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ABSTRACT. In this thesis the chief object of study are hypersurface flows of fourth
order, with the speed of the flow varying from the Laplacian of the mean curva-
ture, to the more general constrained flows which include a function of time in the
speed, and satisfy various conditions. Our aim is to instigate a study of the regu-
larity of these flows, answering questions of local and global existence, and some
preliminary singularity analysis. Among our results are positive lower bounds
for smooth and regular existence, classification of stationary solutions, interior
estimates, and blowup asymptotics. Applying these results to a certain class of
constrained surface diffusion flows, we obtain long time existence and exponen-
tial convergence to spheres for initial surfaces with small L? norm of tracefree
curvature. We present one application of this theorem, using it to deduce the
isoperimetric inequality with optimal constant for 2-surfaces satisfying the above
smallness condition. The theorem can be thought of as a stability of spheres result,
as the smallness condition is an averaged distance from a standard round sphere
to the initial manifold in L?. This strengthens a related earlier result specialised
to surface diffusion flow where the distance is small in C>®, obtained through a
completely different method. The results throughout this thesis are new contribu-
tions for both surface diffusion flow, which has been considered by many authors,
and the constrained flows, which have only recently been considered.
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CHAPTER 1

Introduction

It is of inherent interest for us to understand how our environment operates and
behaves over time. This is one of the key motivating factors behind experimental
physics; determining so-called governing equations or physical ‘laws’ to explain ob-
served phenomena. One of the most important features of a proposed ‘law’ is that it
is predictive in the sense that we can determine, with some accepted degree of error,
what will happen in the future. If these predictions turn out to be correct, we may
even adopt this new ‘law’ into the accepted theory. In many cases, it is extremely
difficult to determine which forces are at work in a certain situation, and further,
how these forces act on objects in our world. It is often the case that experiments
imply that some governing equation determines the evolution of an object under a
given force, or geometrical constraint, but even with this supposed governing equa-
tion we cannot tell which properties an affected object will possess, over time. Using
mathematical techniques, we can investigate extremely general formulations of these

geometric flows and attack this problem.

These investigations can yield surprising results; principally concerned with cat-
egorisation of the effects a given flow or family of flows has on a class of manifolds
it acts upon. Understanding the underlying properties of a flow can lead to new
symmetry and intrinsic geometry techniques. As a classical example of this in his-

tory, the breakthrough discovery of new minimal surfaces by Meusnier [46] had far

1



2 1. INTRODUCTION

reaching consequences throughout physics and mathematics. Frequently, we can
infer new relationships between special geometric objects, for example the isoperi-
metric inequalities. It is also common to see a major result in this area specific to a
class of geometric flows infer or assist in proving another theorem in a different area
of mathematics: this was witnessed recently with the very public solution of the
Poincare Conjecture enabled by the breakthrough work of Richard Hamilton [27]
and Grisha Perelman [51]. Given the extreme generality of these investigations, and
the extensive mathematical background required, it is often the case that great time
and work is required to fully determine the behaviour and characteristics of even
one geometric flow. However, despite this, research has steadily grown in intensity
in past years.

The natural first target for mathematicians are the second order geometric heat
flows. These are natural due to the availability of the maximum principle, adopted
from the theory of second order partial differential equations. We see the pivotal
role this plays in the papers of Hamilton [27] and Huisken [28] on the Ricci flow and
mean curvature flow respectively. The mean curvature flow is motivated initially by

the experimental and theoretical work of the physicist Mullins [48, 49], and reads

(MC) —Hv

Y

a5 =
where f: M™% [0,T) — R™"! is a smooth immersion of the n-dimensional manifold
M, H the mean curvature of My = f(-,t) and v the outer unit normal vector field
to M. This equation has been well studied by many authors, see the excellent book
[12] and the references contained therein for a survey of results. For our purposes

here we make a few elementary remarks. The flow (MC) is the steepest descent
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gradient flow for area, and for any initial data My we have

d
L) = - / H%d
dt'u( ) M a

where p is the surface measure on M;. That is, surface area is monotonically de-
creasing and stationary if and only if M, is a minimal surface. This leads one to
suspect that mean curvature flow would be useful in studying minimal surfaces, and
indeed this intuition turns out to be correct. Of particular interest to us is the
proposal in Mullins’ earlier paper for the surface diffusion flow, used there to model

the formation of thermal grooves in phase interfaces. This can be written as

(SD) gt = (AH)v.

The flow (SD) is called fourth order, due to the second order differential operator A
being applied to the mean curvature H, which is itself a function of up to the second
order spatial derivatives of the immersion f. Being a gradient flow for surface area
in H~!, the surface diffusion flow enjoys two hallmark geometric characteristics:
a reduction of free surface energy (or surface area) and a conservation of mass
(or volume). These attributes of (SD), along with the relatively simple algebraic
structure of the flow, make it a natural fourth order analog of mean curvature flow,
and a model problem to be studied thoroughly before moving on to more general
evolution equations. Taking the geometric properties further, one is lead to the case
of constrained surface diffusion flows, where the immersion f : M"™ x [0,T) — R™*!

evolves by

(CSD) f = (AH + hv,
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with the constraint h : [0,7") — R being a function of time chosen to coincide with
a natural geometric restriction present in the problem being studied. For example,
various choices of h correspond to conservation of mixed volumes or a reduction in

mass and increase of free surface energy.

The surface diffusion flow has attracted some interest in the literature. It has
been examined from both a physical and mathematical perspective by Davi, Gurtin
[10] and in a more general context by Cahn, Taylor [7]. Davi and Gurtin propose
another physical motivation by recovering the surface diffusion flow (SD) when con-
sidering motion governed by mass diffusion in a phase interface. Cahn and Taylor
provide further motivation by demonstrating connections that the surface diffusion
flow (SD) exhibits with other kinds of motion of surfaces under various conditions.
These are all of the type where total free surface energy is reduced with conservation
of volume. This work is particularly notable for providing no less than thirty differ-
ent approaches to solving the surface diffusion equation, although only the proposed
numerical techniques have been carried out. A few years after these developments
Cahn, Elliott, and Novick-Cohen [6] demonstrated that the surface diffusion flow
can be derived under certain conditions from the Cahn-Hilliard equation, which pre-
dicts isothermal separation of a binary alloy. This gives substantial motivation for

research into the behaviour of the surface diffusion flow.

To effectively analyse fourth order flows we must overcome the lack of a max-
imum principle. One technique is to use curvature integral estimates. We can see

this employed by Kuwert and Schétzle [36, 37] for the Willmore flow, where the
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immersion evolves by

0
(W) oo = (AH A2,

with A° the tracefree curvature. Willmore flow is the L? gradient flow of total
squared mean curvature, and as such is the other ‘most natural’ fourth order flow.

This means that

jt/M W= [ (A4 40021 de <0,
and the stationary solutions are elastic minima. The tracefree and full curvature
tensor also exhibit this monotone decreasing property in L?, and as such integral
estimates where a curvature quantity is small in L? becomes a natural strategy in
attacking Willmore flow.

In an abstract sense, the overall argument in [37] is due to work by Struwe [59] on
harmonic mappings of Riemann surfaces. The ingredients required to carry out this
argument for a general flow are evolution equations for curvature quantities, short
time existence, integral estimates, and the concentration-compactness alternative.
The culmination of this argument is a non-zero lower bound on time for which the
total squared curvature of the evolving manifold remains bounded. This can be
thought of as a time limit during which the flow remains well behaved. This is
important even in light of the short time existence results (which are a prerequisite
for this argument) for higher order flows due to Polden and Huisken [52, 29]: short
time existence gives an arbitrarily small lower bound for the time in which the
manifold remains smooth, whereas for many applications one requires the lower
bound to be absolute, and not dependent on initial data. This is why the result

in question is called a lifespan theorem. One of our main results in this research is
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establishing a lifespan theorem for constrained surface diffusion flows, which is the

subject of Chapter 3.

Beyond this point lie questions of a global nature: under which conditions can
one infer long time existence of the flow, where T' = 0o, and in this situation can
one obtain any qualitative information on the asymptotic behaviour of the flow?
Again, we take our inspiration from Kuwert and Schétzle [36], attacking the problem
with local and global integral estimates combined with blowup analysis. Our main
adversary is the lack of a useful function space in which surface diffusion flow is a
gradient flow. Willmore flow, being an L? gradient flow of total squared curvature,
lends itself naturally to such an analysis. This problem lead to a popular opinion

that such an approach is not appropriate for surface diffusion flow.

Indeed, our results in blowup analysis are weaker than that of Kuwert and
Schétzle for the Willmore flow [36]. Briefly, we can only guarantee a stationary
blowup if the average distance in L? from a round sphere is small. Contrast this
with the Willmore flow, where one obtains this regardless of the initial data. Thus,
the initial aversion to using this program of study is in one sense confirmed: one
may indeed obtain self-similar or translating solutions (as opposed to stationary so-
lutions) from a blowup, but only if the initial manifold is far enough from a sphere.
This behaviour is something like a mixture of Willmore flow with mean curvature
flow, which is also a gradient flow of area, and closely related to surface diffusion

flow.

However, this does not stop us from obtaining our long time existence result. The

idea of our method is as follows. Armed with the Lifespan Theorem from Chapter
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3, we know that the only obstacle to global existence is possible concentrations of
curvature in L?2. We proceed by contradiction and assume that the initial manifold
is close to a sphere in an average sense and that the curvature has concentrated
in finite time. This finite time concentration begs further study, and so we blow
up around the singularity. This is performed in Chapter 6. To obtain existence
of a limit, we need the Interior Estimates from Chapter 5. Using ideas developed
in Chapter 5, we can also prove that the average closeness to spheres stays well
controlled, and this allows us to prove that the blowup constructed is a stationary,
nonumbilic surface. This lends itself neatly to a contradiction with the main result of
Chapter 4, the Gap Lemma, which states that precisely such a surface must indeed
be umbilic. This implies that there is no concentration of curvature in finite time,
and so we must have long time existence. From here most of the work is done and
we use straightforward arguments to obtain exponential convergence to spheres in

Chapter 7.

Thus we summarise the main contributions of this thesis as the following.

(Ch. 2) Short time existence for higher order hypersurface flows which are quasi-
linear and parabolic in a local chart. This chapter collects many references
from the vast literature on local existence and organises them together to
show short time existence for our flows under consideration.

(Ch. 3) Lifespan Theorem. Here we present a proof of the aforementioned Lifespan
Theorem for constrained surface diffusion flows. This is an absolute lower
bound for the maximal time of existence of the flow which depends on the

concentration of curvature in the initial data.
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(Ch. 4)

(Ch. 5)

(Ch. 6)

1. INTRODUCTION

Gap Lemma. This chapter proves a gap lemma for constrained surface
diffusion flows. There the concerns are the stationary solutions to the flow
equation, and their geometry under certain conditions. The Gap Lemma
we prove here shows that under a small tracefree curvature condition, a
growth at infinity of curvature condition, and a structure of h condition the
stationary solutions are indeed spheres and planes.

Curvature and Interior Estimates. This chapter investigates the conse-
quences of local integral of curvature estimates where the speed of the flow
appears on the left hand side; these are natural for a gradient flow of curva-
ture. For us, we can still use this technique to conclude several interesting
results. The first are some pointwise curvature estimates where the speed
of the flow appears on the right hand side. The second are interior esti-
mates where we control all higher derivatives of curvature so long as the
curvature is already well-controlled in L?. The conditions required of the
constraint function for the interior estimates are the same as the conditions
required for the Lifespan Theorem, and as such these two theorems enjoy
a convenient synergy.

Almost Preservation and Stationary, Non-Umbilic Blowups. The first result
is on the almost preservation of initially small tracefree curvature. Using
a technical estimate from Chapter 5 we can show that if the tracefree cur-
vature begins small in L? then it stays well-controlled along the flow. One
of the many consequences is that using another technical estimate from

Chapter 5 the blowup at an assumed finite time singularity is stationary.
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Arguments from Kuwert and Schétzle [36] strengthen this to stationary
and non-umbilic.

(Ch. 7) Long time existence and exponential convergence to spheres. This is an
orchestration of all our previous results, and some additional analysis in
the same vein as Chapter 6. The final conclusion is that for 2 dimensional
surface diffusion flows, if the L? norm of the tracefree curvature is small at
initial time then the surface diffusion flow exists for all time and converges
exponentially to a round sphere. For the constrained flows, there are several
structure conditions placed on h and the initial condition is strengthened to

smallness in LP for some p > 4 which depends on the constraint function.

Opportunities for further research abound. Many of the results in this thesis
may be easily adapted to the case of constrained Willmore flows, and as there does
already exist some work on constrained Willmore surfaces, the stationary case of the
flow, this is well motivated. Determining precisely the nature of any obstructions to
obtaining long time existence and convergence to spheres, and working to overcome
these obstructions would be an interesting topic. In another direction, one may
consider higher intrinsic dimensions, moving from two dimensional surfaces to three
dimensional manifolds. We have already commented on both of these possibilities
throughout the thesis, where adaptations to these situations lend themselves easily.
In a more difficult vein, one may ask the following question. Given recent work
on the eventual positivity of the Green’s function for the parabolic bilaplacian [18,
22, 23, 21, 26|, and the fact that eventual preservation of positivity of the mean

curvature is obtained in the proof of our main theorem (Proposition 7.7), does
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there exist an underlying phenomena for fourth order equations analogous to the
ubiquitous maximum principle? Investigations on this question are continuing, but
it seems that answering this even in part would allow a solution to many unsolved
problems. For example, when does surface diffusion flow or Willmore flow develop
a singularity? If we have a flow with very large deviation from a sphere, does
there develop a curvature singularity? In the second order case, the comparison
principle allows one to determine many such situations where this will occur. For
the flows in consideration here however this simple question has not been resolved.
In a different topological class, the work by Blatt [4] on Willmore flow shows that
eventually (perhaps in infinite time) one must obtain non-existence, however there
a topological obstruction is used to obtain the result, and this does not seem to
give a hint as to an underlying, deep property of the flow. It is this author’s hope
that one day the analysis given here is used to obtain qualitative information on
surface diffusion flows with large distance from spheres, and that these problems

can therefore be resolved.

1. Prerequisites from differential geometry

It is our immediate task to set our notation and discuss the definition and fun-
damental properties pertaining to our chief objects of study. Intuitively, these are
somehow lower dimensional, structured subsets of R™, to which we can express
smooth deformations via some mapping. We will characterise the ‘interesting’ sub-
sets of R™ as objects which are in a local sense Euclidean, and intrinsically of di-
mension less than n. Further, at least for now, we will only consider those objects

which are smooth everywhere.
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Let M be contained in some open set U C R"™!, determined by a smooth
embedding map f: Q — R with F(Q) = M where Q C R™ is open. M is called
an n-dimensional hypersurface or simply a hypersurface, since the codimension of
M is 1. One can think of this as meaning that after the embedding map has taken
Q) to M, there is still one dimension ‘left over’ in the ambient space R"*!. These
‘left over’ dimensions are called codimensions. Equivalently, one codimension also
means that at every point x = F(p) € M, p € Q, the space of vectors normal to M

anchored at z is one dimensional.

Of course there are many generalisations to this particular notion of ‘interest-
ing set’, and an enormous body of work supporting them. However for us we will
not consider a large number of abstractions or even very general results and con-
structions. Here, our most general consideration will be an isometric immersion
f:Q — M where Q C R" and M C R"**, which is an n-dimensional manifold with
k codimensions. The word ‘isometric’ here means that the geodesic distance on M

is inherited from the metric on R"**. We will make this more precise later.

One general notion deserves mentioning here. Given a hypersurface, say the
three dimensional sphere S* immersed in R?* (this is to say that at every point
p € 8%, the tangent space is three dimensional), we can consider now immersions
with codomain S®. That is, let ¥ C R? be open with p € {1,2} and consider
a smooth map g, : ¥ — N where N C S? is open. It seems naturally a much
more general setting, to consider submanifolds of ‘nice’ objects such as S* instead

of simply isometric immersions in R™"**.
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This intuition holds, and so-called submanifold theory is in fact a strictly more
general setting. However, one may also consider the intrinsic analog. Consider a
set which exhibits, in terms of its intrinsic geometry, properties which are desired
by our ‘interesting’ sets. One may be worried that in our study of immersions
or embeddings of Riemannian manifolds into Euclidean space, we are losing some
portion of all possible Riemannian manifolds. In other words, perhaps there are some
very strange Riemannian manifolds for which there is no embedding into Euclidean
space. Can each g, be isometrically immersed in Euclidean space? The answer is a

resounding ‘yes’, due to the celebrated result of Nash [50].

THEOREM 1.1 (Nash Embedding Theorem). Any n-dimensional Riemannian
manifold N with C* metric, where k > 3, has a C* isometric embedding in an

arbitrarily small portion of R™, for 1 > 3n® 4+ 7n* + Sn.

Therefore, if we can move to considering isometric immersions of arbitrary (or
large enough) codimension n + [, we will have (up to a diffeomorphism) covered all
Riemannian manifolds of dimension n. Obtaining results in arbitrary codimension
is not always possible however, and generally range from being as difficult as one
codimension to being much more difficult. We will remark throughout the thesis on
which of our results carries over easily to the case of arbitrary codimension.

We organise the remaining parts of this chapter as follows. Section 2 gives an
overview of the basic definitions and geometric facts associated with hypersurfaces,
with some elementary results. Section 3 details some additional notation, so-called

modern, intrinsic or suffix-free notation, which will be useful at times in the coming
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chapters. We finish the chapter with some notes and further references for the

interested reader.

2. Geometry of hypersurfaces

Let M be contained in some smooth open set U C R""! and be such that
M = f(Q2), where f : Q — R"" is a smooth mapping with everywhere injective
derivative (that is, f is an immersion) and  C R™ is open. We say that M is
a properly immersed hypersurface if f~1(K) C Q is compact whenever K C U is

compact.

The coordinate tangent vectors 0; f(p) = g]j (p), 1 <i < n, form a basis of the
tangent space T, M at x = f(p) for every p € Q. Note that this means the tangent

space is n-dimensional.

The components of the metric on M are given by
9i; = (0if 1 0;f)

for 1 < 4,5 < n, where (-|-) is the regular Euclidean inner product in R""!. When
the metric is specified in this way, we call f an isometric immersion. For an expanded
introduction to these especially nice immersions, please see [11, Chapter 6]. Let (g;;)
denote the matrix with elements g;;; then the components of the inverse metric are

given by inverting (g;;); that is
(97) = (g:5)~"-

The natural induced area element of M is

\/g = \/det (gm)
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We can integrate compactly supported functions A : M — R over a properly im-

mersed hypersurface. The integral is defined by

/M hdy = /M hdH" = /M h(z)dH"(z) = /Q h(f (9)\/9(p)dp.

Here dy is the measure on M, which we will always choose to be n-dimensional

Hausdorff measure H"™ on M. Note that we always have
H'(MNK) < oo

for any compact K C U.

We may consider any function h : M — R as a function on €2 via the immersion:
h:f(Q) —R, hof:Q—R.
The tangential or surface gradient is defined by
VMh = g90;h0; F

where we sum over repeated indices from 1 to n. Let X be a smooth mapping which
takes any point p € M to a vector X(p) € R"™ which is tangent to M at p; such an

X is called a smooth tangent vector field and can be decomposed as

It is natural to question if one has a suitable notion of differentiation on M. There is
indeed, and one approach is to simply define the covariant derivative VM : X (M) —
TM as the ambient derivative projected back onto the tangent bundle of M. That
is,

VMX = (DX)".
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When there is no chance for confusion we will in further chapters omit the M

superscript. The components of the covariant derivative are given by
VM XTI =9, X7 + T, X" = ¢7'(0,X; — TE Xy,)
where the Christoffel symbols T are
(0i0)" =T50kf,

where the superscript T denotes the tangential component of a vector. A good

exercise is to show that the components of the Christoffel symbols are also given by

1
(1) Tiy = §9kl(5i9jl + 0,90 — 019i5)-

We define the tangential divergence of X on M by

) . 1 .
diviy X = VM X' = g"VM X, = —0,(1/997 X;).
V9
The last equality follows from our earlier definitions. This expression for the diver-
gence is useful for proving the divergence theorem, which will appear later.

The Laplace-Beltrami operator of h on M is given by
- 1 -
Ayh = divy VMh = g7 (9;;h — T0h) = ﬁai(\/gg”ajh).

For a smooth vector field X : M — R™*! which is not necessarily tangent to M, we

can also define the divergence with respect to M by the projection

One can check that this reduces to the previous expression for tangent vector fields.
We now move towards defining the curvature of M. First, let v be a choice of

unit normal vector field to M. In particular, this satisfies

(v|0if) =0, and (v|v)=1
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on M for 1 < i < n. Note that the second identity implies that any derivative of
v is a tangent vector field to M. We make extensive use of the second fundamental

form A: X (M) x X(M) — R associated with M, with components defined by
Ay = (0w [0;f) = = ([ 0y f) -

The second equality follows from the product rule and the fact that 0; f is a tangent
vector.

The eigenvalues ky, ..., Kk, of the Weingarten map given by

Al =g* Ay, (AY):TM — TM,

j:

are called the principal curvatures of M. The mean curvature H can then be ex-
pressed in various ways,
i=1

Combining these we can define the tracefree second fundamental form, sometimes

called the tracefree curvature, as the tensor A° with components

o 1
Aij = Aij — ﬁng

One may immediately check that tr A° = g% Af; = 0. The mean curvature vector of

M is given by
H=—Hv.

Using the previous identities, we therefore have

Ayf=H, and A f=AyH.
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This is relevant since in the case of the mean curvature flow, where f : M x[0,T) —

R™*! evolves by
Of = H=Ayf

we see immediately that the structure of the equation is similar to that of the
regular heat equation. One may guess that techniques for this equation (such as
the maximum principle) will be useful in analysing the flow, and indeed this is very

much the case. Contrast this to the case of the surface diffusion flow,
Oif = Ay H = A2, f,

and one can guess that here the tools which are of so much help in the analysis of
mean curvature flow are not applicable to the surface diffusion flow. In fact this is
only half true; some techniques will prove useful, but we will always be working to
overcome the deficit. We will greatly expand on this in the coming chapters.
Finally we come to define the Riemann curvature tensor of M. This is a precise
measurement, of how well or how poorly the covariant derivatives on M commute.

The components of R are defined by
Vi Xy, — Vi Xy, = Rl X',
where X is a tangent vector field on M and
Vi =iV — vy%

denotes the Hessian operator in a local orthonormal frame 7, ..., 7,. Note that for
Euclidean space, all the covariant derivatives coincide with partial derivatives and

so they commute. Therefore R}, = 0, and we call R" flat.
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The Riemann tensor satisfies the symmetry relations

M _ M M _ M
Rz’jkl = _Rjikh and Rijkl = _Rklij'

The Gauss equations express this tensor in terms of the second fundamental form

of M by
RY = AuAj — Ay Aq.

Importantly, this means that in our case (this is not true in general) it is sufficient
to study the second fundamental form instead of the full Riemann curvature tensor.
The Codazzi equations state that the 3-tensor of covariant derivatives of the

second fundamental form
VMA = (VMAj)

is totally symmetric.

It will be important for us to consider not only vector fields on M, but tensor
fields also. The definitions of covariant derivative, Hessian and Laplacian opera-
tors are performed analogously. In an orthonormal frame 74,...,7, we denote the
component of Vf»\f A with respect to 7, and 7; by sz-\f Ay;. Note that all of the quan-
tities spoken of thus far are geometric invariants, and so the choice of basis is not
important.

We will be making extensive use of the consequences of the Codazzi equations
and the interchange of covariant derivatives. We define the inner product on M,

which operates on tensors of similar type, as being the trace over the induced metric

jl"'jq .71.7q i1k ink ]1]q ll"'lq
<S T > _g gl’ nglll...gquqs‘ Tk1---kp7

Zy--ip ? il---ip 11---ip
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where the summation convention is understood. Note that as all covariant deriva-
tives of the metric are identically zero we have in any local frame
VIS, T) = (VS T) + (S, VMT).
We define the norm of a tensor as
|IT|* =(T,T).
In particular, this gives the norm of the second fundamental form as
||A||2 = A{A; = gijgklAik:Ajl-
At times we will need to perform analysis with large convoluted contractions, where
the exact algebraic structure of each contraction is not critical. To this end, we follow
Hamilton [27] in using for tensors 7" and S the notation 7% S to denote a new tensor
formed by summations of contractions of pairs of indices from 7" and S by the metric
g, with possible multiplication by a universal constant. The resultant tensor will
have the same type as the other quantities in the equation it appears. Keeping
these in mind we also denote polynomials in the iterated covariant derivatives of
these terms by
PAT)= > VuyTx-*VuyT,
ket k=i
where the constant ¢ € R is absolute and may vary from one term in the summation
to another. In the above we have used V(,)T" to denote the tensor with compo-
nents V“,anll As is common for the x-notation, we slightly abuse the absolute
constant when certain subterms do not appear in our P-style terms. For example

IVA]* = (VA,VA)

=1 (VoA* ViyA) +0- (A% VyA)
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= P}(A).

To simplify the notation, we will always work in a local orthonormal frame. This
means that we can use lower indices only. If we need to work with an arbitrary basis
we can raise repeated occurences of each index, relabel and multiply by the metric
in that basis.

Using the Gauss equation and definition of the Riemann curvature tensor, we
have

Vil Aij = Vig Aij = A Ry + A Ry

Computing, with the use of the above identity, the Gauss equation and the Codazzi

equations:
AnAiy = VigAiy = Vi Ay = Vi Aji
= Vi A + Akar]\);[z’jk + AmiR%kjk
= VN Ajk + A (A Aie — AijAmr) + A (A Ak — ArjAnr)
(2) = Vil H — ||A|?Aij + HApAs;.
This is generally referred to as Simons’ identity [56]. This also implies
(SI) An||Al]? = 245V H 4 2||VMA|]? + 2H A;; Ay Ar; — 2| A"

We will need to control the second derivatives of the unit normal vector field, and
for that purpose we derive an expression for the Laplacian of v. In the computations
to follow it is convenient to work with geodesic normal coordinates on M. (Note
that we can always do this in a small neighbourhood on M, by solving a system of

ODEs.) That is, at a point z = f(p) € M we have

gij = 05, and (0;;f)" =0.
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We will perform our calculations at this point x. At this point we have
Apv = Oy0.
Moreover,
Ajj=—(0;f|v), and O = A;;0;f,

where the second equality follows from 0;r being a tangent vector field and therefore

expressible in the basis 0;f. The Codazzi equations imply
Using these identities we compute
O = 0; (Ai;0; f)
= 0;A450;f + Aij0i f
= 8]/4128]]“ + Aiin]’I/,
which is
Ay = —||Al*v + VM H.
This identity is often referred to as the Jacobi field equation.
Since we do not have access to tools such as the maximum principle, we must
make the most of what we do have, and apart from some special circumstances the
only tool available is integration by parts. The divergence theorem for smooth, prop-

erly embedded hypersurfaces with smooth boundary gives us a way of integrating by

parts on manifolds; it states that for any C! vectorfield X : M — R"*! the identity

J, dwxart == [ (F|x)a s [ (X aret
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holds where v denotes the outer unit normal vector field to M which is tangent to
M at all boundary points (note that in particular this is not the vectorfield v). If

X has compact support or if OM = () this reduces to
/ divay XdH" = — / (H|X)an;
M M
and if in addition X is a tangent vector field we have
[ diva xar 0.
M
For a function ¢ € CZ(R™"!) the divergence theorem implies
/ divy Dodp = —/ (]—7‘ ng) dp, and / Aprpdp = 0.
M M M
Let n € C*(R™"!) and then we also have
| oBamdp == [ (9| V) du= [ nauodn.
M M M
If ¢ does not vanish on the boundary of M then
/ diva Dodp = —/ (A | Do) dﬂ+/ (V¥6|7) do
M M oM
where we used that

(D] ) = (VY6|7)

since 7y is tangent to M.

3. Suffix free notation

We now come to introduce the notation which we will use quite often in this
thesis, following Kuwert and Schétzle [36, 37, 38] who used this notation in their
analysis of the Willmore flow. For a reader unfamiliar with the terminology used
here the most complete reference is Kobayashi and Nomizu [32, 33]. Although at

times extraordinarily terse, these books give all the details in full rigour.



3. SUFFIX FREE NOTATION 23

The main advantages of this notation are that, especially in arbitrary codi-
mension, there are far fewer indices to be confused with each other, and that the
computations are often much quicker.

Let f : M — R""* be an immersion as before. Let X,Y,Z be tangent vector
fields and ¢ a normal vector field. All vector fields are defined along f. The induced
metric is given by

9(X,Y)=(Df - X|Df-Y)=(Dxf|Dyf).
Here Df denotes the matrix of partial derivatives of f and the notation Df - X
denotes multiplication of the matrix Df with the vector X:; this is exactly the
familiar notion of a directional derivative, which is expressed in the second equality.
The passage from the previous notation to this is straightforward: for a tensor T p
times covariant and an orthonormal basis {7;} of T'M,
Tivigeiy = T(Tiy s Tigs - - - s Tp)-

Then, evaluating T" with more general vector fields X; reduces to knowledge of the

components of 1" since

T(Xy, Xa,. .., X,) = T<T,-1 (X0, 70} Ty (Xoy i) s o0 T, <Xp,np>)
= (X1, 70) (X2, i) - 7oy { X iy ) Thvigeiy-
Note that we used the linearity of T" here and of course there are many summations.
Note that this expression is well defined since tensors are invariant under change of

coordinates. We will define the covariant derivative of functions, vectors and tensors

as follows. Let X, X;,Y be vector fields on f. For functions h : M — R"*%,

Vxh = (Dxh)" = (Dh-X)";
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for vector fields,
VxY = (DxY)' = (DY -X)";
and for covariant tensors T' of degree s,

(VT)(X1, ..., X X) = (VxT)(X0, ..., X).

For the normal bundle we also have a covariant derivative, which we will in fact use
more often than the covariant derivative on M. Let ¢ be a normal vector field on

M and S a normal covariant tensor field of degree s. Then we have

Vih = (Dxh)" = (Dh-X)",
Vx¢ = (Dx¢)" = (D¢-X)", and

(VE9) (X1, ..., X X) = (Vx9) (X1, ..., X,).

It is easy to see from the above formulae that the regular derivative in R"** splits
into the covariant derivative in the tangent bundle 7'M and the covariant derivative
in the normal bundle TM*.

We shall need to take repeated covariant derivatives of tensors and so will expand
upon the latter formula. For the details of these computations we refer to chapters
2 and 7 of Kobayashi and Nomizu [32, 33]. To avoid duplication, let V denote both
the covariant derivative and covariant derivative in the normal bundle.

For a covariant tensor S of degree s we form a new tensor (V.S) of degree (s+1)

defined as above. An alternative, more useful expression for (V5) is
(VS)(Xl, ce 7AXVS,AX') = V)((S(Xl, ce ,XS)) - ZS(Xh ceey VXXi7 e ,Xs).
i=1

Note that S(X7,..., X;) is a function.
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The second covariant differential of S, V(2)5, is a covariant tensor field of degree

(s 4+ 2) defined as V(VS), which is
(Vi 9)(Xy,..., X X5 Y) = (Vy (V) (Xy,..., X5 X).

A similar expression to that given above for (V.S) is rather complicated and long.

A shortened form is
(V(Q)S)(; X; Y) = VY(V)(S) - VVYXS.
In general, V,,,)S is defined inductively to be V(V(,,_15), and

(Vin)S) (X1, .., X Y500 Yn) = (Vv (V-1 9))(Xa, .., X Yis o Vi),

4. Notes

The overview given here falls short of satisfactory for a large number of reasons,
and the reader inexperienced in differential geometry must be aware of this. Our
primary goal here is to set our notation, as in some places it is nonstandard. At
times we will switch between index and suffix free notation, using whichever is most
convenient for a given computation.

The treatment of the geometry of hypersurfaces given here is heavily inspired
by Appendix A of Ecker’s excellent book [12]. For an introduction to singularity
analysis for the mean curvature flow, and regularity theory for hypersurfaces, this
book comprises a clear and succinct treatment with sufficient but minimal geometric
measure theory.

There are mountains of books on differential geometry, and it would be impos-
sible to give a mention of them all. We will give comment on a small selection and

invite the interested reader to find and enjoy more references of their own. The



26 1. INTRODUCTION

hard hitting reference for specialists are the two volumes of Nomizu and Kobayashi
[32, 33]. These are essentially self-contained, but are not suitable for use as intro-
ductory texts. As references however they are irreplaceable. For a more gentle and
geometric introduction, including the suffix free notation, do Carmo [11] is recom-
mended. Beware however of the mistake with the chain rule and as always take note
of sign conventions.

A classic but still relevant reference is the series by Spivak [58], which if you
can forgive the typesetting is quite readable. For references more on geometric heat
flows, such as mean curvature flows, some calculus of variations is useful. In most
modern differential geometry texts there are small sections devoted to this. The
collection of articles [9] is a good resource for the beginner.

Unfortunately, higher order flows are not so well studied and there are no stan-
dard references. We will be continuing the framework of Kuwert and Schatzle
[36, 37, 38] who analysed the Willmore flow. However the case for second or-
der flows is significantly better, and many of the notions used in the analysis of
fourth order flows are completely analogous to the second order case (even if the
techniques are required to be different). For the mean curvature flow, the afore-
mentioned treatment given by Ecker [12] is a good source. We also mention the
following paper of Huisken and Polden [29] which gives a survey of some results for
various geometric evolution equations. The references contained within these two

sources provide a comprehensive survey of the field.
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Short time existence for higher order hypersurface flows

1. Introduction

The question of short time existence for higher order hypersurface flows has a
colourful history. Several contemporary papers will quote Polden [52], or Huisken
and Polden [29], such as Kuwert and Schétzle [36, 37, 38], Mantegazza [44], and
others. We began with this, as the statement for local existence in [52] is extremely
general. However, as is in fact common knowledge (being known at the very least
by Bartnik, Huisken, Ecker, Kuwert, Schitzle, Andrews, and so on), there are some
mistakes such as the usage of the linearisation of the quasilinear equation, and in the
usage of the smoothness assumptions on the coefficients of the differential operator.
Despite this, it is also common knowledge of how to fix these issues. It is in fact the
case that there are a large variety of methods and techniques to obtain short time
existence. Thus we do not claim any fraction of originality or ingenuity in proof:
our arguments and presentation in this chapter all essentially belong to standard
theory. We recommend that the reader not interested or already well-versed in short

time existence skip ahead to Chapter 3.

It is worth noting that Sharples [53] fixed the mistakes in Polden, however there
the focus is on second order equations and the higher order case is only remarked

upon briefly in the introduction to the paper. We will be performing a similar feat,

27



28 2. SHORT TIME EXISTENCE

in that we will attempt to recover a similarly useful short time existence theorem to

Polden, however we will not pursue the same technique.

Our technique is inspired by personal communication with Kuwert [35], where
it is suggested that to prove short time existence it is sufficient to write the evolu-
tion as a graph and then use standard parabolic existence and uniqueness theory.
This is essentially our procedure, although it appears the treatment of higher order
parabolic equations is exclusively limited to linear equations (and our equation is
very much quasilinear when written as a graph) and we must provide the standard
alterations to upgrade the linear theory to the quasilinear context. Once we obtain
the existence and uniqueness theorem for the quasilinear case, we use the method
of applying a tangential diffeomorphism at each time step to our flow to ensure that
the domain of our graph function is independent of time. Combining these results,

and tiling the time interval as much as possible, we obtain the required theorem.

Finally we must note that the treatment given here is classical in nature, and
there is an alternative: semigroup theory. Indeed, this is the technique used by
Escher, Mayer and Simonett [16], where they quote recent results due to Amann to
obtain short time existence for surface diffusion flow. However, they do not state
any theorem to this effect and regardless the referred to theorem due to Amann does
not appear to be published anywhere. It has recently come to light that there is
now a reference which treats short time existence thoroughly: Koch and Lamm [34].
There a technique is employed which is very similar to ours here, however there they

work in a slightly altered function space to obtain uniqueness in a slightly different
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way. Their approach also allows one to obtain short time existence for initial data
which is only C*.

Due to the sometimes difficult-to-find nature of the required references for our
chosen approach, we have chosen to use major results from a variety of sources.
Due to this, our exposition involves the equivalent reformulations of the problem
at hand in a variety of styles. It is also because of this aspect that our discussion
below is restricted to signposting the various facts required and theorems necessary
for the proof. Our goal is that an interested reader will be able to use this chap-
ter as a roadmap to a complete, rigorous proof. We collect the major references
now. The linear estimates we have used follow the treatment of Friedman [20], and
Eidelman, Zhitarashu [14]. We refer the reader to the papers referenced therein
for the historical development of the linear theory. The fixed point argument can
be found in many good books on parabolic or elliptic partial differential equations,
such as Taylor [60, 61], Gilbarg and Trudinger [25], Lieberman [42], and of course
Ladyzhenskaya, Solonnikov and Ural’ceva [39], among many others. The usage of
tangential diffeomorphisms to fix the domain of our graph function can be found in
Ecker [12] and Ecker, Huisken [13]. We have presented our results in a sufficiently

general manner to be hopefully useful for further applications.

2. Linear theory

The classical theory of existence and uniqueness for solutions to linear higher
order parabolic partial differential equations is really a large work, and more suited
to a textbook than a section in a thesis. Further, the basic ideas and techniques

are all very standard, in that even though we consider the higher order setting the
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techniques and machinery involved are essentially the same as the second order case.
Therefore our strategy here is to state the main result in detail and then provide
a sketch of the proof with references; more than a summary but far from complete
detail. The main references for this section are the monographs Friedman [20] and
Eidelman, Zhitarashu [14]. There the problem under consideration is higher order
parabolic systems and higher order parabolic systems with boundary, respectively.
As there is not much more difficulty, we will also pursue the boundary value problem.
We see this as possibly being useful for future applications, for example a constrained
Willmore flow with Neumann boundary is often used in applied mathematics to solve
problems in image processing and computer vision, see [17] for example. There, the
question of short time existence is essentially ignored; nonetheless it is still important
for us. We will not however consider the case of general parabolic systems, or
equations parabolic in the sense of Solonnikov and Shirota, since the changes are
straightforward and serve to obscure the underlying argument and notation. The
interested reader may enjoy the discussion in [14] which includes all the changes
required.

Our linear problem is

(3) L(2,t;0,0)u=0u— Y au(z,t)0% = f(z,t)

la|<2b

= Z b, (2, 1)0°0u| = ¢4 forq=1,...,b,

aag
S || +2bap<rq S
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in the cylinder 2 = G x (0,7T], where S = 0G x (0,T], and the coefficients a,,
b, are functions indexed by ag and the multi-index «, which vary with each term
in the summation. In the systems context each of these coefficients is an (m x m)
matrix, with m being the number of equations. The system is of 2b-th order. (It
is impossible for an odd ordered equation to be parabolic.) The operators £ and B
are linear, and L is parabolic in the sense of Petrovski. This means that at every
point (z,t) in € the p-zeroes of the polynomial in the principal part Lo(x,t;i&, p) of

L satisfy the inequality
Re p(x,t,£) < —dg(z,t)|€?,  for some &y(x,t) > 0.

We do not require uniform parabolicity, so dg is allowed to vary with the choice of
point (x,t) € Q. Note that the function f(z,t) is a known function of time and
space.

We have some notation and conditions to get through before stating the main
theorem. Let C}(Q) and C}(S) be the set of functions f belonging to C'(€Q) and

CY(S) respectively which also satisfy

l
ol =0, forag =1, + 1.
t_

_0 ey ?b
We will need the following conditions:

(B1) : aa(z,t) € C'(Q)

(B2) = Vi, (2, 8) € CTF2077(S)

(B3) : 0G € '+

(B4) : The right hand side of (3)-(5) satisfies

f c Ol(§)7 ¢ c Ol+2b(é)7 ¢q c Cl+2b—rq (?)7
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forg=1,...,b, andl>l0:mgxx{0,rq—26}

[+2b—
(B5) : 07, =0, foray=0,..., u, on 0G.
t=0 20
The last of these conditions are called compatibility conditions of order %

The degree to which these are satisfied determines the regularity of the solution we
obtain.

We can now state the main theorem, due primarily to V. A. Solonnikov [57].

THEOREM 2.1 (Solonnikov). Consider the parabolic boundary value problem (3)-

(5) satisfying 1 — (B4 and compatibility conditions B5 of order % Then for any
non-integer | > ly = max{0,7 — 2b,...,1, — 2b} the problem (3)-(5) has a unique

solution u(x,t) in the space CF(Q) and the following estimate holds

b
0, Qltsay < c(mmz 1 Gl + 3 [ sr)

q=1

where C' s a positive constant not depending on u,t,1), ¢,.

Recall that the norm in the conclusion above is defined for some positive real

number s by

lu(z,t), Qs = Z sup 0“0 u(x,t)|

|a|+2bp<[s] (@) EQ

.S sup 0Ot u(x,t) — 0 u(y,t)
|ae|+2bp=[s] (:1):(y,t)€Q |z — yls~l
0“0 u(x, t) — 0“0 u(x, )

|t — 7|(—2bu—lal)/2b

- > sup
0<s—2bu—|a|<2b (T:1),(2,7)EQ

The proof makes extensive usage of higher order analogues of the parabolic
fundamental solution. One of the estimates obtained during the course of this proof
will be useful for the purposes of uniqueness later. The proof is contained in [57].

A version (with proof) in the terminology of semigroups can be found in [41]. In
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the below we use the notation
A = Z oz, t,u;)0”
laf<2b
for the spatial part of the linear operator. The norm on this operator is the natural

induced operator norm.

