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Abstract

The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular ap-

proach for the representation of partial constraint satisfaction problems. Considerable

research has been done in solving SCSPs, but limited work has been done in building

general SCSP solvers. In this thesis, we present various methods to solve SCSPs.

We first consider how a SCSP might be relaxed: we relax individual constraints

until an acceptable solution can be obtained. A second semiring is used to define a

measure of difference between the original problem and the relaxed problem. This

research was first presented at the International Workshop on Preferences and Soft

Constraints at CP-2005 [40], and an extended version of the paper has been published

in the Information Processing Letters journal [41].

We then show how the two semirings of a relaxed SCSP can be combined into a

single semiring structure. This combined semiring structure will make it possible to

use existing tools for solving SCSPs to solve Combined SCSPs. This work appears in

Leenen et al. [42].

The remainder of this thesis focusses on algorithms to solve SCSPs. A significant

amount of work has been devoted to solving the well-known maximum satisfiabil-

ity problem (Max-SAT) [1, 63] and the related Weighted Max-SAT problem. This

prompted us to modify the methods for solving Max-SAT, into methods for solving

SCSPs. We show how to translate a SCSP into a variant of the Weighted Max-SAT

Problem, which we call a Weighted Semiring Max-SAT problem, and then present a

local search algorithm that is a modification of the GSAT algorithm for solving Max-

SAT. This work appears in Leenen et al. [38].

Finally, we extend well-known algorithms for maximal constraint satisfaction into

v



SCSP algorithms. We present a branch and bound algorithm, a backjumping algo-

rithm, and a forward checking algorithm. Our branch and bound algorithm performs

significantly better than CONFLEX [17], a well-known fuzzy CSP solver. The branch

and bound algorithm has been presented in Leenen et al. [38]. The forward checking

and backjumping algorithms perform better than the branch and bound algorithm on

harder problems. This work appears Leenen et al. [39].
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Chapter 1

Introduction

In this chapter, we give a motivation for our research and present an outline of the

structure of the thesis.

1.1 Motivation

There has been considerable interest over the past decade in over-constrained problems,

partial constraint satisfaction problems and soft constraints. This has been motivated

by the observation that with most real-life problems, it is difficult to offer a priori

guarantees that the input set of constraints to a constraint solver is solvable. In part,

this is because many real-life problems are inherently over-constrained. This is also

because it is difficult for human users to peruse a given set of constraints that have

been obtained from a given problem to determine if it is solvable. In the general

case, constraint solvers must be able to deal with problems that are potentially over-

constrained.

The key challenge in dealing with an over-constrained problem is identifying appro-

priate relaxations of the original problem that are solvable. Early approaches to such

relaxations largely focused on finding maximal subsets (with respect to set cardinality)

of the original set of constraints that are solvable. Freuder and Wallace’s [20] work on

maximal constraint satisfaction is best known. Section 2.3 gives an overview of their

work.

Subsequent efforts considered more fine-grained notions of relaxation, where entire
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1.1. Motivation 2

constraints did not have to be removed from consideration. Examples of such efforts

include the hierarchical constraint logic programming (HCLP) framework of Wilson

and Borning [61], Fuzzy CSPs [17] and Probabilistic CSPs [18]. See Sections 2.2 and

2.4 for more information on these approaches.

Bistarelli et al. [9] proposed an abstract semiring constraint satisfaction scheme that

generalised most of these earlier attempts, while making it possible to define several use-

ful new instances of the scheme. The semiring constraint satisfaction problem (SCSP)

framework assumes the existence of a semiring of abstract preference values, such that

the associated multiplicative operator is used for combining preference values, while

the associated additive operator is used for comparison. While a classical constraint

defines which combinations of value assignments to the variables in its signature are

allowed, a SCSP constraint assigns a preference value to all possible value assignments

to the variables in its signature. These preferences implicitly define a relaxation strat-

egy (“try to satisfy the constraint using the most preferred tuples, else try the next

most preferred tuples” and so on). Section 2.5 gives an overview of SCSPs.

In this thesis, we present various methods to solve SCSPs.

We first consider how a SCSP might be relaxed: we relax individual constraints until

an acceptable solution can be obtained. A second semiring is used to define a measure

of difference between the original problem and the relaxed problem. This research has

been published in Leenen et al. [41]. This paper is an extended version of an initial

presentation at the International Workshop on Preferences and Soft Constraints at

CP-2005 [40].

We then show how the two semirings of a relaxed SCSP can be combined into a single

semiring structure. This combined semiring structure will make it possible to use

existing tools for solving SCSPs to solve Combined SCSPs. This work appears in

Leenen et al. [42].

The remainder of this thesis focuses on algorithms to solve SCSPs. Our first approach

is an attempt to adapt existing algorithms for solving satisfiability problems into SCSP
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algorithms. A significant amount of work has been devoted to solving propositional sat-

isfiability (SAT) problems, specifically the well-known maximum satisfiability problem

(Max-SAT) [1, 63] and the related Weighted Max-SAT problem. There is continuing

interest in translations between CSPs and SAT problems [4, 24, 59]. This prompted

us to explore the application of methods for solving Max-SAT, to SCSPs.

We show how to modify the support encoding of Gent [24] to translate a CSP into a

SAT, in order to translate a SCSP into a variant of the Weighted Max-SAT Problem.

We call our encoding Weighted Semiring Max-SAT (WS-Max-SAT). Our encoding

results in propositional clauses whose structure can be exploited. We present a local

search algorithm that is a modification of the GSAT algorithm for solving Max-SAT.

This work appears in Leenen et al. [38].

Our next approach is to extend the well-known algorithms of Freuder and Wallace

[20] for maximal constraint satisfaction, into SCSP algorithms. We present a branch

and bound algorithm, a backjumping algorithm, and a forward checking algorithm

to solve SCSPs. We also show some experimental results. Our branch and bound

algorithm performs significantly better than CONFLEX [17], a well-known fuzzy CSP

solver. The branch and bound algorithm has been presented in Leenen et al. [38].

The forward checking and backjumping algorithms perform better than the branch

and bound algorithm on some problem instances. This work appears in Leenen et al.

[39].

Finally, we present a CSP-based algorithm to solve SCSPs.

1.2 Thesis Structure

Chapter 2 contains an introduction to methods and algorithms for solving over-constrained

problems. This chapter also includes a description of the SCSP framework as well as

the algorithms for maximal constraint satisfaction.

Chapter 3 deals with the relaxation of constraints in the case where we cannot obtain

an acceptable solution for a SCSP. This results in a relaxed version of a SCSP.
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In Chapter 4, we present a Combined SCSP where we show how the two semirings

associated with a relaxed SCSP can be combined into a single semiring.

In Chapter 5, we show how to transform a SCSP into a variant of a Weighted Max-Sat

problem, and present an incomplete local search algorithm to show that this transfor-

mation is viable.

In Chapter 6, we present a branch and bound algorithm to solve SCSPs, as well as

two variants, a backjumping algorithm and a forward checking algorithm. We show

results of the comparison of our algorithms, and a comparison of our branch and bound

algorithm with a Fuzzy CSP solver. We also present a CSP-based algorithm to solve

SCSPs.

Chapter 7 contains our conclusions and a discussion of the work we will attempt in the

future.



Chapter 2

Over-constrained problems

This chapter provides the background for the rest of the thesis. We start off with an

introduction to the solution of problems that are potentially over-constrained, and then

describe different approaches to solving over-constrained problems.

2.1 Introduction

Constraint satisfaction problems (CSP) are problems where one must find states that

satisfy a number of constraints [58]:

Definition 1 A Constraint Satisfaction Problem (CSP) is formulated as a triple 〈V,D,C〉

where:

• V is a finite set of variables.

• D is a set of domains for each variable in V .

• C is a set of constraints. Each constraint c, defined on some subset of V , is a

relation on that subset. Each tuple of c represents one allowed combination of

values that may be assigned to the variables over which c is defined.

The domain of each variable is finite. A constraint is a relation that restricts the values

that the variables in its scope (the set of variables over which the relation is defined)

may take. Such a relation can be unary, binary or of a higher arity. A constraint is

5



2.1. Introduction 6

said to be satisfied if the values that are assigned to the variables in its scope, forms a

tuple that belongs to the relation.

A solution to a CSP specifies values for all the variables such that the constraints

are satisfied. CSPs are usually solved with backtracking and consistency checking

techniques.

A tuple of values that violates a constraint is called an inconsistency. A consistency

technique removes inconsistent values from the domains of variables. Most consistency

techniques are incomplete and are applied in conjunction with other methods to solve

CSPs completely. Two simple consistency techniques are node and arc consistency.

Mackworth [44] provides the following definitions for node and arc consistency. Node

consistency is achieved when a value satisfies a unary constraint, that is, a constraint

that has a single variable. In node consistency preprocessing, the domains of variables

that appear in unary constraints are checked for consistency and inconsistent values are

removed from their domains. Arc consistency preprocessing removes values from the

domains of variables which are inconsistent with binary constraints. A variable X is arc

consistent with another variable Y if, for every value a in the domain of X there exists

a value b in the domain of Y such that (a, b) satisfies the binary constraint between X

and Y . A value a is unsupported if there does not exist a value in the domain of Y such

that the binary constraint between the variables X and Y is satisfied. A problem is arc

consistent if every variable is arc consistent with each other variable in the problem.

Arc consistency preprocessing consist of the removal of all unsupported values in the

domains of variables (which appear in binary constraints).

A Backtracking search algorithm constructs a solution by assigning values to variables,

one variable at a time, whilst ensuring consistency. Such a search follows a particular

variable ordering, and starts by assigning a value to the first variable. It then proceeds

to assign a value to the second variable such that this value is consistent with the

first variable’s value. The remaining variables are assigned values in turn, making sure

that each assigned value is consistent with previously assigned values. If the algorithm

finds a variable for which no domain value is consistent with previous assigned values,

backtracking takes place. The algorithm changes the value assigned to the previous
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variable, if possible, and the search continues. The search halts when all the variables

have been assigned consistent values, or if no solution exists. Many improvements on

the basic backtracking algorithm have been defined to reduce the size of the explored

search space and to improve the search strategy. Examples of such improvements

are techniques for variable and value ordering. Consult Dechter [15] for a thorough

introduction to constraint processing algorithms.

Many real-life applications are inherently over-constrained, i.e. a solution does not

exist. Constraint solvers must be able to deal with problems that are potentially over-

constrained. These problems have motivated considerable interest into approaches

other than the traditional constraint algorithms.

The traditional approaches to solve CSPs, backtracking and consistency checking, can-

not be used to solved over-constrained problems unless we change our objective to

maximising the number of satisfied constraints. In the following subsections we discuss

alternative approaches to classical CSPs, partial constraint satisfaction, hierarchical

approaches, and generic approaches:

Alternative Approaches

In classical constraint satisfaction, a constraint either allows a tuple of values for the

variables in the set V or it does not. These constraints are called crisp constraints.

To cater for over-constrained problems, some approaches have been developed where

constraints are allowed to be non-crisp. Constraints are extended by attaching prob-

abilities, weights or preference values to tuples. We describe Fuzzy CSPs [17, 19],

Weighted CSPs [56], and Probabilistic CSPs [18] in Section 2.2.

Partial Constraint Satisfaction

A key approach to solving over-constrained problems is to identify appropriate re-

laxations of the original problem that are solvable. Initial approaches were aimed at

relaxing the requirement that all the constraints have to be satisfied, that is, on finding

maximal subsets of the original set of constraints that are solvable (i.e. the maximal
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constraint satisfaction problem). Freuder and Wallace [20] show in their Partial Con-

straint Satisfaction approach how to relax CSPs by weakening the original CSP. Section

2.3 gives an overview.

Hierarchical Approaches

Subsequent research has focused on the notion of relaxation where entire constraints

do not have to be removed from consideration. In constraint hierarchies, hierarchical

preferences can be associated with constraints, i.e. constraints are regarded to be either

hard or soft constraints. Hard constraints are required to hold, while soft (preferen-

tial) constraints are satisfied as much as possible depending on some defined means of

measurement. This approach is followed by Borning and Wilson [61] and Menezes et

al. [46]. Section 2.4 contains an overview of constraint hierarchies.

Generic Approaches

There are generic methods for solving over-constrained problems that include the ap-

proaches described above as specific instances. These frameworks include the Semiring-

based Constraint Satisfaction Problem (SCSP) and Valued CSP (VSCP) theories of

Bistarelli et al. [9], and Michael Jampel’s compositional theory for reasoning about

over-constrained systems [33]. Michael Jampel’s theory is based on constraint hierar-

chies.

The SCSP and VSCP frameworks associate preference levels to each tuple of a con-

straint, as opposed to attaching a preference level to a constraint. The SCSP frame-

work, described in Section 2.5, is based on semirings while VSCPs are based on

monoids.

Bartak [2] and Rudova [52] can be consulted for more information on over-constrained

problems and solution techniques.
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2.2 Alternative Approaches

We describe some extensions of CSPs where constraints are relaxed by allowing them

to be non-crisp. These approaches are useful for optimisation problems and over-

constrained problems.

2.2.1 Over-constrained solving with fuzzy valuations

In this approach constraints are defined as fuzzy relations. Dubois et al. [17] defines

a Fuzzy CSP (FCSP) such that each constraint has an associated fuzzy level for each

tuple of values which indicates its preference value. The fuzzy level has a value ranging

between 0 and 1. A fuzzy level of 1 indicates the most preferred value (i.e., the tuple

is allowed), while a fuzzy level of 0 indicates the least preferred value (i.e., the tuple is

not allowed).

To solve a fuzzy CSP, we have to find the set of tuples of values (for all variables) which

have a maximal preference value. For each tuple its minimal preference level over all

constraints is considered.

Fargier et al. [19] can be consulted for more information on fuzzy constraint satisfac-

tion.

2.2.2 Over-constrained solving with probabilistic valuations

In a probabilistic constraint satisfaction problem [18], each constraint c is regarded to

have a probability p of occurring in the problem under consideration (denoted by p(c)).

For each subset of constraints there is an associated probability of that subset being

satisfied by some assignment of values to variables. This probability is calculated by

taking the product of the probabilities associated with all the constraints in the subset.

Another approach is to calculate the probability of a subset of constraints that violates

some assignment of values. In this case, the product of 1−p(c) for every constraint c in

the relevant subset is calculated. A solution to a probabilistic CSP is an instantiation
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of variables with a maximum probability.

2.2.3 Over-constrained solving with weighted valuations

In weighted constraint satisfaction problems (WCSPs), every tuple of values for every

constraint is given an associated cost or weight [56]. A weight is a non-negative real

number. A solution to a WCSPs is a complete assignment with a minimum cost where

the total cost is the sum of the costs of the chosen tuple for each constraint.

One instance of this framework is the maximal constraint satisfaction problem (Max-

CSP) where all the constraints have the same weight function [20]. The total cost of

an assignment is the number of unsatisfied constraints.

2.3 Partial Constraint Satisfaction

Partial constraint satisfaction is an approach where we attempt to find values for a

subset of variables that satisfy a subset of the constraints [20]. In partial constraint

satisfaction the objective is to seek a solution to a weakened version of a complex

problem.

Maximal constraint satisfaction is an approach to partial constraint satisfaction where

the objective is to find a solution that satisfies as many constraints as possible. Freuder

and Wallace [20] developed methods to solve partial constraint satisfaction problems

(PCSPs) that are analogous to the basic backtracking and local consistency methods

for classical constraint satisfaction [35, 47, 48]. They also developed more general

models of partial constraint satisfaction (in the same paper) where they employ more

complex metrics than counting constraint violations.

We first describe their methods for maximal constraint satisfaction (Section 2.3.1),

and then consider their generalised framework for PCSPs (Section 2.3.2). We have a

particular interest in the Freuder and Wallace methods for solving maximal constraint

satisfaction. They are relevant in Chapter 6 where we extend some of Freuder and

Wallace’s algorithms into algorithms for solving SCSPs.
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Interesting applications to solve classes of over-constrained problems based on the

partial satisfaction notion of Freuder and Wallace have been developed. Beaumont et

al. [3] developed algorithms to solve over-constrained temporal reasoning problems.

Zhou et al. [64] investigated the solution of over-constrained problems in a multi-agent

environment by relaxing constraints.

2.3.1 Algorithms for maximal constraint satisfaction

A Branch and Bound algorithm for MAX-CSP

The classical branch and bound algorithm:

Branch and bound (BnB) is a general search method for solving optimisation problems.

It was introduced by Land and Doig [36] in 1960. The BnB algorithm searches for a

maximum solution in the search space by keeping track of a lower bound which is the

best solution found so far. It also calculates an upper bound value for every partial

solution which is an over-estimation of the best solution that can be extended from

that partial solution. If the upper bound for a partial solution is worse that the current

lower bound, the (extended) solution is pruned from the search space.

We now describe the classical branch and bound method in more detail.

• Preliminaries : Let the root node represent the original problem with the complete

feasible search space. The feasible search space is the possible set of solutions.

Let f(x) be the function we want to maximise, with x restricted to the feasible

search space.

A lower bound value for f(x) is assigned, and an upper bound for the root node

(which represents the first variable to be assigned a value) is calculated.

• Compare the lower bound value with the upper bound value of the node under

consideration.

If the two bounds are equal and the current node is a leaf node, then an opti-

mal solution has been found and the algorithm halts. An acceptable threshold

between the lower bound and upper bounds can be defined, and in this case the
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search can halt if this threshold is satisfied for all nodes.

Otherwise, the feasible search space is divided into two or more subspaces, where

the different subspaces cover the complete feasible space. An optimal solution to

any subproblem is a feasible solution, but not necessarily an optimal solution to

the original problem. Any feasible solution can be used to prune the rest of the

tree.

If the upper bound value for any node is smaller than the value of the lower

bound (best solution found so far), no globally optimal solution can be found by

extending the partial solution represented by the node. Therefore, the node and

its descendants can be pruned.

• If a leaf node has an upper bound that is better (i.e. greater) than the lower

bound, the lower bound value is changed to be equal to this node’s upper bound

value (i.e. a better solution has been found).

• The search continues until all nodes have been traversed or pruned. If the whole

search space has not been traversed, visit the next node and calculate its upper

bound.

Return to the step where the upper bound of this node is compared to the current

lower bound.

Freuder & Wallace’s branch and bound algorithm for MAX-CSP:

Branch and bound search for maximal constraint satisfaction is just as suitable as

backtracking search is for constraint satisfaction. Backtrack search will not be able to

find a solution to an over-constrained problem, while branch and bound search allows

us to find a solution by violating a minimal number of constraints.

The number of constraint checks in a CSP algorithm is a useful measure of the amount

of work that is done. In the Freuder and Wallace CSP analogues for maximal constraint

algorithms, this is not a viable measure because local failure is defined differently. Local

failure happens when the current search path fails and backtracking is initiated. A

CSP search path fails as soon as a single constraint is not satisfied; in the maximal

constraint satisfaction algorithms a search path only fails once the number of unsatisfied
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constraints reaches a pre-defined limit.

Freuder and Wallace’s branch and bound algorithm [20] keeps track of the best solution

found so far, and prunes a search path when it becomes clear that it cannot reach a

better solution. The algorithm stores the number of inconsistencies (i.e. the number

of unsatisfied constraints) in the best solution up to a particular point in the search.

This is called the necessary bound, N . The algorithm cuts off the search as soon as

the number of inconsistencies found reaches a sufficient bound, S, or run out of search

paths to try. Freuder and Wallace’s algorithm is a depth-first implementation of a

branch and bound algorithm.

In Chapter 6 we extend Freuder and Wallace’s BnB algorithm to solve semiring con-

straint satisfaction problems.

Look-back Algorithms

These techniques test a new value for a variable by looking back and checking consis-

tency with previous choices before extending the search path.

The classical backjumping algorithm:

The backjumping algorithm of Gaschnig [22] stores information about previous failures

to avoid unnecessary constraint checks to find the same failures. Classical backtrack-

ing blindly backtracks to the previous level and continues its search. Backjumping

recognises that all values tried for a given variable may not be inconsistent with the

same previous value. When no consistent value can be found for a current node, the

algorithm jumps back directly to the most recent ancestor node that is inconsistent

with the current node. When backjumping assigns values to a particular variable, it

remembers the depth of failure, i.e. the deepest level, l at which any of the values fails.

If there are no more values to assign to this variable, the backjumping algorithm jumps

back directly to that level l. Gaschnig’s backjumping algorithm only backjumps if the

current node is a leaf node.

Freuder & Wallace’s backjumping algorithm for Max-CSP:

Freuder and Wallace [20] present a backjumping variation of the branch and bound
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algorithm for maximal constraint satisfaction. It differs from the conventional back-

jumping algorithm in that we cannot always jump back all the way to the deepest

level l where a path was pruned. If any values below the level l failed when tested, i.e.

resulted in an increase in the count of unsatisfied constraints (at the time this value

was chosen), we can only jump back to the deepest such level. The reason is that we

may miss better solutions resulting from other choices of values (not yet tried) at level

l. The search has to be continued from this deeper level.

Apart from storing the depth of failure, the algorithm of Freuder and Wallace also

keeps track of the deepest level at which a value was (last) inconsistent. If this value

is greater than l, then backtracking will only jump back to this level.

In Chapter 6 we extend Freuder and Wallace’s backjumping algorithm to solve semiring

constraint satisfaction problems.

The classical backmarking algorithm:

The backmarking algorithm [23] is another algorithm that looks back at previous

choices in attempting to avoid unnecessary successful constraint checking and re-finding

inconsistencies. This algorithm records the individual level, Mark, in a search tree at

which an inconsistency is detected for each value of a decision variable V for which it

attempts to assign a value. For example, if it finds a consistent value for a variable

and then finds an inconsistent value later in the same search path, Mark is set equal

to the level of the inconsistent node in the search tree. If no inconsistency is found for

that variable value, its Mark value is set to the level of variable’s ancestor in the tree.

