
University of Wollongong - Research Online
Thesis Collection

Title: Knowledge libraries and information space

Author: Eric Rayner

Year: 2009

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

Knowledge libraries and information

space

Eric Rayner
University of Wollongong

Rayner, Eric, Knowledge libraries and information space, Doctor of Philosophy thesis,
School of Computer Science and Software Engineering - Faculty of Informatics, University of
Wollongong, 2009. http://ro.uow.edu.au/theses/3027

This paper is posted at Research Online.

KNOWLEDGE LIBRARIES AND
INFORMATION SPACE

A thesis submitted in partial fulfilment of the requirements for the award of
the degree

DOCTOR OF PHILOSOPHY

from the

UNIVERSITY OF WOLLONGONG

by

ERIC RAYNER, BCompSc(Hons)

SCHOOL OF COMPUTER SCIENCE AND
SOFTWARE ENGINEERING

2009

Thesis Certification

I, Eric P. Rayner, declare that this thesis, submitted in partial fulfilment
of the requirements for the award of Doctor of Philosophy, in the School of
Information and Computer Science, University of Wollongong, is wholly my
own work unless otherwise referenced or acknowledged. The document has
not been submitted for qualifications at any other academic institution.

Eric Rayner
July 27, 2009

Contents

List of Figures ix

List of Tables xiii

Abbreviation, Notation and Typographical Conventions xvii

Abstract xix

Acknowledgements xxi

1 Introduction 1
1.1 Thesis Overview . 1
1.2 The Contribution of this Thesis 6
1.3 The Organisation of Information 7
1.4 Thesis Methodology . 9

1.4.1 Gap in the literature 10
1.4.2 Research hypothesis 11
1.4.3 Experiment . 11

1.5 How to Read this Thesis . 12
1.6 Thesis Outline . 13
1.7 The Nature of Information . 14
1.8 Limitations of this Thesis . 17
1.9 Knowledge Libraries . 18
1.10 Information Space . 19
1.11 Information Organisation Terms 23

2 The Organisation of Information 25
2.1 Overview . 25
2.2 Introduction . 26
2.3 Traditional Classification . 27

2.3.1 Faceted classification 29
2.3.2 ISBN, ISSN, MARC and CIP 30

i

2.3.3 A critique of traditional classification 32
2.4 Computer File Systems . 34

2.4.1 A critique of computer file systems 36
2.5 The Database . 36

2.5.1 Critique of the database 38
2.6 Information Retrieval . 38

2.6.1 Measuring the effectiveness of IR 40
2.6.2 A critique of IR . 41

2.7 Data Warehousing . 44
2.7.1 Critique . 48

2.8 The Internet, World Wide Web
and Semantic Web . 48
2.8.1 The internet . 48
2.8.2 The world wide web 49
2.8.3 The Semantic Web . 50

2.9 Discussion and Summary . 52
2.10 What this chapter achieved 52

3 Knowledge Libraries 53
3.1 Overview . 53
3.2 Introduction . 54
3.3 Knowledge Library User Scenarios 55
3.4 The Uses of Knowledge Libraries 69

3.4.1 Knowledge Libraries for Research 69
3.4.2 Knowledge Libraries for Education 71
3.4.3 Knowledge Libraries for Business 72

3.5 Core Knowledge Library Functionality 72
3.5.1 Core knowledge library administration functionality . . 73
3.5.2 Core knowledge library end use functionality 73

3.6 Knowledge Library Security 74
3.7 Extended Knowledge Library Functionality 74

3.7.1 Automatic dimensions 75
3.7.2 Dynamic dimensions 75
3.7.3 Automatic report generation 76
3.7.4 Automatic notification 77
3.7.5 Knowledge library graphical user interface 78

3.8 What this chapter achieved 78

4 Spaces for Information Organisation 79
4.1 Overview . 79
4.2 Potential Mathematical Bases 80

4.2.1 Metric Space . 81
4.2.2 Vector Space . 82
4.2.3 The vector model for information retrieval 83
4.2.4 Lattices and Topological Space 89
4.2.5 Formal Concept Analysis 90
4.2.6 The Relational Model 93
4.2.7 Online Analytical Processing (OLAP) 95

4.3 Space . 96
4.4 n-Dimensional Spaces . 97
4.5 Nested Spaces . 100
4.6 Span . 101
4.7 Spans of Points in n-Dimensional Spaces 104
4.8 The Generalised Triangle Inequality and

Set Space . 105
4.9 Other Properties of

Set Distance Functions . 106
4.9.1 ⊆-Reflexivity . 106
4.9.2 6⊆-Strict Positiveness 107
4.9.3 6⊆d-strict positiveness 108

4.10 Signed Distances . 109
4.11 What this Chapter Achieved 109

5 Set Spaces 111
5.1 Overview . 111
5.2 Manipulating Set Space . 112

5.2.1 n-Dimensional Set Spaces 112
5.2.2 Other Properties of n-Dimensional Spaces 113
5.2.3 Dimension Nesting . 114
5.2.4 Dilated and Translated Spaces 115

5.3 Set Distance Functions Based on
Set Operations . 116

5.4 The dM
ij Set Distance function 118

5.4.1 The Triangle Inequality (4I) 122
5.4.2 Span . 123
5.4.3 The Generalised Triangle Inequality (G4I) 125
5.4.4 ⊆-reflexivity . 129
5.4.5 6⊆d-strict positiveness 129

5.5 What this Chapter Achieved 130

6 L-Collections 133
6.1 Overview . 133

6.2 Background . 134
6.2.1 Sets . 134
6.2.2 Multisets . 135
6.2.3 Merges and Joins . 136
6.2.4 Indexed Families . 137
6.2.5 Rough Sets . 138
6.2.6 Fuzzy sets . 139

6.3 L-Collections . 142
6.3.1 L-collection operators 143

6.4 Sets, Multisets, Fuzzy Sets, Rough Sets and L-Collections . . . 147
6.4.1 Sets and L-Collections 147
6.4.2 Multisets and L-Collections 148
6.4.3 Fuzzy Sets and L-Collections 148
6.4.4 Rough Sets and L-Collections 148

6.5 Extending Proofs Over Sets and
Multisets to {1}, N1 and Q>0-Collections 148

6.6 What this Chapter Achieved 150

7 L-Collection Space 151
7.1 Overview . 151
7.2 L-Collection Distance Functions 152
An L-Collection Distance Function 152

7.2.1 4I for |X | − |X ∩ Y| 153
7.2.2 6⊆d-strict positiveness for |X | − |X ∩ Y| 153
7.2.3 ⊆-reflexivity for |X | − |X ∩ Y| 154

7.3 The dMij L-Collection Distance Function 154
7.4 The Mk d L-Collection Distance Function 156

7.4.1 Span and G4I for Mk d 159
7.4.2 ⊆-reflexivity for Mk d distance functions 162
7.4.3 6⊆d-strict positiveness for Mk d distance functions 163

7.5 The Mav d L-Collection Distance Function 164
7.5.1 G4I for Mav d . 166
7.5.2 Other properties of Mav d 174

7.6 What this Chapter Achieved 174

8 Information Space 177
8.1 Overview . 177
8.2 Introduction . 178
8.3 Networked Space . 179
8.4 Classification Space . 184

8.4.1 Classification spaces for uncertain and partial
classifications . 185

8.4.2 Many levelled classification spaces 187
8.4.3 Projected classification spaces 188

8.5 Working with Classification Space 190
8.5.1 Creation . 190
8.5.2 Addition and subtraction 190
8.5.3 Point selection . 191
8.5.4 Ordering . 194

8.6 Attaching Information Units to Points
in Classification Spaces . 194
8.6.1 Distance . 195
8.6.2 Indexing classification spaces 196

8.7 Information Space . 198
8.8 Working with Information Space 199

8.8.1 Creation . 199
8.8.2 Index Manipulation . 199
8.8.3 Information unit selection 202
8.8.4 Selecting points in information space 204

8.9 What this Chapter Achieved 205

9 Basing Knowledge Libraries on Information Space 207
9.1 Overview . 207
9.2 Information Space for Questionnaire

Knowledge Libraries . 208
9.2.1 Example Questionnaire Information Space 210

9.3 Information Space for Research Paper
Knowledge Libraries . 213
9.3.1 Selecting and Comparing Research Papers 214
9.3.2 Extended Dimensions 215
9.3.3 Further Dimensions . 217

9.4 What this Chapter Achieved 218

10 The Efficient Implementation of Knowledge Libraries 219
10.1 Overview . 219
10.2 Introduction . 220

10.2.1 Distance query . 220
10.2.2 Range query . 221
10.2.3 k Nearest neighbour query 221
10.2.4 Ranked query . 221
10.2.5 Sequential search range query algorithm 222

10.3 Metric Space Algorithms . 222
10.3.1 Relative ordering . 223
10.3.2 Radius partitioning . 224
10.3.3 Hyperplane partitioning 226
10.3.4 Ranked query and k-NN query algorithms 227
10.3.5 A critique of the literature 228

10.4 Adapting Metric Space Algorithms for Set Space 229
10.4.1 Relative ordering for set spaces 230
10.4.2 Radius partitioning for set space 231
10.4.3 Hyperplane partitioning for set spaces 233

10.5 Searching hard spaces . 234
10.5.1 Specialised algorithms for searching hard spaces 235
10.5.2 Specialised algorithms for searching

n-dimensional spaces 236
10.6 What this Chapter Achieved 238

11 Experimental Results and Discussion 241
11.1 Overview . 241
11.2 Introduction . 242
11.3 Set Space Radius Partitioning Implementation: Non symmet-

ric Experiments . 243
11.3.1 Non Symmetric Experiment setup 244
11.3.2 Non Symmetric Experimental results 247
11.3.3 Discussion of non symmetric results 248

11.4 Variance Experiments . 251
11.4.1 Variance experimental results 253
11.4.2 Random edge weight experimental results 253
11.4.3 Euclidean space experimental results 256

11.5 Center Selection and Multiple Tree Experiments 257
11.5.1 Greatest minimum center selection experiment 259
11.5.2 Standard deviation center selection experiment 259
11.5.3 Discussion of center selection experiments 261
11.5.4 Experiment with multiple search trees 261

11.6 Experiments with
Multi-Dimensional Spaces . 264
11.6.1 Multi-Dimensional experiment setup 264
11.6.2 Multi-Dimensional experimental results and discussion 265
11.6.3 Multiple tree experiments 265

11.7 Set Space Experiments . 269
11.7.1 Discussion of set space results 270

11.8 Sequential search algorithms 270

11.8.1 Sequential search for n–dimensional spaces 272
11.8.2 Sequential search over set spaces with set distance func-

tions . 272
11.8.3 Discussion of sequential search results 273

11.9 Introducing the Sequential-Hybrid
Algorithm . 274
11.9.1 Discussion of sequential-hybrid results 274

11.10Summary, discussion and recommendations 275
11.11What this Chapter Achieved 276

12 Summary, Discussion and Future Work 279
12.1 Chapter Overview . 279
12.2 Thesis Summary . 280

12.2.1 The importance of information systems 280
12.2.2 The significance of Knowledge Libraries 281
12.2.3 The mathematical basis for Knowledge Libraries 282
12.2.4 Implementing Knowledge Libraries 284

12.3 Discussion . 284
12.3.1 The Contribution of this Thesis 285
12.3.2 The more formal development of Knowledge Libraries . 286
12.3.3 The flexibility of information space 286

12.4 Future Work . 287
12.4.1 The implementation of Knowledge Libraries 287
12.4.2 Graphical Interface . 287
12.4.3 Improving existing systems 288
12.4.4 The dissemination of knowledge 289

Appendix A: A Guide to the Accompanying CD 291

Appendix B: Publications Relating to this Thesis 299

Appendix C: Glossary of Information Organisation Terms 301

List of Figures

2.1 A 13-digit ISBN with EAN-13 bar code 31

4.1 A Hasse diagram of a concept lattice of objects = {1, ..., 10}
and attributes = {composite, even, odd, prime, square}. . . . 92

4.2 Three balls X,Z, Y in R2. 102

5.1 Subset element counts for ⊆-reflexive proofs. a = |X|, b =

|Y −X|. 116

5.2 Subset element counts for 4I proofs. a = |Z − X − Y |,
b = |Z ∩X − Y |, c = |Z ∩X ∩ Y |... 117

5.3 Subset element counts for 6⊆d-strict positive proofs. a = |X−
Y |, b = |X ∩ Y | and c = |Y −X|. 117

7.1 Sub L-collection element counts for4I proofs. a = |Z−X −
Y|, b = |Z ∩ X − Y|, c = |Z ∩ X ∩ Y|, etc. 153

7.2 Sub L-collection element counts for 6⊆-strict positive proofs.

a = |X − Y|, b = |X ∩ Y| and c = |Y − X |. 153

7.3 Sub L-collection element counts for ⊆-reflexive proofs. a =

|X |, b = |Y − X | . 154

11.1 Frequency of distances for typical 1000-point network spaces

with maxDist = 25 and 1500, 2000, 2500 and 3000 directed,

weight = 1 edges. 245

11.2 Frequency of distances for typical 1000-point network spaces

with maxDist = 25. LHS: 1100 undirected, weight = 1

edges. RHS: 2200 directed, weight = 1 edges. 247

viii

11.3 Data from a range query (x = 999, t = 2) on radius parti-

tioning search trees (branchFactor = 2, leafCapacity = 10)

over 1000 different, 1000-point, metric (network) spaces gen-

erated from networks with 1100 weight = 1 undirected edges

andmaxDist = 25. LHS: distribution of candidate point set

size as a (truncated) percentage of space size. RHS: distri-

bution of retrieved to candidate point set sizes (by truncated

percentage). 251

11.4 Frequency of distances. LHS: a typical 1000-point network

space with maxDist = 255 and 1.1n undirected edges with

uniform random weights (integers 1 to 19) . Mean dis-

tance: 120.913, standard deviation: 39.2604. RHS: a 1–

dimensional Euclidean space over integers 0–999. Mean dis-

tance: 333.333, standard deviation: 235.702. 255

11.5 Data from a range query (x = 999, t = 50) on radius par-

titioning search trees (branchFactor = 2, leafCapacity =

10) over 1000 different, 1000-point, metric (network) spaces

(with 1100 randomly weighted undirected edges). LHS: dis-

tribution of candidate point set size as a (truncated) per-

centage of space size. RHS: distribution of retrieved to can-

didate point set sizes (by truncated percentage). Compare

with figure 11.3. 255

11.6 Data from the range query x = 999, t = 50 on 1000 radius

partitioning search trees (with randomly selected centers,

branchFactor = 2 and leafCapacity = 10) over a 1000-

point uniform Euclidean space. LHS: distribution of candi-

date point set size as a (truncated) percentage of space size.

RHS: distribution of retrieved to candidate point set sizes

(by truncated percentage). Compare with figure 11.3. 256

ix

11.7 Data from a range query (x = 999, t = 2) on radius parti-

tioning search trees (branchFactor = 2, leafCapacity = 10)

with specially selected centers over 1000 different, 1000-point,

metric (network) spaces (with 1100 weight = 1 undirected

edges). LHS: distribution of candidate point set size as a

(truncated) percentage of space size. RHS: distribution of

retrieved to candidate point set sizes (by truncated percent-

age). Compare with figure 11.3. 260

11.8 Data for the range query x = 999, t = 2 over 3 radius parti-

tioning search trees (with random centers, branchFactor = 2

and leafCapacity = 10) for each of 1000 different, 1000-

point, metric (network) spaces (with 1100 weight = 1 undi-

rected edges). The intersection of the 3 resulting candidate

point sets was taken as the candidate point set for this search

method. LHS: distribution of candidate point set size as a

(truncated) percentage of space size. RHS: distribution of

retrieved to candidate point set sizes (by truncated percent-

age). 263

11.9 Distance frequencies for the “first” 1000 points in 2,3,4 and

5–dimensional uniform Euclidean spaces. Distances are trun-

cated in the plot, but not when computing the mean and

standard deviation. The 2–dimensional space has 32 coordi-

nates each dimension. The others have 10, 6 and 4 (respec-

tively). 266

11.10 Distribution of retrieved to candidate point set sizes (by

truncated percentage) for the range query x = 0, t = 2

over 1000 radius partitioning search trees (with random cen-

ters, branchFactor = 2 and leafCapacity = 10) for uniform

1000-point, 2,3,4 and 5–dimensional Euclidean space. 267

x

11.11 Distribution of retrieved to candidate set sizes (by truncated

percentage) for the range query x = 0, t = 2 over 1000 dif-

ferent groups of three radius partitioning search trees (with

random centers, branchFactor = 2 and leafCapacity = 10)

for a uniform 1000-point, 2,3,4 and 5–dimensional Euclidean

space. The group candidate set is the intersection of the

candidate sets corresponding to each of the three trees. . . . 268

11.12 Data from 1000 range queries (0 ≤ x ≤ 999, t = 50) on 1000

different radius partitioning search trees (with random cen-

ters, branchFactor = 2, leafCapacity = 10) over the space

〈{0, ..., 999}, x−y〉. LHS: distribution of candidate point set

size as a (truncated) percentage of space size. RHS: distri-

bution of retrieved to candidate point set sizes (by truncated

percentage). 269

11.13 Data from a range query (x = 999, t = 2) on radius parti-

tioning search trees (branchFactor = 2, leafCapacity = 10)

over 1000 different, 1000-point, (non symmetric) network

spaces generated from networks with 2200 weight = 1 di-

rected edges and maxDist = 25. LHS: distribution of can-

didate point set size as a (truncated) percentage of space

size. RHS: distribution of retrieved to candidate point set

sizes (by truncated percentage). 270

xi

List of Tables

2.1 Simplified Star Schema for Nationwide Retail Chain 46

3.1 Dimension types . 56

4.1 Eight relations illustrating operations defined in [24] 94

5.1 Distances for three distance functions over X = {1, 3}, Y =

{5, 9} and Z = {3, 5}. 123

10.1 Ball to enclosing hypercube volume (4 s.f.) for different n in

Euclidian space . 237

11.1 Average, over 1000 distinct queries (t = 2, 0 ≤ x < 1000), ra-

dius partitioning tree search (branchFactor = 2, leafCapacity =

10) and sequential search range query times (milliseconds) for

typical symmetric network spaces generated from (random)

n = 1000, e = 1100; n = 10000, e = 13000; and n = 100000,

e = 150000 (undirected) networks and non symmetric net-

work spaces generated from (random) n = 1000, e = 2200;

n = 10000, e = 26000; and n = 100000, e = 300000 (directed)

networks. 248

11.2 Radius partitioning search tree (branchFacor = 2 and leafCapacity =

10) for a typical, random, 1000-point network space (with 1100

undirected weight = 1 edges). 254

xii

11.3 Candidate nodes, collisions, pruned nodes and points, consid-

ered and retrieved points by level from a range query (x = 999,

t = 2) on the radius partitioning search tree in table 11.2. The

retrieved point set contained 7 points, while the candidate

point set contained 198 points, giving a retrieved to consid-

ered ratio of approximately 3%. 254

11.4 Typical radius partitioning search tree (with random centers,

branchFacor = 2 and leafCapacity = 1) for a 1–dimensional

Euclidean space over integers 0–999. Compare with table 11.2. 258

11.5 Collisions, pruned nodes and points, considered and retrieved

points by level from the range query x = 999, t = 50 on the ra-

dius partitioning search tree in table 11.4. Both retrieved and

candidate point sets contained 51 points, giving a retrieved to

considered ratio of 100%. Compare with table 11.3. 258

11.6 Candidate set sizes for the range query x = 999, t = 2 over 3

radius partitioning search trees (with random centers, branchFactor =

2 and leafCapacity = 10) for each of 10 different, 1000-point,

metric (network) spaces (with 1100 weight = 1 undirected

edges). The size of the intersection of these 3 sets, and the

size of the retrieved set is also displayed. 262

11.7 Space size and query time for the sequential search algorithm

(for a C++ implementation, using the cmath sqrt() and pow()

functions, on a 1.8GHz machine with 265k memory running

Linux) for various n–dimensional spaces with 1000 points in

each dimension and 106 information elements. “Dimensional

distances” d1, ..., dn are combined using
√(∑n

i=1 di
2
)
. 272

xiii

11.8 Space size and query time for the sequential search algorithm

(for a C++ implementation, using the cmath sqrt() and pow()

functions, on a 1.8GHz machine with 265k memory running

Linux) for a 3–dimensional space. Each dimension is a set

space, based on an underlying space with 1000 points. The

algorithm determines distances for 106 information units, at-

tached to random points in the space. “Dimensional dis-

tances” d1, d2, d3 are combined using
√
d2

1 + d2
2 + d3

3. 273

11.9 Retrieved to candidate set sizes (by truncated percentage) for

a sequential search range queries over 3,5,7 and 9–dimensional

spaces (with 106 randomly attached information elements).

Each dimension consists of 1000 points. Distances are uniform

random integers between 1 and 1000. In each n–dimensional

space, the first n − 1 dimensions were used to determine the

candidate set. 275

xiv

Abbreviation, Notation

and Typographical Conventions

The set of real numbers is denoted by R, the set of rational numbers by Q
and the set of natural numbers (integers, strictly larger than 0) by N1. Note

that R≥0 is the set of real numbers greater than or equal to 0, while R>0 is

the set of real numbers strictly greater than 0. Interval notation is used to

denote real intervals, so (0, 1] is the set of real numbers less than or equal to 1

and strictly larger than 0. More generally, capital letters, such as L,M,X, Y ,

are used to denote sets. The power set of any set M (the set of all subsets

of M) is denoted P(M).

Lowercase “math bold font” letters denote vectors, so x and y are vectors.

L-collections (introduced in chapter 6) are distinguished from sets by

using “math calligraphy font”, so M,X ,Y are L-collections.

Enclosing vertical bars are used to denote the cardinality of a set (|M |),
the cardinality of an L-collection (|M|), the absolute value of a real number

(|d(x, y)|) and the magnitude of a vector (|x|).
Bold text is used to denote key terms that are defined (or at least de-

scribed), both within, and (optionally) prior to, the definition. “Double

quotes” are used for short quotations (which are also referenced) and when

introducing key terms that are not defined.

Finally, iff is used as shorthand for “if and only if”.

Abbreviations in this thesis are preceded and introduced by the corre-

sponding, non abbreviated, full term.

xv

xvi

Abstract

This research describes and develops Knowledge Libraries, idealised sys-

tems for organising and presenting information. By providing a mathematical

basis, the definition of information space establishes a formal foundation

for Knowledge Libraries. The definition of information space builds on the

new definitions of L-collections, which generalise sets by allowing a real

valued grade to be associated with each element, and set space, which gen-

eralises metric space to better model the relationships between information

units.

The multiple search tree method improves existing metric space range

query algorithms. These algorithms are also generalised to work over set

space. The sequential-hybrid algorithm enables efficient range queries

over multi-dimensional spaces.

xvii

xviii

Acknowledgements

First and foremost, I would like to thank Dr. Ian Piper, my principal supervi-

sor, for his continuing support throughout my candidacy. Acknowledgement

is also due Prof. Martin Bunder for his assistance with the mathematical

work in this thesis. Without Prof. Bunder’s input, this thesis would not

have the emphasis on mathematical correctness that it does.

I would also like to thank my family for their support, particularly my

father, Prof. John Rayner, for his willingness to proof read chapters and

discuss thesis related matters (at some considerable length).

xix

Chapter 1

Introduction

1.1 Thesis Overview

This chapter provides an introduction—as non technical as possible—to this

thesis. This includes an overview of the thesis content, a summary of the

main contribution of the thesis, an outline of the topic of information or-

ganisation, a description of the thesis methodology, instructions on how

to read this thesis, an outline of the thesis, a discussion of the nature of

information and the limitations of this thesis, a summary of Knowledge

Libraries and information space and, finally, a preamble to the glossary

of information organisation terms in appendix C.

Chapter 2 reviews the literature relating to the topic of the organisa-

tion of information. Although it appears that there is no body of work that

directly addresses this topic, a great many research fields contribute in some

way. An exhaustive review is not feasible and is not attempted. Instead,

a number of fields that appear to be most relevant to this study are se-

lected. These include traditional classification, computer filesystems,

databases, information retrieval, data warehousing, the internet, the

world wide web and the semantic web.

This review is largely non mathematical. The relevant mathematics is re-

viewed in the preliminary sections of chapters 4,6 and 7—immediately before

the associated discussion.

1

2 CHAPTER 1. INTRODUCTION

There appears to be a great potential for synergy between the reviewed

research fields. It seems likely that the information organisation techniques

required to exploit these synergies could also be applied with advantage to

other research areas.

Chapter 3 describes the intended operation of Knowledge Libraries

in a similar spirit to Vannevar Bush’s famous essay “As we may think”[18]

and—more recently—Codd, Codd and Salley’s description of “on-line ana-

lytical processing” (OLAP) in [25, 26], and Berners-Lee, Hendler and Las-

sila’s article “The Semantic Web”[10]. The purpose of this chapter is to

give the reader—by way of a number of informal Knowledge Library “user

scenarios”—an understanding of the objective of this thesis.

This discussion illustrates the importance of the metaphor of informa-

tion space to the organisation of information. Phrases such as “research

area”, “knowledge frontier”, “closely related”, “gap in the literature”, etc.

indicate the intuitive application of spatial concepts to the organisation of

information. This suggests that a definition of information space could serve

as the mathematical basis for Knowledge Libraries.

The chapter identifies research, education and business as three main ap-

plication areas for Knowledge Libraries. Importantly, the core and extended

functionality of Knowledge Libraries are identified.

Chapter 4 surveys various mathematical “spaces” that could provide

a suitable foundation for information space. These “spaces” are metric

space; vector space and the vector space model for information re-

trieval; lattices, topological space and formal concept analysis; and

the relational model. Metric space is selected as the most suitable founda-

tion for information space. It is shown how n spaces can be combined to form

n-dimensional space. The projection and permutation of n-dimensional

space is discussed and defined, as are Dimension nested spaces and sub-

space.

It is shown how a space 〈M,d〉 can be nested inside a space 〈M ′, d′〉
where M ′ ⊆ P(M)—the power set of M . In order to organise information

it is often desirable to make use of spaces such as 〈M ′, d′〉 that are based

on another space 〈M,d〉 in this way. It is shown that—in part due to the

1.1. THESIS OVERVIEW 3

span of elements that are sets—the metric properties are not suitable for

set spaces like 〈M ′, d′〉. The notion of span is discussed and a definition of

the span of n-tuples (points in n-dimensional space) is given. Definitions of

the generalised triangle equality, ⊆-reflexivity and 6⊆d-strict positive-

ness—metric like properties that are suitable for set spaces—are included.

This chapter provides the beginnings of a mathematical basis for Knowl-

edge Libraries.

Chapter 5 takes a closer look at n-dimensional spaces, set spaces and

distances between sets. It is shown that any n-dimensional space will sat-

isfy the generalised triangle inequality if each of its dimensions do. Other

properties (of all of the dimensions) are also preserved in the n-dimensional

space. It is also shown how dimension nested spaces can be “flattened

out” by “promoting” nested dimensions so that all dimensions are on the

same “level”—without altering the functional characteristics of the space.

The chapter also discusses how spaces can be dilated and translated. All

the properties discussed are preserved in dilated spaces. Reflexive and ⊆-

reflexive properties are not preserved in translated spaces.

The chapter introduces the set distance function d(X, Y) = |X| −
|X ∩Y | and shows that it satisfies the triangle inequality, is 6⊆d-strict positive

and ⊆-reflexive. The chapter also elaborates on [32], introducing the set

comparison dM
ij where both i and j can be any number from 0 to 100 inclusive,

or ‘av’. Informally, if 0 < i, j ≤ 100 then i and j work like percentages, so

dM
ij (X, Y) = d(x, y) where x is the i%th closest element of X to Y and y is

the j%th closest element of Y to X. If i is ‘av’ then an average distance, from

X to each y ∈ Y , is taken. If j is ‘av’ then an average distance, from each

x ∈ X to Y , is taken. It is shown that dM
ij satisfies the generalized triangle

inequality if d does. However only dM
av 0 and dM

100 0 are 6⊆d-strict positive and

⊆-reflexive.

This chapter continues to develop a mathematical basis for information

space.

While a sufficient mathematical basis for many types of Knowledge Li-

brary has now been developed, it is not quite general enough. For example,

4 CHAPTER 1. INTRODUCTION

information spaces that allow more than one identical information unit

to be attached to the same point cannot be adequately dealt with. The

problem in this case is the requirement that each element of a set must be

distinct. While multisets would provide a solution for this, it would also be

convenient to have “uncertain” and “partial” classifications. To solve these

problems, set like objects that allow multiple and partial membership are

required.

Chapter 6 reviews sets and set like objects. The chapter begins with

multisets, before discussing what happens to the union operator when

sets are generalised to allow membership “grades” and/or “multiplicities”.

Merge type union operators sum the grades or multiplicities of elements

common to the merged “sets” (think “merged traffic”). Join type union op-

erators take the maximum grade or multiplicity of elements common to the

joined “sets” (think “conjoined twins”).

The chapter discusses indexed families, rough sets, fuzzy sets and L-

fuzzy sets. L-fuzzy sets are the closest to what is required, but the notation,

used in [42], does not fit requirements and a merge type union operator—

which is required—is not defined. The chapter also defines L-collections

and extends set operators over L-collections, where L is a maximisable

set, including both merge and join type union operators. The chapter

defines further operators that allow L-collections to be scaled and cast. It

is shown how L-collections generalise multisets, fuzzy-sets and rough sets.

The chapter discusses how proofs for theorems over sets can be extended to

certain L-collections.

The definition of L-collections in this chapter will allow us to define infor-

mation spaces that can cope with uncertain and partial classifications, and

multiple, identical classifications.

Chapter 7 extends distance functions over sets of L-collections. This

works well for the d(X ,Y) = |X | − |X ∩ Y| distance function (X and Y
are L-collections), but the dMij distance function is not 6⊆dMij -strict positive

over sets of L-collections. The chapter defines a new distance function Mk d

and shows that M1 d and Mav d satisfy the generalised triangle inequality. Mk d

preserves ⊆-reflexivity while M1 d and M
av d are 6⊆M1 d-strict positive and 6⊆Mav d-

1.1. THESIS OVERVIEW 5

strict positive (respectively) if d is 6⊆d-strict positive.

This chapter extends the mathematical basis from sets to L-collections.

Chapter 8 shows how useful distance functions can be built up over

networks (where the nodes may have span). It is shown how n-dimensional

and many levelled classification spaces can be defined. The chapter shows

how, using {0.5, 1}-collections and (0, 1]-collections, classification spaces that

allow uncertain and partial classifications can be defined. It is shown how, us-

ing N1-collections, indexes can be defined that allow information units to be

attached to points in classification spaces. The chapter defines information

space as, essentially, a classification space with an index. It is shown how

information space provides a mathematical basis for Knowledge Libraries.

The chapter shows how the core functionalities, identified in chapter 3, can

now be defined mathematically.

This chapter completes the definition of information space—a mathemat-

ical basis for Knowledge Libraries.

Chapter 9 gives two paper based examples that show how information

space provides the desired functionality. The first example is a questionnaire

information space, the second, a research paper information space. While

these examples are necessarily simplistic—practical information spaces would

be too complex for this treatment—they do show how the desirable function-

ality is provided.

This chapter gives examples of information space being used to provide

important Knowledge Library functionality.

Chapter 10 discusses the implementation of the less easily implementable

Knowledge Library functionality, in particular, distance query, range query,

k nearest neighbour query and ranked query algorithms. Range query is

discussed at length as k nearest neighbour query and ranked query algo-

rithms are normally based on range query algorithms. Existing metric space

algorithms are generalised to work over set spaces.

Chapter 11 presents the results of experiments conducted to determine

the effectiveness of range query algorithms. A clearer understanding of the

limitations of existing range query algorithms is developed, and a number

of improvements are suggested. Spatial partitioning algorithms can often

6 CHAPTER 1. INTRODUCTION

be improved using a number of search trees and taking the intersection of

the candidate set produced by each tree. The sequential-hybrid algorithm ex-

tends the scope of sequential search, as it can be applied to multi-dimensional

spaces that have a large (or even infinite) number of dimensions.

Chapter 12 discusses what has been achieved, and what remains to be

achieved. The chapter discusses the extent which information space gener-

alises hierarchical filesystems, relational databases, OLAP data cubes, and

information retrieval vector spaces.

1.2 The Contribution of this Thesis

The main thrust of this thesis is to provide the basis for Knowledge Libraries;

a new class of information organisation system with considerably more power

than existing systems. On the way to achieving this goal, a number of other

significant contributions are made.

This research:

1. identifies the need for the development of a coherent “information or-

ganisation” discipline with computer filesystem, information retrieval,

database and other sub disciplines. This new discipline would define

common terminology and exploit synergies between these research ar-

eas;

2. identifies significant limitations of existing information organisation

techniques;

3. identifies the need for the development of better information organisa-

tion techniques for scholarly research generally. Such techniques could

dramatically increase the pace of scientific development;

4. describes “Knowledge Libraries”—an idealised system for the storage,

organisation, and display of information;

5. defines “L-collections” a generalisation of sets (also multisets, rough

sets and fuzzy sets) that allows elements to have membership “grades”

1.3. THE ORGANISATION OF INFORMATION 7

chosen from the set L;

6. defines “information space” and shows how information space can pro-

vide the mathematical basis for Knowledge Libraries;

7. provides effective range query algorithms for information space;

8. shows how Knowledge Libraries and information space generalise hier-

archical filesystems, vector space information retrieval, relational databases,

and OLAP datacubes.

1.3 The Organisation of Information

In this thesis, information organisation is defined as the topic concerned

with:

1. the nature of information;

2. modelling information;

3. modelling the relations between “information units”;

4. identifying desirable functionality of information systems;

5. the development of information systems;

6. the development of interfaces to information systems;

7. testing information systems;

8. assessing the value of information systems.

Note that “information system” is taken to be synonymous with “information

organisation system”.

Although not currently well recognised in the literature, it should be

clear that the subtopics that make up the topic of information organisation

are closely related—the proper investigation of one subtopic requires some

familiarity with associated topics.

8 CHAPTER 1. INTRODUCTION

Example 1.1. When developing an information system—so that the way

information is represented within the system adequately reflects reality—it

is necessary to consider the nature and modelling of information. In order

to organise information, it is necessary to have some representation of the

relations between the information units in the system. The system interface

must be designed so that system functionality is appropriately available to

users. As part of the demonstration of the value of the system, it is necessary

to test it to determine if it provides appropriate functionality.

Note that, while all the subtopics listed are important for the development

of the topic of information organisation, the subtopics are not developing

evenly. In particular, the question of precisely what information is does not

appear to be adequately addressed in the literature. Similarly, while it seems

indisputable that information systems—such as the world wide web—are

valuable, the author is not aware of the existence of formal methods that

measure the value of such systems with precision.

This last point is especially significant as it makes it hard to determine the

value of improved information systems. This is unfortunate as such research

can have considerable social and economic value. If the value of information

systems—and hence research that results in the development of improved

information systems—was more readily measurable, more research would be

conducted.

A distinction is made between “weak” and “strong” classification.

In weak classification, given some collection of information, the infor-

mation is classified to expedite the retrieval information. In this thesis this

weak form of classification is called indexing.

In strong classification, the classification of information specifies the

relative “position” of the information in a “universe of knowledge.” Within

the classification, the information is “close to” related material and “far

from” unrelated material. In this way classification:

1. links information with other information;

2. provides “pathways” to information;

1.4. THESIS METHODOLOGY 9

3. summarises information.

Given this description, the reader should appreciate the close relationship

between strong classification and other important information organisation

terms such as abstract, background, introduction, meta information, outline,

overview and summary. Strong classification can provide a formal equivalent,

and perhaps ultimately a replacement, for each of these.

1.4 Thesis Methodology

This thesis follows the “gap–hypothesis–experiment” research pattern. Re-

search following this pattern begins with the identification of a “gap in the

literature.” The research goes on to formulate a “research hypothesis” which,

if supported by the experimental results, will contribute to filling that gap.

After this, experiments are designed and conducted to test the hypothesis.

Finally, the results are summarised, reported and analysed.

A similar and parallel research pattern would be to begin by identifying a

“research problem,” decide on an approach to “attack” the problem, execute

this plan, then summarise, report and analyse the results. It should be ap-

parent to the reader that the “gap–hypothesis–experiment” research pattern

can be readily mapped onto this more general pattern.

Gap in the literature. The information organisation technology

described in the literature—such as relational databases and informa-

tion retrieval—does not provide important functionality.

Research hypothesis. Information space provides a mathematical

basis for the development of Knowledge Libraries that provide this

functionality.

Experiment. Attempt to develop a mathematical definition for in-

formation space and show how this can be used as the mathematical

basis for Knowledge Libraries.

10 CHAPTER 1. INTRODUCTION

1.4.1 Gap in the literature

The fragmentation evident in the information organisation literature is itself

evidence of the lack of important functionality in existing information organ-

isation technology. If better technology were available, it would be expected

to result in less fragmented literature.

More specifically, the “similarities” between “queries” and “weighted key-

word unit vectors”, in the vector space model for information retrieval does

not always accurately reflect the similarities between the underlying “user

information requests” and “documents”.

This research does not attempt to formally identify “important function-

ality”. Perhaps the best way to establish the importance of new functionality

involves:

1. an initial “guess” at identifying important new functionality;

2. the development of a system with the functionality;

3. a demonstration of the added value of the new system over pre-existing

systems without the extra functionality.

This last step is not always easy to achieve. Surely the added function-

ality of well established information organisation systems such as relational

databases, the vector space information retrieval, the internet, and the world

wide web add considerable value—but how can this added value be quanti-

fied?

In this research, important functionality is determed by describing some

of the many advantages of an imagined system with this functionality. Even

if the reader disagrees with some of the details, the approach to organis-

ing information by association with points in an information space—where

the distances reflect the underlying semantics of the information—has clear

utility.

1.4. THESIS METHODOLOGY 11

1.4.2 Research hypothesis

This research relies heavily on the metaphor of information space to describe

Knowledge Libraries, so it should be clear that information space is required

in order to implement Knowledge Libraries.

It is not immediately apparent that:

1. it is possible to define information space flexibly enough so that the

metaphor remains useful for a great variety of different forms of infor-

mation;

2. information space provides a mathematical basis for the core Knowl-

edge Library functionality identified in this thesis;

3. information space provides a practically implementable basis for Knowl-

edge Libraries.

It is apparent that naive “information spaces”, such as n-dimensional

real coordinate space, are not suited to the organisation of many forms of

information. Similarly, readers might wonder if information space provides a

sufficient basis to define the functions required to provide the core Knowledge

Library functionality. Readers might also doubt that these functions are

practically implementable. Perhaps the time or memory complexity of some

of these functions render implementation impractical?

1.4.3 Experiment

The experiment involves:

1. the informal development of Knowledge Libraries—an idealised system

for organising and presenting information;

2. the development and definition of information space—a mathematical

basis for Knowledge Libraries;

3. demonstarting that information space provides an adequate basis for

Knowledge Libraries.

12 CHAPTER 1. INTRODUCTION

1.5 How to Read this Thesis

This thesis investigates the organisation of information. The question of how

best to organise and present research provides a key motivation for the re-

search described herein. Presently, many universities1 require the submission

and examination of theses in “printed paper” form. Due to the many advan-

tages of digital formats, it may be that this requirement is dropped in the

near future.

One limitation of printed paper theses is that they necessarily present

information in a linear sequence, following the order of the pages. The greater

flexibility of digital formats could be used to advantage to present information

as a “network.” This better reflects the underlying nature of information, as

discussed briefly in section 1.7 and more completely in the remainder of this

thesis.

The author acknowledges that readers will not begin with the first page

of this thesis, then continue, reading each page in sequence until the last.

Rather, it is expected that readers are more likely to, for example, glance

briefly through the contents, largely skip over the thesis overview, read a

number of sections in the introduction in sequence, review the contents pages

again, skip ahead to review a chapter of interest, go back to the introduction

and continue reading where they left of, skip head to Appendix C to review

thesis terms,

Each chapter of this thesis, after this introductory chapter, begins with

an overview of chapter contents. Each chapter, apart from the first and last

chapter, finishes with a summary of what was achieved in the chapter, with

respect to the central argument of the thesis.

It is noted that the overviews are not summaries. If the reader wishes

to read a chapter summary before reading the chapter, he or she should

refer to the summary at the end of the chapter. The intent of the chapter

overviews is to provide a type of “narrative contents,” largely for readers

already passingly familiar with the contents of the chapter. The overviews

provide “links” to chapter content, in a similar manner to the links in web

1Including the University of Wollongong.

1.6. THESIS OUTLINE 13

pages (or many other digital documents).

1.6 Thesis Outline

The central argument of this thesis has three main steps.

In the first step, chapter 3 informally describes Knowledge Libraries by

way of a number of user scenarios. Spatial terms such as “map”, “dimen-

sion”, “coordinate”, “region” and “space” are important when describing the

“user experience” of Knowledge Libraries. This suggests that an appropri-

ate definition of “information space” could provide a mathematical basis for

Knowledge Libraries.

In the second step, chapters 4-8 provide a mathematical definition of

information space. This requires mathematical definitions of, among other

things, dimensions, coordinates, points and spaces. In mathematics, the

term “space” has distinct meanings when discussing metric space, vector

space and topological space—as in section 4.2. The definition of space2

in this thesis is quite general, yet it is not consistent with all of the uses of

the term in mathematics.

In the third step, chapters 10-11 show how existing metric space algo-

rithms can be improved and generalised to work over information space.

Other techniques, that work where the generalised metric space algorithm is

ineffective, are also developed.

In each of these three steps, terms are used with the same intent, but

with subtly different meaning, as they are used in other steps. In the first

step, it is found that spatial metaphors are useful to describe the capabilities

of Knowledge Libraries. “Points in space” here is simply a useful metaphor.

In the second step “points” are mathematical objects. In the third step, a

“point” is a data structure. It should be clear to readers that, for example,

a “point” data structure is not precisely the same thing as the mathematical

definition of “point”.

The most informal use of terms like “point” is in chapter 3, where these

2A set with a (signed) distance function, see section 4.2.1.

14 CHAPTER 1. INTRODUCTION

terms describe the “user experience” of Knowledge Libraries. The next level

is the mathematical definition, chapters 3-8. The most formal level is in the

computer implementation of the algorithms and associated data structures

from chapter 10. Here a “point” is a data structure. So the initial informal

description of Knowledge Libraries provides the motivation for the develop-

ment of mathematical definitions, which in turn provide a framework for the

development of algorithms and data structures.

1.7 The Nature of Information

The concept of “information” is one that, it seems, everyone thinks they have

a good understanding of. Yet it is very difficult to translate this “understand-

ing” into a formal definition. A dictionary, for example, presumably contains

information. In particular, it contains the “meaning” of words (a type of in-

formation?) However when we attempt look up the meaning of a word in

a dictionary, we are simply refered to more words. This trail of words is a

complex forking one—a network, or more formally a graph—entirely made

up of words. The trail is essentially circular—following it, we will never dis-

cover the “underlying information” we seek. Does this then imply that the

graph is the information and no more fundamental “information atom” ex-

ists? Surely though, if words are only ever defined in terms of other words,

they are ultimately meaningless.

Babies develop social and language skills based on their own direct experi-

ence of the world (their senses) and their inner emotional state. They begin

by making associations between the facial expressions of their carers and

these experiences. This develops into an understanding of “body language”,

gestures and basic tones. Comprehension of simple words, such as “yes” and

“no”, is also developed in this way. More complex words and sentences are

“built-up” from this basic language. This suggests that the fundamental “in-

formation atoms” that we are looking for may be basic “sense impressions”

and emotions.

Mathematicians and Logicians, who are nevertheless obliged to commu-

nicate in words with meanings developed in this way, reject this form of

1.7. THE NATURE OF INFORMATION 15

“knowledge” as it is known that the form of induction3 used to develop this

knowledge is logically unsound.

Mathematicians and Logicians prefer to develop knowledge by applying

logical inference to a set of basic and “self evident” axioms. The knowledge

developed in this way is as reliable as the correctness of the axioms and the

validity of the logical reasoning. From the mathematical and logical point of

view then, these axioms would be the required “information atoms.”

Scientists, employing the “scientific method” may have more in common

with babies than Mathematicians and Logicians! The scientific method in-

volves systematic observation, measurement, and experiment, and the formu-

lation, testing, and modification of hypotheses. In broad terms, the scientific

method formalises (to a degree) the very same process used by babies to

develop social and language skills. The scientific method relies on the same

form of induction and so the “scientific knowledge” generated is similarly

vaunerable. It may be that many observations and experiments support a

hypothesis or theory, yet a single exceptional result refutes it.

This thesis does not attempt to formally define “information,” nor the

“information atom.” Similarly, no attempt is made to formally define “knowl-

edge.” Nor is any existing definition adopted. One reason for this is that

no general consensus exists as to the precise meaning of these words. The

formal definitions that do exist are only suitable for use within specialised

fields and tend to contradict other formalisations, used in other fields.

Example 1.2. Within the field of “expert systems”, “knowledge” is encoded

in a formal language in “knowledge bases” (on a computer). In contrast, in

the field of “knowledge management” and many other disciplines, knowledge

necessarily resides in individuals (human beings).

The difficulty in developing broard formal definitions, and so assigning

precise meaning, to common information related terms such as “informa-

tion”, “knowledge”, “understanding”, “meaning” and “intellect” will likely

surprise many researchers. Even the term “science” is not well defined, lead-

3That is, the development of general rules from repeated specific observations.

16 CHAPTER 1. INTRODUCTION

ing to ambiguity and confusion as to precisely what qualifies as a science4.

Indeed, while most researchers—early on in their careers—develop quite pre-

cise ideas about the use of terms such as “introduction”, “abstract”, “sum-

mary”, “outline”, “overview”, “background” and the best way to structure a

research paper or thesis, no formal definitions exist, and there is surprisingly

little consensus between researchers.

Example 1.3. In the view of at least one experienced researcher (an ex-

aminer of this thesis), an introduction should summarise three things: the

research problem that is being investigated; the approach that was taken to

attack the problem; and the results and their significance. In contrast, for

another seasoned researcher (the supervisor of this thesis) an “introduction”

“introduces” readers to the material and definately should not summarise

results. According to this view, the sections or chapters mistakenly called

“introductions” by many (perhaps even the majority) of researchers, are more

correctly called “executive overviews.”

The above example highlights the fact that, while many researchers may

think that they have a precise understanding of what constitutes an “intro-

duction,” no such consensus exists. With this in mind, it is appropriate for

researchers (including supervisors and examiners) to relax strict views and

adopt a more utilitarian stance.

While it is not appropriate for this thesis to adopt formal definitions for

terms like “information” and “knowledge,” it is reasonable to make some

general observations. There apears to be a rough hierarchy of “information

related” terms (“information nodes”). “Raw data” is commonly placed at the

bottom of this hierarchy. “Information” is placed further up, and terms such

as “knowledge,” “meta information,” “understanding,” and “meaning” still

further up. In general, the content of nodes towards the top of the hierarchy

is more interconnected and contexturalised, and is more valuable—especially

if it is reliable, accessible, and unambiguous. Unfortunately the increasing

4Note that a formal definition of a class can be used as a test to determine class mem-
bership.

1.8. LIMITATIONS OF THIS THESIS 17

complexity towards the top of the hierarchy contributes towards ambiguous

content of limited reliability and accessiblity!

It would appear that human understanding is a top-heavy structure. By

improving the precision, reliability and accessability of complex intercon-

nected and contexturalised information, information organisation systems

should extend the reach of human understanding.

In this thesis the term “information space” is used both in a general sense,

to describe the “universe of information” and, more specifically, as the name

of a mathematical model of this information universe. The term “Knowledge

library” is used to describe an information organisation system. In this term

the word “knowledge” is used to reflect that the system is useful for managing

information, and its interconnections and context. The choice of this term,

from amongst the terms towards the top of the “information hierarchy,” is

somehat arbitrary.

1.8 Limitations of this Thesis

This thesis does not commit to formal definitions of information and knowl-

edge. While this results in the development of a broadly applicable system—

the Knowledge Library—it does limit the degree to which the results herein

can be formally appraised.

Because of the very broad subject matter addressed in this thesis5 and

the great many closely related topics, it has not been possible to fully explore

the relevance of all related research. The relevance of many topics, such as

artificial intelligence and neuroscience for example, has not been explored at

all. This is undoubtedly a serious limitation of this study. Unfortunately, it

has proven to be humanly impossible for a single researcher, in a finite time

5The non-mathematical literature review (see chapter 2) identifies traditional classifica-
tion, faceted classification, computer filesystems, database systems, information retrieval
systems, data warehousing, the Internet, the World Wide Web, and the Semantic Web
as closely related topics. The mathematical literature review (see the initial sections in
chapters 4 and 6) identifies metric space, vector space, the vector model for information
retrieval, lattices, topological space, formal concept analysis, the relational model, mul-
tisets, indexed families, rough sets and L-fuzzy sets as important related mathematical
objects.

18 CHAPTER 1. INTRODUCTION

period, in a thesis of finite length, to fully explore all the potentially relevant

literature. The literature review in this thesis however, does provide a solid,

extensive and detailed—if not exhaustive—foundation for this research.

Note that this thesis does consider, and provide for, the dynamic, change-

able nature of information. See, in particular, section 2.3.3, scenarios 1, 1.1,

and 1.2 in section 3.3, the definition of add node in section 8.3, and section

8.8.2.

1.9 Knowledge Libraries

The value of information is becoming ever more apparent. Clearly, we (the

users of information systems) need the right information at the right time

in order to make the right decisions. Human society has responded to this

need by developing ever more sophisticated techniques to gather information.

Computer memory and processing speeds have also been increasing at an

exponential rate in recent years. In contrast, the key research[24, 56, 79]

that underpins our main information organisation systems is many decades

old.

Critically, information retrieval systems do not adequately model the re-

lationships between information. As a result, they do not always allow access

to the right information. These systems also fail to inform users of the rela-

tionships that exist between their “information units”, nor do they provide

meaningful overviews of their organisational structure.

Knowledge Libraries are idealised information organisation systems. A

Knowledge Library provides precisely the information organisation function-

ality we require (whether we know it or not) based on the assumption of an

accurate model of the relationships between the information elements in the

library. They allow us to develop an overview of the manner in which the

information is organised.

Knowledge Libraries rely on a spatial metaphor for organising informa-

tion. By developing a mathematical definition of this “information space”

this research is able to provide a mathematical basis for Knowledge Libraries.

This thesis distinguishes between “core” and “extended” functionality. Core

1.10. INFORMATION SPACE 19

functionality supports essential Knowledge Library features such as deter-

mining the distance between points, and selecting information elements. The

extended functionality can be loosely described as a collection of “convenience

features”.

This research relates the the problem of the implementation of core Knowl-

edge Library functionality to the existing literature on searching metric

spaces. It is discussed how, by generalising the existing metric space algo-

rithms to work over set spaces, important core Knowledge Library function-

ality is provided. This thesis generalises the existing algorithms in precisely

this way, and develops more effective algorithms.

1.10 Information Space

This thesis attempts to define “spaces” that are flexible enough to model

the relationships between “information units”—research papers, web sites,

math equations, digital photographs, quotations, questionnaires algorithms,

numbers, etc. These relationships are modelled by “distances”—the smaller

the distance, the closer the relationship.

It is found that there are often many categories of relationship that can

exist between information units.

Example 1.4. Consider a space of research papers. We might want to com-

pare and contrast research papers in the space by subject, authorship, title,

length, publication date, “quality”, citations, ...

The approach of this research to this is to assign each relationship cate-

gory a “dimension”. So if it is found that there are n different relationship

categories for a certain type of information unit, an n-dimensional space is

required to model these relationships.

Example 1.5. Consider an n-dimensional real coordinate space. Each

dimension consists of a set R and a “distance function” |x−y| for all x, y ∈ R.

The n-dimensional space consists of the set of n-tuples of reals R × ... × R

20 CHAPTER 1. INTRODUCTION

with the distance function

d((x1, ..., xn), (y1, ..., yn)) =

√√√√ n∑
i=1

|xi − yi|2

for all (x1, ..., xn), (y1, ..., yn) ∈ R× ...× R.

It will become apparent that real coordinate spaces, such as the one in

the example, are not general enough for our purposes.

From the example, it is tempting to define “space” as a set of “points”

M with a distance function d : M ×M → R≥0. It can be seen that each

dimension of an n-dimensional space is itself a space. It is possible to combine

n spaces 〈M1, d1〉, ..., 〈Mn, dn〉 into an n-dimensional space 〈M,d〉 where M =

M1 × ...×Mn and

d((x1, ..., xn), (y1, ..., yn)) =

(
n∑

i=1

|xi − yi|p
) 1

p

for all (x1, ..., xn), (y1, ..., yn) ∈M and for some p ∈ R. When a space 〈Mi, di〉
is used as a dimension of another space 〈M,d〉, the points of 〈Mi, di〉 become

“coordinates” of 〈M,d〉.

As it happens, this is not quite general enough. It will be seen that L-

collections—that allow duplicate and “graded” elements—rather than just

sets, are required. Also, sometimes “signed distance functions” are useful so,

for example, d(x, y) = −d(y, x). All signed distances d(x, y) are associated

with a corresponding unsigned distance |d(x, y)|.

In order to simplify this presentation, this introductory discussion con-

tinues as if these further generalisations were not required. The deficiencies

of—and necessary adjustments to—this discussion will be made apparent

when the more advanced material is introduced.

It is often desirable, given distances between information unit attributes,

to define distances between sets of information unit attributes.

1.10. INFORMATION SPACE 21

Example 1.6. We have a set of authors M with a distance function d where

d(x, x) = 0 and d(x, y) = 1 for all x, y ∈ X where x 6= y. But because re-

search papers can have a number of authors, we require a distance function

d′ that gives the distance between sets of authors X, Y ⊆ M . d′(X, Y) is

defined in terms of the distances d(x, y) between the elements x of X and

the elements y of Y .

It is often the case that spaces that model the relationships between one

type of information unit (in the example, “authors”) can be the basis for

spaces that model the relationships between another type of information

unit (in the example “research papers”). Similarly, spaces that model the

relationships between one type of information unit can be dimensions of

spaces that model the relationships between another type of information

unit. Both of these types of “nesting” can go on for any number of “levels”.

Adequately flexible spaces may have points that are sets or n-tuples or

simple elements. The elements of sets or n-tuples can themselves be sets or

n-tuples or simple elements... and so on. The critical question is:

“What are the desirable properties of these spaces?”

If the desirable properties of these spaces can be identified, and it can be

shown that a particular space has these properties, then that space can be

expected to function as preferred. If appropriate spaces with these properties

exist, then this research can claim a certain measure of success.

This research is limited to spaces that positively represent information

unit attributes—that is, spaces where points represent attributes6 of attached

information units. Spaces that may negatively represent information unit

attributes do not have the same desirable properties.

This research focuses on the properties of distance functions that give

distances d(X, Y) between points X and Y where

1. X represents a “query”—the information unit attributes that are de-

sired, and Y represents the attributes of attached information units;

6Or sets or n-tuples of attributes. Or sets or n-tuples of sets or n-tuples of attributes...

22 CHAPTER 1. INTRODUCTION

2. both X and Y represent the attributes of attached information units;

3. both X and Y represent the attributes of sets of attached information

units.

In general, this research finds that the metric properties7 are not suffi-

ciently flexible for set space distance functions.

If X represents desirable attributes, we want d(X, Y) = 0 whenever Y

“satisfies” X—that is, whenever Y represents all the attributes X (and per-

haps more). We also want d(X, Y) > 0 whenever Y “fails to satisfy” X—that

is, whenever Y does not represent all the attributes X.

Example 1.7. Given an information space of mathematical monographs we

might have a set X of requirements and a set Y , representing a monograph:

X = {“about: set theory”,“level: introductory”, “pages: 20 or less”}.

Y = {“about: set theory”,“level: introductory”, “pages: 18”, “author(s):

Smith”, “title: An introduction to set theory”}.

We want d(X, Y) = 0, even though X 6= Y . Reversing, if Y was a set of

requirements and X a set, representing a monograph, we want d(Y,X) > 0,

so d(X, Y) 6= d(Y,X).

From this it is apparent that reflexivity is too weak, and strict positiveness

is too strong.

If the points in a space are sets8 it is found that, because it does not take

the “span” of these sets into account, the triangle inequality is too restrictive.

Section 4.9 defines suitable properties that correspond to metric proper-

ties.

1. ⊆-reflexivity—a stronger property corresponding to reflexivity.

2. 6⊆d-strict positive—a weaker property corresponding to strict positive-

ness.

7Reflexivity, strict positiveness, symmetry, and satisfying the triangle inequality.
8Or n-tuples of sets...

1.11. INFORMATION ORGANISATION TERMS 23

3. the (span) generalised triangle inequality—a more general inequality

corresponding to the triangle inequality.

It is often usefull to be able to “base” distance functions on other distance

functions so that spaces can be nested inside one another. Flexibility is also

desirable—for example, it is often usefull to adjust the relative significance

of different dimensions.

This thesis defines a number of suitable distance functions. Theorems

and worked examples demonstrate that these functions have the desirable

properties.

If the points in a space have spans (real numbers) then the information

units attached to these points are associated with these spans. Relatively

general information units and information units containing information about

disparate topics are attached to points with greater spans than more specific

information units. So the span associated with an information unit can be a

useful indicator of the “breadth” of the information.

1.11 Information Organisation Terms

A detailed glossary of terms used in this thesis has been prepared (see Ap-

pendix C). This glossary has a dual purpose. First, it describes relevant

objects or concepts and so provides a ready reference for this thesis. Second,

it describes some important terms in the “language of information organisa-

tion”. As such, it provides a useful introduction to this thesis.

24 CHAPTER 1. INTRODUCTION

Chapter 2

The Organisation of

Information

2.1 Overview

This chapter reviews the literature surrounding the topic the organisation of

information.

As is discussed in section 1.6, the literate does not provide broad formal

definitions of information, so fails to adequately answer the question “what is

information?” Similarly, while the literature does develop numerous systems

to organise information, many of which appear to promote understanding,

these systems do not appear to be based on any theoretical study which

addresses the question “how should information be organised to promote

understanding?”

Section 2.3 reviews traditional classification. Faceted classification

solves a number of problems and remains somewhat underdeveloped. It may

be that “classification” and “information” are not really distinct concepts.

Section 2.4 discusses computer filesystems. A computer filesystem or-

ganises computer files, which can encode a great variety of information. Com-

puter filesystems are generally hierarchical. Often additional search tools are

required.