THEOREM 2.2. Let 0 < & < n < 1. Under the conditions of Theorem 2.5
above, the difference of two solutions uy,us with initial data wyi,wy respectively may

be estimated by
s (£) = wa(t) e < (77 Ay = Aglllwnlly + llwr — walle),

for some ¢ > 0 not depending on u;.

The norm in use here is in an interpolation space, which will be discussed in the
second part of the next section.

As mentioned earlier, the proof of Theorem 2.1 above in detail is a long and
complicated process. We will instead outline the overall idea; familiarity with the

second order case will be invaluable.

2.1. Overview of proof of Theorem 2.1. The most difficult step in the proof
is to show that the problem (3)-(5) is well-posed in a cylinder €, of small height
h < T in the case where ¢ = 0, f € C{(Q), ¢, € Cé”birq(sih), g=1,...,b. Once
we have local existence for this problem then we can consider u — ¢ for non-zero

initial data, and begin the process again at t = h, tiling the cylinder €.
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To solve the problem in a small cylinder €2, we consider the equivalent formu-

lation of finding a solution to the operator equation
(6) Au=F

where A is the linear operator from the linear space B; = C,™*(Q) to By =
CH(m) x TTo—g Cyt**774(S,) which assigns to each function u(z, t) € By the function

F=(f ¢1,...,05). By and By are Banach spaces with the norms

b
u|p, = |w, Qn]ig20, \Flgy = |1l + D [0g, Snli42p—r,-

q=1

Well-posedness of (6) is equivalent to the operator A possessing a bounded inverse
operator A~!, acting from the whole of By onto B;. We find A~ as follows. We need
to first construct a regulariser of A. For our problem this is an operator R : By — By

such that
(7) AR=14V; RA=I1+W,

where [ is the identity operator in B, in the first equation and Bj in the second, and

where V, W are bounded operators of norm less than 1 in By and B; respectively.
Due to the last property we can use the contraction mapping principle to imply

that the operators I +V and I+ W have bounded inverses (I+V)~! and (I+W)™".

Therefore, using (7),
AR(I+V)™' =1 and (I+W)'RA=1.

That is, the operator A possesses both a right bounded inverse R(I + V)~! and a

left bounded inverse (I + W) 'R. These inverses must necessarily coincide and so

AV=RI+V) ' =(I+W)R.
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Therefore in the small cylinder €2, the problem reduces to the construction of a
regulariser. Unfortunately, this is by no means straightforward. We will provide a

brief summary of the steps required.

2.2. Building the regulariser. We construct the regulariser by pasting to-
gether, with the help of a suitable partition of unity, operators which solve model

problems of two types. The first is the Cauchy problem for the parabolic equation
‘CO(xO? Oa aa at)u = f7

where the coefficients are ‘frozen’ at a point (z°,0), 2° € G. Solving this prob-
lem reduces to finding fundamental solutions with very nice properties. These are
essentially higher order analogues of heat kernels. Please refer to [14], Chapter
IV for details. The second model problems are the boundary value problems in
R x (0,T], obtained by passing to a local coordinate system with origin 2° € 0G
in equations (3)-(5) and in the initial conditions Ly(z,0; 9, ;) and Bg(xo, 0; 0, 0%)
for g =1,...,b. We can think of these second type of problems as zooming in on a
point on the boundary of G and considering the problem as being formed in a half
space by transforming the boundary locally to the tangent plane at (2°,0). The
details for the solution to these problems can also be found in [14], Chapter V.

To show that the operator R has the desired properties we must resort to sharp
estimates of solutions of the model problems above. These estimates are in turn
obtained with the help of formulae representing the solutions of these problems in a
form convenient for analysis: Poisson kernels and so on. We will present an overview

of these briefly below.
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2.3. Estimates for the model problem. In R' = R" x (0, 00) consider the

following model parabolic problem:

Lo(0y, Oy, Op)u = f

Bg(@x/, Or,,» Op)u = ¢, forg=1,...,b,

xn=0

where f: R}, — R is smooth with compact support and where ' = (21,...,2,-1).
We will use the prime similarly throughout this subsection to denote deletion of the
last coordinate. Our goal is to show that the solution to (8) above satisfies nice
estimates which will allow the construction of a regulariser, as outlined earlier. We
first represent the solution to (8) as a combination of elements of the Poisson basis,
which is obtained through integral transformations. Then, the estimates we require
come from estimating these ‘kernels’ of the solution, which will itself also rely on
estimates found in basic treatments for functions which are very similar to heat
kernels (called the fundamental solutions).

We first consider the problem:

Lo(3yr, 0., 0)u =0

U =0
(9) =0
Bg(@m/,&tn,&g)u = ¢, forg=1,...,b.
zp=0
Using the Laplace transformation in  and the Fourier transformation in x4, ..., x,_1

we obtain

W(xn, &, p) :/0 e P /IRUH ey (€' x, p)dEdt.



2. LINEAR THEORY 37

So the problem (9) is transformed to

d
EO(igla%7p)a =0
(10) e
BQ(iglvi ) :gb(fp) fOI‘qzl,...,b,

and

|’&(5Cmf/,p)\ — 0 as x,, — o0.

Since (10) is an ODE we can solve it by a number of techniques; for example the
method of residues will suffice, see Chapter I in [14] for an exposition of this ap-

proach. We obtain the solution u written in the form

b

i(zn, &'\ p) Z (0 €, 0)dg (€, D).

The functions Gq are called the elements of the Poisson basis. They can be repre-
sented as contour integrals in the complex plane. We will not pursue that here. The
interested reader can find the details in Vladimirov [64].

Using the inversion formulae from the theory of Laplace and Fourier integral
transformations, in particular the fact that a product is transformed into a convo-

lution, we obtain the following very useful expression for w:

bt
(11) u@t) =Y [ [ Gila—y. t=m)oy, T)dydr,
q=1
where
e a+100 R
12 Gylat)=—iem [ D [T G (6, p)dpde

where a > 0 is arbitrary. The functions G,(x,t) are called the Poisson kernels of
problem (9).
Our goal now is to investigate the smoothness and regularity of the solution to

(9), which as we can see from the above translates to estimates of the derivatives of
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the Poisson kernels G,. The technique used in [57] is via a novel transformation of
the aforementioned representation of G in the complex plane. Details of this method

can be found in Eidelman and Zhitarashu [14], Chapter VII. The result obtained is:

THEOREM 2.3 (Solonnikov). The Poisson kernels Gy(x,t) are defined and infin-
itely differentiable in R, . Their derivatives satisfy the following inequalities, where

g =2b/(2b—1):

D DGy, £)] < Clagt ™20 ratlatt2ben) /2 melfte=

These estimates suffice for the construction of the regulariser as given in Eidel-
man and Zhitarashu [14], Chapter IV.

We have two tasks remaining. The first is that we still need to deal with the

‘other half” of problem (8), again on R’}

Lo(0, Oy,,, O)u = f

u

=

t=0

= 0.

zn=0

Bq(aa:’7 axna 075)“

The second is to indicate how one obtains the sharp estimates required to prove
that the operator R we construct possesses the desired properties of a regulariser;
in particular, the norm property which allows us to use the contraction mapping
principle (as mentioned earlier).

To find the solution of (13) we use a homogeneous Green function, defined below.
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DEFINITION. A homogeneous Green function Go(x,y,t) of the problem (8) is

determined by the relationship

t
U(l’, t) = / / GO(I‘7 yat - T)f(yv T)dydTa
0 n
where u(z,t) is a solution of the problem (8) with null initial and boundary condi-

tions, and the function f(y,t) is smooth with compact support.

We desire a homogeneous Green function of the form
(14) Go(z,y,t) = To(z —y,t) = V(z,y,1),
where [y(z, ) is a fundamental solution of the Cauchy problem
Ly(0,0)u = 0.

To solve (8) we must then require V(x,y,t) to be a solution of the boundary value

problem
Eo(a, 3t)u =0
U =0
(15) _
Bo(ﬁ,at)u = 80(8, 801“0
xn,=0 xn,=0

The problem (15) above is solved by (11) and (12), as with problem (9) earlier.
The three part work of Gel'fand and Shilov [24] gives the following estimates
for T'y. Note that there are many similar estimates earlier in the literature (such as
Friedman [20]) but those estimates are not sharp. The technique used in [24] is the
Fourier integral transform of entire functions which satisfy certain nice inequalities,

and so we only state a special case of the result obtained there.

THEOREM 2.4. The fundamental solution T'o(x,t), regarded as a function of

(i t71/% 2, 7Y, is an entire analytic function having decay of order q =
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2b/(2b — 1), where x is real. The complex continuation Uy(z,t) has growth of order

q=2b/(2b — 1) for imaginary values of z, and satisfies the estimates

0°00T (2, 1) < Clagt ™ "FIAIH220)/2b oy (tl_q(—03|Re 2|1+ cq|Im z|q)>.

REMARK. For the simplest case of the heat equation
Ou = a*Au+ f(x,t), uli—o = (),
the fundamental solution is
Th(x,t) = (2avtm) " exp (- |a]*/4a’t),
which we rewrite for comparison purposes as

Fé(xvt):(zam)”exp< (1/4a?) i ) )

It is clear by differentiating that the function I'{ satisfies the bounds from the the-
orem above, and thus one of the key properties of the ‘heat kernel’ above is carried
over in an analogous manner to the general fundamental solution of our model prob-
lem. This is the chief reason why we claimed that the general fundamental solution
is similar to the heat kernel.

For interest we note also that for the (2b)-th order analogue to the heat equation
o+ (—1)°Au =0,
we have the following as fundamental solutions:
Lo(x,t) = (2m)™" /]R” exp (z(m,ﬁ) — |§|2bt)dt.

Note how similar the structure of I'j is compared with I'j. An alternative proof of

the bounds in Theorem 2.4 for the function I'fj above can be found in Eidelman and



2. LINEAR THEORY 41

Zhitarashu [14], where inequalities from the theory of Bessel functions are used as

the main tool.

Using Theorem 2.4 above, we can obtain the desired estimates for the homo-
geneous Green function Go(x,y,t). The theorem stated below is a combination of
work by Solonnikov [57], to whom the credit for the first statement is due, and
Eidelman and Ivasishen [31], whose method of proving the first statement gives the

expression for the solution given in the second statement.

THEOREM 2.5. There exists a homogeneous Green function Go(x,y,t) of problem
(8), which is given by formula (14), is infinitely differentiable with respect to all its
arguments for {x,y} C R}, t > 0, and satisfies the following estimates (in which
q=2b/(2b—1)):

0,020 (, y, )| < Clagqt ™ "HITIIT200/2 oxpy (— |z — y|o?77),
and

L0200V (1, 1)] < Craagt™ "HIHIEH200/2 ey (— (| — gt 4 y2)279).

The solution u(x,t) of problem (8), constructed for smooth functions f, v, ¢y, q =

1,...,b with compact support, is given by the formula
bt
u@,t) = [ Golwy @y + Y [ [ Gola—y =)oy, T)dydr
q=1

* /ot /]Rn Gol(z,y,t — 1) f(y, 7)dydr.

The second statement above gives the existence of the solution and control on

its regularity via the Green’s function. Although we do not know a priori that the
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Green’s function is unique, and therefore can not conclude that the solution is unique
from the second statement above, the estimates in this Theorem 2.5 combined with
the regulariser argument mentioned earlier do allow us to obtain uniqueness of the
solution. This means that when the main argument from the linear theory has been
completed, we do eventually prove that the Green’s function above is unique, but
this may be misleading since it comes as a consequence of the uniqueness of the

solution rather than a reason for it.

Theorem 2.5 above and Theorem 2.3 from earlier are thus the key estimates
used to drive the linear theory. Using these we can gain control of the norms of the

relevant linear operators which we will use to construct the regulariser.

To finish this section we state the regulariser existence theorem. Although we
have no desire to give a treatise on functional analysis, we have a little more notation
and terminology to get through before we can properly state the final theorem before

we can properly state the final theorem.

A sufficient condition for a linear operator £ to satisfy the so-called Lopatinskii
condition is for the linear operator to be parabolic in the sense of Petrovski, satisfy
the compatibility conditions at the boundary, and that the number of independent
boundary conditions be at least b, half the order of the system. There are weaker
conditions, for systems parabolic in the sense of Solonnikov, detailed in [14], Chapter

L.

The set 2, = G x [0,00) is a semi-infinite cylinder with lateral surface S; =
I' x [0,00). The domain G is bounded, with a smooth (n — 1)-dimensional boundary

I' = 0G. Our linear operators will live in the spaces INCi and ﬂi, which take a little
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effort to set up. To begin, consider the spaces H*(£2,), which are Hilbert spaces of

distributions v(x) with the norm

0.l = [+ IePylaePde

and inner product

0.0l = [ O+ IEP)a(e) - e

where v is the Fourier transform of v. Now, we wish to modify the spaces H® to
the spaces H*" of distributions which are ‘weighted’ of order s in z and ¢, and
are ‘additionally smooth’ by a factor r in the ‘tangent’ (to the boundary) variables

(2',t). Let b > 0 be a fixed integer. Let p = v + i&y. Set

p(1,6,p) = (L+ €)%+ [7M" + 1€ V") 2, pi(1, €, p) = p(1,€,0, p).

Then given any real s, 7, let H*" (€2, ) be the set of distributions which decay at in-
finity twice as fast as any polynomial, whose Fourier transforms are locally Lebesgue

integrable functions for which the following norm is finite

Jute ), 042, = [ (1,6 p) - 027 (1,€.p) - [iE, &) Pdedso,

+

and is made a Hilbert space by the following inner product

(1, 0)er = [} 0(6,60) - 0EE)o™ 0} dEclty,

Notice that these possibly unfamiliar spaces are isomorphic to the familiar Lo(§2;)
with the appropriate weight; in the case of H*"(€2,) this is p*p]. The addition of
the tilde denotes a specific adaptation of these spaces to parabolic boundary value

problems. Let v > 0 be a given real number. The space 7:[i is the completion of



44 2. SHORT TIME EXISTENCE

C>(@G) with respect to the norm

{v(2), GHZ = llvo, GlIT + >_ < e wi(@), T >0 410
keK

where

< 0@, 6).0 3= [ p1(1Ep) - |6(€, &) e do
vo(z) = v(z)|g, and wi(z') = 0" 1v(z)|r, where v is the inward pointing unit normal
at the point 2/ € I'. The set K C Z is constructed by taking all the ‘sizes’ of the
various orders of differentiation in the operators £ and B; for every multi-index «
such that [, is a coefficient of £, a € K. Note that this forces 2b € K. There is one
final additional requirement for each space: all elements of INCS+ elements must also

satisfy the compatibility conditions
0, wo(2)|r = wi(2')

forall #/ € I" and all k£ < &'.

THEOREM 2.6 (Eidel'man and Zhitarashu [14]). Let the operator L be uniformly
parabolic in 1, let the operator B on S, satisfy the Lopatinskii condition uniformly
in (2/,t) € Sy, and let T be of class C5t". Assume that the coefficients of the
operators L and B belong to the following classes:

lijap(x,t) € ClFtToote (@ ) Ve >0,
bjap(,t) € CHEIFLE=00F Q) Ve > 0
and do not depend on t fort > Ty. Finally, let l;jop(x,t) be constant for |x| > Ry if

G is an unbounded domain. Then there exists a number o, which depends on s and

the Holder norms of the coefficients of L, B, such that for v > vy, s +t; & Z1 2,

URF = (Ix + ®)F,
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RUu = (Ig + Q)u,
where I and Iy are the identity operators in I~Ci, 7:£S+ and ®, Q) are operators in

I~Ci, 7:£i of norm less than 1.

The above theorem gives us the existence of a suitable regulariser (recall (7))

which allows us to proceed with the argument given in Section 2.1 earlier.

3. Quasilinear theory

Here we will use a standard fixed point theorem argument to upgrade our exis-

tence results for the linear equation to the case of a quasilinear equation.

THEOREM 2.7 (Schauder fixed point theorem). LetZ be a compact, convex subset
of a Banach space B and let J be a continuous map of L into itself. Then J has a

fixed point.

ProoFr. We give a proof which is an expansion of that found in Lieberman
[42]. For a positive integer k let {B;}, be a finite collection of balls of radius 1/k
covering Z. We write z; for the centre of B; and 7}, for the convex hull of the points
x1,...,2xy. Now define a mapping I : Z — Z; by

1(2) YN, dist(z, T ~ By)z;
xTr) = .
g SN dist(z, T ~ B;)

Since the distance in B is continuous, the map I, is continuous. We also have the

bound

SN dist(z,Z ~ B;)w;
1) ~ ol = | E .
L dist(x,Z ~ By)
SN dist(z,Z ~ By)x; — SN dist(x, T ~ By)x
SN dist(z,Z ~ B;)
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IS5, dist(z, Z ~ By) (i — )|
N dist(z,T ~ By)
N dist(z, T ~ By)||x; — z||
- N dist(z,Z ~ B;)
iy dist(z,Z ~ Bi) 1 1
SN dist(x, T ~ B))k ~ k

for any x € Z. The second last inequality is due to the i-th term in the sum
in the numerator or denominator being zero when ||z; — z|| > 1/k. Thus Z is
homeomorphic to a closed ball in RY and it follows that J;, the restriction of I, o J
to Zx, has a fixed point y;. The compactness of Z implies that there is a convergent

subsequence {yx(m)} with

1
| Yk(m) — J(yk(m))H = || Jr(m) (yk(m)> - J(?Jk(m))H < K’
Therefore
z= lim m
is a fixed point of J. O

As an application of this and Theorem 2.5 we derive the following local existence

result. Consider the problem
16) Pu = —0du + o (X, u, Du, D*u, D*u)D;;pyu + a(X, u, Du, D*u, D3u) = 0,
J

where u : 2 — R and Q C R*". We think of Q as including a time direction and
as such X € Q has components (z1,...,z,,t). In the case where Q is cylindrical,

we define the following following associated sets:
BQ = {X € Q:t=0}, the bottom of €,
SQ =00 x (0,T), the side of €,

CQ = 02 x {0}, the corner of €, and
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PQ = BQUCQU SQ, the parabolic boundary of (2,

where 02 is the topological boundary of €). For the case where € is not cylindrical,
we define PS) analogously, although in a slightly more complicated way. Consider

cylinders
Q(Xo, R) ={X e R"™ : |X — Xy| < R, t < ty},
where the norm is weighted in the time direction by
| X| = max{|a], [¢]'/*}.

The set P2 then consists of all points Xy € 0§ such that for every € > 0 the
intersection Q(Xy, €)N(R" ~ Q) is non-empty. We also assume that our problem is
parabolic in the sense of Petrovski, as defined previously. Note that if the coefficients
a”* and a are independent of v and the derivatives of u, then the operator P may be
considered as a linear operator and Theorem 2.5 gives the existence and uniqueness
of a solution. This is the underlying idea of the following proof. We consider a

smaller domain €2, defined by
Q={Xe€Q:t<e},
and the spaces Hy,, are standard Holder spaces, as defined in [42] for example.

THEOREM 2.8. Suppose PS) € Hs and ¢ € Hs(PQ) for some § € (1,2). Then

there is a positive constant € such that the problem
(17) Pu=0,1inQ., u=q¢ on P,

has a solution u € H4(:L5a). If P € Hyro, @ € Hyro and Pp = 0 on CQ, then

u € H4+a'
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PROOF. Let 6 € (1,6), set mg = 1+ |¢|g and for € > 0 to be chosen, set
T ={v € Hp() : |v|]g <mg}.
We then define the map J : Z — Hy by u = Jv if
—du+a"™(X, v, Dv, D*v, D) Dijpu+a(X,v, Dv, D*v, D*v) =0, in Q., u= ¢ on P,

noting that, for each v, this problem has a unique solution in H i;i)(oq) by Theorem

2.5. Now

=
”LL|1 S |U’5 < O‘U,|i+03(9_1) < C(mo)

It follows that |u — ¢| < Ce in Q. and then |u — ¢ly < Cel®=9/9 by interpolation.
Therefore |ulyg < my if € is sufficiently small, and hence J maps Z into itself for

such an e. Since 7 is a convex, compact subset of Hy, it follows that J has a fixed

,5)

+a(o—1) and hence solves (17). Theorem 2.5 now gives

point in wu, which is in H i

we Hy . O

Unfortunately, while the previous argument gives existence, it does not allow
us to conclude uniqueness. Indeed, without any additional assumptions one cannot
expect uniqueness in general. To remedy this situation we will use the following
argument which one can find in [41]. Regrettably, to give even a summary of this
argument we need yet more notation. Therefore we give the core idea now. Consider
two solutions wuy, us of the problem (16) with identical initial data wug. Assuming
that u; # uo, we may consider the difference in the spatial derivative operators

Al = A(Ul) and AQ = A(Ug)l

A1 — Asfe.
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Now Theorem 2.2 gives us some excellent control of this quantity. By virtue of the
two solutions possessing identical initial data and by choosing time to be very small,
we can force this norm to be arbitrarily small. This becomes crucial, as we can
use this fact to construct an appropriate contraction mapping (from the linearised
equation) and infer the existence of a unique solution.

We now give a summary of the proof, but as we mentioned earlier some notation
is required. More details may be found in [41] and the references contained therein.
For Banach spaces Fy, E; we denote by Fj the complex interpolation space [E]q
and ||-|lp the norm on Ey. For the basic facts of interpolation spaces the interested
reader may refer to [3, 63]. The space L(E1, Ey) is denotes the Banach space of all
bounded linear operators from E; to Ey and ||-||z(z,,5,) is the corresponding norm.
By B we denote the category of Banach spaces, whose elements and morphisms
are the Banach spaces and bounded linear operators respectively. By denotes the
category of densely injected Banach couples, that is, the elements of Bs are the spaces
E := (Ey, E,) with E; densely injected into Ey and the morphisms 7' : E — F are
the maps T € L(Ey, Fy) satisfying T' € L(E4, F}).

The space H(E) is the set of all operators A € L(E1, Ey) such that —A is the
infinitesimal generator of an analytic semigroup on Ey. Let X, :={\ € C : Re A >
w}, where w € R. A subset A of H(F) is said to be regularly bounded if it is bounded

in L(E, Ep), there exist constants M and w such that

M
1+ ||

SoCp(=4)  and A+ A) e, <

for all A € ¥, and all A € A, and if {(w+ A)~' : A € A} is bounded in L(E). For

T >0, pe(0,1) and a nonempty set S of some Banach space F' we introduce the
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notation C%(S) := C*([0,T],S). A subset A of C4(H(F)) is said to be reqularly
bounded if {A :t € [0,T], A € A} is regularly bounded in H(F) and there exists a
constant L such that
1A(s) = AWl gy < Lls = 1),
for each s,t € [0,7] and A € A.
We must finally assume an additional property of our operator A.
(18)

For each 8 € (0, 1) there is an open set V' C Ejz and A is locally Lipschitz on V.

REMARK. To make sense of this notation in the special case of surface diffusion
flow in a local coordinate system, which is our focus regardless, one should refer
to Escher, Mayer, Simonett [16]. There it is proved (among other things) that the
surface diffusion flow generates a strongly continuous analytic semigroup. While
there is no explicit proof of uniqueness or existence (the reference quoted is due to
Amann, and the corresponding theorem in [1] is presented without proof), the proof
that surface diffusion flow generates an analytic semigroup is valuable. As they also
use similar methods to show that uniqueness holds for surface diffusion flow, the

proof that (18) holds is also contained in [16].

THEOREM 2.9. Suppose that (18) holds, 0 < < a <1 andug € V,, := E,NV.

Then there exists T > 0 such that (16) has a unique solution on [0, T].

PrOOF. We assert that there exists a neighbourhood W of 4 in V' and a constant

L > 0 such that {A(u) : u € W} is regularly bounded in H(E), and

(19) [A(ur) — A(wz)|| 2(p1,50) < Lllus — uzl|p for every uy, us € W.
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Since E, C Ej3, the natural injection is continuous and W C Ej, there exist balls
B (ug, €) C Eq, Bg(ug,0), Bg(ug,20) C Eg with €,d > 0 such that
Bo(ug, €) C E,
and
Bg(ug,d) C Bg(ug,20) C W.
From now on, we fix p=a — 3 € (0,1). Let 7 € (0,7) and
W, :={we C.(W):|w(t)—wlt)|s < Ljt—1t°,Vtt €0,7]}.

We set A, (+) = A(w(+)) for w € W,.. By (19) we have

1w (8) = Aw ()| 0y m0) < LIt =17
for all ¢, € [0,7]. Hence {A,(+) : w € W, } is regularly bounded in C?(H(FE)). Tt
follows from Theorem 2.5 that there exists a unique solution u(-,w) of the linear
problem on [0, 7] and u(-,w) € C.(E,) N C2P(Es). Thus there exists C' > 0 such

that
[u(t, w) —u(t’, w)lls < Clt = '}
for all ¢,¢ € [0, 7]. This implies that for every ¢ € [0, 7] we have
|lu(t, w) —wpllg < C1° <

for ¢ sufficiently small. That is, for some 7 € (0,7T] we have u(-,w) € W, for every

w € W,. On the other hand, by Theorem 2.2

N | —

[u(t, w1) — u(t, wa)llg < CT°[Jugllal| Awr — Awelle, e, o) <
if 7 is sufficiently small. Therefore

[w — u(-,w)]: W, — W,
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is a contraction mapping with constant % for some 7 € (0, 7). Therefore there exists
a unique w = u(-,w), which turns out to be a solution to (16) on [0,7]. It then

follows from Theorem 2.5 that u € C([0, 7], V,,). This completes the proof. O

4. Application to constrained surface diffusion flows

Let f: M x [0,T) — R™"! be a constrained surface diffusion flow with velocity

(CSD) gt — (AH + h)v.

We assume that the constraint function A : [0,7) — R satisfies

d2

(20) a2

h(0) < c(fo),

where fo : M — R""! is the initial data for the flow. The solvability of (CSD) with
respect to the constraint function will depend upon how smooth the initial data is.

For example, if we take

Sy Hdp

which is motivated in Chapter 3, we may compute the evolution of h using Lemma

3.9 as

4, _ IulVHIPH(AH) =2 (VH VA™H) + 2(AH) (VH, V|| A|]?) d

dt T Hdp
 ulIVHIPdp fy HAAH + h) — AH + (AH)||A][2dy
(IM Hdu>2
ull VA Pdp Sy HIH P dy (TH VWA dp oIV HIdo | A d
(s Heln ) (s Heln)

Taking another time derivative results in a large mess, however the highest order

term is easily seen to be

/ |A°H Pdp
M
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Therefore we can see that (20) is satisfied for this constraint function if fo € C®.
The assumption (20) ensures that with fo smooth enough, A’ will remain bounded
for a short time. (Otherwise, h”(0) would be unbounded.)

We now show that (CSD) may be written locally as the evolution of a graph
function. We will see that the resulting quasilinear fourth order equation is strictly

parabolic in the sense of Petrovski. In a neighbourhood U C M, write

f(z,0) = (w, u(z, O)),

where u : R" x [0,7) — R is called the graph function in U corresponding to f.
Note that the maximal time for the existence of the graph function will in general
be smaller than the maximal time of existence for the immersion f. To obtain the
true maximal time of existence, we simply take our current hypersurface f(z, T) and
attempt to write f once again locally as a graph. We continue in this manner until
f has lost regularity, and then in this case it may either not be possible to write f
locally as a graph or not be possible to satisfy the short time existence theorems for
the graph functions covering f. In either case, this final time will be maximal.

Recall that the normal to the graph of f in U is given by

1
y:HHWHQ(—Vu,l),

where the derivative is the regular Euclidean derivative. The quantity in the square

root is prolific in the coming equations so we make the notation

1

J1+ [Vl

ol =
The mean curvature is

H = div(v) = —|v]Au + |v*V;uV,uV ju.
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We note that from this formula we can immediately prove parabolicity for the mean
curvature flow equation % f = —Hv (note the opposite sign), as the evolution for

the graph function in this case would be

gtu = Au — ||’V ;uV,uVu.

The matrix of coefficients for the second order derivatives is
Ki' = 5@']‘ — |v|2viuvju,

and so

P CAED I CAVT) IR 21
SR B 7 e e o

where £ is a vector of unit length. Therefore the mean curvature flow equation
is quasilinear parabolic, and we can infer short time existence using the method
mentioned in the opening remarks.

The case for constrained surface diffusion flow is similar, but the situation is

confused by a mess of extra lower order terms. We must compute
AH = A( - |U|Au) + A(|v|3vzjuviuvju).

The details of this calculation are many but the procedure is simply differentiation,
and the only difficulty is keeping track of all the indices. We instead state the

evolution of the graph function by constrained surface diffusion flow below:

gtu = —A%u + [v)*(AV;u)(Vu)(V,u), fourth order terms
+ [v] | 2(ViAu)(Viju)(Vju) + (AVu) (Vi) (Au)
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= 3[o*[2(V ) (Vi) (V ju) (Vi) (V)
+ (AVu) (Vi) (Viju) (Viu) (Vu)], third order terms

+ [v] [(Aw) |V @ul® + 2(V jiu) (Viwu) (Vi) |

= 3J0f* [ (Auw) (Vi) (Vju) (Vigu) (Viu) + 2(V ) (Vi) (Vi) (Vi) (Vi)
+ 2(Vigu) (Vi) (V) (Vi) (Vo) + (Vi) (Vi) (V)| V oy

+ 15[0[3 (Vi) (Vi) (V) (V510) (V) (V1) (V tr), second order terms

+ |v|7*h, and the constraint function.

Note that we can simplify this expression by recognising terms as derivatives of

norms, for example
(Vigu)(Viu) (Vju) = (Vi) (Vi Vul?).

Several other terms appear equal under the commutation of derivatives; however we
do not wish to dwell on simplifying the evolution of the graph function. Important
for us is that the purely nonlinear part is composed of first, second and third or-
der derivatives of u only, and the coefficient of the principal part consists only of
first derivatives of u. Therefore the evolution of u qualifies as quasilinear, and we
must check that parabolicity is satisfied. For a fourth order equation to be strictly
parabolic we must have that the coefficient matrix of the principal part is negative
definite. Note the change of sign from the mean curvature case. The verification of

this fact is almost identical to before, where

Kijkl = _5ij6kl + 5ij]v|2VkuVlu,
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and so

(69wu) (@Vin) vl
1+ [|[Vul2  — 1+ ||Vul]?

K(Sagafag) = _|§’4 + |§|2 < 07

where £ is a vector of unit length. Therefore the surface diffusion flow equation
written locally as a graph is quasilinear parabolic. The constraint function presents
no extra difficulty due to our assumption (20). The flow also generates a semi-
group (see [16]) and the spatial operator is Locally Lipschitz, as required for the
uniqueness theorem. Of course, we cannot use only one graph function to describe
the whole of the evolution of f. Therefore, we use the inherent structure of M to
describe the evolution of f. First we reparametrise M so that the domain of every

parametrisation is a ball of radius 1. We then have

fo(M) = #i(Bi())
where ¢; : By(z;) — R™ are the aforementioned parametrisations and fo : M —
R™*! is the initial data for the flow we are interested in. Now we consider graphs
u; : pi(Bi(x;)) — R with the view of applying the theory of the previous sections.

In each image @;(B(z;)) we require the graphs u; to satisfy the evolution

0
g =

AH; + h)v;,

where the subscript ¢ denotes the geometric data associated with that parametrisa-
tion. Note that the constraint function A : I — R is global. Importantly, note also
that the theory of the previous sections gives existence and uniqueness for each wu;,

when h is a known function of time. However, one may be concerned that this does

not coincide with our original problem,

0
—f=(AH+h
oo = (AH + R,
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with fo : M — R™"! as initial data. Fortunately this is not the case, although it
is not immediately obvious. The reason for this is that the flow is invariant under
tangential diffeomorphisms. We will prove the following standard results, which may

be found for example in Ecker [12].

LEMMA 2.10. The above formulation of surface diffusion flow is equivalent to

(SD), modulo a tangential diffeomorphism.

LEMMA 2.11. Surface diffusion flow is invariant under tangential diffeomor-

phisms.
Combining these with the previous remarks gives the following theorem.

THEOREM 2.12. Let fo : M™ — R" be a C* immersion with associated con-
straint function h: I — R, h € C*. Then there exists a maximal 0 < T < oo and a
unique constrained surface diffusion flow f: M™ x [0,T) — R*™! satisfying

0

What remains is to prove Lemma 2.10 and Lemma 2.11. We comment on the
case of constraint functions which are not known functions of time at the end of this

section. Using the notation above, the immersion f may be written as

fa,t) = (ol 1), ulp(,1),1)).

We compute

0 dp Jdp  Ou
(Br 2 + 31)

at’ ~ ot
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where we have suppressed the arguments of the functions. We have already shown
that the graph wu satisfies a quasilinear fourth order evolution. However, in com-
puting this evolution, we only used that the normal part of the speed is equal to

AH + h. That is, this formulation of constrained surface diffusion flow is

a 1
(atf> = AH + h,

where (-)1 denotes normal projection. This differs from our desired evolution by a

tangential diffeomorphism ¢ satisfying

) of\ "
() -(2)'

where (-)" denotes tangential projection. This proves the first lemma.

For the second, consider now an evolution

P €1
(20) s

Let ¢(-,t) : M — M be a family of diffecomorphisms of M satisfying

Df(é(x,1).t) (?f(a:,t)) = —<Z(¢(az,t),t)>T.

Now if we set f,(z) = f(z,t) = f(gzﬁ(m,t),t) then M, = f,(M) = f,(M) and
9 -
af =AH + h.

This shows the second lemma.

To finish this section we comment upon the case where h is not a known function
of time, but is given in terms of integrals of curvature as in for example (21). The
preceding arguments give existence of a smooth solution to (CSD) for all constraint
functions which are bounded for a short time. Now the assumption (20) ensures

that this is the case for a ratio of integrals such as (21). The only issue remaining is
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to determine if one of the bounded functions of time (for which we have existence)
coincides with the constraint function given as integrals of curvature. For this we

use a fixed point argument.

THEOREM 2.13. Let fo : M™ — R™ L be an immersion with associated constraint
function h both satisfying the assumption (20). Then there exists a maximal 0 <
T < oo and a unique constrained surface diffusion flow f : M™ x [0,T) — R™*!
satisfying

0

—f = (AH .
5 ( + h)v

PrRoOOF. We consider the family of initial value problems
0 -

where h € C'([0,T)) is a known function of time and fy = f(-,0) € C*(M™). The
preceding arguments give short time existence for each f;. We will now show that
at least one of the functions & coincide with our given constraint function h, which
is normally a ratio of integrals of curvature and not an a priori known function of
time. We assume that h satisfies the initial condition (20), which we note forces
some measure of regularity on the immersion f;.

Let S = C'([0,6]) for some § > 0 which will be chosen. The theorem will be

proved if we can apply Theorem 2.7 with the mapping P : S — S defined by
Ph = h.

Noting that C([0,4]) is a compact, convex subset of the Banach space C*([0,T)),

we need to demonstrate that P maps S into itself and is continuous. Both of these
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follow from the assumption (20). In particular, we have that h”(0) < ¢(fy) and so

R’ is continuous on [0, d] for some § > 0, and so

!/ d o~ 1
h' = dtph e C([0,9)).

This also shows that P’ is bounded in the operator norm on C*([0,4]) and so P
is continuous. Therefore we may apply Theorem 2.7 and deduce that at least one
of the functions h coincides with the given constraint function h on an interval
[0,6] € [0,T). Observe that the uniqueness theory in Section 3 continues to apply
unchanged. Repeating this argument by translating time { = ¢t — § and checking
again (20) will give a sequence ¢; for which this argument is possible, and then the

maximal time for the original problem (CSD) is T = lim;_ o ;. O



CHAPTER 3

Lifespan theorem for constrained surface diffusion flows

1. Introduction

Let f: M" x [0,T) — R*™! be a family of compact immersed hypersurfaces
f(,t) = fi : M — f,(M) with associated Laplace-Beltrami operator A, unit normal

vector field v, and mean curvature function H. The surface diffusion flow
(SD) 0 f=(AH)

I U

ot ’

and the more general constrained surface diffusion flows

(CSD) gt = (AH + h)v,

where h : I — R and I D [0,7), are the chief objects of interest for this chapter.

We are motivated by the examples

_ VAP o [y IVH]Pdp

h=0, hy — and hy — —Ju(BA)Kdp

Ju Hdp e Jur | Hldp S Kdp

The first is simply surface diffusion flow (SD). Under this motion we compute

d
Lol M = / AHdy = 0, and
dt M

S du= [ HAHG= [ |V <0
so that a manifold evolving by (SD) will exhibit conservation of enclosed volume
and monotonic decreasing surface area. Further, surface area is preserved exactly
when the mean curvature of M, is constant. It is these geometric characteristics of

the surface diffusion flow which motivate the generalisation to constrained surface

61
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diffusion flows. For example, with h = hy we have

d
f/ du:/ HAHdquhH/ Hdy
dt Jm M M
JullVH | *dp
= — [ |VH|d —/ Hdp = 0,
J IV H |+ iy T

and now surface area is conserved. Volume is monotonic increasing or decreasing
depending on the sign of [,, Hdu, and preserved only when H is constant. Unfortu-
nately, quantities which are expected to be preserved under second order flows (such
as the mean curvature flow, or Ricci flow of metrics) are not in general preserved
under fourth order flows. This is due to the absence of a maximum principle. In
particular, [,; Hdp could approach zero under (CSD) with A = hy, which would
cause the flow to be undefined, and most likely without a curvature singularity. This

motivates the use of hy, where

d T Il VH|*dp
—VlM:/ AH + g )dy = | M| 2A 2
dt Y M< + H) 2 | ‘ fM‘H‘d,u - an
d/ dp:/ H(AH + hig)dp
dt Jm M
Hdp
= — VH 2d,u+/ VH 2duf]\47§0.
J IV H Pl [ IV APl

Here enclosed volume and surface area are monotonic increasing and decreasing
respectively. Therefore we expect that the convergence of the (CSD) flow with
h = hy is faster than that of the surface diffusion flow (SD). We also have not only
that surface area is stationary (constant in time) if and only if H is constant, but
volume also. Further, the flow speed itself is non-zero for surfaces of linear mean
curvature. This leads us to believe that singularity development under (CSD) flow
with h = hy will be easier to understand compared with (SD) flow. (Consider for

example a clothoid-type manifold.) Finally, we use an inequality of Burago-Zalgaller
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[5] to infer

/ |H|d,u > CleMt|% > CBz(Vol Mo) > 0,
M

where we also used the isoperimetric inequality and the fact that volume is mono-
tonic increasing under this flow.
Following a similar line of reasoning gives rise to several other ‘conservation’ type

flows. For example, with h = hx we calculate

[ Hdn= [ [ = NAPAH + ) — 82 H]dy

—/ AHdquhK/ Kdj =0,

and so the mixed volume [, Hdpu is always preserved under (CSD) flow with h = h.
In this case [,; Kdp is on the denominator of hg, which is constant under the flow,
and so similarly to hy this is always defined. One expects that global analysis
of flows such as this, which preserve a geometrically interesting quantity or keep it
monotone in time, would lead to new geometric inequalities, or at least to new proofs
of classical geometric inequalities. Due to the nature of our analysis, in particular
the absence of a maximum principle, these inequalities would be regarding surfaces
which satisfy certain curvature integral conditions.

The first step in any program of analysis is to establish a short time existence

theorem. This is the subject of Chapter 2, and we extract the relevant result below.

THEOREM 3.1 (Short time existence). For any smooth enough initial immersion
fo: M™ — R™ 1 and constraint function h : I — R with I an interval containing 0
and h € CY(I), there erists a unique nonextendable smooth solution f : M x[0,T) —

R3 to (CSD) with f(-,0) = fo, where 0 < T < 0.
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Note that we sometimes interchange the term ‘nonextendable’ above with “T" is
maximal’, or equivalently ‘the maximal time interval [0,7")’. Each of these mean
the same thing: that the flow exists up to 7' (possibly not including 7), and that
this is the greatest such T

Motivated by the observation that (SD) flow can also be derived by considering
the H~'-gradient flow for the area functional (see Fife [19]), and the recent work of
Kuwert and Schétzle [36, 37] on the gradient flow for the Willmore functional, we

present the following theorem.

THEOREM 3.2 (Lifespan Theorem). Supposen € {2,3} and let f : M™% [0,T) —

R be a compact immersion with C* initial data evolving by

(CSD) gt — (AH + b,

Further suppose that for some j, k,l € Ny the constraint function h: I O [0,T) — R

obeys an estimate
(GO) n< [ PAA)+ PHA) + PO(A)dp.
M
Then there are constants p > 0, €9 > 0, and ¢ < oo such that if p is chosen with

=¢e(z) < € for any x € R™*1
t=0

99 / Al™d
@) e A

where m = max{2k — 2,25 — k,1,n* +n — 2}; and there exists an absolute constant

Cap € (0,00) such that

(AB) |M;| < Cag, for 0<t<=p%
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then the mazximal time T of smooth existence for the flow (CSD) with initial data
fo= f(-,0) satisfies

Ly
(23) T > P

c

and we have the estimate

VAN
[\
S
o)
N

24 / All"dp < ce for 0
(21) [ AT <

REMARK. Note that for any ¢y > 0, there is always a py > 0 such that (22)
holds for each p € (0, pg). The radius p > 0 given by the theorem is certainly not
unique, and there will be a p; > 0, p; € (0, po], such that the theorem holds for
every p € (0, p1). It is in this sense that we are allowed to choose p sufficiently small,

which will be useful in the coming arguments.

