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Abstract. In this thesis the chief object of study are hypersurface flows of fourth
order, with the speed of the flow varying from the Laplacian of the mean curva-
ture, to the more general constrained flows which include a function of time in the
speed, and satisfy various conditions. Our aim is to instigate a study of the regu-
larity of these flows, answering questions of local and global existence, and some
preliminary singularity analysis. Among our results are positive lower bounds
for smooth and regular existence, classification of stationary solutions, interior
estimates, and blowup asymptotics. Applying these results to a certain class of
constrained surface diffusion flows, we obtain long time existence and exponen-
tial convergence to spheres for initial surfaces with small L2 norm of tracefree
curvature. We present one application of this theorem, using it to deduce the
isoperimetric inequality with optimal constant for 2-surfaces satisfying the above
smallness condition. The theorem can be thought of as a stability of spheres result,
as the smallness condition is an averaged distance from a standard round sphere
to the initial manifold in L2. This strengthens a related earlier result specialised
to surface diffusion flow where the distance is small in C2,α, obtained through a
completely different method. The results throughout this thesis are new contribu-
tions for both surface diffusion flow, which has been considered by many authors,
and the constrained flows, which have only recently been considered.
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CHAPTER 1

Introduction

It is of inherent interest for us to understand how our environment operates and

behaves over time. This is one of the key motivating factors behind experimental

physics; determining so-called governing equations or physical ‘laws’ to explain ob-

served phenomena. One of the most important features of a proposed ‘law’ is that it

is predictive in the sense that we can determine, with some accepted degree of error,

what will happen in the future. If these predictions turn out to be correct, we may

even adopt this new ‘law’ into the accepted theory. In many cases, it is extremely

difficult to determine which forces are at work in a certain situation, and further,

how these forces act on objects in our world. It is often the case that experiments

imply that some governing equation determines the evolution of an object under a

given force, or geometrical constraint, but even with this supposed governing equa-

tion we cannot tell which properties an affected object will possess, over time. Using

mathematical techniques, we can investigate extremely general formulations of these

geometric flows and attack this problem.

These investigations can yield surprising results; principally concerned with cat-

egorisation of the effects a given flow or family of flows has on a class of manifolds

it acts upon. Understanding the underlying properties of a flow can lead to new

symmetry and intrinsic geometry techniques. As a classical example of this in his-

tory, the breakthrough discovery of new minimal surfaces by Meusnier [46] had far

1



2 1. INTRODUCTION

reaching consequences throughout physics and mathematics. Frequently, we can

infer new relationships between special geometric objects, for example the isoperi-

metric inequalities. It is also common to see a major result in this area specific to a

class of geometric flows infer or assist in proving another theorem in a different area

of mathematics: this was witnessed recently with the very public solution of the

Poincarè Conjecture enabled by the breakthrough work of Richard Hamilton [27]

and Grisha Perelman [51]. Given the extreme generality of these investigations, and

the extensive mathematical background required, it is often the case that great time

and work is required to fully determine the behaviour and characteristics of even

one geometric flow. However, despite this, research has steadily grown in intensity

in past years.

The natural first target for mathematicians are the second order geometric heat

flows. These are natural due to the availability of the maximum principle, adopted

from the theory of second order partial differential equations. We see the pivotal

role this plays in the papers of Hamilton [27] and Huisken [28] on the Ricci flow and

mean curvature flow respectively. The mean curvature flow is motivated initially by

the experimental and theoretical work of the physicist Mullins [48, 49], and reads

(MC)
∂

∂t
f = −Hν,

where f : Mn× [0, T ) → Rn+1 is a smooth immersion of the n-dimensional manifold

M , H the mean curvature of Mt = f(·, t) and ν the outer unit normal vector field

to M . This equation has been well studied by many authors, see the excellent book

[12] and the references contained therein for a survey of results. For our purposes

here we make a few elementary remarks. The flow (MC) is the steepest descent
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gradient flow for area, and for any initial data M0 we have

d

dt
µ(Mt) = −

∫
M
H2dµ,

where µ is the surface measure on Mt. That is, surface area is monotonically de-

creasing and stationary if and only if Mt is a minimal surface. This leads one to

suspect that mean curvature flow would be useful in studying minimal surfaces, and

indeed this intuition turns out to be correct. Of particular interest to us is the

proposal in Mullins’ earlier paper for the surface diffusion flow, used there to model

the formation of thermal grooves in phase interfaces. This can be written as

(SD)
∂

∂t
f = (∆H)ν.

The flow (SD) is called fourth order, due to the second order differential operator ∆

being applied to the mean curvature H, which is itself a function of up to the second

order spatial derivatives of the immersion f . Being a gradient flow for surface area

in H−1, the surface diffusion flow enjoys two hallmark geometric characteristics:

a reduction of free surface energy (or surface area) and a conservation of mass

(or volume). These attributes of (SD), along with the relatively simple algebraic

structure of the flow, make it a natural fourth order analog of mean curvature flow,

and a model problem to be studied thoroughly before moving on to more general

evolution equations. Taking the geometric properties further, one is lead to the case

of constrained surface diffusion flows, where the immersion f : Mn × [0, T ) → Rn+1

evolves by

(CSD)
∂

∂t
f = (∆H + h)ν,
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with the constraint h : [0, T ) → R being a function of time chosen to coincide with

a natural geometric restriction present in the problem being studied. For example,

various choices of h correspond to conservation of mixed volumes or a reduction in

mass and increase of free surface energy.

The surface diffusion flow has attracted some interest in the literature. It has

been examined from both a physical and mathematical perspective by Davi, Gurtin

[10] and in a more general context by Cahn, Taylor [7]. Davi and Gurtin propose

another physical motivation by recovering the surface diffusion flow (SD) when con-

sidering motion governed by mass diffusion in a phase interface. Cahn and Taylor

provide further motivation by demonstrating connections that the surface diffusion

flow (SD) exhibits with other kinds of motion of surfaces under various conditions.

These are all of the type where total free surface energy is reduced with conservation

of volume. This work is particularly notable for providing no less than thirty differ-

ent approaches to solving the surface diffusion equation, although only the proposed

numerical techniques have been carried out. A few years after these developments

Cahn, Elliott, and Novick-Cohen [6] demonstrated that the surface diffusion flow

can be derived under certain conditions from the Cahn-Hilliard equation, which pre-

dicts isothermal separation of a binary alloy. This gives substantial motivation for

research into the behaviour of the surface diffusion flow.

To effectively analyse fourth order flows we must overcome the lack of a max-

imum principle. One technique is to use curvature integral estimates. We can see

this employed by Kuwert and Schätzle [36, 37] for the Willmore flow, where the
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immersion evolves by

(W)
∂

∂t
f = (∆H + ‖Ao‖2H)ν,

with Ao the tracefree curvature. Willmore flow is the L2 gradient flow of total

squared mean curvature, and as such is the other ‘most natural’ fourth order flow.

This means that

d

dt

∫
M
H2dµ = −

∫
M

(
∆H + ‖Ao‖2H

)2
dµ ≤ 0,

and the stationary solutions are elastic minima. The tracefree and full curvature

tensor also exhibit this monotone decreasing property in L2, and as such integral

estimates where a curvature quantity is small in L2 becomes a natural strategy in

attacking Willmore flow.

In an abstract sense, the overall argument in [37] is due to work by Struwe [59] on

harmonic mappings of Riemann surfaces. The ingredients required to carry out this

argument for a general flow are evolution equations for curvature quantities, short

time existence, integral estimates, and the concentration-compactness alternative.

The culmination of this argument is a non-zero lower bound on time for which the

total squared curvature of the evolving manifold remains bounded. This can be

thought of as a time limit during which the flow remains well behaved. This is

important even in light of the short time existence results (which are a prerequisite

for this argument) for higher order flows due to Polden and Huisken [52, 29]: short

time existence gives an arbitrarily small lower bound for the time in which the

manifold remains smooth, whereas for many applications one requires the lower

bound to be absolute, and not dependent on initial data. This is why the result

in question is called a lifespan theorem. One of our main results in this research is
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establishing a lifespan theorem for constrained surface diffusion flows, which is the

subject of Chapter 3.

Beyond this point lie questions of a global nature: under which conditions can

one infer long time existence of the flow, where T = ∞, and in this situation can

one obtain any qualitative information on the asymptotic behaviour of the flow?

Again, we take our inspiration from Kuwert and Schätzle [36], attacking the problem

with local and global integral estimates combined with blowup analysis. Our main

adversary is the lack of a useful function space in which surface diffusion flow is a

gradient flow. Willmore flow, being an L2 gradient flow of total squared curvature,

lends itself naturally to such an analysis. This problem lead to a popular opinion

that such an approach is not appropriate for surface diffusion flow.

Indeed, our results in blowup analysis are weaker than that of Kuwert and

Schätzle for the Willmore flow [36]. Briefly, we can only guarantee a stationary

blowup if the average distance in L2 from a round sphere is small. Contrast this

with the Willmore flow, where one obtains this regardless of the initial data. Thus,

the initial aversion to using this program of study is in one sense confirmed: one

may indeed obtain self-similar or translating solutions (as opposed to stationary so-

lutions) from a blowup, but only if the initial manifold is far enough from a sphere.

This behaviour is something like a mixture of Willmore flow with mean curvature

flow, which is also a gradient flow of area, and closely related to surface diffusion

flow.

However, this does not stop us from obtaining our long time existence result. The

idea of our method is as follows. Armed with the Lifespan Theorem from Chapter
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3, we know that the only obstacle to global existence is possible concentrations of

curvature in L2. We proceed by contradiction and assume that the initial manifold

is close to a sphere in an average sense and that the curvature has concentrated

in finite time. This finite time concentration begs further study, and so we blow

up around the singularity. This is performed in Chapter 6. To obtain existence

of a limit, we need the Interior Estimates from Chapter 5. Using ideas developed

in Chapter 5, we can also prove that the average closeness to spheres stays well

controlled, and this allows us to prove that the blowup constructed is a stationary,

nonumbilic surface. This lends itself neatly to a contradiction with the main result of

Chapter 4, the Gap Lemma, which states that precisely such a surface must indeed

be umbilic. This implies that there is no concentration of curvature in finite time,

and so we must have long time existence. From here most of the work is done and

we use straightforward arguments to obtain exponential convergence to spheres in

Chapter 7.

Thus we summarise the main contributions of this thesis as the following.

(Ch. 2) Short time existence for higher order hypersurface flows which are quasi-

linear and parabolic in a local chart. This chapter collects many references

from the vast literature on local existence and organises them together to

show short time existence for our flows under consideration.

(Ch. 3) Lifespan Theorem. Here we present a proof of the aforementioned Lifespan

Theorem for constrained surface diffusion flows. This is an absolute lower

bound for the maximal time of existence of the flow which depends on the

concentration of curvature in the initial data.
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(Ch. 4) Gap Lemma. This chapter proves a gap lemma for constrained surface

diffusion flows. There the concerns are the stationary solutions to the flow

equation, and their geometry under certain conditions. The Gap Lemma

we prove here shows that under a small tracefree curvature condition, a

growth at infinity of curvature condition, and a structure of h condition the

stationary solutions are indeed spheres and planes.

(Ch. 5) Curvature and Interior Estimates. This chapter investigates the conse-

quences of local integral of curvature estimates where the speed of the flow

appears on the left hand side; these are natural for a gradient flow of curva-

ture. For us, we can still use this technique to conclude several interesting

results. The first are some pointwise curvature estimates where the speed

of the flow appears on the right hand side. The second are interior esti-

mates where we control all higher derivatives of curvature so long as the

curvature is already well-controlled in L2. The conditions required of the

constraint function for the interior estimates are the same as the conditions

required for the Lifespan Theorem, and as such these two theorems enjoy

a convenient synergy.

(Ch. 6) Almost Preservation and Stationary, Non-Umbilic Blowups. The first result

is on the almost preservation of initially small tracefree curvature. Using

a technical estimate from Chapter 5 we can show that if the tracefree cur-

vature begins small in L2 then it stays well-controlled along the flow. One

of the many consequences is that using another technical estimate from

Chapter 5 the blowup at an assumed finite time singularity is stationary.
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Arguments from Kuwert and Schätzle [36] strengthen this to stationary

and non-umbilic.

(Ch. 7) Long time existence and exponential convergence to spheres. This is an

orchestration of all our previous results, and some additional analysis in

the same vein as Chapter 6. The final conclusion is that for 2 dimensional

surface diffusion flows, if the L2 norm of the tracefree curvature is small at

initial time then the surface diffusion flow exists for all time and converges

exponentially to a round sphere. For the constrained flows, there are several

structure conditions placed on h and the initial condition is strengthened to

smallness in Lp for some p > 4 which depends on the constraint function.

Opportunities for further research abound. Many of the results in this thesis

may be easily adapted to the case of constrained Willmore flows, and as there does

already exist some work on constrained Willmore surfaces, the stationary case of the

flow, this is well motivated. Determining precisely the nature of any obstructions to

obtaining long time existence and convergence to spheres, and working to overcome

these obstructions would be an interesting topic. In another direction, one may

consider higher intrinsic dimensions, moving from two dimensional surfaces to three

dimensional manifolds. We have already commented on both of these possibilities

throughout the thesis, where adaptations to these situations lend themselves easily.

In a more difficult vein, one may ask the following question. Given recent work

on the eventual positivity of the Green’s function for the parabolic bilaplacian [18,

22, 23, 21, 26], and the fact that eventual preservation of positivity of the mean

curvature is obtained in the proof of our main theorem (Proposition 7.7), does
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there exist an underlying phenomena for fourth order equations analogous to the

ubiquitous maximum principle? Investigations on this question are continuing, but

it seems that answering this even in part would allow a solution to many unsolved

problems. For example, when does surface diffusion flow or Willmore flow develop

a singularity? If we have a flow with very large deviation from a sphere, does

there develop a curvature singularity? In the second order case, the comparison

principle allows one to determine many such situations where this will occur. For

the flows in consideration here however this simple question has not been resolved.

In a different topological class, the work by Blatt [4] on Willmore flow shows that

eventually (perhaps in infinite time) one must obtain non-existence, however there

a topological obstruction is used to obtain the result, and this does not seem to

give a hint as to an underlying, deep property of the flow. It is this author’s hope

that one day the analysis given here is used to obtain qualitative information on

surface diffusion flows with large distance from spheres, and that these problems

can therefore be resolved.

1. Prerequisites from differential geometry

It is our immediate task to set our notation and discuss the definition and fun-

damental properties pertaining to our chief objects of study. Intuitively, these are

somehow lower dimensional, structured subsets of Rn, to which we can express

smooth deformations via some mapping. We will characterise the ‘interesting’ sub-

sets of Rn as objects which are in a local sense Euclidean, and intrinsically of di-

mension less than n. Further, at least for now, we will only consider those objects

which are smooth everywhere.
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Let M be contained in some open set U ⊂ Rn+1, determined by a smooth

embedding map f : Ω → Rn+1 with F (Ω) = M where Ω ⊂ Rn is open. M is called

an n-dimensional hypersurface or simply a hypersurface, since the codimension of

M is 1. One can think of this as meaning that after the embedding map has taken

Ω to M , there is still one dimension ‘left over’ in the ambient space Rn+1. These

‘left over’ dimensions are called codimensions. Equivalently, one codimension also

means that at every point x = F (p) ∈M , p ∈ Ω, the space of vectors normal to M

anchored at x is one dimensional.

Of course there are many generalisations to this particular notion of ‘interest-

ing set’, and an enormous body of work supporting them. However for us we will

not consider a large number of abstractions or even very general results and con-

structions. Here, our most general consideration will be an isometric immersion

f : Ω →M where Ω ⊂ Rn and M ⊂ Rn+k, which is an n-dimensional manifold with

k codimensions. The word ‘isometric’ here means that the geodesic distance on M

is inherited from the metric on Rn+k. We will make this more precise later.

One general notion deserves mentioning here. Given a hypersurface, say the

three dimensional sphere S3 immersed in R4 (this is to say that at every point

p ∈ S3, the tangent space is three dimensional), we can consider now immersions

with codomain S3. That is, let Σ ⊂ Rp be open with p ∈ {1, 2} and consider

a smooth map gp : Σ → N where N ⊂ S3 is open. It seems naturally a much

more general setting, to consider submanifolds of ‘nice’ objects such as S3 instead

of simply isometric immersions in Rn+k.
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This intuition holds, and so-called submanifold theory is in fact a strictly more

general setting. However, one may also consider the intrinsic analog. Consider a

set which exhibits, in terms of its intrinsic geometry, properties which are desired

by our ‘interesting’ sets. One may be worried that in our study of immersions

or embeddings of Riemannian manifolds into Euclidean space, we are losing some

portion of all possible Riemannian manifolds. In other words, perhaps there are some

very strange Riemannian manifolds for which there is no embedding into Euclidean

space. Can each gp be isometrically immersed in Euclidean space? The answer is a

resounding ‘yes’, due to the celebrated result of Nash [50].

Theorem 1.1 (Nash Embedding Theorem). Any n-dimensional Riemannian

manifold N with Ck metric, where k ≥ 3, has a Ck isometric embedding in an

arbitrarily small portion of Rn+l, for l ≥ 3
2
n3 + 7n2 + 11

2
n.

Therefore, if we can move to considering isometric immersions of arbitrary (or

large enough) codimension n+ l, we will have (up to a diffeomorphism) covered all

Riemannian manifolds of dimension n. Obtaining results in arbitrary codimension

is not always possible however, and generally range from being as difficult as one

codimension to being much more difficult. We will remark throughout the thesis on

which of our results carries over easily to the case of arbitrary codimension.

We organise the remaining parts of this chapter as follows. Section 2 gives an

overview of the basic definitions and geometric facts associated with hypersurfaces,

with some elementary results. Section 3 details some additional notation, so-called

modern, intrinsic or suffix-free notation, which will be useful at times in the coming
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chapters. We finish the chapter with some notes and further references for the

interested reader.

2. Geometry of hypersurfaces

Let M be contained in some smooth open set U ⊂ Rn+1 and be such that

M = f(Ω), where f : Ω → Rn+1 is a smooth mapping with everywhere injective

derivative (that is, f is an immersion) and Ω ⊂ Rn is open. We say that M is

a properly immersed hypersurface if f−1(K) ⊂ Ω is compact whenever K ⊂ U is

compact.

The coordinate tangent vectors ∂if(p) ≡ ∂f
∂pi

(p), 1 ≤ i ≤ n, form a basis of the

tangent space TxM at x = f(p) for every p ∈ Ω. Note that this means the tangent

space is n-dimensional.

The components of the metric on M are given by

gij = (∂if | ∂jf)

for 1 ≤ i, j ≤ n, where ( · | ·) is the regular Euclidean inner product in Rn+1. When

the metric is specified in this way, we call f an isometric immersion. For an expanded

introduction to these especially nice immersions, please see [11, Chapter 6]. Let (gij)

denote the matrix with elements gij; then the components of the inverse metric are

given by inverting (gij); that is

(gij) = (gij)
−1.

The natural induced area element of M is

√
g =

√
det (gij).
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We can integrate compactly supported functions h : M → R over a properly im-

mersed hypersurface. The integral is defined by

∫
M
hdµ ≡

∫
M
hdHn ≡

∫
M
h(x)dHn(x) ≡

∫
Ω
h(f(p))

√
g(p)dp.

Here dµ is the measure on M , which we will always choose to be n-dimensional

Hausdorff measure Hn on M . Note that we always have

Hn(M ∩K) <∞

for any compact K ⊂ U .

We may consider any function h : M → R as a function on Ω via the immersion:

h : f(Ω) → R, h ◦ f : Ω → R.

The tangential or surface gradient is defined by

∇Mh = gij∂jh∂iF

where we sum over repeated indices from 1 to n. Let X be a smooth mapping which

takes any point p ∈ M to a vector X(p) ∈ Rn which is tangent to M at p; such an

X is called a smooth tangent vector field and can be decomposed as

X = X i∂if = gijXj∂if, where Xi = (X | ∂if) .

It is natural to question if one has a suitable notion of differentiation on M . There is

indeed, and one approach is to simply define the covariant derivative ∇M : X (M) →

TM as the ambient derivative projected back onto the tangent bundle of M . That

is,

∇MX = (DX)>.
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When there is no chance for confusion we will in further chapters omit the M

superscript. The components of the covariant derivative are given by

∇M
i X

j = ∂iX
j + Γj

ikX
k = gjl(∂iXl − Γk

ilXk)

where the Christoffel symbols Γ are

(∂ijf)> = Γk
ij∂kf,

where the superscript > denotes the tangential component of a vector. A good

exercise is to show that the components of the Christoffel symbols are also given by

(1) Γk
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij).

We define the tangential divergence of X on M by

divMX = ∇M
i X

i = gij∇M
i Xj =

1
√
g
∂i(
√
ggijXj).

The last equality follows from our earlier definitions. This expression for the diver-

gence is useful for proving the divergence theorem, which will appear later.

The Laplace-Beltrami operator of h on M is given by

∆Mh = divM∇Mh = gij(∂ijh− Γk
ij∂kh) =

1
√
g
∂i(
√
ggij∂jh).

For a smooth vector field X : M → Rn+1 which is not necessarily tangent to M , we

can also define the divergence with respect to M by the projection

divMX = gij (∂iX | ∂jf) .

One can check that this reduces to the previous expression for tangent vector fields.

We now move towards defining the curvature of M . First, let ν be a choice of

unit normal vector field to M . In particular, this satisfies

(ν | ∂if) = 0, and (ν | ν) = 1
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on M for 1 ≤ i ≤ n. Note that the second identity implies that any derivative of

ν is a tangent vector field to M . We make extensive use of the second fundamental

form A : X (M)×X (M) → R associated with M , with components defined by

Aij = (∂iν | ∂jf) = − (ν | ∂ijf) .

The second equality follows from the product rule and the fact that ∂if is a tangent

vector.

The eigenvalues κ1, . . . , κn of the Weingarten map given by

Ai
j = gikAkj, (Ai

j) : TM → TM,

are called the principal curvatures of M . The mean curvature H can then be ex-

pressed in various ways,

H =
n∑

i=1

κi = Ai
i = gijAij = gij (∂iν | ∂jf) = divMν.

Combining these we can define the tracefree second fundamental form, sometimes

called the tracefree curvature, as the tensor Ao with components

Ao
ij = Aij −

1

n
gijH.

One may immediately check that tr Ao = gijAo
ij = 0. The mean curvature vector of

M is given by

~H = −Hν.

Using the previous identities, we therefore have

∆Mf = ~H, and ∆2
Mf = ∆M

~H.
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This is relevant since in the case of the mean curvature flow, where f : M× [0, T ) →

Rn+1 evolves by

∂tf = ~H = ∆Mf

we see immediately that the structure of the equation is similar to that of the

regular heat equation. One may guess that techniques for this equation (such as

the maximum principle) will be useful in analysing the flow, and indeed this is very

much the case. Contrast this to the case of the surface diffusion flow,

∂tf = ∆M
~H = ∆2

Mf,

and one can guess that here the tools which are of so much help in the analysis of

mean curvature flow are not applicable to the surface diffusion flow. In fact this is

only half true; some techniques will prove useful, but we will always be working to

overcome the deficit. We will greatly expand on this in the coming chapters.

Finally we come to define the Riemann curvature tensor of M . This is a precise

measurement of how well or how poorly the covariant derivatives on M commute.

The components of R are defined by

∇M
ij Xk −∇M

ji Xk = RM
ijklX

l,

where X is a tangent vector field on M and

∇M
ij ≡ ∇M

τi
∇M

τj
−∇M

∇M
τi

τj

denotes the Hessian operator in a local orthonormal frame τ1, . . . , τn. Note that for

Euclidean space, all the covariant derivatives coincide with partial derivatives and

so they commute. Therefore RRn

ijkl ≡ 0, and we call Rn flat.
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The Riemann tensor satisfies the symmetry relations

RM
ijkl = −RM

jikl, and RM
ijkl = −RM

klij.

The Gauss equations express this tensor in terms of the second fundamental form

of M by

RM
ijkl = AikAjl − AjkAil.

Importantly, this means that in our case (this is not true in general) it is sufficient

to study the second fundamental form instead of the full Riemann curvature tensor.

The Codazzi equations state that the 3-tensor of covariant derivatives of the

second fundamental form

∇MA = (∇M
i Ajk)

is totally symmetric.

It will be important for us to consider not only vector fields on M , but tensor

fields also. The definitions of covariant derivative, Hessian and Laplacian opera-

tors are performed analogously. In an orthonormal frame τ1, . . . , τn we denote the

component of ∇M
ij A with respect to τk and τl by ∇M

ij Akl. Note that all of the quan-

tities spoken of thus far are geometric invariants, and so the choice of basis is not

important.

We will be making extensive use of the consequences of the Codazzi equations

and the interchange of covariant derivatives. We define the inner product on M ,

which operates on tensors of similar type, as being the trace over the induced metric

〈
S

j1···jq

i1···ip , T
j1···jq

i1···ip

〉
= gi1k1 · · · gipkpgj1l1 · · · gjqlqS

j1···jq

i1···ip T
l1···lq
k1···kp

,
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where the summation convention is understood. Note that as all covariant deriva-

tives of the metric are identically zero we have in any local frame

∇M
i 〈S, T 〉 =

〈
∇M

i S, T
〉

+
〈
S,∇M

i T
〉
.

We define the norm of a tensor as

‖T‖2 = 〈T, T 〉 .

In particular, this gives the norm of the second fundamental form as

‖A‖2 = Aj
iA

i
j = gijgklAikAjl.

At times we will need to perform analysis with large convoluted contractions, where

the exact algebraic structure of each contraction is not critical. To this end, we follow

Hamilton [27] in using for tensors T and S the notation T ∗S to denote a new tensor

formed by summations of contractions of pairs of indices from T and S by the metric

g, with possible multiplication by a universal constant. The resultant tensor will

have the same type as the other quantities in the equation it appears. Keeping

these in mind we also denote polynomials in the iterated covariant derivatives of

these terms by

P i
j (T ) =

∑
k1+...+kj=i

c∇(k1)T ∗ · · · ∗ ∇(kj)T,

where the constant c ∈ R is absolute and may vary from one term in the summation

to another. In the above we have used ∇(n)T to denote the tensor with compo-

nents ∇i1...inT
k1...
j1... . As is common for the ∗-notation, we slightly abuse the absolute

constant when certain subterms do not appear in our P -style terms. For example

‖∇A‖2 = 〈∇A,∇A〉

= 1 ·
(
∇(1)A ∗ ∇(1)A

)
+ 0 ·

(
A ∗ ∇(2)A

)
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= P 2
2 (A).

To simplify the notation, we will always work in a local orthonormal frame. This

means that we can use lower indices only. If we need to work with an arbitrary basis

we can raise repeated occurences of each index, relabel and multiply by the metric

in that basis.

Using the Gauss equation and definition of the Riemann curvature tensor, we

have

∇M
klAij −∇M

lkAij = AimR
M
mjkl + AmjR

M
imkl.

Computing, with the use of the above identity, the Gauss equation and the Codazzi

equations:

∆MAij = ∇M
kkAij = ∇M

kiAkj = ∇M
kiAjk

= ∇M
ikAjk + AkmR

M
mijk + AmiR

M
mkjk

= ∇M
ikAjk + Akm(AmjAik − AijAmk) + Ami(AmjAkk − AkjAmk)

= ∇M
ij H − ‖A‖2Aij +HAikAkj.(2)

This is generally referred to as Simons’ identity [56]. This also implies

(SI) ∆M‖A‖2 = 2Aij∇M
ij H + 2‖∇MA‖2 + 2HAijAikAkj − 2‖A‖4.

We will need to control the second derivatives of the unit normal vector field, and

for that purpose we derive an expression for the Laplacian of ν. In the computations

to follow it is convenient to work with geodesic normal coordinates on M . (Note

that we can always do this in a small neighbourhood on M , by solving a system of

ODEs.) That is, at a point x = f(p) ∈M we have

gij = δij, and (∂ijf)> = 0.
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We will perform our calculations at this point x. At this point we have

∆Mν = ∂iiν.

Moreover,

Aij = − (∂ijf | ν) , and ∂iν = Aij∂jf,

where the second equality follows from ∂iν being a tangent vector field and therefore

expressible in the basis ∂jf . The Codazzi equations imply

∂iAij = ∂jAii.

Using these identities we compute

∂ijν = ∂i (Aij∂jf)

= ∂iAij∂jf + Aij∂ijf

= ∂jAii∂jf + AijAijν,

which is

∆Mν = −‖A‖2ν +∇MH.

This identity is often referred to as the Jacobi field equation.

Since we do not have access to tools such as the maximum principle, we must

make the most of what we do have, and apart from some special circumstances the

only tool available is integration by parts. The divergence theorem for smooth, prop-

erly embedded hypersurfaces with smooth boundary gives us a way of integrating by

parts on manifolds; it states that for any C1 vectorfield X : M → Rn+1 the identity

∫
M

divMXdHn = −
∫

M

(
~H
∣∣∣X) dHn +

∫
∂M

(X | γ) dHn−1
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holds where γ denotes the outer unit normal vector field to ∂M which is tangent to

M at all boundary points (note that in particular this is not the vectorfield ν). If

X has compact support or if ∂M = ∅ this reduces to

∫
M

divMXdHn = −
∫

M

(
~H
∣∣∣X) dHn;

and if in addition X is a tangent vector field we have

∫
M

divMXdHn = 0.

For a function φ ∈ C2
0(Rn+1) the divergence theorem implies

∫
M

divMDφdµ = −
∫

M

(
~H
∣∣∣Dφ) dµ, and

∫
M

∆Mφdµ = 0.

Let η ∈ C2(Rn+1) and then we also have

∫
M
φ∆Mηdµ = −

∫
M

(
∇Mφ

∣∣∣∇Mη
)
dµ =

∫
M
η∆Mφdµ.

If φ does not vanish on the boundary of M then

∫
M

divMDφdµ = −
∫

M

(
~H
∣∣∣Dφ) dµ+

∫
∂M

(
∇Mφ

∣∣∣ γ) dσ
where we used that

(Dφ | γ) =
(
∇Mφ

∣∣∣ γ)
since γ is tangent to M .

3. Suffix free notation

We now come to introduce the notation which we will use quite often in this

thesis, following Kuwert and Schätzle [36, 37, 38] who used this notation in their

analysis of the Willmore flow. For a reader unfamiliar with the terminology used

here the most complete reference is Kobayashi and Nomizu [32, 33]. Although at

times extraordinarily terse, these books give all the details in full rigour.
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The main advantages of this notation are that, especially in arbitrary codi-

mension, there are far fewer indices to be confused with each other, and that the

computations are often much quicker.

Let f : M → Rn+k be an immersion as before. Let X, Y, Z be tangent vector

fields and φ a normal vector field. All vector fields are defined along f . The induced

metric is given by

g(X, Y ) = (Df ·X |Df · Y ) = (DXf |DY f) .

Here Df denotes the matrix of partial derivatives of f and the notation Df · X

denotes multiplication of the matrix Df with the vector X; this is exactly the

familiar notion of a directional derivative, which is expressed in the second equality.

The passage from the previous notation to this is straightforward: for a tensor T p

times covariant and an orthonormal basis {τi} of TM ,

Ti1i2···ip = T (τi1 , τi2 , . . . , τp).

Then, evaluating T with more general vector fields Xi reduces to knowledge of the

components of T since

T (X1, X2, . . . , Xp) = T
(
τi1 〈X1, τi1〉 , τi2 〈X2, τi2〉 , . . . , τip

〈
Xp, τip

〉)
= 〈X1, τi1〉 〈X2, τi2〉 · · · τip

〈
Xp, τip

〉
Ti1i2···ip .

Note that we used the linearity of T here and of course there are many summations.

Note that this expression is well defined since tensors are invariant under change of

coordinates. We will define the covariant derivative of functions, vectors and tensors

as follows. Let X,Xi, Y be vector fields on f . For functions h : M → Rn+k,

∇Xh = (DXh)
> = (Dh ·X)> ;
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for vector fields,

∇XY = (DXY )> = (DY ·X)> ;

and for covariant tensors T of degree s,

(∇T )(X1, . . . , Xs;X) = (∇XT )(X1, . . . , Xs).

For the normal bundle we also have a covariant derivative, which we will in fact use

more often than the covariant derivative on M . Let φ be a normal vector field on

M and S a normal covariant tensor field of degree s. Then we have

∇⊥
Xh = (DXh)

⊥ = (Dh ·X)⊥ ,

∇Xφ = (DXφ)⊥ = (Dφ ·X)⊥ , and

(∇⊥S)(X1, . . . , Xs;X) = (∇⊥
XS)(X1, . . . , Xs).

It is easy to see from the above formulae that the regular derivative in Rn+k splits

into the covariant derivative in the tangent bundle TM and the covariant derivative

in the normal bundle TM⊥.

We shall need to take repeated covariant derivatives of tensors and so will expand

upon the latter formula. For the details of these computations we refer to chapters

2 and 7 of Kobayashi and Nomizu [32, 33]. To avoid duplication, let ∇ denote both

the covariant derivative and covariant derivative in the normal bundle.

For a covariant tensor S of degree s we form a new tensor (∇S) of degree (s+1)

defined as above. An alternative, more useful expression for (∇S) is

(∇S)(X1, . . . , Xs;X) = ∇X(S(X1, . . . , Xs))−
s∑

i=1

S(X1, . . . ,∇XXi, . . . , Xs).

Note that S(X1, . . . , Xs) is a function.
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The second covariant differential of S, ∇(2)S, is a covariant tensor field of degree

(s+ 2) defined as ∇(∇S), which is

(∇(2)S)(X1, . . . , Xs;X;Y ) = (∇Y (∇S))(X1, . . . , Xs;X).

A similar expression to that given above for (∇S) is rather complicated and long.

A shortened form is

(∇(2)S)(;X;Y ) = ∇Y (∇XS)−∇∇Y XS.

In general, ∇(m)S is defined inductively to be ∇(∇(m−1S), and

(∇(m)S)(X1, . . . , Xs;Y1; . . . ;Ym) = (∇Ym(∇(m−1)S))(X1, . . . , Xs;Y1; . . . ;Ym−1).

4. Notes

The overview given here falls short of satisfactory for a large number of reasons,

and the reader inexperienced in differential geometry must be aware of this. Our

primary goal here is to set our notation, as in some places it is nonstandard. At

times we will switch between index and suffix free notation, using whichever is most

convenient for a given computation.

The treatment of the geometry of hypersurfaces given here is heavily inspired

by Appendix A of Ecker’s excellent book [12]. For an introduction to singularity

analysis for the mean curvature flow, and regularity theory for hypersurfaces, this

book comprises a clear and succinct treatment with sufficient but minimal geometric

measure theory.

There are mountains of books on differential geometry, and it would be impos-

sible to give a mention of them all. We will give comment on a small selection and

invite the interested reader to find and enjoy more references of their own. The
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hard hitting reference for specialists are the two volumes of Nomizu and Kobayashi

[32, 33]. These are essentially self-contained, but are not suitable for use as intro-

ductory texts. As references however they are irreplaceable. For a more gentle and

geometric introduction, including the suffix free notation, do Carmo [11] is recom-

mended. Beware however of the mistake with the chain rule and as always take note

of sign conventions.

A classic but still relevant reference is the series by Spivak [58], which if you

can forgive the typesetting is quite readable. For references more on geometric heat

flows, such as mean curvature flows, some calculus of variations is useful. In most

modern differential geometry texts there are small sections devoted to this. The

collection of articles [9] is a good resource for the beginner.

Unfortunately, higher order flows are not so well studied and there are no stan-

dard references. We will be continuing the framework of Kuwert and Schätzle

[36, 37, 38] who analysed the Willmore flow. However the case for second or-

der flows is significantly better, and many of the notions used in the analysis of

fourth order flows are completely analogous to the second order case (even if the

techniques are required to be different). For the mean curvature flow, the afore-

mentioned treatment given by Ecker [12] is a good source. We also mention the

following paper of Huisken and Polden [29] which gives a survey of some results for

various geometric evolution equations. The references contained within these two

sources provide a comprehensive survey of the field.



CHAPTER 2

Short time existence for higher order hypersurface flows

1. Introduction

The question of short time existence for higher order hypersurface flows has a

colourful history. Several contemporary papers will quote Polden [52], or Huisken

and Polden [29], such as Kuwert and Schätzle [36, 37, 38], Mantegazza [44], and

others. We began with this, as the statement for local existence in [52] is extremely

general. However, as is in fact common knowledge (being known at the very least

by Bartnik, Huisken, Ecker, Kuwert, Schätzle, Andrews, and so on), there are some

mistakes such as the usage of the linearisation of the quasilinear equation, and in the

usage of the smoothness assumptions on the coefficients of the differential operator.

Despite this, it is also common knowledge of how to fix these issues. It is in fact the

case that there are a large variety of methods and techniques to obtain short time

existence. Thus we do not claim any fraction of originality or ingenuity in proof:

our arguments and presentation in this chapter all essentially belong to standard

theory. We recommend that the reader not interested or already well-versed in short

time existence skip ahead to Chapter 3.

It is worth noting that Sharples [53] fixed the mistakes in Polden, however there

the focus is on second order equations and the higher order case is only remarked

upon briefly in the introduction to the paper. We will be performing a similar feat,

27
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in that we will attempt to recover a similarly useful short time existence theorem to

Polden, however we will not pursue the same technique.

Our technique is inspired by personal communication with Kuwert [35], where

it is suggested that to prove short time existence it is sufficient to write the evolu-

tion as a graph and then use standard parabolic existence and uniqueness theory.

This is essentially our procedure, although it appears the treatment of higher order

parabolic equations is exclusively limited to linear equations (and our equation is

very much quasi linear when written as a graph) and we must provide the standard

alterations to upgrade the linear theory to the quasilinear context. Once we obtain

the existence and uniqueness theorem for the quasilinear case, we use the method

of applying a tangential diffeomorphism at each time step to our flow to ensure that

the domain of our graph function is independent of time. Combining these results,

and tiling the time interval as much as possible, we obtain the required theorem.

Finally we must note that the treatment given here is classical in nature, and

there is an alternative: semigroup theory. Indeed, this is the technique used by

Escher, Mayer and Simonett [16], where they quote recent results due to Amann to

obtain short time existence for surface diffusion flow. However, they do not state

any theorem to this effect and regardless the referred to theorem due to Amann does

not appear to be published anywhere. It has recently come to light that there is

now a reference which treats short time existence thoroughly: Koch and Lamm [34].

There a technique is employed which is very similar to ours here, however there they

work in a slightly altered function space to obtain uniqueness in a slightly different
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way. Their approach also allows one to obtain short time existence for initial data

which is only C1.

Due to the sometimes difficult-to-find nature of the required references for our

chosen approach, we have chosen to use major results from a variety of sources.

Due to this, our exposition involves the equivalent reformulations of the problem

at hand in a variety of styles. It is also because of this aspect that our discussion

below is restricted to signposting the various facts required and theorems necessary

for the proof. Our goal is that an interested reader will be able to use this chap-

ter as a roadmap to a complete, rigorous proof. We collect the major references

now. The linear estimates we have used follow the treatment of Friedman [20], and

Eidelman, Zhitarashu [14]. We refer the reader to the papers referenced therein

for the historical development of the linear theory. The fixed point argument can

be found in many good books on parabolic or elliptic partial differential equations,

such as Taylor [60, 61], Gilbarg and Trudinger [25], Lieberman [42], and of course

Ladyzhenskaya, Solonnikov and Ural’ceva [39], among many others. The usage of

tangential diffeomorphisms to fix the domain of our graph function can be found in

Ecker [12] and Ecker, Huisken [13]. We have presented our results in a sufficiently

general manner to be hopefully useful for further applications.

2. Linear theory

The classical theory of existence and uniqueness for solutions to linear higher

order parabolic partial differential equations is really a large work, and more suited

to a textbook than a section in a thesis. Further, the basic ideas and techniques

are all very standard, in that even though we consider the higher order setting the
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techniques and machinery involved are essentially the same as the second order case.

Therefore our strategy here is to state the main result in detail and then provide

a sketch of the proof with references; more than a summary but far from complete

detail. The main references for this section are the monographs Friedman [20] and

Eidelman, Zhitarashu [14]. There the problem under consideration is higher order

parabolic systems and higher order parabolic systems with boundary, respectively.

As there is not much more difficulty, we will also pursue the boundary value problem.

We see this as possibly being useful for future applications, for example a constrained

Willmore flow with Neumann boundary is often used in applied mathematics to solve

problems in image processing and computer vision, see [17] for example. There, the

question of short time existence is essentially ignored; nonetheless it is still important

for us. We will not however consider the case of general parabolic systems, or

equations parabolic in the sense of Solonnikov and Shirota, since the changes are

straightforward and serve to obscure the underlying argument and notation. The

interested reader may enjoy the discussion in [14] which includes all the changes

required.

Our linear problem is

L(x, t; ∂, ∂t)u ≡ ∂tu−
∑
|α|≤2b

aα(x, t)∂αu = f(x, t)(3)

u

∣∣∣∣∣
t=0

= ψ(x)(4)

B(x, t;D,Dt)u

∣∣∣∣∣
S

=
∑

|α|+2bα0≤rq

bqαα0
(x, t)∂α∂α0

t u

∣∣∣∣∣
S

= φq for q = 1, . . . , b,(5)
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in the cylinder Ω = G × (0, T ], where S = ∂G × (0, T ], and the coefficients aα,

bqαα0
are functions indexed by α0 and the multi-index α, which vary with each term

in the summation. In the systems context each of these coefficients is an (m ×m)

matrix, with m being the number of equations. The system is of 2b-th order. (It

is impossible for an odd ordered equation to be parabolic.) The operators L and B

are linear, and L is parabolic in the sense of Petrovski. This means that at every

point (x, t) in Ω the p-zeroes of the polynomial in the principal part L0(x, t; iξ, p) of

L satisfy the inequality

Re p(x, t, ξ) ≤ −δ0(x, t)|ξ|2, for some δ0(x, t) > 0.

We do not require uniform parabolicity, so δ0 is allowed to vary with the choice of

point (x, t) ∈ Ω. Note that the function f(x, t) is a known function of time and

space.

We have some notation and conditions to get through before stating the main

theorem. Let C l
0(Ω) and C l

0(S) be the set of functions f belonging to C l(Ω) and

C l(S) respectively which also satisfy

∂α0−1
t f

∣∣∣∣
t=0

= 0, for α0 = 1, . . . ,
l

2b
+ 1.

We will need the following conditions:

(β1) : aα(x, t) ∈ C l(Ω)

(β2) : bqαα0
(x, t) ∈ C l+2b−rq(S)

(β3) : ∂G ∈ C l+2b

(β4) : The right hand side of (3)-(5) satisfies

f ∈ C l(Ω), ψ ∈ C l+2b(G), φq ∈ C l+2b−rq(S),
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for q = 1, . . . , b, and l > l0 = max
q
{0, rq − 2b}

(β5) : ∂α0
t φq

∣∣∣∣∣
t=0

= 0, for α0 = 0, . . . ,
l + 2b− rq

2b
, on ∂G.

The last of these conditions are called compatibility conditions of order l+2b
2b

.

The degree to which these are satisfied determines the regularity of the solution we

obtain.

We can now state the main theorem, due primarily to V. A. Solonnikov [57].

Theorem 2.1 (Solonnikov). Consider the parabolic boundary value problem (3)-

(5) satisfying β1 − β4 and compatibility conditions β5 of order l+2b
2b

. Then for any

non-integer l > l0 = max{0, r1 − 2b, . . . , rb − 2b} the problem (3)-(5) has a unique

solution u(x, t) in the space C l+2b(Ω) and the following estimate holds

|u,Ω|l+2b ≤ C

(
|f,Ω|l + |ψ,G|l+2b +

b∑
q=1

|φq, S|l+2b−rq

)
,

where C is a positive constant not depending on u, t, ψ, φq.

Recall that the norm in the conclusion above is defined for some positive real

number s by

|u(x, t),Ω|s =
∑

|α|+2bµ≤[s]

sup
(x,t)∈Ω

|∂α∂µ
t u(x, t)|

+
∑

|α|+2bµ=[s]

sup
(x,t),(y,t)∈Ω

∂α∂µ
t u(x, t)− ∂α∂µ

t u(y, t)

|x− y|s−[s]

+
∑

0<s−2bµ−|α|<2b

sup
(x,t),(x,τ)∈Ω

∂α∂µ
t u(x, t)− ∂α∂µ

t u(x, τ)

|t− τ |(s−2bµ−|α|)/2b
.

The proof makes extensive usage of higher order analogues of the parabolic

fundamental solution. One of the estimates obtained during the course of this proof

will be useful for the purposes of uniqueness later. The proof is contained in [57].

A version (with proof) in the terminology of semigroups can be found in [41]. In
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the below we use the notation

Ai =
∑
|α|≤2b

aα(x, t, ui)∂
α

for the spatial part of the linear operator. The norm on this operator is the natural

induced operator norm.

Theorem 2.2. Let 0 < ξ < η ≤ 1. Under the conditions of Theorem 2.5

above, the difference of two solutions u1, u2 with initial data ω1, ω2 respectively may

be estimated by

‖u1(t)− u2(t)‖ξ ≤ c
(
tη−ξ‖A1 − A2‖‖ω1‖η + ‖ω1 − ω2‖ξ

)
,

for some c > 0 not depending on ui.

The norm in use here is in an interpolation space, which will be discussed in the

second part of the next section.

As mentioned earlier, the proof of Theorem 2.1 above in detail is a long and

complicated process. We will instead outline the overall idea; familiarity with the

second order case will be invaluable.

2.1. Overview of proof of Theorem 2.1. The most difficult step in the proof

is to show that the problem (3)-(5) is well-posed in a cylinder Ωh of small height

h ≤ T in the case where ψ = 0, f ∈ C l
0(Ωh), φq ∈ C

l+2b−rq

0 (Sh), q = 1, . . . , b. Once

we have local existence for this problem then we can consider u − ψ for non-zero

initial data, and begin the process again at t = h, tiling the cylinder Ω.
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To solve the problem in a small cylinder Ωh, we consider the equivalent formu-

lation of finding a solution to the operator equation

(6) Au = F

where A is the linear operator from the linear space B1 = C l+2b
0 (Ωh) to B2 =

C l
0(Ωh)×

∏b
q=0C

l+2b−rq

0 (Sh) which assigns to each function u(x, t) ∈ B1 the function

F = (f, φ1, . . . , φb). B1 and B2 are Banach spaces with the norms

|u|B1 = |u,Ωh|l+2b, |F |B2 = |f,Ωh|l +
b∑

q=1

|φq, Sh|l+2b−rq .

Well-posedness of (6) is equivalent to the operator A possessing a bounded inverse

operator A−1, acting from the whole of B2 onto B1. We find A−1 as follows. We need

to first construct a regulariser of A. For our problem this is an operator R : B2 → B1

such that

(7) AR = I + V ; RA = I +W,

where I is the identity operator in B2 in the first equation and B1 in the second, and

where V,W are bounded operators of norm less than 1 in B2 and B1 respectively.

Due to the last property we can use the contraction mapping principle to imply

that the operators I+V and I+W have bounded inverses (I+V )−1 and (I+W )−1.

Therefore, using (7),

AR(I + V )−1 = I and (I +W )−1RA = I.

That is, the operator A possesses both a right bounded inverse R(I + V )−1 and a

left bounded inverse (I +W )−1R. These inverses must necessarily coincide and so

A−1 = R(I + V )−1 = (I +W )−1R.
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Therefore in the small cylinder Ωh the problem reduces to the construction of a

regulariser. Unfortunately, this is by no means straightforward. We will provide a

brief summary of the steps required.

2.2. Building the regulariser. We construct the regulariser by pasting to-

gether, with the help of a suitable partition of unity, operators which solve model

problems of two types. The first is the Cauchy problem for the parabolic equation

L0(x
0, 0; ∂, ∂t)u = f,

where the coefficients are ‘frozen’ at a point (x0, 0), x0 ∈ G. Solving this prob-

lem reduces to finding fundamental solutions with very nice properties. These are

essentially higher order analogues of heat kernels. Please refer to [14], Chapter

IV for details. The second model problems are the boundary value problems in

Rn
+ × (0, T ], obtained by passing to a local coordinate system with origin x0 ∈ ∂G

in equations (3)-(5) and in the initial conditions L0(x
0, 0; ∂, ∂t) and B0

q(x
0, 0; ∂, ∂t)

for q = 1, . . . , b. We can think of these second type of problems as zooming in on a

point on the boundary of G and considering the problem as being formed in a half

space by transforming the boundary locally to the tangent plane at (x0, 0). The

details for the solution to these problems can also be found in [14], Chapter V.

To show that the operator R has the desired properties we must resort to sharp

estimates of solutions of the model problems above. These estimates are in turn

obtained with the help of formulae representing the solutions of these problems in a

form convenient for analysis: Poisson kernels and so on. We will present an overview

of these briefly below.
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2.3. Estimates for the model problem. In Rn+1
++ = Rn

+×(0,∞) consider the

following model parabolic problem:

L0(∂x′ , ∂xn , ∂t)u = f

u

∣∣∣∣∣
t=0

= ψ

B0
q(∂x′ , ∂xn , ∂t)u

∣∣∣∣∣
xn=0

= φq, for q = 1, . . . , b,

(8)

where f : Rn
++ → R is smooth with compact support and where x′ = (x1, . . . , xn−1).

We will use the prime similarly throughout this subsection to denote deletion of the

last coordinate. Our goal is to show that the solution to (8) above satisfies nice

estimates which will allow the construction of a regulariser, as outlined earlier. We

first represent the solution to (8) as a combination of elements of the Poisson basis,

which is obtained through integral transformations. Then, the estimates we require

come from estimating these ‘kernels’ of the solution, which will itself also rely on

estimates found in basic treatments for functions which are very similar to heat

kernels (called the fundamental solutions).

We first consider the problem:

L0(∂x′ , ∂xn , ∂t)u = 0

u

∣∣∣∣∣
t=0

= 0

B0
q(∂x′ , ∂xn , ∂t)u

∣∣∣∣∣
xn=0

= φq, for q = 1, . . . , b.

(9)

Using the Laplace transformation in x and the Fourier transformation in x1, . . . , xn−1

we obtain

û(xn, ξ
′, p) =

∫ ∞

0
e−pt

∫
Rn−1

e−i(x′,ξ′)u(ξ′, xn, p)dξ
′dt.
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So the problem (9) is transformed to

L0(iξ
′,

d

dxn

, p)û = 0

Bq(iξ
′,

d

dxn

, p)û = φ̂q(ξ, p), for q = 1, . . . , b,

(10)

and

|û(xn, ξ
′, p)| → 0 as xn →∞.

Since (10) is an ODE we can solve it by a number of techniques; for example the

method of residues will suffice, see Chapter I in [14] for an exposition of this ap-

proach. We obtain the solution û written in the form

û(xn, ξ
′, p) =

b∑
q=1

Ĝq(xn; ξ′, p)φ̂q(ξ
′, p).

The functions Ĝq are called the elements of the Poisson basis. They can be repre-

sented as contour integrals in the complex plane. We will not pursue that here. The

interested reader can find the details in Vladimirov [64].

Using the inversion formulae from the theory of Laplace and Fourier integral

transformations, in particular the fact that a product is transformed into a convo-

lution, we obtain the following very useful expression for u:

(11) u(x, t) =
b∑

q=1

∫ t

0

∫
Rn−1

Gq(x− y′, t− τ)φq(y
′, τ)dy′dτ,

where

(12) Gq(x, t) = −i(2π)−n
∫

Rn−1
ei(x′,ξ′)

∫ a+i∞

a−i∞
eptĜq(ξ;xn, p)dpdξ

′,

where a > 0 is arbitrary. The functions Gq(x, t) are called the Poisson kernels of

problem (9).

Our goal now is to investigate the smoothness and regularity of the solution to

(9), which as we can see from the above translates to estimates of the derivatives of
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the Poisson kernels Gq. The technique used in [57] is via a novel transformation of

the aforementioned representation of Ĝ in the complex plane. Details of this method

can be found in Eidelman and Zhitarashu [14], Chapter VII. The result obtained is:

Theorem 2.3 (Solonnikov). The Poisson kernels Gq(x, t) are defined and infin-

itely differentiable in Rn
++. Their derivatives satisfy the following inequalities, where

q = 2b/(2b− 1):

|DαDα0
t Gq(x, t)| ≤ Cαα0t

−(n+2b−rq+|α|+2bα0)/2be−c|x|qt1−q

.

These estimates suffice for the construction of the regulariser as given in Eidel-

man and Zhitarashu [14], Chapter IV.

We have two tasks remaining. The first is that we still need to deal with the

‘other half’ of problem (8), again on Rn+1
++ :

L0(∂x′ , ∂xn , ∂t)u = f

u

∣∣∣∣∣
t=0

= ψ

Bq(∂x′ , ∂xn , ∂t)u

∣∣∣∣∣
xn=0

= 0.

(13)

The second is to indicate how one obtains the sharp estimates required to prove

that the operator R we construct possesses the desired properties of a regulariser;

in particular, the norm property which allows us to use the contraction mapping

principle (as mentioned earlier).

To find the solution of (13) we use a homogeneous Green function, defined below.
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Definition. A homogeneous Green function G0(x, y, t) of the problem (8) is

determined by the relationship

u(x, t) =
∫ t

0

∫
Rn
G0(x, y, t− τ)f(y, τ)dydτ,

where u(x, t) is a solution of the problem (8) with null initial and boundary condi-

tions, and the function f(y, t) is smooth with compact support.

We desire a homogeneous Green function of the form

(14) G0(x, y, t) = Γ0(x− y, t)− V (x, y, t),

where Γ0(x, t) is a fundamental solution of the Cauchy problem

L0(∂, ∂t)u = 0.

To solve (8) we must then require V (x, y, t) to be a solution of the boundary value

problem

L0(∂, ∂t)u = 0

u

∣∣∣∣∣
t=0

= 0

B0(∂, ∂t)u

∣∣∣∣∣
xn=0

= B0(∂, ∂t)Γ0

∣∣∣∣∣
xn=0

.

(15)

The problem (15) above is solved by (11) and (12), as with problem (9) earlier.

The three part work of Gel’fand and Shilov [24] gives the following estimates

for Γ0. Note that there are many similar estimates earlier in the literature (such as

Friedman [20]) but those estimates are not sharp. The technique used in [24] is the

Fourier integral transform of entire functions which satisfy certain nice inequalities,

and so we only state a special case of the result obtained there.