Section 2.5 focuses on the database. It appears that computer filesys-

25

26 CHAPTER 2. THE ORGANISATION OF INFORMATION

tems can be treated as a type of database.

Section 2.6 reviews information retrieval. The retrieval of information

using an information retrieval system—generally relies on polythetic

classification, while data retrieval—that is, the retrieval of information us-

ing a database management system—generally relies on monothetic

classification.

Section 2.7 discusses data warehousing. Data warehousing increasingly

involves using a number of dimensional data marts to provide specialised

business data analysis.

Section 2.8 reviews the Internet, the World Wide Web and the Se-

mantic Web. Both the internet and the world wide web have been suc-

cessfull in communicating huge amounts of information. Our assessment is

that the semantic web, while attempting to address important issues, tries to

solve too many problems at once—without the benefit of a clear and precise

understanding of what is being attempted.

Section 2.9 discusses and summarises these reviews. Research efforts into

the problem of the organisation of information have been isolated and frag-

mented and have failed to identify the “big picture”. The research community

must respond to the information explosion with a thorough investigation of

the problem of the organisation of information.

Section 2.10 outlines what has been achieved in this chapter. The chapter

surveys and reviews the literature relating to the topic of the organisation of

information. The literature appears to be somewhat fragmented, lacking a

common theoretical basis.

2.2 Introduction

As is discussed in section 1.7, the literate does not provide broad formal def-

initions of information, so fails to adequately answer the question “what is

information?” Similarly, while the literature does develop numerous systems

to organise information, many of which appear to promote understanding,

these systems do not appear to be based on any theoretical study which

addresses the question “how should information be organised to promote un-

2.3. TRADITIONAL CLASSIFICATION 27

derstanding?” As will be seen from the literature review in this chapter the

relevant literature is generally more focused and is centred around the dis-

cussion, modelling and analysis of practical applications that seek to provide

a solution to specialised “information organisation” problems.

2.3 Traditional Classification

The term “classification” has been described as “[a] division or category

within a system... [89]” Another meaning is “[the] process of putting things

into groups according to similarities or relationships[89].” “Classification” is

also used as an abbreviation for “classification system.”1

The purpose of classification has been described as

...to show relatedness or association between documents. Associ-
ation between documents may be shown by placing them in the
same class or it may be exhibited by showing relatedness between
the two classes containing those documents [93] (p130).

From its earliest beginnings, the science of classification has been inter-

twined with the development of human thought.

The history of classification is almost necessarily a history of the
attempts to organise human thought. Since man began his long
endeavours to distinguish and understand the parts of his uni-
verse, he has consciously or unconsciously formed some system in
which those parts were related to one another [93] (quoting W.C.
Berwick Sayers)

In the 18th century, Carolus Linnaeus created the tree of life—a hier-

archical classification scheme of life: kingdom, family, class, order, family,

genus and species. His classification scheme was based on how organisms

looked (their phenotype). In the mid-19th century Ernst Haeckel (a con-

temporary of Charles Darwin) used the metaphor of a tree to describe the

evolutionary relationships among living organisms (a phylogeny) [61].

1Classification has also been used to refer to “...the process of identifying that informa-
tion which requires protection in the interests of preserving national security [69].” This
is not how the term is used in this thesis!

28 CHAPTER 2. THE ORGANISATION OF INFORMATION

Perhaps inspired by the tree of life, Melvil Dewey developed the Dewey

Decimal Classification, abbreviated DDC, scheme (circa 1875). One of

the main advances of DDC was that it specified a relative ordering of books

(to one another).

Before DDC, it was standard practice for libraries to organise their col-

lections by assigning each book a particular location on their shelves (an

absolute ordering system) [81]. This system could not readily accommodate

changes to the library’s collection such as the purchase of new books, or the

retirement of old books.

In 1996:

... [DDC] is used in 135 countries and translated into more
than thirty languages. It is certainly the classification system
best known by most library users in the United States. Ninety-
five percent of all U.S. public and school libraries and a quarter
of all college and university libraries use this system. [81]

The DDC system was the basis for the Universal Decimal Classifica-

tion, abbreviated UDC, scheme (circa 1900) developed by Paul Otlet and

Henri La Fontaine. The UDC builds on DDC, making use of the concept

of a “universe of information”, and including auxiliary signs (e.g. +, /, :)

to express relations of various kinds between two (or more) subjects. The

UDC was nurtured, since its conception, by the International Federation for

information and Documentation (FID), which was called the Institut Inter-

national de Bibliographie (IIB) until 1938 [64]. In 1992 the UDC Consortium

(UDCC) took over from FID, assuming ownership of UDC [96].

The UDC scheme appears to be a faceted classification system, although

it predates the notion of faceted classification (attributed to Ranganathan

circa 1930, see section 2.3.1)!

In Australia, the CSIRO uses UDC to index their library (see [2]), al-

though to date no attempt has been made to use the faceted properties of

UDC to create a “multi-faceted” search tool.

The Library of Congress developed its own classification system, ab-

breviated LCC, around 1900. LCC was clearly strongly influenced by DDC,

2.3. TRADITIONAL CLASSIFICATION 29

one main difference being that main classes in LCC are represented by letters

rather than decimal numbers [81]2.

The other main difference between LCC and DDC is that LCC simply

attempts to classify the books appearing in the library of congress, while

DDC is an attempt to classify all knowledge.

2.3.1 Faceted classification

The DDC is largely an enumerative classification—essentially a list of

classes. It is also a top-down classification—the root of the classification

hierarchy corresponds to the entire universe, with ever smaller subdivisions

towards the leaves of the tree.

Another approach is to synthesise classes by joining together a number

of separate concepts. This is called analytico-synthetic classification.

In faceted classification, subject matter is organised by first identifying

a number of fundamental categories, also known as facets. Key terms are

grouped into facets and—for complex subjects—may themselves be hierar-

chically organised (within each facet). “Building-up” classes from component

terms in this way is called bottom-up classification. [16]

Example 2.1. We want to develop a faceted classification scheme to classify

socks. The facets colour, pattern, yarn, purpose, and length seem suitable.

Colour terms include black, grey, brown, green, ... Pattern terms include

plain, striped, spotted, checkered, ... etc. Classes are formed by selecting a

term from each facet. In this way we have ready made classes for ‘green,

checkered, cotton, work, calf-length’ socks and ‘grey, plain, wool, hiking,

knee-length’ socks etc.

Note that an enumerative form of the classification scheme described in

the example would be far longer and require substantial repetition.

2In [70] Palmer notes with suspicion that DDC, (using decimal notation) managed to
find just ten main classes of knowledge, while LCC and Colon classification, using letters
to represent different classes of knowledge, found a number of main classes that closely
matched the number available letters.

30 CHAPTER 2. THE ORGANISATION OF INFORMATION

Faceted classification is attributed to Ranganathan through his “colon

classification” scheme, which he began work on in 1924 [93, 13]:

The presence of books with multi-faceted subjects was a fact [...]
Library classification should reckon with them [93] (quoting Ran-
ganathan).

The concept of faceted classification has influenced the development of

other major classification systems. As already noted, although it predates

faceted classification by some 30 years, Universal Decimal Classification [96]

is close to being simply a faceted version of Dewey Decimal Classification.

Bibliographic Classification 2, abbreviated BC2, is a faceted version of Bliss’s

Bibliographic Classification[14].

It is a general failing of faceted classification schemes that they seem to be

more about determining an appropriate classification for books (knowledge)

than providing an effective index:

It must be realised that synthesis of notation is a device to help
the classifier, not the user. It enables the classifier to specify com-
posite subjects which may not have been foreseen by the classifi-
cationist (i.e. the compiler of the scheme) but which nevertheless
arise in documents. [38] (p16).

2.3.2 ISBN, ISSN, MARC and CIP

The International Standard Book Number System, abbreviated ISBN,

was developed to allow book publishers and distributors to use computers to

automate inventory control and order processing. It was introduced in the

United Kingdom in 1967 and approved as ISO standard 2108 in 1970. In

1984 the ISBN system was extended to cover computer software.

In January 1, 2007 ISBN numbers changed format from 10 digits to 13

digits as numbers were running out. The new format numbers will include a

three digit prefix that identifies the industry. This will make ISBN numbers

identical with machine readable EAN-13 barcodes. ISBNs will initially be

prefixed with 978. As existing numbers are used up, ISBNs will be assigned

with the prefix 979.

2.3. TRADITIONAL CLASSIFICATION 31

The new format ISBN number is divided into five parts of variable length,

separated by hyphens or spaces. The five parts are: the three digit industry

prefix, the group identifier (identifying a country, area, or language; up to five

digits long), the publisher identifier (smaller for larger publishers), the title

identifier (identifies a specific edition; up to six digits long; may be preceded

by space filling zeros), and the check digit [41].

Note that the ISBN does not attempt classify the “content” of publica-

tions.

Figure 2.1: A 13-digit ISBN with EAN-13 bar code

The International Standard Serial Numbering System, abbrevi-

ated ISSN, has a completely different format and administrative body to the

ISBN. While ISBN numbers are intended to identify monographs, ISSN num-

bers may be assigned to an entire series of monographs, where each individual

monograph in the series has its own ISBN.

An ISSN number consists of seven digits (assigned free of charge by the

ISSN International Centre), followed by a check digit (which may also be an

upper case ‘X’), and preceded by the letters ISSN. The eight digits that make

up the ISSN number are separated into two groups of four by a hyphen [3].

Note that, just like the ISBN, the ISSN does not attempt classify the

content of publications.

The library of congress cataloguing-in-publication data, abbreviated

CIP, is a condensed version of the machine readable record, abbreviated

MARC. The purpose of the CIP is to provide libraries with detailed catalogu-

ing information in a standard format along with each book. Participating

publishers provide the LOC with the full text of material nearing publica-

32 CHAPTER 2. THE ORGANISATION OF INFORMATION

tion, and (in theory) receive a catalogue record (CIP data) generated by the

LOC in time for publication, which they print unaltered in the title page of

the published book [68].

The full MARC contains additional information and is available on the

LOC online catalogue. It is distributed in electronic form to libraries, pub-

lishers, and suppliers. MARCs are organised into bibliographic, authority,

holding, classification, and community information format blocks. The bib-

liographic block includes author, title and (multiple) subject classification

fields as well as physical (number of pages, size, binding) property infor-

mation. Individual fields can be decoded according to a complex system

involving information contained in leaders, directories, three digit tags, and

terminating characters[47].

2.3.3 A critique of traditional classification

Classification schemes impose a structure on knowledge.

It must be clearly borne in mind... that the classification of
knowledge should be the basis of the classification of books: that
the latter obeys in general the same laws, follows the same se-
quence... A book classification... is a classification of knowledge...
[13] (preliminary pages, quoting W.C. Berwick Sayers).

...in general the closer a classification can get to the true order of
the sciences and the closer it can keep to it, the better the system
will be and the longer it will last [13] (preliminary pages, quoting
Ernest Cushing Richardson).

Because human knowledge is imperfect, and our understanding of the

universe is constantly evolving, the way knowledge is organised in classifica-

tion schemes needs to evolve along with human understanding. Yet, to be

considered useful and reliable, classification schemes need to remain constant

over time.

Classificationists have dealt with these conflicting requirements by using

hierarchical classes. As human understanding of a subject area evolves, fur-

ther levels are added to the hierarchy. Class numbers for these new levels

2.3. TRADITIONAL CLASSIFICATION 33

consist of the class number for the base class, with added symbols assigned

to differentiate between the new classes.

In this way the general structure of the classification scheme is preserved

and the existing class numbers do not change. As the class numbers provide

“access paths” to books, this access path consistency is reassuring to users.

Hierarchical classification schemes however do have their shortcomings.

One limitation is that they only provide a single organisational perspective.

For example, Dewey’s subject classifications are of little use if one is attempt-

ing to locate a book with a particular title, or by a certain author. It is also

often inconvenient that each book can only be assigned a single subject as

books are often “about” multiple subjects.

Fortunately faceted classification can solve these problems.

Another problem common to both faceted and hierarchical classification

schemes occurs when subjects develop unevenly. When this happens, sub-

jects at a low level of the hierarchy (with long class numbers) are further

expanded (creating even longer class numbers) while subjects nearer the top

of the hierarchy (with shorter class numbers) remain undeveloped. Ulti-

mately, these imbalances provoke structural changes to the class hierarchy.

When this occurs, class numbers need to be reissued. This access path in-

consistency is undesirable3.

Sometimes weak classification systems need to be augmented by provid-

ing further classifying information within the classified objects themselves.

Conversely, especially effective classification systems may be able to represent

information traditionally contained within classified objects.

In fact, with a richly descriptive classification system... the infor-
mation in the classification system becomes a valuable resource
in its own right. In many cases one will find that information
that was previously provided in the classified documents, such as
the structure of the organisation, information about project par-
ticipation and ownerships, etc. is duplicated in the classification
system [40].

3The dynamic dimensions, discussed in section 3.3 scenario 1, may suffer from access
path inconsistency.

34 CHAPTER 2. THE ORGANISATION OF INFORMATION

It is noteworthy to observe that all scientific research is, in a sense, also

classification research. For example, research papers define and relate ideas in

the text of the paper. Research papers also describe and define relationships

between other research papers through citations and the reference list.

It may be that if precise and universal definitions of “classification” and

“information” existed, the distinction between classification and information

would not be clear-cut. To illustrate, data can be described as informa-

tion minus context, information as data plus context and classification as

information plus context.

Following this nomenclature, a set of numbers—without any context to

indicate what the numbers mean—would be data. A table of numbers plus a

description of what the numbers signify, some analysis and an interpretation,

would be information. Classification adds further context to information—

context that relates that information to other information. But information

already includes context!

Non-fiction books are associated with titles, authors, call numbers, pub-

lishers, publication dates, ISBNs, CIPs, languages, subjects, contents, glos-

saries, indexes, references, chapters, sections, subsections,... All of this in-

formation is “in the book”. Some of this information might be part of a

particular classification of a book—precisely how much is somewhat arbi-

trary.

2.4 Computer File Systems

Computers read and write digitised information to and from a variety of

media. At the most basic level, reading a block of data from a disk requires

that the disk drive is operational and properly connected to the computer, the

disk is rotating at the correct speed and the read-head is positioned over the

correct sector and track. When these conditions are satisfied the read-head

is activated and information is read off the disk until the end of the block. If

the operating system implements multiprogramming—as modern operating

systems do—it is also necessary to check that another process is not currently

writing to that particular block. If the operating system implements some

2.4. COMPUTER FILE SYSTEMS 35

from of data security it is necessary to check that the user has clearance to

access the data.

The encoding scheme and data type must also be recognised before digi-

tised data can be put to use—should the sequence of 0s and 1s in the data

block be interpreted as a number, a sequence of numbers, an image, text,...

etc.

The concept of the computer file is an abstraction—an interface that

allows access to information without the need to explicitly consider details

such as the data’s location on disk, block length, process blocking, security,

encoding, ... etc. Files are identified by name. Many operating systems

support two-part file names with each part separated by a period. The second

part, called the file extension, indicates the type of the file. For example the

file extension “.txt” normally indicates that “letter.txt” is a text file.

The file abstraction suggests that files “contain” data. The operating

system achieves this helpful deception by mapping the file name to a block

(or blocks4) of data on disk (or other media).

There are numerous different ways information can be “packed” into files.

Pile files, for example, contain variable length records. Records may have

different fields, or similar fields in different orders. In index sequential files all

records are the same length and consist of the same number of fixed-length

fields in a particular order. One field—usually the first in each record—is

called the key field. The key field uniquely identifies each record. Records in

index sequential files are ordered by their key field value.

Files have a number of attributes such as file name, address, creator,

owner, creation time, time of last access, current size, ... etc. A number

of different file systems—each specifying its own list of file attributes—are

currently in use.

User demand for a file organisation system led to the development of

the concept of the directory. A directory is a special type of file that can

“contain” other files. Directories are sequential files where each record is a

4Many operating systems support file segmentation—where a single (variable sized)
file is mapped to a number of (fixed sized) data blocks called segments. This facilitates
effective memory management.

36 CHAPTER 2. THE ORGANISATION OF INFORMATION

list of file attributes. The file name is the key field. Operating systems can

use directories to “look-up” data corresponding to files.

Directories are used in hierarchical file systems. For example, in the

Unix operating system the “root” directory—often designated by /—forms

the base of the hierarchy. Files can have the same name if they are not

in the same directory. Files can be unambiguously identified using their

absolute path—the path from the root directory, through subdirectories, to

the file—the symbol / separates directory names. For example the absolute

path /usr/shared/dictionary.txt refers to the file dictionary.txt in the shared

directory in the usr directory in the root directory.

Most operating systems also implement link files that record the absolute

address of another file—the file they “link” to. Link files effectively allow

hierarchical file system files to be located via a number of different paths.

[60, 88, 92]

The term “file system” (also written “filesystem”) has been defined as “a

structure for keeping and locating data in files ...[66].” Of course the purpose

of a filesystem is to make it easy to find and access these data files.

2.4.1 A critique of computer file systems

While hierarchical computer file systems have demonstrated the ubiquity of

hierarchical classification, they have also demonstrated the shortcomings of

this approach. Additional search tools are required as files can easily get

lost in large—arbitrarily arranged—hierarchies. The restriction that files be

indexed solely by name has also proven inconvenient. It would be useful to

be able to group and retrieve files by type, size, owner, creation date, ... and

other attributes as need dictates.

2.5 The Database

The earliest known use of the term “data base” was in November 1963, when

the System Development Corporation sponsored the symposium “develop-

ment and management of a computer-centred data base”[91]. In March 1976

2.5. THE DATABASE 37

the journal “ACM Transactions on Database Systems” was launched with

papers selected from the international conference on very large data bases:

September, 1975[45]. Prior to this, the term “databank” was also used with

the same meaning.

Although it appears that “database” was introduced without, a variety

of definitions have since been attempted. Although simplistic definitions

abound, such as “a model of some aspect of the reality of an organisation[54,

12]”, the general consensus appears to be better reflected by definitions such

as

A shared collection of logically related data, and a description of
this data, designed to meet the information needs of an organisation[95].

Most authors agree that a database must either be shared, or have the

capacity to be shared, between a number of users or programs. So, in general,

databases must address security and data integrity issues common to multi

user systems.

There is also general agreement that databases are self describing. Usu-

ally a database includes a data dictionary5—kept separate from the data

itself—that describes the data in the database. This is intended to provide

program–data independence, that is, to make it easy for a number of different

programs to use the same database.

There is greater agreement on the meaning of other terms relating to

databases. A database management system, abbreviated DBMS, is “a

software system that enables users to define, create, maintain, and control

access to the database[95].” A database system is “a collection of ap-

plication programs that interact with the database along with the DBMS

and database itself[95].” An application program is “a computer program

that interacts with the database by issuing an appropriate request... to the

DBMS[95].”

The relational model, introduced by Codd in [24], provides the theoret-

ical basis for most databases. Indeed the term relational database—that

5Also known as a data directory, system catalogue, or metadata.

38 CHAPTER 2. THE ORGANISATION OF INFORMATION

is, a database based on the relational model—is often taken to be synony-

mous with the term database. Section 4.2.6 discusses the relational model in

greater detail.

Data can be reasonably defined as “raw facts without structure or con-

text” and information as “structured data in context.” If these definitions

are followed then Codd’s “atomic values” are data while his relations—that

provide a structure and context for the data—are information. So although

Codd called his model the “relational model of data[24]”, “relational model”

would be a less controversial name as it is arguable whether it is a model of

data, or a model of information.

Structured query language, abbreviated SQL, was introduced by Cham-

berlin and Boyce in [21]. SQL is a language for querying databases; it pro-

vides an interface between users or application programs and their database.

SQL further promotes program–data independence as SQL statements are

easily copied from one application program to another—even if the applica-

tion programs are written in different languages.

2.5.1 Critique of the database

Although database systems are often contrasted with file-based systems[95]

(called “file processing systems” in [55]) it may be more accurate to treat

filesystems as a type of database.

One reason for the continued distinction between filesystem and database

topics is that each topic has built-up its own distinct terminology and paradigms

that make it difficult to appreciate the commonality of purpose that underlies

these topics.

2.6 Information Retrieval

Calvin Moores coined the term “information retrieval” in his 1948 M.I.T.

Master’s thesis[39]. According to [7], information retrieval, abbreviated IR,

“deals with the representation, storage, organisation of, and access to infor-

mation items.” More specifically, IR is about modelling user information

2.6. INFORMATION RETRIEVAL 39

needs with queries, and then matching these queries with “documents” in a

collection.

The document then is the fundamental “information unit” of IR—just as

atomic values are the fundamental information unit in the relational model.

Originally, information retrieval “documents” were actual paper and print

documents that physically existed. Over time the term has become more

general and now can refer to any information at all. Often the information

is in the form of a computer file.

An IR system then is a mechanism—usually a computer program—that

accepts queries and outputs sets of documents that it deems to be “relevant”

to these queries. In early IR systems, a document was either relevant to a

query or it was not. If a document was deemed relevant to a query by the

IR system then the document was said to be “retrieved” by the query. More

recent IR systems attempt to rank documents according to how relevant

they are to the query, rather than divide the collection into retrieved and not

retrieved documents.

IR has been contrasted with data retrieval systems (relational databases

for example). According to some, IR queries are “inherently vague” and

so sets of retrieved documents are “not exact” [90] while, in data retrieval

systems “a single erroneous object among a thousand retrieved objects means

total failure[7].” This is unfortunate as precise and accurate IR becomes a

contradiction in terms!

The distinction between information and data retrieval is expressed more

precisely by Rijsbergen who notes that monothetic classification involves

“classes defined by objects possessing attributes both necessary and sufficient

to belong to a class[79]” whereas, in polythetic classification “each indi-

vidual in a class will posses only a portion of all the attributes possessed by

all the members of that class. Hence no attribute is necessary nor sufficient

for membership to a class[79].” Generally, data retrieval relies on monothetic

classification whereas information retrieval relies on polythetic classification.

The vector model is perhaps the most widely used mathematical basis for

information retrieval. Section 4.2.3 discusses the vector model for informa-

tion retrieval. Probabilistic models such as the binary independence retrieval

40 CHAPTER 2. THE ORGANISATION OF INFORMATION

model, introduced in [80], are also popular.

2.6.1 Measuring the effectiveness of IR

Unfortunately it appears that no techniques have yet been devised to mea-

sure the benefits of efficient and effective IR. These benefits, such as reduced

research and development time and increased research quality, are quite sig-

nificant.

Measures do exist to compare and contrast the effectiveness of IR between

IR systems. Precision and recall are perhaps the most widely used of these

measures. Given the setD of retrieved documents and the set T of documents

that are relevant to a query (so D is the IR systems approximation of the

set T)

precision =
|D ∩ T |
|D|

, and

recall =
|D ∩ T |
|T |

.

Another basic measure that is sometimes used is

fall out =
|¬T ∩D|
|¬T |

.

Usually a set of queries is used, with the average precision and recall values

over all queries being used to compare IR

A significant deficiency of these measures is that the set T of relevant

documents must be subjectively determined by a “panel of experts” for each

query. This is complicated by the fact that, because queries can often be

interpreted differently, the set T may be different for different people, or

even the same person at different times.

Modern IR systems rank documents by relevance, rather than simply

determining if each document is relevant. These systems do not produce a

set D of retrieved documents. In order to compute precision and recall values

2.6. INFORMATION RETRIEVAL 41

for such systems we define

pj =
|Dj ∩ T |
|Dj|

,

rj =
|Dj ∩ T |
|T |

where Dj is the set of the first j ranked documents. So, if dj is the jth ranked

document, Dj = {d1, ..., dj}.
One method to compare modern IR systems involves plotting points

(rj, pj) for each j = 5, 10, 15, 20, 30, 50, 100. The resulting curve, after con-

necting the points, is indicative of the effectiveness of the IR system and can

be used to compare and contrast IR systems.

It is often desirable to compute a single value to use to compare IR

systems. There are various different functions that have been used for this.

The average precision at seen relevant documents value is the average pj for

each relevant document dj. The R-Precision value is p|T |.

Various methods exist to combine precision and recall measures. The

precision at recall level r value is pj for the j where rj = r. The harmonic

mean of precision and recall values for the set Dj is

Fj =
2pjrj

pj + rj

.

See [7, 79, 86].

2.6.2 A critique of IR

IR, as it currently exists, has a number of weaknesses. While not explicitly

a requirement, IR systems rely on keywords—perhaps with supplementary

information such as weighting and word position—to index documents. User

information requests are also processed into queries that consist of keywords.

Much of the imprecision in IR is due to the fact that sets of keywords often

fail to adequately model user information requests and documents. This is

especially apparent if the documents are research papers. Researchers often

42 CHAPTER 2. THE ORGANISATION OF INFORMATION

need to either create new words or extend the meaning of existing words to

adequately describe aspects of their research.

When researchers create new words and these words are used to index

their research papers, information “islands” are created. In order to dis-

cover a research island, one must know the special terminology that is used

on that particular island, but if you know the terminology, then you must

have already discovered the island! This isolating circularity creates research

communities that are unaware of parallel research in related fields.

When researchers extend the meaning of existing words and these words

are used to index their research papers, information “swamps” (also known as

“infogluts[90]”) are created. Keyword searches that include a polyseme (that

is, a word that has different, but related, meanings) or a homonym (that is, a

word that has different unrelated meanings) tend to retrieve documents that

do not use the word with the meaning that the user intended and hence are

not about what the user requires.

The solution to these problems may involve providing some kind of dictio-

nary of keywords, and differentiating between each of the specific meanings

of polysemes and homonyms. The gene ontology[35] is one such research

effort. In many IR systems, even without differentiating between specific

meanings of polysemes and homonyms, thousands of keywords are used to

index documents. Providing a readily browsable dictionary of keywords for

these systems would be quite problematic.

IR systems rely on the (polythetic) classification of documents—all doc-

uments that are retrieved by a query belong to the same class. IR sys-

tems break a fundamental rule of classification, see section 2.3.3, in that

these classes do not reflect “real” divisions of knowledge. Indeed by using

homonyms, it is possible to create separate documents that, while being about

completely different things, are retrieved by the same queries. Similarly, us-

ing synonyms, it is possible to create separate documents that, while being

about the same thing, may never all be retrieved by the same query.

By inverting the similarity function used to rank documents, it is of-

ten possible to create a function that gives a “difference” between docu-

ments. However—because IR classes are not based on sensible divisions of

2.6. INFORMATION RETRIEVAL 43

knowledge—these differences are simply not useful as anything but plagia-

rism detectors.

IR systems sometimes automatically choose the keywords used to index

documents from documents in the collection. Generally keywords that occur

in too many or too few documents are not used. Because adding and remov-

ing documents to and from the collection changes the relative frequency of

keyword occurrence in the collection, adding documents can have the effect of

adding or removing keywords from the index—as can removing documents.

In some systems weights are also assigned to keywords in the index. If

weights are associated with index keywords, these can also change. As a

result of this, a query that retrieved a particular document may not continue

to retrieve the document after documents are added or removed from the

collection. As discussed in section 2.3.3, indexing consistency over time is

desirable and access path inconsistency such as this should be avoided.

Library users enjoy the benefits of a significant amount of information

not contained in the classification scheme. The size and style of the library

building; the layout of the shelves; the weight and smell of a book; the colour

and feel of the pages; the number, age and browsing habits of other library

users. This is all helpful information about the use and usefulness of the

library collection. Library users cannot help but add to their knowledge

of the extent and organisation of the library collection simply by walking

through the library building. Cues such as these are not well emulated by

IR systems.

As has been discussed, computer filesystems are “a method for storing and

organising computer files and the data they contain to make it easy to find

and access them.” While information retrieval “deals with the representation,

storage, organisation of, and access to information items.” It is implicit that

these “information items” are computer files of some description. It would

appear that definitions of computer filesystems and information retrieval,

such as these, could easily be interchanged. It is possible to conclude from

this that computer filesystems can be information retrieval systems and that

information retrieval systems can implement computer filesystems.

44 CHAPTER 2. THE ORGANISATION OF INFORMATION

2.7 Data Warehousing

There are two central personalities in the data warehousing community: In-

mon, who advocates entity relationship (third normal form) data warehouses[50]

and Kimball, who advocates dimensional models[75]. Although there is sub-

stantial overlap in the points of view of these two authors, they disagree on

many important aspects of data warehousing.

When there is disagreement, this review adopts Kimball’s position. There

are a number of reasons for this:

1. dimensional models have become the dominant paradigm for data ware-

housing in recent years;

2. dimensional models are quite relevant to this thesis;

3. Inmon’s criticism of dimensional models in [49] appears to be based on

a number of misunderstandings.

Generally data warehousing is about building databases that have been

optimised for analysis. Data warehouses are contrasted with operational

databases that record and retrieve the everyday transactions of an organ-

isation. While a data warehouse is a generic solution to a business’s data

analysis needs, data marts provide specialised analysis. According to Kim-

ball’s vision, a data warehouse consists of number of data marts.

Dimensional data marts are commonly implemented either by using a

star-join schema and a relational database6, or a multi-dimensional data

cube.

A star-join schema consists of a single fact table and a number of di-

mension tables. The primary key in the fact table consists of a number of

domains that are foreign keys7. Each of these foreign keys is the primary key

in one of the dimension tables. Domains in the fact table that are not foreign

keys are generally numeric and their values can be meaningfully summed[75].

A number of terms have been used to informally describe operators on

dimensional data marts. These operators are used to produce reports that

6See section 4.2.6 for a discussion of the relational model.
7See section 4.2.6 for definitions of “the primary key” and “foreign key.”

2.7. DATA WAREHOUSING 45

summarise the data. These reports are themselves tables with domains cho-

sen from dimension and fact tables. These operators slice and dice the data

mart: they use arbitrary dimensional constraints to aggregate fact table data.

Drill down operators expand reports to show more detail by adding further

domains (table columns). Drill up operators summarise reports by removing

domains (table columns)[75].

46 CHAPTER 2. THE ORGANISATION OF INFORMATION

Example 2.2.

Time Dimension Table
Time id
week
month
year

Fact Table
Time id
Location id
Product id
Employee id
Sales

Location Dimension Table
Location id
State
City
Postcode
Store

Product Dimension Table
Product id
Product Type
Description
Supplier
Wholesale price
Margin

Employee Dimension Table
Employee id
Name
Contact
Responsibilities
Salary

Table 2.1: Simplified Star Schema for Nationwide Retail Chain

In the star schema data mart illustrated, the data is sliced and diced to

answer question “what was the total profit—week 5, all products, all em-

ployees?” In response to which, the data mart might generate the report:

Week 5 Total Profit

$517 567

Where “profit” is determined my multiplying the sales volume of a prod-

uct with its margin. Following on from this, users might drill down by state,

perhaps generating the report:

2.7. DATA WAREHOUSING 47

Week 5 NSW QLD VIC WA NT TAS SA

Total Profit $120 583 $97 187 $85 249 $69 357 $65 184 $48 797 $31 210

Uses can continue to drill down by Product Type, generating the report:

Product Type NSW QLD VIC WA NT TAS SA

consumable 38 452 27 561 24 386 21 175 20 576 16 037 11 056

power tool 31 014 24 398 22 009 17 485 17 625 12 867 10 465

hardware 29 764 25 875 23 187 19 321 17 662 12 987 7 105

gardening 10 873 10 267 8 393 7 012 6 403 4 974 2 035

sale item 10 480 9 086 7 274 4 364 2 918 1 932 549

Week 5

Total Profit $120 583 $97 187 $85 249 $69 357 $65 184 $48 797 $31 210

If users wish to focus on South Australia, they can drill up on SA, generating

the report:

Product Type SA

consumable 11 056

power tool 10 465

hardware 7 105

gardening 2 035

sale item 549

Week 5

Total Profit $31 210

Of course the actual values in these reports would depend on the data stored

in the data mart.

Data warehousing is closely related to a number of other topics including

on-line analytical processing, abbreviated OLAP8,data mining, web farming,

executive information systems (EIS), decision support systems (DSS), and

business intelligence (BI).

8Section 4.2.7 discusses OLAP briefly.

48 CHAPTER 2. THE ORGANISATION OF INFORMATION

2.7.1 Critique

The huge amount of data that is being collected and stored can be a valu-

able resource—if managed and analysed correctly. By making this resource

available, data management and analysis tools—like data warehouses—can

be quite valuable. The commercial world is beginning to realise this. This

has resulted in an explosion of interest in this area. However, science has yet

to catch up with this rapidly developing area and many of the publications

on these topics have little—even inadequate—scientific basis.

Formal definitions and mathematical models are scarce and, as a result,

there are a number of different opinions on precisely what data warehousing is

and how it should be done. This inconsistency and imprecision is undesirable.

As data warehousing itself acknowledges.

Information from one business process should match with in-
formation from another. If two performance measures have the
same name, then they must mean the same thing. Conversely,
if two measures don’t mean the same thing, then they should be
labelled differently... Consistency also implies that common def-
initions for the contents of the data warehouse are available for
users[75].

If the metaphor of an n-dimensional space is taken seriously, points in the

space are n-tuples of dimension table primary keys (foreign keys in the fact

table). Row values in the fact table that are not part of the primary key are

information associated with points in the space. Row values in dimension

tables that are not primary keys are used to select sets of dimension table

primary keys, and so specify regions in the space.

2.8 The Internet, World Wide Web

and Semantic Web

2.8.1 The internet

The Internet is a worldwide computer network. Computers attached to the

internet, called “hosts”, communicate with one another by sending “packets”

2.8. THE INTERNET, WORLD WIDE WEB AND SEMANTIC WEB 49

of information. Smaller computer networks are connected together using

dedicated packet-switching computers called “gateways” or “IP routers” or

“Intermediate Systems”[94].

The internet protocol suite specifies how information is transmitted be-

tween computers in the network. The internet protocol suite is organised in

“layers”, with each layer providing the services required by the layer above.

Although the open systems interconnection basic reference model, abbrevi-

ated OSI reference model, describes seven layers [105], the internet protocol

suite is not consistent with this model and formally has four layers: appli-

cation, transport, network and datalink[94]. In practice, a fifth “physical”

layer—supporting the datalink layer—is sometimes added.

To communicate using the Internet system, a host must implement the

layered set of protocols comprising the Internet protocol suite. A host typi-

cally must implement at least one protocol from each layer [94].

2.8.2 The world wide web

The world wide web, abbreviated www or web, is a marriage of hypertext

to the internet. There are five key technologies, developed for the www,

that make the www possible: hypertext markup language, uniform resource

identifiers, hypertext transfer protocol, web browsers, and web servers.

Hypertext markup language (HTML) is used to structure web pages.

HTML can also include embedded scripting language code which can affect

the behaviour of web browsers and other HTML processors[27]. In 2000,

HTML became an international standard (ISO/IEC 15445:2000)[37].

Uniform resource identifier (URI), syntax is used to identify and

locate web pages. If a page is available on the internet, its URI includes

a domain name, which is associated with an internet protocol (IP) address

(IP is a network layer communication protocol[94]) by the domain name

system (DNS)[9, 65]. All URIs are formed with a scheme name, followed by

a colon character, and the remainder of the URI.

Hypertext Transfer Protocol (HTTP) is an application layer commu-

nications protocol used to transfer information “on the www”. Its main use

50 CHAPTER 2. THE ORGANISATION OF INFORMATION

has been to help publish and retrieve HTML hypertext pages. Resources to

be accessed by HTTP are identified using URIs using the http or https URI

schemes. HTTP communication usually takes place over TCP/IP internet

connections[36]. TCP is a transport layer communication protocol.

Web browsers are software applications that display web pages and

allow users to follow hyperlinks to other web pages.

Web servers are computers (or computer programs) that accept HTTP

requests from web browsers and “serve” HTTP responses along with web

pages—such as HTML documents and linked objects (images, etc.).

After a web browser user types the URI of a web page into a web browser,

or follows a hypertext link to that page, the web browser resolves the URI

into an IP address using the DNS. The browser then requests the resource by

sending an HTTP request to the web server at that address. Having received

the required files from the web server, the browser then renders the page onto

the screen as specified by its HTML (and other web languages). Any images

and other resources are incorporated to produce the on-screen web page that

the user sees.

2.8.3 The Semantic Web

Although there were earlier rumblings, such as [11], [10] is generally accepted

to be the initial position paper for the “Semantic Web”. In essence, the

semantic web is an attempt to establish a framework to support a new class

of “software agent” that “understands the web”. The plan to achieve this is

centred around creating “ontologies” that allow web content to be “marked-

up” with “meaning” tags—just as HTML tags currently mark-up web pages

with “structure” tags.

At the core of the semantic web is this attempt to define formal “knowl-

edge ontologies” that describe and relate knowledge. These ontologies are

precisely what is required to improve IR (see the discussion in section 2.6.2).

However the semantic web is far more ambitious that this!

A motivational idea behind database systems is to allow a number of

independent application programs to work with the same collection of data.

2.8. THE INTERNET, WORLD WIDE WEB AND SEMANTIC WEB 51

The database software design philosophy of separating data structure, storage

and retrieval from “programming logic” is time tested and has proven highly

effective. The semantic web represents an attempt to extend this idea—

turning the entire web into a self describing database.

Perhaps the main weakness of the semantic web project is the scope of its

ambition. Despite many decades of trying, artificial intelligence, abbreviated

AI, researchers have not been able to accomplish the wholesale translation of

human knowledge into “machine comprehensible” format. It is also not clear

that the semantic web project has developed any substantial new theory to

tackle this problem.

It may have been better to present the semantic web as an effort to:

1. support and improve IR—by identifying keyword polysemes, homonyms

and synonyms—and

2. develop a class of software that uses IR—similarly to how existing

database applications use databases.

It seems likely that a modest expression of the goals of the semantic web such

as this—clearly not requiring the development of new AI theory—would have,

more rapidly, resulted in practical achievement.

It may also be true that reputable research journals would have less hesita-

tion publishing “semantic web” articles if the initial article [10] was published

in a research journal, rather than a popular, albeit scientifically orientated,

magazine.

However the semantic web is interpreted, activity aimed at creating knowl-

edge ontologies should not be lightly disregarded. This is vital work. Agreed

“meaning ontologies” need to be developed to assist in navigating the de-

veloping “terminology jungle”9. Furthermore, the idea of improving IR to

the point that applications can rely on IR, rather than data retrieval, is

intriguing.

9Even the terminology and acronym inventions of the World Wide Web consortium,
abbreviated W3C, alone could benefit from such ontologies!

52 CHAPTER 2. THE ORGANISATION OF INFORMATION

2.9 Discussion and Summary

Traditional methods of organising information are becoming inadequate as

the amount information available increases (see section 2.3.3.) The research

response to the problem has been quite fragmented. In general, researchers

in the topics reviewed in this chapter appear to not be well informed about

relevant parallel research in other, related, topic areas. The similarities and

differences between these topics are also not well understood.

One could readily conclude that it is long past time for the research com-

munity to get its house in order. One way to address the problem would be

to introduce a new “organisation of information” discipline. Specialised top-

ics such as classification, databases, information retrieval, data warehouses,

etc. would become sub disciplines of this new discipline. As a discipline,

the organisation of information would map out the relationships between its

sub disciplines and provide a dictionary of common terminology. Researchers

in general could look to this discipline to assist in describing relationships

between, and providing common terminology dictionaries for, their own re-

search areas.

As yet there are no proven techniques that “solve” the problem of the

organisation of information. Faceted classification, database systems, infor-

mation retrieval, data warehousing, the internet, the web and the semantic

web provide partial and incomplete solutions.

2.10 What this chapter achieved

This chapter surveyed, reviewed and concisely summarised the literature re-

lating to the topic of the organisation of information. This summary gives

an indication of the state of the topic as a whole.

There is little evidence of any attempt to establish an overaching theoret-

ical basis for this topic. Nevertheless there appears to be significant common

ground between the numerous specialised, independently developed, infor-

mation organisation systems. This suggests that these specialised systems

may be instances of a more general, and theoretically significant, system.

Chapter 3

Knowledge Libraries

3.1 Overview

This chapter presents a number of scenarios that illustrate the use of “knowl-

edge libraries”. The key terms and concepts illustrated are listed at the be-

ginning of each scenario. A commentary is provided to help interpret each

scenario. The purpose of this section is to begin forming an understanding

of what knowledge libraries are, and the uses to which knowledge libraries

may be put.

The chapter goes on to discuss three of the main application areas of

knowledge libraries: research, education, and business. The potential impact

of knowledge libraries in each of these areas is assessed. This further clarifies

the nature and use of knowledge libraries and helps establish their value.

Section 3.5, identifies “core” knowledge library functionality. This is the

functionality that provides essential support for fundamental knowledge li-

brary features. Two classes of core functionality: administration and end use

functionality are identified.

Although security is not classed as core functionality, it is essential for

many applications. Section 6 discusses how the security requirements of

these applications can be met by specifying access restrictions on arbitrary

user classes.

Section 3.7 identifies “extended” knowledge library functionality and dis-

53

54 CHAPTER 3. KNOWLEDGE LIBRARIES

cuss how this functionality can be achieved. The core and extended func-

tionality together provide all the knowledge library functionality that section

3.3 (knowledge library user scenarios) and section 3.4 (the uses of knowledge

libraries) indicate knowledge libraries should possess.

Section 3.8 briefly summarises what has been achieved in this chapter.

3.2 Introduction

Advances in the organisation and management of information like informa-

tion retrieval, relational databases and data warehousing use computer tech-

nology to increase the speed and reliability of existing techniques.

Information retrieval automatically constructs keyword indexes of entire

collections—rather than just single documents—and automatically retrieves

digitised documents that are indexed by keywords in user queries.

Relational databases enable users to record information in data tables,

perform automated searches, and generate new tables from old.

Data mining techniques enable users to automatically search for patterns

in unindexed data and analyse the results.

In summary, computer technology has been used to:

1. construct elaborate indexes for retrieving documents;

2. organise data in tables;

3. search for patterns in data.

In all three cases computer technology has been used to automate what

were time consuming, error prone, tedious manual processes. The resulting

tools certainly open-up new possibilities and, to users more accustomed to

traditional manual techniques, may seem to offer the ultimate in convenience.

Another approach is to attempt to imagine entirely new paradigms for

information interaction—idealised tools that completely satisfy user needs

with respect to information organisation and interaction. This approach—if

successful—can lead to fundamental, rather than incremental improvements.

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 55

Notable early examples of this approach include H.G.Wells’ book “World

Brain” [98] and Vannevar Bush’s essay “As We May Think”[18]. Some of the

ideas expressed in these works were later realised by innovations such as the

computer mouse, word processing, email, hypertext, icon based interfaces,

the internet and the world wide web.

Codd, Codd and Salley’s description of “on-line analytical processing”

(OLAP) in [25, 26] is another significant visionary effort, as is Berners-Lee,

Hendler and Lassila’s article “The Semantic Web”[10]. In these cases how-

ever, the omission of mathematical definitions has lead to some ambiguity

and confusion.

This thesis presents an attempt to imagine, define, mathematically model,

design, and implement and test core functions of knowledge libraries for the

organisation and presentation of information.

3.3 Knowledge Library User Scenarios

This investigation of knowledge libraries begins by imagining—by way of a

number of user scenarios—the way knowledge libraries could be used. These

scenarios will help to clarify what knowledge libraries are, what activities

they support, and what functionalities they provide. The scenarios also in-

troduce some informal terminology, some of which will be given more formal

definitions.

Scenario 1: Joe User — I.T. company employee

Key terms introduced. Knowledge library, map, dimensions (manual,

automatic, dynamic), coordinate, region, information units, information el-

ements, attach, attach point, information space, granularity (of information

space).

56 CHAPTER 3. KNOWLEDGE LIBRARIES

Concepts illustrated. Knowledge library, dimensions, selection, ordering,

automatic report generation.

Joe User sits down at his computer and opens a knowledge library. Using

graphical displays, summary statistics and text he very rapidly sizes up the

contents of the library: its size, areas of relevance, coverage, interconnected-

ness, level of sophistication etc.

Let us call this view a map. In many ways this metaphor is quite apt. Yet

care must be exercised not to over extend the metaphor—most information

spaces are not Euclidian and cannot be readily represented by points in

Euclidian spaces and so cannot be mapped in any conventional sense.

Joe can see that the library contains a lot of information, very little of

which is relevant to the task at hand. He browses through the available

dimensions...

Each dimension orders and filters the information in the library according

to its own rules. Some of these dimensions are manual : they impose their own

fixed ordering on the information in the library that does not change. As the

library grows, new information has to be added manually to these dimensions.

Other dimensions are automatic: as new information units are added to

the library, the dimension’s ordering algorithm automatically attaches the

information to the correct coordinates in the dimension. Some dimensions are

static—the coordinates and distances do not change automatically and must

be added or removed manually. Still other dimensions are dynamic—their

coordinates and distances are generated automatically and may constantly

change as information units are added to and removed from the library1.

manual, static automatic, static
manual, dynamic automatic, dynamic

Table 3.1: Dimension types

Joe selects a number of compatible dimensions that look suitable to begin

his search. By selecting sets of coordinates in each dimension, Joe rapidly

1See the example of a manual, static dimension in section 3.5 and examples of automatic
and static dimensions in sections 3.7.1 and 3.7.2 respectively

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 57

zeros in on the information he is looking for. Whenever he makes a selection,

the map changes to depict the region he has selected.

When Joe is satisfied that the region he is currently viewing precisely

describes the information he is after, he begins browsing through some of

the information elements that are attached to a point in the space within

the region. Before he views an information element he briefly examines the

map of the point to which it is attached—getting a quick summary of the

characteristics of the information including its coordinates in the information

space.

After examining a number of information elements Joe realises he has

found what he was after. The granularity of the information space is fairly

fine—with one information element containing about a paragraph of text, or

a single diagram or image, or a single mathematical equation, theorem or

definition. The information Joe was looking for is contained in a few closely

related information elements. Joe selects a couple of further information

elements that provide useful background information. One of the dimensions

Joe has open provides a sensible ordering and with a click of a button he has

generated a report—an electronic document that includes all the information

Joe has selected. Joe adds a few notes and with the click of another button

he adds the report to another knowledge library that he and his co-workers

use to organise and share their work. ...

Commentary. Knowledge libraries rely on a spatial metaphor to organise

and present information. Let us call the “space” underpinning a knowledge

library its “information space”. In this thesis a careful definition of informa-

tion space is developed. This definition is the mathematical basis for knowl-

edge libraries. This scenario clarifies that information is, almost always, an

organised collection of other information—so a region of one information

space could easily be an information element of another information space.

58 CHAPTER 3. KNOWLEDGE LIBRARIES

Scenario 1.1: I.T. company employee manager

Concepts illustrated. Using information space as a management tool,

automatic notification; “employee”, “time”, “job type” dimensions.

[continued from scenario 1] ...In another office, Joe’s team manager observes

the rapidly growing project information space with satisfaction. Her in-

formation space has an “employee” dimension which has a coordinate for

each employee in her team, a time dimension and a number of “job type”

dimensions. She can easily observe the progress of each employee as well

as collaborations between employees. She has set her knowledge library to

notify her whenever certain performance targets are achieved or whenever

progress lags in certain critical areas. ...

Commentary. “Watching” information space regions of interest for changes

and comparing the same region over time are features with clear utility that

reinforce the spatial metaphor and underscore the desirability of having a

flexible and accurate spatial basis for information organisation. Given an n-

dimensional information space, users may well wish to add a further “time”

dimension. In this dimension:

1. “past” coordinates are attached to records of the n-dimensional infor-

mation space from the past;

2. the “current” coordinate is attached to the current n-dimensional in-

formation space—the space without the time dimension;

3. “future” coordinates can be attached to “performance targets”, “project

milestones” etc.

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 59

Scenario 1.2: I.T. company project management—time
dimensions

Concepts illustrated. Optimistic, realistic and cut-off time dimensions.

“precedence” dimensions. “milestone” information elements.

[continued from scenario 1.1] ...These key milestones had been worked out in

consultation with the client during the initial design and planning phase of

the project. The client was presented with simplified dimensions that map

out how the project would be completed in fairly broad terms—essentially

time and precedence dimensions to which “milestone” information elements

are attached. Three time dimensions were used: “optimistic”, “realistic”,

and “cut-off”. The optimistic dimension classifies milestones by their earliest

conceivable completion date. The realistic dimension classifies milestones

according to the company’s most accurate projection of when the milestone

will be reached. The cut-off dimension classifies milestones by the date, after

which, the project may be considered a failure. The precedence dimension

represents the precedence relation between milestones. ...

Commentary. The “milestone” information elements indicate how the in-

formation space should progress over time. Milestones can be compared with

information space summaries to get an indication of how “close” an informa-

tion space is to a preset target. Dependency dimensions give a partial order

of project milestones—indicating which milestones must be completed before

other milestones.

Scenario 1.3: I.T. company project management

Concepts illustrated. Access controls. Different types of information ele-

ments. Automatic report generation.

60 CHAPTER 3. KNOWLEDGE LIBRARIES

[continued from scenario 1.2] ... The client maintains the ability to monitor

the overall progress of the project through these dimensions—without being

able to access details that the company considers commercially sensitive. The

company also prepared more complex and detailed dimensions for its own

use. Managers prepare work schedules by progressively breaking up project

milestones into far more detailed and precise requirement specifications.

The information elements in the client’s information space are project

milestone specifications and progress reports. The information elements in

the company’s information space include research and progress reports, de-

tailed designs, source code, detailed project milestone specifications, individ-

ual employee information spaces...

The client can, with the click of a button, generate a progress report.

This report is automatically generated from information in the company’s

information space. In a similar process, information elements in individual

employee information spaces are automatically generated by employee activ-

ity in other information spaces. These employee information spaces are like

employee résumés. They give an indication of the employee’s value to the

company and their areas of expertise.

Commentary. This scenario outlines the use of a large and complex knowl-

edge library. Importantly:

1. Access controls can limit the availability of information in an informa-

tion space, allowing an “information subspace” with limited informa-

tion to be made more widely available and perhaps used for a different

purpose.

2. “Progress reports” can be automatically generated by comparing past

and present regions in information space.

3. User interactions with an information space can be recorded as infor-

mation elements in a more expansive information space (add “user”,

“activity” and possibly “time” dimensions).

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 61

Scenario 2: Robert — Researcher

Key terms introduced. Knowledge precedence. Knowledge space.

Concepts Illustrated. Automatic notification (new information element).

Automatic notification (unsatisfied knowledge dependencies). Knowledge de-

pendencies. Knowledge space. Distance between sets (Robert’s knowledge

space and required topics).

When Robert logs onto his computer in the morning he is greeted with a

message: it seems there has been a new publication in his field of expertise.

Robert opens the paper, but before he begins to read a warning appears on

the screen: he is informed that he hasn’t yet mastered all the topics necessary

to comprehend this paper. Robert ignores the message and begins to read the

paper anyway, but he quickly discovers that he is unable to fully understand

it.

Robert reviews the knowledge dependencies of the paper and observes

that there are only a few topics that he needs to master, and they are not

far from his personal knowledge space. It doesn’t take Robert long to extend

his knowledge space to satisfy all the dependencies. Because the paper looks

fairly interesting and complex, Robert decides to review a few dependent

topics that he hasn’t used in a while as well.

Robert reads the paper and this time it makes perfect sense—in fact

Robert can see that the paper has implications that the author did not think

about. Because, if accepted, it is a publishable result (that adds a few points

to his publication record), Robert writes a short extension of the paper,

including the new implications. Robert notes with satisfaction that after a

short on-line debate, his extension is accepted, the paper is updated, and he

is credited with a number of publication points. ...

62 CHAPTER 3. KNOWLEDGE LIBRARIES

Commentary. Robert’s area of expertise is modelled by a region in the

research information space. He has set his knowledge library to notify

him whenever information elements are attached to this region. Similarly,

Robert’s knowledge is modelled by a region in information space—this is

Robert’s “knowledge space”. The background knowledge required to under-

stand papers uses precedence links—similar to citation links. Contributions,

including extensions, to this information space are worth “publication points”

and must be assessed and accepted by referees (with appropriate background

knowledge).

Scenario 2.1: Robert—skill assignment and develop-
ment

Key term introduced. Apex topic.

Concepts Illustrated. Using information space to model skills and exper-

tise. Using distance to determine skill match. Automatic generation of study

sequence. Employee value as a function of their knowledge space.

[continued from scenario 2] ...Robert proceeds to look over the day’s work

roster. The company that he works for has been successful in winning a

number of new contracts—in part because they were able to demonstrate that

they had all the skills and expertise that the projects required. Unfortunately

the company’s unprecedented success has left it over committed—employees

with skills in key areas are already fully committed to other projects.

The company has done a search and assigned available employees with the

closest skill match to the unfilled positions. Robert has been assigned one of

these positions! He reviews his new responsibilities and notes the apex topics

he must master. A study sequence has been automatically prepared for him.

Robert notes with satisfaction that he will need to do a significant amount of

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 63

study—extending his knowledge space and making him a considerably more

valuable employee—resulting in an increased pay rate! ...

Commentary. Company employees record their knowledge in the company’s

knowledge library—effectively combining their own “knowledge space” with

the company’s. The information space has a precedence dimension—making

it possible to automatically identify viable study sequences. Employee pay

rates can even be automatically determined from their work output and knowl-

edge space.

Scenario 2.2: “The company”—information valuation

Concepts Illustrated. Company valuation as a function of the company’s

knowledge space.

[continued from scenario 2.1] ...The company has been very successful with

the types of projects it has been working on lately and is keen to expand

its operations to include larger, more complex, and more lucrative projects.

The company executives have considered expanding by recruiting more staff,

but they have decided it would be more effective to acquire a range of expert

employees all at once by buying another company. They have been negotiat-

ing with a number of partner companies and have found a good match. An

executive notes: “if company x’s knowledge space is added to our own, then

we will be in an excellent position to compete for the projects we’ve been

missing out on.”

Commentary. The systematic organisation of information in knowledge

libraries paves the way to effective information valuation. In this scenario

“the company” wants to improve its knowledge space. A monetary value

to the company of such improvements can be calculated. This enables the

company to assign a value to the knowledge space of other companies.

64 CHAPTER 3. KNOWLEDGE LIBRARIES

Scenario 3: Ruth—Research proposal development

Concepts Illustrated. Knowledge library as a file system/web

browser/database server. Security. IRIS. Using information space to demon-

strate the feasibility of research and to value information. Automatic gener-

ation of background knowledge requirements.

Ruth is beginning a new research project. Her computer desktop/file

system/web browser/database server is a fully integrated knowledge library/

information space. This single program provides an interface to all informa-

tion stored in Ruth’s computer or on the internet. Ruth has a number of

security settings. The majority of Ruth’s work is stored on her computer

at the University and (automatically) backed-up on her computer at home.

Only she can view this material. Other material is can be viewed (and per-

haps modified) by her supervisor. Yet other material can be accessed by

members of her research group. Further material (not stored on her comput-

ers) is accessible through the international research information space (IRIS).

IRIS is of particular interest to Ruth.

Ruth has just completed the preliminary phase of her research. During

this phase Ruth completed a research proposal with Supervisor. The pro-

posal document was attached to IRIS. Ruth and Supervisor were able to

demonstrate:

1. the research was feasible—given certain specified resources and within

the specified time period;

2. if successful, the research would result in valuable new knowledge;

3. Ruth and Supervisor had the necessary background knowledge/expertise

to conduct this research.

Ruth used her knowledge library to good effect—she was able to show

that the new information units her (successful) research would create would

satisfy unfulfilled requirements in a number of strategic research initiatives

and large cooperative research projects.

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 65

Thanks to the classification of her research proposal on IRIS, Ruth was

able to use her knowledge library to generate a list of all background knowl-

edge required for this research. She was also able to show, thanks to in-

formation space representations of her and Supervisor’s knowledge that she

and Supervisor, between them, satisfied much of the background knowledge

requirements. Furthermore, Ruth showed that the distances between her

and Supervisor’s current knowledge (grouped together) and the unsatisfied

knowledge requirements was not great. ...

Commentary. Computer desktops, computer file systems, web browsers

and database servers all preform similar functions related to the organisa-

tion and presentation of information. It may be more coherent for a single

program—a knowledge library—to provide this functionality. This scenario

further illustrates the utility of being able to accurately determine distances

between information elements.

Scenario 3.1: Ruth—the literature review

Concepts Illustrated. IRIS—The International Research Information

Space.

[continued from scenario 3] ...Ruth begins the initial phase of her research—

reviewing background information/research. As she reviews information on

IRIS, she notes its usefulness and implications for her own research. She

notes when:

1. she confirms that an area of research is useful in the way she thought

it would be;

2. research areas she had thought would be useful, but that on closer

inspection turn out not to be;

3. research areas that have unanticipated (positive) implications/usefulness.

66 CHAPTER 3. KNOWLEDGE LIBRARIES

As an active researcher, this information is of interest to other researchers in

Ruth’s area. Ruth publishes many of her research notes on IRIS where they

can be viewed and commented on by others. These observations:

1. help with the quality control of articles;

2. help establish the correct classification of articles;

3. help Ruth establish links with other researchers in her area;

4. establish the correct classification of Ruth’s research (and so the rela-

tionship between Ruth’s research and existing literature).

By the time Ruth finishes her research project she will have already have

published many observations on IRIS that firmly connect her research to

IRIS. Ruth will not need to write a separate literature review as her super-

visors/examiners will be able to readily access this material on IRIS. ...

Commentary. Advances in the organisation and presentation of informa-

tion may change the way science is communicated. A single coherent in-

ternational system for managing scientific research such as IRIS would un-

doubtedly have many benefits for the international research community. The

introduction of such a system could even herald a new age of scientific coop-

eration resulting in a dramatically increased pace of scientific development.

3.3. KNOWLEDGE LIBRARY USER SCENARIOS 67

Scenario 3.2: The International Research Information
Space (IRIS)

Concepts Illustrated. IRIS

[continued from scenario 3.1] ...IRIS is a free (grant funded), distributed

research information space server. IRIS publishes research papers (and in-

formation spaces), reviews, critiques, paper modifications (including classifi-

cations) and (IRIS) dimensions. While many IRIS dimensions—maintained

by member institutions—are freely available (grant funded), IRIS does allow

certain institutions (e.g. academic publishers) to charge for access to their

dimensions in exchange for making their collections freely available on IRIS.

Individual dimension maintainers also control what is attached (e.g. research

papers etc.) to their dimensions and, of course, the creation, destruction,

span and distance between coordinates.

Commentary. IRIS appears to offer such significant advantages it is worth

discussing further how it could work. It may be possible, for example, for ex-

isting academic publishers to contribute to IRIS while continuing to maintain

income derived from copywrited material.

Scenario 4: A census data information space

Concepts Illustrated. Using information space as a database, using infor-

mation space to store and display questionnaire responses.