REMARK. There is an inconvenient relationship between the three classes of
flows (SD), (CSD) with h an a priori known function of time, and (CSD) with A
a function of integrals of curvature quantities. The first and third are obviously
included in the statement of Theorem 3.2 above, while the second is not. This is
not satisfying since then for trivial constraint functions (the case of (SD) flow) one
must assume that the initial manifold possesses local smallness of curvature in the
L*+7=2)_norm. One would instead desire that this smallness be in the L™ norm. It
would appear intuitively obvious that if one was performing analysis of a constrained
surface diffusion flow where the constraint function is known a priori then one may
be able to obtain a statement stronger than Theorem 3.2 above. Indeed, for such

simple functions as h(t) = 117, h(t) = sint and h(t) = t both (AB) and (GC) are

violated. Fortunately the intuition holds, and one may in fact obtain an analogous
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stronger version of Theorem 3.2 above restricted to the class of simple constraint
functions, which are those that satisfy a bound ||h||,.s < ¢(J) for each interval
J C [0,T). This is the subject of Appendix C and the statement is Theorem C.1.
In particular, for these functions the smallness condition is in L™, as we do not
have the nasty interplay with global integrals in A needing to be bounded by a
local assumption on f interfering with our integral estimates. We also do not need
to assume the area bound (AB) in the case n = 2 for these more simple constraint
functions. While the proof is relatively straightforward compared to that of Theorem
3.2 above, the result is stronger and the class of constraint functions includes those
which do not satisfy (GC) for any j, k,[. Notably, this includes the surface diffusion
flow, which is itself a new result and well motivated. Therefore we have devoted
Appendix C to this alternative Lifespan Theorem. For the full picture one must
really take both Theorem 3.2 and Theorem C.1 into account. As the argument
is more straightforward in Appendix C, we recommend that the reader first look
there for the flavour of the more complicated argument here. This will also serve to

highlight the difficulties caused by the introduction of the constraint function.

REMARK. The smallness assumption (22) above is not scale invariant. However,

we can instead consider

3z

2 ([ 70
pOD( [ LA

and this is scale invariant. In light of (AB), one can see why the formally simpler

(22) is sufficient.
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REMARK. The constant in the lower bound on maximal time, %, can be computed

a priori as a function of n. For n = 2,

11
c 43¢y’
and for n = 3,
1/3
L_Cis
¢ 4dicy’

where ¢ is the constant from Proposition 3.23.

The restriction on the dimension of the evolving immersion is due to both the
exponent in the Michael-Simon Sobolev inequality, and the scale invariance of the
total squared curvature functional in two dimensions. For flows where the evolution
of the surface area is bounded (such as (SD) and (CSD) with A = hpy) we have
removed the latter restriction by considering (22), which is a natural generalisation
of (1.4) in [37]. The size of ¢ is determined indirectly by the bound on surface
area for the flow in question. As to the exponent in the Michael-Simon Sobolev
inequality, the interplay between the evolution equations and our techniques using
integral estimates forces n < 4; see Section 5 for a discussion of this issue. To our
knowledge this cannot be improved.

At first glance, the choice in (22) may appear somewhat restrictive, since ¢, (the
size of which is dictated by estimates to come) may be very small. However, it is clear
that if the initial surface M, is of finite total curvature (that is, f]\/ﬂ,||A||”d,u‘t:O < 00),
then there will exist a positive p = p(eg, My) such that (22) is satisfied. Therefore,
in terms of allowable initial surfaces M,, we are only excluding those for which the

total curvature is infinite. Since short time existence for the flow (CSD) is itself not
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even valid on these ‘singular’ manifolds (they will not be smooth enough), this is a
natural and quite general class of initial data.

Our proof relies on showing that (GC) and (AB) allows one to prove the condi-
tional bound

(CB) sup [ A" dp < 66 = [hlloes < oo.
F=H(Bp(2))

reRn+1

In practice, the domain of the integral on the left hand side will be the support
of a cutoff function. This is the key to treating the nontrivial constraint functions
such as h = hy, hi, and this is the subject of Section 3. Unfortunately, since hx
does not permit the global area bound (AB), it remains just beyond our current
techniques. It is in this sense which the two examples serve to differentiate between
those constraint functions which are relatively easy to handle, and those which still
present difficulty. The inequality

sup |z — y| = extrinsic diameter = d,y < cr(n) / \H\"’ldu
zy€f(M) v

due to Topping [62] will play a major role, allowing us to prescribe a class of con-
straint functions which admit a ‘localisation’ procedure. The extra assumptions
required are a growth condition, and a geometric condition: either bounded surface
area or bounded total mean curvature. For n = 3, one requires (AB) regardless, and
so we have concentrated on this condition.

We make one additional remark regarding this last point. Supposing that n = 2

and one enjoys the bound

/]ku<c
M
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uniformly, then the area bound (AB) is no longer required. One may recover Theo-
rem 3.2 for these flows and furthermore the smallness condition is relaxed to be in
L™ where m = max{2k—2,2j—k,[,n}. Note that this implies for certain constraint
functions the smallness may indeed be in L?, which is far more desirable. Now recall

the (CSD) flow with h = hg, where we have by the structure of our flow:

< c.
t=0

/Hd,u:/ Hdu
M M

This is unfortunately still not enough to proceed, even by this alternative argument.
Thus, yet again, the constraint function h = hg critically does not satisfy the
required assumption.

In a more global sense, we present the Lifespan Theorem with a perspective
toward further analysis of the (CSD) flows. In particular, as the statement depends
on the concentration of the curvature of the initial surface, the result is particularly
relevant to the analysis of asymptotic behaviour in the following respect. When
considering a blowup of a singularity formed at some time 7' < oo of the (CSD)
flow, we wish to have that some amount of the curvature concentrates in space.
From the theorem, if p(¢) denotes the largest radius such that (22) holds at time
t, then p(t) < /(T —t) and so at least ¢y of the curvature concentrates in a ball

J 1 (Byry(x)). That is,

lim A|l"dp > e,
=T f’l(Bp(t)(r))” H

where x = z(t) is understood to be the centre of a ball where the integral above is

maximised. This is a fundamental property of the blowups considered in Chapter

6.
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Our motivation for the extension of (SD) to the more general class of flows (CSD)
is essentially mathematical. Indeed, there does already exist a large body of work
on (SD) flow itself, and study of (SD) alone is well motivated. First proposed by
the physicist Mullins [48] in 1957 (two years before he proposed the mean curvature
flow), it was originally designed to model the formation of tiny thermal grooves
in phase interfaces where the contribution due to evaporation-condensation was in-
significant. Some time later, Davi, Gurtin, Cahn and Taylor [7, 10] proposed many
other physical models which give rise to the surface diffusion flow. These all exhibit
a reduction of free surface energy and conservation of volume; an essential charac-
teristic of (SD) flow. There are also other motivations for the study of (SD). For
example, two years later Cahn, Elliot and Novick-Cohen [6] proved that (SD) is the
singular limit of the Cahn-Hilliard equation with a concentration dependent mobil-
ity. Among other applications, this arises in the modeling of isothermal separation

of compound materials.

Analysis of the surface diffusion flow began slowly, with the first works appearing
in the early 80s. Baras, Duchon and Robert [2] showed the global existence of weak
solutions for two dimensional strip-like domains in 1984. Later, in 1997 Elliot and
Garcke [15] analysed (SD) flow of curves, and obtained local existence and regu-
larity for C*-initial curves, and global existence for small perturbations of circles.
Significantly, Tto [30] showed in 1998 that convexity will not be preserved under
(SD), even for smooth, rotationally symmetric, closed, compact, strictly convex ini-
tial hypersurfaces. Escher, Mayer and Simonett [16] gave several numerical schemes

for modeling (SD) flow, and have also given the only two known numerical examples
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[45] of the development of a singularity: a tubular spiral and thin-necked dumbbell.
They also provide an example of an immersion which will self-intersect under the
flow, a figure eight knot. In 2001, Simonett [55] used centre manifold techniques
to show that for initial data C*®-close to a sphere, both the surface diffusion and
Willmore flows converge to a sphere in long time.

There have been many other important works on fourth order flows of a slightly
different character, from Willmore flow (which includes some extra zero order terms
in the speed of the flow) to Calabi flow (which is a fourth order flow of metrics). Sig-
nificant contributions to the analysis of these flows by the authors Kuwert, Schatzle,
Polden, Huisken, Mantegazza and Chrusciel [8, 36, 37, 44, 52| are particularly
relevant, as the methods employed there are similar to ours here.

In our proof, we exploit the fact that for an n-dimensional immersion the integral

J Al dy

is scale invariant. The technique used by Struwe [59] in his paper on harmonic
mappings of Riemannian surfaces, of using smallness of initial energy in a local
sense, is then relevant, although as with all higher order flows the major difficulty
is in overcoming the lack of powerful techniques unique to the second order case.
In particular, we are without the maximum principle, and this implies that the
geometry of the surface could devolve. Therefore we are forced to use integral
estimates to derive derivative curvature bounds under a condition similar to (22),
and in calculating these estimates it is crucial to only use inequalities which involve

universal constants. Interpolation inequalities similar in nature to those used by
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Ladyzhenskaya, Ural’tseva and Solonnikov [39] and Hamilton [27], and the Sobolev

inequality of Michael-Simon [47], are invaluable in this regard.

The structure of this chapter is as follows. To apply the argument used by
Struwe, we must prove two key local integral estimates. In Section 2 we collect
various fundamental formulae from differential geometry, set our notation, and state
some basic results. The goal of Section 3 is to show that the a priori bound (CB) is
satisfied by a class of constraint functions, and to detail the localisation procedure
required to use the essentially global constraint function in local integral estimates.
Section 4 is concerned with estimating the evolution of local integrals of derivatives
of curvature, and Section 5 combines these estimates with Sobolev inequalities,
interpolation inequalities, and the results of Section 3 to conclude the two required
key integral estimates. With these in hand, we adapt the argument of Struwe in
Section 6 to prove the Lifespan Theorem. Section 7 contains some remarks on

lifespan theorems for flows similar to (CSD).

We note that there is a similar theorem in Liu [43], applying only to the flow
(SD). However, in that paper there are errors in the proof related to the rescaling,
and to the usage of the interpolation inequalities. For example, if the integral
quantity used is not scaling invariant one may not be able to choose a small enough
€o in the hypothesis (22) without driving p to zero. To our knowledge a corrected

version has yet to appear.

Our proof of the Lifespan Theorem and the overall structure of this paper is

inspired by the work of Kuwert and Schétzle [37] for the Willmore flow.
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2. Notation and preliminary results

In this section we augment and summarise some of the background material
from chapter one. In particular we define and derive some basic properties of the
localisation functions which we will use. We have as our principal object of study a
smooth immersion f : M™ — R"*! of an orientable compact hypersurface M with
induced metric g;; so that the pair (M, g) is a Riemannian manifold. We denote
by A;; the second fundamental form and the trace by the metric g¥ A;; = H is the
mean curvature. Repeated indices are always summed from 1 to n and we do not
normalise the mean curvature. We use Ffj for the Christoffel symbols, determined
by the metric, and V for the covariant derivative on M.

The fundamental relations between components of the Riemann curvature tensor,

the Ricci tensor and scalar curvature are given by Gauss’ equation
Riji = AiAj — AuAjp,
with contractions

gleijkl = Rzk = fv{AZkJ — AzA;C, and

g R = R =1 — ||

We will need to interchange covariant derivatives; for vectors X and covectors Y we

obtain

Vi X" = VX" = R XY = (A A — AAij) g X,

ijk

Vz’ij - ij'Yk = Rijklglem = (Aleik: - AilAjk)glem>
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where V,;, ;. =V, ---V,; . Further, recall the definition of the P-style terms from
Chapter 1. Recall that we abuse the arbitrary absolute constant appearing in the
P-style terms to encompass the norms of tensors (and other specialised contractions)

under the induced metric. For example

IV Al® = (VeA, VinA)
=1 (VoA VA) +0- (ViyAx VigA) +0- (Ax V@A)

= P}(A).

This will occur throughout the chapter without further comment. In the coming
sections we will be concerned with calculating the evolution of the iterated covariant
derivatives of curvature quantities. For a tensor 7" on M, the following less precise

interchange of covariant derivatives formula will be useful to keep in mind:

In most of our integral estimates (especially those in sections 4 and 5), we will
be including a function v : M — R in the integrand. Eventually, this will be
specialised to a smooth cutoff function between concentric geodesic balls on M. For

now however let us only assume that v =4 o f, where
0<~y<1, and ||'$/||C2(Rn+1) < Cy < O0.

Using the chain rule, this implies Dy = (Dy o f)Df and then D?*y = (D?*y o
(Df,Df)+(D¥o f)D*f(-,-). Using the expression (1) for the Christoffel symbols
to convert the computations above to covariant derivatives, and the Weingarten

relations to convert the derivatives of v to factors of the second fundamental form
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with the basis vectors 0; f, we obtain the estimates
(25) VAl < e, and (V| < cpp(1+[JA]).

For a given p > 0, we also define the functions €, §® : R"*! x [0,7*] — R as

e(x :/ Al%dp, and  6P(x :/ A|Pd .
(@) f*l(Bp(w))H | () f*l(Bp(r))” |
We use the convention that

sup €(x) < ¢ and sup 6% (z) < 5P
zeRn+1 zeRn+1

At times we will instead consider the set [y > ¢] = {p € M : y(p) > ¢} or the set
[y=1¢c] ={p€ M:7(p) = c} as the domain of the integrals in e(z) and 6% (x). The

meaning will be clear by the context.

3. A priori estimates for the constraint function

Our constraint functions are by their nature global notions (being functions of
time only). This is a distinct advantage in some areas of the analysis: evolution
equations first order in time and of any order in space involve at most a linear factor
of h.

When one wishes to prove local integral estimates however, the global nature of

h becomes an issue. We are faced with situations such as
AP [ VAl
dt Jf=1(B,(x)) F(Bp(2))
26 < h/ All? + || Al]?)dp + “good terms”,
(26) (o) (H 17+ [| Al )
armed with a local smallness of curvature assumption

sup €(x) <€, or sup 6P (z) < by,
z€eR3 z€R3
te[0,T%) te[0,T%)
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and tasked with absorbing the term involving h into / B ))||V(2)A||2du, a local
= T

P

integral. Assume for the sake of example that h = [, k(k1, k2)dp and obeys an

estimate
h< Caps [ 1AI%d [ [V Al%dn,
M M

where C4pg is an absolute constant. Then as a first attempt to ‘localise’ the integrals

on the right one might estimate them by

/||A||2d/~0/ IV ) AllPdu
M M
< A1) su A2d]~[su/ Vo All%d
p()l p [ A" dp sup f—l(Bp<x))‘| @Al dp

z€R3 J f~1(By(x))

< A(te / Vo All*dp,
< |, VoAl

where ¢,(t) is the number of extrinsic balls of radius p required to cover f(A/;) and

71 € R3 is a point where the second supremum is attained. The goal of course is

to now bound ¢(t)ey by (for example), and absorb the entire term on the left

1
2C aps
in (26). Unfortunately, this will in general be impossible. To attain a smaller ¢,
one must drive p to zero, but this will in turn drive ¢, to co. Further, the scaling is
unfavourable, making it impossible to know a priori if any admissible p > 0 exists.
Finally, ¢, is a function of time, and without a uniform bound we have little hope
of absorbing the constraint function into a local integral.

With some minor modifications to the above idea, and assumptions on the flow,

these problems can be overcome and the argument carries through. Our main result

for this section is the following.
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THEOREM 3.3. For some T* < T let f: M™ x [0,T*] — R"™! be a (CSD) flow
with constraint function h satisfying for some j, k,l € Ny
h< [ PHA)+ PUA) + P(A)dp
where for m = max{2k — 2,25 — k,l,n* +n — 2}
sup 0™ (z) < ' < o0,

z€R3

and for an absolute constant Cap
(AB) |M;| < Cyg;
on [0,T%].
Then for any p > 0, x € R™™ ¢ € [0,T*| there exists an x; € R"™ such that

for any 6 > 0,

1
h), A+ A1) du < 0 [ Vo All%dp + 5 Cry
1 (Bap(x)) (H | | ”) H= f*l(Bp(xl))” (2) I*dp g vGLY

if 7,k # 0, and otherwise

n (1A + 1 412)dp < Crar,
71 (B2p(x))

where C(UGLY - CUGLY((SSn; CAB7 p7j7 k7 l? n)

Before we begin the proof we would like to show that hj satisfies the assumptions
of the theorem. By viewing mean curvature as the variation of area, one is led to

(see Burago-Zalgaller [5]) the estimate

nil
@ i< [, )
M
for a constant ¢ depending only on n. Using now the isoperimetric inequality we

conclude

l1—n
— < M| < ¢(Vol M)t < eVol M,.
Tt = = Vel A ’
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Therefore we may estimate

IV
Foa(t) = 2V 2
) == THldn

Thus for any dimension n we take m = (n — 1)(n + 2). Also, (AB) is satisfied with

< c(My) [ PE(A)dp.

Driving this estimate is the following result due to Topping [62].

THEOREM 3.4 (Topping). Let M™ be a compact connected n-dimensional sub-
manifold of R"TY. Then its extrinsic diameter and its mean curvature H are related
by

dowt < cr(n) /M \H " Ydp.

Topping shows that in particular we may take cr(2) = 3;—2 Please refer to the

references in [62] for a history of this inequality and others similar to it. We note in
particular that for our purposes, the earlier version of this inequality in Simon [54]
is almost sufficient.

We first obtain an estimate for c,(t).

LEMMA 3.5. Let f : M™ x [0,T*] — R"™! be a (CSD) flow satisfying (AB).
Then for any p such that 0 < p < d”tf Vit there emists an o € R™! where the

following estimate holds:

n+1
1) < e(Casop, n>< / IIA\I‘"‘l)‘"“)du) |

“H(Bp(x2))

REMARK. If p > dest¥ntl thep ¢ (t) = 1. We will always assume from now on

that 0 < p < destyntl VQ"H
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Proor. We simply apply a covering argument, Topping’s inequality, and then

the Holder inequality. Since we can cover M; by an (n + 1)-cube with side length

de;; and a ball of radius p encloses an (n + 1)-cube with side length \/%,

cp(t) < (W) nt1

2p
n+1 n+1
S (CT(n>2Vn+1) </ |H|"_1d,u>
p
n+1
N n+2
< (W) gy ( [ H‘<n1><n+z>du>
p M
n+1
1 n+1 nt1)2 nt+2
’ <W> |5 ( up_ et [ |0 du) |
2p cERnH1 F1(By(2))
SO
(n+1)(n+2) n+1
Vn+1
c,(t) < (CT(R)TH'> C%Jrl)Q(/ ||A||(”‘1)(”+2)du> ,
2p F=1(Bp(x2))

where x5 is a point in R"™! such that

||A||(n 1)(n+2) dlu = sup / ||A||(n_1)(n+2)d/J,
AA@N& 71 (By@)

rzeRn+1

REMARK. Since we can take cp(2) = 3—73, the conclusion in the theorem above

for a (CSD) flow with h = hy and n = 2 is

32\/§ 12 ( )3
e (t) < M, |° / All*du )
(1) (%p) ol ([ Al

We now use the above to estimate h.

LEMMA 3.6. Let 0 > 0 be a fized positive number and f : M x [0,T*] — R"™!
a (CSD) flow satisfying the assumptions of Theorem 3.3. Then for any p > 0 there

exists a point x; € R™ such that the constraint function h satisfies the following



80 3. LIFESPAN THEOREM

estimate:
hge/ Vo Al2dp + c(0, p,n, j. k. 1, Cag, 675
f*l(Bp(xl))H @Al dp +c(0,p,n, j 48, 00")00
for 4, k.1 not all equal to zero, and
n+1
h < ¢(p,n, C’AB)((FE)”)

forg=k=1=0.

PRrRooOF. Recall that
sup 6™(x) < 60" < oo,
zeRn+1

where m = max{2j — 2,2k — j,I,n* + n — 2,4}.

We will first prove the estimate assuming that j > max{2, 2k + 1}:
h< [ PHA)+ PHA) + P(A)dp

<c¢ su c/
= Caerrn Pl

zeRH1

V@Al AN dnt [ VALY

o [ VA AP dtc [ Al dp
M M

2 €

0 .
gf/ Vo Al2dp + ¢ AlE-2q
2 f*l(Bp(m))H @Al dp P20 f*l(Bp(an))H | H

o [ IVAIPIAP 2dn+c [ A% + Al dy
M M

0 |
gf/ Vi Al2d +c'/ A AA) || A2
o o [T AT+ ) [ (A, B4) A

Is . .
+ 2l AE2dp+ (6, 4, k.1 / Al 4 || Alld
25 s AT 2t 0,50 [ A+ 1A

< 9/ Vo All2dp + (8, j, k / Al|¥2dy
ey @A O TR oy 1

+e(b.4.k0) [ A + Al dp

2j—2
m

A md,u)
*I(Bp(xl))H |

2k—j+1
m

se/ Vo AlPdp + e(0, §, k, C (/
f—l(Bp(xl))H @All*dp + c,e(0, 5, k, Cap) ’

+c(0,5,k,1,C sup c/ Amd>
(0. m(w o s AT
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b 2k—j+ j—2+42k+1
<O IVeAldute " .kl Can)(5) 7
f=HBp(x

(n+1)(2m+2k—j+1)+j—2+2k+1

<0/ : ))IIV<2>A||2du + (0, p.n, g k1L Cas) (07 "

The estimate is easier to prove in the subcases excluded above. When j = 1 we

instead split the first integral by

[P A< sw e, [ Ve Al

zeRn+1
92
VAld +c 1d
2/ (B, (z3)) H @ Alde + ¢ i L
= 7/ IV @Al *dp + c(0, p,n CAB)<5m)2n+2
2 F=1(Bp(zs)) @) s Py 1ty 0
When j < 2k + 1 we instead estimate the second integral by
/ P/?(A)d,u < C/ VA HAHk_ld,u
M M
= C/ HVAHQCZM-FC/ HAH%_QdM
M M
< c/ IV Al ||A||du+c/ AP
92
A|*d All2d / 22y
2/ L(Bp(z3)) ”V H ,LL+C ] H H u—+c H H "

2k—2

2n+2+2
gf/ v AQdu—I—CG,p,n,CAB{ém 5 }
2 Jr-s(myay Y @A ( )|(6) )
Note that in any case, the exponent of 4;" is greater than 1 due to the conditions
on m. This gives the first part of the lemma.

If y =k =1=0 then obviously

n+1

h < c(p,n,Cag) ((5’”)

This finishes the proof. U

REMARK. In the special case where h = hy and n = 2, the estimate reads

Cpz 16\/§ 4
7 <9/ All?d 4| Mo| 7 (3
H |V(2 H Uy 49m< o > | 0| ( )
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where ¢py is the constant from the inequality (27) due to Burago-Zalgaller [5].

We are now ready to prove Theorem 3.3 as essentially a corollary to Lemma 3.6

above.

PROOF OF THEOREM 3.3. First note that

i

(AR +IAF) e < sup 470 [ (Al + AP
20(2)) x*€Bap () f=H(Bp(z*))

< 4T (o)

By Lemma 3.6 we are now finished, choosing

= v
41 Cl™ (85

3|

REMARK. In each of the previous inequalities we have been primarily concerned
with integrals localised to a ball f~!(B,(z)). In the following sections where we
derive the basic integral estimates, the domain of integration will instead be the set
[y > 0] = {p € M : ~v(p) > 0}, where v is as in equation (25). This is necessary
to not only obtain the local integral estimates, but also to allow us enough freedom
to choose various appropriate v functions, depending upon the situation. To bridge
the gap between the two domains of integration we may choose v = ¥ o f to be such
that

XB,(z) <V < XBay(a)

and v € C?(M). Then for a strictly positive integrand we crudely estimate

o dp < . d S/ o du.
/f‘l(B,o(x))[ Iy h>0}[ Iy f‘l(sz(x))[ I

This is why in Theorem 3.3 we see integrals with balls of radii 2p on the left.
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Theorem 4 gives us the opportunity to obtain the derivative of curvature esti-
mates in the ball B,(x;), but nowhere else. This is not enough to prove the Lifespan
Theorem. However, we may still proceed by using the estimates in the ball B,(z)
to bound the constraint function over all of M;, and then once this is accomplished
we can go back and prove the required derivative of curvature estimates everywhere

else on M;.

COROLLARY 3.7 (The curvature estimates on a special ball). Suppose n € {2,3}
and let f: M™ x [0,T*] — R™ be a (CSD) flow with h satisfying the assumptions

of Theorem 3.3. Then there is a §5" = 05'(n, My) such that if
te[0,7+],zeRn+1 J f1(By(2)) H ” vl 0

there is an x1 € R™! such that

||v(2)A||io,f*1(Bp(g31)) S C<5(7)n7T*7CAva7j7k7l7m7a0(2)>a
2
where ag(2) =Y sup [V Allz r-1(8,@)

j:O xeRn+1

t=0

PROOF. Observe that the smallness assumption and (AB) implies that

s

3z

Al"d <C%/ Almde) <O (5m)T < e,
Arac<CE (L iara)” < e )" <a

for
5" < (€0) " Caf
Let v be a cutoff function on M between a ball of radius p and a ball of radius 2p,

as in the remark above. Then the smallness assumption (60) of Proposition 3.23 is

satisfied for J]* as above, that is

sup / All"dp < €.
[0,7%] f*l(Bp(:v))H |
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Recall the version (48) of Proposition 3.17 which does not require h bounded. We

restate this here with our choice of v as:

i
- A+ 2~ 0) [ oo All2d
T A A
Sch/ Ax Al A)d +ch/ All2d
(e AL A) RN e
e AlPdpt-c | P2(A) + PY(A)] * A) dp.
vy APt [ (IPHA) + F(A)]  4) du

Using Theorem 3.3 we obtain

; /
p Al + 2~ 0) [ 9o Al2d
dt f*l(Bp(:cl))H s+ ) f*l(Bp(asl))H @Al dp

gcé(’)n—i-c/

P2(A) + P°(A)] * A) du.
) ([P3(A) + P(A)] % A) dps

Proceeding now exactly as in Proposition 3.23, we recover (22) at the point 1. Note
that the constant no longer depends on ||A||s. Moving on, we use the inequality
above to conclude (64) in the case where there are no derivatives of curvature, with
no additional factors of the constraint function on the right hand side. That is,

d / 1

4 All2dp + - / Vo Al2dp

dt f‘l(Bp(rl))” | 2 f‘l(Bp(:c1))|| @4l

< el ANZ -1 By ey (1 + NAll S =1 (B2 21)))-
Using this in the proof of Proposition 3.26 in place of Proposition 3.25 gives the

required derivative of curvature bounds. O

REMARK. Allowable choices of x; depend upon the splitting of integrals in
Lemma 3.6, and this depends upon j,k and [. The proof of the next result will
depend upon which class of allowable points is associated with the given constraint

function.

We note that the assumption required is global, disguised as a local assumption.

This is different to the case where we have no constraint function (such as for the
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surface diffusion or Willmore flows). However, even there, in the final argument
used to prove the Lifespan Theorem one still requires this ‘global disguised as local’

assumption. We are merely introducing this concept earlier in the analysis.

COROLLARY 3.8 (The uniform bound for h.). Suppose n € {2,3} and let f :
M" x [0, T*] — R™™ be a (CSD) flow with h satisfying the assumptions of Theorem

3.3. Then there is a 6] = d5*(n, My) such that if

28 sup / Al™dp < 657,
(28) [ AT <

[0,T*],xcRn+1

the constraint function satisfies the estimate
12 lj0,74),00 < € < 00,

where ¢, = cp (05", Cag, p, J, k1, n).

Proor. Using Corollary 3.7 above, we can directly estimate h by localising as
in the proof of Lemma 3.6. This is however contingent upon us retrieving integrals
around one of the allowable points z; € R"*! from the conclusion of Corollary 3.7.
So we must be somewhat careful with our estimates below.

Firstly, for the case where j > max{2, 2k + 1},
n< [ PAA)+ PLA)+ PO(A)dp
M
< C/MHV(2>AH JAI=Y + IVAIPIAI + VAL AN+ [[A]l'dp

<c c/
P f~Y(B,

e [IVALIAI "+ e [ Al dp
M M

IV e)All A d+ [ VAP 2dp
(z1)) M

1 |
gf/ Vg Al2d +c'/ A, AA) || AlF2d
5 o [V +c) [ (4,8 Ay

C . .
+C2*/ A 2j72d +c ',k’,l / A 2k—j +|A ld
53 s o VI i+ B [ LA+ A
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Ve AIPdtc) [ [V Al AP di

2 C AllZ-24 +cj,k‘,l/ AllZ=3 4 (1Al
5 f_l(Bp(m))H ¥ dp+ (5, k1) | 1Al | A["dp

</ 19 e AlPdy+ () | A2y
B p F=(By(1))

+ (ki) [ AN + Al dp
2j—2
Almd ) "
Al
2k—j

+c(7,k,1,Cag) sup cpK/ ||A||md,u> m
F=H(Bp(2))

reRn+1L
1
)
ffl(Bp(I))” H

</ Ve AlPPdp + (G, C (/
f—l(B,,(m»” @Al*du + c (g, Cap) -

(l3p(x1

< cp(6g', Cag, p, j, k,l,n) < oo.

The other cases are simpler, and estimated as in Lemma 3.6, finished off using

Corollary 3.7 as above. O

REMARK. As remarked upon in the introduction, there is an alternative ap-
proach to this section. Based also on Topping’s inequality, it works without the
assumption (AB). However this requires monotonicity of [ |H| on a ball around 1,
and does not give higher dimensional results. It is relevant to hx flow, where we
have monotonicity of [ H on the entire manifold, for all time. However the essential
problem is that there is no known condition which rules out the case where mean
curvature is becoming more negative in one part of the manifold and more positive
in another part, such that the integral over the entire manifold is non-increasing,
but for any small ball the integral [|H| is increasing. Also, even if such a case is
ruled out, we have no way of ensuring that the special points z; are in the regions of

M where [|H| is monotone. What we really lack is a non-trivial condition we can
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impose on M such that monotonicity of [ H implies monotonicity of [ |H |, however
without the maximum principle we have not been able to achieve this. Thus Ay still

presents difficulty.

We have thus shown that for the class of constraint functions satisfying the

conditions of Theorem 3.3, the a priori conditional bound (CB) holds.

4. Evolution equations

We begin with the following evolution equations.

LEMMA 3.9. For f : M" x [0,T) — R™ evolving by d;f = Fv the following

equations hold:

0 o .. » 0
—qi; =2FA;;, —g” =-2FAY, —du= (HF)dpu,
8tg] J 8tg ot % ( ) 1%
0 0 »
EV = —VF, EAU = —VZ]F + FAiApj,
O _ap— F||A|]?, and
ot
0 ., o » 1 5 2
55 =5 (Vo F) + F(APA,; + —9il Al = 5HAU>>

where S°(T) denotes the tracefree part of a symmetric bilinear form T. If F =
AH + h then the following evolution equation additionally holds:

0

aAij = —A?Ay + ||A|P Ay + (AH — H + h) Ay AL

ProoOF. We begin by proving that the evolution of the unit normal v is given

by

ov OF Of
S 2L _VF
g ozt 0xJ Vv

5=
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Since v is a unit vector, (v|v) = 1. Differentiating,

- (22]1) -s

and so any derivative of the normal is again normal to v, hence tangential to M.

Since {0;f} form a basis for T M, we may express the time derivative of v as

v . (Ov | Of \ Of
g2
(30) ot 7 <8t 0$i> Oz
As v is normal to vectors in TM, (v g g{) = 0. Differentiating this equation,
_(Ov | Of 0 Jf
0= (6775 ox? Y éhf@ﬂ)

ozt Ot

(
)l
)l
2 |2). |22
)+
) 9]
)

9 8f>

—(Z + OFN Lk (n, 22
~\ ot | oxf v V@xi “ oxt
(2] 8) 98, ].)
ot | o) "o \" |7
_(ov|of\  oF
ot | ox oxt’
SO
ov | of\  OF
(31) (815 8:ci> G
Substituting (31) into (30), we have
ov i, OF Of
— =g -
ot oxt dxd

as required.

We now move on to proving that the induced metric (g;;) and inverse (¢*/) evolves

by

(32) —2FA;j, and gtgij = 2FAY.

agi]‘ =
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The induced metric is naturally specified by

_(9f ] 9of
Jii =\ o | 927 )
Note first that
00 | o\ _ (o) | of
otoxt | 9xi ) oxt oxd
oF ov | Of

—<”axi”axi ax>
O (108N (p0v | 01
- Oxt (V a:w) * (F(?xi 83:9'>
B ov | Of \ _
—9oF (axi W) — 2F A,

where we used the definition of A;; in the last step. Since the second fundamental

form is symmetric, this gives

B 0 0f | of 0 0f | Of
o197 <8t oz 891;]) * (at 907 | or y
For the inverse, we first differentiate g™ g;, = 9}:
o = g% gsm)
ot
- dg™ ik
~ o T
ik
agik ;
= o 9 +2F A,

SO

] ik o il ) )
g’“gjk—gt = éqt — —gM2F A~ = 2F AT,

and with the substitution [ < j, this finishes the proof of (32).
We will now need to make use of the rule for differentiating determinants:

0 0
—det A = A AV —A;;.
axdet det ox” "
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This is proved by considering the cofactor of 24 which is det A(A7);; = det A AY.

aA v
The formula then follows by summing over each entry.

We claim that the measure on M evolves according to

0

33 Zdy=HFd
(33) 01 = i

The induced surface measure du on M is given by
dp = +/det (gi;)dz.
Differentiating,
A <\/det ( --)d:)j) _ L Jaet g 972 g dn = Fgli Ay — HEd
at lu’ 8t g’lj - 2 g g atglj - g 1] :u’ - lu”

where we used the evolution of g;; in the last equality. This shows (33).
We shall now consider the evolution of the components of the second fundamental

form, A;;. These evolve by

0
(34) 5 = Vi + FAz AL

Recall that the components A;; are given by

A== <8x18xﬂf‘ )

( {iﬂ 88{ > (8% Oz f ‘ )
<6x3 F@Jﬂy> ) <6m’ axﬂf ‘ VF)
0 ( o 0 ) (F
i Gk
|

Differentiating,

- ax’@F r &Ezé?xﬂ

:_aii;ij_F<ai< klaf) ”) (

/0 0 . OF u
B (axzaxﬂF Vg k>_FAj’“g ( c%lf‘ )

)
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= —VZ-V]-F + FAjkgklAli

= —V,V,;F + FA AL

In the above we used the Gauss-Weingarten equations

o 0 . Of ) _of

_ e
90 5a7! = Tiger — Auvs gv = Aad" 50,

and the definition of the covariant derivative. Using this evolution and the evolution

of the induced metric we may compute the evolution of the mean curvature:

0 a o ,

and the tracefree second fundamental form:

o ., 0 1.0 1 0

A0 — i'_*Hi ii— — ZiH
ot T g T gt T iy
2 1
1 L 2 1 )

2 1
=~ (Vi F) + F(Aad} = ZHAy + g5 A]?),

where S°(T") denotes the tracefree part of a symmetric bilinear form 7. Specialising

to the case where F' = AH + h, one may use Simons’ identity (SI) to obtain

0
aAij = —A%Ay; + ||A|PAy; + (AH — H + h) Ay AL,

We will also need to know the general structure of the evolution of the Christoffel

symbols. Note that any derivative of the Christoffel symbols is a tensor.
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LEMMA 3.10. For f: M™ x [0,T) — R""! evolving by O,f = Fv the Christoffel
symbols evolve by

(35) gtr = FP/(A)+ A*xVF.

PRrROOF. Recall the following formula for the Christoffel symbols in a local coor-

dinate system which is torsion free:

1 0 0 0
Ik — Z g~ g+ —— i — —— G | -
1) 29 <8£Blgﬂ+ al’-jgl axlgj>
Differentiating the above and using the evolution of the induced metric (32),

0, 1ogh [ o 0 0
=T 5 IR + 9391~ g%

ot v T2 ot

(220 L L)
2 ort ot oxi”" Ot

L (agl + 990, ag“>
2 oz oxi ot7"  Oxt7Y

(L o 200,
2 ozt oxd?" Ozt ot

wiy (O 0 9 k |
= (—FA™) (83:1-‘%’ + T%gﬂ — axlgij> + 15+ FP(A)+ AxVF

=T*(1+FxA)+FP (A +AxVF.

Evaluating the above at a point where I' = 0 gives (35), and so finishes the proof of

the Lemma. O

The rest of this section is in two parts. The first aims to prove in detail the
estimates needed to present a proof of the first result needed to drive our overall
argument, Proposition 3.23. Since the proof of the second estimate, Proposition
3.26, requires similar results but with more generality, we present the estimates

needed for this after the simpler versions, in a slightly more succinct fashion.
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Using the curvature evolution equations in Lemma 3.9 we calculate the evolution

of the total squared curvature.

LEMMA 3.11. Let f : M™ x [0,T) — R"*! be a (CSD) flow, and v as in (25).
Then for any s > 0,
& 1Ay du= =2 [ Ve APy dp+ [ Ao d
dt Jm M M
+2 [ (V9)A,AV4) = ((V1")(VA), Vi A) di

+ /M[(P??(A) + hA x A) x Alv*dp.

Proor. This is simply differentiation followed by two applications of integration

by parts. First we differentiate,

& [ 1Ay an = [ @A +IAI@n) + AP D) d
= /M 2 (0 A, A) v du + /M 2(8tgik)gjlhijhkmsdu
[ NAIPo du+ [ AIPHAH + HR)y du.
We leave the third integral for this proof. The second and fourth integral are both
of the form
/M[(pg(A) +hA % A) * Alysdp,

For our purposes in this chapter we are not concerned with the precise algebraic
nature of the nonlinearities. We now deal with the first integral. Note that integra-

tion by parts does not give a boundary term as all our manifolds are compact and

without boundary. Using interchange of covariant derivative we calculate,

/M (0., A) dp = — /M (A4, A) o + /M P2(A) ¥ Ay*d

+/ hA % Ax Avidp
M
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=— /M (VIPV , A, A) vPdp

+/ (V[(A*A —Ax A)x VAD x Ay*du

M

+ /M P2(A) % Ay*dp + /M WA % Ax Avdu
= — | (VA A) vy

+ /M (V(Q) {(A x A— Ax A)x AD * Ay*du

+ /M P}(A) x Aysdu + /M hA x Ax Ay°dpu
- / (AVA, VAY~*dy + / (AVA, (V*)A) dy

M M

+ /M P2(A) % Ay*dp + /M WA % A x Avdu

= — [ Ve Al du
M
+ /M (AVA, (V") A) du — /M <V<2)A, (WS)VA> dp

+ / P2(A) % Av*dp + / WA % A Avidp,
M M

Combining the evaluation of each of the integrals above gives the lemma. 0

Routine estimates refine the previous lemma into the following form.

LEMMA 3.12. Let f : M™ x [0,T) — R" be a (CSD) flow, and v as in (25).

Fiz § > 0. Then for any s > 4,

d
= IAPY dp+ 2= 0) [ 190 Al dn
M M
< [ AP du+ch [ PiAydp+e [ A1 dn
M M M

o [ [(PHA) + P(A)) * Aly'dp,

where ¢ = ¢(Cy1,Cy2, S).
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Proor. We wish to deal with the leftover terms from integrating by parts in the

previous lemma. In the following proof and in fact throughout we use the following

two inequalities extensively:
2, 19
For any ¢ > 0, a,b € R ab < ea +Zb’ and
€

For any tensors A, B, | (A, B)| < ||A|l | B]l;
which are of course the Cauchy inequality and the Cauchy-Schwartz inequality re-
spectively.
Estimate the undesirable integrals from before by
| A ALV dp— [ <<w><m>, VA dy
== / V1A, Vi A) du — /M (V') (VA), Vi) A) dps
- /M <(V73)(VA)7 Vi A) dp
< /MHAH IV Al [s(s = 1)e27" 2 + scp2y™ (1 + || Al dps
+2se [ IVA] [V Al dn
< (81 + 0 + 85 + 01) /M||V(2)A||278du
() e

/ Aty 2+ PO / IV Al 2dp

+

Therefore, choosing >;0; = 0 (where § is in the statement of the lemma) and
combining with the previous lemma will finish the proof, if we can estimate the
remaining integrals.

The first is simple, using

- S S— 1 S—
Al < 5 ||A||67+ IIAII2 P S PR(A) x Ay +*I|AII2 "
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For the second we need a baby interpolation inequality, which we derive as follows:

/ IVA|**2dp = —/ ((Vy"72)A, v 4) du—/ (AA, A) > 2dp
M M M
s—3 5s—2
< (s= e [ VAL Al du+ [ [V Al Al dy
< b [ IV@AlPydu+ 8 [ VA2

L (5= el .
(g + 000 [ e

Therefore, for any 6 > 0 we have

(1= 8) [ VIR 2du < 85 [ Vo)Al d

L (5= 2eal .
(g + 02 [

Inserting this into our previous estimate we have

A7) A AV du— [ ((F7)(VA), Vi 4) dn

sc1]?
< (51 + 8y 4 03 4 04 + 55<1[_7;])54> /MHV@)AHQWM

(Bl =D | senl? | [senl?
46, 464 803

[sc1]? [s(s — 2)c2,]? .
b 4 s ) [ A

/ P2(A) * Ay*~2dp.
M

[scy2]®

803

We are now finished, by any reasonable choice for our constants d; and (3. For
example, let 6 > 0 be any fixed positive number (as in the statement of the lemma),

and choose

1 )
525, 514—52—1-53:1, ==, 05=—7

We conclude this series of estimates by proving the following.
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PROPOSITION 3.13. Let f : M x [0,T) — R? be a (CSD) flow, and v as in (25).

Fiz 6 > 0. Then for any s > 4,

d S S
= IR du 2= 8) [ V@Al d
M M

< c(L+[hl) [ APyt et +h) [ A1 dutc [ AIPHA)Y du,

where ¢ = c(cy1,Cy2, 5).