Theorem 2.4. The fundamental solution Γ0(x, t), regarded as a function of

(x1t
−1/2b, . . . , xnt

−1/2b), is an entire analytic function having decay of order q =
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2b/(2b− 1), where x is real. The complex continuation Γ0(z, t) has growth of order

q = 2b/(2b− 1) for imaginary values of z, and satisfies the estimates

|∂α∂α0
t Γ0(z, t)| ≤ Cαα0t

−(n+|α|+2bα0)/2b exp
(
t1−q(−c3|Re z|q + c4|Im z|q)

)
.

Remark. For the simplest case of the heat equation

∂tu = a2∆u+ f(x, t), u|t=0 = ψ(x),

the fundamental solution is

Γ′0(x, t) = (2a
√
tπ)−n exp

(
− |x|2/4a2t

)
,

which we rewrite for comparison purposes as

Γ′0(x, t) = (2a
√
tπ)−n exp

(
− (1/4a2)

n∑
j=1

(xjt
−1/2)2

)
.

It is clear by differentiating that the function Γ′0 satisfies the bounds from the the-

orem above, and thus one of the key properties of the ‘heat kernel’ above is carried

over in an analogous manner to the general fundamental solution of our model prob-

lem. This is the chief reason why we claimed that the general fundamental solution

is similar to the heat kernel.

For interest we note also that for the (2b)-th order analogue to the heat equation

∂tu+ (−1)b∆u = 0,

we have the following as fundamental solutions:

Γ′′0(x, t) = (2π)−n
∫

Rn
exp

(
i(x, ξ)− |ξ|2bt

)
dt.

Note how similar the structure of Γ′′0 is compared with Γ′0. An alternative proof of

the bounds in Theorem 2.4 for the function Γ′′0 above can be found in Eidelman and
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Zhitarashu [14], where inequalities from the theory of Bessel functions are used as

the main tool.

Using Theorem 2.4 above, we can obtain the desired estimates for the homo-

geneous Green function G0(x, y, t). The theorem stated below is a combination of

work by Solonnikov [57], to whom the credit for the first statement is due, and

Eidelman and Ivasishen [31], whose method of proving the first statement gives the

expression for the solution given in the second statement.

Theorem 2.5. There exists a homogeneous Green function G0(x, y, t) of problem

(8), which is given by formula (14), is infinitely differentiable with respect to all its

arguments for {x, y} ⊂ Rn
+, t > 0, and satisfies the following estimates (in which

q = 2b/(2b− 1)):

|∂l
y∂

α
x∂

α0
t G(x, y, t)| ≤ Clαα0t

−(n+|l|+|α|+2bα0)/2b exp
(
− c|x− y|qt1−q

)
,

and

|∂l
y∂

α
x∂

α0
t V (x, y, t)| ≤ Clαα0t

−(n+|l|+|α|+2bα0)/2b exp
(
− c(|x− y|q + yq

n)t1−q
)
.

The solution u(x, t) of problem (8), constructed for smooth functions f, ψ, φq, q =

1, . . . , b with compact support, is given by the formula

u(x, t) =
∫

Rn
G0(x, y, t)ψ(y)dy +

b∑
q=1

∫ t

0

∫
Rn−1

Gq(x− y′, t− τ)φq(y
′, τ)dy′dτ

+
∫ t

0

∫
Rn
G0(x, y, t− τ)f(y, τ)dydτ.

The second statement above gives the existence of the solution and control on

its regularity via the Green’s function. Although we do not know a priori that the
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Green’s function is unique, and therefore can not conclude that the solution is unique

from the second statement above, the estimates in this Theorem 2.5 combined with

the regulariser argument mentioned earlier do allow us to obtain uniqueness of the

solution. This means that when the main argument from the linear theory has been

completed, we do eventually prove that the Green’s function above is unique, but

this may be misleading since it comes as a consequence of the uniqueness of the

solution rather than a reason for it.

Theorem 2.5 above and Theorem 2.3 from earlier are thus the key estimates

used to drive the linear theory. Using these we can gain control of the norms of the

relevant linear operators which we will use to construct the regulariser.

To finish this section we state the regulariser existence theorem. Although we

have no desire to give a treatise on functional analysis, we have a little more notation

and terminology to get through before we can properly state the final theorem before

we can properly state the final theorem.

A sufficient condition for a linear operator L to satisfy the so-called Lopatinskii

condition is for the linear operator to be parabolic in the sense of Petrovski, satisfy

the compatibility conditions at the boundary, and that the number of independent

boundary conditions be at least b, half the order of the system. There are weaker

conditions, for systems parabolic in the sense of Solonnikov, detailed in [14], Chapter

I.

The set Ω+ = G × [0,∞) is a semi-infinite cylinder with lateral surface S+ =

Γ× [0,∞). The domain G is bounded, with a smooth (n−1)-dimensional boundary

Γ = ∂G. Our linear operators will live in the spaces K̃s

+ and H̃s

+, which take a little
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effort to set up. To begin, consider the spaces Hs(Ω+), which are Hilbert spaces of

distributions v(x) with the norm

‖v,Ω+‖2
s =

∫
Ω+

(1 + |ξ|2)s|ṽ(ξ)|2dξ

and inner product

[v, ψ]s =
∫
Ω+

(1 + |ξ|2)sṽ(ξ) · ψ̃(ξ)dξ,

where ṽ is the Fourier transform of v. Now, we wish to modify the spaces Hs to

the spaces Hs,r of distributions which are ‘weighted’ of order s in x and t, and

are ‘additionally smooth’ by a factor r in the ‘tangent’ (to the boundary) variables

(x′, t). Let b > 0 be a fixed integer. Let p = γ + iξ0. Set

ρ(1, ξ, p) = (1 + |ξ|2 + |γ|1/b + |ξ0|1/b)1/2, ρ1(1, ξ
′, p) = ρ(1, ξ′, 0, p).

Then given any real s, r, let Hs,r(Ω+) be the set of distributions which decay at in-

finity twice as fast as any polynomial, whose Fourier transforms are locally Lebesgue

integrable functions for which the following norm is finite

‖u(x, t),Ω+‖2
s,r =

∫
Ω+

ρ2s(1, ξ, p) · ρ2r
1 (1, ξ′, p) · |ũ(ξ, ξ0)|2dξdξ0,

and is made a Hilbert space by the following inner product

(u, v)s,r =
∫
Ω+

ũ(ξ, ξ0) · ṽ(ξ, ξ0)ρ2sρ2r
1 dξdξ0.

Notice that these possibly unfamiliar spaces are isomorphic to the familiar L2(Ω+)

with the appropriate weight; in the case of Hs,r(Ω+) this is ρsρr
1. The addition of

the tilde denotes a specific adaptation of these spaces to parabolic boundary value

problems. Let γ > 0 be a given real number. The space H̃s

+ is the completion of
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C∞(G) with respect to the norm

|{v(x), G}|2s = ‖v0, G‖2
s +

∑
k∈K

<< e−γtωk(x
′),Γ >>2

s−k+1/2

where

<< φ(x′, t),Γ >>2
q=

∫
Γ
ρ2q

1 (1, ξ′, p) · |φ̃(ξ′, ξ0)|2dξ′dξ0,

v0(x) = v(x)|G, and ωk(x
′) = ∂k−1

ν v(x)|Γ, where ν is the inward pointing unit normal

at the point x′ ∈ Γ. The set K ⊂ Z is constructed by taking all the ‘sizes’ of the

various orders of differentiation in the operators L and B; for every multi-index α

such that lα is a coefficient of L, α ∈ K. Note that this forces 2b ∈ K. There is one

final additional requirement for each space: all elements of K̃s

+ elements must also

satisfy the compatibility conditions

∂k−1
ν v0(x)|Γ = ωk(x

′)

for all x′ ∈ Γ and all k ≤ s′.

Theorem 2.6 (Eidel’man and Zhitarashu [14]). Let the operator L be uniformly

parabolic in Ω+, let the operator B on S+ satisfy the Lopatinskii condition uniformly

in (x′, t) ∈ S+, and let Γ be of class Cs+r. Assume that the coefficients of the

operators L and B belong to the following classes:

lijαβ(x, t) ∈ C |s|+tj+σ0+ε(Ω+), ∀ε > 0,

bqjαβ(x, t) ∈ C |s|+tj−σq+ε(Ω+), ∀ε > 0

and do not depend on t for t > T0. Finally, let lijαβ(x, t) be constant for |x| > R0 if

G is an unbounded domain. Then there exists a number γ0, which depends on s and

the Hölder norms of the coefficients of L, B, such that for γ > γ0, s+ tj 6∈ Z1,2b,

URF = (IK + Φ)F,
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RUu = (IH +Q)u,

where IK and IH are the identity operators in K̃s

+, H̃s

+ and Φ, Q are operators in

K̃s

+, H̃s

+ of norm less than 1.

The above theorem gives us the existence of a suitable regulariser (recall (7))

which allows us to proceed with the argument given in Section 2.1 earlier.

3. Quasilinear theory

Here we will use a standard fixed point theorem argument to upgrade our exis-

tence results for the linear equation to the case of a quasilinear equation.

Theorem 2.7 (Schauder fixed point theorem). Let I be a compact, convex subset

of a Banach space B and let J be a continuous map of I into itself. Then J has a

fixed point.

Proof. We give a proof which is an expansion of that found in Lieberman

[42]. For a positive integer k let {Bi}N
i=1 be a finite collection of balls of radius 1/k

covering I. We write xi for the centre of Bi and Ik for the convex hull of the points

x1, . . . , xN . Now define a mapping Ik : I → Ik by

Ik(x) =

∑N
i=1 dist(x, I ∼ Bi)xi∑N
i=1 dist(x, I ∼ Bi)

.

Since the distance in B is continuous, the map Ik is continuous. We also have the

bound

‖Ik(x)− x‖ =

∥∥∥∥∥
∑N

i=1 dist(x, I ∼ Bi)xi∑N
i=1 dist(x, I ∼ Bi)

− x

∥∥∥∥∥
=

∥∥∥∥∥
∑N

i=1 dist(x, I ∼ Bi)xi −
∑N

i=1 dist(x, I ∼ Bi)x∑N
i=1 dist(x, I ∼ Bi)

∥∥∥∥∥
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=
‖∑N

i=1 dist(x, I ∼ Bi)(xi − x)‖∑N
i=1 dist(x, I ∼ Bi)

≤
∑N

i=1 dist(x, I ∼ Bi)‖xi − x‖∑N
i=1 dist(x, I ∼ Bi)

<

∑N
i=1 dist(x, I ∼ Bi)∑N
i=1 dist(x, I ∼ Bi)

1

k
≤ 1

k

for any x ∈ I. The second last inequality is due to the i-th term in the sum

in the numerator or denominator being zero when ‖xi − x‖ ≥ 1/k. Thus Ik is

homeomorphic to a closed ball in RN and it follows that Jk, the restriction of Ik ◦ J

to Ik, has a fixed point yk. The compactness of I implies that there is a convergent

subsequence {yk(m)} with

‖yk(m) − J
(
yk(m)

)
‖ = ‖Jk(m)

(
yk(m)

)
− J

(
yk(m)

)
‖ ≤ 1

k(m)
.

Therefore

x = lim
k(m)→∞

yk(m)

is a fixed point of J . �

As an application of this and Theorem 2.5 we derive the following local existence

result. Consider the problem

(16) Pu = −∂tu+ aijkl(X, u,Du,D2u,D3u)Dijklu+ a(X, u,Du,D2u,D3u) = 0,

where u : Ω → R and Ω ⊂ Rn+1. We think of Ω as including a time direction and

as such X ∈ Ω has components (x1, . . . , xn, t). In the case where Ω is cylindrical,

we define the following following associated sets:

BΩ = {X ∈ Ω : t = 0}, the bottom of Ω,

SΩ = ∂Ω× (0, T ), the side of Ω,

CΩ = ∂Ω× {0}, the corner of Ω, and
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PΩ = BΩ ∪ CΩ ∪ SΩ, the parabolic boundary of Ω,

where ∂Ω is the topological boundary of Ω. For the case where Ω is not cylindrical,

we define PΩ analogously, although in a slightly more complicated way. Consider

cylinders

Q(X0, R) = {X ∈ Rn+1 : |X −X0| < R, t < t0},

where the norm is weighted in the time direction by

|X| = max{|x|, |t|1/4}.

The set PΩ then consists of all points X0 ∈ ∂Ω such that for every ε > 0 the

intersection Q(X0, ε)∩(Rn+1 ∼ Ω) is non-empty. We also assume that our problem is

parabolic in the sense of Petrovski, as defined previously. Note that if the coefficients

aijkl and a are independent of u and the derivatives of u, then the operator P may be

considered as a linear operator and Theorem 2.5 gives the existence and uniqueness

of a solution. This is the underlying idea of the following proof. We consider a

smaller domain Ωε defined by

Ωε = {X ∈ Ω : t < ε},

and the spaces Hk+α are standard Hölder spaces, as defined in [42] for example.

Theorem 2.8. Suppose PΩ ∈ Hδ and φ ∈ Hδ(PΩ) for some δ ∈ (1, 2). Then

there is a positive constant ε such that the problem

(17) Pu = 0, in Ωε, u = φ on PΩε,

has a solution u ∈ H
(−δ)
4+α . If PΩ ∈ H4+α, φ ∈ H4+α and Pφ = 0 on CΩ, then

u ∈ H4+α.
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Proof. Let θ ∈ (1, δ), set m0 = 1 + |φ|θ and for ε > 0 to be chosen, set

I = {v ∈ Hθ(Ωε) : |v|θ ≤ m0}.

We then define the map J : I → Hθ by u = Jv if

−∂tu+a
ijkl(X, v,Dv,D2v,D3v)Dijklu+a(X, v,Dv,D

2v,D3v) = 0, in Ωε, u = φ on PΩε,

noting that, for each v, this problem has a unique solution in H
(−δ)
4+α(θ−1) by Theorem

2.5. Now

|u|1 ≤ |u|δ ≤ C|u|(−δ)
4+α(θ−1) ≤ C(m0).

It follows that |u − φ| ≤ Cε in Ωε and then |u − φ|θ ≤ Cε(δ−θ)/δ by interpolation.

Therefore |u|θ ≤ m0 if ε is sufficiently small, and hence J maps I into itself for

such an ε. Since I is a convex, compact subset of H1, it follows that J has a fixed

point in u, which is in H
(−δ)
4+α(θ−1) and hence solves (17). Theorem 2.5 now gives

u ∈ H(−δ)
4+α . �

Unfortunately, while the previous argument gives existence, it does not allow

us to conclude uniqueness. Indeed, without any additional assumptions one cannot

expect uniqueness in general. To remedy this situation we will use the following

argument which one can find in [41]. Regrettably, to give even a summary of this

argument we need yet more notation. Therefore we give the core idea now. Consider

two solutions u1, u2 of the problem (16) with identical initial data u0. Assuming

that u1 6= u2, we may consider the difference in the spatial derivative operators

A1 = A(u1) and A2 = A(u2):

‖A1 − A2‖ξ.
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Now Theorem 2.2 gives us some excellent control of this quantity. By virtue of the

two solutions possessing identical initial data and by choosing time to be very small,

we can force this norm to be arbitrarily small. This becomes crucial, as we can

use this fact to construct an appropriate contraction mapping (from the linearised

equation) and infer the existence of a unique solution.

We now give a summary of the proof, but as we mentioned earlier some notation

is required. More details may be found in [41] and the references contained therein.

For Banach spaces E0, E1 we denote by Eθ the complex interpolation space [E]θ

and ‖·‖θ the norm on Eθ. For the basic facts of interpolation spaces the interested

reader may refer to [3, 63]. The space L(E1, E0) is denotes the Banach space of all

bounded linear operators from E1 to E0 and ‖·‖L(E1,E0) is the corresponding norm.

By B we denote the category of Banach spaces, whose elements and morphisms

are the Banach spaces and bounded linear operators respectively. B2 denotes the

category of densely injected Banach couples, that is, the elements of B2 are the spaces

E := (E0, E1) with E1 densely injected into E0 and the morphisms T : E → F are

the maps T ∈ L(E0, F0) satisfying T ∈ L(E1, F1).

The space H(E) is the set of all operators A ∈ L(E1, E0) such that −A is the

infinitesimal generator of an analytic semigroup on E0. Let Σω := {λ ∈ C : Re λ ≥

ω}, where ω ∈ R. A subset A ofH(E) is said to be regularly bounded if it is bounded

in L(E1, E0), there exist constants M and ω such that

Σω ⊂ ρ(−A) and ‖(λ+ A)−1‖L(E0) ≤
M

1 + |λ|

for all λ ∈ Σω and all A ∈ A, and if {(ω + A)−1 : A ∈ A} is bounded in L(E). For

T > 0, ρ ∈ (0, 1) and a nonempty set S of some Banach space F we introduce the
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notation Cρ
T (S) := Cρ([0, T ], S). A subset A of Cρ

T (H(E)) is said to be regularly

bounded if {A : t ∈ [0, T ], A ∈ A} is regularly bounded in H(E) and there exists a

constant L such that

‖A(s)− A(t)‖L(E) ≤ L|s− t|ρ,

for each s, t ∈ [0, T ] and A ∈ A.

We must finally assume an additional property of our operator A.

(18)

For each β ∈ (0, 1) there is an open set V ⊂ Eβ and A is locally Lipschitz on V .

Remark. To make sense of this notation in the special case of surface diffusion

flow in a local coordinate system, which is our focus regardless, one should refer

to Escher, Mayer, Simonett [16]. There it is proved (among other things) that the

surface diffusion flow generates a strongly continuous analytic semigroup. While

there is no explicit proof of uniqueness or existence (the reference quoted is due to

Amann, and the corresponding theorem in [1] is presented without proof), the proof

that surface diffusion flow generates an analytic semigroup is valuable. As they also

use similar methods to show that uniqueness holds for surface diffusion flow, the

proof that (18) holds is also contained in [16].

Theorem 2.9. Suppose that (18) holds, 0 < β < α < 1 and u0 ∈ Vα := Eα ∩ V .

Then there exists τ > 0 such that (16) has a unique solution on [0, τ ].

Proof. We assert that there exists a neighbourhoodW of u0 in V and a constant

L > 0 such that {A(u) : u ∈ W} is regularly bounded in H(E), and

(19) ‖A(u1)− A(u2)‖L(E1,E0) ≤ L‖u1 − u2‖β for every u1, u2 ∈ W.
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Since Eα ⊂ Eβ, the natural injection is continuous and W ⊂ Eβ, there exist balls

Bα(u0, ε) ⊂ Eα, Bβ(u0, δ), Bβ(u0, 2δ) ⊂ Eβ with ε, δ > 0 such that

Bα(u0, ε) ⊂ Eα

and

Bβ(u0, δ) ⊂ Bβ(u0, 2δ) ⊂ W.

From now on, we fix ρ = α− β ∈ (0, 1). Let τ ∈ (0, T ) and

Wτ := {w ∈ Cτ (W ) : ‖w(t)− w(t′)‖β ≤ L|t− t′|ρ,∀t, t′ ∈ [0, τ ]}.

We set Aw(·) = A(w(·)) for w ∈ Wτ . By (19) we have

‖Aw(t)− Aw(t′)‖L(E1,E0) ≤ L|t− t′|ρ

for all t, t′ ∈ [0, τ ]. Hence {Aw(·) : w ∈ Wτ} is regularly bounded in Cρ
τ (H(E)). It

follows from Theorem 2.5 that there exists a unique solution u(·, w) of the linear

problem on [0, τ ] and u(·, w) ∈ Cτ (Eα) ∩ Cα−β
τ (Eβ). Thus there exists C > 0 such

that

‖u(t, w)− u(t′, w)‖β ≤ C|t− t′|ρ

for all t, t′ ∈ [0, τ ]. This implies that for every t ∈ [0, τ ] we have

‖u(t, w)− u0‖β ≤ Cτ ρ < δ

for δ sufficiently small. That is, for some τ ∈ (0, T ] we have u(·, w) ∈ Wτ for every

w ∈ Wτ . On the other hand, by Theorem 2.2

‖u(t, w1)− u(t, w2)‖β ≤ Cτ ρ‖u0‖α‖Aw1 − Aw2‖Cτ (L(E1,E0)) <
1

2

if τ is sufficiently small. Therefore

[w → u(·, w)] : Wτ → Wτ
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is a contraction mapping with constant 1
2

for some τ ∈ (0, T ]. Therefore there exists

a unique w = u(·, w), which turns out to be a solution to (16) on [0, τ ]. It then

follows from Theorem 2.5 that u ∈ C([0, τ ], Vα). This completes the proof. �

4. Application to constrained surface diffusion flows

Let f : M × [0, T ) → Rn+1 be a constrained surface diffusion flow with velocity

(CSD)
∂

∂t
f = (∆H + h)ν.

We assume that the constraint function h : [0, T ) → R satisfies

(20)
d2

dt2
h(0) ≤ c(f0),

where f0 : M → Rn+1 is the initial data for the flow. The solvability of (CSD) with

respect to the constraint function will depend upon how smooth the initial data is.

For example, if we take

(21) h =

∫
M‖∇H‖2dµ∫

M Hdµ
,

which is motivated in Chapter 3, we may compute the evolution of h using Lemma

3.9 as

d

dt
h =

∫
M‖∇H‖2H(∆H)− 2 〈∇H,∇∆2H〉+ 2(∆H) 〈∇H,∇‖A‖2〉 dµ∫

M Hdµ

−
∫
M‖∇H‖2dµ

∫
M H2(∆H + h)−∆2H + (∆H)‖A‖2dµ( ∫

M Hdµ
)2

+

∫
M‖∇H‖2dµ

∫
M H‖∇H‖2dµ+ 〈∇H,∇‖A‖2〉 dµ( ∫

M Hdµ
)2 +

∫
M‖∇H‖2dµ

∫
M‖A‖2dµ( ∫

M Hdµ
)3 .

Taking another time derivative results in a large mess, however the highest order

term is easily seen to be ∫
M
|∆3H|2dµ
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Therefore we can see that (20) is satisfied for this constraint function if f0 ∈ C8.

The assumption (20) ensures that with f0 smooth enough, h′ will remain bounded

for a short time. (Otherwise, h′′(0) would be unbounded.)

We now show that (CSD) may be written locally as the evolution of a graph

function. We will see that the resulting quasilinear fourth order equation is strictly

parabolic in the sense of Petrovski. In a neighbourhood U ⊂M , write

f(x, 0) =
(
x, u(x, 0)

)
,

where u : Rn × [0, T ) → R is called the graph function in U corresponding to f .

Note that the maximal time for the existence of the graph function will in general

be smaller than the maximal time of existence for the immersion f . To obtain the

true maximal time of existence, we simply take our current hypersurface f(x, T̃ ) and

attempt to write f once again locally as a graph. We continue in this manner until

f has lost regularity, and then in this case it may either not be possible to write f

locally as a graph or not be possible to satisfy the short time existence theorems for

the graph functions covering f . In either case, this final time will be maximal.

Recall that the normal to the graph of f in U is given by

ν =
1√

1 + ‖∇u‖2

(
−∇u, 1

)
,

where the derivative is the regular Euclidean derivative. The quantity in the square

root is prolific in the coming equations so we make the notation

|v| = 1√
1 + ‖∇u‖2

.

The mean curvature is

H = div(ν) = −|v|∆u+ |v|3∇iju∇iu∇ju.
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We note that from this formula we can immediately prove parabolicity for the mean

curvature flow equation ∂
∂t
f = −Hν (note the opposite sign), as the evolution for

the graph function in this case would be

∂

∂t
u = ∆u− |v|2∇iju∇iu∇ju.

The matrix of coefficients for the second order derivatives is

Kij = δij − |v|2∇iu∇ju,

and so

K(ξ, ξ) = |ξ|2 −

(
ξi∇iu

)(
ξj∇ju

)
1 + ‖∇u‖2

≥ 1− ‖∇u‖2

1 + ‖∇u‖2
> 0,

where ξ is a vector of unit length. Therefore the mean curvature flow equation

is quasilinear parabolic, and we can infer short time existence using the method

mentioned in the opening remarks.

The case for constrained surface diffusion flow is similar, but the situation is

confused by a mess of extra lower order terms. We must compute

∆H = ∆
(
− |v|∆u

)
+ ∆

(
|v|3∇iju∇iu∇ju

)
.

The details of this calculation are many but the procedure is simply differentiation,

and the only difficulty is keeping track of all the indices. We instead state the

evolution of the graph function by constrained surface diffusion flow below:

∂

∂t
u = −∆2u+ |v|2(∆∇iju)(∇iu)(∇ju), fourth order terms

+ |v|
[

2(∇i∆u)(∇iju)(∇ju) + (∆∇iu)(∇iu)(∆u)

+ 2(∆∇iu)(∇iju)(∇ju) + 2(∇ijku)(∇jku)(∇iu)

+ 2(∇ijku)(∇iku)(∇ju)
]
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− 3|v|3
[
2(∇ijku)(∇iu)(∇ju)(∇lku)(∇lu)

+ (∆∇lu)(∇lu)(∇iju)(∇iu)(∇ju)
]
, third order terms

+ |v|
[
(∆u)‖∇(2)u‖2 + 2(∇jku)(∇iku)(∇iju)

]
− 3|v|3

[
(∆u)(∇iju)(∇ju)(∇kju)(∇ku) + 2(∇jku)(∇iu)(∇iju)(∇lku)(∇lu)

+ 2(∇iju)(∇iku)(∇ju)(∇lku)(∇lu) + (∇iju)(∇iu)(∇ju)‖∇(2)u‖2
]

+ 15|v|5(∇iju)(∇lku)(∇mku)(∇iu)(∇ju)(∇lu)(∇mu), second order terms

+ |v|−1h, and the constraint function.

Note that we can simplify this expression by recognising terms as derivatives of

norms, for example

(∇iju)(∇iu)(∇ju) = (∇iu)(∇i‖∇u‖2).

Several other terms appear equal under the commutation of derivatives; however we

do not wish to dwell on simplifying the evolution of the graph function. Important

for us is that the purely nonlinear part is composed of first, second and third or-

der derivatives of u only, and the coefficient of the principal part consists only of

first derivatives of u. Therefore the evolution of u qualifies as quasilinear, and we

must check that parabolicity is satisfied. For a fourth order equation to be strictly

parabolic we must have that the coefficient matrix of the principal part is negative

definite. Note the change of sign from the mean curvature case. The verification of

this fact is almost identical to before, where

Kijkl = −δijδkl + δij|v|2∇ku∇lu,
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and so

K(ξ, ξ, ξ, ξ) = −|ξ|4 + |ξ|2
(
ξk∇ku

)(
ξl∇lu

)
1 + ‖∇u‖2

≤ −1 +
‖∇u‖2

1 + ‖∇u‖2
< 0,

where ξ is a vector of unit length. Therefore the surface diffusion flow equation

written locally as a graph is quasilinear parabolic. The constraint function presents

no extra difficulty due to our assumption (20). The flow also generates a semi-

group (see [16]) and the spatial operator is Locally Lipschitz, as required for the

uniqueness theorem. Of course, we cannot use only one graph function to describe

the whole of the evolution of f . Therefore, we use the inherent structure of M to

describe the evolution of f . First we reparametrise M so that the domain of every

parametrisation is a ball of radius 1. We then have

f0(M) =
⋃

ϕi

(
B1(xi)

)
where ϕi : B1(xi) → Rn+1 are the aforementioned parametrisations and f0 : M →

Rn+1 is the initial data for the flow we are interested in. Now we consider graphs

ui : ϕi(B1(xi)) → R with the view of applying the theory of the previous sections.

In each image ϕi(B1(xi)) we require the graphs ui to satisfy the evolution

∂

∂t
ui = (∆iHi + h)νi,

where the subscript i denotes the geometric data associated with that parametrisa-

tion. Note that the constraint function h : I → R is global. Importantly, note also

that the theory of the previous sections gives existence and uniqueness for each ui,

when h is a known function of time. However, one may be concerned that this does

not coincide with our original problem,

∂

∂t
f = (∆H + h)ν,
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with f0 : M → Rn+1 as initial data. Fortunately this is not the case, although it

is not immediately obvious. The reason for this is that the flow is invariant under

tangential diffeomorphisms. We will prove the following standard results, which may

be found for example in Ecker [12].

Lemma 2.10. The above formulation of surface diffusion flow is equivalent to

(SD), modulo a tangential diffeomorphism.

Lemma 2.11. Surface diffusion flow is invariant under tangential diffeomor-

phisms.

Combining these with the previous remarks gives the following theorem.

Theorem 2.12. Let f0 : Mn → Rn+1 be a C4 immersion with associated con-

straint function h : I → R, h ∈ C1. Then there exists a maximal 0 < T ≤ ∞ and a

unique constrained surface diffusion flow f : Mn × [0, T ) → Rn+1 satisfying

∂

∂t
f = (∆H + h)ν.

What remains is to prove Lemma 2.10 and Lemma 2.11. We comment on the

case of constraint functions which are not known functions of time at the end of this

section. Using the notation above, the immersion f may be written as

f(x, t) =
(
ϕ(x, t), u(ϕ(x, t), t)

)
.

We compute

∂

∂t
f =

(
∂ϕ

∂t
,Du · ∂ϕ

∂t
+
∂u

∂t

)
,
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where we have suppressed the arguments of the functions. We have already shown

that the graph u satisfies a quasilinear fourth order evolution. However, in com-

puting this evolution, we only used that the normal part of the speed is equal to

∆H + h. That is, this formulation of constrained surface diffusion flow is(
∂

∂t
f

)⊥
= ∆H + h,

where (·)⊥ denotes normal projection. This differs from our desired evolution by a

tangential diffeomorphism φ satisfying

Dϕ(x,t)f

(
∂φ

∂t

)
= −

(
∂f

∂t

)>
,

where (·)> denotes tangential projection. This proves the first lemma.

For the second, consider now an evolution(
∂

∂t
f

)⊥
= ∆H + h.

Let φ(·, t) : M →M be a family of diffeomorphisms of M satisfying

Df
(
φ(x, t), t

)(∂φ
∂t

(x, t)

)
= −

(
∂f

∂t

(
φ(x, t), t

))>
.

Now if we set f̃t(x) = f̃(x, t) = f
(
φ(x, t), t

)
then Mt = f̃t(M) = ft(M) and

∂

∂t
f̃ = ∆H + h.

This shows the second lemma.

To finish this section we comment upon the case where h is not a known function

of time, but is given in terms of integrals of curvature as in for example (21). The

preceding arguments give existence of a smooth solution to (CSD) for all constraint

functions which are bounded for a short time. Now the assumption (20) ensures

that this is the case for a ratio of integrals such as (21). The only issue remaining is
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to determine if one of the bounded functions of time (for which we have existence)

coincides with the constraint function given as integrals of curvature. For this we

use a fixed point argument.

Theorem 2.13. Let f0 : Mn → Rn+1 be an immersion with associated constraint

function h both satisfying the assumption (20). Then there exists a maximal 0 <

T ≤ ∞ and a unique constrained surface diffusion flow f : Mn × [0, T ) → Rn+1

satisfying

∂

∂t
f = (∆H + h)ν.

Proof. We consider the family of initial value problems

∂

∂t
fh̃ = (∆H + h̃)ν

where h̃ ∈ C1([0, T )) is a known function of time and f0 = f(·, 0) ∈ C4(Mn). The

preceding arguments give short time existence for each fh̃. We will now show that

at least one of the functions h̃ coincide with our given constraint function h, which

is normally a ratio of integrals of curvature and not an a priori known function of

time. We assume that h satisfies the initial condition (20), which we note forces

some measure of regularity on the immersion f0.

Let S = C1([0, δ]) for some δ > 0 which will be chosen. The theorem will be

proved if we can apply Theorem 2.7 with the mapping P : S → S defined by

Ph̃ = h.

Noting that C1([0, δ]) is a compact, convex subset of the Banach space C1([0, T )),

we need to demonstrate that P maps S into itself and is continuous. Both of these
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follow from the assumption (20). In particular, we have that h′′(0) < c(f0) and so

h′ is continuous on [0, δ] for some δ > 0, and so

h′ =
d

dt
P h̃ ∈ C1([0, δ]).

This also shows that P ′ is bounded in the operator norm on C1([0, δ]) and so P

is continuous. Therefore we may apply Theorem 2.7 and deduce that at least one

of the functions h̃ coincides with the given constraint function h on an interval

[0, δ] ⊂ [0, T ). Observe that the uniqueness theory in Section 3 continues to apply

unchanged. Repeating this argument by translating time t̃ = t − δ and checking

again (20) will give a sequence δi for which this argument is possible, and then the

maximal time for the original problem (CSD) is T = limi→∞ δi. �



CHAPTER 3

Lifespan theorem for constrained surface diffusion flows

1. Introduction

Let f : Mn × [0, T ) → Rn+1 be a family of compact immersed hypersurfaces

f(·, t) = ft : M → ft(M) with associated Laplace-Beltrami operator ∆, unit normal

vector field ν, and mean curvature function H. The surface diffusion flow

(SD)
∂

∂t
f = (∆H)ν,

and the more general constrained surface diffusion flows

(CSD)
∂

∂t
f = (∆H + h)ν,

where h : I → R and I ⊃ [0, T ), are the chief objects of interest for this chapter.

We are motivated by the examples

h ≡ 0, hH =

∫
M‖∇H‖2dµ∫

M Hdµ
, hH =

∫
M‖∇H‖2dµ∫

M |H|dµ
, and hK =

−
∫
M(∆H)Kdµ∫

M Kdµ
.

The first is simply surface diffusion flow (SD). Under this motion we compute

d

dt
Vol M =

∫
M

∆Hdµ = 0, and

d

dt

∫
M
dµ =

∫
M
H∆Hdµ = −

∫
M
‖∇H‖2dµ ≤ 0;

so that a manifold evolving by (SD) will exhibit conservation of enclosed volume

and monotonic decreasing surface area. Further, surface area is preserved exactly

when the mean curvature of Mt is constant. It is these geometric characteristics of

the surface diffusion flow which motivate the generalisation to constrained surface

61
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diffusion flows. For example, with h = hH we have

d

dt

∫
M
dµ =

∫
M
H∆Hdµ+ hH

∫
M
Hdµ

= −
∫

M
‖∇H‖2dµ+

∫
M‖∇H‖2dµ∫

M Hdµ

∫
M
Hdµ = 0,

and now surface area is conserved. Volume is monotonic increasing or decreasing

depending on the sign of
∫
M Hdµ, and preserved only when H is constant. Unfortu-

nately, quantities which are expected to be preserved under second order flows (such

as the mean curvature flow, or Ricci flow of metrics) are not in general preserved

under fourth order flows. This is due to the absence of a maximum principle. In

particular,
∫
M Hdµ could approach zero under (CSD) with h = hH , which would

cause the flow to be undefined, and most likely without a curvature singularity. This

motivates the use of hH , where

d

dt
Vol M =

∫
M

(∆H + hH)dµ = |M |
∫
M‖∇H‖2dµ∫

M |H|dµ
≥ 0, and

d

dt

∫
M
dµ =

∫
M
H(∆H + hH)dµ

= −
∫

M
‖∇H‖2dµ+

∫
M
‖∇H‖2dµ

∫
M Hdµ∫

M |H|dµ
≤ 0.

Here enclosed volume and surface area are monotonic increasing and decreasing

respectively. Therefore we expect that the convergence of the (CSD) flow with

h = hH is faster than that of the surface diffusion flow (SD). We also have not only

that surface area is stationary (constant in time) if and only if H is constant, but

volume also. Further, the flow speed itself is non-zero for surfaces of linear mean

curvature. This leads us to believe that singularity development under (CSD) flow

with h = hH will be easier to understand compared with (SD) flow. (Consider for

example a clothoid-type manifold.) Finally, we use an inequality of Burago-Zalgaller
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[5] to infer ∫
M
|H|dµ ≥ cBZ |Mt|

n
n−1 ≥ cBZ

(
Vol M0

)
> 0,

where we also used the isoperimetric inequality and the fact that volume is mono-

tonic increasing under this flow.

Following a similar line of reasoning gives rise to several other ‘conservation’ type

flows. For example, with h = hK we calculate

d

dt

∫
M
Hdµ =

∫
M

[
(H2 − ‖A‖2)(∆H + hK)−∆2H

]
dµ

=
∫

M
K(∆H)dµ+ hK

∫
M
Kdµ = 0,

and so the mixed volume
∫
M Hdµ is always preserved under (CSD) flow with h = hK .

In this case
∫
M Kdµ is on the denominator of hK , which is constant under the flow,

and so similarly to hH this is always defined. One expects that global analysis

of flows such as this, which preserve a geometrically interesting quantity or keep it

monotone in time, would lead to new geometric inequalities, or at least to new proofs

of classical geometric inequalities. Due to the nature of our analysis, in particular

the absence of a maximum principle, these inequalities would be regarding surfaces

which satisfy certain curvature integral conditions.

The first step in any program of analysis is to establish a short time existence

theorem. This is the subject of Chapter 2, and we extract the relevant result below.

Theorem 3.1 (Short time existence). For any smooth enough initial immersion

f0 : Mn → Rn+1 and constraint function h : I → R with I an interval containing 0

and h ∈ C1(I), there exists a unique nonextendable smooth solution f : M×[0, T ) →

R3 to (CSD) with f(·, 0) = f0, where 0 < T ≤ ∞.
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Note that we sometimes interchange the term ‘nonextendable’ above with ‘T is

maximal’, or equivalently ‘the maximal time interval [0, T )’. Each of these mean

the same thing: that the flow exists up to T (possibly not including T ), and that

this is the greatest such T .

Motivated by the observation that (SD) flow can also be derived by considering

the H−1-gradient flow for the area functional (see Fife [19]), and the recent work of

Kuwert and Schätzle [36, 37] on the gradient flow for the Willmore functional, we

present the following theorem.

Theorem 3.2 (Lifespan Theorem). Suppose n ∈ {2, 3} and let f : Mn×[0, T ) →

Rn+1 be a compact immersion with C∞ initial data evolving by

(CSD)
∂

∂t
f = (∆H + h)ν.

Further suppose that for some j, k, l ∈ N0 the constraint function h : I ⊃ [0, T ) → R

obeys an estimate

(GC) h ≤
∫

M
P 2

j (A) + P 1
k (A) + P 0

l (A)dµ.

Then there are constants ρ > 0, ε0 > 0, and c <∞ such that if ρ is chosen with

(22)
∫

f−1(Bρ(x))
‖A‖mdµ

∣∣∣∣
t=0

= ε(x) ≤ ε0 for any x ∈ Rn+1

where m = max{2k − 2, 2j − k, l, n2 + n− 2}; and there exists an absolute constant

CAB ∈ (0,∞) such that

(AB) |Mt| ≤ CAB, for 0 ≤ t ≤ 1

c
ρ4;
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then the maximal time T of smooth existence for the flow (CSD) with initial data

f0 = f(·, 0) satisfies

(23) T ≥ 1

c
ρ4,

and we have the estimate

(24)
∫

f−1(Bρ(x))
‖A‖ndµ ≤ cε0 for 0 ≤ t ≤ 1

c
ρ4.

Remark. Note that for any ε0 > 0, there is always a ρ0 > 0 such that (22)

holds for each ρ ∈ (0, ρ0). The radius ρ > 0 given by the theorem is certainly not

unique, and there will be a ρ1 > 0, ρ1 ∈ (0, ρ0], such that the theorem holds for

every ρ ∈ (0, ρ1). It is in this sense that we are allowed to choose ρ sufficiently small,

which will be useful in the coming arguments.

Remark. There is an inconvenient relationship between the three classes of

flows (SD), (CSD) with h an a priori known function of time, and (CSD) with h

a function of integrals of curvature quantities. The first and third are obviously

included in the statement of Theorem 3.2 above, while the second is not. This is

not satisfying since then for trivial constraint functions (the case of (SD) flow) one

must assume that the initial manifold possesses local smallness of curvature in the

L(n2+n−2)-norm. One would instead desire that this smallness be in the Ln norm. It

would appear intuitively obvious that if one was performing analysis of a constrained

surface diffusion flow where the constraint function is known a priori then one may

be able to obtain a statement stronger than Theorem 3.2 above. Indeed, for such

simple functions as h(t) = 1
1+t

, h(t) = sin t and h(t) = t both (AB) and (GC) are

violated. Fortunately the intuition holds, and one may in fact obtain an analogous
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stronger version of Theorem 3.2 above restricted to the class of simple constraint

functions, which are those that satisfy a bound ‖h‖∞,J < c(J) for each interval

J ⊂ [0, T ). This is the subject of Appendix C and the statement is Theorem C.1.

In particular, for these functions the smallness condition is in Ln, as we do not

have the nasty interplay with global integrals in h needing to be bounded by a

local assumption on f interfering with our integral estimates. We also do not need

to assume the area bound (AB) in the case n = 2 for these more simple constraint

functions. While the proof is relatively straightforward compared to that of Theorem

3.2 above, the result is stronger and the class of constraint functions includes those

which do not satisfy (GC) for any j, k, l. Notably, this includes the surface diffusion

flow, which is itself a new result and well motivated. Therefore we have devoted

Appendix C to this alternative Lifespan Theorem. For the full picture one must

really take both Theorem 3.2 and Theorem C.1 into account. As the argument

is more straightforward in Appendix C, we recommend that the reader first look

there for the flavour of the more complicated argument here. This will also serve to

highlight the difficulties caused by the introduction of the constraint function.

Remark. The smallness assumption (22) above is not scale invariant. However,

we can instead consider

µ(M)
m−n

m

( ∫
f−1(Bρ(x))

‖A‖mdµ
) n

m

and this is scale invariant. In light of (AB), one can see why the formally simpler

(22) is sufficient.
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Remark. The constant in the lower bound on maximal time, 1
c
, can be computed

a priori as a function of n. For n = 2,

1

c
=

1

43c0
,

and for n = 3,

1

c
=
C

1/3
AB

44c0
,

where c0 is the constant from Proposition 3.23.

The restriction on the dimension of the evolving immersion is due to both the

exponent in the Michael-Simon Sobolev inequality, and the scale invariance of the

total squared curvature functional in two dimensions. For flows where the evolution

of the surface area is bounded (such as (SD) and (CSD) with h = hH) we have

removed the latter restriction by considering (22), which is a natural generalisation

of (1.4) in [37]. The size of ε0 is determined indirectly by the bound on surface

area for the flow in question. As to the exponent in the Michael-Simon Sobolev

inequality, the interplay between the evolution equations and our techniques using

integral estimates forces n < 4; see Section 5 for a discussion of this issue. To our

knowledge this cannot be improved.

At first glance, the choice in (22) may appear somewhat restrictive, since ε0 (the

size of which is dictated by estimates to come) may be very small. However, it is clear

that if the initial surface M0 is of finite total curvature (that is,
∫
M‖A‖ndµ

∣∣∣
t=0

<∞),

then there will exist a positive ρ = ρ(ε0,M0) such that (22) is satisfied. Therefore,

in terms of allowable initial surfaces M0, we are only excluding those for which the

total curvature is infinite. Since short time existence for the flow (CSD) is itself not
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even valid on these ‘singular’ manifolds (they will not be smooth enough), this is a

natural and quite general class of initial data.

Our proof relies on showing that (GC) and (AB) allows one to prove the condi-

tional bound

(CB) sup
x∈Rn+1

∫
f−1(Bρ(x))

‖A‖mdµ < ε0 =⇒ ‖h‖∞,I <∞.

In practice, the domain of the integral on the left hand side will be the support

of a cutoff function. This is the key to treating the nontrivial constraint functions

such as h = hH , hK , and this is the subject of Section 3. Unfortunately, since hK

does not permit the global area bound (AB), it remains just beyond our current

techniques. It is in this sense which the two examples serve to differentiate between

those constraint functions which are relatively easy to handle, and those which still

present difficulty. The inequality

sup
x,y∈f(M)

|x− y| = extrinsic diameter = dext ≤ cT (n)
∫

M
|H|n−1dµ

due to Topping [62] will play a major role, allowing us to prescribe a class of con-

straint functions which admit a ‘localisation’ procedure. The extra assumptions

required are a growth condition, and a geometric condition: either bounded surface

area or bounded total mean curvature. For n = 3, one requires (AB) regardless, and

so we have concentrated on this condition.

We make one additional remark regarding this last point. Supposing that n = 2

and one enjoys the bound

∫
M
|H|dµ < c
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uniformly, then the area bound (AB) is no longer required. One may recover Theo-

rem 3.2 for these flows and furthermore the smallness condition is relaxed to be in

Lm where m = max{2k−2, 2j−k, l, n}. Note that this implies for certain constraint

functions the smallness may indeed be in L2, which is far more desirable. Now recall

the (CSD) flow with h = hK , where we have by the structure of our flow:

∫
M
Hdµ =

∫
M
Hdµ

∣∣∣∣
t=0

< c.

This is unfortunately still not enough to proceed, even by this alternative argument.

Thus, yet again, the constraint function h = hK critically does not satisfy the

required assumption.

In a more global sense, we present the Lifespan Theorem with a perspective

toward further analysis of the (CSD) flows. In particular, as the statement depends

on the concentration of the curvature of the initial surface, the result is particularly

relevant to the analysis of asymptotic behaviour in the following respect. When

considering a blowup of a singularity formed at some time T < ∞ of the (CSD)

flow, we wish to have that some amount of the curvature concentrates in space.

From the theorem, if ρ(t) denotes the largest radius such that (22) holds at time

t, then ρ(t) ≤ 4

√
c(T − t) and so at least ε0 of the curvature concentrates in a ball

f−1(Bρ(T )(x)). That is,

lim
t→T

∫
f−1(Bρ(t)(x))

‖A‖ndµ ≥ ε0,

where x = x(t) is understood to be the centre of a ball where the integral above is

maximised. This is a fundamental property of the blowups considered in Chapter

6.
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Our motivation for the extension of (SD) to the more general class of flows (CSD)

is essentially mathematical. Indeed, there does already exist a large body of work

on (SD) flow itself, and study of (SD) alone is well motivated. First proposed by

the physicist Mullins [48] in 1957 (two years before he proposed the mean curvature

flow), it was originally designed to model the formation of tiny thermal grooves

in phase interfaces where the contribution due to evaporation-condensation was in-

significant. Some time later, Davi, Gurtin, Cahn and Taylor [7, 10] proposed many

other physical models which give rise to the surface diffusion flow. These all exhibit

a reduction of free surface energy and conservation of volume; an essential charac-

teristic of (SD) flow. There are also other motivations for the study of (SD). For

example, two years later Cahn, Elliot and Novick-Cohen [6] proved that (SD) is the

singular limit of the Cahn-Hilliard equation with a concentration dependent mobil-

ity. Among other applications, this arises in the modeling of isothermal separation

of compound materials.

Analysis of the surface diffusion flow began slowly, with the first works appearing

in the early 80s. Baras, Duchon and Robert [2] showed the global existence of weak

solutions for two dimensional strip-like domains in 1984. Later, in 1997 Elliot and

Garcke [15] analysed (SD) flow of curves, and obtained local existence and regu-

larity for C4-initial curves, and global existence for small perturbations of circles.

Significantly, Ito [30] showed in 1998 that convexity will not be preserved under

(SD), even for smooth, rotationally symmetric, closed, compact, strictly convex ini-

tial hypersurfaces. Escher, Mayer and Simonett [16] gave several numerical schemes

for modeling (SD) flow, and have also given the only two known numerical examples
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[45] of the development of a singularity: a tubular spiral and thin-necked dumbbell.

They also provide an example of an immersion which will self-intersect under the

flow, a figure eight knot. In 2001, Simonett [55] used centre manifold techniques

to show that for initial data C2,α-close to a sphere, both the surface diffusion and

Willmore flows converge to a sphere in long time.

There have been many other important works on fourth order flows of a slightly

different character, from Willmore flow (which includes some extra zero order terms

in the speed of the flow) to Calabi flow (which is a fourth order flow of metrics). Sig-

nificant contributions to the analysis of these flows by the authors Kuwert, Schätzle,

Polden, Huisken, Mantegazza and Chrusciel [8, 36, 37, 44, 52] are particularly

relevant, as the methods employed there are similar to ours here.

In our proof, we exploit the fact that for an n-dimensional immersion the integral

∫
M
‖A‖ndµ

is scale invariant. The technique used by Struwe [59] in his paper on harmonic

mappings of Riemannian surfaces, of using smallness of initial energy in a local

sense, is then relevant, although as with all higher order flows the major difficulty

is in overcoming the lack of powerful techniques unique to the second order case.

In particular, we are without the maximum principle, and this implies that the

geometry of the surface could devolve. Therefore we are forced to use integral

estimates to derive derivative curvature bounds under a condition similar to (22),

and in calculating these estimates it is crucial to only use inequalities which involve

universal constants. Interpolation inequalities similar in nature to those used by
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Ladyzhenskaya, Ural’tseva and Solonnikov [39] and Hamilton [27], and the Sobolev

inequality of Michael-Simon [47], are invaluable in this regard.

The structure of this chapter is as follows. To apply the argument used by

Struwe, we must prove two key local integral estimates. In Section 2 we collect

various fundamental formulae from differential geometry, set our notation, and state

some basic results. The goal of Section 3 is to show that the a priori bound (CB) is

satisfied by a class of constraint functions, and to detail the localisation procedure

required to use the essentially global constraint function in local integral estimates.

Section 4 is concerned with estimating the evolution of local integrals of derivatives

of curvature, and Section 5 combines these estimates with Sobolev inequalities,

interpolation inequalities, and the results of Section 3 to conclude the two required

key integral estimates. With these in hand, we adapt the argument of Struwe in

Section 6 to prove the Lifespan Theorem. Section 7 contains some remarks on

lifespan theorems for flows similar to (CSD).

We note that there is a similar theorem in Liu [43], applying only to the flow

(SD). However, in that paper there are errors in the proof related to the rescaling,

and to the usage of the interpolation inequalities. For example, if the integral

quantity used is not scaling invariant one may not be able to choose a small enough

ε0 in the hypothesis (22) without driving ρ to zero. To our knowledge a corrected

version has yet to appear.

Our proof of the Lifespan Theorem and the overall structure of this paper is

inspired by the work of Kuwert and Schätzle [37] for the Willmore flow.
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2. Notation and preliminary results

In this section we augment and summarise some of the background material

from chapter one. In particular we define and derive some basic properties of the

localisation functions which we will use. We have as our principal object of study a

smooth immersion f : Mn → Rn+1 of an orientable compact hypersurface M with

induced metric gij so that the pair (M, g) is a Riemannian manifold. We denote

by Aij the second fundamental form and the trace by the metric gijAij = H is the

mean curvature. Repeated indices are always summed from 1 to n and we do not

normalise the mean curvature. We use Γk
ij for the Christoffel symbols, determined

by the metric, and ∇ for the covariant derivative on M .

The fundamental relations between components of the Riemann curvature tensor,

the Ricci tensor and scalar curvature are given by Gauss’ equation

Rijkl = AikAjl − AilAjk,

with contractions

gjlRijkl = Rik = HAik − Aj
iA

k
j , and

gikRik = R = H2 − ‖A‖2.

We will need to interchange covariant derivatives; for vectors X and covectors Y we

obtain

∇ijX
h −∇jiX

h = Rh
ijkX

k = (AljAik − AlkAij)g
hlXk,

∇ijYk −∇jiYk = Rijklg
lmYm = (AljAik − AilAjk)g

lmYm,
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where ∇i1...in = ∇i1 · · ·∇in . Further, recall the definition of the P -style terms from

Chapter 1. Recall that we abuse the arbitrary absolute constant appearing in the

P -style terms to encompass the norms of tensors (and other specialised contractions)

under the induced metric. For example

‖∇(2)A‖2 =
〈
∇(2)A,∇(2)A

〉
= 1 ·

(
∇(2)A ∗ ∇(2)A

)
+ 0 ·

(
∇(1)A ∗ ∇(3)A

)
+ 0 ·

(
A ∗ ∇(4)A

)
= P 4

2 (A).

This will occur throughout the chapter without further comment. In the coming

sections we will be concerned with calculating the evolution of the iterated covariant

derivatives of curvature quantities. For a tensor T on M , the following less precise

interchange of covariant derivatives formula will be useful to keep in mind:

∇ijT = ∇jiT + P 0
2 (A) ∗ T.

In most of our integral estimates (especially those in sections 4 and 5), we will

be including a function γ : M → R in the integrand. Eventually, this will be

specialised to a smooth cutoff function between concentric geodesic balls on M . For

now however let us only assume that γ = γ̃ ◦ f , where

0 ≤ γ̃ ≤ 1, and ‖γ̃‖C2(Rn+1) ≤ cγ̃ <∞.

Using the chain rule, this implies Dγ = (Dγ̃ ◦ f)Df and then D2γ = (D2γ̃ ◦

f)(Df,Df)+(Dγ̃ ◦f)D2f(·, ·). Using the expression (1) for the Christoffel symbols

to convert the computations above to covariant derivatives, and the Weingarten

relations to convert the derivatives of ν to factors of the second fundamental form
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with the basis vectors ∂if , we obtain the estimates

(25) ‖∇γ‖ ≤ cγ1, and ‖∇(2)γ‖ ≤ cγ2(1 + ‖A‖).

For a given ρ > 0, we also define the functions ε, δ(p) : Rn+1 × [0, T ∗] → R as

ε(x) =
∫

f−1(Bρ(x))
‖A‖2dµ, and δ(p)(x) =

∫
f−1(Bρ(x))

‖A‖pdµ.

We use the convention that

sup
x∈Rn+1

ε(x) ≤ ε0 and sup
x∈Rn+1

δ(p)(x) ≤ δ
(p)
0 .

At times we will instead consider the set [γ > c] = {p ∈ M : γ(p) > c} or the set

[γ = c] = {p ∈M : γ(p) = c} as the domain of the integrals in ε(x) and δ(p)(x). The

meaning will be clear by the context.

3. A priori estimates for the constraint function

Our constraint functions are by their nature global notions (being functions of

time only). This is a distinct advantage in some areas of the analysis: evolution

equations first order in time and of any order in space involve at most a linear factor

of h.