Census data are collected and entered into a government, on-line, infor-

mation space. Users can access information from this site according to their

security profile. Individual census forms (after processing and supplementa-

68 CHAPTER 3. KNOWLEDGE LIBRARIES

tion with information from other sources) are the information elements in

this space. There is a dimension for each question and a coordinate for each

answer.

Users are readily able to form queries that answer questions like:

1. “What is the average income of people in suburb x?”

2. “What is the total (weekly) private fuel consumption of electorate y?”

3. “How does the educational profile of the population of state a differ

from the population of state b?”

Commentary. Although the main use envisaged for knowledge libraries is

to organise and present fairly complex information elements such as reports,

research papers, web sites etc. it is desirable for information space to be

flexible enough so that sensible results are obtained when comparing sets of

far simpler information elements—such as numbers. In general, given a

questionnaire (such as a census form or exam) a knowledge library should

have the capacity to store and present the results. A questionnaire consists

of n questions. Questions can have a number of different standard answers

(e.g.. tick one of five boxes). Questions may also have short written responses

(e.g.. age, name, address, short comment).

Scenario 5: Edna—Knowledge Libraries in the Class-
room

Key term introduced. Knowledge requirement

Concepts Illustrated. Knowledge space, using knowledge libraries as a

motivational tool, using knowledge libraries and knowledge spaces to identify

effective teams.

3.4. THE USES OF KNOWLEDGE LIBRARIES 69

Edna the educator looks over the days lesson plan. Although the class has

a diverse background, homework assignments have been set to ensure that all

the class has the required background knowledge for today’s lesson. When

viewed as a whole, the class’ knowledge space is quite impressive—some of

the students have been doing some extra reading in their areas of interest.

Indeed one of her students has been systematically acquiring the foundation

knowledge requirements for a Veterinary Science degree!

Edna finds that knowing the ambitions of her students is a great help in

motivating students. She is always sure to mention when a learning module

satisfies a knowledge requirement in an area of particular interest to one

of her students. Edna also uses this information to divide the students into

suitable groups for class projects. She makes sure that—between them—each

group has the basic competencies required to tackle each project.

Commentary. This scenario illustrates two important uses of knowledge

libraries. First, knowledge libraries can be used to systematically record the

knowledge requirements and dependencies of vocations in such a way as to

make available to students and educators an overview of the learning require-

ments of vocations of interest. Second, knowledge libraries can be used to

model the knowledge and understanding of students. This information can

be used to tailor lessons to the needs of students and identify suitable teams

for larger projects.

3.4 The Uses of Knowledge Libraries

This section discusses three of the main application areas of knowledge li-

braries: research, education, and business.

3.4.1 Knowledge Libraries for Research

Because information space models the real relationships between information

units, knowledge libraries, based on accurate information spaces, will provide

accurate distances between information units. This will make it easier to

70 CHAPTER 3. KNOWLEDGE LIBRARIES

discover synergies between different research areas and to identify gaps in

the literature.

Knowledge libraries containing documents relating to both research and

the application of research will clarify the relationships between research

and research applications. This, along with other data such as the number

of citations, will make the valuation of research easier and more accurate.

Indeed, standard research publication could be merged with patenting, so

that research papers double as patents and researchers automatically receive

remuneration from the commercial development of their research.

In an ideal system, researchers may choose to get their research certified.

Users of knowledge libraries could then choose to retrieve only those research

papers that have been approved by a certification authority that they trust.

Such certification authorities could replace some of the functions of today’s

research publishers.

Because the position of a research paper in information space relates the

paper quite precisely to other research, this information need not be du-

plicated in the paper itself. So “introduction”, “background”, “literature

review” sections of knowledge library papers can be substantially reduced.

Knowledge libraries can also make clear precisely what background knowl-

edge is required to understand research papers.

Research knowledge libraries can be more finely grained than existing

research databases. Research papers must tell a complete story—perhaps

introducing a new idea, relating it to the literature, motivating the idea, and

proving its viability. However the information elements of a research knowl-

edge library can be much simpler—a theorem, a proof, a counter example,

a problem description, a critique... The information space itself can provide

the thread that weaves these elements into a larger fabric. Also, a single

information element can embody a larger idea by referring—by way of direct

links—to a number of other information elements.

3.4. THE USES OF KNOWLEDGE LIBRARIES 71

Impact Statement. Knowledge libraries could simplify, clarify and stream-

line the process of research—helping researchers identify and take advantage

of research synergies. Knowledge libraries should reduce the costs and time

required to do research, while increasing and clarifying our appreciation of

the value of research.

3.4.2 Knowledge Libraries for Education

Using precedence dimensions, educational knowledge libraries can be con-

structed to give users a precise understanding of knowledge dependencies

that exist between the learning modules they contain. Information spaces

that contain learning modules, vocational requirements, job descriptions and

practical applications can be used to give students a good understanding of

the real world value of knowledge and an ability to link education and carrier

goals.

Because knowledge libraries provide “maps” of their contents, they can

be used to give students overviews of knowledge and an understanding of

how learning modules and learning objectives fit together.

Because student use can be monitored, and knowledge spaces can model

student knowledge, educational knowledge libraries have great potential for

flexible delivery and self study based learning. Study programs can be

effortlessly—and automatically—developed that target the learning require-

ments of individual students!

Impact Statement. Knowledge libraries can help us develop a flexible

education system that can rapidly adapt to meet the demands of a diverse

and changing society. Increased flexibility and better modelling of student

knowledge will result in greater efficiency—enabling students to learn more

in less time. Knowledge libraries will also clarify the value of knowledge,

resulting in increased student motivation.

72 CHAPTER 3. KNOWLEDGE LIBRARIES

3.4.3 Knowledge Libraries for Business

Business knowledge libraries can be used as an organisational tool for organ-

ising large projects. Time dimensions can be used to provide a timeline and

information elements can outline the jobs that must be completed at each

point in time. Other dimensions can be used to assign staff and resources to

jobs. Details can be added as the project is developed.

Portions of these organisational knowledge libraries can be made acces-

sible to customers—allowing customers to track project progress and access

information—such as the contact details of the employees responsible for

each aspect of the project. In this way, knowledge libraries can be used as

presentational tools to liaise with customers.

Knowledge libraries can be used to identify and store the knowledge

spaces of individual employees. The sum of these knowledge spaces is a

knowledge space that represents a company’s know-how. The capabilities

of other company assets—such as machinery—can be similarly represented.

So knowledge libraries can be used as a representational tool to identify a

company’s capabilities for the benefit of potential customers.

Because knowledge libraries can be used to store and represent employee

knowledge, and they can also be used to store and represent jobs and the

contribution of each employee to each job, knowledge libraries can be used

as a tool to identify and value staff knowledge and productivity.

Impact Statement. Knowledge libraries can be used to help organise large

projects, value the contribution of employees and present the capabilities of

companies to potential customers. Knowledge libraries will simplify, clarify

and streamline the way businesses are managed by integrating organisational,

presentational and accounting business aspects.

3.5 Core Knowledge Library Functionality

This section identifies “core” knowledge library functionality based on the

discussion about knowledge libraries to this point. Core functionality pro-

3.5. CORE KNOWLEDGE LIBRARY FUNCTIONALITY 73

vides essential support for fundamental knowledge library features. Function-

ality that is not core can either be provided as a by-product or combination

of core functionality, or is not an essential aspect of a fundamental feature

of knowledge libraries.

Manual, static dimensions, as discussed in section 3.3, scenario 1, are

provided for by the core functionality.

Example 3.1. The American Mathematics Society maintains a hierarchi-

cal Mathematics Subject Classification[87]. Certain mathematical journals

ask research paper authors to determine the subject classification code(s) for

their papers. No algorithms are available to automate this process, so the

subject classification is classed as a manual dimension. The subject nodes

(coordinates) that exist and their location in the hierarchy are periodically

reviewed by experts, rather than being determined by some algorithm, so the

subject classification is classed as a static dimension.

Functionality that changes the structure of a library is administration

functionality, while functionality that does not change the structure of a

library is user functionality.

Adding and removing information units to a knowledge library is classed

as user functionality. Adding and removing coordinates and dimensions is

classed as administrator functionality.

3.5.1 Core knowledge library administration function-

ality

Core administration functionality includes the creation and destruction of

knowledge libraries, dimensions and coordinates, and the specification of

distances between coordinates.

3.5.2 Core knowledge library end use functionality

Core user functionality includes adding and removing information units to

and from knowledge libraries, and displaying all manner of statistics relat-

74 CHAPTER 3. KNOWLEDGE LIBRARIES

ing to regions in subspaces in knowledge libraries—including the distance

between such regions and retrieving information elements in regions.

3.6 Knowledge Library Security

Security is an important issue for knowledge libraries. Assuming users can

be authenticated by username and password, and that messages between

users and knowledge libraries can be secured by public key encryption, the

question discussed here is: What knowledge library functionality should users

have access to and how can this be regulated?

Two classes of users—administrators and end users—have already been

identified. For many applications more are required. For example, the “ad-

ministrator” user class may need to be further subdivided. Perhaps into

superusers, who have the ability to create and destroy knowledge libraries,

and system administrators, who do not. It may also be important to allow

some users to add information units to the library and prevent other users

from doing so. Many further divisions are warranted for some applications.

Ideally, super users should be able to:

1. create user classes;

2. specify precisely what functionality users belonging to the class can

access;

3. add and remove users from user classes.

3.7 Extended Knowledge Library Function-

ality

This section discusses knowledge library functionality that, while important,

is not regarded as essential. An outline of how this functionality can be

provided is given.

3.7. EXTENDED KNOWLEDGE LIBRARY FUNCTIONALITY 75

3.7.1 Automatic dimensions

Information units added to a knowledge library are automatically associated

with coordinates in automatic dimensions.

Example 3.2. If the information units are text documents and the coordi-

nates of a dimension are sets of keywords then we can automatically attach

each document to the coordinate that is the set of all indexed keywords that

appear in the text of the document.

Example 3.3. If the information units are addresses and the coordinates

of one dimension are latitude/longitude pairs and we could use a geographic

information system to automatically attach addresses to coordinates.

Algorithms also exist for classifying faces [73], voices [74], fingerprints [62]

and digital images [53].

3.7.2 Dynamic dimensions

In dynamic dimensions the coordinates—and the distances between coordinates—

themselves are automatically determined from the information elements in

the library.

Example 3.4. Text documents are the information elements of an informa-

tion space. The space has a “keyword” dimension, the coordinates of which

are sets of keywords chosen from an “index”. The keywords that are in this

index are selected from the text of the information elements of the space.

Keywords that occur too frequently or infrequently are not included in the

index, so adding a new document to the space can result in the addition

or removal of keywords from the index, and coordinates from the keyword

dimension.

Formal concept analysis (see section 4.2.5) could also be used to create

dynamic dimensions, the coordinates of which are formal concepts.

76 CHAPTER 3. KNOWLEDGE LIBRARIES

3.7.3 Automatic report generation

Information elements are attached to points in information space. Regions

in information space—sets of points—contain sets of information elements.

Points are n-tuples of coordinates. Coordinates in precedence dimensions are

partially ordered. Because information elements are associated with coordi-

nates, the partial ordering of a precedence dimension can be used to partially

order information elements. These partial orderings can be used to present

information in a sequence.

Example 3.5. A company uses an information space to organise a large

project. This project space has a “time” precedence dimension. Coordinates

in this dimension are date/times. For any pair of coordinates x, y in this

dimension, x is dependent on y if y is “earlier” than x. Descriptions of com-

pleted jobs are attached to points in the space, and so, to coordinates in

the time dimension. The client is interested in recent progress. All points

in the space with a coordinate in the time dimension “after” a certain time

are selected. The attached completed job descriptions are retrieved and are

presented to the client in time order. Thus the information space is used to

generate a report on recent progress.

Example 3.6. An information space is used to organise a set of mathe-

matical theorems. The information elements of the space are mathematical

theorems and corresponding proofs. Many of these theorem–proofs are de-

pendent upon other theorem–proofs in the space. This is modelled using a

“requires” precedence dimension. The mathematical knowledge of individ-

ual users is modelled by regions in the space. Users are familiar with all

theorems attached to points in their knowledge space. A user is interested

in a particular theorem–proof that is outside of their knowledge space. All

coordinates in the “requires” dimension that are outside of the user’s knowl-

edge space and upon which the theorem–proof is dependent are selected. All

theorem–proofs attached to these coordinates are retrieved and presented to

the user in “requires” order. Thus the information space is used to generate

3.7. EXTENDED KNOWLEDGE LIBRARY FUNCTIONALITY 77

a report on all—currently unknown—required background knowledge.

Note that this example illustrates automatic report generation, the auto-

matic generation of background knowledge requirements, and the automatic

generation of study sequences.

3.7.4 Automatic notification

Users may want to be notified whenever certain events occur (or fail to occur).

For example, users may want to be notified whenever information units are

attached to points in particular regions of a space. Similarly, users may want

to be notified when coordinates in particular dimensions are deleted. It is

also possible that users may want to be notified when events fail to occur—

for example, if an information unit is not attached to a point in a particular

region of a space (by a certain time).

There are a number of methods that can be used to implement this func-

tionality.

One way, is to record descriptions of all “events” that occur. The no-

tifications a particular user requires are also recorded as part of their user

profile. When a notification request is received from a user (perhaps when

the user “logs on”) all events that have occurred since the last notification

request are compared with the notification requirements in the user’s profile.

A message containing details of the event is sent to the user if a match is

found.

Another way is to associate notification requests with regions in infor-

mation space. Whenever an event occurs that affects a region, a check of

notification requests associated with that region is made. If a request is

“triggered”, a message containing details of the event is sent to the user

(who posted the notification request).

78 CHAPTER 3. KNOWLEDGE LIBRARIES

3.7.5 Knowledge library graphical user interface

An interactive map of an information space could serve as a graphical user

interface for a knowledge library2. Such a map may have a column display-

ing coordinates in each dimension currently of interest—perhaps drop-down

menus could be used to select dimensions. These coordinates should be

selectable—either by a mouse click, or perhaps by typing a formula into a

text box. Another column displays a list of information elements attached

to points in the region that the user has selected. A mouse click on an infor-

mation element “opens” the element—displaying the information it contains.

Other controls/buttons/menus allow users—with appropriate privileges—to

perform other function, such as attaching information units to the space or

creating coordinates etc.

If the coordinates in each dimension are ordered, pairs of dimension can be

selected to provide the axes for scatter graphs that plot points with attached

information units. Viewing n dimensions in this way requires (n2 − n)/2

scatter graphs. Displays such as this can be used to provide an intuitive feel

for the distribution of information elements in an information space.

3.8 What this chapter achieved

This chapter described Knowledge Libraries and outlined some of their ad-

vantages. Key Knowledge Library terms were introduced and the core func-

tionalities of Knowledge Libraries were identified. In this way, this chapter

motivates and guides the further development of Knowledge Libraries in later

chapters.

2Here the term “map” us used in the specialised sense as defined in scenario 1, section
3.3.

Chapter 4

Spaces for Information

Organisation

4.1 Overview

This chapter reviews existing “spaces” in the literature. The suitability of

these spaces for providing a mathematical basis for Knowledge Libraries is

assessed. Because it is well known and has precisely those properties intu-

itively expected of a space, metric space is chosen as the starting point for

this research. The metric properties are, however, not sufficiently general, so

the more general set space is defined.

Section 4.2 consists of definitions and critiques of metric space, vec-

tor space and the vector model for information retrieval, lattices

and topological space and formal concept analysis, and the relational

model. Various attempts at a mathematical basis for online analytical

processing were also reviewed, but no good candidates were found. This

may be due to confusion relating to how a context of meaning relates a math-

ematical model to its subject amongst online analytical processing model

authors.

Section 4.3 summarises the suitability of these spaces to provide the math-

ematical basis for Knowledge Libraries and outlines the way forward that has

been chosen.

79

80 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Section 4.4 defines the function Gd1...dn
p which is used both to compare n-

tuples, and in the definition of n-dimensional space. This section also defines

⊆ for n-tuples and discuss how contexts of meaning relate n-dimensional

spaces to the subjects they model. A dimension selection operator is also

defined, which is used to give examples of permutation and projection.

Section 4.5 discusses how spaces can be nested inside one another. In

this section, dimension nesting, subspace, based on and set distance

function are defined. The section shows how set distance functions can be

based on other distance functions.

Section 4.6 discusses how the properties of sensible set distance functions

differ to the properties of sensible non-set distance functions. It is discussed

how the d′-span of a set may be defined.

Section 4.7 contrasts distance functions between sets of n-tuples with

distance functions between n-tuples of sets. This section defines the Gd1...dn
p –

span points in n-dimensional spaces.

Section 4.8 defines the generalised triangle inequality, denoted G4I,

and set space.

Section 4.9 discusses and defines other properties of set distance functions—

⊆-reflexivity, 6⊆-strict positiveness and 6⊆d-strict positiveness.

Section 4.10 discusses signed distance functions and corresponding (un-

signed) distance functions. This research is normally only concerned with

the properties of (unsigned) distance functions.

Section 4.11 briefly summarises what has been achieved in this chapter.

4.2 Potential Mathematical Bases

This section reviews, and in some cases extends, various mathematical def-

initions from the literature that could potentially provide a mathematical

basis for information space. This section should provide the reader with an

adequate understanding of the relevant mathematics.

4.2. POTENTIAL MATHEMATICAL BASES 81

4.2.1 Metric Space

The metric space properties are those most mathematicians would expect a

distance function to have.

Metric space definition. A metric space is a pair 〈M,d〉 where M is

a set and d is a function, called a metric, which maps pairs of elements of

M into R≥0. The following axioms are satisfied by d:

1. Reflexivity (∀x ∈M) d(x, x) = 0.

2. Symmetry (∀x, y ∈M) d(x, y) = d(y, x).

3. Strict Positiveness (∀x, y ∈M)(x 6= y → d(x, y) > 0).

4. Triangle Inequality (∀x, y, z ∈M) d(x, y) ≤ d(x, z) + d(z, y).

Metrics have precisely those properties that are normally intuitively expected

of a “spatial” point to point distance function. For this reason, the metric

properties can serve as a useful “reality check” for other “spaces”. Various al-

gorithms and data structures for searching metric spaces have been surveyed

in [22].

This research uses 4I as shorthand for “the triangle inequality”. Fur-

thermore, if a function d maps pairs of elements of a set M into R, without

necessarily having the other properties enumerated above, d will be called a

signed distance function over M . If d maps pairs of elements of M into

R≥0, d will be called a distance function over M . If x, y ∈M then d(x, y)

is the corresponding distance between x and y. Similarly, a pair 〈M,d〉,
where d is a (signed) distance function over M , will be referred to simply as

a space.

The similarity between two objects is a related concept. A similarity

function over a set M maps pairs of elements of M into R≥0. A sensible

similarity function is hereby defined as any similarity function sim where,

for all x, y ∈M :

1. sim(x, y) = 0 when x and y are completely “dissimilar”;

82 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

2. sim(x, y) is strictly increasing as x and y become less “dissimilar”,

more “similar”;

3. sim(x, x) > sim(x, y), sim(y, x), 0 for any y 6= x;

4. sim(x, x) = sim(y, y) = 1.

Note that a sensible similarity function must appropriately reflect the actual

“dissimilarity” and “similarity” of the underlying objects. This is normally a

non mathematical judgement—if the actual similarity were mathematically

defined, there would be less need to define sim.

As sim(x, y) = 0 for “dissimilar” x, y, strict positiveness may not be

satisfied. Similarly, as sim(x, x) > 0, reflexivity is not satisfied. So sensible

similarity functions are never metrics. Indeed, sim(x, y) should generally

decrease as d(x, y) increases.

4.2.2 Vector Space

Field definition. A field (X,+, ·) is a set X together with addition

+ : X ×X → X and multiplication · : X ×X → X operators.

Addition is associative and commutative; there is an identity element 0 ∈ X
where, for all x ∈ X, x + 0 = x; for each x ∈ X there is inverse element

y ∈ X where x+ y = 0.

Multiplication is commutative; it is distributive over addition so, for all

x, y, z ∈ X, x(y + z) = (xy) + (xz); there is an identity element 1 ∈ X,

with 1 6= 0, where 1x = x for all x ∈ X; each x ∈ X, other than 0 has an

inverse element y ∈ X where xy = 1.

Example 4.1. A common example of a field is R with standard addition

and multiplication. Note that N1 is not a field as not every element of N1

has a multiplicative inverse in N1.

4.2. POTENTIAL MATHEMATICAL BASES 83

Vector Space definition. A vector space (V, F,+, ·) is a set V and a

field F , with vector addition + : V × V → V and scalar multiplication

· : F × V → V operators. The elements of V are called vectors.

Vector addition is associative and commutative; each v ∈ V has an inverse

element w; there is an identity element 0 ∈ V .

Scalar multiplication shares its identity element 1 ∈ F with field multiplica-

tion; it is distributive over vector and field addition, so a(v + w) = av + aw

and (a + b)v = av + bv for all a, b ∈ F and v, w ∈ V ; and it is compatible

with field multiplication, so a(bv) = (ab)v for any a, b ∈ F and v ∈ V . [63]

Example 4.2. A common example of a vector space is n-dimensional real co-

ordinate space (Rn,R,+, ·). Here Rn = R×...×R. For all (x1, ..., xn), (y1, ..., yn) ∈
Rn, (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., yn + yn) defines vector addition.

For all a ∈ R, (x1, ..., xn) ∈ Rn, a(x1, ..., xn) = (ax1, ..., axn) defines scalar

multiplication. The identity element is (0, ..., 0).

4.2.3 The vector model for information retrieval

Importantly, n-tuples, called “vectors”, have been used as a mathematical

basis for information retrieval. The use of the term “vector” in this context

is questionable as the vector model defines no inverse or identity elements

and, indeed, does not define or use scalar multiplication and vector addition.

Vector Model. n index terms (keywords) are associated with the n-

dimensions of an (R≥0)n coordinate space—one index term per dimension.

Each document in the collection is associated with a “unit vector” y =

(y1, ..., yn) in the space where, for 1 ≤ i ≤ n,

yi =
tifi√∑n

j=1(tjfj)2
.

Each raw term frequency fi is the number of times the ith index term

84 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

appears in the document and ti = log(c/ci)—where c is the total number of

documents in the collection and ci is the number of documents where fi > 0—

is the inverse document frequency. Each index term must appear in

at least one document, but not all documents, in the collection and each

document must include at least one index term. User queries, consisting

of index terms, are associated with unit vectors in a similar manner. The

similarity between two unit vectors x = (x1, ..., xn) and y = (y1, ..., yn) in

the space is given by

sim(x,y) =
n∑

i=1

xiyi.

[82, 83]

Note that this is the dot product x · y. Furthermore, note that, if “vector

magnitude” is defined so that |x| =
√∑n

i=1 xi
2 for any x = (x1, ..., xn) ∈

(R≥0)n—as for Euclidian space—it can be appreciated that
√∑n

j=1(tjfj)2

is the “magnitude” of (t1f1, ..., tnfn) where raw term frequencies have been

weighted by their inverse document frequency. Normalising this gives the

“unit vector” y. Note that, in the vector model, as x and y are unit vectors,

sim(x,y) is the cosine of the angle between x and y.

The inverse document frequency, commonly abbreviated idf , is intended to

reflect how effective an index term is at differentiating between documents

in the collection. Note that each t1, ..., tn is positive and documents are

associated with n-tuples (y1, ..., yn) where at least one yi 6= 0.

Properties of the vector model

It can be readily verified that, if a tuple (y1, ..., yn) is generated from raw

term frequencies f1, ..., fn and another tuple (y∗1, ..., y
∗
n) is generated from raw

term frequencies f ∗1 , ..., f
∗
n where, for 1 ≤ i ≤ n, f ∗i = afi then (y1, ..., yn) =

(y∗1, ..., y
∗
n)—which is what is required. This equality does not hold in the

more general case where f ∗i = aifi which is also sensible. In general the

only case where (y1, ..., yn) = (y∗1, ..., y
∗
n) and not all of y1, ..., yn are 0 is when

f ∗i = afi for 1 ≤ i ≤ n.

4.2. POTENTIAL MATHEMATICAL BASES 85

Theorem 4.1 If not all of y1, ..., yn are 0 and (y1, ..., yn) = (y∗1, ..., y
∗
n) then,

for 1 ≤ i ≤ n, f ∗i = afi.

PROOF. As (y1, ..., yn) = (y∗1, ..., y
∗
n) we have, for 1 ≤ i ≤ n,

tifi√∑n
j=1(tjfj)2

=
tif
∗
i√∑n

j=1(tjf
∗
j)2

.

There is at least one i where fi 6= 0. For each of these i there is an ai ∈ R≥0

so that aifi = f ∗i . From this, and the equation above

ai
2 =

∑n
j=1(ajtjfj)

2∑n
j=1 (tjfj)

2 .

But the RHS of this equation does not vary with i, so a = ai. If fi is zero so

are yi, y
∗
i and f ∗i and so afi = f ∗i .

For the following discussion, define Un = {x|x ∈ (R≥0)n, |x| = 1}, so Un

is the set of all unit vectors in (R≥0)n.

While sim, as defined in the vector model, is a sensible similarity func-

tion between “keyword weighting” unit vectors1, it does not provide the basis

for a sensible similarity function between documents as the similarities be-

tween these unit vectors do not necessarily reflect the similarities between the

corresponding documents2. Although sensible similarity functions are never

metrics, we might hold out hope for the obvious “distance”

d1(x,y) = 1− sim(x,y).

Indeed, fairly obviously, d1(x,x) = 0, d1(x,y) = d1(y,x) and d1(x,y) > 0

whenever x 6= y for x,y ∈ Un. However 4I does not hold for d1.

1See the definition of sensible similarity function in section 4.2.1.
2See the discussion on keyword indexing of documents in section 2.6.2.

86 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Example 4.3. x = (1, 0), y = (0, 1), z = (1√
2
, 1√

2
). Now d1(x,y) = 1 where

as d1(x, z) = d1(z,y) = 1− 1√
2
. For4I to hold we require 1 ≤ 1− 1√

2
+1− 1√

2

which is 2 ≤
√

2.

This suggests that a better choice for a “vector model” distance function

would be, for any x,y ∈ Un,

d2(x,y) =
√

1− sim(x,y)2.

This is the sine of the angle between x and y. Again, fairly obviously,

d2(x,x) = 0, d2(x,y) = d2(y,x) and d2(x,y) > 0 whenever x 6= y. Because

the sine of the angle between two vectors in Un obviously satisfies 4I it

should be clear that d2 also satisfies 4I. From this it can be concluded that

〈Un, d2〉 is a metric space.

A vector model for composite documents

There are numerous variants of the vector model. Significantly, if a compos-

ite document consists of a number of different fields then an n-dimensional

(R≥0)n coordinate space can be set up for each field. This allows users to

choose to retrieve documents using index terms from particular fields. Simi-

larity scores from different fields can be combined (with appropriate weights)

to give an overall similarity [34, 29].

Example 4.4. All the (composite) documents in a collection consist of

the fields “title”, “abstract”, “body” and “references”. These documents

are represented by tuples such as y = (y1, ..., yn, ..., y2n, ..., y3n, ..., y4n). The

terms y1, ..., yn are calculated from words in the document’s title, the terms

yn+1, ..., y2n are calculated from words in the document’s abstract etc—in a

similar manner to the terms in the vector model. Also, ytitle = (y1, ..., yn),

yabstract = (yn+1, ..., y2n) etc. so users can choose to retrieve documents using

index terms from only document titles, or abstracts etc. The contributions

of each field can also be weighted to give an overall query x to composite

4.2. POTENTIAL MATHEMATICAL BASES 87

document y similarity such as

sim(x,y) =

0.5sim(x,ytitle)+0.3sim(x,yabstract)+0.15sim(x,ybody)+0.05sim(x,yreferences).

Note the weights in this example sum to unity which, although not apparently

a formal requirement, seems reasonable.

Critique of the vector model

The inherent limitations in using context free keywords to organise informa-

tion has already been discussed (see section 2.6.2). As the vector model relies

on this same method, it suffers from the same limitations.

This research has also discussed the limitations of automatic indexing

(see sections 2.3.3 and 2.6.2). In the vector model, the inverse document

frequency ti = log(c/ci) varies with the total number c of documents in the

collection and the number of documents ci where the raw frequency of the

ith index term is greater than 0. So the vector associated with a document

depends on the documents already in the collection. This vector will change

as documents are added to the collection and certainly should not be expected

to be the same for the same document in different collections.

This problem with indexing consistency can be solved by using a “refer-

ence collection” to determine the inverse document frequencies for all index

terms. Different collections can be “synchronised” with each other in this

way. Of course the problem of choosing a reference collection that will re-

main appropriate over time remains.

“Vector addition” and scalar multiplication could be defined so that, for

any x,y ∈ (R≥0)n and s ∈ R≥0, denoting x = (x1, ..., xn),y = (y1, ..., yn):

1. x + y = (x1 + y1, ..., xn + yn) and

2. sx = (sx1, ..., sxn)

as one would expect.

88 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Now vector addition can be used to connect query x and document y

“unit vectors”: x + z = y. Solving this for z gives a “distance vector” y− x

with a magnitude no greater than
√

2. This suggests the distance function

d3(x,y) =
|y − x|√

2
.

We have d3(x,x) = 0, d3(x,y) = d3(y,x) and d3(x,y) > 0 whenever

x 6= y for any x,y ∈ (R≥0)n. Because the Euclidian distance between points

in Un obviously satisfies 4I, it should be clear that d3 also satisfies 4I. So

〈Un, d3〉 is a metric space.

Another important question is what is it that the vector model actually

models!? It is not a very good model of the “information space” of relations

between documents. Even if a good model of this space could be constructed

with context free index terms, it should have a stronger relation between

index terms with similar meanings. Indeed the generalised vector space model

(GVSM), which correlates index terms, has demonstrated improved precision

and recall rates for some collections[102]—albeit at the expense of model

simplicity and indexing response time.

Some researchers have adopted the view that the vector model is a model

of the process of information retrieval itself—a “vector processing model”[84,

82]. This view makes little sense though. Surely the utility of the vector

model for information retrieval is proportional to how accurately it reflects

the actual relations between queries and documents.

The appeal of the vector model is that it:

1. is fairly simple,

2. can be used to automatically index collections,

3. automatically matches queries and documents, and it

4. has response time, precision and recall rates that are comparable or

better to other established automatic indexing and retrieval techniques

[7].

4.2. POTENTIAL MATHEMATICAL BASES 89

However, because the vector model does not accurately reflect the actual

relations between queries and documents—and indeed between “user needs”

and queries—it is doomed to give “approximate” results.

4.2.4 Lattices and Topological Space

In order to develop the notion of formal concept analysis, lattice and finite

topological space are defined. Lattices are also part of the mathematical

basis for L-fuzzy sets, which are discussed in section 6.2.6. Also, “networked

space”, which is defined in section 8.3, is related to these concepts.

Lattice definition. A lattice (L,≤) is a set L with a partial ordering ≤
where every pair x, y ∈ L has

1. a join z ∈ L, denoted z = x ∨ y, where x, y ≤ z and z ≤ z′ for any

z′ ∈ L where x, y ≤ z′.

2. a meet z ∈ L, denoted z = x ∧ y, where z ≤ x, y and z′ ≤ z for any

z′ ∈ L where z′ ≤ x, y. [100]

Note that a set with a partial ordering is a partially ordered set—often ab-

breviated poset. So a lattice is a type of poset.

Finite Topological Space definition. A finite topological space is a

finite set of sets T where:

1. ∅ ∈ T .

2. If X, Y ∈ T , X ∪ Y ∈ T .

3. If X, Y ∈ T , X ∩ Y ∈ T .

[19]3

3Although in this reference, a topological space is a pair (T,A) where T is a set of
subsets of A—including ∅ and A. As A is always

⋃
T , this notation seems somewhat

redundant.

90 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

It should be clear that these definitions are closely related. Indeed, if we

define a partial ordering ≤ on a finite topological space T so that, for all

X, Y ∈ T , X ≤ Y ⇐⇒ X ⊆ Y then (T,≤) is a lattice.

4.2.5 Formal Concept Analysis

Importantly, lattices have been used as part of the mathematical basis for

formal concept analysis—abbreviated FCA. FCA, introduced by Rudolf Wille

in 1982 in [99], is a method of data analysis, representation and organisation.

FCA requires “formal contexts” and “concept lattices”.

Formal Context definition. A formal context is a triple (O,A, R)

where O is a set of objects, A is a set of attributes and R ⊆ O ×A is

a relation where xRy iff an object x ∈ O has attribute y ∈ A [99, 100].

Concept Lattice definition. Given a formal context (O,A, R)

OA = {x ∈ O|for all y ∈ A, xRy}

for some A ⊆ A. Similarly

AO = {y ∈ A|for all x ∈ O, xRy}

for some O ⊆ O. A concept lattice is a lattice (L,≤) where

L = {(OAO

, AO)|O ⊆ O}

is a set of formal concepts. O is the extent and A is the intent of each

(O,A) ∈ L. For all (O1, A1), (O2, A2) ∈ L, (O1, A1) ≤ (O2, A2) iff O1 ⊆ O2

(or equivalently A1 ⊇ A2)[99, 100].

Note that OA is the set of all objects in O that have all the attributes in A.

Similarly, AO is the set of all attributes in A common to all objects in O.

It can be shown that:

4.2. POTENTIAL MATHEMATICAL BASES 91

(1) OA = OAO ⇐⇒ AOA
= AO;

(2) for each OAO
there is an OA where OA = OAO

and

(3) for each AOA
there is an AO where AO = AOA

.

So L = {(OAO
, AO)|O ⊆ O} = {(OA, AOA

)|A ⊆ A}.
The join of (O1, A1), (O2, A2) ∈ L is (O1, A1)∨ (O2, A2) = (O1 ∪O2, A1 ∩

A2).

The meet of (O1, A1), (O2, A2) ∈ L is (O1, A1)∧(O2, A2) = (O1∩O2, A1∪A2).

If L = {(O1, A1), ..., (On, On)}, the supremum of L is

n∨
i=1

(Oi, Ai) = (
n⋃

i=1

Oi,

n⋂
i=1

Ai)

and the infinum of L is

n∧
i=1

(Oi, Ai) = (
n⋂

i=1

Oi,
n⋃

i=1

Ai).

Clearly {O|(O,A) ∈ L} and {A|(O,A) ∈ L} are topological spaces.

Example 4.5. Figure 4.1 below is a Hasse diagram that depicts a concept

lattice for objects consisting of the integers from 1 to 10, and attributes com-

posite (c), square (s), even (e), odd (o) and prime (p). Line segments connect

formal concepts. Iff x and y are formal concepts connected by one or more

line segments and x is below y in the diagram, x ≤ y. The supremum is at

the top of the diagram, while the infinum is at the bottom.

FCA has been applied to the problem of information retrieval [59]. In this

approach, documents are indexed just as they are in the Boolean model for

information retrieval4 except documents are called objects and index terms

are called attributes. The retrieval process steps users through formal con-

cepts until they arrive at one with a manageably small extent.

So FCA has been applied to developing user interfaces, rather than in-

dexing models, for information retrieval. Although Hasse diagrams are useful

4Essentially a vector model where the coordinates in document and query vectors are
all either 0 or 1.

92 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Figure 4.1: A Hasse diagram of a concept lattice of objects = {1, ..., 10} and
attributes = {composite, even, odd, prime, square}.

when applied to very small collections, when applied to larger collections they

rapidly become unmanageable.

FCA, just like other systems that automatically generate indexes, does

not address the problem of indexing consistency—the formal concepts that

index the collection appear and disappear as documents are added and re-

moved. However this problem is limited as formal concepts only disappear

when there are no documents in the collection with corresponding attributes.

So concept lattices maintain access path consistency.

Given a concept lattice (L,≤), an obvious function to use for a formal

concept distance would be, for all x, y ∈ L,

d(x, y) =
{

0, y≤x.
1, y 6≤x

Now the distance between a “query” concept x = (O1, A1) and a “doc-

ument indexing” concept y = (O2, A2) is 0 iff A1 ⊆ A2 and 1 iff A1 6⊆ A2.

So documents that have a superset of the attributes specified in the query

will “match”—which is what is desired. For any x ∈ L, d(x, x) = 0 so d is

reflexive. It is also easy to show that 4I holds. However d is neither sym-

4.2. POTENTIAL MATHEMATICAL BASES 93

metric nor strict positive as d(x, y) = 0 and d(y, x) = 1 when A1 ⊆ A2 and

A1 6= A2.

4.2.6 The Relational Model

The relational model, which provides the mathematical basis for relational

databases, was defined by Codd in 1970 in [24]. Given an n-ary relation

R ⊆ S1 × ... × Sn, Sj is called the jth domain of R for 1 ≤ j ≤ n, that is,

R is of degree n. A dot notation is used to distinguish between domains of

different relations, so Q.S1 refers to the domain S1 of a relation Q whereas

R.S1 refers to the domain S1 of a relation R.

A data bank is a set of (time-varying) relations. If a domain is a set of

relations (in the data bank) then the relations are called nonatomic values

of the domain. Otherwise the domain elements are called (atomic) values.

A selection operator πT —where T = i1...ik with i1 ≤ n, ..., ik ≤ n and

k ≤ n—is defined so that (si1 , si2 , ..., sik) ∈ πT (R) ⇐⇒ (s1, ..., sn) ∈ R. So

the selection operator gives a relation πT (R) that is a permutation (domain

reordering) and/or projection (domain removal) of R.

A primary key of R is a set of domains that uniquely identifies each

element of R. By this, Codd means if there is a bijective mapping from R

to πi1...ik(R), {Si1 , Si2 , ..., Sik} is a primary key of R. If R has more than one

primary key, one is arbitrary selected to be the primary key5. A foreign

key of R is a set of domains that is not the primary key of R, but is the

primary key of some other relation (in the data bank).

A natural join operator ∗ is defined so that Q ∗ R = {(a, b, c)|aQb and

bRc} for binary relations Q,R. 3-join, for binary relations P,Q,R, is defined

so that P ∗Q∗R = {(a, b, c, d)|aPb and bQc and cRd}. The tie of R is defined

by γ(R) = {(s1, ..., sn−1)|(s1, ..., sn) ∈ R and s1 = sn}. The natural cyclic

3-join of P,Q,R is γ(P ∗Q ∗R).

For every n-ary relation R, where n > 2, there is a corresponding binary

relation pR where (s1, ..., sp)pR(sp+1, ..., sn) ⇐⇒ (s1, ..., sn) ∈ R. This

5Primary keys with fewer domains are preferred in practice. The potentially confusing
terminology primary key and the primary key is due to Codd.

94 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

allows the above operations on binary relations to be extended to n-ary

relations.

Finally the restriction of Q by R, denoted QT |UR where

1. Q is a relation of degree n and R is a relation of degree m,

2. T = i1...ik with i1 ≤ n, ..., ik ≤ n and similarly,

3. U = j1...jk with j1 ≤ m, ..., jk ≤ m and

4. k ≤ min{n,m},

is defined so that QT |UR = Q′ where Q′ is the largest subset of Q such that

πT (Q′) = πU(R).

Example 4.6.

P
S1 S2

1 1
2 1

Q
S1 S2

2 2
1 3

R
S1 S2

3 3
3 2

P ∗Q
S1 S2 S3

1 1 3
2 1 3

P ∗Q ∗R
S1 S2 S3 S4

1 1 3 3
1 1 3 2
2 1 3 3
2 1 3 2

π413(P ∗Q ∗R)
S1 S2 S3

3 1 3
2 1 3
3 2 3
2 2 3

γ(P ∗Q ∗R)
S1 S2 S3

2 1 3

(P ∗Q ∗R)14|13(P ∗Q)
S1 S2 S3 S4

1 1 3 3
2 1 3 3

Table 4.1: Eight relations illustrating operations defined in [24]

In the table, the domains S1, ..., S4 should be read as being relation qual-

ified, so P.S1 6= Q.S1 for example. Omitting the dot notation, {S1} and

{S1, S2} are primary keys of P ; {S1}, {S2} and {S1, S2} are primary keys of

4.2. POTENTIAL MATHEMATICAL BASES 95

Q; {S1, S4}, {S1, S2, S4}, {S1, S3, S4} and {S1, S2, S3, S4} are primary keys of

P ∗Q ∗R. Note that P ∗Q ∗R is isomorphic to (2(P ∗Q)) ∗R.

In 1974 Chamberlin and Boyce extended Codd’s work, developing a “Struc-

tured Query Language”—SQL for short6—to support user interaction with

relational databases[21]. Many commercial database systems implement SQL.

The American National Standards Institute (ANSI) has been publishing stan-

dards for SQL since 1986 [51]. The International Organisation for Standardis-

ation (ISO) ratified this standard in 1987 and has been publishing standards

for SQL since then[37]. Quite clearly, the relational model is the math-

ematical foundation for a large industry based around relational database

technology.

Significantly, the relational model does not define any distance functions

between the elements (n-tuples) of n-ary relations. An obvious distance

function would be, for all x, y ∈ R,

d(x, y) =
{

0,x=y
1,x 6=y.

Now d(x, x) = 0, d(x, y) = d(y, x), d(x, y) > 0 for x 6= y and it is easy to

show that d satisfies 4I. So 〈R, d〉 is a metric space.

4.2.7 Online Analytical Processing (OLAP)

The term OLAP was coined in [25] and [26]. Unfortunately mathematical

definitions were not provided. There have been a number of attempts at

providing a mathematical foundation for OLAP since, including—but by no

means limited to—[57, 5, 97, 46, 31]. Unfortunately, these authors treat a

mathematical model as a kind of mathematical equivalent of a database. This

is not as it should be! A mathematical model of a subject should describe

the significant relationships between only the absolutely essential “bones” of

the subject.

OLAP model authors have failed to identify the “bones” of OLAP and

6Originally “Structured English Query Language”, with the acronym SEQUEL.

96 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

include “dimension names”, “attribute names” etc. in their models. This is

misguided and results in unnecessary complications. Rather than being part

of the model, “dimension names”, “attribute names” etc. should be part of

a description—a context of meaning—that relates the model to its subject.

The failure of OLAP model authors in this respect is inexplicable as Codd

correctly leaves “domain names” out of his relational model in [24].

4.3 Space

Vector space is quite general and well known. However, for the purposes

of this research, scalar multiplication is redundant and the vector addition

properties—while suitable enough—do not express the characteristics infor-

mation space should have.

Lattices and topological spaces do not have a function that can be used to

determine the distance between their elements—the distance function defined

when discussing formal concept analysis in section 4.2.5 is not sufficiently

general. These spaces also seem somewhat artificial7.

The relational model also lacks a function for comparing relations—

although given such a function, n-ary relations can be treated as sets of

points in n-dimensional space.

Metric space is well known and has precisely those properties intuitively

expected of a “space”. Of the “spaces” surveyed, metric space seems like

the best choice to provide a mathematical basis for Knowledge Libraries.

However, as will be seen, the metric properties will need to be generalised.

Note that this thesis has developed a general definition for space, in sec-

tion 4.2.1. That is, a space is a pair 〈M,d〉 where d is a (signed) distance

function over M . Unfortunately this definition is not consistent with all uses

of the term in the literature.

7Because P(X) is often used to define the distance between subsets of X, “set spaces”
(see section 4.8) are often discrete topological spaces. Also “networked spaces” (see section
8.3)—though not directly related—are somewhat reminiscent of lattices.

4.4. N -DIMENSIONAL SPACES 97

4.4 n-Dimensional Spaces

As will be seen, points in information space are n-tuples. To find distances

between such n-tuples, n spaces can be combined together into a single,

n-dimensional space.

Gd1...dn
p definition. If, for 1 ≤ r ≤ n, 〈Mr, dr〉 is a space and xr, yr ∈Mr

Gd1...dn
p ((x1, ..., xn), (y1, ..., yn)) =

(
n∑

r=1

(dr(xr, yr))
p

) 1
p

.

In this thesis, Gd1...dn
p is based on d1, ..., dn as the function Gd1...dn

p requires

the functions d1, ..., dn to be defined.

Gd1...dn
p is often an appropriate choice for a distance function between n-

tuples. Gd1...dn
2 is the well known ”Euclidian” distance function. Gd1...dn

1 has

a number of names including the “Manhattan” or “block” distance function

and the “taxicab metric.” limp→∞(Gd1...dn
p), which can also be written as

Gd1...dn
∞ is know as the Chebyshev distance function or the “uniform metric.”

More generally, Gd1...dn
p is known as the Minkowski distance function, or the

Lp distance function (when this different notation is used).

n-dimensional space definition. If, for 1 ≤ r ≤ n, each 〈Mr, dr〉 is a

space and each xr ∈ Mr then (x1, ..., xn) is a point in the n-dimensional

space 〈M1 × ...×Mn, G
d1...dn
p 〉 and each xr is a coordinate. A region is a

set of points. 〈M1× ...×Mn, G
d1...dn
p 〉 has dimensions 〈M1, d1〉, ..., 〈Mn, dn〉.

In order to generalise the properties discussed in section 4.9 to extend

to distance functions over n-dimensional spaces, ⊆ must be extended over

n-tuples.

⊆ for n-tuples definition. (X1, ..., Xn) ⊆ (Y1, ..., Yn) iff, for 1 ≤ r ≤ n,

Xr ⊆ Yr or Xr = Yr.

98 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Note that, from this definition, (x1, ..., xn) ⊆ (x1, ..., xn) even if each xr is

not a set.

The order of dimensions in an n-dimensional space carries significance for

two reasons.

1. Order may be used to ascribe a context of meaning to dimensions.

2. The sets M1, ...,Mn should appear in the same order as the distance

functions d1, ..., dn.

So a space 〈M1 × ...×Mn, G
d1...dn
p 〉 in one context of meaning may be effec-

tively the same as a another space where the sets M1, ...,Mn—along with the

distance functions d1, ..., dn—are combined in some other order.

Example 4.7. Consider the 3-dimensional space 〈M1 ×M2 ×M3, G
d1d2d3
2 〉

made up of a “width” dimension 〈M1, d1〉, a “depth” dimension 〈M2, d2〉 and

a “height” dimension 〈M3, d3〉. Order ascribes a context of meaning: for any

point (x1, x2, x3) ∈M1 ×M2 ×M3 we know that x1 is a “width” value, x2 is

a “depth” value and x3 is a “height” value.

This space is effectively the same as a space 〈M3 × M2 × M1, G
d3d2d1
2 〉

where, as before, 〈M3, d3〉 is a “height” dimension, 〈M2, d2〉 is a “depth” di-

mension and 〈M1, d1〉 is a “width” dimension. For any point (x3, x2, x1) ∈
M3 ×M2 ×M1 we know that x3 is a “height” value, x2 is a “depth” value

and x1 is a “width” value.

In this research, the order in which the sets M1, ...,Mn are combined in

an n-ary Cartesian Product is considered to be essentially arbitrary—as long

as the distance functions are combined in the same order and the context of

meaning is appropriate. Indeed a selection operator can be used to permute

dimensions and project spaces just as Codd uses πT to permute domains and

project relations.

4.4. N -DIMENSIONAL SPACES 99

Dimension Selection definition. If:

1. T = t1...tk where t1 ≤ n, ..., tk ≤ n and k ≤ n; and

2. 〈M1 × ...×Mn, G
d1...dn
p 〉 is an n dimensional space

then πT (M1 × ...×Mn, G
d1...dn
p) = 〈Mt1 ×Mt2 × ...×Mtk , G

dt1dt2 ...dtk
p 〉.

Permutation definition. A space 〈X1×...×Xn, G
d1...dn
p 〉 is a permutation

of a space 〈Y1 × ...× Yn, G
d∗1...d∗n
p 〉 if for each 1 ≤ i ≤ n there is a 1 ≤ j ≤ n,

not paired with any other i, where Xi = Yj and di = d∗j .

Less formally, a space x is a permutation of a space y iff y can be transformed

into x by reordering, but not adding or removing, dimensions.

Example 4.8. 〈M3×M2×M1, G
d3d2d1
2 〉= π321〈M1×M2×M3, G

d1d2d3
2 〉. The

space 〈M3 ×M2 ×M1, G
d3d2d1
2 〉 is a permutation of the space 〈M1 ×M2 ×

M3, G
d1d2d3
2 〉.

Projection definition. A space 〈X1 × ... × Xk, G
d1...dk
p 〉 is a projection

of a space 〈Y1 × ... × Yn, G
d∗1...d∗n
p 〉 if there is a monotonic (order preserving)

nondecreasing function f : {1, ..., k} → {1, ..., n}, defined for each 1 ≤ i ≤ k,

where if f(i) = j, Xi = Yj and di = d∗j .

Less formally, a space x is a projection of a space y iff y can be transformed

into x by removing and/or repeating, but not reordering, any of the dimen-

sions. A space is a projection of itself.

Example 4.9. 〈M1 ×M3, G
d1d3
2 〉= π13〈M1 ×M2 ×M3, G

d1d2d3
2 〉. The space

〈M1 ×M3, G
d1d3
2 〉 is a projection of the space 〈M1 ×M2 ×M3, G

d1d2d3
2 〉.

Note that the space 〈M3 ×M1, G
d3d1
2 〉= π31〈M1 ×M2 ×M3, G

d1d2d3
2 〉 is not a

projection of the space 〈M1 ×M2 ×M3, G
d1d2d3
2 〉 as the dimensions are out

of order. We can say that 〈M3×M1, G
d3d1
2 〉 is a permuted projection—or

a projected permutation—of 〈M1 ×M2 ×M3, G
d1d2d3
2 〉.

100 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

Each point in a projected space corresponds to a number of points in

the original space whereas each point in a permuted space corresponds to

precisely one point in the original space.

Example 4.10. A space 〈X×Y ×Z,Gd1d2d3
2 〉 has a projection 〈X×Y,Gd1d2

2 〉
and a permutation 〈Z×X×Y,Gd3d1d2

2 〉. A point (x, y) in the projected space

corresponds to any point (x, y, z), for any z ∈ Z, in the original space. A

point (z, x, y) in the permuted space corresponds to the point (x, y, z) in the

original space.

4.5 Nested Spaces

There are a number of ways in which information spaces can be contained or

nested in other information spaces. Most obviously, information spaces can

be information elements of other information spaces. Similarly, dimensions

or even coordinates of information spaces can be information elements of

other information spaces. Other types of nesting are also possible.

Dimension Nesting definition. A k-dimensional space 〈Mi, di〉, where

Mi = Y1 × ... × Yk and di = G
dn+1...dn+k
q , is dimension nested in another

space 〈M,Gd1...dn
p 〉 if 〈Mi, di〉 is a dimension of 〈M,Gd1...dn

p 〉.

Spaces can also be subspaces of other spaces.

Subspace definition. A space 〈X, d〉 is a subspace of another space 〈Y, d∗〉
iff X ⊆ Y and, for all x, y ∈ X, d(x, y) = d∗(x, y).

Note that, if 〈X1× ...×Xn, d〉 is a subspace of 〈Y1× ...×Yn, d
∗〉, it follows

from the definition of ⊆ for n-tuples in section 4.4 that X1 ⊆ Y1, ..., Xn ⊆ Yn.

Another type of nesting occurs when a distance function d between ele-

ments of M is used to define a distance function d′ between subsets of M .

Indeed, it is often appropriate to use a distance function d over a set M of

properties of information units to define a distance function d′ between in-

4.6. SPAN 101

formation units, where each information unit is represented by a set Y ⊆M

of properties. For this reason, this research discusses using spaces 〈M,d〉
to define spaces 〈M ′, d′〉 where M ′ ⊆ P(M). Normally it is appropriate if

d′({x}, {y}) = d(x, y).

Based on definition. If

1. d′(X, Y) is a function of {d(x, y)|x ∈ X, y ∈ Y } or

2. d′(x,y), where x = (x1, ..., xn) and y = (y1, ..., yn), is a function of

d(xi, yi) (for 0 ≤ i ≤ n),

d′ is based on d.

Example 4.11. For all X, Y ⊆ M , d′(X, Y) = minx∈X,y∈Y d(x, y). So d′ is

based on d.

Because of fundamental characteristics of information, this type of nesting

can be many levelled.

Example 4.12. A distance function d′′′′, between Universities, is based

on a distance function d′′′, between research groups, is based on a distance

function d′′, between researchers, is based on a distance function d′, between

research papers, is based on a distance function d, between topics...

It is important that this type of many levelled nesting is allowed for.

Set distance definition. If d is a distance function over a set M of sets

then d is a set distance function.

4.6 Span

Sensible “spatial” set distance functions tend to require more general prop-

erties than metrics. The simplest way to illustrate this is with an example.

102 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

&%
'$
&%
'$
&%
'$

X Z Y

x-axis

y-axis

Figure 4.2: Three balls X,Z, Y in R2.

Example 4.13. If d1(x1, x2) = |x1 − x2| for all x1, x2 ∈ R and d2(y1, y2) =

|y1− y2| for all y1, y2 ∈ R then 〈R×R, Gd1d2
2 〉 is a two dimensional Euclidean

space whereGd1d2
2 ((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2. Clearly d1, d2

and Gd1d2
2 all satisfy 4I. We define the distance between any two regions

X, Y ⊆ R× R as

d(X, Y) = min
(x1,y1)∈X,(x2,y2)∈Y

Gd1d2
2 ((x1, y1), (x2, y2)).

We have three balls:

X = {(x, y)|x, y ∈ R, (x+ 2)2 + y2 ≤ 1},
Z = {(x, y)|x, y ∈ R, x2 + y2 ≤ 1} and

Y = {(x, y)|x, y ∈ R, (x− 2)2 + y2 ≤ 1}.
As illustrated in figure 4.2. Now d(X, Y) = 2 while d(X,Z) = d(Z, Y) = 0.

So the distance function d does not satisfy 4I.

This example shows that sensible set distance functions may not satisfy

4I, even when they are based on distance functions that do satisfy 4I. From

the example it should be clear that the diameter of the intermediate set Z

should be taken into account. Doing so gives the inequality:

d(X, Y) ≤ d(X,Z) + max
(x1,y1)∈Z,(x2,y2)∈Z

Gd1d2
2 ((x1, x2), (y1, y2)) + d(Z, Y).

From the example, d(X, Y) = 2, d(X,Z) = d(Z, Y) = 0 as before and

max(x1,y1)∈Z,(x2,y2)∈Z G
d1d2
2 ((x1, x2), (y1, y2)) = 2. So, as 2 ≤ 0 + 2 + 0, the

4.6. SPAN 103

generalised triangle inequality that takes the diameter of the intermediate

set into account is satisfied in this case.

It can be verified that this inequality is satisfied for any X,Z, Y ⊆ R×R.

Indeed, just as simpler distance functions should satisfy 4I, sensible set

distance functions should satisfy a generalised triangle inequality, such as

the one above.

Some caution is required however. For a generalised triangle inequal-

ity is to be a test that discriminates between sensible and absurd distance

functions, it must be ensured that the “diameters” added to the RHS are

reasonable. Without this constraint absurd distance functions can be made

to satisfy the inequality simply by defining equally absurd “diameters”.

If d is a non-set distance function overM and d′ is a set distance function—

based on d—over P(M) then the diameter of X ∈ P(M) should be something

like

diamd′(X) = max
x,y∈X

d(x, y).

However if the elements of M are sets and d is a set distance function

then the “diameter”s of x and y should also be taken into account. This

“generalised diameter” will be called a set’s span. The d′–span of X will be

denoted by by sd′(X). The function sd′ will be defined differently for different

d′s. However, in general, sd′(X) should be something like

sd′(X) = max
x,y∈X

{0, sd(x) + d(x, y) + sd(y)}.

If sd(x) = 0 for all x ∈ M , as might be the case if d is a non-set distance

function, then sd′(X) simplifies to maxx,y∈X d(x, y)—the diameter of X. If

sd(x)—the d-span of an object x—is not otherwise defined, sd(x) = 0 is

assumed. As will be seen later, it is important that all spans are ≥ 0.

Note that one tempting “solution” to example 4.6 is to define d(X, Y) =

Gd1d2
2 ((x1, x2), (y1, y2)) where (x1, x2) is the centroid of X and (y1, y2) is

the centroid of Y . With this definition, following the example, d(X,Z) =

d(Z, Y) = 2, d(X, Y) = 4 and d would clearly satisfy 4I. Unfortunately this

“centroid distance” is not ⊆-reflexive, or 6⊆-strict positive (see section 4.9),

104 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

which are desirable properties. Briefly, we want d(X, Y) = 0 iff X ⊆ Y and

d(X, Y > 0) iff X 6⊆ Y .

4.7 Spans of Points in n-Dimensional Spaces

Example 4.13 took two non-set distance functions d1 and d2, which were

used to define a third—Gd1d2
2 over R × R. The function Gd1d2

2 was used to

define a set distance function d. So in the example, d was a distance function

between two sets of pairs of reals—coordinates in R × R. Alternatively d1

and d2 could have been used to define two set distance functions d1
′ and

d2
′, both over P(R) and then used these distance functions combined to give

Gd1
′d2
′

2 —a distance function between two pairs of sets of reals.

Example 4.14. For all x1, x2 ∈ R, d1(x1, x2) = |x1−x2|. For all y1, y2 ∈ R,

d2(y1, y2) = |y1 − y2|. For all X1, X2 ∈ A where A = P(R),

d1
′(X1, X2) = min

x1∈X1,x2∈X2

d1(x1, x2).

For all Y1, Y2 ∈ B where B = P(R),

d2
′(Y1, Y2) = min

y1∈Y1,y2∈Y2

d2(y1, y2).

Now Gd1
′d2
′

2 ((X1, Y1), (X2, Y2)) =
√
d1
′(X1, X2)2 + d2

′(Y1, Y2)2.

Gd1
′d2
′

2 (X, Y) gives the distance between X, Y ∈ P(R) × P(R)—pairs of

sets (rather than sets of pairs). Note that each of the regions X, Y ∈ P(R)×
P(R) consist of one or more “rectangular” components—it is impossible to

define spheres this way.

Example 4.15. We want to define X,Z, Y ∈ P(R)×P(R) to be as similar

as possible to the corresponding regions in example 4.13. The best we can

do is:

X = ({−3,−1}, {−1, 1}), Z = ({−1, 1}, {−1, 1}), Y = ({1, 3}, {−1, 1}).

4.8. THE GENERALISED TRIANGLE INEQUALITY ANDSET SPACE105

These examples should clarify the contrast between spaces of sets of n-

tuples and spaces of n-tuples of sets. If the elements of an n-tuple can be

sets, the n-tuple should have a span that is influenced by the span of each of

its elements.

s
G

d1...dn
p

(x) (the Gd1...dn
p –span of x) definition. If x = (x1, ..., xn) and,

for 1 ≤ r ≤ n, xr ∈ Xr and dr is a distance function over Xr then

s
G

d1...dn
p

(x) =

(
n∑

r=1

(sdr(xr))
p

) 1
p

.