PRrOOF. This proposition is essentially an evaluation of the time derivative 0;7*

in the previous lemma. The other terms are easily estimated by
PJ(A)x A <c|Al°, and  P(A)y* < e APy + ] A%
Differentiating,

0" =707 0 f)

< scsy*AH + h,
S0

[ IARo A < ses [ AP |AH + hldg
M M

< seslhl [ APy tduton [ IV Al*y du

SC:Y

[ ]2 / 4_s—2
4+ — A }/S du
4(51 M H H

< seslhl [ APy a0 [ [V Al*y dn

[SC%]Z ( 6 2 s—4 )
All°+°d All*v**du ) .
+ 86, /M“ H'V N‘f‘/H ||7 1%

Substituting into the previous lemma and absorbing &; [,V (2)A|*v*dp on the left

gives the result. 0
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We are now, modulo a multiplicative Sobolev inequality, ready to give the proof
of our first major integral estimate, Proposition 3.23, used in Section 5 to prove the
Lifespan Theorem. However, for the second important estimate we need to consider
the more general case where we have k derivatives of curvature. The evolution
equation for the iterated covariant derivative of the second fundamental form is

given below.

LEMMA 3.14. Let f: M" x [0,T) — R™ be a (CSD) flow. Then the following

equation holds:

;V(k)A = —AQV(k)A + hPQk(A) + P§+2(A).

Proor. We will use the evolution equation for A and interchange of covariant

derivative. From Lemma 3.9 we have
OV A =V A= —ViA?A+ PyT(A) + hPy(A).
Now to obtain the result we interchange covariant derivatives 4k times:
OV A ==V VPV,AA + PyT2(A) + hPy(A)
=~V V'V ) V,AA = V[P (A) * VAA] + Py2(A) + hPy(A)

— —VPV iy V,AA

M)~

+ PY*2(A) + hPy(A) — > Vel + 2)P)(A) * V(;) A4

I
—

+ hPE(A)

_

PV, AA P
— _AVyAA
k
+ PE(A) +hPE(A) = 30 Viamgon [+ DPY(A) * Vg A

i=1

= —AV(k)AA + P§+2(A) + hPQk(A)
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— _AVPV,V,A
+ Py2(A) + hPy(A) — f:lv<k—j+z)[(j +2)P)(A) * V-1 VA
=
= —AV?’V )V, A+ PyT2(A) + hPy(A)
— AV uA

k
+ PIT2(A) 4+ hPF(A Z gy |G+ DPY(A) % V;_1)A]

= —A2V(k)A + P3{€+2(A) + hPQk(A);

note that here we allow several exotic constants to appear in the collection of terms
Py™2(A). These are all universal however and are collected in the P-term as men-

tioned in the definition of the P-style terms earlier. O

The following is an easy consequence of the above lemma.

COROLLARY 3.15. Let f : M™ x [0,T) — R"™ be a (CSD) flow. Then the

following equation holds:

0
SV Al = =2 (Vi A, VPAV,V g A) + [hPF(A) + PE2(A)] + Vi A.

ProOOF. We simply use the previous lemma as follows:

atHV(k)AHQ =2 <V(k)A, (9tV(k)A> + (k4 2)0ig * V(i) Ax V(i) A
= —2(VA, A’V (A + PfP2(A) + hPE(A))
+2(k + 2)[(AH)A + hA] % Vg A * V) A

= —2(VA, A’V A) + [hPF(A) + PF2(A)] % Vi A
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~2(VA, VPAV, V() A)
2
+> (Ve (A) * Vi Al) + Vg A
7=1

+ [hP. ( ) Pk+2(A>] * V(k)A

= —2(V()A, VPAV,V ) A) + [hPS(A) + PyT2(A)] + Vi A.

Using Corollary 3.15, we derive the following integral identity.

COROLLARY 3.16. Let f : M" x [0,T) — R""! be a (CSD) flow, and v as in

(25). Then for any s > 0,

d
o IV wAIRy di+2 [ IV ARy di = [ VA2 00")du
M M M
+ 2/ <(V78)(V(k)A), AV(k+1)A> dp — 2 /M <(V73)(V(k+1)14)7 V(k+2)A> du

+ / [(PE2(A) + hPE(A)) * Vi Aldu.

PRrooF. First we differentiate,

d
@/ IV oy All*ydpe = / OV i AP + IV i Al [(9) + 7 (Drdpp)| dps
M M
~ 9 /M [<v(k)A, VPAV, Vi A) + [hPE(A) + P (A)] + v(,f)A} vodu
* /M(k + 2) (atgiljl)giZjQ o 'gikjk Vil"'ikA’ik+1ik+2 le"'jkAjk+1jk+275du
+ [ IVw A du+ [ IV AIP(HAH + Hh)yd

We leave the third integral for this proof. The second and fourth integral are both

of the form

/M [(P§+2(A) + hA x V(k)A) * V(k)A} ’ysd,u.
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We now deal with the first integral. Integration by parts gives

=2 [ (VoA AV, V9 A) + [bPE(A) + PE(A)) 5 Vg Al
=2 /MHV(m)AHQdeu +2 /M (AV @i A, (V) Vi A) dp
—2 /M (VoA (V) Vs A) dp

o /M ([RPE(A) + PEF2(A)] Vi A)y*dp.

Combining the evaluation of each of the integrals above gives the statement of the

lemma. O

REMARK. It is easy to compute an ‘allowable’ explicit expression for the large
constant c. For example, if NJ(A) denotes a P{(A) term with all non-zero constants

set to one, we have

S a S S
| v IV ARdn+2 [ [V AlPydn =2 [ ((V2")(VA), AV A) du
-2 /M (V) (Vi A), Vs A) dp

b4+ 10k+2-7-39 /M V(NE2(A) + hNE(A)) * Vo Aldp,

and note that here any non-zero constants in the * operator terms have been similarly

set to one.

We now wish to use interpolation to estimate the extraneous terms from inte-
gration by parts. For k = 1, the required inequality follows easily (for 6, 3 > 0):
(36)

_ -+ (9[(8 — 2)C 1]2 _
1 — A 2, 52 < A 2.8 6 y A 2, 5—4 )
(1=0) [ IVAPYdn <6 [ [V AlP dp+ 520050 | AP
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For k > 1 however we need a more powerful version of the above. Let 2 < p < o0,
k €N, s > kp, and 8 > 0. Then we have

(37)

1 1 %
([ 19wAlrvd)” <o ||V<k+1>A||pvs+Pdu)”+c< / IIAII”VS"“”du> ,
M M [v>0]

where ¢ = ¢(6, c,1, s,p). This is proved by induction on the inequality (36). Details
can be found in [37], or alternately Appendix A. We now estimate the equality in

Corollary 3.16.

PROPOSITION 3.17. Let f: M" x [0,T) — R""! be a (CSD) flow and v a cutoff
function as in (25). Then if h satisfies (CB) on the support of v and ’|AH§,[7>0] < €g,

we have for a fired @ > 0 and s > 2k + 4,
d 2_.s 2_s
o LIV w ARy d+ 2= ) [ V24l dp
M M
< (c+ch) /MHA”%S**%CJM +ch /M (Vo A % A] Vi A) 7y
o [ (IPF2(A) + PEAY * Vo A) v°d

where ¢ = C(C'yla Cy2, S, k’ ||h||00:[07T)7 9)

PrOOF. We will use Corollary 3.16 and equation (37) to deal with the derivatives
(both spatial and temporal) of ~.

Corollary 3.16 implies
& [ IV wAIPd 2 [ [V Al
dt Jur' P ! )
= | @IV wAIPdu+ [ [(PF2(A) + hPEA) * Vi Al *dp
£2 [ ((99)(Va9A), AV iy A) dp

(38) =2 [ {(V9)(ViesnA), TiaroA) di
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Since 9yy* = sy "1 (Dyo f)[(AH + h)v],

IV AP0 dn = 5 [ [90)AI% 7 (DT 0 HIAH + hvldy

= s [ VWA (D7 o f)I(AH)V]dp

(39) 5 [ 190 Al (DF o )]

For the first integral in (39) we begin with integration by parts:

s [ IV WA (D7 o f)I(AH)]dp
== [ V' (IVwAIy™) (DA o £V, H)dp
—sﬁimewm%*ﬂ<vwxaofXVﬂﬂw¢
— 9 /M (VP 1A, Vi A) 7~ (D,7 o f)V,Hdyp
—s(s = 1) [ VAl (93, V) (D, o f)d
s [ (VAP ™) (D% 0 £)(v.e,))(V,H)d

< 4SC§ /M (||V(k+1)A|

v ) (IVwAll [VH]

%) dp
+sls = Desen [, IV AIFIV ] 2d

+sez [ IVwAIRIVE](1+ 1Al d

1) (IVw Al IV H|

<dse; [ (VA 7)) dp

+5[(s = Desen + esa] [ IV AIRIVH|7 2d

e [ VA IVH]| Al du.
Note that we used Kato’s inequality (for some tensor T')
I VT < VT

in the last step.

103
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The first integral obviously splits (using Cauchy’s inequality) by

) (IVw Al [VH]

dscy /M (IV @1y Al v ) dp

(40) < 2505 [ Ve APy 2dp + 25c5 [ [PE(4) % T Al d
It is considerably less obvious that the other two integrals can be estimated as

. 1 \
J V@AV HI2dn < 5 [ (PE2(A) Ty A)rd

0 1
-z \V4 A 2 5 - / A 2 s—4—2kd
5 J IV ws AP dit 5 (ertco) [ APy

and
s— 1 .
/MHV(MAHQHVHH Il dp < §/M (PE2(A) % Vi A)y'd
+ 9/ ||V(k+2)A||278al,u + 1(clr + ca) / ||A||278—4—2kdu
4 4 [v>0]
1 . .

Here the constant ¢y is the constant in (37) and ¢; = ¢(1, ¢,1, s, p) is the constant in
(37) with 6 = 1.

We now describe how to obtain estimate (41). This is where the interpolation
inequality (37) becomes useful. Two separate applications and Jensen’s inequality

gives the inequalities

(42) / IV gy All* 7~ dp < / IV e Al ~2dp + ¢ / A2y 42 dy,
M M [v>0]

and

(43) /M”V(kﬂ)AHQ’YS_Qd# < 9/M|’v(k+2)14||2’75d,u + ¢ /7 | A|]>y* 2 2dp.

[v>0]
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Note that using equation (43) we can finish the estimate (40). Combining (42) and

(43) we obtain

(49) [ INwAIPydu <0 [ Vs APy dut (erteo) [ AP *dp,
M M [v>0]

Using (44) we can now derive the first estimate in (41):

[ I AIR IV H |y~ 2dp

IN

1 2 s 1 2 s—4

2 L (VAL IVHIP) IV @Al di+ 5 [ 190 AI " dp
1 S

< §/M (P§2(A) % Vg A)y*dp

0 2.8 1 2, s—4—-2k
+§/M||V(k+2)f4|| g dﬂ+§<61+09) /V Ay dp.

[v>0]
For the second integral, we first estimate
| 19w AR AR 2dy
M
1 1
< = A 2, s5—4 7/ A 2 A 4.5
<5 | INwAR dut 5 [ 190 AIR Ay du
< 9/ ||V(k+2)A||278dM+1/ (PE(A) * Vi A)y'dp
—2Ju 2. NP

1
15 4 (e + / A2y 42y,
(45) plerta) | IAI "

where we used (44) again. Using (45) above we can derive the second estimate in
(41):
| IV AIRIVH] (Al du
1 2 s 1 2 2,52
<5 [ (VWAL IVHP) IV wAlrdi+ 5 [ VAl ~2d
1 . 0 .
<5 [ (PERA) « Vi A)ydu+ S [ IV win Al dp

1 2, ,s—4-2k 1 k s
tqlerran) [ NAIP " dut g [ (PEA) = Ty A)

This proves (41), and combining (41) with (40) estimates the first integral in (39).
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For the second integral in (39), we note

/ IV Al (Dy o f)[hv]dp < hscs /MHV(k)AHQ’Ys_ldu

< hses [ VAl du.
M
Applying equation (44), we estimate this term as

hscs [ VAl dp

< bhscy / IV sy APy dpe + hises (er + co) / A2y~ dp.
M [y>0]
Summarising, we have shown

IV wARay d < (01 + 6a1) [ [ V2) Al d
(et [ APy d
[v>0]
(46) o [ I(PF2(A) + PEA)) « Vi Alydp,
for any fixed 61,6, > 0, where ¢ = c(cy1, €42, 8, k, 01, 02). The leading order term on
the right is absorbed into the same term on the left in equation (38). Note that we
need to use (CB) to ensure that 6, /4 0, since then ¢ — oo. We also note that this
choice of , introduces a dependence on |[|A| 0,7 into the constant c. This gives

half the proposition.

Recalling (38), we will therefore be finished if we can deal with the integrals
2/ (V¥ ) (Vi A), AV g1y A du - 2/ (V) (Vs A), V(k+2)A> dp.
Given our earlier work, these are not so bad. The second integral is estimated as

- 2/ V7 Vik+1) A), V(I<:+2)A> dp

< [ IVl + P 9 aPy-2a
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(an
0,)sc s 2 s—4—
< (o4 M5 E) [ 19am g Bola, [ japa
3 [v>0]

where we used (43) again. We need to integrate by parts on the first integral:

[ {(99) (Vi) 4), AV ey A)
= —/ (Vv ) (Va A)vv(k+2)A> dp
- / (VY )V (k11 A),V(k+2>z4> dp
< s(s =1 [ VAl Vs Aly~du
tsern [ VAL IV Al du
e [ IV Al [Van Al Al dp
— [ {9V A), Vira)A) dp

The last integral is estimated exactly as in (47). We have also seen the other three

integrals before. To make this explicit, we split them with

S IV e AN 1V Al 2di+ [ [1V0All IV s Al dp
+ [ IV Al 9024l 1Al dn
= Q/M”V(m)/lll%s 2du+—/ IV Al dp
1
— A 2 A 2 572d .
+ oo [ 19w AR 2

The first integral is absorbed, and the other two are dealt with exactly as in the

proof of inequality (41). This finishes the proof. O

To prove Corollary 3.7 we also need a version of the above estimate where we
do not assume (CB). For this purpose, we state the following version of Proposition

3.17. The proof differs only in that the integrals with h are not estimated.
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PROPOSITION 3.18. Let f : M x [0,T) — R?® be a (CSD) flow and v a cutoff

function as in (25). Then for a fived > 0 and s > 2k + 4,

d
= | IV @A di+ 2= 0) [ [0 Al d
< ch/ A% A]* VyA) 7 du+ch/ IV o A2y dps

(48) +e /MHAH%S*“*Q‘“du +c /M ([PF¥2(A) + PE(A)] % Vi A) v*dp,

where ¢ = c(cy1, Cy2, S, k).

REMARK. As our main result is a lower bound on the maximal time of exis-
tence for a (CSD) flow, one may be interested in a more explicit expression for
the constants involved in Proposition 3.17. As we will see, these constants play an
important role in determining the numerical value of the lower bound. Also, the
reader unfamiliar with so many nested inequalities may be suspicious that our claim
of absorbing the high derivatives on the left is in fact valid; indeed, several of the
constants depend on each other and a choice of one small will make another larger.
Therefore, we will now present explicitly the constants from Proposition 3.17. As
the computation is long and tedious, yet relatively simple, we present only two steps.
Carefully summarising and factorising, we claim

d
[ IV AR d 2 [ 1V s Al dp

s[(s = 1)eseqn + ¢y $Cy2 8(scy1)?
Oy + ——0 0
5 2t — 0+ 80, + 0

S [2803(91 + 95

1
+ 25[(s — 1)c2) + ¢42] <96 - 97) + 25¢y2 <98 + 8909)] /MHV(mz)AHQ’YSdM
8

404
s[(s — 1)escqn + ¢ 4(scy1)?
0,

2

SC
+ [230&091 —+ (C] + 692) + 772(01 + 003) + Cos

[(3_1) 1+ e 2, s—4—2k
e o)+ e )| [ AP
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s[(s = 1)cscy1 + cy2] + 5C42
2

[scw2 ] /M (Méf(A) " V(k)A)VSdM

h[ C2.(k)h / (M (A) = V(k)A)ysdu—i- scs /MHV(;C)AHZ@/S_ld,u],

[03 k+2) + 28¢5 + /M (Mif”(A) * V(k)A)’ysdu

(49)

for any 6; > 0.

Some notation here needs explaining. As the motivation for the use of the letter
P is that P/(T) is “a polynomial with terms containing i derwatives of j copies
of T, we have used Mf (T') to denote the corresponding monomial. However the
situation is a little more complicated than that of a standard monic polynomial of
real variables. The constants present in each of the P terms vary from term to term
in the summation, and of course we do not have any positivity of these terms to
take a maximum of all the constants. What we have done is this: each of the M

terms may be estimated by

MI(T)< 3 VTl - IV ey T

k‘1+‘..+kj=i

Then the constants cs (142) and o (1), are the maximum of the absolute value of all

the constants in each the the P terms

PEF2(A) % V9 A, and hPF(A) % Vi A

2k+8 2k+-6

multiplied by n and n respectively (since the dimension of our immersed
manifold is n, and A is a (0,2)-tensor).
Let 6 > 0 be any real number. We wish to choose our constants 6; such that the

entire coefficient of [y, ||V (x12)Al|*v*dp on the left becomes equal to #. There are
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nine terms and so we simply choose each 6; iteratively to force each term to equal

%9. These choices are:

1 2 4 1
0, = - 0., 0y = 0.,  0,=—0,
18sc5 9s((s — 1)czcy1 + o2 95C2 36
1 1
O = —— 0 O = 0
° T 2592(scy)? © T 18s[(s — 1) + )
; 1 ) 1 1L
7= ) 8 = ; 9= Sran/ .. o7 -
1296(s[(s — 1)c2, + 072]>2 185¢y2 2592(5¢12)”

Note that these choices also set the coefficients of the other terms, and in particular

determines each cy,. This means that our above equation (49) becomes
d s s
o IV w AR di+ (2= 6) [ V2 Alr du
M M
<o [ APy dy
[v>0]
i [ (MER(A) 5 Vi A) vt i [ (ME(A) T4 )7
e /M( FP2(A) x Vi A)ydp + M( E(A) # Vg A) v dp
+ heg, / (ME(A) % Vi A)ydp + he, / IV Al L,
M M

where ¢;, ..., ¢, are the constants from (49) with the choices for the 6; indicated

above.

5. Integral estimates with small concentration of curvature

We will first need a few Sobolev and interpolation inequalities. The argument
for n = 3 is by necessity different to that for n = 2. This is due to the important

role played by the Michael-Simon Sobolev inequality.

THEOREM 3.19 (Michael-Simon Sobolev inequality [47]). Let f : M" — R™*!

be a smooth immersion. Then for any u € CY(M) we have

n+1

n/(n—1) (n=1)/n 4
([ arrevap)” " < = [ val+ ulHdp,
M M

Wn

where w, is the volume of the unit ball in R™.
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Notice the exponent on the left. Our eventual goal for this section is to prove
local L>° estimates for all derivatives of curvature. Our main tool to convert L
bounds to L* bounds is the following theorem, which is an n-dimensional analogue

of Theorem 5.6 from [37]. The proof is contained in Appendix A.

THEOREM 3.20. Let f : M™ — R be a smooth immersed hypersurface. For
u€CH M), n<p<oo,0<B<ooand0<a<luwherel=(L=1)341 we

have
(50) ulloo < cllullz *(IVull, + 1 Hull,)®,

where ¢ = c¢(n, p, B).

The proof follows ideas from [39] and [37]. Due to the exponent in the Michael-
Simon Sobolev inequality (which is itself an isoperimetric obstruction), it is not
possible to decrease the lower bound on p, even at the expense of other parameters
in the inequality.

The basic problem which this lower bound on p causes is that the evolution
equations from section 4 will only give a nice relationship between ||V ) All3 1~
and ||V (x42)Al|2,[y>0], and to exploit this relationship we must take p = 4 in Theorem
3.20 above.

One can see this by the following. Consider the quantity ||[VT'||) where T is a

tensor on f. Then

VTP < c/M T % V)T + VT 2dp.



112 3. LIFESPAN THEOREM

We must estimate the integral on the right such that we recover both a term ||V 2)T'||2

and ||VT||,. That is,
VT, < C/ Tx V)T VTP 2dp < | TV ) T2V T 5,24
Only if p = 2p — 4 may we conclude that
19T, < TN T T3

Therefore if we are to use an estimate such as the above we are forced to consider
only p = 4, and thus only n = 2 and n = 3. This is highlighted in the following

local refinement to Theorem 3.20.

PROPOSITION 3.21. Let n € {2,3}. Then for any tensor T on f : M"™ — R"!

and v as in (25),

(51) 1T ey <

(\|V(2)T||§,h>o] + [T A5 sy + ||T||721,h>0}),

where ¢ = ¢(cy1,n). Assume T = A, and if n = 3 also assume (AB). Then there
ezists an €y = €y(Cy1, Cy2,n) such that if

Al >0 < €0

[v>0]

we have
(52) AR L2y < cao(IV AR + €),

with ¢ = c(cy1, Cy2, N, €) for n =2 and ¢ = c(cy1, ¢y2,n, €9, Cap) for n = 3.

Proor. We wish to obtain an L*° norm estimate for the tensor 7" in terms of
the concentration of T" in a small region of M, specified by v. The proof proceeds in
two parts: first we will estimate an arbitrary tensor S, and then we will localise the

estimate for S by using a v function. Precisely, we specialise the estimate for S to
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S = T~?, taking care to factor out the quantity ||7']2 >0 to conclude our desired
inequality.

Take p =4, 8 = 2 in Theorem 3.20 to obtain

2n

4—n 2n
(53) 1Slle < llS157 (IVS 14+ 1S Hl) ™.
We now use integration by parts and the Holder inequality to derive

VS|t < /MS & (Vi2yS| VS| + 2V # VS # V2 S)dps
< || Slls VSV 2)S]l2, s0

(54) IVSlla < cllSlI3 IV S13 -

Combine equation (54) above with (53) and use Jensen’s inequality to obtain

4—n 2n

(55) 1Sl < cllSI™ [NV SI3)™ + IS H]i].

Using Holder’s inequality we estimate

2n 2n 2n

ntd 1ok ntd wd || oLy nta
IS HIET < (Is20els3 L) ™ < ISIE st

and combining this with (55) above we conclude
4 l_ﬁgl n+4
IS = (Is1™)
= g )
< (cls15™ (19 @SI5™ + 152157
(56) <clSIE (IVeSI3 +11S He3).
We now turn our attention to localising the estimate for S. As mentioned earlier, for

this purpose we set S = Ty2. We first evaluate and estimate the second derivative

term ||V(2)S||%:

IVS13 = [ 1Ve)(@7)du
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< [ IVeTIE dp+ 4 [ VTRV Rd+ [ TRV @02
M M M

< [ IV TIP dp+8 [ VT)2[9]*d
M M

2

+2 [T IVl + I991E] d

< [ IV TIPydu+ e VAl [ 19T du

(57) e [ITIEIV @I + VAl [ ITIPdp
M [v>0]

We interpolate the first derivative term:
JINTIR2dn < [ 71 IV @TIdu+ eVl [ T I9Tlydp
M M M
<c [ (T +IVTIP)2 e+ e+ [99I1%) [ |1T)du
M [y>0]
1
+5 [ 9T
M

and thus

JIVTIP < e [ IV TP dn e+ [931%) [ ITIPdn

[v>0]

Inserting this result into (57), and estimating
JIAPITIP < 5 [ TP [ TIPS d
M = 2 Jpy>0] 2 Jm
we obtain
(8)  IV@SIE<c[ IVoTI?+TIfdu+c [ |TI2AI du.
[v>0] M
Combining this with our estimate for ||.S||,, earlier, inequality (56), gives

IS11% < ellSls (IV@ Tl ps0 + 1T 50 + 1S H 5 + 174 |3)

(59) < Al TI5 50 (IV @ T3 0 + 1T 15 ps0 + 1TA 5 50)-

Estimating [|T|%, .y < [|S]l5 proves (51).
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Now set T'= A. For n = 2, Lemma 3.22 implies
2
[ 141 it < sallAIR ooy (IV e Al sy + 149 12) + €ll Al

and absorbing on the left we obtain

(1= cocsa) [ A1 dp < el AR o (IV e AlB o + 14 0 50
6,4 ¢ 2 2 2
J A1 i < e AR o (19 Al g + AT o)

where cg; is the constant from Lemma 3.22. Inserting this into (59) gives the second

statement for n = 2. For n = 3, Lemma 3.22 gives
2 2
/M||A||%4du < e AllZ o (1Y) Al ooy + 14T 1) + 01V ) Al 5
9
(1418 ooy + 1413 501
Choosing 6 < /€ this becomes
J A1 e < 2051/ (19 ) AlR s + 1493 15)
9
+ (141 oy + 1413 50
and again absorbing on the left we obtain
(1= 2es1v/@) [ A1 dn < e/ (IV o)Al s + Veo)
— [ 1A < ev@(IV @Al psg + Ve).
We combine this with (59) and estimate to obtain
3
41 s < oCa)¥ Al (I A + (o) 1A + (A1)
3/4
< o (I Al + 0+ & IV Al o + )

and upon cubing both sides we recover the second statement for n = 3 and so we

are done. O
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The following multiplicative Sobolev inequality, which we already used above,
is a combination of the Michael-Simon Sobolev inequality and standard integral

estimates.

LEMMA 3.22. Let «y be as in (25). Then for an immersed surface f : M?* — R3

we have
J 1Al dt [ ARV ARy dp < e [ AR [ (IV@AIR + 1415 d
M M [v>0] M

2
rele)'( [ I4IRdp)
[v>0]

and for an immersion f : M — R*,

J Al + [ ARV AR di <0 [ VAl d
9
Al [ (IF@AIR + 1417 i+ clen)* (AT ooy + 14l s0):

where 6 € (0,00) and ¢ = c(s,0) is an absolute constant.

PROOF. The first statement is Lemma 4.2 in [37]. For the second, first observe
that
JIVARPydu< [ ((A,84)xVA+ A+ VA« V|TA|) dp
p /M (A% VA* VA% Vy)ydy
<2 / AN VA [V Alrdi+ sevr [ (ITARIA) o
< 15 [ IV A+ 6 [ APV AL dy
+ GO a9y
< /an(z)An?deu O A GO gty

5
+ 6/ IVA|*v*dp,
M
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SO

3
VA|Pd <—/VA2$d 293/A65d 2 342/ AlPdu,
19 < o [ 9 AP 26 [ AL dn+ 20 [ APy

for any 0 € (0, 00).
Now we use the Michael-Simon Sobolev inequality with u = ||A||*y?*/3 to esti-

mate

(/]V,”f“””sdu)g <c [ [v(lalty)

<c [ NAPIVAlydu+e [ 1AV dutc [ AL dp
M M M

dute | HIA Y d
M

< [ NAPIVAIydu+ e [ 1AIPYdj+ el 1Al g
< [ IVAPIAI dp -+ e [ AP dit el AN

5 3
<c [ IvaPiAleda+ ([ 1a10ed) ([ A1)
M M [y>0]

+ c(en)*IIAlR s

SO

[ A1 < o [ DAL )" +lAl gy [ AT
+ el 1Al

< Al ooy [ IV AN dps+ AN gy [ 1A dp
+ e Al s

3 9
< Al ooy [ (V@A + A di+ ) LA oy

This estimates the first term. For the second, we can employ a more direct technique

using our estimates above,

J ARV ARy dp < ¢ [ Al dpte [ VAP dp
M M M



118 3. LIFESPAN THEOREM
3
<0 [ V@A du+ coll Al oy | (I9@AR + AI°) 7 dy
9
+co(esn)* (1N oo + 14112 1sgy)-

This estimates the second term, and combining the two estimates above finishes the

proof. O

The proposition used for the constructive part of the argument used to prove

the Lifespan Theorem can be proved now.

PROPOSITION 3.23. Letn € {2,3}. Suppose f : M™x[0,T*] — R*™ is a (CSD)
flow with h satisfying (CB) and v a cutoff function as in (25). Additionally, if n = 3

assume (AB). Then there is an €y = € (c,yl, Cy2, HhHoo,[O,T*}> such that if

(60) €= sup [Al"dp < €
[0,7*] ¥ [v>0]

then for any t € [0,T*] we have

t
[ AR+ [ [ (I9@AIR + |ARIVAI + | A|)dudr
[y=1] 0 J[y=1]
(61)
</ HAszu‘ +eedt,
[v>0] t=0

where ¢ = c(cﬂ, Cy2; || ]| oo, j0,747 CAB).

PRrROOF. The idea of the proof is to integrate Proposition 3.17, and then use the
multiplicative Sobolev inequality Lemma 3.22. This will introduce a multiplicative
factor of || Al|n >0 in front of several integrals, which we can then absorb on the
left.

Setting £k = 0 and s = 4 in Proposition 3.17 we have

d
= AP au+ 2= ) [ [V A]2'd
= [ NAE an+ 2= 0) [ VAl d

sw+w4ywww+m@@M4*m¢m

>0]
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p /M (IP2(A) + P2(A)] * A) v*dp.

First we estimate the P-style terms:

Iy

[P2(A) + P2A) * A) vdu

~/~

<e [, ([1412- 19 Al + IVAIPIA] + 1A 1] )
<e [ IAPIVaAl+ IVAPIAR + |41 d
<0 [ IV Al du+c [ (1418 + VAP dp.

We use Lemma 3.22 to estimate the second integral and obtain for n = 2

[ (1P3A) + PR(A) = A) 7 an

<0 [ VoA dutc [ AR [ (VAR + A1)y d
M [y>0] M

2
(62) el [ A1)
[v>0]

and for n = 3
[ (IPEA) + PR+ 4)
3
< 9/M||V(2)A||274dﬂ + cll Al 0 /M(HV(z)AH2 + (| A1)y dpe
3 9
(63) te(enn) (1418 poo + 141350
We add the integrals [y, || Al|Sy*du and [,]|V Al|?[|A]|*v*dp to the estimate of Propo-
sition 3.17 (with k£ = 0, s = 4) and obtain
d 2. 4 2 2 2 6 4
= [ NAPY du+ @ = 6) [ (IVAIR + [AIIVA? + A1)y dy
< (c+ch) / I1A|2dg + ch/ ([A % Al % A) v dp
[v>0] M
+ C/ (IAIPIV AL + A1)y dp + C/ ([P3(A) + PA(A)] * A) v*dp
M M

<e+ ) [ APdute [ (1APIVeAl -+ IAPITAP +141%) da.

[y>0]
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For n = 2, we use the estimate (62) above and obtain

d 2 4 2 2 2 6\.4
= NAEY du+ @ = 6) [ (IVAIR + [AIIVAI?+ [ AI) " dy
<+ [ NAIPdu+0 [ [[VeAl2y dp
[v>0] M

2
v [ AP [ (19AR + 1A du e [ lAIRds)
[v>0] M [v>0]

For n = 3, we use instead (63) to obtain

d
= [ 1A du+ 2= 0) [ (I9AIR + JAIRIVAI? + 1|AI°)y*du
M M
2 2 2.4 3 2 61 . 4
<c+0) [ AP+ 6 [ [V AP dut Al g [ (VAR + 1A% dn
3 9
+c(en) (A1 oo + 14112 1se))-
1 3
< L+ CHalI AR ooy 0 [ IV AR s+ el Al sy [ (19 Al + A1)y dp

+e(en) (141 g + 141500

Absorbing, we obtain for n = 2

d
= 1A A+ 2= 0= o) [ (V@A + AIRIV A + [ AI)y'du
M M
< el + o+ 1Bl o)

< ce

Y

and for n = 3

d 2.4 2 2 2 6\.4
= [ AP dp+ 2 =0 = /a) [ (IV@AIR + [AIZIVAI? + | 4]°) du

1 1 5 23 4 2
< o1+ Cls + Clllhl oy + 6+ )eF

0o

< ce

W
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For 6, ¢y small enough we have
d 2,4 2 2 2 6.4 2
[ NAPY dut [ (V@A + JAPIVAI + A1)y dp < ce?,
where for n = 3, ¢ depends additionally on C4g. Integrating, we have
t
J_ AR+ [ (I9AIR + APV AL + | A dudr
[y=1] 0 Jy=1]

< [ 1A
[v>0]

where we used the fact [y =1] C [y > 0] and 0 <~ <1, with

2
+ cen,
t=0

c= 0(607 HhHOO,[O,t*]7 Cy1, Cy2, CAB)

REMARK. The assumption (AB) is required for the three dimensional case due
to the fact that L? norms naturally arise when computing the evolution equations
of various integral quantities, see the proof of Corollary 3.16 and Proposition 3.17.
Forcing L? norms in these inequalities for the purpose of the above proof introduces
changes in the exponents of the P-terms, and to deal with this one would need to
prove an altered form of Lemma 3.22. This altered form will still require (AB) to
handle the different exponents in the integrals. So it seems to us that for the three
dimensional case it is not possible to avoid assuming (AB), which is required to

obtain results for non-simple constraint functions regardless (see Theorem 3.3 and

Appendix C).

It remains only to prove the estimate used in the contradiction branch of the

argument used to prove the Lifespan Theorem. For this, we need an interpolation
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inequality, and a preliminary proposition. We will only state the required interpo-

lation inequality; the proof can be found in Appendix A or [37].

PROPOSITION 3.24. Let 0 < y,...,1. <k, i1+ ...+ 1, =2k and s > 2k. Then

for any tensor T defined on an immersed hypersurface f we have

| Ve sV Trdn < eI o ([ IV @I dn+ 1T )
We now use this to derive the required proposition.

PROPOSITION 3.25. Suppose f : M™ x [0,T] — R"™! is a (CSD) flow and
v: M — R a cutoff function as in (25). Then, for s > 2k+4 the following estimate

holds:
d 2.8 2.8
= | IV @A d et [ (V2 Al d
(64) < c||All% g0 /MHV(k)AHQVSdM + AN o (14 AN fys0p)

1 s 1
+ch (B [ IV APy du+ (14 I )
PRrROOF. The proposition will be proved using Proposition 3.17 if we can establish
the following inequality:

(c + ch) /MHAH2’YS_4_%OZM +ch /M (VA % A Vi A) 7dp

o [ (IPF2(A) + PEAY * Vi A) 7°dp

—_

2_s 4 2.8
< §/M\|V(k+2)A|| Y dp + || Al >0 /MHV(k)AH Yidp
+ el Al13 oo (1 + ANl o)

(65) ek (B8 [ IV ARy dt (L4 DI )
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We estimate each of the four terms on the left hand side of (65) in turn. First note

that
(66) (1+h) /M\|A|!278’4’2’“du < Al 50 + RIAIR 50
For the second term, let » = 3 and i1 4+ is = k, i3 = k in Corollary 3.24 to obtain

h/ wlAx Al x V A) vodu < ch Z /V”A*V,Q)A*VB)AV(M

i1+ia=
0<7,J<k

< chll Al ([ 190 AP dia-+ 1A )

< Al ([ IV oA du+ A1 s
(67 13 ([ 190 AP i+ 141 1)
using Young’s inequality. This estimates the second term in (65).

The fourth term is also straightforward. Let r = 6 in Corollary 3.24 to obtain
68) [ PHA) < Vg Avdn < Al ooy ([ 19w AT da A1 sy )
The third term takes a little more effort to estimate. First note

| PERA) « Vi Ay = [ (Visn A Ax A) Vg Aydp

+ Z / \ Zl)A * V ZQ)A * v(m Ax v(m Ay*dp.

i1 +io+ig=k+2
0<i; <k+1

Since ¢ + i3 + 13 = k+ 2 and iy = k, and in particular each ¢; < k + 1, we can use

Corollary 3.24 with k£ + 1 derivatives and r = 4 to estimate
| PERA) Vi Avdn < 01 [ [V gn Al di+ e [ AV A dp
el Al ooy ([ IV 0 AP i+ IR s
<O [ IV APy da+ el Al ooy [ V00 Al di

+ el Al sy ([ IV Al i+ Al s )
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We could now proceed by interpolating the [y/]|V (x41)Al|*y*dp term using integra-
tion by parts. A quicker (although equivalent) method however is to simply invoke
Lemma 5.1 from [37] (or Lemma A.3 in Appendix A) with p = ¢ = 2r, @ = 0,

8 =1,t=0, and obtain

1A oy [, IV Ally
: }
< el A poar ([ IV AP i) ([ IV Al dn)
: ]
el Ao ([ IV @A dn)" ([ IV ARy dn)

< s [ V) Al dpt+ el Alle gy [ V0 Al

1
2

+ [ Ve Al 2du.

Since s > 2k +4, and s —2 > 2(k 4 1) we can use Lemma 5.2 from [37] (or Lemma

A4 from Appendix A) to obtain
J I APy 2 < 05 [ (Vi) Al dp + el Al sy
Therefore we can finally estimate the third term by

/MPfH(A) s V(i Ay dp
<00 [ 1V A7 diet el Alle gy [ VA d
+ el A% ool AlS pso + Al AN s /M||V(k+1)A||2VSCl,u
<00 [ 1V Al dpa+ el All gy [ VAP
el o (14 1Al o) + el Al ey [ IV Al di
< O+ 02+ 6) [ [V APy dp+ cll Al oy [ IV Al d

(69) + el All3 oo (1 + AN o))
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Combining the inequalities (66), (67), (68) and (69) we have
(c+ch) [ AP du+ch [ (ViglAx Al Vo A) 7d
o [ (IPEHA) + PEA) Vg A) vdp
< (01 + 02+ 03) /M||V(k+2)f4||278d# + el Alls > /M||V(k)A||275du
+ || All3 o0 (1 + 1A% fys0)
o (8 [ 90 AI di+ (05 + DA ).

Choosing 0, + 0, + 03 = % completes the proof of (65), and so the proposition is

proved. 0]

We now finish this section with a proof of the higher derivatives of curvature
estimate, which will allow us to both bound the constraint function in balls other
than the ‘special ball’ (see Corollary 8) and perform the contradiction part of our

overall argument used to prove the Lifespan Theorem.

PROPOSITION 3.26. Letn € {2,3}. Suppose f : M™x[0,T*] — R is a (CSD)
flow with h satisfying (CB) and v as in (25). If n = 3 assume in addition (AB).

Then there is an €y depending on the constants in (25) and ||h| s, 0,1+ such that if

(70) sup | A["dp < €o,
[0,7%] /[v>0]

we can conclude
(71) ||v(k)A||go,['y:1] S C(ka T*7 Cy1, Cq2, ||h||00,[0,T*]7 Oé()(k + 2)7 CAB)7

k
where ao(k) = Y|V (5 All2,>0

j=0

t=0
PRrOOF. The idea is to use our previous estimates and then integrate. The ¢

which we will use is exactly the same as that in Proposition 3.23.
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We fix v and consider cutoff functions ~,, which will allow us to combine our
previous estimates. Define for 0 < ¢ < 7 < 1 functions v,, = ¥, o v satisfying
Yo.r = 0 for v <o and v, , = 1 for v > 7. The function 1), , is chosen such that 7, -

satisfies equation (25), although with different constants. Acceptable choices are
Coorl = ||V77Z)o',7'||oo " Cy1, and ¢y, o = maX{HV(z)%,rHoo : 0317 [Vthorloo - 072}

Using the cutoff function 7g,; instead of v in Proposition 3.23 gives

~ 2 6 o 2

[ [ V@A + Al dudr < e T+ | Al g 0
0 [’Yo,%:l] t=0
” 2 6
) [ [ V@Al + Al dudr < ceo1 4 T)
723

for n =2 and

T* , )
/0 /[7>1]||v(2)AH2 + HA||6d,ud7' < C€03 <CjB + T*)

for n = 3.

Next, using 7, s in (51) and inequality (72) above we obtain for n = 2

T
/0 ||A||§o,[72%]d7— < cep(ceo(1 +T7) + €T™)
(73) < ceg.

For n = 3 we have

T 12 2 1 13 13
A o < c(CamFed (2leed (Cla + TIF + ccolCan)H(T7)? )

where ¢ = c(||h||oo, Cy1s Cy2, T, 1, 60) forn =2andc = c<||h||oo, Cy15 Cy2, T, 1, €, C’AB>
for n = 3. We use the convention that for the remainder of this proof all constants
¢ will depend on these quantities for n = 2 and n = 3 respectively.

Note that by (CB) we trivially have ||A||so 0,4 < c.
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We now use (64) with v; ;. Factorising, we have

d S S
= | IV WA g < Al oo [ IVw Al gdu
220 (H A4l zg>0]>

en(hE [ V@A gt (14 ADIAIR,,

Y3z
4’8

+cll Al

3
4’

o)

Y3
1’

00\\1

< (1Al g + %) [ IV Al g

4
+ CHAHg,['yz%] (1 + HAH?)O,['YZ%} + h + h3) .

We wish to solve this differential inequality using Gronwall’s inequality, Lemma A.1.
We will use the integral version (considering the integrals in the above expressions
as functions of time), since we can bound the integrals of relevant quantities, as we
have shown above.

Integrating,

J IV AR g = [ VAl 5

t 0
= C/o K”A“;Mil * hg) /M||V<k)f4ll27§,;du] dr
t
(75) * C/O {HAH%,[’YZZ] (1 + HA“io,[a,z%} + h+ h§>} dr.

Now from our earlier calculation (73) and assumption (CB) we have

t
[ (141 g + 8 )dr <

and, using our assumption (70)

t 4
<[ [HAH;m] (1 AN g+ + h)] dr <.
Also, we have

[ 190 Al; d

< cap(k),

where «q is as in the statement of the proposition.
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Therefore, inequality (75) is of the form

t
_5t)+/)\7047d7

where

= [ 190 Al g

t 4
0= [ IV0AI +c/ LA oy (14 TN gy + B+ 13) | dr,
0 4 4

and

4
At) =I5 pog) + A7

Noting that g and [ AdT are bounded by the constants shown above, we can invoke

Gronwall’s inequality and conclude
2 t [ Aw)dv
/h>7]HV(k)AH di < B(t) + /0 BIINT)el AW ar < ok, ap(k)).
Trivially, we also have
S IV e AlPdn < ek + 2,000k + 2).