When one wishes to prove local integral estimates however, the global nature of

h becomes an issue. We are faced with situations such as

d

dt

∫
f−1(Bρ(x))

‖A‖2dµ+
∫

f−1(Bρ(x))
‖∇(2)A‖2dµ

≤ h
∫

f−1(B2ρ(x))

(
‖A‖3 + ‖A‖2

)
dµ+ “good terms”,(26)

armed with a local smallness of curvature assumption

sup
x∈R3

t∈[0,T∗]

ε(x) ≤ ε0, or sup
x∈R3

t∈[0,T∗]

δ(p)(x) ≤ δ0,
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and tasked with absorbing the term involving h into
∫

f−1(Bρ(x))
‖∇(2)A‖2dµ, a local

integral. Assume for the sake of example that h =
∫
M k(κ1, κ2)dµ and obeys an

estimate

h ≤ CABS

∫
M
‖A‖2dµ

∫
M
‖∇(2)A‖2dµ,

where CABS is an absolute constant. Then as a first attempt to ‘localise’ the integrals

on the right one might estimate them by

∫
M
‖A‖2dµ

∫
M
‖∇(2)A‖2dµ

≤ c2ρ(t)

[
sup
x∈R3

∫
f−1(Bρ(x))

‖A‖2dµ

]
·
[

sup
x∈R3

∫
f−1(Bρ(x))

‖∇(2)A‖2dµ

]

≤ c2ρ(t)ε0

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ,

where cρ(t) is the number of extrinsic balls of radius ρ required to cover f(Mt) and

x1 ∈ R3 is a point where the second supremum is attained. The goal of course is

to now bound c2ρ(t)ε0 by 1
2CABS

(for example), and absorb the entire term on the left

in (26). Unfortunately, this will in general be impossible. To attain a smaller ε0,

one must drive ρ to zero, but this will in turn drive cρ to ∞. Further, the scaling is

unfavourable, making it impossible to know a priori if any admissible ρ > 0 exists.

Finally, cρ is a function of time, and without a uniform bound we have little hope

of absorbing the constraint function into a local integral.

With some minor modifications to the above idea, and assumptions on the flow,

these problems can be overcome and the argument carries through. Our main result

for this section is the following.
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Theorem 3.3. For some T ∗ < T let f : Mn × [0, T ∗] → Rn+1 be a (CSD) flow

with constraint function h satisfying for some j, k, l ∈ N0

h ≤
∫

M
P 2

j (A) + P 1
k (A) + P 0

l (A)dµ

where for m = max{2k − 2, 2j − k, l, n2 + n− 2}

sup
x∈R3

δm(x) ≤ δm
0 <∞,

and for an absolute constant CAB

(AB) |Mt| ≤ CAB;

on [0, T ∗].

Then for any ρ > 0, x ∈ Rn+1, t ∈ [0, T ∗] there exists an x1 ∈ Rn+1 such that

for any θ > 0,

h
∫

f−1(B2ρ(x))

(
‖A‖4 + ‖A‖2

)
dµ ≤ θ

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ+
1

θ
CUGLY ,

if j, k 6= 0, and otherwise

h
∫

f−1(B2ρ(x))

(
‖A‖4 + ‖A‖2

)
dµ ≤ CUGLY ,

where CUGLY = CUGLY (δm
0 , CAB, ρ, j, k, l, n).

Before we begin the proof we would like to show that hH satisfies the assumptions

of the theorem. By viewing mean curvature as the variation of area, one is led to

(see Burago-Zalgaller [5]) the estimate

(27) |M | ≤ c

(∫
M
|H|dµ

) n
n−1

for a constant c depending only on n. Using now the isoperimetric inequality we

conclude

1∫
M |H|dµ

≤ c|M |
1−n

n ≤ c(Vol M)−1 ≤ cVol M0.
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Therefore we may estimate

hH(t) =

∫
M‖∇H‖2dµ∫

M |H|dµ
≤ c(M0)

∫
M
P 2

2 (A)dµ.

Thus for any dimension n we take m = (n− 1)(n+ 2). Also, (AB) is satisfied with

CAB = |M0|.

Driving this estimate is the following result due to Topping [62].

Theorem 3.4 (Topping). Let Mn be a compact connected n-dimensional sub-

manifold of Rn+1. Then its extrinsic diameter and its mean curvature H are related

by

dext ≤ cT (n)
∫

M
|H|n−1dµ.

Topping shows that in particular we may take cT (2) = 32
π

. Please refer to the

references in [62] for a history of this inequality and others similar to it. We note in

particular that for our purposes, the earlier version of this inequality in Simon [54]

is almost sufficient.

We first obtain an estimate for cρ(t).

Lemma 3.5. Let f : Mn × [0, T ∗] → Rn+1 be a (CSD) flow satisfying (AB).

Then for any ρ such that 0 < ρ ≤ dext
√

n+1
2

there exists an x2 ∈ Rn+1 where the

following estimate holds:

cρ(t) ≤ c(CAB, ρ, n)

(∫
f−1(Bρ(x2))

‖A‖(n−1)(n+2)dµ

)n+1

.

Remark. If ρ > dext
√

n+1
2

then cρ(t) = 1. We will always assume from now on

that 0 < ρ ≤ dext
√

n+1
2

.
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Proof. We simply apply a covering argument, Topping’s inequality, and then

the Hölder inequality. Since we can cover Mt by an (n + 1)-cube with side length

dext and a ball of radius ρ encloses an (n+ 1)-cube with side length 2ρ√
n+1

,

cρ(t) ≤
(
dext

√
n+ 1

2ρ

)n+1

≤
(
cT (n)

√
n+ 1

2ρ

)n+1(∫
M
|H|n−1dµ

)n+1

≤
(
cT (n)

√
n+ 1

2ρ

)n+1

|Mt|
(n+1)2

n+2

(∫
M
|H|(n−1)(n+2)dµ

)n+1
n+2

≤
(
cT (n)

√
n+ 1

2ρ

)n+1

|Mt|
(n+1)2

n+2

(
sup

x∈Rn+1

cρ(t)
∫

f−1(Bρ(x))
|H|(n−1)(n+2)dµ

)n+1
n+2

,

so

cρ(t) ≤
(
cT (n)

√
n+ 1

2ρ

)(n+1)(n+2)

C
(n+1)2

AB

(∫
f−1(Bρ(x2))

‖A‖(n−1)(n+2)dµ

)n+1

,

where x2 is a point in Rn+1 such that

∫
f−1(Bρ(x2))

‖A‖(n−1)(n+2)dµ = sup
x∈Rn+1

∫
f−1(Bρ(x))

‖A‖(n−1)(n+2)dµ.

�

Remark. Since we can take cT (2) = 32
π

, the conclusion in the theorem above

for a (CSD) flow with h = hH and n = 2 is

cρ(t) ≤
(

32
√

3

2πρ

)12

|M0|9
(∫

f−1(Bρ(x2))
‖A‖4dµ

)3

.

We now use the above to estimate h.

Lemma 3.6. Let θ > 0 be a fixed positive number and f : M × [0, T ∗] → Rn+1

a (CSD) flow satisfying the assumptions of Theorem 3.3. Then for any ρ > 0 there

exists a point x1 ∈ Rn+1 such that the constraint function h satisfies the following
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estimate:

h ≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c(θ, ρ, n, j, k, l, CAB, δ

m
0 )δm

0

for j, k, l not all equal to zero, and

h ≤ c(ρ, n, CAB)
(
δm
0

)n+1

for j = k = l = 0.

Proof. Recall that

sup
x∈Rn+1

δm(x) ≤ δm
0 <∞,

where m = max{2j − 2, 2k − j, l, n2 + n− 2, 4}.

We will first prove the estimate assuming that j ≥ max{2, 2k + 1}:

h ≤
∫

M
P 2

j (A) + P 1
k (A) + P 0

l (A)dµ

≤ c sup
x∈Rn+1

cρ

∫
f−1(Bρ(x))

‖∇(2)A‖ ‖A‖j−1dµ+
∫

M
‖∇A‖2‖A‖j−2dµ

+ c
∫

M
‖∇A‖ ‖A‖k−1dµ+ c

∫
M
‖A‖ldµ

≤ θ

2

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ+ c2ρ
c

2θ

∫
f−1(Bρ(x1))

‖A‖2j−2dµ

+ c
∫

M
‖∇A‖2‖A‖j−2dµ+ c

∫
M
‖A‖2k−j + ‖A‖ldµ

≤ θ

2

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ+ c(j)
∫

M
〈A,∆A〉 ‖A‖j−2dµ

+ c2ρ
c

2θ

∫
f−1(Bρ(x1))

‖A‖2j−2dµ+ c(θ, j, k, l)
∫

M
‖A‖2k−j + ‖A‖ldµ

≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c2ρc(θ, j, k)

∫
f−1(Bρ(x1))

‖A‖2j−2dµ

+ c(θ, j, k, l)
∫

M
‖A‖2k−j + ‖A‖ldµ

≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c2ρc(θ, j, k, CAB)

(∫
f−1(Bρ(x1))

‖A‖mdµ

) 2j−2
m

+ c(θ, j, k, l, CAB)

(
sup

x∈Rn+1

cρ

∫
f−1(Bρ(x))

‖A‖mdµ

) 2k−j+l
m
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≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c

2m+2k−j+l
m

ρ c(θ, j, k, l, CAB)
(
δm
0

) j−2+2k+l
m

≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c(θ, ρ, n, j, k, l, CAB)

(
δm
0

) (n+1)(2m+2k−j+l)+j−2+2k+l
m .

The estimate is easier to prove in the subcases excluded above. When j = 1 we

instead split the first integral by

∫
M
P 2

j (A)dµ ≤ c sup
x∈Rn+1

cρ

∫
f−1(Bρ(x))

‖∇(2)A‖dµ

≤ θ

2

∫
f−1(Bρ(x3))

‖∇(2)A‖2dµ+ c2ρ
2

θ

∫
f−1(Bρ(x3))

1 dµ

≤ θ

2

∫
f−1(Bρ(x3))

‖∇(2)A‖2dµ+ c(θ, ρ, n, CAB)
(
δm
0

)2n+2
.

When j < 2k + 1 we instead estimate the second integral by

∫
M
P 2

k (A)dµ ≤ c
∫

M
‖∇A‖ ‖A‖k−1dµ

≤ c
∫

M
‖∇A‖2dµ+ c

∫
M
‖A‖2k−2dµ

≤ c
∫

M
‖∇(2)A‖ ‖A‖dµ+ c

∫
M
‖A‖2k−2dµ

≤ θ

2

∫
f−1(Bρ(x3))

‖∇(2)A‖2dµ+ c2ρ
2

θ

∫
f−1(Bρ(x3))

‖A‖2dµ+ c
∫

M
‖A‖2k−2dµ

≤ θ

2

∫
f−1(Bρ(x3))

‖∇(2)A‖2dµ+ c(θ, ρ, n, CAB)
[(
δm
0

)2n+2+ 2
m +

(
δm
0

) 2k−2
m

]
.

Note that in any case, the exponent of δm
0 is greater than 1 due to the conditions

on m. This gives the first part of the lemma.

If j = k = l = 0 then obviously

h ≤ c(ρ, n, CAB)
(
δm
0

)n+1
.

This finishes the proof. �

Remark. In the special case where h = hH and n = 2, the estimate reads

hH ≤ θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+

cBZ

4θ
√

Vol M0

(
16
√

3

ρπ

)2

4|M0|
37
2

(
δ4
0

) 13
2 ,
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where cBZ is the constant from the inequality (27) due to Burago-Zalgaller [5].

We are now ready to prove Theorem 3.3 as essentially a corollary to Lemma 3.6

above.

Proof of Theorem 3.3. First note that

∫
f−1(B2ρ(x))

(
‖A‖4 + ‖A‖2

)
dµ ≤ sup

x∗∈B2ρ(x)
4n+1

∫
f−1(Bρ(x∗))

(
‖A‖4 + ‖A‖2

)
dµ

≤ 4n+1C
1− 4

m
AB

(
δm
0

) 4
m .

By Lemma 3.6 we are now finished, choosing

θ =
θ∗

4n+1C
1− 4

m
AB

(
δm
0

) 4
m

.

�

Remark. In each of the previous inequalities we have been primarily concerned

with integrals localised to a ball f−1(Bρ(x)). In the following sections where we

derive the basic integral estimates, the domain of integration will instead be the set

[γ > 0] = {p ∈ M : γ(p) > 0}, where γ is as in equation (25). This is necessary

to not only obtain the local integral estimates, but also to allow us enough freedom

to choose various appropriate γ functions, depending upon the situation. To bridge

the gap between the two domains of integration we may choose γ = γ̃ ◦ f to be such

that

χBρ(x) ≤ γ̃ ≤ χB2ρ(x)

and γ ∈ C2(M). Then for a strictly positive integrand we crudely estimate

∫
f−1(Bρ(x))

[· · · ]dµ ≤
∫
[γ>0]

[· · · ]dµ ≤
∫

f−1(B2ρ(x))
[· · · ]dµ.

This is why in Theorem 3.3 we see integrals with balls of radii 2ρ on the left.
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Theorem 4 gives us the opportunity to obtain the derivative of curvature esti-

mates in the ball Bρ(x1), but nowhere else. This is not enough to prove the Lifespan

Theorem. However, we may still proceed by using the estimates in the ball Bρ(x1)

to bound the constraint function over all of Mt, and then once this is accomplished

we can go back and prove the required derivative of curvature estimates everywhere

else on Mt.

Corollary 3.7 (The curvature estimates on a special ball). Suppose n ∈ {2, 3}

and let f : Mn × [0, T ∗] → Rn+1 be a (CSD) flow with h satisfying the assumptions

of Theorem 3.3. Then there is a δm
0 = δm

0 (n,M0) such that if

sup
t∈[0,T ∗],x∈Rn+1

∫
f−1(Bρ(x))

‖A‖mdµ ≤ δm
0 ,

there is an x1 ∈ Rn+1 such that

‖∇(2)A‖2
∞,f−1(Bρ(x1)) ≤ c

(
δm
0 , T

∗, CAB, ρ, j, k, l,m, α0(2)
)
,

where α0(2) =
2∑

j=0

sup
x∈Rn+1

‖∇(j)A‖2,f−1(Bρ(x))

∣∣∣∣∣
t=0

.

Proof. Observe that the smallness assumption and (AB) implies that

∫
f−1(Bρ(x))

‖A‖ndµ ≤ C
m−n

m
AB

(∫
f−1(Bρ(x)

‖A‖mdµ

) n
m

≤ C
m−n

m
AB

(
δm
0

) n
m < ε0,

for

δm
0 < (ε0)

m
n C

n−m
m

AB .

Let γ be a cutoff function on M between a ball of radius ρ and a ball of radius 2ρ,

as in the remark above. Then the smallness assumption (60) of Proposition 3.23 is

satisfied for δm
0 as above, that is

sup
[0,T ∗]

∫
f−1(Bρ(x))

‖A‖ndµ ≤ ε0.
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Recall the version (48) of Proposition 3.17 which does not require h bounded. We

restate this here with our choice of γ as:

d

dt

∫
f−1(Bρ(x))

‖A‖2dµ+ (2− θ)
∫

f−1(Bρ(x))
‖∇(2)A‖2dµ

≤ ch
∫

f−1(B2ρ(x))
([A ∗ A] ∗ A) dµ+ ch

∫
f−1(B2ρ(x))

‖A‖2dµ

+ c
∫

f−1(B2ρ(x))
‖A‖2dµ+ c

∫
f−1(B2ρ(x))

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
dµ.

Using Theorem 3.3 we obtain

d

dt

∫
f−1(Bρ(x1))

‖A‖2dµ+ (2− θ)
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ

≤ cδm
0 + c

∫
f−1(B2ρ(x1))

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
dµ.

Proceeding now exactly as in Proposition 3.23, we recover (22) at the point x1. Note

that the constant no longer depends on ‖h‖∞. Moving on, we use the inequality

above to conclude (64) in the case where there are no derivatives of curvature, with

no additional factors of the constraint function on the right hand side. That is,

d

dt

∫
f−1(Bρ(x1))

‖A‖2dµ+
1

2

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ

≤ c‖A‖2
2,f−1(B2ρ(x1))(1 + ‖A‖4

∞,f−1(B2ρ(x1))).

Using this in the proof of Proposition 3.26 in place of Proposition 3.25 gives the

required derivative of curvature bounds. �

Remark. Allowable choices of x1 depend upon the splitting of integrals in

Lemma 3.6, and this depends upon j, k and l. The proof of the next result will

depend upon which class of allowable points is associated with the given constraint

function.

We note that the assumption required is global, disguised as a local assumption.

This is different to the case where we have no constraint function (such as for the
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surface diffusion or Willmore flows). However, even there, in the final argument

used to prove the Lifespan Theorem one still requires this ‘global disguised as local’

assumption. We are merely introducing this concept earlier in the analysis.

Corollary 3.8 (The uniform bound for h.). Suppose n ∈ {2, 3} and let f :

Mn× [0, T ∗] → Rn+1 be a (CSD) flow with h satisfying the assumptions of Theorem

3.3. Then there is a δm
0 = δm

0 (n,M0) such that if

(28) sup
[0,T ∗],x∈Rn+1

∫
f−1(Bρ(x))

‖A‖mdµ ≤ δm
0 ,

the constraint function satisfies the estimate

‖h‖[0,T ∗],∞ ≤ ch <∞,

where ch = ch(δ
m
0 , CAB, ρ, j, k, l, n).

Proof. Using Corollary 3.7 above, we can directly estimate h by localising as

in the proof of Lemma 3.6. This is however contingent upon us retrieving integrals

around one of the allowable points x1 ∈ Rn+1 from the conclusion of Corollary 3.7.

So we must be somewhat careful with our estimates below.

Firstly, for the case where j ≥ max{2, 2k + 1},

h ≤
∫

M
P 2

j (A) + P 1
k (A) + P 0

l (A)dµ

≤ c
∫

M
‖∇(2)A‖ ‖A‖j−1 + ‖∇A‖2‖A‖j−2 + ‖∇A‖ ‖A‖k−1 + ‖A‖ldµ

≤ cρc
∫

f−1(Bρ(x1))
‖∇(2)A‖ ‖A‖j−1dµ+

∫
M
‖∇A‖2‖A‖j−2dµ

+ c
∫

M
‖∇A‖ ‖A‖k−1dµ+ c

∫
M
‖A‖ldµ

≤ 1

2

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ+ c(j)
∫

M
〈A,∆A〉 ‖A‖j−2dµ

+ c2ρ
c

2

∫
f−1(Bρ(x1))

‖A‖2j−2dµ+ c(j, k, l)
∫

M
‖A‖2k−j + ‖A‖ldµ
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≤ 1

2

∫
f−1(Bρ(x1))

‖∇(2)A‖2dµ+ c(j)
∫

M
‖∇(2)A‖ ‖A‖j−1dµ

+ c2ρ
c

2

∫
f−1(Bρ(x1))

‖A‖2j−2dµ+ c(j, k, l)
∫

M
‖A‖2k−j + ‖A‖ldµ

≤
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c2ρc(j)

∫
f−1(Bρ(x1))

‖A‖2j−2dµ

+ c(j, k, l)
∫

M
‖A‖2k−j + ‖A‖ldµ

≤
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ+ c2ρc(j, CAB)

( ∫
f−1(Bρ(x1))

‖A‖mdµ
) 2j−2

m

+ c(j, k, l, CAB) sup
x∈Rn+1

cρ

[( ∫
f−1(Bρ(x))

‖A‖mdµ
) 2k−j

m

+
( ∫

f−1(Bρ(x))
‖A‖mdµ

) l
m

]

≤ ch(δ
m
0 , CAB, ρ, j, k, l, n) <∞.

The other cases are simpler, and estimated as in Lemma 3.6, finished off using

Corollary 3.7 as above. �

Remark. As remarked upon in the introduction, there is an alternative ap-

proach to this section. Based also on Topping’s inequality, it works without the

assumption (AB). However this requires monotonicity of
∫
|H| on a ball around x1,

and does not give higher dimensional results. It is relevant to hK flow, where we

have monotonicity of
∫
H on the entire manifold, for all time. However the essential

problem is that there is no known condition which rules out the case where mean

curvature is becoming more negative in one part of the manifold and more positive

in another part, such that the integral over the entire manifold is non-increasing,

but for any small ball the integral
∫
|H| is increasing. Also, even if such a case is

ruled out, we have no way of ensuring that the special points x1 are in the regions of

M where
∫
|H| is monotone. What we really lack is a non-trivial condition we can
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impose on M0 such that monotonicity of
∫
H implies monotonicity of

∫
|H|, however

without the maximum principle we have not been able to achieve this. Thus hK still

presents difficulty.

We have thus shown that for the class of constraint functions satisfying the

conditions of Theorem 3.3, the a priori conditional bound (CB) holds.

4. Evolution equations

We begin with the following evolution equations.

Lemma 3.9. For f : Mn × [0, T ) → Rn+1 evolving by ∂tf = Fν the following

equations hold:

∂

∂t
gij = 2FAij,

∂

∂t
gij = −2FAij,

∂

∂t
dµ = (HF )dµ,

∂

∂t
ν = −∇F, ∂

∂t
Aij = −∇ijF + FAp

iApj,

∂

∂t
H = −∆F − F‖A‖2, and

∂

∂t
Ao

ij = −So(∇(2)F ) + F
(
Ap

iApj +
1

n
gij|A|2 −

2

n
HAij

)
,

where So(T ) denotes the tracefree part of a symmetric bilinear form T . If F =

∆H + h then the following evolution equation additionally holds:

∂

∂t
Aij = −∆2Aij + ‖A‖2Aij + (∆H −H + h)AikA

k
j .

Proof. We begin by proving that the evolution of the unit normal ν is given

by

∂ν

∂t
= −gij ∂F

∂xi

∂f

∂xj
= −∇F.
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Since ν is a unit vector, (ν|ν) = 1. Differentiating,

(29)

(
∂ν

∂ξ

∣∣∣∣ ν
)

= 0,

and so any derivative of the normal is again normal to ν, hence tangential to M.

Since {∂if} form a basis for TM , we may express the time derivative of ν as

(30)
∂ν

∂t
= gij

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
∂f

∂xi
.

As ν is normal to vectors in TM ,
(
ν| ∂f

∂xi

)
= 0. Differentiating this equation,

0 =

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+

(
ν

∣∣∣∣ ∂∂t ∂f∂xi

)

=

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+

(
ν

∣∣∣∣ ∂

∂xi

∂f

∂t

)

=

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+

(
ν

∣∣∣∣ ∂(Fν)

∂xi

)

=

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+

(
ν

∣∣∣∣ ν ∂F∂xi

)
+ F

(
ν,
∂ν

∂xi

)

=

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+
∂F

∂xi

(
ν

∣∣∣∣ ν)

=

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
+
∂F

∂xi
,

so

(31)

(
∂ν

∂t

∣∣∣∣ ∂f∂xi

)
= −∂F

∂xi
.

Substituting (31) into (30), we have

∂ν

∂t
= −gij ∂F

∂xi

∂f

∂xj
,

as required.

We now move on to proving that the induced metric (gij) and inverse (gij) evolves

by

(32)
∂

∂t
gij = −2FAij, and

∂

∂t
gij = 2FAij.
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The induced metric is naturally specified by

gij =

(
∂f

∂xi

∣∣∣∣ ∂f∂xj

)
.

Note first that (
∂

∂t

∂f

∂xi

∣∣∣∣ ∂f∂xj

)
=

(
∂(Fν)

∂xi

∣∣∣∣ ∂f∂xj

)

=

(
ν
∂F

∂xi
+ F

∂ν

∂xi

∣∣∣∣ ∂f∂xj

)

=
∂F

∂xi

(
ν

∣∣∣∣ ∂f∂xj

)
+

(
F
∂ν

∂xi

∣∣∣∣ ∂f∂xj

)

= 2F

(
∂ν

∂xi

∣∣∣∣ ∂f∂xj

)
= 2FAij,

where we used the definition of Aij in the last step. Since the second fundamental

form is symmetric, this gives

∂

∂t
gij =

(
∂

∂t

∂f

∂xi

∣∣∣∣ ∂f∂xj

)
+

(
∂

∂t

∂f

∂xj

∣∣∣∣ ∂f∂xi

)
= 2FAij.

For the inverse, we first differentiate gikgjk = δi
j:

0 =
∂(gikgjk)

∂t

=
∂gik

∂t
gjk +

∂gjk

∂t
gik

=
∂gik

∂t
gjk + gik(2Fhjk)

=
∂gik

∂t
gjk + 2FAi

j,

so

gklgjk
∂gik

∂t
=
∂gil

∂t
= −gkl2FAi

j− = 2FAil,

and with the substitution l↔ j, this finishes the proof of (32).

We will now need to make use of the rule for differentiating determinants:

∂

∂x
det A = det A Aij ∂

∂x
Aij.
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This is proved by considering the cofactor of ∂A
∂Aij

, which is det A(A−1)ij = det A Aij.

The formula then follows by summing over each entry.

We claim that the measure on M evolves according to

(33)
∂

∂t
dµ = HFdµ.

The induced surface measure dµ on M is given by

dµ =
√

det (gij)dx.

Differentiating,

∂

∂t
dµ =

∂

∂t

(√
det (gij)dx

)
=

1

2

√
det g gij ∂

∂t
gijdx = FgijAijdµ = HFdµ,

where we used the evolution of gij in the last equality. This shows (33).

We shall now consider the evolution of the components of the second fundamental

form, Aij. These evolve by

(34)
∂

∂t
Aij = −∇ijF + FAikA

k
j .

Recall that the components Aij are given by

Aij = −
(
∂

∂xi

∂

∂xj
f

∣∣∣∣ ν
)
.

Differentiating,

∂

∂t
Aij = −

(
∂

∂xi

∂

∂xj

∂f

∂t

∣∣∣∣ ν
)
−
(
∂

∂xi

∂

∂xj
f

∣∣∣∣ ∂ν∂t
)

= −
(
∂

∂xi

(
∂F

∂xj
ν + F

∂

∂xj
ν

) ∣∣∣∣ ν
)
−
(
∂

∂xi

∂

∂xj
f

∣∣∣∣ ∇F
)

= − ∂

∂xi

∂

∂xj
F − F

(
∂

∂xi

∂

∂xj
ν

∣∣∣∣ ν
)
−
(

Γk
ij

∂f

∂xk
− Aijν

∣∣∣∣ ∇F
)

= − ∂

∂xi

∂

∂xj
F − F

(
∂

∂xi

(
Ajkg

kl ∂f

∂xl

) ∣∣∣∣ ν
)
− Γk

ij

(
∂f

∂xk

∣∣∣∣ ∇F
)

= −
(
∂

∂xi

∂

∂xj
F + Γk

ij

∂F

∂xk

)
− FAjkg

kl

(
∂

∂xi

∂

∂xl
f

∣∣∣∣ ν
)
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= −∇i∇jF + FAjkg
klAli

= −∇i∇jF + FAikA
k
j .

In the above we used the Gauss-Weingarten equations

∂

∂xi

∂

∂xj
f = Γk

ij

∂f

∂xk
− Aijν,

∂

∂xj
ν = Ajlg

lm ∂f

∂xm
,

and the definition of the covariant derivative. Using this evolution and the evolution

of the induced metric we may compute the evolution of the mean curvature:

∂

∂t
H = gij ∂

∂t
Aij + Aij

∂

∂t
gij = −∆F − F‖A‖2

and the tracefree second fundamental form:

∂

∂t
Ao

ij =
∂

∂t
Aij −

1

n
H
∂

∂t
gij −

1

n
gij

∂

∂t
H

= −∇i∇jF + FAikA
k
j −

2

n
FHAij +

1

n
gij(∆F + F‖A‖2)

= −
(
∇i∇jF −

1

n
gij∆F

)
+ FAikA

k
j − F

2

n
HAij + F

1

n
gij‖A‖2

= −So(∇(2)F ) + F
(
AikA

k
j −

2

n
HAij +

1

n
gij‖A‖2

)
,

where So(T ) denotes the tracefree part of a symmetric bilinear form T . Specialising

to the case where F = ∆H + h, one may use Simons’ identity (SI) to obtain

∂

∂t
Aij = −∆2Aij + ‖A‖2Aij + (∆H −H + h)AikA

k
j .

�

We will also need to know the general structure of the evolution of the Christoffel

symbols. Note that any derivative of the Christoffel symbols is a tensor.
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Lemma 3.10. For f : Mn × [0, T ) → Rn+1 evolving by ∂tf = Fν the Christoffel

symbols evolve by

(35)
∂

∂t
Γ = FP 1

1 (A) + A ∗ ∇F.

Proof. Recall the following formula for the Christoffel symbols in a local coor-

dinate system which is torsion free:

Γk
ij =

1

2
gkl

(
∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
.

Differentiating the above and using the evolution of the induced metric (32),

∂

∂t
Γk

ij =
1

2

∂gkl

∂t

(
∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)

+
1

2
gkl

(
∂

∂xi

∂

∂t
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)

+
1

2
gkl

(
∂

∂xi
gjl +

∂

∂xj

∂

∂t
gil −

∂

∂xl
gij

)

+
1

2
gkl

(
∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl

∂

∂t
gij

)

= (−FAkl)

(
∂

∂xi

gjl +
∂

∂xj

gjl −
∂

∂xl

gij

)
+ Γk

ij + FP 1
1 (A) + A ∗ ∇F

= Γ ∗ (1 + F ∗ A) + FP 1
1 (A) + A ∗ ∇F.

Evaluating the above at a point where Γ ≡ 0 gives (35), and so finishes the proof of

the Lemma. �

The rest of this section is in two parts. The first aims to prove in detail the

estimates needed to present a proof of the first result needed to drive our overall

argument, Proposition 3.23. Since the proof of the second estimate, Proposition

3.26, requires similar results but with more generality, we present the estimates

needed for this after the simpler versions, in a slightly more succinct fashion.
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Using the curvature evolution equations in Lemma 3.9 we calculate the evolution

of the total squared curvature.

Lemma 3.11. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow, and γ as in (25).

Then for any s ≥ 0,

d

dt

∫
M
‖A‖2γsdµ = −2

∫
M
‖∇(2)A‖2γsdµ+

∫
M
‖A‖2∂tγ

sdµ

+ 2
∫

M
〈(∇γs)A,∆∇A〉 −

〈
(∇γs)(∇A),∇(2)A

〉
dµ

+
∫

M
[(P 2

3 (A) + hA ∗ A) ∗ A]γsdµ.

Proof. This is simply differentiation followed by two applications of integration

by parts. First we differentiate,

d

dt

∫
M
‖A‖2γsdµ =

∫
M

(∂t‖A‖2)γs + ‖A‖2(∂tγ
s) + ‖A‖2γs(∂tdµ) dµ

=
∫

M
2 〈∂tA,A〉 γsdµ+

∫
M

2(∂tg
ik)gjlhijhklγ

sdµ

+
∫

M
‖A‖2∂tγ

sdµ+
∫

M
‖A‖2(H∆H +Hh)γsdµ.

We leave the third integral for this proof. The second and fourth integral are both

of the form ∫
M

[(P 2
3 (A) + hA ∗ A) ∗ A]γsdµ.

For our purposes in this chapter we are not concerned with the precise algebraic

nature of the nonlinearities. We now deal with the first integral. Note that integra-

tion by parts does not give a boundary term as all our manifolds are compact and

without boundary. Using interchange of covariant derivative we calculate,

∫
M
〈∂tA,A〉 γsdµ = −

∫
M

〈
∆2A,A

〉
γsdµ+

∫
M
P 2

3 (A) ∗ Aγsdµ

+
∫

M
hA ∗ A ∗ Aγsdµ
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= −
∫

M
〈∇qp∇qpA,A〉 γsdµ

+
∫

M

(
∇
[
(A ∗ A− A ∗ A) ∗ ∇A

])
∗ Aγsdµ

+
∫

M
P 2

3 (A) ∗ Aγsdµ+
∫

M
hA ∗ A ∗ Aγsdµ

= −
∫

M
〈∇pq∇qpA,A〉 γsdµ

+
∫

M

(
∇(2)

[
(A ∗ A− A ∗ A) ∗ A

])
∗ Aγsdµ

+
∫

M
P 2

3 (A) ∗ Aγsdµ+
∫

M
hA ∗ A ∗ Aγsdµ

=
∫

M
〈∆∇A,∇A〉 γsdµ+

∫
M
〈∆∇A, (∇γs)A〉 dµ

+
∫

M
P 2

3 (A) ∗ Aγsdµ+
∫

M
hA ∗ A ∗ Aγsdµ

= −
∫

M
‖∇(2)A‖2γsdµ

+
∫

M
〈∆∇A, (∇γs)A〉 dµ−

∫
M

〈
∇(2)A, (∇γs)∇A

〉
dµ

+
∫

M
P 2

3 (A) ∗ Aγsdµ+
∫

M
hA ∗ A ∗ Aγsdµ.

Combining the evaluation of each of the integrals above gives the lemma. �

Routine estimates refine the previous lemma into the following form.

Lemma 3.12. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow, and γ as in (25).

Fix δ > 0. Then for any s ≥ 4,

d

dt

∫
M
‖A‖2γsdµ+ (2− δ)

∫
M
‖∇(2)A‖2γsdµ

≤ c
∫

M
‖A‖2∂tγ

sdµ+ ch
∫

M
P 0

3 (A)γsdµ+ c
∫

M
‖A‖2γs−4dµ

+ c
∫

M
[(P 2

3 (A) + P 0
5 (A)) ∗ A]γsdµ,

where c = c(cγ1, cγ2, s).
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Proof. We wish to deal with the leftover terms from integrating by parts in the

previous lemma. In the following proof and in fact throughout we use the following

two inequalities extensively:

For any ε > 0, a, b ∈ R ab ≤ εa2 +
1

4ε
b2, and

For any tensors A,B, | 〈A,B〉 | ≤ ‖A‖ ‖B‖;

which are of course the Cauchy inequality and the Cauchy-Schwartz inequality re-

spectively.

Estimate the undesirable integrals from before by

∫
M
〈(∇γs)A,∆∇A〉 dµ−

∫
M

〈
(∇γs)(∇A),∇(2)A

〉
dµ

= −
∫

M

〈
(∇(2)γ

s)A,∇(2)A
〉
dµ−

∫
M

〈
(∇γs)(∇A),∇(2)A

〉
dµ

−
∫

M

〈
(∇γs)(∇A),∇(2)A

〉
dµ

≤
∫

M
‖A‖ ‖∇(2)A‖

[
s(s− 1)c2γ1γ

s−2 + scγ2γ
s−1(1 + ‖A‖)

]
dµ

+ 2scγ1

∫
M
‖∇A‖ ‖∇(2)A‖γs−1dµ

≤ (δ1 + δ2 + δ3 + δ4)
∫

M
‖∇(2)A‖2γsdµ

+

(
[s(s− 1)c2γ1]

2

4δ1
+

[scγ2]
2

4δ2

)∫
M
‖A‖2γs−4dµ

+
[scγ2]

2

4δ3

∫
M
‖A‖4γs−2dµ+

[scγ1]
2

δ4

∫
M
‖∇A‖2γs−2dµ.

Therefore, choosing
∑

i δi = δ (where δ is in the statement of the lemma) and

combining with the previous lemma will finish the proof, if we can estimate the

remaining integrals.

The first is simple, using

‖A‖4γs−2 ≤ 1

2
‖A‖6γs +

1

2
‖A‖2γs−4 =

1

2
P 0

5 (A) ∗ Aγs +
1

2
‖A‖2γs−4.
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For the second we need a baby interpolation inequality, which we derive as follows:

∫
M
‖∇A‖2γs−2dµ = −

∫
M

〈
(∇γs−2)A,∇A

〉
dµ−

∫
M
〈∆A,A〉 γs−2dµ

≤ (s− 2)cγ1

∫
M
‖∇A‖ ‖A‖γs−3dµ+

∫
M
‖∇(2)A‖ ‖A‖γs−2dµ

≤ δ5

∫
M
‖∇(2)A‖2γsdµ+ β

∫
M
‖∇A‖2γs−2dµ

+

(
1

4δ5
+

[(s− 2)cγ1]
2

4β

)∫
M
‖A‖2γs−4dµ.

Therefore, for any β > 0 we have

(1− β)
∫

M
‖∇A‖2γs−2dµ ≤ δ5

∫
M
‖∇(2)A‖2γsdµ

+

(
1

4δ5
+

[(s− 2)cγ1]
2

4β

)∫
M
‖A‖2γs−4dµ.

Inserting this into our previous estimate we have

∫
M
〈(∇γs)A,∆∇A〉 dµ−

∫
M

〈
(∇γs)(∇A),∇(2)A

〉
dµ

≤
(
δ1 + δ2 + δ3 + δ4 + δ5

[scγ1]
2

(1− β)δ4

)∫
M
‖∇(2)A‖2γsdµ

+

(
[s(s− 1)c2γ1]

2

4δ1
+

[scγ2]
2

4δ2
+

[scγ2]
2

8δ3

+
[scγ1]

2

4(1− β)δ4δ5
+

[s(s− 2)c2γ1]
2

4δ4(1− β)β

)∫
M
‖A‖2γs−4dµ

+
[scγ2]

2

8δ3

∫
M
P 0

5 (A) ∗ Aγs−2dµ.

We are now finished, by any reasonable choice for our constants δi and β. For

example, let δ > 0 be any fixed positive number (as in the statement of the lemma),

and choose

β =
1

2
, δ1 + δ2 + δ3 =

δ

4
, δ4 =

δ

2
, δ5 =

δ2

16[scγ1]2
.

�

We conclude this series of estimates by proving the following.
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Proposition 3.13. Let f : M × [0, T ) → R3 be a (CSD) flow, and γ as in (25).

Fix δ > 0. Then for any s ≥ 4,

d

dt

∫
M
‖A‖2γsdµ+ (2− δ)

∫
M
‖∇(2)A‖2γsdµ

≤ c(1 + |h|)
∫

M
‖A‖2γs−4dµ+ c(1 + h)

∫
M
‖A‖6γsdµ+ c

∫
M
‖A‖P 2

3 (A)γsdµ,

where c = c(cγ1, cγ2, s).

Proof. This proposition is essentially an evaluation of the time derivative ∂tγ
s

in the previous lemma. The other terms are easily estimated by

P 0
5 (A) ∗ A ≤ c‖A‖6, and P 0

3 (A)γs ≤ c‖A‖2γs−4 + c‖A‖6γs.

Differentiating,

∂tγ
s = sγs−1∂t(γ̃ ◦ f)

≤ scγ̃γ
s−1|∆H + h|,

so

∫
M
‖A‖2∂tγ

sdµ ≤ scγ̃

∫
M
‖A‖2γs−1|∆H + h|dµ

≤ scγ̃|h|
∫

M
‖A‖2γs−4dµ+ δ1

∫
M
‖∇(2)A‖2γsdµ

+
[scγ̃]

2

4δ1

∫
M
‖A‖4γs−2dµ

≤ scγ̃|h|
∫

M
‖A‖2γs−4dµ+ δ1

∫
M
‖∇(2)A‖2γsdµ

+
[scγ̃]

2

8δ1

(∫
M
‖A‖6γsdµ+

∫
M
‖A‖2γs−4dµ

)
.

Substituting into the previous lemma and absorbing δ1
∫
M‖∇(2)A‖2γsdµ on the left

gives the result. �
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We are now, modulo a multiplicative Sobolev inequality, ready to give the proof

of our first major integral estimate, Proposition 3.23, used in Section 5 to prove the

Lifespan Theorem. However, for the second important estimate we need to consider

the more general case where we have k derivatives of curvature. The evolution

equation for the iterated covariant derivative of the second fundamental form is

given below.

Lemma 3.14. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow. Then the following

equation holds:

∂

∂t
∇(k)A = −∆2∇(k)A+ hP k

2 (A) + P k+2
3 (A).

Proof. We will use the evolution equation for A and interchange of covariant

derivative. From Lemma 3.9 we have

∂t∇(k)A = ∇(k)∂tA = −∇(k)∆
2A+ P k+2

3 (A) + hP k
2 (A).

Now to obtain the result we interchange covariant derivatives 4k times:

∂t∇(k)A = −∇(k)∇p∇p∆A+ P k+2
3 (A) + hP k

2 (A)

= −∇(k−1)∇p∇(1)∇p∆A−∇(k−1)[P
0
2 (A) ∗ ∇∆A] + P k+2

3 (A) + hP k
2 (A)

= −∇p∇(k)∇p∆A

+ P k+2
3 (A) + hP k

2 (A)−
k∑

j=1

∇(k−j)[(j + 2)P 0
2 (A) ∗ ∇(j)∆A]

= −∇p∇(k)∇p∆A+ P k+2
3 (A) + hP k

2 (A)

= −∆∇(k)∆A

+ P k+2
3 (A) + hP k

2 (A)−
k∑

j=1

∇(k−j+1)[(j + 1)P 0
2 (A) ∗ ∇(j−1)∆A]

= −∆∇(k)∆A+ P k+2
3 (A) + hP k

2 (A)
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= −∆∇p∇(k)∇pA

+ P k+2
3 (A) + hP k

2 (A)−
k∑

j=1

∇(k−j+2)[(j + 2)P 0
2 (A) ∗ ∇(j−1)∇A]

= −∆∇p∇(k)∇pA+ P k+2
3 (A) + hP k

2 (A)

= −∆2∇(k)A

+ P k+2
3 (A) + hP k

2 (A)−
k∑

j=1

∇(k−j+3)[(j + 1)P 0
2 (A) ∗ ∇(j−1)A]

= −∆2∇(k)A+ P k+2
3 (A) + hP k

2 (A);

note that here we allow several exotic constants to appear in the collection of terms

P k+2
3 (A). These are all universal however and are collected in the P -term as men-

tioned in the definition of the P -style terms earlier. �

The following is an easy consequence of the above lemma.

Corollary 3.15. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow. Then the

following equation holds:

∂

∂t
‖∇(k)A‖2 = −2

〈
∇(k)A,∇p∆∇p∇(k)A

〉
+ [hP k

2 (A) + P k+2
3 (A)] ∗ ∇(k)A.

Proof. We simply use the previous lemma as follows:

∂t‖∇(k)A‖2 = 2
〈
∇(k)A, ∂t∇(k)A

〉
+ (k + 2)∂tg ∗ ∇(k)A ∗ ∇(k)A

= −2
〈
∇(k)A,∆

2∇(k)A+ P k+2
3 (A) + hP k

2 (A)
〉

+ 2(k + 2)[(∆H)A+ hA] ∗ ∇(k)A ∗ ∇(k)A

= −2
〈
∇(k)A,∆

2∇(k)A
〉

+ [hP k
2 (A) + P k+2

3 (A)] ∗ ∇(k)A
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= −2
〈
∇(k)A,∇p∆∇p∇(k)A

〉
+

2∑
j=1

(
∇(2−j)[P

0
2 (A) ∗ ∇(k+j)A]

)
∗ ∇(k)A

+ [hP k
2 (A) + P k+2

3 (A)] ∗ ∇(k)A

= −2
〈
∇(k)A,∇p∆∇p∇(k)A

〉
+ [hP k

2 (A) + P k+2
3 (A)] ∗ ∇(k)A.

�

Using Corollary 3.15, we derive the following integral identity.

Corollary 3.16. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow, and γ as in

(25). Then for any s ≥ 0,

d

dt

∫
M
‖∇(k)A‖2γsdµ+ 2

∫
M
‖∇(k+2)A‖2γsdµ =

∫
M
‖∇(k)A‖2(∂tγ

s)dµ

+ 2
∫

M

〈
(∇γs)(∇(k)A),∆∇(k+1)A

〉
dµ− 2

∫
M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ

+
∫

M
γs[(P k+2

3 (A) + hP k
2 (A)) ∗ ∇(k)A]dµ.

Proof. First we differentiate,

d

dt

∫
M
‖∇(k)A‖2γsdµ =

∫
M

(∂t‖∇(k)A‖2)γs + ‖∇(k)A‖2
[
(∂tγ

s) + γs(∂tdµ)
]
dµ

= −2
∫

M

[ 〈
∇(k)A,∇p∆∇p∇(k)A

〉
+ [hP k

2 (A) + P k+2
3 (A)] ∗ ∇(k)A

]
γsdµ

+
∫

M
(k + 2)(∂tg

i1j1)gi2j2 · · · gikjk∇i1···ikAik+1ik+2
∇j1···jk

Ajk+1jk+2
γsdµ

+
∫

M
‖∇(k)A‖2∂tγ

sdµ+
∫

M
‖∇(k)A‖2(H∆H +Hh)γsdµ.

We leave the third integral for this proof. The second and fourth integral are both

of the form

∫
M

[
(P k+2

3 (A) + hA ∗ ∇(k)A) ∗ ∇(k)A
]
γsdµ.
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We now deal with the first integral. Integration by parts gives

−2
∫

M

[ 〈
∇(k)A,∇p∆∇p∇(k)A

〉
+ [hP k

2 (A) + P k+2
3 (A)] ∗ ∇(k)A

]
γsdµ

= −2
∫

M
‖∇(k+2)A‖2γsdµ+ 2

∫
M

〈
∆∇(k+1)A, (∇γs)∇(k)A

〉
dµ

− 2
∫

M

〈
∇(k+2)A, (∇γs)∇(k+1)A

〉
dµ

+
∫

M

(
[hP k

2 (A) + P k+2
3 (A)] ∗ ∇(k)A

)
γsdµ.

Combining the evaluation of each of the integrals above gives the statement of the

lemma. �

Remark. It is easy to compute an ‘allowable’ explicit expression for the large

constant c. For example, if N q
p (A) denotes a P q

p (A) term with all non-zero constants

set to one, we have

∫
M
γs ∂

∂t
‖∇(k)A‖2dµ+ 2

∫
M
‖∇(k+2)A‖2γsdµ = 2

∫
M

〈
(∇γs)(∇(k)A),∆∇(k+1)A

〉
dµ

− 2
∫

M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ

+ (4 + 10k + 2 · 7 · 3k)
∫

M
γs[(Nk+2

3 (A) + hNk
2 (A)) ∗ ∇(k)A]dµ,

and note that here any non-zero constants in the ∗ operator terms have been similarly

set to one.

We now wish to use interpolation to estimate the extraneous terms from inte-

gration by parts. For k = 1, the required inequality follows easily (for θ, β > 0):

(36)

(1− β)
∫

M
‖∇A‖2γs−2dµ ≤ θ

∫
M
‖∇(2)A‖2γsdµ+

β + θ[(s− 2)cγ1]
2

4βθ

∫
M
‖A‖2γs−4dµ.
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For k > 1 however we need a more powerful version of the above. Let 2 ≤ p <∞,

k ∈ N, s ≥ kp, and θ > 0. Then we have

(37)(∫
M
‖∇(k)A‖pγsdµ

) 1
p

≤ θ
(∫

M
‖∇(k+1)A‖pγs+pdµ

) 1
p

+ c

(∫
[γ>0]

‖A‖pγs−kpdµ

) 1
p

,

where c = c(θ, cγ1, s, p). This is proved by induction on the inequality (36). Details

can be found in [37], or alternately Appendix A. We now estimate the equality in

Corollary 3.16.

Proposition 3.17. Let f : Mn× [0, T ) → Rn+1 be a (CSD) flow and γ a cutoff

function as in (25). Then if h satisfies (CB) on the support of γ and ‖A‖2
2,[γ>0] < ε0,

we have for a fixed θ > 0 and s ≥ 2k + 4,

d

dt

∫
M
‖∇(k)A‖2γsdµ+ (2− θ)

∫
M
‖∇(k+2)A‖2γsdµ

≤ (c+ ch)
∫

M
‖A‖2γs−4−2kdµ+ ch

∫
M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ

+ c
∫

M

(
[P k+2

3 (A) + P k
5 (A)] ∗ ∇(k)A

)
γsdµ,

where c = c(cγ1, cγ2, s, k, ‖h‖∞,[0,T ), θ).

Proof. We will use Corollary 3.16 and equation (37) to deal with the derivatives

(both spatial and temporal) of γ.

Corollary 3.16 implies

d

dt

∫
M
‖∇(k)A‖2γsdµ+ 2

∫
M
‖∇(k+2)A‖2γsdµ

=
∫

M
(∂tγ

s)‖∇(k)A‖2dµ+
∫

M
[(P k+2

3 (A) + hP k
2 (A)) ∗ ∇(k)A]γsdµ

+ 2
∫

M

〈
(∇γs)(∇(k)A),∆∇(k+1)A

〉
dµ

− 2
∫

M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ.(38)
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Since ∂tγ
s = sγs−1(Dγ̃ ◦ f)[(∆H + h)ν],

∫
M
‖∇(k)A‖2∂tγ

sdµ = s
∫

M
‖∇(k)A‖2γs−1(Dγ̃ ◦ f)[(∆H + h)ν]dµ

= s
∫

M
‖∇(k)A‖2γs−1(Dγ̃ ◦ f)[(∆H)ν]dµ

+ s
∫

M
‖∇(k)A‖2γs−1(Dγ̃ ◦ f)[hν]dµ.(39)

For the first integral in (39) we begin with integration by parts:

s
∫

M
‖∇(k)A‖2γs−1(Dγ̃ ◦ f)[(∆H)ν]dµ

= −s
∫

M
∇p

(
‖∇(k)A‖2γs−1

)
(Dν γ̃ ◦ f)(∇pH)dµ

− s
∫

M

(
‖∇(k)A‖2γs−1

)
(∇pDν γ̃ ◦ f)(∇pH)dµ

= −2s
∫

M

〈
∇p∇(k)A,∇(k)A

〉
γs−1(Dν γ̃ ◦ f)∇pHdµ

− s(s− 1)
∫

M
‖∇(k)A‖2γs−2 〈∇γ,∇H〉 (Dν γ̃ ◦ f)dµ

− s
∫

M

(
‖∇(k)A‖2γs−1

) (
(D2γ̃ ◦ f)(ν, ep)

)
(∇pH)dµ

≤ 4scγ̃

∫
M

(
‖∇(k+1)A‖γ

s
2
−1
) (
‖∇(k)A‖ ‖∇H‖γ

s
2

)
dµ

+ s(s− 1)cγ̃cγ1

∫
M
‖∇(k)A‖2‖∇H‖γs−2dµ

+ scγ2

∫
M
‖∇(k)A‖2‖∇H‖

(
1 + ‖A‖

)
γs−1dµ

≤ 4scγ̃

∫
M

(
‖∇(k+1)A‖γ

s
2
−1
) (
‖∇(k)A‖ ‖∇H‖γ

s
2

)
dµ

+ s
[
(s− 1)cγ̃cγ1 + cγ2

] ∫
M
‖∇(k)A‖2‖∇H‖γs−2dµ

+ scγ2

∫
M
‖∇(k)A‖2‖∇H‖ ‖A‖γs−1dµ.

Note that we used Kato’s inequality (for some tensor T )

‖∇‖T‖ ‖ ≤ ‖∇T‖

in the last step.
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The first integral obviously splits (using Cauchy’s inequality) by

4scγ̃

∫
M

(
‖∇(k+1)A‖γ

s
2
−1
) (
‖∇(k)A‖ ‖∇H‖γ

s
2

)
dµ

≤ 2scγ̃

∫
M
‖∇(k+1)A‖2γs−2dµ+ 2scγ̃

∫
M

[P k+2
3 (A) ∗ ∇(k)A]γsdµ.(40)

It is considerably less obvious that the other two integrals can be estimated as

∫
M
‖∇(k)A‖2‖∇H‖γs−2dµ ≤ 1

2

∫
M

(
P k+2

3 (A) ∗ ∇(k)A
)
γsdµ

+
θ

2

∫
M
‖∇(k+2)A‖2γsdµ+

1

2

(
cI + cθ

) ∫
[γ>0]

‖A‖2γs−4−2kdµ

and

∫
M
‖∇(k)A‖2‖∇H‖ ‖A‖γs−1dµ ≤ 1

2

∫
M

(
P k+2

3 (A) ∗ ∇(k)A
)
γsdµ

+
θ

4

∫
M
‖∇(k+2)A‖2γsdµ+

1

4

(
cI + cθ

) ∫
[γ>0]

‖A‖2γs−4−2kdµ

+
1

4

∫
M

(
P k

5 (A) ∗ ∇(k)A
)
γsdµ.(41)

Here the constant cθ is the constant in (37) and cI = c(1, cγ1, s, p) is the constant in

(37) with θ = 1.

We now describe how to obtain estimate (41). This is where the interpolation

inequality (37) becomes useful. Two separate applications and Jensen’s inequality

gives the inequalities

(42)
∫

M
‖∇(k)A‖2γs−4dµ ≤

∫
M
‖∇(k+1)A‖2γs−2dµ+ cI

∫
[γ>0]

‖A‖2γs−4−2kdµ,

and

(43)
∫

M
‖∇(k+1)A‖2γs−2dµ ≤ θ

∫
M
‖∇(k+2)A‖2γsdµ+ cθ

∫
[γ>0]

‖A‖2γs−2−2kdµ.
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Note that using equation (43) we can finish the estimate (40). Combining (42) and

(43) we obtain

(44)
∫

M
‖∇(k)A‖2γs−4dµ ≤ θ

∫
M
‖∇(k+2)A‖2γsdµ+ (cI + cθ)

∫
[γ>0]

‖A‖2γs−4−2kdµ.

Using (44) we can now derive the first estimate in (41):

∫
M
‖∇(k)A‖2‖∇H‖γs−2dµ

≤ 1

2

∫
M

(
‖∇(k)A‖ ‖∇H‖2

)
‖∇(k)A‖γsdµ+

1

2

∫
M
‖∇(k)A‖2γs−4dµ

≤ 1

2

∫
M

(
P k+2

3 (A) ∗ ∇(k)A
)
γsdµ

+
θ

2

∫
M
‖∇(k+2)A‖2γsdµ+

1

2

(
cI + cθ

) ∫
[γ>0]

‖A‖2γs−4−2kdµ.

For the second integral, we first estimate

∫
M
‖∇(k)A‖2‖A‖2γs−2dµ

≤ 1

2

∫
M
‖∇(k)A‖2γs−4dµ+

1

2

∫
M
‖∇(k)A‖2‖A‖4γsdµ

≤ θ

2

∫
M
‖∇(k+2)A‖2γsdµ+

1

2

∫
M

(
P k

5 (A) ∗ ∇(k)A
)
γsdµ

+
1

2

(
cI + cθ

) ∫
[γ>0]

‖A‖2γs−4−2kdµ,(45)

where we used (44) again. Using (45) above we can derive the second estimate in

(41):

∫
M
‖∇(k)A‖2‖∇H‖ ‖A‖γs−1dµ

≤ 1

2

∫
M

(
‖∇(k)A‖ ‖∇H‖2

)
‖∇(k)A‖γsdµ+

1

2

∫
M
‖∇(k)A‖2‖A‖2γs−2dµ

≤ 1

2

∫
M

(
P k+2

3 (A) ∗ ∇(k)A
)
γsdµ+

θ

4

∫
M
‖∇(k+2)A‖2γsdµ

+
1

4

(
cI + cθ

) ∫
[γ>0]

‖A‖2γs−4−2kdµ+
1

4

∫
M

(
P k

5 (A) ∗ ∇(k)A
)
γsdµ.