In this definition, spans in each of the n spaces—treated in the same way

as distance functions—give a span in the n-dimensional space. If sd(xr) = 0

for 1 ≤ r ≤ n—as is sensible if each dr were a non-set distance function—then

s
G

d1...dn
p

(x) = 0.

4.8 The Generalised Triangle Inequality and

Set Space

The notion of span allows us to introduce a generalisation of 4I.

The Generalised Triangle Inequality (G4I) definition. If d is a dis-

tance function over a set M , d(x, y) ≤ d(x, z) + sd(z) + d(z, y) for each

x, y, z ∈M .

The definition of G4I allows the definition of a generalised version of

metric space: set space.

Set space definition. 〈M,d〉 is a set space if M is a set and d is a

distance function that satisfies G4I over M .

Note that if 〈M,d〉 is a set space, d is only a set distance function if

the elements of M are themselves sets and d is defined in terms of distances

106 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

between the elements of the elements of M .

Note also that a set space distance function—which is a distance function

that satisfies G4I—is not the same thing as a set distance function—which

is a distance function d over a set of sets. Because of the deceptive similarity

of these two terms, the term set space distance function is avoided in this

research.

4.9 Other Properties of

Set Distance Functions

Just as 4I is not general enough for set distance functions, neither is reflex-

ivity, symmetry, nor strict positiveness!

Example 4.16. Let X be a set of desired attributes and Y be the set of

attributes of some object (each chosen from a universe set of potential ob-

ject attributes). A distance of 0 between X and Y signifies that Y has all

the attributes X. We would like d(X, Y) = 0 whenever X ⊆ Y—not only

when X = Y—so d more than meets the reflexive requirements but does not

meet the strict positive requirements. If X ⊆ Y and X 6= Y we would like

d(X, Y) = 0 but d(Y,X) > 0—so d does not meet the symmetry require-

ments.

4.9.1 ⊆-Reflexivity

Example 4.16 shows that reflexivity (d(x, x) = 0) is not strong enough for set

distance functions and suggests the following strengthened form of reflexivity.

⊆-Reflexivity definition. If, for all X, Y ∈M where (X ⊆ Y or X = Y),

d(X, Y) = 0 then 〈M,d〉 is ⊆-reflexive. If, for all M over which d is defined,

〈M,d〉 is ⊆-reflexive, d is ⊆-reflexive.

Note that, if ⊆ is not defined over the elements of M (the elements of

M are not sets or n-tuples) and for all x ∈ M , d(x, x) = 0 then 〈M,d〉 is

4.9. OTHER PROPERTIES OF SET DISTANCE FUNCTIONS 107

⊆-reflexive. Thus if the elements of M are not sets or n-tuples 〈M,d〉 is

⊆-reflexive iff 〈M,d〉 is reflexive!

Also note that, if d is ⊆-reflexive, d is reflexive.

Example 4.17. For all x, y ∈ R, d(x, y) = |x−y|. For all X, Y ∈ P(R)−{∅}
d′(X, Y) = minx∈X,y∈Y d(x, y). If X ⊆ Y then x ∈ X ⇒ x ∈ Y and

d(x, x) = 0 so d′(X, Y) = 0 and 〈P(R)− {∅}, d′〉 is ⊆-reflexive.

Note that if:

1. for all x, y ∈ R, d(x, y) = |x− y| and

2. for all X, Y ∈ P(R)− {∅}, d′(X, Y) = maxx∈X,y∈Y d(x, y) and

3. X = {1} and Y = {1, 2}

then X ⊆ Y but d′(X, Y) = 1, so 〈P(R)− {∅}, d′〉 is not ⊆-reflexive.

4.9.2 6⊆-Strict Positiveness

As illustrated in example 4.16, a version of strict positiveness that requires

d(X, Y) > 0 whenever X 6⊆ Y is required.

6⊆-Strict Positiveness definition. If for all X, Y ∈ M where X 6⊆ Y and

X 6= Y , d(X, Y) > 0 then 〈M,d〉 is 6⊆-strict positive . If, for all M over

which d is defined, 〈M,d〉 is 6⊆-strict positive, d is 6⊆-strict positive.

Note that if d(x, y) > 0 whenever x 6= y then d is 6⊆-strict positive—no

matter how 6⊆ is defined!

Example 4.18. For all x, y ∈ R, d(x, y) = |x− y|. As d(x, y) > 0 whenever

x 6= y (and so d(x, y) > 0 whenever x 6⊆ y and x 6= y—no matter how 6⊆ is

defined), 〈R, d〉 is 6⊆-strict positive.

Example 4.19. For all x, y ∈ R, d(x, y) = |x−y|. For all X, Y ∈ P(R)−{∅}
d′(X, Y) = maxx∈X,y∈Y d(x, y). If X 6⊆ Y there is an x ∈ X and a y ∈ Y

where x 6= y. x 6= y ⇒ d(x, y) > 0 and d′(X, Y) > 0 so 〈P(R) − {∅}, d′〉 is

108 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

6⊆-strict positive.

Note that if:

1. for all x, y ∈ R, d(x, y) = |x− y| and

2. for all X, Y ∈ P(R)− {∅}, d′(X, Y) = minx∈X,y∈Y d(x, y) and

3. X = {1, 2} and b = {1}

then X 6⊆ Y but d′(X, Y) = 0 so 〈P(R)− {∅}, d′〉 is not 6⊆-strict positive.
There is a problem with 6⊆-strict positiveness however.

Example 4.20. X = {1}, Y = {1, 2}. For ⊆-reflexive d′, d′(X, Y) = 0 as

X ⊆ Y . Now we want d′′({X}, {Y }) = 0 because {1} ⊆ {1, 2} ∈ {Y } and

so {Y } (ultimately) contains the desired attribute. But because {X} 6⊆ {Y }
and {X} 6= {Y }, 6⊆-strict positiveness requires d′′({X}, {Y }) > 0.

4.9.3 6⊆d-strict positiveness

In order to correct the problem, illustrated in example 4.20 above, with 6⊆-

strict positiveness, a “recursive” form of ⊆ is defined.

⊆d′ definition. X ⊆d′ Y iff X = Y or X ⊆ Y or d′ is based on d and for all

x ∈ X, there is a y ∈ Y where x ⊆d y. If x = (x1, ..., xn),y = (y1, ..., yn) are

n-tuples and d = Gd1...dn
p then x ⊆d y iff x = y or, for 1 ≤ i ≤ n, xi ⊆di yi.

This allows the definition of a suitable recursive form of strict positiveness.

6⊆d-strict positiveness definition. If for all X, Y ∈ M where X 6⊆d Y ,

d(X, Y) > 0 then 〈M,d〉 is 6⊆d-strict positive. If, for all M over which d is

defined, 〈M,d〉 is 6⊆d-strict positive, d is 6⊆d-strict positive.

Example 4.21. Following example 4.20, because {{1}} ⊆d′′ {{1, 2}}, we do

not require d′′({{1}}, {{1, 2}) > 0 for d′′ to be 6⊆d′′-strict positive.

4.10. SIGNED DISTANCES 109

It is tempting to define a corresponding recursive form of reflexivity, ⊆d-

reflexivity. However the author prefers to remain with ⊆-reflexivity because

⊆d-reflexivity leads problems with the Mk d distance function, introduced in

chapter 7, where things work better if the definition of ⊆d is slightly altered8.

As they stand, ⊆-reflexivity and 6⊆d-strict positiveness are sufficiently general

to be applied to all the distance functions we discuss. The theorems and

proofs provided can be readily adapted for more specific forms of reflexivity

and strict positiveness.

4.10 Signed Distances

As will be seen in chapter 9, sometimes a signed distance function is

required to adequately express the distance between elements.

Example 4.22. M is a set of “heights” d(x, y) = y − x gives the distance

between the height x and the height y. A negative distance indicates that x is

greater than y, so the distance is “downwards”. A positive number indicates

that x is less than y, so the distance is “upwards”.

All signed distance functions d(x, y) have a corresponding (unsigned) dis-

tance function |d(x, y)|. When assessing the suitability of a signed distance

function, this research only requires that the corresponding (unsigned) dis-

tance function satisfies G4I and is 6⊆-strict positive and singleton symmetric.

The property ⊆-reflexivity is always satisfied by all signed distance functions

with a corresponding (unsigned) distance function that satisfies ⊆-reflexivity.

4.11 What this Chapter Achieved

This chapter initiated the development of the mathematical basis for Knowl-

edge Libraries. A review of the relevant literature justified the choice of

metric space as the starting point for this development. The metric space

8See section 7.5.2.

110 CHAPTER 4. SPACES FOR INFORMATION ORGANISATION

properties were identified as being too strong, and suitable weaker properties

were defined. The concept of “span” was introduced. The function Gd1...dn
p ,

which is useful for multi dimensional spaces was defined. Notions such as

dimension nesting, projected spaces and subspace were developed.

Dimension nesting will be used to create “multi faceted” spaces, as dis-

cussed in section 2.3.1. Projected spaces will be used to allow users to select

only those dimensions of interest, when querying Knowledge Libraries. Sub-

spaces will be useful when implementing Knowledge Library Security, as

discussed in section 3.6.

Chapter 5

Set Spaces

5.1 Overview

Section 5.2 opens this chapter with a discussion of various ways in which set

spaces can be manipulated while retaining their properties. Significantly, n

set spaces can be combined into an n-dimensional set space. The com-

bined space preserves any 4I, G4I, reflexive, strict positive, symmetric,

⊆-reflexive or 6⊆d-strict positive properties common to all of the component

spaces. This is useful because we want our information spaces to be n-

dimensional spaces.

The section shows that n-dimensional set spaces with a k-dimensional

set space dimension can be “flattened out” into (n + k − 1)-dimensional set

spaces.

Set spaces can also dilated by multiplying all the distances by a weight

w. The dilated space preserves any 4I, G4I, reflexive, strict positive, sym-

metric, ⊆-reflexive or 6⊆d-strict positive properties. This means that different

weights can be assigned to each of the n dimensions of an n-dimensional

space as these weighted dimensions are themselves spaces. Practically, this

allows users to assign greater or lesser importance to individual dimensions

of an information space.

It is also possible to translate a set space by adding a handicap h to all

the distances. However, if this is done, reflexive and ⊆-reflexive properties

111

112 CHAPTER 5. SET SPACES

are not preserved.

Section 5.3 discusses how set operations can be used to define distance

functions over P(M). The distance function d(X, Y) = |X| − |X ∩ Y | for all

X, Y ⊆M satisfies 4I, is ⊆-reflexive and 6⊆d-strict positive.

Section 5.4 discusses how a distance function d over a set M can be used

to define a distance function dM
ij over a set P(M). Here i and j can be any

number between 0 and 100—which works like a percentage—or “av” which

takes an average distance. If d satisfies 4I over M then dM
100 0, d

M
0 100, d

M
100 100,

dM
av100, d

M
100 av and dM

av av satisfy 4I over P(M). The dM
ij -span is defined. If d

satisfies G4I, all of the dM
ij distance functions satisfy G4I. If d is reflexive

and strict positive, only dM
av 0(x, y) and dM

100 0(x, y) are both ⊆-reflexive and

6⊆dij-strict positive.

Section 5.5 briefly summarises what has been achieved in this chapter.

5.2 Manipulating Set Space

This section discusses how n set spaces can be combined to form an n-dimensional

set space, how k-dimensional spaces can be dimensions in n-dimensional

spaces, and how set spaces can be dilated and translated.

5.2.1 n-Dimensional Set Spaces

It is possible to form a single n-dimensional set space from n dimensions, each

of which is a set space. The proof of this relies on Minkowsky’s inequality

which states that if tr ≤ ur + vr and tr, ur, vr ≥ 0 then

(
n∑

r=1

tr
p

) 1
p

≤

(
n∑

r=1

ur
p

) 1
p

+

(
n∑

r=1

vr
p

) 1
p

.

Theorem 5.1 If 〈M1, d1〉,...,〈Mn, dn〉 are set spaces and M ⊆M1× ...×Mn

then 〈M,Gd1...dn
p 〉 is a set space.

5.2. MANIPULATING SET SPACE 113

PROOF. Let (x1, ..., xn), (y1, ..., yn), (z1, ..., zn) ∈M and, for 1 ≤ r ≤ n

tr = dr(xr, yr),

ur = dr(xr, zr),

vr = dr(zr, yr),

sr = sdr(zr)

By the G4I

tr ≤ ur + sr + vr

and by Minkowsky’s inequality, applied twice

(
n∑

r=1

tr
p

) 1
p

≤

(
n∑

r=1

ur
p

) 1
p

+

(
n∑

r=1

(sr + vr)
p

) 1
p

≤

(
n∑

r=1

ur
p

) 1
p

+

(
n∑

r=1

sr
p

) 1
p

+

(
n∑

r=1

vr
p

) 1
p

.

That is

Gd1...dn
p ((x1, ..., xn), (y1, ..., yn)) ≤

Gd1...dn
p ((x1, ..., xn), (z1, ..., zn))+s

G
d1...dn
p

((z1, ..., zn))+Gd1...dn
p ((z1, ..., zn), (y1, ..., yn))

so G4I holds for 〈M,Gd1...dn
p 〉.

5.2.2 Other Properties of n-Dimensional Spaces

If d = Gd1...dn
p and M ⊆M1× ...×Mn, it is easily shown that if the set spaces

〈Mi, di〉, for 1 ≤ i ≤ n:

1. are reflexive, 〈M,d〉 is reflexive.

2. are symmetric, 〈M,d〉 is symmetric.

3. are strict positive, 〈M,d〉 is strict positive.

4. satisfy 4I, then 〈M,d〉 satisfies 4I. (Theorem 5.1 with each sr = 0.)

114 CHAPTER 5. SET SPACES

5. are ⊆-reflexive, 〈M,d〉 is ⊆-reflexive.

6. are 6⊆di-strict positive, 〈M,d〉 is 6⊆d-strict positive.

Note that the ⊆-reflexive and 6⊆d-strict positive properties apply because ⊆
and ⊆d has been defined over n-tuples (see sections 4.4 and 4.9.3).

5.2.3 Dimension Nesting

The following theorem shows that a number of dimensions of a space can

be formed into a dimension nested space without altering the functional

characteristics of the space.

Theorem 5.2 If the k-dimensional space 〈M1, dk+1〉, where M1 = Y1×...×Yk

and dk+1 = Gd1...dk
p is dimension nested in 〈M,G

dk+1...dk+n
p 〉, where M =

M1×...×Mn, then 〈M,G
dk+1...dk+n
p 〉 is isomorphic to a (k+n−1)-dimensional

space 〈Z,Gd1...dkdk+2...dn+k
p 〉.

PROOF. If Z = Y1 × ... × Yk ×M2 × ... ×Mn and x1 = (y1, ..., yk) then

it is clear that each point x = (x1, ..., xn) ∈ M has a corresponding point

z = (y1, ..., yk, x2, ..., xn) ∈ Z.

Furthermore, if x′ = (x′1, ..., x
′
n) ∈M etc.

Gd1...dn
p (x,x′) = Gd1...dkdk+2...dk+n

p (z, z′) =

(
k∑

r=1

(dr(yr, y
′
r))

p
+

n∑
r=2

(dk+r(xr, x
′
r))

p

) 1
p

.

Note that the above proof shows that an n-dimensional space where one

dimension, 〈M1, dk+1〉, is itself a k-dimensional space (dk+1 = Gd1...dk
p and

M1 = Y1 × ...× Yn), is in fact isomorphic to a (k + n− 1)-dimensional space

〈Z,Gd1...dkdk+2...dk+n
p 〉. In effect the n-dimensional space can be “expanded” or

“normalised” into a corresponding isomorphic (n+k−1)-dimensional space.

Equally, each (k + n− 1)-dimensional space has a corresponding isomorphic

n-dimensional space (with a nested k-dimensional space).

5.2. MANIPULATING SET SPACE 115

5.2.4 Dilated and Translated Spaces

Set spaces can be dilated and/or translated.

Dilated Space definition. If w ∈ R>0 then 〈M,wd〉 is the space 〈M,d〉
after it has been dilated by w.

Translated Space definition. If h ∈ R>0 then 〈M,d + h〉 is the space

〈M,d〉 after it has been translated by h.

Fairly obviously, the span of each element in a space that has been dilated

by w should be weighted by w. Less obviously, the spans of translated spaces

do not need to be altered.

swd+h(x) (the wd+ h–span of x) definition.

swd+h(x) = wsd(x).

Note that, in this definition, x can be any object for which sd(x) is defined.

Now if d(X, Y) ≤ d(X,Z) + sd(Z) + d(Z, Y) and w, h ∈ R>0,

wd(X, Y) + h ≤ wd(X,Z) + h+ wsd(Z) + wd(Z, Y) + h

and so G4I holds for dilated and translated spaces1.

It can also be easily shown that any reflexive, symmetric, strict positive,

4I, ⊆-reflexive or 6⊆d-strict positive properties of 〈M,d〉 will be preserved in

〈M,wd〉.
Similarly, 〈M,d+h〉 preserves any symmetric, strict positive, 4I or 6⊆d+h-

strict positive properties of 〈M,d〉. Significantly, reflexive and ⊆-reflexive

properties are not preserved.

Different weights can be assigned to each of the n dimensions of an n-

dimensional set space to reflect the greater or lesser importance of individual

1Clearly, 4I also holds for dilated and translated spaces.

116 CHAPTER 5. SET SPACES

dimensions.

Theorem 5.3 If each dimension 〈Mr, dr〉 of a set space 〈M1×...×Mn, G
d1...dn
p 〉

is dilated by wr, this results in a set space 〈M1 × ...×Mn, G
w1d1...wndn
p 〉.

PROOF. G4I follows as in the proof of Theorem 5.1 but with each dr

replaced by wrdr.

5.3 Set Distance Functions Based on

Set Operations

Appealing set distance functions can be based on set operations. Consider:

d(X, Y) = |X ∪ Y | − |X ∩ Y |

where d is defined over any pair of sets.

In words this is “to calculate the distance between X and Y , count all

the elements of X or Y , not in X and Y .”

Although it can be shown that |X ∪ Y | − |X ∩ Y | satisfies 4I and is

6⊆d-strict positive, it is not ⊆-reflexive.

&%
'$
����X Y

a b

Figure 5.1: Subset element counts for ⊆-reflexive proofs. a = |X|, b =
|Y −X|.

Following the figure, if d(X, Y) = |X ∪Y | − |X ∩Y |, X ⊆ Y then d(X, Y) =

a+ b− a = b. So ⊆-reflexivity fails for |X ∪ Y | − |X ∩ Y | because b may be

greater than 0.

5.3. SET DISTANCE FUNCTIONS BASED ON SET OPERATIONS 117

This suggests that a ⊆-reflexive distance function of this type can be

created by not counting elements of Y . Indeed, it can be readily verified that

d(X, Y) = |X| − |X ∩ Y |

is ⊆-reflexive as, following figure 5.1, 6a− 6a = 0. It can also be shown that

|X| − |X ∩ Y | satisfies 4I. Following figure 5.2, 6 b+ 6 f ≤ (6 f + g) + (a+ 6 b).
Similarly, following figure 5.3, it can be shown that |X| − |X ∩Y | is 6⊆d-strict

&%
'$

&%
'$
&%
'$

X Y

Z
a

b c
e

f g h

Figure 5.2: Subset element counts for 4I proofs. a = |Z − X − Y |, b =
|Z ∩X − Y |, c = |Z ∩X ∩ Y |...

positive as a+ 6b− 6b > 0.

&%
'$
&%
'$

X Y

a b c

Figure 5.3: Subset element counts for 6⊆d-strict positive proofs. a = |X − Y |,
b = |X ∩ Y | and c = |Y −X|.

Note that, as d is not based on any other function, the 6⊆d-strict positive

and 6⊆-strict positive properties are equivalent.

Normalising by dividing through by |X| seems quite reasonable, but

d(X, Y) =
|X| − |X ∩ Y |

|X|
= 1− |X ∩ Y |

|X|

fails to satisfy4I and so is unsuitable for use as a set space distance function.

118 CHAPTER 5. SET SPACES

Example 5.1. d(X, Y) = 1− |X∩Y |
|X| . We want d(X, Y) ≤ d(X,Z) +d(Z, Y).

If |X| = 1, |Y | = 1, |X ∩ Y | = 0 and Z = X ∪ Y we have 1 6≤ 0 + 1
2
. So

1− |X∩Y |
|X| does not satisfy 4I.

5.4 The dMij Set Distance function

Dubuisson and Jain [32] define the “distance” from a point x to a set of

points Y as miny∈Y ||x−y||, where ||x−y|| is the Euclidian distance between

x and y.

They then define six distance functions on pairs of sets as follows.

d1(X, Y) = minx∈X miny∈Y ||x− y||, d2(X, Y) = 50K
th
x∈X miny∈Y ||x− y||,

d3(X, Y) = 75K
th
x∈X miny∈Y ||x− y||, d4(X, Y) = 90K

th
x∈X miny∈Y ||x− y||,

d5(X, Y) = maxx∈X miny∈Y ||x− y||, d6(X, Y) =
∑

x∈X miny∈Y
||x−y||
|X| .

Dubuisson and Jain discuss four means of converting these directed distance

functions into undirected distance functions such as

d(X, Y) = min{di(X, Y), di(Y,X)},

thus creating twenty four undirected distance functions altogether. This

research is focused mainly on the directed distance functions, however it is

useful to correct, generalise and simplify the six distance functions above.

For Dubuisson and Jain jKth
x∈X represents theKth largest value of miny∈Y ||x−

y||, where K
|X| = j

100
. If j|X| is divisible by 100, K is the number of elements

in the j% of X nearest to Y . If not, K
|X| = j

100
is not meaningful. Furthermore,

if X or Y is the empty set, this is not defined.

To generalise, replace ||x − y|| in the six distance function definitions

above by d(x, y)—an arbitrary distance function over X ∪ Y .

To generalise and simplify distance functions dM
ij are defined so that

dM
ij (X, Y) can be not only minx∈X miny∈Y d(x, y), 50Kth

x∈X miny∈Y d(x, y) etc.

but also minx∈X maxy∈Y d(x, y), 50K
th
x∈X

90Kth
x∈Xd(x, y) etc.2

2Chapter 7 defines and discuss dMij —a distance function which gives the distance be-

5.4. THE DM
IJ SET DISTANCE FUNCTION 119

Definitions for xY , dM
j and XY are required in order to define dM

ij . For

these definitions the convention used is that x ∈ X, y ∈ Y and z ∈ Z.

xy and xY definition. Given a distance function d over a set Y ∪ {x} and

a number 0 ≤ j ≤ 100, xY ⊆ Y is any set where:

1. if j 6= 0, |xY | = d j|Y |
100
e,

2. if j = 0, xY = {y} and

3. for each y ∈ xY , d(x, y) ≤ d(x, y′) for all y′ ∈ Y − xY .

xy is any element of xY where d(x, xy) = maxy∈xY d(x, y).

Informally, xY can be built-up by starting from ∅ and adding elements

y ∈ Y in turn—beginning with those having the smallest d(x, y) to those

with the largest—until |xY | > j
100

. xy is the last element we add.

Informally, xY can be read as ‘the j% of Y that x is d-closest to’.

Note that, while purists may prefer notation like xYdj and xydj to indicate

that d and j are independent variables, a less formal, simplified notation has

been used in this research as d and j are always clear from the context.

Similarly, although there may be more than one xY for the same Y , it

happens that maxy∈xY d(x, y) is always the same for the same Y, d, j, x, so—

for our purposes—all elements xy and sets xY produce the same result.

tween L-collections, rather than just sets. This is a further generalisation.

120 CHAPTER 5. SET SPACES

dM
j (x, Y) (where M 6= ∅, Y ⊆ M and d(x, y) is defined for all y ∈ M)

definition.

1. dM
j (x, ∅) = maxy∈M d(x, y).

If Y 6= ∅:

2. If 0 ≤ j ≤ 100, dM
j (x, Y) = d(x, xy).

3. dM
av(x, Y) = 1

|Y |
∑

y∈Y d(x, y).

This definition ensures that there is no y ∈ M where dM
j (x, ∅) < d(x, y).

It will be seen in section 5.4.1 that this will be important if 4I, or G4I is

to hold over a set of subsets of Z which may include the empty set.

Note that, if j = 100K
|Y | then dM

j (x, Y) is a Kth smallest d(x, y) for y ∈ Y .

That is dM
j (x, Y) = d(x, yK) where yK is the Kth element of Y—ranked by

d(x, y) for all y ∈ Y . Of course such a yK need not be unique. In particular

dM
0 (x, Y) = miny∈Y d(x, y) = d(x, y1) and dM

100(x, Y) = maxy∈Y d(x, y) =

d(x, y|Y |).

If |Y | is odd, i.e. |Y | = 2K+1, then dM
50(x, Y) is the K+1th largest value

of d(x, y) for y ∈ Y—i.e. the median value. If |Y | is even, i.e. |Y | = 2K,

then dM
50(x, Y) is the Kth largest value—usually just below the median value.

dM
av(x, Y) is the average distance between x and Y .

xY and XY definition. Given a distance function d over X ∪Y , numbers

0 ≤ i ≤ 100 and 0 ≤ j ≤ 100, XY ⊆ X is any set where:

1. if i 6= 0, |XY | = d i|X|
100
e,

2. if i = 0, XY = {x} and

3. (∀x ∈ XY)(∀x′ ∈ X −XY) dM
j (x, Y) ≤ dM

j (x′, Y).

xY is any element of XY where dM
j (xY , Y) = maxx∈XY dM

j (x, Y)

Similarly to xY the set XY can be built-up by starting from ∅ and adding

5.4. THE DM
IJ SET DISTANCE FUNCTION 121

elements x ∈ X in turn— beginning with those having the smallest dM
j (x, y)

to those with the largest—until |XY | > i|X|
100

. Again, xY is the last element

added.

Read XY as ‘the i% of X dM
j -closest to Y .’ Again, just as for xY , there

may be a number of XY s for the same X, d, i, j, Y , but maxx∈XY dM
j (x, Y)

will remain the same, so this is of no concern. Purists may prefer the notation

XY
dij and xY

dij to indicate that d, i and j are independent variables.

dM
ij (X, Y) definition.

1. dM
ij (∅, Y) = 0.

If X 6= ∅:

2. If 0 ≤ i ≤ 100 and j is av or 0 ≤ j ≤ 100 then dM
ij (X, Y) = dM

j (xY , Y).

3. dM
avj(X, Y) =

∑
x∈X

dM
j (X,Y)

|X| .

A notation now exists that can represent all six of Dubuisson and Jain’s

directed distance functions3 and infinitely many other possibilities.

dM
0 0(X, Y) = d1(X, Y) = minx∈X miny∈Y d(x, y),

dM
50 0(X, Y) = d2(X, Y),

dM
75 0(X, Y) = d3(X, Y),

dM
90 0(X, Y) = d4(X, Y),

dM
100 0(X, Y) = d5(X, Y) = maxx∈X miny∈Y d(x, y),

dM
av 0(X, Y) = d6(X, Y),

...

dM
0 100(X, Y) = minx∈X maxy∈Y d(x, y),

...

dM
100 100(X, Y) = maxx∈X maxy∈Y d(x, y)

The undirected version of dM
100 0, given by max{dM

100 0(X, Y), dM
100 0(Y,X)},

3whenever they are defined. The distance functions defined above are also defined for
all other X,Y ⊆M .

122 CHAPTER 5. SET SPACES

is the well known Hausdorff distance function, which is a metric if d is.

The undirected version of dM
av 0(X, Y), given by max{dM

av 0(X, Y), dM
av 0(Y,X)}

is called the modified Hausdorff distance in [32] and [33]4. However neither

dM
av 0 nor the modified Hausdorff distance are metrics as 4I fails. 4I also

fails for all the Kth ranked distance distance functions dM
i 0 where i < 100.

Example 5.2. d(x, y) = |x − y|, X = {1}, Y = {2, 3, ..., 100}, Z =

{1, 2, ..., 100}. Now dM
i 0(X, Y) = 1, dM

i 0(X,Z) = 0 and, if i ≤ 99, dM
i 0(Z, Y) =

0 and so 4I fails. By increasing the size of Y and Z similar examples can be

contrived where 4I fails for any i < 100.

Some other dM
ij distance functions do satisfy 4I. This is shown below.

5.4.1 The Triangle Inequality (4I)

This section examines 4I for dM
ij distance functions.

Theorem 5.4 If 〈M,d〉 is such that d satisfies 4I over M then dM
100 0, dM

0 100,

dM
100 100, dM

av100, dM
100 av and dM

av av satisfy 4I over M ′ ⊆ P(M).

PROOF. This theorem will be proven for dM
100 0 and dM

av av, the other cases

are similar.

If x ∈ X, y ∈ Y and z ∈ Z where X, Y, Z ∈M ′ then:

d(x, y) ≤ d(x, z) + d(z, y)

Case: 100 0

min
y∈Y

d(x, y) ≤ d(x, z) + min
y∈Y

d(z, y),

≤ min
z∈Z

d(x, z) + max
z∈Z

min
y∈Y

d(z, y).

∴ max
x∈X

min
y∈Y

d(x, y) ≤ max
x∈X

min
z∈Z

d(x, z) + max
z∈Z

min
y∈Y

d(z, y)

and dM
100 0(X, Y) ≤ dM

100 0d(X,Z) + dM
100 0d(Z, Y).

4Various other “modified Hausdorff” distance distance functions have been proposed
for determining the distance between two digital images. See [58]

5.4. THE DM
IJ SET DISTANCE FUNCTION 123

Case: av av ∑
y∈Y

d(x, y) ≤ |Y |d(x, z) +
∑
y∈Y

d(z, y),

so |Z|
∑
y∈Y

d(x, y) ≤ |Y |
∑
z∈Z

d(x, z) +
∑
z∈Z

∑
y∈Y

d(z, y)

and |Z|
∑
x∈X

∑
y∈Y

d(x, y) ≤ |Y |
∑
x∈X

∑
z∈Z

d(x, z) + |X|
∑
z∈Z

∑
y∈Y

d(z, y).

∴ dM
av av(X, Y) ≤ dM

av av(X,Z) + dM
av av(Z, Y).

It is easy to check that this holds if any of X, Y, Z are empty.

4I does not hold for dM
ij in general.

Example 5.3. M = P(N1), d(x, y) = |x − y|, X = {1, 3}, Y = {5, 9} and

Z = {3, 5}. For each row in table 1 below we can see that dN1
ij (X, Y) 6≤

dN1
ij (X,Z) + dN1

ij (Z, Y) and so 4I fails for dN1
0 0, d

N1
av 0 and dN1

0 av.

dN1
ij (X, Y) dN1

ij (X,Z) dN1
ij (Z,X)

dN1
0 0 2 0 0

dN1
av 0 3 1 1

dN1
0 av 4 1 2

Table 5.1: Distances for three distance functions over X = {1, 3}, Y = {5, 9}
and Z = {3, 5}.

5.4.2 Span

The reason why the distance functions dN1
0 0 and dN1

av 0 fail to satisfy 4I, in the

case illustrated in table 1 above, is that the 3 in {3, 5} is close to {1, 3} while

the 5 is close to {5, 9}. So here, as for dN1
0 av, the problem is the “diameter”

of {3, 5}.
The diameter of a set X is given as maxx,y∈X d(x, y) in [17]. A generalised

version of 4I holds for these examples if the diameter of the intermediate

124 CHAPTER 5. SET SPACES

set Z, maxx,y∈Z d(x, y) = 2, is added to the RHS of the inequality. However

even that does not work when the elements of X, Y, Z are themselves sets.

Example 5.4.

1. X, Y, Z ∈M , X = {{1}, {2}}, Y = {{3}, {4}}, Z = {{2, 5}, {5, 4}},

2. d(x, y) = |x− y|, d is a distance function over N1,

3. d′ = dN1
0 0 is a distance function over X ∪ Y ∪ Z,

4. d′′ = d
′P(N1)
0 0 is a distance function over M .

We want d′′(X, Y) ≤ d′′(X,Z) + maxx,y∈Z d
′(x, y) + d′′(Z, Y). However

d′′(X, Y) = d′′({{1}, {2}}, {{3}, {4}}) = d′({2}, {3}) = d(2, 3) = 1.

Whereas

d′′(X,Z) = d′′({{1}, {2}}, {{2, 5}, {5, 4}}) = d′({2}, {2, 5}) = d(2, 2) = 0,

max
x,y∈Z

d′(x, y) = d′({2, 5}, {5, 4}) = d(5, 5) = 0,

d′′(Z, Y) = d′′({{2, 5}, {5, 4}}, {{3}, {4}}) = d′({5, 4}, {4}) = d(4, 4) = 0.

So the inequality does not hold in this case.

What is missing is a consideration of the diameters of {2, 5} and {5, 4}.
Taking this into account gives us dM

ij –span.

sdM
ij

(X) (the dM
ij –span of X) definition.

If, for some y, X = {y} then sdM
ij

(X) = sd(y).

If, for all y, X 6= {y} then sdM
ij

(X) = maxx,y∈X{sd(x) + d(x, y) + sd(y)}.

Example 5.5. Using d(x, y) = |x − y|, d′ = dN1
0 0, d

′′ = d′PN1
0 0 as in the

5.4. THE DM
IJ SET DISTANCE FUNCTION 125

example above, we will calculate sd′′(Z) where Z = {{2, 5}, {5, 4}}:

sd′′(Z) = sd′({2, 5}) + d′({2, 5}, {5, 4}) + sd′({5, 4}).

sd′({2, 5}) = sd(2) + d(2, 5) + sd(5) = 0 + 3 + 0 = 3,

d′({2, 5}, {5, 4}) = d(5, 5) = 0,

sd′({5, 4}) = sd(5) + d(5, 4) + sd(4) = 0 + 1 + 0 = 1.

So

sd′′(Z) = 3 + 0 + 1 = 4.

5.4.3 The Generalised Triangle Inequality (G4I)

Lemma 5.5 If M is a set and 〈M,d〉, is such that G4I holds and M ′ ⊆
P(M) then dM

ij , where 0 ≤ i ≤ 100 and 0 ≤ j ≤ 100, satisfies G4I over

M ′ − {∅}.

PROOF. Let X, Y, Z ∈M . Consider any pair xY and zY .

If xY = zY , d(z, xy) ≤ d(z, zy).

If xY 6= zY , as |xY | = |zY |, there is a y ∈ zY − xY where d(x, xy) ≤ d(x, y).

Of course d(z, y) ≤ d(z, zy).

In either case, from the G4I,

d(x, xy) ≤ d(x, z) + sd(z) + d(z, zy)

which is

dM
j (x, Y) ≤ d(x, z) + sd(z) + dM

j (z, Y). (5.1)

Let z ∈ ZY and z′ ∈ xZ. Then by G4I

dM
j (x, Y) ≤ d(x, z′) + sd(z′) + d(z′, z) + sd(z) + dM

j (z, Y)

126 CHAPTER 5. SET SPACES

≤ d(x, z′) + max
z,z′∈Z

{sd(z′) + d(z′, z) + sd(z)}+ dM
j (z, Y)

and using the definition for sdM
ij

(Z)

dM
j (x, Y) ≤ d(x, z′) + sdM

ij
(Z) + dM

j (z, Y). (5.2)

As d(x, z′) ≤ d(x, xz) and dM
j (z, Y) ≤ dM

j (zY , Y),

dM
j (x, Y) ≤ d(x, xz) + sdM

ij
(Z) + dM

j (zY , Y).

which is

dM
j (x, Y) ≤ dM

j (x, Z) + sdM
ij

(Z) + dM
ij (Z, Y). (5.3)

Consider any pair XZ and XY . Substituting any xY for x in (5.3) gives:

dM
j (xY , Y) ≤ dM

j (xY , Z) + sdM
ij

(Z) + dM
ij (Z, Y).

If XZ = XY , dM
j (xY , Z) ≤ dM

j (xZ , Z) so

dM
j (xY , Y) ≤ dM

j (xZ , Z) + sdM
ij

(Z) + dM
ij (Z, Y). (5.4)

If XZ 6= XY let x ∈ XZ −XY so dM
j (xY , Y) ≤ dM

j (x, Y) and, from (5.3),

dM
j (xY , Y) ≤ dM

j (x, Z) + sdM
ij

(Z) + dM
ij (Z, Y).

Of course dM
j (x, Z) ≤ dM

j (xZ , Z) so again this is (5.4), which is G4I.

Lemma 5.6 If 〈M,d〉 is such that G4I holds and M ′ ⊆ P(M) then dM
av j,

where 0 ≤ j ≤ 100, satisfies G4I over M ′ − {∅}.

PROOF. From (5.2), with xz for z′,

dM
j (x, Y) ≤ dM

j (x, Z) + sdM
ij

(Z) + dM
j (z, Y).

5.4. THE DM
IJ SET DISTANCE FUNCTION 127

Summing over all x ∈ X and z ∈ Z and dividing by |X||Z| gives

dM
avj(X, Y) ≤ dM

avj(X,Z) + sdM
ij

(Z) + dM
avj(Z, Y).

Lemma 5.7 If 〈M,d〉 is such that G4I holds and M ′ ⊆ P(M) then dM
av av

satisfies G4I over M ′ − {∅}.

PROOF. By G4I applied twice

d(x, y) ≤ d(x, z′) + sd(z′) + d(z′, z) + sd(z) + d(z, y).

From the definition for sdM
ij

(Z)

d(x, y) ≤ d(x, z′) + sdM
ij

(Z) + d(z, y).

Summing over all y ∈ Y and z′ ∈ Z and dividing by |Y ||Z| gives

dM
av(x, Y) ≤ dM

av(x, Z) + sdM
ij

(Z) + dM
av(z, Y). (5.5)

Summing over all x ∈ X and z ∈ Z and dividing by |Y ||Z| gives

dM
av av(X, Y) ≤ dM

av av(X,Z) + sdM
ij

(Z) + dM
av av(Z, Y).

Lemma 5.8 If 〈M,d〉 is such that G4I holds and M ′ ⊆ P(M) then dM
i av,

where 0 ≤ i ≤ 100, satisfies G4I over M ′ − {∅}.

PROOF.

For any pair XY and XZ .

If XY = XZ , dM
av(xY , Z) ≤ dM

av(xZ , Z).

IfXY 6= XZ , as |XY | = |XZ |, there is an x ∈ XZ−XY . So dM
av(x, Z) ≤ dM

av(xZ , Z)

128 CHAPTER 5. SET SPACES

and dM
av(xY , Y) ≤ dM

av(x, Y).

In either case, from (5.5),

dM
av(xY , Y) ≤ dM

av(xZ , Z) + sdM
ij

(Z) + dM
av(z′, Y).

With zY for z′ this is

dM
i av(X, Y) ≤ dM

i av(X,Z) + sdM
ij

(Z) + dM
i av(Z, Y).

Theorem 5.9 If M is a set and 〈M,d〉, is such that G4I holds and M ′ ⊆
P(M) then dM

ij , where 0 ≤ i ≤ 100 or i =av, and 0 ≤ j ≤ 100 or j =av,

satisfies G4I over M ′.

PROOF.

Case X = ∅. dM
ij (∅, Y) = 0 so

dM
ij (∅, Y) ≤ dM

ij (∅, Z) + sdM
ij

(Z) + dM
ij (∅, Z).

Case Y = ∅. From the G4I,

max
y∈M

d(x, y) ≤ d(x, z) + sd(z) + max
y′∈M

d(z, y′).

This is

dM
j (x, ∅) ≤ d(x, z) + sd(z) + dM

j (z, ∅)

which is (5.1) above with Y = ∅. The remainder of the proof for this special

case follows directly from there.

Case Z = ∅. We have dM
j (x, Y) ≤ maxy∈M d(x, y) = dM

j (x, ∅) for all x ∈ M .

So dM
ij (X, Y) ≤ dM

ij (X, ∅) and

dM
ij (X, Y) ≤ dM

ij (X, ∅) + sdM
ij

(∅) + dM
ij (∅, Y).

5.4. THE DM
IJ SET DISTANCE FUNCTION 129

The remainder of the proof holds due to lemmas 5.5, 5.6, 5.7 and 5.8.

By theorem 5.9 all the dM
ij distance functions satisfy G4I.

5.4.4 ⊆-reflexivity

If 〈N1, d〉 is 6⊆d-strict positive, dM
ij with j 6= 0 is not ⊆-reflexive.

Example 5.6. With j =av or 1 < j ≤ 100, dM
ij ({1}, {1, 2, ..., 100}) > 0 as

d(1, y) > 0 for all y ∈ {2, ..., 100}.

Following this example it should be clear that, for any 0 < j ≤ 100, a

Y ⊆ N1 can be found to make dM
ij ({1}, Y) > 0.

Theorem 5.10 If 〈M,d〉 is (⊆-)reflexive, dM
i 0 is ⊆-reflexive.

PROOF. For all X, Y ∈ P(M) where X ⊆ Y , for all x ∈ X, dM
0 (x, Y) = 0

as x ∈ Y .

Note that this theorem only requires that 〈M,d〉 is reflexive—a weaker prop-

erty than ⊆-reflexivity. Because the theorem holds for reflexive 〈M,d〉, it

automatically holds for ⊆-reflexive 〈M,d〉.

5.4.5 6⊆d-strict positiveness

If |Z| ≥ 7, M = P(Z) − {∅}, d is ⊆-reflexive over M and 0 ≤ i ≤ 99 then

dM
ij is not 6⊆dM

ij-strict positive.

Example 5.7. Let Y = {Z}, X = {X1, ..., X100}, X 6⊆dM
ij Y and, for

1 ≤ k ≤ 100, Xk 6= ∅ and Xk ⊆ Z (X1, ..., X100 can be distinct only if

|Z| ≥ 7). Now, for 0 ≤ i ≤ 99, dM
ij (X, Y) = 0.

Following this example it should be clear that, for sufficiently large Z, an

X can be chosen to show that, for any 0 ≤ i < 100, dM
ij is not 6⊆dM

ij-strict

positive.

130 CHAPTER 5. SET SPACES

Theorem 5.11 If d is 6⊆d-strict positive, and d′ = dM
100 j or d′ = dM

av j then d′

is 6⊆d′-strict positive.

PROOF. As d is 6⊆d-strict positive, dM
av j(∅, Y) > 0 and dM

100 j(∅, Y) > 0 if

Y 6= ∅. If X, Y ∈ P(M)−{∅} and X 6⊆dM
ij Y then there is an x ∈ X where, for

all y ∈ Y , x 6⊆d y. As d is 6⊆d-strict positive, dM
j (x, Y) > 0 so dM

av j(X, Y) > 0.

Similarly, as dM
100 j(X, Y) ≥ dM

j (x, Y) for any x ∈ X, dM
100 j(X, Y) > 0.

From these examples and theorems, this research concludes that, in gen-

eral, of the dM
ij distance functions, only dM

av 0 and dM
100 0 are suitable distance

functions for 6⊆dM
ij-strict positive and ⊆-reflexive spaces.

5.5 What this Chapter Achieved

This chapter includes many theorems and proofs that show how spaces, with

desirable properties, can be formed and manipulated.

Importantly, a single n-dimensional space, with properties common to all

of its dimensions, can be formed from n dimensions, each of which is a set

space. There are a number of ways of forming a multidimensional space from

k, n-dimensional spaces. For example, one way is to form a kn-dimensional

space At the opposite extreme, a k-dimensional space, where each dimension

its self has n dimensions, can be formed. These results will be useful when

forming multidimensional information spaces.

Example 5.8. Research papers can be “attached” to points in the space

〈M1 ×M2 ×M3, G
d1d2d3
2 〉 where: M1 is a set of “authors” and d1 an appro-

priate distance function between authors; M2 is a set of topic areas and d2 a

distance function between topics; M3 is a set of paper titles and d3 a distance

function between titles. If the spaces 〈M1, d1〉, 〈M2, d2〉, 〈M3, d3〉 all have the

desirable properties, so does 〈M1 ×M2 ×M3, G
d1d2d3
2 〉. If 〈M1, d1〉 is an m-

dimensional space 〈N1 × ...×Nm, G
d∗1...d∗m
2 〉 then 〈M1 ×M2 ×M3, G

d1d2d3
2 〉 is

equivalent to 〈N1 × ...×Nm ×M2 ×M3, G
d∗1...d∗md2d3

2 .〉

5.5. WHAT THIS CHAPTER ACHIEVED 131

This chapter also showed how the distance function of individual dimen-

sions of a multidimensional space can be weighted without altering properties

of the space. This result can be applied to allow users of multidimensional

information spaces to adjust the relative significance of individual dimensions

when forming range queries.

Example 5.9. Following the prevous example above, it may be that a user

is interested in a particular paper. They know the topic they want, but are

less certain about the author and title. The space can be tuned to increase

the significance of the topic by weighting the topic distance function (with a

weight> 1). If the “query point” was x = (Smith, Metric Space, Searching

Metric Spaces), the user is interested in papers attached to points y where

Gd12d2d3
2 (x,y) is small. Note the 2d2, increasing the significance of the topic

dimension in this query.

The set distance function d(X, Y) = |X| − |X ∩ Y | was shown to have

the desirable properties. Similarly, dM
av 0 and dM

100 0 have the desirable prop-

erties if d does. These results will be useful when forming the dimensions of

multidimensional information spaces.

Example 5.10. The utility of the space used in the two prevous exam-

ples above is limited as only papers with a single author can be correctly

“classified”. The space could be improved by replacing the author dimension

〈M1, d1〉 with the set space 〈P(M1), d〉, where d is a set distance function

such as d(X, Y) = |X| − |X ∩ Y |. This would allow papers with multiple

authors to be correctly classified.

132 CHAPTER 5. SET SPACES

Chapter 6

L-Collections

6.1 Overview

This chapter begins with a review of sets and set like generalisations in the

literature. Multisets allow each element of a set to be associated with a

natural number (a positive integer). This is useful, but does not provide

everything needed to define information space. Indexed families provide a

notation that allows the elements of a set to be enumerated. Rough sets

could have some use representing uncertainty when “probabilities” are not

known. Fuzzy sets allow fractional membership, but not multiple mem-

bership. L-fuzzy sets are more general, but a merge form of union—which

information space requires—is not defined.

None of these mathematical objects provides all that is required for the

definition of information space.

Section 6.3 defines a new form of generalised set, the L-collection. The

standard set operators are extended over L-collections where L ⊆ R>0 is a

maximizable set. L-collections provide a consistent template for general-

izing sets.

Section 6.4 shows that {1}-collections are equivalent to sets, N1-collections

are equivalent to multisets, (0, 1]-collections are equivalent to fuzzy sets and

{0.5, 1}-collections are equivalent to rough sets.

Section 6.5 discusses how proofs over sets and multisets may be extended

133

134 CHAPTER 6. L-COLLECTIONS

to {1}, N1 and Q>0-collections.

Section 6.6 briefly summarises what has been achieved in this chapter.

6.2 Background

Although distance functions between sets of points, such as dM
ij come close,

they fall short of providing all that is required to define information space.

For example, we want to compare two sets of information elements where

a number of the information elements are “attached” to the same point in

the information space. A set of points could have one information element

attached to each point, or it could have 1000 information elements attached

to one point and 1 information element attached to all others. Because each

element of a set must be distinct, each point can only be a member of the set

once. So, if an information space is a set space, the multiplicity of information

elements attached to each point does not effect the distance between sets of

points. For many applications this does not matter, but for some this is a

significant failing.

Another problem occurs when we are not sure to what point an infor-

mation element should be attached. Perhaps we are 40% sure it should be

attached to one point and 60% sure it should be attached to another; perhaps

we want to assign the authorship of a paper 70% to one author and 30% to

another. There is no effective method to do this using set space.

A generalised form of set is required that allows multiple, fractional and

even multiple fractional membership.

6.2.1 Sets

Georg Cantor(1845-1918), through papers published between 1874 and 1884,

is recognized as the originator of set theory and even modern mathematics.

By a set we understand any M of definite, distinct objects m of

our perception or of our thought (which will be called the elements

of M) into a whole [translated from German][20].

6.2. BACKGROUND 135

Cantor’s work was highly controversial in his day as constructivist math-

ematicians were uncomfortable with the notion of infinite sets. In 1901,

Bertrand Russell showed that the set containing exactly the sets that are not

members of themselves, formally B = {A|A 6∈ A}, is not well defined as, log-

ically, B ∈ B ⇐⇒ B 6∈ B (Russell’s Paradox or Russell’s Antinomy). This

and other paradoxes lead to the development of axiomatic set theories—such

as Zermelo set theory (1908, Ernst Zermelo) and Fraenkel set theory (1922,

Abraham Fraenkel and Thoralf Skolem). Currently the Zermelo-Fraenkel

set theory along with the axiom of choice—abbreviated ZFC—is the most

common choice of axiomatic set theory. Sets are a common choice for the

foundation of mathematics whereby all mathematical objects are defined in

terms of sets and set membership.

6.2.2 Multisets

The requirement that each element of a set be distinct from all other elements

(that is—be unique in the set) make sets unsuitable as the mathematical

basis for many practical applications. Most usually, multisets are described

as sets without the requirement that all elements are distinct. A more formal

definition is provided below.

Multiset definition. A multiset M is a pair (M,m) where M is a set

and m : M → N1. M is called the underlying set. For each x ∈ M the

multiplicity (that is, the number of occurrences) of x is the number m(x).

x ∈M stands for x ∈M .

So, by pairing a set M with a function m : x → N1, multisets generalize

sets by associating elements of M with a “multiplicity” m(x). Note that, as

m(x) ∈ N1, m(x) 6= 0 for all x ∈M .

Example 6.1. Given a set M of fruit {apple, orange, banana,...} and a

function m where m(apple) = 10, m(orange) = 8, m(banana) = 15, ... we

have a multiset (M,m) that might indicate how much of each type of fruit

is presently available.

136 CHAPTER 6. L-COLLECTIONS

Note a set can be thought of as a type of multiset where the multiplicity

of each element is 1.

Multisets are a useful generalisation, but they do not allow fractional

membership.

6.2.3 Merges and Joins

When sets are generalised so that each element x has an associated multiplic-

ity or “membership” m(x) (not necessarily in N1), union can be generalized

in two ways to produce two different operators which are herein called merge

and join.

The merge operator, is often represented by the symbol]. When two

“generalized sets” are merged, the multiplicity of each element common to

both generalized sets is a function of the sum of the multiplicities of the

element in each operand generalized set. More precisely, if X = (X,mX)

and Y = (Y,mY) are generalized sets, where mX(x) and mY (y) are the

multiplicities of each x ∈ X and y ∈ Y respectively, and (M,m) = X]Y then

M = X ∪ Y and, for each x ∈ X ∩ Y , m(x) is a function of mX(x) +mY (x).

When two (generalized) sets are joined, the multiplicity of each element

common to both (generalized) sets is usually the maximum of the multiplici-

ties of the element in each operand (generalized) set. If the operands are sets,

join is equivalent to union. Because of this, join operators are often repre-

sented by the symbol ∪. More precisely, if X = (X,mX) and Y = (Y,mY) are

generalized sets, where mX(x) and mY (y) are the multiplicities of each x ∈ X
and y ∈ Y respectively, and (M,m) = X∪Y (where ∪ is a join operator) then

M = X ∪ Y and, for each x ∈ X ∩ Y , m(x) is usually max{mX(x),mY (x)}.
The term “join” has been used with different meanings in a number of

closely related fields.

If (M,≤) is a partially ordered set, the join of two elements x, y ∈ M

is the least upper bound (the supremum) of x and y and is denoted x ∨ y.

Formally, z = x ∨ y iff:

1. x ≤ z and y ≤ z,

6.2. BACKGROUND 137

2. for any z′ ∈ Z, if x ≤ z′ and y ≤ z′, z ≤ z′.

As will be seen in section 6.2.6, the join of two elements in a partially ordered

set can be used to define a join type union (as discussed above).

In relational databases “join” refers to the union of two databases. This

is defined in relational algebra, where the join of two relations R1 and R2 is

the composition R2 ◦R1 of R1 and R2 [24].

Example 6.2. If R1 ⊆ A×B and R2 ⊆ B × C then

R2 ◦R1 = {(x, z)|(x, y) ∈ R1, (y, z) ∈ R2}.

6.2.4 Indexed Families

Indexed families are quite common in the literature, although definitions are

much harder to find.

Indexed Families are closely related to sets, multisets and tuples.

Indexed Family definition. Depending on the notation used, an indexed

family can be a multiset or a tuple. In either case, given an (implicit)

surjective function f : Z → M , Z is the index set and M is indexed by

Z. For any z ∈ Z, f(z) is denoted xz. We say xz belongs to the key z.

The indexed family {xz}z∈Z (or simply {xz}) is the multiset (M,m) where

m(x) equals the number of times, for z ∈ Z, that f(z) = x.

Given some (implicit) ordering relation ≤ on Z = {z1, ..., z|Z|} so that zi ≤ zj

for all 1 ≤ i ≤ j ≤ |Z|, the indexed family (xz)z∈Z (or (xz)) is the tuple

(xz1 , ..., xz|Z|).

Note that {xz}z∈Z is a set if f is injective. A function f : Z →M is injective

iff, for each z1, z2 ∈ Z where z1 6= z2, f(z1) 6= f(z2). If f is not injective, a

single element of M may belong to different keys. f is surjective iff, for every

z ∈M , there is a zi ∈ Z where f(zi) = z.

138 CHAPTER 6. L-COLLECTIONS

Example 6.3. If Z = {1, ..., n} and M = {x1, ..., xn} we can also write

M = {xz}z∈Z . M is indexed by {1, ..., n} which is the index set of M . For

any z ∈ Z, xz belongs to the key z.

Example 6.4. If Z = {1, ..., n} and M = {x1, ..., xn}, (xz)z∈Z = (x1, ..., xn).

Indexed families provide a way of succinctly defining a set (multiset or tuple)

in terms of a previously given set.

6.2.5 Rough Sets

The term “rough set” was coined by Zdzislaw Pawlak in 1982 [71, 72]. While

it appears that Pawlak does not give an explicit definition of rough sets—

Pawlak does not make a clear distinction between rough sets and their use

to represent, and derive rules from, “information systems” (relations)—the

following definition is consistent with his usage.

Rough Set definition. A rough set is a pair of sets (A,B). A is the

lower approximation and B is the upper approximation of some set

M . A ⊆M ⊆ B.

As will be seen, rough sets can be used to approximate “imaginary” sets

that can not be explicitly defined.

Rough sets are becoming a popular alternative to fuzzy sets when “proba-

bilities” are not readily obtainable or simply not of interest. Perhaps Pawlak’s

idiosyncratic use of mathematics is a barrier to the greater acceptance and

use of rough sets.

Example 6.5. Given a “database” that associates patients (sets of symp-

toms) with diagnoses: We have definite diagnoses (all patients in the database

with the set of symptoms X have a particular disease) and we have possible

diagnoses (some patients in the database with the set of symptoms Y have

the disease.)

If A is the set of sets of symptoms definitely linked with the disease, that is

6.2. BACKGROUND 139

A = {X|all patients with symptoms X have the disease},

and B is the set of sets of symptoms possibly linked with the disease, that is

B = {Y |some patients with symptoms Y have the disease},

then (A,B) is a rough set of sets of symptoms of the disease.

In this example M—the “set” approximated by A and B—is the set of

sets of symptoms actually caused by the disease. That is

M = {V |V is a set of symptoms actually caused by the disease}.

Practically, in some patients the set of symptoms V is caused by the disease,

while other patients might have the same set of symptoms, some or all of

which are caused by other factors. If this is possible then V should be

(simultaneously!) an element of and not an element of M . In this case M is

an “imaginary” set that can never be explictly defined—yet (A,B) can still

be used to approximate M .

Rough sets could be useful for certain knowledge libraries, such as a

patient knowledge library as in the example.

6.2.6 Fuzzy sets

Fuzzy sets were introduced in 1965 by Lotfi Zadeh in [104] as a way of

handling uncertainty. Fuzzy sets, just like (infinite) sets, were initially highly

controversial. However the vast number practical applications of fuzzy sets

and fuzzy-logic have made Zadeh a very highly cited researcher [30, 52].

Fuzzy set definition. A fuzzy set M is a set M with a function

m : M → [0, 1]. For each x ∈ M , m(x) is the membership grade of

x. If M+ = {x ∈ M |m(x) > 0} = {x1, ..., xn}, M can be denoted by

{m1(x1)/x1, ...,m1(xn)/xn}.

The set M is the universe set—the set of all objects currently of interest.

Importantly, the universe set is distinct from the universal set (the set of all

140 CHAPTER 6. L-COLLECTIONS

objects, including itself) which, as Cantor’s paradox shows, does not exist.

For the fuzzy set operators ⊆, ∪, ∩ and −, it is implicit that the operands

(fuzzy sets) all have the same universe set.

Note that the fuzzy sets M1 = (M1,m1) and M2 = (M2,m2), where:

1. for all x ∈M1 ∩M2, m1(x) = m2(x);

2. for all x ∈M1 −M2, m1(x) = 0; and

3. for all x ∈M2 −M1, m2(x) = 0;

can both be denoted by {m(x1)/x1, ...,m(xn)/xn} whereM1∩M2 = {x1, ..., xn}.
This is because elements of a universe set with a membership grade of zero,

are not considered to be “in” the fuzzy set. So, practically, no distinction is

made between M1 and M2.

Zadeh defines fuzzy set union in the following way.

Fuzzy set Union definition. If X and Y are fuzzy sets with membership

grade functions mX and mY respectively, X∪Y is the fuzzy setM, with mem-

bership grade function m where, for all x ∈M , m(x) = max{mX(x),mY (x)}.

So fuzzy set union is the join form of union.

Zadeh has chosen a notation that, while making it easy to define fuzzy

set operators, makes it difficult to describe certain generic fuzzy sets. Rather

than a single universe set and membership grades that may be equal to zero,

a number of underlying sets M+ and only non zero membership grades, is

perferred in this research. This makes the notation for fuzzy sets used in this

research, (M+,m+) where m+(x) = m(x) for all x ∈M+, consistent with the

notation used for multisets.

Zadeh does not define an “element of” unary relation for fuzzy sets. In

this research it is useful, and consistent with how fuzzy sets are used, to

define x ∈M by x ∈M+.

For Zadeh, the merge union of fuzzy sets X and Y is the “algebraic sum”

X + Y .

6.2. BACKGROUND 141

Fuzzy Set Algebraic Sum definition. If X and Y are fuzzy sets with

membership grade functions mX and mY respectively, X + Y is the fuzzy

set M, with membership grade function m where, for all x ∈ M , m(x) =

mX(x) +mY (x).