In case a particular search path cannot be extended to a complete solution, and have

to resume the search at a level higher than V , the backmarking algorithm also keeps

track of the highest level, Backto, to which the search has backed up since the previous

time V was visited. The next time V is visited again and a value v is considered, the

algorithm compares the values of Backto and Mark: if Mark < Backto then v will

fail again, otherwise we have to start testing values v at the level Backto in the tree.

Freuder & Wallace’s backmarking algorithm for Max-CSP:

Freuder and Wallace [20] extended the backmarking algorithm for maximal constraint
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satisfaction. As before, a value v is not pruned necessarily the first time an unsatisfied

constraint is found. This algorithm keeps track of the level, Lastmark, at which the

last unsatisfied constraint was found. LastMark is the level where the maximum

inconsistency bound was reached and where the search path is to be pruned. However,

it also keeps a record of where the first inconsistency with v was found, as well as the

number of inconsistencies between v and the values in the search path down to level

Lastmark. All this information enables the algorithm to determine whether v should

be tested or whether it should be pruned.

Look-ahead Algorithms

These techniques look at paths yet to be extended in the search tree to check for some

form of local consistency before continuing the search. If the node (i.e. current value

for a variable) does not meet consistency requirements, it is pruned. Forward checking

[30] combines a look-ahead technique with backtracking.

The classical forward checking algorithm:

In forward checking, each assignment of a value v to a variable V is followed by some

arc consistency checking: the domains of variables that appear in the same constraints

as the variable V are checked for consistency with v. In a partial CSP context, it is

not possible to discard values by doing arc consistency checking, unless there is an

initial value for the necessary bound. Freuder and Wallace [20] extended the notion

of arc consistency checking for maximal constraint satisfaction as follows: for each

value, the number of domains with no supporting values can be counted (it is called

the inconsistency count for that value). The inconsistency count is a lower bound on

the increase in the expected number of unsatisfied constraints that will be found if this

value is assigned.

In a particular search path, the inconsistency count for a proposed value for the current

variable can be added to the number of unsatisfied constraints up to date in that search

path, and compared to the current bound, N . Recall that N gives the least number of

unsatisfied constraints found in any complete search path so far. If the sum is not less

than N , then we know that the current search path will not result in a better solution.
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It is important to note again that definition of failure in maximal constraint satisfaction

context is different to that in the classical CSP context: if there is an unsatisfied

constraint, a value is not rejected unless the total number of currently chosen values

with which it is inconsistent, is equal to the bound N .

Freuder & Wallace’s forward checking algorithm for Max-CSP:

In Freuder and Wallace’s extension [20], a proposed value for a variable is known to be

consistent (in the PCSP context) with previously assigned values (otherwise it would

already have been pruned), and it is tested against the domains of the remaining

uninstantiated variables. To be more specific, when a value v is assigned to a variable

V , the domains of all the uninstantiated variables that share a constraint with V

are checked for values that are inconsistent with v: these values are deleted from the

domains. If the variable V is assigned another value at a later stage, the pruned value

has to be restored.

In Chapter 6 we extend Freuder and Wallace’s forward checking algorithm to solve

semiring constraint satisfaction problems.

2.3.2 A formal framework for partial constraint satisfaction

Freuder and Wallace [20] also developed a more general model of partial constraint

satisfaction in which they compare alternative problems rather than alternative so-

lutions. They view partial satisfaction of a problem P as a search through a space

of alternative problems for a solvable problem close enough to P . In their maximal

constraint satisfaction algorithms, they allow a certain number of constraints to be

violated. In this more general model, they consider the fact that the weakening of a

constraint or constraints, creates a different problem with a different solution set. They

define a space of problems with an ordering on solutions sets where the ordering gives

a measurement of how close an altered problem (together with its solution set) is to

the original problem (with its solution set).

They define a partial constraint satisfaction problem (PCSP) to be a CSP with a metric

on the problem space as well as with a sufficient, S, and a necessary, N , solution for the
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problem. An alternative problem from the defined problem space, P ′, together with

a solution are regarded as a sufficient solution to the original problem if the metric

distance between the original problem and P ′ is smaller or equal to S. The alternative

problem and a solution are regarded to be a necessary solution for the original problem

if the metric distance between the two problems is less than N .

The metric on the problem space evaluates a solution by comparing problems. This

differs from the maximal constraint satisfaction algorithms where violated constraints

are counted. Freuder and Wallace note that the metric can ideally be defined in terms

of the partial order that defines the distance between P ′ and the orginal problem, P ,

to be the number of solutions not shared by P and P ′. When P ′ 6 P , this metric

determines the increased number of solutions that has been added by weakening P .

2.4 Hierarchical Approaches

In a constraint hierarchy, a strength or preference is associated with every constraint.

The constraint hierarchies approach [11, 12] is the first that tried to handle preferences

in constraint systems. Many problems have both hard and weaker or preferential

constraints. The hard constraints must hold. The aim is to satisfy the preferred

constraints, but a solution is found even if they cannot all be satisfied. Relaxing the

strength of constraints helps to find a solution of a previously over-constrained system

of constraints. A comparator is used to compare two assignments of the hierarchy. A

comparator is an irreflexive, transitive relation. Note that comparators may give partial

orders of assignments, and that there exist many different comparators. We also also

have to able to give some measure of how well a particular assignment satisfies a given

constraint. An error function gives a measurement of how well an assignment satisfies

a constraint. Rudova [52] gives an overview of constraint hierarchies.

The most popular algorithms to solve constraint hierarchies follow one of two ap-

proaches, Refining Methods or Local Propagation Methods. Bartak [2] gives an overview

of these algorithms.

Refining algorithms start by satisfying the hard constraints, followed by the (non-hard)
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constraints with the strongest preference levels, down to the least preferred constraints.

A disadvantage of these methods is that solutions have to be recalculated from the

start if a constraint is added to the problem. An example of a refining algorithm is the

DeltaStar algorithm of Wilson and Borning [61].

The local propagation algorithms repeatedly select satisfiable constraints in order to

find a solution. The idea is to start with a single constraint which leads to a choice of

a value for a variable, and then use another constraint to choose a value for another

variable, and so on. An example of a local propogation algorithm is the DeltaBlue

algorithm of Sannella et al. [53].

2.5 The Semiring Constraint Satisfaction Frame-

work

The semiring constraint satisfaction framework of Bistarelli et al. [9] is a general frame-

work for satisfaction and optimisation where classical CSPs, FCSPs, WCSP, PCSPs,

and other CSPs (over finite domains) can be formulated as special instances. This

framework assumes a semiring of abstract preference values together with operators to

combine and compare preference values.

In the rest of this thesis we present various methods to solve Semiring Constraint

Satisfaction Problems (SCSPs). We give an introduction to the semiring constraint

satisfaction framework by means of an illustrative example which is used again later

in this thesis.

2.5.1 The Hotel Chain Example - Part 1

A hotel chain acquires a star rating that is an accumulation of the different branches.

Currently it has a four star rating and it aims for a five star rating. Various renovations

can be done at the branches to increase the rating of the hotel chain:

1. Lay new carpets.
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2. Upgrade a swimming pool.

3. Paint the building.

The manager of the hotel chain has to choose which (minimal) renovations to do at

which branches under certain restrictions (such as the budget, renovations needed at

each branch, and the constraints under which the renovating teams operate, etc.). The

hotel chain consist of three branches which are denoted by X, Y, and Z. To avoid

unnecessary disruptions, the manager wants at most one renovation job to be done at

a particular branch, and as few renovation jobs in total as possible.

We can express this problem as a SCSP where the semiring structure allows the man-

ager to express his preferences for particular tuples of domain values of the constraints.

The definition of a SCSP [9] follows in the next subsection.

2.5.2 Definition of a SCSP

When we deal with constraints, the type of semirings that are used are called c-

semirings. Bistarelli et al. [9] define a c-semiring, a constraint system, a constraint

and a SCSP with respect to c-semirings.

Definition 2 [9] A c-semiring is a tuple S = 〈A, +, ×, 0, 1〉 such that

• A is a set with 0,1 ∈ A;

• + is defined over (possibly infinite) sets of elements of A as follows 1:

– for all a ∈ A,
∑

({a}) = a;

–
∑

(∅) = 0 and
∑

(A) = 1;

–
∑

(
⋃
Ai, i ∈ I) =

∑
({

∑
(Ai), i ∈ I}) for all sets of indices I (flattening

property);

• × is a commutative, associative, and binary operation with operands from the

set A, such that 1 is its unit element and 0 is its absorbing element;

1When + is applied to sets of elements, we will use the symbol
∑

in prefix notation.
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• × distributes over + (i.e. for any a ∈ A and B ⊆ A, a×
∑

(B) =
∑

({a× b, b ∈

B}).

For the remainder of the thesis, we refer to c-semirings as semirings.

The elements of the set A are the preference values to be assigned to tuples of values

of the domains of constraints. The operator × is used to combine constraints in order

to find a solution (i.e. a single constraint) to a SCSP, and the operator + is used to

define the semiring value of the projection of a tuple of values over a set of variables

onto a subset of the variables.

We derive a partial ordering 6S over the set A: α, β ∈ A, α 6S β iff {α}+{β} = {β}.

The minimum element in the ordering is 0, while 1 is the maximum element. This

partial order will be used to distinguish the maximal solution (see Definition 10) of a

SCSP. 2

Definition 3 [9] A constraint system is a 3-tuple CS = 〈Sp, D, V 〉, where Sp = 〈Ap,

+p, ×p, 0, 1〉 is a semiring, V is an ordered finite set of variables, and D is a finite set

containing the allowed values for the variables in V.

For each tuple of values (of D) for the involved variables of a constraint, a corresponding

element of Ap is assigned.

A constraint (see Definition 4) specifies variables and the values that they can be

assigned. For each tuple of values for the involved variables, an element of the semiring’s

set Ap is associated. This element can be interpreted as the tuple’s preference value.

Definition 4 [9] Given a constraint system CS = 〈Sp, D, V 〉, where Sp=〈Ap,+p,×p,0,1〉,

a constraint over CS is a pair c = 〈defpc , conc〉 where conc ⊆ V is called the type of

the constraint, and defpc : Dk → Ap (where k is the cardinality of conc) is called the

value of the constraint.

In the rest of this thesis, we refer to the value of a constraint as its preference value or

its associated semiring value.

2In this thesis we write singleton subsets of the set A without braces.
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We now have the building blocks required to define a SCSP.

Definition 5 [9] Given a constraint system CS = 〈Sp, D, V 〉, a Semiring Constraint

Satisfaction Problem (SCSP) over CS is a pair P = 〈C, con〉 where C is a finite set of

constraints over CS and con =
⋃
c∈C conc. We also assume that 〈defpc1 , conc〉 ∈ C and

〈defpc2 , conc〉 ∈ C implies defpc1 = defpc2 .

We continue with the hotel chain example introduced in Section 2.5.1 to illustrate how

the problem can be expressed as a SCSP.

2.5.3 The Hotel Chain Example - Part 2

Let us express the problem as a SCSP with CS = 〈Sp, D, V 〉 and P = 〈C, con〉, where

V = con = {X, Y, Z}, D = {0, 1, 2, 3}, C = {c1, c2, c3}, and Sp = 〈{0, 0.25, 0.5, 0.75, 1},

max, min, 0, 1〉.

The value of a decision variable indicates which renovation job is to be done at a

particular branch: let the value 0 represent no renovation to be done, the value 1

represent re-carpeting, the value 2 represent pool renovation, and the value 3 represent

painting a building. A renovation job with a higher value will contribute more towards

a higher star rating.

Assume three binary constraints, c1 = 〈defpc1 , {X, Y }〉, c2 = 〈defpc2 , {Y, Z}〉, and c3 =

〈defpc3 , {X,Z}〉. The tuples of these constraints together with their preference values

(i.e. associated semiring values) are given in Table 2.1.

The manager’s choice of semiring value to associate with a tuple, represents the desir-

ability of that particular tuple. Consider defpc1(〈0, 2〉) = 0.75: tuple 〈0, 2〉 of constraint

c1 represents the case where nothing is to be done at branch X, while the swimming

pool at branch Y is to be upgraded. Its high preference value indicates that it is pre-

ferred, for instance, to the tuple 〈1, 1〉 with a value of 0.25. The tuple 〈1, 1〉 represents

the case where both branches X and Y will receive new carpets.

Also consider the preference values for constraint c3 (the fourth column of Table 2.1):

the manager prefers either one of the tuples 〈0, 3〉 or 〈3, 0〉 over any other tuples. These
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Table 2.1: Constraint Definitions

t defpc1(t) defpc2(t) defpc3(t)
〈0, 0〉 0 0 0
〈0, 1〉 0.25 0.25 0.25
〈0, 2〉 0.75 0.75 0.75
〈0, 3〉 1 1 1
〈1, 0〉 0.25 0.25 0.25
〈1, 1〉 0.25 0.25 0.25
〈1, 2〉 0.5 0.5 0.5
〈1, 3〉 0.5 0.5 0.5
〈2, 0〉 0.5 0.5 0.5
〈2, 1〉 0.5 0.5 0.5
〈2, 2〉 0.5 0.5 0.5
〈2, 3〉 0.25 0.25 0.25
〈3, 0〉 1 1 1
〈3, 1〉 0.5 0.5 0.5
〈3, 2〉 0.5 0.5 0.5
〈3, 3〉 0 0 0

tuples represent the cases where the buildings at either one of branch X or branch Z is

to be painted. A tuple with an associated value of 0 is highly undesirable.

In the next section we describe how a solution to a SCSP is found.

2.5.4 Finding a solution to a SCSP

The definitions of combination and projection operations [9] which are used to calculate

a solution to a SCSP are given in this section.

The two semiring operators, multiplicative and additive, are used to compute preference

values for the tuples of the variables in the set con from the preference values specified

for the tuples of each constraint. The multiplicative operation combines the semiring

(preference) values of the tuples of each constraint to get the semiring value of a tuple

for all the variables, and the additive operation is used to obtain the semiring value of

the tuples of the variables in the type of the problem.

The following three definitions from Bistarelli et al. [9] define the projection of a tuple
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from one set of variables to another set, the combination of two constraints, and the

projection of a constraint from its type to another set of variables, respectively.

Definition 6 [9] Given a constraint system CS = 〈Sp, D, V 〉 with V totally ordered

via �, consider any k-tuple t = 〈t1, t2, . . . , tk〉 of values of D and two sets W = {w1,

. . . , wk} and W ′ = {w′1, . . . , w′m} such that W ′ ⊆ W ⊆ V and wi � wj if i ≤ j and

w′i � w′j if i ≤ j. The projection of the tuple t from W to W ′, written t ↓WW ′ , is defined

as the tuple t′ = 〈t′1, . . . , t′m〉 with t′i = tj if w′i = wj.

The next definition defines the operation of combining two constraints to form a single

constraint. We will use this operation repeatedly to combine all the constraints of a

problem, into a single constraint.

Definition 7 [9] Given a constraint system CS = 〈Sp, D, V 〉 where Sp = 〈Ap, +p,

×p, 0, 1〉. Let c1 and c2 be two constraints with c1 = 〈defpc1 , conc1〉 and c2 = 〈defpc2 ,

conc2〉 over CS. Their combination, written c1 ⊗ c2, is the constraint c = 〈defpc , conc〉

with conc = conc1 ∪ conc2 and defpc (t) = defpc1(t ↓
conc
conc1

)×p defpc2(t ↓
conc
conc2

).

The operation ⊗ is commutative and associative because ×p is. We can extend the

operation ⊗ to more than two arguments, say C = {c1, . . . , cn}, by performing c1 ⊗

c2 ⊗ ...⊗ cn, which we denote by (
⊗

C).

Definition 8 [9] Given a constraint system CS = 〈Sp, D, V 〉, where Sp = 〈Ap, +p,

×p, 0, 1〉, a constraint c = 〈defpc , conc〉 over CS, and a set I of variables (I ⊆ V ). The

projection of c over I, written c ⇓ I, is the constraint c′ = 〈defpc′ , conc′〉 over CS with

conc′ = I ∩ conc and defpc′(t
′) =

∑
{t|t↓conc

I∩conc
=t′} def

p
c (t).

A solution to a SCSP can now be defined.

Definition 9 [9] Given a SCSP P = 〈C, con〉 over a constraint system CS, the solution

of the SCSP P is a constraint defined as the set Sol(P ) = (
⊗

C).
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A solution to a SCSP is formed by the combination of all the original constraints of

the problem into a single constraint. Such a constraint has a semiring value associated

with each tuple of values of D for the variables in con. A maximal solution consists of

the set of k-tuples of D whose associated semiring values are maximal with respect to

6Sp .

Definition 10 Given a SCSP problem P = 〈C, con〉 over a constraint system 〈Sp, D, V 〉

with Sol(P ) = 〈defpc , con〉, the maximal solution of P is the set

MSol(P ) = {〈t, v〉|defpc (t) = v and there is no t′ such that v <Sp def
p
c (t′)}.

Let MSolV (P ) = {v|〈t, v〉 ∈MSol(P )}.

Note that the set MSol(P ) contains all the maximal tuples of the single constraint,

(
⊗

C), that depicts the solution to P together with each maximal tuple’s associated

preference value. The set MSolV (P ) contains only the associated preference values of

theses tuples, i.e. this set only contains incomparable preference values.

In the next section we illustrate how a maximal solution for the hotel chain problem

described in Sections 2.5.1 and 2.5.3 is calculated.

2.5.5 The Hotel Chain Example - Part 3

A solution to the problem consists of the combination of the three constraints in the

set C.

The first step is to combine the first two constraints, c1 and c2. Table 2.2 shows the

semiring values associated with each tuple of the constraint c′1 = c1⊗ c2. For example,

defpc1(〈0, 1〉) ×p def
p
c2

(〈1, 3〉) = min(0.25, 0.5) = 0.25, so tuple 〈0, 1, 3〉 of constraint c′1

has a preference value of 0.25.

Then we combine the constraint c′1 and the constraint c3 to get the solution, constraint

c′2 = c′1 ⊗ c3. Table 2.3 shows the semiring values associated with constraint c′2.

The following tuples of constraint c′2 all have a preference value of 0.5 and form the

maximal solution with MSolV (P ) = {0.5}:

〈0, 2, 2〉; 〈0, 3, 2〉; 〈1, 2, 2〉; 〈1, 3, 2〉; 〈2, 0, 2〉; 〈2, 1, 2〉; 〈2, 2, 0〉; 〈2, 2, 1〉; 〈2, 2, 2〉; 〈3, 0, 2〉;
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Table 2.2: Definition of Constraint c′1

t defpc′1
(t) t defpc′1

(t)

〈0, 1, 0〉 0.25 〈2, 0, 1〉 0.25
〈0, 1, 1〉 0.25 〈2, 0, 2〉 0.5
〈0, 1, 2〉 0.25 〈2, 0, 3〉 0.5
〈0, 1, 3〉 0.25 〈2, 1, 0〉 0.25
〈0, 2, 0〉 0.5 〈2, 1, 1〉 0.25
〈0, 2, 1〉 0.5 〈2, 1, 2〉 0.5
〈0, 2, 2〉 0.5 〈2, 1, 3〉 0.5
〈0, 2, 3〉 0.25 〈2, 2, 0〉 0.5
〈0, 3, 0〉 0.1 〈2, 2, 1〉 0.5
〈0, 3, 1〉 0.5 〈2, 2, 2〉 0.5
〈0, 3, 2〉 0.5 〈2, 2, 3〉 0.25
〈1, 0, 1〉 0.25 〈2, 3, 0〉 0.25
〈1, 0, 2〉 0.25 〈2, 3, 1〉 0.25
〈1, 0, 3〉 0.25 〈2, 3, 2〉 0.25
〈1, 1, 0〉 0.25 〈3, 0, 1〉 0.25
〈1, 1, 1〉 0.25 〈3, 0, 2〉 0.75
〈1, 1, 2〉 0.25 〈3, 0, 3〉 1
〈1, 1, 3〉 0.25 〈3, 1, 0〉 0.25
〈1, 2, 0〉 0.5 〈3, 1, 1〉 0.25
〈1, 2, 1〉 0.5 〈3, 1, 2〉 0.5
〈1, 2, 2〉 0.5 〈3, 1, 3〉 0.5
〈1, 2, 3〉 0.25 〈3, 2, 0〉 0.5
〈1, 3, 0〉 0.5 〈3, 2, 1〉 0.5
〈1, 3, 1〉 0.5 〈3, 2, 2〉 0.5
〈1, 3, 2〉 0.5 〈3, 2, 3〉 0.25

all other tuples 0
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Table 2.3: Definition of Constraint c′2

t defpc′2
(t) t defpc′2

(t)

〈0, 1, 1〉 0.25 〈2, 0, 1〉 0.25
〈0, 1, 2〉 0.25 〈2, 0, 2〉 0.5
〈0, 1, 3〉 0.25 〈2, 0, 3〉 0.25
〈0, 2, 1〉 0.25 〈2, 1, 0〉 0.25
〈0, 2, 2〉 0.5 〈2, 1, 1〉 0.25
〈0, 2, 3〉 0.25 〈2, 1, 2〉 0.5
〈0, 3, 1〉 0.25 〈2, 1, 3〉 0.25
〈0, 3, 2〉 0.5 〈2, 2, 0〉 0.5
〈1, 0, 1〉 0.25 〈2, 2, 1〉 0.5
〈1, 0, 2〉 0.25 〈2, 2, 2〉 0.5
〈1, 0, 3〉 0.25 〈2, 2, 3〉 0.25
〈1, 1, 0〉 0.25 〈2, 3, 0〉 0.25
〈1, 1, 1〉 0.25 〈2, 3, 1〉 0.25
〈1, 1, 2〉 0.25 〈2, 3, 2〉 0.25
〈1, 1, 3〉 0.25 〈3, 0, 1〉 0.25
〈1, 2, 0〉 0.25 〈3, 0, 2〉 0.5
〈1, 2, 1〉 0.25 〈3, 1, 0〉 0.25
〈1, 2, 2〉 0.5 〈3, 1, 1〉 0.25
〈1, 2, 3〉 0.25 〈3, 1, 2〉 0.5
〈1, 3, 0〉 0.25 〈3, 2, 0〉 0.5
〈1, 3, 1〉 0.25 〈3, 2, 1〉 0.5
〈1, 3, 2〉 0.5 〈3, 2, 2〉 0.5

all other tuples 0

〈3, 1, 2〉; 〈3, 2, 0〉; 〈3, 2, 1〉 and 〈3, 2, 2〉.