Therefore using (52) with 7 ;5 we can in fact bound || Al on a smaller ball:

7 15
8716

2n“—3n
| Al 8”[71310 < ceo<[c(2,ao(2)>} >+ eo).
Finally, using (51) with 7" = V)4 and v = 7151 We obtain

V04l oy < V@A ) (Vs Al 55

6

+ (AN o iy + 1)||V<k>A||3,h>121>

c(k,ao(k—i—Z)).

This completes the proof of the proposition. 0
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REMARK. This proposition is essential in the overall argument, however we note
that to obtain bounds for all derivatives of curvature using this result we must
assume that the initial data fy is not only ‘smooth enough’ (see short time existence
theorem), but in fact C*°. This is why we have smooth initial data in the statement
of the Lifespan Theorem. It is probably possible to use a different argument for
the very high derivatives of curvature, more similar to classical theory, and then we
would only require C* initial data in the case of surface diffusion flow. However
since we are not overly concerned with the regularity of our initial data we have not

pursued that here.

6. Proof of the Lifespan Theorem

We begin by reducing the problem to the case where p = 1 in (22). Observe that
if p # 1 we may rescale our surface f to f(x,t) = %f(m, tp') in order to return to
the case p = 1. This preserves our key integral estimates (multiplying some terms

by a constant) and most crucially the integral quantity

AllPd
/f_l(Bp)n |Pdye

scales to

Sy IR
where n is the dimension of the manifold M. In our cases, n = 2 or n = 3 and
the integral is scale invariant if p = 2 or p = 3 respectively. For the details of this
scaling, please see Appendix B. We will show that in the p = 1 setting

Tzl
C
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and scale back to the case of f~'(B,(z)). Due to the contribution of the fourth
order term AH in our governing equation (CSD), to maintain our earlier integral
estimates we scale time by a factor of p*. Note that h may scale in a non-invariant
fashion but this introduces a single change in the constant ¢ only, and certainly a
scaled h (we only perform this rescaling once) continues to satisfy (CB). Therefore
we will conclude

T 1 1
pt T c

— T 2 7p47
c
which is equation (23). The estimate (24) valid during this time comes along ‘for

free’ in a sense, due to the structure of our argument.

We make the definition

76 t) = sup Al|"dp.
(76) oy =suw [ Al

By covering B; with several translated copies of By there is a constant ¢, such that

77 t) < ¢, su All"du.
(7 o0 <eysup [ A

Note that ¢, = 4! is sufficient.

By short time existence we have that f(M x [0,t]) is compact for ¢ < T" and so

the function 7 : [0,7) — R is continuous. We now define

(78)
A _ sup{0 < ¢ <min(T, \2) : n(7) < 3cyep for 0 <7 <t} n=2,
N sup{0 <t < min(T, A\3) : (1) < 30p24c770}§’6(2)/3 for 0<7<t}, n=3,

where ), is a parameter to be specified later. The constant cpgy is the maximum of
1 and the constant from Proposition 3.26 with k£ = 0. Recall that we assume (AB)
in the case where n = 3. Note that the ¢, on the right hand side of the inequality is

from equation (22).
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The proof continues in three steps. First, we show that it must be the case that
¢ = min(T, \,). Second, we show that if t{” = \,, then we can conclude the

Lifespan Theorem. Finally, we prove by contradiction that if T" # oo, then t(()”) #T.

We label these steps as

(79) t§" = min(T, \,),
(80) ti" =), = Lifespan Theorem,
(81) T+4c00 = 4T

The three statements (79), (80), (81) together imply the Lifespan Theorem. We
expand the sketch of the argument given above as follows: first notice that by (79)
tén) =\, or tén) =T, and if tén) = A, then by (80) we have the Lifespan Theorem.
Also notice that if tén) = oo then T" = oo and the Lifespan Theorem follows from
estimate (84) below (used to prove statement (80)). Therefore the only remaining
case where the Lifespan Theorem may fail to be true is when t(()n) =T < oco. But
this is impossible by statement (81), so we are finished.

We now give the proof of the first step, statement (79). From the assumption
(22),

3cyeo, for n = 2

1/3 2/3
3CP24CHCA/B 60/ , forn =3,

n(0) <e < {

and therefore (78) implies t(()n) > (. Assume for the sake of contradiction that

t{” < min(T, A,). Then from the definition (78) of £ and the continuity of 1 we

have

(n) 3cyeo, forn =2
82 t =
(82) 77( 0 ) {3613240770;?6(2)/3, for n = 3,
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so long as ¢g < 1 and Cyp, cpay > 1. Recall Proposition 3.23. We will now set v to

be a cutoff function as in (25) such that

XBj (x) <Y < XBi(a)s

for any x € M,. Choosing a small enough €, (by varying p in (22)), (78) implies that
the smallness condition (60) is satisfied on |0, t(()")). Due to (CB), we also have that

| Al < 00. Therefore we have satisfied all the requirements of Proposition

00,[0,t5™)

3.23, and so we conclude

2
+ cocne(’ft

All2d g/ All2d
/fl(Bé(w))H IPdy fflual(x))” IPdy

t=0
(83) 2€0, forn =2 and Ay = —;

S 2/3 e’ C’l/3

20p24CAB €/, forn=3and \3 = cpu—2& e

for all ¢ € [0,t*], where t* < t(()") and cq is the constant from Proposition 3.23. That
is, equation (83) above is true for all ¢ € [O to ) We combine this with (77) and

Proposition 3.26 to conclude

2¢,€0, forn =2

1/3 2/3

84 t) < c% 20 su All“d
(84) n(t) p24Cy SUP 1B,y || || N—{ cpaucyCuey”,  forn =3,

zeRn+L
where 0 < t < t(()").

Since 7 is continuous, we can let t — t(()") and obtain a contradiction with
(82). Therefore, with the choice of A, in equation (83), the assumption that
t(”) < min(7, A\,) is incorrect. Thus we have shown (79), the first of our three
steps.

We in fact have also proved the second step (80). Observe that if t(n) = A, then

by the definition (78) of tén)
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which is (23). Also, (84) implies (24). That is, we have proved if ti" = A, then
the lifespan theorem holds, which is the second step (80). It only remains to prove
equation (81).

We assume
" — # 00;
0o - )

since if T = oo then (23) holds automatically and again (84) implies (24). Note
also that we can safely assume 7" < \,, since otherwise we can apply step two to
conclude the Lifespan Theorem.

Our strategy is to show that in this case the flow exists smoothly up to and
including time 7', allowing us to extend the flow, thus contradicting the finite max-
imality of T" from short time existence.

To begin short time existence again at time 1", we need to prove that the limiting
object Mt has at least some regularity. Since the constraint function h satisfies the
estimate (22), if we can establish regularity for f(-,T") then we will have taken case of
the constraint function also. We will show that M7y is in fact smooth, by obtaining a
uniform bound on all the derivatives of f on the interval [0, 7"). This will then allow
us to assert that the convergence M; — M7y is uniform, that the limiting object My
is unique and that My is smooth. This will be enough to not only start short time
existence again at T, but our entire argument.

Our main tool is Proposition 3.26. Since T' = tén), (84) implies the smallness

condition (70) and we have

(85) IV Allze 5, @y < e(m T eqn, o, oy, ao(m +2))
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for any t € [0,7) and by the definition of 7 (see equations (22) and (76)) for any
x € M, where qq is defined as in Proposition 3.26. That is, we have a pointwise

bound
(36) IV Al < e,

on all of M;, where the constant ¢ is as in inequality (85) above. We take the
convention that all constants c in the estimates below also depend on the quantities
in (85).

We will now work towards converting the bound (86) to bounds on the coordinate
derivatives of f. First however, we must show that there does exist a limiting
Riemannian manifold My, and that the topology of the evolving manifolds (which
is determined by the metric) is equivalent to the topology of the limiting object. If
we cannot show this, then extending the flow beyond the maximal time 7" might
not be a contradiction, since we may have a different flow. We will use a result
from Hamilton [27] which proves that all the evolving metrics are equivalent to the
metric of Mp. (A stronger statement.) This is a standard argument, and although
Hamilton used this with Ricci flow, it is important to many other flows. The first
appearance of this argument in the context of a hypersurface flow is Huisken [28]
on mean curvature flow.

Recall the evolution of the metric:

o
509 = ~2(A,AH + h) < Ax Vg A+ Alh.

Therefore by (86),

(87) IV gl < c.
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Similarly, the evolution of the Christoffel symbols is bounded as

;Ffj < V(g)A x A+ V(Q)A x VA + VAHh”OO,

so again by (86) we have

(83) IV 0Tl < e

LEMMA (Hamilton [27], Lemma 14.2). Let g;; be a time dependent metric on a

compact manifold M for 0 <t <T < oo. Suppose that

T
/ max
0o M

Then the metrics g;;(t) are all equivalent, and they converge as t — T uniformly to

09i; dt < C.

a positive definite metric tensor ¢;;(T") which is continuous and also equivalent.

By (87) the hypothesis of the lemma is satisfied and we have that the metrics
g(t), for 0 < ¢t < T are equivalent. Choose a local chart with & < g;;(t) < C on a
neighbourhood U C M, t € [0,T'). Let I' be the Christoffel symbols associated with
this chart and denote m iterated coordinate derivatives by (). For any tensor T

we have the formula

(89) V(m)T = 6(m)T + Z Z (9(k)T . 8(k1)F .- -8(kl)F.

=1 k’-i-kl-l-m-i—kl:m—l

This is immediate for m = 1 and then follows by induction. The base case is the

definition of the covariant derivative:
VT =0T +T T

It is instructive to see how we move from m = 1 to m = 2 before handling the

inductive step. The derivation is

V(Q)T = V(@T + T % F)
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=0T +T*I)+T (0T +T I
=0T +0(T*T)+T*0T +T*T'*T
:8(2)T+[T*0F+T*F*F+0T*F}

=0T+ Y OwT*0u)l'+ > OwT * )l * O, T

k+ki1=1 k+k1+ko=0

2
=T+ > Oy T+ D)L -+ Oy T

=1 k+k1 +'--+kl =m-—I

Using the inductive hypothesis, the following derivation finishes the induction proof

of (89).

VT = V( Z > 3<k>T'3<k1>T'“3<kz>F>

=1 k+kit+-+k=m—I-1
= (9(m)T +I' % a(m—l)T

m—1
+ I % ( Z Z 8(k)T . 8(k1)F- . 8(kl)F>

=1 ktki++hky=m—I—1

O T - Oyl - -+ %)F>

( =1 k+ki+- +l€l m—I—1
= 8(m)T + I * 8(m_1)T

m—1
+ Z Iy T - Oy I -+ - Do) I % Oy
I=1 ktki+-+k=m—i-1
m—1
+ Z O+ T - ey -+ - Oy
=1 kdkit+-+k=m—I-1
m—1

l

1 k+k1+---+kl:mfl71

= OmT +)_ > Oy T+ D)L -+ Oy T

=1 k+k1+---+kl:mfl
Set o = ||| + ...+ ||0um'||. Then

(90) 18 T < e(m, 1)1V ey Tl + 10m—1) T + - +[[T']])-

We wish to refine the expression on the right hand side of (89) to include only

covariant derivatives. For clarity we state this as a lemma.
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LEMMA 3.27. For any tensor T" we have

(91) 10 TNl < c(my om-1) (V) Tl + IV )Tl + - + I T']])-

PRrROOF. The proof is straightforward and again by induction: for the base case

we have
10T < e(X, a0) (VT + IT),
by (90), and then
106 Tl < e(m, a1 )(IV ) Tl + 00T + - - + [IT]])
< C(W,Om—l)(lmm)Tll
+e(m=1,0m2) (V- Tl + ...+ [T])

te(m = 2,0-3)([ Vo Tl + ...+ |T])

+e(1,00) (VT + | T11))

= ¢(m, Uml)é ((mz_:ic(m —J, Umjl)) \IV(i)T!\) :

i 7j=1

using the induction hypothesis and taking the convention that ¢(0,0_1) = 0. O

Noting that coordinate and time derivatives of the Christoffel symbols I' are

tensors, we apply (91) to %F and O, I". Using (86) and (88) with this we obtain

e}

and this implies
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We claim now that
(93) ||8(k)V(l)A||oo, ||8(m+1)f||oo < c(m,T, fo, ||h||oo), fork+1=m>0.

Using (86) and ||0f||> = n, this clearly holds for m = 0. For the induction step, let

k+1=m+1 and then

k
(94) = > 04-1)(Vieri-p A Ax 0f),

where we used the identity
OT —NT =T xAx0f,

for any tangential tensor T' in the last step. This is easily seen by differentiating
(T'|v) as follows. Let {e;, v}1<i<n be a choice of Gaussian coordinates centered at

a point p € M; and then compute in a neighbourhood of p:

D, (T|v)=0
= (DejT‘ u) = — (T| Dejy)
— (DejT‘ I/) ej = — (T| Dejy> e;
= 0T — VT =Tx Ax0f.
Now from the induction hypothesis we have that for any ¢ where 0 < < j7—-1<

kE —1 < m, the quantities 0,V (x4i—jA, OiyA and Iy f are bounded. Therefore,

the above derivation (94) shows the first part of claim (93). The second part of (93)
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is an easy consequence of the Gauss-Weingarten relations
8(2)f:A+6f*F

and (86), (92).
Considering the governing equation (CSD) and equations (86), (93), we have

that

(95) ||a(k)%f||ooa 100) flloo < e(m, T, fo, [[llosjo,)-

Hence the convergence f(-,t) — f(-,T) is in the C* topology and My is smooth. We
have that f(-, 7)) is a smooth immersion as the metrics at each time ¢ are uniformly
equivalent and ¢(t) — ¢(7). Finally, by short time existence, we can extend the
solution to an interval [0,T + J], contradicting the maximality of 7.

This establishes (81) and the theorem is proved. O

7. Concluding remarks

As mentioned earlier, Kuwert and Schétzle [37] proved a Lifespan Theorem for

the Willmore flow,

;e = (AH +QA)),

where they considered surfaces immersed in R” via f, i.e. f: M? — R". Note that
in one codimension Q(A) = ||A°||>H. We first remark that one may use their setup
of the evolution equation (using the induced Laplacian along the normal bundle) to
obtain the Lifespan Theorem we proved here in arbitrary codimension. While the
core argument remains identical, there is additional notation to introduce and the

blowup analysis with associated long time existence and exponential convergence to
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spheres (see chapters 6 and 7) will not be valid in arbitrary codimension. We have
therefore omitted this analysis.

We also remark that one may consider the evolution equation

gt = (AH +QA)),

where f: M? — R3, with Q(A) a term which may be estimated as
(96) Q < PJ(A)

and recover a Lifespan Theorem. One may employ the techniques which we pre-
sented in Sections 4 and 5, or of course an adaptation of those in [37], to obtain this
result. This is essentially due to the integral estimates not depending on the pre-
cise form of the P-style terms. It may be possible to improve the growth condition
(96) above to include some derivatives and more copies of A, however we have not
pursued this. Of course combining this remark with the analysis we present in this

chapter for constrained flows will give a lifespan theorem for flows of the form

gt = (AH + P{(A) + h)v.

Apart from constrained Willmore flows (for which one may compute constraint
functions which give monotone area, volume, etc) we are not aware of any interesting
examples of such flows. For immersions of dimension greater than 3, one will still be
frustrated by the Sobolev inequality Theorem 3.20, and the local version Proposition
3.21. We are not aware of any technique which may be used to completely remove

this restriction.



CHAPTER 4

Gap lemma for constrained surface diffusion flows

1. Introduction

We begin our discussion by first recalling the classical gap lemma, typically seen

in an introductory course on real analysis.

THEOREM (Classical Gap Lemma (CGL)). Let A C R and assume there is an
a € R such that a = sup A. Then for every ¢ > 0, there is a b € A such that

la — b <e.

The (CGL) says that, although @ may not be in A (that is, we cannot choose
e =0), we can become as close to a as we wish.

At first glance this appears far removed from our work here in evolution equa-
tions, deep in the context of differential geometry; at least to the point where such a
result is far entrenched in the required background, and not even worthy of comment,
let alone be called a theorem.

But as with many similar results in introductory calculus, they stem from an
abstract, hazy body of properties that mathematicians are interested in and when
new, unknown objects of higher complexity appear, mathematicians tend to run
tests on the new objects to be sure that they make sense and classify which of these

properties remain true or false, and under which conditions.

141
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That said however, our gap lemma is not a direct analog of (CGL). Indeed,
a direct analog would be just as easy to prove as the classical gap lemma. The
relationship our gap lemma has with (CGL) is more like that of a second cousin,
rather than a direct ancestor or descendent. We will make this precise. Consider a
smoothly varying one parameter family of manifolds M;, where t € [0,T'), equipped
with any metric |- | : My — R so that (| - |, {M;}) is a metric space. Then an

interpretation of (CGL) in this context could be:

THEOREM (Manifold Gap Lemma (MGL)). Assume My exists. Then for any

€ >0, there is a t, € [0,T) such that |My, — Mr| < e.

Let us consider families of manifolds (and Riemannian metrics) which evolve by
some law, such as mean curvature flow, Ricci flow, and in particular surface diffusion
and the constrained surface diffusion flows. Unfortunately, if 7" is maximal then we
cannot in general expect (MGL) to remain useful. Indeed, for the flows mentioned
many interesting things can happen at the final time 7', and the manifold M; may
possess any number of singularities. This is in contrast with the fact that the
limiting object M will essentially always exist (at least in the weak varifold sense,
for example). It is clear that if we wish to recover a relevant statement, we must
impose some measure of regularity on Mr, and then question not how ‘close’ we can
become to My, but attempt to obtain information regarding the geometry of M.

With this in mind, we state our main theorem for this chapter.

THEOREM 4.1 (Gap Lemma). Suppose n € {2,3} and let f: M™ — R""! be a

compact immersion with (AH + h) = 0. Then if assumptions (GLA1) and (GLA2)
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are satisfied
(GL) M" =5"
where S™ is an embedded n-dimensional sphere in R"™. If f : M™ — R s instead

a proper immersion then we must assume in addition (GLA3) to recover (GL), and

allow S™ to denote a union of embedded spheres and planes.

Before detailing the conditions (GLA1), (GLA2) and (GLA3) we make some brief
comments relating this statement to our previous observations. First, the hypothesis
of the theorem includes that f(-) is a stationary surface under (CSD) flow, and so
in the ‘one parameter family of manifolds’ context we may assume that 7" = oo.
Second, although this statement includes only the ¢ = 0 case from (MGL) in any
rigor, certainly choosing a suitable metric for comparison of manifolds would give a
statement similar to (MGL) for other values of €. It is also worth mentioning that
one may easily prove that in any dimension stationary surfaces possess constant

mean curvature under (SD) flow:

0:/ HAHd,u:—/ IV H ||2dpe.
M M

In the case of (CSD) flow one may perform a similar computation:

0:/ HAHdquh/ Hdy — —/ |yVHH2du+h/ Hdp,
M M M M
and so if
h/ Hdp < / IV H|%dp
M M
one obtains the same conclusion, that stationary solutions possess constant mean

curvature. This simple computation is of course not sufficient to obtain Theorem

4.1, although it does highlight the kind of conditions which we must impose upon
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h to obtain our desired result. This is natural, since of the possible choices for h
any number of them may be poorly behaved on spheres (non-zero for example). We
must rule out these constraint functions with the conditions for our theorem.

We make one final remark on the above computation. It is independent of n. This
is remarkable since throughout this work the intrinsic dimension of our manifolds
is tightly restricted to n = 2 or n = 3, with the latter even causing difficulty at
times. This may only imply that the elementary computation above is too simple
to see the full complexities of the problem at hand, although it may also indicate
that Theorem 4.1 remains valid in higher dimensions, and that our techniques here
are suffering from a technical disability.

The conditions for the theorem to be true are global smallness of the total trace-
free curvature, a growth condition on A and, in the case where M, is not compact
in the limit, a bound on the growth of the curvature at infinity. Although they
are somewhat restrictive, the result gives an important feeling of the stationary
manifolds for a well-behaved class of constrained surface diffusion flows.

We say h satisfies (GLA1) if for some k € (1, 0],
1
(GLAL) h*|M| < o /MHV<2)A°H2 APV AN + H? [V H* + [|A]*] A dpe.

where ¢ = ¢(n) is the constant in the leading term on the right in Proposition 4.7.
Note that certainly (GLA1) can be checked and satisfied a priori. Also note that
this growth condition is global, and so none of the problems related to localised
estimates come into the analysis for the Gap Lemma, unlike the Lifespan Theorem

and Interior Estimates in chapters 3 and 5 respectively.
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The other assumptions are as follows. We say that f : M™ — R""! gsatisfies

(GLA2) if for a given ¢y > 0,
(GLA2) / 1A% dp < eo.
M

One should think of this as the averaged distance from M to a sphere in L™. The
constant €p is again known a priori and is the chief restriction. In the proof of

Proposition 4.7 we determine exactly how small ¢; must be. Finally, we say that

[+ M™ — R™! satisfies (GLA3) if

1
GLA3 lim inf — / All2dy = 0.
(LAY ) A

= p

Let us say that we are interested in a given (CSD) flow, and wish to determine
if the Gap Lemma holds for our flow. Then we must check (GLA1), and typically
while doing so we will wish to use the other assumption, (GLA2). The way we do
this is by observing that while both ¢ = i and ¢ are fixed a priori, this gives not a
fixed pair of values for which the theorem is true but rather a whole range of values.
Therefore, we are ‘free’ to further tighten (GLA2) so that we can at least prove
(GLA1). Depending on the flow and the constraint function, this may be no further
restriction at all (in the case where ¢ is already required to be smaller than needed
to prove (GLAL)), or a significant restriction (in the case where the €, required to
prove (GLA1) is much smaller than that required from (GLA2)).

To strengthen the Gap Lemma to a more complete stability of spheres in L2
result, we would need to weaken the assumptions on the curvature to conditions
at initial time, and of course consider the flow equation instead of only stationary
solutions. This is far from trivial, and such a procedure was carried out successfully

by Kuwert & Schétzle [36], who we credit for the inspiration and structure of our
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argument here. In this overall sense, the Gap Lemma we prove is (similarly to the
Lifespan Theorem) in preparation for global analysis of the (CSD) flows. We will be
continuing our analysis toward obtaining our own stability of spheres result, which
is the subject of Chapter 7.

A version of the Lifespan Theorem with the smallness assumption on the trace-
free curvature instead of the full curvature would already be enough to attain this
goal, although this is a departure from the method of Kuwert and Schétzle, whose
technique (using the fact that Willmore flow is a gradient flow of total curvature)
is superior in the sense that they immediately rule out development of type 2 sin-
gularities in the limit. For us, it will be a delicate interplay between the Lifespan
Theorem and the Gap Lemma. This second version of the Lifespan Theorem is yet

another avenue for further research in this area.

2. Preparation

Unlike the Lifespan Theorem, the Gap Lemma does not make use of derivative
integral estimates. Instead, we deal directly with integral estimates where the right
hand side involves the speed of the flow. Throughout this chapter we will employ
the notation FF = AH + h, for some specified constraint function h.

We begin with some elementary computations. For our (CSD) flows, we have
101l = [[(F)w]l = |F]
(97) = |(AH)+ h| < |AH| + |h|.

This implies

Joampdu+ [ hydu= [ oy
M M M
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We can also obtain an inequality in the reverse direction by

F=AH+h
— AH=F—-h

(98) — |AH| = |F — h| < [F| + |n],
SO

/|AH|75dM§/ IFled;H/ Al dp.
M M M

The overall idea of the argument is to prove estimates like

[ V@Al + A1 A% < [ [AAdp < [ [V HIPde < [ |AHPdg
M M M M

S/ |F*dp.
M

Then the proof is, in essence, that if f(-) is a (CSD)-surface, |F'(-)| = 0, and then we
obtain that ||A|| = 0, |[|A°|| = 0, or both are zero at final time. This implies f(-,T)
is an embedded plane or sphere. Of course we cannot prove estimates exactly as
above; there are some error terms and the constraint function A forces us to work a
little harder.

But even before we have these troubles, the first problem is how to exploit the
symmetries and fundamental theorems of differential geometry to obtain relation-

ships like
Vo)Al < c||AA]l + ‘error’

< ||V H|| + ‘error’

< ¢|AH| + ‘error’.
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It is not easy to obtain these relationships as stated. However, with the introduction

of the tracefree second fundamental form
A=A — %H g,

such relationships become much easier to prove. One of the nice symmetries that

this definition makes apparent is

(99) V(A% = V;H.

n—1
This is especially useful when combined with the adjoint V* of V, using which the

previous expression becomes
—-=V*A° = VH.
To prove (99), simply note
9IVi(A%) e = ¢"Vi(Ajy — Ly H) = VA, — IVVH = (1 - L)V, H,

by Codazzi.

We will also need a Simons’ identity for A°. Using (2),
AA% = AAU — %QUAH
= 8°(V H) + LH?Ag — ||A°|Ag + HS(Ag, A%
(100) = 8°(Vy)H) + LH?AG + A% % A A+ Ax A®x A°,

where S°(T) is the symmetric tracefree part of a bilinear form 7.

3. Estimating ||V (3 A°|| in terms of |AH|

We begin this process with the following lemma.
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LEMMA 4.2. For an immersion f : M™ — R"™ and ~ as in (25),
(101)

J VAP + [ A < :

1 / 2 4 s 1
|F1*y*dp + c|h
1) I (cy1)?

2 2 oll4.2
+ / All*dp + / A du,
c(ey1) h>0]” IFdp+c | APy dp

where ¢ = c(n).

PROOF. Multiplying (100) by A°y?* and integrating by parts,
(A, 88 2y = — [ [VA|E a2 [ (Vy)A4%, V4% 1d
M M M
1
= [ (A% S (Ve )y yPdu+— [ H (A%, A%) 2
M nJu
(102) + / (A2 % A% % A7 % A°)2dp.
M
Note that the trace-free part of V(o) H is given by Vo H — %AHg = SV H).
Using this we obtain
1

[ A0Sty = [ (A0 V) H — SguH )2 d

_/ Ao Vi) H fy *dp — 7/ (trace AO)AnyQdu

(103) . / (A2 (VI )2 dp — 2 / Vi) (A) (V7 H )ydp.
Combining estimates (102) and (103) gives
[Tt [ A =2 [ [(Va) (AT H) — (V1A% VA% 2
+/ J(AY)D) (VH )P dp — / 25 A5 A% A°)ydp.
Estimating,
[T s - [ A< " [ HIP ke [ (A

VAP + (o) [ 1A%
va [ VAT dict (o) [ 1A% P
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[ IVHP g+ clen)” [ lac)Pdp
M [v>0]

3n—5

S we have

choosing ¢; =
Y o 1 o n—1
= VAt~ [ AP < T V|
3n Jm nJm n Ju

+ 0(071)2/

[v>0] ’

AP dp -+ [ A .
M
We estimate the first term on the right by

/IIVHIIWdu:—/ (H,AH>W2du—2/ (Vv, VH) Hydp
M M M

2n ) .
— 2 o . 1 o]'
= — [ . aH) - (99 (V(A)]) Hodp
1
< 72/ |AH|2'}/4CZ/J/+4(C,-)/1)2/ H%du
()" M [v>0]

Vyx AxVA%)yd

+0/M( v x Ax VA )ydp

1
< — [ IAHPY A+ clen)” [ JAlPdp
M [v>0]

B (Cvl>2

1
(104) +

n—13n

[ v+ cle)” [ 1A Rd,
M [v>0]
where we used (99). Combining the inequalities gives

o o242 1 2 o242

o [Vt [ A

3n Jm n.Jm

C

(071)2

1
<o [NV Sy [ AHP A en)? [ Al
nJm M [v>0]
+/ | A°||*yd.
M
Absorbing [,,]|VA°||*y2du on the left, this becomes
4 ol12.2 1 2 ol12.2
o [ IV [ R A%|
nJm nJm
C
< S [ IAHPY et elen)” [ A+ e [ A7) 2y
(cy1)” M [y>0] M
& &
/740[#—72’1/ (AH)y'dp
M (ch1) M

(671)2

= [ PPy — |np
M
(105) telen)” [ ARdptc [ )1,
[v>0] M

(Cvl)z
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since
|F|> = (AH + h)?> = |AH|? + |h|? — 2h(AH).
Note that

—ch / (AH )y dp = ch / (VH, V) 73du
M M
1 o
< oo [ VA d+ clen)’h? [ At
Combining this with (105) above and absorbing, we finally obtain the result. 0

A slight variation to the above proof also gives the following estimate.

COROLLARY 4.3. For an immersion f: M™ — R and v as in (25),

R TR A A
M M

1
< 072/ \F|274du+ch/ H72du+0(cwl)2/ HAHQdquC/ |A°(1*~*dp,
()" M M [v>0] M

where ¢ = c(n).

PROOF. Instead of (104) use

_/ <H7AH>’YQ:—/ <H,F)72d,u+h/ H~%dp
M M M
1
< / [F[Pyldp+ h / HAy2dp+ (en)” [ H2dp.
(cy1)” M

[v>0]

The remaining terms are estimated identically to before. 0
Using Codazzi and interchange of covariant derivatives, we improve the left hand

side of the previous estimate.

LEMMA 4.4. For an immersion f : M™ — R"™ we have

o n—1
J IV HI dp+ [ HAV A g P [ 2V |
M M n M
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1 o
o [P < [ PPy e b ) [ AN
n(n—1)J/m M M [y>0]

C/M(IIAOIIQIIVAOH2 +[14%1°)y dpe,

where ¢ = ¢(n).

PRrRoOOF. Gauss-Bonnet, interchange of covariant derivative and Codazzi yield

the following identity

V*(V(Q)H) = V(V*VH) - * VAO,

where V* is the formal adjoint of V. Taking an inner product on both sides of the

above equation with (VH)~* and then integrating by parts gives

/M<VH,V*(V(2)H)> VAdp = /||v H||274d,u+4/ (Vy % VH # Vo H)d

n—l

— /H2 (VH,VH) 4du+/ (VH, Ax A° % VA%) vAdy

- /M (VH,VAH)~*dp,

and so, integrating by parts once more,

/MHV(Q)HH y IVH|*v*du < C/M(A * A° % VA® % VA )y dp
(106) + c/M (V% VH % V oy H)dp + c/M IAH 2 dp.

Note that we used [;, <VH, V*(V(z)H)> Yidu = — [y (VH,AVH) v'dp.

Recall that from our earlier calculations
IAH|> = |F|* + |h|* — 2Fh.
Inserting this into (106) we obtain

J 1¥e dew— | HAVHIP A < [ (PP + | = 2F 0] dp
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n?—n+1
+ T [ IV HIPY A+ c(e)? [ IV HIPdp
n M M
(107) w0 [ VA k[ A7RV A2
where we also estimated [,,(Vy*VH*V 9y H)v?dp and [,;(Ax A%V A%V A°)v*dp,

and used A = A° — %Hg.

We now estimate the ||VH|? term. Using (99) and then Corollary 4.3,

[ IV HIP A < e [ VA
M M
< elen)? [ PPyt [ 1A dp
M M

+ 0(071)2/

[v>0] |

|A||2dp + ch/ HA2d
M
< clen)” /M |F*y*dp + ch /M H~*dp

elen)” [ 1A dutelen)” [ [IAdp.

[v>0

Inserting into (107) yields

| N HIM i+ [ HVH dp < e [ (1P =280+ BE)y
M M M
2 2 0|64 4 2
b HY e [ ]1A%) 5 [ laja
Felen?h [ Hdpte [ A dut elen)’ [ A dn
(108) o [ A PIVAN dya+ 81 [ HV A2 d

The last integral is critical. For the Gap Lemma to work we need some positive

non-derivative term on the left. We obtain it from the last integral as follows.
| VAP
M
_— / H? (A%, AA%) v dp — 2 / H ((VH)A°, VA% v dy
M M
- 4/ H? (V) A°, VA®) A dp
M

- _/ H2 (A%, Vo) H + LH? A% + A% % A% 5 A° + Ax A° 5 A°) 7 dps
M



154 4. GAP LEMMA
—2/ (VH % VA % A) dp — 4/ H2(VA° % A° % V)7 du
= —/ A" V(Q)H>7 dp — —/ H? <AO,H2A°>74d,u
- / H? (A%, A% % A% % A%) 7 dp — 2 / H(VH * VA® % A%)ytdy
M M
—4/ H*(VA° x A% % Vy)y’du
—_ / H? (V*A°, VH) ~'dp + 2 / (V, H)(A°)2 (VI H )y d
+4/ a? <A°,VHV7>73du—*/ H4||A°||274du—6/ H?|| A" dpe
—2 [ H(VH« VA"« A)'dp—4 | HY (VA5 A5 Vy)y dp.
Using (99) we estimate the equality by
| A A7)
M
1 41 f0]|2,.4 n—1 2 2 4
< [ YAy e P BV P
n Jm n M
vo [ HNAY Y dpte [ HIVH|-IVA] - A0 dp
+elen) [ HYVA- |47 du

1
< [ mac)
nJMm

IVH > dp+c | H2A%) " d
£ (04 00) [ VA St cs, [ ANV AP
+es(en) [ HYA| M dp.

Let (52 + 53 = nT—l Then

[ NP et [ AR = (0= 1) [ RV H| P
M M M
(109)  <e [ APITAY A dp+e [ AN g+ clen)’ [ Al
M M [v>0]

where we estimated

1

2 2 0122 4 0124 4 0|2
H=||A°|*v*dp < f/ H*||A°||*~v*dp + / A°||*dpu.
(Cvl) / H H =4 Ju H “ (Cvl) [’y>0]H H
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Combining (108) and (109), we conclude
[ IV HIP da+ [ B2V HI A+ 6 [ HY|A%)
M M M
< c/ (IF? = 2Fh + |h?) 7 dp + c(c,ﬂ)%/ HA2dp
M M
e [0 i+ elen)* [ Al
¢ J At clen)” | lAldp
o [ JAPIVA IR dp+ by(n = 1) [ HE|VH| dp
e[ (IFF+ ) dutc [ A dutclen)’ [ 1A dp
M M [v>0]
o [ JAPRIV AR A+ 10— 1) [ HEVH|* dp
Choosing 6; = ﬁ gives the result. O
We further exploit the symmetry relations to convert the left hand side to an

expression involving ||V 2 A°||.

LEMMA 4.5. For an immersion f: M™ — R"" we have
J V@A dp+ [ ARV AN At [ E2VH|P
M M M
[ HYA P g [ A A7)

M M
<c [ IFPyduc [ Py cen)t [ A Rd

M M [y>0]

e [ (AT A7) + |1A%]%)y dpe

where ¢ = ¢(n).

Proor. We will again use a consequence of interchange and Codazzi,
(110) V*(V(2A°) = V(V*VA?) + Ax Ax VA
Multiplying (110) by v*V A° and integrating by parts,

/M (VA V* (Vi) A%)) hdp = — /M (VA?, AVA?) *dp
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— | ||V A2y dp + 4 (VY)V A2, V(i A°) ~d
(2) Yoap Y » V(2) yap
M M
5§/<VAZVGWVAﬂyﬁ@w+/(VAﬂA*A*VAﬂywu
M M
:/WANW%W+/<VMJHA*VMMWM
M M
+4 [ (T (TA%) ) (AAY) )y dp
— [ V47| d
M
< [ IaA% B du+ e [ VAT RIAIR dpte [ (Vyx VA5 Vi A%) d
< [ 1A du+ 0y [ V@A du+ csnlen)” [ IVA%) dp
M M M

o [ IVAYPYA dp

Choosing §; = %, absorbing [,V (2)A°||*v*dp on the left and multiplying by 2 we
have

[ 1964712 d
M

< 2/ ||AA0||274d,u+c/ ||VAO||2||A||2W4du—|—c(cﬂ)2/ 1A% .
M v ;
(111)

Now use (100) to compute

1
[ 1Ayt dn = [ (57T H), AN ytdu+ — [ H? (40, A4%) y'dp
M M nJm
+/ (AA®, A% A% % A° + HS(A® % A°)) v dp
M
1
< [ IV eHI- IAA%|Y du+ — [ HE|A%) - A dp
M nJMm
[ NAA APy o+ [ AR - H A
5
<o [ ANy dp+ s, [ 1V HIP
=1 M M

s [ NAN et cs, [ HYA%Y R gt s, [ HEAY
M M M
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Choose 3-)_, §; = 3 and absorb [;,[[AA°||>y*du on the left to obtain
[ IaaciPdy < e [ Vo HIP du+ e [ A A+ e [ 1475
M M M M
where we also estimated

H? || A" <

1 1
*H4 A02 Z||A° 6.
< SHYAY? + 5 ]14°)

We combine this with (111) and conclude
/ IV All*y*dp < C/ IV ) HI[*y*dp + C/ H|| A"y dpe + C/ 1A°]1°y*dp
M M M M
(112) o [ IVARIAR i+ elen)” [ 940" d
Combining (112) with corollary 4.3 and lemma 4.4 gives the result. ([l

Recall Lemma 3.22. A similar proof, where we consider A° instead of A, yields

the following multiplicative Sobolev inequalities.

LEMMA 4.6. Suppose 7 is as in (25) and s > 4. Then for an immersion f :
M? - R?
[ty + [ 4|2V AP dp
M M
<o [ A [ (IVeA7)? + JAPIVAYR + AP A7)
[v>0] M
2
vl ([ IR
[v>0]
and for an immersion f : M3 — R*
[Ny + [ a7 AP dp
M M
3
< 5/MHV(2)AO”27561,U + CQ|’AOH§,[7>O] /M (HV(Q)AOHZ + “AH2“AOH4 + HA0H6>’}/Sd,U
9
+ 0(071)3||A0||§,[7>0]7

where § € (0,00) and ¢ = ¢(s,n).
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Proor. We first consider the n = 2 case. Keep in mind that since we obtain
many of the below estimates through the use of the Michael-Simon Sobolev inequal-
ity, one can only safely use them if n = 2. We will provide the proof of the n = 3
case separately.

Our overall strategy is to apply the Michael-Simon Sobolev inequality with u =

|A°||>y2 and u = ||VA°|| - ||Al|y2, and then use Holder and other standard integral

estimates.

Beginning with u = || A°||33:

v2ldu

[Py < c Vidu+ [ 147V
M M

v A
M
2
+/ \|A°|13|H|v2d4
M

2
72‘1du>

2
<ol [ IAPIvian) o [ 1ar1v
M M

2
el [ 4]
M
< e AW oy [ (IAIEIVAY + |47 )y d

vt ([ 1) ([ 1c2an)

< el A3 1y /M (IA°IPIV A2 4 A H? + (| A%]°) 7 dp

2
vele'( [ 4]
[v>0]

This estimates the first term. For the second we need to work a tiny bit harder.

First we derive the formula

2

2
) ([ IVarian) <ol 11 19aidn) + ele) 1A o
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To show (113), we use integration by parts, Kato, Cauchy and then Jensen’s in-

equality:

JIvacidu<c [ 1470 V@Al id
M M

o [ VA 470 - 19yl d

<e [ 140 IV A°llyidu
1 ) 2 o
+ 75 AT Ryt el A7 B
2 2
— ([ Ivatian) <l [ 10 19wt i)
M M

2
1 o s o
b5 (L IvaTran) el 11 o

and absorbing on the left gives (113).

Note that we obtain as a corollary to the proof above

2 2
(LTI 0] < el [ 1T ) e AT

73

Now we use the Michael-Simon Sobolev inequality with u = ||[VA?|| - || A]

/ HVAOH%\ADHQWS(:[ [ V@Al At [ VA% dp
M M M

v ldy

+ [ vy 4] - 194l
2
b IV
2 2
vidn) ol [ 9P
2
el [ IOl LT a)
2
vgdu>

2
<o [ IVl 14 han)

<o [ IVl
M

+c</ [vA] - 4] - |
M
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2
el [ 00 1Al 193l
el A8 sy [ (IVAIIAN) Y dia+ el AN o
< e A3 sy [ (IV @AY + IV A2 A1)y dp

+ e(e) 142, o

Where we used (113) and the corollary to (113) in the last two lines above.
Combining the two main inequalities proved above gives the first statement of
the lemma.