Of course this is only meaningful if mX(x) + mY (x) ≤ 1. Because of this

limitation, fuzzy sets cannot be used to define information spaces that allow

more than one information element to be attached to the same point.

L-fuzzy sets

Although Zadeh noted the possibility of “fuzzy sets” with more general mem-

bership functions, he left it to Joseph Goguen to investigate the idea further

in [42], where L-fuzzy sets—also called L-sets—are defined.

L-fuzzy set definition. An L-fuzzy set M on a set M is a function M :

M → L.

This is a simpler notation than that used for fuzzy sets—achieved without

the loss of any precision.

L-fuzzy set Union definition. If X ,Y are L-fuzzy sets (with the same

domain M), and X (x) ∨ Y(x) is defined for all x ∈ X and all x ∈ Y then

X ∪ Y is the L-fuzzy set M where M(x) = X (x) ∨ Y(x) for all x ∈M .

Here X (x)∨Y(x) is the supremum of X (x) and X (x) in L (see section 6.2.3).

Example 6.6. Assuming ≤ is defined as it normally is for numbers, as the

supremum of any two numbers a, b is max{a, b}, the union M = X ∪ Y of

[0, 1]-fuzzy sets X and Y is, for all x ∈ X, M(x) = max{X (x),Y(x)}. This

corresponds to fuzzy set union.

So L-fuzzy set union is necessarily the join type of union. Merge union

is not defined.

Note that, if (L,≤) is a lattice and x∨y ∈ L and x∧y ∈ L for all x, y ∈ L

142 CHAPTER 6. L-COLLECTIONS

then union (and its dual, intersection) is defined between all such L-fuzzy

sets (with the same domain).

6.3 L-Collections

This section extends L-fuzzy sets by adding a merge type union operator.

Because this research is directed towards developing the theory to support a

specific application, generality is not particularly important. As it is useful

to use a different notation, to avoid confusion, the generalised sets developed

in this chapter will be called L-collections. Note however, that the results in

[42] also hold for L-collections.

The name “L-collection” is taken from Cantor’s original definition of

sets—where sets are defined as a type of “collection”. Informally, L-collections

are a type of collection where each element of a set is associated with an el-

ement of the set L.

L-collections are more general than sets, multisets, fuzzy sets and rough

sets in the sense that any set has a corresponding {1}-collection, any multiset

has a corresponding N1-collection, any fuzzy set has a corresponding (0, 1]-

collection and any rough set has a corresponding {0.5, 1}-collection.

L-Collection definition. An L-collectionM is a pair (M,m) where M is a

set and m : M → L. m is called the membership function and M is called

the underlying set. For each x ∈M the membership grade of x is m(x). If

M = {x1, ..., xn} an alternative notation forM is {cx1|m(x1), ..., xn|m(xn) }c .

Note that, if the multiplicity m(x) of an element x is 1, the multiplicity

may be omitted. Also standard set notation may be used to denote a {1}-
collection1 so, for example, {cx1|1, x2|1, x3|1 }

c
= {cx1, x2, x3 }

c
= {x1, x2, x3}.

L-Collection Membership definition. IfM = (M,m) is an L-collection,

x ∈M stands for x ∈M . If x ∈M we say x is an element (or a member)

of M.

1As they are isomorphic, see section 6.4.

6.3. L-COLLECTIONS 143

Empty L-collection definition. L-collections with the underlying set ∅
are denoted by ∅L.

Note that the membership function of ∅L is irrelevant. In this research, some-

times ∅ is used as shorthand for ∅L when this does not introduce ambiguity.

6.3.1 L-collection operators

For the purposes of this research, L is a set of numbers such as R>0, (0, 1],

Q>0, N1 and {1} etc.

Maximizable set definition. L is a maximizable set if, for all x, y ∈
R>0, max{z ∈ L|z ≤ x+y} is defined and (for y < x), max{z ∈ L|z ≤ x−y}
is defined.

Note R>0, (0, 1], Q>0, N1 and {1} are all maximizable sets.

In this section intersection, merge type union and join type union oper-

ators are defined where both operands are L-collections and L ⊆ R>0 is a

maximizable set. If the intersection, merge or join of an L1-collection and an

L2-collection is required, where L1 6= L2, one or other collection must first

be cast so both are of the same “type”.

Many of the definitions below can be generalised to the case where (L,≤)

is a lattice.

L-Collection Intersection definition. If X = (X,mX) and Y = (Y,mY)

are L-collections, X∩Y is the L-collection (X∩Y,m) where, for all x ∈ X∩Y ,

m(x) = min{mX(x),mY (x)}.

L-Collection Union (Merge) definition. If X = (X,mX) and Y =

(Y,mY) are L-collections, X ∪ Y is the L-collection (X ∪ Y,m) where, if:

x ∈ X ∩ Y , m(x) = max{y ∈ L|y ≤ mX(x) +mY (x)}.
x ∈ X − Y , m(x) = mX(x).

x ∈ Y −X, m(x) = mY (x).

144 CHAPTER 6. L-COLLECTIONS

Example 6.7. If X = (X,mX) and Y = (Y,mY) are (0, 1]-collections then

X∪Y = (X∪Y,m) will also be a (0, 1]-collection. If there is a x ∈ X∩Y where

mX(x) = 1 and mY (x) = 1 then m(x) = 1 as max{y ∈ (0, 1]|y ≤ 2} = 1.

Note that, if y1, y2 ∈ L⇒ y1+y2 ∈ L and x ∈ X∩Y , m(x) = mX(x)+mY (x).

The condition y1, y2 ∈ L⇒ y1 + y2 ∈ L is always satisfied if L is N1, Q>0 or

R>0, but is not if L is {1} or (0, 1].

If X and Y are {1}-collections, X ∪ Y works the same way as X ∪ Y . In

this research, union is used to add elements to L-collections—when theorems

over sets are generalised into theorems over L-collections, this form of union

is required. For these reasons, ∪ rather than] is used to represent the merge

form of L-collection union.

L-Collection Union (Join) definition. If X = (X,mX) and Y = (Y,mY)

are L-collections, X ∨ Y is the L-collection (X ∪ Y,m) where, if:

x ∈ X ∩ Y , m(x) = max{mX(x),mY (x)}.
x ∈ X − Y , m(x) = mX(x).

x ∈ Y −X, m(x) = mY (x).

This definition for the join form of union is included for completeness only. If

the operands are {1}-collections, this form of union produces the same result

as set union.

6.3. L-COLLECTIONS 145

L-Collection Complement definition. Given the L-collections

X = (X,mX), Y = (Y,mY) and Z = (Z,mZ).

X − Y: X − Y = Z where Z = {x ∈ X|∃z ∈ L where mX(x)−mY (x) ≥ z}
and, for each x ∈ Z, mZ(x) = max{y ∈ L|y ≤ mX(x)−mY (x)}.

X − {x}: If x ∈ X, X − {x} = (X − {x},mX).

X − (x, r): If x ∈ X, r ∈ L and

1. ∃z ∈ L where mX(x)−r ≥ z then X−(x, r) = Y where Y=X, mY (x) =

max{y ∈ L|y ≤ mX(x)− r} and, for all z ∈ X−{x}, mY (z) = mX(z).

2. ∀z ∈ L,mX(x)− r < z then X − (x, r) = X − {x}.

Sub L-Collection definition. If X = (X,mX) and Y = (Y,mY) are

L-collections, X ⊆ Y iff X ⊆ Y and, for each x ∈ X, mX(x) ≤ mY (x).

L-Collection Power Set definition. If M is an L-collection, P(M) =

{X |X ⊆M}.

Note that P(M) is a set—not an L-collection—of L-collections. Power sets

of Q>0, R>0 or (0, 1]-collections will be infinite.

Example 6.8. If M = {ca|1 }c is a (0, 1]-collection and

P(M) = {{ca|1 }c , {ca|x1 }
c

, {ca|x2 }
c

, ..., ∅},

(where 1 > x1 > x2 > ...) is infinite.

L-Collection Cardinality definition. If M = (M,m) is an L-collection,

for finite M , |M| =
∑

x∈M m(x).

146 CHAPTER 6. L-COLLECTIONS

There are two “cardinalities” associated with an L-collection M = (M,m).

We call |M| the cardinality of M whereas |M | is the number of distinct

elements in M.

Singleton definition. If M = (M,m) is an L-collection where |M | = 1

(there is only 1 distinct element in M) then M is a singleton.

Note that M = (M,m) is a singleton whenever M is a singleton set. So

({x},m) is a singleton, even though it may be that m(x) = 1000.

L-Collection Scaling definition. If X = (X,mX) is an L-collection and

w ∈ R≥0, wX is an L-collection (M,m) where M = {x ∈ X|∃u ∈ L, u ≤
wmX(x)} and, for all x ∈ M , m(x) = max{y ∈ L|y ≤ wmX(x)}. wM is

the L-collection M scaled by w.

Scaling a {1}, N1, Q>0, R>0 or (0, 1]-collection (M,mX) by 0 will result in

the L-collection ∅L as 0 6∈ L. Indeed, scaling a {1}-collection by any w < 1

will result in ∅{1}. For certain L-collections M, M 6= 1
w

(wM).

Example 6.9. Let M = {cx|3 }c be an N1-collection.

Because max{y ∈ N1|y ≤ 1.5} = 1, 0.5M = {cx|1 }c .

Because max{y ∈ N1|y ≤ 1
0.5
} = 2, 1

0.5
(0.5M) = {cx|2 }c .

Note that, if M is an L-collection and wy ∈ L for all y ∈ L then M =
1
w

(wM).

L-Collection Casting definition. If X = (X,mX) is an L1-collection,

XL2 = (Y,m) is an L2-collection where Y = {x ∈ X|mX(x) ≥ y for some

y ∈ L} and for all x ∈ Y , m(x) = max{r ∈ L2|r ≤ mX(x)}.

This definition allows us to resolve union, complement and subset operations

between an L1-collection and an L2-collection (or between an L2-collection

and an L1-collection) where L1 ⊆ L2 by casting the L1-collection to an L2-

collection.

6.4. SETS, MULTISETS, FUZZY SETS, ROUGH SETS AND L-COLLECTIONS147

This method only works if L1 ⊆ L2. In the more general case where

L1 6= L2, casting operands to L1∪L2-collections can give unexpected results.

Example 6.10. Let X = {cx|0.9 }c be a (0, 1]-collection and Y = {cx|2 }c an

N1-collection. Now, because max{x ∈ (0, 1] ∪ N1|x ≤ 0.9 + 2} = 2,

X(0,1]∪N1 ∪ Y(0,1]∪N1 = {cx|2 }c ,

as 2.9 6∈ (0, 1] ∪ N1, rather than {cx|2.9 }c as we might have expected.

It can be useful to cast an L-collection before scaling it. It has already

been discussed that, if X is a {1}-collection, 0.5X is ∅{1}. In contrast,

0.5
(
X(0,1]

)
is a, potentially useful, (0, 1]-collection.

6.4 Sets, Multisets, Fuzzy Sets, Rough Sets

and L-Collections

6.4.1 Sets and L-Collections

For any {1}-collection X = (X, 1):

1. as x ∈ X ⇐⇒ x ∈ X, X is isomorphic to X ;

2. P(X) is the set of all {1}-collections (Z, 1) where Z ⊆ X, so P(X) is

isomorphic to P(X);

3. |X | =
∑

x∈X 1 = |X|;

Furthermore, if Y = (Y, 1) is a {1}-collection:

1. X ∩ Y = (X ∩ Y, 1), so X ∩ Y is isomorphic to X ∩ Y .

2. X ∪ Y = (X ∪ Y, 1), so X ∪ Y is isomorphic to X ∪ Y .

3. X − Y = (X − Y, 1), so X − Y is isomorphic to X − Y .

4. As the membership function is 1 for all x ∈ X, X ⊆ Y ⇐⇒ X ⊆ Y .

148 CHAPTER 6. L-COLLECTIONS

Scale is not defined for sets so cX has no meaning. So, in terms of the oper-

ations defined in this chapter, the {1}-collection X = (X, 1) is isomprphic to

the set X—with additional scaling and casting operators. Because of this, ∅
is used, rather than ∅{1} to represent the empty {1}-collection.

6.4.2 Multisets and L-Collections

Comparing the definition of an L-collection with the definition of a multiset,

it is easy to see that a multiset (M,m) is isomorphic to an N1-collection

(M,m).

6.4.3 Fuzzy Sets and L-Collections

It should be clear that, any fuzzy set {m(x1)/x1, ...,m(xn)/xn} has an iso-

morphic (0, 1]-collection {cx1|m(x1), ..., xn|m(xn) }c .

6.4.4 Rough Sets and L-Collections

Every rough set (A,B) can be assigned a corresponding {0.5, 1}-collection

(B,m) where for each x ∈ A, m(x) = 1 and for each x ∈ B − A, m(x) =

0.5. For practical purposes, rough sets are always defined with respect to

a relation (Pawlak’s “information system”) so union, intersection operators

etc. are not important.

6.5 Extending Proofs Over Sets and

Multisets to {1}, N1 and Q>0-Collections

Because, as is discussed in section 6.4.1 sets and 1-collections are isomorphic,

proofs that hold over sets should automatically hold over corresponding {1}-
collections. Sets and corresponding {1}-collections can be substituted for one

another without altering any result (that does not involve scale or casting).

Similarly, multisets—with appropriately defined operators—are effectively

just N1-collections.

6.5. EXTENDING PROOFS OVER SETS ANDMULTISETS TO {1}, N1 AND Q>0-COLLECTIONS149

Consider the set M = {x1, ..., xn} where, for each 1 ≤ i ≤ n, p(xi) is the

set of properties of xi. Because each element of M must be distinct, it is

the case that, for any 1 ≤ j ≤ n, p(xi) 6= p(xj) if i 6= j. But what if the

set X = {x1 1, ..., x1 n1 , ..., xn 1, ..., xn nn} is required where n1, ..., nn are ∈ N1

and, for each 1 ≤ k ≤ ni, xik has the properties p(xi)?

One approach is to use an N1-collectionM = (M,m) where each m(xi) =

ni. Another approach is to use a labeled set X where xik ∈ X and xik has the

properties p(xi) ∪ l(k) where l(k) is the property of having the label k. As

long as the label of an element is not otherwise germane to our investigation,

X and M should serve equally well.

In later chapters, mappings between M and X will be used to extend

theorems, proven over sets, to N1-collections. These proofs have the following

general form:

1. A certain result holds over the set X.

2. This result still holds after adding further elements xi k to X, where

each additional element has the properties p(xi) ∪ l(k).

3. But there is a property preserving mapping fromM to X, so the result

holds over M.

IfM = (M,m) is a finite Q>0-collection then there is a w ∈ N1 such that

wM is isomorphic to an N1-collection. In other words, there is a w ∈ N1

such that wm(x) ∈ N1 for all x ∈ M . Because the scale of M does not

effect certain properties (such as distance between, and spans of, elements

of M), this can be used to extend theorems, proven over N1-collections, to

Q>0-collections. The general form for such proofs is as follows:

1. For any finite Q>0-collection M = (M,m) where m : M → Q>0 there

is a w such that wM is isomorphic to an N1-collection.

2. Due to this isomorphism, a certain result holds over wM.

3. But certain properties of wM are unaffected by scale, so the result

holds over M.

150 CHAPTER 6. L-COLLECTIONS

Importantly, this form of proof is only valid for finite Q>0-collections. As

infinite Q>0-collections are not required to define information space, this

limitation is not of concern.

6.6 What this Chapter Achieved

This chapter reviewed the literature on “set like” generalisations. As a suit-

able generalisation was not found, L-collections were defined. L-collections

are a type of collection where each element of a set is associated with an

element of the set L ⊆ R>0. L-collections are closely related to L-fuzzy sets,

though different notation is used and different set operators are defined.

In the context of this research, L-collections have two main uses. First,

L-collections enable the representation of multiple identical information el-

ements. Second, L-collections allow “partial” and/or “uncertain” classifica-

tions to be made. Further theoretical development is required before exam-

ples of these uses can be given (see chapter 8).

Chapter 7

L-Collection Space

7.1 Overview

This chapter is about L-collection distance functions—distance functions over

sets of L-collections.

Section 7.2 defines L-collection distance function.

Section 7.3 discusses |X | − |X ∩ Y|—a set distance function introduced

in chapter 5. It is shown that |X | − |X ∩ Y| satisfies 4I, is 6⊆d-strict positive

and ⊆-reflexive when X and Y are L-collections.

Section 7.4 generalises the set space distance function dM
ij so that it is de-

fined over sets of L-Collections, rather than just sets of sets. The generalised

distance function is called dMij —where M is an L-collection. Unfortunately

no dMij distance function is 6⊆dMij -strict positive. The reason for this is that

we could have a pair of L-collections X = (X,m1) and Y = (Y,m2) where

X ⊆ Y but m1(x) > m2(x) for some x ∈ X. Because X ⊆ Y , dMij (X ,Y) = 0.

But because X 6⊆ Y , this is not what we want.

Section 7.5 solves this problem by defining a new distance function Mk d

where 0 ≤ k ≤ 1 and M is an L-collection. Informally, when determining
M
k d(X ,Y), k gives a proportion of X close to Y , similarly to how, when

determining dM
ij (X, Y), i gives a percentage of X close to Y .

Although Mk d where k < 1 does not satisfy G4I, this section shows that if

d satisfies G4I over a set M , M
1 d satisfies G4I over P(M). The section then

151

152 CHAPTER 7. L-COLLECTION SPACE

shows that M1 d satisfies G4I, over P(M) where M is a finite L-collection

with L ⊆ Q>0. Greater generality is not required and so is not pursued.

The section goes on to show that, if d is (⊆-)reflexive and 6⊆d-strict positive

over M then M
k d is ⊆-reflexive, and M

1 d is 6⊆M1 d-strict positive, over P(M)

where M = (M,m) is any finite L-collection.

Section 7.6 defines Mav d. Following a similar pattern of proofs as for Mk d

we show that, if d satisfies G4I, is (⊆-)reflexive and 6⊆d-strict positive over

M then Mav d satisfies G4I, is ⊆-reflexive and 6⊆Mav d-strict positive over P(M)

where M = (M,m) is a finite L-collection with L ⊆ Q>0.

Section 7.7 briefly summarises what has been achieved in this chapter.

7.2 L-Collection Distance Functions

L-collection distance function definition. If d is a distance function

over a set M of L-collections then d is an L-collection distance function.

Example 7.1. Following the definition of L-collection distance function, if

M is a set of N1-collections, d is an N1-collection distance function.

Note that, as previously defined, ifM is a set of sets (effectively {1}-collections)

d is a set distance function.

Section 6.3 defined⊆ for L-collections. Thus the definitions of⊆-reflexivity

(section 4.9.1) and 6⊆d-strict positiveness (section 4.9.3) can be applied to dis-

tance functions over sets of L-collections.

An L-Collection Distance Function

Based on L-Collection Operations

The straight-forward distance function

d(X ,Y) = |X | − |X ∩ Y|

7.2. L-COLLECTION DISTANCE FUNCTIONS 153

introduced in section 5.3 as a set distance function can also be used as a

L-collection distance function. To verify that |X | − |X ∩ Y| satisfies 4I, is

⊆-reflexive and 6⊆d-strict positive, when X and Y are L-collections this result

is reiterated.

7.2.1 4I for |X | − |X ∩ Y|

&%
'$

&%
'$
&%
'$

X Y

Z
a

b c
e

f g h

Figure 7.1: Sub L-collection element counts for 4I proofs. a = |Z −X −Y|,
b = |Z ∩ X − Y|, c = |Z ∩ X ∩ Y|, etc.

We want to show that

|X | − |X ∩ Y| ≤ (|X | − |X ∩ Z|) + (|Z| − |Z ∩ Y|).

But this is b+ f ≤ (f + g) + (a+ b), which holds as 0 ≤ g + a.

7.2.2 6⊆d-strict positiveness for |X | − |X ∩ Y|

&%
'$
&%
'$

X Y
a b c

Figure 7.2: Sub L-collection element counts for 6⊆-strict positive proofs. a =
|X − Y|, b = |X ∩ Y| and c = |Y − X |.

We want to show that |X | − |X ∩ Y| > 0 if X 6⊆ Y . That is a− b+ b > 0.

154 CHAPTER 7. L-COLLECTION SPACE

Note that, as d is not based on any other function, the 6⊆d-strict positive

and 6⊆-strict positive properties are equivalent.

7.2.3 ⊆-reflexivity for |X | − |X ∩ Y|

&%
'$
����X Ya b

Figure 7.3: Sub L-collection element counts for ⊆-reflexive proofs. a = |X |,
b = |Y − X |

We want to show that |X | − |X ∩ Y| = 0 if X ⊆ Y . That is a− a = 0.

7.3 The dMij L-Collection Distance Function

This section defines dMij which gives distances between L-collections ⊆ M.

So dMij can be used as a distance function over any subset of P(M) of

L-collections. If M is a {1}-collection (a set) then the definitions of xY ,

dMj (x,Y), dMij (X ,Y) and X Y , below, are semantically identical to the defini-

tions of xY , dM
j (x, Y), XY and dM

ij (X, Y) (respectively) in section 5.4.

Definition of xY. xY = (M,m) is any L-collection ⊆ Y = (Y,mY) where,

for each y ∈ xY:

1. m(y) = mY (y);

2. d(x, y) ≤ d(x, y′) for all y′ ∈ Y − xY;

3. if j = 0, xY = ({y},mY (y)),

if j 6= 0, |xY| ≥ j|Y|
100

and if, for all y′ ∈ xY, d(x, y) ≥ d(x, y′) then

|xY − {y}| < j|Y|
100

.

7.3. THE dMij L-COLLECTION DISTANCE FUNCTION 155

Just as for xY , an L-collection xY can be built-up by starting from ∅
and adding elements y ∈ Y—from the smallest d(x, y) to the largest—until

|xY| > j|Y |
100

.

Definition of dMj (x,Y) where M 6= ∅, Y = (Y,mY) ⊆ M and d(x, y) is

defined for all y ∈M.

1. dMj (x, ∅) = maxy∈M d(x, y).

If Y 6= ∅:

2. If 0 ≤ j ≤ 100, dMj (x,Y) = maxy∈xY d(x, y).

3. dMav (x,Y) = 1
|Y|
∑

y∈Y mY (y)d(x, y).

Note that dMj (x,Y) and dMav (x,Y) are independent of the choice of xY .

Definition of X Y . X Y = (M,m) is any L-collection ⊆ X = (X,mX)

where, for each x ∈ X Y :

1. m(x) = mX(x);

2. dj(x,Y) ≤ dj(x
′,Y) for all x′ ∈ X − X Y ;

3. if i = 0, X Y = ({x},mX(x)),

if i 6= 0, |X Y | ≥ i|X |
100

and if, for all x′ ∈ X Y , dj(x,Y) ≥ dj(x
′,Y) then

|X Y − {x}| < i|X |
100

.

Similarly to xY (and XY) an L-collection X Y can be built-up by starting

from ∅ and adding elements x ∈ X in turn—from the smallest dM
j (x, Y) to

the largest dM
j (x, Y)—until |X Y | > i|X|

100
.

156 CHAPTER 7. L-COLLECTION SPACE

Definition of dMij (X ,Y) where X = (X,mX).

1. dMij (∅,Y) = 0.

If X 6= ∅:

2. If 0 ≤ i ≤ 100, dMij (X ,Y) = maxx∈XY d
M
j (x,Y).

3. dMavj(X ,Y) = 1
|X |
∑

x∈X mX(x)dMj (x,Y).

Note that dMij (X ,Y) and dMavj(X ,Y) are independent of the choice of X Y .

The problem with dMij is that, ifM can be an L-collection, no dMij distance

function is 6⊆dMij -strict positive.

Example 7.2. Let X = ({x},mX), Y = ({x},mY), mX(x) > mY (x),

X ,Y ⊆M. Now X 6⊆ Y but, for any i, j, if d(x, x) = 0, dMij (X ,Y) = 0.

7.4 The Mk d L-Collection Distance Function

Informally M
k d(X, Y) is the kth proportion of X that is nearest to Y . This is

similar to the ith% of X nearest to a y ∈ Y in dM
ij (X, Y). If M is a set, to

find the distance M
k d(X, Y) between two sets X, Y ⊆M :

1. Choose x ∈ X and y ∈ Y so that d(x, y) is minimised—this is the first

distance.

2. Remove x from X and y from Y giving X− = X − {x} and Y − =

Y − {y}.

3. Now choose x ∈ X−, y ∈ Y − so that d(x, y) is minimised—this is the

second distance.

4. Repeat until each x ∈ X has been chosen (pairing residual elements of

X with the empty set, with a distance= maxx,y∈M d(x, y), in the event

that Y is exhausted).

7.4. THE M
K D L-COLLECTION DISTANCE FUNCTION 157

5. M
k d(X, Y), where k ∈ [0, 1], is the dk|X|eth such distance.

Example 7.3. d(x, y) = |x − y|, X = {2, 4, 5}, Y = {1, 4, 7}. The first

distance is d(4, 4) = 0, the second is d(2, 1) = 1 and the third is d(5, 7) = 2.

We have |X| = 3 so d0.5|X|e = 2 and M
0.5d(X, Y) = d(2, 1) = 1.

IfM is an L-collection and X = (X,mX), Y = (Y,mY) are L-collections,

choose x ∈ X and y ∈ Y so that d(x, y) is minimised. This distance is given

a weight of

p =
min{mX(x),mY (y)}

|X |

and (x, p|X |) is removed from X and (y, p|X |) from Y before repeating, as

in the algorithm above.

Definition of Mk d(X ,Y) whereM = (M,m) is an L-collection, k ∈ [0, 1],

d is a distance function over M and X ,Y ⊆M definition.
M
k d(∅,Y) = 0.

If X 6= ∅, Mk d(X , ∅) = maxx,y∈M d(x, y).

If X ,Y 6= ∅: Let X = (X,mX) and Y = (Y,mY). Choose x ∈ X and y ∈ Y
where d(x, y) = minx1∈X,y1∈Y d(x1, y1). If there is more than one such pair,

choose the pair that minimises Mk d(X ,Y).

Let p = min{mX(x),mY (y)}
|X | .

1. If k ≤ p, Mk d(X ,Y) = d(x, y).

2. If k > p, Mk d(X ,Y) = M
k−d(X−,Y−).

Where X− = X − (x, p|X |), Y− = Y − (y, p|X |) and k− = k−p
1−p

.

Note that this definition for Mk d is recursive, with (1) being a base case

and (2) being the general case. Mk d is a distance function over P(M).

Because this is a procedural definition, the following, equivalent, (naive

recursive) algorithm is provided for greater clarity.

Preconditions. c = maxx,y∈M d(x, y) is a predefined constant, X =

(X,mX) and Y = (Y,mY) are L-collections and 0 ≤ k ≤ 1.

158 CHAPTER 7. L-COLLECTION SPACE

d(k,X ,Y)

if X is ∅, return 0

if Y is ∅, return c

candidates = {(x, y)|x ∈ X, y ∈ Y, d(x, y) ≤ d(x1, y1) for all x1 ∈ X, y1 ∈ Y }
answer = c

for each (x, y) ∈ candidates
p = min{mX(x),mY (y)}

|X |

if k ≤ p and d(x, y) < answer, answer = d(x, y)

if k > p

X− = X − (x, p|X |)
Y− = Y − (y, p|X |)
k− = k−p

1−p

if d(k−,X−,Y−)< answer, answer =d(k−,X−,Y−)

return answer

Note that k is used to “select” a proportion k of X , just as k− selects a pro-

portion k− of X−. The proportion of X− that is selected by k− should equal

the proportion of X selected by k, minus that part of X that was removed to

get X−. Numerically, we want |X−|k− = |X |k −min{mX(x),mY (y)}. This

is k− = |X |(k−p)
|X−| = k−p

1−p
as |X−| = |X | −min{mX(x),mY (y)} = |X | − |X |p.

Note that, for finite X , the algorithm converges as |X−| < |X | and 0 <

k− ≤ k (as k > p). If k = 1 then k− = 1, otherwise k− < k.

Example 7.4. d(x, y) = |x− y|, X = {c1|1, 3|2, 4|2 }c and Y = {c1|2, 5|2 }c .

To find M0.5d(X ,Y) we choose x ∈ X and y ∈ Y so that d(x, y) is minimised.

We choose x = 1, y = 1 as d(1, 1) = 0.

Now, noting that |X | = 1 + 2 + 2 = 5, we see that k = 0.5 is larger than

p = min{1,2}
5

= 1
5

= 0.2.

We have X− = {c3|2, 4|2 }c , Y− = {c1|1, 5|2 }c and k− = 5(0.5−0.2)
4

= 3
8

= 0.375.

To find M0.5d(X ,Y) we find M0.375d(X−,Y−), choosing x = 4, y = 5 as d(4, 5) =

1.

Now, as |X−| = 4, we see that p = min{2,2}
4

= 0.5 is larger than k− = 0.375

so M0.5d(X ,Y) = M
0.375d(X−,Y−) = d(4, 5) = 1.

7.4. THE M
K D L-COLLECTION DISTANCE FUNCTION 159

The following example shows why, if d(x1, y1) = d(x2, y2) = minx∈X,y∈Y d(x, y)

it is important to choose the pair that minimises Mk d(X ,Y).

Example 7.5. X = {x1, x2}, Y = {y1, y2}, d(x1, y1) = d(x2, y1) = 1,

d(x1, y2) = 100, d(x2, y2) = 2. Now If x1 is paired with y1,
M
k d(X ,Y) = 2,

but if x2 is paired with y1,
M
k d(X ,Y) = 100. So, without the requirement

to choose the x ∈ X , y ∈ Y that minimises Mk d(X ,Y), the definition for Mk d

would be ambiguous.

7.4.1 Span and G4I for Mk d

sM
k d(X)—the Mk d–span of X definition.

If, for some y, X = {y} then sM
k d(X) = sd(y).

If, for all y, X 6= {y} then sM
k d(X) = maxx,y∈X{sd(x) + d(x, y) + sd(y)}.

This is the same definition of span as that for dM
ij (see section 5.2.4)—

except Mk d replaces dM
ij . This definition of span is also used for Mav d—an

L-collection distance function discussed in section 7.6.

Note that, even if d satisfies 4I over M , Mk d where M = (M,m) and

k 6= 1 may not satisfy G4I over P(M). In particular, Mk d(X ,Y) may be

greater than Mk d(X ,Z) + s(Mk d,Z) +M
k d(Z,Y) when |Y| < k|X | ≤ |Z|, but

k|Z| ≤ |Y| (for X ,Y ,Z ⊆M).

Example 7.6. d(x, y) = |x − y|, X = {c1|1 }c , Z = {c1|k }c , Y = {c1|k2 }c ,

maxx,y∈M d(x, y) = 1000. Now M
k d(X ,Z) = d(1, 1) = 0, Mk d(Z,Y) =

d(1, 1) = 0 but, for k < 1, Mk d(X ,Y) = M
k−d(X−, ∅) = maxx,y∈M d(x, y) =

1000.

Lemma 7.1 If d satisfies G4I over a set M , X, Y, Z ⊆M and |X| ≤ |Z| ≤
|Y | then M

k d(X, Y) ≤ M
k d(X,Z) + sM

k d(Z) + M
k d(Z, Y).

160 CHAPTER 7. L-COLLECTION SPACE

PROOF. If X = ∅ the result is obvious. Assuming X 6= ∅, label each

element of X and each element of Y so that xY
i is the ith element of X and

Xyi is the ith element of Y chosen when determining M
k d(X, Y). So, if

n = fk(X) =
{

1, k|X|=0
dk|X|e, k|X|6=0

then M
k d(X, Y) = d(xY

n ,
Xyn), M

k d(X,Z) = d(xZ
n ,

Xzn).

If m = fk(Z), M
k d(Z, Y) = d(zY

m,
Zym). Note that n ≤ m as |X| ≤ |Z|.

There are n distances

d(xZ
1 ,

Xz1) ≤ d(xZ
2 ,

Xz2) ≤ ... ≤ d(xZ
n ,

Xzn)

and m distances

d(zY
1 ,

Zy1) ≤ d(zY
2 ,

Zy2) ≤ ... ≤ d(zY
m,

Zym)

giving nm distances

d(xZ
1 ,

Zy1), ..., d(xZ
1 ,

Zym), ..., d(xZ
n ,

Zym)

where, from G4I, (for each 0 < i ≤ n, 0 < j ≤ m)

d(xZ
i ,

Zyj) ≤ d(xZ
i , z

Y
j) + sd(zY

j) + d(zY
j ,

Zyj),

d(xZ
i , z

Y
j) ≤ d(xZ

i ,
Xzi) + sd(Xzi) + d(Xzi, z

Y
j)

and so

d(xZ
i ,

Zyj) ≤ d(xZ
i ,

Xzi) + sd(Xzi) + d(Xzi, z
Y
j) + sd(zY

j) + d(zY
j ,

Zyj).

From this and the definition of sM
k d–span

d(xZ
i ,

Zyj) ≤ d(xZ
i ,

Xzi) + sM
k d(Z) + d(zY

j ,
Zyj).

7.4. THE M
K D L-COLLECTION DISTANCE FUNCTION 161

So there are at least mn x ∈ X, y ∈ Y combinations such that

d(x, y) ≤ d(xZ
n ,

Xzn) + sM
1 d(Z) + d(zY

m,
Zym).

A maximum of (n − 1) xs and (m − 1) ys, may have been chosen before

xY
n ,

Xyn leaving at least one combination available.

Theorem 7.2 If d satisfies G4I over a set M then M
1 d satisfies G4I over

P(M).

PROOF. For X, Y, Z ⊆ M . If |X| > |Z| or |Z| > |Y | then M
1 d(X,Z) or

M
1 d(Z, Y) is maxx,y∈M d(x, y). So 4I is satisfied when |X| > |Z| or |Z| > |Y |.
The only remaining case is |X| ≤ |Z| ≤ |Y | which is covered in lemma 7.1.

Lemma 7.3 d+ satisfies G4I over M ∪ {v} if d satisfies G4I over M and

there is a u ∈ M such that, for all x, y ∈ M , d+(x, y) = d(x, y), d+(x, v) =

d(x, u), d+(v, y) = d(u, y), sd+(v) = sd(u) and d+(v, v) = d(u, u).

PROOF. For all x, y, z ∈M :

d+(v, y) ≤ d+(v, z) + sd+(z) + d+(z, y) as d(u, y) ≤ d(u, z) + sd(z) + d(z, y),

d+(x, y) ≤ d+(x, v) + sd+(v) + d+(v, y) as d(x, y) ≤ d(x, u) + sd(u) + d(u, y),

d+(x, v) ≤ d+(x, z) + sd+(z) + d+(z, v) as d(x, u) ≤ d(x, z) + sd(z) + d(z, u).

Lemma 7.4 If d satisfies G4I over a finite set M and M = (M,m) is an

N1-collection then M1 d satisfies G4I over P(M).

PROOF. Let M = {x1, ..., xn}, M+ = {x1 1, ..., x1 n1 , ..., xn 1, ..., xn nn} and

d+ be a distance function over M+ where d+(xir, xir′) = d(xi, xi), sd+(xir) =

sd(xi) and d+(xir, xjr′′) = d(xi, xj) for any 1 ≤ i, j ≤ n, 1 ≤ r, r′ ≤ ni and

1 ≤ r′′ ≤ nj.

From lemma 7.3, d+ satisfies G4I.

From theorem 7.2, M+

1 d+ satisfies G4I.

162 CHAPTER 7. L-COLLECTION SPACE

For each 1 ≤ i ≤ n, let m(xi) = ni. Each X = (X,mX) ⊆ M has a corre-

sponding X+ ⊆M+ where xi ∈ X ⇔ xi 1, ..., xi mX(xi) ∈ X+.

Now, for any X ,Y ⊆ M, M1 d(X ,Y) = M+

1 d+(X+, Y +) and sM
1 d(X) =

sM+
1 d+(X+).

Theorem 7.5 If d satisfies G4I over a finite set M andM = (M,m) is an

L-collection, where L ⊆ Q>0, then M1 d satisfies G4I over any finite subset

of P(M).

PROOF. Let M ′ = {X1, ...,Xn} be a finite subset of P(M). Because M ′

and each Xi is finite, there is a w ∈ N1 where, for each 1 ≤ i ≤ n, wXi is

an N1-collection. From lemma 7.4, wM
1 d satisfies G4I over P(wM). For any

1 ≤ i ≤ n, 1 ≤ j ≤ n and any w ∈ R>0 at all, wM
1 d(wXi, wXj) = M

1 d(Xi,Xj)

and swM
1 d(wXi) = sM

1 d(Xi).

7.4.2 ⊆-reflexivity for Mk d distance functions

Theorem 7.6 If the distance function d is (⊆-)reflexive then M
k d is ⊆-

reflexive.

PROOF. If X ⊆ Y then minx∈X ,y∈Y d(x, y) = d(x, x) = 0 so:

1. If k ≤ p, Mk d(X ,Y) = 0.

2. If k > p, Mk d(X ,Y) = M
k−d(X−,Y−) where X− ⊆ Y− as X ⊆ Y and so

mX(x) ≤ mY (x). So Mk d(X ,Y) = ... = M
k∗ d(X ∗,Y∗) where k∗ ≤ p and

X ∗ ⊆ Y∗.

Note that, if ⊆d-reflexivity was defined to mirror 6⊆d-strict positiveness, M
k d

distance functions where 0 < k ≤ 1 would not be ⊆d-reflexive.

Example 7.7. d is some 6⊆d-strict positive distance function over N1. d
′ is

some 6⊆d′-strict positive distance function, based on d, over M = P(N1). d
′′ =

7.4. THE M
K D L-COLLECTION DISTANCE FUNCTION 163

M
k (d′) is a distance function over P(M). X = {{1}, {1, 2}, {1, 2, 3}, ...,N1}
and Y = {N1}. As X ⊆d′′ Y , for d′′ to be ⊆d′′-reflexive we would require

d′′(X, Y) = 0 but, for 0 < k ≤ 1, d′′(X, Y) > 0.

To fix this, ⊆d would need to be defined so, when evaluating X ⊆d Y , the

elements of (the elements of...) X are “paired of” with the elements of (the

elements of...) Y—similarly to how elements are paired off when evaluating
M
k d. Not only would this be quite complex, but then dM

ij distance functions,

which work best with the existing definition of ⊆d, would not be 6⊆d-strict

positive.

The complete solution then, would be to define two versions of ⊆d : the

existing version, for dM
ij distance functions; and a “pairing off” version, for

M
k d distance functions. These different versions would then be used to define

different versions of the ⊆d-reflexive and 6⊆d-strict positive properties for dM
ij

and M
k d distance functions.

Unfortunately, the technical complexity of all this would obscure the main

argument of this research, while adding little of value. If greater precision

is required, the existing theorems can easily be adapted to the more specific

forms of ⊆d-reflexivity and 6⊆d-strict positiveness.

7.4.3 6⊆d-strict positiveness for Mk d distance functions

Even if d is strict positive, Mk d where k 6= 1 may not be 6⊆-strict positive.

Indeed whenever X ⊇ Y , k|X | ≤ |Y| and d is (⊆-)reflexive, Mk d(X ,Y) = 0.

Example 7.8. X = {1, 2, ..., 10}, Y = {1, 2, ..., 9}, d(x, y) = |x − y|. To

find M0.9d(X ,Y) we can pair off x = y = 1, x = y = 2, ..., x = y = 9 to get
M
0.9d(X ,Y) = d(9, 9) = 0. By increasing the size of X and Y , similar examples

can be found where Mk d(X ,Y) = 0 for any Mk d where k < 1.

Theorem 7.7 If the distance function d is 6⊆d-strict positive over M and

M = (M,m) then, for d′ = M
1 d, d′ is 6⊆d′-strict positive over P(M).

164 CHAPTER 7. L-COLLECTION SPACE

PROOF. For any X = (X,mX),Y = (Y,mY), when determining M1 d(X ,Y)

distances d(x, y) (x ∈ X, y ∈ Y) are chosen in nondecreasing order. If

|X | > |Y|, M1 d(X ,Y) > 0. If |X | ≤ |Y|, M1 d(X ,Y) is the maximum of these

chosen d(x, y)s. If X 6⊆d′ Y there is at least one x ∈ X such that x 6⊆d y for

all y. As d is 6⊆d-strict positive, d(x, y) > 0 and so M1 d(X ,Y) > 0.

7.5 The Mav d L-Collection Distance Function

Informally, M
k d(X, Y), where 0 ≤ k ≤ 1, chooses pairs elements x ∈ X with

elements y ∈ Y—removing chosen pairs—so that d(x, y) is nondecreasing

with each choice. M
k d(X, Y) = d(x, y) for the k|X|th x, y pair. If Y is ex-

hausted before the k|X|th pair is chosen, M
k d(X, Y) = maxx,y∈M d(x, y).

Equally informally, M
avd(X, Y) is the average of these d(x, y) distances.

If |X| > |Y | then (|X| − |Y |) maxx,y∈M d(x, y) is added to the sum of the

d(x, y) distances before dividing this by |X|—as if each unpaired element of

X where paired with ∅.
The L-collection distance function Mav d essentially works in the same way,

but assigns weights to each d(x, y) that reflect the membership grade of the

paired elements.

Definition of Mav d(X ,Y) where M = (M,m) is an L-collection, d is a

distance function over M and X ,Y ⊆M.
M
av d(∅,Y) = 0.

If X 6= ∅, Mav d(X , ∅) = maxx,y∈M d(x, y).

If X ,Y 6= ∅: Let X = (X,mX) and Y = (Y,mY). Choose x ∈ X and y ∈ Y
where d(x, y) = minx1∈X,y1∈Y d(x1, y1). If there is more than one such pair,

choose the pair that minimises Mav d(X ,Y).

Let p = min{mX(x),mY (y)}
|X | .

M
av d(X ,Y) = pd(x, y) + (1− p)Mav d(X−,Y−)

where X− = X − (x, p|X |) and Y− = Y − (y, p|X |).

7.5. THE M
AVD L-COLLECTION DISTANCE FUNCTION 165

Example 7.9. X = {9, 19, 29}, Y = {10, 20}, M = {1, .., 30}, d(x, y) =

|x− y|.
As sets can be treated as {1}-collections we have

M
av d(X ,Y) =

1

3
d(9, 10) +

2

3

(
1

2
d(19, 20) +

1

2
d(29, ∅)

)

=
1

3
d(9, 10) +

1

3
d(19, 20) +

1

3
d(1, 30) = 10

1

3
.

Note that, from the definition, if X 6= ∅, Mav d(X , ∅) = maxx,y∈M d(x, y),

so in the example d(29, ∅) = d(1, 30). Also, if qi = min{mX(x),mY (y)} and

di = d(x, y) on the ith recursion then

M
av d(X ,Y)

=
q1
|X |

d1 + (1− q1
|X |

)

(
q2

|X | − q1
d2 + (1− q2

|X | − q1
)

(
q3

|X | − q1 − q2
d3 + ...

))
=

q1
|X |

d1 +
|X | − q1
|X |

(
q2

|X | − q1
d2 +

(|X | − q1)− q2
|X | − q1

(
q3

|X | − q1 − q2
d3 + ...

))
=

q1
|X |

d1 +
q2
|X |

d2 +
q3
|X |

d3 +

If r is the final recursion and |X | ≤ |Y| then the last term in the series will

be qr

|X |dr and
r∑

i=1

qi
|X |

= 1.

If |X | > |Y| then the last term will be |X |−|Y||X | maxx,y∈M d(x, y) and

r−1∑
i=1

qi
|X |

= 1− |X | − |Y|
|X |

=
Y
X
.

Note that scaling X ,Y ∈M by a constant will not affect the result.

166 CHAPTER 7. L-COLLECTION SPACE

Lemma 7.8 If M is an L-collection, where L ⊆ Q>0, X ,Y ⊆ M and

w ∈ Q>0 then sM
av d(X) = swM

av d(wX) and Mav d(X ,Y) = wM
av d(wX , wY).

PROOF. Let M = (M,m), X = (X,mX) and Y = (Y,mY). Now wM =

(M,wm), wX = (X,wmX), wY = (Y,wmY), wX , wY ⊆ wM and

swM
av d(wX) = sM

av d(X) = sM
av d(X).

Let qi = min{mX(x),mY (y)}, di = d(x, y) on the ith recursion, and r = the

final recursion when determining Mav d(X ,Y).

If |X | ≤ |Y| then

wM
av d(wX , wY) =

r∑
i=1

wqi
|wX|

di =
r∑

i=1

qi
|X |

di = M
av d(X ,Y).

If |X | > |Y| then

wM
av d(wX , wY) =

(
r−1∑
i=1

wqi
|wX|

di

)
+
|wX| − |wY|
|wX|

max
x,y∈M

d(x, y)

=

(
r−1∑
i=1

qi
|X |

di

)
+
|X | − |Y|
|X |

max
x,y∈M

d(x, y) = M
av d(X ,Y).

7.5.1 G4I for Mav d

Theorem 7.9 If d satisfies G4I over a finite set M then M
avd satisfies G4I

over P(M).

In the following proof, XY ⊆ X denotes the set of all points in X, paired with

a point in Y when determining M
avd(X, Y). This defines XY , XZ ⊆ X and

ZY ⊆ Z. Similarly, XY ⊆ Y denotes the set of all points in Y that a point

in XY is paired with when determining M
avd(X, Y). This defines XY , ZY ⊆ Y

and XZ ⊆ Z.

7.5. THE M
AVD L-COLLECTION DISTANCE FUNCTION 167

Note that if X is smaller than Y and Z, XZ = XY = X. Similarly, if Y is

smaller than X and Z, XY = ZY = Y .

The sets X and Y (and so their subsets) are (fully) indexed with the con-

straint that (xi, yi) is the ith pair chosen when determining M
avd(X, Y), so if

|X| > |Y |, x|Y |+1, ..., x|X| are in an arbitrary order. Z is (fully) indexed with

the constraint that, for each i where xi ∈ XZ , xi is paired with zi when de-

termining M
avd(X,Z). The function f is defined so, for each j where zj ∈ ZY ,

zj is paired with yf(j) when determining M
avd(Z, Y).

Note that, while it is always possible to sequentially index X and Y , so

X = {x1, x2, ..., x|X|} and Y = {y1, y2, ..., y|Y |}, it is normally not possible

to sequentially index Z when |Z| < |X|. That is, Z cannot, generally be

represented by {z1, ..., z|Z|} as the indices are chosen based on the ordering

of X.

PROOF. For X, Y, Z ⊆ M , there are 6 cases to consider: |X| ≤ |Z| ≤ |Y |,
|X| ≤ |Y | ≤ |Z|, |Z| ≤ |X| ≤ |Y |, |Y | ≤ |X| ≤ |Z|, |Y | ≤ |Z| ≤ |X| and

|Z| ≤ |Y | ≤ |X|.

If |X| ≤ |Y |, for every Y ′ ⊆ ZY of size min{|X|, |Z|}, for each y ∈ Y ′,

there is a distinct xi ∈ X = XY where:

1. if y ∈ ZY ∩ XY , y = yi (and so d(xi, yi) = d(xi, y));

2. if y ∈ ZY − XY , d(xi, yi) ≤ d(xi, y) (otherwise y would be ∈ XY).

So for each y ∈ Y ′ a distinct xi can be chosen to satisfy d(xi, yi) =< d(xi, y).

From this and G4I applied twice, for min{|X|, |Z|} of the xis in X, z, z′ ∈ Z
and (y = yi or y ∈ ZY − XY):

d(xi, yi) ≤ d(xi, z) + sd(z) + d(z, z′) + sd(z′) + d(z′, y).

As sM
avd(Z) ≥ sd(z) + d(z, z′) + sd(z′) for all z, z′ ∈ Z,

d(xi, yi) ≤ d(xi, z) + sM
avd(Z) + d(z′, y). (7.1)

168 CHAPTER 7. L-COLLECTION SPACE

Case 1 |X| ≤ |Z| ≤ |Y |. We have

M
avd(X, Y) = 1

|X|
∑|X|

i=1 d(xi, yi),

M
avd(X,Z) = 1

|X|
∑|X|

i=1 d(xi, zi) and

M
avd(Z, Y) = 1

|Z|
∑|Z|

j=1 d(zj, yf(j)).

As |Y ′| = |X|, inequality (7.1) can be summed to give, with zi for z,

|X|∑
i=1

d(xi, yi) ≤
|X|∑
i=1

d(xi, zi) + |X|sM
avd(Z) +

∑
y∈Y ′

d(z′, y).

As this holds for any Y ′ ⊆ ZY , we can have |Z|, not necessarily distinct Y ′s,

the (N1-collection) union of which contains each y ∈ ZY exactly |X| times.

Adding these |Z| inequalities, with zj for z′, gives

|Z|

 |X|∑
i=1

d(xi, yi)

 ≤
 |X|∑

i=1

|Z|∑
j=1

d(xi, zi) + sM
avd(Z) + d(zj, yf(j))

 .

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

The other cases are similar, so are presented in less detail.

Case 2 |X| ≤ |Y | ≤ |Z|. We have

M
avd(X, Y) = 1

|X|
∑|X|

i=1 d(xi, yi),

M
avd(X,Z) = 1

|X|
∑|X|

i=1 d(xi, zi) and

M
avd(Z, Y) = 1

|Z|

(∑
{f(j)|yf(j)∈Y } d(zj, yf(j))

)
+ |Z|−|Y |

|Z| maxx,y∈M d(x, y).

For any zj, y ∈ M , d(zj, y) ≤ maxx,y′∈M{d(x, y′)}. Similarly to case 1,

from inequality (7.1) applied |X||Z| times, with maxx,y∈M d(x, y) for d(zj, y)

|X|(|Z| − |Y |) times,

7.5. THE M
AVD L-COLLECTION DISTANCE FUNCTION 169

|Z|

 |X|∑
i=1

d(xi, yi)

 ≤ |Z|
 |X|∑

i=1

d(xi, zi) + sM
avd(Z)



+|X|

 ∑
{f(j)|yf(j)∈Y }

d(zj, yf(j))

+|X|(|Z|−|Y |) max
x,y∈M

d(x, y).

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

Case 3 |Z| ≤ |X| ≤ |Y |.
M
avd(X, Y) = 1

|X|
∑|X|

i=1 d(xi, yi),

M
avd(X,Z) =

(
1
|X|
∑
{i|xi∈XZ} d(xi, zi)

)
+ |X|−|Z|

|X| maxx,y∈M d(x, y) and

M
avd(Z, Y) = 1

|Z|
∑|Z|

j=1 d(zj, yf(j)).

Similarly to case 2, from inequality (7.1) applied |Z|2 times, with maxx,y∈M d(x, y)

for d(xi, zi) the remaining |Z|(|X| − |Z|) times,

|Z|

 |X|∑
i=1

d(xi, yi)

 ≤ |Z|
 ∑
{i|xi∈XZ}

d(xi, zi)

+|Z|(|X|−|Z|) max
x,y∈M

d(x, y)

+|X|

 |Z|∑
j=1

sM
avd(Z) + d(zj, yf(j))

 .

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

If |Y | ≤ |X|, for every X ′ ⊆ XZ of size min{|X|, |Z|}, for each x ∈ X ′,

there is a distinct yi ∈ Y = XY where:

1. if x ∈ XZ ∩XY , x = xi (and so d(xi, yi) = d(x, yi));

2. if x ∈ XZ −XY , d(xi, yi) ≤ d(x, yi) (otherwise x would be ∈ XY).

From this and G4I applied twice, for min{|Y |, |Z|} of the yis in XY , z, z′ ∈ Z
and (x = xi or x ∈ XZ −XY):

d(xi, yi) ≤ d(x, z) + sd(z) + d(z, z′) + sd(z′) + d(z′, yi).

170 CHAPTER 7. L-COLLECTION SPACE

As sM
avd(Z) ≥ sd(z) + d(z, z′) + sd(z′) for all z, z′ ∈ Z,

d(xi, yi) ≤ d(x, z) + sM
avd(Z) + d(z′, yi). (7.2)

Case 4 |Y | ≤ |X| ≤ |Z|.
M
avd(X, Y) =

(
1
|X|
∑|Y |

i=1 d(xi, yi)
)

+ |X|−|Y |
|X| maxx,y∈M d(x, y),

M
avd(X,Z) = 1

|X|
∑|X|

i=1 d(xi, zi) and
M
avd(Z, Y) = 1

|Z|
∑|Y |

j=1 d(zj, yf(j)) + |Z|−|Y |
|Z| maxx,y∈M d(x, y).

Similarly to cases 2 and 3, as |Z|(|X|−|Y |) ≤ |X|(|Z|−|Y |), from inequality

(7.2) applied |X||Z| times, with maxx,y∈M d(x, y) for d(xi, zi), |Z|(|X| − |Y |)
times and for d(zj, yi), |X|(|Z| − |Y |) times,

|Z|

 |Y |∑
i=1

d(xi, yi)

+|Z|(|X|−|Y |) max
x,y∈M

d(x, y)

≤ |Z|

 |X|∑
i=1

d(xi, zi) + sM
av

(Z)

+|X|

 |Y |∑
j=1

d(zj, yf(j))

+|X|(|Z|−|Y |) max
x,y∈M

d(x, y).

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

Case 5 |Y | ≤ |Z| ≤ |X|.
M
avd(X, Y) =

(
1
|X|
∑|Y |

i=1 d(xi, yi)
)

+ |X|−|Y |
|X| maxx,y∈M d(x, y),

M
avd(X,Z) =

(
1
|X|
∑
{i|zi∈Z} d(xi, zi)

)
+ |X|−|Z|

|X| maxx,y∈M d(x, y) and

M
avd(Z, Y) =

(
1
|Z|
∑|Y |

f(j)=1 d(zj, yf(j))
)

+ |Z|−|Y |
|Z| maxx,y∈M d(x, y).

Similarly to case 4, as |Z|(|X| − |Y |) ≤ |Z|(|X| − |Z|) + |X|(|Z| − |Y |), from

inequality (7.2) applied |X||Z| times, with maxx,y∈M d(x, y) for:

1. d(xi, yi), |Z|(|X| − |Y |) times;

2. for d(xi, zi), |Z|(|X| − |Z|) times;

3. for d(zj, yi), |X|(|Z| − |Y |) times.

7.5. THE M
AVD L-COLLECTION DISTANCE FUNCTION 171

|Z|

 |Y |∑
i=1

d(xi, yi)

+ |Z|(|X| − |Y |) max
x,y∈M

d(x, y)

≤ |Z|

 |X|∑
i=1

d(xi, zi)

+ |Z|(|X| − |Y |) max
x,y∈M

d(x, y)

+|Z||X|sM
av

(Z) + |X|

 |Y |∑
j=1

d(zj, yf(j))

+ |X|(|Z| − |Y |) max
x,y∈M

d(x, y).

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

Case 6 |Z| ≤ |Y | ≤ |X|.

M
avd(X, Y) =

(
1
|X|
∑|Y |

i=1 d(xi, yi)
)

+ |X|−|Y |
|X| maxx,y∈M d(x, y),

M
avd(X,Z) =

(
1
|X|
∑
{i|zi∈Z} d(xi, zi)

)
+ |X|−|Z|

|X| maxx,y∈M d(x, y) and

M
avd(Z, Y) = 1

|Z|
∑
{j|zj∈Z} d(zj, yf(j)).

Similarly to cases 3 and 5, as |Z|(|X|−|Y |) ≤ |Z|(|X|−|Z|), from inequality

(7.2) applied |Z|2 times, with maxx,y∈M d(x, y) for d(x, zi), |Z|(|X| − |Z|)
times and for d(xi, yi) the remaining |Z|(|X| − |Y |) times,

|Z|

 |Y |∑
i=1

d(xi, yi)

+ |Z|(|X| − |Y |) max
x,y∈M

d(x, y)

≤ |Z|

 ∑
{i|zi∈Z}

d(xi, zi)

+ |Z|(|X| − |Z|) max
x,y∈M

d(x, y)

+|X|

 |Y |∑
j=1

sM
av

(Z) + d(zj, yf(j))

 .

Dividing through by |Z||X| gives M
avd(X, Y) ≤ M

avd(X,Z)+sM
avd(Z)+M

avd(X, Y).

172 CHAPTER 7. L-COLLECTION SPACE

Lemma 7.10 If

1. d satisfies G4I over M = {z1, ..., z|M |},

2. M = (M,m),

3. M+ = {z1 1, ..., z1 m(z1), ..., z|Z| 1, ..., z|Z| m(z|Z|)},

4. X ,Y ⊆ M are N1-collections where X = (X,mX), Y = (Y,mY) and

X = {x1, ..., x|X|}, Y = {y1, ..., y|Y |},

5. X+ ⊆ M+ where X+ = {x1 1, ..., x1 mX(x1), ..., x|X| 1, ..., x|X| mX(x|X|)}
and, for any 1 ≤ i ≤ |X|, 1 ≤ j ≤ |M |, 1 ≤ r ≤ mX(xi) and

1 ≤ r′ ≤ m(zj), d+(xir, zjr′) = d(xi, zj), d+(zjr′ , xir) = d(zj, xi) and

sd+(xir) = sd(xi).

6. Y + ⊆M+ where Y + = {y1 1, ..., y1 mY (y1), ..., y|Y | 1, ..., y|Y | mY (y|Y |)} and,

for any 1 ≤ i ≤ |Y |, 1 ≤ j ≤ |M |, 1 ≤ r ≤ mY (yi) and 1 ≤ r′ ≤ m(zj),

d+(yir, zjr′) = d(yi, zj), d+(zjr′ , yir) = d(zj, yi) and sd+(yir) = sd(yi).

then sM
av d(X) = sM+

av d+(X+) and Mav d(X ,Y) = M+

av d+(X+, Y +).

PROOF.

sM
av d(X) = max

x,y∈X
{sd(x) + d(x, y) + sd(y)}

= max
x,y∈X+

{sd(x) + d(x, y) + sd(y)} = sM+
av d(X+).

Let x1 and y1 be the first elements of X and Y chosen when determining
M
av d(X ,Y). Let t = min{mX(x1),mY (y1)}. Note that |X+| =

∑|X|
r=1mX(xr) =

|X |.
M+

av d+(X+, Y +)

=
1

|X+|
d+(x1 1, y1 1)+

|X+| − 1

|X+|

(
1

|X+| − 1
d+(x1 2, y1 2) + ...