All other tuples have preference values of either 0.25 or 0. The manager can choose

any of the tuples in the set MSolV (P ).

We mentioned before that the SCSP framework is a general framework for solving

constraint satisfaction problems and over-constrained problems. Interesting instances

of semirings are:

• A classical CSP: 〈{0, 1},∨,∧, 0, 1〉;

• A fuzzy CSP (see section 2.2.1): 〈[0, 1], supremum, infimum, 0, 1〉;

• A weighted CSP (see section 2.2.3): 〈Z+,minimum,+,∞, 0〉. (Note that the
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operator, +, presents addition on the set of nonnegative integers.)

2.5.6 Algorithms to solve SCSPs

Considerable interest has been shown in developing algorithms for solving SCSPs, but

there does not exists an efficient general SCSP solver as yet. In this section, we sum-

marise a few of these methods.

Georget and Codognet [26] developed a backtracking-based logic programming system,

clp(FD,S), for solving SCSPs. Their system integrates their semiring kernel (SFD) and

the constraint logic programming system clp(FD,S).

Bistarelli et al. [5] proposed a dynamic programming approach which solves a subset

of the original set of constraints repeatedly, and then replaces this subset by a new

generated constraint.

Rossi and Pilan [10] developed an abstraction based algorithm to solve fuzzy CPSs.

Their algorithm passes an abstract version (a simpler version) of a given soft problem to

be solved, and then returns some of the information gathered during the solving process

back to the original problem in order to transform it into an equivalent problem that

is easier to solve.

Bistarelli et al. [7] presented a prototype SCSP solver based on an incomplete local

search method which employs problem transformation and soft consistency techniques.

Wilson [62] showed how to use decision diagrams to solve SCSPs but provides no

implementation.

Delgado et al. [16] solved SCSPs by using the logic constraint solver, Mozart.

We present and implement an incomplete local search algorithm, three branch-and

bound algorithms, and a CSP-based algorithm to solve SCSPs in Chapters 5 and 6 of

this thesis.
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2.6 Industry-scale instances of over-constrained prob-

lems

The research described in this thesis was conducted in the context of an industry

project with a major steel producer. The problem that we addressed was highly over-

constrained and was, in part, the driver for our research into over-constrained problems.

2.6.1 Description of the problem

During the steel making process, steel slabs are cast by the castor, and then need to

be heated to a required temperature before they can be processed in the Hot Strip

Mill (HSM) where the slabs are rolled into required products. There are numerous

restrictions placed on the order in which the slabs enter the HSM. The goal of these

requirements are to reduce the wear and tear on the equipment, especially the rollers

of the HSM.

Our task was to set up a processing schedule for slabs entering the HSM such that the

specified requirements are met, and in addition, that some of the slabs are hot charged,

i.e. reach the HSM while their temperature is still high enough to be processed without

additional heating.

The steel producer currently uses a human expert assisted by an expert system to do

the scheduling. We had access to existing schedules and the human expert.

Each slab has approximately 20 characteristics, e.g its cast date and time, width,

thickness, steel and chemical grade, temperature, length, weight, etc. Some of the

restrictions on the scheduling are based on the differences in width, thickness, grade,

and chemistry between a slab and the adjacent slabs in the processing order. There are

also requirements for the total length of a schedule and the first few slabs in a schedule

(called the start-up). One of the most important constraints requires the width of the

sequence of slabs in a schedule to form a coffin shape, i.e. the width of the slabs must

initially increase (referred to as the runout phase), and after the widest slab has been

processed, the width of the remaining slabs must decrease (rundown phase). There are
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constraints that determine the lengths of the two phases.

The slabs that are to be hot charged, have to reach the HSM in succession and within

a certain time after having been cast.

Most of the requirements are supplied in the form of tabular information, but some

characteristics have to be calculated (e.g. the hardness of a slab).

2.6.2 Solving the problem

We decided to define the problem as a constraint satisfaction problem and use a com-

mercial constraint solver, ILOG Solver3, to implement the solution.

Stage 1: Solving a simplified version of the problem as a CSP

It was clear that we were dealing with a very over-constrained problem. We started

by considering a subset of the requirements. We defined this simplified version of the

problem as a CSP and implemented a solution in ILOG Solver.

Although we were able to solve small instances of this version of the problem, we

realised that the problem is highly over-constrained and that we were unlikely to find

a solution.

Stage 2: Relaxing the constraints in the simplified version

We identified possible relaxations of the included constraints in our simplified version

with the assistance of a human expert in steel making (e.g. by allowing bigger jumps,

etc.).

This modification resulted in unpredictable behaviour from our ILOG Solver. In some

small instances, our solver was unable to find solutions while managing to solve some

larger instances.

3http://www.ilog.com
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Stage 3: Including a pre-sorting phase

In this stage we included pre-processing in the form of sorting the input slabs according

to various characteristics such as width, thickness or chemical grade.

This modification of the solver also resulting in inconsistent results.

Stage 4: Analysing actual schedules used in the plant

During this stage, we analysed existing schedules plus the actual sets of input slabs

to determine how the steel plant relaxed the requirements. We analysed 13 existing

schedules and focused on the width, thickness and chemistry (grade) characteristics of

the scheduled slabs.

The conclusions that followed from this analysis enabled us to set guidelines for the

relaxation of the constraints and viable forms of pre-processing.

The existing schedules are drawn up by a human expert assisted by an expert system.

We could determine which constraints were more often unsatisfied. This information

enabled us to define a measurement of the extent to which a schedule does not satisfy

all the requirements.

Although these modifications improved the performance of our solver to some extent,

it still did not produce consistent results. We realised that we needed a new approach.

Stage 5: Adding more constraints and more input slabs

At this stage we cut down the size of the search tree by incorporating more of the

requirements, i.e. by adding more constraints. We also identified some constraints

that have to be satisfied, i.e. hard constraints.

The version of ILOG solver that was available at this stage, did not offer a lot of partial

constraint satisfaction facilities. We managed to build some partial solving by setting

goals. We also incorporated partial constraint satisfaction by allowing an input set

that is greater than the required length of the schedule, i.e. if a schedule of size n is

required we made an input size of n+ k slabs available, with k and n positive integers.
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This version of the solver produced schedules double the size of any previous version.

Although this was a big improvement, the solver needed to produce longer schedules

in an acceptable processing time (less than 10 minutes).

Stage 6: Dividing the problem in two stages

A HSM schedule consists of a runout and a rundown phase as described previously.

We decided to regard the scheduling of the slabs in the runout and rundown phases

as two separate CSPs. During the scheduling of the runout slabs, we still pre-selected

and hard coded the start-up slabs, and then solved the runout problem.

The last coil of the runout was then hard coded as the first slab in the rundown problem,

and all the slabs scheduled in the runout schedule were deleted from the input set for

the rundown problem. Then we solved the rundown problem.

Apart from this division of the problem into two separate problems and the hard coded

slabs, we also pre-sorted the set of input slabs in order of increasing width for the runout

scheduling, and in order of decreasing width for the rundown problem.

These modifications proved to be very successful and we managed to create long enough

schedules in a few seconds.

2.6.3 Results of the Industry Project

At the conclusion of this project our solver produced a single schedule very fast, but

required more coils as input than the size of the schedule that is produced, and did not

yet include hot charge constraints.

The unscheduled input slabs were not deemed to be a problem as they can either be

left for a next schedule or manually inserted by the human operator.

The next planned stage was to modify the solver to produce 3 to 4 schedules and include

the hot charge constraints. The steel producer aims to develop a solver that requires

an expert scheduler to adjust some input values to the program until the resulting

schedules are satisfactory.
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We believe that the repertoire of techniques that we describe in this dissertation will

eventually find application in industry settings such as described in this section.



Chapter 3

Relaxations of Semiring Constraint
Satisfaction Problems

The main approach to solving an over-constrained problem is to identify an appropriate

relaxation of the original problem that is solvable. Our aim in this chapter is to define

how a SCSP might be relaxed. In Chapter 2 we described the SCSP framework of

Bistarelli et al. [9], and gave the definition for maximal solution to a SCSP. A maximal

solution to a SCSP is defined as the best set of solution tuples for the variables in the

problem. Sometimes this maximal solution may not be good enough, and in this case

we want to change the constraints so that we solve a problem that is slightly different

from the original problem but has an acceptable solution.

In this chapter, we propose a relaxation of a SCSP, and use a second semiring to

give a measure of the difference between the original SCSP and the relaxed SCSP. We

introduce a relaxation scheme but do not address the computational aspects. Note

that this work was first presented at the International Workshop on Preferences and

Soft Constraints at CP-2005 [40], and an extended version of the paper has appeared

in the Information Processing Letters journal [41].

3.1 Motivation

The SCSP framework generalises different approaches to identify relaxations to over-

constrained problems. A SCSP constraint assigns a preference value to all possible

value assignments to the variables in its type. These preferences implicitly define a

33
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relaxation strategy (“try to satisfy the constraint using the most preferred tuples, else

try the next most preferred tuples” and so on).

At first blush, it may appear counter-intuitive to attempt to relax a SCSP. We will

explain our motivations by describing it in terms of a generic optimisation problem

(C,O), defined by a set of constraints C and an objective function O. Assume that we

have been given a lower bound on the value of the optimal solution (e.g., a minimal

threshold on profit by a business unit set by management). Consider a situation where

the optimal solution obtained fails to meet this threshold (e.g., the optimal profit figure

falls short of the profit target). We are interested in seeking a new (and potentially

relaxed) set of constraints C ′ that is minimally different from the original set C (under

some notion of minimal difference that we will leave undefined for the time being), such

that the revised optimisation problem (C ′, O) admits an optimal solution that satisfies

the threshold. The revised (or relaxed) set of constraints C ′ is potentially very useful,

because it can point to minimal changes in the physical reality being modelled by the

constraints, which, if effected, would permit us to meet the threshold on the value of

the objective function.

In this chapter, we attempt such an exercise in the context of SCSPs. A SCSP does

not have an explicit objective function. Objectives are implicitly articulated (in a

distributed fashion) via the preferences over tuples in each SCSP constraint. Instead of

an optimal solution, we are able to articulate the preference values of the (potentially

many) “best” solutions to a SCSP. Consider a SCSP P and a threshold β on the

preference value of the “best” solution(s) to P . Assume that the “best” solutions to

P fall short of this threshold. We define a mechanism by which we may “minimally”

alter (i.e. relax) P to obtain a P ′ such that it admits a “best” solution that meets this

threshold.

We propose a relaxation scheme for SCSPs in Section 3.2, but further research is

required to develop efficient algorithms to compute these relaxations. We describe

our proposal by defining what a good enough solution is, and how to find a suitable

relaxation for a SCSP.

Consider the example of the hotel chain we introduced in Chapter 2. Assume the hotel
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in question is unable to attain a five-star rating and wishes to determine the minimal

changes required to its infrastructure in order to achieve such a rating. Recall that

the star rating of the hotel is modelled via semiring preference values. In Section 3.3

we extend this example by relaxing the problem such that the required five-star rating

may be reached.

In Section 3.4 we discuss frameworks by Bistarelli et al. [6] and Ghose and Harvey [27]

that are related to our proposal.

3.2 A Relaxation of a SCSP

We are interested in a SCSP for which the maximal solution is not considered to be

good enough. For example, the manager of the hotel chain example (Sections 2.5.1 and

2.5.5) may require a better solution: suppose he needs a solution tuple with a given

minimum preference value of 0.75. The constraints of a problem model requirements

that may be relaxed. We attempt to find a satisfactory solution to a relaxed version

of the original problem.

We define a mathematical filter below. The concept of a filter was first introduced by

Cartan [13] in 1937. The definition below is taken from [60].

Definition 11 A non-empty subset F of a partially ordered set (A,≤A) is called a

filter, if the following conditions hold:

• For every x, y ∈ F , there is some element z ∈ F , such that z ≤A x and z ≤A y.

• For every x ∈ F and y ∈ A, x ≤A y implies that y ∈ F .

The smallest filter that contains a given element α is a principal filter, and α is called its

principal element. The principal filter for α is given by the set ↑ α = {x ∈ A | α ≤A x}.

Recall that the preference values associated with a maximal solution of a SCSP P ,

i.e. the set MSolV (P ), is defined in Definition 10. In Definition 12 below, we identify
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a partially ordered set of “lower bound” preference values that are regarded as being

good enough.

Definition 12 Let P be a SCSP over a constraint system 〈Sp, D, V 〉 with Sp =

〈Ap,+p,×p,0,1〉. Suppose B is the set of all sufficient preference values, that is

B = {β | β ∈ Ap & β is sufficient} and let LB = {
⋃

(↑ β) | β ∈ B}. A good

enough solution for P is such that some element in MSolV (P ) is a member of the set

LB.

The set LB contains the union of principal filters for preference values β ∈ Ap such

that all values of LB are regarded as being good enough. If MSolV (P ) ∩ LB 6= ∅, we

have found a good enough solution for a problem P , i.e. there exist a solution with an

associated preference value that is regarded as being good enough. If this is not the

case, we want to find a relaxation P ′ of P , such that MSolV (P ′)∩LB 6= ∅. P ′ should

be as close to P as possible, that is, P ′ should be such that there does not exist any

other relaxation of P closer to P than P ′.

We first define a relaxation of a single constraint.

Definition 13 A constraint cj = 〈defpj , conj〉 is called a ci-weakened constraint of the

constraint ci = 〈defpi , coni〉 iff the following hold:

• coni = conj, and

• for all tuples t, defpi (t) 6S def
p
j (t).

In Definition 13 the constraints ci and cj share the same set of tuples, but a tuple t

may have a different associated semiring value in constraint cj than in constraint ci.

Note that a constraint c is itself a c-weakened constraint.

We now introduce a second semiring structure to represent the closeness of a c-weakened

constraint to the constraint c. We refer to these semiring values of this second semiring

as difference values. Every c-weakened constraint of a constraint c (including the

constraint c itself) will be assigned such a difference value.
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Definition 14 Given a constraint system CS = 〈Sp, V , D〉 and a SCSP P = 〈C, con〉,

for each c ∈ C, let Wc be the set containing all c-weakened constraints, i.e.

Wc={cj | cj is a c-weakened constraint}.

Let Sd = 〈Ad, +d, ×d, 0, 1〉 be a semiring and wdefdc : Wc → Ad be any function such

that

• Ad is a well-founded set (it contains no infinite descending chains);

• wdefdc (cj) = 0 iff cj = c;

• ∀ci, cj ∈ Wc, if for all tuples t def pi (t) 6Sp def
p
j (t) then wdefdc (ci) 6Sd

wdefdc (cj);

• if there exists one tuple t such that defpi (t) <Sp def
p
j (t) and for all tuples s we

have defpi (s) 6Sp def
p
j (s), then wdefdc (ci) <Sd

wdefcd(cj).

The function wdefdc : Wc → Ad is called a difference function.

We use +d for comparing, and ×d for combining semiring values (see Definition 18).

Observe that the set Ad is restricted to sets that do not contain infinite chains of weaker

values such as the set of reals.

Definition 14 describes a function wdefdc that assigns semiring (or difference) values

from the set of the semiring Sd to each c-weakened constraint. This function is restricted

by the preference values associated with the tuples of the c-weakened constraints. If the

preference values of all the tuples of a c-weakened constraint cj are at least as good as

their preference values in another c-weakened constraint ci, wdef
d
c assigns a difference

value for cj that is at least as good as the difference value it assigns to ci. If there is at

least one tuple that has a better preference value in cj than in ci (and all other tuples

have preference values in cj that are at least as good as those in ci), then wdefdc will

assign a better difference value to cj than to ci. (We compare semiring values in terms

of the partial order defined on them.) This framework is deliberately broad so as to

accommodate any reasonable application.

Now we define the concept of closeness with respect to a constraint c and a c-weakened

constraint.
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Definition 15 Let c ∈ C be a constraint in a SCSP P = 〈C, con〉, and let wdefdc be

a difference function with the semiring Sd = 〈Ad, +d, ×d, 0, 1〉.

• The c-weakened constraint ci is closer to c than the c-weakened constraint cj, iff

wdefdc (ci) <Sd
wdefdc (cj).

• The c-weakened constraint ci is no closer to c than the c-weakened constraint cj,

iff wdefdc (cj) 6Sd
wdefdc (ci).

• The c-weakened constraints ci and cj are incomparable with respect to closeness

to c iff wdefdc (ci) �Sd
wdefdc (cj) and wdefdc (cj) �Sd

wdefdc (ci).

Below we define a relaxation of a SCSP, and then we describe a way to formalise

“closeness” of a relaxation to the original problem.

Definition 16 A SCSP P ′ = 〈C ′, con〉 is a d-relaxation of the SCSP P = 〈C, con〉

where Sd = 〈Ad, +d, ×d, 0, 1〉, iff there is a bijection f : C → C ′ and ∀c ∈ C, f(c) is

a c-weakened constraint with a difference function wdefdc .

For a f(c) ∈ C ′ and c ∈ C, wdefdc (f(c)) is an indication of the closeness of f(c) to c.

For every c ∈ C, C ′ contains one c-weakened constraint, i.e. every c can be regarded

as being replaced by a c-weakened constraint f(c). We want to find a d-relaxation

P ′ = 〈C ′, con〉 of P = 〈C, con〉 such that every c-weakened constraint c′ ∈ C ′ is the

closest possible to the constraint c ∈ C while the maximal solution of P ′ is still good

enough (with respect to the set LB defined in Definition 12).

It is necessary to place some restrictions on the multiplicative operator ×d so that the

difference value of a d-relaxation will indeed reflect the closeness of the relaxed problem

to the original problem.

Theorem 1 Given a SCSP P ′ = 〈C ′, con〉 which is a d-relaxation of the SCSP P =

〈C, con〉 where Sd = 〈Ad, +d, ×d, 0, 1〉, let cik be a ci-weakened constraint, and cjm

and cjn be cj-weakened constraints with ci, cj ∈ C.

If wdefdcj (cjm) <Sd
wdefdcj (cjn), then

wdefdci(cik) ×d wdef
d
cj

(cjm) <Sd
wdefdci(cik) ×d wdef

d
cj

(cjn).
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Proof 1 The multiplicative operator of a semiring is monotone on a partial order on

the set of a semiring (see [9]). Thus ×d is monotone on <Sd
.

We now define the set of all possible d-relaxations of a SCSP P , and go on to define a

maximal solution of a d-relaxation.

Definition 17 Let R(P ) = {P ′ | P ′ is a d-relaxation of P},

RLB(P ) = {P ′ ∈ R(P ) |MSolV (P ′) ∩ LB 6= ∅}, and

MSolRLB(P ) = {〈t, v〉 | 〈t, v〉 ∈ MSol(P ′) & P ′ ∈ RLB(P )}.

The set RLB(P ) contains all those SCSPs that are weakened versions of P whose

best tuples intersect with the set LB, i.e. whose maximal solutions are good enough.

Note that every tuple in MSol(P ′) is a tuple of P ′ with a maximal semiring (pref-

erence) value, and that MSolV (P ′) contains those maximal preference values. The

set MSolRLB(P ) contains the tuples and associated preference values of the maximal

solution for a particular d-relaxation P ′.

We now define a measure of difference between a problem P and a d-relaxation P ′.

Definition 18 Given a d-relaxation P ′ = 〈C ′, con〉 of a SCSP P = 〈C, con〉 where Sd

= 〈Ad, +d, ×d, 0, 1〉, such that P ′ ∈ RLB(P ), let d(P ′) = ×d c∈C(wdefdc (f(c))) be the

difference between P and P ′.1

We have to find every P ′ ∈ RLB(P ) with a minimal difference between P ′ and a

problem P .

Definition 19 Let MRLB(P ) = {P ′ ∈ RLB(P ) | @ P ′′∈RLB(P ) such that d(P ′) <Sd

d(P ′′)}.

The set MRLB(P ) contains the maximal weakened versions of the SCSP P .

In the example below we show how the hotel chain manager (see Sections 2.5.1 and

2.5.5) can find an improved solution to his problem by solving a relaxed version of the

original problem.

1We use ×d in prefix notation when it is applied to more than two arguments.
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3.3 The Hotel Chain Example - Part 4

The manager of the hotel chain problem wants to raise the hotel’s four-star rating to

a five-star rating. He has calculated that he needs a solution that gives a preference

value of at least 0.75. The maximal solution to the original problem has a preference

value of 0.5 which is not good enough.

We now attempt to find a d-relaxation to this problem with a sufficient solution. Note

that we illustrate this process by only considering some relaxations of the second con-

straint as shown in Tables 3.1 and 3.2. The preference values that have been adjusted

are written in bold face in both the tables.