This proves (41), and combining (41) with (40) estimates the first integral in (39).
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For the second integral in (39), we note

s
∫

M
‖∇(k)A‖2γs−1(Dγ̃ ◦ f)[hν]dµ ≤ hscγ̃

∫
M
‖∇(k)A‖2γs−1dµ

≤ hscγ̃

∫
M
‖∇(k)A‖2γs−4dµ.

Applying equation (44), we estimate this term as

hscγ̃

∫
M
‖∇(k)A‖2γs−4dµ

≤ θhscγ̃

∫
M
‖∇(k+2)A‖2γsdµ+ hscγ̃(cI + cθ)

∫
[γ>0]

‖A‖2γs−4−2kdµ.

Summarising, we have shown

∫
M
‖∇(k)A‖2∂tγ

sdµ ≤ (θ1 + θ2h)
∫

M
‖∇(k+2)A‖2γsdµ

+ (c+ ch)
∫
[γ>0]

‖A‖2γs−4−2kdµ

+ c
∫

M
[(P k+2

3 (A) + P k
5 (A)) ∗ ∇(k)A]γsdµ,(46)

for any fixed θ1, θ2 > 0, where c = c(cγ1, cγ2, s, k, θ1, θ2). The leading order term on

the right is absorbed into the same term on the left in equation (38). Note that we

need to use (CB) to ensure that θ2 6→ 0, since then c→∞. We also note that this

choice of θ2 introduces a dependence on ‖h‖∞,[0,T ) into the constant c. This gives

half the proposition.

Recalling (38), we will therefore be finished if we can deal with the integrals

2
∫

M

〈
(∇γs)(∇(k)A),∆∇(k+1)A

〉
dµ− 2

∫
M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ.

Given our earlier work, these are not so bad. The second integral is estimated as

− 2
∫

M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ

≤ θ3

∫
M
‖∇(k+2)A‖2γsdµ+

[scγ1]
2

θ3

∫
M
‖∇(k+1)A‖2γs−2dµ
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≤
(
θ3 +

θ4[scγ1]
2

θ3

)∫
M
‖∇(k+2)A‖2γsdµ+

[scγ1]
2

θ3

cθ4

∫
[γ>0]

‖A‖2γs−4−2kdµ,

(47)

where we used (43) again. We need to integrate by parts on the first integral:

∫
M

〈
(∇γs)(∇(k)A),∆∇(k+1)A

〉
dµ

= −
∫

M

〈
(∇(2)γ

s)(∇(k)A),∇(k+2)A
〉
dµ

−
∫

M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ

≤ s(s− 1)c2γ1

∫
M
‖∇(k)A‖ ‖∇(k+2)A‖γs−2dµ

+ scγ2

∫
M
‖∇(k)A‖ ‖∇(k+2)A‖γs−1dµ

+ scγ2

∫
M
‖∇(k)A‖ ‖∇(k+2)A‖ ‖A‖γs−1dµ

−
∫

M

〈
(∇γs)(∇(k+1)A),∇(k+2)A

〉
dµ.

The last integral is estimated exactly as in (47). We have also seen the other three

integrals before. To make this explicit, we split them with

∫
M
‖∇(k)A‖ ‖∇(k+2)A‖γs−2dµ+

∫
M
‖∇(k)A‖ ‖∇(k+2)A‖γs−1dµ

+
∫

M
‖∇(k)A‖ ‖∇(k+2)A‖ ‖A‖γs−1dµ

≤ θ
∫

M
‖∇(k+2)A‖2γs−2dµ+

1

2θ

∫
M
‖∇(k)A‖2γs−4dµ

+
1

2θ

∫
M
‖∇(k)A‖2‖A‖2γs−2dµ.

The first integral is absorbed, and the other two are dealt with exactly as in the

proof of inequality (41). This finishes the proof. �

To prove Corollary 3.7 we also need a version of the above estimate where we

do not assume (CB). For this purpose, we state the following version of Proposition

3.17. The proof differs only in that the integrals with h are not estimated.
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Proposition 3.18. Let f : M × [0, T ) → R3 be a (CSD) flow and γ a cutoff

function as in (25). Then for a fixed θ > 0 and s ≥ 2k + 4,

d

dt

∫
M
‖∇(k)A‖2γsdµ+ (2− θ)

∫
M
‖∇(k+2)A‖2γsdµ

≤ ch
∫

M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ+ ch

∫
M
‖∇(k)A‖2γs−1dµ

+ c
∫

M
‖A‖2γs−4−2kdµ+ c

∫
M

(
[P k+2

3 (A) + P k
5 (A)] ∗ ∇(k)A

)
γsdµ,(48)

where c = c(cγ1, cγ2, s, k).

Remark. As our main result is a lower bound on the maximal time of exis-

tence for a (CSD) flow, one may be interested in a more explicit expression for

the constants involved in Proposition 3.17. As we will see, these constants play an

important role in determining the numerical value of the lower bound. Also, the

reader unfamiliar with so many nested inequalities may be suspicious that our claim

of absorbing the high derivatives on the left is in fact valid; indeed, several of the

constants depend on each other and a choice of one small will make another larger.

Therefore, we will now present explicitly the constants from Proposition 3.17. As

the computation is long and tedious, yet relatively simple, we present only two steps.

Carefully summarising and factorising, we claim

d

dt

∫
M
‖∇(k)A‖2γsdµ+ 2

∫
M
‖∇(k+2)A‖2γsdµ

≤
[
2scγ̃θ1 +

s[(s− 1)cγ̃cγ1 + cγ2]

2
θ2 +

scγ2

4
θ3 + 8θ4 +

8(scγ1)
2

θ4

θ5

+ 2s[(s− 1)c2γ1 + cγ2]
(
θ6 +

1

4θ6

θ7

)
+ 2scγ2

(
θ8 +

1

8θ8

θ9

)] ∫
M
‖∇(k+2)A‖2γsdµ

+

[
2scγ̃cθ1 +

s[(s− 1)cγ̃cγ1 + cγ2]

2
(cI + cθ2) +

scγ2

4
(cI + cθ3) +

4(scγ1)
2

θ4

cθ5

+
s[(s− 1)c2γ1 + cγ2]

2θ6

(cI + cθ7) +
scγ2

4θ8

(cI + cθ9)

] ∫
[γ>0]

‖A‖2γs−4−2kdµ
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+

[
c3.(k+2) + 2scγ̃ +

s[(s− 1)cγ̃cγ1 + cγ2] + scγ2

2

] ∫
M

(
Mk+2

3 (A) ∗ ∇(k)A
)
γsdµ

+

[
scγ2

4

(
1 +

1

θ8

)] ∫
M

(
Mk

5 (A) ∗ ∇(k)A
)
γsdµ

+ h

[
c2.(k)h

∫
M

(
Mk

2 (A) ∗ ∇(k)A
)
γsdµ+ scγ̃

∫
M
‖∇(k)A‖2γs−1dµ

]
,

(49)

for any θi > 0.

Some notation here needs explaining. As the motivation for the use of the letter

P is that P j
i (T ) is “a polynomial with terms containing i derivatives of j copies

of T”, we have used M j
i (T ) to denote the corresponding monomial. However the

situation is a little more complicated than that of a standard monic polynomial of

real variables. The constants present in each of the P terms vary from term to term

in the summation, and of course we do not have any positivity of these terms to

take a maximum of all the constants. What we have done is this: each of the M

terms may be estimated by

M j
i (T ) ≤

∑
k1+...+kj=i

‖∇(k1)T‖ · · · · · ‖∇(kj)T‖.

Then the constants c3.(k+2) and c2.(k)h are the maximum of the absolute value of all

the constants in each the the P terms

P k+2
3 (A) ∗ ∇(k)A, and hP k

2 (A) ∗ ∇(k)A

multiplied by n2k+8 and n2k+6 respectively (since the dimension of our immersed

manifold is n, and A is a (0,2)-tensor).

Let θ > 0 be any real number. We wish to choose our constants θi such that the

entire coefficient of
∫
M‖∇(k+2)A‖2γsdµ on the left becomes equal to θ. There are



110 3. LIFESPAN THEOREM

nine terms and so we simply choose each θi iteratively to force each term to equal

1
9
θ. These choices are:

θ1 =
1

18scγ̃
θ, θ2 =

2

9s[(s− 1)cγ̃cγ1 + cγ2]
θ, θ3 =

4

9scγ2

θ, θ4 =
1

36
θ,

θ5 =
1

2592(scγ1)2
θ2, θ6 =

1

18s[(s− 1)c2γ1 + cγ2]
θ,

θ7 =
1

1296
(
s[(s− 1)c2γ1 + cγ2]

)2 θ
2, θ8 =

1

18scγ2

θ, θ9 =
1

2592(scγ2)2
θ2.

Note that these choices also set the coefficients of the other terms, and in particular

determines each cθi
. This means that our above equation (49) becomes

d

dt

∫
M
‖∇(k)A‖2γsdµ+ (2− θ)

∫
M
‖∇(k+2)A‖2γsdµ

≤ ci

∫
[γ>0]

‖A‖2γs−4−2kdµ

+ cii

∫
M

(
Mk+2

3 (A) ∗ ∇(k)A
)
γsdµ+ ciii

∫
M

(
Mk

5 (A) ∗ ∇(k)A
)
γsdµ

+ hciv

∫
M

(
Mk

2 (A) ∗ ∇(k)A
)
γsdµ+ hcv

∫
M
‖∇(k)A‖2γs−1dµ,

where ci, . . . , cv are the constants from (49) with the choices for the θi indicated

above.

5. Integral estimates with small concentration of curvature

We will first need a few Sobolev and interpolation inequalities. The argument

for n = 3 is by necessity different to that for n = 2. This is due to the important

role played by the Michael-Simon Sobolev inequality.

Theorem 3.19 (Michael-Simon Sobolev inequality [47]). Let f : Mn → Rn+1

be a smooth immersion. Then for any u ∈ C1
c (M) we have(∫

M
un/(n−1)dµ

)(n−1)/n

≤ 4n+1

ω
1/n
n

∫
M
‖∇u‖+ u|H|dµ,

where ωn is the volume of the unit ball in Rn.
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Notice the exponent on the left. Our eventual goal for this section is to prove

local L∞ estimates for all derivatives of curvature. Our main tool to convert Lp

bounds to L∞ bounds is the following theorem, which is an n-dimensional analogue

of Theorem 5.6 from [37]. The proof is contained in Appendix A.

Theorem 3.20. Let f : Mn → Rn+1 be a smooth immersed hypersurface. For

u ∈ C1
c (M), n < p ≤ ∞, 0 ≤ β ≤ ∞ and 0 < α ≤ 1 where 1

α
=
(

1
n
− 1

p

)
β + 1 we

have

(50) ‖u‖∞ ≤ c‖u‖1−α
β (‖∇u‖p + ‖Hu‖p)

α,

where c = c(n, p, β).

The proof follows ideas from [39] and [37]. Due to the exponent in the Michael-

Simon Sobolev inequality (which is itself an isoperimetric obstruction), it is not

possible to decrease the lower bound on p, even at the expense of other parameters

in the inequality.

The basic problem which this lower bound on p causes is that the evolution

equations from section 4 will only give a nice relationship between ‖∇(k)A‖2
2,[γ>0]

and ‖∇(k+2)A‖2,[γ>0], and to exploit this relationship we must take p = 4 in Theorem

3.20 above.

One can see this by the following. Consider the quantity ‖∇T‖p
p where T is a

tensor on f . Then

‖∇T‖p
p ≤ c

∫
M
T ∗ ∇(2)T ∗ [∇T ]p−2dµ.
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We must estimate the integral on the right such that we recover both a term ‖∇(2)T‖2

and ‖∇T‖p. That is,

‖∇T‖p
p ≤ c

∫
M
T ∗ ∇(2)T ∗ [∇T ]p−2dµ ≤ c‖T‖∞‖∇(2)T‖2‖∇T‖p−2

2p−4.

Only if p = 2p− 4 may we conclude that

‖∇T‖p ≤ c‖T‖
1
2∞‖∇(2)T‖

1
2
2 .

Therefore if we are to use an estimate such as the above we are forced to consider

only p = 4, and thus only n = 2 and n = 3. This is highlighted in the following

local refinement to Theorem 3.20.

Proposition 3.21. Let n ∈ {2, 3}. Then for any tensor T on f : Mn → Rn+1

and γ as in (25),

(51) ‖T‖4
∞,[γ=1] ≤ c‖T‖4−n

2,[γ>0]

(
‖∇(2)T‖n

2,[γ>0] + ‖TA2‖n
2,[γ>0] + ‖T‖n

2,[γ>0]

)
,

where c = c(cγ1, n). Assume T = A, and if n = 3 also assume (AB). Then there

exists an ε0 = ε0(cγ1, cγ2, n) such that if

‖A‖n
n,[γ>0] ≤ ε0

we have

(52) ‖A‖8n−12
∞,[γ=1] ≤ cε0

(
‖∇(2)A‖2n2−3n

2,[γ>0] + ε0
)
,

with c = c(cγ1, cγ2, n, ε0) for n = 2 and c = c(cγ1, cγ2, n, ε0, CAB) for n = 3.

Proof. We wish to obtain an L∞ norm estimate for the tensor T in terms of

the concentration of T in a small region of M , specified by γ. The proof proceeds in

two parts: first we will estimate an arbitrary tensor S, and then we will localise the

estimate for S by using a γ function. Precisely, we specialise the estimate for S to
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S = Tγ2, taking care to factor out the quantity ‖T‖2
2,[γ>0] to conclude our desired

inequality.

Take p = 4, β = 2 in Theorem 3.20 to obtain

(53) ‖S‖∞ ≤ c‖S‖
4−n
n+4

2

(
‖∇S‖4 + ‖S H‖4

) 2n
n+4 .

We now use integration by parts and the Hölder inequality to derive

‖∇S‖4
4 ≤

∫
M
S ∗ (∇(2)S‖∇S‖2 + 2∇S ∗ ∇S ∗ ∇(2)S)dµ

≤ c‖S‖∞‖∇S‖2
4‖∇(2)S‖2, so

‖∇S‖4 ≤ c‖S‖
1
2∞‖∇(2)S‖

1
2
2 .(54)

Combine equation (54) above with (53) and use Jensen’s inequality to obtain

(55) ‖S‖∞ ≤ c‖S‖
4−n
n+4

2

[
(‖S‖

1
2∞‖∇(2)S‖

1
2
2 )

2n
n+4 + ‖S H‖

2n
n+4

4

]
.

Using Hölder’s inequality we estimate

‖S H‖
2n

n+4

4 ≤
(
‖S2‖

1
4∞‖S

1
2H‖4

) 2n
n+4

≤ ‖S‖
n

n+4
∞ ‖S

1
2H‖

2n
n+4

4 ,

and combining this with (55) above we conclude

‖S‖4
∞ =

(
‖S‖1− n

n+4
∞

)n+4

≤
(
c‖S‖

4−n
n+4

2

(
‖∇(2)S‖

n
n+4

2 + ‖S
1
2H‖

2n
n+4

4

))n+4

≤ c‖S‖4−n
2

(
‖∇(2)S‖n

2 + ‖S H2‖n
2

)
.(56)

We now turn our attention to localising the estimate for S. As mentioned earlier, for

this purpose we set S = Tγ2. We first evaluate and estimate the second derivative

term ‖∇(2)S‖2
2:

‖∇(2)S‖2
2 =

∫
M
‖∇(2)(Tγ

2)‖2dµ
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≤
∫

M
‖∇(2)T‖2γ4dµ+ 4

∫
M
‖∇T‖2‖∇γ2‖2dµ+

∫
M
‖T‖2‖∇(2)γ

2‖2dµ

≤
∫

M
‖∇(2)T‖2γ4dµ+ 8

∫
M
‖∇T‖2‖∇γ‖2γ2dµ

+ 2
∫

M
‖T‖2

[
‖∇(2)γ‖γ + ‖∇γ‖2

]2
dµ

≤
∫

M
‖∇(2)T‖2γ4dµ+ c‖∇γ‖2

∞

∫
M
‖∇T‖2γ2dµ

+ c
∫

M
‖T‖2‖∇(2)γ‖2γ2dµ+ c‖∇γ‖4

∞

∫
[γ>0]

‖T‖2dµ.(57)

We interpolate the first derivative term:

∫
M
‖∇T‖2γ2dµ ≤

∫
M
‖T‖ ‖∇(2)T‖γ2dµ+ c‖∇γ‖∞

∫
M
‖T‖ ‖∇T‖γdµ

≤ c
∫

M

(
‖T‖2 + ‖∇(2)T‖2

)
γ2dµ+ c(1 + ‖∇γ‖2

∞)
∫
[γ>0]

‖T‖2dµ

+
1

2

∫
M
‖∇T‖2γ2dµ,

and thus

∫
M
‖∇T‖2γ2dµ ≤ c

∫
M
‖∇(2)T‖2γ2dµ+ c(1 + ‖∇γ‖2

∞)
∫
[γ>0]

‖T‖2dµ.

Inserting this result into (57), and estimating

∫
M
‖A‖2‖T‖2γ4dµ ≤ 1

2

∫
[γ>0]

‖T‖2dµ+
1

2

∫
M
‖T‖2‖A‖4γ4dµ,

we obtain

(58) ‖∇(2)S‖2
2 ≤ c

∫
[γ>0]

‖∇(2)T‖2 + ‖T‖2dµ+ c
∫

M
‖T‖2‖A‖4γ4dµ.

Combining this with our estimate for ‖S‖∞ earlier, inequality (56), gives

‖S‖4
∞ ≤ c‖S‖4−n

2

(
‖∇(2)T‖n

2,[γ>0] + ‖T‖n
2,[γ>0] + ‖S H2‖n

2 + ‖TA2γ4‖n
2

)
≤ c‖T‖4−n

2,[γ>0]

(
‖∇(2)T‖n

2,[γ>0] + ‖T‖n
2,[γ>0] + ‖TA2‖n

2,[γ>0]

)
.(59)

Estimating ‖T‖4
∞,[γ=1] ≤ ‖S‖4

∞ proves (51).
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Now set T = A. For n = 2, Lemma 3.22 implies

∫
M
‖A‖6γ4dµ ≤ cS1‖A‖2

2,[γ>0]

(
‖∇(2)A‖2

2,[γ>0] + ‖Aγ
2
3‖6

6

)
+ c‖A‖4

2,[γ>0],

and absorbing on the left we obtain

(1− ε0cS1)
∫

M
‖A‖6γ4dµ ≤ c‖A‖2

2,[γ>0]

(
‖∇(2)A‖2

2,[γ>0] + ‖A‖2
2,[γ>0]

)
, so∫

M
‖A‖6γ4dµ ≤ c

1− ε0cS1

‖A‖2
2,[γ>0]

(
‖∇(2)A‖2

2,[γ>0] + ‖A‖2
2,[γ>0]

)
,

where cS1 is the constant from Lemma 3.22. Inserting this into (59) gives the second

statement for n = 2. For n = 3, Lemma 3.22 gives

∫
M
‖A‖6γ4dµ ≤ cS1‖A‖

3
2

3,[γ>0]

(
‖∇(2)A‖2

2,[γ>0] + ‖Aγ
2
3‖6

6

)
+ θ‖∇(2)A‖2

2,[γ>0]

+ c
(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.

Choosing θ <
√
ε0 this becomes

∫
M
‖A‖6γ4dµ ≤ 2cS1

√
ε0
(
‖∇(2)A‖2

2,[γ>0] + ‖Aγ
2
3‖6

6

)
+ c

(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
,

and again absorbing on the left we obtain

(1− 2cS1

√
ε0)

∫
M
‖A‖6γ4dµ ≤ c

√
ε0
(
‖∇(2)A‖2

2,[γ>0] +
√
ε0
)

=⇒
∫

M
‖A‖6γ4dµ ≤ c

√
ε0
(
‖∇(2)A‖2

2,[γ>0] +
√
ε0
)
.

We combine this with (59) and estimate to obtain

‖A‖4
∞,[γ=1] ≤ c(CAB)

1
6‖A‖3,[γ>0]

(
‖∇(2)A‖3

2,[γ>0] + (CAB)
1
2‖A‖3

3,[γ>0] +
( ∫

M
‖A‖6γ4dµ

) 3
2

)

≤ cε
1/3
0

(
‖∇(2)A‖3

2,[γ>0] + ε0 + ε
3/4
0

(
‖∇(2)A‖3

2,[γ>0] + ε
3/4
0

))
,

and upon cubing both sides we recover the second statement for n = 3 and so we

are done. �
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The following multiplicative Sobolev inequality, which we already used above,

is a combination of the Michael-Simon Sobolev inequality and standard integral

estimates.

Lemma 3.22. Let γ be as in (25). Then for an immersed surface f : M2 → R3

we have

∫
M
‖A‖6γsdµ+

∫
M
‖A‖2‖∇A‖2γsdµ ≤ c

∫
[γ>0]

‖A‖2dµ
∫

M
(‖∇(2)A‖2 + ‖A‖6)γsdµ

+ c(cγ1)
4
( ∫

[γ>0]
‖A‖2dµ

)2

,

and for an immersion f : M3 → R4,

∫
M
‖A‖6γsdµ+

∫
M
‖A‖2‖∇A‖2γsdµ ≤ θ

∫
M
‖∇(2)A‖2γsdµ

+ c‖A‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A‖2 + ‖A‖6

)
γsdµ+ c(cγ1)

3
(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
,

where θ ∈ (0,∞) and c = c(s, θ) is an absolute constant.

Proof. The first statement is Lemma 4.2 in [37]. For the second, first observe

that

∫
‖∇A‖3γsdµ ≤

∫
M

(
〈A,∆A〉 ∗ ∇A+ A ∗ ∇A ∗ ∇‖∇A‖

)
γsdµ

+ s
∫

M

(
A ∗ ∇A ∗ ∇A ∗ ∇γ

)
γs−1dµ

≤ 2
∫

M
‖A‖ ‖∇A‖ ‖∇(2)A‖γsdµ+ scγ1

∫
M

(
‖∇A‖2‖A‖

)
γs−1dµ

≤ 1

4θ

∫
M
‖∇(2)A‖2γsdµ+ θ

∫
M
‖A‖2‖∇A‖2γsdµ

+
(scγ1)

342

3

∫
M
‖A‖3γ2s−3dµ+

1

6

∫
M
‖∇A‖3γsdµ

≤ 1

4θ

∫
M
‖∇(2)A‖2γsdµ+

θ3

3

∫
M
‖A‖6γsdµ+

(scγ1)
342

3

∫
M
‖A‖3γ2s−3dµ

+
5

6

∫
M
‖∇A‖3γsdµ,
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so

∫
‖∇A‖3dµ ≤ 3

2θ

∫
M
‖∇(2)A‖2γsdµ+ 2θ3

∫
M
‖A‖6γsdµ+ 2(scγ1)

342
∫
[γ>0]

‖A‖3dµ,

for any θ ∈ (0,∞).

Now we use the Michael-Simon Sobolev inequality with u = ‖A‖4γ2s/3 to esti-

mate

( ∫
M
‖A‖6γsdµ

) 2
3

≤ c
∫

M

∥∥∥∇(‖A‖4γs
)∥∥∥dµ+ c

∫
M
H‖A‖4γsdµ

≤ c
∫

M
‖A‖3‖∇A‖γsdµ+ c

∫
M
‖A‖4‖∇γ‖γs−1dµ+ c

∫
M
‖A‖5γsdµ

≤ c
∫

M
‖A‖3‖∇A‖γsdµ+ c

∫
M
‖A‖5γsdµ+ c(cγ1)

2‖A‖3
3,[γ>0]

≤ c
∫

M
‖∇A‖2‖A‖γsdµ+ c

∫
M
‖A‖5γsdµ+ c(cγ1)

2‖A‖3
3,[γ>0]

≤ c
∫

M
‖∇A‖2‖A‖γsdµ+

( ∫
M
‖A‖6γsdµ

) 2
3
( ∫

[γ>0]
‖A‖3

) 1
3

+ c(cγ1)
2‖A‖3

3,[γ>0],

so

∫
M
‖A‖6γsdµ ≤ c

( ∫
M
‖∇A‖2‖A‖γsdµ

) 3
2

+ c‖A‖
3
2

3,[γ>0]

∫
M
‖A‖6γsdµ

+ c(cγ1)
3‖A‖

9
2

3,[γ>0]

≤ c‖A‖
3
2

3,[γ>0]

∫
M
‖∇A‖3γsdµ+ c‖A‖

3
2

3,[γ>0]

∫
M
‖A‖6γsdµ

+ c(cγ1)
3‖A‖

9
2

3,[γ>0]

≤ c‖A‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A‖2 + ‖A‖6

)
γsdµ+ c(cγ1)

3‖A‖
9
2

3,[γ>0].

This estimates the first term. For the second, we can employ a more direct technique

using our estimates above,

∫
M
‖A‖2‖∇A‖2γsdµ ≤ c

∫
M
‖A‖6γsdµ+ c

∫
M
‖∇A‖3γsdµ
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≤ θ
∫

M
‖∇(2)A‖2γsdµ+ cθ‖A‖

3
2

3,[γ>0]

∫
M

(
‖∇(2)A‖2 + ‖A‖6

)
γsdµ

+ cθ(cγ1)
3
(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.

This estimates the second term, and combining the two estimates above finishes the

proof. �

The proposition used for the constructive part of the argument used to prove

the Lifespan Theorem can be proved now.

Proposition 3.23. Let n ∈ {2, 3}. Suppose f : Mn× [0, T ∗] → Rn+1 is a (CSD)

flow with h satisfying (CB) and γ a cutoff function as in (25). Additionally, if n = 3

assume (AB). Then there is an ε0 = ε0
(
cγ1, cγ2, ‖h‖∞,[0,T ∗]

)
such that if

(60) ε = sup
[0,T ∗]

∫
[γ>0]

‖A‖ndµ ≤ ε0

then for any t ∈ [0, T ∗] we have∫
[γ=1]

‖A‖2dµ+
∫ t

0

∫
[γ=1]

(‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6)dµdτ

≤
∫
[γ>0]

‖A‖2dµ

∣∣∣∣
t=0

+ cε
2
n t,

(61)

where c = c
(
cγ1, cγ2, ‖h‖∞,[0,T ∗], CAB

)
.

Proof. The idea of the proof is to integrate Proposition 3.17, and then use the

multiplicative Sobolev inequality Lemma 3.22. This will introduce a multiplicative

factor of ‖A‖n,[γ>0] in front of several integrals, which we can then absorb on the

left.

Setting k = 0 and s = 4 in Proposition 3.17 we have

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M
‖∇(2)A‖2γ4dµ

≤ (c+ ch)
∫
[γ>0]

‖A‖2dµ+ ch
∫

M
([A ∗ A] ∗ A) γ4dµ
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+ c
∫

M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ.

First we estimate the P -style terms:

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ c
∫

M

([
‖A‖2 · ‖∇(2)A‖+ ‖∇A‖2‖A‖+ ‖A‖5

]
‖A‖

)
γ4dµ

≤ c
∫

M

[
‖A‖3‖∇(2)A‖+ ‖∇A‖2‖A‖2 + ‖A‖6

]
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c

∫
M

(‖A‖6 + ‖∇A‖2‖A‖2)γ4dµ.

We use Lemma 3.22 to estimate the second integral and obtain for n = 2

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c

∫
[γ>0]

‖A‖2dµ
∫

M
(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
( ∫

[γ>0]
‖A‖2dµ

)2

,(62)

and for n = 3

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c‖A‖

3
2

3,[γ>0]

∫
M

(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
(
cγ1

)3(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.(63)

We add the integrals
∫
M‖A‖6γ4dµ and

∫
M‖∇A‖2‖A‖2γ4dµ to the estimate of Propo-

sition 3.17 (with k = 0, s = 4) and obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ (c+ ch)
∫
[γ>0]

‖A‖2dµ+ ch
∫

M
([A ∗ A] ∗ A) γ4dµ

+ c
∫

M

(
‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ+ c

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ c
∫

M

(
‖A‖3‖∇(2)A‖+ ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ.
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For n = 2, we use the estimate (62) above and obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ θ
∫

M
‖∇(2)A‖2γ4dµ

+ c
∫
[γ>0]

‖A‖2dµ
∫

M
(‖∇(2)A‖2 + ‖A‖6)γ4dµ+ c

( ∫
[γ>0]

‖A‖2dµ
)2

.

For n = 3, we use instead (63) to obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ θ
∫

M
‖∇(2)A‖2γ4dµ+ c‖A‖

3
2

3,[γ>0]

∫
M

(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
(
cγ1

)3(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.

≤ c(1 + h2)C
1
3
AB‖A‖2

3,[γ>0] + θ
∫

M
‖∇(2)A‖2γ4dµ+ c‖A‖

3
2

3,[γ>0]

∫
M

(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
(
cγ1

)3(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.

Absorbing, we obtain for n = 2

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ − ε0)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + ε0 + ‖h‖2
∞,[0,T ∗])ε

≤ cε,

and for n = 3

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ −

√
ε0)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c
(
1 + C

1
3
AB + C

1
3
AB‖h‖2

∞,[0,T ∗] + ε
23
6

0 + ε
4
3
0

)
ε

2
3

≤ cε
2
3 .



5. INTEGRAL ESTIMATES WITH SMALL CONCENTRATION OF CURVATURE 121

For θ, ε0 small enough we have

d

dt

∫
M
‖A‖2γ4dµ+

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ ≤ cε

2
n ,

where for n = 3, c depends additionally on CAB. Integrating, we have

∫
[γ=1]

‖A‖2γ4dµ +
∫ t

0

∫
[γ=1]

(‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6)dµdτ

≤
∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ cε
2
n ,

where we used the fact [γ = 1] ⊂ [γ > 0] and 0 ≤ γ ≤ 1, with

c = c(ε0, ‖h‖∞,[0,t∗], cγ1, cγ2, CAB).

�

Remark. The assumption (AB) is required for the three dimensional case due

to the fact that L2 norms naturally arise when computing the evolution equations

of various integral quantities, see the proof of Corollary 3.16 and Proposition 3.17.

Forcing L3 norms in these inequalities for the purpose of the above proof introduces

changes in the exponents of the P -terms, and to deal with this one would need to

prove an altered form of Lemma 3.22. This altered form will still require (AB) to

handle the different exponents in the integrals. So it seems to us that for the three

dimensional case it is not possible to avoid assuming (AB), which is required to

obtain results for non-simple constraint functions regardless (see Theorem 3.3 and

Appendix C).

It remains only to prove the estimate used in the contradiction branch of the

argument used to prove the Lifespan Theorem. For this, we need an interpolation
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inequality, and a preliminary proposition. We will only state the required interpo-

lation inequality; the proof can be found in Appendix A or [37].

Proposition 3.24. Let 0 ≤ i1, . . . , ir ≤ k, i1 + . . .+ ir = 2k and s ≥ 2k. Then

for any tensor T defined on an immersed hypersurface f we have

∫
M
∇(i1)T ∗ · · · ∗ ∇(ir)Tγ

sdµ ≤ c‖T‖r−2
∞,[γ>0]

(∫
M
‖∇(k)T‖2γsdµ+ ‖T‖2

2,[γ>0]

)
.

We now use this to derive the required proposition.

Proposition 3.25. Suppose f : Mn × [0, T ] → Rn+1 is a (CSD) flow and

γ : M → R a cutoff function as in (25). Then, for s ≥ 2k+4 the following estimate

holds:

d

dt

∫
M
‖∇(k)A‖2γsdµ+

∫
M
‖∇(k+2)A‖2γsdµ

≤ c‖A‖4
∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ+ c‖A‖2

2,[γ>0](1 + ‖A‖4
∞,[γ>0])

+ ch
(
h

1
3

∫
M
‖∇(k)A‖2γsdµ+ (1 + h

1
3 )‖A‖2

2,[γ>0]

)
.

(64)

Proof. The proposition will be proved using Proposition 3.17 if we can establish

the following inequality:

(c+ ch)
∫

M
‖A‖2γs−4−2kdµ+ ch

∫
M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ

+ c
∫

M

(
[P k+2

3 (A) + P k
5 (A)] ∗ ∇(k)A

)
γsdµ

≤ 1

2

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
2,[γ>0](1 + ‖A‖4

∞,[γ>0])

+ ch
(
h

1
3

∫
M
‖∇(k)A‖2γsdµ+ (1 + h

1
3 )‖A‖2

2,[γ>0]

)
.(65)
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We estimate each of the four terms on the left hand side of (65) in turn. First note

that

(66) (1 + h)
∫

M
‖A‖2γs−4−2kdµ ≤ ‖A‖2

2,[γ>0] + h‖A‖2
2,[γ>0].

For the second term, let r = 3 and i1 + i2 = k, i3 = k in Corollary 3.24 to obtain

h
∫

M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ ≤ ch

∑
i1+i2=k
0≤ij≤k

∫
M
∇(i1)A ∗ ∇(i2)A ∗ ∇(i3)Aγ

sdµ

≤ ch‖A‖∞
(∫

M
‖∇(k)A‖2γsdµ+ ‖A‖2

2,[γ>0]

)
≤ c‖A‖4

∞

(∫
M
‖∇(k)A‖2γsdµ+ ‖A‖2

2,[γ>0]

)
+ h

4
3

(∫
M
‖∇(k)A‖2γsdµ+ ‖A‖2

2,[γ>0]

)
,(67)

using Young’s inequality. This estimates the second term in (65).

The fourth term is also straightforward. Let r = 6 in Corollary 3.24 to obtain

(68)
∫

M
P k

5 (A) ∗ ∇(k)Aγ
2dµ ≤ c‖A‖4

∞,[γ>0]

(∫
M
‖∇(k)A‖γsdµ+ ‖A‖2

2,[γ>0]

)
.

The third term takes a little more effort to estimate. First note

∫
M
P k+2

3 (A) ∗ ∇(k)Aγ
sdµ =

∫
M

(
∇(k+2)A ∗ A ∗ A

)
∗ ∇(k)Aγ

sdµ

+
∑

i1+i2+i3=k+2
0≤ij≤k+1

∫
M
∇(i1)A ∗ ∇(i2)A ∗ ∇(i3)A ∗ ∇(i4)Aγ

sdµ.

Since i1 + i2 + i3 = k + 2 and i4 = k, and in particular each ij ≤ k + 1, we can use

Corollary 3.24 with k + 1 derivatives and r = 4 to estimate

∫
M
P k+2

3 (A) ∗ ∇(k)Aγ
sdµ ≤ θ1

∫
M
‖∇(k+2)A‖2γsdµ+ c

∫
M
‖A‖4‖∇(k)A‖2γsdµ

+ c‖A‖2
∞,[γ>0]

(∫
M
‖∇(k+1)A‖2γsdµ+ ‖A‖2

2,[γ>0]

)
≤ θ1

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
∞,[γ>0]

(∫
M
‖∇(k+1)A‖2γsdµ+ ‖A‖2

2,[γ>0]

)
.
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We could now proceed by interpolating the
∫
M‖∇(k+1)A‖2γsdµ term using integra-

tion by parts. A quicker (although equivalent) method however is to simply invoke

Lemma 5.1 from [37] (or Lemma A.3 in Appendix A) with p = q = 2r, α = 0,

β = 1, t = 0, and obtain

‖A‖2
∞,[γ>0]

∫
M
‖∇(k+1)A‖γsdµ

≤ c‖A‖2
∞,[γ>0]

(∫
M
‖∇(k)A‖2γsdµ

) 1
2
(∫

M
‖∇(k+2)A‖2γsdµ

) 1
2

+ c‖A‖2
∞,[γ>0]

(∫
M
‖∇(k)A‖2γsdµ

) 1
2
(∫

M
‖∇(k+1)A‖2γs−2dµ

) 1
2

≤ θ2

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+
∫

M
‖∇(k+1)A‖2γs−2dµ.

Since s ≥ 2k+ 4, and s− 2 ≥ 2(k+ 1) we can use Lemma 5.2 from [37] (or Lemma

A.4 from Appendix A) to obtain

∫
M
‖∇(k+1)A‖2γs−2dµ ≤ θ3

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖2

2,[γ>0].

Therefore we can finally estimate the third term by

∫
M
P k+2

3 (A) ∗ ∇(k)Aγ
sdµ

≤ θ1

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
∞,[γ>0]‖A‖2

2,[γ>0] + c‖A‖2
∞,[γ>0]

∫
M
‖∇(k+1)A‖2γsdµ

≤ θ1

∫
M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
2,[γ>0](1 + ‖A‖4

∞,[γ>0]) + c‖A‖2
∞,[γ>0]

∫
M
‖∇(k+1)A‖2γsdµ

≤ (θ1 + θ2 + θ3)
∫

M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
2,[γ>0](1 + ‖A‖4

∞,[γ>0]).(69)
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Combining the inequalities (66), (67), (68) and (69) we have

(c+ ch)
∫

M
‖A‖2γs−4−2kdµ+ ch

∫
M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ

+ c
∫

M

(
[P k+2

3 (A) + P k
5 (A)] ∗ ∇(k)A

)
γsdµ

≤ (θ1 + θ2 + θ3)
∫

M
‖∇(k+2)A‖2γsdµ+ c‖A‖4

∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ

+ c‖A‖2
2,[γ>0](1 + ‖A‖4

∞,[γ>0])

+ ch
(
h

1
3

∫
M
‖∇(k)A‖2γsdµ+ (h

1
3 + 1)‖A‖2

2,[γ>0]

)
.

Choosing θ1 + θ2 + θ3 = 1
2

completes the proof of (65), and so the proposition is

proved. �

We now finish this section with a proof of the higher derivatives of curvature

estimate, which will allow us to both bound the constraint function in balls other

than the ‘special ball’ (see Corollary 8) and perform the contradiction part of our

overall argument used to prove the Lifespan Theorem.

Proposition 3.26. Let n ∈ {2, 3}. Suppose f : Mn× [0, T ∗] → Rn+1 is a (CSD)

flow with h satisfying (CB) and γ as in (25). If n = 3 assume in addition (AB).

Then there is an ε0 depending on the constants in (25) and ‖h‖∞,[0,T ∗] such that if

(70) sup
[0,T ∗]

∫
[γ>0]

‖A‖ndµ ≤ ε0,

we can conclude

(71) ‖∇(k)A‖2
∞,[γ=1] ≤ c

(
k, T ∗, cγ1, cγ2, ‖h‖∞,[0,T ∗], α0(k + 2), CAB

)
,

where α0(k) =
k∑

j=0

‖∇(j)A‖2,[γ>0]

∣∣∣∣∣
t=0

.

Proof. The idea is to use our previous estimates and then integrate. The ε0

which we will use is exactly the same as that in Proposition 3.23.
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We fix γ and consider cutoff functions γσ,τ which will allow us to combine our

previous estimates. Define for 0 ≤ σ < τ ≤ 1 functions γσ,τ = ψσ,τ ◦ γ satisfying

γσ,τ = 0 for γ ≤ σ and γσ,τ = 1 for γ ≥ τ . The function ψσ,τ is chosen such that γσ,τ

satisfies equation (25), although with different constants. Acceptable choices are

cγσ,τ1 = ‖∇ψσ,τ‖∞ · cγ1, and cγσ,τ2 = max{‖∇(2)ψσ,τ‖∞ · c2γ1, ‖∇ψσ,τ‖∞ · cγ2}.

Using the cutoff function γ0, 12
instead of γ in Proposition 3.23 gives

∫ T ∗

0

∫
[γ0, 1

2
=1]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ cε

2
n
0 T

∗ + ‖A‖2
2,[γ>0]

∣∣∣∣
t=0

, so

∫ T ∗

0

∫
[γ≥ 1

2 ]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ cε0(1 + T ∗)(72)

for n = 2 and

∫ T ∗

0

∫
[γ≥ 1

2 ]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ cε

2
3
0 (C

1
3
AB + T ∗)

for n = 3.

Next, using γ 1
2 , 34

in (51) and inequality (72) above we obtain for n = 2

∫ T

0
‖A‖4

∞,[γ≥ 3
4 ]dτ ≤ cε0(cε0(1 + T ∗) + ε0T

∗)

≤ cε0.(73)

For n = 3 we have

∫ T

0
‖A‖4

∞,[γ≥ 3
4 ]dτ ≤ c(CAB)

1
3 ε

2
3
0

(
2[cε

2
3
0 (C

1
3
AB + T ∗)]

3
2 + cε0(CAB)

1
2 (T ∗)

3
2

)
≤ cε0,(74)

where c = c
(
‖h‖∞, cγ1, cγ2, T

∗, n, ε0
)

for n = 2 and c = c
(
‖h‖∞, cγ1, cγ2, T

∗, n, ε0, CAB

)
for n = 3. We use the convention that for the remainder of this proof all constants

c will depend on these quantities for n = 2 and n = 3 respectively.

Note that by (CB) we trivially have ‖h‖∞,[0,T ∗] ≤ c.
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We now use (64) with γ 3
4 , 78

. Factorising, we have

d

dt

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ ≤ c‖A‖4

∞,[γ 3
4 , 7

8
≥0]

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

+ c‖A‖2
2,[γ 3

4 , 7
8
≥0]

(
1 + ‖A‖4

∞,[γ 3
4 , 7

8
≥0]

)
+ ch

(
h

1
3

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ+ (1 + h

1
3 )‖A‖2

2,[γ 3
4 , 7

8
≥0]

)
≤ c

(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

) ∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

+ c‖A‖2
2,[γ≥ 3

4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)
.

We wish to solve this differential inequality using Gronwall’s inequality, Lemma A.1.

We will use the integral version (considering the integrals in the above expressions

as functions of time), since we can bound the integrals of relevant quantities, as we

have shown above.

Integrating,

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ−

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

≤ c
∫ t

0

[(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

) ∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ
]
dτ

+ c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ.(75)

Now from our earlier calculation (73) and assumption (CB) we have

∫ t

0

(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

)
dτ ≤ c,

and, using our assumption (70)

c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ ≤ c.

Also, we have ∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

≤ cα0(k),

where α0 is as in the statement of the proposition.
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Therefore, inequality (75) is of the form

α(t) ≤ β(t) +
∫ t

c
λ(τ)α(τ)dτ,

where

α(t) =
∫

M
‖∇(k)A‖2γs

3
4 , 78
dµ,

β(t) =
∫

M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

+ c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ,

and

λ(t) = ‖A‖4
∞,[γ≥ 3

4 ] + h
4
3 .

Noting that β and
∫
λdτ are bounded by the constants shown above, we can invoke

Gronwall’s inequality and conclude

∫
[γ≥ 7

8 ]
‖∇(k)A‖2dµ ≤ β(t) +

∫ t

0
β(τ)λ(τ)e

∫ t

τ
λ(ν)dνdτ ≤ c

(
k, α0(k)

)
.

Trivially, we also have

∫
[γ≥ 7

8 ]
‖∇(k+2)A‖2dµ ≤ c

(
k + 2, α0(k + 2)

)
.

Therefore using (52) with γ 7
8 , 1516

we can in fact bound ‖A‖∞ on a smaller ball:

‖A‖8n−12
∞,[γ≥ 15

16 ] ≤ cε0

([
c(2, α0(2)

)] 2n2−3n
2 + ε0

)
.

Finally, using (51) with T = ∇(k)A and γ = γ 15
16 ,1 we obtain

‖∇(k)A‖4
∞,[γ=1] ≤ c‖∇(k)A‖4−n

2,[γ> 15
16 ]

(
‖∇(k+2)A‖n

2,[γ> 15
16 ]

+ (‖A‖2n
∞,[γ> 15

16 ] + 1)‖∇(k)A‖n
2,[γ> 15

16 ]

)
≤ c

(
k, α0(k + 2)

)
.

This completes the proof of the proposition. �
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Remark. This proposition is essential in the overall argument, however we note

that to obtain bounds for all derivatives of curvature using this result we must

assume that the initial data f0 is not only ‘smooth enough’ (see short time existence

theorem), but in fact C∞. This is why we have smooth initial data in the statement

of the Lifespan Theorem. It is probably possible to use a different argument for

the very high derivatives of curvature, more similar to classical theory, and then we

would only require C4 initial data in the case of surface diffusion flow. However

since we are not overly concerned with the regularity of our initial data we have not

pursued that here.

6. Proof of the Lifespan Theorem

We begin by reducing the problem to the case where ρ = 1 in (22). Observe that

if ρ 6= 1 we may rescale our surface f to f̃(x, t) = 1
ρ
f(x, tρ4) in order to return to

the case ρ = 1. This preserves our key integral estimates (multiplying some terms

by a constant) and most crucially the integral quantity

∫
f−1(Bρ)

‖A‖pdµ

scales to

∫
f̃−1(B1)

ρ−p+n‖Ã‖pdµ̃,

where n is the dimension of the manifold M . In our cases, n = 2 or n = 3 and

the integral is scale invariant if p = 2 or p = 3 respectively. For the details of this

scaling, please see Appendix B. We will show that in the ρ = 1 setting

T̃ ≥ 1

c
,
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and scale back to the case of f−1(Bρ(x)). Due to the contribution of the fourth

order term ∆H in our governing equation (CSD), to maintain our earlier integral

estimates we scale time by a factor of ρ4. Note that h may scale in a non-invariant

fashion but this introduces a single change in the constant c only, and certainly a

scaled h (we only perform this rescaling once) continues to satisfy (CB). Therefore

we will conclude

T

ρ4
≥ 1

c
=⇒ T ≥ 1

c
ρ4,

which is equation (23). The estimate (24) valid during this time comes along ‘for

free’ in a sense, due to the structure of our argument.

We make the definition

(76) η(t) = sup
x∈R3

∫
f−1(B1(x))

‖A‖ndµ.

By covering B1 with several translated copies of B 1
2

there is a constant cη such that

(77) η(t) ≤ cη sup
x∈R3

∫
f−1(B 1

2
(x))
‖A‖ndµ.

Note that cη = 4n+1 is sufficient.

By short time existence we have that f(M × [0, t]) is compact for t < T and so

the function η : [0, T ) → R is continuous. We now define

(78)

t
(n)
0 =

sup{0 ≤ t ≤ min(T, λ2) : η(τ) ≤ 3cηε0 for 0 ≤ τ ≤ t}, n = 2,

sup{0 ≤ t ≤ min(T, λ3) : η(τ) ≤ 3cP24cηC
1/3
AB ε

2/3
0 for 0 ≤ τ ≤ t}, n = 3,

where λn is a parameter to be specified later. The constant cP24 is the maximum of

1 and the constant from Proposition 3.26 with k = 0. Recall that we assume (AB)

in the case where n = 3. Note that the ε0 on the right hand side of the inequality is

from equation (22).
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The proof continues in three steps. First, we show that it must be the case that

t
(n)
0 = min(T, λn). Second, we show that if t

(n)
0 = λn, then we can conclude the

Lifespan Theorem. Finally, we prove by contradiction that if T 6= ∞, then t
(n)
0 6= T .

We label these steps as

t
(n)
0 = min(T, λn),(79)

t
(n)
0 = λn =⇒ Lifespan Theorem,(80)

T 6= ∞ =⇒ t
(n)
0 6= T.(81)

The three statements (79), (80), (81) together imply the Lifespan Theorem. We

expand the sketch of the argument given above as follows: first notice that by (79)

t
(n)
0 = λn or t

(n)
0 = T , and if t

(n)
0 = λn then by (80) we have the Lifespan Theorem.

Also notice that if t
(n)
0 = ∞ then T = ∞ and the Lifespan Theorem follows from

estimate (84) below (used to prove statement (80)). Therefore the only remaining

case where the Lifespan Theorem may fail to be true is when t
(n)
0 = T < ∞. But

this is impossible by statement (81), so we are finished.

We now give the proof of the first step, statement (79). From the assumption

(22),

η(0) ≤ ε0 <

3cηε0, for n = 2

3cP24cηC
1/3
AB ε

2/3
0 , for n = 3,

and therefore (78) implies t
(n)
0 > 0. Assume for the sake of contradiction that

t
(n)
0 < min(T, λn). Then from the definition (78) of t

(n)
0 and the continuity of η we

have

(82) η
(
t
(n)
0

)
=

3cηε0, for n = 2

3cP24cηC
1/3
AB ε

2/3
0 , for n = 3,
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so long as ε0 ≤ 1 and CAB, cP24 ≥ 1. Recall Proposition 3.23. We will now set γ to

be a cutoff function as in (25) such that

χB 1
2
(x) ≤ γ̃ ≤ χB1(x),

for any x ∈Mt. Choosing a small enough ε0 (by varying ρ in (22)), (78) implies that

the smallness condition (60) is satisfied on [0, t
(n)
0 ). Due to (CB), we also have that

‖h‖∞,[0,t
(n)
0 )

< ∞. Therefore we have satisfied all the requirements of Proposition

3.23, and so we conclude∫
f−1(B 1

2
(x))
‖A‖2dµ ≤

∫
f−1(B1(x))

‖A‖2dµ

∣∣∣∣∣
t=0

+ c0cηε
2
n
0 t

≤

2ε0, for n = 2 and λ2 = 1
c0cη

,

2cP24C
1/3
AB ε

2/3
0 , for n = 3 and λ3 = cP24

C
1/3
AB

c0cη
,

(83)

for all t ∈ [0, t∗], where t∗ < t
(n)
0 and c0 is the constant from Proposition 3.23. That

is, equation (83) above is true for all t ∈
[
0, t

(n)
0

)
. We combine this with (77) and

Proposition 3.26 to conclude

(84) η(t) ≤ cn−2
P24cη sup

x∈Rn+1

∫
f−1(B 1

2
(x))
‖A‖2dµ ≤

2cηε0, for n = 2

2cP24cηC
1/3
AB ε

2/3
0 , for n = 3,

where 0 ≤ t < t
(n)
0 .

Since η is continuous, we can let t → t
(n)
0 and obtain a contradiction with

(82). Therefore, with the choice of λn in equation (83), the assumption that

t
(n)
0 < min(T, λn) is incorrect. Thus we have shown (79), the first of our three

steps.

We in fact have also proved the second step (80). Observe that if t
(n)
0 = λn then

by the definition (78) of t
(n)
0 ,

T ≥ λn,
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which is (23). Also, (84) implies (24). That is, we have proved if t
(n)
0 = λn, then

the lifespan theorem holds, which is the second step (80). It only remains to prove

equation (81).

We assume

t
(n)
0 = T 6= ∞;

since if T = ∞ then (23) holds automatically and again (84) implies (24). Note

also that we can safely assume T < λn, since otherwise we can apply step two to

conclude the Lifespan Theorem.

Our strategy is to show that in this case the flow exists smoothly up to and

including time T , allowing us to extend the flow, thus contradicting the finite max-

imality of T from short time existence.

To begin short time existence again at time T , we need to prove that the limiting

object MT has at least some regularity. Since the constraint function h satisfies the

estimate (22), if we can establish regularity for f(·, T ) then we will have taken case of

the constraint function also. We will show that MT is in fact smooth, by obtaining a

uniform bound on all the derivatives of f on the interval [0, T ). This will then allow

us to assert that the convergence Mt →MT is uniform, that the limiting object MT

is unique and that MT is smooth. This will be enough to not only start short time

existence again at T , but our entire argument.

Our main tool is Proposition 3.26. Since T = t
(n)
0 , (84) implies the smallness

condition (70) and we have

(85) ‖∇(m)A‖2
∞,B 1

2
(x) ≤ c

(
m,T, cγ1, cγ2, ‖h‖∞,[0,T ), α0(m+ 2)

)
,
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for any t ∈ [0, T ) and by the definition of η (see equations (22) and (76)) for any

x ∈ Mt, where α0 is defined as in Proposition 3.26. That is, we have a pointwise

bound

(86) ‖∇(m)A‖∞ ≤ c,

on all of Mt, where the constant c is as in inequality (85) above. We take the

convention that all constants c in the estimates below also depend on the quantities

in (85).

We will now work towards converting the bound (86) to bounds on the coordinate

derivatives of f . First however, we must show that there does exist a limiting

Riemannian manifold MT , and that the topology of the evolving manifolds (which

is determined by the metric) is equivalent to the topology of the limiting object. If

we cannot show this, then extending the flow beyond the maximal time T might

not be a contradiction, since we may have a different flow. We will use a result

from Hamilton [27] which proves that all the evolving metrics are equivalent to the

metric of MT . (A stronger statement.) This is a standard argument, and although

Hamilton used this with Ricci flow, it is important to many other flows. The first

appearance of this argument in the context of a hypersurface flow is Huisken [28]

on mean curvature flow.

Recall the evolution of the metric:

∂

∂t
g = −2 〈A,∆H + h〉 ≤ A ∗ ∇(2)A+ A‖h‖∞.

Therefore by (86),

(87) ‖∇(m)∂tg‖ ≤ c.
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Similarly, the evolution of the Christoffel symbols is bounded as

∂

∂t
Γk

ij ≤ ∇(3)A ∗ A+∇(2)A ∗ ∇A+∇A‖h‖∞,

so again by (86) we have

(88) ‖∇(m)∂tΓ
k
ij‖∞ ≤ c.

Lemma (Hamilton [27], Lemma 14.2). Let gij be a time dependent metric on a

compact manifold M for 0 ≤ t < T ≤ ∞. Suppose that

∫ T

0
max
Mt

∣∣∣∣∣∂gij

∂t

∣∣∣∣∣ dt ≤ C.

Then the metrics gij(t) are all equivalent, and they converge as t→ T uniformly to

a positive definite metric tensor gij(T ) which is continuous and also equivalent.

By (87) the hypothesis of the lemma is satisfied and we have that the metrics

g(t), for 0 ≤ t < T are equivalent. Choose a local chart with 1
C
≤ gij(t) ≤ C on a

neighbourhood U ⊂M , t ∈ [0, T ). Let Γ be the Christoffel symbols associated with

this chart and denote m iterated coordinate derivatives by ∂(m). For any tensor T

we have the formula

(89) ∇(m)T = ∂(m)T +
m∑

l=1

∑
k+k1+···+kl=m−l

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ.

This is immediate for m = 1 and then follows by induction. The base case is the

definition of the covariant derivative:

∇T = ∂T + T ∗ Γ.