)
+

1− t
|X+|

M+

av d+(X+ − {x1 1, ..., x1 t}, Y + − {y1 1, ..., y1 t})

7.5. THE M
AVD L-COLLECTION DISTANCE FUNCTION 173

=

(
1

|X+|

t∑
r=1

d+(x1 r, y1 r)

)
+

1− t
|X+|

M+

av d+(X+ − {x1 1, ..., x1 t}, Y + − {y1 1, ..., y1 t})

=
t

|X |
d(x1, y1) +

1− t
|X |

M
av d(X − (x1, t),Y − (y1, t))

= M
av d(X ,Y).

Note, the last line of this proof should be obvious from how M
avd

+ is expanded

within the proof—M
av d can be similarly expanded.

Lemma 7.11 If d satisfies G4I over M and M = (M,m) is a finite N1-

collection then Mav d satisfies G4I over P(M).

PROOF. IfM = {z1, ..., z|M |} letM+ = {z1 1, ..., z1 m(z1), ..., z|M | 1, ..., z|M | m(z|M|)}
where z1 = z1 1, z2 = z2 1, ..., z|M | = z|M | 1. For any 1 ≤ i, j ≤ |M |, any

1 ≤ r ≤ m(zi) and any 1 ≤ r′ ≤ m(zj), let d+(zir, zjr′) = d(zi, zj) and

sd+(zir) = sd(zi).

As M+ = M ∪ {z1 2, ..., z|M | m(z|M|)}, from lemma 7.3, d+ satisfies G4I over

M+.

From theorem 7.9 M+

av d satisfies G4I over P(M+).

But for every X ,Y ⊆M there is an X+, Y + ∈M+ so, from lemma 7.10, Mav d

satisfies G4I over P(M).

Theorem 7.12 If d satisfies G4I over a finite set M and M = (M,m) is

a L-collection, where L ⊆ Q>0, then Mav d satisfies G4I over any finite subset

of P(M).

PROOF. Let M ′ = {X1, ...,Xn} be a finite subset of P(M). Because M ′

and each Xi is finite, there is a w ∈ N1 where, for each 1 ≤ i ≤ n, wXi is

an N1-collection. From lemma 7.8, wM
av d satisfies G4I over P(wM). For any

174 CHAPTER 7. L-COLLECTION SPACE

1 ≤ i ≤ n, 1 ≤ j ≤ n and any w ∈ R>0 at all, wM
av d(wXi, wXj) = M

av d(Xi,Xj)

and swM
av d(wXi) = sM

av d(Xi).

7.5.2 Other properties of Mav d

Theorem 7.13 If d is (⊆-)reflexive over M and M = (M,m), Mav d is ⊆-

reflexive over P(M).

PROOF. If X ⊆ Y ⊆ M then minx∈X ,y∈Y d(x, y) = d(x, x) = 0 and X− ⊆
Y− ⊆M as X ⊆ Y and mX(x) ≤ mY (x). Hence the minimum distance each

recursion is 0 and Mav d(X ,Y) = 0.

Theorem 7.14 If the distance function d is 6⊆d-strict positive over M and

M = (M,m) then Mav d is 6⊆Mav d-strict positive over P(M).

As d is non negative, the proof for this theorem follows directly from

theorem 7.7.

7.6 What this Chapter Achieved

This chapter generalised the, chapter 5, definitions, theorems and proofs

involving set distance functions, forming L-collection distance function defi-

nitions, theorems and proofs.

Because the family of set distance functions dM
ij did not generalise well, a

new family of L-collection distance function Mk d was defined. It was shown

that d(X ,Y) = |X | − |X ∩ Y| has the desired properties, and Mav d and M1 d

have the desired properties (if d does).

L-collections can be used to help form “classification spaces” that allow

the contribution proportion of authors to research papers to be recorded.

Example 7.10. M = {x1, ..., x10} is a set of “research paper authors”, d is a

distance function over M ,M = (M,m) is a (0, 1]-collection where m(z) = 1

for all z ∈M . Now each point in the space 〈P(M),Mk d〉 is a (0, 1]-collection

7.6. WHAT THIS CHAPTER ACHIEVED 175

of research paper authors.

This space makes points available such as {cx1|13 , x3|16 , x7|12 }
c ∈ P(M) which

can be used to “attach” information units (such as research papers).

Further examples and discussion of the use of L-collections in the defini-

tion of information space are provided in chapter 8.

176 CHAPTER 7. L-COLLECTION SPACE

Chapter 8

Information Space

8.1 Overview

This chapter discusses how information space can provide the core Knowledge

Library functionality identified in section 3.5.

Section 8.3 shows how networks can be used to define basic distance func-

tions. The concepts: network, path, ancestor, descendant, d–length,

d–shortest path, common descendant, common ancestor and net-

worked space are defined. This section also defines the operators: add node

and make distance function. These operators allow distance functions to

be progressively “built-up” by adding nodes to networks.

Section 8.4 discusses classification space—essentially information space

without any attached information elements. This section discuss how ex-

tremely large classification spaces can have very compact representations.

How classification spaces can be defined that allow “uncertain” or “partial”

classifications and “many levelled” classification spaces can be “built-up” is

also discussed. The section also defines distance function, point, point set,

and L-collection projections.

Section 8.5 defines a create space operator to simplify the definition of

spaces with points that are L-collections. This section also discuss how di-

mensions, coordinates and points can be added to, and subtracted from,

spaces. The section goes on to discuss various methods of point selection.

177

178 CHAPTER 8. INFORMATION SPACE

The ordering of dimensions is also considered.

Section 8.6 discusses how information units can be attached to points in

classification space. This section examine how distance functions between

points, sets of points, and N1-collections of points can be used to give dis-

tances corresponding to pairs, pairs of sets, and pairs of N1-collections of

information units. The section defines: type one index, type two index,

index, and attached.

Section 8.7 defines information space and information element. This

section discusses the relationship between Knowledge Libraries and informa-

tion space—A Knowledge Library provides the context of meaning for an

information space, while an information space provides the mathematical

basis for a Knowledge Library.

Section 8.8 discusses the creation of information spaces and how infor-

mation units and coordinates can be added and subtracted from information

space. The operators subtract coordinate, add dimension and subtract dimension

are defined. The section considers various methods of information unit se-

lection. There is a discussion on how points in information space can be

selected and the operator get collection is defined. Finally, it is shown how

the information units attached to points in a set of points can be counted.

Section 8.9 briefly outlines what has been achieved in this chapter. The

chapter discusses how networks, single and many levelled classification spaces,

indexes and multidimensional spaces can form information spaces.

8.2 Introduction

The purpose of this chapter is to discuss how information space can provide

the core Knowledge Library functionality identified in section 3.5.

Chapter 9 gives some “paper based examples” of the information space

methods developed in this chapter that provide this functionality.

Chapter 10 discusses how this functionality can be implemented, relat-

ing the problem to existing range query algorithms and showing how these

algorithms can be generalised.

Chapter 11 reports on a number of experiments that were conducted to

8.3. NETWORKED SPACE 179

test the effectiveness of various range query algorithms over spaces of the

sort that may be used as part of the basis for a Knowledge Library.

Before beginning the main discussion, we note an important distinction

between mathematics and computer science: in mathematics, convention

dictates that any addition, subtraction or other modification to an object

results in a new object. In computer science—especially if the object is

large and the change is small—practical considerations of time and memory

complexity have resulted in a convention where the modified object is treated

as the same object as the original (with modifications).

Note that computer science, unlike mathematics, deals with both “seman-

tics” and “implementation.” When we talk about an “object” in computer

science, we are more often than not talking about an object as in the ”Object

Orientated Programming” paradigm, that is, something that can be modi-

fied.

Apart from the names of operators, this research follows mathematical

conventions when giving definitions for information space operators. Practi-

cal computer implementations however will simply modify existing objects1.

8.3 Networked Space

Many sets have simple, natural and intuitive distance functions. Any set of

numbers N , for example, suggests the distance function d(x, y) = |x− y|, for

any x, y ∈ N . Sets with more complex elements, such as sets of “research

subject areas” or “web pages” frequently do not have such obvious distance

functions. In many cases, these complex elements readily form hierarchies or

networks.

This section shows how suitable distance functions can be defined over

such sets.

1Rather than setting aside a new block of memory, copying the existing object into the
new block, making a small modification then discarding the original object.

180 CHAPTER 8. INFORMATION SPACE

Network definition. A network (M,R,w) is a binary relation R on a set

M of nodes and a partial function w : M×M → R where, for all x, y ∈M ,

w(x, y) is defined iff xRy. The weight w(x, y) corresponds to the edge xRy.

Networks are also called weighted graphs. Graphs are variously defined as

a relation on a set (as this research does for networks), a set of nodes and a

set of edges, or a set of pairs. These definitions are effectively equivalent.

Note that the elements of M can be both nodes in a network and points

in a space.

Path definition. Given a relation R, a path is a sequence, with

n > 1, x1, x2, ..., xn, where i 6= j implies xi 6= xj, such that

x1Rx2, x2Rx3, ..., xn−1Rxn. Given such a path we say that x1 is an ancestor

of xn in R and that xn is a descendant of x1 in R.

d-length and d–shortest path definition. Given some distance function

d, the d–length of a path x1, x2, ..., xn is
(∑n−1

i=1 d(xi, xi+1)
)
+
(∑n−1

j=2 sd(xj)
)
.

In any set of paths, a d–shortest path is a path with the least d–length.

Note that if xR...Ry and yR...Rx, x is both an ancestor and a descendant of y.

Also note, the d–length corresponding to a d–shortest path is normally used

to select the “shortest path”, from a set of paths with the same beginning

and end points.

Common descendant definition. Given a relation R, y is a common

descendant of a set X if y is a descendant of each x ∈ X in R.

Common ancestor definition. Given a relation R, x is a common an-

cestor of a set Y if x is an ancestor of each y ∈ Y in R.

8.3. NETWORKED SPACE 181

Networked Space definition. A networked space 〈M,d〉R is a space

〈M,d〉, where M is finite, with a relation R and a distance function d such

that, if x, y ∈M :

1. if x is an ancestor of y in R, d(x, y) = the d–length of a d–shortest

path x, ..., y;

2. otherwise d(x, y) = maxdx, where maxdx is some suitable constant

larger than or equal to max{d(x, z)|z ∈ M, z is a descendant of x in

R}.

Note that, from the definition, a networked space 〈M,d〉R is just a space

〈M,d〉 and a relation R, where (1) and (2) (in the definition) are satisfied by

d and R. The definition can be used as a “test” to determine if 〈M,d〉R is

indeed a networked space.

It is easy to see, from this definition, that a networked space 〈M,d〉R,

provided d is a distance function, satisfies G4I and so is a set space. Note

that for simplicity, if there is no path x, ..., y, d(x, y) = maxd, where maxd =

max{d(x′, y′)|x′, y′ ∈M}, is often used. Obviously

maxd ≥ max{d(x, z)|z ∈M, z is a descendant of x in R} for all x ∈M . Note

that this definition of maxd ensures that 〈M,d〉R satisfies G4I.

Later in this section the operator make distance function is defined.

This operator, given a network (M,R,w) and a maximum distance, defines

a distance function d so that 〈M,d〉R is a networked space.

Network spaces can be applied to a great variety of subject matter.

Example 8.1. M is a set of “research subject areas” and R is a binary

relation on M such that (M,R) is a subject hierarchy. That is, for a single

y ∈ M (the root of the hierarchy), there is no x ∈ M where xRy. For all

other y ∈ M , there is exactly one x ∈ M where xRy. For any x, y ∈ M ,

xRy ↔ y is an immediate sub-subject of x in the subject hierarchy.

For all x, y ∈ M , we define: sd(x) = 0; d(x, y) = 1 if xRy; d(x, y) =

the d–length of the d–shortest path x, ..., y if xR...Ry and d(x, y) = maxd

otherwise. Now 〈M,d〉R is a networked space.

182 CHAPTER 8. INFORMATION SPACE

Example 8.2. M is a set of “web pages” and R is binary relation on M

such that, for any x, y ∈M , xRy ↔ x directly links to y.

For all x, y ∈ M , we define: sd(x) = 0; d(x, y) = 1 if xRy; d(x, y) = the

d–length of the d–shortest path x, ..., y if xR...Ry and d(x, y) = maxd other-

wise. Now 〈M,d〉R is a networked space.

The spaces in both of the above examples satisfy 4I. Any spans ∈ R≥0

and distances d(x, y) ∈ R≥0 can be chosen, as long as, if xR...Ry then

d(x, y) = the d–length of the d–shortest path x, ..., y, and the resulting space

would still satisfy G4I.

The operators add node and make distance function are now defined.

These operators allow distance functions over graphs to be“built-up”.

(M+, R+, w+) =add node(M,R,w, z,X ,Y) definition.

If (M,R,w) is a network, z 6∈ M and X = (X,mX), Y = (Y,mY) are

R>0-collections where, X − {z} ⊆M and Y ⊆M then:

1. M+ = M ∪ {z}.

2. For all x, y ∈M : xR+z iff x ∈ X ; zR+y iff y ∈ Y and xR+y iff xRy.

3. w+ : M+×M+ → R is a partial function where w+(x, y) = w(x, y) for

all x, y ∈M where w(x, y) is defined, w+(x, z) = mX(x) for all x ∈ X,

and w+(z, y) = mY (y) for all y ∈ Y .

Informally, the network (M+, R+, w+) is just the network (M,R,w) with the

addition of node z, with weighted edges connected to parents X and children

Y . For each x ∈ X , add node(M,R,w, z,X ,Y) adds the edge xRz with the

weight mX(x). Similarly, for each y ∈ Y , add node(M,R,w, z,X ,Y) adds

the edge zRy with the weight mY (y). As X − {z} ⊆ M , edges zRz can be

added.

For simplicity, in the following examples assume sw(x) = 0 for all x ∈M.

8.3. NETWORKED SPACE 183

Example 8.3. If xRx, w(x, x) = 0 and

(M+, R+, w+) =add node({x}, R, w, y, {cx|1, y|0 }c , ∅)

thenM+ = {x, y}, xR+x, yR+y, xR+y and w+(x, x) = w+(y, y) = 0, w+(x, y) = 1.

Example 8.4. If xRx, yRy, xRy, w(x, x) = w(y, y) = 0, w(x, y) = 1 and

(M+, R+, w+) =add node({x, y}, R, w, z, {cy|1, z|0 }c , ∅)

thenM+ = {x, y, z}, xR+x, yR+y, zR+z, xR+y, yR+z and w+(x, x) = w+(y, y) =

w+(z, z) = 0, w+(x, y) = w+(y, z) = 1.

d =make distance function(M,R,w,maxd) definition.

If (M,R,w) is a network and maxd ≥ max{w(x, y)|x, y ∈ M,xRy} then

d(x, y) =

1. the w–length of a w–shortest path x, ..., y (if any such path exists) and

2. maxd (if no path x, ..., y exists).

Clearly, from the definitions of network, network space and make distance function:

Theorem 8.1 If d = make distance function(M,R,w,maxd), (M,R,w)

is a network and maxd ≥ max{w(x, y)|x, y ∈ M,xRy} then 〈M,d〉 is a

networked space.

Example 8.5. If xRx, yRy, zRz, xRy, yRz, w(x, x) = w(y, y) = w(z, z) = 0,

w(x, y) = w(y, z) = 1, sw(x) = sw(y) = sw(z) = 0 and

d =make distance function({x, y, z}, R, w, 3)

then:

1. d(x, x) = d(y, y) = d(z, z) = 0,

184 CHAPTER 8. INFORMATION SPACE

2. d(x, y) = d(y, z) = 1,

3. d(x, z) = 2

and d(y, x) = d(z, y) = d(z, x) = 3.

Note that examples 8.3, 8.4 and 8.5 form a sequence with the “output”

from examples 8.3 and 8.4 providing the “input” for examples 8.4 and 8.5

respectively.

8.4 Classification Space

Classification space is simply a space that provides “attach points” for

information units. Each point in a classification space represents a “class”—

a concept grouping based on common characteristics, attributes, properties,

qualities etc.

The mathematics used to compare, relate and select groups of information

units will be based on comparing, relating and selecting points in classifica-

tion space. In section 8.7, information space is defined as—essentially—

classification space, with an “index” that “attaches” points in the space to

information units.

Classification spaces can have n different “facets” or dimensions, each of

which is a space itself. As was shown in section 4.4, these n spaces 〈M1, d1〉,
...,〈Mn, dn〉 can be combined to form an n-dimensional space

〈M1 × ...×Mn, G
d1...dn
p 〉.

Each point in M1× ...×Mn can be a “hook” to which information units can

be attached.

Note that an n-dimensional space 〈M1 × ...×Mn, G
d1...dn
p 〉 has

∏n
i=1 |Mi|

unique points. This allows very compact representations of large classifica-

tion spaces.

Example 8.6. A 4-dimensional classification space (n = 4) with only 10

coordinates in each dimension (|M1| = |M2| = |M3| = |M4| = 10), only

8.4. CLASSIFICATION SPACE 185

40 coordinates in total, results in a classification space with 104 = 10000

unique points. A single extra coordinate, in any dimension, gives a fur-

ther 103 = 1000 points. An extra 10 coordinate dimension gives a further

105 − 104 = 90000 points!

Some classification spaces require dimensions 〈Mi, di〉 where Mi is a set,

the elements of which are themselves sets and di is a set distance function.

If Yi is a set and Mi = P(Yi) then |Mi| = 2|Yi|.

This allows very compact representations of extremely large classification

spaces.

Example 8.7. |Y1| = |Y2| = |Y3| = |Y4| = 10. For 1 ≤ i ≤ n, Mi = P(Yi)

so |Mi| = 210 = 1024. Now M1 × M2 × M3 × M4 has 10244 = 240 =

1099511627776 unique points.

If the elements of Mi are L-collections, as they are if Yi is an L-collection

and Mi = P(Yi), the classification space will often be theoretically infinite!

8.4.1 Classification spaces for uncertain and partial

classifications

The classification spaces discussed so far work best when classifications are

100% certain or reliable. But they are not always appropriate for use when

there may be some uncertainty involved in the classification of information

units.

As already noted (see sections 6.2.5, 6.2.6, 6.4.3 and 6.4.4), L-collections

can be used as part of the definition of “information systems” that provide

“uncertain” classifications for information. For a Rough-set approach to

uncertainty, {0.5, 1}-collections can be used, while (0, 1]-collections can be

used for a Fuzzy-set approach.

In general, the approach adopted in this research is as follows. Begin

with a set of points M and a set of “certainty levels” L, then an L-collection

M = (M,m) where, for each x ∈ M , m(x) = maxz∈L. Now P(M) (see

186 CHAPTER 8. INFORMATION SPACE

L-collection power set definition, section 6.3.1) is a set of L-collections. Each

x ∈ M has a membership grade ≤ m(x) in each L-collection in P(M) that

it is a member of. All possible combinations of subsets of M and element

membership grades (certainty levels), selected from L, exist in P(M). If d is

a distance function over M , any Mk d or dMij can be used as a distance function

over P(M).

Example 8.8. In a—hypothetical—study of field mouse behaviour in re-

sponse to certain stimuli, a number of controlling physiological, psychologi-

cal, and environmental factors have been identified. This suggests that mouse

behaviour is determined by a combination of these factors and that mouse

behaviour can be classified in a 4-dimensional space consisting of stimuli

(M1), physiology (M2), psychology (M3) and environment (M4) dimensions.

However—perhaps due to uncontrollable experimental variation—some vari-

ation in mouse behaviour is occurring. As a result, the best we can do

is associate each observed mouse behaviour with a fuzzy-set of points in

M = M1 ×M2 ×M3 ×M4. To do this we require a classification space such

as 〈P(M),Mav d〉 where d is a distance function over M andM = (M,m) is a

(0, 1]-collection where m(x) = 1 for all x ∈M .

L-collections can also be used to help form classification spaces that allow

the contribution proportion of authors to research papers to be recorded.

Example 8.9. M = {x1, ..., x10} is a set of “research paper authors”, d is a

distance function over M ,M = (M,m) is a (0, 1]-collection where m(z) = 1

for all z ∈M . Now each point in the space 〈P(M),Mk d〉 is a (0, 1]-collection

of research paper authors.

This space makes points available such as {cx1|13 , x3|16 , x7|12 }
c ∈ P(M) which

we can later use to attach information units.

Note that, following the example, there is no reason why 〈P(M),Mk d〉
should not be a dimension in an n-dimensional “research paper” classification

space. However a 2-dimensional approach—with “research paper author”

and “contribution” dimensions—to creating a classification space is usually

8.4. CLASSIFICATION SPACE 187

not ideal, as the following example illustrates.

Example 8.10. We want a distance function between groups of research

paper authors that is small iff similar groups have made similar contribu-

tions. Let 〈M1, d1〉 be a space of “research paper authors” and 〈(0, 1], d2〉
be a space of “contributions”. If M = M1 × (0, 1] and d = Gd1,d2

p then each

point in the space 〈P(M), dM
ij 〉 is a set of “research paper author, contri-

bution” pairs. Points such as {(y1,
1
3
), (y3,

1
6
), (y7,

1
2
)} ∈ P(M) are available.

However a point {(yi, 0.99)} will be relatively close to a point {(yj, 1)}—even

if i 6= j—just because 0.99 is very close to 1. This is not what we want.

Note that—although L-collections have been used in the definitions of

the spaces in examples 8.9 and 8.10, the resulting classification spaces are

just spaces as this research defines space—a set with a distance function over

the set. It is the elements of the set P(M) that are L-collections.

8.4.2 Many levelled classification spaces

As noted in section 4.5, a distance function d′ that gives the distance between

sets of information units of one type may be utilised to give the distance

between individual information units of another type. By nesting a number

of spaces in this way many levelled spaces can be built-up .

A distance function d′ between sets of research papers could well be used

as a distance function between researchers. Then a distance function d′′

between sets of researchers could be used as a distance function between

research groups.

If 〈M,d〉 is a “research paper” classification space, 〈M ′, d′〉, where M ′ ⊆
P(M), could be a “researcher” classification space and 〈M ′′, d′′〉, where M ′′ ⊆
P(M ′), a “research group” classification space .

Now we can have a point x ∈M in the research paper classification space,

a set x′ ⊆ M which is a point in the researcher classification space and a

set (of sets) x′′ ⊆ P(M) which is a point in the research group classification

space.

If d′ = dM
av 0 or d′ = dM

100 0, and

188 CHAPTER 8. INFORMATION SPACE

1. 〈M,d〉 satisfies G4I then 〈M ′, d′〉 satisfies G4I (theorem 5.9);

2. 〈M,d〉 is ⊆-recursive then 〈M ′, d′〉 is ⊆-recursive (theorem 5.10);

3. 〈M,d〉 is 6⊆d-strict positive then 〈M ′, d′〉 is 6⊆d′-strict positive (theorem

5.11).

Any number of levels (with appropriate properties) can be built-up “on top

of one another” in this way.

More generally, if d′ = M
1 d or d′ = M

av d, M is a finite set, M = (M,m) is

an L-collection, where L ⊆ Q>0, and

1. 〈M,d〉 satisfies G4I then 〈P(M), d′〉 satisfies G4I (theorems 7.5, 7.12);

2. 〈M,d〉 is ⊆-recursive then 〈P(M), d′〉 is ⊆-recursive (theorems 7.6,

7.13);

3. 〈M,d〉 is 6⊆d-strict positive then 〈P(M), d′〉 is 6⊆d′-strict positive (theo-

rems 7.7, 7.14).

Again, any number of levels (with appropriate properties) can be built-up in

this way.

8.4.3 Projected classification spaces

When organising information, it pays to be as thorough as possible so that all

relations between the information units that may be of interest are reflected in

whatever classification scheme is used. Generally however, individual users of

classification schemes are interested in only a small fraction of these relations.

Although an n-dimensional classification space could be used to realise

such a classification scheme, users should not be expected to be interested in

all n dimensions every time they use the space. If all n dimensions are not

of interest, a dimensionally reduced classification space is required.

Formally, an ordered list of dimension indices T = t1...tk where k ≤ n is

used to “select” dimensions of interest. So, for 1 ≤ i ≤ n and 1 ≤ j ≤ n we

have 1 ≤ ti ≤ n and ti < tj if i < j.

8.4. CLASSIFICATION SPACE 189

Definition of d−. Given an ordered list of dimension indices T = t1...tk, if

d = Gd1...dn
p , d− = G

dt1 ...dtk
p .

Now, an n-dimensional distance function Gd1...dn
p can be used to define a

k-dimensional distance function d−.

It is also possible to project n-tuples.

Definition of x−. Given an ordered list of dimension indices T = t1...tk, if

x = (x1, ..., xn), x− = (xt1 , ..., xtk).

We will call d−(x−, y−) the projected distance between points x and y.

Now a set of n-tuples M can be used to define a set of k-tuples M−.

Definition of M−. Given an ordered list of dimension indices T , if M is a

set of n-tuples, M− = {x−|x ∈M}.

Now if d is a distance function over M , d− is a distance function over

M−. Also if x = (x1, ..., xn) ∈ M , y = (y1, ..., yn) ∈ M and T = t1 then

dt1(xt1 , yt1) = d−(x−, y−).

As L-collections can be used to indicate how many information units are

attached to each point (see section 8.6), or to handle uncertain classifications

(see section 8.4.1), L-collection projections are also useful.

Definition of X−. Given an ordered list of dimension indices T , if X =

(X,mX) is an L-collection of n-tuples, X− = (X−,mX−) is an L-collection

where, for each x− ∈ X−,

mX−(x−) =
∑

{x|x− is a projection of x}

mX(x).

Note that there may be a number of points x ∈ X for each projected point

x−. So mX−(x−) is the sum of all these mX(x) where x− is a projection of

x. See section 4.4 for the definition of “projection.”

190 CHAPTER 8. INFORMATION SPACE

8.5 Working with Classification Space

8.5.1 Creation

As discussed in section 4.2.1, a space is just a pair 〈M,d〉 where d is a distance

function over M . So there is no need to define an operator to create simple

classification spaces. Even moderately complex spaces such as 〈P(M), dM
ij 〉,

〈P(M),M
k d〉 and 〈M1 × ... × Mn, G

d1...dn
p 〉 are similarly straight-forward to

define.

Spaces with points that are L-collections are slightly more troublesome.

To assist, the following operator is defined.

〈P(M),Mk d〉=create space(L,M, d, k) definition.

If 〈M,d〉 is a space and k ∈ (0, 1] or k =av then M = (M,m) is an L-

collection where m(x) = maxy∈L for all x ∈M .

Note that the space 〈P(M),Mk d〉 defined by this operator has points

X = (X,mX) ∈ P(M) where X ⊆M and, for each x ∈ X, mX(x) ∈ L.

8.5.2 Addition and subtraction

Dimensions can be added and subtracted to an n-dimensional space simply

by creating a new space. So dimension addition and subtraction operators

are not required.

Example 8.11. We have a space A =〈M1 ×M2 ×M3, G
d1d2d3
2 〉 to which

we want to add a further dimension 〈M4, d4〉. But we can do this simply by

defining a space B =〈M1 ×M2 ×M3 ×M4, G
d1d2d3d4
2 〉.

Note that A is a projection (see definition section 4, chapter 4) of B.

Points can be added to, and subtracted from, an n-dimensional space

simply by adding and subtracting coordinates to and from its dimensions.

Section 8.3 discusses how points can be added to networked spaces. It is

trivial to add and subtract points to a (non networked) space by creating a

new space.

8.5. WORKING WITH CLASSIFICATION SPACE 191

Example 8.12. We want to add a point “11” to the space 〈M1, d1〉 where

M1 = {1, 2..., 10} and d1(x, y) = |x − y| for all x, y ∈ M1. To do this we

create a new space 〈M+
1 , d

+
1 〉 where M∗

1 = M1 ∪ {11} and d+
1 (x, y) = |x− y|

for all x, y ∈M+
1 .

Note that, in the example, if 〈M1, d1〉 were a dimension of an n-dimensional

space 〈M1×M2× ...Mn, G
d1...dn
p 〉 then 〈M+

1 ×M2× ...Mn, G
d+
1 ...dn

p 〉 makes an

additional set of points available.

As is suggested in the introduction to this chapter, practical computer

implementations would modify the space 〈M1, d1〉, rather than creating a

new space 〈M+
1 , d

+
1 〉. Mathematically however, M1 and M+

1 , and d1 and d+
1 ,

are distinct objects.

8.5.3 Point selection

Most simply, information space users may wish to “select” all the points in

a space 〈M,d〉 that are “close” to a point. Given a point x ∈M and a limit

r,

Y = {y′ ∈M |d(x, y′) ≤ r}

is the set of all points y′ ∈M where the distance d(x, y) between x and y is

less than or equal to r. Note that, in Euclidean and metric geometry, Y is a

ball with radius r and centre x. Similarly, given a point y ∈ M and a limit

r,

X = {x′ ∈M |d(x′, y) ≤ r}

is the set of all points x′ ∈ M where the distance d(x, y) between x and y

is less than or equal to r. Note that, as this research is not restricted to

Euclidean and metric geometry, it may be that, even if x = y, X 6= Y as the

distance function d may not be symmetrical.

Each point selection method discussed in this section has a similar “mir-

ror” to this—a set of points X can be obtained using a distance function

and a specified point y—just as a set of points Y can be obtained using a

distance function and a specified point x. Given the definition of the set Y ,

192 CHAPTER 8. INFORMATION SPACE

it is trivial to define the set X, so this is omitted for the sake of brevity.

Given an n-dimensional classification space 〈M,d〉, where M = M1× ...×
Mn and d = Gd1...dn

p , users may wish to select a set of points in M , based on

the distances in only those dimensions they select.

Users might also want to select points that are close to a set of points.

Given a set of points X and a limit r

{y ∈M |dM
ij (X, {y}) ≤ r}

is the set of all points y ∈M where the distance dM
ij (X, {y}) between X and

y is less than or equal to r.

If 〈M,d〉 is a networked space then {y ∈ M |dM
100 j(X, {y}) ≤ r} can be

used to select a set of common descendants of the set X.

Similarly {x ∈M |dM
i 100({x}, Y) ≤ r} can be used to select a set of common

ancestors of the set Y . Of course this point selection method can also be

used if 〈M,d〉 is not a networked space.

Example 8.13. 〈M,d〉R is a networked space where M = {1, 2, 3, 4, 5},
1R2, 2R3, 3R4, 4R5, d(1, 2) = d(2, 3) = d(3, 4) = d(4, 5) = 1 and if x is

not an ancestor of y, d(x, y) = 5. The set of descendants of 2 is {y ∈
M |dM

100 j({2}, {y}) ≤ 4} = {3, 4, 5}.

There are many other methods that may be used to select sets of points

in classification space.

Example 8.14. 〈M,d〉 where M = M1 × ... ×Mn and d = Gd1...dn
p is an

n-dimensional classification space where, for 1 ≤ i ≤ n, each Mi is a set of

sets.

The angle between two points y = (y1, ..., yn) and c = (c1, ..., cn) in M ,

with respect to an origin x = (x1, ..., xn), can be defined as

angle(y, c, x) = arccos

(
y · c

d(x, y)d(x, c)

)
where y · c =

∑n
i=1 di(xi, yi)di(xi, ci).

8.5. WORKING WITH CLASSIFICATION SPACE 193

This definition of angle can be used to select cones of points. Given a

limit r ∈ R, a center c ∈M , an apex x ∈M and an angle θ the corresponding

cone is

{y ∈M |Gd1...dn
p (x, y) ≤ r, |angle(y, c, x)| ≤ θ}.

Sometimes, rather than just selecting a set of points, users may be inter-

ested in the distance between the specified point and each point they select.

Example 8.15. Given a point x ∈ M and a limit r, rather than the set

{y ∈M |d(x, y) ≤ r}, we may be interested in the set

{(y, d(x, y))|y ∈M,d(x, y) ≤ r}.

Similar (point, distance) pair sets can be defined for each of the point selec-

tion methods discussed.

If 〈M,d〉 is an n-dimensional space projected points can be used to select

sets of points. Given a projected point x− ∈M−,

{x ∈M |x− is a projection of x}

Similar “projected” equivalents of each selection method discussed are

possible.

Example 8.16. Given a projected point x− ∈M− and a limit r

{y ∈M |d−(x−, y−) ≤ r}

is the set of all points y ∈ M where the projected distance d−(x−, y−) be-

tween x and y is less than or equal to r.

Note, in the above example, d−, x− and y− are defined with respect to the

implied ordered list of dimension indices T = t1...tk.

194 CHAPTER 8. INFORMATION SPACE

8.5.4 Ordering

The points in classification spaces, and the coordinates in classification space

dimensions, may not be ordered. This is necessary as classification space

needs to be general enough to classify any kind of information. However

it may be useful to define an ordering for the coordinates or points of a

classification space.

If 〈M,d〉 is a space and z ∈ M an ordering relation R (dependent on z)

can be defined where, for all x, y ∈M ,

xRy iff d(z, x) ≤ d(z, y).

Similarly, an ordering relation R (dependent on z) can be defined where, for

all x, y ∈M ,

xRy iff d(x, z) ≤ d(y, z).

Example 8.17. 〈M,d〉 where M = M1 × ... ×Mn and d = Gd1...dn
p is an

n-dimensional classification space where, for 1 ≤ i ≤ n, each Mi is a set of

sets. As z = (∅, ..., ∅) ∈ M is a natural origin we can define an ordering

relation xiRiyi iff di(∅, xi) ≤ di(∅, yi) for xi, yi ∈Mi, for each dimension Mi.

Ordering dimensions can be useful for displaying classification and infor-

mation spaces. For example, if the coordinates in each of the n dimensions

of a classification space are ordered, then pairs of dimensions can form the

axes for scatter graphs that plot points with attached information units.

8.6 Attaching Information Units to Points

in Classification Spaces

Given a classification space 〈M,d〉, we may have a set of information units

N that we want to attach to points in the space. This can be done using a

set I of pairs (u, x) where u ∈ N and x ∈M .

Now if M I = {x ∈M |(u, x) ∈ I for some u ∈ N}—so M I is the subset of

M with attached information units—then the N1-collection (M I ,mI) can give

8.6. ATTACHING INFORMATION UNITS TO POINTSIN CLASSIFICATION SPACES195

the number of information units attached to each point in the classification

space 〈M,d〉. For each point x ∈ M I , mI(x) is the number of information

units attached to x.

If M is a set of sets then the point ∅ ∈ M can indicate “unclassified” or

“classification unknown”.

If M = M1 × ...×Mn where for 1 ≤ i ≤ n, Mi is a set of sets, then ∅ in

dimension i can indicate “unclassified in dimension i”. The point (∅, ..., ∅) ∈
M can be used to indicate “unclassified” or “classification unknown”. Note

that, for each x ∈M I , mI(x) ≥ 1 as M I is the set of points in M1× ...×Mn

that have at least one information unit attached.

8.6.1 Distance

The distance function d = Gd1...dn
p can be used to give the distance between

any pair of points x, y ∈ M = M1 × ... × Mn. It will be seen that both

x and y can be points that have information units attached. So, by giving

the distance between points, d can be used to give the distance between

information units.

Similarly, x can be any point in M and y can be a point in M I ⊆M , so d

can be used to “retrieve” all information units y where the distance between

x and y is less than or equal to r.

Also dM
ij (X, Y) and M

k d(X, Y), where X, Y ⊆ M I , can be used to give

distances between sets of information units. If more than one information

unit can be attached to the same point, and it is important that this does

not distort the distance, it is necessary to use |X | − |X ∩ Y|, dMij (X ,Y) or
M
k d(X ,Y) to give distances between N1-collections of points (with attached

information units).

Example 8.18. The N1-collection M = (M I ,m) = {cx1|1, x2|1, x3|98 }c ,

where M I ⊆M , gives the number m(x) of information units attached to each

point x ∈ M I (if x ∈ M −M I then x has no attached information units).

There is a distance function d over M where d(x1, x2) = 1, d(x2, x2) = 0

and d(x3, x2) = 100. Now dM
50j({x1, x2, x3}, {x2}) = d(x1, x2) = 1 whereas

dM50j({
c
x1|1, x2|1, x3|98 }c , {cx2|1 }

c
) = d(x3, x2) = 100.

196 CHAPTER 8. INFORMATION SPACE

Note that dM
ij and M

k d are distance functions over P(M) while dMij and
M
k d are distance functions over P(M).

8.6.2 Indexing classification spaces

There are a number of ways to define indexes that attach information units

to points. In section 8.7, information space will be defined by combining the

definitions of index and classification space.

Type one index definition. Given a set M of classes and a set N of

information units, a type one index I of N over M is a set of pairs

where, for each u ∈ N , there is at least one pair (u, x) ∈ I where x ∈ M . If

(u, x) ∈ I, u is attached to x.

A limitation of type one indexes is that—because I is a set—given a

number of identical information units u, only allow a single such information

unit can be attached to the same point x. This is not a problem for many

types of information space.

Example 8.19. Because we only require a single copy of each research pa-

per, we normally do not want to attach more than one identical paper to a

single point in an information space of research papers.

For other types of information space this is a serious shortcoming.

Example 8.20. In an information space of (anonymous) questionnaires, a

number of respondents may return identical questionnaires. To avoid seri-

ously misrepresenting survey results, questionnaire information spaces must

reflect this.

For a questionnaire with n questions, an n-dimensional classification space

〈M,d〉 where M = M1 × ... ×Mn can be prepared. For 1 ≤ i ≤ n, the set

of coordinates Mi in dimension i reflects the different answers to question

8.6. ATTACHING INFORMATION UNITS TO POINTSIN CLASSIFICATION SPACES197

i. Now a completed questionnaire is just a point x ∈ M1 × ... ×Mn. For

classification spaces such as these, another type of index is required.

Type two index definition. Given a set M of classes and a set M I ⊆M

of information units, a type two index I over M is an N1-collection

(M I ,mI). If x ∈ I, mI(x) is the number of identical information units

x attached to M .

A limitation of type two indexes is that they can only cope with information

units that are identical to points in M .

In general, indexes are required that can cope with both

1. information units that are distinct from points, and

2. more than one identical information unit attached to the same point.

Index definition. Given a set M of classes and a set N of information

units, an index I = (J,m) of N over M is an N1-collection of pairs where,

for each u ∈ N , there is one pair (u, x) ∈ J where x ∈ M . If (u, x) ∈ J ,

m((u, x)) is the number of copies of the information unit u attached to x.

For each type one index I1 there is a corresponding index I where,

(u, x) ∈ I1 iff (u, x) ∈ I and m((u, x)) = 1.

Similarly, for each type two index I2 = (M I ,mI) there is a corresponding

index I = (J,m) where,

x ∈ I2 iff (x, x) ∈ I and m((x, x)) = mI(x).

So the definition of index generalises both type one and type two index

definitions.

Importantly, an index is an N1-collection, rather than a set, in order to

cope with a number of identical information units attached to the same point.

So, for an index (J,m), m((u, x)) is the number of identical information units

u attached to the point x. Indexes are not used to handle uncertain or partial

classifications (see section 8.4.1).

198 CHAPTER 8. INFORMATION SPACE

In this research, indexes are used to attach information units to points in

M , where 〈M,d〉 is a classification space.

8.7 Information Space

Information Space definition. An information space is a triple

(M,d, I) where 〈M,d〉 is a classification space and I is an index of N over

M , for some set N . The elements of N are information elements of the

information space.

If (M,d, I) is an information space, 〈M,d〉 is the corresponding classifi-

cation space.

Note that, as I = (J,m) is an N1-collection of pairs, where there is a pair

(u, x) for each u ∈ N , the set N of information units is implicit. Also note

that, after they have been attached to an information space, information

units are also called information elements of the information space.

Given an information space (M,d, I):

1. N = {u|(u, x) ∈ I}

2. M I = {x|(u, x) ∈ I} and

3. mI : M I → N1 where, for each x ∈M I , mI(x) =
∑

(u,x)∈Im((u, x))

(so mI(x) is the number of—not necessarily distinct—information units

attached to x).

In this way, the N1-collection (M I ,mI) as discussed in section 8.6, is implied

from the definition of (M,d, I).

If an information space provides the mathematical basis for a Knowledge

Library, that Knowledge Library provides the context of meaning for the

information space.

Example 8.21. The information space (M1×M2×M3, G
d1d2d3
p , I) provides

the mathematical basis for a research paper Knowledge Library. Stripped of

its context of meaning M1 is just a set of coordinates in the space 〈M1 ×

8.8. WORKING WITH INFORMATION SPACE 199

M2 ×M3, G
d1d2d3
p 〉. In the context of meaning provided by the Knowledge

Library, M1 is a set of paper titles, x ∈M1 is the title “A Relational Model of

Data for Large Shared Data Banks”, x′ ∈M1 is the title “Comparing Images

Using the Hausdorff distance”, etc.

Note that there could be a research paper Knowledge Library with an

information space (M2 ×M3 ×M1, G
d2d3d1
p , I) that is effectively the same as

the Knowledge Library in the example.

8.8 Working with Information Space

Information space operators that correspond to core Knowledge Library func-

tionality, as identified in section 3.5 and used in examples in chapter 9 are

now defined.

8.8.1 Creation

Note that an index of an n-dimensional information space is just an L-

collection of information unit, n-tuple pairs. The operators needed to build

L-collections, sets, n-tuples and hence indexes already exist. The existence

of information units is assumed. Similarly, as information space is just a

classification space, paired with an index, the operators needed to build in-

formation spaces already exist.

8.8.2 Index Manipulation

An information unit u can be attached to an information space 〈M,d, I〉
at a point x ∈ M , simply by creating a new index I∗ = I ∪ {(u, x)} for

the classification space. To detach a single copy of an information unit u

from a point x ∈ M , simply replace the existing index I with the index

I∗ = I − ((u, x), 1).

No change needs to be made to the index when adding coordinates. When

subtracting coordinates, care must be taken to detach information units.

200 CHAPTER 8. INFORMATION SPACE

If (M,d, I) is a 1-dimensional information space, an operator that de-

taches information units from the subtracted coordinate/point x and adds

them to a “alternate” coordinate/point y is required.

I∗ =move unit(I, x, y) definition.

If I = (J,m), I∗ = (J∗,m∗) where

J∗ = J ∪ {(u, y)|(u, x) ∈ J} − {(u, x)|(u, x) ∈ J} and

1. m∗((u, x′)) = m((u, x′)) for any (u, x′) ∈ J where x′ 6= x and x′ 6= y,

2. m∗((u, y)) = m((u, y)) +m((u, x)) where (u, y), (u, x) ∈ J , and

3. m∗((u, y)) = m((u, x)) where (u, x) ∈ J and (u, y) 6∈ J .

Example 8.22. We have a 1-dimensional information space (M,d, I) from

which we want to subtract the coordinate/point x. We want each information

unit attached to x to be attached to y. If I∗ = subtract coordinate(I, x, y)

then (M − x, d, I∗) is the information space we want.

For n-dimensional information spaces (M,d, I), an operator that detaches

information units from any point (x1, ..., xi−1, xi, xi+1, ..., xn) ∈ M and at-

taches them to the corresponding point (x1, ..., xi−1, yi, xi+1, ..., xn) ∈ M is

required. This is more complicated to write but follows the same pattern.

8.8. WORKING WITH INFORMATION SPACE 201

I∗ =move unit(I, xi, yi) definition.

If I = (J,m), I∗ = (J∗,m∗) where

J∗ = J∪{(u, (x1, ..., xi−1, yi, xi+1, ..., xn))|(u, (x1, ..., xi−1, xi, xi+1, ..., xn)) ∈ J}
−{(u, (x1, ..., xi−1, xi, xi+1, ..., xn)) ∈ J} and

1. m∗((u, (x1, ..., xi, ..., xn))) = m((u, (x1, ..., xi, ..., xn)))

for any (u, (x1, ..., xi, ..., xn)) ∈ J where xi 6= xi and xi 6= yi,

2. m∗((u, (x1, ..., yi, ..., xn))) = m((u, (x1, ..., xi, ..., xn))) +m((u, (x1, ..., yi, ..., xn)))

for any (u, (x1, ..., xi, ..., xn)) ∈ J where (u, (x1, ..., yi, ..., xn)) ∈ J , and

3. m∗((u, (x1, ..., yi, ..., xn))) = m((u, (x1, ..., xi, ..., xn)))

for any (u, (x1, ..., xi, ..., xn)) ∈ J where (u, (x1, ..., yi, ..., xn)) 6∈ J .

Note that both versions of the operator give the same result when (M,d, I)

is a 1-dimensional space.

Adding (and subtracting) dimensions to information spaces is compli-

cated by the need to change points in I from n-tuples to n+ 1-tuples (n− 1-

tuples). When adding dimensions, each information unit should be attached

to a suitable information unit attribute that is also a coordinate in the new

dimension2.

I+ =index add dimension(I,Mn+1) definition.

If I = (J,m), I+ = (J+,m+) where

J+ = {(u, (x1, ..., xn, xn+1))|(u, (x1, ..., xn)) ∈ J and xn+1 ∈ Mn+1 is some

suitable attribute of u} and

m+((u, (x1, ..., xn, xn+1))) = m((u, (x1, ..., xn))).

Subtracting dimensions is not complicated.

2If no such attribute exists, the information unit is attached to a “default” coordinate,
perhaps ∅.

202 CHAPTER 8. INFORMATION SPACE

I− =index subtract dimension(I,Mi) definition.

If I = (J,m), I− = (J−,m−) where

J− = {(u, (x1, ..., xi−1, xi+1, ..., xn))|(u, (x1, ..., xn)) ∈ J} and

m−((u, (x1, ..., xi−1, xi+1, ..., xn))) = m((u, (x1, ..., xn))) for the xi ∈Mi where

(u, (x1, ..., xn)) ∈ J .

8.8.3 Information unit selection

The simplest information unit selection method is to select all information

units attached to a point in space. That is, given a point x and an index I,

{u|(u, x) ∈ I}

is the set of all information units attached to x.

Users often want to select all information units attached to a set of points.

Given a set of points X and an index I,

{u|(∃x ∈ X)(u, x) ∈ I}

is the set of all information units attached to some point in X. The number

of distinct information units attached to X is the cardinality of this set, while

the number of—not necessarily distinct—information units attached to X is∑
{(u,x)∈I|x∈X}

m((u, x)).

Users may want to select all information units attached to a point that

is “close” to a specified point. Given a point x, a limit r, a space 〈M,d〉 and

an index I,

{u|(∃y ∈M)(u, y) ∈ I, d(x, y) ≤ r}

is the set of all all information units attached to points within distance r of

x.

Just as for point selection (see section 8.5.3) this can be mirrored—given a

point y and r,M, d, I as above, {u|(∃x ∈ M)(u, x) ∈ I, d(x, y) ≤ r}. Again,

8.8. WORKING WITH INFORMATION SPACE 203

this is possible for many selection methods, but quite trivial, so it is omitted.

Rather than selecting all the information elements within a fixed radius

of a point, users may want to select the first k information elements. That

is, given a point x ∈ M and an index I = (J,m) over M , users may want

to select a minimal set Y ⊆ M I where, for all y ∈ M I and y′ ∈ M I − Y ,

d(x, y) ≤ d(x, y′) and
∑
{x∈Y }m(x) ≥ k.

Users may also want to select all information units attached to a point

that is “close” to a set of points. Given a set of points X, a limit r, a space

〈M,d〉 and an index I, this is

{u|(∃y ∈M)(u, y) ∈ I,M
k d(X, {y}) ≤ r}.

Note that, not only can this be mirrored (use Y and M
k d({x}, Y) to find u

where (u, x) ∈ I), it is possible to replace M
k d with dM

ij in both the mirrored

and non-mirrored versions.

Given an n-dimensional classification space users may want to select all

information units that are attached to, or are close to a point in a projected

space—so only dimensions that users are interested in count towards selecting

information units.

Given a point x− in a projected space and an index I,

{u|(∃x ∈M) x− is a projection of x, (u, x) ∈ I}

is the set of all information units attached to x−.

There are similar projected versions for all the information unit selection

methods that have been discussed

Example 8.23. Given a point x− in a projected space, a limit r, an n-

dimensional distance function d and an index I,

{u|(∃y ∈M)y− is a projection of y, (u, y) ∈ I, d−(x−, y−) ≤ r}

is the set of all information units attached to a point y where d−(x−, y−) is

no greater than r.

Note, in the above example, d−, x− and y− are defined with respect to the

implied ordered list of dimension indices T = t1...tk.

204 CHAPTER 8. INFORMATION SPACE

8.8.4 Selecting points in information space

Points in information space are also points in classification space and can, of

course, be selected in the same way (see section 8.5.3).

Users often want to select information units that are close to other in-

formation units. As distance functions give distances between points, the

attached points must first be obtained.

Given an information unit u, and an index I, u is attached to is the point

x where (u, x) ∈ I. Given a set of information units N∗ and an index I, the

set of points that have information units in N∗ attached is the set

{x|(∃u ∈ N∗)(u, x) ∈ I}.

Having obtained the attached points in this way, information units can be

selected as is discussed in section 8.5.3.

Sometimes the number of information units—identical or not—attached

to each point is important.

Example 8.24. Given N1-collections N1 = (N1,m1) and N2 = (N2,m2) of

information units where (for example) m1(u) is the number of identical infor-

mation units u in N1, we want the distance Mk d(X ,Y) between N1-collections

of points X = (X,mX) and Y = (Y,mY) where mX(x) is the number of—not

necessarily distinct—information units in N1 attached to the point x ∈ X

and mY (y) is the number of information units in N2 attached to the point

y ∈ Y .

Hence an operator is required that, given an N1-collection N of informa-

tion units and an index I, defines an N1-collection of points with the number

of information units attached to each point.

8.9. WHAT THIS CHAPTER ACHIEVED 205

X =get collection(N , I) definition.

If I = (J,m) is an index and N = (N∗,mN) is an N1-collection of informa-

tion units then X = (X,mX)where

1. X = {x|(∃u ∈ N∗)(u, x) ∈ I} and

2. mX(x) =
∑

u∈N∗,(u,x)∈ImN(u).

So, for each point x ∈ X, mX(x) is the total number of, not necessarily

distinct, information units in N attached to x.

Users may want the distance between two N1-collections of information

units, where each N1-collection is specified by a set of points. If each infor-

mation unit in an N1-collection is attached to a point in X, rather than using

X to define an N1-collection of information units which, in turn, is used to

define an N1-collection of points, the N1-collection of points is defined directly

from X.

If I = (J,m) is an index and X is a set of points and, for each x ∈ X,

mX(x) =
∑

(u,x)∈J

m((u, x))

then mX(x) is the total number of, not necessarily distinct, information units

attached to the point x ∈ X. The N1-collection X = (X,mX) can be used

in an N1-collection distance function.

8.9 What this Chapter Achieved

This chapter showed how networks can be used to create spaces with the

desired properties. Examples 8.1 and 8.2 demonstrated the utility of this.

The chapter showed how multidimensional spaces can be classification spaces,

which provide attach points for information units. Classification space is later

used as part of the definition of information space.

The chapter also showed how classification spaces for uncertain or partial

classifications can be formed. Examples 8.8 and 8.9 demonstrated the utility

206 CHAPTER 8. INFORMATION SPACE

of this. It was also shown how many levelled classification spaces can be

formed. This is useful for spaces, such as that discussed in example 4.12.

The projections of distance functions, distances, n-tuples, sets of n-tuples,

and L-collections of n-tuples were defined. These definitions will be used

to enable information space users to query projections of an n-dimensional

information space, when all n dimensions are not of interest.

The chapter discussed how classification spaces can be created, added to

and subtracted from. This will be used for the creation and maintenance of

Knowledge Libraries. Various methods of point selection were also discussed.

This will be used for the forming of queries. Index was defined and used,

along with classification space, to define information space. Various oper-

ators were defined for manipulating indexes. The selection of information

units and points with attached information units was also discussed. Chap-

ter 9 will show how information space can provide core Knowledge Library

functionality.

Chapter 9

Basing Knowledge Libraries on

Information Space

9.1 Overview

This chapter presents two paper based examples that outline how informa-

tion space can provide the mathematical basis for two important types of

Knowledge Library. It is left to the reader to construct further examples

to satisfy themselves of the utility and general applicability of information

space.

Section 9.2 discusses how information space can be used as the mathe-

matical basis for questionnaire Knowledge Libraries. This section shows how

such information spaces can be queried to reveal points attached to ques-

tionnaires, how N1-collections of questionnaires can be compared, how to

count the number of questionnaires attached to, or “close” to, a point, and

how dimensions can be ordered to allow the space to be “displayed”. The

section gives an example profession/salary/hours worked questionnaire and

shows how a distance function can be used to answer the question “how much

more, on average, do doctors earn than nurses?” It goes on to show how a

further “pay rate” dimension can be used to compare the pay rate of doctors

and nurses.

Section 9.3 discusses how information space can be used as the mathe-

207

208 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

matical basis for research paper Knowledge Libraries. This section shows

how a suitable information space can be defined and illustrates a number of

methods of selecting and comparing research papers. The section goes on

to discuss how the dimensions can be “extended” to provide even greater

functionality—how “subject” and “title” dimensions can be combined to

disambiguate keywords in the title, how an “author” dimension can be ex-

tended to record the contribution percentage of each author of a paper, and

how “subject” dimensions based on subject hierarchies can be upgraded into

“concept” dimensions based on more finely grained concept hierarchies.

9.2 Information Space for Questionnaire

Knowledge Libraries

Given a questionnaire or exam we would like to construct a Knowledge Li-

brary to store, analyse and present the results. The questionnaire consists

of n questions. Questions can have a number of different standard answers

(for example tick one of five boxes). Questions may also have short written

responses (for example age, name, address, short comment).

Use n different spaces, one space for each question, as the basis for this

type of Knowledge Library. Each space has a point for each different answer.

Example spaces:

1. {1, ..., 5} with a distance function d(x, y) = |x − y|. This distance

function can also be applied to age, income etc. spaces.

2. {‘M ’,‘F ’} with a distance function d(‘M ’, ‘M ’)= d(‘F ’, ‘F ’)=0 and

d(‘F ’, ‘M ’)= d(‘M ’, ‘F ’)=1.

3. The set of submitted names with a distance function d(x, x) = 0 and,

if x 6= y, d(x, y) = 1 (as above).

4. The set of submitted short comments with a distance function based

on a topical analysis of the comments.

9.2 QUESTIONNAIRE INFORMATION SPACE 209

5. A GIS (geographic information system) that associates addresses with

longitude and latitudes can also be used. A suitable distance function

might give the Euclidean distance between addresses, or perhaps even

the travelling time.

By combining n “question” spaces 〈M1, d1〉,...,〈Mn, dn〉, a single n-dimensional

classification space 〈M,d〉 can be formed where M = M1 × ... × Mn and

d = Gd1...dn
p . Each point in this space represents a possible way to complete

the questionnaire.

Perhaps machine readable paper questionnaires are scanned before being

attached to the information space. If so, it may be useful to store scanned

questionnaires so that their information space representation can be manually

checked. If this is the case, as each scanned questionnaire image is unique—

even for identical questionnaires—and information units are scanned images,

a type one index (see section 8.6.2) is required.

Perhaps the questionnaire is computer based—so responses are submitted

via check-boxes, radio-buttons or text entry fields—then a point x ∈M can

record all the information in the questionnaire. So a questionnaire u can be

entirely reconstructed as long as its attach point x is known. If this is the

case a type two index (see section 8.6.2) is required.

Whichever type of index is used, given a questionnaire information space

(M,d, I) and an N1-collection of questionnaires N = (N,mN), the N1-

collection of points X they are attached to can be found using the operator:

X = get collection(N , I).

Two N1-collections of questionnaires, N1 and N2, can be compared using

X = get collection(N1, I),

Y = get collection(N2, I)

and Mk d(X ,Y)

If preferred, a list T of dimension indexes can be used to “select” dimen-

sions of interest, taking the projected distance (Mk d)−(X−,Y−).

210 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

Given a set of points X ⊆ M , the number c of attached questionnaires

can be counted:

c =
∑

{(u,x)∈I|x∈X}

m((u, x)).

Given a list T of dimension indexes, use

Y = {y ∈M |d−(x−, y−) ≤ r}

and then ∑
{(u,y)∈I|y∈Y }

m((u, y))

to count the number of completed questionnaires with a projected distance

no greater than r from a point x ∈M .

Given an “origin” (z1, ..., zn) ∈ M where, for 1 ≤ i ≤ n, zi is a “base”

answer to question i, it is possible to define n ordering relations Ri where, for

each dimension Mi, for each pair xi, yi ∈ Mi, xiRiyi iff di(zi, xi) ≤ di(zi, yi).

After the coordinates of each dimension have been ordered in this way, di-

mension pairs can be selected to provide the axes for scatter graphs that plot

points with attached questionnaires.

9.2.1 Example Questionnaire Information Space

Consider a very brief questionnaire consisting of the questions:

1. Profession,

2. Salary, and

3. Hours worked per week (note that 7x24=168).

The dimensions of our information space will be:

1. 〈M1, d1〉 where M1 is a set of possible professions and, for all x, y ∈M1,

d1(x, x) = 0 and, if x 6= y, d1(x, y) = 1.

2. 〈R>0, d2〉 where, for all x, y ∈ R>0, d2(x, y) = x− y.

9.2 QUESTIONNAIRE INFORMATION SPACE 211

3. 〈(0, 168], d3〉 where, for all x, y ∈ (0, 168], d3(x, y) = x− y.

These spaces can be combined into an n-dimensional classification space

〈M,d〉 where M = M1 × R>0 × (0, 168] and d = Gd1d2d3
p .

Now, after defining a suitable index I = (J,m) which associates infor-

mation units with points in the classification space (see sections 8.6.2 and

8.7), we have an information space (M,d, I). We also have (M I ,mI) where

M I = {x|(u, x) ∈ I} and, for each x ∈M I , mI(x) =
∑

(u,x)∈Im((u, x)).

How much more, on average, do Doctors earn than Nurses?

To answer this question, we require the set of points X with “Doctor ques-

tionnaires” attached and the set of points Y of points with “Nurse question-

naires” attached. That is,

X = {(Doctor, x2, x3)|(u, (Doctor, x2, x3)) ∈ I for some u, x2, x3} and

Y = {(Nurse, x2, x3)|(u, (Nurse, x2, x3)) ∈ I for some u, x2, x3}.

Now if, for each x ∈ X, mX(x) =
∑

(u,x)∈J m((u, x)) and, for each y ∈ Y ,

mY (y) =
∑

(u,y)∈J m((u, y)) then mX(x) gives the number of “Doctor ques-

tionnaires” attached to each point x ∈ X while mY (y) gives the number of

“Nurse questionnaires” attached to each point y ∈ Y .

If X = (X,mX), Y = (Y,mY) and T = 2 then the “average salary” of

Doctors answering the questionnaire is

1

|X−|
∑

x−∈X−

mX−(x−)x−

(see “projected classification spaces” section 8.4.3) and the answer to the

question “How much more, on average, do Doctors earn than Nurses?” is(
1

|X−|
∑

x−∈X−

mX−(x−)x−

)
−

 1

|Y−|
∑

y−∈Y −

mY−(y−)y−

 .