In each of the c2-weakened constraints c21 up to c27 (Table 3.1), we only changed

a single tuple’s preference value from 0.5 to 0.75. These constraints represent c2-

weakened constraints with the smallest possible change from the original constraint,

c2. In each of the constraints c28 up to c211 (Table 3.2), we only changed a single tuple’s

preference value from 0.25 to 0.75.

Although there exist many other relaxations of the second constraint, they will not

enable us to obtain the required maximal solution.

We will use the semiring Sd = 〈{0, 1, 2, 3, 4, 5}, min, max, 5, 0〉 to present a measure

of difference between the c2-weakened constraints and the original constraint c2. Note

that the partial order ≤Sd
is the order ≥ over the integers. Table 3.3 shows the semiring

(difference) values we associate with each of the relaxed constraints. The function wdef

should reflect the manager’s preferred way to relax constraints: wdef assigns a smaller

difference value for relaxed constraints in which the least measure of change to the

preferences values of tuples (i.e. the smallest adjustments) has been made, i.e. an

adjustment from 0.5 to 0.75 is regarded as being less of a change than an adjustment

from 0.25 to 0.75.

We associate a difference value of 0 (the best difference value) with the constraint c2, a

difference value of 1 with each of the constraints c21 up to c27 , and a difference value of

2 with the constraints c28 up to c211 . There are a number of other possible relaxations

of c2 (not shown in Table 3.2) of which the most relaxed one will be a constraint where
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Table 3.1: Definitions of some c2-weakened constraints

t c2 c21 c22 c23 c24 c25 c26 c27

〈0, 1〉 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
〈0, 2〉 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
〈0, 3〉 1 1 1 1 1 1 1 1
〈1, 0〉 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
〈1, 1〉 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
〈1, 2〉 0.5 0.75 0.5 0.5 0.5 0.5 0.5 0.5
〈1, 3〉 0.5 0.5 0.75 0.5 0.5 0.5 0.5 0.5
〈2, 0〉 0.5 0.5 0.5 0.75 0.5 0.5 0.5 0.5
〈2, 1〉 0.5 0.5 0.5 0.5 0.75 0.5 0.5 0.5
〈2, 2〉 0.5 0.5 0.5 0.5 0.5 0.75 0.5 0.5
〈2, 3〉 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
〈3, 0〉 1 1 1 1 1 1 1 1
〈3, 1〉 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.5
〈3, 2〉 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.75
〈−,−〉 0 0 0 0 0 0 0 0

Table 3.2: Definitions of additional c2-weakened constraints

t c2 c28 c29 c210 c211 ...
〈0, 1〉 0.25 0.75 0.25 0.25 0.25 ...
〈0, 2〉 0.75 0.75 0.75 0.75 0.75 ...
〈0, 3〉 1 1 1 1 1 ...
〈1, 0〉 0.25 0.25 0.75 0.25 0.25 ...
〈1, 1〉 0.25 0.25 0.25 0.75 0.25 ...
〈1, 2〉 0.5 0.5 0.5 0.5 0.5 ...
〈1, 3〉 0.5 0.5 0.5 0.5 0.5 ...
〈2, 0〉 0.5 0.5 0.5 0.5 0.5 ...
〈2, 1〉 0.5 0.5 0.5 0.5 0.5 ...
〈2, 2〉 0.5 0.5 0.5 0.5 0.5 ...
〈2, 3〉 0.25 0.25 0.25 0.25 0.75 ...
〈3, 0〉 1 1 1 1 1 ...
〈3, 1〉 0.5 0.5 0.5 0.5 0.5 ...
〈3, 2〉 0.5 0.5 0.5 0.5 0.5 ...
〈−,−〉 0 0 0 0 0 ...



3.3. The Hotel Chain Example - Part 4 42

Table 3.3: Difference (semiring) values for some of the c2-weakened constraints

wdefdc2(c2) 0
wdefdc2(c21) 1
wdefdc2(c22) 1
wdefdc2(c23) 1
wdefdc2(c24) 1
wdefdc2(c25) 1
wdefdc2(c26) 1
wdefdc2(c27) 1
wdefdc2(c28) 2
wdefdc2(c29) 2
wdefdc2(c210) 2
wdefdc2(c211) 2

all tuples have a preference value of 1. All these other possible c2-weakened constraints

can be allocated some difference value higher than 2. Note that a higher difference

value represent a more relaxed constraint. The worst value that can be assigned to a

constraint is 5.

Our d-relaxation must be as close as possible to the original problem. We initially

consider any one of the c2-weakened constraints with an associated difference value of

1.

If we select the constraint c25 in the place of constraint c2, we will be able to raise the

maximal solution. In this d-relaxation of the original problem, we simply give a higher

preference value to a solution where the swimming pools are to be upgraded at both

branches Y and Z. Recall that the tuple 〈2, 2〉 represents the case where the swimming

pools at both these branches are to be upgraded, and initially a preference value of

0.5 has been assigned to this tuple. In the relaxed constraint c2 we now associate a

preference value of 0.75 with this tuple.

The resulting d-relaxation of the problem P is P ′1 = 〈C ′1, con〉 with C ′1 = {c1, c25 , c3}.

Table 3.4 shows the solution to the combination of the constraints, p′1c = c1⊗ c25 ⊗ c3.

Note that the tuple with the best associated semiring value is: defppc1(〈0, 2, 2〉) = 0.75,

with MSolV (P ′1) = {0.75}. Thus d(P ′1) = 0 ×d 1 ×d 0 = max(0, 1, 0) = 1.
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Table 3.4: Definition of Constraint p′1c.

t defpp′1c
(t)

〈0, 2, 2〉 0.75
〈1, 2, 2〉 0.5
〈2, 2, 2〉 0.5
〈3, 2, 2〉 0.5

all other tuples 0

This means that our abstract solution is good enough, and the manager can raise the

star rating of the hotel chain.

Note that if we select the constraint c27 to replace the constraint c2, we will also be able

to find a good enough solution with a preference value of 0.75 and with a difference

value of 1.

3.4 Related Work

Bistarelli et al. [6] use the semiring-based framework to model partial CSPs: they

show how to use a semiring to represent a notion of distance between a solution and a

problem.

It has also been shown that tradeoffs between user preferences (if all requirements can-

not be met) can be modelled as additional constraints. Bistarelli et al. [8] present a

framework where “tradeoffs” between preferences are modelled in the semiring frame-

work. Our work can be seen as a form of tradeoff where the added and removed

constraints involve the same variables.

Ghose & Harvey [27] extended the SCSP framework by specifying a metric for each

constraint in addition to the preference values associated with the tuples of values.

The metric provides real valued differences between the preference values which are

used to measure a real-valued distance between a solution to a SCSP and some desired

solution that is regarded to be good enough. Metric SCSPs are similar to our proposal

in the sense that both frameworks allow us to establish whether a solution is regarded
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as being good enough. Both approaches obtain a measure of the deviation required

from a problem P to a relaxation of p that has a good enough solution. In our proposal

the measure of deviation is given in terms of a semiring value.

3.5 Conclusion

We have proposed an extension to the SCSP framework for solving SCSPs, where

a relaxation of a SCSP is constructed if the solution for the original SCSP is not

good enough. We define a suitable relaxation of the SCSP by adjusting the preferences

associated with the tuples of some of the constraints of the original SCSP. An additional

semiring structure associates difference values with each relaxed constraint, such that

alternative relaxations of a problem can be compared in terms of their difference from

the original problem.

Our future work will focus on computational aspects of this process. When a solution

to a SCSP P is not good enough, we use a set of cut-off values, LB, to define a threshold

that should be reached. We need only consider relaxations to constraints of P that

have the potential to form a good enough solution. Such relaxed constraints can be

found by looking for at least one tuple in the original constraint with a preference value

that is not in the set LB and then raise it so that it has a preference value in LB.

We plan to develop efficient algorithms to find suitable subsets of relaxations, and to

develop techniques to calculate the best relaxation for a SCSP efficiently.



Chapter 4

A Relaxation of a Semiring Constraint
Satisfaction Problem using Combined
Semirings

Sometimes the maximal solution to a SCSP is not good enough, and then we want

to change the constraints such that we solve a problem that is slightly different from

the original problem but has an acceptable solution. In Chapter 3, we proposed a

relaxation of a SCSP where we define a measure of difference (a semiring value of a

second semiring) between the original SCSP and a relaxed SCSP.

In this chapter, we show how the two semiring structures can be combined into a single

semiring structure. Recall that the semiring values are associated with tuples of the

constraints to present preferences, while the second semiring’s values are associated

with relaxed constraints to present differences between original constraints and their

relaxed versions.

This combined semiring structure may allow us to use existing SCSP tools to solve

Combined Semiring Relaxations of SCSPs. This work appeared in Leenen et al. [42].

4.1 A Combined Semiring

In this section, we show how to combine the preference value semiring structure and

the difference value semiring structure into a single semiring structure. A constraint

c together with a c-weakened constraint cr (see Definition 13), can be mapped to a

member of the combined semiring. We thus define a Combined Semiring Relaxation

45



4.1. A Combined Semiring 46

of a SCSP using a single semiring.

In a d-relaxation P ′ = 〈C ′, con〉 of an original SCSP P = 〈C, con〉, every constraint

c′ ∈ C ′ is a c-weakened version of a constraint c ∈ C (see Definition 16). Suppose

every constraint c′ ∈ C ′ has k value tuples. Then c′ has k preference values associated

with its tuples, as well as one difference value. Thus, a constraint c′ is described by an

ordered pair of semiring values: k preference values and one difference value.

In the following definition, we define the construction of the combination of two of

these ordered pairs of semiring values.

Definition 20 A semiring SU〈U , ⊕U , ⊗U , 0U , 1U〉 with

U = {〈〈a1, . . . , ak〉, b〉 | ai ∈ A, and b ∈ B}

for some fixed non-negative integer k, is a Combined Semiring of semirings SA = 〈A,

⊕A, ⊗A, 0A, 1A〉 and SB = 〈B, ⊕B, ⊗B, 0B, 1B〉 if the statements below hold. Let

u1, u2 ∈ U , with u1 = 〈〈a11 , . . . , a1k
〉, b1〉 and u2 = 〈〈a21 , . . . , a2k

〉, b2〉, then

• The multiplicative operator ⊗U is defined as follows.

u1 ⊗U u2 : 〈〈a11 ⊗A a21 , . . . , a1k
⊗A a2k

〉, b1 ⊗B b2〉.

• The additive operator ⊕U is defined as follows.

u1 ⊕U u2 : 〈〈a11 ⊕A a21 ,. . . , a1k
⊕A a2k

〉, b1 ⊕B b2〉.

• The worst and best elements are:

0U = 〈〈a1, . . . , ak〉, b〉 such that b = 0B and every ai = 0A for i = {1, . . . , k}, and

1U = 〈〈a1, . . . , ak〉, b〉 such that b = 1B and every ai = 1A for i = {1, . . . , k}.

A pre-order 6U over the set U is defined as u1 6U u2 iff b1 6B b2.

In the next definition, we describe how to map a relaxed constraint and relaxed con-

straint pair to a combined semiring value: the first coordinate of the combined semiring

value contains a preference value for every tuple over all the variables in the type of the

problem, and the second coordinate of the combined semiring value is the difference

value between the original constraint and the relaxed constraint.
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Definition 21 Let P = 〈C, con〉 be a SCSP over a constraint system CS = 〈Sp, D, V 〉

with Sp = 〈Ap, +p, ×p, 0, 1〉, and P ′ = 〈C ′, con〉 be a d-relaxation of P with Sd = 〈Ad,

+d, ×d, 0, 1〉. Suppose SU = 〈U , +U , ⊗U , 0U , 1U〉 is a Combined Semiring of Sp and

Sd. A Combined Semiring Relaxation of P is a tuple 〈P ′, g〉 where g : C × C ′ → U ,

i.e. for every c = 〈defpc , conc〉 ∈ C and every c-weakened constraint cr ∈ C ′, we have

g(〈c, cr〉) = ucr with ucr ∈ U .

Assume all tuples of values from D are strictly ordered. Let ucr = 〈Prefcr, bcr〉,

where bcr ∈ Ad is the difference value associated with the constraint cr, and Prefcr =

〈acr1 , . . . , acrk
〉 where acri

∈ Ap, for i = {1, . . . , k}, are the preference values associated

with the constraint cr projected over the set of variables con.

Note that the coordinates in the set Prefcr are the preferences values associated with

the k tuples in the relaxed constraint (over the variables in the type of the problem)

and the value bcr represents the difference between the relaxed constraint cr and the

original constraint c.

A solution and a maximal solution to a Combined Semiring Relaxation can now be

defined.

Definition 22 Given a Combined Semiring Relaxation RP = 〈P ′, g〉 of a SCSP P =

〈C, con〉 and a d-relaxation P ′ = 〈C ′, con〉 with SU = 〈U , +U , ⊗U , 0U , 1U〉, where

g : C ×C ′ → U , the solution of the Combined Semiring Relaxation RP is a constraint

defined as the set ComRSol(RP ) = (
⊗

C ′) where g(
⊗

C,
⊗

C ′) = ucr.

Recall from Definition 9 that a solution to a SCSP is a single constraint formed by the

combination of all the constraints in the SCSP. Similarly, in Definition 22 above, the

solution to a Combined Semiring Relaxation is a single constraint, and the combining

function g is also defined.

Definition 23 Given a Combined Semiring Relaxation RP = 〈P ′, g〉 of a SCSP P =

〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉 with P ′ = 〈C ′, con〉, a d-relaxation of

P , and SU = 〈U , +U , ⊗U , 0U , 1U〉, g : C×C ′ → U , g(
⊗

C,
⊗

C ′) = ucr = 〈Prefcr, bcr〉
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with Prefcr = 〈acr1 , . . . , acrk
〉. SU is the combined semiring of Sp = 〈Ap, +p, ×p, 0,

1〉 and Sd = 〈Ad, +d, ×d, 0, 1〉. The maximal solution of the Combined Semiring

Relaxation RP is the set

ComRMSol(RP ) = {〈t, a〉 | a ∈ Prefcr and there is no tuple 〈t′, a′〉 such that a <Sp a′}.

Let ComRMSolV (RP ) = {a | 〈t, a〉 ∈ ComRMSol(RP )}.

The set ComRMSol(RP ) contains maximal solutions of the Combined Relaxation RP

and their associated preference values, while the set ComRMSolV (RP ) contains the

preference values of the maximal solutions to RP .

We now define a set that contains Combined Semiring Relaxations with solutions that

are good enough and that are minimally different from the original problem P .

Definition 24 Given a SCSP P = 〈C, con〉, let

ComR(P ) = {RP | RP is a Combined Semiring Relaxation of P}.

Suppose for RP = 〈P ′, g〉 ∈ ComR(P ) with P ′ = 〈C ′, con〉, we have g(
⊗

C,
⊗

C ′) =

ucr = 〈Prefcr, bcr〉, and Prefcr = 〈acr1 , . . . , acrk
〉. Let

ComRLB(P ) = {RP ∈ ComR(P ) | ComRMSolV (RP ) ∩ LB 6= ∅, and there is no

PR′ ∈ ComR(P ) such that bcr <Sd
bcr′},

and let

ComRMSolLP (P ) = {〈t, a〉 | 〈t, a〉 ∈ ComRMSol(PR) and PR ∈ ComRLB(P )}

The set ComRLB(P ) contains all the maximal Combined Relaxations of P that have

maximal solutions that are good enough. The set ComRMSolLP (P ) contains the

actual solutions of the members of ComRLB(P ) with their associated preference values.

4.2 The Hotel Chain Example - Part 5

Consider the hotel example introduced in Sections 2.5.1 and 2.5.5. Recall that the

maximal solution was not regarded as being good enough, and we presented a relaxation

in Section 3.3. We chose Sd = 〈{0, 1, 2, 3, 4, 5},min,max, 5, 0〉 and considered the d-

relaxation, P ′ = 〈C ′, {X, Y, Z}〉 with C ′ = {c1, c25 , c3}.
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Table 4.1: Definitions of the constraints in the set C ′

t defpc1(t) defpc25 (t) defpc3(t)

〈0, 0〉 0 0 0
〈0, 1〉 0.25 0.25 0.25
〈0, 2〉 0.75 0.75 0.75
〈0, 3〉 1 1 1
〈1, 0〉 0.25 0.25 0.25
〈1, 1〉 0.25 0.25 0.25
〈1, 2〉 0.5 0.5 0.5
〈1, 3〉 0.5 0.5 0.5
〈2, 0〉 0.5 0.5 0.5
〈2, 1〉 0.5 0.5 0.5
〈2, 2〉 0.5 0.75 0.5
〈2, 3〉 0.25 0.25 0.25
〈3, 0〉 1 1 1
〈3, 1〉 0.5 0.5 0.5
〈3, 2〉 0.5 0.5 0.5
〈3, 3〉 0 0 0

Table 4.1 shows the definition for the constraints in the set C ′. The difference values

for the three constraints in C ′ are 0, 1, and 0, respectively.

We can express the problem as a Combined Semiring Relaxation, 〈P ′, g〉. Every con-

straint and its relaxation can be mapped to a semiring value in the combined semiring,

SU . In order to map a constraint and a relaxed constraint to a semiring value, we have

to project the constraint tuples of every constraint over all the variables in the type of

the problem. This is done by calculating the projection of each constraint in the set

C ′ over the set {X, Y, Z} (see Definition 8). There are 64 tuples for each constraint in

our problem, and they are shown in Table 4.2.

In the case of constraint c1, we will have the tuples

〈0, 0, 0〉 = 〈0, 0, 1〉 = 〈0, 0, 2〉 = 〈0, 0, 3〉 = 0, and

〈0, 1, 0〉 = 〈0, 1, 1〉 = 〈0, 1, 2〉 = 〈0, 1, 3〉 = 0.25,

and so on. Assuming a lexicographical ordering of the tuples of each constraint, we

have

g(c1, c1) = 〈〈0, 0, 0, 0, 0.25, 0.25, 0.25, 0.25, 0.75, . . . , 0.5, 0, 0, 0, 0〉, 0〉,
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Table 4.2: Definition of the constraints in C ′ projected over the set {X, Y, Z}

t defpc1(t) defpc25 (t) defpc3(t) t defpc1(t) defpc25 (t) defpc3(t)

〈0, 0, 0〉 0 0 0 〈2, 0, 0〉 0.5 0 0
〈0, 0, 1〉 0 0.25 0.25 〈2, 0, 1〉 0.5 0.25 0.5
〈0, 0, 2〉 0 0.75 0.75 〈2, 0, 2〉 0.5 0.75 0.5
〈0, 0, 3〉 0 1 1 〈2, 0, 3〉 0.5 1 0.25
〈0, 1, 0〉 0.25 0.25 0 〈2, 1, 0〉 0.5 0.25 0.5
〈0, 1, 1〉 0.25 0.25 0.25 〈2, 1, 1〉 0.5 0.25 0.5
〈0, 1, 2〉 0.25 0.5 0.75 〈2, 1, 2〉 0.5 0.5 0.5
〈0, 1, 3〉 0.25 0.5 1 〈2, 1, 3〉 0.5 0.5 0.25
〈0, 2, 0〉 0.75 0.5 0 〈2, 2, 0〉 0.5 0.5 0.5
〈0, 2, 1〉 0.75 0.5 0.25 〈2, 2, 1〉 0.5 0.5 0.5
〈0, 2, 2〉 0.75 0.75 0.75 〈2, 2, 2〉 0.5 0.75 0.5
〈0, 2, 3〉 0.75 0.25 1 〈2, 2, 3〉 0.5 0.25 0.25
〈0, 3, 0〉 1 1 0 〈2, 3, 0〉 0.25 1 0.5
〈0, 3, 1〉 1 0.5 0.25 〈2, 3, 1〉 0.25 0.5 0.5
〈0, 3, 2〉 1 0.5 0.75 〈2, 3, 2〉 0.25 0.5 0.5
〈0, 3, 3〉 1 0 1 〈2, 3, 3〉 0.25 0 0.25
〈1, 0, 0〉 0.25 0 0.25 〈3, 0, 0〉 1 0 1
〈1, 0, 1〉 0.25 0.25 0.25 〈3, 0, 1〉 1 0.25 0.25
〈1, 0, 2〉 0.25 0.75 0.5 〈3, 0, 2〉 1 0.75 0.5
〈1, 0, 3〉 0.25 1 0.5 〈3, 0, 3〉 1 1 0
〈1, 1, 0〉 0.25 0.25 0.25 〈3, 1, 0〉 0.5 0.25 1
〈1, 1, 1〉 0.25 0.25 0.25 〈3, 1, 1〉 0.5 0.25 0.5
〈1, 1, 2〉 0.25 0.5 0.5 〈3, 1, 2〉 0.5 0.5 0.5
〈1, 1, 3〉 0.25 0.5 0.5 〈3, 1, 3〉 0.5 0.5 0
〈1, 2, 0〉 0.5 0.5 0.25 〈3, 2, 0〉 0.5 0.5 1
〈1, 2, 1〉 0.5 0.5 0.25 〈3, 2, 1〉 0.5 0.5 0.5
〈1, 2, 2〉 0.5 0.75 0.5 〈3, 2, 2〉 0.5 0.75 0.5
〈1, 2, 3〉 0.5 0.25 0.5 〈3, 2, 3〉 0.5 0.25 0
〈1, 3, 0〉 0.5 1 0.25 〈3, 3, 0〉 0 1 1
〈1, 3, 1〉 0.5 0.5 0.25 〈3, 3, 1〉 0 0.5 0.5
〈1, 3, 2〉 0.5 0.5 0.5 〈3, 3, 2〉 0 0.5 0.5
〈1, 3, 3〉 0.5 0 0.5 〈3, 3, 3〉 0 0 0
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g(c2, c25) = 〈〈0, 0.25, 0.75, 1, 0.25, 0.25, 0.5, 0.5, . . . , 0.25, 1, 0.5, 0.5, 0〉, 1〉, and

g(c3, c3) = 〈〈0, 0.25, 0.75, 1, 0, 0.25, 0.75, 1, 0, . . . , 0, 1, 0.5, 0.5, 0〉, 0〉.