We now turn to the n = 3 case. First observe that

/||VAOH378du < /M ((A°, AA%) % VA + A° 5 VA % V||V A|| )y dps
+s/ (A4°% VA % VA % ¥y )y du
M
<2 / |41 VAL - [V ANy g+ s [ (IA1A%] )7 d
< / ||V<2 APt 6 [ AN AP d
45 M

8071

_ 1 0[|3 5
S At & [ [0 A
M

8071

(53
< Vo A° 2 sd 7/ A° 6 5d / A° 2373d
_45/MH @A du+ S [ 1A%y dp + Ay ap

5 o S
+ 2 [ IvA%ydn,
M
SO

3
VA < o [ VAP a4 20 [ A0 dp e+ 2(sen) 4 [ 4%,
IV < 2 [ 9 atrdu 260 [ 400 dn 2o [ AP

for any 0 € (0, 00).
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Now we use the Michael-Simon Sobolev inequality with u = || A°[|*y2*/3 to esti-

mate

2
3
(L1a1d)” < e [ [0 |dat e [ a1 A0 52
M M M
< [ ANV AP oy + e [ AV
M M
o [ AIA O
< [ IANITA Bt e [ AP+ el PIA%T g
5 5
e [ naian) ([ IAR1A )
[v>0] M
<o [ITAPIAlduct e [ 14715 dp+ clen A7) g
:
e [ naelan) ([ IRy dn)
[v>0] M
:
< [ IvarRlalydir ([ 1aiyan)" ([ jac)
M M [y>0]

1 2
o||3 3 2 o4 s 3 2 ons
e f 1) ([ BN i)+ el 1AL

SO

3
o S o o S 2 o 3 o S
J1aetrdn < o [ VAR di) A gy [ 14%15 %
M M M
3 9
el A% oy [ IAIPIAT Y dia+ e 1A% s
3 9
< e ANy [ VAN da+ el AN o
3
o2 0|6 2 o4\ s
el A% sy [, (14710 + 1AIRNA] )y
3
< el A gy [ (IV @Al + NAIRIAY + 1A%)%) 7 di

9
+c(en)* 1 A°M13 50
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This estimates the first term. For the second, we can employ a more direct technique

using our estimates above,

J ARV dn < e [ 1410y dpte [ VA% dp
M M M
<6 [ [VeA7)* d
M

—l—CgHAO

3
fosor [ (IV A7+ 147)°) 7 d

9
+es(e)* (1A% o) + 14°13 1 50))-

This estimates the second term, and combining the two estimates above finishes the

proof of the second statement. O

REMARK. We have only included the above multiplicative Sobolev inequality
for the n = 2, 3 cases due to the corresponding limitation on the Lifespan Theorem
from the outset (see Chapter 3), which will also make itself known when we prove
curvature and interior estimates (see Chapter 5). In fact, whenever one requires L™
estimates, this limitation will impose itself. One should keep in mind however that
for the sole purpose of the Gap Lemma, it is possible that the restriction on the

dimension of M is not required.

The following proposition is the final estimate, alluded to in our introduction,

which will allow us to proceed with the proof of the gap lemma. The smallness

1
cic2

assumption here is not mysterious: we will see that ¢y = is good enough for
n =2, and ¢ < % for some 1 > § > 0 when n = 3, where ¢; and ¢y are the same

constants as before, from Lemma 4.5 and Lemma 4.6 respectively.
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PROPOSITION 4.7. Suppose n € {2,3} and v is as in (25). Let f: M™ — R"™!

be an immersion with

(114) / 1A% du < eo.
[v>0]

Then we have

| V@A d+ [ APIVAE - [ AL A
M M M
+ [ HAVH < e [ (IFP 4 02)7 dn+ elen) A7) s

4 o 3
+ c(en) 1AN3 o) + (n = 2)e(en)*[1A°N12 o)

where ¢ = c¢(n).

PROOF. Recall Lemma 4.5 and Lemma 4.6. We combine these to obtain in the

n = 2 case

[ V@A dut [ AIPIVA I da+ [ LALA%) 2
M M M
+ [ HEVH|* dy
M
e [ (IFP + A1)y dn + elen) 14N gy + clen) 1A g
el A s [ (IF@AN + IVAIEIA + A A)) ' dy
—(1- a6 4°[3 50 [ [ IS @A dy+ [ ARV A| 2
AT |+ [ IV
M M

4 o 4
< c/M (|F|2 + |h!2)74du + c(cn) | A%N13 150 + €e1) Al 5o

Therefore, with [|A%[13 g < €0 < (cic2)~" we can divide by (1—e¢) to conclude the

result.
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For the n = 3 case we must proceed slightly differently. We have
J V@A du+ [ ARV A Y da+ [ APA d o+ [ HEV P
<c /M (IF[ + 1hP) " + c(en) 1 A°N3 o) + cles) AR s
6 [ IV AP dn+ clen 405 g
el A sy [ (IF@AN + IVAIEIAL + AR A)) ' dy
— (1= 0= el Al )| [ IV A+ [ JAPIO
b [ AT | + [ e
< [ (1P + )y dn + clen) 1A o + e 1A N5
+ C(Cv1)4HA”§7[7>O],

and the second statement follows choosing 0 < 1 and requiring

1—90

€ < .
C1C2

REMARK. The extra term appearing in the n = 3 case,

9
(071)3||A0||32,[7>0]7
will have no effect on our result. This is because we will assume ||A°|| is globally

small, and then (c,;) will dominate the integral.

We can now give our main argument for this chapter.

4. Proof of the gap lemma

The first point to note is that if for some compact hypersurface the principal

curvatures are all equal, then the hypersurface must be an immersed plane (where
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they are all zero) or an immersed sphere (where they are all positive). We will show
that this must be the case if the hypothesis of the gap lemma holds: that f : M" —
R™™! is an immersion which is stationary under (CSD) flow, possesses small total
tracefree curvature and the constraint function h obeys a growth condition.

Let p € M. We set the cutoff function ~ to be such that

1
) = o (|f<p>|) ,
)
where ¢ € C'(R) and
p(s) =1for s < 3,
o(s) =0 for s > 1, and

©(s) > 0 for any s.

Then c,; = i. Recall that in our estimates we never use the second derivative of ~.

Taking p /' oo in Proposition 4.7, we have

[ IV @APdu+ [ AP AN Rdp+ [ AA% P+ [ B2V H| P
M M M M

. 2 4 s 4 4
< climinf /Mh v dp + chgglf(cﬂ) [Al12, 10

p—00
9
+ cn;gglf(cﬂ)‘*HAOH;{M] +(n—2) n;giogf(c,ﬂ)?’HAOH;M],
1
.. 2 S 4
< clim inf o) Wdp + clim inf E||A||2,ffl<3p(o)>
1
2 o 4
S ch |M| + Cllgl_l)g}lf E”AHQ,J[A(BP(O))'
Note that the terms involving A° vanished due to the global bounded tracefree

curvature assumption. We now use the remaining assumptions. Recall

1
lim inf 7/ 1A|2d = 0, and
F=H(B,(0))

p=0 p

1
PIM| < — /M||V<2>A°||2 +AIPIVAI® + HP |V H|* + [ AJ*[| A°)*dpe.
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Note that the first equation above is automatic if M is compact, and assumed

to be true otherwise. Absorbing h*|M| on the left,

[ IV @APdu+ [ AP A dp+ [ AIA% P+ [ B2V H g
M M M M
=0.

This gives us a lot of information about the kind of stationary surface we have. In

particular, we note that
|A[| =0, ||A°|| = 0, or both.

In the first and third instance, we have an immersed plane, as this implies all the
curvatures are zero. In the second instance, this implies all the curvatures are equal
and so M could also be an immersed sphere. For the compact case, we can of course
exclude immersed planes. Therefore for the compact case, f : M — S™, where S™
is an immersed sphere, and in the proper immersion case S™ is a union of immersed
planes and spheres. Note also that in either case, AH = 0 on M and also h = 0.
This shows (GL) holds.

We finish by strengthening the statement from immersed to embedded. Let
S™ be the union of immersed planes and spheres from above. Then, since M is
geodesically complete, f: (M, g) — S™ is a global isometry, and so f(+) is in fact an

embedding.



CHAPTER 5

Curvature and interior estimates for constrained surface
diffusion flows

1. Introduction.

We have two main results for this chapter. First, we prove pointwise curvature

estimates where the speed of the flow appears on the right hand side.

THEOREM (Partial curvature estimates). Suppose n € {2,3}, p > 0, and let

f:M"x[0,T)— R"™ be a (CSD) flow where for any v € R,

HAOHZ,f*l(Bp(x)) < ||A0HZ,JC71(BP(UCO)) < €0,

where €y > 0 is as in Proposition 4.7. Further, assume that the constraint function

h satisfies (A2), and in the case where n = 3 that (AB) is satisfied. Then

0|2
P VST
o 42 : Ljay i
< CHA ||2,f*1(Bp(l"0)) HF||2,f*1(Bp(zo)) + pin”AHZ,ffl(Bp(mo)) + (Ch)4 + (7’L — 2)60 )

where ¢ = c(n, €9, Cap).

We also obtain an analogous statement for the full curvature tensor, Corollary
5.9. Our method of proof here is a variation on our fundamental mode of argument
from Chapter 3 on the Lifespan Theorem. Since our overall focus is on showing
that for certain initial manifolds a class of constrained surface diffusion flows both

exist for all time and converge to a sphere, and the tracefree second fundamental

167
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form measures in some sense the pointwise difference from M to a sphere, we will be
enhancing the role of the tracefree second fundamental form in our analysis. This
altered focus leads to the L> estimates for the tracefree second fundamental form
above.

One result obtained ‘along the way’ is Proposition 5.10, and there one can see
the crucial role played by the tracefree second fundamental form. This will be useful
in the future when we turn to analysis of the asymptotic behaviour of constrained
surface diffusion flows.

An interesting feature of the proof of the curvature estimates above is the usage of
a different growth condition, (A2). This appears more restrictive than the previous
growth condition, (GC). However since we only assume smallness of the tracefree
second fundamental form (as opposed to the full second fundamental form), we
cannot use (GC). This is detailed in Theorem 5.6.

Our second main result in this chapter is the following theorem.

THEOREM (Interior estimates). Suppose n € {2,3} and f: M" x (0,T*] — R"*!
is a (CSD) flow with h satisfying the conditions of the Lifespan Theorem. Further

assume that

sup / A||"dp < e(x),
! L (®)

te (0,7

where T* < c(n)p* and m = m(h) is as in the Lifespan Theorem. Then for any

k € Ny we have at time t € (0, 1] the estimates

_k
IV All2,f-1(8, o)) < (k) e(x)t™s

k4l
IV @) All oo, f-1(B, j(2)) < c(k)y/e(x)t™ 7,
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where ¢, = ¢y, (k>n> P T*7 Hv(k)AHZf_l(Bp(:co))|t=0)-

This is in essence a sharpening (but not a sharp version) of Proposition 3.26
from Chapter 3 on the Lifespan Theorem. The proof involves the use of a time-
based localisation function and is given in Section 4.

As with each of our previous chapters, the interior estimates are also in prepa-
ration for asymptotic analysis. In this case, we will use them on parabolic cylinders
to ensure the existence of a blow up immersion with certain properties. Apart from
this, they are also of independent interest. It would be particularly interesting to
determine sharp constants in the interior estimates, however to this author’s knowl-
edge the distinct lack of example evolutions for even surface diffusion flow makes

this very difficult.

This chapter is organised as follows. Section 2 is devoted to using elementary
evolution equations to prove integral estimates. These are similar to those in Chapter
4, where the speed of the flow is involved in the resulting estimates. The difference
here however is that the speed of the flow is kept on the left hand side, as a ‘good’
term. Section 3 incorporates small curvature assumptions into the integral estimates
from Section 2. We also prove some Sobolev inequalities and conclude the pointwise
curvature estimates in this section. Section 4 is devoted to proving the interior

estimates.
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2. Energy based integral estimates.

We begin by proving elementary evolution equations. Unlike Chapter 3 however,
our focus here is on deriving estimates where the speed of the flow FF' = AH + h is

on the left hand side.

LEMMA 5.1. Let v be a cut off function as in (25). Then the following equalities
hold for a (CSD) flow f: M™ x [0,T) — R™*L.
d 1 2.8 2.8 2 s
f/ SH*y du+/ Fey*dp=h |Mt|[7>0]+h/ (AH)y*dp
dt Ja 2 M M
1
5 [ HRO )y~ [ FHIA Py
M M
+ /M H(VF,V~") — F(VH,V~*) dp,
and
d ol|2.,8 2.8 2 s
[+ [Py = B Mo+ [ (AH )
M M M
[ AN @+ [ FHA R dy
M M
=2 [ F(A); (A0 (%) dp

+2 /M (A°, VEVA®) H + F (V*A°, V) dp.

Proor. This follows from computing the evolution of the integral of squared
mean curvature, and squared tracefree curvature respectively. We then integrate by
parts twice to obtain the good term, an integral of the speed F' squared, on the left.

Recall the evolution equations from Lemma 3.9. Using these,

d 1 1
o SHdu= | H(=AF — JAPF)ydu+ [ SHY Oy
dt M 2

+ / —H?’Fwsdu

=~ [ H@Pydu— [ FH|A dy
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1 S
+3 /M H(0i")dps,
now using (AH)(AH + h) = F? — hAH — h? and integration by parts twice,

d 1
o | SHAAu+ [ FPydu<h | (AH)ydp+ I psg — | PH|AY dp
dt Jar 2 M

/ H2 (0" d +/ (VF,V~*) — F (VH, V%) du.
This proves the first statement. The second is similar:

d oll12.s . o o » ) 9 .
i B AP =2 [ (A0 ST F) o AT + g | AIP = HA )
[ NAPHP dy [ A% @)

M M
=2 [ (A V) F)y'du—2 | FAD)(AN(A°) 5y dp
[ NAPHFy i+ [ 12007 dn,
M M

since (A%, AV Ap; — HA;j) = (A°)4(A°) (A°)F. Using ViyA = ;AH, (AH)(AH +

h) = F? — hAH — h? and integration by parts twice we obtain

d
S [Pyt [Py dn < WMo+ b [ (AH)ydp
M M M
[ AP @ )+ [ FHIA R dp
M M
=2 [ F(A) (AR (A d

+2 /M(AO)ij(viF)(vjme + F(V*A°, V") dp.
This proves the second statement, and so we are finished. U

For our second lemma, we estimate some potentially troubling terms from Lemma
5.1 above. Our motivation here is maximising the utility of the estimate in Propo-

sition 4.7 and the multiplicative Sobolev inequality Lemma 4.6.
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LEMMA 5.2. Let f : M™ x [0,T) — R"™ be a (CSD) flow, v as in (25) and

01, 02,03 be fixed positive numbers. Then the following inequalities hold:
d 1 2_s 2 s 1 2 s o s
E/M?H Y d/i‘i‘/MF Ydp < §/MH (Oey )d,u+2h/M<A , V)Y >dﬂ
+ e, h Ml + 8 [ VAP H dp
te [ IVAPIAY dy+ 6 [ (A4
M M
+esnlen)t [ A7y

n / (VE, V%) — F (VH, V) du,
and

&Pyt (=) [ Fdp< [ AP0+ 2n [ (4% Ty dy
+ e IMilis + 0 [ [V AYRH2Y datcs, [ 1A%y d
sy [ VAT dp+ 8 [ AN AN g
+efen)? [ 147
+2 [ (A7)(V'F) (V") H + F (V" A%, 97") d,

where cs, = ¢5,(s,n,9;).

PROOF. We must estimate the terms [y, F'H | A°||>y*dp and [y, F(A°)t(A°)](A°)Fy*du
from Lemma 5.1. Using integration by parts and the identity VH = V*A°,
[ A HAP =~ [ (VH,VH] A% ) dp
M M
= [IVHIPNA Py — [ H(TH V(| A°)2)) dp
M M
=~ [ IVHIPIA Py di = s [ HIA (T H, V) 2% dp

—2 [ H|A| (VH V| A%} ydu
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An2(6:t —1 o iy s . )
= (32)/ [V A2 A% *y du+53/ IV A°||2H2y dp
(n—1) M M

o S— 1 o S
5o [ PPy IV HIPLA] R dp

SO
| FHIA S du < cs, [ VAP dp o+ 0 [ [V RE2
M M M
+esplen)t [ AP gt 0y [ IANA7 P dp
M M
+h/ H|| A%\ dp.
M
Also,

h [ HIAN dpn < e, b0 o + 6 [ IAI1A)2 d

This estimates the first integral. The second is easily estimated by
/ F(A° % A% %« A%)y*dp < & / F?ysdp + cs, / | A°||%v dp.
M M M

Finally, note that

h/ AH)d :Qh/ Vi, A% d :Qh/ A%,V ) dp.
| (AH)y'dp | (Vi A%y du | (A% V) dp
Combining these estimates with Lemma 5.1 earlier finishes the proof. U

The third lemma below is an estimate which deals with the extraneous terms
from the derivatives of the cutoff function v, resulting from our extensive usage of
integration by parts. These are by nature ‘good’ terms, expected in any localised
integral estimates. We will also group the terms and perform some other minor
alterations to those in Lemma 5.2 above. We then will finally be able to apply the
estimate in Proposition 4.7 and the multiplicative Sobolev inequality Lemma 4.6 to

conclude our first ‘small energy’ result for this chapter.
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LEMMA 5.3. Let f : M™ x [0,T) — R"™ be a (CSD) flow, v as in (25) and
01, 02,03 be fixed positive numbers. Then the following inequalities hold:
d o128 2.5 2 o2 72,5
S [ AP+ (1= 81) [ PPy < et Ml + 85 [ IVAIPHAydp
t /M M M
s [ AP di o+ [ (LA + [T ALY

+ef(es)? + (o) + ()] [ 1472y dps,

and

d 1 S S S
o | S du+ (1=8) [ Fydn < ch?|Milso + [ (JAIPIVAI + 141y dp
+cf(es)? + (e + (e)'] [ A1y dp

where ¢ = c(s,n,d;).

Proor. We first compute, using integration by parts and the definition of -,
2 /M (A% Vo) du + 2 / (A°);(Vin®) (VI F)dp + 2 / F(V*A°, V") du
—2h/ (4, du—z/ (AH + h) (A, Vop*) ds
(—2 4 2) /M F(V*A°, V) du
= =2 [ (AH) (A4, Vay*) dp

= —2s [ (AH) (4% (D¥ 0 flg + (DT o [)A)y*dp

+25(s = 1) [ (AH) (4% (V7)(V9) 7" dp.

Note that (A%, (D*3 o f)g) = 37,1 A%;(Di;7)gij, and this is not in general zero, as
each term in the sum is scaled by the second derivatives of 4. Continuing,

2h/M (A%, Vyy’ du+2/ (A°),;(VIA*) (VI F) dﬂ+2/ (V*A°, V%) dp
<25 [ AH|(147) (e50) + 1A°]*(e50))

+25(s = 1) [ |AH] A7) (e0)**dp
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0 2.5 85 2 012452
< S IAHPYdu+ = es)? [ 1A% 2
M M
882 o S—
() [ 1A%y
+25(s = 1) [ |AH] A7) (e)**dp
) 8s? _
< 5 [ IAHPY dp+ = (o) [ A7) 2
2/m o M
+ 071 (852 4 85%(s = 1)) [(e5)® + (en)'] [ 14717 d
J
<2 [ 1aHPyau+ [ 14710 dn
2 /M M
+072(85% + 85%(s — 1) + 85" ) [(c52) + (c31)" + (e51)] /MHA"|\275‘4du.
Of course, the constant in front of the [|A°||3, _q term is far from optimal. The
representation above is just personal preference. The point is that ¢ is a fixed
positive number (smaller than 1), and so the coefficient is a function of s and the
constants in (25) only, and can be written in the form indicated in the statement of
the lemma.

Finally we estimate the time derivative of v as follows.
[ A @ ) = s [ 1412 (DF,v) Fdp
M M
d
<SP 67 ) [ Ay 2
4 Jm M
4] - 0
<2 [ Pdu elen) [ APyt [0
M M M
Combining these inequalities with lemma 5.2 and absorbing finishes the proof for

TullAC|Pydu. For [y, H*vy*dpu, the proof is identical, except for estimating H and

A° by A where appropriate. O

We finish this section by proving an estimate which will be useful in the following

chapter.
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LEMMA 5.4. Suppose f : M? x [0,T) — R? is a (CSD) flow, v as in (25) and
s > 4. Then there exist absolute constants €y, c. > 0 such that if
[ APy < o
[v>0]
and if
o s Ce o o
[P < S [ Vo HIP+ VA HY A%
then we have
[ St [ (IV@H|P + [VAPH + 5 A4°)P)yd
dt Jar 2 M
Ce o o
=5 [ IV HI +[VA2H? + 5| A°)Pdu
115) < efles) + () + () + (e | IAIR gy + ) A% sy

for an absolute constant oo > ¢ > 0 depending only on s.

ProOOF. We proceed similarly to the proof of Lemma 5.1. Differentiating,
d 1 2 s 2 s 1 2 s 1 3 s
%/M§H7du=/ H(=AF — ||A[*F)y du+/ SH (0 )du+/ SH Py dp
- —/ (AF)y*dp — / FH|| A%y dp + ~ / H2(0°)dp
= — [ H@MHydp— [ (AHH|APydu—h [ H|Ad
+7/ H*(0yy*)dp
2Jm
Integrating by parts twice, we have
d/ Lp2sg +/ |AH|?y*d
dat Ju 2Ty Tan
—s [ H(VAH V) v = s [ (AH)(VH V)7 d

1
(116) = [ AmH| APy dp = b [ AP [ 20 d
M M 2 Jm
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We will estimate each term in turn. First we deal with the spatial derivatives of ~.

s/ H (VAH, V) v tdu — s/ (AH) (VH,Vy) v Yy
M M
<s [ HAH)(Ay)y "+ s(s = 1) [ HAH)|V3]y2dg
M M
S/ (AH)(VH,V7) ’f’ldu

w01 [ JAHPdu+ o= (e)? J IV H P2y

16,
<s /M H(AH)(Ay)y"~dp+ s(s — 1) /M H(AH)||VA|*7**du

2

25/ AH[2~d
+201 | |AH["y M+25

(en)? [ IVHIdp

<s [ H(AH)(A7)y dp
M
. s2(s—1)2
+8 [ APy = e HIE

2

25/ AH[?~d
+201 | |AH["y M+25

()” /MIIVH||275‘2du

< s(e) [ H(AH)(1+ |H|)ydp

s 52(8 — 1>2
oy [ AP T () H s
2

= IAHI27$du+2 en)? [ IVH|2dp

< 53/ |AH |y dp + 45 (072)2 /M H?y*2dp + 5(cy2) /M H*(AH )y~ dp
2 )2

. s*(s—1
8 [ AHP du+ T(cm 111550

+ 201 [ APy d+ (o)’ /MHVHH%Hdu.

201

For the third integral we integrate by parts to obtain

() [ HEAH)Y i < b [ HIVHI i+ 55 = DI o

1 2 2, 52
— VH|*y"“dp.
+ o (en)? [ IVHI*~%dy
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Combining this with our previous estimate we have

’ /MH (VAH,Vy) v dp— s /M(AH ) (VH, V)"~ dp
< (251 + 02 + (53)/ |AH|7sdu + 54/ H2||VH||275d,u
M
s%(s —1)2 &2
+ (452<C'71>4 85 (072)2 25 (nylC'yQ) (S - 1)2> HH||§,[7>O]

s 1 _
T (25 (e1)” + 254(672)2> /M||VH||27 2dp.
Now using the inequality
JVHI 2 du <2 [ HISHD 2dpt (5= 2 ) [ H
we obtain

S/ H(VAH,V~)y* tdp — S/ (AH) (VH, V) y*tdp
M M

< (26, + 6, +63)/M |AHhsdu+64/ HQHVHHQ’VSdu

s?(s —1)2 P
i (452(6“)4 55, o5, S5 (e (s - UQ) IH 113 0

s2(s

(52 oy
(Vg e + 5 ) IR

s” g, 1 2 52
5o+ () [ H 1A=y

< (30146 + 05+ 81) [ IAH du 6 [ HVHI dp

s?(s —1)? (s —1)? st s
# (T et + B e + e + g (el
(s —2)? s2(s — 2)? 1
+ 2754(071%2)2 + T(Cvl)A‘ + 5*2(072) HH”2 [y>0]"

For brevity, we combine this estimate with (116) now. Choose 4, ds, 03 such that

361 + 52 + 53 = 54. Then

d r 1
L e 1-2 /AH“
dt/Mz yidp + ( 54)M! |*v*dp
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< b [ IVHIPE 0+ o (0 + (e + @ + ) ) 1A o

1
. 0)|124,8 . 0(|12.,8 - 2 s
(117) [ AmHE|A Py dp—h [ H AN du+ S [ 007w,

We now estimate the time derivative of ~.

| O = [ HAAH)(V,A)y dp
M M
< (Cm)/ H*(AH)y*dp
M
< 2en) [ IVHIPIH " dn+ (enen) [ IVH] IS dy
1
< (205 +205) [ [IVHPH*dp+ ——(cren)® [ Hdp
M 805 M
1 2 52 (s — 2)2 2 2 s—4
+8756(C&1) /M’H| |AH |y dp + ~—————(c51011) /MH’Y dp

1606
< (205 +205) [ [IVHIPH'd+ 20, [ |AH|dp

(2 e e (e I
T&; C51Cy1 8755 Cy1C51 m(cwl 2,[y>0]

Combining this estimate with (117) we obtain

d 1 2 g 2.8
E/M SH dp+ (1= 364) /M IAH|?ydu
< (Ou+85+35) [ IVHIPH  du— [ (ADH|A|*y'dp—h [ H|A|*dp

(118) + C<(071)4 +(¢1642)? + (e51692)% + (c92)* + (072)4> A1 =0

We begin to estimate the second term with

[ A H|A P+ [ IVHIA) 2 d
M M
<2 [ \VH| VA% [4°) Ho'da+ s(en) [ IVHI A2 HY d

1
<o [ IVHIPH A+ 5 [ [V AR A% dy
M 7 JM

5” (C'yl>2

46g

0 [ Ay + [ IV H|P 2,
M M
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Estimating the [,,||VH|*y*~2du term as earlier, we combine this with (118) above

to obtain
d 1 2.8 2. s
7/ S H2y du+(1—454)/ IAH[?Ydu
dt Ju 2 M
< (b1 405+ 06+ 07) | [VH|PHdu+ b | H|A%|*ydp
1
5 [ IVATR AP A = [ H A7 dp
7JIM M
(119) + C((Cvl)4 + (071072)2 + (0%1672)2 + (Cﬂ)z + (072)4> ||AH§,[7>0]-

To work with (119) above we must invoke a multiplicative Sobolev inequality and a

consequence of the fundamental relations of differential geometry. The latter is:
s [ (IV@H|? + HVH|? + HA)) " dp
< [IamPydutc [ (IARIVAR + 141 vy + clen)* [ lAlPdp.
M M [y>0]

This is a corollary to estimates (108) and (109). Unfortunately, it is not quite strong

enough. We improve the left hand side with the inequality

C3 2 ol|2.,8 C3 4 o128 C3 2_s

S| A+ 2 [ H A= S Vo HIP

2 Jm 32 Jm 2 Jm

= c(eqn) I1A°N3 0y = C/M (A 1PV A°)> + 114°)1°) 7 dp
(120) <5 [ V| dp.
2 Jm
This gives us the very useful inequality
s | (IV@H|? + HVA|? + HY| %))y d

(21) < [ AP dp+clen) A pag +e [ (IA7PIVAYE + 147)1°) 7 dp.
We must prove (120). The technique is similar to the estimates from Chapter 4 and

so we will proceed quickly. Integrating by parts and estimating we have

| B v AP dp
M
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< [ HAVH P+ [ AR A% dy
M M
(o) [ AN VA~ [ HE (A% 8% v dp
< [ HAVHPydp+ [ APV A% P dp
M M

s2(

071)2 / o2 .52 / 2 o o s
VA dy — H{A°, AA d
40, | %y H (A?, )Y dpu

0 [ APy +

< [ HVHPydp+ [ ANV A° P dp
M M

s*(cy1)?

20,
s2(s —2)%(cq)?
_'_91/ H4HAOH2’}/Sd,U—|— ( ) ( “{1> / HAOHZ’}/Sizld,u,
M 4091 M

- / H? (A%, AA%Y v*dp — / (A°, AA°) v*~2dp
M M

where we used the inequality

(071)2
2

- o o\ .8— s = 2)*(cp)* o s5—
[V 2 < (e [ (47, 880 =2t 2O gojpycagy,
M M 2 M
Simons’ identity for AA° implies that

o o o o 1 o o o o\qr
(A%, AA°) = (A°, Vo H) — | A°* + I ACIPH 4 H(A) (A)7(A%)"

Using this we obtain
1
[ AN APy [ A%
M 2 M
< [ HAVHPydp+ [ A7V A% dp
M M

= [ (40 Vi ) — LAY + H A (A4 )

s*(cy1)?

260,
2 ) 2 4
oy [y SO [ oy,
M 491 M

1 _
[ ({42 V) = A7+ SIACIEH + HA) (A4 )72

1 1
< H2 VH 2 5d / A° 2 Vv A° 2 5 ( )/ A° 6 5
< [, HIVHPdpt [ JAPITAT dp (g 4+ gg) [ 14715

1
+ (02 +00) [ IV HIPYdu+ (60 + 35 +03+03) [ HLA7] 2 d

- [ A -

o o\p o\qr . s—2
s L, A (AR
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s%(s — 2)? st s _
P (PO o (e [ AP

40, 2020, ' 86205
< [ PIVHPdar [ JAPIVA P dn+ (g + 5 [ A1
M M 40,
1
+<92+93>/ IV @) H|[Pv*dps + (61 + = + 04+ 05 + b5) / HY (| A%y dp
M 40, M
1
o [N s [ AT
406 J M M
s?(s—2)2 st st st A
P S . - A° 2 sf4d
+( 16, 862 2626, 89%e5>(671) /M” Py dp

< /M H|[VH|v*dpu + (65 + 05) /MHV@HH%Sdu

1 1
A° 2 A° 2 5 < 7 >/ A° 5
b [ ANV + (g + g+ g+ ) 14710

1 0
0, 4 — + 0, + 0+ 0 0 /H4A025d
(1+402+ 4Tt 6+1662+ 8) A1 dp

82(8—2) 34 54 34 .
R S - - AO 2 s—4d )
(T et sg) (e [ 1A

Choosing appropriately small ¢; > 0 and multiplying both sides by % in the above
allows us to conclude (120). For completeness we give one possible set of choices

here:

1 3 1 1 1
0, =0,=0s=0s=—, bO,=-, O3=-, bOg=— dbo;, = ——.
1 4 5 8 48’ 2 1 3 6 99’ and vy 55296

This establishes (121).
The multiplicative Sobolev inequality we will use is a variant on Lemma 4.6.

The statement is
J 1ty dnt [ 4PNV Ay
M M
<c [ AP [ (IV@HIP+ HVAN + A7) ) dp
[y>0] M

(122) el ([ I
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Combining both (121) and (122) with our running estimate (119), we have

d 1
7/ H275dﬂ+03(1_454)(/ ||V(2)H||275d,u+/ ||VA°||2H275du+/ H4||A0||278d,u>
dt Jar 2 M M M

< (04 + 65 + 06 + O7) /M||VHHQH2’YSdM + g /M H2||AOH4’YSdM

1+ 30
n 307
7

N c<<cﬂ>4 (o)t + (e + <cyz>4) A1 o

< (6 -+ 05+ 06+ 07) [ [ VH|?H ' dp+ b | H?) A7y dy

1+ 03(57
07

[ (AT A7 + A1)y g — o [ A7) d

+ co

(HAOH%M [ (IV@HI? + BT AYE + B2 A1)
2
velen)! ([ Jaoran) |
[v>0]
< AP (et et (e + (00 A oy
Using the inequality
5
0 [ HANAT Ny < 0 [ HYA g+ 2 Al d
M M 4 Jm
the above becomes
d 1 2.5 2.8 0|12 172,85 4 0||12.,8
S SErrdn et = 10( [ IV HPdu+ [ VAR dn [ YA d)
dt Ju 2 M M M
< (1405 + 06+ 07) [ [VH|PHdp+ b | HY|A%)*y'dp

4+ 4C3(57 + 6758
? 467

2
bele)! ([ J4Pan) ) = [ mrpaan
[v>0] M

; c<<cﬂ>4 (o) + (ca) + <c72>4) 1A o

+c (HAOH;['DO} /M <HV(2)HH2 + H2”VAOH2 + H2HA0|’4)’VSdM

We have one final refinement. Observe that by estimating

1
ceo [ HE AN dp < P [ AP+ [ AP dp
M M 4 Jym
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one may strengthen our estimate to the following:

d 1
o[ sErrdn et —10)( [ V@ HPdu+ [ VAR dns [ YA d)
dt Jar 2 M M M

< (b1 + 05+ 06+ 07) | [VH|2Hy d

ds 41 o
58 + < s + 7( + 7)>(6062)2 / H4||AO||2’ySdM
3 3(57 M
44 463(57 + 5758

ol|2 9 o2 172\ s
+ Co 80, (”A HQ,[»y>o] /M (HV(Q)HH + || VAP H )7 dyu

ceten ([ 1) )

< AT (o) )+ (e + () AT

Recall that ||VH|? = 4||[V*A°||? < 4||VA°||2. Choosing sufficiently small §; > 0 we
absorb to obtain
d 1
& Ly e/ HI2 2 172 41 g0112) A5
G s an e [ (IVH|?+ [VHIPH? + B A°)) 5 du
< —h [ HIAYE d+ elen) 1A% g
el (et + e+ (0 + () 41 o

In this step we also enforce a condition upon the magnitude of 5. For the sake of

definiteness we give specific choices. Note first that we may assume c3 < 1. Then

let
1 2
0; = 1—6@3, and assume €y < 1(21)62
In this case we have
58 4+ 403(57 Co 1
3(1 — 464) di — ( ( )— 4 4 4esd7 4 076 -
4) Z (€oc2) 3 =+ 39 0457( + 4egdy + 6708) > 4037
and so with these choices
1
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Finally, our very restrictive assumption on the constraint function:
o s Ce o o
—h [ HIA Py dp < S [ Vo HI? + VA H? + B A°) Py

implies the result. ]

REMARK. The hypothesis of the lemma contains the particular cutoff function
~ chosen. It is desirable to state a condition on the constraint function A which does
not involve . Unfortunately, there are several ways to do this and none appear any
better than the others. Since all follow from the condition given in the lemma, we

have not changed this. Perhaps the most direct way is to estimate:

1 4
—n [ mla < ([ oHIA ) St s [ AP
M 4\ Jm 4 M 4

Then a sufficient condition for the lemma to hold is to require

3
1

Ce o o
nt <% [ IV |+ | VAYPH? + H A7)

This condition is more readily satisfied than the previous, although it is strictly
stronger in that fewer constraint functions satisfy this condition compared with the

one given in the statement of the lemma. For example one may choose
h= [ AN RV HPE Y
M
among many others.
REMARK. For surface diffusion flow, the left hand side of the estimate (115) does
not include the negative integrals.
3. Integral estimates with small curvature

We now present the first smallness result of this chapter.
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PROPOSITION 5.5. Suppose n € {2,3} and let f : M™ x [0,T) — R"™ be a

(CSD) flow and ~y be as in (25). Then there exists an €y > 0 such that while
(123) [ lacldp < e,

[v>0]
we have

d o S o S
= [Py dut e [ (IV@AIR + VAN + AN A%)2)"dpe

< ch?|Miiys0) + ¢[(c52)” + (e51)* + () [I1A113 sy + ) Vg™
and

d 1 S o S
= | sy dt e [ (I9@AIR + [VARIAIR + A A°N)y dp
dt Jm 2 M

< ch?|Miiys0) + ¢[(c52)” + (e51)* + () [I1A113 oy + ) Vg™

where ¢, = ¢1(s,n,€) > 0 and ¢ = ¢(s,n).

PROOF. The two inequalities which drive this proof are the third multiplicative

Sobolev inequality Lemma 4.6, which we invoke in the weaker form:

[+ [ a7 AP dp
M M
4—n
2
<el [ 1aldn) T [ (IV@A%® + IVATIIAIR + [AJ)1A°1 )" dp
['Y>0] M

-n o|ln 2 o S
ele) ([ A T 6= 2) [ 1947 d
[v>0] M
and the key smallness estimate in Proposition 4.7,
/M(HV(z)AH2 + VAP + [ AIIA%]?)y" dp

< C/M (IF > + [7f?) v dps + e(en) N A°N3 sy + clesn) AN s

9
+ (n - 2)6(071)3”AOH32,[7>0}’
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Note that only the second inequality needs the smallness assumption. Rearranging

the second inequality gives

9
/M (IF12 + 117) v + clexn) |1 A%113 50 + I1AIB oo ] + (7 = 2)een) A2 g,

> C/M(IIV(2>A||2 +HIIVAPIAI + A A1)y dpe
Combining this estimate with that of Lemma 5.3 earlier, we obtain

d o S o S
= | 1Al de (1 - 61>[c | V@A + IV AR AR + A A°)12)"d
M M
- h2|Mt|[~y>0] - 0(671)4||A0||§,[7>0] - 0(0’71)4||A”§,['y>0]
9
- (0= 2)elen P14 ]
< | Myl + 02 [ (VA |2H2 d
65 [ A APy du+ e [ (JA)° + |V A% 2] A°)12)y*d
3w vaptel Y dp

+ ef(es)® + (esn)t + (en)?] [ 14713

Rearranging,

&1t (1= 55) [ (VAR +ITAIAIR + AN A2
< Moy ¢ [ (IA%]° + [V A7) A°)2) " dp
+e[(e52)® + (e51)" + ()] (1413 fy 50y + 14°113,501)
T (n = 2eler*| A7l oy

We now use Lemma 4.6 and the smallness assumption (123) to absorb the second

integral on the right to the left hand side. That is,

[+ [ a7 AP dp
M M

—_n

2
<e( [ 1aldn) T [ (1N @Al + IVATIPIAIR + JAIR1A%) ) dp
[v>0] M
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6—n

elen) ([0 d) T 10 —2) [ 190 A7,
[v>0] M

4—n

< [ee® + 80 =2)] [ (IV@AI + [TAPNAI + A A1) dn

6-n
+ c(cvl)(ﬁ_”)eo 2

Absorbing, we have therefore shown

d
s A° 2 5
= [ 1A%y ap
+ (1= S —0n=2)) [ (IV@AI + [VAIAIR + [ A]|A°]) 7 d

6—n

< ch?[Mipys0) + ¢[(c52)” + (e50)* + ()| 14N sy + elen)® g™
Choosing 6;,0 and requiring €y to be such that
1—2(2—0*60—(5(71—2) =c¢ >0
finishes the proof of the first statement. The second follows similarly. 0

The result above is good, however it is not good enough for us to continue. We
need to absorb the error term h?|M;|,~q) or otherwise deal with it to proceed toward
the interior estimates. The most natural method to overcome this difficulty is to
impose a growth condition on our constraint function, and this is what we do next.
We will need some of the work already done for the estimates involved in the proof
of the Lifespan Theorem, see Chapter 3 Section 3 for the details.

The main difference here is the focus moving away from small total curvature
to a combination of bounded total curvature and small tracefree curvature. In this
respect, the uniform bound for i obtained earlier in Corollary 3.8 is useless. However

Theorem 3.3 from that section is still useful, in the following modified form.
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THEOREM 5.6. Suppose n € {2,3} and let f: M™ x [0, T*] — R™"! be a (CSD)
flow with constraint function h satisfying for some j, k,l,p € Ny
p
(A2) <ot [ Adi) [ PRA) + PIA) + PPA) di
where for m = max{2k — 2,25 — k,l,n* + n — 2}
sup 0™(z) < &) < o0
zeRH1

and for an absolute constant Cap
(AB) |My| < Cap;
on [0,T*].
Then for any p > 0, x € R"™_t € [0, T*] there exists an x; € R such that if
124 / A°|"dp < €9 < 00,
(124) oo A <

we have

o c o
A%+ = (V) Al* + VAP AN + [AI*A%]*)dp

i/
dt f—l(Bp/2<x1>)| 2 Jf-Y(B,y(21))

c 2
<+ EHAHZf_l(sz(ffl)) + p

and

d

1
SHRdp+ &
2 Jf4B,s(z1))

Vi AllZ + [[VAI2IAl% + ||AlI4]|A°1%)d
dt/fl(Bp/Q(xl))z IV All" + [[VA[Z[|A[]Z + [[A][*[| A7) dpe

¢ 2
<cnt EHAH?,f‘l(sz(m)) Tt
if 7,k # 0, and otherwise
h S Ch,

where ¢, = cp (07", Caug, p, J, k,1,n) < 0o and €y is as in Proposition 5.5.
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Proor. If j,k = 0 the theorem follows from Theorem 3.3. Otherwise, we use

Proposition 5.5 above to compute:

d o S o S
& [P d+ [ (VAR + VAL + A4 dn

6—n

< eh?| M| ooy + ¢ (e52)” + (e5)* + (1) '] 143 50y + ) eg®

< cAB[(l s [ haran) [ P+ RAA) + R(A) du]

6—n

6—n
+¢[(c52)” + (e51)* + () |I1A113 50y + ) Vg™

Now using Lemma 3.6 we have for any 8* > 0
p
(14 [ Jahan)” [ PRA)+ PAA) + P2(A) dn

V4
§(1+/ Aond)[e/ Vo All2d
A% dpe f—1<B,,<m))H @Al du

(n4+1)(2m+2k—j+1)+j—2+2k+1

+ c(0, p,n, j, k, l,CAB)((sgL)

<o [ IV ) All2du
f=H(Bp(z1)) ®)
(n4+1)(2m~+2k—j+1)+j—2+2k+1

_|_C(go’p’n’j’k,l,p,CAB)(581> ) 7

choosing
_ o (/p -’
0=0"(Cugll+coe0]) -

Note that this is allowed by the bound on ¢,(¢), Lemma 3.5, and the boundedness

of €y. Therefore, we can use the above estimate for #* < #CI to absorb the term

2C ap

with h and conclude the theorem. O

REMARK. Because we cannot assume small curvature, we will not recover the
uniform bound for h. This is the reason why we must assume the much more

restrictive growth condition (A2) instead of that allowed in the Lifespan Theorem.
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Our next step is another Sobolev-type inequality, which we will use presently to
obtain L estimates for the curvature. Note that here the dimension of M plays a

key role, for exactly the same reasons as outlined in Chapter 3, Section 5.

LEMMA 5.7. Suppose n € {2,3} and let v be as in (25). Then for any C' tensor

T on M™ and s > 2,

|3
w3

([ T dn)
M

#e ([ iriean)
[v>0]

Tt < et | ([ IV eTiEan)

where ¢ = c(n, s).