As—from the definition of L-collection cardinality (see section 6.3)—

212 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

1
|Y−|

∑
y−∈Y −mY−(y−) = 1 and 1

|X−|
∑

x−∈X−mX−(x−) = 1 this is

1

|X−||Y−|

 ∑
x−∈X−

mX−(x−)x−
∑

y−∈Y −

mY−(y−)



−

 ∑
x−∈X−

mX−(x−)
∑

y−∈Y −

mY−(y−)y−


=

1

|X−||Y−|
∑

x−∈X−

mX−(x−)

x−
 ∑

y−∈Y −

mY−(y−)

−
 ∑

y−∈Y −

mY−(y−)y−


=

1

|X−||Y−|
∑

x−∈X−

mX−(x−)

 ∑
y−∈Y −

mY−(y−)(x− − y−)


= (d2)av av(X−,Y−).

Adding a pay rate dimension

Perhaps we decide that we are really interested in comparing the pay rate of

Doctors and Nurses. Indeed, we are generally interested in pay rate, so we

create a “pay rate” space 〈R≥0, d4〉 where d4(x, y) = x − y. We use this as

a dimension in the 4-dimensional space 〈M+, d+〉 where M+ = M1 × R>0 ×
(0, 168]× R≥0 and d+ = Gd1d2d3d4

p .

We also require a new index:

I+ = add dimension(I,R≥0)

where the ‘suitable attribute’ of each information unit u, where

(u, (z1, z2, z3)) ∈ J , is z2

50z3
. Note that, as z2 is “salary” and z3 is “hours

worked per week”, z2

50z3
gives an hourly pay rate—assuming both doctors and

nurses work 50 weeks a year.

We can now compare the average pay rate of Doctors and Nurses:

9.3 RESEARCH PAPER INFORMATION SPACE 213

X+ = {(Doctor, x2, x3, x4)|(u, (Doctor, x2, x3, x4)) ∈ I+ for some u, x2, x3, x4},
Y + = {(Nurse, x2, x3, x4)|(u, (Nurse, x2, x3, x4)) ∈ I+ for some u, x2, x3, x4}.

Now if, for each x+ ∈ X+, mX+(x+) =
∑

(u,x+)∈J+ m+((u, x+)) and, for

each y+ ∈ Y +, mY +(y+) =
∑

(u,y+)∈J+ m+((u, y+)) then mX+(x+) gives the

number of “Doctor questionnaires” attached to each point x+ ∈ X+ while

mY +(y+) gives the number of “Nurse questionnaires” attached to each point

y+ ∈ Y +.

If X = (X+,mX+), Y = (Y +,mY +) and T = 4 then ((d+)−)av av(X−,Y−)

is the distance we want.

Of course we could improve the accuracy of this result by first adding a

“weeks worked per year” question.

9.3 Information Space for Research Paper

Knowledge Libraries

We can create a basic research paper classification space with Title, Author,

Subject, Journal, Length and Cites dimensions:

1. 〈M1, d1〉 is a space where M1 is a set of paper titles and d1 is one of the

information retrieval distance functions we discuss in section 4.2.3.

2. 〈M2, d2〉 is a space with, M2 = P(Y2), where Y2 is a set of paper authors

and d2 is a distance function, again from section 4.2.3.

3. 〈M3, d3〉 is a space where M3 = P(Y3), Y3 is a set of subjects, d3 is a

set distance function based on d∗3 and 〈Y3, d
∗
3〉 is a networked space.

4. 〈M4, d4〉 is a networked space (by subject) where M4 is a set of Journals

(so d4 is defined by edge weights and node spans, see section 8.3).

5. 〈M5, d5〉 is a space where M5 = N1 is a space of paper lengths (by word

count) and d5(x, y) = x− y for all x, y ∈M5.

6. 〈M6, d6〉 is a networked space where M6 is the set of all research papers

in the information space and d6(x, y) = 1 if x “cites” y.

214 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

We combine these spaces into a 6-dimensional classification space 〈M,d〉
where M = M1 ×M2 ×M3 ×M4 ×M5 ×M6 and d = Gd1d2d3d4d5d6

p .

Given a suitable index I, we now have an information space (M,d, I)

which allows us to perform a number of useful functions.

Note that each paper attached to the space can have only one title, but

may have a number of authors and may be about a number of subjects.

9.3.1 Selecting and Comparing Research Papers

If x ∈M then we can select all papers within r of x with

{u|(u, y) ∈ I, d(x, y) ≤ r}.

We can use a list of dimension indexes T to define a projection, and so

restrict the search to only those dimensions of interest.

{u|(u, y) ∈ I, y− is a projection of y, d−(x−, y−) ≤ r}.

If u is a research paper attached to the space then we find the point x

where (u, x) ∈ I. Then {u|(u, y) ∈ I, d(x, y) ≤ r} is the set of research

papers within r of u.

Similarly, if X ⊆M then we can select all papers within r of X with

{u|(u, y) ∈ I,M
k d(X, {y}) ≤ r}.

If N is a set of information units attached to the space, we first define

X = {x|(u, x) ∈ I, u ∈ N}. Then {u|(u, y) ∈ I,M
k d(X, {y}) ≤ r} is the set

of all information units with a M
k d distance of no more than r from N .

If we want to compare a paper u1 with a paper u2 we find x where

(u1, x) ∈ J and y where (u2, y) ∈ J . Then

d(x, y)

is the distance we require. If we want to use only dimensions T , d−(x−, y−)

is what we want.

9.3 RESEARCH PAPER INFORMATION SPACE 215

Similarly, if we want to compare two sets of papers N1 and N2 we can use

X = {x|(u, x) ∈ I, u ∈ N1}, Y = {x|(u, x) ∈ I, u ∈ N2} and

M
k d(X, Y).

If we want to use only dimensions T , M
k d
−(X−, Y −) is what we want.

If the number of papers attached to each point may be significant, we

define, for each x ∈ X, ma(x) =
∑

(u,x)∈J m((u, x)) and, for each y ∈ Y ,

mY (y) =
∑

(u,y)∈J m((u, y)). If X = (X,mX) and Y = (Y,mY),

M
k d(X ,Y)

is a distance that takes the number of papers attached to each point in

account.

Another way to compare papers u1 and u2 is to find the closest common

“ancestor” paper (by citation). To do this we first find y1 where (u1, y1) ∈ J
and y2 where (u2, y2) ∈ J . The citation dimension is dimension 6, so, with

T = 6, the closest common ancestor paper (by citation) is the paper u where

(u, x) ∈ J and (d−)M
100(x

−, {y1, y2}−) is minimised.

If u1 and u2 are well established papers, the closest common descendant

paper (by citation)—which is the paper u where (u, x) ∈ J and

(d−)M
100 j({y1, y2}−, x−) is minimised—could be interesting.

9.3.2 Extended Dimensions

There are a number of ways we can extend the basic dimensions suggested

above.

Extending the “Title” Dimension

We could improve on the information retrieval keyword matching formula by

making use of contextual information from the subject dimension to disam-

biguate keywords.

Example 9.1. The keyword “Model” means something different when used

216 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

in the context of “Model Theory” to “Model”, when used in other branches

of mathematics. Combining “Title” and “Subject” dimensions to create a

new dimension would make available distinct points (Model, General Math-

ematics) and (Model, Model Theory) for different uses of the same keyword.

Extending the “Author” Dimension

We may want to record the contribution percentage of the authors of each

paper. If Y2 is a set of authors, d∗2 a distance function over Y2, Y2 = (Y2,mY2)

is a (0, 1]-collection where mY2(y) = 1 for all y2 ∈ Y2 we can have an “Author”

dimension 〈M2, d2〉 where M2 = P(Y2) and d2 = Y2
k d∗2. Now each point in

〈M2, d2〉 is a (0, 1]-collection of authors. We might choose to attach a paper

u to a point {cSmith|1
2
,Brown|1

3
, Jones|1

6
}c ∈M2.

Example 9.2. If

1. Y2 is a set of authors,

2. d∗2 a distance function over Y2 where d∗2(x, x) = 0 and d∗2(x, y) = 1 for

all x, y ∈ Y2 where x 6= y,

3. Y2 = (Y2,mY2) is a (0, 1]-collection where mY2(y) = 1 for all y2 ∈ Y2,

4. M2 = P(Y2) and d2 = Y2
1 d∗2

then, with T = 2 and

Y = {y ∈M |d2({
c
Smith|1

2
}c), y−) = 0, y− is a projection of y},

{u|(u, y) ∈ I, y ∈ Y }

is the set of papers at least 50% by Smith.

If we have a space of “Researchers”, with dimensions like “Name”, “Age”,

“Gender”, “Research Interests”, “School” and “Contact e-mail” another pos-

sibility would be to use the information units (Researchers) in this space as

coordinates in our “Author” dimension.

9.3 RESEARCH PAPER INFORMATION SPACE 217

Extending the “Subject” Dimension

Subject hierarchies for classification, such as the Dewey decimal system1 have

tended to have quite broad or coarsely grained “subject” nodes. One impor-

tant reason for this has been the necessity of identifying only one subject

for each information unit (book), so that the unit can be placed in a cor-

responding location in physical space (on the library shelves). Our subject

dimension—where each point is a set of subjects—has no such constraint.

Indeed, rather than a “subject hierarchy”, we could make use of a much

more finely grained “concept hierarchy” R where xRy implies that the con-

cept x is required to understand the concept y. “Subjects” could be sets

(possibly even rough or fuzzy-sets) of concepts.

If 〈Y3, d
∗
3〉 is a networked space where Y3 is a set of “concepts” then points

in the concept dimension 〈M3, d3〉, where M3 = P(Y3) and d3 = (d∗3)
Y3
ij or

Y3
k d
∗
3, could also be used to represent user knowledge.

Example 9.3. Given a set X of all the concepts in Y3 I understand, with

T = 3 and Y = {y ∈M |d3(X, y
−) = 0, y− is a projection of y},

{u|(u, y) ∈ I, y ∈ Y }

is the set of research papers for which I have the required background knowl-

edge.

9.3.3 Further Dimensions

Other dimensions such as “index terms”, “Abstract”, “Full Text” could also

be included. These dimensions would allow information units to be searched

for (or compared by) index terms, abstract or full text respectively.

1Discussed briefly in section 2.3

218 CH. 9. INFORMATION SPACE BASED KNOWLEDGE LIBRARIES

9.4 What this Chapter Achieved

This chapter outlines, through two worked examples, how information space

can be used to provide core Knowledge Library functionality.

Chapter 10

The Efficient Implementation

of Knowledge Libraries

10.1 Overview

This chapter discusses how the less easily implementable core Knowledge Li-

brary functionality can be provided. The desired functionality is provided by

implementations of range query algorithms/data structures, either directly,

or after some modification.

Section 10.2 introduces the problem, outlining the basic types of search

queries in the range query group. These include distance, range, k near-

est neighbour and ranked queries. The sequential search range query al-

gorithm is used to illustrate the time complexity challenges associated with

these queries.

Section 10.3 reviews the relevant literature. Although range query algo-

rithms have not been developed for searching set spaces, a body of literature

exists that discusses the closely related problem of searching metric space.

These range query algorithms are characterised as either radius partition-

ing or hyperplane partitioning. The section includes a brief discussion

of how range query algorithms/data structures can be adapted to provide k

nearest neighbour and ranked query functionality.

Section 10.4 discusses how radius partitioning and hyperplane partition-

219

220 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

ing algorithms can be adapted for set spaces. The main difficulty is due to

the lack of the symmetry property.

Section 10.5 discusses the difficulties involved in searching hard spaces.

Due to the relatively small variance of some distance functions over n-dimensional

spaces where n is large, high dimensional spaces can be difficult to search.

Section 10.6 briefly discusses how this chapter contributes towards the

development of Knowledge Libraries.

10.2 Introduction

Given sensible data structures corresponding to the classification space, index

and information space mathematical objects described in chapter 8, much of

the Knowledge Library core functionality, described in chapter 3, is straight-

forward to implement. This chapter discusses the core functionality that, due

to time complexity considerations, is often less easily implementable. That

is, the chapter discusses distance query, range query, k nearest neighbour

query and ranked query algorithms.

10.2.1 Distance query

The distance query is a very basic type of query that underpins other common

queries. Given a set space 〈M,d〉, a distance query determines d(x, y) for

an x, y ∈ M . For many spaces, d(x, y) is computationally expensive to

determine. For example, M I could be a set of images1 and d(x, y) could

be based on a pixel by pixel comparison. Because of this, algorithms—such

as range query and k nearest neighbour query—that rely on distances are

usually most efficient when the number of required distance computations

(or “look ups”) can be limited.

1Recall from chapter 8 that M I ⊆ M is the set of points in M that have attached
information elements.

10.2. INTRODUCTION 221

10.2.2 Range query

Range query algorithms are often used as the basis for k nearest neighbour

query algorithms. Range queries are used to determine the set of points

Y = {y ∈ M I |d(x, y) ≤ t} for some arbitrary “query” point x ∈ M and

range limit t. Efficiency considerations generally dictate that distances be

precomputed and indeed the number of (precomputed) distances “looked-up”

be minimised when executing a range query.

10.2.3 k Nearest neighbour query

When searching spaces, users are often interested in the information elements

that are closest to (most similar to) a particular point in the space. Often

only the first 5, or 10, or 20 information elements are of interest. range

queries can be used to accomplish this task, but it is rarely apparent what

value of t should be specified in order to select an appropriate number of

information elements. If too small a value of t is chosen, too few, often no,

information elements are selected. If too large a value is chosen, too many

information elements are selected.

It is often more appropriate to specify the number k of information el-

ements that are desired. The literature (summarised in [22, 43]) does not

consider the possibility of more than one information element being attached

to each point, so k nearest neighbour, abbreviated k-NN, queries are used to

determine a set Y ⊆M I where |Y | = k and, for all y ∈ Y and y′ ∈M I − Y ,

d(x, y) ≤ d(x, y′). Fortunately only minor amendments are required to gener-

alise existing k-NN algorithms (which are themselves closely based on range

query algorithms) to determine a similar (minimal) set Y where (rather than

|Y | = k), given (J,m) is an index over M ,
∑
{y∈Y }m(y) ≥ k.

10.2.4 Ranked query

A ranked query is essentially a k-NN query where the resulting set Y is

ranked according to d(x, y) for each y ∈ Y . Ranked query algorithms based

on best-first tree traversal exist[43] that, after the first k information elements

222 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

have been retrieved, retrieve the next k information elements if desired (and

so on)2.

10.2.5 Sequential search range query algorithm

The “brute force” approach to range queries is to simply sequentially check

each point in the space with at least one attached information unit. Im-

plementations of this algorithm use an “information unit surrogate table”

that “attaches” information units to points in the space. The table has rows

(indexed by point):

point; iu name; iu address

where iu name is the name and iu address is the address (perhaps a URI) of

an information unit. To select all information elements attached to a point y

where d(x, y) ≤ t, the algorithm simply iterates through the table, checking

the distance from x to each point y in the table. If the number n of infor-

mation elements is small or distances can be computed quickly, this method

is effective. However, if n is very large and distances are computationally

expensive to determine (which is the standard assumption), this can take

too long—O(nm) where m is the time complexity of distance computation.

10.3 Metric Space Algorithms

A number of researchers have considered the closely related problem of

searching metric spaces. This research is adequately summarised in [22],

a paper that provides the basis for the more focused and refined summary

[43].

Generally, these algorithms rely on a “search tree” data structure (some-

times implemented with an array). The root node of the tree is the set of all

the points (with attached information elements) in the space. Other nodes

are a subset of their parent. The set of all children of a node is a partition

2Users of internet search engines, such as Google, will be familiar with this type of
ranked query.

10.3. METRIC SPACE ALGORITHMS 223

of that node. Nodes are partitioned according to a “split criterion”, which

involves a “center”3 (or pivot) point, either for each node, or for each level

of the search tree.

A number of different algorithms have been used to select centers for (see

[85, 103]). One standard technique involves, given a space 〈M,d〉, selecting,

from a number of random samples of M , the sample with the maximum,

minimum distance between points.

Because they are self balancing and can be constructed so that nodes

fit precisely into a computer’s page size—optimising read operations—B-

trees[8], are a suitable data structure for these search trees. The use of

B-trees to index metric spaces is discussed in [23].

The traversal of the search tree, and so the search for points y where

d(x, y) ≤ t (for some “query point” x), is guided by a “search criterion”. This

criterion is developed from the split criterion, 4I, the symmetry property,

and the inequality d(x, y) ≤ t. The motivation behind the search criterion is

to reduce the number of distance calculations that are required to determine

the set Y = {y ∈ M |d(x, y) ≤ t}, so distances such as d(x, y), for x, y ∈ M ,

are approximated. Importantly, this approximation is done in such a way as

to ensure that no node containing a point in Y is pruned from the search.

The subsections below provides a “distillation” of the literature. Quite

a number of notions that, upon critical examination, did not appear partic-

ularly useful or effective, have been left out. The remaining concepts have

been expressed succinctly.

10.3.1 Relative ordering

One attempted improvement of the sequential search range query algorithm

involves ordering the points so that an initial point, close to x, can be selected

before continuing to search “outwards”, checking progressively more distant

points until the search is terminated with the discovery of a too distant point.

3For consistency with the literature, the spelling “center”, rather than the more stan-
dard “centre.”, is used in this thesis.

224 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

If the distance limit t is relatively small, this sort of search is very efficient4.

Relative ordering algorithms rely on the following two inequalities. For

all points y where d(x, y) ≤ t, from 4I and symmetry,

d(c, y) ≥ d(x, c)− t (10.1)

and

d(c, y) ≤ d(c, x) + t. (10.2)

In essence, points y in the space are ordered by d(c, y). The search for all

points y where d(x, y) ≤ t proceeds as follows. To begin with, the first point

y where d(c, y) ≥ d(x, c) − t is located in the ordered list. The inequality

d(x, y) ≤ t is checked for this, and each successive, y in the list until a y is

reached where d(c, y) > d(c, x) + t.

The relative ordering approach is extended by radius partitioning.

10.3.2 Radius partitioning

Radius partitioning, based on the “covering radius criterion”[22] uses “cover-

ing radii” to define tree nodes. Most simply, a “ball” with radius rc partitions

each node Yc, with “center point” c, into two parts (inside and outside the

ball). More generally, m “shells” are created. That is, for 1 ≤ i ≤ m,

Yci
= {y ∈ Yc|rci−1

≤ d(y, c) < rci
}

where rc0 = 0 < rc1 < ... < rcm = maxy′∈Yc d(y′, c) + 1.

From 4I, d(x, c) ≤ d(x, y) + d(y, c). For each point y ∈ Yci
, d(y, c) < rci

.

From this, when searching for points y ∈ Yc where d(x, y) ≤ t, it is only

necessary to search nodes Yci
where

d(x, c) < t+ rci
. (10.3)

Similarly, from 4I, d(y, c) ≤ d(y, x) + d(x, c). For each point y ∈ Yci
,

4For relatively large t, there will be little improvement over the sequential search algo-
rithm. For “large” spaces, there are practical limits to the size of t.

10.3. METRIC SPACE ALGORITHMS 225

rci−1
≤ d(y, c). From symmetry, d(y, x) = d(x, y). From this, if points y ∈ Yc

where d(x, y) ≤ t are required, it is only necessary to search nodes Yci
where

rci−1
≤ t+ d(x, c). (10.4)

Combining inequalities (10.3) and (10.4) gives the “covering radius node

search criterion”

rci−1
− t ≤ d(x, c) < t+ rci

. (10.5)

This approach results in “covering radius” range query algorithms such

as the one below.

rangeQuery(Y, x, t)

result = ∅
if Y is a leaf node

for each y ∈ Y
if d(x, y) ≤ t, result = result ∪ {y}

return result

for each child node Yci
of Y

if rci−1
− t ≤ d(x, c) < t+ rci

then

result = result ∪ rangeQuery(Yci
, x, t)

return result

Another way to generalise covering radius partitioning is to use a number

of centers (rather than a single center and a number of shells) to partition

each node. However it is often not possible to effectively partition the space in

this way without substantial overlap between balls, reducing search efficiency.

These difficulties tend to increase proportionally to the number of dimensions

of the space, as is discussed in section 10.5.2.

For radius partitioning algorithms, it is best to use only one “center point”

per level of the search tree, so all nodes on the same level share the same

“center”. Following this policy, usually the center c of a node Yc is c 6∈ Yc.

This limits the number of distances such as d(x, c) that have to be computed

when searching the tree.

226 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

The main advantage of the center selection algorithm that maximises the

minimum distance between centers with (shell type) radius partitioning, in

Euclidian space at least, is that the space is quite effectively “sectioned”, so

the “diameter” maxx,y∈Yc d(x, y) of nodes Yc decreases towards the leaf nodes.

This sectioning effect also occurs in many non-Euclidian spaces.

10.3.3 Hyperplane partitioning

Hyperplane partitioning[22] involves, given a tree node Yc and m distinct

centers c1 ∈ Yc, ..., cm ∈ Yc, dividing the points y ∈ Yc so that

Yci
= {y ∈ Yc|d(y, ci) < d(cj, y) for each 1 ≤ j ≤ m}.

Note that, if for all y ∈ Yc there are no ties where d(y, ci) = d(cj, y),

{Yc1 , ..., Ycm} partitions Yc as d(y, ci) = d(ci, y) due to symmetry.

For any y where d(x, y) ≤ t, from 4I,

d(y, ci) ≥ d(x, ci)− d(x, y) ≥ d(x, ci)− t

and

d(cj, y) ≤ d(cj, x) + d(x, y) ≤ d(cj, x) + t.

The above inequalities can be used to assist in searching the tree. With

d(x, ci)−t for d(y, ci) and d(cj, x)+t for d(cj, y) in the partitioning inequality

d(y, ci) < d(cj, y), it can be concluded that, if

d(x, ci)− t < d(cj, x) + t (10.6)

for all 1 ≤ j ≤ m, j 6= i, there may be points y ∈ Yci
where d(x, y) ≤ t. This

approach produces “hyperplane partitioning” range query algorithms such

as the one below.

rangeQuery(Y, x, t)

result = ∅
if Y is a leaf node

10.3. METRIC SPACE ALGORITHMS 227

for each y ∈ Y
if d(x, y) ≤ t, result = result ∪ {y}

return result

for each child node Yci
of Y

if d(x, ci)− t < d(cj, x) + t for all 1 ≤ j ≤ m, j 6= i

result = result ∪ rangeQuery(Yci
, x, t)

return result

Note that, while a generic algorithm has been presented, a time complexity

analysis of this algorithm suggests that the optimum number of children for

each node is 2. Also, if d(y, ci) = d(cj, y) for some ci, cj and y ∈ Yc, a more

complex definition of Yci
is required. That is

Yci
= {y ∈ Yc|d(y, ci) < d(cj, y) for each 1 ≤ j < i

and d(y, ci) ≤ d(cj, y) for each i < j ≤ m}.

Corresponding modifications to the above algorithm are also necessary.

10.3.4 Ranked query and k-NN query algorithms

Ranked query and k-NN query algorithms can be obtained by modifying

range query algorithms/data structures. Perhaps the most effective way of

doing this is to do a best-first-search, rather than a depth-first-search of

the search tree. Nodes Yc, where miny∈Yc{d(x, c)− d(y, c)} (which estimates

miny∈Yc{d(x, y)}) is small, are searched first. When leaf nodes are reached,

only those points y where

d(x, c)− d(y, c) ≤ max
y′∈Yc′

{d(x, c′) + d(c′, x)}

and

d(x, y) ≤ max
y′∈Yc′

{d(x, c′) + d(c′, x)}

228 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

for a number of “candidate nodes” Yc′ are included in the ranked “candidate

points” set. This is done to eliminate points y where there is no chance that

y might be included in the final ranked set of k points[43].

10.3.5 A critique of the literature

A number of things are not well expressed in the literature.

While there are a number of papers that discuss the topic of searching

metric spaces, it is normal for each paper to include a description of the

particular problem that the paper attempts to solve. Many papers that at

first appear to be addressing the same problem do, in fact, address subtly

different problems. In order for comparisons between different techniques

to be meaningful, the different techniques need to be attempting to achieve

the same result. It is also important that testing is performed in a stan-

dardised manner for comparisons between test results to be meaningful. The

de facto standard appears to be to use uniformly distributed points in Eu-

clidean space. While this standard may be appropriate for “Euclidean space

algorithms”, to warrant the name, “metric space algorithms” should also be

tested on non Euclidean metric spaces. To advance this topic, it is necessary

1. for the metric space searching problems to be formally defined, and for

metric space papers to refer to this formal definition;

2. that, for comparison purposes, proponents of particular metric space

searching algorithms make standard reference implementations avail-

able;

3. to develop standardised data sets (metric spaces) on which metric space

searching algorithms may be tested.

In [23] it is observed that, due to disk latency (that is, the time it takes to

position the read head over the selected disk sector), it may be preferable to

store more than one point in each leaf node. Indeed it is advocated that the

number of points stored in leaf nodes be limited only by the computer’s page

size, so each leaf node can be “read” in a single operation. However, while

10.4 ADAPTING ALGORITHMS FOR SET SPACE 229

this optimises disk usage in terms of point access, it has the disadvantage that

the distances for all the points in each selected leaf node must be computed

(or looked up) each query. The literature does not provide a formula for the

optimum number of points in each leaf node.

10.4 Adapting Metric Space Algorithms for

Set Space

There are two key difficulties when adapting the metric space algorithms

discussed for set space spaces. First, the adapted algorithms rely on G4I,

rather than 4I, so they must cope with the insertion of spans into affected

inequalities. Second, as set spaces often do not have the symmetry property,

the adapted algorithms must not depend on this property.

The search criterion of each of the three metric space range query algo-

rithms discussed relies on two fundamental inequalities. The relative ordering

search criterion relies on

d(c, y) ≥ d(x, c)− t and d(c, y) ≤ d(c, x) + t,

the radius partitioning search criterion relies on

d(x, c) < t+ rci
and rci−1

≤ t+ d(x, c)

and the hyperplane partitioning search criterion relies on

d(y, ci) ≥ d(x, ci)− t and d(cj, y) ≤ d(cj, x) + t.

For each adapted algorithm, if the existing metric space split criterion is

used, because G4I must be satisfied rather than 4I, sd(y) must be inserted

into one of the two fundamental inequalities. As has already been discussed

(see section 10.3), it is important that each search criterion does not involve

y, so this immediately renders the inequality unusable.

Because symmetry does not hold for set spaces in general, and one of

the fundamental inequalities always relies on symmetry, one fundamental

inequality does not hold, even after the insertion of appropriate spans. The

230 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

fundamental inequality that does not hold can be swapped by reversing the

order of the arguments in each split criterion. The usefulness of this is not

immediately apparent however as both orders cannot be used simultaneously.

Fortunately, these problems are not insurmountable. The unwanted span

sd(y) can be moved to the split criterion where it does not cause any problems,

while another inequality can be defined to replace the remaining problematic

fundamental inequality.

Note that, because node partitions are based on one argument order, the

replacement inequality, which works best when node partitions are based on

the other argument order (for spaces that lack the symmetry property), may

be ineffective at pruning nodes from the search. This potential defect could

be addressed by reversing the order of the arguments in the split criterion

on alternate levels of the search tree. This alternation does not increase the

memory or time complexity of the algorithm and the “friendly” partition from

the previous level increases the effectiveness of the replacement inequality.

10.4.1 Relative ordering for set spaces

For set spaces spaces (that is, spaces that satisfy G4I) the inequality corre-

sponding to (10.1) is

sd(y) + d(y, c) ≥ d(x, c)− t.

It is important that the span sd(y) is kept on the LHS of this inequality, so

the points y are ordered by sd(y)+d(y, c). To begin the search for all points y

where d(x, y) ≤ t, locate the first y in the list where sd(y)+d(y, c) ≥ d(x, c)−t.
Unfortunately, there is no appropriate inequality corresponding to (10.2) that

begins sd(y) + d(y, c) ≤ ... so this technique can not be generalised to set

spaces (even symmetric ones).

10.4 ADAPTING ALGORITHMS FOR SET SPACE 231

10.4.2 Radius partitioning for set space

Using G4I rather than 4I, it is straight forward to determine the set space

equivalent for inequality (10.3). This is

d(x, c) < t+ sd(y) + rci
.

However it is important to produce a search criterion that does not depend on

y. To achieve this, the span of y is moved to the partitioning criterion. That

is, a node Yc with center c is partitioned into m parts using, for 1 ≤ i ≤ m,

Yci
= {y ∈ Yc|rci−1

≤ d(y, c) + sd(y) < rci
}

where rc0 = 0 < rc1 < ... < rck
= maxy′∈Yc d(y′, c)+1 as before. Now, because

d(y, c) + sd(y) < rci
, inequality (10.3) can be used without modification.

Unfortunately, for set spaces that lack the symmetry property, there is no

set space equivalent (with rci−1
) to inequality (10.4). To solve this problem,

r′ci
= miny∈Yci

d(c, y) is determined for each node Yci
(at indexing time). Note

that, unlike rci
, it is not expected that r′c1 < ... < r′ck

. Using r′ci
, a set space

equivalent of inequality (10.4) can be determined. This is

r′ci
≤ d(c, x) + sd(x) + t.

With this the “set space covering radius node search criterion” (the set space

equivalent to equation (10.5)) can now be expressed. That is, a node Yci
is

searched iff

r′ci
≤ d(c, x) + sd(x) + t and d(x, c) < t+ rci

.

From this, the following “set space, covering radius, range query algo-

rithm” is given.

rangeQuery(Y, x, t)

result = ∅
if Y is a leaf node

for each y ∈ Y

232 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

if d(x, y) ≤ t, result = result ∪ {y}
return result

for each child node Yci
of Y

if r′ci
≤ d(c, x) + sd(x) + t and d(x, c) < t+ rci

then

result = result ∪ rangeQuery(Yci
, x, t)

return result

Note that each node Yc is partitioned according to d(y, c) + sd(y), so the

algorithm prunes nodes Yci
where d(x, c) is comparatively large, effectively

“zooming in” on nodes where d(x, c) is small. The partition is not based on

d(c, y), so the lower limit d(c, y) for all y ∈ Yci
is somewhat random (although

tending to be smaller when |Yci
| is large). Because of this, the algorithm is

not as effective at pruning nodes Yci
where d(c, x) is small.

With this in mind, the algorithm might be improved by alternating the

partitioning criteria between levels. On odd numbered levels, the partitioning

criterion discussed above is used. On even numbered levels, d(y, c) + sd(y) is

replaced with d(c, y), giving

Yci
= {y ∈ Yc|r′ci−1

≤ d(c, y) < r′ci
}.

where r′c0 = 0 < r′c1 < ... < r′ck
= maxy′∈Yc d(c, y′) + 1. Note that each even

numbered level can reuse the same center as the previous, odd numbered

level, minimising memory usage.

When this, even numbered level, partitioning criterion is used, a set space

equivalent of inequality (10.4) (with r′ci−1
) is easily obtained, while, in order

to obtain a set space equivalent of inequality (10.3), it is necessary to prede-

termine r′′ci
= maxy∈Yci

{d(y, c) + sd(y)} (the working is along the same lines

as the above, so it is omitted).

Set space covering radius range query algorithms based on alternating

level partitioning criteria should be effective at pruning nodes where d(x, c)

is large (on odd numbered levels) and nodes where d(c, x) is small (on even

numbered levels).

10.4 ADAPTING ALGORITHMS FOR SET SPACE 233

10.4.3 Hyperplane partitioning for set spaces

The general approach discussed in section 10.3.3 cannot be readily adapted

for spaces that lack the symmetry property. Nodes Yci
⊆ Y are required to

be defined by inequalities such as d(y, ci) ≤ d(cj, y) iff i < j and d(y, ci) <

d(cj, y) iff i > j. For spaces that lack the symmetry property, the set of such

nodes defined by these inequalities does not partition Y .

Restricting to just two centers c1 and c2 however, Y can be partitioned

into two sets

Yc1 = {y ∈ Y |d(y, c1) ≤ d(c2, y)} and Yc2 = {y ∈ Y |d(y, c1) > d(c2, y)}.

Following a similar line of reasoning to that which lead to inequality (10.6),

with G4I for 4I, for hyperplane partitioned set spaces, the node Yc1 is

searched iff

d(x, c1)− t−max{sd(y)|y ∈ Yc1} ≤ d(c2, x) + t+ sd(x).

However, without symmetry, G4I cannot be used to establish an appropriate

upper bound for d(y, c1), so the node Yc2 must always be searched.

One attempt at solving this problem involves storing covering radii for

Yc2 when constructing the search tree and using covering radius node search

criteria to determine if Yc2 needs to be searched. The partitioning criteria

suggests four radii

r1 = miny∈Yc2
{d(c2, y)}, r2 = miny∈Yc2

{d(c1, y)}
r3 = maxy∈Yc2

{d(y, c2) + sd(y)} and r4 = maxy∈Yc2
{d(y, c1) + sd(y)}.

The internal radii r1 and r2 can be used to define a version of inequality

(10.4), which is used to prune relatively large (hollow) balls where d(x, c) is

small. From the partitioning criteria, normally r1 < r2, so r2 should be the

best internal radius to use.

The external radii r3 and r4 can be used to define a version of inequality

(10.3), which is used to prune relatively small balls where d(c, x) is large.

From the partitioning criteria, normally r3 < r4, so r3 should be the best

external radius to use.

234 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

This approach leads to set space hyperplane partitioning algorithms such

as the following.

rangeQuery(Y, x, t)

result = ∅
if Y is a leaf node

for each y ∈ Y
if d(x, y) ≤ t, result = result ∪ {y}

return result

for child nodes Yc1 and Yc2 of Y (with r2 and r3 values for Yc2)

if d(x, c1)− t−max{sd(y)|y ∈ Yc1} ≤ d(c2, x) + t+ sd(x)

result = result ∪ rangeQuery(Yc1 , x, t)

if r2 ≤ d(c1, x) + sd(x) + t and d(x, c2) < t+ r3

result = result ∪ rangeQuery(Yc2 , x, t)

return result

Note that the internal and external radii r2 and r3 are predetermined for each

Yc2 . Also, just as for the other algorithms discussed, precomputed distances

between centers can be used to approximate d(c1, x) and d(c1, x) and so

potentially reduce the number of distance computations that must be made.

Also note that, for large |Yc2|, due to the randomness of d(c1, y) and

d(y, c2)+sd(y) for y ∈ Yc2 , normally r2 is relatively be small and r3 relatively

large, making pruning fairly ineffective. Just as for set space radius parti-

tioning, this could perhaps be addressed by reversing the order of arguments

in the partitioning criteria on alternate levels.

10.5 Searching hard spaces

It is noted in [22] that (in essence) the effectiveness of the metric space

algorithms (that are discussed in section 10.3) is proportional to the variance

of d. The distance function d(x, x) = 0, d(x, y) = 1 for all x 6= y, x, y ∈M is

used to illustrate this effect. Quite clearly, no relative orderings or partitions

10.5. SEARCHING HARD SPACES 235

can be effective at decreasing the time complexity of ordering or partitioning

search algorithms below O(n) with this d.

Example 10.1. For all x 6= y, x, y ∈ M , d(x, x) = 0, d(x, y) = 1. Now an

arbitrary c induces the ordering d(c, c) = 0, d(c, y1) = 1, ...,d(c, yn−1) = 1.

With t = 0.5 and x 6= c, so d(x, c) = d(c, x) = 1. The search for any y ∈ M
where d(x, y) ≤ t begins at the first row where d(c, y) ≥ d(x, c) − t (the

second row of the table) and continues until a row where d(x, y) > d(c, x) + t

is reached (this never happens, so the search continues until the end of the

table).

In general, for spaces 〈M,d〉, as the variance of d decreases, relative or-

derings are less useful and partitions are less effective at dividing the space.

Spaces 〈M,d〉 that are hard to search due to the relatively small variance of

d are called hard spaces in [67].

10.5.1 Specialised algorithms for searching hard spaces

Because more general algorithms are not effective at searching hard spaces,

it is sensible to consider specialised algorithms for particular hard spaces.

Consider the space 〈M,d〉 where, for all x 6= y, x, y ∈ M , d(x, x) = 0,

d(x, y) = 1. The general algorithms described above are not effective at

searching this space however the following, rather obvious, specialised range

search algorithm is very effective.

rangeQuery(M,x, t)

if t ≥ 1 return M

return {x}

It is apparent that specialised algorithms such as this one, that have a sepa-

rate conditional for each possible value of d, are often easier to develop when

the variance of d is smallest. This is convenient as it is precisely these d that

cause the most problems for the more general algorithms.

236 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

10.5.2 Specialised algorithms for searching

n-dimensional spaces

It is also noted in [22] that (essentially) if points are “uniformly distributed”

in n dimensions (for example M = {(x1, ..., xn)|xi ∈ N1 ≤ 1000 for 1 ≤ i ≤
n}) and d((x1, ..., xn), (y1, ..., yn)) = (

∑n
r=1(|xr − yr|)p)

1
p then the variance of

d decreases as n increases, so spaces with high “intrinsic dimensionality” are

hard spaces.

Consider the class of n-dimensional spaces 〈M,d〉 where

d(x,y) =

(
n∑

r=1

dr(xr, yr)
p

) 1
p

for all x = (x1, ..., xn),y = (y1, ..., yn) ∈M . An obvious specialised algorithm

for finding all y ∈ M where d(x,y) ≤ t involves projecting the space onto

a single dimension (the ith dimension 〈Mi, di〉), selecting all yi ∈ Mi where

di(xi, yi) ≤ t and then selecting each y ∈ M , corresponding to a selected yi,

where d(x,y) ≤ t. This algorithm relies on the inequality

di(xi, yi) ≤

(
n∑

r=1

dr(xr, yr)
p

) 1
p

which holds if each dr is non negative. This inequality ensures that the set of

y ∈M , corresponding to a selected yi, will be a superset of the required set.

If desired, the intersection of the initial set of selected ys with selections in

all other dimensions can be taken, giving the set Y = {y ∈ M |d1(x1, y1) ≤
t, ..., dn(xn, yn) ≤ t}, from the final selection of ys where d(x,y) ≤ t would

be made. This Y is a minimal n dimensional hypercube containing the n-ball

centered on x with radius t.

The problem with this algorithm is that, while the volume of the hyper-

cube approaches infinity as n → ∞, the volume of the n-ball approaches

zero5. The ratio of ball volume to hypercube volume is small, even for rela-

tively small n. As a result of this, the set Y is very large (for n > 10 say)

5[15] mistakenly asserts that the volume of an n-ball increases exponentially with n.

10.5. SEARCHING HARD SPACES 237

compared to the size of the set {y ∈ M |d(x,y) ≤ t}, making this algorithm

ineffective (see table 10.1 below).

n ball volume over enclosing hypercube volume
1 1
2 0.7854
3 0.6981
4 0.3843
6 0.08075
8 0.01585

10 0.002490
20 0.00000002461
40 10−20 ∗ 0.3278

Table 10.1: Ball to enclosing hypercube volume (4 s.f.) for different n in
Euclidian space

The problem is worst for small p. As p → ∞, the ratio gets larger, and

decreases more slowly as n increases. However, p = 1 and p = 2 are common

choices for p, so this will often not be helpful.

For a solution, the practical applications of range query is considered.

Fortunately, Knowledge Library users should normally not require a large n

when formulating a query. If this is the case, the problem can be simplified

by projecting the space.

Example 10.2. 〈M,d〉 is an n-dimensional space where n is large. However

typical users are only interested in a small number of dimensions, comput-

ing sets such as {y− ∈ M−|d−(x,− y−) ≤ t}, where 〈M−, d−〉 is an m-

dimensional space for some small m.

There are a number of things worth noting about this.

First, n-dimensional information spaces (for large n) are still useful, even

if they are always projected onto m-dimensional spaces whenever they are

searched, as users are able to choose the m dimensions in each projected

space from any of the original n dimensions.

Second, restrictions on the number of dimensions that can be used to

search a space should not be particularly onerous to users. As has already

238 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

been noted (see section 8.4), even a very simple 4 dimensional space with 10

points in each dimension has 104 = 10000 distinct points (this number grows

very fast as further points and dimensions are added), so projected spaces

should be sufficiently descriptive.

Third, even when searching for information elements that are similar to

an existing information element in a high dimensional space, it is normally

reasonable to identify the dimensions that are important, and project the

space onto these dimensions, before making comparisons.

Fourth, for many practical information spaces, specialised algorithms can

be used to effectively increase the practical limit on m. Many of the dimen-

sions of an m dimensional space may have “rapid” distance functions that

can be computed in very little time (the standard assumption is that distance

functions take some time to compute). If A ⊆ {1, ..., n}, is the set of (indexes

of) dimensions with rapid distance functions the inequality

(
n∑

r∈A

dr(xr, yr)
p

) 1
p

≤

 ∑
r∈{1,...,n}

dr(xr, yr)
p

 1
p

,

that holds for non negative distance functions, can be used to combine all

of the rapid dimensions into a single dimension (with the distance function(∑n
r∈A dr(xr, yr)

p
) 1

p), effectively reducing the number of dimensions in the

search space. Dimensions with extremely fast (specialised) searching algo-

rithms, such as the one in section 10.5.1, can also be utilised. It is also

often possible to make use of information such as the weight associated with

a dimension, and the average distance calculation time for dimensions, to

prioritise dimensions.

10.6 What this Chapter Achieved

This chapter relates the problem of providing core Knowledge Library func-

tionality to the literature on range, k-nearest neighbour, and ranked queries.

Range query algorithms provide the basis for k-nearest neighbour, and ranked

queries algorithms. Generalisations of the existing metric space partitioning

10.6. WHAT THIS CHAPTER ACHIEVED 239

range query algorithms are proposed that function over set spaces. As infor-

mation space, the mathematical basis for Knowledge Libraries is itself based

on set space, these generalisations extend the existing algorithms towards

the provision of core Knowledge Library functionality.

240 CH. 10. KNOWLEDGE LIBRARY EFFICIENT IMPLEMENTATION

Chapter 11

Experimental Results and

Discussion

11.1 Overview

This chapter presents the results of experiments conducted to determine

the effectiveness of range query algorithms. A clearer understanding of the

limitations of existing range query algorithms is developed, and a number of

improvements are suggested.

Section 11.3 describes an experiment that compares and contrasts the

time required to execute range queries for spatial partitioning algorithms

(over symmetric and non symmetric spaces) and sequential search algorithms.

The scope of sequential search, and the best statistics to use to compare range

query algorithms is discussed.

Section 11.4 examines how the variance of distances in the space effects

the performance of spatial partitioning algorithms. The pruning hypoth-

esis is advanced to explain the poor performance of these algorithms when

the variance of the space is low.

Section 11.5 discusses techniques to improve the performance of spatial

partitioning algorithms. Two methods are discussed: center selection; and

multiple search trees. Consistent with the pruning hypothesis, center selec-

tion does not significantly improve performance, while multiple search trees

241

242 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

do notably improve performance for “medium difficulty” spaces.

Section 11.6 examines the effectiveness of spatial partitioning over multi-

dimensional spaces. Both the variance, and performance decrease as the

number of dimensions increase. The multiple tree technique extends the

effectiveness of these algorithms from 2 to 3–dimensional spaces.

Section 11.7 evaluates the effectiveness of (modified metric space) set

space spatial partitioning. Non symmetric space partitioning was effective

for the “Euclidean like” space 〈{1, ..., 1000}, x − y〉. However it was not

effective for randomly generated spaces.

Section 11.8 discusses the sequential search algorithm in greater detail.

The performance of sequential search over multi-dimensional spaces and set

spaces is evaluated. Sequential search is effective, and should be applicable

to the majority of Knowledge Libraries.

Section 11.9 introduces the sequential-hybrid algorithm. This algorithm

extends the effective scope of sequential search over n–dimensional spaces

that include a dimension for which it is infeasible to precompute distance-

Matrix. Essentially the n− 1 dimensions, for which distanceMatrix can be

precomputed, are used to index the remaining dimension. This algorithm

can be used to index high dimensional spaces (where spatial partitioning is

ineffective).

Section 11.10 summarises and discusses the main findings of this chapter,

while section 11.11 reports what this chapter has achieved, with respect to

Knowledge Libraries.

11.2 Introduction

This chapter investigates range query algorithms. Following the notation

developed in earlier chapters, a range query determines the set of points

Y = {y ∈M I |d(x, y) ≤ t},

for a “query point” x ∈ M , where (M,d, I) is an information space and

M I ⊆ M is the set of points that have information units attached by the

11.3 NON SYMMETRIC EXPERIMENTS 243

index I. In the literature, 〈M,d〉 is a metric space and each point in M I

has exactly one information unit attached. We are interested in generalising,

so 〈M,d〉 can be a set space, and each point in M I can have a number of

information units attached.

Although the number of information units attached to each point is rele-

vant when determining k–nearest neighbour queries, which are closely related

to range queries, it is of no concern when determining range queries. Also,

the required generalisation is easily implemented.

Metric spaces satisfy 4I, are reflexive, strict positive and symmetric.

However set spaces, which satisfy G4I, are ⊆-reflexive, 6⊆d-strict positive and

lack the symmetric property, are the main focus of this research. The lack

of the symmetric property presents the only substantive difficulty as far as

adapting the existing metric space algorithms, so we focus solely on this.

For simplicity, the experiments in this chapter are limited to spaces where

M = M I . That is, to where each point in M has at least one inforation unit

attached. More general cases can be obtained from the experimental ones

either by adding further, unattached, points to M ; or by “detaching” points

in M I .

In practice, as the points in M I are attached to information units, the

cardinality of M I would only exceed one hundred thousand in large informa-

tion spaces. In contrast, as the points in M correspond to possible queries,

the cardinality of M can be much larger, even theoretically infinite (as is

discussed in section 8.4). As will be seen, this is important because, while it

is often practical to precompute distances between points in M I , it is often

impractical to precompute distances between points in M .

11.3 Set Space Radius Partitioning Implemen-

tation: Non symmetric Experiments

The initial objective was to test the effectiveness of the chapter 10 set space

radius partitioning range query algorithms on set spaces that lack the sym-

metric property.

244 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

11.3.1 Non Symmetric Experiment setup

For this experiment, a network (with n nodes and e edges) was generated. All

edges in the network were assigned a weight of 1, and nodes a span of 0. The

edges connected randomly selected pairs of nodes. A minimum number (1

in these experiments) of outward edges per node was specified (to contribute

towards network connectivity). All nodes were also connected by “virtual”

(uncounted) edges each with a weight of maxDist.

The network was used to generate a 2–dimensional array distanceMatrix,

the cells of which contained distances, generated from the network following

the method discussed in section 8.3. For efficient disk access, two copies of

distanceMatrix were written to disk; one allowing entire rows to be loaded

from disk in a single read operation; the other allowing entire columns to be

loaded from disk in a single read operation. This enabled distances from a

particular point, to all other points, and distances to a particular point from

all other points, to be accessed as a block.

The constant maxDist was used to limit the range of distances so they

could be stored in single byte unsigned chars (in C++ implementations).

This relatively efficient use of memory allowed spaces with up to one hundred

thousand points to be stored on the 40GB disk used for the experiment.

The distanceMatrix distances were essentially normally distributed (see

the central limit theorem), with the exception of a single outlier at maxDist.

Decreasing the number of (non virtual) edges (approaching n) increased the

number of maxDist points (which decreases the variance), but otherwise

increased the variance of the space. All this is well illustrated by figure 11.1.

Larger spaces required (proportionally) more edges to maintain a similar

distribution. For example, 1000-point symmetric spaces with 1100 undirected

edges had a similar distribution of distances to 10000-point spaces with 13000

edges and 100000-point spaces with 150000 edges.

Note that, 1000-point reflexive, strict positive spaces, such as those illus-

trated in figure 11.1, have exactly 1000 distances=0, which corresponds to

the point (0,1000) in each graphic. Due to the scale of the graphics, this

point may appear to be positioned at (0,0).

11.3 NON SYMMETRIC EXPERIMENTS 245

● ● ● ● ● ● ●
●

●
●

●
●

●
● ● ● ●

●
●

●
●

●
● ● ●

●

distance

fr
eq

ue
nc

y

0
10

00
00

20
00

00
30

00
00

40
00

00

0 5 10 15 20 25

1500 Edges

mean distance: 18.4039
standard deviation: 6.36318

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

●

distance

fr
eq

ue
nc

y

0 5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

20
00

00

2000 Edges

mean distance: 12.1719
standard deviation: 6.68047

● ●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

distance

fr
eq

ue
nc

y

0 5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

20
00

00

2500 Edges

mean distance: 9.20366
standard deviation: 5.91889

● ●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

distance

fr
eq

ue
nc

y

0 5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

3000 Edges

mean distance: 7.41473
standard deviation: 4.72897

Figure 11.1: Frequency of distances for typical 1000-point network spaces
with maxDist = 25 and 1500, 2000, 2500 and 3000 directed, weight = 1
edges.

246 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments required the implementation of the set space, radius par-

titioning search tree algorithm (without the partitioning criteria alternating

modification) as discussed in section 10.4.2. The range query (tree search)

algorithm discussed in this section was also implemented.

Importantly, both the tree generation and tree search implementations

perform breadth first, rather than (the discussed) depth first tree traversals.

This was done so that only a single row read operation, and a single column

read operation, need be performed for each level of the tree (both when

constructing the tree, and when searching it).

No special center selection algorithm was used, with centers being se-

quentially numbered points (from the first point). This is effectively random

center selection as each network was random.

The sequential search range query algorithm discussed in section 10.2.5,

and the (symmetric) metric space radius partitioning search tree genera-

tion and range query algorithms discussed in section 10.3.2 were also imple-

mented.

The sequential search implementation utilised the existing distanceMatrix

data structure, so all the distances (that is d(x, y) for all y ∈M), required for

a single sequential search range query could be loaded from disk in a single

read operation.

The metric space implementation was backward engineered from the set

space implementation, the differences being that the edges in the initial net-

work were undirected, and only one copy of distanceMatrix needed to be

written to disk, as distanceMatrix columns and rows were identical due to

the symmetry of the space.

The (symmetric) metric spaces were generated from networks with undi-

rected edges, while the (non symmetric) set spaces were generated from net-

works with directed edges. For approximate parity, networks with directed

edges were assigned twice the number of edges as corresponding networks

with non directed edges.

Note that networks with 2m directed edges are not generally isomorphic

to networks with m undirected edges (see figure 11.2), so the results are

indicative rather than directly comparable. Also note that the sequential

11.3 NON SYMMETRIC EXPERIMENTS 247

search implementation is identical for symmetric and non symmetric spaces

and is unaffected by the distribution of distances.

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

distance

fr
eq

ue
nc

y

mean distance: 12.9245
standard deviation: 4.24206

0 5 10 15 20 25

0
20

00
0

60
00

0
10

00
00

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

distance

fr
eq

ue
nc

y

mean distance: 10.8257
standard deviation: 6.49137

0 5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

Figure 11.2: Frequency of distances for typical 1000-point network spaces
with maxDist = 25. LHS: 1100 undirected, weight = 1 edges. RHS: 2200
directed, weight = 1 edges.

For each experiment, range queries were performed for one thousand dif-

ferent points and the average time to retrieve points, over these one thousand

queries, was recorded. Due to time and disk size limits, none of the initial

experiments involved spaces with more than one hundred thousand points.

11.3.2 Non Symmetric Experimental results

The results (see table 11.1) at first seemed encouraging. Changing the num-

ber of shells partitioning each node (and so the “branch factor” or “arity” of

the search tree) did not have an appreciable impact on performance. If the

leaf capacity was too small, sometimes the search trees failed to generate,

as some small sets of points can be effectively indistinguishable. However

increasing the leaf capacity of the trees did not increase the run time of the

tree search implementation.

With branchFactor = 2 and leafCapacity = 10 (for this leafCapacity,

tree generation was successfull for at least 99% of the spaces tested), the non

248 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

space size tree search sequential search
(points) non symmetric symmetric
1000 0.21 0.07 0.007
10000 2.02 0.92 0.04
100000 36.73 16.06 0.57

Table 11.1: Average, over 1000 distinct queries (t = 2, 0 ≤ x < 1000), radius
partitioning tree search (branchFactor = 2, leafCapacity = 10) and sequen-
tial search range query times (milliseconds) for typical symmetric network
spaces generated from (random) n = 1000, e = 1100; n = 10000, e = 13000;
and n = 100000, e = 150000 (undirected) networks and non symmetric net-
work spaces generated from (random) n = 1000, e = 2200; n = 10000,
e = 26000; and n = 100000, e = 300000 (directed) networks.

symmetrical test space with one hundred thousand points required around

0.036 seconds to search (on the 1.8GHz machine used for the experiment) on

average, for small radius (t = 2) range queries. The, similar, symmetrical

test space required only around 0.016 seconds to search on average.

Note that, due to the, greater than 2GB file size, 64bit file offsets were

required to store and access distanceMatrix for the 100000-point test spaces,

whereas standard file offsets sufficed for the 10000 and 1000-point test spaces.

11.3.3 Discussion of non symmetric results

The test results suggest that the time complexity of both the symmetric

and the non symmetric tree search algorithms is, at best, O(n). Also, the

sequential search range query implementation was extremely fast, searching

spaces with ten thousand points in only 0.04 milliseconds and taking only

0.57 milliseconds to search spaces with one hundred thousand points.

It can be concluded from this that, for practically sized network spaces

similar to those tested, despite having an O(n) time complexity, sequential

search appears to be far superior to radius partitioning.

The set space range query implementation, which was expected to be

slightly less effective, gives comparable performance to the metric space im-

plementation. However, while both implementations give acceptable per-

11.3 NON SYMMETRIC EXPERIMENTS 249

formance, neither looks efficient when compared with the sequential search

range query implementation. Why would anyone want to use range query

(or hyperplane partitioning) algorithms? Perhaps the answer to this question

lies in the time and memory complexity, both O(n2), of the construction of

distanceMatrix.

Example 11.1. A space with 105 points requires a distanceMatrix with

1010 cells. If each distance takes one hundredth of a second to compute, then

it would take at least 108 seconds, which is 3.17 years, of computing time to

construct this distanceMatrix.

For the randomly generated spaces used, range query and hyperplane

partitioning, search trees can be readily constructed that never require more

than 25 levels (a trees branchFactor and/or leafCapacity, rather than the

number of its levels, can be increased to accommodate larger spaces). These

search trees can work quite efficiently when only distanceMatrix rows (and

columns for non symmetric spaces) corresponding to the centers used in tree

construction have been precomputed. As a single center is used for each level,

only 25 rows (and 25 columns) of distanceMatrix need be precomputed.

Example 11.2. Following example 11.1, a single row of distanceMatrix

would take 16.67 minutes to compute. That works out as 6.94 hours to

compute 25 rows. Considering this is a one off setup cost for a very large

information space, this is quite reasonable.

While these examples may, at first, appear conclusive, two further points

should be considered.

First, the 3.17 years mentioned in example 11.1 is a one off setup cost

for a large information space. The algorithm is amenable to parallelism.

Utilising 100 sequential processors, for example, would result in a hundred

fold reduction in the execution time of this algorithm.

Second, the 3.17 years mentioned in example 11.1 only applies to quite

large spaces that are constructed all at once, and does not apply to spaces

that are built up incrementally. The time of 16.67 minutes required to add

250 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

a single row to distanceMatrix, and so a single point to a one hundred

thousand point (symmetric) space might be more acceptable if distributed

over a number of years of incremental build up. It should even be possible,

in many cases, to distribute this computation so, for example, contributors

of research papers compute these distances on their own computers as part

of a paper submission process.

This discussion clarifies the reasons for preferring radius and hyperplane

partitioning over sequential search range query implementations. If a dis-

tanceMatrix is precomputed, sequential search gives the best performance

for range queries at the expense of quadratic time and memory complexity

for the construction and storage of distanceMatrix. Sequential search range

queries are very fast, but initial setup and point insertion is slow. In contrast,

radius and hyperplane partitioning range query implementations, which don’t

require a distanceMatrix, can give acceptable query performance while also

having fast initial setup and point insertion.

It is also important to note, as pointed out in the introduction to this

chapter, that when the set M of query points is very large (much larger than

the set M I ⊆M of points with attached information elements) it is often not

possible to precompute and store distances corresponding to pairs M ×M .

If it is not possible to precompute distanceMatrix, sequential search can be

very slow. In these cases, the spatial partitioning/tree search algorithms may

offer faster query times.

For a large class of applications, it is practical to precompute distanceMatrix

for distances corresponding to pairs M I ×M I , but not pairs M ×M . For

presently conceived applications, it is practical to precompute distances cor-

responding to pairs (c, y) for particular center points c ∈ M I and all points

y ∈ M I . This is the minimum requirement for the construction of spatial

partitioning search trees.

While it has been a useful experiment to compare query times, timed

experiments can easily be misinterpreted. Also, query time experiments, run

on different machines with different memory sizes, instruction sets, compilers,

operating systems, processor speeds... are not comparable.

For given spaces and queries, the best statistic to use to compare tree

11.4. VARIANCE EXPERIMENTS 251

and sequential search algorithms is candidate set to space size (see the LHS

of figure 11.3). This proportion must be reliably small for tree search to be

considered to have an advantage over sequential search.

Similarly, the best statistic to use to compare different tree search algo-

rithms is retrieved to candidate set size (see the RHS of figure 11.3). Ideally,

this proportion is 1/1. The proportion is smaller for less effective algorithms.

0 20 40 60 80 100

0
10

20
30

40
50

60
70

considered_percent

fr
eq

ue
nc

y

mean: 12.298

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0
14

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 7.329

Figure 11.3: Data from a range query (x = 999, t = 2) on radius par-
titioning search trees (branchFactor = 2, leafCapacity = 10) over 1000
different, 1000-point, metric (network) spaces generated from networks with
1100 weight = 1 undirected edges and maxDist = 25. LHS: distribution of
candidate point set size as a (truncated) percentage of space size. RHS: dis-
tribution of retrieved to candidate point set sizes (by truncated percentage).

11.4 Variance Experiments

The objective of the experiments in this section was to find out how the

performance of the set and metric space tree search implementations could

be improved and, at the same time, identify the reason for their relatively—

when compaired with sequential search—poor performance.

Pruning hypothesis. The poor performance of the search trees tested is

due to an insufficient number of nodes being pruned when searching, due the,

252 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

too small, statistical dispersion of distances in the test spaces.