We calculate

g(
⊗

C ′) = g(c1, c1) ⊗u g(c2, c25) ⊗u g(c3, c3)

= 〈〈0, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0, 0.25, 0.75, . . . , 0.5, 0.5, 0, 0, 0, 0, 0〉, 1〉

to find the maximal solution, {〈〈0, 2, 2〉, 0.75〉}.

This means that our maximal solution is good enough, and the manager can raise the

star rating of the hotel chain to a five-star rating by selecting the only tuple in the

maximal solution as the solution.

4.3 Conclusion

A relaxation to an SCSP is found by adjusting the preferences associated with the

tuples of some of the constraints (i.e. semiring values of the first semiring) of the

original SCSP. In other words, the constraints of the original problem are relaxed

until the resulting problem has a satisfactory solution. Difference values (i.e. semiring

values from a second semiring) are associated with each relaxed constraint so that

different relaxations of a problem can be compared in terms of the difference between

a relaxation and the original problem.

In this chapter, we showed how to combine the two semirings into a single semiring

in the context of Combined Semiring Relaxations. If the preference value associated

with the solution of a SCSP is not regarded as good enough, a suitable relaxation of

the SCSP that has a good enough solution is found.

The combined semiring allows us to rely on existing techniques for solving SCSPs.



Chapter 5

Weighted Semiring Max-SAT

A significant amount of work has been devoted to solving propositional satisfiability

(SAT) problems, and specifically the well-known maximum satisfiability problem (Max-

SAT) [1, 63]. There is also continuing interest in translations between CSPs and SAT

problems [4, 24, 59], with the objective of using the existing satisfiability algorithms

to solve CSPs. This prompted us to explore the modification of algorithms for solving

Max-SAT problems, into algorithms for solving SCSPs.

In this chapter, we modify the support encoding of a CSP into SAT by Gent [24], in

order to translate a SCSP into a variant of the Weighted Max-SAT Problem, which we

call a Weighted Semiring Max-SAT problem (WS-Max-SAT). We present a local search

algorithm that is a modification of the GSAT algorithm for solving Max-SAT [55]. Our

encoding results in propositional clauses whose structure is exploited in our algorithm

to solve WS-Max-SAT.

The next section contains an introduction to satisfiability problems and the algorithms

to solve them, including the well-known GSAT algorithm to solve Max-SAT (Section

5.1.1). We describe the transformation of a SCSP into a WS-Max-SAT problem in

Section 5.2, and extend the GSAT algorithm into a GSAT-based algorithm to solve WS-

Max-SAT in Section 5.3. Section 5.3.2 contains experimental results, and we conclude

in the final section.

Note that this work appeared in Leenen et al [38].
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5.1 SAT, Max-SAT and Weighted Max-SAT

Propositional satisfiability is the problem of deciding if there is an assignment of val-

ues for the variables in a propositional formula that makes the formula true, i.e. to

determine if the given propositional formula has a model (is satisfiable). If no such

an assignment exists, the formula is regarded as being unsatisfiable. The abbreviation

SAT is commonly used to refer to Boolean or propositional satisfiability.

In the maximum satisfiability problem (Max-SAT) the aim is to find a variable assign-

ment that maximises the number of satisfied clauses of a SAT problem.

In Weighted Max-SAT [57], a weight is assigned to each clause and the goal becomes to

maximise the total weight of the satisfied clauses. Let C = {C1, C2, . . . , Cm} be a set

of clauses involving n Boolean variables, x1, x2, . . . , xn, that can take the value true or

false, and wi with i = 1, . . . ,m, is the weight assigned to each clause Ci. The objective

function is defined as

f(x) =
∑m

i=1wi · I(Ci) ,

where I(Ci) is equal to the value one, if and only if the clause Ci is satisfied, and

otherwise it is equal to the value zero. A solution to a Weighted Max-SAT problem is

an assignment of values to the variables that maximises the objective function.

When we refer to Max-SAT in the remainder of this chapter, we assume the weighted

version.

5.1.1 Algorithms to solve SAT and Max-SAT

We give a brief summary of SAT algorithms below, but Gu et al. [28] can be consulted

for a general overview.

An exact algorithm guarantees an optimal solution in finite time. The best-known

exact solvers follow either a satisfiability-based approach or a branch and bound ap-

proach. In the latter approach, most of the solvers are simple depth-first branch and

bound type extensions of back-tracking algorithms, for which good quality lower bounds
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exist. Some examples of these type of solvers are the Lazy solver [1], MaxSatz [43], Min-

iMaxSat [31], the Weighted CSP-based solver of De Grivey et al. [14], and MaxSolver

[63]. (Section 2.3.1 contains a description of a basic branch-and-bound algorithm.)

In the satisfiability approach, each Max-SAT problem is converted into a number of

SAT problems, and a SAT solver is used to solve these SAT problems. Examples of

this type of solver are ChaffBS and ChaffLS [21], and SAT4J-MaxSAT [37].

Sometimes problems have to be solved under time constraints and then approximation

algorithms such as local search algorithms or solution construction algorithms may be

useful. These algorithms can usually not guarantee to find an optimal solution in finite

time, i.e. they are incomplete.

The main approach used in local search algorithms for SAT and Max-SAT are based

on the GSAT and WalkSAT algorithms. Although these algorithms were designed to

solve SAT problems, they can be used to solve Max-SAT problems as well.

Local search algorithms start from some given solution and try to find a better solution

in the neighbourhood of the current solution. Consult Stützle et al. [57] for a review

of local search algorithms for Max-SAT. Some of the best performing local search SAT

solvers are presented in Pham et al. [49] and Ishtaiwi et al. [32].

In local search algorithms for Max-SAT, the search space usually contains the set of

all possible truth value assignments for all the variables in the given problem. Most

of these algorithms are based on a 1-flip neighbourhood relation [57]: two truth value

assignments are neighbours if they differ in the truth value of exactly one variable.

A variable flip is the action of changing the truth value assigned to the propositional

variable under consideration.

Local search algorithms for Max-SAT mostly have an objective function which is de-

fined as the sum of the weights of the clauses that are satisfied under the given variable

assignment [57]. These algorithms traverse the search space randomly but with the aim

of maximising the objective function. (Maximising the weight of the satisfied clauses is

equivalent to minimising the weight of the unsatisfied clauses). Local search algorithms

for SAT and Max-SAT mainly differ in their implementation of the step that chooses
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the next variable to be flipped.

Most local search algorithms are incomplete, and this can be attributed to the random-

ness of the exploration of the search space. A common disadvantage of local search

algorithms is that they can get trapped in local minima and plateau regions of the

search space. One way to resolve early entrapments in the search is a random restart:

the search is reinitialised after a fixed number of steps if no solution has been found.

We now describe the well known GSAT and WalkSAT algorithms in more detail below.

Later on in this chapter, we modify the GSAT algorithm for Max-SAT to solve our

Weighted Semiring Max-SAT problem.

The GSAT algorithm

The GSAT algorithm was developed in 1992 by Selman, Levesque, and Mitchell [55].

GSAT is greedy algorithm in the sense that it tries to maximise the number of satisfied

clauses by selecting different variable assignments based on the score of a variable x

under the current assignment α. The score of a variable is defined as the difference

between the weight of the clauses unsatisfied by α and the assignment obtained by

flipping x in α [57].

The GSAT algorithm generates a random truth assignment. It then flips a variable

with a maximal score. Note that if there is more than one variable that will give a

maximal increase in the number of satisfied clauses if it is to be flipped, then one of

these variables is chosen randomly. This random choice of variable makes it unlikely

that the same sequence of changes is repeated by the algorithm.

In GSAT we have to initialise two parameters, MaxFlips and MaxSteps, which respec-

tively controls the number of flips the algorithm will perform before giving up and

restarting (randomly), and the number of times the search can be restarted before

halting.

The GSAT algorithm is reproduced as Algorithm 1.

There are a number of variations on GSAT, for example, GSAT with Random Walk

(GWSAT) [54], GSAT with tabu search [29], and HSAT [25].
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Algorithm 1 The GSAT Algorithm

Require:
A set of clauses C;
MaxFlips ;
MaxSteps.

Ensure:
A satisfying truth assignment for C.

1: for i = 1 to MaxSteps do
2: Let α = a randomly generated truth assignment for C;
3: for j = 1 to MaxFlips do
4: if α satisfies C then
5: return α
6: end if
7: p = a propositional variable such that a change in its truth assignment gives

the largest increase in the total number of clauses of C that are satisfied by α.
8: α = α with the truth assignment of p reversed;
9: end for

10: end for
11: return no satisfying assignment found;

The WalkSAT Algorithm

WalkSAT was originally introduced in 1994 by Selman, Kautz, and Cohen [54], and

later formally defined as an algorithm by McAllester, Selman, and Kautz [45].

In the WalkSAT approach, a variable is chosen during a 2-stage process: a currently

unsatisfied clause c′ is chosen randomly in the first stage, and then one of the variables

in c′ is chosen to be flipped in the second phase. The score of a variable (in the

second phase) only counts the weights of the clauses that are currently satisfied, but

will become unsatisfied by flipping a given variable. Stützle [57] describes the process

of selecting a variable to be flipped:

• If there is a variable with a score of 0 in clause c′ (selected in phase 1), this

variable will be flipped. In this case clause c′ can be satisfied without breaking

any other clauses.

• If no such a variable exists:

– With a certain probability p, a variable (in clause c′) with a maximal score

is chosen.



5.2. Weighted Semiring Max-SAT Problems 57

– In the remaining cases, a variable is chosen randomly from c′ to be flipped.

WalkSAT generally performs better than GSAT for solving SAT [54]. There are a

number of variants on WalkSAT, for example, WalkSAT with tabu search, Novelty,

and R-Novelty [45].

5.2 Weighted Semiring Max-SAT Problems

In this section, we show how to encode a SCSP into a variant of a Weighted Max-Sat

problem which we call a Weighted Semiring Max-SAT problem (WS-Max-SAT). Our

encoding of a SCSP into a WS-Max-SAT is based on Gent’s support encoding of a

CSP into a Boolean SAT [24], which we describe below.

5.2.1 Translation of a CSP into a SAT problem

Gent introduced a method to translate a CSP into a SAT problem which he called

the support encoding [24]. He only considers the encoding of binary constraints (i.e.

constraints that have at most two variables), but sees no theoretical problem extending

his work to the non-binary case. For the non-binary case, translated problems may

become too large for practical purposes.

In support coding, Gent’s main idea is the encoding of the support for a value into

clauses. This idea was first introduced by Kasif [34], and is different to the idea of

encoding conflicts into clauses. The latter approach is described as direct encoding by

Walsh [59].

The following paragraphs contain a summary of the description Gent provides in [24].

Assume a CSP has m constraints and n variables, each with a domain size d. The

purpose of these assumptions is simply to reduce the number of subscripts. There is a

SAT variable for each value v of each CSP variable Y . The SAT variable XY,v means

“the SCSP variable Y takes the value v” so that XY,v is false if Y 6= v, and true if

Y = v.
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In the support encoding according to Kasif [34], the support of a value v for a variable

Y , that is for Y = v, across a constraint, is the set of values of the other variable

which allow Y = v. Suppose a constraint contains variables Y and Z, and the values

w1, w2, . . . , wk for the variable Z are the supporting values for variable Y to take the

value v, that is Y = v, then the support clause is:

XZ,w1 ∨XZ,w2 · · · ∨XZ,wk
∨ ¬XY,v

One support clause exist for each pair of variables (Y, Z) involved in a constraint, and

for each value in the domain of Y . A similar clause is required in each “direction”:

one for the pair (Y, Z) and one for the pair (Z, Y ). This results in a total of 2md

constraints of size d.

Apart from the support clauses, the support encoding requires two additional sets of

clauses:

• at-least-one clauses to encode that each CSP variable takes at least one value;

and

• at-most-one clauses to encode that each CSP variable takes at most one variable.

5.2.2 Translation of a SCSP into a WS-Max-SAT problem

We now extend the support encoding for CSPs to SAT, into a encoding to translate a

SCSP into a variant of a Weighted Max-SAT problem. Every propositional clause in

our encoding will receive a semiring value from the semiring associated with the SCSP

as a weight.

Suppose we have a SCSP P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉,

such that every variable Yi ∈ V has D = {w1, . . . , wd} as its domain, and Sp =

〈Ap,+p,×p,0,1〉. Assume the cardinality of V is n, the cardinality of C is m, and

that there are s semiring values in the set Ap. Every constraint c ∈ C, is such that

c = 〈defpc , conc〉 with r the cardinality of conc, and conc ⊆ V .

For every SCSP variable Z ∈ V , we have a total of d WS-Max-SAT variables: the

WS-Max-SAT variable XZ,wj
is true if the SCSP variable Z has the value wj ∈ D with
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j ∈ {1, . . . , d}, and false otherwise.

Our WS-Max-SAT encoding (encoding of the SCSP P ) has three kinds of clauses:

1. at-least-one clauses to ensure that each SCSP variable is assigned at least one

value from its domain;

2. at-most-one clauses to ensure that each SCSP variable is assigned at most one

value from its domain;

3. generalised support clauses to represent all the possible value pairs (tuples) with

their associated semiring values for every constraint. For every constraint we

have at most s such clauses, and every clause receives the associated semiring

value as its weight.

In our case, it is not necessary to restrict the description of our encoding to binary

constraints.

We encode the support values for each constraint by explicitly representing all the

allowed tuples for a constraint in different generalised support clauses, according to

the semiring value associated with each tuple: all the tuples of a constraint with the

same associated semiring value are represented in the same generalised support clause.

We now describe each of the three types of clauses in more detail.

• For every SCSP variable Z ∈ V we have one at-least-one clause:

XZ,w1 ∨XZ,w2 ∨ . . . ∨XZ,wd
.

• For every SCSP variable Z ∈ V we have a total of 0.5[d(d − 1)] at-most-one

clauses: a clause, ¬XZ,wi
∨ ¬XZ,wj

, for every pair (wi, wj), where 1 ≤ i < j ≤ d.

• For every constraint, we have at most s generalised support clauses: one gener-

alised clause to represent all the tuples that have the same associated semiring

value.

Suppose Ap = {p1, p2, . . . , ps}, then every constraint c ∈ C has at most s gener-

alised support clauses, suppk
c with k = 1, . . . , s.
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A generalised support clause, suppk
c , for a constraint c = 〈defpc , conc〉, is a dis-

junction of the representation of every tuple t (with arity r) of the constraint c

that has the associated semiring value pk.

Let such a tuple t =〈XZ1,v1 , . . . , XZr,vr〉 with Zi ∈ conc and vi ∈ D for i = 1 . . . r,

be represented by the conjunction of all these literals:

XZ1,v1 ∧XZ1,v1 ∧ . . . ∧XZr,vr

Keep in mind that conc is the type of the variable, i.e. the set of variables that

occur in the constraint c, and that its arity is r. Also note that our support

clauses are disjunction of conjuncts and thus, strictly speaking, not clauses. This

is why we call our support clauses generalised support clauses.

This means that every constraint c has at most s generalised support clauses,

supp1c , supp2c , . . . , supps
c , where each generalised support clause, suppk

c , is a dis-

junction of a number of conjunctions. The number of conjunctions in a particular

generalised support clause, suppk
c , depends on the number of tuples the constraint

c has with an associated semiring value of pk, for k = 1, 2, . . . s. (Every conjunc-

tion represents one value tuple of the constraint c.)

Now that we know which clauses we need, we are ready to formulate our variant of a

Weighted Max-SAT problem.

We want all the clauses in our encoding, with the exception of the generalised support

clauses, to be satisfied: we call these clauses the hard clauses. Another way to express

this requirement, is to say that the negation of each hard clause must remain unsatisfied.

To accomplish this, we include the negation of the hard clauses in our encoding, and

assign the minimum semiring value, 0, as the weight of the negation of each hard

clause.

If a hard clause is satisfied by a truth assignment, its negation is unsatisfied and this

unsatisfied clause contributes the minimum semiring value to the total weight. Keep

in mind that we combine semiring values by using the multiplicative operator of a

semiring, and that the multiplicative operator’s absorbing element is the minimum

semiring value.
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Note that at most one generalised support clause for each constraint can be satisfied

by a truth assignment if we assume that the at-most-one and at-least-one clauses are

all satisfied. We regard the generalised support clauses as soft clauses: the weight

assigned to each generalised support clause is the semiring value associated with each

tuple represented in that generalised support clause.

In the next definition, we describe a solution tuple for an encoding of a SCSP P .

Definition 25 Given a SCSP P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉

with Sp = 〈Ap,+p,×p,0,1〉. Let Cl be the set of clauses that represents a WS-Max-

SAT encoding of P , and let the set Sup contain all the generalised support clauses in

the encoding, with Sup ⊂ Cl. α is some truth assignment for the clauses in Cl.

Then tαsol = 〈XZ1,val1 , . . . , XZn,valn〉 with V = {Z1, Z2, . . . , Zn} and vali ∈ D for i =

1, . . . n, is a solution tuple for the encoding iff the following holds:

• For every constraint c ∈ C exactly one of its generalised support clauses, suppk
c

with 1 ≤ k ≤ s and pk ∈ Ap, is satisfied by α. This generalised support clause

represents a disjunction of tuples of this constraint. Each tuple is a conjunction

of WS-Max-SAT variables, with exactly one tuple, tc = 〈XC1,v1 , . . . , XCr,vr〉 with

Ci ∈ conc, vi ∈ D, i = 1 . . . r, such that all XCi,vi
= true.

• If Ci is equal to Zj where j = 1, . . . , n, then vi = valj.

The semiring value associated with tαsol is srαsol = sp1 ×p · · · ×p spm where spc ∈ Ap

for c = 1, . . . ,m, and supspc
c is the generalised support clause satisfied by the truth

assignment α for every constraint c ∈ C.

The last bullet point in Definition 25 refers to the case where a WS-Max-SAT variable

XCi,vi
represents the SCSP variable Zj, and Zj has been assigned the value valj ∈ D.

Note that semiring value that is associated with a solution tuple for an encoding, is

calculated by combining the semiring values associated with each “chosen” (or satisfied)

generalised support clause.

We can now define a Weighted Semiring Max-SAT problem.
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Definition 26 Given a SCSP P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉

with Sp = 〈Ap,+p,×p,0,1〉. Suppose Cl is the set of clauses that represents the WS-

Max-SAT encoding of P . Let Clh = {cl1, . . . , clh} ⊆ Cl be the set of clauses that are

satisfied by some truth assignment α.

The Weighted Semiring Maximum Satisfiability problem is to find

max f(α) =
⊗h

i=1wi

where

• wi ∈ Ap is the weight assigned to clause i ∈ Clh,

• f(α) is maximal with respect to the partial order <Sp , and

• tαsol = 〈XZ1,val1 , . . . , XZn,valn〉 with Zj ∈ V and valj for j = 1 . . . n, is a solution

tuple for the encoding of P .

The ordered pair 〈〈Z1, . . . , Zn〉, f(α)〉 ∈ MSol(P).

Let us now consider an example where we start with a simple SCSP, and transform it

into a WS-Max-SAT problem.

5.2.3 Example: Transformation of a SCSP into a WS-Max-

SAT

Suppose we have a SCSP P = 〈C, con〉 over the constraint system 〈Sp, D, V 〉, with C =

{C1, C2, C3}, V = {A,B,C} and D = {1, 2, 3}. The three constraints are explicitly

defined by C1 : A < B, C2 : B < C, and C3 : C < A.

The semiring is Sp = 〈{0, 5, 10},max,min, 0, 10〉, and the constraint definitions are

given in Table 5.1.

The first column shows the tuples of the constraints: the first coordinate reflects the

value of the first variable of a particular constraint, and the second coordinate reflects

the value of the second variable of that constraint. The second, third and fourth

columns contain the associated semiring values for each of the tuples of the three
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Table 5.1: Constraint definitions

t defpC1
(t) defpC2

(t) defpC3
(t)

〈1, 1〉 5 5 5
〈1, 2〉 10 10 10
〈1, 3〉 10 10 10
〈2, 1〉 0 0 0
〈2, 2〉 5 5 5
〈2, 3〉 10 10 10
〈3, 1〉 0 0 0
〈3, 2〉 0 0 0
〈3, 3〉 5 5 5

constraints, respectively. For example, the value tuple 〈1, 3〉 for constraint C1 represents

the case where the variable A has the value 1 and variable B has the value 3, and this

tuple’s associated preference value, 10, can be found in column 2, row 4.

Value tuples that satisfy a constraint get the highest preference value, 10. Among the

tuples that do not satisfy the constraints, we prefer those where the first coordinate

equals the second coordinate, for instance 〈2, 2〉 is preferred over 〈2, 1〉. These tuples

get a preference value of 5, and all the remaining tuples get the worst value, 0.

The WS-Max-SAT has nine variables: XA,1, XA,2, XA,3, XB,1, XB,2, XB,3, XC,1, XC,2,

and XC,3.

The clauses in the encoding are given below.

