assignment is

a function mapping some subset of ¥’ to D. They should not be assumed
to be complete assignments (mapping all of ¥ to D) unless explicitly
stated.

©y

We use § to denote the set of variables assigned values by s. Formally, if s :
V — Dthen § =V C . Due to the nature of many constraint algorithms,
we will assume that there exists an ‘order of assignment’ for §, and will
define the symbol for this order as needed.

sly We use s |y to denote the assignment s projected on to some V C §.

S The symbol § refers to the set of partial assignments for a problem. Note
that it does include all complete assignments s : 7/ — D, and the empty

assignment s = (.

c In most instances the letter ¢ is used to refer to a constraint. A constraint
is seen as a mapping from the set of assignments to a value T or F. If
necessary an index such as i or j may be applied to differentiate between

constraints. For example, ¢;,c; € C.

¢ We use ¢ to denote the scope (set of variables) of a constraint c.

c(s) We use ¢(s) to denote the evaluation of an assignment s | s by the constraint
c.

U, v, w In most instances the letters u, v and w refer to variables. If necessary an

index such as i or j may be applied to differentiate between variables. For

example v;,vj € V.

d In most instances this symbol is used to refer to a value. If necessary an
index such as i or j may be applied to differentiate between values. For
example d;,d; € D.

X1i

Pseudocode Notation

Algorithm pseudocode in this thesis will use some keywords and notation beyond the usual
‘if”, “for’, ‘while’ and ‘break’. These are presented below, along with a standardised inter-

pretation for other common keywords such as ‘set’ and ‘let’.

algorithm, The label ‘algorithm’ is used to refer to the main function of a constraint

procedure satisfaction algorithm. Component functions such as backtracking and
computing nogoods are labelled ‘procedure’ and are numbered accord-
ingly.

when The term ‘when’ is used to model event-driven programming commonly

found in distributed programs. It is assumed that the program pauses at
the beginning of a ‘when’ block until one of the conditions is satisfied,
and will not exit the ‘when’ block until none of the conditions are satis-
fied.

Example: when an assignment v — d is received from a neighbour

Example: when some random amount of time ¢ has passed

let The term ‘let’ is used to declare variables, often stating their intent and
initial value. This is often also used to declare constants, or to define
useful terms to simplify formulas.
Example: let V be a set of variables, initially empty
Example: let v be the variable most recently added to §

set The term ‘set’ is used to modify variables, describing the new value that
they will take. This is most often used to modify functions, but also can
be used in other circumstances.
Example: set s(v) to a value consistent with the assignments in ¢
Example: set N to NU {n}

unset The term ‘unset’ is used to give a variable no value. This is most often

used to remove a particular mapping from a function. Note that ‘unset
V’ is different from the ‘set V to @’. That is, if V is unset then V # 0.
Example: unset s(v), for all v appearing in ¢

Example: unset the eliminating explanation e(v,d)

The decoration ’ is used only in algorithm proofs, and not in algorithm
bodies. It refers to the next value of a variable. For example, if s refers
to the current variable-value assignment, then s’ refers to the variable-

value assignment after one step or iteration of the algorithm.

Xiii

	University of Wollongong - Research Online
	Solving very large distributed constraint satisfaction problems
	Recommended Citation

	Copyright warning

	Title page

	Certification

	Abstract

	Dedication

	Table of contents

	List of figures

	List of tables

	Terminology

	Formal notation

	Pseudocode notation