It is instructive to see how we move from m = 1 to m = 2 before handling the

inductive step. The derivation is

∇(2)T = ∇(∂T + T ∗ Γ)
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= ∂(∂T + T ∗ Γ) + Γ ∗ (∂T + T ∗ Γ)

= ∂(2)T + ∂(T ∗ Γ) + Γ ∗ ∂T + T ∗ Γ ∗ Γ

= ∂(2)T +
[
T ∗ ∂Γ + T ∗ Γ ∗ Γ + ∂T ∗ Γ

]
= ∂(2)T +

∑
k+k1=1

∂(k)T ∗ ∂(k1)Γ +
∑

k+k1+k2=0

∂(k)T ∗ ∂(k1)Γ ∗ ∂(k2)Γ

= ∂(2)T +
2∑

l=1

∑
k+k1+···+kl=m−l

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ.

Using the inductive hypothesis, the following derivation finishes the induction proof

of (89).

∇(m)T = ∇
(
∂(m−1)T +

m−1∑
l=1

∑
k+k1+···+kl=m−l−1

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ

)

= ∂(m)T + Γ ∗ ∂(m−1)T

+ Γ ∗
(

m−1∑
l=1

∑
k+k1+···+kl=m−l−1

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ

)

+ ∂

(
m−1∑
l=1

∑
k+k1+···+kl=m−l−1

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ

)

= ∂(m)T + Γ ∗ ∂(m−1)T

+
m−1∑
l=1

∑
k+k1+···+kl=m−l−1

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ ∗ ∂(0)Γ

+
m−1∑
l=1

∑
k+k1+···+kl=m−l−1

∂(k+1)T · ∂(k1)Γ · · · ∂(kl)Γ

+
m−1∑
l=1

l
∑

k+k1+···+kl=m−l−1

∂(k)T · ∂(k1+1)Γ · · · ∂(kl)Γ

= ∂(m)T +
m∑

l=1

∑
k+k1+···+kl=m−l

∂(k)T · ∂(k1)Γ · · · ∂(kl)Γ.

Set σm = ‖Γ‖+ . . .+ ‖∂(m)Γ‖. Then

(90) ‖∂(m)T‖ ≤ c(m,σm−1)(‖∇(m)T‖+ ‖∂(m−1)T‖+ . . .+ ‖T‖).

We wish to refine the expression on the right hand side of (89) to include only

covariant derivatives. For clarity we state this as a lemma.
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Lemma 3.27. For any tensor T we have

(91) ‖∂(m)T‖ ≤ c(m,σm−1)(‖∇(m)T‖+ ‖∇(m−1)T‖+ . . .+ ‖T‖).

Proof. The proof is straightforward and again by induction: for the base case

we have

‖∂T‖ ≤ c(1, σ0)(‖∇T‖+ ‖T‖),

by (90), and then

‖∂(m)T‖ ≤ c(m,σm−1)(‖∇(m)T‖+ ‖∂(m−1)T‖+ . . .+ ‖T‖)

≤ c(m,σm−1)
(
‖∇(m)T‖

+ c(m− 1, σm−2)(‖∇(m−1)T‖+ . . .+ ‖T‖)

+ c(m− 2, σm−3)(‖∇(m−2)T‖+ . . .+ ‖T‖)

...

+ c(1, σ0)(‖∇T‖+ ‖T‖)
)

= c(m,σm−1)
m∑

i=0

(m−i∑
j=1

c(m− j, σm−j−1)

)
‖∇(i)T‖

,
using the induction hypothesis and taking the convention that c(0, σ−1) = 0. �

Noting that coordinate and time derivatives of the Christoffel symbols Γ are

tensors, we apply (91) to ∂
∂t

Γ and ∂(m)Γ. Using (86) and (88) with this we obtain

‖∂(m)
∂

∂t
Γ‖∞ ≤ c(m,T, f0, ‖h‖∞),

and this implies

(92) ‖∂(m)Γ‖∞ ≤ c(m,T, f0, ‖h‖∞).
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We claim now that

(93) ‖∂(k)∇(l)A‖∞, ‖∂(m+1)f‖∞ ≤ c(m,T, f0, ‖h‖∞), for k + l = m ≥ 0.

Using (86) and ‖∂f‖2 = n, this clearly holds for m = 0. For the induction step, let

k + l = m+ 1 and then

∂(k)∇(l)A−∇(m+1)A = ∂(k)∇(l)A−∇(k)∇(l)A

=
k∑

j=1

(∂(j)∇(k+l−j) − ∂(j−1)∇(k+l+1−j))A

=
k∑

j=1

∂(j−1)(∂ −∇)∇(k+l−j)A

=
k∑

j=1

∂(j−1)(∇(k+l−j)A ∗ A ∗ ∂f),(94)

where we used the identity

∂T −∇T = T ∗ A ∗ ∂f,

for any tangential tensor T in the last step. This is easily seen by differentiating

(T | ν) as follows. Let {ei, ν}1≤i≤n be a choice of Gaussian coordinates centered at

a point p ∈Mt and then compute in a neighbourhood of p:

Dej
(T | ν) = 0

=⇒
(
Dej

T
∣∣∣ ν) = −

(
T |Dej

ν
)

=⇒
(
Dej

T
∣∣∣ ν) ej = −

(
T |Dej

ν
)
ej

=⇒ ∂T −∇T = T ∗ A ∗ ∂f.

Now from the induction hypothesis we have that for any i where 0 ≤ i ≤ j−1 ≤

k − 1 ≤ m, the quantities ∂(i)∇(k+l−j)A, ∂(i)A and ∂(i+1)f are bounded. Therefore,

the above derivation (94) shows the first part of claim (93). The second part of (93)
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is an easy consequence of the Gauss-Weingarten relations

∂(2)f = A+ ∂f ∗ Γ

and (86), (92).

Considering the governing equation (CSD) and equations (86), (93), we have

that

(95) ‖∂(k)
∂

∂t
f‖∞, ‖∂(k)f‖∞ ≤ c(m,T, f0, ‖h‖∞,[0,T )).

Hence the convergence f(·, t) → f(·, T ) is in the C∞ topology andMT is smooth. We

have that f(·, T ) is a smooth immersion as the metrics at each time t are uniformly

equivalent and g(t) → g(T ). Finally, by short time existence, we can extend the

solution to an interval [0, T + δ], contradicting the maximality of T .

This establishes (81) and the theorem is proved. �

7. Concluding remarks

As mentioned earlier, Kuwert and Schätzle [37] proved a Lifespan Theorem for

the Willmore flow,

∂

∂t
f =

(
∆H +Q(A)

)
ν,

where they considered surfaces immersed in Rn via f , i.e. f : M2 → Rn. Note that

in one codimension Q(A) = ‖Ao‖2H. We first remark that one may use their setup

of the evolution equation (using the induced Laplacian along the normal bundle) to

obtain the Lifespan Theorem we proved here in arbitrary codimension. While the

core argument remains identical, there is additional notation to introduce and the

blowup analysis with associated long time existence and exponential convergence to
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spheres (see chapters 6 and 7) will not be valid in arbitrary codimension. We have

therefore omitted this analysis.

We also remark that one may consider the evolution equation

∂

∂t
f =

(
∆H + Q̃(A)

)
ν,

where f : M2 → R3, with Q̃(A) a term which may be estimated as

(96) Q̃ ≤ P 0
3 (A)

and recover a Lifespan Theorem. One may employ the techniques which we pre-

sented in Sections 4 and 5, or of course an adaptation of those in [37], to obtain this

result. This is essentially due to the integral estimates not depending on the pre-

cise form of the P -style terms. It may be possible to improve the growth condition

(96) above to include some derivatives and more copies of A, however we have not

pursued this. Of course combining this remark with the analysis we present in this

chapter for constrained flows will give a lifespan theorem for flows of the form

∂

∂t
=
(
∆H + P 0

3 (A) + h
)
ν.

Apart from constrained Willmore flows (for which one may compute constraint

functions which give monotone area, volume, etc) we are not aware of any interesting

examples of such flows. For immersions of dimension greater than 3, one will still be

frustrated by the Sobolev inequality Theorem 3.20, and the local version Proposition

3.21. We are not aware of any technique which may be used to completely remove

this restriction.



CHAPTER 4

Gap lemma for constrained surface diffusion flows

1. Introduction

We begin our discussion by first recalling the classical gap lemma, typically seen

in an introductory course on real analysis.

Theorem (Classical Gap Lemma (CGL)). Let A ⊂ R and assume there is an

a ∈ R such that a = supA. Then for every ε > 0, there is a b ∈ A such that

|a− b| < ε.

The (CGL) says that, although a may not be in A (that is, we cannot choose

ε = 0), we can become as close to a as we wish.

At first glance this appears far removed from our work here in evolution equa-

tions, deep in the context of differential geometry; at least to the point where such a

result is far entrenched in the required background, and not even worthy of comment,

let alone be called a theorem.

But as with many similar results in introductory calculus, they stem from an

abstract, hazy body of properties that mathematicians are interested in and when

new, unknown objects of higher complexity appear, mathematicians tend to run

tests on the new objects to be sure that they make sense and classify which of these

properties remain true or false, and under which conditions.

141
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That said however, our gap lemma is not a direct analog of (CGL). Indeed,

a direct analog would be just as easy to prove as the classical gap lemma. The

relationship our gap lemma has with (CGL) is more like that of a second cousin,

rather than a direct ancestor or descendent. We will make this precise. Consider a

smoothly varying one parameter family of manifolds Mt, where t ∈ [0, T ), equipped

with any metric | · | : Mt 7→ R so that (| · |, {Mt}) is a metric space. Then an

interpretation of (CGL) in this context could be:

Theorem (Manifold Gap Lemma (MGL)). Assume MT exists. Then for any

ε > 0, there is a t1 ∈ [0, T ) such that |Mt1 −MT | < ε.

Let us consider families of manifolds (and Riemannian metrics) which evolve by

some law, such as mean curvature flow, Ricci flow, and in particular surface diffusion

and the constrained surface diffusion flows. Unfortunately, if T is maximal then we

cannot in general expect (MGL) to remain useful. Indeed, for the flows mentioned

many interesting things can happen at the final time T , and the manifold MT may

possess any number of singularities. This is in contrast with the fact that the

limiting object MT will essentially always exist (at least in the weak varifold sense,

for example). It is clear that if we wish to recover a relevant statement, we must

impose some measure of regularity on MT , and then question not how ‘close’ we can

become to MT , but attempt to obtain information regarding the geometry of MT .

With this in mind, we state our main theorem for this chapter.

Theorem 4.1 (Gap Lemma). Suppose n ∈ {2, 3} and let f : Mn → Rn+1 be a

compact immersion with (∆H + h) ≡ 0. Then if assumptions (GLA1) and (GLA2)
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are satisfied

(GL) Mn = Sn

where Sn is an embedded n-dimensional sphere in Rn+1. If f : Mn → Rn+1 is instead

a proper immersion then we must assume in addition (GLA3) to recover (GL), and

allow Sn to denote a union of embedded spheres and planes.

Before detailing the conditions (GLA1), (GLA2) and (GLA3) we make some brief

comments relating this statement to our previous observations. First, the hypothesis

of the theorem includes that f(·) is a stationary surface under (CSD) flow, and so

in the ‘one parameter family of manifolds’ context we may assume that T = ∞.

Second, although this statement includes only the ε = 0 case from (MGL) in any

rigor, certainly choosing a suitable metric for comparison of manifolds would give a

statement similar to (MGL) for other values of ε. It is also worth mentioning that

one may easily prove that in any dimension stationary surfaces possess constant

mean curvature under (SD) flow:

0 =
∫

M
H∆Hdµ = −

∫
M
‖∇H‖2dµ.

In the case of (CSD) flow one may perform a similar computation:

0 =
∫

M
H∆Hdµ+ h

∫
M
Hdµ = −

∫
M
‖∇H‖2dµ+ h

∫
M
Hdµ,

and so if

h
∫

M
Hdµ <

∫
M
‖∇H‖2dµ

one obtains the same conclusion, that stationary solutions possess constant mean

curvature. This simple computation is of course not sufficient to obtain Theorem

4.1, although it does highlight the kind of conditions which we must impose upon
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h to obtain our desired result. This is natural, since of the possible choices for h

any number of them may be poorly behaved on spheres (non-zero for example). We

must rule out these constraint functions with the conditions for our theorem.

We make one final remark on the above computation. It is independent of n. This

is remarkable since throughout this work the intrinsic dimension of our manifolds

is tightly restricted to n = 2 or n = 3, with the latter even causing difficulty at

times. This may only imply that the elementary computation above is too simple

to see the full complexities of the problem at hand, although it may also indicate

that Theorem 4.1 remains valid in higher dimensions, and that our techniques here

are suffering from a technical disability.

The conditions for the theorem to be true are global smallness of the total trace-

free curvature, a growth condition on h and, in the case where Mt is not compact

in the limit, a bound on the growth of the curvature at infinity. Although they

are somewhat restrictive, the result gives an important feeling of the stationary

manifolds for a well-behaved class of constrained surface diffusion flows.

We say h satisfies (GLA1) if for some k ∈ (1,∞],

(GLA1) h2|M | ≤ 1

kc1

∫
M
‖∇(2)A

o‖2 + ‖A‖2‖∇Ao‖2 +H2‖∇H‖2 + ‖A‖4‖Ao‖2dµ.

where c = c(n) is the constant in the leading term on the right in Proposition 4.7.

Note that certainly (GLA1) can be checked and satisfied a priori. Also note that

this growth condition is global, and so none of the problems related to localised

estimates come into the analysis for the Gap Lemma, unlike the Lifespan Theorem

and Interior Estimates in chapters 3 and 5 respectively.
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The other assumptions are as follows. We say that f : Mn → Rn+1 satisfies

(GLA2) if for a given ε0 > 0,

(GLA2)
∫

M
‖Ao‖ndµ < ε0.

One should think of this as the averaged distance from M to a sphere in Ln. The

constant ε0 is again known a priori and is the chief restriction. In the proof of

Proposition 4.7 we determine exactly how small ε0 must be. Finally, we say that

f : Mn → Rn+1 satisfies (GLA3) if

(GLA3) lim inf
ρ→∞

1

ρ4

∫
f−1(Bρ(0))

‖A‖2dµ = 0.

Let us say that we are interested in a given (CSD) flow, and wish to determine

if the Gap Lemma holds for our flow. Then we must check (GLA1), and typically

while doing so we will wish to use the other assumption, (GLA2). The way we do

this is by observing that while both δ = 1
ck

and ε0 are fixed a priori, this gives not a

fixed pair of values for which the theorem is true but rather a whole range of values.

Therefore, we are ‘free’ to further tighten (GLA2) so that we can at least prove

(GLA1). Depending on the flow and the constraint function, this may be no further

restriction at all (in the case where ε0 is already required to be smaller than needed

to prove (GLA1)), or a significant restriction (in the case where the ε0 required to

prove (GLA1) is much smaller than that required from (GLA2)).

To strengthen the Gap Lemma to a more complete stability of spheres in L2

result, we would need to weaken the assumptions on the curvature to conditions

at initial time, and of course consider the flow equation instead of only stationary

solutions. This is far from trivial, and such a procedure was carried out successfully

by Kuwert & Schätzle [36], who we credit for the inspiration and structure of our
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argument here. In this overall sense, the Gap Lemma we prove is (similarly to the

Lifespan Theorem) in preparation for global analysis of the (CSD) flows. We will be

continuing our analysis toward obtaining our own stability of spheres result, which

is the subject of Chapter 7.

A version of the Lifespan Theorem with the smallness assumption on the trace-

free curvature instead of the full curvature would already be enough to attain this

goal, although this is a departure from the method of Kuwert and Schätzle, whose

technique (using the fact that Willmore flow is a gradient flow of total curvature)

is superior in the sense that they immediately rule out development of type 2 sin-

gularities in the limit. For us, it will be a delicate interplay between the Lifespan

Theorem and the Gap Lemma. This second version of the Lifespan Theorem is yet

another avenue for further research in this area.

2. Preparation

Unlike the Lifespan Theorem, the Gap Lemma does not make use of derivative

integral estimates. Instead, we deal directly with integral estimates where the right

hand side involves the speed of the flow. Throughout this chapter we will employ

the notation F = ∆H + h, for some specified constraint function h.

We begin with some elementary computations. For our (CSD) flows, we have

‖∂tf‖ = ‖(F )ν‖ = |F |

= |(∆H) + h| ≤ |∆H|+ |h|.(97)

This implies ∫
M
|∆H|γsdµ+

∫
M
|h|γsdµ ≥

∫
M
‖∂tf‖γsdµ.
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We can also obtain an inequality in the reverse direction by

F = ∆H + h

=⇒ ∆H = F − h

=⇒ |∆H| = |F − h| ≤ |F |+ |h|,(98)

so

∫
M
|∆H|γsdµ ≤

∫
M
|F |γsdµ+

∫
M
|h|γsdµ.

The overall idea of the argument is to prove estimates like

∫
M
‖∇(2)A‖2 + ‖A‖4‖Ao‖2dµ ≤

∫
M
‖∆A‖2dµ ≤

∫
M
‖∇(2)H‖2dµ ≤

∫
M
|∆H|2dµ

≤
∫

M
|F |2dµ.

Then the proof is, in essence, that if f(·) is a (CSD)-surface, |F (·)| = 0, and then we

obtain that ‖A‖ = 0, ‖Ao‖ = 0, or both are zero at final time. This implies f(·, T )

is an embedded plane or sphere. Of course we cannot prove estimates exactly as

above; there are some error terms and the constraint function h forces us to work a

little harder.

But even before we have these troubles, the first problem is how to exploit the

symmetries and fundamental theorems of differential geometry to obtain relation-

ships like

‖∇(2)A‖ ≤ c‖∆A‖+ ‘error’

≤ c‖∇(2)H‖+ ‘error’

≤ c|∆H|+ ‘error’.
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It is not easy to obtain these relationships as stated. However, with the introduction

of the tracefree second fundamental form

Ao = A− 1
n
Hg,

such relationships become much easier to prove. One of the nice symmetries that

this definition makes apparent is

(99) n
n−1

∇i(A
o)i

j = ∇jH.

This is especially useful when combined with the adjoint ∇∗ of ∇, using which the

previous expression becomes

− n
n−1

∇∗Ao = ∇H.

To prove (99), simply note

gij∇i(A
o)jk = gij∇i(Ajk − 1

n
gjkH) = ∇iA

i
k − 1

n
∇kH = (1− 1

n
)∇kH,

by Codazzi.

We will also need a Simons’ identity for Ao. Using (2),

∆Ao
ij = ∆Aij − 1

n
gij∆H

= ∇ijH − 1
n
gij∆H − ‖A‖2Aij +HAikA

k
j

= So
(
∇(2)H

)
+ 1

n
H2Ao

ij − ‖Ao‖2Ao
ij +HSo

(
Ao

i(·)A
o
j(·)

)
= So

(
∇(2)H

)
+ 1

n
H2Ao

ij + Ao ∗ Ao ∗ Ao + A ∗ Ao ∗ Ao,(100)

where So(T ) is the symmetric tracefree part of a bilinear form T .

3. Estimating ‖∇(2)A
o‖ in terms of |∆H|

We begin this process with the following lemma.
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Lemma 4.2. For an immersion f : Mn → Rn+1 and γ as in (25),

∫
M
‖∇Ao‖2γ2dµ+

∫
M
H2‖Ao‖2γ2dµ ≤ c

1

(cγ1)
2

∫
M
|F |2γ4dµ+ c|h|2 1

(cγ1)
2

∫
M
γ4dµ

(101)

+ c(cγ1)
2
∫
[γ>0]

‖A‖2dµ+ c
∫

M
‖Ao‖4γ2dµ,

where c = c(n).

Proof. Multiplying (100) by Aoγ2 and integrating by parts,

∫
M
〈Ao,∆Ao〉 γ2dµ = −

∫
M
‖∇Ao‖2γ2dµ− 2

∫
M
〈(∇γ)Ao,∇Ao〉 γdµ

=
∫

M

〈
Ao, So(∇(2)H)

〉
γ2dµ+

1

n

∫
M
H2 〈Ao, Ao〉 γ2dµ

+
∫

M

(
Ao ∗ Ao ∗ Ao ∗ Ao

)
γ2dµ.(102)

Note that the trace-free part of ∇(2)H is given by ∇(2)H − 1
2
∆Hg = So(∇(2)H).

Using this we obtain

∫
M

〈
Ao, So(∇(2)H)

〉
γ2dµ =

∫
M

〈
Ao,∇(2)H − 1

2
gij∆H

〉
γ2dµ

=
∫

M

〈
Ao,∇(2)H

〉
γ2dµ− 1

2

∫
M

(
trace Ao

)
∆Hγ2dµ

=
∫

M

〈
Ao,∇(2)H

〉
γ2dµ

= −
∫

M

(
∇i(A

o)i
j

)
(∇jH)γ2dµ− 2

∫
M

(∇iγ)(A
o)i

j(∇jH)γdµ.(103)

Combining estimates (102) and (103) gives

∫
M
‖∇Ao‖2γ2dµ+

1

n

∫
M
H2‖Ao‖2γ2dµ = 2

∫
M

[
(∇iγ)(A

o)i
j(∇jH)− 〈∇γAo,∇Ao〉

]
γdµ

+
∫

M

(
∇i(A

o)i
j

)
(∇jH)γ2dµ−

∫
M

(
Ao ∗ Ao ∗ Ao ∗ Ao

)
γ2dµ.

Estimating,

∫
M
‖∇Ao‖2γ2dµ+

1

n

∫
M
H2‖Ao‖2γ2dµ ≤ n− 1

n

∫
M
‖∇H‖2γ2dµ+ c

∫
M
‖Ao‖4γ2dµ

+ ε1

∫
M
‖∇Ao‖2γ2dµ+

c

4ε1
(cγ1)

2
∫
[γ>0]

‖Ao‖2dµ
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+
∫

M
‖∇H‖2γ2dµ+ c(cγ1)

2
∫
[γ>0]

‖Ao‖2dµ,

choosing ε1 = 3n−5
3

we have

5

3n

∫
M
‖∇Ao‖2γ2dµ+

1

n

∫
M
H2‖Ao‖2γ2dµ ≤ n− 1

n

∫
M
‖∇H‖2γ2dµ

+ c(cγ1)
2
∫
[γ>0]

‖Ao‖2dµ+ c
∫

M
‖Ao‖4γ2dµ.

We estimate the first term on the right by

∫
M
‖∇H‖2γ2dµ = −

∫
M
〈H,∆H〉 γ2dµ− 2

∫
M
〈∇γ,∇H〉Hγdµ

= −
∫

M
〈H,∆H〉 γ2dµ− 2n

n− 1

∫
M

(∇jγ)
(
∇i(Ao)j

i

)
Hγdµ

≤ 1

(cγ1)
2

∫
M
|∆H|2γ4dµ+ 4(cγ1)

2
∫
[γ>0]

H2dµ

+ c
∫

M

(
∇γ ∗ A ∗ ∇Ao

)
γdµ

≤ 1

(cγ1)
2

∫
M
|∆H|2γ4dµ+ c(cγ1)

2
∫
[γ>0]

‖A‖2dµ

+
n

n− 1

1

3n

∫
M
‖∇Ao‖2γ2dµ+ c(cγ1)

2
∫
[γ>0]

‖A‖2dµ,(104)

where we used (99). Combining the inequalities gives

5

3n

∫
M
‖∇Ao‖2γ2dµ+

1

n

∫
M
H2‖Ao‖2γ2dµ

≤ 1

3n

∫
M
‖∇Ao‖2γ2dµ+

c

(cγ1)
2

∫
M
|∆H|2γ4dµ+ c(cγ1)

2
∫
[γ>0]

‖A‖2dµ

+
∫

M
‖Ao‖4γ2dµ.

Absorbing
∫
M‖∇Ao‖2γ2dµ on the left, this becomes

4

3n

∫
M
‖∇Ao‖2γ2dµ+

1

n

∫
M
H2‖Ao‖2γ2dµ

≤ c

(cγ1)
2

∫
M
|∆H|2γ4dµ+ c(cγ1)

2
∫
[γ>0]

‖A‖2dµ+ c
∫

M
‖Ao‖4γ2dµ

=
c

(cγ1)
2

∫
M
|F |2γ4dµ− |h|2 c

(cγ1)
2

∫
M
γ4dµ− c

(cγ1)
2h
∫

M
(∆H)γ4dµ

+ c(cγ1)
2
∫
[γ>0]

‖A‖2dµ+ c
∫

M
‖Ao‖4γ2dµ,(105)
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since

|F |2 = (∆H + h)2 = |∆H|2 + |h|2 − 2h(∆H).

Note that

−ch
∫

M
(∆H)γ4dµ = ch

∫
M
〈∇H,∇γ〉 γ3dµ

≤ 1

3n

∫
M
‖∇Ao‖2γ2dµ+ c(cγ1)

2h2
∫

M
γ4dµ.

Combining this with (105) above and absorbing, we finally obtain the result. �

A slight variation to the above proof also gives the following estimate.

Corollary 4.3. For an immersion f : Mn → Rn+1 and γ as in (25),

∫
M
‖∇Ao‖2γ2dµ+

∫
M
H2‖Ao‖2γ2dµ

≤ c
1

(cγ1)
2

∫
M
|F |2γ4dµ+ ch

∫
M
Hγ2dµ+ c(cγ1)

2
∫
[γ>0]

‖A‖2dµ+ c
∫

M
‖Ao‖4γ2dµ,

where c = c(n).

Proof. Instead of (104) use

−
∫

M
〈H,∆H〉 γ2 = −

∫
M
〈H,F 〉 γ2dµ+ h

∫
M
Hγ2dµ

≤ 1

(cγ1)
2

∫
M
|F |2γ4dµ+ h

∫
M
Hγ2dµ+ (cγ1)

2
∫
[γ>0]

H2dµ.

The remaining terms are estimated identically to before. �

Using Codazzi and interchange of covariant derivatives, we improve the left hand

side of the previous estimate.

Lemma 4.4. For an immersion f : Mn → Rn+1 we have

∫
M
‖∇(2)H‖2γ4dµ+

∫
M
H2‖∇Ao‖2γ4dµ+

n− 1

n

∫
M
H2‖∇H‖2γ4dµ
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+
1

n(n− 1)

∫
M
H4‖Ao‖2γ4dµ ≤ c

∫
M
|F |2γ4dµ+ c

∫
M
|h|2γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ

+ c
∫

M
(‖Ao‖2‖∇Ao‖2 + ‖Ao‖6)γ4dµ,

where c = c(n).

Proof. Gauss-Bonnet, interchange of covariant derivative and Codazzi yield

the following identity

∇∗(∇(2)H) = ∇(∇∗∇H)− n− 1

n2
H2∇H + A ∗ Ao ∗ ∇Ao,

where ∇∗ is the formal adjoint of ∇. Taking an inner product on both sides of the

above equation with (∇H)γ4 and then integrating by parts gives

∫
M

〈
∇H,∇∗(∇(2)H)

〉
γ4dµ =

∫
M
‖∇(2)H‖2γ4dµ+ 4

∫
M
γ3(∇γ ∗ ∇H ∗ ∇(2)H)dµ

= −n− 1

n2

∫
M
H2 〈∇H,∇H〉 γ4dµ+

∫
M
〈∇H,A ∗ Ao ∗ ∇Ao〉 γ4dµ

−
∫

M
〈∇H,∇∆H〉 γ4dµ,

and so, integrating by parts once more,

∫
M
‖∇(2)H‖2γ4dµ+

n− 1

n2

∫
M
H2‖∇H‖2γ4dµ ≤ c

∫
M

(A ∗ Ao ∗ ∇Ao ∗ ∇Ao)γ4dµ

+ c
∫

M
γ3(∇γ ∗ ∇H ∗ ∇(2)H)dµ+ c

∫
M
|∆H|2γ4dµ.(106)

Note that we used
∫
M

〈
∇H,∇∗(∇(2)H)

〉
γ4dµ = −

∫
M 〈∇H,∆∇H〉 γ4dµ.

Recall that from our earlier calculations

|∆H|2 = |F |2 + |h|2 − 2Fh.

Inserting this into (106) we obtain

∫
M
‖∇(2)H‖2γ4dµ+

n− 1

n2

∫
M
H2‖∇H‖2γ4dµ ≤

∫
M

[|F |2 + |h|2 − 2Fh]γ4dµ
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+
n2 − n+ 1

n2

∫
M
‖∇(2)H‖2γ4dµ+ c(cγ1)

2
∫

M
‖∇H‖2γ2dµ

+ δ1

∫
M
H2‖∇Ao‖2γ4dµ+ c

∫
M
‖Ao‖2‖∇Ao‖2γ4dµ,(107)

where we also estimated
∫
M(∇γ∗∇H ∗∇(2)H)γ3dµ and

∫
M(A∗Ao∗∇Ao∗∇Ao)γ4dµ,

and used A = Ao − 1
n
Hg.

We now estimate the ‖∇H‖2 term. Using (99) and then Corollary 4.3,

∫
M
‖∇H‖2γ2dµ ≤ c

∫
M
‖∇Ao‖γ2dµ

≤ c(cγ1)
−2
∫

M
|F |2γ4dµ+ c

∫
M
‖Ao‖4γ2dµ

+ c(cγ1)
2
∫
[γ>0]

‖A‖2dµ+ ch
∫

M
Hγ2dµ

≤ c(cγ1)
−2
∫

M
|F |2γ4dµ+ ch

∫
M
Hγ2dµ

+ c(cγ1)
−2
∫

M
‖Ao‖6γ4dµ+ c(cγ1)

2
∫
[γ>0

‖A‖2dµ.

Inserting into (107) yields

∫
M
‖∇(2)H‖2γ4dµ+

∫
M
H2‖∇H‖2γ4dµ ≤ c

∫
M

(
|F |2 − 2Fh+ |h|2

)
γ4dµ

+ c(cγ1)
2h
∫

M
Hγ2dµ+ c

∫
M
‖Ao‖6γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ

+ c
∫

M
‖Ao‖2‖∇Ao‖2γ4dµ+ δ1

∫
M
H2‖∇Ao‖2γ4dµ.(108)

The last integral is critical. For the Gap Lemma to work we need some positive

non-derivative term on the left. We obtain it from the last integral as follows.

∫
M
H2‖∇Ao‖2γ4dµ

= −
∫

M
H2 〈Ao,∆Ao〉 γ4dµ− 2

∫
M
H 〈(∇H)Ao,∇Ao〉 γ4dµ

− 4
∫

M
H2 〈(∇γ)Ao,∇Ao〉 γ3dµ

= −
∫

M
H2

〈
Ao,∇(2)H + 1

n
H2Ao + Ao ∗ Ao ∗ Ao + A ∗ Ao ∗ Ao

〉
γ4dµ
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− 2
∫

M
H(∇H ∗ ∇Ao ∗ Ao)γ4dµ− 4

∫
M
H2(∇Ao ∗ Ao ∗ ∇γ)γ3dµ

= −
∫

M
H2

〈
Ao,∇(2)H

〉
γ4dµ− 1

n

∫
M
H2

〈
Ao, H2Ao

〉
γ4dµ

−
∫

M
H2 〈Ao, Ao ∗ Ao ∗ Ao〉 γ4dµ− 2

∫
M
H(∇H ∗ ∇Ao ∗ Ao)γ4dµ

− 4
∫

M
H2(∇Ao ∗ Ao ∗ ∇γ)γ3dµ

= −
∫

M
H2 〈∇∗Ao,∇H〉 γ4dµ+ 2

∫
M
H(∇pH)(Ao)p

q(∇qH)γ4dµ

+ 4
∫

M
H2 〈Ao,∇H∇γ〉 γ3dµ− 1

n

∫
M
H4‖Ao‖2γ4dµ− c

∫
M
H2‖Ao‖4γ4dµ

− 2
∫

M
H(∇H ∗ ∇Ao ∗ Ao)γ4dµ− 4

∫
M
H2(∇Ao ∗ Ao ∗ ∇γ)γ3dµ.

Using (99) we estimate the equality by

∫
M
H2‖∇Ao‖2γ4dµ

≤ −1

n

∫
M
H4‖Ao‖2γ4dµ+

n− 1

n

∫
M
H2‖∇H‖2γ4dµ

+ c
∫

M
H2‖Ao‖4γ4dµ+ c

∫
M
H‖∇H‖ · ‖∇Ao‖ · ‖Ao‖γ4dµ

+ c(cγ1)
∫

M
H2‖∇Ao‖ · ‖Ao‖γ3dµ

≤ −1

n

∫
M
H4‖Ao‖2γ4dµ+

n− 1

n

∫
M
H2‖∇H‖2γ4dµ+ c

∫
M
H2‖Ao‖4γ4dµ

+ (δ2 + δ3)
∫

M
H2‖∇Ao‖2γ4dµ+ cδ2

∫
M
‖Ao‖2‖∇Ao‖2γ4dµ

+ cδ3(cγ1)
2
∫

M
H2‖Ao‖2γ2dµ.

Let δ2 + δ3 = n−1
n

. Then

∫
M
H2‖∇Ao‖2γ4dµ+

∫
M
H4‖Ao‖2γ4dµ− (n− 1)

∫
M
H2‖∇H‖2γ4dµ

≤ c
∫

M
‖Ao‖2‖∇Ao‖2γ4dµ+ c

∫
M
‖Ao‖6γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖Ao‖2dµ,(109)

where we estimated

(cγ1)
2
∫

M
H2‖Ao‖2γ2dµ ≤ 1

4

∫
M
H4‖Ao‖2γ4dµ+ (cγ1)

4
∫
[γ>0]

‖Ao‖2dµ.



3. ESTIMATING ‖∇(2)A
o‖ IN TERMS OF |∆H| 155

Combining (108) and (109), we conclude

∫
M
‖∇(2)H‖2γ4dµ+

∫
M
H2‖∇H‖2γ4dµ+ δ1

∫
M
H4‖Ao‖2γ4dµ

≤ c
∫

M

(
|F |2 − 2Fh+ |h|2

)
γ4dµ+ c(cγ1)

2h
∫

M
Hγ2dµ

+ c
∫

M
‖Ao‖6γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ

+ c
∫

M
‖Ao‖2‖∇Ao‖2γ4dµ+ δ1(n− 1)

∫
M
H2‖∇H‖2γ4dµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c

∫
M
‖Ao‖6γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ

+ c
∫

M
‖Ao‖2‖∇Ao‖2γ4dµ+ δ1(n− 1)

∫
M
H2‖∇H‖2γ4dµ.

Choosing δ1 = 1
n(n−1)

gives the result. �

We further exploit the symmetry relations to convert the left hand side to an

expression involving ‖∇(2)A
o‖.

Lemma 4.5. For an immersion f : Mn → Rn+1 we have

∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ+

∫
M
H2‖∇H‖2γ4dµ

+
∫

M
H4‖Ao‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ

≤ c
∫

M
|F |2γ4dµ+ c

∫
M
|h|2γ4dµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ

+ c1

∫
M

(‖Ao‖2‖∇Ao‖2 + ‖Ao‖6)γ4dµ,

where c = c(n).

Proof. We will again use a consequence of interchange and Codazzi,

(110) ∇∗(∇(2)A
o) = ∇(∇∗∇Ao) + A ∗ A ∗ ∇Ao.

Multiplying (110) by γ4∇Ao and integrating by parts,

∫
M

〈
∇Ao,∇∗(∇(2)A

o)
〉
γ4dµ = −

∫
M
〈∇Ao,∆∇Ao〉 γ4dµ
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=⇒
∫

M
‖∇(2)A

o‖2γ4dµ+ 4
∫

M

〈
(∇γ)∇Ao,∇(2)A

o
〉
γ3dµ

≤
∫

M
〈∇Ao,∇(∇∗∇Ao)〉 γ4dµ+

∫
M
〈∇Ao, A ∗ A ∗ ∇Ao〉 γ4dµ

=
∫

M
‖∆Ao‖2γ4dµ+

∫
M
〈∇Ao, A ∗ A ∗ ∇Ao〉 γ4dµ

+ 4
∫

M
(∇pγ)(∇p(Ao)qr)(∆(Ao)qr)γ3dµ

=⇒
∫

M
‖∇(2)A

o‖2γ4dµ

≤
∫

M
‖∆Ao‖2γ4dµ+ c

∫
M
‖∇Ao‖2‖A‖2γ4dµ+ c

∫
M

(∇γ ∗ ∇Ao ∗ ∇(2)A
o)γ3dµ

≤
∫

M
‖∆Ao‖2γ4dµ+ δ1

∫
M
‖∇(2)A

o‖2γ4dµ+ cδ1(cγ1)
2
∫

M
‖∇Ao‖2γ4dµ

+ c
∫

M
‖∇Ao‖2‖A‖2γ4dµ.

Choosing δ1 = 1
2
, absorbing

∫
M‖∇(2)A

o‖2γ4dµ on the left and multiplying by 2 we
have

∫
M
‖∇(2)A

o‖2γ4dµ

≤ 2
∫

M
‖∆Ao‖2γ4dµ+ c

∫
M
‖∇Ao‖2‖A‖2γ4dµ+ c(cγ1)

2
∫

M
‖∇Ao‖2γ4dµ.

(111)

Now use (100) to compute

∫
M
‖∆Ao‖2γ4dµ =

∫
M

〈
So(∇(2)H),∆Ao

〉
γ4dµ+

1

n

∫
M
H2 〈Ao,∆Ao〉 γ4dµ

+
∫

M
〈∆Ao, Ao ∗ Ao ∗ Ao +HSo(Ao ∗ Ao)〉 γ4dµ

≤
∫

M
‖∇(2)H‖ · ‖∆Ao‖γ4dµ+

1

n

∫
M
H2‖Ao‖ · ‖∆Ao‖γ4dµ

+
∫

M
‖∆Ao‖ · ‖Ao‖3γ4dµ+

∫
M
‖∆Ao‖ ·H · ‖Ao‖2γ4dµ

≤
5∑

i=1

δi

∫
M
‖∆Ao‖2γ4dµ+ cδ2

∫
M
‖∇(2)H‖2γ4dµ

+ cδ3

∫
M
‖Ao‖6γ4dµ+ cδ4

∫
M
H4‖Ao‖2γ4dµ+ cδ5

∫
M
H2‖Ao‖4γ4dµ.
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Choose
∑5

i=1 δi = 1
2

and absorb
∫
M‖∆Ao‖2γ4dµ on the left to obtain

∫
M
‖∆Ao‖2γ4dµ ≤ c

∫
M
‖∇(2)H‖2γ4dµ+ c

∫
M
H4‖Ao‖2γ4dµ+ c

∫
M
‖Ao‖6γ4dµ,

where we also estimated

H2‖Ao‖2 ≤ 1

2
H4‖Ao‖2 +

1

2
‖Ao‖6.

We combine this with (111) and conclude

∫
M
‖∇(2)A‖2γ4dµ ≤ c

∫
M
‖∇(2)H‖2γ4dµ+ c

∫
M
H4‖Ao‖2γ4dµ+ c

∫
M
‖Ao‖6γ4dµ

+ c
∫

M
‖∇Ao‖2‖A‖2γ4dµ+ c(cγ1)

2
∫

M
‖∇Ao‖2γ4dµ.(112)

Combining (112) with corollary 4.3 and lemma 4.4 gives the result. �

Recall Lemma 3.22. A similar proof, where we consider Ao instead of A, yields

the following multiplicative Sobolev inequalities.

Lemma 4.6. Suppose γ is as in (25) and s ≥ 4. Then for an immersion f :

M2 → R3

∫
M
‖Ao‖6γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

≤ c2

∫
[γ>0]

‖Ao‖2dµ
∫

M

(
‖∇(2)A

o‖2 + ‖A‖2‖∇Ao‖2 + ‖A‖2‖Ao‖4
)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2

,

and for an immersion f : M3 → R4

∫
M
‖Ao‖6γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

≤ δ
∫

M
‖∇(2)A

o‖2γsdµ+ c2‖Ao‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖A‖2‖Ao‖4 + ‖Ao‖6
)
γsdµ

+ c(cγ1)
3‖Ao‖

9
2

3,[γ>0],

where δ ∈ (0,∞) and c = c(s, n).
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Proof. We first consider the n = 2 case. Keep in mind that since we obtain

many of the below estimates through the use of the Michael-Simon Sobolev inequal-

ity, one can only safely use them if n = 2. We will provide the proof of the n = 3

case separately.

Our overall strategy is to apply the Michael-Simon Sobolev inequality with u =

‖Ao‖3γ
s
2 and u = ‖∇Ao‖ · ‖A‖γ s

2 , and then use Hölder and other standard integral

estimates.

Beginning with u = ‖Ao‖3γ
s
2 :

∫
M
‖Ao‖6γsdµ ≤ c

[ ∫
M
‖Ao‖2‖∇Ao‖γ

s
2dµ+

∫
M
‖Ao‖3‖∇γ‖γ

s
2
−1dµ

+
∫

M
‖Ao‖3|H|γ

s
2dµ

]2

≤ c

(∫
M
‖Ao‖2‖∇Ao‖γ

s
2dµ

)2

+ c

(∫
M
‖Ao‖3‖∇γ‖γ

s
2
−1dµ

)2

+ c

(∫
M
‖Ao‖3|H|γ

s
2dµ

)2

≤ c‖Ao‖2
2,[γ>0]

∫
M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖4H2

)
γsdµ

+ c(cγ1)
2

(∫
[γ>0]

‖Ao‖2dµ

)(∫
M
‖Ao‖4γs−2dµ

)

≤ c‖Ao‖2
2,[γ>0]

∫
M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖4H2 + ‖Ao‖6

)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2

.

This estimates the first term. For the second we need to work a tiny bit harder.

First we derive the formula

(113)

(∫
M
‖∇Ao‖2γ

s
2dµ

)2

≤ c

(∫
M
‖Ao‖ · ‖∇(2)A

o‖γ
s
2dµ

)2

+ c(cγ1)
4‖Ao‖4

2,[γ>0].
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To show (113), we use integration by parts, Kato, Cauchy and then Jensen’s in-

equality:

∫
M
‖∇Ao‖2γ

s
2dµ ≤ c

∫
M
‖Ao‖ · ‖∇(2)A

o‖γ
s
2dµ

+ c
∫

M
‖∇Ao‖ · ‖Ao‖ · ‖∇γ‖γ

s
2
−1dµ

≤ c
∫

M
‖Ao‖ · ‖∇(2)A

o‖γ
s
2dµ

+
1√
2

∫
M
‖∇Ao‖2γ

s
2dµ+ c(cγ1)

2‖Ao‖2
2,[γ>0]

=⇒
(∫

M
‖∇Ao‖2γ

s
2dµ

)2

≤ c

(∫
M
‖Ao‖ · ‖∇(2)A

o‖γ
s
2dµ

)2

+
1

2

(∫
M
‖∇Ao‖2γ

s
2dµ

)2

+ c(cγ1)
4‖Ao‖4

2,[γ>0],

and absorbing on the left gives (113).

Note that we obtain as a corollary to the proof above

(∫
M
‖∇Ao‖·‖Ao‖·‖∇γ‖γ

s
2
−1dµ

)2

≤ c

(∫
M
‖Ao‖·‖∇(2)A

o‖γ
s
2dµ

)2

+c(cγ1)
4‖Ao‖4

2,[γ>0].

Now we use the Michael-Simon Sobolev inequality with u = ‖∇Ao‖ · ‖A‖γ s
2 :

∫
M
‖∇Ao‖2‖Ao‖2γsdµ ≤ c

[ ∫
M
‖∇(2)A

o‖ · ‖Ao‖γ
s
2dµ+

∫
M
‖∇Ao‖2γ

s
2dµ

+
∫

M
‖∇Ao‖ · ‖Ao‖ · ‖∇γ‖γ

s
2
−1dµ

+
∫

M
‖∇Ao‖ · ‖Ao‖|H|γ

s
2dµ

]2

≤ c

(∫
M
‖∇(2)A

o‖ · ‖Ao‖γ
s
2dµ

)2

+ c

(∫
M
‖∇Ao‖2γ

s
2dµ

)2

+ c

(∫
M
‖∇Ao‖ · ‖Ao‖‖∇γ‖γ

s
2
−1dµ

)2

+ c

(∫
M
‖∇Ao‖ · ‖Ao‖ · |H|γ

s
2dµ

)2

≤ c

(∫
M
‖∇(2)A

o‖ · ‖Ao‖γ
s
2dµ

)2
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+ c

(∫
M
‖∇Ao‖ · ‖Ao‖ · ‖∇γ‖γ

s
2
−1dµ

)2

+ c‖Ao‖2
2,[γ>0]

∫
M

(
‖∇Ao‖2‖A‖2

)
γsdµ+ c‖Ao‖4

2,[γ>0]

≤ c‖Ao‖2
2,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2
)
γsdµ

+ c(cγ1)
4‖Ao‖4

2,[γ>0],

Where we used (113) and the corollary to (113) in the last two lines above.

Combining the two main inequalities proved above gives the first statement of

the lemma.

We now turn to the n = 3 case. First observe that

∫
‖∇Ao‖3γsdµ ≤

∫
M

(
〈Ao,∆Ao〉 ∗ ∇Ao + Ao ∗ ∇Ao ∗ ∇‖∇Ao‖

)
γsdµ

+ s
∫

M

(
Ao ∗ ∇Ao ∗ ∇Ao ∗ ∇γ

)
γs−1dµ

≤ 2
∫

M
‖Ao‖ · ‖∇Ao‖ · ‖∇(2)A

o‖γsdµ+ scγ1

∫
M

(
‖∇Ao‖2‖Ao‖

)
γs−1dµ

≤ 1

4δ

∫
M
‖∇(2)A

o‖2γsdµ+ δ
∫

M
‖Ao‖2‖∇Ao‖2γsdµ

+
(scγ1)

342

3

∫
M
‖Ao‖3γ2s−3dµ+

1

6

∫
M
‖∇Ao‖3γsdµ

≤ 1

4δ

∫
M
‖∇(2)A

o‖2γsdµ+
δ3

3

∫
M
‖Ao‖6γsdµ+

(scγ1)
342

3

∫
M
‖Ao‖3γ2s−3dµ

+
5

6

∫
M
‖∇Ao‖3γsdµ,

so

∫
‖∇Ao‖3γsdµ ≤ 3

2δ

∫
M
‖∇(2)A

o‖2γsdµ+ 2δ3
∫

M
‖Ao‖6γsdµ+ 2(scγ1)

342
∫
[γ>0]

‖Ao‖3dµ,

for any δ ∈ (0,∞).
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Now we use the Michael-Simon Sobolev inequality with u = ‖Ao‖4γ2s/3 to esti-

mate

( ∫
M
‖Ao‖6γsdµ

) 2
3

≤ c
∫

M

∥∥∥∇(‖Ao‖4γ2s/3
)∥∥∥dµ+ c

∫
M
|H| · ‖Ao‖4γ2s/3dµ

≤ c
∫

M
‖Ao‖3‖∇Ao‖γ2s/3dµ+ c

∫
M
‖Ao‖4‖∇γ‖γ2s/3−1dµ

+ c
∫

M
‖A‖4/3‖Ao‖11/3γ2s/3dµ

≤ c
∫

M
‖Ao‖3‖∇Ao‖γ2s/3dµ+ c

∫
M
‖Ao‖5γ4s/3−2dµ+ c(cγ1)

2‖Ao‖3
3,[γ>0]

+ c
( ∫

[γ>0]
‖Ao‖3dµ

) 1
3
( ∫

M
‖A‖2‖Ao‖4γsdµ

) 2
3

≤ c
∫

M
‖∇Ao‖2‖Ao‖γsdµ+ c

∫
M
‖Ao‖5γsdµ+ c(cγ1)

2‖Ao‖3
3,[γ>0]

+ c
( ∫

[γ>0]
‖Ao‖3dµ

) 1
3
( ∫

M
‖A‖2‖Ao‖4γsdµ

) 2
3

≤ c
∫

M
‖∇Ao‖2‖Ao‖γsdµ+

( ∫
M
‖Ao‖6γsdµ

) 2
3
( ∫

[γ>0]
‖Ao‖3

) 1
3

+ c
( ∫

[γ>0]
‖Ao‖3dµ

) 1
3
( ∫

M
‖A‖2‖Ao‖4γsdµ

) 2
3

+ c(cγ1)
2‖Ao‖3

3,[γ>0],

so

∫
M
‖Ao‖6γsdµ ≤ c

( ∫
M
‖∇Ao‖2‖Ao‖γsdµ

) 3
2

+ c‖Ao‖
3
2

3,[γ>0]

∫
M
‖Ao‖6γsdµ

+ c‖Ao‖
3
2

3,[γ>0]

∫
M
‖A‖2‖Ao‖4γsdµ+ c(cγ1)

3‖Ao‖
9
2

3,[γ>0]

≤ c‖Ao‖
3
2

3,[γ>0]

∫
M
‖∇Ao‖3γsdµ+ c(cγ1)

3‖Ao‖
9
2

3,[γ>0]

+ c‖Ao‖
3
2

3,[γ>0]

∫
M

(
‖Ao‖6 + ‖A‖2‖Ao‖4

)
γsdµ

≤ c‖Ao‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖A‖2‖Ao‖4 + ‖Ao‖6
)
γsdµ

+ c(cγ1)
3‖Ao‖

9
2

3,[γ>0].
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This estimates the first term. For the second, we can employ a more direct technique

using our estimates above,

∫
M
‖Ao‖2‖∇Ao‖2γsdµ ≤ c

∫
M
‖Ao‖6γsdµ+ c

∫
M
‖∇Ao‖3γsdµ

≤ δ
∫

M
‖∇(2)A

o‖2γsdµ

+ cδ‖Ao‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖Ao‖6
)
γsdµ

+ cδ(cγ1)
3
(
‖Ao‖3

3,[γ>0] + ‖Ao‖
9
2

3,[γ>0]

)
.

This estimates the second term, and combining the two estimates above finishes the

proof of the second statement. �

Remark. We have only included the above multiplicative Sobolev inequality

for the n = 2, 3 cases due to the corresponding limitation on the Lifespan Theorem

from the outset (see Chapter 3), which will also make itself known when we prove

curvature and interior estimates (see Chapter 5). In fact, whenever one requires L∞

estimates, this limitation will impose itself. One should keep in mind however that

for the sole purpose of the Gap Lemma, it is possible that the restriction on the

dimension of M is not required.

The following proposition is the final estimate, alluded to in our introduction,

which will allow us to proceed with the proof of the gap lemma. The smallness

assumption here is not mysterious: we will see that ε0 = 1
c1c2

is good enough for

n = 2, and ε0 <
1−δ
c1c2

for some 1 > δ > 0 when n = 3, where c1 and c2 are the same

constants as before, from Lemma 4.5 and Lemma 4.6 respectively.
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Proposition 4.7. Suppose n ∈ {2, 3} and γ is as in (25). Let f : Mn → Rn+1

be an immersion with

(114)
∫
[γ>0]

‖Ao‖ndµ < ε0.

Then we have

∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ

+
∫

M
H2‖∇H‖2γ4dµ ≤ c

∫
M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0]

+ c(cγ1)
4‖A‖2

2,[γ>0] + (n− 2)c(cγ1)
3‖Ao‖

9
2

3,[γ>0],

where c = c(n).

Proof. Recall Lemma 4.5 and Lemma 4.6. We combine these to obtain in the

n = 2 case

∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ

+
∫

M
H2‖∇H‖2γ4dµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0] + c(cγ1)

4‖A‖2
2,[γ>0]

+ c1c2‖Ao‖2
2,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2 + ‖A‖2‖Ao‖4
)
γ4dµ

=⇒
(
1− c1c2‖Ao‖2

2,[γ>0]

)[ ∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ

+
∫

M
‖A‖4‖Ao‖2γ4dµ

]
+
∫

M
H2‖∇H‖2γ4dµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0] + c(cγ1)

4‖A‖2
2,[γ>0].

Therefore, with ‖Ao‖2
2,[γ>0] < ε0 < (c1c2)

−1 we can divide by (1− ε0) to conclude the

result.
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For the n = 3 case we must proceed slightly differently. We have

∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ+

∫
M
H2‖∇H‖2γ4dµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0] + c(cγ1)

4‖A‖2
2,[γ>0]

+ δ
∫

M
‖∇(2)A

o‖2γsdµ+ c(cγ1)
3‖Ao‖

9
2

3,[γ>0]

+ c1c2‖Ao‖
3
2

3,[γ>0]

∫
M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2 + ‖A‖2‖Ao‖4
)
γ4dµ

=⇒
(
1− δ − c1c2‖Ao‖

3
2

3,[γ>0]

)[ ∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ

+
∫

M
‖A‖4‖Ao‖2γ4dµ

]
+
∫

M
H2‖∇H‖2γ4dµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0] + c(cγ1)

3‖Ao‖
9
2

3,[γ>0]

+ c(cγ1)
4‖A‖2

2,[γ>0],

and the second statement follows choosing δ < 1 and requiring

ε0 <
1− δ

c1c2
.

�

Remark. The extra term appearing in the n = 3 case,

(cγ1)
3‖Ao‖

9
2

3,[γ>0],

will have no effect on our result. This is because we will assume ‖Ao‖ is globally

small, and then (cγ1) will dominate the integral.

We can now give our main argument for this chapter.

4. Proof of the gap lemma

The first point to note is that if for some compact hypersurface the principal

curvatures are all equal, then the hypersurface must be an immersed plane (where
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they are all zero) or an immersed sphere (where they are all positive). We will show

that this must be the case if the hypothesis of the gap lemma holds: that f : Mn −→

Rn+1 is an immersion which is stationary under (CSD) flow, possesses small total

tracefree curvature and the constraint function h obeys a growth condition.

Let p ∈M . We set the cutoff function γ to be such that

γ(p) = ϕ

(
1

ρ
|f(p)|

)
,

where ϕ ∈ C1(R) and

ϕ(s) = 1 for s < 1
2
,

ϕ(s) = 0 for s ≥ 1, and

ϕ(s) ≥ 0 for any s.

Then cγ1 = c
ρ
. Recall that in our estimates we never use the second derivative of γ.

Taking ρ↗∞ in Proposition 4.7, we have

∫
M
‖∇(2)A

o‖2dµ+
∫

M
‖A‖2‖∇Ao‖2dµ+

∫
M
‖A‖4‖Ao‖2dµ+

∫
M
H2‖∇H‖2dµ

≤ c lim inf
ρ→∞

∫
M
h2γ4dµ+ c lim inf

ρ→∞
(cγ1)

4‖A‖4
2,[γ>0]

+ c lim inf
ρ→∞

(cγ1)
4‖Ao‖4

2,[γ>0] + (n− 2) lim inf
ρ→∞

(cγ1)
3‖Ao‖

9
2

3,[γ>0],

≤ c lim inf
ρ→∞

∫
f−1(Bρ(0))

h2dµ+ c lim inf
ρ→∞

1

ρ4
‖A‖4

2,f−1(Bρ(0))

≤ ch2|M |+ c lim inf
ρ→∞

1

ρ4
‖A‖4

2,f−1(Bρ(0)).