At-least-one clauses:

• XA,1 ∨XA,2 ∨XA,3

• XB,1 ∨XB,2 ∨XB,3

• XC,1 ∨XC,2 ∨XC,3

At-most-one clauses:

• ¬XA,1 ∨ ¬XA,2, ¬XA,2 ∨ ¬XA,3, and ¬XA,1 ∨ ¬XA,3
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• ¬XB,1 ∨ ¬XB,2, ¬XB,2 ∨ ¬XB,3, and ¬XB,1 ∨ ¬XB,3

• ¬XC,1 ∨ ¬XC,2, ¬XC,2 ∨ ¬XC,3, and ¬XC,1 ∨ ¬XC,3

Generalised support clauses:

• C10
1 : [(XA,1 ∧XB,2) ∨ (XA,1 ∧XB,3) ∨ (XA,2 ∧XB,3)]

• C5
1 : [(XA,1 ∧XB,1) ∨ (XA,2 ∧XB,2) ∨ (XA,3 ∧XB,3)]

• C0
1 : [(XA,2 ∧XB,1) ∨ (XA,3 ∧XB,1) ∨ (XA,3 ∧XB,2)]

• C10
2 : [(XB,1 ∧XC,2) ∨ (XB,1 ∧XC,3) ∨ (XB,2 ∧XC,3)]

• C5
2 : [(XB,1 ∧XC,1) ∨ (XB,2 ∧XC,2) ∨ (XB,3 ∧XC,3)]

• C0
2 : [(XB,2 ∧XC,1) ∨ (XB,3 ∧XC,1) ∨ (XB,3 ∧XC,2)]

• C10
3 : [(XC,1 ∧XA,2) ∨ (XC,1 ∧XA,3) ∨ (XC,2 ∧XA,3)]

• C5
3 : [(XC,1 ∧XA,1) ∨ (XC,2 ∧XA,2) ∨ (XC,3 ∧XA,3)]

• C0
3 : [(XC,2 ∧XA,1) ∨ (XC,3 ∧XA,1) ∨ (XC,3 ∧XA,2)]

In our example, each generalised support clause has its associated semiring value as its

weight. The negation of all the remaining (hard) clauses are each given a weight of 0:

1. ¬XA,1 ∧ ¬XA,2 ∧ ¬XA,3

2. ¬XB,1 ∧ ¬XB,2 ∧ ¬XB,3

3. ¬XC,1 ∧ ¬XC,2 ∧ ¬XC,3

4. XA,1 ∧XA,2

5. XA,2 ∧XA,3

6. XA,1 ∧XA,3

7. XB,1 ∧XB,2
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8. XB,2 ∧XB,3

9. XB,1 ∧XB,3

10. XC,1 ∧XC,2

11. XC,2 ∧XC,3

12. XC,1 ∧XC,3

We want to find an assignment that satisfies all the hard clauses, or equivalently, an

assignment that does not satisfy the negations of the hard clauses, i.e. the clauses

that are numbered 1 to 12 above. A truth assignment that satisfies one or more of the

generalised support clauses with an associated maximum semiring value, is preferred

over one that satisfies generalised support clauses with lower associated semiring values.

We solve this WS-Max-SAT problem later on in this chapter.

5.2.4 Correctness Proof

In this section, we prove that our encoding is correct.

Theorem 2 Let the set of clauses, Cl, be a WS-Max-SAT encoding for the SCSP

P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉 with Sp = 〈Ap,+p,×p,0,1〉.

Let PWS−Max−SAT be the WS-Max-SAT problem associated the clauses in Cl, and let

α be a truth assignment for PWS−Max−SAT . Suppose the constraint e = Sol(P ) =

〈defpe , con〉 is a solution for P.

If tαsol = 〈XZ1,val1 , . . . , XZn,valn〉 with Zi ∈ V and vali ∈ D for i = 1 . . . n, is a

solution tuple for PWS−Max−SAT , and srαsol is the semiring value associated with tαsol,

then t = 〈val1, . . . , valn〉 with Zi = vali for i = 1, . . . , n, is such that defpe (t) = srαsol

(that is, t together with its associated semiring value belongs to the solution of P ).

Proof 2 Assume a set of clauses, Cl, that represents a WS-Max-SAT encoding, called

PWS−Max−SAT , for a SCSP P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉
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with Sp = 〈Ap,+p,×p,0,1〉. Suppose α is a truth assignment for PWS−Max−SAT , and

let the tuple tαsol = 〈XZ1,val1 , . . . , XZn,valn〉 with its associated semiring value srαsol be a

solution for PWS−Max−SAT . Suppose e = 〈defpe , con〉 is a solution for P

• For every constraint cj ∈ C, j = 1, . . . ,m, there is exactly one generalised support

clause satisfied by α, say supkc with k ∈ Ap. Suppose cj = c = 〈defpc , conc〉 with

conc = {Yc1 , . . . , Ycr}, all Yci ∈ V for i = 1, . . . r. The generalised support

clause supkc represents a tuple of the constraint c such that all XYci ,valci
= true.

Every Yci = Zj for some j ∈ {1, . . . , n}, and this means that Zj = valci with

valci ∈ {val1, . . . , valn}.

Since V =
⋃m
c=1 conc = {Z1, . . . , Zn}, the tuple 〈val1, . . . , valn〉 with its associated

semiring value is a member of the solution of P .

• In Definition 25, we saw that the tuple tαsol is calculated by combining a total

of m semiring values, each value contributed by one constraint: the generalised

support clause of each constraint that is satisfied by the truth assignment α,

contributes its associated semiring value. (Recall that there are m constraints in

c.)

Since we have established that tαsol is a solution for PWS−Max−SAT , it must be the

case that the tuple t has the same associated semiring value than tαsol.

5.3 A GSAT-based Algorithm to solve WS-Max-

SAT

In this section, we extend the GSAT algorithm described in Section 5.1.1 into a GSAT-

based algorithm for WS-Max-SAT.

Most SAT and Max-SAT solvers require the propositional clauses to be in conjunctive

normal form (CNF). In our encoding, the propositional clauses are highly structured

and we do not have to convert them into CNF.

Our adjusted GSAT algorithm is presented in Algorithm 2.
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Algorithm 2 GSAT for WS-Max-SAT

Require:
A WS-Max-SAT encoding with a set of clauses, Cl, for a SCSP P ;
A semiring, Sp;
A set of weights, W (from the set of semiring values);
MaxFlips ;
MaxSteps.

Ensure:
A satisfying truth assignment for the WS-Max-SAT problem formulated from Cl.

1: Initialise fαBest
= 0;

2: for i = 1 to MaxSteps do
3: Let α = a randomly generated truth assignment for Cl;
4: for j = 1 to MaxFlips do
5: if fαBEST

<Sp f(α) then
6: αBEST = α;
7: fαBEST

= f(α);
8: end if
9: if fαBEST

= 1 then
10: return αBEST
11: else
12: x = chooseVariable(Cl,α);
13: α = α with truth value of x flipped;
14: end if
15: end for
16: end for
17: return αBEST ;

The best truth assignment found up to date is stored in the variable αBEST , and

its objective function value, f(αBEST ), is stored in the variable fαBest
. Its value is

initialised to the worst semiring value.

The first step is to generate a random variable assignment α for the WS-Max-SAT

problem. We want to generate truth assignments where the at-least-one and the at-

most-one clauses are satisfied, i.e. we want to make sure that for each i = 1 . . . d,

exactly one variable XZ,i = true. (In other words, the negations of these clauses

will be unsatisfied.) This leaves only the generalised support clauses that have to be

checked for satisfiability: exactly one generalised support clause can be satisfied for

every constraint. We simply search for the generalised support clause with the best

associated semiring value for each constraint that is satisfied under the current truth

assignment.
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The next step is to calculate the objective function value, f(α), compare it to the value

of fαBest
, and store the best value. (Keep in mind that we calculate the value of f(α)

by combining the semiring values associated with all the satisfied clauses under the

truth assignment α.) If fαBest
is equal to the best semiring value the algorithm has

found an optimal solution, otherwise it has to flip a variable.

The procedure chooseVariable selects the next variable to be flipped by considering the

score of each variable X in WS-Max-SAT. The score of a variable X in an assignment

α is the value of the objective function, f(αX), if αX is identical to α except for the

truth value assigned to X. There may be more than one variable with a maximum

score. In this case, one of the variables with a maximal score is chosen at random to

be flipped.

When a WS-Max-SAT variable XZ,w is chosen to be flipped, we want to ensure that we

get a new truth assignment such that the at-least-one and the at-most-one clauses are

all satisfied, or rather, such that the negations of these clauses are unsatisfied. Thus

we consider two cases:

• The current value of XZ,w = true and has to be flipped to become false. Some

variable XZ,v with v = 1, . . . , d and v 6= w is chosen at random to become true.

• The current value of XZ,w = false and has to be flipped to become true. Some

variable XZ,v with v = 1, . . . , d and v 6= w is currently true and is given the value

false.

After a variable has been flipped, the truth assignment α is updated. If we have made

less than MaxFlips number of flips, we continue with another iteration, otherwise we

randomly generate a new truth assignment. This process continues until an optimal

solution is found, or the maximum number of steps has been reached.

5.3.1 Example: Solving a WS-Max-SAT problem

Consider the SCSP that was translated to a WS-Max-SAT problem in Example 5.2.3.

We now show how our GSAT-based algorithm (Algorithm 2) can be used to find a
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solution.

Suppose we generate the following random truth assignment α1:

XA,1 = XA,2 = XB,1 = XB,2 = XC,1 = XC,3 = false, and

XA,3 = XB,3 = XC,2 = true.

This truth assignment satisfies the at-most-one and the at-least-one clauses, as well as

the following three generalised support clauses: c51, c
0
2, and c10

3 .

The weights (associated semiring values) of the satisfied generalised support clauses

are 5, 0, and 10, respectively. The negations of the at-most-one and the at-least-one

clauses are included in the encoding’s set of clauses, and they all have the minimum

semiring value, 0, as their weight. None of these negated clauses are satisfied by α1.

We thus apply the semiring’s multiplicative operator, min, to combine the weights of

the three satisfied clauses in the encoding:

f(α1) = min(5, 0, 10) = 0.

Keep in mind that our procedure chooseVariable is implemented to flip variables in

such a way that it produces a modified assignment where the at-most-one and the

at-least-one clauses are satisfied. In the current assignment α, the variable XC,3 is the

only variable with a score that is not equal to the minimum semiring variable. The

score of XC,3 is 5 and it is chosen to be flipped.

This gives a modified assignment, α2, which is similar to α1 except for the values of

the variables XC,2 and XC,3:

XA,1 = XA,2 = XB,1 = XB,2 = XC,1 = XC,2 = false, and

XA,3 = XB,3 = XC,3 = true.

The generalised support clauses c51, c
5
2, and c53 are satisfied, and they all contribute a

weight of 5. The value of the objective function is:

f(α) = min(5, 5, 5) = 5.

The algorithm will continue iterating depending on the values of MaxSteps and MaxFlips,

but the current solution is in fact maximal for the problem.
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Table 5.2: The random Fuzzy CSP problems

Set 1 2 3
# domain values 10 10 10

# variables 80 100 120
#constraints 10 10 20

5.3.2 Results of GSAT-based Algorithm

We implemented our algorithm in the C++ programming language, and used an Intel

Pentuim 4 processor at 2.53GHz with 512MB RAM for our experiments. Refer to Ap-

pendix A for information on the random SCSP generator we used to generate random

SCSPs.

We solved three sets of randomly generated binary SCSPs. Table 5.2 summarises the

characteristics of the problems. Each set of problems contains 100 instances.

In each set of 100 problems, 50 instances have a tightness of 70% and the other 50

instances have a tightness of 90%. A tightness (T) of x% means that (100-x)% of

all the tuples have been assigned the best semiring value. All the problems have the

following semiring structure, Sp = 〈{0, 0.3, 0.5, 0.8, 1},max,min, 0, 1〉.

Note that these problems are instances of fuzzy CSPs because the semiring values form

a total order. The algorithm will perform equally well on SCSPs with semirings that

form partial orders: the multiplicative operator of a semiring’s unit element is the

best semiring value, and its absorbing element is the worst semiring value. The algo-

rithm may find a maximal solution that is incomparable with other existing maximal

solutions.

All our problems have optimal solutions with the best semiring value, 1, with the

exception of three instances in set 3 with a tightness of 90%. These three instances all

have optimal solutions with associated semiring values of 0.8.

The results of our experiments are given in Table 5.3. The entries in row two (S=1)

show the number of instances (out of a total of 50) for which our algorithm found
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Table 5.3: Results for the GSAT-based algorithm

Set 1 1 2 2 3 3
T 70% 90% 70% 90% 70% 90%

S = 1 50 2 50 0 1 0
S = 0.8 0 48 0 49 33 0
S = 0.5 0 0 0 1 16 38
S = 0.3 0 0 0 0 0 12

Table 5.4: Results for instances where a maximal solution was found

Set 1 1 2 2 3 3
T 70% 90% 70% 90% 70% 90%

S = 1 50 2 50 0 1 0

steps 1.34 2.00 1.28 n/a 1 n/a
flips 452.4 836.5 438.5 n/a 329.0 n/a

the optimal solution. Rows three to five show the number of instances for which

our algorithm found solutions with an associated semiring value of 0.8, 0.5, and 0.3

respectively. There were no instances where a solution with the minimum semiring

value, 0, was found.

Table 5.4 contains information for those instances where the optimal solution (i.e. a

solution with an associated semiring value of 1) were found: it shows on average when

the solution was found. We show during which step, and after how many flips, the

algorithm halted. Each step consists of a maximum of 1000 flips.

Note that our algorithm failed to find any solutions with the maximum associated

semiring value for the problems in set 2, with a tightness of 90%, and in set 3, with

a tightness of 90%. This is the reason why these cases do not have entries in the last

two rows of Table 5.4.

Our GSAT algorithm performs reasonably well for a relatively small number of steps

and flips, and this shows that our approach to the solution of SCSPs is viable.
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5.4 Conclusion

In this chapter, we showed how to translate a SCSP into a variant of a Weighted Max-

SAT problem, which we call a Weighted Semiring Max-SAT problem. The objective is

to make use of the efficient algorithms that are available to solve Max-SAT, and modify

them to solve WS-Max-SATs. We developed a GSAT-based algorithm to solve WS-

Max-SAT, and tested the algorithm on binary SCSPs. The results of our experiments

show that this is a viable approach to the solution of moderately sized binary SCSPs.

The next step is to modify some of best available algorithms for Max-SAT. There are

several local search algorithms that should be easy to modify for WS-Max-SAT. Recent

advances in local search algorithms are interesting to consider: Pham et al. [50] show

that local SAT search techniques can be improved by building structural information

into the search, and Pham et al. [51] developed a SAT solver that automatically

recognise CSP structure hidden in the SAT encodings.

The existing exact algorithms will require more effort to modify, but are likely to

produce good results.



Chapter 6

Algorithms to solve SCSPs

Considerable interest has been shown in solving SCSPs, but limited work has been done

in building general SCSP solvers. Existing work on SCSP methods include Georget

and Codognet’s [26] logic programming system, a dynamic programming approach by

Bistarelli et al. [5], an abstraction-based algorithm by Bistarelli et al. [10], a prototype

solver based on an incomplete local search method by Bistarelli et al. [7], and Wilson’s

[62] application of decision diagrams. We gave an overview of solution techniques for

SCSPs in Section 2.5.6.

In this chapter, we present three branch and bound algorithms we developed to solve

SCSPs: a basic branch and bound algorithm, a backjumping algorithm and a forward

checking algorithm. These algorithms are described in Section 6.1. In Section 6.2 we

present experimental results and a comparison of the performance of our branch and

bound algorithm with CON’FLEX [17], a fuzzy CSP solver. Our branch and bound

algorithm performs significantly better than CON’FLEX, while the backjumping and

forward checking algorithms perform better than the branch and bound algorithm on

some problem instances. A part of this work has been published in [38] and the rest

appears in [39].

Finally, we present an algorithm for SCSPs that solves a finite sequence of CSPs. This

algorithm is given in Section 6.3.

73
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6.1 Branch and Bound Algorithms for solving SC-

SPs

Freuder and Wallace [20] proposed algorithms for solving maximal constraint satis-

faction problems that are analogous to the basic backtracking and local consistency

methods for solving CSPs. These algorithms are described in Section 2.3.1. Our algo-

rithms for solving SCSPs are analogous to the Freuder and Wallace algorithms.

In the following section, we present our basic branch and bound algorithm, and in

Section 6.1.2 we extend it by adding variable partitioning. In Section 6.1.3 we describe

our backjumping algorithm, and our forward checking algorithm follows in Section

6.1.4.

6.1.1 A Basic Branch and Bound Algorithm for SCSPs

Branch and bound (BnB) is a general search method introduced by Land and Doig [36]

in 1960. There is a description of a classical branch and bound algorithm in Section

2.3.1.

Freuder and Wallace [20] developed a branch and bound algorithm for solving maximal

satisfaction problems. We extend their algorithm into a branch and bound algorithm

for solving SCSPs. Our algorithm (Algorithm 3) is based on an algorithm we presented

in a previous paper [38].

In the maximal constraint satisfaction BnB algorithm, a search path does not fail until

enough inconsistencies have been counted such that a cutoff bound is reached. The

goal is to satisfy a maximal number of constraints. The Freuder and Wallace algorithm

keeps track of the best solution found so far, and cuts off any branch that will not lead

to an improved solution. In our algorithm for SCSPs, failure of a search path occurs if

the estimated semiring value associated with the current node in the search path (its

upper bound value) cannot improve the best solution found so far, that is, the maximal

semiring associated with any complete assignment so far. We explain the test for local

failure in more detail later on.
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For the remainder of this chapter, assume a SCSP P = 〈C, con〉 over a constraint

system CS = 〈Sp, D, V 〉, with the cardinality of V equal to n, and Sp has a best

semiring value value of 1, and a worst semiring value of 0. Assume that the n decision

variables in V are numbered from 0 to n− 1.

Our goal is to find a tuple that belongs to the maximal solution of P . The lower bound,

LB, contains the semiring value of the best solution found so far and is initialised with

the worst semiring value in Sp. For each node in the search tree, we calculate an upper

bound value, UB, which represents a feasible solution. The upper bound of the root

node is initialised with the best semiring value in Sp.

Our BnB algorithm (Algorithm 3) proceeds by instantiating a decision variable, and

comparing its upper bound value with the lower bound value. If UB ≤Sp LB, the

subtree below the current node is pruned, and the algorithm backtracks to a node at a

higher level in the tree. Otherwise, if LB <Sp UB, the algorithm tries to find a better

solution by instantiating one additional variable. The solution is the assignment that

produced the final value of LB after the whole tree has been explored.

The decision variables are ordered according to their membership in the types of the

constraints. We place the decision variables in the type of the first constraint on a

queue, and then check whether these variables appear in the types of other constraints.

If they do, the unlisted variables in these other constraints’ types are also placed on

the queue. Repeat this step until all constraints’ types have been checked. Every

decision variable has a main constraint which is the constraint where the variable was

first identified to be placed on the queue. The algorithm has five parameters:

• NoInstantiated, the number of decision variables already instantiated;

• Queue, the decision variables in instantiation order;

• LB, the lower bound value;

• UB, the upper bound value associated with a search path up to a particular node;

• BestSolution, the best solution found so far.
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A few local variables are used in the algorithm:

• variables to store the current assignment;

• NewUB and FullUB to store upper bound values;

• var, an object to store the current decision variable;

– var.value is used to store the value assigned to var ; and

– var.domain contains the set of remaining domain values for var.

The initial call to the algorithm is BnB(0,Queue,1,0,BestSolution). Queue is initialised

in advance as explained earlier, and BestSolution has no variable assignment initially.

When the algorithm halts, the parameter LB contains the semiring value of the variable

assigment stored in BestSolution, i.e. of the maximal solution. The return value of the

procedure BnB is used to halt the procedure immediately if a solution with the best

semiring value is found. The return value of a call to the procedure can be either 0

or 1: a return value of 1 means that a solution has been found with the best semiring

value, and in this case the procedure is halted. A return value of 0 means that the

procedure should continue to search for a better solution.

In lines 1 to 5, a decision variable is instantiated. We search among the tuples of

a decision variable’s main constraint for a tuple with a maximal associated semiring

value under the current partial assignment (line 4). From this chosen tuple we get a

value to instantiate the current decision variable.

The next step is to calculate a upper bound value for the corresponding node (i.e. the

current decision variable) in the search tree. This upper bound value is the combination

of the semiring value associated with the nodes in the search path from the root node

to the current node, combined with an estimation of the semiring value associated with

the search path below the current node up to a leaf in the search tree. The calculation

of this upper bound value consists of three steps:

1. In line 6 we calculate the semiring value associated with the current node by

considering each constraint which has var (represented by this node in the tree)
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Algorithm 3 BnB(NoInstantiated,Queue,UB,LB,BestSolution)

Require:
Input: V ; C; D; Sp; n.
Variable parameters: LB ; Best Solution
Value parameters: NoInstantiated ; Queue; UB.

1: if (NoInstantiated < n) then
2: var = pop Queue;
3: while ( var.domain not empty) do
4: var.value = select best value from var.domain;
5: var.domain = var.domain - var.value;
6: NewUB = upper bound value for current node;
7: NewUB = ×p(UB, NewUB); [upper bound value for search path including current node]

8: if NoInstantiated 6= n-1 then
9: FullUB = FindFullUB(NewUB); [estimated upper bound]

10: else
11: FullUB = NewUB ; [complete assignment]

12: end if
13: if (LB <Sp FullUB) then
14: UB = NewUB;
15: if (NoInstantiated = n-1) then
16: LB = UB ;
17: BestSolution = current assignment of values for decision variables;
18: if (LB = 1) then
19: return 1;
20: end if
21: end if
22: if ( BnB(Noinstantiated+1,Queue,UB,LB,BestSolution) = 1) then
23: return 1;
24: end if
25: end if
26: end while
27: end if
28: return 0;
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as a member of its type, and which is such that all the decision variables in its

type have been instantiated (i.e. we do a back check). We simply combine the

semiring values of all the variable-value tuples of all these constraints.