PRrOOF. We use the interpolation inequality: for any C? tensor S,
ISI™ < cll Sl IV Slla + 1 H - S]la)*",

from Theorem A.2. We invoke this with S = T* to infer
(125) Ty l5E < e Ty 13 (IV (T + |1 H - TA°3).
Now

[Ty < T ([ T
which gives the second term in the statement of the lemma, and

s\ |14 s s—1 4

Iy )= [ [(9T)7 + sT(T7)7 ] d

< [ VT dpt () [T,
M M

SO

|3
|3

(126) V) < e [ VTl ) e ([ 1T an)
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The second term in (126) above is easy to estimate

w3

%
o ([ ITI ) < (P Tyl [ ITIRdn)
M [v>0]

where we needed s > 2. This gives the last term in the statement of the lemma.
We will use integration by parts and Young’s inequality to estimate the first
term in (126):
J VT <3 [ T Ve Tl VT d
+4s [ TN VTV dp

<

1
AT o | ||T||2||V(2>T||274Sdu]
M M
1 —
+ [4/ ||VT||474sdu+172854/ oAl v 4du]
M M
1 S
<5 [ IVT)y d
M

I f 1P aTIdu e [ TP

Therefore

/ HVTH‘*WduScHTvSHiOl [ IV eI+ ()" [ HTH?du],
M M [v>0]

and so
(127)

(f 197100 < el ([ I9ariean) + e ([ imean)’].
M M [v>0]

where we again needed s > 2. Combining (125), (126) and (127) gives
Iy < C||T75H§"||T75HZO[( [ IV TIEde)" + ([ BT dn)

%
(123) Fe ([ i)
[v>0]
Since Lemma 5.7 is trivial if either v = 0 or T' = 0, assume otherwise and then

divide by ||v*T||% in (128) to finish the proof. O



3. INTEGRAL ESTIMATES WITH SMALL CURVATURE 193

Lemma 5.7 combined with some earlier estimates leads to partial curvature es-
timates. We show that the supremum of the tracefree curvature is bounded by an
expression incorporating the speed of the flow as the principal driving factor. As
expected, the constraint function causes some trouble, by adding a large constant
on the right hand side. The following result, analogous to Theorem 3.3, is one of

our major theorems for this chapter.

THEOREM 5.8 (Partial curvature estimates). Suppose n € {2,3} and let f : M™x
[0,T) — R™™ be a (CSD) flow, v a cutoff function as in (25) with XB,, <7< Xs,
and suppose that for any x € R"*1, [|A?|" . 1By @) = AN r-1(8, () < €0 where
€o > 0 is as in Proposition 4.7. Further, assume that the constraint function h

satisfies (A2), and in the case where n = 3 that (AB) is satisfied. Then

0|2
1A, -1, s z0))
4-—n n 1 z n
S CHA "2’?71(31)(1‘0)) HFHQZ,ffl(Bp(Io)) + EHAH227f71(Bp($O)) + (ch)4 + (n — 2)60 )

where ¢ = c(n, €9, Cap).

Proor. We use Proposition 4.7 to obtain

/fl(B ( ))I|V<2>A||2+ IVAIPIAI® + AN A% dp
p/2\T0
Sc/ F?du+ ch®| M| 1B,
F=(By(=0)) s | Ml 118, w0

c 0|4 2
r 413,518 ooy + A1 115, o0

+e(n —2)(e)’ ||A°||3 y>0]-
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Therefore, using Theorem 5.6 we have

Vi All2 + | VA|?IA|12 + || A|l*|| A% *dp
Jris, g [T @AI  ITAIFIAIR 4 4] 7]
<c —|—c/ F2du + c(n — 2)(c A°
Y. (2= 2) (e 14
¢ AO 4 A 2
+ 1AM s, + DA 5, 0)

where ¢, is as in Theorem 5.6. Lemma 5.7 above with T' = A° gives

o|l4 o ol|2 %
14 Hoovf_l(Bp/z(l“o <clA ”2f 1(Bp(x0))[(/f1(Bp(5170))HV(2)A | M)

+ (/ H*|A° 2du)2
f=H(Bp(w0)) 141

1
)
P f*l(Bp(zo))H |

MBS

|

Combining these inequalities, we have

14115 ¢

(B, /2(z0))

< c[|A? HQf 1(B,(x0)) [

|3

F2du)

L(By(z0))

[z sz0>+r\A||2f ptson + A 115,

fo

Taking square roots and using the smallness assumption with, in the n = 3 case,

p
+(cn)? + (n = 2)(c)?

(AB) and the Hélder inequality, gives the result. O

An identical proof gives an analogous estimate for the full curvature tensor.

COROLLARY 5.9. Suppose n € {2,3} and let f: M" x[0,T) — R"™! be a (CSD)

flow, v a cutoff function as in (25) with XB,,, <7 < XxB, and suppose that for any

r € R3, AR =18, < AR 1~1(5,()) < €0 where €9 > 0 is as in Proposition 4.7.

Further, assume that the constraint function h satisfies (A2), and in the case where
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n = 3 that (AB) is satisfied. Then

2
AN £-1(B, 2 (x0))

=13

4—n n 1 n
< CHAHQ,?*l(BP(mo)) “FH22,f71(B,3(xo)) + pTLHAHQz,ffl(Bp(zo)) + (cn)* + (n = 2)eo)|,

where ¢ = c(n, €9, Cap).
For later application we prove the following estimate.

PROPOSITION 5.10. Suppose f: M? x [0,T*] — R3 is a (CSD) flow where there

exists a o < oo such that
[ IAPap<o on 0.7,
M

Then there exist constants ¢, = e1(My), ca = ca€g,0) > 0 and x, € R? such that if

p > 0 is chosen with

< € for every x € R3,
t=0

129 / A°|2du g/ A°|2du
SO o iyt

and the constraint function h satisfies (A2), then at any time 0 < t < t; =

min{cyp?, T*} we have

t
A°2d+// Vi All2 + [[VAIRIA|2 + [[A[1*]A°112) dudr
[ AT [ [ (VA + [VALAR + LA )

(130) < cley + (cn +op™ )],
and

t
(131) /0 A -, oy @ < clen + (cn + opH)t).

Also, for 0 < p' < p and 7 < min{cy(p')*, T*} we have

All2d g/ All2d
APd < [ A

+clep +a(p) T
t=0

/f‘l(Bp//z(fEl))

t=r1
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PROOF. Motivated by the fact that 2* balls B,/» can be used to cover a ball

B,, we set ¢; < where € is as in Proposition 5.5. Note, importantly, that this

e
4.94>
implies €1 < €. Assume (129) is satisfied on [0,¢] and integrate the estimate in

Theorem 5.6 to obtain
(132)
/%%QWWW+2// 5, AN @A+ IVAPIAIP + A A° P dyer
<€+ clen +op .

Since

€0 1 4 4
0<t< =
424 <U+Chp4>p 2P

we use (132) to derive

t
A02d—|—c// Vi All> + IVA|? || Al + |A][*|| A°||* dudr
[ e [ [ @Al [TAPIAR + AL A
< 2'(er + clon + op)t)

<24<€0 L + € ! )
- 4. 24 4.24

€
<
=9

Therefore (124) holds up to time ¢ = ¢; and (130) follows. Using a covering argument

and combining the estimate of Lemma 5.7 with (130) above gives

JAES -

e [y o [V@AI+ VAL + 7 A% Pdpar

<c
0
t
<eeo [ | Vo)Al + HA||4HA°H2dudT+ cctpt
0 Jf=1(Bp(z1))
< ce (61 +c(ep +op )t + ceop_4)

c{q + (cn + O'p_4>t}.
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This shows (131). Integrating both conclusions of Theorem (5.6) and combining the

result completes the proof. O

4. Proof of the interior estimates

We return to our old growth condition (GC) and use the a priori estimates for
the constraint function proved in Chapter 3. In particular, note that this maximises
the ‘overlap’ in the class of constraint functions to which both the Lifespan Theorem
and Interior Estimates apply. In the statement below we use the convention that

0<T*<T <T.

THEOREM b5.11 (Interior estimates). Suppose n € {2,3} and let f : M"™ x
(0,T'] — R*! be a (CSD) flow with the constraint function h satisfying the condi-

tions of the Lifespan Theorem. Further assume (AB) and that

(133) sup [ Al dp < o, for T* < cp?,
F=1(By(z))

0<t<T™*

where m = m(h) is as in the Lifespan Theorem. Then for any k € Ny we have at

time t € (0,T*] the estimates

_k
(134) IV All2,r-1(8, 22)) < cerv/€ol™ 4

k1
(135) IV ) Alloo,r-1(B, j(2)) < cuv/eot™ *,

for some x € R" | where ¢, = ¢, (k, n, p, T*, ||v(k)A||2,f*1(Bp(mo))‘t:O)~

PrOOF. We may assume p = 1, since if otherwise we instead consider the scaled

immersions f,(p,t) = % f(p, p*t). Recall now the estimates from Proposition 3.23

and Proposition 3.26:

T*
136 / / Vi All? + ||A|lSdudt < cey, and
(136) ; f*l(B%(xo))H @Al + 1A du 0
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T*
(137) | AN 1 ot < ce.

Note that the constant above, and all further constants in this proof, depend ad-
ditionally on Cyp for n = 3. We now fix a cutoff function v = 4 o f by choosing

5 € C%(R3) such that
XB%(wO) < ;5/ < X Bi1(z0)s and HD’?”OO + HD2§/HOO <c

We also define a family of cutoff functions in time 7; by

0, t<(G-1L
nt) =3 2(t-G-DL), G-DI*<t<jT
1, t> 5L,

where j € [0,m] and m € Ny. Note that 79 = 1 on [0, 7], 7,,(T*) = 1 and the

derivative satisfies

N L . ™ T
n(t) =7, for te€ ((] - 1)m,Jm>,
zero elsewhere. This is succinctly written as
m T
(138) 0< 77;- < ﬁﬁj—l, te [Q]m],

although of course remains valid for ¢ > j % and t < 0. Recall the following

inequality from the proof of Proposition 3.26:

d ' 1 |
dt )Al*7Y —/ A28
L[ A+ S [ Vi Al
H .
< C(HAHio,f—l(Bi(xo)) + hs) /M||V(2j)‘4||274]+4du

4
+ el All3 115y o) <1 + 1Al 18y (zoyy + B+ hs).

Y
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We compute
d(n‘/ ||V(2-)A||274j+4d;¢>
dt\'" Jm J
) d ‘
= () /M||V<2j>A!|274”+4du + ()= /MHV(QJ')AIIQV“”‘*du

(20)) T h3> {771 (t) /MHV@J')AHQWHdu

< (Al 5

3
4

4
+ CE()(l + |’AH§o,f*1(B (0)) + h + h3>77](t)

1 .
— 005 [ 1V Al du
m 2_4j+4
(139) e (O)7z [ Ve Al

We claim, for 0 < j <m, t € (0,77,

. 1 st .
(140) ny [ IV APt 5 [C,7)| [ I1V0assm Al S ar < T

The proof is by induction on (139). For j = 0, (140) follows by combining (133)

with (136). That is,
2, 4 Lot 2,8
/ APy dp + */ / IV All*y dudr < ceo.
M 2Jo Jm
Integrating (139) on [0, T%] gives, for j > 1,

dr

) 1 gt '
1 /M||v(2j)A||2’V4j+4dﬂ + 5/0 n;(7) [/M”V(2j+2)z4\|2’74]+8d/ﬁ
t
: 4544
< C/O (1 + HAHOO,f_l(B%(xo))) [ﬁ](t) /MHV(QJ)AHQ'Y J+ dﬂ
t
+ 660/0 <1 + ||A||i07f1(32(l,0)))d7‘

m [t .
e s [ Vel dp

dr

dr,

where we estimated 0 < n; < 1 and used 7;(0) = 0 if j > 1. We also used (CB).

Invoking (137) and Gronwall’s inequality (c.f. the proof of Proposition 3.26):

. 1/t :
w [ IVep Al s 5 [0 [ Ve Al duar
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<o) ()

c(m)eg
(=)

(141) <

With (141) we have shown (140). Therefore, at t = T,

c(m)
(=)™

| IV am Al ™ dn < e
We interpolate with one of our interpolation inequalities from Appendix A to obtain
the analogous statement for the odd derivatives; Lemma A .4 for example. Renaming
T* to t, we have shown (135). The L* estimate (134) follows from Proposition 3.21

and (137) exactly as in the proof of Proposition 3.26. O



CHAPTER 6

Blow up analysis for constrained surface diffusion flows

1. Introduction

In this chapter we will detail the blowup construction and the properties of such
which we shall use in our asymptotic analysis. This is instrumental in concluding our
final major result, long time existence and convergence to spheres for certain initial
manifolds and certain (CSD) flows. Briefly, the idea is as follows. From the Lifespan
Theorem, we know that the only way for our flow to halt and lose regularity is if
the curvature concentrates. To contradict this, we will assume we have the tracefree
curvature initially small in L? and also that we are still plagued by a finite time
curvature singularity. The strategy from here is to study intensely the properties of
the finite time singularity. We construct a sequence of rescalings around the final
time, a so-called ‘blowup’, and study the properties of the limit. In this chapter we
will show that the blowup is a non-umbilic stationary surface (with AH + h = 0)
with small tracefree curvature and controlled growth of curvature at infinity. This is
in direct contradiction with the Gap Lemma, and so we must not have had a finite
time singularity at all. In this chapter we will be concerned with the construction

and properties of the blowup. We leave the asymptotic analysis to Chapter 7.

This technique, of analysing rescaled solutions to attack problems of singularity

development, has appeared in the literature for quite some time. However it is
201
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only recently that it has been applied to problems in geometric analysis. For our
purposes, the key references are again Kuwert and Schétzle [36, 38]. Our technique
however differs from that of [36] in several ways, as it must. There, Willmore
flow is studied, and being an L? gradient flow of curvature lends itself naturally to
this analysis. This can be seen in many ways, although the most telling is surely
the stationary nature of the blowup. This is related to two key facts: the scale
invariance of the L? norm of curvature and the flow, and the monotonic decrease
of the L? norm of curvature in time. Both of these facts combine to give one that
the blowup at any finite time singularity is stationary. We do not even recover
this statement, and we must work a lot harder to obtain a useful analogue. To
begin with, we do not have any L? norm of curvature monotone in time. Thus we
first need to show that the L? norm of curvature, while not monotone, is at least
well-controlled. This is Almost Preservation, Theorem 6.3. With this in hand, one
can obtain that the blowup is stationary by the use of one of our earlier localised
integral estimates; however this is of course only valid if the L? norm of tracefree
curvature at initial time is small. Therefore, we do not obtain that all blowups
of finite time singularities are stationary. We only obtain that blowups with small
tracefree curvature are stationary, which is a strictly weaker result than that in [36].
Given that the natural energy for surface diffusion flow is surface area, the same as
for mean curvature flow, one would expect self-similar or translating solutions to be
a common result of rescaling. Our analysis here only excludes this possibility—in
fact excludes the possibility of any singularity at all—in the case where one already

has small tracefree curvature, which is more in line with what one would expect.
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Note that we do not show the reverse implication: that a stationary blowup satisfies
a small tracefree curvature condition.

For the constrained flows, the above difficulties are only part of the story. In the
case where we have a non-trivial constraint function, the surface area becomes dif-
ficult to control from below. While excluding planes is no challenge (the blowup we
construct will have some curvature), our main method of contradicting the possible
development of a sphere in the limit is to prove a uniform lower bound on area. This
results in more conditions placed upon the constraint function, and is the subject
of Proposition 6.7.

Throughout this chapter, and indeed for the rest of the thesis, we will only be
considering flows of surfaces, i.e. families of immersions f : M? x [0,T) — R3,
and only in one codimension. There is good reason for this. The asymptotics of
our previous estimates and the covering argument we have used to obtain crucial
properties of our rescaled solutions requires it. If we had codimension greater than
one, then we would need too many ambient balls to cover key regions of M. This
problem does not arise in the case of the Willmore flow [36], as there it is easy to use
the gradient flow structure of the equation instead to obtain the valuable properties

of the blowup.

2. Compactness theorem and construction of blowup

We will be constructing a sequence of immersions and wish to study the geometric
properties of a ‘limit’” immersion. The following theorem, a localisation of a result
due to Langer [40] by Kuwert and Schétzle [36], defines precisely what is meant by

‘limit” immersion, and gives sufficient conditions for its existence.
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THEOREM 6.1. Let f; : M; — R® be a sequence of proper immersions, where M,

18 a surface without boundary. Let

M;(R) ={p € M; : |fi(p)| < R}
and assume the bounds
1 (My(R)) < e(R) for any R >0,
IV () Alloo,ns; < c(k) for any k € Ny.

Then there exists a proper immersion f : M — R3, where M is again a surface

without boundary, such that after passing to a subsequence we have a representation

fiodj=Ff+u; on M(j)={peM:|f(p)| <j}
with the following properties:

o; M(]) — U; C M; s diffeomorphic,
M;(R) C Uj if j = j(R),
uj € C*=(M(5),R?) is normal along 1,

(142) H@(k)uj’loo,]\;[(j) — 0 as j — oo for any k € Ny.

The theorem says that on any ball Bg(0) the immersion f; can be written as a
normal graph with small norm for j large over a limit immersion f, after suitably
reparametrising with ¢;.

Let f: M? x [0,T) — R? be a smooth (CSD) flow defined on a closed surface

M?, where 0 < T < co. Define

n(r,t) = sup | A[[*dp.
wers 1 (Bo ()



2. COMPACTNESS THEOREM AND CONSTRUCTION OF BLOWUP 205

Let r; be an arbitrary decreasing sequence with 7; \, 0 and assume that
=inf{t > 0:n(r;,t) >} <T,

where €, = €ycg and €y > 0,c = % are as in the Lifespan Theorem.

LEMMA 6.2. With the definitions above, we have

/f (5, HAH du| < e for anyx € R3

t=t;

and

> € for some x; € R3.

All?d
/HBT( _l4JPdn

t=t;
PRroor. The first statement is a direct consequence of the definition of ¢;. For the
second, fix j and consider a sequence v; — 00, vy < rjz. Consider times t; +v; N tj

and radii r; — v; ~2 r;. Then for each i there exists an (:L"]) such that

1A][dp
/f1 (Brj,yf2(($j)i))

Taking v; — oo in the above equation gives the second statement. 0

Z €1.
t:t]‘—‘rufl

We now rescale f. Define immersions

fi+ M? x [— 7“]-_4tj,rj«_4(T— t]-)) — R3, filp,t) = l(f(p,tj —l—?"}lt) — .7:]-).

Ty
The sequence of immersions f; can be thought of as ‘zooming in’ on the assumed

curvature singularity at time 7'. Let n;(r,t) be n with respect to the immersion f;.

Then from the lemma above we have 7;(1,t) < € for ¢ <0 and

All“d
/HBI |Al[2dy

The Lifespan Theorem implies 7’;4(T —t;) > ¢o and also that

Z €1.
t=0

(143) nj(1,t) <e for —ri't; <0<t<c.
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Thus we may apply the Interior Estimates of the previous chapter on parabolic

cylinders By (x) x (t — 1,t] to obtain
(144) IV Allso,s, < c(k) for  —r7*t+1<t< e,

for every k € Ny. We also need a local area bound (c.f. Proposition 6.7). Since
we know the Willmore energy is bounded from Theorem 6.3, it is enough to use a

lemma due to Simon [54] to conclude

i (Br(0))] 2
Yi AR < Al[2dp + dmx (M .
72 <c /fj_l(Bm(O))H [Pdp + dmx (M) | < o0

That is, we do not need to assume (AB). Using Theorem 6.1 with the sequence
fi = f;(-,0) : M? — R? we obtain a limit immersion fo: M — R3. Let b M(j) —

U; C M? be as in (142). Then the reparametrisation
(145) Fi(85,°) = M(j) x [0,¢0] — R
is a (CSD) flow with initial data

(146) fi(5,0) = fo+u; - M(j) — R

The flows (145) satisfy the curvature bounds (144) and have initial data converging
locally in C*, for every k € Ny, to the immersion fy : M2 — R3. By converting the
curvature bounds to partial derivative bounds in parabolic cylinders (as in the proof

of the Lifespan Theorem, final step) we obtain the locally smooth convergence

(147) fi(o5,) — f,

where f: M x [0,¢o] — R? is a (CSD) flow with initial data f,.
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3. Blow up with small initial tracefree curvature

We wish to show that the blowup f is stationary. Unfortunately, we do not have
a guarantee that our (CSD) flows are gradient flows in any practical sense, and so
can not expect to obtain a result analogous to [36]. Indeed, our argument differs
in several fundamental ways and the conclusion is much weaker. However, we still
obtain sufficient information to proceed along the same fundamental lines as [36]
and obtain, in the end, long time existence. Our argument involves the previously
proved estimate Lemma 5.4 and the following almost preservation of small tracefree

curvature theorem.

THEOREM 6.3 (Almost Preservation). Let f : M? x [0,T) — R? be a (CSD)
flow with h satisfying the hypothesis of Proposition 5.10. Then for any ey > 0 there

exists a constant € = €1(€y) > 0 such that if

(148) [1alPdn) - < e
M =0

then for all t € [0, T

(149) [ 14702 dn < e

Proor. This proof is a somewhat straightforward application of Proposition
5.10. Although we cannot simply ‘apply’ Proposition 5.10 with ‘p = oo’, this is still
the underlying idea.

Let f; be the sequence of rescaled immersions constructed above. Recall the
sequence of times ¢;, where ¢; /T and each time is chosen to correspond with a

concentration of €, curvature at the scale r;. We work in intervals [0,¢;]. From
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short time existence, we have the existence of o; such that ||Al|3 < o;, although
we acknowledge that (from for example the Lifespan Theorem) in the case where
T < o0, 0; necessarily approaches infinity. Let p; = max{aj’l, rj’l}, so that we have
pj /" 00. Now, applying Proposition 5.10 in time intervals [0,¢;] with p = p; we

obtain
(150) /fl(B .(0)||AO”2dlu <€ for te [O,min{tj, Co'j_lp?}}.
Pj
Taking p; /" oo we have
/ |A°||Pdp < € for t € [0,T],
M

as required. O

REMARK. It is easy to see that for any €, one may take ¢; = 27%,. However, this
is far from optimal. Since (148) is satisfied over the whole manifold, the covering
argument used in the proof of Proposition 5.10 may be improved by considering
a sequence of radii p; " p instead of only p/2. Then as i and p increase, one
obtains a sequence (€1); /" €. So the above condition (148) may be strengthened

to [|4°]3| _, < eo-
Note that if we had a statement to the effect of

/ |A°||?du < ¢ = guaranteed short time existence,
M

then Theorem 6.3 above would immediately imply that for (CSD) flows with small
initial tracefree curvature we have long time existence. Unfortunately the relevant
theorem, the Lifespan Theorem, requires ||Al|2 small. With a little thought one

realises that such a condition can not be in general satisfied (consider ¢, < 27).
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This implies that such a direct approach is unrealistic. This is why we have chosen
to employ a ‘round about’ method to demonstrate long time existence.

We now show that the blowup is stationary.

THEOREM 6.4. Let f : M? x [0,T) — R? be a (CSD) flow with the constraint

function h satisfying (GC), the hypotheses of Lemma 5.4, Proposition 5.10 and
(AS) AH=0= h=0.
Then there exists an absolute constant e, > 0 such that if

[ A 2dg
M

the blowup f as constructed above is stationary.

S €1,
t=0

PRrROOF. First, note that by the limiting construction Proposition 6.3, the hy-
pothesis of Lemma 5.4 is satisfied for all v as in (25). Therefore we use Lemma 5.4

to imply
G Srdnte. [ (NI + [VHIPH? + HA°)y d
tJm 2 M
=5 [ IV HI + [ VHIPH? + B A7) ?dn
< c[(e)* + ()t + (42)” + () 1A ooy + ele1) 14°]3 0
Set v to be a cutoff function for f; on U;. Then rearranging the above we have

o [ IV | + [VHIH? + H* | A°|dp

Ce o
=5 | IV HIP +[IVHIPH? + H|A°|*dy

d 1., 11 ) 1o
<~ gt e+ s A e + 514N

where R = R(j) is the largest integer such that M;(R) C U;. Denote by I the

integrand ||V o) H||? + |VH|*H? + H*||A°||>. With a slight abuse of notation we



210 6. BLOW UP

now compute

[ g
= lim ( / (/ ))dp; — ;/J_I(fj(-,-))dﬂj>dt>

. 1 2 Loreon o2
< lim (4 8) ||A||2,MJ-(R+1)dth f/o |A ||2,Mj(R+1)dt

)

, 1 1y e 1 feo
< lim ((.+ ,) /0 AR sy + =5 [ IA R

g8
ttj:|)

— c{/ ' H?dp
M(3) t:t]'-i-’!‘?co

1 1 ¢ 1 e
S hm ((4 + ) / ’ 3\/§(Cj)37b(]_,t)dt + 1 / ’ EOdt
0 J 0

j—oo \ \ g4 =~ j8

— / H?dpu
M(j)

— c{/ H?dpu —/ H?dpu }
M(3) t=tj+rico M(3) t=t;
1 1 ¢ 1 e
S hm (_4 + '8) / ’ 3\/§(Cj)360dt + 7/ ’ Eodt
J—00 J J 0 J]°Jo
— c[/ H%du —/ H?du }
M(5) t=tj+rjco M(3) t=t;
1 1 1
< hm ( + ,5)3\/§C3€OCO + .746000
Jj—00 7 i J
- c[ / H2dy [ B } .
M(3) t=tj+rico M(3) t=t;

We will now bring in the limit. Note that we used a covering argument with (143)
in the above computation. Therefore,

/ / ¢OO’ f(¢m»)dt




3. BLOW UP WITH SMALL INITIAL TRACEFREE CURVATURE 211

< —cu Hdy —/~ Hdy }
M t=7 M t=T

<0.

We used the fact that lim; . t; + r;*co = lim; .o t; = T" above. Note that we also
need to ensure that the limit

li H?d

fing T

exists. A lower bound is trivial (M is closed) and an upper bound follows from

Theorem 6.3, so we know
dr < / H2dy < 47 + <.
M

It remains only to rule out the possibility that || H||5 oscillates with infinite frequency
approaching the final time. This is easy to do using an argument similar to that of
Theorem 6.3 with the estimate of Theorem 5.6, which we briefly summarise. Let
0 € (0,T) and assume that for some t* € [6,T") and ¢ > 0 we have %HHH%L:t* > c.
This contradicts Theorem 5.6 at ¢t = t*, after taking p — oo as in the proof of
Theorem 6.3.

This shows that I(f) = 0 and so (among other facts) AH(f) = 0. Therefore,

using (AS) we have that h = 0 and so

This finishes the proof. O

REMARK. The condition (AS) above is natural, although necessarily restrictive.
Since our overall goal is to prove that if one begins a (CSD) flow with small distance
to a sphere then the flow exponentially converges to a sphere, we need spheres them-

selves to be well-behaved. Of course one can construct constraints A which satisfy all



212 6. BLOW UP

of our previous conditions yet are not zero on a sphere. Now we know by using the
Gap Lemma (for example) with surface diffusion flow that the only compact mani-
folds with AH = 0 and small tracefree curvature are spheres. Therefore it becomes
natural that we demand h = 0 for spheres. Indeed, this is the essence of the growth
condition placed on h in Chapter 4 on the Gap Lemma. The condition (AS), viewed
in light of the Gap Lemma, is thus equivalent to the growth condition in Chapter
4, when one considers manifolds which satisfy a small tracefree curvature condition
and restricted growth of curvature at infinity. Since these are exactly the manifolds
which interest us, one may safely consider (AS) to be no further restriction to the
growth condition already required by the Gap Lemma, although of course outside

this set the two conditions differ.

REMARK. One may bypass the separate statement of the Gap Lemma by notic-
ing that if I( f ) = 0 then f must be umbilic, and combined with the nontriviality
of the blowup (Theorem 6.8 below) obtain long time existence in a slightly more
efficient manner. However, since the Gap Lemma is of independent interest and fol-
lows naturally during the course of proving the required estimates for this chapter,

we have treated it independently.
LEMMA 6.5. The blowup f constructed above is not a union of planes.

PROOF. Due to the smooth convergence in (147) and the second conclusion in

Lemma 6.2 we have

AlPdp > ¢ > 0.
p— 7
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LEMMA 6.6. If the blowup f constructed above contains a connected component

C, then in fact M = C and M is diffeomorphic to C'.

PRrROOF. For j sufficiently large, ¢,(C') is open and closed in M. By the connect-

edness of M we have M = ¢;(C) and thus M = C. O

The reason for the previous two lemmas is to prove that f is nontrivial. The
following area bound, which requires || A°||3 small, is crucial for treating nontrivial
constraint functions. The main difficulty here is that the speed of our flow differs
from AH by the constraint function, whose impact on the evolving area element is
hard to control. The proof follows [36], where this also causes difficulty, in the form

of the extra zero order term H || A°||2.

PROPOSITION 6.7. Suppose f : M? x [0,T) — R? is a (CSD) flow with small

tracefree curvature
[1adn < e < e,
M
and with this assumption the constraint function satisfies both
(M) [ Ve H|Pdp — [ 2V Hdp
M M
<hf Hap<2 [ VA dut [ A+ A%
M M M M
and (A2). Then

(151) (1 = ce)u(M)

S HM) < (L ce)u(M)

t=0

PRrRoOOF. The evolution of the area is

d d
—M:—/d:—/ H12d h/Hd.
dt“( ) il MHV |“dp + | Hdp
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Simons’ identity for A° implies that
2/ VA% 2dy +/ H2|| A% 2dp = / IV H || %du +/ A% % A° % A° % A%dp,
M M M M
Combining these equalities we have

Su(M) 42 [ VA P+ [ HR A% P
dt M M
:h/ Hdu+/ A% % A% % A° % A°dy.
M M

Using our hypothesis this becomes

d
M) < (M) A%

From Proposition 5.10 we have
t
/ | A°|| 2 dr < ce.
0
So, using Gronwall’s inequality, we obtain

p(M) < (1+ ce)u(M)

t=0
For the lower bound, observe by the Michael-Simon Sobolev inequality that
) 2
JIvHIEdn < o [ Ve H] + HIVH|dp)

< ou(M) [ IV H|?+ H|VH|*dp.
Combining this again with the evolution of the area element we have

LM > — M/ HI1?2 + H2|VH|=2d h/Hd
L u(M) > (M) [ VI + B HIPdp+ b [ Hg

> —eu(M) [ |V H|? + H?|VH]|dp.

Using Proposition 5.10 again gives the lower bound required and finishes the proof.

O



3. BLOW UP WITH SMALL INITIAL TRACEFREE CURVATURE 215

THEOREM 6.8 (Nontriviality of the blowup). Suppose f: M? x [0,T) — R? is a

(CSD) flow with constraint function satisfying

b Hdp> =) [ Ve HPda— [ 2 VH|Pdp
M M M
the growth condition (A2) and let f be the blowup constructed above. Then none of

the components of f parametrises a round sphere. In particular, the blowup has a

component which is a compact or noncompact nonumbilic stationary (CSD) surface.

PROOF. Assume that there is a component of f which parametrises a round
sphere. Then Lemma 6.6 implies that f : M — R3 is an embedded round sphere,
that is, has no further components. Therefore the surface area of the blowup does

not explode. The measure behaves under scaling by

(M) =13 (M)
t=t; t=0
and so we have
p(M)| = lim p(M)| = lim 75p;(M)|  =0.
t=7 J—o© t=t; J—o0 t=0

Since the maps f;(-,0) are C*-close to a round sphere (up to the diffeomorphism ¢)
we have

— 0.
t=0

[ Pdn = [
M M;

Therefore for sufficiently large j we may apply Proposition 6.7 and obtain a contra-

t=t;

diction with the lower area bound. O



CHAPTER 7

Long time existence and convergence to spheres for surface
diffusion flow

1. Introduction

In this chapter we prove the following theorem.

THEOREM 7.1. Suppose f: M? x [0,T) — R3 is a (SD) flow. Then there exists

a constant e > 0 such that if

<e
=0

152 / A°|2d
(152) [ a0 P

then T'= oo and f converges exponentially to a round sphere.

One way to view the condition (152) is that the deviation of f from being round
is small in an averaged sense. This result can then be viewed as a kind of stability
of spheres theorem in the L? norm. Simonett [55] used centre manifold techniques
to show that the statement of Theorem 7.1 holds under the stronger assumption
that fy is C*%-close to a round sphere. Our analysis here is completely different, as
it must be, and as noted throughout the thesis we have drawn inspiration instead
from the work of Kuwert and Schétzle [36, 37] on the Willmore flow of surfaces.
There they prove Theorem 7.1 for Willmore flow. All of the additional difficulties we
have encountered in earlier chapters are due to the lack of a very special zero order
curvature term in the speed of the flow, and the addition of a difficult to control

global term (the constraint function). The problems caused range from obtaining
217
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‘good’ terms in our integral estimates, to the fact that we do not enjoy the structure
of an L? gradient flow of curvature, and thus certain trivial facts become highly

non-trivial. For example, in Willmore flow one has

& [ 1aPdp <o,

in fact better than this, for “free”. With surface diffusion flow this is no longer true.
Instead, we must rely on Theorem 6.3, which is strictly weaker. Note that although
this weakness carries through to the rest of the blow up analysis, where we obtain
a weaker result than Kuwert and Schatzle, our final major result Theorem 7.1 is
no weaker than the analogous Theorem 5.1 in [36]. This is due to the particular
weakness of our blow up analysis: the results only hold in the case where (152) is
satisfied, whereas for Willmore flow the blow up analysis does not require (152) to
be satisfied. However, since our main theorem requires (152) regardless, one does
not ‘see’ this shortcoming of the blow up analysis from the outset.

We briefly demonstrate an application of Theorem 7.1. Consider the quantity

- Jar dp N p(My)

I(t) = =
(®) Vol M; Vol M,’

sometimes called the isoperimetric ratio. Let fo : M — R3 be a surface satisfying
(152), and let f : M x [0,T) — R3 be the surface diffusion flow with initial data fo.
Then

d —fMHCH”QdM
(153) dtl(t) Vol M, 0

By Theorem 7.1, f approaches a round 2-sphere S with the volume equal to the

volume of fy. This sphere has radius

- s/ 3Vol M,
a Ar
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Integrating (153) and taking limits we have

(M) > p(S)
Vol My — Vol §
2
47T< 3/3V017TM0>
= ’ , SO
Vol MO

()" 2 T (vor 1)

= 36 (Vol MO)Q,

V

the isoperimetric inequality (with optimal constant) for 2-surfaces in R? satisfying
(152).

One may wonder on a possible upper bound for €;. Unfortunately, there is a
dearth of analytic examples of surfaces flowing by surface diffusion in the literature,

and so at this time we do not have any analog of the bound given in [38].

2. Long time existence

We begin by establishing that surface diffusion flows with small initial tracefree
curvature exist for all time, that is for these flows T" = oco. For this, the only issue
is to rule out out possible concentrations of curvature at finite times. Now that
we are armed with the analysis from Chapters 3 through to 6 there are several
possible approaches to establishing Theorem 7.1. Our approach is to here give
some elementary arguments, which were outlined heuristically throughout the thesis,
whereas the next section is devoted to the technicalities involved. In particular, for
this section we establish T" = oo, while in the next section we utilise a different kind
of ‘blowup’ (in fact there is no scaling) to establish exponential subconvergence to

spheres.
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PROPOSITION 7.2. Suppose f : M?* x [0,T) — R3 is a (SD) flow. Then there

exists a constant €; > 0 such that if

[acan| <e
M

t=0

then T = oo.

PROOF. Assume otherwise, and then by the Lifespan Theorem there exists a
T < oo such that curvature concentrates at time 7. Note that we may assume
T > 0. Performing a blow up construction as in Chapter 6 at 7" we recover a
stationary blow up f with small tracefree curvature due to Proposition 6.3. Now
observe that the Gap Lemma implies f must be a plane or sphere, which contradicts
the nontriviality of the blow up, Theorem 6.8. Thus there does not exist a finite

time when curvature concentrates, and so 7' = oo. 0]

This establishes long time existence, however we know little of the asymptotic
behaviour of our limits in the case where T" = oo. The following is straightforward

in light of Almost Preservation and the Gap Lemma.

LEMMA 7.3. For surface diffusion flows satisfying (152), curvature cannot con-

centrate at final time.

PROOF. Almost preservation implies that if indeed the curvature did concen-
trate in infinite time, we would have a compact surface f(-, 00) with small tracefree

curvature and a curvature singularity. This contradicts the Gap Lemma. 0

This resolves the issue of possible exotic singularities developing asymptotically

slowly. Note that in the case where (152) is not satisfied any one of a whole menagerie
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of singularities may develop in finite or infinite time, and excluding or providing
examples of these are valuable contributions to the literature. At this time, the only
ones known are due to Meyer [45].

For surface diffusion flow (for constrained flows, a similar argument with Propo-
sition 6.7 applies) we have the existence of a non-zero positive finite limit p(M)|=r

due to the uniform bounds

(154) 0 < 2v37VVol M|_ = 2v37v/Vol M < (M) < p(M)| _ < oc.

t=0
We finish this section with another lemma, which states that at some scale the
curvature will never concentrate. This is similar to Lemma 5.3 in [36]. The proof

is contained in the proof of Proposition 7.2.

COROLLARY 7.4. Suppose f : M? x [0,T) — R3 is an (SD) flow. Then there

exists a radius ro > 0 such that

A|*dp < e, for every x € R?,

where €1 > 0 1s as in the construction of the blow up.

Note that the above gives an alternate proof of both Proposition 7.2 and Lemma

7.3 above, which is more similar in spirit to [36].

3. Exponential smooth convergence to round spheres.
We first prove, as in [36], that under the assumption (152) convergence to round

spheres is smooth. This is similar to the analysis from Chapter 6.

PROPOSITION 7.5. Suppose f : M? x [0,T) — R? is an (SD) flow satisfying

152). Then for any sequence t; / oo there exist x; € R® and ¢; € Diff(M) such
j j j
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that, after passing to a subsequence, the immersions f(¢;,t) —x; converge smoothly

to an embedded round sphere.

PROOF. Let p € M be arbitrary and set x; = f(p,t;). By Corollary 7.4 and the

Interior Estimates, Theorem 5.11, we have for each ¢; > 1
(155) VAl < k.

We also have an area bound easily as %4 (M) < 0. Then by Theorem 6.1 we infer
the existence of a properly immersed surface f . M — R? and diffeomorphisms

¢; : M(j) — U; C M such that, after sclection of a subsequence,
F(05,15) —a; — |
locally in C* on M. On M(j) we consider the surface diffusion flows

gj(pa t) - f(¢]<p)7tj +t) - Zj, for ¢ > _tj‘

These flows satisfy the interior estimates (155) and the initial data (¢t = 0) converges
to f. Arguing as in (145) we obtain the local smooth convergence of each g; on
M x [0,00) to a surface diffusion flow g : M x [0, 00) — R?® with initial data f. But

now, using the argument of Theorem 6.4, we obtain that

tj
/ +1/ IAH[2dudr \, 0, as j / oo,
t;  JM

Therefore f is a stationary (SD) surface. The Gap Lemma implies that f must be
a union of planes and spheres, however we can exclude several components using
the proof of Lemma 6.6 and planes are impossible due to the upper area bound.

Therefore f must be an embedded round sphere, and subconvergence is smooth. [J
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The above implies that Theorem 6.3 may in fact be strengthened to

J1acldp N 0 as t /o,
M

and further that we must also enjoy almost preservation of the full second funda-

mental form, as
/ |Al[Pdp — 47 as t /oo,
M

We need one more estimate before we can prove exponential decay of curvature.

The proof is a simpler version of that given already in Lemma 5.4.

LEMMA 7.6. Suppose f: M? x [0,T) — R3 is a (SD) flow. Then there exists an
absolute constant g > 0 such that if
J Al dp < o
M
and

1
liminfj/ 1A|2du = 0
F=1(B,(0))

p=0 p

then we have

d 1
— [ | A°Pdp + — Al? A|lPH? + ||A°||PH" ) dp < 0.
= NAPdp+ oo [ (IV@AIR + [VAI2H? + | A%)2H)dn < 0

PROOF. The argument is similar to that of Lemma 5.4. Let v be a cutoff function
as in (25) on a ball of radius p. We begin by combining Lemma 5.3 with Proposition

4.7:
d
& 1A e+ (1= 60| [ IV APyt [ AT A%l
M M M
LAl A+ [ HEVH| P
M M

C o c
14 0~ 51413 0]
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<o [ VAN H dpat b [ AI1A7)P d
M M
c
o [ A + AP APy dpe+ 5 [ A%
M p* S0
Simplifying, we choose §; = = and obtain
d
& [t o] [ V@At [ NARIVAR e+ [ A7
C/M(HAOH6 + VA1 A%*)y dpe + E”AOHS,[')DO] + AN s
Note that we also added [y, ]| A°||?||V A°||>*v*du to both sides and used the inequalities
IV All* < 25|V 2 A°|I%, and [[VA|]* < 25]VA°|J".
These are easily proved by estimating
VA= V(A" + 1gH) = VA 4 g, VIH = VA® 4 2V* A°
and
VA= V(VA°+2¢gV*A%) = V(A% +2gVV™A°.

Invoking the Sobolev inequality (Lemma 3.22), as in the proof of Lemma 5.4, we

absorb the first term on the right hand side to conclude

d
D404 [/VA“d /AQVA“d /A4A024d
dt/MH [h! MJFIOO MH @AIFY du + MH IV A[*y dp + MH 1Ay  dpa
C o qo)12 0|4 c 2
< EHA 12,00 E”A 12,01 + E”AHZWO]’

where we required €y < £-. Taking p /* 0o concludes the proof. ([l

We finish this chapter by proving exponential decay of curvature. Our proof

follows that in [36].

PROPOSITION 7.7. Suppose f : M? x [0,T) — R? is an (SD) flow satisfying

(152). Then there exists a X > 0 such that as t / oo the following asymptotic
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statements hold:

IV Alloo < cre™,

14|00 < coe™,

fork>1.