Note that the terms involving Ao vanished due to the global bounded tracefree

curvature assumption. We now use the remaining assumptions. Recall

lim inf
ρ→∞

1

ρ4

∫
f−1(Bρ(0))

‖A‖2dµ = 0, and

h2|M | ≤ 1

kc

∫
M
‖∇(2)A

o‖2 + ‖A‖2‖∇Ao‖2 +H2‖∇H‖2 + ‖A‖4‖Ao‖2dµ.
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Note that the first equation above is automatic if M is compact, and assumed

to be true otherwise. Absorbing h2|M | on the left,

∫
M
‖∇(2)A

o‖2dµ+
∫

M
‖A‖2‖∇Ao‖2dµ+

∫
M
‖A‖4‖Ao‖2dµ+

∫
M
H2‖∇H‖2dµ

= 0.

This gives us a lot of information about the kind of stationary surface we have. In

particular, we note that

‖A‖ = 0, ‖Ao‖ = 0, or both.

In the first and third instance, we have an immersed plane, as this implies all the

curvatures are zero. In the second instance, this implies all the curvatures are equal

and so M could also be an immersed sphere. For the compact case, we can of course

exclude immersed planes. Therefore for the compact case, f : M → Sn, where Sn

is an immersed sphere, and in the proper immersion case Sn is a union of immersed

planes and spheres. Note also that in either case, ∆H ≡ 0 on M and also h = 0.

This shows (GL) holds.

We finish by strengthening the statement from immersed to embedded. Let

Sn be the union of immersed planes and spheres from above. Then, since M is

geodesically complete, f : (M, g) → Sn is a global isometry, and so f(·) is in fact an

embedding.



CHAPTER 5

Curvature and interior estimates for constrained surface
diffusion flows

1. Introduction.

We have two main results for this chapter. First, we prove pointwise curvature

estimates where the speed of the flow appears on the right hand side.

Theorem (Partial curvature estimates). Suppose n ∈ {2, 3}, ρ > 0, and let

f : Mn × [0, T ) → Rn+1 be a (CSD) flow where for any x ∈ Rn+1,

‖Ao‖n
n,f−1(Bρ(x)) ≤ ‖Ao‖n

n,f−1(Bρ(x0)) < ε0,

where ε0 > 0 is as in Proposition 4.7. Further, assume that the constraint function

h satisfies (A2), and in the case where n = 3 that (AB) is satisfied. Then

‖Ao‖2
∞,f−1(Bρ/2(x0))

≤ c‖Ao‖
4−n

2

2,f−1(Bρ(x0))

[
‖F‖

n
2

2,f−1(Bρ(x0)) +
1

ρn
‖A‖

n
2

2,f−1(Bρ(x0)) + (ch)
n
4 + (n− 2)ε0

]
,

where c = c(n, ε0, CAB).

We also obtain an analogous statement for the full curvature tensor, Corollary

5.9. Our method of proof here is a variation on our fundamental mode of argument

from Chapter 3 on the Lifespan Theorem. Since our overall focus is on showing

that for certain initial manifolds a class of constrained surface diffusion flows both

exist for all time and converge to a sphere, and the tracefree second fundamental

167
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form measures in some sense the pointwise difference from M to a sphere, we will be

enhancing the role of the tracefree second fundamental form in our analysis. This

altered focus leads to the L∞ estimates for the tracefree second fundamental form

above.

One result obtained ‘along the way’ is Proposition 5.10, and there one can see

the crucial role played by the tracefree second fundamental form. This will be useful

in the future when we turn to analysis of the asymptotic behaviour of constrained

surface diffusion flows.

An interesting feature of the proof of the curvature estimates above is the usage of

a different growth condition, (A2). This appears more restrictive than the previous

growth condition, (GC). However since we only assume smallness of the tracefree

second fundamental form (as opposed to the full second fundamental form), we

cannot use (GC). This is detailed in Theorem 5.6.

Our second main result in this chapter is the following theorem.

Theorem (Interior estimates). Suppose n ∈ {2, 3} and f : Mn×(0, T ∗] → Rn+1

is a (CSD) flow with h satisfying the conditions of the Lifespan Theorem. Further

assume that

sup
t∈(0,T ∗]

∫
f−1(Bρ(x))

‖A‖mdµ ≤ ε(x),

where T ∗ ≤ c(n)ρ4 and m = m(h) is as in the Lifespan Theorem. Then for any

k ∈ N0 we have at time t ∈ (0, T ∗] the estimates

‖∇(k)A‖2,f−1(Bρ/2(x)) ≤ c(k)
√
ε(x)t−

k
4

‖∇(k)A‖∞,f−1(Bρ/2(x)) ≤ c(k)
√
ε(x)t−

k+1
4 ,
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where ck = ck
(
k, n, ρ, T ∗, ‖∇(k)A‖2,f−1(Bρ(x0))|t=0

)
.

This is in essence a sharpening (but not a sharp version) of Proposition 3.26

from Chapter 3 on the Lifespan Theorem. The proof involves the use of a time-

based localisation function and is given in Section 4.

As with each of our previous chapters, the interior estimates are also in prepa-

ration for asymptotic analysis. In this case, we will use them on parabolic cylinders

to ensure the existence of a blow up immersion with certain properties. Apart from

this, they are also of independent interest. It would be particularly interesting to

determine sharp constants in the interior estimates, however to this author’s knowl-

edge the distinct lack of example evolutions for even surface diffusion flow makes

this very difficult.

This chapter is organised as follows. Section 2 is devoted to using elementary

evolution equations to prove integral estimates. These are similar to those in Chapter

4, where the speed of the flow is involved in the resulting estimates. The difference

here however is that the speed of the flow is kept on the left hand side, as a ‘good’

term. Section 3 incorporates small curvature assumptions into the integral estimates

from Section 2. We also prove some Sobolev inequalities and conclude the pointwise

curvature estimates in this section. Section 4 is devoted to proving the interior

estimates.
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2. Energy based integral estimates.

We begin by proving elementary evolution equations. Unlike Chapter 3 however,

our focus here is on deriving estimates where the speed of the flow F = ∆H + h is

on the left hand side.

Lemma 5.1. Let γ be a cut off function as in (25). Then the following equalities

hold for a (CSD) flow f : Mn × [0, T ) → Rn+1.

d

dt

∫
M

1

2
H2γsdµ+

∫
M
F 2γsdµ = h2|Mt|[γ>0] + h

∫
M

(∆H)γsdµ

+
1

2

∫
M
H2(∂tγ

s)dµ−
∫

M
FH‖Ao‖2γsdµ

+
∫

M
H 〈∇F,∇γs〉 − F 〈∇H,∇γs〉 dµ,

and

d

dt

∫
M
‖Ao‖2γsdµ+

∫
M
F 2γsdµ = h2|Mt|[γ>0] + h

∫
M

(∆H)γsdµ

+
∫

M
‖Ao‖2(∂tγ

s)dµ+
∫

M
FH‖Ao‖2γsdµ

− 2
∫

M
F (Ao)i

j(A
o)j

k(A
o)k

i γ
sdµ

+ 2
∫

M
〈Ao,∇F∇γs〉H + F 〈∇∗Ao,∇γs〉 dµ.

Proof. This follows from computing the evolution of the integral of squared

mean curvature, and squared tracefree curvature respectively. We then integrate by

parts twice to obtain the good term, an integral of the speed F squared, on the left.

Recall the evolution equations from Lemma 3.9. Using these,

d

dt

∫
M

1

2
H2γsdµ =

∫
M
H(−∆F − ‖A‖2F )γsdµ+

∫
M

1

2
H2(∂tγ

s)dµ

+
∫

M

1

2
H3Fγsdµ

= −
∫

M
H(∆F )γsdµ−

∫
M
FH‖Ao‖2γsdµ
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+
1

2

∫
M
H2(∂tγ

s)dµ,

now using (∆H)(∆H + h) = F 2 − h∆H − h2 and integration by parts twice,

d

dt

∫
M

1

2
H2γsdµ+

∫
M
F 2γsdµ ≤ h

∫
M

(∆H)γsdµ+ h2|Mt|[γ>0] −
∫

M
FH‖Ao‖2γsdµ

+
1

2

∫
M
H2(∂tγ

s)dµ+
∫

M
H 〈∇F,∇γs〉 − F 〈∇H,∇γs〉 dµ.

This proves the first statement. The second is similar:

d

dt

∫
M
‖Ao‖2γsdµ = 2

∫
M

〈
Ao,−So(∇(2)F ) + F

[
Ap

iApj + 1

2
gij‖A‖2 −HAij

]〉
γsdµ

+
∫

M
‖Ao‖2HFγsdµ+

∫
M
‖Ao‖2(∂tγ

s)dµ

= −2
∫

M

〈
Ao,∇(2)F

〉
γsdµ− 2

∫
M
F (Ao)i

j(A
o)j

k(A
o)k

i γ
sdµ

+
∫

M
‖Ao‖2HFγsdµ+

∫
M
‖Ao‖2(∂tγ

s)dµ,

since 〈Ao, Ap
iApj −HAij〉 = (Ao)i

j(A
o)j

k(A
o)k

i . Using ∇∗
(2)A = 1

2
∆H, (∆H)(∆H +

h) = F 2 − h∆H − h2 and integration by parts twice we obtain

d

dt

∫
M
‖Ao‖2γsdµ+

∫
M
F 2γsdµ ≤ h2|Mt|[γ>0] + h

∫
M

(∆H)γsdµ

+
∫

M
‖Ao‖2(∂tγ

s)dµ+
∫

M
FH‖Ao‖2γsdµ

− 2
∫

M
F (Ao)i

j(A
o)j

k(A
o)k

i γ
sdµ

+ 2
∫

M
(Ao)ij(∇iF )(∇jγs)H + F 〈∇∗Ao,∇γs〉 dµ.

This proves the second statement, and so we are finished. �

For our second lemma, we estimate some potentially troubling terms from Lemma

5.1 above. Our motivation here is maximising the utility of the estimate in Propo-

sition 4.7 and the multiplicative Sobolev inequality Lemma 4.6.
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Lemma 5.2. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow, γ as in (25) and

δ1, δ2, δ3 be fixed positive numbers. Then the following inequalities hold:

d

dt

∫
M

1

2
H2γsdµ+

∫
M
F 2γsdµ ≤ 1

2

∫
M
H2(∂tγ

s)dµ+ 2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ

+ cδ2h
2|Mt|[γ>0] + δ3

∫
M
‖∇Ao‖2H2γsdµ

+ cδ3

∫
M
‖∇Ao‖2‖Ao‖2γsdµ+ δ2

∫
M
‖A‖4‖Ao‖2γsdµ

+ cδ2(cγ1)
4
∫

M
‖Ao‖2γs−4dµ

+
∫

M
H 〈∇F,∇γs〉 − F 〈∇H,∇γs〉 dµ,

and

d

dt

∫
M
‖Ao‖2γsdµ+ (1− δ1)

∫
M
F 2γsdµ ≤

∫
M
‖Ao‖2(∂tγ

s)dµ+ 2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ

+ cδ2h
2|Mt|[γ>0] + δ3

∫
M
‖∇Ao‖2H2γsdµ+ cδ1

∫
M
‖Ao‖6γsdµ

+ cδ3

∫
M
‖∇Ao‖2‖Ao‖2γsdµ+ δ2

∫
M
‖A‖4‖Ao‖2γsdµ

+ cδ2(cγ1)
4
∫

M
‖Ao‖2γs−4dµ

+ 2
∫

M
(Ao)ij(∇iF )(∇jγs)H + F 〈∇∗Ao,∇γs〉 dµ,

where cδi
= cδi

(s, n, δi).

Proof. We must estimate the terms
∫
M FH‖Ao‖2γsdµ and

∫
M F (Ao)i

j(A
o)j

k(A
o)k

i γ
sdµ

from Lemma 5.1. Using integration by parts and the identity ∇H = n
n−1

∇∗Ao,

∫
M

(∆H)H‖Ao‖2γsdµ = −
∫

M

〈
∇H,∇(H‖Ao‖2γs)

〉
dµ

= −
∫

M
‖∇H‖2‖Ao‖2γsdµ−

∫
M
H
〈
∇H,∇(‖Ao‖2γs)

〉
dµ

= −
∫

M
‖∇H‖2‖Ao‖2γsdµ− s

∫
M
H‖Ao‖2 〈∇H,∇γ〉 γs−1dµ

− 2
∫

M
H‖Ao‖ 〈∇H,∇‖Ao‖〉 γsdµ



2. ENERGY BASED INTEGRAL ESTIMATES. 173

≤ 4n2(δ−1
3 − 1)

(n− 1)2

∫
M
‖∇∗Ao‖2‖Ao‖2γsdµ+ δ3

∫
M
‖∇Ao‖2H2γsdµ

+ s2(cγ1)
2
∫

M
H2‖Ao‖2γs−2dµ+

1

4

∫
M
‖∇H‖2‖Ao‖2γsdµ,

so

∫
M
FH‖Ao‖2γsdµ ≤ cδ3

∫
M
‖∇Ao‖2‖Ao‖2γsdµ+ δ3

∫
M
‖∇Ao‖2H2γsdµ

+ cδ2(cγ1)
4
∫

M
‖Ao‖2γs−4dµ+ δ2

∫
M
‖A‖4‖Ao‖2γsdµ

+ h
∫

M
H‖Ao‖2γsdµ.

Also,

h
∫

M
H‖Ao‖2γsdµ ≤ cδ3h

2|Mt|[γ>0] + δ3

∫
M
‖A‖4‖Ao‖2γsdµ.

This estimates the first integral. The second is easily estimated by

∫
M
F (Ao ∗ Ao ∗ Ao)γsdµ ≤ δ1

∫
M
F 2γsdµ+ cδ1

∫
M
‖Ao‖6γsdµ.

Finally, note that

h
∫

M
(∆H)γsdµ = 2h

∫
M

(∇∗
(2)A

o)γsdµ = 2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ.

Combining these estimates with Lemma 5.1 earlier finishes the proof. �

The third lemma below is an estimate which deals with the extraneous terms

from the derivatives of the cutoff function γ, resulting from our extensive usage of

integration by parts. These are by nature ‘good’ terms, expected in any localised

integral estimates. We will also group the terms and perform some other minor

alterations to those in Lemma 5.2 above. We then will finally be able to apply the

estimate in Proposition 4.7 and the multiplicative Sobolev inequality Lemma 4.6 to

conclude our first ‘small energy’ result for this chapter.
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Lemma 5.3. Let f : Mn × [0, T ) → Rn+1 be a (CSD) flow, γ as in (25) and

δ1, δ2, δ3 be fixed positive numbers. Then the following inequalities hold:

d

dt

∫
M
‖Ao‖2γsdµ+ (1− δ1)

∫
M
F 2γsdµ ≤ ch2|Mt|[γ>0] + δ2

∫
M
‖∇Ao‖2H2γsdµ

+ δ3

∫
M
‖A‖4‖Ao‖2γsdµ+ c

∫
M

(‖Ao‖6 + ‖∇Ao‖2‖Ao‖2)γsdµ

+ c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
] ∫

M
‖Ao‖2γs−4dµ,

and

d

dt

∫
M

1

2
H2γsdµ+ (1− δ1)

∫
M
F 2γsdµ ≤ ch2|Mt|[γ>0] + c

∫
M

(‖A‖2‖∇A‖2 + ‖A‖6)γsdµ

+ c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
] ∫

M
‖A‖2γs−4dµ,

where c = c(s, n, δi).

Proof. We first compute, using integration by parts and the definition of γ,

2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ+ 2

∫
M

(Ao)ij(∇iγs)(∇jF )dµ+ 2
∫

M
F 〈∇∗Ao,∇γs〉 dµ

= 2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ− 2

∫
M

(∆H + h)
〈
Ao,∇(2)γ

s
〉
dµ

(−2 + 2)
∫

M
F 〈∇∗Ao,∇γs〉 dµ

= −2
∫

M
(∆H)

〈
Ao,∇(2)γ

s
〉
dµ

= −2s
∫

M
(∆H)

〈
Ao, (D2γ̃ ◦ f)g + (Dγ̃ ◦ f)A

〉
γs−1dµ

+ 2s(s− 1)
∫

M
(∆H) 〈Ao, (∇γ)(∇γ)〉 γs−2dµ.

Note that 〈Ao, (D2γ̃ ◦ f)g〉 =
∑n

i,j=1A
o
ij(Dij γ̃)gij, and this is not in general zero, as

each term in the sum is scaled by the second derivatives of γ̃. Continuing,

2h
∫

M

〈
Ao,∇(2)γ

s
〉
dµ+ 2

∫
M

(Ao)ij(∇iγs)(∇jF )dµ+ 2
∫

M
F 〈∇∗Ao,∇γs〉 dµ

≤ 2s
∫

M
|∆H|

(
‖Ao‖(cγ̃2) + ‖Ao‖2(cγ̃1)

)
γs−1dµ

+ 2s(s− 1)
∫

M
|∆H| ‖Ao‖(cγ1)

2γs−2dµ
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≤ δ

4

∫
M
|∆H|2γsdµ+

8s2

δ
(cγ̃2)

2
∫

M
‖Ao‖2γs−2dµ

+
8s2

δ
(cγ̃1)

2
∫

M
‖Ao‖4γs−2dµ

+ 2s(s− 1)
∫

M
|∆H| ‖Ao‖(cγ1)

2γs−2dµ

≤ δ

2

∫
M
|∆H|2γsdµ+

8s2

δ
(cγ̃1)

2
∫

M
‖Ao‖4γs−2dµ

+ δ−1
(
8s2 + 8s2(s− 1)2

)[
(cγ̃2)

2 + (cγ1)
4
] ∫

M
‖Ao‖2γs−4dµ

≤ δ

2

∫
M
|∆H|2γsdµ+

∫
M
‖Ao‖6γsdµ

+ δ−2
(
8s2 + 8s2(s− 1)2 + 8s4

)[
(cγ̃2)

2 + (cγ1)
4 + (cγ̃1)

4
] ∫

M
‖Ao‖2γs−4dµ.

Of course, the constant in front of the ‖Ao‖2
2,[γ>0] term is far from optimal. The

representation above is just personal preference. The point is that δ is a fixed

positive number (smaller than 1), and so the coefficient is a function of s and the

constants in (25) only, and can be written in the form indicated in the statement of

the lemma.

Finally we estimate the time derivative of γ as follows.

∫
M
‖Ao‖2(∂tγ

s)dµ = s
∫

M
‖Ao‖2(γs−1 〈Dγ̃, ν〉F )dµ

≤ δ

4

∫
M
F 2γsdµ+ δ−1s2(cγ̃1)

2
∫

M
‖Ao‖4γs−2dµ

≤ δ

4

∫
M
F 2γsdµ+ cδ(cγ̃1)

4
∫

M
‖Ao‖2γs−4dµ+

∫
M
‖Ao‖6dµ.

Combining these inequalities with lemma 5.2 and absorbing finishes the proof for

∫
M‖Ao‖2γsdµ. For

∫
M H2γsdµ, the proof is identical, except for estimating H and

Ao by A where appropriate. �

We finish this section by proving an estimate which will be useful in the following

chapter.
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Lemma 5.4. Suppose f : M2 × [0, T ) → R3 is a (CSD) flow, γ as in (25) and

s ≥ 4. Then there exist absolute constants ε0, ce > 0 such that if

∫
[γ>0]

‖Ao‖2dµ < ε0

and if

−h
∫

M
H‖Ao‖2γsdµ ≤ ce

2

∫
M
‖∇(2)H‖2 + ‖∇Ao‖2H2 +H4‖Ao‖2dµ

then we have

d

dt

∫
M

1

2
H2γsdµ+ ce

∫
M

(
‖∇(2)H‖2 + ‖∇Ao‖2H2 +H4‖Ao‖2

)
γsdµ

− ce
2

∫
M
‖∇(2)H‖2 + ‖∇Ao‖2H2 +H4‖Ao‖2dµ

≤ c
[
(cγ̃1)

4 + (cγ1)
4 + (cγ2)

2 + (cγ2)
4
]
‖A‖2

2,[γ>0] + c(cγ1)
4‖Ao‖4

2,[γ>0],(115)

for an absolute constant ∞ > c > 0 depending only on s.

Proof. We proceed similarly to the proof of Lemma 5.1. Differentiating,

d

dt

∫
M

1

2
H2γsdµ =

∫
M
H(−∆F − ‖A‖2F )γsdµ+

∫
M

1

2
H2(∂tγ

s)dµ+
∫

M

1

2
H3Fγsdµ

= −
∫

M
H(∆F )γsdµ−

∫
M
FH‖Ao‖2γsdµ+

1

2

∫
M
H2(∂tγ

s)dµ

= −
∫

M
H(∆2H)γsdµ−

∫
M

(∆H)H‖Ao‖2γsdµ− h
∫

M
H‖Ao‖2γsdµ

+
1

2

∫
M
H2(∂tγ

s)dµ.

Integrating by parts twice, we have

d

dt

∫
M

1

2
H2γsdµ+

∫
M
|∆H|2γsdµ

= s
∫

M
H 〈∇∆H,∇γ〉 γs−1dµ− s

∫
M

(∆H) 〈∇H,∇γ〉 γs−1dµ

−
∫

M
(∆H)H‖Ao‖2γsdµ− h

∫
M
H‖Ao‖2γsdµ+

1

2

∫
M
H2(∂tγ

s)dµ.(116)
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We will estimate each term in turn. First we deal with the spatial derivatives of γ.

s
∫

M
H 〈∇∆H,∇γ〉 γs−1dµ− s

∫
M

(∆H) 〈∇H,∇γ〉 γs−1dµ

≤ s
∫

M
H(∆H)(∆γ)γs−1dµ+ s(s− 1)

∫
M
H(∆H)‖∇γ‖2γs−2dµ

+ s
∫

M
(∆H) 〈∇H,∇γ〉 γs−1dµ

+ δ1

∫
M
|∆H|2γsdµ+

s2

4δ1
(cγ1)

2
∫

M
‖∇H‖2γs−2dµ

≤ s
∫

M
H(∆H)(∆γ)γs−1dµ+ s(s− 1)

∫
M
H(∆H)‖∇γ‖2γs−2dµ

+ 2δ1

∫
M
|∆H|2γsdµ+

s2

2δ1
(cγ1)

2
∫

M
‖∇H‖2γs−2dµ

≤ s
∫

M
H(∆H)(∆γ)γs−1dµ

+ δ2

∫
M
|∆H|2γsdµ+

s2(s− 1)2

4δ2
(cγ1)

4‖H‖2
2,[γ>0]

+ 2δ1

∫
M
|∆H|2γsdµ+

s2

2δ1
(cγ1)

2
∫

M
‖∇H‖2γs−2dµ

≤ s(cγ2)
∫

M
H(∆H)(1 + |H|)γs−1dµ

+ δ2

∫
M
|∆H|2γsdµ+

s2(s− 1)2

4δ2
(cγ1)

4‖H‖2
2,[γ>0]

+ 2δ1

∫
M
|∆H|2γsdµ+

s2

2δ1
(cγ1)

2
∫

M
‖∇H‖2γs−2dµ

≤ δ3

∫
M
|∆H|γsdµ+

s2

4δ3
(cγ2)

2
∫

M
H2γs−2dµ+ s(cγ2)

∫
M
H2(∆H)γs−1dµ

+ δ2

∫
M
|∆H|2γsdµ+

s2(s− 1)2

4δ2
(cγ1)

4‖H‖2
2,[γ>0]

+ 2δ1

∫
M
|∆H|2γsdµ+

s2

2δ1
(cγ1)

2
∫

M
‖∇H‖2γs−2dµ.

For the third integral we integrate by parts to obtain

(cγ2)
∫

M
H2(∆H)γs−1dµ ≤ δ4

∫
M
H2‖∇H‖2γsdµ+

1

2δ4
(cγ1cγ2)

2(s− 1)2‖H‖2
2,[γ>0]

+
1

2δ4
(cγ2)

2
∫

M
‖∇H‖2γs−2dµ.
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Combining this with our previous estimate we have

s
∫

M
H 〈∇∆H,∇γ〉 γs−1dµ− s

∫
M

(∆H) 〈∇H,∇γ〉 γs−1dµ

≤ (2δ1 + δ2 + δ3)
∫

M
|∆H|γsdµ+ δ4

∫
M
H2‖∇H‖2γsdµ

+

(
s2(s− 1)2

4δ2
(cγ1)

4 +
s2

8δ3
(cγ2)

2 +
1

2δ4
(cγ1cγ2)

2(s− 1)2

)
‖H‖2

2,[γ>0]

+

(
s2

2δ1
(cγ1)

2 +
1

2δ4
(cγ2)

2

)∫
M
‖∇H‖2γs−2dµ.

Now using the inequality

∫
M
‖∇H‖2γs−2dµ ≤ 2

∫
M
|H| |∆H|γs−2dµ+ (s− 2)2(cγ1)

2
∫

M
H2γs−4dµ

we obtain

s
∫

M
H 〈∇∆H,∇γ〉 γs−1dµ− s

∫
M

(∆H) 〈∇H,∇γ〉 γs−1dµ

≤ (2δ1 + δ2 + δ3)
∫

M
|∆H|γsdµ+ δ4

∫
M
H2‖∇H‖2γsdµ

+

(
s2(s− 1)2

4δ2
(cγ1)

4 +
s2

8δ3
(cγ2)

2 +
1

2δ4
(cγ1cγ2)

2(s− 1)2

)
‖H‖2

2,[γ>0]

+

(
(s− 2)2

2δ4
(cγ1cγ2)

2 +
s2(s− 2)2

2δ1
(cγ1)

4

)
‖H‖2

2,[γ>0]

+

(
s2

δ1
(cγ1)

2 +
1

δ4
(cγ2)

2

)∫
M
|H| |∆H|γs−2dµ

≤ (3δ1 + δ2 + δ3 + δ4)
∫

M
|∆H|γsdµ+ δ4

∫
M
H2‖∇H‖2γsdµ

+

(
s2(s− 1)2

4δ2
(cγ1)

4 +
(s− 1)2

2δ4
(cγ1cγ2)

2 +
s4

4δ3
1

(cγ1)
4 +

s2

8δ3
(cγ2)

2

+
(s− 2)2

2δ4
(cγ1cγ2)

2 +
s2(s− 2)2

2δ1
(cγ1)

4 +
1

δ3
4

(cγ2)
4

)
‖H‖2

2,[γ>0].

For brevity, we combine this estimate with (116) now. Choose δ1, δ2, δ3 such that

3δ1 + δ2 + δ3 = δ4. Then

d

dt

∫
M

1

2
H2γsdµ+ (1− 2δ4)

∫
M
|∆H|2γsdµ
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≤ δ4

∫
M
‖∇H‖2H2γsdµ+ c

(
(cγ1)

4 + (cγ1cγ2)
2 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0]

−
∫

M
(∆H)H‖Ao‖2γsdµ− h

∫
M
H‖Ao‖2γsdµ+

1

2

∫
M
H2(∂tγ

s)dµ.(117)

We now estimate the time derivative of γ.

∫
M
H2(∂tγ

s)dµ =
∫

M
H2(∆H)(∇ν γ̃)γ

s−1dµ

≤ (cγ̃1)
∫

M
H2(∆H)γs−1dµ

≤ 2(cγ̃1)
∫

M
‖∇H‖2|H|γs−1dµ+ (cγ̃1cγ1)

∫
M
‖∇H‖ |H|2γs−2dµ

≤ (2δ5 + 2δ6)
∫

M
‖∇H‖2H2γsdµ+

1

8δ5
(cγ1cγ̃1)

2
∫

M
|H|2γs−2dµ

+
1

8δ6
(cγ̃1)

2
∫

M
|H| |∆H|γs−2dµ+

(s− 2)2

16δ6
(cγ̃1cγ1)

2
∫

M
H2γs−4dµ

≤ (2δ5 + 2δ6)
∫

M
‖∇H‖2H2γsdµ+ 2δ4

∫
M
|∆H|2γsdµ

+

(
(s− 2)2

16δ6
(cγ̃1cγ1)

2 +
1

8δ5
(cγ1cγ̃1)

2 +
1

128δ2
6δ4

(cγ̃1)
4

)
‖H‖2

2,[γ>0].

Combining this estimate with (117) we obtain

d

dt

∫
M

1

2
H2γsdµ+ (1− 3δ4)

∫
M
|∆H|2γsdµ

≤ (δ4 + δ5 + δ6)
∫

M
‖∇H‖2H2γsdµ−

∫
M

(∆H)H‖Ao‖2γsdµ− h
∫

M
H‖Ao‖2γsdµ

+ c

(
(cγ1)

4 + (cγ1cγ2)
2 + (cγ̃1cγ2)

2 + (cγ2)
2 + (cγ2)

4

)
‖A‖2

2,[γ>0].(118)

We begin to estimate the second term with

∫
M

(∆H)H‖Ao‖2γsdµ+
∫

M
‖∇H‖2‖Ao‖2γsdµ

≤ 2
∫

M
‖∇H‖ ‖∇Ao‖ ‖Ao‖ Hγsdµ+ s(cγ1)

∫
M
‖∇H‖ ‖Ao‖2Hγs−1dµ

≤ δ7

∫
M
‖∇H‖2H2γsdµ+

1

δ7

∫
M
‖∇Ao‖2‖Ao‖2γsdµ

+ δ8

∫
M
H2‖Ao‖4γsdµ+

s2(cγ1)
2

4δ8

∫
M
‖∇H‖2γs−2dµ.
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Estimating the
∫
M‖∇H‖2γs−2dµ term as earlier, we combine this with (118) above

to obtain

d

dt

∫
M

1

2
H2γsdµ+ (1− 4δ4)

∫
M
|∆H|2γsdµ

≤ (δ4 + δ5 + δ6 + δ7)
∫

M
‖∇H‖2H2γsdµ+ δ8

∫
M
H2‖Ao‖4γsdµ

+
1

δ7

∫
M
‖∇Ao‖2‖Ao‖2γsdµ− h

∫
M
H‖Ao‖2γsdµ

+ c

(
(cγ1)

4 + (cγ1cγ2)
2 + (cγ̃1cγ2)

2 + (cγ2)
2 + (cγ2)

4

)
‖A‖2

2,[γ>0].(119)

To work with (119) above we must invoke a multiplicative Sobolev inequality and a

consequence of the fundamental relations of differential geometry. The latter is:

c3

∫
M

(
‖∇(2)H‖2 +H2‖∇H‖2 +H4‖Ao‖2

)
γsdµ

≤
∫

M
|∆H|2γsdµ+ c

∫
M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖6

)
γsdµ+ c(cγ1)

4
∫
[γ>0]

‖A‖2dµ.

This is a corollary to estimates (108) and (109). Unfortunately, it is not quite strong

enough. We improve the left hand side with the inequality

c3
2

∫
M
H2‖∇Ao‖2γsdµ+

c3
32

∫
M
H4‖Ao‖2γsdµ− c3

2

∫
M
‖∇(2)H‖2γsdµ

− c(cγ1)
4‖Ao‖2

2,[γ>0] − c
∫

M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖6

)
γsdµ

≤ c3
2

∫
M
H2‖∇H‖2γsdµ.(120)

This gives us the very useful inequality

c3

∫
M

(
‖∇(2)H‖2 +H2‖∇Ao‖2 +H4‖Ao‖2

)
γsdµ

≤
∫

M
|∆H|2γsdµ+ c(cγ1)

4‖A‖2
2,[γ>0] + c

∫
M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖6

)
γsdµ.(121)

We must prove (120). The technique is similar to the estimates from Chapter 4 and

so we will proceed quickly. Integrating by parts and estimating we have

∫
M
H2‖∇Ao‖2γsdµ
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≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

+ s(cγ1)
∫

M
H2‖Ao‖ ‖∇Ao‖γs−1dµ−

∫
M
H2 〈Ao,∆Ao〉 γsdµ

≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

+ θ1

∫
M
H4‖Ao‖2γsdµ+

s2(cγ1)
2

4θ1

∫
M
‖∇Ao‖2γs−2dµ−

∫
M
H2 〈Ao,∆Ao〉 γsdµ

≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

−
∫

M
H2 〈Ao,∆Ao〉 γsdµ− s2(cγ1)

2

2θ1

∫
M
〈Ao,∆Ao〉 γs−2dµ

+ θ1

∫
M
H4‖Ao‖2γsdµ+

s2(s− 2)2(cγ1)
4

4θ1

∫
M
‖Ao‖2γs−4dµ,

where we used the inequality

(cγ1)
2

2

∫
M
‖∇Ao‖2γs−2dµ ≤ −(cγ1)

2
∫

M
〈Ao,∆Ao〉 γs−2dµ+

(s− 2)2(cγ1)
4

2

∫
M
‖Ao‖2γs−4dµ.

Simons’ identity for ∆Ao implies that

〈Ao,∆Ao〉 =
〈
Ao,∇(2)H

〉
− ‖Ao‖4 +

1

2
‖Ao‖2H2 +H(Ao)pq(A

o)p
r(A

o)qr.

Using this we obtain

∫
M
H2‖∇Ao‖2γsdµ+

1

2

∫
M
H4‖Ao‖2γsdµ

≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

−
∫

M
H2
(〈

Ao,∇(2)H
〉
− ‖Ao‖4 +H(Ao)pq(A

o)p
r(A

o)qr
)
γsdµ

− s2(cγ1)
2

2θ1

∫
M

(〈
Ao,∇(2)H

〉
− ‖Ao‖4 +

1

2
‖Ao‖2H2 +H(Ao)pq(A

o)p
r(A

o)qr
)
γs−2dµ

+ θ1

∫
M
H4‖Ao‖2γsdµ+

s2(s− 2)2(cγ1)
4

4θ1

∫
M
‖Ao‖2γs−4dµ

≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ+

(
1

4θ3

+
1

4θ4

) ∫
M
‖Ao‖6γsdµ

+ (θ2 + θ3)
∫

M
‖∇(2)H‖2γsdµ+ (θ1 +

1

4θ2

+ θ4 + θ5)
∫

M
H4‖Ao‖2γsdµ

−
∫

M
H3(Ao)pq(A

o)p
r(A

o)qrγsdµ− s2(cγ1)
2

2θ1

∫
M
H(Ao)pq(A

o)p
r(A

o)qrγs−2dµ
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+
(
s2(s− 2)2

4θ1

+
s4

2θ2
1θ3

+
s4

8θ2
1θ5

)
(cγ1)

4
∫

M
‖Ao‖2γs−4dµ

≤
∫

M
H2‖∇H‖2γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ+

(
1

4θ3

+
1

4θ4

) ∫
M
‖Ao‖6γsdµ

+ (θ2 + θ3)
∫

M
‖∇(2)H‖2γsdµ+ (θ1 +

1

4θ2

+ θ4 + θ5 + θ6)
∫

M
H4‖Ao‖2γsdµ

+
1

4θ6

∫
M
H2‖Ao‖4γsdµ+

∫
M
H2‖Ao‖4γsdµ

+
(
s2(s− 2)2

4θ1

+
s4

8θ2
1

+
s4

2θ2
1θ3

+
s4

8θ2
1θ5

)
(cγ1)

4
∫

M
‖Ao‖2γs−4dµ

≤
∫

M
H2‖∇H‖2γsdµ+ (θ2 + θ3)

∫
M
‖∇(2)H‖2γsdµ

+
∫

M
‖Ao‖2‖∇Ao‖2γsdµ+

(
1

4θ3

+
1

4θ4

+
1

4θ7

+
1

4θ8

) ∫
M
‖Ao‖6γsdµ

+
(
θ1 +

1

4θ2

+ θ4 + θ5 + θ6 +
θ7

16θ2
6

+ θ8

) ∫
M
H4‖Ao‖2γsdµ

+
(
s2(s− 2)2

4θ1

+
s4

8θ2
1

+
s4

2θ2
1θ3

+
s4

8θ2
1θ5

)
(cγ1)

4
∫

M
‖Ao‖2γs−4dµ.

Choosing appropriately small θi > 0 and multiplying both sides by c1
2

in the above

allows us to conclude (120). For completeness we give one possible set of choices

here:

θ1 = θ4 = θ5 = θ8 =
1

48
, θ2 =

3

4
, θ3 =

1

4
, θ6 =

1

92
, and θ7 =

1

55296
.

This establishes (121).

The multiplicative Sobolev inequality we will use is a variant on Lemma 4.6.

The statement is

∫
M
‖Ao‖6γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

≤ c2

∫
[γ>0]

‖Ao‖2dµ
∫

M

(
‖∇(2)H‖2 +H2‖∇Ao‖2 +H2‖Ao‖4

)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2

.(122)
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Combining both (121) and (122) with our running estimate (119), we have

d

dt

∫
M

1

2
H2γsdµ+ c3(1− 4δ4)

( ∫
M
‖∇(2)H‖2γsdµ+

∫
M
‖∇Ao‖2H2γsdµ+

∫
M
H4‖Ao‖2γsdµ

)
≤ (δ4 + δ5 + δ6 + δ7)

∫
M
‖∇H‖2H2γsdµ+ δ8

∫
M
H2‖Ao‖4γsdµ

+
1 + c3δ7
δ7

∫
M

(
‖Ao‖2‖∇Ao‖2 + ‖Ao‖6)γsdµ− h

∫
M
H‖Ao‖2γsdµ

+ c

(
(cγ1)

4 + (cγ̃1)
4 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0]

≤ (δ4 + δ5 + δ6 + δ7)
∫

M
‖∇H‖2H2γsdµ+ δ8

∫
M
H2‖Ao‖4γsdµ

+ c2
1 + c3δ7
δ7

(
‖Ao‖2

2,[γ>0]

∫
M

(
‖∇(2)H‖2 +H2‖∇Ao‖2 +H2‖Ao‖4

)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2 )

− h
∫

M
H‖Ao‖2γsdµ+ c

(
(cγ1)

4 + (cγ̃1)
4 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0].

Using the inequality

δ8

∫
M
H2‖Ao‖4γsdµ ≤ δ8

∫
M
H4‖Ao‖2γsdµ+

δ8
4

∫
M
‖Ao‖6γsdµ

the above becomes

d

dt

∫
M

1

2
H2γsdµ+ c3(1− 4δ4)

( ∫
M
‖∇(2)H‖2γsdµ+

∫
M
‖∇Ao‖2H2γsdµ+

∫
M
H4‖Ao‖2γsdµ

)
≤ (δ4 + δ5 + δ6 + δ7)

∫
M
‖∇H‖2H2γsdµ+ δ8

∫
M
H4‖Ao‖2γsdµ

+ c2
4 + 4c3δ7 + δ7δ8

4δ7

(
‖Ao‖2

2,[γ>0]

∫
M

(
‖∇(2)H‖2 +H2‖∇Ao‖2 +H2‖Ao‖4

)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2 )
− h

∫
M
H‖Ao‖2γsdµ

+ c

(
(cγ1)

4 + (cγ̃1)
4 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0].

We have one final refinement. Observe that by estimating

cε0

∫
M
H2‖Ao‖4γsdµ ≤ c2ε20

∫
M
H4‖Ao‖2γsdµ+

1

4

∫
M
‖Ao‖6γsdµ
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one may strengthen our estimate to the following:

d

dt

∫
M

1

2
H2γsdµ+ c3(1− 4δ4)

( ∫
M
‖∇(2)H‖2γsdµ+

∫
M
‖∇Ao‖2H2γsdµ+

∫
M
H4‖Ao‖2γsdµ

)
≤ (δ4 + δ5 + δ6 + δ7)

∫
M
‖∇H‖2H2γsdµ

+

(
δ8 +

(
δ8
3

+
4(1 + c3δ7)

3δ7

)
(ε0c2)

2

)∫
M
H4‖Ao‖2γsdµ

+ c2
4 + 4c3δ7 + δ7δ8

8δ7

(
‖Ao‖2

2,[γ>0]

∫
M

(
‖∇(2)H‖2 + ‖∇Ao‖2H2

)
γsdµ

+ c(cγ1)
4

(∫
[γ>0]

‖Ao‖2dµ

)2 )

− h
∫

M
H‖Ao‖2γsdµ+ c

(
(cγ1)

4 + (cγ̃1)
4 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0].

Recall that ‖∇H‖2 = 4‖∇∗Ao‖2 ≤ 4‖∇Ao‖2. Choosing sufficiently small δi > 0 we

absorb to obtain

d

dt

∫
M

1

2
H2γsdµ+ ce

∫
M

(
‖∇(2)H‖2 + ‖∇H‖2H2 +H4‖Ao‖2

)
γsdµ

≤ −h
∫

M
H‖Ao‖2γsdµ+ c(cγ1)

4‖Ao‖4
2,[γ>0]

+ c

(
(cγ1)

4 + (cγ̃1)
4 + (cγ2)

2 + (cγ2)
4

)
‖A‖2

2,[γ>0].

In this step we also enforce a condition upon the magnitude of ε0. For the sake of

definiteness we give specific choices. Note first that we may assume c3 ≤ 1. Then

let

δi =
1

16
c3, and assume ε0 ≤

(c3)
2

144c2
.

In this case we have

c3(1− 4δ4)−
8∑

i=4

δi − (ε0c2)
2
(
δ8
3

+
4 + 4c3δ7

3δ7

)
− ε0

c2
4δ7

(4 + 4c3δ7 + δ7δ8) ≥
1

4
c3,

and so with these choices

ce =
1

4
c3.
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Finally, our very restrictive assumption on the constraint function:

−h
∫

M
H‖Ao‖2γsdµ ≤ ce

2

∫
M
‖∇(2)H‖2 + ‖∇Ao‖2H2 +H4‖Ao‖2dµ

implies the result. �

Remark. The hypothesis of the lemma contains the particular cutoff function

γ chosen. It is desirable to state a condition on the constraint function h which does

not involve γ. Unfortunately, there are several ways to do this and none appear any

better than the others. Since all follow from the condition given in the lemma, we

have not changed this. Perhaps the most direct way is to estimate:

−h
∫

M
H‖Ao‖2 ≤ 1

4

( ∫
M
H‖Ao‖2γsdµ

)4

+
3

4
h

4
3 ≤ ε30

∫
M
H4‖Ao‖2γsdµ+

3

4
h

4
3 .

Then a sufficient condition for the lemma to hold is to require

3

4
h

4
3 ≤ ce

2

∫
M
‖∇(2)H‖2 + ‖∇Ao‖2H2 +H4‖Ao‖2dµ.

This condition is more readily satisfied than the previous, although it is strictly

stronger in that fewer constraint functions satisfy this condition compared with the

one given in the statement of the lemma. For example one may choose

h =
∫

M
‖Ao‖1/2‖∇H‖3/2H3/2dµ

among many others.

Remark. For surface diffusion flow, the left hand side of the estimate (115) does

not include the negative integrals.

3. Integral estimates with small curvature

We now present the first smallness result of this chapter.



186 5. CURVATURE & INTERIOR ESTIMATES

Proposition 5.5. Suppose n ∈ {2, 3} and let f : Mn × [0, T ) → Rn+1 be a

(CSD) flow and γ be as in (25). Then there exists an ε0 > 0 such that while

(123)
∫
[γ>0]

‖Ao‖ndµ < ε0,

we have

d

dt

∫
M
‖Ao‖2γsdµ+ c1

∫
M

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

≤ ch2|Mt|[γ>0] + c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
]
‖A‖2

2,[γ>0] + c(cγ1)
(6−n)ε

6−n
2

0 ,

and

d

dt

∫
M

1

2
H2γsdµ+ c1

∫
M

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

≤ ch2|Mt|[γ>0] + c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
]
‖A‖2

2,[γ>0] + c(cγ1)
(6−n)ε

6−n
2

0 ,

where c1 = c1(s, n, ε0) > 0 and c = c(s, n).

Proof. The two inequalities which drive this proof are the third multiplicative

Sobolev inequality Lemma 4.6, which we invoke in the weaker form:

∫
M
‖Ao‖6γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

≤ c
( ∫

[γ>0]
‖Ao‖ndµ

) 4−n
2
∫

M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2 + ‖A‖2‖Ao‖4
)
γsdµ

+ c(cγ1)
(6−n)

( ∫
[γ>0]

‖Ao‖ndµ
) 6−n

2

+ δ(n− 2)
∫

M
‖∇(2)A

o‖2γsdµ,

and the key smallness estimate in Proposition 4.7,

∫
M

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

≤ c
∫

M

(
|F |2 + |h|2

)
γ4dµ+ c(cγ1)

4‖Ao‖4
2,[γ>0] + c(cγ1)

4‖A‖2
2,[γ>0]

+ (n− 2)c(cγ1)
3‖Ao‖

9
2

3,[γ>0],
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Note that only the second inequality needs the smallness assumption. Rearranging

the second inequality gives

∫
M

(
|F |2 + |h|2

)
γsdµ+ c(cγ1)

4
[
‖Ao‖4

2,[γ>0] + ‖A‖2
2,[γ>0]

]
+ (n− 2)c(cγ1)

3‖Ao‖
9
2

3,[γ>0]

≥ c
∫

M
(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

Combining this estimate with that of Lemma 5.3 earlier, we obtain

d

dt

∫
M
‖Ao‖2γsdµ+ (1− δ1)

[
c
∫

M
(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

− h2|Mt|[γ>0] − c(cγ1)
4‖Ao‖4

2,[γ>0] − c(cγ1)
4‖A‖2

2,[γ>0]

− (n− 2)c(cγ1)
3‖Ao‖

9
2

3,[γ>0]

]

≤ ch2|Mt|[γ>0] + δ2

∫
M
‖∇Ao‖2H2γsdµ

+ δ3

∫
M
‖A‖4‖Ao‖2γsdµ+ c

∫
M

(‖Ao‖6 + ‖∇Ao‖2‖Ao‖2)γsdµ

+ c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
] ∫

M
‖Ao‖2γs−4dµ.

Rearranging,

d

dt

∫
M
‖Ao‖2γsdµ+

(
1−∑

iδi
) ∫

M
(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

≤ ch2|Mt|[γ>0] + c
∫

M
(‖Ao‖6 + ‖∇Ao‖2‖Ao‖2)γsdµ

+ c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
](
‖A‖2

2,[γ>0] + ‖Ao‖4
2,[γ>0]

)
+ (n− 2)c(cγ1)

3‖Ao‖
9
2

3,[γ>0].

We now use Lemma 4.6 and the smallness assumption (123) to absorb the second

integral on the right to the left hand side. That is,

∫
M
‖Ao‖6γsdµ+

∫
M
‖Ao‖2‖∇Ao‖2γsdµ

≤ c
( ∫

[γ>0]
‖Ao‖ndµ

) 4−n
2
∫

M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2 + ‖A‖2‖Ao‖4
)
γsdµ



188 5. CURVATURE & INTERIOR ESTIMATES

+ c(cγ1)
(6−n)

( ∫
[γ>0]

‖Ao‖ndµ
) 6−n

2

+ δ(n− 2)
∫

M
‖∇(2)A

o‖2γsdµ,

≤
[
cε

4−n
2

0 + δ(n− 2)
] ∫

M

(
‖∇(2)A

o‖2 + ‖∇Ao‖2‖A‖2 + ‖A‖2‖Ao‖4
)
γsdµ

+ c(cγ1)
(6−n)ε

6−n
2

0 .

Absorbing, we have therefore shown

d

dt

∫
M
‖Ao‖2γsdµ

+
(
1−∑

iδi − c∗ε0 − δ(n− 2)
) ∫

M

(
‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2

)
γsdµ

≤ ch2|Mt|[γ>0] + c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
]
‖A‖2

2,[γ>0] + c(cγ1)
(6−n)ε

6−n
2

0 .

Choosing δi,δ and requiring ε0 to be such that

1−
∑

i

δi − c∗ε0 − δ(n− 2) = c1 > 0

finishes the proof of the first statement. The second follows similarly. �

The result above is good, however it is not good enough for us to continue. We

need to absorb the error term h2|Mt|[γ>0] or otherwise deal with it to proceed toward

the interior estimates. The most natural method to overcome this difficulty is to

impose a growth condition on our constraint function, and this is what we do next.

We will need some of the work already done for the estimates involved in the proof

of the Lifespan Theorem, see Chapter 3 Section 3 for the details.

The main difference here is the focus moving away from small total curvature

to a combination of bounded total curvature and small tracefree curvature. In this

respect, the uniform bound for h obtained earlier in Corollary 3.8 is useless. However

Theorem 3.3 from that section is still useful, in the following modified form.
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Theorem 5.6. Suppose n ∈ {2, 3} and let f : Mn × [0, T ∗] → Rn+1 be a (CSD)

flow with constraint function h satisfying for some j, k, l, p ∈ N0

(A2) h2 ≤ c
(
1 +

∫
M
‖Ao‖ndµ

)p ∫
M
P 2

j (A) + P 1
k (A) + P 0

l (A) dµ

where for m = max{2k − 2, 2j − k, l, n2 + n− 2}

sup
x∈Rn+1

δm(x) ≤ δm
0 <∞

and for an absolute constant CAB

(AB) |Mt| ≤ CAB;

on [0, T ∗].

Then for any ρ > 0, x ∈ Rn+1, t ∈ [0, T ∗] there exists an x1 ∈ Rn+1 such that if

(124)
∫

f−1(Bρ(x1))
‖Ao‖ndµ ≤ ε0 <∞,

we have

d

dt

∫
f−1(Bρ/2(x1))

‖Ao‖2dµ+
c1
2

∫
f−1(Bρ/2(x1))

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)dµ

≤ ch +
c

ρ4
‖A‖2

2,f−1(B2ρ(x1)) +
c

ρ6−n
ε

6−n
2

0 ,

and

d

dt

∫
f−1(Bρ/2(x1))

1

2
H2dµ+

c1
2

∫
f−1(Bρ/2(x1))

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)dµ

≤ ch +
c

ρ4
‖A‖2

2,f−1(B2ρ(x1)) +
c

ρ6−n
ε

6−n
2

0 ,

if j, k 6= 0, and otherwise

h ≤ ch,

where ch = ch(δ
m
0 , CAB, ρ, j, k, l, n) <∞ and ε0 is as in Proposition 5.5.
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Proof. If j, k = 0 the theorem follows from Theorem 3.3. Otherwise, we use

Proposition 5.5 above to compute:

d

dt

∫
M
‖Ao‖2γsdµ+ c1

∫
M

(‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2)γsdµ

≤ ch2|Mt|[γ>0] + c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
]
‖A‖2

2,[γ>0] + c(cγ1)
(6−n)ε

6−n
2

0

≤ CAB

[(
1 +

∫
M
‖Ao‖ndµ

)p ∫
M
P 2

j (A) + P 1
k (A) + P 0

l (A) dµ

]

+ c
[
(cγ̃2)

2 + (cγ̃1)
4 + (cγ1)

4
]
‖A‖2

2,[γ>0] + c(cγ1)
(6−n)ε

6−n
2

0 .

Now using Lemma 3.6 we have for any θ∗ > 0

(
1 +

∫
M
‖Ao‖ndµ

)p ∫
M
P 2

j (A) + P 1
k (A) + P 0

l (A) dµ

≤
(
1 +

∫
M
‖Ao‖ndµ

)p
[
θ
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ

+ c(θ, ρ, n, j, k, l, CAB)
(
δm
0

) (n+1)(2m+2k−j+l)+j−2+2k+l
m

]

≤ θ∗
∫

f−1(Bρ(x1))
‖∇(2)A‖2dµ

+ c(ε0, ρ, n, j, k, l, p, CAB)
(
δm
0

) (n+1)(2m+2k−j+l)+j−2+2k+l
m ,

choosing

θ = θ∗
(
C

1/p
AB [1 + cρε0]

)−p

.

Note that this is allowed by the bound on cρ(t), Lemma 3.5, and the boundedness

of ε0. Therefore, we can use the above estimate for θ∗ ≤ 1
2CABc1

to absorb the term

with h and conclude the theorem. �

Remark. Because we cannot assume small curvature, we will not recover the

uniform bound for h. This is the reason why we must assume the much more

restrictive growth condition (A2) instead of that allowed in the Lifespan Theorem.
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Our next step is another Sobolev-type inequality, which we will use presently to

obtain L∞ estimates for the curvature. Note that here the dimension of M plays a

key role, for exactly the same reasons as outlined in Chapter 3, Section 5.

Lemma 5.7. Suppose n ∈ {2, 3} and let γ be as in (25). Then for any C1 tensor

T on Mn and s ≥ 2,

‖Tγs‖4
∞ ≤ c‖Tγs‖4−n

2

[( ∫
M
‖∇(2)T‖2γ2sdµ

)n
2

+
( ∫

M
H4‖T‖2γ2sdµ

)n
2

+ (cγ1)
2n
( ∫

[γ>0]
‖T‖2dµ

)n
2

]
,

where c = c(n, s).

Proof. We use the interpolation inequality: for any C2 tensor S,

‖S‖4+n
∞ ≤ c‖S‖4−n

2 (‖∇S‖4 + ‖H · S‖4)
2n,

from Theorem A.2. We invoke this with S = Tγs to infer

(125) ‖Tγs‖4+n
∞ ≤ c‖Tγs‖4−n

2

(
‖∇(Tγs)‖2n

4 + ‖H · Tγs‖2n
4

)
.

Now

‖H · Tγs‖2n
4 ≤ ‖Tγs‖n

∞

( ∫
M
H4‖T‖2γ2sdµ

)n
2

,

which gives the second term in the statement of the lemma, and

‖∇(Tγs)‖4
4 =

∫
M

[
(∇T )γs + sT (∇γ)γs−1

]4
dµ

≤ c
∫

M
‖∇T‖4γ4sdµ+ c(cγ1)

4
∫

M
‖T‖4γ4s−4dµ,

so

‖∇(Tγs)‖2n
4 ≤ c

( ∫
M
‖∇T‖4γ4sdµ

)n
2

+ c(cγ1)
2n
( ∫

M
‖T‖4γ4s−4dµ

)n
2

.(126)
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The second term in (126) above is easy to estimate

(cγ1)
2n
( ∫

M
‖T‖4γ4s−4dµ

)n
2

≤ (cγ1)
2n‖Tγs‖n

∞

( ∫
[γ>0]

‖T‖2dµ
)n

2

,

where we needed s ≥ 2. This gives the last term in the statement of the lemma.