2. In line 7, we combine the semiring value associated with the current node (NewUB)

with the upper bound value of the search path up to current node’s ancestor, i.e.

UB.

3. In lines 8 to 12, we calculate an estimated associated (upper bound) semiring

value for the search path below the current node up to a leaf, i.e. the semir-

ing value if the assignment should be completed. Note that we want an over-

estimation of the actual (unknown) semiring value. This estimated upper bound

is a semiring value a such that NewUB ⊗ a is maximal. This value a is combined

with the value NewUB of step 2. The if part in line 8 is true if the current as-

signment is not complete; in the else part the current node is a leaf and NewUB

contains the actual upper bound value for the complete assignment.

In line 13 we test for local failure. If the upper bound value for the current assignment

is better than LB, we update the upper bound value for this extended search path

(current node is added) in line 14. Line 15 checks if we have a complete assignment,

and if it is the case, it updates LB and the best solution found so far (lines 16 and 17).

If we have found a maximal solution (in line 18), we halt in line 19. Line 22 extends

the search by calling the BnB procedure to instantiate the next decision variable.

In the example below, we solve a small SCSP with our branch and bound algorithm.

Example: Solving a SCSP with the basic branch and bound algorithm

Consider a SCSP with CS = 〈Sp, Dom, V 〉 and P = 〈C, con〉, where Sp = 〈 {0, . . . , 5},

max,min, 0, 5}〉, V = con = {A,B,C,D,E, F,G,H}, Dom = {0, 1, 2, 3, 4}, and C =

{c1, c2, c3, c4, c5}.

Table 6.1 contains the constraint definitions with c1 = 〈defpc1 , {A,B}〉, c2 = 〈defpc2 , {C,D}〉,

c3 = 〈defpc3 , {E,A}〉, c4 = 〈defpc4 , {F,G}〉, and c5 = 〈defpc5 , {F,H}〉.
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Table 6.1: Constraint Definitions

t defpc1(t) defpc2(t) defpc3(t) defpc4(t) defpc5(t)
〈0, 0〉 3 3 3 4 2
〈0, 1〉 2 2 0 0 0
〈0, 2〉 3 3 4 1 2
〈0, 3〉 1 0 3 2 2
〈0, 4〉 0 2 0 2 0
〈1, 0〉 0 1 2 2 3
〈1, 1〉 2 1 2 2 3
〈1, 2〉 3 1 3 1 2
〈1, 3〉 4 3 3 2 2
〈1, 4〉 2 3 3 2 0
〈2, 0〉 3 1 3 2 0
〈2, 1〉 2 4 2 0 4
〈2, 2〉 4 0 3 2 3
〈2, 3〉 1 1 0 3 0
〈2, 4〉 2 0 2 2 0
〈3, 0〉 2 4 3 3 0
〈3, 1〉 2 3 3 2 3
〈3, 2〉 0 0 0 1 0
〈3, 3〉 0 2 2 0 2
〈3, 4〉 0 3 0 3 2
〈4, 0〉 0 1 0 4 1
〈4, 1〉 2 3 3 3 3
〈4, 2〉 2 1 1 3 3
〈4, 3〉 1 2 3 2 4
〈4, 4〉 2 2 4 1 0

The order of instantiation (Queue) is : A, B, E, C, D, F, G, H. The algorithm is initially

called with NoInstantiated=0, LB=0, and UB=5. It selects the tuple 〈1, 3〉 in column

2 to assign the value 1 to the variable A, and the NewUB value of this root node is

4. The procedure FindFullUB will return FullUB = 4 because it over-estimates the

semiring value for the remainder of the (unexplored) search path to be 5, and min(5,4)

= 4. Note that FindFullUB will always return the value of NewUB in this example

because our mulitiplicative operator is min.

Now it assigns the value 3 to the variable B, and NewUB remains 4. This is because c1

is the main constraint for both the variables A and B. In the rest of this example we

will refer only to UB because NewUB = FullUB = UB for any node in this problem.
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In column 4, the tuple 〈3, 1〉 is selected to assign the value 3 to the variable E. UB

becomes 3.

The algorithm proceeds and make the following assignments: C = 2, D = 1, F = 0,

and G = 0. UB remains 3. Then we assign the value 0 to the variable H, and now UB

changes to 2.

The assignment is complete and we find a new lower bound value, LB = 2.

During the second phase, backtracking occurs until we find an improved lower bound:

H=2; H=3 ; backtrack;

G=3; G=4; G=2 ; backtrack;

F=4 (UB=3 ); extend search path;

G=0 ;

H=3.

We have found a better lower bound: LB= 3.

During the third phase, backtracking occurs until we find an improved lower bound:

H=1; H=2; H=0 ; backtrack;

G=1; G=2; G =3; G=4 ; backtrack;

F=2; F=3; F=1 ; backtrack;

D=0; D=3 ; backtrack;

C=3; C=0; C=1; C=4 ; backtrack;

E=4; E=1; E=2 ; backtrack;

B =2; B=1; B=4 ; backtrack;

A=2 (UB=4 ); extend search path;

B = 2; extend search path;

E = 0; extend search path;

C = 2; extend search path;

D = 1; extend search path;

F = 0; extend search path;

Take note of the following extension and backtracking sequence - called phase 4 - for

future reference:
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G=0 ; extend search path;

H=0 (UB=2 ); backtrack;

H=2; H=3 ; backtrack;

G=3; G=4; G=2 ; backtrack.

F=4 (UB=4 ); extend search path;

G=0 ; extend search path;

H=3.

A maximal solution with an associated semiring value of 4 has been found: A=2; B=2;

C=2; D=1; E=0; F=4; G=0; H=3.

6.1.2 A Basic Branch and Bound Algorithm with Variable

Partitioning

The decision variables in any SCSP can be partitioned in disjoint sets such that every

variable in a particular partition will occur in the same constraint as at least one other

variable in that partition. (The only exception is a variable that occurs in the type

of a unary constraint. Such a variable can form a singleton partition if it does not

appear in the type of any other constraint.) Each of these partitions can be solved as

a smaller instance of the original problem. If the type conc of a constraint c is a subset

of a partition Pa, and at least one of the variables in conc also belongs to the type of

another constraint, e, then cone ⊂ Pa. Algorithm 4 shows how to find the partitions

of a SCSP, P = 〈C, con〉, over a constraint system CS = 〈Sp, D, V 〉.

If the variables in a SCSP can be partitioned into at least two partitions, the perfor-

mance of the basic branch and bound algorithm of the previous section is generally

improved considerably by finding optimal solutions for every partition of the variables

in a SCSP individually. The reason for this improvement is that we solve much smaller

instances of the original problem and this results in smaller search trees.

We modified the procedure BnB to halt as soon as it finds its first complete assignment

and the first lower bound value. This first call to the procedure finds an initial solution

to the complete problem so that we have a global lower bound when we solve the
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Algorithm 4 Partition

Require:
Input: V (set of decision variables); C (set of constraints)
Output: A set of partitions
Local variables: Pa (a set of decision variables)

1: Pa = ∅;
2: while (C is not empty) do
3: select any k ∈ C;
4: C = C − {k};
5: Pa = Pa ∪ conk;
6: for every decision variable i ∈ conk do
7: insert i on Queue;
8: end for
9: while Queue not empty do

10: var = pop Queue;
11: for every constraint l ∈ C such that var ∈ conl do
12: insert every decision variable j ∈ conl, i 6= j, on Queue;
13: C = C − {l};
14: Pa = Pa ∪ conl;
15: end for
16: end while
17: store Pa as partition of V ;
18: Pa = ∅;
19: end while

first partitioned problem. Then we place the variables in the first partition on the

queue, Queue, and call the original procedure BnB, which finds an optimal solution

for the reduced problem containing only the decision variables that belong to the first

partition. Call BnB for every partition of the SCSP.

Example: Partitioning a set of variables

The set of decision variables of the example in the previous section is partitioned as

follows: P1 = {A,B,E}, P2 = {C,D}, and P3 = {F,G,H}.

6.1.3 A Backjumping Algorithm

Gaschnig presented a backjumping algorithm [22] that stores information about previ-

ous inconsistencies to reduce re-checking of constraints. Classical backtracking always
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continues its search from the previous level. Backjumping takes note of the fact that

all values tried for a given variable may not be inconsistent with the same previous

value. The algorithm remembers the depth of failure, i.e. the deepest level, l at which

any of the values it assigns to a variable fails. When there are no more values to be

tried for this variable, backjumping continues its search at the level l.

A backjumping algorithm for maximal constraint satisfaction is described in Section

2.3.1. In Algorithm 5 we present a backjumping algorithm to solve SCSPs based on

the backjumping algorithm for maximal constraint satisfaction. This work is to appear

in [39].

The Freuder and Wallace backjumping algorithm for maximal constraint satisfaction

[20] differs from conventional backjumping in not always jumping back all the way to

the deepest level of failure. If any values below the level l failed when chosen, i.e.

produced more inconsistencies, the algorithm can only jump back to the last deepest

level l: other choices of values at level l may result in fewer failures. The search has to

continue from this deeper level because we may be able to improve the solution. This

algorithm also keeps track of the deepest level at which a value was (last) inconsistent.

If this value is greater than the deepest level of failure, then backtracking will only

jump back to this level.

In our backjumping algorithm for SCSPs, Algorithm 5, we have to keep track of various

levels in the search tree:

• The first one is the level of the node associated with the current decision variable

that is instantiated: we store this value in NoInstantiated.

• FailDepth1 contains, for the current decision variable and its instantiated value,

the level where this value may fail first (i.e. closer to the root). If this value does

not fail, we update FailDepth1 to the level of the current decision variable.

• I D (inconsistency depth) keeps track of the deepest level of failure for any value:

If a value fails (by giving the current node a upper bound value that is worse than

upper bound of its predecessor), then I D gets the value of the current node’s

level in the tree.
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Algorithm 5 BJ(NoInstantiated,Queue,Domains,UB,LB,BestSolution,R D,I D)

Require:
Input: V ; C; Sp; n.
Variable parameters: LB ; Best Solution.
Value parameters: NoInstantiated ; Queue; UB ; Domains ; R D ; I D.

1: if (NoInstantiated < n) then
2: var = pop Queue;
3: if (var.domain not empty) then
4: var.value = select best value from var.domain;
5: var.domain = var.domain - var.value;
6: NewUB = upper bound for current node;
7: NewUB = ×p(UB, NewUB);
8: FailDepth1 = first node from root where var.value fails
9: if NoInstantiated 6= n-1 then

10: FullUB = FindFullUB(NewUB); [estimated upper bound]

11: else
12: FullUB = NewUB ; [complete assignment]

13: end if
14: else
15: return R D ;
16: end if
17: if (LB <Sp FullUB) then
18: FailDepth1 = NoInstantiated ;
19: if (NoInstantiated = n-1) then
20: LB = FullUB ;
21: BestSolution = current assignment of values for decision variables;
22: if (LB = 1) then
23: return n; /* finished */
24: end if
25: end if
26: if (FullUB <SP

UB) then
27: I D = NoInstantiated ;
28: end if
29: FailDepth2 = BJ(NoInstantiated+1,Queue,Domains,FullUB,LB,BestSolution,0,I D);
30: if (FailDepth2 < NoInstantiated) or (FailDepth2 = n) then
31: return FailDepth2 ;
32: else
33: R D = max(FailDepth1,R D,I D);
34: return BJ(NoInstantiated,Queue,Domains,UB,LB,BestSolution,R D,I D);
35: end if
36: end if
37: R D = max(FailDepth1,R D,I D);
38: return BJ(NoInstantiated,Queue,Domains,UB,LB,BestSolution,R D,I D);
39: end if
40: return NoInstantiated - 1;
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• R D (return depth) is adjusted if a value fails: it is assigned the maximum value

at which a failure has been detected.

• FailDepth2 keeps track of the level at which the search should continue after the

search path has been extended. The value of FailDepth2 can either be smaller

than the current node’s level (a backjump), or it can be at the leaf level (search

has been completed), or it can be equal to the current level (a new value must

be assigned to the current variable).

Note that this algorithm has an additional parameter, Domains (not in the procedure

BnB), that maintains the domains of the decision variables.

The initial call is BJ(0,Queue,D,1,0,BestSolution,0,0). When the algorithm halts,

the parameter UB contains the semiring value associated with the variable assigment

stored in BestSolution, i.e. the semiring value associated with the maximal solution.

The return value of the procedure BJ is used to halt the procedure immediately if

a solution with the best semiring value is found. The return value of a call to the

procedure can be equal to any level of the search tree. If the return value is equal to

the level of a leaf node, the algorithm halts; if the value is smaller than the level of the

current node in the tree, the algorithm backjumps; if the value is equal to that of the

current node in the tree, another value is selected for the current variable.

The backjumping algorithm first instantiates a decision variable and calculates the

value of the upper bound (in lines 1 to 7), and then calculates the value of Fail Depth1

in line 8. Lines 9 to 13 are similar to lines 8 to 12 of the procedure BnB where we

calculate a upper bound value and test for failure.

Note that if the current decision variable does not have any domain values left (line

14), we return the value of R D. R D is initialised with the value 0 (the level of the

root node), and its value is updated in lines 33 or 37. It controls the level to which

recursion is rolled back.

If the current search path can improve the lower bound value (line 17), we adjust the

value of FailDepth1 (line 18) to indicate that this value has not failed.

The if statement in line 26 is satisfied if the current node decreases the upper bound
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value of the search path. In this case, this level becomes the new value of I D level

(line 27).

In line 29 we extend the search path. If the if statement in line 30 is satisfied, it means

we can either backjump (FailDepth2 < NoInstantiated) or are finished (FailDepth2 =

n). This returned value (FailDepth2 ) controls the extent to which recursion is rolled

back.

If we reach line 33, it means that the current value has failed and we try another value

in line 34. Lines 37 and 38 are executed in case the if statement in line 17 is not

satisfied: R D receives the deepest return level in the tree and we try another value.

In the example below, we solve the same SCSP introduced in Section 6.1.1, using our

backjumping algorithm.

Example: Solving a SCSP with the Backjumping Algorithm

This algorithm proceeds in exactly the same way as the basic branch and bound algo-

rithm until the fourth phase is reached. After finding an lower bound of 3, both the

algorithms backtrack until variable A is assigned the value 2, extend the search path

up to the last decision variable, H, try various values for H, and then backtrack.

At this point the branch and bound algorithm backtracks and tries various values for

G, and backtracks again before assigning the value 4 to F . However, the backjumping

algorithm avoids backtracking from H to G: it backjumps from H to F .

Note that as long as values do not fail, FailDepth1 is the level in which the decision

variable occurs in the search tree.

Below, we show the execution of the algorithm from the point where A gets the value

2 and the search path is extended: (Note that we only show the value of FailDepth1

at a node where a change in its value occurs.)

B = 2; extend search path;

E = 0 (FailDepth1 = 0 ); extend search path;

C = 2; extend search path;

D = 1 (FailDepth1 = 3 ); extend search path;
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F = 0 (FailDepth1 = 5 ); extend search path.

Phase 4:

G=0 ; extend search path;

H=0; H=2; H=3 ; Backjump to level 5!

F=4 ; extend search path;

G=0 ;

H=3.

The same maximal solution has been found before, but backjumping has managed to

decrease the search effort.

6.1.4 A Forward Checking Algorithm

Classic forward checking (FC) [30] is a hybrid algorithm: it consists of backtracking

with a check for local consistency ahead in the search tree. Section 2.3.1 contains a

description of forward checking. Freuder and Wallace [20] developed a forward checking

algorithm to solve maximal constraint satisfaction problems. We extend their algorithm

to develop a forward checking algorithm for solving SCSP. Our algorithm is presented

as Algorithm 6. This work appears in [39].

In a partial CSP context, it is not possible to eliminate values by doing forward arc

consistency checking without having an initial value for the bound on the number of

allowed inconsistencies. Freuder and Wallace extended the notion of arc consistency

checking in maximal constraint satisfaction context: for each value, the number of

domains with no supporting values can be counted (inconsistency count). The incon-

sistency count is a lower bound on the increase in the expected number of unsatisfied

constraints that will be found if this value is to be added to the solution. In a par-

ticular search path, the arc consistency count for a proposed value assignment to the

current decision variable can be added to the number of unsatisfied constraints up to

date in that search path, and compared to the current bound, NB (least number of

unsatisfied constraints found in any search path so far). If the sum is not less than

NB, then we know that the current search path will not result in a better solution.
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Note that when a value v is assigned to a decision variable X, the domains of all the

uninstantiated variables that appear in a constraint with X are checked for values that

are inconsistent with v: these values are deleted from the domains. If the decision

variable X is assigned another value at a later stage, the pruned value has to replaced.

We present a forward checking algorithm for SCSPs in Algorithm 6, that is based on the

Freuder and Wallace algorithm. Our algorithm is similar to the basic BnB algorithm

except for the procedure we call in line 7 to perform forward checking.

The initial call is FC(0,Queue,1,0,BestSolution). When the algorithm halts, the pa-

rameter UB contains the semiring value of the variable assigment stored in BestSo-

lution, i.e. of the maximal solution. The return value of the procedure BnB is used

to halt the procedure immediately if a solution with the best semiring value is found.

The return value of a call to the procedure can be either 0 or 1: a return value of 1

means that a solution has been found with the best semiring value and in this case the

procedure is halted. A return value of 0 means that the procedure should continue to

search for a better solution.

The forward checking procedure ensures that the newly instantiated decision variable

has a consistent value in the domains of all (uninstantiated) decision variables that

appear in the same constraints. It finds every constraint which has the newly instan-

tiated decision variable (var) in its type and has at least one variable that has not

yet been instantiated. For each of these constraints, it ensures that every one of the

uninstantiated decision variables of the constraint has at least one domain value such

that the resulting value tuple’s associated semiring value does not fail.

The test for failure is similar to the estimation of a upper bound value for the com-

pletion of a partial assignment. This means that the forward check for the current

node is satisfied if there exist at least one domain value for every uninstantiated deci-

sion variable that appears with the current instantiated decision variable in the same

constraint.

Note that we have to restore domain values (line 28) that have been removed from

domains during a forward check for a decision variable var with the value var value, if
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this value fails. Previous domain values were stored in line 6.

In the example below, we solve the SCSP introduced in section 6.1.1, with our forward

checking algorithm.

Example: Solving a SCSP with the Forward Checking algorithm

This algorithm proceeds in exactly the same way as the basic branch and bound algo-

rithm to find the lower bound value of 3, and then to backtrack and try the values of

1 and 2 for H.

The branch and bound algorithm then assigns the value 0 to H, but forward checking

eliminates this value from the domain of H as part of its forward checking

of constraints at the point where it assigned the value of 4 to F . It used constraint c4

to find this value for F , but the value of 0 for H fails in constraint c5 during forward

checking.

Both algorithms then backtrack to variable G and try the values 1 and 2. The branch

and bound algorithm also tries the values 3 and 4 for G, while forward checking

has eliminated both these values from the domain of G because they fail in

constraint c4 against the current lower bound.

We show this part of the execution (after an improved lower bound, LB=3, has been

found):

Third phase:

H=1; H=2; Next value for H has been removed!; backtrack;

G=1; G=2 ; Next two values for G have been removed!; backtrack;

F=2 ; . . .

Now both algorithms proceed exactly in the same way until phase 4 is reached. After A

is assigned the value 2, the branch and bound algorithm extends the search path down

to the leaf node, where H is assigned the value 0. (See the second line of phase 4 in the

branch and bound example.) The forward checking algorithm only extends the search

path up to the parent of a leaf node, that is, up to the assignment of the value 0 to G

(first line of phase 4). Forward checking removed all values from the domain
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Algorithm 6 FC(NoInstantiated,Queue,UB,LB,BestSolution)

Require:
Input: V ; C; D; Sp; n.
Variable parameters: LB ; Best Solution.
Value parameters: NoInstantiated ; Queue; UB.

1: if (NoInstantiated < n) then
2: var = pop Queue;
3: while ( var.domain not empty) do
4: var.value = select best value from var.domain;
5: var.domain = var.domain - var.value;
6: TempDomain = var.domain;
7: ForwardCheck(var);
8: NewUB = upper bound value for current node;
9: NewUB = ×p(UB, NewUB);

10: if NoInstantiated 6= n-1 then
11: FullUB = FindFullUB(NewUB);
12: else
13: FullUB = NewUB ;
14: end if
15: if (LB <Sp FullUB) then
16: UB = NewUB;
17: if (NoInstantiated = n-1) then
18: LB = UB ;
19: BestSolution = current assignment of values for decision variables;
20: if (LB = 1) then
21: return 1;
22: end if
23: end if
24: if (FC(Noinstantiated+1,Queue,UB,LB,BestSolution) = 1) then
25: return 1;
26: end if
27: end if
28: var.domain = TempDomain;
29: end while
30: end if
31: return 0;
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of H when F was instantiated. The forward checking algorithm then backtracks

one level, but all values for G have also been removed, and it backtracks again

and assigns the value 4 to F .

Summary of Phase 4:

G=0 ; extend search path;

All values of H have been removed!; backtrack;

All values of G has been removed!; backtrack;

F=4 ; extend search path;

G=0 ; extend search path;

H=3.

The same maximal solution has been found, but the forward checking algorithm has

managed to reduce the search effort.