PROOF. Let A = ,u(]\/[)’t L. be as in (154). Then Proposition 7.5 above implies

that the sectional curvature and mean curvature satisfy

47

Koo T
1Kl — =5

and

16
1H?[|oe — —

A )

as t /" 0o. Therefore there exists a t; < oo such that
H?>cy >0, for all t > ty.

From now on we assume t > ty. Now we invoke Lemma 7.6. Note that we may

assume cy < 1. Using the above we have

C2

d
= A% Pdp+ VAl + AR+ AP < 0.
= [ AP dp L [ VAl + A+ A% dp < 0

Integrating gives

02 S
156 /A”d id /VA2 VA|2dudr < =2,
(156) A+ 106 [ [ IV AR+ IVAIPdpdr < e
where
2
_ Cn
A_200‘

Note that we needed Proposition 7.5 for fMHAOHQduLiT = 0 in the above. From this

estimate and again Proposition 7.5 we can obtain exponential decay in a standard
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way. From Proposition 3.17, taking p " oo gives

d
o | IV ARd+ [ Vo) Aldu < [ (PE2(A) + PEA)) * Vo Adp

Note that the term c[| A3 . disappeared due to the dependence of the constant

v>0
on p. From Proposition 7.5 we know that A and all its derivatives remain bounded
as t / 0o, so we estimate

/M PQO(A) * V(k+2)A * V(k)AdpL S 6/M|‘V(1€+2)Al|2d,u -+ Ce /MHV(k)A”Qd,u,

B k+1
[ (PE2() + PRA)) « Vi Adp < e 3 [ (1964l dp
j=1

where the constant is not universal (i.e. depends on derivatives of curvature).
PE+2(A) denotes all terms of type PyT2(A) that do not contain the (k + 2)-th

derivative.

We thus obtain

d 1 k+1
LIV Al2d f/v Al2dy < /V»A2d.
7 J IV wAPd+ 5 [ IV Aldn < c3 [ IV AlPdn

A proof by induction using (156) then gives

2 oo B
||V(k)A||§+1T% t IV (ko) All3dT < e,

This gives us the estimates
4%z < ce™, and ||V Alls < ce™.

Using Proposition 51 as in the proof of the Interior Estimates finishes the proof. [J

REMARK. Note that in the proof of the above we in fact showed that after a fixed
time translation, the sign of the mean curvature is preserved. This is interesting in
that a typically second order phenomenon remains true (after some time) in the

fourth order setting.
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4. On constrained surface diffusion flows

For a result analogous to Theorem 7.1 pertaining to the constrained surface
diffusion flows, at present the conditions placed upon the constraint function are
too restrictive. While there are contrived examples of constraint functions (apart
from h = 0) which will satisfy these constraints, there are no motivating examples
which we know of. This is an interesting question to address in future investigations.
Despite this, we state the theorem relevant to (CSD) flows for the interested reader.

The proof is identical to that of Theorem 7.1.

THEOREM 7.8. Suppose f : M?* x [0,T) — R? is a (CSD) flow with constraint
function satisfying (A2), (AS), the hypothesis of Lemma 5.4 and
b Hdp > —p(M) [ Ve HIPdp— [V H|dp
M M M
Then there exist constants €1 > 0 m > 2 such that if

<€
=0

a2 ([ 1401

then T'= oo and f converges exponentially to a round sphere.



APPENDIX A

Inequalities

We collect here several inequalities which we use throughout the thesis. This is
certainly not an exhaustive account, but the more common or more useful of them

are included, along with proofs.

LEMMA A.1 (Gronwall’s Inequality). Let f,g,h: I — R where I C R is bounded
and connected with ¢ = inf I, and f, g, h are continuous and integrable on I. Then,

if g >0 and

(157) £ < 90+ [ hr ()

we can conclude

(158) 10 < o)+ [ grm(ryel v

foranyt e I.

PRrROOF. The idea of the proof is to take a useful test function and then combine
the derivative of such with our assumptions to conclude the lemma.

For v,7 € I, let
o(r) =€ JJ nwyav /T h(v)f(v)dv.

Differentiating,

P(r) = hlrye S0 (£(0) — [Thiw) f)av).

229
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The term in brackets is estimated by our assumption (157), so we obtain
#(7) < g(r)h(r)e ) M.
Integrating,

e Jo v /t h(7)f(T)dr

I
ﬁ
‘6\
—~~
\]
SN—
=)

\‘
IN
r\
i
N
—~~
\]
S—
>
—~
\]
S~—
C'D‘
o3
=
S
Y
N
=¥
a3

Using again the assumption (157),

e Lr (1) — g(1)) < [ gtrim(rie L ar
- fcth(u)dyf<t> <o N h(l/)dyg(t) n /tg<T)h(T>€_ JT hvydv g
ft) <g(t)+ efct h(v)dv /t g(T)h(T)e” Jon@ydv g

t . .
<g(t)+ / g(r)h(r)ele hdv=f hw)v g
Since 7 < t, the integrals in the exponent combine and we can conclude (158). [

The following interpolation inequality is used to prove the second multiplicative
Sobolev inequality (51). This interpolation inequality is proved using the Michael-
Simon Sobolev inequality and an induction argument primarily due to Ladyzhen-
skaya [39]. We present here an n-dimensional version based upon the modern 2-

dimensional version given in [37].

THEOREM A.2. Let f : M™ — R" be a smooth immersed hypersurface. For

uEC’i(M),n<p§oo,0§m§ooand0<a§1wherei:(%—%)m+l we

have
(LZ) ullso < cllullyy *(IVully + 11 Hullp)®,

where ¢ = ¢(n,m, p).
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PROOF. Assume u > 0. Define

Cuss([[Vullp + [[[Hull,) = Qw),

where the constant Cyss is the constant from the Michael-Simon Sobolev inequality
above. Note that in particular Cg¢ is an absolute constant and does not depend

on u. Now scale u by

! u
Q(u)
for Q(u) # 0 and if Q(u) = 0 set & = u. Then Q(a) = 1, that is

u =

(159) Cuss([IVall, + [ Hall,) = 1.

Note that since we scale the image of u, the derivative Vu (in fact any derivative)
scales the same as the original function u.

Let g = £ € [1 L), and 7 > 0. Then by the Michael-Simon Sobolev inequal-

p—1 ’n—1

ity

I8 a1y < Cusss ([ Va7l + [ a7 |Hld)

M M

(160) = Cuss (L + 1) (V)@ ||y + [[a 47 H ||, ).
Since % + é = % + 221 — 1, we use the Holder inequality and equation (159) to
conclude

18 |y n-1y < Corvass |87 [l (1 + ) Vll, + |l H]],)

< (@ +7)fla Q)

(161) < @ +7)lla
We will now proceed with several induction arguments. Set k = q(nn_l) € (1, n%}

and, taking the (1 + 7)-th root, rewrite (161) as

- 1 T
(162) @llkg17) < (14 7)5 [l



232 A. INEQUALITIES

Since
li =
Tim [l = e,
we look to taking a sequence 7, in (162) and then letting v — oo. For this purpose

we set the following constants:

Ty = Te (m— m,m] Toy1 =k(1+7)

q n

Ty 1
v — 60,1 l/:1 v) 1t
(=12 e o) o=(1+7)

for v € Nyg. We now rewrite (162), replacing 7 with 7,

(163) 7, 11q < collallz;

qTy”
These definitions imply the following formula for 7,, by induction
n=k(1+7,_1)=k(l+k(14+7,_)) =k+ Kk + k1,5

:...:kVTO—l-Zk’u
pn=1
where the base case is given by

1
T = l{?(l—i-To) = k170+ Zk‘u

p=1

and the inductive step is easy to show as

v+1
To1 =k(l+7) =k+E 0+ > k"
n=2
v+1
=k 0k
pn=1

where we used the inductive hypothesis in the second equality. Adding 1 to each

side gives

(164) 1+7, =K1+ k-

pu=0
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From (163) we obtain again by a similar induction

€v—1
qTv—1

lillr,q < coalll
~ || €Ev—2 vt
S Cy—l (CV72HIU/H(]TU—2)

€Ev—2€p—1

= Cy— 1CI/ 2 ”quTu_z

Cy_ 1CV QCzG/U 31€u 2”“”;1;;3;“726”71

(165) - (Hc% ) Jaflri= .
i=1
For this induction the base case follows from (163) by

[@lrq < collallgs,

< col|allye
1 .
(Hcl“ )Huug

and the inductive step also follows from (163) and the inductive hypothesis by

[@llr,11q < collalls,

1 €
(Iﬁc ’ L _j> v ||a||;:n;:16,,_j7
1
— <lﬁ Clll_—["jjl_llieu+1_j> ||ﬂ/”g;ill EV+1—]"

=1

Since €, < 1 and ¢, > 1 we estimate

In (Hc =1 J) Slan,,_i
i=1
= Zln Co—i
(166) Z

n(l+7,_,
1+7‘V, T )
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From (164) we can estimate by the arithmetic mean-geometric mean inequality
1
-k <14+, <ck”,
c
for ¢ = ¢(m,p). We use this with (166) to conclude
14 7',‘—1 €y 14 1 )
In (H cll}fl J) => o In(ck”™)
i=1 i=1 ¢

— XV: ckif”(lnc + (v —1i)lnk)

i=1
<> ck(Inc+ilnk)
=0
(167) = ¢(m,p) < oo.

Note that we relabeled the terms in the series above so that we can take a limit in

v later. We now use 7,41 = k(1 + 7,) and (164) to obtain again by induction

v v—1
H €v—j = H €j
j=1 =0
) 71 Tv—1
14 Tl4+7 1+7,4
T0T1 "‘TV_Q(k(]_ —|—T,/_2))
(I+7)A+7) (T +72)(1+71)

To

=k
1+ Tv—1

For this induction argument we simply note that by the definition of ¢,,

1-1
[Le =
j=0
To
1 —I— To0
1-1To
1 + T1-1 ’

which is the base case. The inductive step is again easy as

v—1

14
[lei=elle
Jj=0 J

0
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— Ty kl/—l 70
1+ Ty 14+ Ty—1

k’(1+TV_1) 70
I1+7 1+4+74

70

1+7,

— kl/—l

v

)

where the second equality is from the inductive hypothesis and the third equality is
from the definition of 7,,.

Recall again equation (164). We first take limits as follows:

ku—l —v -1
lim ——— = lim (m + Zk’)

v—oo | -+ Ty_1 =0
1

k
T0 + -1

and now unravelling the definitions we find

ﬁ - T0 . % . m o m+ nfq?ngl) - nfq?gfl)
J k. — m n - n - ng
=0 Tt ¢ T eengEsy T T UL e ey
1 ngq B 1 B 1
B m(n —q(n—1))+ng 1+m(t -ty 1+m(%—%)
=1- =1-aq,

which explains our choice of the constant . Note that for the proof to work we
require m > 0 and « € (0, 1], which in turn requires % — % > 0. This is why it must
be the case that p > n. If one of these conditions is violated, then the scaling will
not ‘close’ at the end of the proof.

Finally we let ¥ — oo in (165) and conclude, using (159),

oo < eflally®

= cClss [l *(IVally + |1 Hal,)*

1 1
Qu)' = Q(u)

= [lullee < Q(u)c(m, n, p) Sl (Il + [[1H ful],)*
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= c(m,n, p)|[ull, “([Vully + [[[H |u],)*

and so we can see that the scaling of the image of u forces the exponent « on the
right hand side.
It still remains to remove the positivity assumption on u. Trivially, we can split

u Into

where the operations ( )™ and ( )~ are the positive and negative part respectively.
The problem is that these operations are not closed in C'. To overcome this, we
first approximate u by a sequence of functions u. — u where the convergence is in
WP This weakens the regularity of u to WP and in this space the positive and
negative part operations are closed. We then split u as previously indicated. This

completes the proof. O

We use a large number of interpolation inequalities in the proof of the Lifespan
Theorem. A series of 5 form a logical progression to the very important interpolation
inequality which allows us to estimate the P-style terms. We present these results

beginning with the lemma below.

LEMMA A.3. Let L +

5 5:%,1§p,q,r§ooanda+ﬂ=1,04,520~ For

s > max{agq, fp} and —

([IvriEran) <c( [ i t=oae)” ([ 19670 du)”

el 9yl ([ 110 0an) " ([ 19717 an)

1
P
)

where ¢ = ¢(r, s).
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Proor. This is a simple consequence of integration by parts and the Holder

1
T
P

—1

inequality with % + 1% + =1, as follows

| (VTVT) VT dy
< [T IV T = DIVTI Vo Ty d
+ [T IS TIIV T2yl d
< (2r=2) [ T VT2V o, Ty d
+ 595w [T 19Ty dp

r—1 1 1
< ([ Iorman) |2 (f i) ([ 19T an)’
M M M

sl (f i enan)” ([ oTieera)” |

If VT = 0 then the result is trivial. Assuming otherwise, we obtain by division

1—r=1

([IvriErsan) < @r=2) [ 110 0an) ([ 196710 du)”

451Vl ([ 1710970 d) " ([ 19T )

which is the statement of the lemma. O

LEMMA A4. For2 <p< oo and s > p we have

1 1 1
([ I9TIrrdn)” < e( [ I9aTIrydn) +c( [ 171 7dn)”
M M M

where ¢ = c(e,p, s, ||VY||o) and € > 0.

PROOF. Let p=q=2r,a=1,=0and t = % in Lemma A.3 to obtain

([ I9TIdi)” < e ( [ Nl —rd [ 19671 7du)"
M M M

el Ve ([ ITIP P [ 19Ty’
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1 2 2
<5 (LIvTIvdn)” e ([ Va7 )
M M

+c (/ IITllpvs‘pdu> ",
M

where ¢ = c(e,p, s, ||V7|lw) and € > 0. Subtracting and taking square roots gives

the statement of the lemma. O

LEMMA A5. For2 <p<oo, k€N, s> kp, ¢ =c(e,p,s,||VY]w) and € > 0

we have
([ I9wTIPvde)” < e( [ 1Nl rdu) +c ([ ITim=trdu)”
M M M

PRrROOF. As mentioned, for £ = 1 the lemma holds by Lemma A.4. We now

proceed to assume

1 1 1
(168) (| INwSIPdi)” < ([ INwnySIo2di) "+ ([ 1817 ~47d)
M M M
and attempt to prove for any € > 0
(169)
1 1 1
(/ ||V(k+1>5\|p73du) <e (/ HV(m)SH”f”du) +e (/ H5||p78('““)pdu) :
M M M
This will finish the induction. Let T = V)5 in Lemma A.4 to obtain
(170)
1 1 1
([ I9amSvdn) < A ([ IV waSImyrdn) s e ([ 1908y dn)"
M M M
Since we assumed (168), we know s > kp. Therefore s — p > (k — 1)p. Using (168)

with s — p instead of s, we obtain

(171)

1 1 1

»_ 0 v _ »

([ 19wSIydn)’< 2 ([ 196 di) % o ([ 18174 0ran)”
M C M M
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Combining (170) and (171) we get

B =

([ I9wesIPrdn) <3 ([ 190 SIPredu) e ([ 1908 rdn)”

<A ([ Vw7 ) 8 ([ Vs an)’

([ ISy trrgu)”
M

|—

Absorbing the second term on the right gives

5 » . 7
(] IV wSIPydn) < 225 ([ 19w Sy ) o ([ 18P0+ 0rdn)
M 1—0VUm M
where ¢ = ¢(\,9,p, 8, ||[VY|le) < co. The above formula is valid for any 6, A > 0.

Choosing 6 = % and A = § proves (169) and finishes the proof. O

The following lemma appears in Hamilton [27].

LEMMA A.6 (Hamilton, Lemma 11.5). Let f(k) be a real valued function of the

integer k for 0 < k <n. If f(k) satisfies

(172) fk) <Cf(k =12 f(k+1)"2,
then
(173) Fk) < CHR) F0) R £ ()b,

THEOREM A.7. For k € N, 1 <i <k and s > 2k we have the inequality

2k ﬁ 1—2% s %
([ veri®van)” <drilefuy ([ Vo) + )

where ¢ = c(k,d, s, ||VY|)-

1
2

Proor. We proceed to set the following constants to use in our induction

m o, \F
a=( [ IVaTI*ydu)™ a0 = |7 |0
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b= (
M

Letrz%,p:%,q:iz_—kl,t:a:()andﬂzlin(A.?))toobtain,forszk

) b o i;j
a; <ca;_1 | a1+ (/ |V @yT ||+t~ 1 du) .
M

Let s > 2k and then by (A.5) we have

O\ %
i du) , bo = [|T 0,70

i+1

PN 26 o) 2
([ IvaTI##dn) ™ <e( [ IV TI#y du)
o [y tdtg)

< c(ait1 + bit1).

Since bf < b;_1b;11 by the Holder inequality, we obtain
(CLZ' + bz)z S C((li_l + bi_1>(ai+1 + bi—i—l); for 1 S 1 S k—1.

So, we have that f(i) = a; + b; satisfied (172), and so by the convex functions result

(173), we have

a; S a; + bz S C(CLO + bo) ((lk + bk)%

. 1 i
1-1 s \?2
< AT1choo (1w a)” + 7).

which is the desired statement. O

We can finally finish this series of estimates with a result suitable for application

to the P-style terms.

COROLLARY AS8. Let 0 <iq,...,i, <k, i1+ ...+, =2k and s > 2k. Then

we have

VTV Ty dn < eI g ([ IV @ TR dn+ 1T )
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PrOOF. This follows from Lemma A.7 and the generalised Holder inequality.
For the purposes of notation, if at least one of the ¢; are zero, reindex and assume
for some 0 <[ <r we have iq,...,4 # 0 and 4;41,...,%, = 0.

We derive

/ VT * - x Vi Ty dp
M

i
2

2k k
7:J

: vsdu)

l
TNt IT( 1967
j=1

l i 1 %
r— -2 S 2
< Ty TT |10 oy ((f 071 0) )
J=1

< elITI ey (10T I die+ 1T )

which is the desired statement. O






APPENDIX B

Scaling a hypersurface flow

One technique which has gained enormous popularity among analysts working
on geometric evolution equations is that of ‘scaling’. This is in some sense a loaded
term, being that many associated methods fall under this umbrella, from singularity
analysis, integral estimates, to covering arguments and simplifications. We will use
scaling methods several times, where each application plays a critical role in the
encompassing argument. These are in the proof of the Lifespan Theorem, the proof
of the Gap Lemma, and perhaps most important of all in the construction of a
blowup at an assumed finite time singularity.

The application of scaling used in the proof of the Lifespan Theorem of Chapter

3 is more classical in nature. In this appendix, we will explain how the quantity

174 / AllPd
(174) [ AP

transforms under a scaling of the independent variables in an immersion f : M" —
R™™. Our immediate aim is to prove that (174) is scaling invariant for p = n. Our

motivation for choosing this particular kind of scaling is to make the transformation

/ APdy — / APdp.
B By

This is an absolutely crucial step in the proof of the Lifespan Theorem. If we did
not fix the radius p = diam,~¢ of our cutoff function +, then the constants in (25)

would depend on the radius p and this would introduce a circular dependency on
243
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€p which may drive p — 0. This would make the entire argument invalid. We will
present the proof of the scale invariance of ||A||? at the end of this appendix.

For the purpose of obtaining a scaling invariant governing equation, we will need
to scale time by a factor different to that of space. One can see this (using results to
come in this appendix), and differentiate a rescaled immersion f(x,#(t)) = af(z,t)

in time to obtain

af _ 9fot _ 9ty 4k ;-
of  “otor ot (" (Ad1)7).

So now if

o,
ot~ ¢

our governing equation is invariant under scaling by a on the new time interval

0 <t <T, as desired. Thus we choose the following rescaling:
T =ux, and t=a.

There is no scaling in the domain of f (this is a completely different issue altogether).

We commonly write this particular rescaling in abbreviated form as

We now prove the results used in the above computations, beginning by deter-

mining how the metric scales.

LEmMmA B.1. gij = Oézgij and gij = 05_2gij'
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of

=

oz8f>
oxJ

of
dai

PROOF. From the definition,

B of
9 = \ g
e} af
ox?
of

o 2
-« ( oxt

2

We also compute §¥. In the following, § (without the subscripts) refers to the

matrix.

I=gg"'=a’g5"

~_ 1

=g =9
(8]

~1j 1 7,

:>g.7_72g.7
[0

O

Using the above we can easily prove the scale invariance of the covariant deriv-

ative.

LEMMA B.2. V = V.

PROOF. It is enough to determine how the Christoffel symbols scale, and thus
using the fact that we have no torsion we can consider the scaling of the right hand

side in the following equation:

1 0 0 0
Ik = Zghl -gi1 + =—09i — = 0ij |-
i = 99 <8xlg]l+8:cﬂgl axlgj>
Therefore
. 1 5. 5 0 5 0 5 0
Ffj = §a29kl (cv zgxigjl—l-a Q@Qiz -« 28xlgij> - Ffj
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O

Second, we consider the induced measure on the surface du. Denote the scaled

measure on f by dji.
LEMMA B.3. dp = o"dp.

PROOF. Note that n-dimensional Lebesgue (and Hausdorff) measure is invariant

under scaling. We have

dii = \/det(g)dL" = y/det(a?g)dL"
= /a?rdet(g)dL" = o™/det(g)dL"

= a"du.

Finally, we compute fzw
LEMMA B.4. hy; = ah,;.

PRrROOF. From the definition,

P (of|or
v\ ozt 03 )

where 7 is a local choice of unit normal for f . Noting that 7 = v (the base point

changes but nothing else), we compute

of |ov\ [ of
ori | a@xi

iy = (aﬂ

oxd
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We finish by determining how [|A|l} ;. B,(x)) Scales. Our balls in question are

interpreted as preimages under f and f ; that is, assuming the balls are centred at

the origin,

FAB)={/"'@): g eR"™ || < 1}
={/"'() :y eR"™ |ay| < 1}
={zxeM:|f(x)] < ofl}

= fﬁl(B%%

after rescaling. Therefore we see that choosing a = % in the proof of the Lifespan

Theorem will allow us to transform a ball of radius p into a ball of radius 1. Recall
that

||AH2 = gikgﬂhijhkl-
Thus, we must consider how each of (g;;), (hij) and dp change under scaling. Thus

the scaled norm of curvature || A|P is
- S I o]
AP = (573" hijhu)* = (@gaag b7 hihi ) * = —1Al"

Therefore, the scaled integral (174) is

/ o Adfi.
B

a

And so we understand that the integrand is invariant under scaling if p = n.






APPENDIX C

Lifespan theorem for simple constrained surface diffusion
flows

1. Introduction

There is a natural class of constraint functions which give rise to a more elegant
and less convoluted statement of the Lifespan Theorem than that given in Chap-
ter 3. For these constraint functions, which we define momentarily, the smallness
assumption is only required in L™, and is automatically scale invariant.

A constraint function h : [0,7) C I — R is trivial if h = 0, in which case we
recover (SD) flow. We further deem that a constraint function h which satisfies an
estimate

Jhllocss < e < o
on any interval J C [0,7) with ¢, = c,(J) as simple. The corresponding simple

constrained surface diffusion flows admit the following theorem.

THEOREM C.1 (Lifespan Theorem). Supposen € {2,3} and let f : M™x[0,T) —
R be a simple constrained surface diffusion flow. Then there are constants p > 0,

€g > 0, and ¢ < oo such that if p is chosen with

(175) / ||A||md,u‘ =e€(x) < ¢ form=2n, any v € R"™,
f=H(Bp(x)) t=0

and h is simple on {O, %,04], then the maximal time T satisfies

(176) T>-p
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and we have the estimate

(177) / A" + |A|2dp < ce(z)  for  0<t<
F=H(Bo(2))

S
N

While this seems to be strictly less general than the corresponding Lifespan
Theorem from Chapter 3 on the nonsimple constrained flows, there does not appear
to be an easy relationship between the two. For example, there are simple constraint
functions such as those which grow in ¢ (even exponentially), as well as uniformly
bounded functions such as the trigonometric functions, or decaying functions such as
h(t) = e~*, which do not fit into the argument of Chapter 3. Further, each of these
do not satisfy the assumption (AB), the global bound on evolving area. Therefore,
to obtain a full picture of the properties a given constrained surface diffusion flow
exhibits, one must take into account both the Lifespan Theorem of Chapter 3 and
that of this appendix.

Our strategy for presenting this proof is to refer to the estimates in Chapter
3 when appropriate and at other times present arguments which are substantially
simpler in nature or give better results than those required by Chapter 3. It should
be noted that one can construct the proof in this appendix from [37] or Chapter
3.This appendix references the interpolation and Sobolev inequalities of Appendix A
and Chapter 3, and Propositions 3.17, 3.25 which carry over without change to the
case of simple constrained surface diffusion flows. Otherwise, this appendix presents

a complete proof of Theorem C.1.
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2. Integral estimates

Recall the proof of Proposition 3.17. Using the same argument, we obtain the
following analogous estimate. Note that we do not need to assume any smallness of

curvature here.

PROPOSITION C.2. Let f: M"™ x [0,T) — R™ be a simple constrained surface
diffusion flow with v a cutoff function as in (25). Then for a fized 0 > 0 and

s > 2k + 4,

d
o IV w AR d+ 2= 6) [ V2 AlRdu
M M
< (c+ch) /M]\A||2fys’4’2kdu +ch /M (V(k) [Ax A] % V(k)A) vidu

o [ (IPFHA) + PEA) Vg A) vdp

where ¢ = c(cy1,Cy2, S, k, cp, 0).

For the case of the simple constrained surface diffusion flows, we will exert sig-
nificantly more effort in removing the restriction (AB) seen throughout Chapter 3.
While there we needed it regardless to deal with non-simple constraint functions,
here we will not have any control over the evolving surface area a priori, and so it
does not make much sense.

We will again need various Sobolev and interpolation inequalities. As these are
identical to those required in Chapter 3, we will simply refer to them when required.

We now give a proof of the first key estimate we require to demonstrate Theorem

C.1.
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PROPOSITION C.3. Let n € {2,3}. Suppose f: M" x [0,T*] — R"™ is a simple
constrained surface diffusion flow and vy a cutoff function as in (25). Then there is

an €y = €g (C’ﬂ, Cy2, ch([O,T*])) such that if

(178) € = sup I|A]|"dp < €
[0,7*] ¥ [v>0]

then for any t € [0,T*] we have

t
[ AP+ [ [ (I9@AIR + JAIPIVAI? + | Al)dudr
[y=1] 0 Jy=1]
(179)
2
<(t+m-2) [ ||A||2du’ +e(t+ (n—2)e!)et,
[v>0] t=0

where ¢ = c(cﬂ, 2, ¢ ([0, T*]))

PRroOF. The idea of the proof is to integrate Proposition C.2, and then use the
multiplicative Sobolev inequality Lemma 3.22. This will introduce a multiplicative
factor of || Al [y>0 in front of several integrals, which we can then absorb on the
left.

Setting £k = 0 and s = 4 in Proposition C.2 we have

d
@/ ANy dp + (2—9)/ IV o Ay dp < (c—l—ch)/ || 2dp
M M >0
4 2 0 4
+ch/M([A*A]  A)y du+c/M (IP2(A) + P2(A)] * A) v'dp.
First we estimate the P-style terms:
[ (IPECA) + PR+ A) ' dp
2 2 5 4
<e [, (141 19l + VAL A1+ A 141 )
< [ 1A IV @A+ ITAR - A + 141 d
<
o /M

IV Al dutc [ (IAI°+ VA AIR) du.
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We use Lemma 3.22 to estimate the second integral and obtain for n = 2

[ (1P3A) + PR(AY 5 A) 7 dp
<4 Al*y*d Al*d All* + [|AI%)~"d
<0 [ IV APy dute | AP | (VA + A1)y d

5 2
(180) e [ IAlPde)

and for n = 3

[ (1P3A) + PR(A) = A) 7 ap
<0 [ V@AY du+ el Al o [ (IVeAI” + 4]y dp

3 9
(181) +c(enn) (1413 o) + 1412 oo )

We add the integrals [,/|| A||Sy*du and [,,||VA|]?||A|*v*du to the estimate of Propo-

sition C.2 (with £ =0, s = 4) and obtain

d ,
= [ A d 2= 0) [ (I9AIR + AIPIVAIR + [4])y dy
§(c+ch)/ ||A||2du+ch/ ([A * A] % A) 7 dy
[v>0] M
2 2 6 4 2 0 4
o [ (LAIRIVAIR + 141%)y dp +c [ (IPRA) + PRA) = 4) ' dp

<c@+n?) [ NAPdutc [ (IAPIV AL+ JARIVAI + |1A]°)y dp.
[v>0] M
For n = 2, we use the estimate (180) above and obtain

d 2.4 2 2 2 6\.4
= [ AR dn+ 2= 0) [ (IV)AIR + [ARIVAI? + |AI)yd

<e( ) [ 1APdn 0 [ Ve Al dn

[v>0]

2 2 6 4 2 2
All“d VinA A d All“d .
+C/h>0]|| | M/(H A"+ [ A]%)y /L+C</7 | Al u)

[y>0]
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For n = 3, we use instead (181) to obtain

i 2.4 2 2 2 6\.4
& 1A du+ 2= 0) [ (IV@AI® + [APIVAI + | 4]°)7 d
<c(t+0) [ AIPdn+6 [ VAl dp
[v>0] M
+ el Al oy [ (VAR + A1) d

+ C<C’yl)3(HAHg,[’Y>O] + HAH?%[WO])'

Absorbing, we obtain for n = 2

d

= AR du+ 20— o) [ (V@A + JAIRIVAI? + | AI)y*du
M M
< el + o+ Bl orm)e

< ce

— Y

and forn =3

d 2.4 2 2 2 6\.4
& LA+ 2= 8= V&) [ (V@A + ATV AIR + A1)y dr

4

23 2\ 2
<c(1+ Hhugo,mm)/WO]HAHQCZHC(EOG e )eb.

For 6, ¢y small enough we have

d )
a A24d/ Al AIRIY AR+ AN ) vAdy < cex _2/ All2d
o [ AP [ (190 APHARIVAIHAI) e < ccbreln=2) | APdg
with

c = c(eo, cn([0,t7]), o1, Cy2).

Integrating, we have for n = 2
t
[ AR+ [ (I9@AIR + APV AL + || dudr
[y=1] 0 Jy=1]

< [ Al e,
[y>0]

t=0
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where we used the fact [y = 1] C [y > 0] and 0 < v < 1. For n = 3 we use a

covering argument and Gronwall’s inequality after integrating to obtain
t
J_ APt [ (19 AR+ [APITAP + | AI)dudr

t
< [ JAPds et (/ |A|[2dy
[v>0] =0 0 [v>0]

—(L+et) [ [lA]dn
[v>0]

2 t
+ ce3 T) efr cdv -

t=0

t=0

<(et) [ APy
[v>0]

t=0

This finishes the proof. U

We now move on to obtaining estimates for the higher derivatives of curvature
in L>. The first issue is in dealing with the P-style terms from Proposition C.2.
Note that the proof of Proposition 3.25 in Chapter 3 did not require the constraint
function bounded in any way. Therefore, we will use the same result. For the

convenience of the reader we restate it here.

PROPOSITION C.4. Suppose f : M™ x [0,T] — R"™™ is a constrained surface
diffusion flow and v a cutoff function as in (25). Then, for s > 2k + 4 the following
estimate holds:

& IV wARdn+ [ [V Al dp
dt Ju" P al R
(182) < cllAll% 50 /MIIV(k)AHWd/L + el Al 0y (1 + 1Al fy50)
b (B [ IVm APy dut (L4 DI )
We now prove the higher derivatives of curvature estimates. The proof here

is completely analogous to that of Proposition 3.26. We present it here with the

improvement of not requiring (AB).
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PROPOSITION C.5. Let n € {2,3}. Suppose f: M" x [0,T*] — R"™ is a simple
constrained surface diffusion flow and v is as in (25). Then there is an €y depending

on the constants in (25) and c; ([0, T*]) such that if

(183) sup [A["dp < eo,
[0,7%] / [v>0]

we can conclude
(184) ||V(@AH§OM:1] < C(k, T, Cy15 Cy2, Ch([O, T*])7 ao(k‘ + 2)),

k
where (k) = DIV () All2,py>0

J=0

t=0
PROOF. As before, the idea is to use our previous estimates and then integrate.
The €y which we will use is exactly the same as that in Proposition C.3.
We fix v and consider cutoff functions 7, , which will allow us to combine our
previous estimates. Define for 0 < ¢ < 7 < 1 functions 7, , = 1, , o v satistying
Yo,r = 0 for v < o and v, , = 1 for v > 7. The function 1), , is chosen such that 7, -

satisfies (25), although with different constants. Acceptable choices are

Crprt = Vol - e1, and ¢y, > = max{c, [ Vo ¥orlloo, €12 Vidorlloo}-

Using the cutoff function 7o ; instead of v in Proposition C.3 gives
2 r 2 6 2 o 2
[ AR+ [ [ VAR + A dudr < e T+ AN s
[0, =1] 0 [0, =1] =0
which is
T*
(185) [ APdu+ [ [ V@A + A dudr < o1+ T
[v>4] 0 Jv=4l
for n =2 and for n =3

T 2
[ ARd+ [ [ V@Al + Al dudr < e+ T) (5 + ),
[v=>3] 0 [v=>1]
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where = [|Al3 (- ’t:o' We do not need any smallness of ¢, this is simply notation.

Recall the multiplicative Sobolev inequality Proposition 3.21:

(51) ITl3e ey < AT N300 (1Y@ Tl g5 + ITA 5 s + 1T 15 s0))-

Using this with v, s and (185) above we obtain for n = 2

13
277

T
/0 AN, gy dr < ceolceo(L+ T7) + eoT")

(186) < c€p.

For n = 3 we similarly obtain

Njw

/0T||A||§O’hzﬂd7 < \/0(1 +T%)(5+ e§) e+ 1) (0 + eé)}
(187) < (Vo +e),

where
c= c(ch([(], T*]), 1, Cy2, T, 1, 60).

We now use (182) with s ;. Factorising, we have

3. 7.
4’8

d S

= | IV AIRY; g < Al o [ IV AIRY 4d

el Ay oo (14 14Ny > O])

e (B [ 19l gdnt (1 B AR s )

4 s
< (1Al gy + 1) [ 190 A1 g

V3 12>
18

4
+ el AR gy (14 1A gy + B b,

We wish to solve this differential equation using Gronwall’s inequality. The con-

straint function is obviously bounded, and we can bound the integrals of the relevant
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curvature quantities, as we have shown above. Integrating,

| IV wAIR; di = [ 190417 5

t 0

5 s
= C/O {<”A”i°’h>3] + h3> /MHV(’“)A“LYZ%CZ,U] dt

" 4
(188) + C/O {HAII%,[@ZJ (1 + Al g+ + hgﬂ o

Now from our earlier calculation (186) we have

L 4
[ (141 g + 88 )ar < .

and, using our assumption (183)

dr <e.

! 4
[ 1A o (14 1A oy + 1)
Also, we have

< cap(k),
t:O

[ 1909 Al d

where «aq is as in the statement of the proposition.

Therefore, equation (188) is of the form

1 < B(t) + /ctA(T)@(T)dT

where

= [ IV Al g

! 4
0= [ IVwAIP g e 1Ay (L4 1A oy bt S )]

t=0

and

4
AMt) = Al 2 + b3
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Noting that g and [ Ad7 are bounded by the constants shown above, we can invoke

Gronwall’s inequality and conclude

/hzg]HV(mAH?du < B(t) + /Otﬁ(T))\(T)ef: XOw dr < ok, ao(k)).

Trivially, we also have

[ V@ AlPdp < ek +2, a0k +2)).
[v>Z]

Therefore using (51) with Yz.15, and taking into account the n = 3 statement of

Lemma 3.22 we can bound || A/ on a smaller ball:

4—n

AT o1 < 0(0,00(0)) 5 ( (<2 00(2)F + (c(0,00(0))2 ) < e

Finally, using (51) with T'= V)4 and v = 7151 We obtain

19415 oy < AV AT gy (V0 Al
+ (1AI1% 39 + 1>I\V<k>A“%>%zO

< c(k, ao(k + 2))

This completes the proof. O

3. Proof of the Lifespan Theorem

The proof is analogous to that presented in Chapter 3, however as there are some
simplifications required (related to the absence of a constraint function) we will still
present it here for completeness. We begin by scaling f(z,t) = %f(x,p‘lt). Note
that || A is scale invariant, and so we may assume p = 1. Note that h may scale in
a non-invariant fashion but this introduces a single change in the constant c¢; only,

and certainly a scaled simple h (we only perform this rescaling once) remains simple.
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We make the definition

189 n(t) = Sup/ All"dpu.
(189 W=swp [ Al

z€R3

By covering By with several translated copies of By there is a constant ¢, such that

190 t)<c sup/ All"dw.
(190) w) <epsp [ Al

1
2

Note that ¢, = 4" is sufficient.
By short time existence we have that f(M x [0,¢]) is compact for ¢ < T and so

the function 7 : [0,7) — R is continuous. We now define

(191)
/) sup{0 <t < min(T, \2) : n(7) < 3cye for 0 <7 <t} n=2,
o sup{0 <t <min(T, \3) : n(7) < 3epse,c™(0 +¢5) for 0 <7 <t}, n=3,

where § = sup,cpa||A4 A, 1s a parameter to be specified later and

2
2,f71(B1(2)) 4=’

¢ =cps + cocneCP5/Coc".

The constant cps is the maximum of 1 and the constant from Proposition C.5; and
¢ is the maximum of all the constants on the right hand side of Proposition C.3.
Note that the €y on the right hand side of the inequality is from equation (175).
Unlike earlier in Proposition C.5, we require § small as described in the statement
of Theorem C.1.

The proof continues in three steps. First, we show that it must be the case that
- min(7, \,). Second, we show that if #i" = \,, then we can conclude the

Lifespan Theorem. Finally, we prove by contradiction that if T" # oo, then tén) £T.

We label these steps as
(192) £ = min(T, \,),

(193) t{" =X\, = Lifespan Theorem,



3. PROOF OF THE LIFESPAN THEOREM 261

(194) T+ = tMW4T.

The three statements (192), (193), (194) together imply the Lifespan Theorem. We
expand the sketch of the argument given above as follows: first notice that by (192)
tén) =\, Or t[()n) =T, and if t(gn) = A\, then by (193) we have the Lifespan Theorem.
Also notice that if t(()n) = oo then T' = oo and the Lifespan Theorem follows from
estimate (197) below (used to prove statement (193)). Therefore the only remaining
case where the Lifespan Theorem may fail to be true is when tén) =T < oco. But
this is impossible by statement (194), so we are finished.

We now give the proof of the first step, statement (192). From the assumption

(175),

3cn€o, forn =2

n(0) < e < {

2
3cpscy (0 +¢€3), forn =3,
and therefore (191) implies t(()") > 0. Assume for the sake of contradiction that

t{" < min(T, \,). Then from the definition (191) of ¢{” and the continuity of 1 we

have

n 3cn€o, for n =2
a0 - o
3cpscy (0 +€3), forn =3,

so long as ¢g < 1 and c¢ps > 1. Recall Proposition C.3. We will now set v to be a

cutoff function as in (25) such that

XB, (2) = 7 < XBi(a)>

for any z € M;. Choosing a small enough €y (by varying p in (175)), definition (191)

implies that the smallness condition (178) is satisfied on [0, t(()")). Therefore we have



262 C. SIMPLE LIFESPAN THEOREM

satisfied all the requirements of Proposition C.3, and so we conclude

(196)
A2d§1+n—2t/ A2d’ —l—ct—i—n—Zetce%
/fl(B%(x))H Pan< (14 m=2)0) [ AP et 0 —2)e)e,
2¢, forn:2and/\2:CIC,
< 2 ocn
2epsc*(0+€3) forn=3and A3 = cmﬁ,

for all t € [0,t*], where t* < tén). Thus equation (196) above is true for all ¢t €

{O, t(()")>. We combine this with (190) to conclude

2¢y€0, for n = 2,

197 n(t) < ch?c Sup/ Al"dp < 2
(197) (£) < cbs e f*l(Bé(m))H H 2cpscyc* (6 +¢€3), forn =3,

where 0 < t < tén).

Since 7 is continuous, we can let ¢ — t(()n) and obtain a contradiction with (195).

Therefore, with the choice of )\, in equation (196), the assumption that t((]n) <

min(7, \,) is incorrect. Thus we have shown (192). We have also proved the second

step (193). Observe that if £ = A, then by the definition (191) of {”,
T > M,

which is (176). Also, (197) implies (177). That is, we have proved if t(gn) = \n,
then the Lifespan Theorem holds, which is the second step (193). It only remains
to prove equation (194).

We assume
) — % 00;
0o )

since if 7' = oo then (176) holds automatically and again (197) implies (177). Note
also that we can safely assume T' < ), since otherwise we can apply step two to

conclude the Lifespan Theorem.
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Our strategy is to show that in this case the flow exists smoothly up to and
including time 7', allowing us to extend the flow, thus contradicting the finite maxi-
mality of T" from short time existence. Since h is simple, it presents no difficulty, and
is always bounded. As in Chapter 3, Section 6, we use Proposition C.5 to convert
the higher covariant derivatives of curvature bounds to partial derivatives of the

immersion bounds. That is, we have

180y 2 flloos 100 flloo < c(m, T fo, h]locor)),
for any k € N. This is enough to show that the convergence f(-,¢) — f(-,7T") is in the
C topology and My is smooth. We have that f(-,T) is a smooth immersion as the
metrics at each time ¢ are uniformly equivalent and g(¢) — ¢(7T'). Finally, by short
time existence, we can extend the solution to an interval [0,7 + 4], contradicting

the maximality of 7. This establishes (194) and the theorem is proved. O
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