We will use integration by parts and Young’s inequality to estimate the first

term in (126):

∫
M
‖∇T‖4γ4sdµ ≤ 3

∫
M
‖T‖ ‖∇(2)T‖ ‖∇T‖2γ4sdµ

+ 4s
∫

M
‖T‖ ‖∇T‖3‖∇γ‖γ4s−1dµ

≤
[
1

4

∫
M
‖∇T‖4γ4sdµ+ 9

∫
M
‖T‖2‖∇(2)T‖2γ4sdµ

]

+

[
1

4

∫
M
‖∇T‖4γ4sdµ+ 1728s4

∫
M
‖T‖4‖∇γ‖4γ4s−4dµ

]

≤ 1

2

∫
M
‖∇T‖4γ4sdµ

+ ‖Tγs‖2
∞

[
c
∫

M
‖∇(2)T‖2γ2sdµ+ c(cγ1)

4
∫

M
‖T‖2γ2s−4dµ

]
.

Therefore

∫
M
‖∇T‖4γ4sdµ ≤ c‖Tγs‖2

∞

[ ∫
M
‖∇(2)T‖2γ2sdµ+ (cγ1)

4
∫
[γ>0]

‖T‖2dµ

]
,

and so

( ∫
M
‖∇T‖4γ4sdµ

)n
2

≤ c‖Tγs‖n
∞

[( ∫
M
‖∇(2)T‖2γ2sdµ

)n
2

+ (cγ1)
2n
( ∫

[γ>0]
‖T‖2dµ

)n
2

]
,

(127)

where we again needed s ≥ 2. Combining (125), (126) and (127) gives

‖Tγs‖4+n
∞ ≤ c‖Tγs‖4−n

2 ‖Tγs‖n
∞

[( ∫
M
‖∇(2)T‖2γ2sdµ

)n
2

+
( ∫

M
H4‖T‖2γ2sdµ

)n
2

+ (cγ1)
2n
( ∫

[γ>0]
‖T‖2dµ

)n
2

]
.(128)

Since Lemma 5.7 is trivial if either γ ≡ 0 or T ≡ 0, assume otherwise and then

divide by ‖γsT‖n
∞ in (128) to finish the proof. �
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Lemma 5.7 combined with some earlier estimates leads to partial curvature es-

timates. We show that the supremum of the tracefree curvature is bounded by an

expression incorporating the speed of the flow as the principal driving factor. As

expected, the constraint function causes some trouble, by adding a large constant

on the right hand side. The following result, analogous to Theorem 3.3, is one of

our major theorems for this chapter.

Theorem 5.8 (Partial curvature estimates). Suppose n ∈ {2, 3} and let f : Mn×

[0, T ) → Rn+1 be a (CSD) flow, γ a cutoff function as in (25) with χBρ/2
< γ̃ < χBρ

and suppose that for any x ∈ Rn+1, ‖Ao‖n
n,f−1(Bρ(x)) ≤ ‖Ao‖n

n,f−1(Bρ(x0)) < ε0 where

ε0 > 0 is as in Proposition 4.7. Further, assume that the constraint function h

satisfies (A2), and in the case where n = 3 that (AB) is satisfied. Then

‖Ao‖2
∞,f−1(Bρ/2(x0))

≤ c‖Ao‖
4−n

2

2,f−1(Bρ(x0))

[
‖F‖

n
2

2,f−1(Bρ(x0)) +
1

ρn
‖A‖

n
2

2,f−1(Bρ(x0)) + (ch)
n
4 + (n− 2)ε0

]
,

where c = c(n, ε0, CAB).

Proof. We use Proposition 4.7 to obtain

∫
f−1(Bρ/2(x0))

‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2dµ

≤ c
∫

f−1(Bρ(x0))
F 2dµ+ ch2|Mt|f−1(Bρ(x0))

+
c

ρ4

[
‖Ao‖4

2,f−1(Bρ(x0)) + ‖A‖2
2,f−1(Bρ(x0))

]
+ c(n− 2)(cγ1)

3‖Ao‖
9
2

3,[γ>0].
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Therefore, using Theorem 5.6 we have

∫
f−1(Bρ/2(x0))

‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2dµ

≤ ch + c
∫

f−1(Bρ(x0))
F 2dµ+ c(n− 2)(cγ1)

3‖Ao‖
9
2

3,[γ>0],

+
c

ρ4

[
‖Ao‖4

2,f−1(Bρ(x0)) + ‖A‖2
2,f−1(Bρ(x0))

]

where ch is as in Theorem 5.6. Lemma 5.7 above with T = Ao gives

‖Ao‖4
∞,f−1(Bρ/2(x0)) ≤ c‖Ao‖4−n

2,f−1(Bρ(x0))

[( ∫
f−1(Bρ(x0))

‖∇(2)A
o‖2µ

)n
2

+
( ∫

f−1(Bρ(x0))
H4‖Ao‖2dµ

)n
2

+
1

ρ2n

( ∫
f−1(Bρ(x0))

‖Ao‖2dµ
)n

2

]
.

Combining these inequalities, we have

‖Ao‖4
∞,f−1(Bρ/2(x0))

≤ c‖Ao‖4−n
2,f−1(Bρ(x0))

[( ∫
f−1(Bρ(x0))

F 2dµ
)n

2

+
1

ρ2n

[
‖Ao‖2n

2,f−1(Bρ(x0)) + ‖A‖n
2,f−1(Bρ(x0)) + ‖Ao‖n

2,f−1(Bρ(x0))

]

+ (ch)
n
2 + (n− 2)(cγ1)

9
2‖Ao‖

27
4

3,[γ>0]

]
.

Taking square roots and using the smallness assumption with, in the n = 3 case,

(AB) and the Hölder inequality, gives the result. �

An identical proof gives an analogous estimate for the full curvature tensor.

Corollary 5.9. Suppose n ∈ {2, 3} and let f : Mn× [0, T ) → Rn+1 be a (CSD)

flow, γ a cutoff function as in (25) with χBρ/2
< γ̃ < χBρ and suppose that for any

x ∈ R3, ‖A‖n
n,f−1(Bρ(x)) ≤ ‖A‖n

n,f−1(Bρ(x0)) < ε0 where ε0 > 0 is as in Proposition 4.7.

Further, assume that the constraint function h satisfies (A2), and in the case where
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n = 3 that (AB) is satisfied. Then

‖A‖2
∞,f−1(Bρ/2(x0))

≤ c‖A‖
4−n

2

2,f−1(Bρ(x0))

[
‖F‖

n
2

2,f−1(Bρ(x0)) +
1

ρn
‖A‖

n
2

2,f−1(Bρ(x0)) + (ch)
n
4 + (n− 2)ε0

]
,

where c = c(n, ε0, CAB).

For later application we prove the following estimate.

Proposition 5.10. Suppose f : M2× [0, T ∗] → R3 is a (CSD) flow where there

exists a σ <∞ such that

∫
M
‖A‖2dµ ≤ σ on [0, T ∗].

Then there exist constants ε1 = ε1(M0), c2 = c2(ε0, σ) > 0 and x1 ∈ R3 such that if

ρ > 0 is chosen with

(129)
∫

f−1(Bρ(x))
‖Ao‖2dµ

∣∣∣∣∣
t=0

≤
∫

f−1(Bρ(x0))
‖Ao‖2dµ

∣∣∣∣∣
t=0

< ε1 for every x ∈ R3,

and the constraint function h satisfies (A2), then at any time 0 ≤ t < t1 =

min{c2ρ4, T ∗} we have

∫
f−1(Bρ(x1))

‖Ao‖2dµ+
∫ t

0

∫
f−1(Bρ(x1))

(
‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2

)
dµdτ

≤ c[ε1 + (ch + σρ−4)t],(130)

and

∫ t

0
‖Ao‖4

∞,f−1(Bρ(x1))dτ ≤ c[ε1 + (ch + σρ−4)t].(131)

Also, for 0 < ρ′ ≤ ρ and τ ≤ min{c2(ρ′)4, T ∗} we have

∫
f−1(Bρ′/2(x1))

‖A‖2dµ

∣∣∣∣∣
t=τ

≤
∫

f−1(Bρ′ (x1))
‖A‖2dµ

∣∣∣∣∣
t=0

+ c(ch + σ(ρ′)−4)τ.
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Proof. Motivated by the fact that 24 balls Bρ/2 can be used to cover a ball

Bρ, we set ε1 ≤ ε0
4·24 , where ε0 is as in Proposition 5.5. Note, importantly, that this

implies ε1 < ε0. Assume (129) is satisfied on [0, t] and integrate the estimate in

Theorem 5.6 to obtain

∫
f−1(Bρ/2(x1))

‖Ao‖2dµ+
c1
2

∫ t

0

∫
f−1(Bρ/2(x1))

‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2dµdτ

≤ ε1 + c(ch + σρ−4)t.

(132)

Since

0 < t ≤ ε0
c4 · 24

(
1

σ + chρ4

)
ρ4 = c2ρ

4,

we use (132) to derive

∫
f−1(Bρ(x1))

‖Ao‖2dµ+ c1

∫ t

0

∫
f−1(Bρ(x1))

‖∇(2)A‖2 + ‖∇A‖2‖A‖2 + ‖A‖4‖Ao‖2dµdτ

≤ 24
(
ε1 + c(ch + σρ−4)t

)
≤ 24

(
ε0

1

4 · 24
+ ε0

1

4 · 24

)
≤ ε0

2
.

Therefore (124) holds up to time t = t1 and (130) follows. Using a covering argument

and combining the estimate of Lemma 5.7 with (130) above gives

∫ t

0
‖Ao‖4

∞,f−1(Bρ/2(x1))dτ

≤ c
∫ t

0
‖Ao‖2

2,f−1(Bρ(x1))

∫
f−1(Bρ(x1))

‖∇(2)A‖2 + ‖A‖4‖Ao‖2 + ρ−4‖Ao‖2dµdτ

≤ cε0

∫ t

0

∫
f−1(Bρ(x1))

‖∇(2)A‖2 + ‖A‖4‖Ao‖2dµdτ + cε20ρ
−4

≤ cε0
(
ε1 + c(ch + σρ−4)t+ cε0ρ

−4
)

≤ c
[
ε1 + (ch + σρ−4)t

]
.
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This shows (131). Integrating both conclusions of Theorem (5.6) and combining the

result completes the proof. �

4. Proof of the interior estimates

We return to our old growth condition (GC) and use the a priori estimates for

the constraint function proved in Chapter 3. In particular, note that this maximises

the ‘overlap’ in the class of constraint functions to which both the Lifespan Theorem

and Interior Estimates apply. In the statement below we use the convention that

0 < T ∗ < T ′ < T .

Theorem 5.11 (Interior estimates). Suppose n ∈ {2, 3} and let f : Mn ×

(0, T
′
] → Rn+1 be a (CSD) flow with the constraint function h satisfying the condi-

tions of the Lifespan Theorem. Further assume (AB) and that

(133) sup
0<t≤T ∗

∫
f−1(Bρ(x))

‖A‖mdµ ≤ ε0, for T ∗ ≤ cρ4,

where m = m(h) is as in the Lifespan Theorem. Then for any k ∈ N0 we have at

time t ∈ (0, T ∗] the estimates

‖∇(k)A‖2,f−1(Bρ/2(x)) ≤ ck
√
ε0t

− k
4(134)

‖∇(k)A‖∞,f−1(Bρ/2(x)) ≤ ck
√
ε0t

− k+1
4 ,(135)

for some x ∈ Rn+1, where ck = ck
(
k, n, ρ, T ∗, ‖∇(k)A‖2,f−1(Bρ(x0))|t=0

)
.

Proof. We may assume ρ = 1, since if otherwise we instead consider the scaled

immersions fρ(p, t) = 1
ρ
f(p, ρ4t). Recall now the estimates from Proposition 3.23

and Proposition 3.26:

∫ T ∗

0

∫
f−1(B 3

4
(x0))

‖∇(2)A‖2 + ‖A‖6dµdt ≤ cε0, and(136)
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0
‖A‖4

∞,f−1(B 3
4
(x0))dt ≤ cε.(137)

Note that the constant above, and all further constants in this proof, depend ad-

ditionally on CAB for n = 3. We now fix a cutoff function γ = γ̃ ◦ f by choosing

γ̃ ∈ C2
c (R3) such that

χB 1
2 (x0)

≤ γ̃ ≤ χB1(x0), and ‖Dγ̃‖∞ + ‖D2γ̃‖∞ ≤ c.

We also define a family of cutoff functions in time ηj by

ηj(t) =


0, t ≤ (j − 1)T ∗

m
m
T ∗

(
t− (j − 1)T ∗

m

)
, (j − 1)T ∗ < t < j T ∗

m

1, t ≥ j T ∗

m
,

where j ∈ [0,m] and m ∈ N0. Note that η0 ≡ 1 on [0, T ∗], ηm(T ∗) = 1 and the

derivative satisfies

η′j(t) =
m

T ∗
for t ∈

(
(j − 1)

T ∗

m
, j
T ∗

m

)
,

zero elsewhere. This is succinctly written as

(138) 0 ≤ η′j ≤
m

T ∗
ηj−1, t ∈

[
0, j

T ∗

m

]
,

although of course remains valid for t > j T ∗

m
and t < 0. Recall the following

inequality from the proof of Proposition 3.26:

d

dt

∫
M
‖∇(2j)A‖2γ4j+4dµ+

1

2

∫
M
‖∇(2j+2)A‖2γ4j+8dµ

≤ c
(
‖A‖4

∞,f−1(B 3
4
(x0)) + h

4
3

) ∫
M
‖∇(2j)A‖2γ4j+4dµ

+ c‖A‖2
2,f−1(B 3

4
(x0))

(
1 + ‖A‖4

∞,f−1(B 3
4
(x0)) + h+ h

4
3

)
.
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We compute

d

dt

(
ηj

∫
M
‖∇(2j)A‖2γ4j+4dµ

)
= η′j(t)

∫
M
‖∇(2j)A‖2γ4j+4dµ+ ηj(t)

d

dt

∫
M
‖∇(2j)A‖2γ4j+4dµ

≤ c
(
‖A‖4

∞,f−1(B 3
4
(x0)) + h

4
3

)[
ηj(t)

∫
M
‖∇(2j)A‖2γ4j+4dµ

]
+ cε0

(
1 + ‖A‖4

∞,f−1(B 3
4
(x0)) + h+ h

4
3

)
ηj(t)

− ηj(t)
1

2

∫
M
‖∇(2j+2)A‖2γ4j+8dµ

+ ηj−1(t)
m

T ∗

∫
M
‖∇(2j)A‖2γ4j+4dµ.(139)

We claim, for 0 ≤ j ≤ m, t ∈ (0, T ∗],

(140) ηj

∫
M
‖∇(2j)A‖2γ4j+4dµ+

1

2

∫ t

0
ηj(τ)

[ ∫
M
‖∇(2j+2)A‖2γ4j+8dµ

]
dτ ≤ c(m)ε0

(T ∗)j
.

The proof is by induction on (139). For j = 0, (140) follows by combining (133)

with (136). That is,

∫
M
‖A‖2γ4dµ+

1

2

∫ t

0

∫
M
‖∇(2)A‖2γ8dµdτ ≤ cε0.

Integrating (139) on [0, T ∗] gives, for j ≥ 1,

ηj

∫
M
‖∇(2j)A‖2γ4j+4dµ+

1

2

∫ t

0
ηj(τ)

[ ∫
M
‖∇(2j+2)A‖2γ4j+8dµ

]
dτ

≤ c
∫ t

0

(
1 + ‖A‖4

∞,f−1(B 3
4
(x0))

)[
ηj(t)

∫
M
‖∇(2j)A‖2γ4j+4dµ

]
dτ

+ cε0

∫ t

0

(
1 + ‖A‖4

∞,f−1(B 3
4
(x0))

)
dτ

+
m

T ∗

∫ t

0
ηj−1(τ)

[ ∫
M
‖∇(2j)A‖2γ4j+4dµ

]
dτ,

where we estimated 0 ≤ ηj ≤ 1 and used ηj(0) = 0 if j ≥ 1. We also used (CB).

Invoking (137) and Gronwall’s inequality (c.f. the proof of Proposition 3.26):

ηj

∫
M
‖∇(2j)A‖2γ4j+4dµ+

1

2

∫ t

0
ηj(τ)

[ ∫
M
‖∇(2j+2)A‖2γ4j+8dµ

]
dτ
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≤ cε0 + c
(
m

T ∗

)(
c(m)

(T ∗)j−1

)
ε0

≤ c(m)ε0
(T ∗)j

.(141)

With (141) we have shown (140). Therefore, at t = T ∗,

∫
M
‖∇(2m)A‖2γ4m+4dµ ≤ ε0

c(m)

(T ∗)m
.

We interpolate with one of our interpolation inequalities from Appendix A to obtain

the analogous statement for the odd derivatives; Lemma A.4 for example. Renaming

T ∗ to t, we have shown (135). The L∞ estimate (134) follows from Proposition 3.21

and (137) exactly as in the proof of Proposition 3.26. �



CHAPTER 6

Blow up analysis for constrained surface diffusion flows

1. Introduction

In this chapter we will detail the blowup construction and the properties of such

which we shall use in our asymptotic analysis. This is instrumental in concluding our

final major result, long time existence and convergence to spheres for certain initial

manifolds and certain (CSD) flows. Briefly, the idea is as follows. From the Lifespan

Theorem, we know that the only way for our flow to halt and lose regularity is if

the curvature concentrates. To contradict this, we will assume we have the tracefree

curvature initially small in L2 and also that we are still plagued by a finite time

curvature singularity. The strategy from here is to study intensely the properties of

the finite time singularity. We construct a sequence of rescalings around the final

time, a so-called ‘blowup’, and study the properties of the limit. In this chapter we

will show that the blowup is a non-umbilic stationary surface (with ∆H + h ≡ 0)

with small tracefree curvature and controlled growth of curvature at infinity. This is

in direct contradiction with the Gap Lemma, and so we must not have had a finite

time singularity at all. In this chapter we will be concerned with the construction

and properties of the blowup. We leave the asymptotic analysis to Chapter 7.

This technique, of analysing rescaled solutions to attack problems of singularity

development, has appeared in the literature for quite some time. However it is

201
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only recently that it has been applied to problems in geometric analysis. For our

purposes, the key references are again Kuwert and Schätzle [36, 38]. Our technique

however differs from that of [36] in several ways, as it must. There, Willmore

flow is studied, and being an L2 gradient flow of curvature lends itself naturally to

this analysis. This can be seen in many ways, although the most telling is surely

the stationary nature of the blowup. This is related to two key facts: the scale

invariance of the L2 norm of curvature and the flow, and the monotonic decrease

of the L2 norm of curvature in time. Both of these facts combine to give one that

the blowup at any finite time singularity is stationary. We do not even recover

this statement, and we must work a lot harder to obtain a useful analogue. To

begin with, we do not have any L2 norm of curvature monotone in time. Thus we

first need to show that the L2 norm of curvature, while not monotone, is at least

well-controlled. This is Almost Preservation, Theorem 6.3. With this in hand, one

can obtain that the blowup is stationary by the use of one of our earlier localised

integral estimates; however this is of course only valid if the L2 norm of tracefree

curvature at initial time is small. Therefore, we do not obtain that all blowups

of finite time singularities are stationary. We only obtain that blowups with small

tracefree curvature are stationary, which is a strictly weaker result than that in [36].

Given that the natural energy for surface diffusion flow is surface area, the same as

for mean curvature flow, one would expect self-similar or translating solutions to be

a common result of rescaling. Our analysis here only excludes this possibility—in

fact excludes the possibility of any singularity at all—in the case where one already

has small tracefree curvature, which is more in line with what one would expect.
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Note that we do not show the reverse implication: that a stationary blowup satisfies

a small tracefree curvature condition.

For the constrained flows, the above difficulties are only part of the story. In the

case where we have a non-trivial constraint function, the surface area becomes dif-

ficult to control from below. While excluding planes is no challenge (the blowup we

construct will have some curvature), our main method of contradicting the possible

development of a sphere in the limit is to prove a uniform lower bound on area. This

results in more conditions placed upon the constraint function, and is the subject

of Proposition 6.7.

Throughout this chapter, and indeed for the rest of the thesis, we will only be

considering flows of surfaces, i.e. families of immersions f : M2 × [0, T ) → R3,

and only in one codimension. There is good reason for this. The asymptotics of

our previous estimates and the covering argument we have used to obtain crucial

properties of our rescaled solutions requires it. If we had codimension greater than

one, then we would need too many ambient balls to cover key regions of M . This

problem does not arise in the case of the Willmore flow [36], as there it is easy to use

the gradient flow structure of the equation instead to obtain the valuable properties

of the blowup.

2. Compactness theorem and construction of blowup

We will be constructing a sequence of immersions and wish to study the geometric

properties of a ‘limit’ immersion. The following theorem, a localisation of a result

due to Langer [40] by Kuwert and Schätzle [36], defines precisely what is meant by

‘limit’ immersion, and gives sufficient conditions for its existence.
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Theorem 6.1. Let fj : Mj → R3 be a sequence of proper immersions, where Mj

is a surface without boundary. Let

Mj(R) = {p ∈Mj : |fj(p)| < R}

and assume the bounds

µj(Mj(R)) ≤ c(R) for any R > 0,

‖∇(k)A‖∞,Mj
≤ c(k) for any k ∈ N0.

Then there exists a proper immersion f̃ : M̃ → R3, where M̃ is again a surface

without boundary, such that after passing to a subsequence we have a representation

fj ◦ φj = f̃ + uj on M̃(j) = {p ∈ M̃ : |f̃(p)| < j}

with the following properties:

φj : M̃(j) → Uj ⊂Mj is diffeomorphic,

Mj(R) ⊂ Uj if j ≥ j(R),

uj ∈ C∞(M̃(j),R3) is normal along f̃ ,

‖∇̃(k)uj‖∞,M̃(j) → 0 as j →∞ for any k ∈ N0.(142)

The theorem says that on any ball BR(0) the immersion fj can be written as a

normal graph with small norm for j large over a limit immersion f̃ , after suitably

reparametrising with φj.

Let f : M2 × [0, T ) → R3 be a smooth (CSD) flow defined on a closed surface

M2, where 0 < T ≤ ∞. Define

η(r, t) = sup
x∈R3

∫
f−1(Br(x))

‖A‖2dµ.
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Let rj be an arbitrary decreasing sequence with rj ↘ 0 and assume that

tj = inf{t ≥ 0 : η(rj, t) > ε1} < T,

where ε1 = ε0c0 and ε0 > 0,c0 = 1
c

are as in the Lifespan Theorem.

Lemma 6.2. With the definitions above, we have

∫
f−1(Brj (x))

‖A‖2dµ

∣∣∣∣∣
t=tj

≤ ε1 for any x ∈ R3,

and ∫
f−1(Brj (xj))

‖A‖2dµ

∣∣∣∣∣
t=tj

≥ ε1 for some xj ∈ R3.

Proof. The first statement is a direct consequence of the definition of tj. For the

second, fix j and consider a sequence νi →∞, ν0 < r2
j . Consider times tj +ν−1

i ↘ tj

and radii rj − ν−2
i ↗ rj. Then for each i there exists an

(
xj

)
i
such that

∫
f−1

(
Brj−ν−2 ((xj)i)

)‖A‖2dµ

∣∣∣∣∣
t=tj+ν−1

≥ ε1.

Taking νi →∞ in the above equation gives the second statement. �

We now rescale f . Define immersions

fj : M2 ×
[
− r−4

j tj, r
−4
j (T − tj)

)
→ R3, fj(p, t) =

1

rj

(
f(p, tj + r4

j t)− xj

)
.

The sequence of immersions fj can be thought of as ‘zooming in’ on the assumed

curvature singularity at time T . Let ηj(r, t) be η with respect to the immersion fj.

Then from the lemma above we have ηj(1, t) ≤ ε1 for t ≤ 0 and

∫
f−1

j (B1(0))
‖A‖2dµ

∣∣∣∣∣
t=0

≥ ε1.

The Lifespan Theorem implies r−4
j (T − tj) ≥ c0 and also that

(143) ηj(1, t) ≤ ε0 for − r−4
j tj < 0 < t ≤ c0.
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Thus we may apply the Interior Estimates of the previous chapter on parabolic

cylinders B1(x)× (t− 1, t] to obtain

(144) ‖∇(k)A‖∞,fj
≤ c(k) for − r−4

j tj + 1 ≤ t ≤ c0,

for every k ∈ N0. We also need a local area bound (c.f. Proposition 6.7). Since

we know the Willmore energy is bounded from Theorem 6.3, it is enough to use a

lemma due to Simon [54] to conclude

|f−1
j (BR(0))|

R2
≤ c

(∫
f−1

j (B2R(0))
‖A‖2dµ+ 4πχ(M)

)
<∞.

That is, we do not need to assume (AB). Using Theorem 6.1 with the sequence

fj = fj(·, 0) : M2 → R3 we obtain a limit immersion f̃0 : M̃ → R3. Let φj : M̃(j) →

Uj ⊂M2 be as in (142). Then the reparametrisation

(145) fj(φj, ·) : M̃(j)× [0, c0] → R3

is a (CSD) flow with initial data

(146) fj(φj, 0) = f̃0 + uj : M̃(j) → R3.

The flows (145) satisfy the curvature bounds (144) and have initial data converging

locally in Ck, for every k ∈ N0, to the immersion f̃0 : M2 → R3. By converting the

curvature bounds to partial derivative bounds in parabolic cylinders (as in the proof

of the Lifespan Theorem, final step) we obtain the locally smooth convergence

(147) fj(φj, ·) → f̃ ,

where f̃ : M̃ × [0, c0] → R3 is a (CSD) flow with initial data f0.
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3. Blow up with small initial tracefree curvature

We wish to show that the blowup f̃ is stationary. Unfortunately, we do not have

a guarantee that our (CSD) flows are gradient flows in any practical sense, and so

can not expect to obtain a result analogous to [36]. Indeed, our argument differs

in several fundamental ways and the conclusion is much weaker. However, we still

obtain sufficient information to proceed along the same fundamental lines as [36]

and obtain, in the end, long time existence. Our argument involves the previously

proved estimate Lemma 5.4 and the following almost preservation of small tracefree

curvature theorem.

Theorem 6.3 (Almost Preservation). Let f : M2 × [0, T ) → R3 be a (CSD)

flow with h satisfying the hypothesis of Proposition 5.10. Then for any ε0 > 0 there

exists a constant ε1 = ε1(ε0) > 0 such that if

(148)
∫

M
‖Ao‖2dµ

∣∣∣∣∣
t=0

≤ ε1

then for all t ∈ [0, T ]

(149)
∫

M
‖Ao‖2dµ ≤ ε0.

Proof. This proof is a somewhat straightforward application of Proposition

5.10. Although we cannot simply ‘apply’ Proposition 5.10 with ‘ρ = ∞’, this is still

the underlying idea.

Let fj be the sequence of rescaled immersions constructed above. Recall the

sequence of times tj, where tj ↗ T and each time is chosen to correspond with a

concentration of ε0 curvature at the scale rj. We work in intervals [0, tj]. From
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short time existence, we have the existence of σj such that ‖A‖2
2 ≤ σj, although

we acknowledge that (from for example the Lifespan Theorem) in the case where

T <∞, σj necessarily approaches infinity. Let ρj = max{σ−1
j , r−1

j }, so that we have

ρj ↗ ∞. Now, applying Proposition 5.10 in time intervals [0, tj] with ρ = ρj we

obtain

(150)
∫

f−1(Bρj (0)
‖Ao‖2dµ < ε0 for t ∈

[
0,min{tj, cσ−1

j ρ4
j}
]
.

Taking ρj ↗∞ we have

∫
M
‖Ao‖2dµ < ε0 for t ∈ [0, T ],

as required. �

Remark. It is easy to see that for any ε0 one may take ε1 = 2−6ε0. However, this

is far from optimal. Since (148) is satisfied over the whole manifold, the covering

argument used in the proof of Proposition 5.10 may be improved by considering

a sequence of radii ρi ↗ ρ instead of only ρ/2. Then as i and ρ increase, one

obtains a sequence (ε1)i ↗ ε0. So the above condition (148) may be strengthened

to ‖Ao‖2
2

∣∣∣
t=0

< ε0.

Note that if we had a statement to the effect of

∫
M
‖Ao‖2dµ < ε0 =⇒ guaranteed short time existence,

then Theorem 6.3 above would immediately imply that for (CSD) flows with small

initial tracefree curvature we have long time existence. Unfortunately the relevant

theorem, the Lifespan Theorem, requires ‖A‖2
2 small. With a little thought one

realises that such a condition can not be in general satisfied (consider ε0 < 2π).
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This implies that such a direct approach is unrealistic. This is why we have chosen

to employ a ‘round about’ method to demonstrate long time existence.

We now show that the blowup is stationary.

Theorem 6.4. Let f : M2 × [0, T ) → R3 be a (CSD) flow with the constraint

function h satisfying (GC), the hypotheses of Lemma 5.4, Proposition 5.10 and

(AS) ∆H ≡ 0 =⇒ h = 0.

Then there exists an absolute constant ε1 > 0 such that if

∫
M
‖Ao‖2dµ

∣∣∣∣∣
t=0

≤ ε1,

the blowup f̃ as constructed above is stationary.

Proof. First, note that by the limiting construction Proposition 6.3, the hy-

pothesis of Lemma 5.4 is satisfied for all γ as in (25). Therefore we use Lemma 5.4

to imply

d

dt

∫
M

1

2
H2γsdµ+ ce

∫
M

(
‖∇(2)H‖2 + ‖∇H‖2H2 +H4‖Ao‖2

)
γsdµ

− ce
2

∫
M
‖∇(2)H‖2 + ‖∇H‖2H2 +H4‖Ao‖2dµ

≤ c
[
(cγ̃1)

4 + (cγ1)
4 + (cγ2)

2 + (cγ2)
4
]
‖A‖2

2,[γ>0] + c(cγ1)
4‖Ao‖4

2,[γ>0],

Set γ to be a cutoff function for fj on Uj. Then rearranging the above we have

ce

∫
Uj

‖∇(2)H‖2 + ‖∇H‖2H2 +H4‖Ao‖2dµ

−ce
2

∫
Mj

‖∇(2)H‖2 + ‖∇H‖2H2 +H4‖Ao‖2dµ

≤ − d

dt

∫
Uj

1

2
H2dµ+ c

[
1

j4
+

1

j8

]
‖A‖2

2,Mj(R+1) + c
1

j4
‖Ao‖4

2,Mj(R+1),

where R = R(j) is the largest integer such that Mj(R) ⊂ Uj. Denote by I the

integrand ‖∇(2)H‖2 + ‖∇H‖2H2 + H4‖Ao‖2. With a slight abuse of notation we



210 6. BLOW UP

now compute

ce
2

∫ c0

0

∫
M̃
I(f̃(φ∞, ·))dµf̃(φ∞,·)dt

= lim
j→∞

ce ∫ c0

0

(∫
Uj

I(fj(·, ·))dµj −
1

2

∫
Mj

I(fj(·, ·))dµj

)
dt


≤ lim

j→∞

( 1

j4
+

1

j8

) ∫ c0

0
‖A‖2

2,Mj(R+1)dt+
1

j4

∫ c0

0
‖Ao‖2

2,Mj(R+1)dt

− c
[ ∫

Uj

H2dµ

∣∣∣∣∣
t=c0

−
∫

Uj

H2dµ

∣∣∣∣∣
t=0

]
≤ lim

j→∞

( 1

j4
+

1

j8

) ∫ c0

0
‖A‖2

2,Mj(R+1)dt+
1

j4

∫ c0

0
‖Ao‖2

2,Mj(R+1)dt

− c
[ ∫

M(j)
H2dµ

∣∣∣∣∣
t=tj+r4

j c0

−
∫

M(j)
H2dµ

∣∣∣∣∣
t=tj

]
≤ lim

j→∞

( 1

j4
+

1

j8

) ∫ c0

0
3
√

3(cj)3ηj(1, t)dt+
1

j4

∫ c0

0
ε0dt

− c
[ ∫

M(j)
H2dµ

∣∣∣∣∣
t=tj+r4

j c0

−
∫

M(j)
H2dµ

∣∣∣∣∣
t=tj

]
≤ lim

j→∞

( 1

j4
+

1

j8

) ∫ c0

0
3
√

3(cj)3ε0dt+
1

j4

∫ c0

0
ε0dt

− c
[ ∫

M(j)
H2dµ

∣∣∣∣∣
t=tj+r4

j c0

−
∫

M(j)
H2dµ

∣∣∣∣∣
t=tj

]
≤ lim

j→∞

(1

j
+

1

j5

)
3
√

3c3ε0c0 +
1

j4
ε0c0

− c
[ ∫

M(j)
H2dµ

∣∣∣∣∣
t=tj+r4

j c0

−
∫

M(j)
H2dµ

∣∣∣∣∣
t=tj

].
We will now bring in the limit. Note that we used a covering argument with (143)
in the above computation. Therefore,

ce
2

∫ c0

0

∫
M̃
I(f̃(φ∞, ·))dµf̃(φ∞,·)dt

≤ −c lim
j→∞

[ ∫
M(j)

H2dµ

∣∣∣∣∣
t=tj+r4

j c0

−
∫

M(j)
H2dµ

∣∣∣∣∣
t=tj

]
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≤ −c
[ ∫

M̃
H2dµ

∣∣∣∣∣
t=T

−
∫

M̃
H2dµ

∣∣∣∣∣
t=T

]
≤ 0.

We used the fact that limj→∞ tj + r4
j c0 = limj→∞ tj = T above. Note that we also

need to ensure that the limit

lim
t→T

∫
M
H2dµ

exists. A lower bound is trivial (M is closed) and an upper bound follows from

Theorem 6.3, so we know

4π ≤
∫

M
H2dµ ≤ 4π + ε0.

It remains only to rule out the possibility that ‖H‖2
2 oscillates with infinite frequency

approaching the final time. This is easy to do using an argument similar to that of

Theorem 6.3 with the estimate of Theorem 5.6, which we briefly summarise. Let

δ ∈ (0, T ) and assume that for some t∗ ∈ [δ, T ) and c > 0 we have ∂
∂t
‖H‖2

2

∣∣∣
t=t∗

> c.

This contradicts Theorem 5.6 at t = t∗, after taking ρ → ∞ as in the proof of

Theorem 6.3.

This shows that I(f̃) = 0 and so (among other facts) ∆H(f̃) = 0. Therefore,

using (AS) we have that h = 0 and so

∂

∂t
f̃ = 0.

This finishes the proof. �

Remark. The condition (AS) above is natural, although necessarily restrictive.

Since our overall goal is to prove that if one begins a (CSD) flow with small distance

to a sphere then the flow exponentially converges to a sphere, we need spheres them-

selves to be well-behaved. Of course one can construct constraints h which satisfy all
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of our previous conditions yet are not zero on a sphere. Now we know by using the

Gap Lemma (for example) with surface diffusion flow that the only compact mani-

folds with ∆H ≡ 0 and small tracefree curvature are spheres. Therefore it becomes

natural that we demand h = 0 for spheres. Indeed, this is the essence of the growth

condition placed on h in Chapter 4 on the Gap Lemma. The condition (AS), viewed

in light of the Gap Lemma, is thus equivalent to the growth condition in Chapter

4, when one considers manifolds which satisfy a small tracefree curvature condition

and restricted growth of curvature at infinity. Since these are exactly the manifolds

which interest us, one may safely consider (AS) to be no further restriction to the

growth condition already required by the Gap Lemma, although of course outside

this set the two conditions differ.

Remark. One may bypass the separate statement of the Gap Lemma by notic-

ing that if I(f̃) = 0 then f̃ must be umbilic, and combined with the nontriviality

of the blowup (Theorem 6.8 below) obtain long time existence in a slightly more

efficient manner. However, since the Gap Lemma is of independent interest and fol-

lows naturally during the course of proving the required estimates for this chapter,

we have treated it independently.

Lemma 6.5. The blowup f̃ constructed above is not a union of planes.

Proof. Due to the smooth convergence in (147) and the second conclusion in

Lemma 6.2 we have ∫
f̃−1(B1(0))

‖A‖2dµ ≥ ε1 > 0.

�
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Lemma 6.6. If the blowup f̃ constructed above contains a connected component

C, then in fact M̃ = C and M is diffeomorphic to C.

Proof. For j sufficiently large, φj(C) is open and closed in M . By the connect-

edness of M we have M = φj(C) and thus M̃ = C. �

The reason for the previous two lemmas is to prove that f̃ is nontrivial. The

following area bound, which requires ‖Ao‖2
2 small, is crucial for treating nontrivial

constraint functions. The main difficulty here is that the speed of our flow differs

from ∆H by the constraint function, whose impact on the evolving area element is

hard to control. The proof follows [36], where this also causes difficulty, in the form

of the extra zero order term H‖Ao‖2.

Proposition 6.7. Suppose f : M2 × [0, T ) → R3 is a (CSD) flow with small

tracefree curvature ∫
M
‖Ao‖2dµ ≤ ε < ε1,

and with this assumption the constraint function satisfies both

−µ(M)
∫

M
‖∇(2)H‖2dµ−

∫
M
H2‖∇H‖2dµ

≤ h
∫

M
Hdµ ≤ 2

∫
M
‖∇Ao‖2dµ+

∫
M
H2‖Ao‖2dµ+ c

∫
M
‖Ao‖4dµ

and (A2). Then

(151) (1− cε)µ(M)
∣∣∣∣
t=0

≤ µ(M) ≤ (1 + cε)µ(M)
∣∣∣∣
t=0
.

Proof. The evolution of the area is

d

dt
µ(M) =

d

dt

∫
M
dµ = −

∫
M
‖∇H‖2dµ+ h

∫
M
Hdµ.
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Simons’ identity for Ao implies that

2
∫

M
‖∇Ao‖2dµ+

∫
M
H2‖Ao‖2dµ =

∫
M
‖∇H‖2dµ+

∫
M
Ao ∗ Ao ∗ Ao ∗ Aodµ.

Combining these equalities we have

d

dt
µ(M) + 2

∫
M
‖∇Ao‖2dµ+

∫
M
H2‖Ao‖2dµ

= h
∫

M
Hdµ+

∫
M
Ao ∗ Ao ∗ Ao ∗ Aodµ.

Using our hypothesis this becomes

d

dt
µ(M) ≤ µ(M)‖Ao‖4

∞.

From Proposition 5.10 we have

∫ t

0
‖Ao‖4

∞dτ ≤ cε.

So, using Gronwall’s inequality, we obtain

µ(M) ≤ (1 + cε)µ(M)
∣∣∣∣
t=0
.

For the lower bound, observe by the Michael-Simon Sobolev inequality that

∫
M
‖∇H‖2dµ ≤ c

( ∫
M
‖∇(2)H‖+H‖∇H‖dµ

)2

≤ cµ(M)
∫

M
‖∇(2)H‖2 +H2‖∇H‖2dµ.

Combining this again with the evolution of the area element we have

d

dt
µ(M) ≥ −cµ(M)

∫
M
‖∇(2)H‖2 +H2‖∇H‖2dµ+ h

∫
M
Hdµ

≥ −cµ(M)
∫

M
‖∇(2)H‖2 +H2‖∇H‖2dµ.

Using Proposition 5.10 again gives the lower bound required and finishes the proof.

�
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Theorem 6.8 (Nontriviality of the blowup). Suppose f : M2× [0, T ) → R3 is a

(CSD) flow with constraint function satisfying

h
∫

M
Hdµ ≥ −µ(M)

∫
M
‖∇(2)H‖2dµ−

∫
M
H2‖∇H‖2dµ,

the growth condition (A2) and let f̃ be the blowup constructed above. Then none of

the components of f̃ parametrises a round sphere. In particular, the blowup has a

component which is a compact or noncompact nonumbilic stationary (CSD) surface.

Proof. Assume that there is a component of f̃ which parametrises a round

sphere. Then Lemma 6.6 implies that f̃ : M̃ → R3 is an embedded round sphere,

that is, has no further components. Therefore the surface area of the blowup does

not explode. The measure behaves under scaling by

µ(M)
∣∣∣∣
t=tj

= r2
jµj(M)

∣∣∣∣
t=0

and so we have

µ(M)
∣∣∣∣
t=T

= lim
j→∞

µ(M)
∣∣∣∣
t=tj

= lim
j→∞

r2
jµj(M)

∣∣∣∣
t=0

= 0.

Since the maps fj(·, 0) are Ck-close to a round sphere (up to the diffeomorphism φ)

we have ∫
M
‖Ao‖2dµ

∣∣∣∣∣
t=tj

=
∫

Mj

‖Ao‖2dµ

∣∣∣∣∣
t=0

→ 0.

Therefore for sufficiently large j we may apply Proposition 6.7 and obtain a contra-

diction with the lower area bound. �



CHAPTER 7

Long time existence and convergence to spheres for surface
diffusion flow

1. Introduction

In this chapter we prove the following theorem.

Theorem 7.1. Suppose f : M2 × [0, T ) → R3 is a (SD) flow. Then there exists

a constant ε1 > 0 such that if

(152)
∫

M
‖Ao‖2dµ

∣∣∣∣∣
t=0

≤ ε1

then T = ∞ and f converges exponentially to a round sphere.

One way to view the condition (152) is that the deviation of f from being round

is small in an averaged sense. This result can then be viewed as a kind of stability

of spheres theorem in the L2 norm. Simonett [55] used centre manifold techniques

to show that the statement of Theorem 7.1 holds under the stronger assumption

that f0 is C2,α-close to a round sphere. Our analysis here is completely different, as

it must be, and as noted throughout the thesis we have drawn inspiration instead

from the work of Kuwert and Schätzle [36, 37] on the Willmore flow of surfaces.

There they prove Theorem 7.1 for Willmore flow. All of the additional difficulties we

have encountered in earlier chapters are due to the lack of a very special zero order

curvature term in the speed of the flow, and the addition of a difficult to control

global term (the constraint function). The problems caused range from obtaining

217
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‘good’ terms in our integral estimates, to the fact that we do not enjoy the structure

of an L2 gradient flow of curvature, and thus certain trivial facts become highly

non-trivial. For example, in Willmore flow one has

d

dt

∫
M
|Ao|2dµ ≤ 0,

in fact better than this, for “free”. With surface diffusion flow this is no longer true.

Instead, we must rely on Theorem 6.3, which is strictly weaker. Note that although

this weakness carries through to the rest of the blow up analysis, where we obtain

a weaker result than Kuwert and Schätzle, our final major result Theorem 7.1 is

no weaker than the analogous Theorem 5.1 in [36]. This is due to the particular

weakness of our blow up analysis: the results only hold in the case where (152) is

satisfied, whereas for Willmore flow the blow up analysis does not require (152) to

be satisfied. However, since our main theorem requires (152) regardless, one does

not ‘see’ this shortcoming of the blow up analysis from the outset.

We briefly demonstrate an application of Theorem 7.1. Consider the quantity

I(t) =

∫
M dµ

Vol Mt

=
µ(Mt)

Vol Mt

,

sometimes called the isoperimetric ratio. Let f0 : M → R3 be a surface satisfying

(152), and let f : M × [0, T ) → R3 be the surface diffusion flow with initial data f0.

Then

(153)
d

dt
I(t) =

−
∫
M‖∇H‖2dµ

Vol M0

≤ 0.

By Theorem 7.1, f approaches a round 2-sphere S with the volume equal to the

volume of f0. This sphere has radius

r =
3

√
3Vol M0

4π
.
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Integrating (153) and taking limits we have

µ(M0)

Vol M0

≥ µ(S)

Vol S

=
4π
(

3

√
3Vol M0

4π

)2

Vol M0

, so

(
µ(M0)

)3
≥ 9(4π)3

(4π)2

(
Vol M0

)2

= 36π
(
Vol M0

)2
,

the isoperimetric inequality (with optimal constant) for 2-surfaces in R3 satisfying

(152).

One may wonder on a possible upper bound for ε1. Unfortunately, there is a

dearth of analytic examples of surfaces flowing by surface diffusion in the literature,

and so at this time we do not have any analog of the bound given in [38].

2. Long time existence

We begin by establishing that surface diffusion flows with small initial tracefree

curvature exist for all time, that is for these flows T = ∞. For this, the only issue

is to rule out out possible concentrations of curvature at finite times. Now that

we are armed with the analysis from Chapters 3 through to 6 there are several

possible approaches to establishing Theorem 7.1. Our approach is to here give

some elementary arguments, which were outlined heuristically throughout the thesis,

whereas the next section is devoted to the technicalities involved. In particular, for

this section we establish T = ∞, while in the next section we utilise a different kind

of ‘blowup’ (in fact there is no scaling) to establish exponential subconvergence to

spheres.
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Proposition 7.2. Suppose f : M2 × [0, T ) → R3 is a (SD) flow. Then there

exists a constant ε1 > 0 such that if

∫
M
‖Ao‖2dµ

∣∣∣∣∣
t=0

< ε1

then T = ∞.

Proof. Assume otherwise, and then by the Lifespan Theorem there exists a

T < ∞ such that curvature concentrates at time T . Note that we may assume

T > 0. Performing a blow up construction as in Chapter 6 at T we recover a

stationary blow up f̃ with small tracefree curvature due to Proposition 6.3. Now

observe that the Gap Lemma implies f̃ must be a plane or sphere, which contradicts

the nontriviality of the blow up, Theorem 6.8. Thus there does not exist a finite

time when curvature concentrates, and so T = ∞. �

This establishes long time existence, however we know little of the asymptotic

behaviour of our limits in the case where T = ∞. The following is straightforward

in light of Almost Preservation and the Gap Lemma.

Lemma 7.3. For surface diffusion flows satisfying (152), curvature cannot con-

centrate at final time.

Proof. Almost preservation implies that if indeed the curvature did concen-

trate in infinite time, we would have a compact surface f(·,∞) with small tracefree

curvature and a curvature singularity. This contradicts the Gap Lemma. �

This resolves the issue of possible exotic singularities developing asymptotically

slowly. Note that in the case where (152) is not satisfied any one of a whole menagerie



3. EXPONENTIAL SMOOTH CONVERGENCE TO ROUND SPHERES. 221

of singularities may develop in finite or infinite time, and excluding or providing

examples of these are valuable contributions to the literature. At this time, the only

ones known are due to Meyer [45].

For surface diffusion flow (for constrained flows, a similar argument with Propo-

sition 6.7 applies) we have the existence of a non-zero positive finite limit µ(M)|t=T

due to the uniform bounds

(154) 0 < 2
√

3π
√

Vol M
∣∣∣
t=0

= 2
√

3π
√

Vol M ≤ µ(M) ≤ µ(M)
∣∣∣
t=0

<∞.

We finish this section with another lemma, which states that at some scale the

curvature will never concentrate. This is similar to Lemma 5.3 in [36]. The proof

is contained in the proof of Proposition 7.2.

Corollary 7.4. Suppose f : M2 × [0, T ) → R3 is an (SD) flow. Then there

exists a radius r0 > 0 such that

∫
f−1

(
Br0 (x)

)‖A‖2dµ ≤ ε1, for every x ∈ R3,

where ε1 > 0 is as in the construction of the blow up.

Note that the above gives an alternate proof of both Proposition 7.2 and Lemma

7.3 above, which is more similar in spirit to [36].

3. Exponential smooth convergence to round spheres.

We first prove, as in [36], that under the assumption (152) convergence to round

spheres is smooth. This is similar to the analysis from Chapter 6.

Proposition 7.5. Suppose f : M2 × [0, T ) → R3 is an (SD) flow satisfying

(152). Then for any sequence tj ↗ ∞ there exist xj ∈ R3 and φj ∈ Diff(M) such
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that, after passing to a subsequence, the immersions f(φj, t)− xj converge smoothly

to an embedded round sphere.

Proof. Let p ∈M be arbitrary and set xj = f(p, tj). By Corollary 7.4 and the

Interior Estimates, Theorem 5.11, we have for each tj ≥ 1

(155) ‖∇(k)A‖∞ ≤ ck.

We also have an area bound easily as d
dt
µ(M) ≤ 0. Then by Theorem 6.1 we infer

the existence of a properly immersed surface f̃ : M̃ → R3 and diffeomorphisms

φj : M̃(j) → Uj ⊂M such that, after selection of a subsequence,

f(φj, tj)− xj −→ f̃

locally in Ck on M̃ . On M̃(j) we consider the surface diffusion flows

gj(p, t) = f(φj(p), tj + t)− xj, for t ≥ −tj.

These flows satisfy the interior estimates (155) and the initial data (t = 0) converges

to f̃ . Arguing as in (145) we obtain the local smooth convergence of each gj on

M̃ × [0,∞) to a surface diffusion flow g : M̃ × [0,∞) → R3 with initial data f̃ . But

now, using the argument of Theorem 6.4, we obtain that

∫ tj+1

tj

∫
M
|∆H|2dµdτ ↘ 0, as j ↗∞.

Therefore f̃ is a stationary (SD) surface. The Gap Lemma implies that f̃ must be

a union of planes and spheres, however we can exclude several components using

the proof of Lemma 6.6 and planes are impossible due to the upper area bound.

Therefore f̃ must be an embedded round sphere, and subconvergence is smooth. �
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The above implies that Theorem 6.3 may in fact be strengthened to

∫
M
‖Ao‖2dµ↘ 0 as t↗∞,

and further that we must also enjoy almost preservation of the full second funda-

mental form, as ∫
M
‖A‖2dµ→ 4π as t↗∞,

We need one more estimate before we can prove exponential decay of curvature.

The proof is a simpler version of that given already in Lemma 5.4.

Lemma 7.6. Suppose f : M2× [0, T ) → R3 is a (SD) flow. Then there exists an

absolute constant ε0 > 0 such that if

∫
M
‖Ao‖2dµ < ε0

and

lim inf
ρ→∞

1

ρ4

∫
f−1(Bρ(0))

‖A‖2dµ = 0

then we have

d

dt

∫
M
‖Ao‖2dµ+

1

100

∫
M

(
‖∇(2)A‖2 + ‖∇A‖2H2 + ‖Ao‖2H4

)
dµ ≤ 0.

Proof. The argument is similar to that of Lemma 5.4. Let γ be a cutoff function

as in (25) on a ball of radius ρ. We begin by combining Lemma 5.3 with Proposition

4.7:

d

dt

∫
M
‖Ao‖2γ4dµ+ (1− δ1)

[ ∫
M
‖∇(2)A

o‖2γ4dµ+
∫

M
‖A‖2‖∇Ao‖2γ4dµ

+
∫

M
‖A‖4‖Ao‖2γ4dµ+

∫
M
H2‖∇H‖2γ4dµ

− c

ρ4
‖Ao‖4

2,[γ>0] −
c

ρ4
‖A‖2

2,[γ>0]

]
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≤ δ2

∫
M
‖∇Ao‖2H2γ4dµ+ δ3

∫
M
‖A‖4‖Ao‖2γ4dµ

+ c
∫

M
(‖Ao‖6 + ‖∇Ao‖2‖Ao‖2)γ4dµ+

c

ρ4

∫
[γ>0]

‖Ao‖2dµ.

Simplifying, we choose δi = 1
6

and obtain

d

dt

∫
M
‖Ao‖2γ4dµ+

1

50

[ ∫
M
‖∇(2)A‖2γ4dµ+

∫
M
‖A‖2‖∇A‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ

]
≤ c

∫
M

(‖Ao‖6 + ‖∇Ao‖2‖Ao‖2)γ4dµ+
c

ρ4
‖Ao‖2

2,[γ>0] +
c

ρ4
‖A‖2

2,[γ>0].

Note that we also added
∫
M‖Ao‖2‖∇Ao‖2γ4dµ to both sides and used the inequalities

‖∇(2)A‖2 ≤ 25‖∇(2)A
o‖2, and ‖∇A‖2 ≤ 25‖∇Ao‖2.

These are easily proved by estimating

∇A = ∇(Ao + 1

2
gH) = ∇Ao + gij∇jH = ∇Ao + 2g∇∗Ao

and

∇(2)A = ∇(∇Ao + 2g∇∗Ao) = ∇(2)A
o + 2g∇∇∗Ao.

Invoking the Sobolev inequality (Lemma 3.22), as in the proof of Lemma 5.4, we

absorb the first term on the right hand side to conclude

d

dt

∫
M
‖Ao‖2γ4dµ+

1

100

[ ∫
M
‖∇(2)A‖2γ4dµ+

∫
M
‖A‖2‖∇A‖2γ4dµ+

∫
M
‖A‖4‖Ao‖2γ4dµ

]
≤ c

ρ4
‖Ao‖2

2,[γ>0] +
c

ρ4
‖Ao‖4

2,[γ>0] +
c

ρ4
‖A‖2

2,[γ>0],

where we required ε0 <
1

50c
. Taking ρ↗∞ concludes the proof. �

We finish this chapter by proving exponential decay of curvature. Our proof

follows that in [36].

Proposition 7.7. Suppose f : M2 × [0, T ) → R3 is an (SD) flow satisfying

(152). Then there exists a λ > 0 such that as t ↗ ∞ the following asymptotic
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statements hold:

‖∇(k)A‖∞ ≤ cke
−λt,

‖Ao‖∞ ≤ c0e
−λt,

for k ≥ 1.

Proof. Let A = µ(M)
∣∣∣
t=T

be as in (154). Then Proposition 7.5 above implies

that the sectional curvature and mean curvature satisfy

‖K‖∞ −→ 4π

A
,

and

‖H2‖∞ −→ 16π

A
,

as t↗∞. Therefore there exists a tH <∞ such that

H2 ≥ cH > 0, for all t ≥ tH .

From now on we assume t ≥ tH . Now we invoke Lemma 7.6. Note that we may

assume cH ≤ 1. Using the above we have

d

dt

∫
M
‖Ao‖2dµ+

c2H
100

∫
M
‖∇(2)A‖2 + ‖∇A‖2 + ‖Ao‖2dµ ≤ 0.

Integrating gives

(156)
∫

M
‖Ao‖2dµ+

c2H
100

∫ ∞

t

∫
M
‖∇(2)A‖2 + ‖∇A‖2dµdτ ≤ e−2λt,

where

λ =
c2H
200

.

Note that we needed Proposition 7.5 for
∫
M‖Ao‖2dµ

∣∣∣
t=T

= 0 in the above. From this

estimate and again Proposition 7.5 we can obtain exponential decay in a standard
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way. From Proposition 3.17, taking ρ↗∞ gives

d

dt

∫
M
‖∇(k)A‖2dµ+

∫
M
‖∇(k+2)A‖2dµ ≤

∫
M

(
P k+2

3 (A) + P k
5 (A)

)
∗ ∇(k)Adµ.