6.2 Experimental Setting and Results

The only implemented general SCSP solver that we are aware of is Georget and

Codognet’s constraint logic programming system [26], but this system is no longer

maintained. In Section 6.2.2 below, we show that our branch and bound algorithm

with variable partitioning performs significantly better than the well-known fuzzy CSP

solver, CON’FLEX [17]. The runtimes of the branch and bound algorithm (with par-

titioning) is a minimum of 25 times faster than those of CON’FLEX. Note that we

experienced difficulty in running the CON’FLEX software on larger problems.

In Section 6.2.3, we compare the backjumping and forward checking algorithms (with-

out variable partitioning) to the branch and bound algorithm, both with and without

variable partitioning. We show that the backjumping and forward checking algorithms

perform better than the branch and bound algorithm (without variable partitioning)

on harder problems. The branch and bound algorithm with partitioning is on average

three times faster than the branch and bound algorithm without variable partitioning.

This means that all three our algorithms perform much better than CON’FLEX.
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In the future we plan to implement the backjumping and forward checking algorithms

with variable partitioning, and it is reasonable to expect that variable partitioning will

improve both these algorithms to the same extent as the improvement in the branch

and bound algorithm when variable partitioning was added.

6.2.1 The randomly generated problems

Please refer to Appendix A for details on our random SCSP generator. We solve

randomly generated binary SCSPs that are instances of fuzzy CSPs. All the prob-

lems have the semiring structure, Sp = 〈{0, 0.3, 0.5, 0.8, 1}〉,max,min, 0, 1〉, and each

decision variable has 10 domain values.

Note that our algorithms will also handle SCSPs with semirings that form partial

orders: the multiplicative operator of a semiring’s unit element is the best semiring

value, and its absorbing element is the worst semiring value. They may find a maximal

solution that is incomparable with other existing maximal solutions.

For the comparison of the performance of our algorithms (in Section 6.2.3), we use the

same three sets of problems we used in Section 5.3.2 to test the GSAT-based algorithm,

but we added 50 additional problems to set 3. Table 5.2 describes these problems, but

for convenience we summarise the characteristics of these problems below.

The problems in sets 1, 2 and 3 have 80, 100 and 120 decision variables, and 10, 10,

and 20 constraints respectively. Sets 1 and 2 each contains 100 problems; 50 of the

instances have a tightness of 70% and the other 50 instances have a tightness of 90%.

Set 3 has 150 instances: 50 of the instances have a tightness of 70%, 50 of the instances

have a tightness of 85%, and 50 of the instances have a tightness of 90%. A tightness

(T) of x% means that (100-x)% of all the tuples have been assigned the best semiring

value.

All the problems have optimal solutions with the best semiring value, 1, with the

exception of three instances in set 3 with tightness 90% (last column). These three

instances have optimal solutions with associated semiring values of 0.8.

In Section 6.2.2 we had to generate smaller sized problems because we experienced



6.2. Experimental Setting and Results 93

Table 6.2: Average runtimes for Sets 4 and 5 (in seconds)

Set 4 4 5 5
Tightness 60% 80% 60% 80%

CONFLEX 12.34 19.89 154.42 165.14
BnB 0.44 0.29 0.05 0.26

problems when we attempted to run the CON’FLEX software on larger problems.

Here we generated two sets of problems. The 40 problem instances in Set 4 have 10

variables and 10 constraints each: 20 of the instances have a tightness of 60% and 20

of the instances have a tightness of 80%. The 20 problem instances in Set 5 have 15

variables and 10 constraints each: 10 of the instances have a tightness of 60% and 10

of the instances have a tightness of 80%.

6.2.2 Branch and bound with variable partitioning vs. CON’FLEX

We used the CON’FLEX executable for Windows, downloaded from the CON’FLEX

website.1 Our branch and bound algorithm was implemented in C++ and compiled

using the gcc compiler, version 3.3.3 (under cygwin). We used an Intel Pentium 4 pro-

cessor at 2.53GHz with 512MB RAM, running Microsoft Windows XP Home Edition

version 2002.

Table 6.2 shows the results for each of the two algorithms and each set. The second

row indicates the tightness of the problems in the particular set, and the two remaining

rows show the average runtimes for the two algorithms. We experienced difficulty in

running larger problems on the Windows version of the CONFLEX software. However,

it is clear from these experiments that our branch and bound algorithm is considerably

faster than CONFLEX, in fact, at least 25 times faster.

Note that these results appear in [38].

1http://www.inra.fr/internet/Departements/MIA/T//conflex/adressesConflex.html
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Table 6.3: Average runtimes of the three algorithms (in seconds)

Set 1 1 2 2 3 3 3
T 70% 90% 70% 90% 70% 85% 90%

BnB 0.0124 0.0552 0.0206 0.0544 0.0688 0.1518 0.8078
BJ 0.0102 0.0774 0.0210 0.0772 0.0778 0.2142 0.6596
FC 0.0194 0.0696 0.0216 0.0698 0.0876 0.2056 0.4758

BPart 0.0164 0.0346 0.0204 0.0382 0.061 0.0916 0.3234

6.2.3 Branch and bound vs. Backjumping vs. Forward Check-

ing

All the algorithms are implemented in C++ and compiled with the gcc compiler, version

4.0.1. We used an Intel Core 2 Duo processor at 2GHz with 2GB RAM, running Mac

OS X, Version 10.4.11.

Table 6.3 shows the average runtimes for each set and each algorithm. The second row

indicates the tightness of the problems in the particular set, and the third, fourth, fifth

and sixth rows show the average runtimes of the basic branch and bound algorithm

(BnB), the backjumping algorithm (BJ), the forward checking algorithm (FC), and the

branch and bound algorithm with partitioning (BPart), respectively.

There is not a marked difference in the performance of the different algorithms for

smaller problems, but the results of the last set (Set 3 with 90% tightness) show an

improvement for the backjumping and forward checking algorithms on the branch and

bound algorithm (without variable partitioning) of 18% and 41% respectively. Note

that branch and bound algorithm with variable partitioning’s runtimes are at most 3

times faster than those of the basic branch and bound algorithm, but on average at

least 25 times faster than CON’FLEX. In future, we plan to implement the forward

checking and backjumping algorithms with variable partitioning.
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6.3 A CSP-based Algorithm for Solving SCSPs

In this section we show that solutions to some SCSPs are guaranteed by solving a

sequence of at most n complete CSPs, where n is bounded from above by the number

of distinct semiring values in the associated semiring structure. This is a theoretical

alternative to the algorithms introduced previously.

Assume a SCSP P = 〈C, con〉 over a constraint system CS = 〈Sp, D, V 〉, with Sp =

〈{p1, p2, . . . , pn},+p,×p, p1, pn〉. The set of constraints is C = {c1, c2, . . . , cm} where

ci = 〈defpci , conci〉, kci is the cardinality of conci , and conci ⊆ con for i = 1, 2, . . .m.

The following statement has to hold for the multiplicative operator, ×p: if α, β ≤p γ

then ×p(α, β) ≤p γ for α, β, γ ∈ {p1, p2, . . . , pn}.

Algorithm 7 CSP-based Algorithm

Require:
Input: V ; C; D; Sp.
Output: A maximal solution for the original SCSP.

1: Let Aall = {v | ∃c ∈ C such that defpc (t) = v and t is a tuple of c};
2: Let Acurrent = ∅;
3: while (Aall 6= ∅) do
4: Non-deterministically select any v ∈ Aall such that @w ∈ Aall where v <Sp w;
5: Acurrent = Acurrent ∪ {v};
6: Aall = Aall − {v};
7: Let C ′ = ∅;
8: for each c ∈ C do
9: Let c′ = {t | defpc (t) = v with v ∈ Acurrent and t is a tuple of c};

10: C ′ = C ′ ∪ {c′};
11: end for
12: Let P ′ = 〈C ′, con〉;
13: Solve P ′ as a classical CSP;
14: If a solution exists, exit and return the solution;
15: end while

In Algorithm 7 we start by constructing a CSP where we only allow tuples from the

original SCSP that have the maximal semiring value associated. Let the first con-

structed CSP be P ′1 = 〈V,D,C ′1〉 with C ′1 =
⋃m
i=1 c

′
i and c′i = {t | defpci(t) = pn} with

ci ∈ C, t = 〈t1, t2, . . . , tkci
〉 and tj ∈ D for j = {1, . . . kci}. If we find a solution for P ′1,

this solution is also a solution for the SCSP P .
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Otherwise, we continue by selecting any semiring value v ∈ Sp such that v is not

dominated by any other semiring value in Sp − {pn}. The new CSP is P ′2 = 〈V,D,C ′2〉

where C ′2 =
⋃m
i=1 c

′
i where c′i = {t | defpci(t) ∈ {pn, v}} with t = 〈t1, t2, . . . , tkci

〉 and

tj ∈ D for j = {1, . . . kci}. If we find a solution for P ′2, this solution is also a solution

for the SCSP P .

We continue this process by constructing CSPs with an increasing number of allowed

tuples until we find a solution.

Consider Algorithm 7. The set Aall in line 1 contains all the distinct semiring values

that are associated with tuples of constraints in C. In line 4 we select any non-

dominated semiring value v from the set Aall. In the next line, the value v is added

to the set Acurrent, which contains all the semiring values that are to be taken into

consideration when building the next CSP to be solved. In line 6 we remove the value

v from the set Aall. The for loop in lines 8 to 11 constructs the constraints of the next

CSP to be solved by only allowing tuples from the constraints in the set C that have

associated semiring values that are members of the set Acurrent. In line 12 the new

CSP is constructed and it is solved in line 13.

It is trivial to show that if a solution is found to a constructed CSP, this solution is a

maximal solution to the SCSP (with the restriction on the multiplicative operator of

the semiring). Our algorithm finds a maximal solution; it does not find all maximal

solutions.

We illustrate the algorithm with a simple example.

Example: Solving a SCSP with the CSP-based Algorithm

Consider the SCSP with CS = 〈Sp, D, V 〉 and P = 〈C, con〉, where V = con =

{A,B,C}, D = {1, 2, 3}, C = {c1, c2, c3}, and Sp = 〈{s1, s2, . . . , s7},+p,×p, s1, s7〉.

Assume three binary constraints, c1 = 〈defpc1 , {A,B}〉, c2 = 〈defpc2 , {B,C}〉, and c3 =

〈defpc3 , {C,A}〉. The tuples of these constraints together with their associated semiring

values are given in Table 6.4.

The partial ordering, ≤Sp , over the set of semiring values, {s1, s2, . . . , s7}, is shown
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Table 6.4: Constraint definitions

t defpc1(t) defpc2(t) defpc3(t)
〈1, 1〉 s6 s7 s4

〈1, 2〉 s7 s4 s7

〈1, 3〉 s1 s6 s3

〈2, 1〉 s3 s5 s2

〈2, 2〉 s2 s6 s7

〈2, 3〉 s2 s3 s2

〈3, 1〉 s5 s1 s6

〈3, 2〉 s6 s6 s5

〈3, 3〉 s7 s2 s3

below:

S7

S6 S5

S4S2 S3

S1

Aall = {s1, s2, s3, s4, s5, s6, s7} and Acurrent = ∅.

First iteration of the while loop:

Select v = s7.

Acurrent = {s7} and Aall = {s1, s2, s3, s4, s5, s6}.

c′1 = {〈1, 2〉, 〈3, 3〉}, c′2 = {〈1, 1〉}, and c′3 = {〈1, 2〉, 〈2, 2〉}.

C ′ = {c′1, c′2, c′3}.

P ′ = 〈C ′, con〉 does not have a solution.

Second iteration of the while loop:

Select v = s5.
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Acurrent = {s5, s7} and Aall = {s1, s2, s3, s4, s6}.

c′1 = {〈1, 2〉, 〈3, 1〉, 〈3, 3〉}, c′2 = {〈1, 1〉, 〈2, 1〉}, and c′3 = {〈1, 2〉, 〈2, 2〉, 〈3, 2〉}.

C ′ = {c′1, c′2, c′3}.

P ′ = 〈C ′, con〉 does not have a solution.

Third iteration of the while loop:

Select v = s6.

Acurrent = {s5, s6, s7} and Aall = {s1, s2, s3, s4}.

c′1 = {〈1, 1〉, 〈1, 2〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉}, c′2 = {〈1, 1〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}, and

c′3 = {〈1, 2〉, 〈2, 2〉, 〈3, 1〉, 〈3, 2〉}.

C ′ = {c′1, c′2, c′3}.

P ′ = 〈C ′, con〉 has a solution.

A solution is A = 1, B = 1, C = 3. This maximal solution for the SCSP has an

associated semiring value of s6.

6.4 Conclusion and Future Work

We presented three branch and bound algorithms to solve SCSPs that are based on the

well-known algorithms for maximal constraint satisfaction by Freuder and Wallace: a

BnB algorithm (with and without variable partitioning), a backjumping algorithm and

a forward checking algorithm.

We also presented an algorithm to solve SCSPs by solving a finite sequence of CSPs.

Our branch and bound algorithm with variable partitioning is significantly faster than

the fuzzy CSP solver, CON’FLEX. The branch and bound algorithm with variable

partitioning performs better than the basic version. The backjumping and forward

checking algorithms perform better than the basic branch and bound on some problem

instances.

In the future, we plan to implement our forward checking and backjumping algorithms

with variable partitioning, to develop a backmarking algorithm, and to investigate dif-

ferent versions of the forward checking algorithm. We also want to test our algorithms
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on larger-scale SCSPs.



Chapter 7

Conclusion

7.1 Summary and Discussion

In this thesis, we presented methods for solving Semiring Constraint Satisfaction Prob-

lems.

Our first approach was to present a way to relax a SCSP by relaxing individual con-

straints until an acceptable solution could be found. A second semiring was used to

provide a measure of difference between the original problem and its relaxation. We

then showed how to combine the two semiring structures: the one associated with the

original SCSP and the second one that measured the difference between the SCSP and

its relaxation.

Our second approach focused on developing algorithms to solve SCSPs. We showed how

to transform an SCSP into a variant of a Weighted Maximum Satisfiability problem,

which we called a Weighted Semiring Maximum Satisfiability Problem (WS-Max-SAT).

We presented an algorithm to solve a WS-Max-SAT that is based on the well-known

GSAT algorithm for maximum satisfiability problems.

Our next three algorithms to solve SCSPs were a branch and bound algorithm, a

backjumping algorithm, and a forward checking algorithm. These algorithms are based

on the algorithms of Freuder and Wallace [20] for maximal constraint satisfaction. Our

branch and bound algorithm performed significantly better than CON’FLEX, a fuzzy

CSP solver [17], and the forward checking and backjumping algorithms performed
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better on some problem instances than the branch and bound algorithm.

Finally, we presented a CSP-based algorithm to solve some types of SCSPs. This

algorithm solved a finite number of CSPs in order to find a solution for a SCSP.

The research in this thesis was done in the context of an industry project for a ma-

jor steel producer. The problem that was addressed in this project was highly over-

constrained, and a motivation for our research into over-constrained problems.

The publications that resulted from work in this thesis are [38, 39, 40, 41, 42].

7.2 Future Work

Relaxation of a SCSP : In Chapter 3 we presented a way to relax a SCSP so that an

acceptable solution could be found. In future, we will focus on the computational

aspects of this process.

When a solution to a SCSP P is not good enough, we used a set of cut-off values, LB,

to define a threshold that should be reached. We needed only to consider relaxations to

constraints of P that have the potential to form a good enough solution. Such relaxed

constraints can be found by looking for at least one tuple in the original constraint

with a preference value that is not in the set LB and then raise it so that it has a

preference value in LB. We plan to develop efficient algorithms to find suitable subsets

of relaxations, and to develop techniques to calculate the best relaxation for a SCSP

efficiently.

Combined Semirings : In Chapter 4 we presented a Combined Relaxation of a SCSP.

Our future work will focus on computational aspects of this process. We aim to de-

velop techniques to calculate solutions to a maximal Combined Relaxation of a SCSP

efficiently.

Transformation of a SCSP to a Weighted Semiring Max-SAT Problem: In Chapter 5,

we showed how to translate a SCSP into a variant of a Weighted Max-SAT problem,

which we called a Weighted Semiring Max-SAT problem. The objective was to make

use of the efficient algorithms that are available to solve Max-SAT, and modify them
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to solve WS-Max-SATs. We developed a simple GSAT-based algorithm to show that

this is a viable approach to the solution of SCSPs.

There are several local search algorithms that should be easy to modify for WS-Max-

SAT. Recent advances in local search algorithms are interesting to consider: Pham

et al. [50] show that local SAT search techniques can be improved by building struc-

tural information into the search, and Pham et al. [51] developed a SAT solver that

automatically recognise CSP structure hidden in the SAT encodings.

The existing exact algorithms will require more effort to modify, but are likely to

produce good results.

Algorithms to solve SCSPs : We developed four algorithms to solve SCSPs in Chapter 6:

a branch and bound algorithm, a forward checking algorithm, a backjumping algorithm,

and a CSP-based algorithm. The first algorithm favourably compared one of them

against a fuzzy CSP solver.

In the future, we plan to test our algorithms against SCSPs that model real life prob-

lems. We also want to develop other variations of branch and bound algorithms, such

as a backmarking algorithm for SCSPs, as well as variants of the forward checking algo-

rithm. A next step is to implement our backjumping and forward checking algorithms

with variable partitioning.
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Appendix A

Random SCSP Generator

In this appendix, we describe our random generator for the problems we used in our

experiments in Chapter 5 and Chapter 6.

Our random SCSP generator is based on a random CSP generator supplied at the

url: http://www.lirmm.fr/ bessiere/generator.html. Please consult this website for a

description of the random CSP generator.

A.1 The random problem model

Our SCSP generator requires seven parameters:

• The number of decision variables in the problem.

• The number of values in the domain of each decision variable. Each decision

variable has a domain of the same size.

• The number of constraints. All constraints are binary (between exactly two

variables). The constraints are chosen at random from a uniform distribution.

• The tightness of each constraint. All constraints have the same tightness. Tight-

ness refers to the number of value pairs that do not have an associated semiring

value that is equal to the maximum semiring value. These specific pairs are cho-

sen at random from a uniform distribution. Tightness is specified as an integer.

For instance, if a problem has variables with domain size of 5, then the maximum
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number of value pairs that do not have the maximal semiring value associated,

is 5 ∗ 5 = 25.

• A bound on the maximum semiring value, called P . The set of semiring values

consists of the integers between and including 0 and P − 1. The integer 0 is the

minimum semiring value and P − 1 is the maximum semiring value.

• A seed value for the generator to insure that the same set of problems can be

reproduced.

• The number of instances of problems that are to be generated.

A.2 An example

Given the set of parameters 25 5 5 23 5 1 1, our SCSP generated the following

problem:

25 5 5 23 5

5 15 : 3 2 3 1 0 0 2 3 4 2 3 2 4 1 2 2 2 0 0 0 0 2 2 1 2

21 23 : 3 2 3 0 2 1 1 1 3 3 1 4 0 1 0 4 3 0 2 3 1 3 1 2 2

4 5 : 3 0 4 3 0 2 2 3 3 3 3 2 3 0 2 3 3 0 2 0 0 3 1 3 4

8 16 : 4 0 1 2 2 2 2 1 2 2 2 0 2 3 2 3 2 1 0 3 4 3 3 2 1

8 12 : 2 0 2 2 0 3 3 2 2 0 0 4 3 0 0 0 3 0 2 2 1 3 3 4 0

The first line depicts the generated SCSP: This problem has 25 variables, each variable

with a domain size 5, 5 constraints, a tightness of 23, a maximum semiring value of 4

(and a minimum semiring value of 0). Note that there are only 7 variables that occur

in the types of the five constraints.

Each of the remaining five lines depicts one constraint. The two values before the colon

on a line, are the two decision variables in the type of that constraint. The remaining

values show the semiring values associated with each value pair where the value pairs

are assumed to be in lexicographical order. Note that there are only two value pairs in
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each line that has the maximum semiring value, 4.

This particular problem has been used in the running example of Chapter 6. We

renamed the seven decision variables that are involved in constraints in the following

way: variable 5 is named variable A, variables 15 is named variable B, variable 21 is

renamed variable C, variable 23 is renamed variable D, variable 4 is renamed variable

E, variable 8 is renamed variable F , variable 16 is renamed variable F , and variable

12 is renamed variable G.

Please consult Table 6.1 to see the semiring values associated with each value tuple of

each of the constraints. The constraints are numbered from 0 to 4.



Appendix B

List of Definitions

Def. no Description Page no
1 Constraint Satisfaction Problem (CSP) 5
2 c-semiring 19
3 Constraint system 20
4 Constraint 20
5 Semiring Constraint Satisfaction Problem (SCSP) 21
6 The projection of a tuple from a set W to a set W ′ 23
7 The combination of two constraints 23
8 The projection of a constraint over a set of variables 23
9 Solution of a SCSP 23
10 Maximal Solution of a SCSP 24
11 Filter and Principal Filter 35
12 A Good Enough Solution for a SCSP 36
13 Weakened Constraint 36
14 Wc, the set of all c-weakened constraints 37
15 wdefdc , a difference function for a weakened constraint 38
16 d-relaxation of a SCSP 38
17 Maximal Solution of a d-relaxation of a SCSP 39
18 Difference between a d-relaxation and a SCSP 39
19 Maximal Weakened d-relaxations of a SCSP 39
20 Combined Semiring 46
21 Combined Semiring Relaxation 46
22 Solution of a Combined Semiring Relaxation 47
23 Maximal Solution of a Combined Semiring Relaxation 47
24 Good enough Maximal Combined Semiring Relaxations 48
25 Solution tuple for the WS-Max-SAT Encoding 61
26 Weighted Semiring Max-SAT Problem (WS-Max-SAT) 62
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