Note that the term c‖A‖2
2,[γ>0] disappeared due to the dependence of the constant

on ρ. From Proposition 7.5 we know that A and all its derivatives remain bounded

as t↗∞, so we estimate

∫
M
P 0

2 (A) ∗ ∇(k+2)A ∗ ∇(k)Adµ ≤ ε
∫

M
‖∇(k+2)A‖2dµ+ cε

∫
M
‖∇(k)A‖2dµ,∫

M

(
P̃ k+2

3 (A) + Pm
5 (A)

)
∗ ∇(k)Adµ ≤ c

k+1∑
j=1

∫
M
‖∇(j)A‖2dµ,

where the constant is not universal (i.e. depends on derivatives of curvature).

P̃ k+2
3 (A) denotes all terms of type P k+2

3 (A) that do not contain the (k + 2)-th

derivative.

We thus obtain

d

dt

∫
M
‖∇(k)A‖2dµ+

1

2

∫
M
‖∇(k+2)A‖2dµ ≤ c

k+1∑
j=1

∫
M
‖∇(j)A‖2dµ.

A proof by induction using (156) then gives

‖∇(k)A‖2
2 +

c2H
100

∫ ∞

t
‖∇(k+2)A‖2

2dτ ≤ e−2λt.

This gives us the estimates

‖Ao‖2 ≤ ce−λt, and ‖∇(k)A‖2 ≤ ce−λt.

Using Proposition 51 as in the proof of the Interior Estimates finishes the proof. �

Remark. Note that in the proof of the above we in fact showed that after a fixed

time translation, the sign of the mean curvature is preserved. This is interesting in

that a typically second order phenomenon remains true (after some time) in the

fourth order setting.
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4. On constrained surface diffusion flows

For a result analogous to Theorem 7.1 pertaining to the constrained surface

diffusion flows, at present the conditions placed upon the constraint function are

too restrictive. While there are contrived examples of constraint functions (apart

from h = 0) which will satisfy these constraints, there are no motivating examples

which we know of. This is an interesting question to address in future investigations.

Despite this, we state the theorem relevant to (CSD) flows for the interested reader.

The proof is identical to that of Theorem 7.1.

Theorem 7.8. Suppose f : M2 × [0, T ) → R3 is a (CSD) flow with constraint

function satisfying (A2), (AS), the hypothesis of Lemma 5.4 and

h
∫

M
Hdµ ≥ −µ(M)

∫
M
‖∇(2)H‖2dµ−

∫
M
H2‖∇H‖2dµ.

Then there exist constants ε1 > 0 m ≥ 2 such that if

µ(M0)
m−2

m

( ∫
M
‖Ao‖mdµ

) 2
m

∣∣∣∣∣
t=0

≤ ε1

then T = ∞ and f converges exponentially to a round sphere.



APPENDIX A

Inequalities

We collect here several inequalities which we use throughout the thesis. This is

certainly not an exhaustive account, but the more common or more useful of them

are included, along with proofs.

Lemma A.1 (Gronwall’s Inequality). Let f, g, h : I → R where I ⊂ R is bounded

and connected with c = inf I, and f, g, h are continuous and integrable on I. Then,

if g ≥ 0 and

(157) f(t) ≤ g(t) +
∫ t

c
h(τ)f(τ)dτ,

we can conclude

(158) f(t) ≤ g(t) +
∫ t

c
g(τ)h(τ)e

∫ t

τ
h(ν)dνdτ,

for any t ∈ I.

Proof. The idea of the proof is to take a useful test function and then combine

the derivative of such with our assumptions to conclude the lemma.

For ν, τ ∈ I, let

ϕ(τ) = e−
∫ τ

c
h(ν)dν

∫ τ

c
h(ν)f(ν)dν.

Differentiating,

ϕ′(τ) = h(τ)e−
∫ τ

c
h(ν)dν

(
f(τ)−

∫ τ

c
h(ν)f(ν)dν

)
.

229
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The term in brackets is estimated by our assumption (157), so we obtain

ϕ′(τ) ≤ g(τ)h(τ)e−
∫ τ

c
h(ν)dν .

Integrating,

e−
∫ t

c
h(ν)dν

∫ t

c
h(τ)f(τ)dτ =

∫ t

c
ϕ′(τ)dτ ≤

∫ t

c
g(τ)h(τ)e−

∫ τ

c
h(ν)dνdτ.

Using again the assumption (157),

e−
∫ t

c
h(ν)dν

(
f(t)− g(t)

)
≤
∫ t

c
g(τ)h(τ)e−

∫ τ

c
h(ν)dνdτ

e−
∫ t

c
h(ν)dνf(t) ≤ e−

∫ t

c
h(ν)dνg(t) +

∫ t

c
g(τ)h(τ)e−

∫ τ

c
h(ν)dνdτ

f(t) ≤ g(t) + e
∫ t

c
h(ν)dν

∫ t

c
g(τ)h(τ)e−

∫ τ

c
h(ν)dνdτ

≤ g(t) +
∫ t

c
g(τ)h(τ)e

∫ t

c
h(ν)dν−

∫ τ

c
h(ν)dνdτ.

Since τ ≤ t, the integrals in the exponent combine and we can conclude (158). �

The following interpolation inequality is used to prove the second multiplicative

Sobolev inequality (51). This interpolation inequality is proved using the Michael-

Simon Sobolev inequality and an induction argument primarily due to Ladyzhen-

skaya [39]. We present here an n-dimensional version based upon the modern 2-

dimensional version given in [37].

Theorem A.2. Let f : Mn → Rn+1 be a smooth immersed hypersurface. For

u ∈ C1
c (M), n < p ≤ ∞, 0 ≤ m ≤ ∞ and 0 < α ≤ 1 where 1

α
=
(

1
n
− 1

p

)
m + 1 we

have

(LZ) ‖u‖∞ ≤ c‖u‖1−α
m (‖∇u‖p + ‖Hu‖p)

α,

where c = c(n,m, p).
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Proof. Assume u ≥ 0. Define

CMSS(‖∇u‖p + ‖|H|u‖p) =: Q(u),

where the constant CMSS is the constant from the Michael-Simon Sobolev inequality

above. Note that in particular CMSS is an absolute constant and does not depend

on u. Now scale u by

ũ =
1

Q(u)
u

for Q(u) 6= 0 and if Q(u) = 0 set ũ = u. Then Q(ũ) = 1, that is

(159) CMSS(‖∇ũ‖p + ‖|H|ũ‖p) = 1.

Note that since we scale the image of u, the derivative ∇u (in fact any derivative)

scales the same as the original function u.

Let q = p
p−1

∈
[
1, n

n−1

)
, and τ ≥ 0. Then by the Michael-Simon Sobolev inequal-

ity

‖ũ1+τ‖n/(n−1) ≤ CMSS

(∫
M
‖∇ũ1+τ‖dµ+

∫
M
ũ1+τ |H|dµ

)
= CMSS

(
(1 + τ)‖(∇ũ)ũτ‖1 + ‖ũ1+τ |H|‖1

)
.(160)

Since 1
p

+ 1
q

= 1
p

+ p−1
p

= 1, we use the Hölder inequality and equation (159) to

conclude

‖ũ1+τ‖n/(n−1) ≤ CMSS‖ũτ‖q

(
(1 + τ)‖∇ũ‖p + ‖ũ|H|‖p

)
≤ (1 + τ)‖ũτ‖qQ(ũ)

≤ (1 + τ)‖ũτ‖q.(161)

We will now proceed with several induction arguments. Set k = n
q(n−1)

∈
(
1, n

n−1

]
and, taking the (1 + τ)-th root, rewrite (161) as

(162) ‖ũ‖kq(1+τ) ≤ (1 + τ)
1

1+τ ‖ũ‖
τ

1+τ
qτ .
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Since

lim
p→∞

‖u‖p = ‖u‖∞,

we look to taking a sequence τν in (162) and then letting ν →∞. For this purpose

we set the following constants:

τ0 =
m

q
∈
(
m− m

n
,m
]

τν+1 = k(1 + τν)

εν =
τν

1 + τν
∈ [0, 1) cν = (1 + τν)

1
1+τν ,

for ν ∈ N0. We now rewrite (162), replacing τ with τν :

(163) ‖ũ‖τν+1q ≤ cν‖ũ‖εν
qτν
.

These definitions imply the following formula for τν by induction

τν = k(1 + τν−1) = k(1 + k(1 + τν−2)) = k + k2 + k2τν−2

= . . . = kντ0 +
ν∑

µ=1

kµ

where the base case is given by

τ1 = k(1 + τ0) = k1τ0 +
1∑

µ=1

kµ

and the inductive step is easy to show as

τν+1 = k(1 + τν) = k + kν+1τ0 +
ν+1∑
µ=2

kµ

= kν+1τ0 +
ν+1∑
µ=1

kµ,

where we used the inductive hypothesis in the second equality. Adding 1 to each

side gives

(164) 1 + τν = kντ0 +
ν∑

µ=0

kµ.
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From (163) we obtain again by a similar induction

‖ũ‖τνq ≤ cν−1‖ũ‖εν−1
qτν−1

≤ cν−1

(
cν−2‖ũ‖εν−2

qτν−2

)εν−1

= cν−1c
εν−1

ν−2 ‖ũ‖εν−2εν−1
qτν−2

= cν−1c
εν−1

ν−2 c
εν−1εν−2

ν−3 ‖ũ‖εν−3εν−2εν−1
qτν−3

...

=

(
ν∏

i=1

c

∏i−1

j=1
εν−j

ν−i

)
‖ũ‖

∏ν

j=1
εν−j

m .(165)

For this induction the base case follows from (163) by

‖ũ‖τ1q ≤ c0‖ũ‖ε0
qτ0

≤ c0‖ũ‖ε0
m

=

(
1∏

i=1

c

∏i−1

j=1
ε1−j

1−i

)
‖ũ‖

∏1

j=1
ε1−j

m

and the inductive step also follows from (163) and the inductive hypothesis by

‖ũ‖τν+1q ≤ cν‖ũ‖εν
qτν

≤ cν

(
ν+1∏
i=1

c

∏i−1

j=1
εν−j

ν−i

)εν

‖ũ‖
εν

∏ν

j=1
εν−j

m ,

=

(
ν+1∏
i=1

c

∏i−1

j=1
εν+1−j

ν+1−i

)
‖ũ‖

∏ν+1

j=1
εν+1−j

m .

Since εν < 1 and cν > 1 we estimate

ln

(
ν∏

i=1

c

∏i−1

j=1
εν−j

ν−i

)
≤ ln

ν∏
i=1

cν−i

=
ν∑

i=1

ln cν−i

=
ν∑

i=1

1

1 + τν−i

ln(1 + τν−i).(166)
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From (164) we can estimate by the arithmetic mean-geometric mean inequality

1

c
kν ≤ 1 + τν ≤ ckν ,

for c = c(m, p). We use this with (166) to conclude

ln

(
ν∏

i=1

c

∏i−1

j=1
εν−j

ν−i

)
=

ν∑
i=1

1
1
c
kν−i

ln(ckν−i)

=
ν∑

i=1

cki−ν(ln c+ (ν − i) ln k)

≤
∞∑
i=0

ck−i(ln c+ i ln k)

= c(m, p) <∞.(167)

Note that we relabeled the terms in the series above so that we can take a limit in

ν later. We now use τν+1 = k(1 + τν) and (164) to obtain again by induction

ν∏
j=1

εν−j =
ν−1∏
j=0

εj

=
τ0

1 + τ0

τ1
1 + τ1

· · · τν−1

1 + τν−1

=
τ0τ1 · · · τν−2(k(1 + τν−2))

(1 + τ0)(1 + τ1) · · · (1 + τν−2)(1 + τν−1)

...

= kν−1 τ0
1 + τν−1

.

For this induction argument we simply note that by the definition of εν ,

1−1∏
j=0

εj = ε0

=
τ0

1 + τ0

= k1−1 τ0
1 + τ1−1

,

which is the base case. The inductive step is again easy as

ν∏
j=0

εj = εν
ν−1∏
j=0

εj
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=
τν

1 + τν

(
kν−1 τ0

1 + τν−1

)

= kν−1k(1 + τν−1)

1 + τν

τ0
1 + τν−1

= kν τ0
1 + τν

,

where the second equality is from the inductive hypothesis and the third equality is

from the definition of τν .

Recall again equation (164). We first take limits as follows:

lim
ν→∞

kν−1

1 + τν−1

= lim
ν→∞

(
τ0 +

−ν∑
i=0

ki

)−1

=
1

τ0 + k
k−1

,

and now unravelling the definitions we find

∞∏
j=0

εj =
τ0

τ0 + k
k−1

=
m
q

m
q

+ n
q(n−1)( n

q(n−1)
−1)

=
m

m+ n
n
q
−(n−1)

=
m+ nq

n−q(n−1)
− nq

n−q(n−1)

m+ nq
n−q(n−1)

= 1− nq

m(n− q(n− 1)) + nq
= 1− 1

1 +m(1
q
− n−1

n
)

= 1− 1

1 +m(p−1
p
− n−1

n
)

= 1− 1

1 +m( 1
n
− 1

p
)

= 1− α,

which explains our choice of the constant α. Note that for the proof to work we

require m > 0 and α ∈ (0, 1], which in turn requires 1
n
− 1

p
> 0. This is why it must

be the case that p > n. If one of these conditions is violated, then the scaling will

not ‘close’ at the end of the proof.

Finally we let ν →∞ in (165) and conclude, using (159),

‖ũ‖∞ ≤ c‖ũ‖1−α
m

= cCα
MSS‖ũ‖1−α

m (‖∇ũ‖p + ‖|H|ũ‖p)
α

=⇒ ‖u‖∞ ≤ Q(u)c(m,n, p)
1

Q(u)1−α

1

Q(u)α
‖u‖1−α

m (‖∇u‖p + ‖|H|u‖p)
α
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= c(m,n, p)‖u‖1−α
m (‖∇u‖p + ‖|H|u‖p)

α

and so we can see that the scaling of the image of u forces the exponent α on the

right hand side.

It still remains to remove the positivity assumption on u. Trivially, we can split

u into

u = u+ − u−

where the operations ( )+ and ( )− are the positive and negative part respectively.

The problem is that these operations are not closed in C1. To overcome this, we

first approximate u by a sequence of functions uε → u where the convergence is in

W 1,p. This weakens the regularity of u to W 1,p and in this space the positive and

negative part operations are closed. We then split u as previously indicated. This

completes the proof. �

We use a large number of interpolation inequalities in the proof of the Lifespan

Theorem. A series of 5 form a logical progression to the very important interpolation

inequality which allows us to estimate the P -style terms. We present these results

beginning with the lemma below.

Lemma A.3. Let 1
p

+ 1
q

= 1
r
, 1 ≤ p, q, r ≤ ∞ and α + β = 1, α, β ≥ 0. For

s ≥ max{αq, βp} and −1
p
≤ t ≤ 1

q
we have

(∫
M
‖∇T‖2rγsdµ

) 1
r

≤ c
(∫

M
‖T‖qγs(1−tq)dµ

) 1
q
(∫

M
‖∇(2)T‖pγs(1+tp)dµ

) 1
p

+ c‖∇γ‖∞
(∫

M
‖T‖qγs−αqdµ

) 1
q
(∫

M
‖∇T‖pγs−βpdµ

) 1
p

,

where c = c(r, s).
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Proof. This is a simple consequence of integration by parts and the Hölder

inequality with 1
q

+ 1
p

+ 1
r

r−1
= 1, as follows

∫
M
〈∇T,∇T 〉 ‖∇T‖2r−2γsdµ

≤
∫

M
‖T‖ ‖∇T‖(2r − 2)‖∇T‖2r−3‖∇(2)T‖γsdµ

+
∫

M
‖T‖ ‖∇T‖ ‖∇T‖2r−2s‖∇γ‖γs−1dµ

≤ (2r − 2)
∫

M
‖T‖ ‖∇T‖2r−2‖∇(2)T‖γsdµ

+ s‖∇γ‖∞
∫

M
‖T‖ ‖∇T‖2r−1γs−1dµ

≤
(∫

M
‖∇T‖2rγsdµ

) r−1
r

[
(2r − 2)

(∫
M
‖T‖qγs(1−tq)dµ

) 1
q
(∫

M
‖∇(2)T‖pγs(1+tp)dµ

) 1
p

+ s‖∇γ‖∞
(∫

M
‖T‖qγs−αqdµ

) 1
q
(∫

M
‖∇T‖pγs−βpdµ

) 1
p

]
.

If ∇T ≡ 0 then the result is trivial. Assuming otherwise, we obtain by division

(∫
M
‖∇T‖2rγsdµ

)1− r−1
r

≤ (2r − 2)
(∫

M
‖T‖qγs(1−tq)dµ

) 1
q
(∫

M
‖∇(2)T‖pγs(1+tp)dµ

) 1
p

+ s‖∇γ‖∞
(∫

M
‖T‖qγs−αqdµ

) 1
q
(∫

M
‖∇T‖pγs−βpdµ

) 1
p

,

which is the statement of the lemma. �

Lemma A.4. For 2 ≤ p <∞ and s ≥ p we have

(∫
M
‖∇T‖pγsdµ

) 1
p

≤ ε
(∫

M
‖∇(2)T‖pγs+pdµ

) 1
p

+ c
(∫

M
‖T‖pγs−pdµ

) 1
p

,

where c = c(ε, p, s, ‖∇γ‖∞) and ε > 0.

Proof. Let p = q = 2r, α = 1, β = 0 and t = 1
s

in Lemma A.3 to obtain

(∫
M
‖∇T‖pγsdµ

) 2
p

≤ c
(∫

M
‖T‖pγs−pdµ

∫
M
‖∇(2)T‖γs+pdµ

) 1
p

+ c‖∇γ‖∞
(∫

M
‖T‖pγs−pdµ

∫
M
‖∇T‖γsdµ

) 1
p
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≤ 1

2

(∫
M
‖∇T‖pγsdµ

) 2
p

+ ε
(∫

M
‖∇(2)T‖pγs+pdµ

) 2
p

+ c
(∫

M
‖T‖pγs−pdµ

) 2
p

,

where c = c(ε, p, s, ‖∇γ‖∞) and ε > 0. Subtracting and taking square roots gives

the statement of the lemma. �

Lemma A.5. For 2 ≤ p < ∞, k ∈ N, s ≥ kp, c = c(ε, p, s, ‖∇γ‖∞) and ε > 0

we have

(∫
M
‖∇(k)T‖pγsdµ

) 1
p

≤ ε
(∫

M
‖∇(k+1)T‖pγs+pdµ

) 1
p

+ c
(∫

M
‖T‖pγs−kpdµ

) 1
p

.

Proof. As mentioned, for k = 1 the lemma holds by Lemma A.4. We now

proceed to assume

(168)
(∫

M
‖∇(k)S‖pγsdµ

) 1
p

≤ λ
(∫

M
‖∇(k+1)S‖pγs+pdµ

) 1
p

+ c
(∫

M
‖S‖pγs−kpdµ

) 1
p

,

and attempt to prove for any ε > 0

(169)(∫
M
‖∇(k+1)S‖pγsdµ

) 1
p

≤ε
(∫

M
‖∇(k+2)S‖pγs+pdµ

) 1
p

+ c
(∫

M
‖S‖pγs−(k+1)pdµ

) 1
p

.

This will finish the induction. Let T = ∇(k)S in Lemma A.4 to obtain

(170)(∫
M
‖∇(k+1)S‖pγsdµ

) 1
p

≤ λ
(∫

M
‖∇(k+2)S‖pγs+pdµ

) 1
p

+ c
(∫

M
‖∇(k)S‖pγs−pdµ

) 1
p

.

Since we assumed (168), we know s ≥ kp. Therefore s− p ≥ (k − 1)p. Using (168)

with s− p instead of s, we obtain

(171)(∫
M
‖∇(k)S‖pγs−pdµ

) 1
p

≤ δ

c

(∫
M
‖∇(k+1)S‖pγsdµ

) 1
p

+ c0

(∫
M
‖S‖pγs−(k+1)pdµ

) 1
p

.
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Combining (170) and (171) we get

(∫
M
‖∇(k+1)S‖pγsdµ

) 1
p

≤ λ
(∫

M
‖∇(k+2)S‖pγs+pdµ

) 1
p

+ c
(∫

M
‖∇(k)S‖pγs−pdµ

) 1
p

≤ λ
(∫

M
‖∇(k+2)S‖pγs+pdµ

) 1
p

+ δ
(∫

M
‖∇(k+1)S‖pγsdµ

) 1
p

+ c
(∫

M
‖S‖pγs−(k+1)pdµ

) 1
p

.

Absorbing the second term on the right gives

(∫
M
‖∇(k+1)S‖pγsdµ

) 1
p

≤ λ

1− δ

(∫
M
‖∇(k+2)S‖pγs+pdµ

) 1
p

+ c
(∫

M
‖S‖pγs−(k+1)pdµ

) 1
p

,

where c = c(λ, δ, p, s, ‖∇γ‖∞) < ∞. The above formula is valid for any δ, λ > 0.

Choosing δ = 1
2

and λ = ε
2

proves (169) and finishes the proof. �

The following lemma appears in Hamilton [27].

Lemma A.6 (Hamilton, Lemma 11.5). Let f(k) be a real valued function of the

integer k for 0 ≤ k ≤ n. If f(k) satisfies

(172) f(k) ≤ Cf(k − 1)1/2f(k + 1)1/2,

then

(173) f(k) ≤ Ck(n−k)f(0)1−k/nf(n)k/n.

Theorem A.7. For k ∈ N, 1 ≤ i ≤ k and s ≥ 2k we have the inequality

(∫
M
‖∇(i)T‖

2k
i γsdµ

) i
2k

≤ c‖T‖1− i
k

∞,[γ>0]

((∫
M
‖∇(k)T‖γsdµ

) 1
2

+ ‖T‖2

) 1
2

where c = c(k, d, s, ‖∇γ‖∞).

Proof. We proceed to set the following constants to use in our induction

ai =
(∫

M
‖∇(i)T‖

2k
i γsdµ

) i
2k

, a0 = ‖T‖∞,[γ>0]
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bi =
(∫

M
‖T‖

2k
i dµ

) i
2k

, b0 = ‖T‖∞,[γ>0].

Let r = k
i
,p = 2k

i+1
,q = 2k

i−1
, t = α = 0 and β = 1 in (A.3) to obtain, for s ≥ k

a2
i ≤ cai−1

(
ai+1 +

(∫
M
‖∇(i)T‖

2k
i+1γs− 2k

i+1dµ
) i+1

2k

)
.

Let s ≥ 2k and then by (A.5) we have

(∫
M
‖∇(i)T‖

2k
i+1γs− 2k

i+1dµ
) i+1

2k

≤ c
(∫

M
‖∇(i+1)T‖

2k
i+1γsdµ

) i+1
2k

+ c
(∫

M
‖T‖

2k
i+1γs− 2k

i+1
−i 2k

i+1dµ
) i+1

2k

≤ c(ai+1 + bi+1).

Since b2i ≤ bi−1bi+1 by the Hölder inequality, we obtain

(ai + bi)
2 ≤ c(ai−1 + bi−1)(ai+1 + bi+1), for 1 ≤ i ≤ k − 1.

So, we have that f(i) = ai + bi satisfied (172), and so by the convex functions result

(173), we have

ai ≤ ai + bi ≤ c(a0 + b0)
1− i

k (ak + bk)
i
k

≤ c‖T‖1− i
k

∞,[γ>0]

((∫
M
‖∇(k)T‖2γsdµ

) 1
2

+ ‖T‖2

) i
k

,

which is the desired statement. �

We can finally finish this series of estimates with a result suitable for application

to the P -style terms.

Corollary A.8. Let 0 ≤ i1, . . . , ir ≤ k, i1 + . . . + ir = 2k and s ≥ 2k. Then

we have

∫
M
∇(i1)T ∗ · · · ∗ ∇(ir)Tγ

sdµ ≤ c‖T‖r−2
∞,[γ>0]

(∫
M
‖∇(k)T‖2γsdµ+ ‖T‖2

2,[γ>0]

)
.
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Proof. This follows from Lemma A.7 and the generalised Hölder inequality.

For the purposes of notation, if at least one of the ij are zero, reindex and assume

for some 0 ≤ l ≤ r we have i1, . . . , il 6= 0 and il+1, . . . , ir = 0.

We derive

∫
M
∇(i1)T ∗ · · · ∗ ∇(ir)Tγ

sdµ

≤ ‖T‖r−l
∞,[γ>0]

l∏
j=1

(∫
M
‖∇(ij)T‖

2k
ij γsdµ

) ij
2k

≤ ‖T‖r−l
∞,[γ>0]

l∏
j=1

‖T‖1−
ij
k

∞,[γ>0]

((∫
M
‖∇(k)T‖2γsdµ

) 1
2

) ij
k


≤ c‖T‖r−2

∞,[γ>0]

(∫
M
‖∇(k)T‖2γsdµ+ ‖T‖2

2,[γ>0]

)
,

which is the desired statement. �





APPENDIX B

Scaling a hypersurface flow

One technique which has gained enormous popularity among analysts working

on geometric evolution equations is that of ‘scaling’. This is in some sense a loaded

term, being that many associated methods fall under this umbrella, from singularity

analysis, integral estimates, to covering arguments and simplifications. We will use

scaling methods several times, where each application plays a critical role in the

encompassing argument. These are in the proof of the Lifespan Theorem, the proof

of the Gap Lemma, and perhaps most important of all in the construction of a

blowup at an assumed finite time singularity.

The application of scaling used in the proof of the Lifespan Theorem of Chapter

3 is more classical in nature. In this appendix, we will explain how the quantity

(174)
∫

f−1(Bρ(x))
‖A‖pdµ

transforms under a scaling of the independent variables in an immersion f : Mn →

Rn+1. Our immediate aim is to prove that (174) is scaling invariant for p = n. Our

motivation for choosing this particular kind of scaling is to make the transformation

∫
B1

|A|pdµ −→
∫

Bρ

|A|pdµ.

This is an absolutely crucial step in the proof of the Lifespan Theorem. If we did

not fix the radius ρ = diam[γ>0] of our cutoff function γ, then the constants in (25)

would depend on the radius ρ and this would introduce a circular dependency on

243
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ε0 which may drive ρ → 0. This would make the entire argument invalid. We will

present the proof of the scale invariance of ‖A‖n
n at the end of this appendix.

For the purpose of obtaining a scaling invariant governing equation, we will need

to scale time by a factor different to that of space. One can see this (using results to

come in this appendix), and differentiate a rescaled immersion f̃(x, t̃(t)) = αf(x, t)

in time to obtain

∂f̃

∂t̃
= α

∂f

∂t

∂t̃

∂t
=
∂t̃

∂t

(
α4(∆̃H̃)ν̃

)
.

So now if

∂t̃

∂t
= α−4,

our governing equation is invariant under scaling by α on the new time interval

0 ≤ t̃ < T̃ , as desired. Thus we choose the following rescaling:

x̃ = x, and t̃ = α−4t.

There is no scaling in the domain of f (this is a completely different issue altogether).

We commonly write this particular rescaling in abbreviated form as

f̃(x̃, t̃) = αf(x, α−4t).

Under this rescaling the new governing equation will be

∂f̃

∂t̃
= (∆̃H̃)ν̃.

We now prove the results used in the above computations, beginning by deter-

mining how the metric scales.

Lemma B.1. g̃ij = α2gij and g̃ij = α−2gij.
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Proof. From the definition,

g̃ij =

(
∂f̃

∂x̃i

∣∣∣∣∣ ∂f̃∂x̃j

)

=

(
α
∂f

∂xi

∣∣∣∣∣α ∂f∂xj

)

= α2

(
∂f

∂xi

∣∣∣∣∣ ∂f∂xj

)

= α2gij.

We also compute g̃ij. In the following, g̃ (without the subscripts) refers to the

matrix.

I = g̃g̃−1 = α2gg̃−1

⇒ g̃−1 =
1

α2
g−1,

⇒ g̃ij =
1

α2
gij.

�

Using the above we can easily prove the scale invariance of the covariant deriv-

ative.

Lemma B.2. ∇ = ∇̃.

Proof. It is enough to determine how the Christoffel symbols scale, and thus

using the fact that we have no torsion we can consider the scaling of the right hand

side in the following equation:

Γk
ij =

1

2
gkl

(
∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij

)
.

Therefore

Γ̃k
ij =

1

2
α2g̃kl

(
α−2 ∂

∂xi
g̃jl + α−2 ∂

∂xj
g̃il − α−2 ∂

∂xl
g̃ij

)
= Γk

ij.
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�

Second, we consider the induced measure on the surface dµ. Denote the scaled

measure on f̃ by dµ̃.

Lemma B.3. dµ̃ = αndµ.

Proof. Note that n-dimensional Lebesgue (and Hausdorff) measure is invariant

under scaling. We have

dµ̃ =
√

det(g̃)dLn =
√

det(α2g)dLn

=
√
α2ndet(g)dLn = αn

√
det(g)dLn

= αndµ.

�

Finally, we compute h̃ij.

Lemma B.4. h̃ij = αhij.

Proof. From the definition,

h̃ij =

(
∂f̃

∂x̃i

∣∣∣∣∣ ∂ν̃∂x̃j

)
,

where ν̃ is a local choice of unit normal for f̃ . Noting that ν̃ = ν (the base point

changes but nothing else), we compute

h̃ij =

(
∂f̃

∂x̃i

∣∣∣∣∣ ∂ν̃∂x̃j

)
=

(
α
∂f

∂xi

∣∣∣∣∣ ∂ν∂xj

)
= αhij.

�
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We finish by determining how ‖A‖p
p,f−1(Bρ(x)) scales. Our balls in question are

interpreted as preimages under f and f̃ ; that is, assuming the balls are centred at

the origin,

f̃−1(B1) = {f̃−1(ỹ) : ỹ ∈ Rn+1, |ỹ| < 1}

= {f−1(y) : y ∈ Rn+1, |αy| < 1}

= {x ∈M : |f(x)| < α−1}

= f−1(B 1
α
),

after rescaling. Therefore we see that choosing α = 1
ρ

in the proof of the Lifespan

Theorem will allow us to transform a ball of radius ρ into a ball of radius 1. Recall

that

‖A‖2 = gikgjlhijhkl.

Thus, we must consider how each of (gij), (hij) and dµ change under scaling. Thus

the scaled norm of curvature ‖Ã‖p is

‖Ã‖p =
(
g̃ikg̃jlh̃ijh̃kl

) p
2 =

( 1

α2

1

α2
ααgikgjlhijhkl

) p
2 =

1

αp
‖A‖p.

Therefore, the scaled integral (174) is

∫
B 1

α

αp−n|Ã|2dµ̃.

And so we understand that the integrand is invariant under scaling if p = n.





APPENDIX C

Lifespan theorem for simple constrained surface diffusion
flows

1. Introduction

There is a natural class of constraint functions which give rise to a more elegant

and less convoluted statement of the Lifespan Theorem than that given in Chap-

ter 3. For these constraint functions, which we define momentarily, the smallness

assumption is only required in Ln, and is automatically scale invariant.

A constraint function h : [0, T ) ⊂ I → R is trivial if h = 0, in which case we

recover (SD) flow. We further deem that a constraint function h which satisfies an

estimate

‖h‖∞,J ≤ ch <∞

on any interval J ⊂ [0, T ) with ch = ch(J) as simple. The corresponding simple

constrained surface diffusion flows admit the following theorem.

Theorem C.1 (Lifespan Theorem). Suppose n ∈ {2, 3} and let f : Mn×[0, T ) →

Rn+1 be a simple constrained surface diffusion flow. Then there are constants ρ > 0,

ε0 > 0, and c <∞ such that if ρ is chosen with

(175)
∫

f−1(Bρ(x))
‖A‖mdµ

∣∣∣∣
t=0

= ε(x) ≤ ε0 for m = 2, n, any x ∈ Rn+1,

and h is simple on
[
0, 1

c
ρ4], then the maximal time T satisfies

(176) T ≥ 1

c
ρ4,

249
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and we have the estimate

(177)
∫

f−1(Bρ(x))
‖A‖n + ‖A‖2dµ ≤ cε(x) for 0 ≤ t ≤ 1

c
ρ4.

While this seems to be strictly less general than the corresponding Lifespan

Theorem from Chapter 3 on the nonsimple constrained flows, there does not appear

to be an easy relationship between the two. For example, there are simple constraint

functions such as those which grow in t (even exponentially), as well as uniformly

bounded functions such as the trigonometric functions, or decaying functions such as

h(t) = e−t, which do not fit into the argument of Chapter 3. Further, each of these

do not satisfy the assumption (AB), the global bound on evolving area. Therefore,

to obtain a full picture of the properties a given constrained surface diffusion flow

exhibits, one must take into account both the Lifespan Theorem of Chapter 3 and

that of this appendix.

Our strategy for presenting this proof is to refer to the estimates in Chapter

3 when appropriate and at other times present arguments which are substantially

simpler in nature or give better results than those required by Chapter 3. It should

be noted that one can construct the proof in this appendix from [37] or Chapter

3.This appendix references the interpolation and Sobolev inequalities of Appendix A

and Chapter 3, and Propositions 3.17, 3.25 which carry over without change to the

case of simple constrained surface diffusion flows. Otherwise, this appendix presents

a complete proof of Theorem C.1.
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2. Integral estimates

Recall the proof of Proposition 3.17. Using the same argument, we obtain the

following analogous estimate. Note that we do not need to assume any smallness of

curvature here.

Proposition C.2. Let f : Mn × [0, T ) → Rn+1 be a simple constrained surface

diffusion flow with γ a cutoff function as in (25). Then for a fixed θ > 0 and

s ≥ 2k + 4,

d

dt

∫
M
‖∇(k)A‖2γsdµ+ (2− θ)

∫
M
‖∇(k+2)A‖2γsdµ

≤ (c+ ch)
∫

M
‖A‖2γs−4−2kdµ+ ch

∫
M

(
∇(k)[A ∗ A] ∗ ∇(k)A

)
γsdµ

+ c
∫

M

(
[P k+2

3 (A) + P k
5 (A)] ∗ ∇(k)A

)
γsdµ,

where c = c(cγ1, cγ2, s, k, ch, θ).

For the case of the simple constrained surface diffusion flows, we will exert sig-

nificantly more effort in removing the restriction (AB) seen throughout Chapter 3.

While there we needed it regardless to deal with non-simple constraint functions,

here we will not have any control over the evolving surface area a priori, and so it

does not make much sense.

We will again need various Sobolev and interpolation inequalities. As these are

identical to those required in Chapter 3, we will simply refer to them when required.

We now give a proof of the first key estimate we require to demonstrate Theorem

C.1.
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Proposition C.3. Let n ∈ {2, 3}. Suppose f : Mn× [0, T ∗] → Rn+1 is a simple

constrained surface diffusion flow and γ a cutoff function as in (25). Then there is

an ε0 = ε0
(
cγ1, cγ2, ch([0, T

∗])
)

such that if

(178) ε = sup
[0,T ∗]

∫
[γ>0]

‖A‖ndµ ≤ ε0

then for any t ∈ [0, T ∗] we have∫
[γ=1]

‖A‖2dµ+
∫ t

0

∫
[γ=1]

(‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6)dµdτ

≤
(
1 + (n− 2)t

) ∫
[γ>0]

‖A‖2dµ

∣∣∣∣
t=0

+ c
(
t+ (n− 2)et

)
ε

2
n ,

(179)

where c = c
(
cγ1, cγ2, ch([0, T

∗])
)
.

Proof. The idea of the proof is to integrate Proposition C.2, and then use the

multiplicative Sobolev inequality Lemma 3.22. This will introduce a multiplicative

factor of ‖A‖n,[γ>0] in front of several integrals, which we can then absorb on the

left.

Setting k = 0 and s = 4 in Proposition C.2 we have

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M
‖∇(2)A‖2γ4dµ ≤ (c+ ch)

∫
[γ>0]

‖A‖2dµ

+ ch
∫

M
([A ∗ A] ∗ A) γ4dµ+ c

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ.

First we estimate the P -style terms:

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ c
∫

M

([
‖A‖2 · ‖∇(2)A‖+ ‖∇A‖2 · ‖A‖+ ‖A‖5

]
‖A‖

)
γ4dµ

≤ c
∫

M

[
‖A‖3 · ‖∇(2)A‖+ ‖∇A‖2 · ‖A‖2 + ‖A‖6

]
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c

∫
M

(‖A‖6 + ‖∇A‖2‖A‖2)γ4dµ.
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We use Lemma 3.22 to estimate the second integral and obtain for n = 2

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c

∫
[γ>0]

‖A‖2dµ
∫

M
(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
( ∫

[γ>0]
‖A‖2dµ

)2

,(180)

and for n = 3

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ θ
∫

M
‖∇(2)A‖2γ4dµ+ c‖A‖

3
2

3,[γ>0]

∫
M

(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
(
cγ1

)3(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
(181)

We add the integrals
∫
M‖A‖6γ4dµ and

∫
M‖∇A‖2‖A‖2γ4dµ to the estimate of Propo-

sition C.2 (with k = 0, s = 4) and obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ (c+ ch)
∫
[γ>0]

‖A‖2dµ+ ch
∫

M
([A ∗ A] ∗ A) γ4dµ

+ c
∫

M

(
‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ+ c

∫
M

(
[P 2

3 (A) + P 0
5 (A)] ∗ A

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ c
∫

M

(
‖A‖3‖∇(2)A‖+ ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ.

For n = 2, we use the estimate (180) above and obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ θ
∫

M
‖∇(2)A‖2γ4dµ

+ c
∫
[γ>0]

‖A‖2dµ
∫

M
(‖∇(2)A‖2 + ‖A‖6)γ4dµ+ c

( ∫
[γ>0]

‖A‖2dµ
)2

.
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For n = 3, we use instead (181) to obtain

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + h2)
∫
[γ>0]

‖A‖2dµ+ θ
∫

M
‖∇(2)A‖2γ4dµ

+ c‖A‖
3
2

3,[γ>0]

∫
M

(‖∇(2)A‖2 + ‖A‖6)γ4dµ

+ c
(
cγ1

)3(
‖A‖3

3,[γ>0] + ‖A‖
9
2

3,[γ>0]

)
.

Absorbing, we obtain for n = 2

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ − ε0)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c(1 + ε0 + ‖h‖2
∞,[0,T ∗])ε

≤ cε,

and for n = 3

d

dt

∫
M
‖A‖2γ4dµ+ (2− θ −

√
ε0)

∫
M

(
‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6

)
γ4dµ

≤ c
(
1 + ‖h‖2

∞,[0,T ∗]

) ∫
[γ>0]

‖A‖2dµ+ c
(
ε

23
6

0 + ε
4
3
0

)
ε

2
3 .

For θ, ε0 small enough we have

d

dt

∫
M
‖A‖2γ4dµ+

∫
M

(
‖∇(2)A‖2+‖A‖2‖∇A‖2+‖A‖6

)
γ4dµ ≤ cε

2
n +c(n−2)

∫
[γ>0]

‖A‖2dµ,

with

c = c(ε0, ch([0, t
∗]), cγ1, cγ2).

Integrating, we have for n = 2

∫
[γ=1]

‖A‖2γ4dµ +
∫ t

0

∫
[γ=1]

(‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6)dµdτ

≤
∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ cεt,
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where we used the fact [γ = 1] ⊂ [γ > 0] and 0 ≤ γ ≤ 1. For n = 3 we use a

covering argument and Gronwall’s inequality after integrating to obtain

∫
[γ=1]

‖A‖2γ4dµ +
∫ t

0

∫
[γ=1]

(‖∇(2)A‖2 + ‖A‖2‖∇A‖2 + ‖A‖6)dµdτ

≤
∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ cε
2
3 t+ c

∫ t

0

( ∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ cε
2
3 τ
)
e
∫ t

τ
cdνdτ

= (1 + ct)
∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ cε
2
3 t+ cε

2
3

∫ t

0
τec(t−τ)dτ

≤ (1 + ct)
∫
[γ>0]

‖A‖2dµ

∣∣∣∣∣
t=0

+ c(t+ et)ε
2
3 .

This finishes the proof. �

We now move on to obtaining estimates for the higher derivatives of curvature

in L∞. The first issue is in dealing with the P -style terms from Proposition C.2.

Note that the proof of Proposition 3.25 in Chapter 3 did not require the constraint

function bounded in any way. Therefore, we will use the same result. For the

convenience of the reader we restate it here.

Proposition C.4. Suppose f : Mn × [0, T ] → Rn+1 is a constrained surface

diffusion flow and γ a cutoff function as in (25). Then, for s ≥ 2k+4 the following

estimate holds:

d

dt

∫
M
‖∇(k)A‖2γsdµ+

∫
M
‖∇(k+2)A‖2γsdµ

≤ c‖A‖4
∞,[γ>0]

∫
M
‖∇(k)A‖2γsdµ+ c‖A‖2

2,[γ>0](1 + ‖A‖4
∞,[γ>0])

+ ch
(
h

1
3

∫
M
‖∇(k)A‖2γsdµ+ (1 + h

1
3 )‖A‖2

2,[γ>0]

)
.

(182)

We now prove the higher derivatives of curvature estimates. The proof here

is completely analogous to that of Proposition 3.26. We present it here with the

improvement of not requiring (AB).
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Proposition C.5. Let n ∈ {2, 3}. Suppose f : Mn× [0, T ∗] → Rn+1 is a simple

constrained surface diffusion flow and γ is as in (25). Then there is an ε0 depending

on the constants in (25) and ch([0, T
∗]) such that if

(183) sup
[0,T ∗]

∫
[γ>0]

‖A‖ndµ ≤ ε0,

we can conclude

(184) ‖∇(k)A‖2
∞,[γ=1] ≤ c

(
k, T ∗, cγ1, cγ2, ch([0, T

∗]), α0(k + 2)
)
,

where α0(k) =
k∑

j=0

‖∇(j)A‖2,[γ>0]

∣∣∣∣∣
t=0

.

Proof. As before, the idea is to use our previous estimates and then integrate.

The ε0 which we will use is exactly the same as that in Proposition C.3.

We fix γ and consider cutoff functions γσ,τ which will allow us to combine our

previous estimates. Define for 0 ≤ σ < τ ≤ 1 functions γσ,τ = ψσ,τ ◦ γ satisfying

γσ,τ = 0 for γ ≤ σ and γσ,τ = 1 for γ ≥ τ . The function ψσ,τ is chosen such that γσ,τ

satisfies (25), although with different constants. Acceptable choices are

cγσ,τ1 = ‖∇ψσ,τ‖∞ · cγ1, and cγσ,τ2 = max{c2γ1‖∇(2)ψσ,τ‖∞, cγ2‖∇ψσ,τ‖∞}.

Using the cutoff function γ0, 12
instead of γ in Proposition C.3 gives

∫
[γ0, 1

2
=1]
‖A‖2dµ+

∫ T ∗

0

∫
[γ0, 1

2
=1]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ cε

2
n
0 T

∗ + ‖A‖2
2,[γ>0]

∣∣∣∣
t=0

which is

∫
[γ≥ 1

2 ]
‖A‖2dµ+

∫ T ∗

0

∫
[γ≥ 1

2 ]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ c(1 + T ∗)ε0(185)

for n = 2 and for n = 3

∫
[γ≥ 1

2 ]
‖A‖2dµ+

∫ T ∗

0

∫
[γ≥ 1

2 ]
‖∇(2)A‖2 + ‖A‖6dµdτ ≤ c(1 + T ∗)

(
δ + ε

2
3
0

)
,
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where δ = ‖A‖2
2,[γ>0]

∣∣∣
t=0

. We do not need any smallness of δ, this is simply notation.

Recall the multiplicative Sobolev inequality Proposition 3.21:

(51) ‖T‖4
∞,[γ=1] ≤ c‖T‖4−n

2,[γ>0]

(
‖∇(2)T‖n

2,[γ>0] + ‖TA2‖n
2,[γ>0] + ‖T‖n

2,[γ>0]

)
.

Using this with γ 1
2 , 34

and (185) above we obtain for n = 2

∫ T

0
‖A‖4

∞,[γ≥ 3
4 ]dτ ≤ cε0(cε0(1 + T ∗) + ε0T

∗)

≤ cε0.(186)

For n = 3 we similarly obtain

∫ T

0
‖A‖4

∞,[γ≥ 3
4 ]dτ ≤

√
c(1 + T ∗)

(
δ + ε

2
3
0

)[
c(1 + T ∗)

(
δ + ε

2
3
0

)] 3
2

≤ c
(√

δ + ε
1
3
0

)
,(187)

where

c = c
(
ch([0, T

∗]), cγ1, cγ2, T
∗, n, ε0

)
.

We now use (182) with γ 3
4 , 78

. Factorising, we have

d

dt

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ ≤ c‖A‖4

∞,[γ 3
4 , 7

8
≥0]

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

+ c‖A‖2
2,[γ 3

4 , 7
8
≥0]

(
1 + ‖A‖4

∞,[γ 3
4 , 7

8
≥0]

)
+ ch

(
h

1
3

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ+ (1 + h

1
3 )‖A‖2

2,[γ 3
4 , 7

8
≥0]

)
≤ c

(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

) ∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

+ c‖A‖2
2,[γ≥ 3

4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)
.

We wish to solve this differential equation using Gronwall’s inequality. The con-

straint function is obviously bounded, and we can bound the integrals of the relevant
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curvature quantities, as we have shown above. Integrating,

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ−

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

≤ c
∫ t

0

[(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

) ∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ
]
dτ

+ c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ.(188)

Now from our earlier calculation (186) we have

∫ t

0

(
‖A‖4

∞,[γ≥ 3
4 ] + h

4
3

)
dτ ≤ c,

and, using our assumption (183)

c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ ≤ c.

Also, we have

∫
M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

≤ cα0(k),

where α0 is as in the statement of the proposition.

Therefore, equation (188) is of the form

α(t) ≤ β(t) +
∫ t

c
λ(τ)α(τ)dτ,

where

α(t) =
∫

M
‖∇(k)A‖2γs

3
4 , 78
dµ,

β(t) =
∫

M
‖∇(k)A‖2γs

3
4 , 78
dµ

∣∣∣∣∣
t=0

+ c
∫ t

0

[
‖A‖2

2,[γ≥ 3
4 ]

(
1 + ‖A‖4

∞,[γ≥ 3
4 ] + h+ h

4
3

)]
dτ,

and

λ(t) = ‖A‖4
∞,[γ≥ 3

4 ] + h
4
3 .
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Noting that β and
∫
λdτ are bounded by the constants shown above, we can invoke

Gronwall’s inequality and conclude

∫
[γ≥ 7

8 ]
‖∇(k)A‖2dµ ≤ β(t) +

∫ t

0
β(τ)λ(τ)e

∫ t

τ
λ(ν)dνdτ ≤ c

(
k, α0(k)

)
.

Trivially, we also have

∫
[γ≥ 7

8 ]
‖∇(k+2)A‖2dµ ≤ c

(
k + 2, α0(k + 2)

)
.

Therefore using (51) with γ 7
8 , 1516

, and taking into account the n = 3 statement of

Lemma 3.22 we can bound ‖A‖∞ on a smaller ball:

‖A‖4
∞,[γ≥ 15

16 ] ≤ c(0, α0(0))
4−n

2

((
c(2, α0(2))

n
2 +

(
c(0, α0(0))

n
2

)
≤ c.

Finally, using (51) with T = ∇(k)A and γ = γ 15
16 ,1 we obtain

‖∇(k)A‖4
∞,[γ=1] ≤ c‖∇(k)A‖4−n

2,[γ> 15
16 ]

(
‖∇(k+2)A‖n

2,[γ> 15
16 ]

+ (‖A‖2n
∞,[γ> 15

16 ] + 1)‖∇(k)A‖n
2,[γ> 15

16 ]

)
≤ c

(
k, α0(k + 2)

)
.

This completes the proof. �

3. Proof of the Lifespan Theorem

The proof is analogous to that presented in Chapter 3, however as there are some

simplifications required (related to the absence of a constraint function) we will still

present it here for completeness. We begin by scaling f̃(x, t) = 1
ρ
f(x, ρ4t). Note

that ‖A‖n
n is scale invariant, and so we may assume ρ = 1. Note that h may scale in

a non-invariant fashion but this introduces a single change in the constant ch only,

and certainly a scaled simple h (we only perform this rescaling once) remains simple.
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We make the definition

(189) η(t) = sup
x∈R3

∫
f−1(B1(x))

‖A‖ndµ.

By covering B1 with several translated copies of B 1
2

there is a constant cη such that

(190) η(t) ≤ cη sup
x∈R3

∫
f−1(B 1

2
(x))
‖A‖ndµ.

Note that cη = 4n+1 is sufficient.

By short time existence we have that f(M × [0, t]) is compact for t < T and so

the function η : [0, T ) → R is continuous. We now define

(191)

t
(n)
0 =

sup{0 ≤ t ≤ min(T, λ2) : η(τ) ≤ 3cηε0 for 0 ≤ τ ≤ t}, n = 2,

sup{0 ≤ t ≤ min(T, λ3) : η(τ) ≤ 3cP5cηc
∗(δ + ε

2
3
0 ) for 0 ≤ τ ≤ t}, n = 3,

where δ = supx∈R4‖A‖2
2,f−1(B1(x))

∣∣∣
t=0

, λn is a parameter to be specified later and

c∗ = cP5 + c0cηe
cP 5/c0cη .

The constant cP5 is the maximum of 1 and the constant from Proposition C.5, and

c0 is the maximum of all the constants on the right hand side of Proposition C.3.

Note that the ε0 on the right hand side of the inequality is from equation (175).

Unlike earlier in Proposition C.5, we require δ small as described in the statement

of Theorem C.1.

The proof continues in three steps. First, we show that it must be the case that

t
(n)
0 = min(T, λn). Second, we show that if t

(n)
0 = λn, then we can conclude the

Lifespan Theorem. Finally, we prove by contradiction that if T 6= ∞, then t
(n)
0 6= T .

We label these steps as

t
(n)
0 = min(T, λn),(192)

t
(n)
0 = λn =⇒ Lifespan Theorem,(193)
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T 6= ∞ =⇒ t
(n)
0 6= T.(194)

The three statements (192), (193), (194) together imply the Lifespan Theorem. We

expand the sketch of the argument given above as follows: first notice that by (192)

t
(n)
0 = λn or t

(n)
0 = T , and if t

(n)
0 = λn then by (193) we have the Lifespan Theorem.

Also notice that if t
(n)
0 = ∞ then T = ∞ and the Lifespan Theorem follows from

estimate (197) below (used to prove statement (193)). Therefore the only remaining

case where the Lifespan Theorem may fail to be true is when t
(n)
0 = T < ∞. But

this is impossible by statement (194), so we are finished.

We now give the proof of the first step, statement (192). From the assumption

(175),

η(0) ≤ ε0 <

3cηε0, for n = 2

3cP5cηc
∗(δ + ε

2
3
0 ), for n = 3,

and therefore (191) implies t
(n)
0 > 0. Assume for the sake of contradiction that

t
(n)
0 < min(T, λn). Then from the definition (191) of t

(n)
0 and the continuity of η we

have

(195) η
(
t
(n)
0

)
=

3cηε0, for n = 2

3cP5cηc
∗(δ + ε

2
3
0 ), for n = 3,

so long as ε0 ≤ 1 and cP5 ≥ 1. Recall Proposition C.3. We will now set γ to be a

cutoff function as in (25) such that

χB 1
2
(x) ≤ γ̃ ≤ χB1(x),

for any x ∈Mt. Choosing a small enough ε0 (by varying ρ in (175)), definition (191)

implies that the smallness condition (178) is satisfied on [0, t
(n)
0 ). Therefore we have
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satisfied all the requirements of Proposition C.3, and so we conclude

∫
f−1(B 1

2
(x))
‖A‖2dµ ≤

(
1 + (n− 2)t

) ∫
f−1(B1(x))

‖A‖2dµ

∣∣∣∣
t=0

+ c
(
t+ (n− 2)et

)
cηε

2
n

≤

2ε0, for n = 2 and λ2 = 1
c0cη

,

2cP5c
∗(δ + ε

2
3
0 ) for n = 3 and λ3 = cP5

1
c0cη

,

(196)

for all t ∈ [0, t∗], where t∗ < t
(n)
0 . Thus equation (196) above is true for all t ∈[

0, t
(n)
0

)
. We combine this with (190) to conclude

(197) η(t) ≤ cn−2
P5 cη sup

x∈R3

∫
f−1(B 1

2
(x))
‖A‖ndµ ≤

2cηε0, for n = 2,

2cP5cηc
∗(δ + ε

2
3
0 ), for n = 3,

where 0 ≤ t < t
(n)
0 .

Since η is continuous, we can let t→ t
(n)
0 and obtain a contradiction with (195).

Therefore, with the choice of λn in equation (196), the assumption that t
(n)
0 <

min(T, λn) is incorrect. Thus we have shown (192). We have also proved the second

step (193). Observe that if t
(n)
0 = λn then by the definition (191) of t

(n)
0 ,

T ≥ λn,

which is (176). Also, (197) implies (177). That is, we have proved if t
(n)
0 = λn,

then the Lifespan Theorem holds, which is the second step (193). It only remains

to prove equation (194).

We assume

t
(n)
0 = T 6= ∞;

since if T = ∞ then (176) holds automatically and again (197) implies (177). Note

also that we can safely assume T < λn, since otherwise we can apply step two to

conclude the Lifespan Theorem.
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Our strategy is to show that in this case the flow exists smoothly up to and

including time T , allowing us to extend the flow, thus contradicting the finite maxi-

mality of T from short time existence. Since h is simple, it presents no difficulty, and

is always bounded. As in Chapter 3, Section 6, we use Proposition C.5 to convert

the higher covariant derivatives of curvature bounds to partial derivatives of the

immersion bounds. That is, we have

‖∂(k)
∂

∂t
f‖∞, ‖∂(k)f‖∞ ≤ c(m,T, f0, ‖h‖∞,[0,T )),

for any k ∈ N. This is enough to show that the convergence f(·, t) → f(·, T ) is in the

C∞ topology and MT is smooth. We have that f(·, T ) is a smooth immersion as the

metrics at each time t are uniformly equivalent and g(t) → g(T ). Finally, by short

time existence, we can extend the solution to an interval [0, T + δ], contradicting

the maximality of T . This establishes (194) and the theorem is proved. �
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