Consider the metric space, radius partitioning, node search inequality

rci−1
− t ≤ d(x, c) < t+ rci

discussed in section 10.3.2. For spaces with standard deviations that are

small relative to t, the mean distance is frequently relatively close to rci−1
,

d(x, c) and rci
, so the inequality would be frequently satisfied and few tree

nodes would be pruned. Similar reasoning can be applied to the hyperplane

partitioning node search inequality d(x, ci) − t < d(cj, x) + t (see section

10.3.3).

Collision definition. In the context of discussion of tree search algorithms,

a collision occurs when the relevant search inequality is satisfied (and so a

node is not pruned from the search tree). Less formally, a collision occurs

when a query hyperball and a partitioning boundary intersect.

Note that, while standard deviation should be a good approximate mea-

sure of the type of statistical dispersion that effects the likelyhood of colli-

sions, it is not exact. Collision prone spaces with large standard deviations

are quite possible.

Example 11.3. A 1000-point space has 2 groups of 500 points. The stan-

dard deviation of distances between points in the same group is small, as

are the distances. The standard deviation of distances between points in

the different groups is also small, but the distances are large. Because the

space has the same number of small and large distances, the standard devi-

ation of all distances in the space is large. Even so, collisions will be likely

after the first level of the space (which will partition points into the 2 groups).

Other measures of statistical dispersion, such as entropy, which all may

give different scores for different partitions of the space, are similarly approx-

imate.

11.4. VARIANCE EXPERIMENTS 253

11.4.1 Variance experimental results

Looking more closely at the behaviour of the tree search algorithm from the

initial experiment (see tables 11.2 and 11.3), a reasonable number of search

tree nodes were being pruned, but many of these nodes contained few, or

even no points1 .

In order to test the pruning hypothesis, the variance of the test data

was increased by generating network spaces from networks with randomly

weighted edges. As single byte unsigned chars were used to store distances,

the largest distance that could be represented was 255, so maxDist was set

to 255 and uniform random edge weights between 0 and maxDist/factor

were generated, where factor was experimentally determined and related to

the size of the space. For symmetric spaces, the number of edges was set

to 1.1n. This produced distance distributions with reasonable variance, as

illustrated in the left hand side of figure 11.4.

In order to retrieve a similar proportion of the space as earlier experi-

ments, the query radius used in the, randomly weighted edges, experiment

was increased from t = 2 to t = 50.

A 1–dimensional Euclidean space (that is, the distance function d(x, y) =

|x − y|) was also implemented. Figure 11.4 also illustrates the distribution

of distances from a uniform 1000-point 1–dimensional Euclidean space. Be-

cause distances can be quite readily computed directly from points, Euclidean

spaces do not require the generation of a distanceMatrix.

Note the outlier at (0,1000) in both (figure 11.4) plots, corresponding to

d(x, x) = 0 distances.

11.4.2 Random edge weight experimental results

Comparing the experimental results (see figure 11.5) for range queries on

radius partitioning search trees over network spaces with randomly weighted

edges, to the earlier results for weight = 1 edges (see figure 11.3), two things

1For trees with branchFactor = 2, for example, nodes Y are divided by finding the
median d(c, y) for all points y ∈ Y . The LHS child of Y will contain points y where
d(c, y) ≤ this median distance, this could be all points y ∈ Y , in which case the RHS child
of Y will be empty.

254 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

level center internal nodes leaf nodes
0 0 2 0
1 1 4 0
2 2 8 0
3 3 16 0
4 4 32 0
5 5 47 17
6 6 27 67
7 7 5 49
8 8 1 9
9 9 0 2

Table 11.2: Radius partitioning search tree (branchFacor = 2 and
leafCapacity = 10) for a typical, random, 1000-point network space (with
1100 undirected weight = 1 edges).

level candidate collisions pruned remaining pruned considered retrieved
nodes nodes nodes points points points

0 2 1 0 2 0 0 0
1 4 1 1 3 281 0 0
2 6 1 2 4 208 0 0
3 8 3 1 7 40 0 0
4 14 3 4 10 166 0 0
5 20 7 3 17 52 0 0
6 28 11 5 23 41 23 0
7 6 15 1 5 9 144 7
8 2 0 1 1 5 22 0
9 0 0 0 0 0 9 0

Table 11.3: Candidate nodes, collisions, pruned nodes and points, considered
and retrieved points by level from a range query (x = 999, t = 2) on the radius
partitioning search tree in table 11.2. The retrieved point set contained 7
points, while the candidate point set contained 198 points, giving a retrieved
to considered ratio of approximately 3%.

11.4. VARIANCE EXPERIMENTS 255

●

●●●●●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●
●●
●
●●●

●●
●●
●
●●●

●●
●
●●

●●
●
●●
●
●●
●●
●
●●●

●●

●
●
●●
●
●
●●

●
●●
●
●

●
●
●
●●
●
●
●●

●
●

●●
●

●
●

●
●●
●
●●●

●

●

●●
●

●

●●
●
●
●●

●
●●
●
●
●

●●
●●

●●

●●
●●
●

●●
●

●●
●
●●

●●
●
●

●
●

●●●

●●

●●
●
●●●

●
●●
●
●●
●
●
●
●●
●
●●●●

●●●●●●●●
●●●●

●●

●

0 50 100 150 200 250

0
20

00
40

00
60

00
80

00
10

00
0

distance

fr
eq

ue
nc

y

●

●●●

0 200 400 600 800 1000
0

50
0

10
00

15
00

20
00

distance

fr
eq

ue
nc

y

Figure 11.4: Frequency of distances. LHS: a typical 1000-point network
space with maxDist = 255 and 1.1n undirected edges with uniform random
weights (integers 1 to 19) . Mean distance: 120.913, standard deviation:
39.2604. RHS: a 1–dimensional Euclidean space over integers 0–999. Mean
distance: 333.333, standard deviation: 235.702.

0 20 40 60 80 100

0
5

10
15

20

considered_percent

fr
eq

ue
nc

y

mean: 57.355

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 8.36

Figure 11.5: Data from a range query (x = 999, t = 50) on radius par-
titioning search trees (branchFactor = 2, leafCapacity = 10) over 1000
different, 1000-point, metric (network) spaces (with 1100 randomly weighted
undirected edges). LHS: distribution of candidate point set size as a (trun-
cated) percentage of space size. RHS: distribution of retrieved to candidate
point set sizes (by truncated percentage). Compare with figure 11.3.

256 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

are immediately apparent. First, the size of candidate point sets, though also

quite variable, tends to be larger (and so worse) for the later experiment.

Second, the retrieved to considered percent in the later experiment is similar

to the earlier. This, seeming contradiction, indicates that the queries (with

t = 50) in the later experiment tended to retrieve a greater proportion of the

space than the queries (with t = 2) in the earlier experiment.

The lack of significant improvement is explained by the fact that, although

the variance of the space has been increased, the radius of the search queries

have been increased to match (so the queries in both experiments retrieve a

similar proportion of their respective spaces).

11.4.3 Euclidean space experimental results

0 20 40 60 80 100

0
20

0
40

0
60

0

considered_percent

fr
eq

ue
nc

y

mean: 5.267

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

retrieved_to_considered_percent

fr
eq

ue
nc

y mean: 90.929

Figure 11.6: Data from the range query x = 999, t = 50 on 1000 radius
partitioning search trees (with randomly selected centers, branchFactor = 2
and leafCapacity = 10) over a 1000-point uniform Euclidean space. LHS:
distribution of candidate point set size as a (truncated) percentage of space
size. RHS: distribution of retrieved to candidate point set sizes (by truncated
percentage). Compare with figure 11.3.

The Euclidean space experimental results (see figure 11.6) are distinct

from the network space results in two main ways. First, there is little vari-

ation in size of candidate point sets, with all test results between 5% and

11.5 CENTER SELECTION & MULTIPLE TREE EXPERIMENTS 257

15%, and 99.8% of results between 5% and 8%. Second, the retrieved to

considered test results are consistently high, with distinct peaks at 94% and

82%, and with 97% of results above 80%. Note that the peak at 94% can be

moved to 100% by decreasing leafCapacity to 1.

It may be that the characteristic “peak-trough” pattern of retrieved-to-

considered scores (see RHS figure 11.6) can be attributed to collisions occur-

ring in the search tree. Noting that collisions are more damaging the closer

to the root of the search tree they occur, it may be that, for example, the

peak in frequencies at 94% corresponds to queries that are conducted with-

out serious collisions and the peak at 82% corresponds to queries that are

conducted with a single serious collision.

Similar reasoning can be applied to interpret earlier test results. Looking

at the retrieved-to-considered results in figure 11.5 for example, the peak at

3% corresponds to queries that have been conducted with numerous serious

collisions. The, much smaller, peak at 14% corresponds to queries that have

been conducted with fewer collisions.

This reasoning is borne-out by more detailed, instance-by-instance exam-

ination, as illustrated in tables 11.4 and 11.5 (and the earlier tables 11.2 and

11.3)

11.5 Center Selection and Multiple Tree Ex-

periments

Although the metric space radius partitioning algorithm created effective

indexes for the 1–dimensional Euclidean spaces tested, radius partitioning

appears to be far from effective when applied to randomly generated (net-

work) metric spaces. It now seems likely that the “search tree” approach

generally (including radius and hyperplane partitioning) is not an effective

method of indexing spaces where typical query radii are large relative to

the standard deviation of distances. However, possible improvements to the

algorithm must be examined before firm conclusions can be drawn.

Center selection is the main technique for improving the performance of

258 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

level center internal nodes leaf nodes
0 282 2 0
1 206 4 0
2 672 8 0
3 838 16 0
4 971 32 0
5 226 64 0
6 909 128 0
7 593 256 0
8 691 487 25
9 542 1 973
10 717 0 2

Table 11.4: Typical radius partitioning search tree (with random centers,
branchFacor = 2 and leafCapacity = 1) for a 1–dimensional Euclidean
space over integers 0–999. Compare with table 11.2.

level candidate collisions pruned remaining pruned considered retrieved
nodes nodes nodes points points points

0 2 0 1 1 501 0 0
1 2 0 1 1 250 0 0
2 2 0 1 1 125 0 0
3 2 0 1 1 62 0 0
4 2 1 0 2 0 0 0
5 4 2 0 4 0 0 0
6 8 3 1 7 8 0 0
7 14 7 0 14 0 0 0
8 28 13 1 27 2 0 0
9 50 24 1 49 1 2 2
10 0 0 0 0 0 49 49

Table 11.5: Collisions, pruned nodes and points, considered and retrieved
points by level from the range query x = 999, t = 50 on the radius par-
titioning search tree in table 11.4. Both retrieved and candidate point sets
contained 51 points, giving a retrieved to considered ratio of 100%. Compare
with table 11.3.

11.5 CENTER SELECTION & MULTIPLE TREE EXPERIMENTS 259

search tree algorithms. The motivation for this idea is that “better” centers

result in better partitions and so more effective search trees. Various algo-

rithms have been used to select centers including selecting centers that are

far apart[4].

Clearly (for symmetric spaces) centers that are close together will gen-

erate similar partitions, so centers that are not close together should be

preferred.

11.5.1 Greatest minimum center selection experiment

The following algorithm was used to select centers that are far apart.

1. randomly select numOfCenters trial centers;

2. repeat this numOfTrials times, producing a set with numOfTrials

“trial centers” sets, each containing numOfCenters centers;

3. select the trial centers set which has the greatest minimum distance

between its centers.

This algorithm was used to help construct search trees “with specially

selected centers”. The results of this experiment, which was conducted on

1000 different, 1000-point, metric (network) spaces (with 1100 weight = 1

undirected edges), is presented in figure 11.7.

Comparing figure 11.7 with figure 11.3, it is apparent that this center

selection technique has not significantly improved performance.

11.5.2 Standard deviation center selection experiment

Another experiment was conducted with selecting sets of centers c where the

variance of d(c, y) for all y, is high. Part of the motivation behind this center

selection technique is illustrated in the example below.

Example 11.4. For the randomly generated network spaces introduced in

section 2, “virtual” edges with weights=maxDist connect all nodes/points,

260 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

0 20 40 60 80 100

0
10

20
30

40
50

60
70

considered_percent

fr
eq

ue
nc

y mean: 12.334

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 7.844

Figure 11.7: Data from a range query (x = 999, t = 2) on radius partitioning
search trees (branchFactor = 2, leafCapacity = 10) with specially selected
centers over 1000 different, 1000-point, metric (network) spaces (with 1100
weight = 1 undirected edges). LHS: distribution of candidate point set size
as a (truncated) percentage of space size. RHS: distribution of retrieved to
candidate point set sizes (by truncated percentage). Compare with figure
11.3.

so if a point c is not otherwise connected to y, d(c, y) = maxDist. An (un-

connected) point c where d(c, y) = maxDist for all y, so the variance of

d(c, y) is 0, would not be a good choice for a center, as a single partition

would contain all the points.

The algorithm used to select centers by standard deviation also incorpo-

rated greatest minimum selection.

1. randomly select numOfCenters+ numOfTrials trial centers;

2. select the numOfCenters centers c with where d(c, y) for all y has the

largest standard deviation;

3. repeat this numOfTrials times, producing a set with numOfTrials

“trial centers” sets, each containing numOfCenters centers;

4. select the trial centers set which has the greatest minimum distance

between its centers.

11.5 CENTER SELECTION & MULTIPLE TREE EXPERIMENTS 261

However the “standard deviation center selection experiment” produced

results very similar to the greatest minimum experiment (see figure 11.7).

11.5.3 Discussion of center selection experiments

The results from these center selection experiments are broadly consistent

with the literature[4, 6, 22, 44, 85, 103], which reports only marginal im-

provement in range query algorithm performance when center selection is

used. The results are also consistent with the pruning hypothesis—center

selection should not significantly improve performance as it is not possible

to know (without knowing what queries will be performed) what centers will

cause collisions.

The center selection algorithms we used involved numerous distance com-

putations. In practical situations where search tree algorithms may have

advantages over sequential search algorithms, it is not realistic to compute

the standard deviation for each candidate center (as in section 11.5.2). Sim-

pler center selection algorithms, such as maximising the minimum distance

between centers (as in section 11.5.1) are more realistic.

11.5.4 Experiment with multiple search trees

In comparison to center selection, collisions may be more effectively reduced,

and so performance improved, by constructing multiple search trees and, for

each query, completing the query on trees where serious collisions do not

occur. A similar idea involves, for each query, completing the query on all

trees and taking the intersection of the resulting set of candidate point sets.

This, candidate set intersection, idea was implemented. Three radius

partitioning search trees (with random centers, branchFactor = 2 and

leafCapacity = 10) were constructed for each of 1000 different, 1000-point,

metric (network) spaces (with 1100 weight = 1 undirected edges). A single

range query (x = 999, t = 2) was executed on each of the search trees.

The intersection of the three resulting candidate point sets was taken as the

candidate point set for this search method. Detailed results for the first 10

262 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

spaces tested are presented in table 11.6, while the results for all 1000 spaces

are summarised in figure 11.8.

space candidate candidate candidate intersection retrieved
set 1 size set 2 size set 3 size set size set size

0 179 248 52 18 3
1 134 189 242 45 7
2 41 74 158 10 3
3 83 178 302 37 12
4 100 90 184 4 2
5 158 81 111 9 5
6 388 213 366 92 3
7 60 66 30 13 6
8 117 30 166 11 8
9 222 184 73 22 10

Table 11.6: Candidate set sizes for the range query x = 999, t = 2 over
3 radius partitioning search trees (with random centers, branchFactor = 2
and leafCapacity = 10) for each of 10 different, 1000-point, metric (network)
spaces (with 1100 weight = 1 undirected edges). The size of the intersection
of these 3 sets, and the size of the retrieved set is also displayed.

Comparing the sizes of the candidate and intersection sets for each space

(in table 11.6), the decision to take the intersection, rather than just the

smallest candidate set, appears to be vindicated. Even when the (about 20)

extra distance computations for the additional two search trees are taken

into account, significantly fewer distance computations need to be made (for

the spaces and range queries tested). Even just choosing the smallest, rather

than the intersection, of the three sets would result in a significant reduction

in distance computations.

Efficient implementations of this idea would maintain ordered lists of

points in each leaf node. The candidate sets resulting from range queries

could then be ordered by a single merge (as in the mergesort algorithm). The

intersection of the resulting ordered candidate sets could then be efficiently

computed.

Comparing figure 11.8 with figures 11.3 and 11.7, the improvement is

dramatic. This strongly supports the pruning hypothesis (see section 11.4).

11.5 CENTER SELECTION & MULTIPLE TREE EXPERIMENTS 263

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0

considered_percent

fr
eq

ue
nc

y

mean: 1.751

0 20 40 60 80 100

0
10

20
30

40

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 38.627

Figure 11.8: Data for the range query x = 999, t = 2 over 3 radius
partitioning search trees (with random centers, branchFactor = 2 and
leafCapacity = 10) for each of 1000 different, 1000-point, metric (network)
spaces (with 1100 weight = 1 undirected edges). The intersection of the 3
resulting candidate point sets was taken as the candidate point set for this
search method. LHS: distribution of candidate point set size as a (trun-
cated) percentage of space size. RHS: distribution of retrieved to candidate
point set sizes (by truncated percentage).

264 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

11.6 Experiments with

Multi-Dimensional Spaces

The main objective of these experiments was to determine if the pruning

hypothesis explains the performance of tree search algorithms over multi-

dimensional spaces, or if a less general hypothesis is required, just for multi-

dimensional spaces.

While examining multi-dimensional spaces, it was also useful to determine

if multiple search trees are effective at improving the performance of tree

search algorithms over multi-dimensional spaces.

11.6.1 Multi-Dimensional experiment setup

Numbered points in uniform Euclidean spaces were generated.

Example 11.5. To generate a 1000-point (numbered 0-999) 3–dimensional

Euclidean space. First determine the number of coordinates in each dimen-

sion. This is dimNum = d 3
√

1000e. Now generate points of the form (x, y, z)

from numbers 0 ≤ i < 999.

x = (i/dimNum2) mod dimNum,

y = (i/dimNum) mod dimNum,

z = i mod dimNum.

In this way the available points are uniformly “packed” into the space. The

distance between points (x1, y1, z1), (x2, y2, z2) is given by

d((x1, y1, z1), (x2, y2, z2)) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

11.6. EXPERIMENTS WITH MULTI-DIMENSIONAL SPACES 265

11.6.2 Multi-Dimensional experimental results and dis-

cussion

The distribution of distances for 1–dimensional Euclidean space has already

been illustrated in the RHS of figure 11.4. The distribution of distances

for 2,3,4 and 5–dimensional Euclidean spaces, generated as outlined in the

above example, is illustrated in figure 11.9. As can be seen from the figure,

the standard deviation of distances decreases as the number of dimensions

increases.

1000 radius partitioning search trees (with random centers) were con-

structed for each of these spaces, and the range query x = 0, t = 2 was

executed over each tree. The resulting distribution of retrieved to candidate

set size is illustrated in figure 11.10. As can be seen, the mean retrieved

to candidate set size decreases as the number of dimensions increases. In

other words, the effectiveness of the algorithm decreases as the standard de-

viation of the space decreases—a result entirely consistent with the pruning

hypothesis.

11.6.3 Multiple tree experiments

A further sequence of experiments was conducted to check the effectiveness of

the multiple search tree approach when applied to multi-dimensional spaces.

For each result, three search trees (with random centers) were generated and

the query x = 0, t = 2 was executed over each tree. The resulting candi-

date set was taken to be the intersection of the candidate sets corresponding

to each of the three trees. This was repeated 1000 times. The resulting

distribution of retrieved to candidate set size is illustrated in figure 11.11.

As can be seen by comparing figure 11.10 to figure 11.11, the multi-tree

technique was most successful when applied to the 3–dimensional space. Cu-

riously, the resulting mean retrieved to considered percent was even slightly

higher in the 3–dimensional space than in the 2–dimensional space!

The improvement for the 4 and 5–dimensional spaces is less dramatic. It

would appear that the multi-tree technique is not overly effective in spaces

266 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

0 10 20 30 40 50

0
10

00
0

20
00

0
30

00
0

40
00

0

distance

fr
eq

ue
nc

y

mean: 16.508
standard deviation: 7.85959

2−dimensional

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

distance

fr
eq

ue
nc

y

mean: 6.58534
standard deviation: 2.47656

3−dimensional

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

distance

fr
eq

ue
nc

y

mean: 4.34936
standard deviation: 1.40549

4−dimensional

0 10 20 30 40 50

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

distance

fr
eq

ue
nc

y

mean: 3.3905
standard deviation: 0.940741

5−dimensional

Figure 11.9: Distance frequencies for the “first” 1000 points in 2,3,4 and
5–dimensional uniform Euclidean spaces. Distances are truncated in the
plot, but not when computing the mean and standard deviation. The 2–
dimensional space has 32 coordinates each dimension. The others have 10, 6
and 4 (respectively).

11.6. EXPERIMENTS WITH MULTI-DIMENSIONAL SPACES 267

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

retrieved_to_considered_percent

fr
eq

ue
nc

y mean: 43.8462

2−dimensional

0 20 40 60 80 100

0
10

20
30

40
50

60

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 21.6602

3−dimensional

0 20 40 60 80 100

0
50

10
0

15
0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 8.41369

4−dimensional

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 5.69299

5−dimensional

Figure 11.10: Distribution of retrieved to candidate point set sizes (by
truncated percentage) for the range query x = 0, t = 2 over 1000 ra-
dius partitioning search trees (with random centers, branchFactor = 2 and
leafCapacity = 10) for uniform 1000-point, 2,3,4 and 5–dimensional Eu-
clidean space.

268 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 49.8027

2−dimensional

0 20 40 60 80 100

0
20

40
60

80
10

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 50.8321

3−dimensional

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0
14

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 14.9563

4−dimensional

0 20 40 60 80 100

0
50

10
0

15
0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 11.1938

5−dimensional

Figure 11.11: Distribution of retrieved to candidate set sizes (by truncated
percentage) for the range query x = 0, t = 2 over 1000 different groups of
three radius partitioning search trees (with random centers, branchFactor =
2 and leafCapacity = 10) for a uniform 1000-point, 2,3,4 and 5–dimensional
Euclidean space. The group candidate set is the intersection of the candidate
sets corresponding to each of the three trees.

11.7. SET SPACE EXPERIMENTS 269

where collisions are highly likely due to the relatively small standard devia-

tion of the space, as all trees are similarly collision prone.

11.7 Set Space Experiments

The set space radius partitioning algorithm discussed in section 10.4.2 was

implemented2 and tested on the non symmetric space 〈{0, ..., 999}, x − y〉.
The results of this experiment are summarised in figure 11.12.

0 20 40 60 80 100

0
10

20
30

40
50

considered_percent

fr
eq

ue
nc

y

mean: 55.246

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 99.0145

Figure 11.12: Data from 1000 range queries (0 ≤ x ≤ 999, t = 50)
on 1000 different radius partitioning search trees (with random centers,
branchFactor = 2, leafCapacity = 10) over the space 〈{0, ..., 999}, x − y〉.
LHS: distribution of candidate point set size as a (truncated) percentage of
space size. RHS: distribution of retrieved to candidate point set sizes (by
truncated percentage).

The algorithm (both with and without the criteria alternating modifi-

cation) were also tested on randomly generated non symmetric spaces. The

results (without criteria alternation) summarised in figure 11.13, clearly show

the algorithm is not effective for these spaces. The criteria alternating mod-

ification did not significantly improve the results.

2Without the criteria alternating modification, and with breadth first, rather than
depth first, traversal.

270 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

0 20 40 60 80 100

0
20

40
60

80

considered_percent

fr
eq

ue
nc

y

mean: 74.5811

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

retrieved_to_considered_percent

fr
eq

ue
nc

y

mean: 1.27786

Figure 11.13: Data from a range query (x = 999, t = 2) on radius partition-
ing search trees (branchFactor = 2, leafCapacity = 10) over 1000 different,
1000-point, (non symmetric) network spaces generated from networks with
2200 weight = 1 directed edges and maxDist = 25. LHS: distribution of
candidate point set size as a (truncated) percentage of space size. RHS: dis-
tribution of retrieved to candidate point set sizes (by truncated percentage).

11.7.1 Discussion of set space results

Just as for the metric space range query algorithm tested, the effectiveness of

the set space range query algorithm varies widely. The algorithm appears to

be highly effective over the “Euclidean like” space 〈{0, ..., 999}, x− y〉 (with

relatively large variance), but inneffective over the randomly generated spaces

(with relatively small variance).

While the alternating criteria modification did not significantly improve

the effectiveness of the algorithm over the spaces tested, it may make a more

noticeable difference over other spaces.

11.8 Sequential search algorithms

While the effectiveness of spatial partitioning varies markedly for different

spaces, the effectiveness of the sequential search algorithm is limited by the

time and memory required to compute and store distanceMatrix.

11.8. SEQUENTIAL SEARCH ALGORITHMS 271

As has already been discussed (see section 8.4), the number of coordinates

in each dimension of even very large multi-dimensional spaces need not be

great. As a separate distanceMatrix can be constructed for each dimension,

the time and memory required to set-up sequential search over such spaces

is not great.

Example 11.6. A 5–dimensional space with 1000 coordinates in each dimen-

sion has 10005 = 1015 points. If a separate distanceMatrix is constructed for

each dimension, only 5∗10002 (non symmetric) distances need be computed.

If each distance requires 0.01s to compute, less than 14 hours of computing

time is required in total. If each distance is stored on one byte, only 5MB

memory is required.

Similarly, if the points in a space are sets of points (in an underlying space)

and the distance function between these points is a set distance function

based on distances in the underlying space (such as the maximum, minimum

distance between points) the distanceMatrix for the underlying space can be

used to determine distances in (very large) set spaces. However, as the time

complexity of set distance computation between (set) points (each consisting

of n points from the underlying space) is O(n2), practical limits must be

placed on the size of (set) points. This limits the size of the resulting set

spaces.

Example 11.7. The points in a space are sets of points from an underlying,

1000-point space. Including the emptyset, there are 1 +
∑1000

i=1 i = 500501

sets in total available. If the (set) points are limited to sets with cardinality

≤ 10, the (set) space will have 1 +
∑1000

i=991 i = 9956.

Two experiments were conducted to determine the effectiveness of se-

quential search. In the first experiment, the effectiveness of sequential search

over n–dimensional spaces was determined. In the second experiment, set

spaces with set distance functions were tested.

272 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

11.8.1 Sequential search for n–dimensional spaces

A number of n–dimensional information spaces (each with a different value

of n) with 1000 points in each dimension, and 106 information elements

were tested. In the tested spaces, the equation used to combine the n “di-

mensional distances” d1, ..., dn was
√

(
∑n

i=1 d
2
i). The time taken to conduct

range queries (that is, the determination of n ∗ 106 powers of 2 and 106

square roots)3 was recorded in each case. The results of this experiment is

presented in table 11.7. Note that “considered to retrieved” ratios are not

used to measure the effectiveness of sequential search as all information el-

ements are checked. Also (unlike spatial partitioning algorithms) the query

time for sequential search does not vary for different queries.

n space size (points) query time (seconds)
2 105 0.22
4 107 0.4
6 109 0.58
8 1011 0.76
10 1012 0.94

Table 11.7: Space size and query time for the sequential search algorithm (for
a C++ implementation, using the cmath sqrt() and pow() functions, on a
1.8GHz machine with 265k memory running Linux) for various n–dimensional
spaces with 1000 points in each dimension and 106 information elements.

“Dimensional distances” d1, ..., dn are combined using
√(∑n

i=1 di
2
)
.

11.8.2 Sequential search over set spaces with set dis-

tance functions

An experiment was conducted to determine the practical limit of set size for

(set) points in realistic set spaces. The experiment tested a 3–dimensional

space. Each dimension is a set space, based on an underlying space with

1000 points. The algorithm determines distances for 106 information units,

3For a C++ implementation (using the cmath pow() function) on a 1.8GHz machine
with 256k memory running Linux.

11.8. SEQUENTIAL SEARCH ALGORITHMS 273

attached to random points in the space. The results of this experiment is

presented in table 11.8.

point size limit space size (points) query time (seconds)
2 19993 3.37
4 39943 3.92
6 59853 4.94
8 79723 6.32
10 99553 8.1

Table 11.8: Space size and query time for the sequential search algorithm
(for a C++ implementation, using the cmath sqrt() and pow() functions, on
a 1.8GHz machine with 265k memory running Linux) for a 3–dimensional
space. Each dimension is a set space, based on an underlying space with
1000 points. The algorithm determines distances for 106 information units,
attached to random points in the space. “Dimensional distances” d1, d2, d3

are combined using
√
d2

1 + d2
2 + d3

3.

11.8.3 Discussion of sequential search results

The results presented in table 11.7 underscore the earlier sequential search

results from table 11.1. Sequential search, where distanceMatrix is pre-

computed, is a highly effective range query algorithm. Because individual

dimensions of large spaces need not contain many points, distanceMatrix

can often be readily precomputed for each of the n dimensions of large n–

dimensional spaces. The resulting sequential search algorithms perform well.

Sequential search over set spaces, using set distance formulae to compute

distances based on underlying distanceMatrix distances, is less effective.

The size of (set) points needs to be limited to maintain efficiency. Never-

theless, an 8 second wait (on an old computer) to search through 1 million

information elements (each attached to up to 10 points) in a 10–dimensional

space is not unreasonable. The vast majority of queries should be far simpler

(and require less time to compute) than this.

274 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

11.9 Introducing the Sequential-Hybrid

Algorithm

The sequential search algorithm appears to be quite effective where it is pos-

sible to precompute distanceMatrix for each dimension of an n–dimensional

space. However, if a single one of these n dimensions has too many points

(perhaps an infinite number) and is not based on another space, distanceMatrix

for this dimension cannot be precomputed. Because, for nonnegative di,(
n−1∑
i=1

di
p

) 1
p

≤

(
n∑

i=1

di
p

) 1
p

,

the distances in the n − 1 spaces with a distanceMatrix can be used to

give a lower bound for distances in the n–dimensional space. In this way(∑n−1
i=1 di

p
) 1

p can be used to determine a set of candidate points. As with the

spatial partitioning algorithms, the precise distance (in the n–dimensional

space), need only be determined for points in the candidate set.

An experiment was conducted to test the effectiveness of this “sequential-

hybrid” algorithm over (simulated) 3,5,7 and 9–dimensional spaces. Each

dimension of the space consisted of 1000 points and distances were uniform

random integers between 1 and 1000. In each n–dimensional space, the

first n − 1 dimensions were used to determine the candidate set. The algo-

rithm computed
∑n−1

i=1 di
2 for each of 106 (simulated) information elements,

with the remaining dn
2 being computed only for information elements where∑n−1

i=1 di
2 ≤ t2. The resulting retrieved to candidate set sizes are presented in

table 11.9. Note that, in order to maintain approximate parity of retrieved

set size, t is increased with the dimension of the space.

11.9.1 Discussion of sequential-hybrid results

The sequential-hybrid algorithm can be used to index and search multi-

dimensional spaces where distanceMatrix is precomputed for most dimen-

sions. Conveniently, while the effectiveness of spatial partitioning algorithms

11.10. SUMMARY, DISCUSSION AND RECOMMENDATIONS 275

n t2 retrieved candidate retrieved to candidate
set size set size set size (percent)

3 100 681 9068 7.50993%
5 1000 607 3456 17.5637%
7 3000 657 2418 27.1712%
9 6000 730 2364 30.8799%

Table 11.9: Retrieved to candidate set sizes (by truncated percentage) for
a sequential search range queries over 3,5,7 and 9–dimensional spaces (with
106 randomly attached information elements). Each dimension consists of
1000 points. Distances are uniform random integers between 1 and 1000. In
each n–dimensional space, the first n− 1 dimensions were used to determine
the candidate set.

normally decreases with the number of dimensions, the effectiveness of the

sequential-hybrid algorithm increases!

11.10 Summary, discussion and recommen-

dations

Based on the experiments in this chapter, the metric space, spatial parti-

tioning range query algorithm, and (necessarily) the set space, spatial parti-

tioning range query algorithm (being somewhat weaker) are are not generic

algorithms, but rather suitable only for certain spaces. The standard devia-

tion σ of the space, relative to t (the query radius), gives a good indication

of how effective the algorithms will be. In general, the algorithms are only

effective over spaces with large σ. From this, a reasonable formula to use

to score the suitability of these algorithms is σ/t, where t is the maximum

radius where range queries need to be effective. In order to retrieve the same

proportion of the space, t must increase for spaces with increased mean dis-

tance µ, so the formula σ/µ could also be used. This agrees with [22], which

introduces µ/σ as a measure of the “hardness” of the space.

The problem with these algorithms is that σ/µ often decreases as the

number of dimensions increases. Also, σ/µ must be quite large for the al-

276 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

gorithms to work effectively4. While the multiple tree method (see section

11.6.3) improves the algorithm, this only extended the “effectiveness range”

of the algorithm from 2 to 3–dimensional Euclidean space. From this, it can

be concluded that the algorithm is normally ineffective at indexing spaces

with more than three dimensions, making it an unsuitable basis for imple-

menting Knowledge Library functionality.

Fortunately, if distanceMatrix can be precomputed, the sequential search

algorithm is quite effective. As distanceMatrix need only be precomputed

for individual dimensions of multi-dimensional spaces and underlying spaces

(upon which set spaces are based), sequential search should be a suitable

algorithm to implement range queries for many Knowledge Libraries. Further

more, if sequential search is ruled-out due to the presence of a (near) infinite

dimension, the sequential-hybrid algorithm can be used to expedite range

queries.

Curiously, spatial partitioning algorithms, which are the main focus of

the literature, appear to be effective at indexing only a small class of space,

not particularly applicable to Knowledge Libraries. The sequential search al-

gorithm, which appears far more universal and effective, is under represented

in the literature, perhaps as it is so straight-forward.

11.11 What this Chapter Achieved

This chapter identified the limitations of both sequential search and spatial

partitioning range query algorithms. Sequential search requires distanceMatrix

to be precomputed (in some form), whereas spatial partitioning algorithms

are only effective at indexing spaces where σ/µ is large. The effectiveness

of spatial partitioning algorithms can often be improved using a number of

search trees, and taking the intersection of the candidate set produced by

each tree. The sequential-hybrid algorithm extends the scope of sequential

search, as it can be applied to multi-dimensional space that have a large (or

4From the experiments in this chapter, a very approximate rule of thumb would be
that σ/µ should be greater than 0.4 for metric spaces, and 0.5 for non symmetric spaces,
in order for spatial partitioning algorithms to work effectively.

11.11. WHAT THIS CHAPTER ACHIEVED 277

even infinite) dimension.

Candidate set size was identified as the best statistic to use to compare

spatial partitioning and sequential search algorithms, while retrieved to can-

didate set size should be used to compare spatial partitioning algorithms.

Importantly, sequential search and sequential-hybrid algorithms should

be effective at providing range query functionality for Knowledge Libraries.

278 CHAPTER 11. EXPERIMENTAL RESULTS AND DISCUSSION

Chapter 12

Summary, Discussion and

Future Work

12.1 Chapter Overview

This chapter summarises and discusses the research in this thesis. The po-

tential avenues for future development are also discussed.

Section 12.2 provides a summary of the thesis. Frequent references are

made to thesis chapters, making this section an effective index of thesis con-

tent.

Section 12.3 discusses what has been achieved in this thesis. The research

hypothesis is restated, and the degree to which this research confirms the

hypothesis is discussed.

Section 12.4 discusses potential future directions of this research. The

main areas with potential for development include: the implementation of

Knowledge Libraries; the development of a graphical interface for Knowledge

Libraries; improving existing (information retrieval and data warehousing)

systems; and improving the way knowledge is disseminated.

279

280 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

12.2 Thesis Summary

12.2.1 The importance of information systems

In order to make decisions it is necessary to first review relevant information.

In order to confidently make good decisions, all relevant information must

be taken into account.

Effective information systems support decision making by providing ready

access to relevant information—including an indication of what relevant in-

formation may be missing. Significantly, it may be that the information

elements (that is, the information units indexed by the system) of an infor-

mation system are not the only relevant information available to the system.

In order to make reliably good decisions, system users will normally need

to take into account further information such as: the scope and range of

information elements in the system; how the system classifies and retrieves

information; the reliability and possible bias of information in the system;

who contributes information to the system and why; what contributions have

been rejected by the system and why; ...

By reducing the cost (in terms of time, money, effort, ...) required to

make good decisions, information systems have the potential to radically im-

prove ... practically everything.

Would providing voters in a democracy ready access to high quality relevant

information improve the functioning of the democracy?

Are voters really qualified to make an informed decision? Do we know how

our representatives voted on issues we have an interest in? Do we know what

contributions they made to relevant debates? Are we informed of the vested

interests of major campaign contributors? Is the trust we place in journal-

ists (and media empires) to discover, report and publish this information

warranted?

Based on the, often vague, speeches of contemporary politicians, many

voters make voting decisions based on general noise output, rather than any

in depth analysis. Perhaps the two party system itself is necessary to present

12.2. THESIS SUMMARY 281

under-informed voters with a simple choice.

Would providing key decision makers in large organisations ready access to

high quality relevant information improve the functioning of the organisa-

tion?

Decision makers in competitive environments are already aware of the crit-

ical importance of quality information. Improved access to, and quality of,

information gives a competitive advantage.

Would providing scientific researchers ready access to high quality relevant

information improve the quality of scientific research?

Currently researchers have access a subset of the relevant (and a substan-

tial amount of non relevant) research through the keyword interfaces of the

research databases their sponsoring institution subscribes to. There is nor-

mally a delay of some years between the time a research advance is made,

and when the corresponding (peer reviewed) paper becomes available through

these databases. Due to limitations of the peer reviewed research publication

process, some genuine research advances are never published, while other pa-

pers that do not represent genuine advances are published. Also, sometimes

the connection between the “academic” and “real” worlds can be tenuous,

with the real world impact of academic research often being difficult to assess.

Quite clearly, many aspects of the existing (global, research information)

system could be improved. Any such improvements should generate a corre-

sponding improvement in the quality and/or pace of scientific research.

12.2.2 The significance of Knowledge Libraries

The very perspective and terminology that characterises a discipline focuses,

and so limits, the (research) advances within that discipline. For example,

the discipline of information retrieval (see sections 2.6 and 4.2.3) appears to

be limited by its perspective of the problem of classification and its close ties

to keyword classification.

Information retrievalists avoid the use of the term “classification”, prefer-

282 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

ring “indexing”. In the context of this research it has been useful to differ-

entiate between: indexing (herein also called “weak classification”), which is

the classification of information to expedite retrieval; and strong classifica-

tion, which is the positioning of information (relative to other information)

within a “universe of knowledge” (see section 1.3). It would appear that, to

make fundamental advances, information retrievalists will have to begin to

consider the problem of classification in the stronger sense, yet to do so im-

mediately casts doubt on their dependence upon non contextural keywords

to classify information.

This research attempts to sidestep controversy within the discipline of

information retrieval by framing entirely new research questions. While in-

formation retrieval systems simply map user queries onto sets of documents

in a collection, Knowledge Libraries (see chapter 3) are idealised systems

that organise information to promote understanding. While mapping user

queries onto sets of information elements is part of the core functionality of

Knowledge Libraries, this is only one aspect of what Knowledge Libraries

do. Knowledge Libraries also convey to users an understanding of how the

information elements of the library interrelate. Users of Knowledge Libraries

may be interested in how the information elements are organised, rather than

the information elements themselves. Knowledge Library users may want to

identify, for example, “knowledge frontiers” or “gaps” in the classified infor-

mation.

The, more holistic, consideration of the needs of users, sets Knowledge

Libraries apart from information retrieval systems. Clearly, strong classifi-

cation, rather than weak classification, must be utilised in order to provide

core Knowledge Library functionality.

12.2.3 The mathematical basis for Knowledge Libraries

Without a firm mathematical basis, it is doubtfull that anything approaching

a Knowledge Library could be implemented. This research discusses how

information spaces—triples (M,d, I) where 〈M,d〉 is a classification space

and I is an index of N over M , for some set N of information elements—

12.2. THESIS SUMMARY 283

provides the required mathematical basis for Knowledge Libraries (see, in

particular, chapters 8 and 9).

This mathematical basis is very carefully developed over 5 chapters.

There are a number of notable stages in this development.

1. The desired properties of distance functions d are identified (see sections

4.8 and 4.9).

2. The n-dimensional distance function Gd1...dn
p is defined (see section 4.4)

and shown to have all the desired properties (see section 5.2).

3. Two families of set distance function dM
i j (see section 5.4) and M

k d (see

section 7.5) are defined and it is shown that dM
av 0(x, y) and dM

100 0(x, y)

(see section 5.4), M
1 d and M

avd (see sections 7.5 and 7.6) have all the

desired properties.

4. L-collections are introduced (see chapter 6). L-collections generalise

sets (and the associated set operators), allowing each element of a set

to be associated with a positive real.

5. It is shown that M1 d (see section 7.5) and Mav d (see section 7.6) have all

the desired properties (where M is an L-collection).

6. Given a network (see section 8.3), it is shown how a corresponding dis-

tance function d, based on the network, with all the desired properties,

can be defined (also in section 8.3).

7. It is shown that the set distance function d(X, Y) = |X| − |Y | and the

L-collection distance function d(X ,Y) = |X | − |Y| have all the desired

properties (see sections 5.3 and 7.3).

8. To complete the mathematical basis for Knowledge Libraries, this re-

search discusses how useful classification spaces 〈M,d〉 can be defined

(see section 8.4), and how indexes I can attach information units to

points x ∈ M (see section 8.6), forming information spaces (M,d, I)

(see section 8.7).

284 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

9. Two in depth worked examples are given that demonstrate how infor-

mation space provides core functionality (see chapter 9).

12.2.4 Implementing Knowledge Libraries

Due largely to their strong mathematical basis, the problem of implement-

ing Knowledge Libraries can be related to the literature on non traditional

databases based on metric space. Range queries (and the related k near-

est neighbour and ranked queries) present the main challenges when imple-

menting Knowledge Libraries. The existing (metric space) partitioning range

query algorithms are presented (see section 10.3), improved (see section 11.5),

and generalised to work over information space (see section 10.4). However,

as experiment results show (see section 11.7), the existing algorithms are in-

neffective, even for many metric spaces. A, more suitable, alternate technique

is discussed (see section 11.8) and extended (see section 11.9).

In summary, sequential search algorithms, where distanceMatrix is pre-

computed for underlying spaces, are effective over n-dimensional spaces and

set spaces where the size of point sets are limited. Sequential search algo-

rithms (see section 11.8) should be sufficient to provide range query func-

tionality for most Knowledge Libraries. If it is impractical to precompute

or store distanceMatrix for a dimension of an n-dimensional space, the

sequential-hybrid algorithm (see section 11.9) can be used. Sequential search

and sequential-hybrid algorithms, together, should be a sufficient basis to im-

plement Knowledge Library range query functionality. These algorithms can

be adapted to implement other related queries, such as k nearest neighbour

and ranked queries.

12.3 Discussion

The research hypothesis of this thesis was that information space provides

a mathematical basis for the development of Knowledge Libraries, that in

turn provides important functionality, not currently provided by existing

applications such as relational databases and information retrieval systems.

12.3. DISCUSSION 285

This thesis has discussed the limitations of relational databases and in-

formation retrieval systems. Knowledge Libraries have been informally de-

fined and information space has been formally defined. It has been shown

how information space provides a basis for the implementation of Knowledge

Library functionality, existing algorithms have been extended and new algo-

rithms developed to effectively implement this functionality. In so far as is

possible—without the more formal definition, implementation and testing of

Knowledge Libraries—the hypothesis has been confirmed.

12.3.1 The Contribution of this Thesis

The main thrust of this thesis was to provide the basis for Knowledge Li-

braries; a new class of information organisation system with considerably

more power than existing systems. On the way to achieving this goal, a

number of other significant contributions were made.

This research:

1. identified the need for the development of a coherent “information or-

ganisation” discipline with computer filesystem, information retrieval,

database and other sub disciplines. This new discipline would define

common terminology and exploit synergies between these research ar-

eas;

2. identified significant limitations of existing information organisation

techniques;

3. identified the need for the development of better information organisa-

tion techniques for scholarly research generally. Such techniques could

dramatically increase the pace of scientific development;

4. described “Knowledge Libraries”—an idealised system for the storage,

organisation, and display of information;

5. defined “L-collections” a generalisation of sets (also multisets, rough

sets and fuzzy sets) that allows elements to have membership “grades”

chosen from the set L;

286 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

6. defined “information space” and showed how information space can

provide the mathematical basis for Knowledge Libraries;

7. provided effective range query algorithms for information space;

8. showed how Knowledge Libraries and information space generalise hier-

archical filesystems, vector space information retrieval, relational databases,

and OLAP datacubes.

12.3.2 The more formal development of Knowledge Li-

braries

This research, somewhat informally, describes Knowledge Libraries. Knowl-

edge Libraries are more of an ideal—an approach to information organisation—

rather than a concrete specification that can be implemented.

An alternate (or supplementary) approach would be to formally enumer-

ate the functions and behaviour of Knowledge Libraries. This amounts to

an application programming interface (abbreviated API) for Knowledge Li-

braries. There are two main limitations of this approach. First, APIs do not

motivate—they do not connect Knowledge Libraries to realistic use scenarios.

Second, it is highly likely that some important functionality would be missed

in the initial formulation of an API. API versions are best developed as part

of a development spiral that includes API (re)specification, implementation,

testing, and analysis phases. This research lays the groundwork for this type

of development.

12.3.3 The flexibility of information space

Information space is an extremely flexible classification system. Informa-

tion space generalises hierarchical classification (such as the Dewey Decimal

system, see section 2.3), faceted classification (see section 2.3.1), the rela-

tional model (see section 4.2.6), the vector model for information retrieval

(see section 4.2.3), and metric space based databases (see section 4.2.1).

Section 8.3 shows how distance functions can be based on networks (in-

cluding hierarchies), example 8.1 shows how metric space can provide the

12.4. FUTURE WORK 287

mathematical basis for hierarchical classification. The dimensions of a multi-

dimensional space correspond to the facets or fundamental classifications of

faceted classification. Similarly, n-dimensional space corresponds to n-ary

Relations of the relational model. The classification space 〈P(M), d〉 where

M is a set of keywords and d(x,y) =
√

1− sim(x,y)2 (see section 4.2.3)

can be used to provide an information space equivalent of “vector based”

information retrieval.

Information space is closely related to data warehousing, and may one

day contribute to the development of formal definitions of data warehousing

systems.

12.4 Future Work

This research leaves no theorems unproved and no difficult and critical algo-

rithms to write. Even so, substantial work remains.

12.4.1 The implementation of Knowledge Libraries

As is already discussed in section 12.3, the implementation and demonstra-

tion of Knowledge Libraries should provide final confirmation of the research

hypothesis of this thesis. This implementation should be done as part of

a development spiral, with API (re)specification, implementation, testing,

and analysis phases. The first step would be to specify Knowledge Library

API version 1.0, which should include a detailed list of functions required to

provide core Knowledge Library functionality. This API should give precise

definitions of each function.

12.4.2 Graphical Interface

Graphical interfaces may aid Knowledge Library users to better visualise,

and so more readily understand, information spaces. As has been discussed

(see section 3.7.5), scatter plots may be utilised to visualise 2–dimensional

projections of n–dimensional information spaces.

288 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

The honours thesis [77], includes some preliminary work that could be

applied towards the development of Knowledge Library graphical interfaces.

In this work, dimensions can be “activated” by users. The coordinates of

activated dimensions are displayed. Each activated dimension is displayed

in a separate frame. Users specify query points by “selecting” coordinates

in the activated dimensions. The information element icons of retrieved in-

formation elements are displayed in a further frame. The full classification

of an information element is displayed in response to a single click of its

icon. Double clicking the icon displays the information element in a separate

window.

12.4.3 Improving existing systems

This research could be applied towards improving existing information re-

trieval and data warehousing systems.

The are a number of ways information retrieval systems could be im-

proved.

One suggestion, is to provide users with a glimpse of the classification

space—perhaps by providing an autocomplete menu when typing keywords.

In this way, each user’s knowledge of the key terms used to classify documents

would be improved with each search. This would help users learn how to

formulate more effective queries.

Another suggestion would be to provide a mechanism to disambiguate

key terms that are polysemes or homonyms (see section 2.6.2), both when

indexing and retrieving documents. For many key terms, it should be possible

to use the term’s context in a document to automatically disambiguate its

meaning when indexing. Users could be presented with dictionary definitions

to assist with disambiguation when forming queries.

Data warehousing systems could be improved by the development of a

formal mathematical basis. It seems likely that this basis would be closely

related to information space.

Wikipedia[48], the Encyclopedia of Life[101] and the Gene Ontology[28]

are all major information organisation and presentation efforts. There are

12.4. FUTURE WORK 289

many others. In all these collections, as far as the author is aware, informa-

tion is exclusively indexed by keyword. How much more useful would the

Encyclopedia of Life be, for example, if flora were classified by leaf shape

(so users could locate entries by scanning exemplar leaves) and if fauna were

classified by preferred food (so users could locate pest control species). All

life in the encyclopedia could be also classified by habitat descriptors selected

from a controlled vocabulary. The geographical location of wild populations

could provide another useful dimension for classification. If an estimate of the

size of these populations was also recorded (as the multiplicity of information

elements) the encyclopedia could also be a useful conservation resource.

12.4.4 The dissemination of knowledge

One of the main areas of application envisioned for Knowledge Libraries is

in assisting with the dissemination of research. As has been discussed (see

sections 2.6.2, 3.4.1, 11.2.2), the existing “system” is far from ideal. Knowl-

edge Libraries could help the way knowledge is disseminated in a number of

ways. Knowledge Libraries could:

1. help identify and take advantage of synergies between related research

areas;

2. help researchers identify gaps in research;

3. help researchers (more effectively) locate relevant research;

4. reduce the delay between submission and publication of research;

5. help relate research to the real world;

6. assist in more accurately valuing research;

7. allow different formats for research publication;

8. facilitate greater research collaboration.

Given the huge potential benefits, this area warrants special attention.

290 CHAPTER 12. SUMMARY, DISCUSSION AND FUTURE WORK

One, quite basic, suggestion would be to create an information space of

“scientific” terminology. The information elements in the space would be the

scientific terms and associated definitions. The classification space would

include “alphabetic”, “first use” (by time), and “topic area” dimensions.

Users of the space could browse the terms, contribute new terms and suggest

improvements to existing entries.

This space could itself be the basis for a “contributor” information space.

The contributor space would include “alphabetic”, “topic area”, “contributed

term”, and possibly “sponsoring institution” dimensions. The coordinates in

the contributed term dimension would be the information elements from

the terminology space. The information elements of the “contributor” space

would be “term contributors” and would allow users to view the contributions

of contributors to the terminology space.

Ultimately, these spaces could be the basis for a “research” Knowledge

Library that would also include “research paper” type and other research

related information elements. Users of this library could inform themselves

about research activity, and contribute and critique research related infor-

mation elements.

Appendix A: A Guide to the

Accompanying CD

This appendix describes the contents of the CD that accompanies this thesis.

The CD includes the source code for the programs used in the experiments

in chapter 11. The source code was compiled using g++, the GNU project

C++ compiler (see man g++ on UNIX or GNU/Linux machines). The com-

piler option -D FILE OFFSET BITS=64 was used when the compiled code as

required to read from, or write to, large files. No other compiler options were

used.

Note that source code written for one table or figure was often modified

and reused to generate data for other tables and figures. As a result, the

directories in the CD—which correspond to the figures and tables in chapter

11—often contain source files that are superficially similar to other source

files, with the same name, in other directories. Even though these files have

the same name and are often quite similar, they should not be substituted

for one another.

The output from all these programs was written to stdout. The figures

were generated, from this output, using R (see www.r-project.org).

Figure 1

The distributions illustrated in figure 11.1 were generated using distanceMa-

trixGen.cpp source code and spaceGlobals.h header files. A copy of each of

these files can be found in the figure1 directory on the CD.

291

292 APPENDIX A: A GUIDE TO THE ACCOMPANYING CD

The number of edges was manipulated by changing the value of e in

spaceGlobals.h.

Figure 2

The distributions illustrated in figure 11.2 were generated using distance-

MatrixGen.cpp and symmetricalDMGen.cpp source code, and spaceGlobals.h

and symSpaceGlobals.h header files. A copy of each of these files can be found

in the figure2 directory on the CD.

Table 1

The query times presented in table 11.1 were generated using distanceMa-

trixGen.cpp and symmetricalDMGen.cpp, treeGen.cpp and symmetricalT-

Gen.cpp, bruteForceSearch.cpp source code, and spaceGlobals.h and symSpace-

Globals.h header files. A copy of each of these files can be found in the table1

directory on the CD.

Note that, to function, symmetricalDMGen.cpp and symmetricalTGen.cpp

code requires a directory data to exist in the same directory as the source

code. Also, for symmetricalDMGen.cpp, the number of nodes n and the num-

ber of edges e are read in as command line arguments. The number of nodes

is the sole command line argument for the symmetricalTGen.cpp program.

The number of nodes and edges for distanceMatrixGen.cpp and tree-

Gen.cpp was manipulated by changing the values of n and e in spaceGlobals.h.

Figure 3

The distributions illustrated in figure 11.3 were generated using symmetri-

calDMGen.cpp and symmetricalTGen.cpp source code, and spaceGlobals.h

header, files. A copy of each of these files can be found in the figure3 direc-

tory on the CD.

293

Note that symmetricalDMGen.cpp and symmetricalTGen.cpp require a

directory data to exist in the same directory as the source code. Also, for

symmetricalDMGen.cpp, the number of nodes n and the number of edges e

are read in as command line arguments. The number of nodes is the sole

command line argument for the symmetricalTGen.cpp program.

Tables 2 and 3

The search tree statistics presented in tables 11.2 and 11.3 were generated

using symmetricalDMGen.cpp and symmetricalTGen.cpp source code, and

spaceGlobals.h header, files. A copy of each of these files can be found in the

tables2-3 directory on the CD.

Figure 4

The distributions illustrated in figure 11.4 were generated using symDM-

Gen.cpp, dMGenLibrary.cpp and euclid.cpp source code and spaceGlobals.h

header files. A copy of each of these files can be found in the figure4 directory

on the CD.

The files symDMGen.cpp, dMGenLibrary.cpp and spaceGlobals.h were

used to generate the LHS of figure 11.4. The number of nodes is read in as

a command line argument. The file euclid.cpp was used for the RHS.

Figures 5 and 6

The distanceMatrix for each of the 1000 spaces in figure 11.5 was generated

using symDMGen.cpp, dMGenLibrary.cpp source code and spaceGlobals.h

header files. The compiled program, must be called symdm. The program

generated from the source code symTGen.cpp, sTGenLibrary.cpp and ranged-

QueryLibrary.cpp, and the header spaceGlobals.h uses a system call to invoke

symdm.

The source code euclidQuery.cpp, along with the header spaceGlobals.h,

294 APPENDIX A: A GUIDE TO THE ACCOMPANYING CD

was used to generate figure 11.6. The source code mean.cpp was used to

generate the mean for both figures.

A copy of each of these files can be found in the figures5-6 directory on

the CD.

Tables 4 and 5

The search tree statistics presented in tables 11.4 and 11.5 were generated

using euclidQuery.cpp source code and spaceGlobals.h header files. A copy

of each of these files can be found in the tables4-5 directory on the CD.

The number of points is the sole command line argument for the program

generated from euclidQuery.cpp source code.

Figure 7

The distanceMatrix for each of the 1000 spaces in figure 11.7 was generated

using symmetricalDMGen.cpp source code and spaceGlobals.h header files.

The compiled program, must be called symdm. The program generated from

the source code centerSelect.cpp and symmetricalTGen.cpp, and the header

spaceGlobals.h uses a system call to invoke symdm. The source code mean.cpp

was used to generate the means in this figure.

A copy of each of these files can be found in the figure7 directory on the

CD.

Table 6 and Figure 8

The distanceMatrix for each of the 1000 spaces in figure 11.8 was generated

using symmetricalDMGen.cpp source code and spaceGlobals.h header files.

The compiled program must be called symdm. The program generated from

the source code symmetricalTGen.cpp and the header spaceGlobals.h uses a

system call to invoke symdm. The source code mean.cpp was used to generate

the means in this figure.

295

A copy of each of these files can be found in the figure8 directory on the

CD.

Note that, to function, symmetricalDMGen.cpp and symmetricalTGen.cpp

code requires a directory data to exist in the same directory as the source

code. Also, for symmetricalDMGen.cpp, the number of nodes n and the num-

ber of edges e are read in as command line arguments. The number of nodes

is the sole command line argument for the symmetricalTGen.cpp program.

An earlier version of the symmetricalTGen.cpp source code was used to

generate table 11.6.

Figures 9 and 10

The distributions illustrated in figure 11.10 were generated using euclid-

Query.cpp source code and spaceGlobals.h header files. A copy of each of

these files can be found in the figure10 directory on the CD.

The command line arguments for the compiled program are the desired

number of points and the number of dimensions.

Figure 11.9 can be generated from euclidQuery.cpp source code by “un-

commenting” the euclidean space display() function on line 351.

Figure 11

The distributions illustrated in figure 11.11 were generated using MTeuclid-

Query.cpp source code and spaceGlobals.h header files. A copy of each of

these files can be found in the figure11 directory on the CD.

The command line arguments for the compiled program are the desired

number of points and the number of dimensions. The number of search trees

is controlled by the numOfTrees constant in spaceGlobals.h.

296 APPENDIX A: A GUIDE TO THE ACCOMPANYING CD

Figure 12

The distributions illustrated in figure 11.12 were generated using treeGen.cpp

source code and spaceGlobals.h header files. A copy of each of these files can

be found in the figure12 directory on the CD.

The sole command line argument for the compiled program is the desired

number of points.

Figure 13

The distanceMatrix for each of the 1000 spaces in figure 11.13 was generated

using distanceMatrixGen.cpp source code and spaceGlobals.h header files.

The compiled program must be called dm. The program generated from the

source code treeGen.cpp and the header spaceGlobals.h uses a system call to

invoke dm.

A copy of each of these files can be found in the figure13 directory on the

CD.

Note that, to function, distanceMatrixGen.cpp and treeGen.cpp code re-

quires a directory data to exist in the same directory as the source code. For

distanceMatrixGen.cpp, the number of nodes n and the number of edges e

can be set by editing spaceGlobals.h. It is important that the value of n is

not changed between compilations of corresponding distanceMatrixGen.cpp

and treeGen.cpp programs.

Table 7

The query time statistics presented in table 11.7 were generated using a ss.cpp

source code file. A copy of this file can be found in the table7 directory on

the CD.

297

Table 8

The query time statistics presented in table 11.8 were generated using a

sss.cpp source code file. A copy of this file can be found in the table8 directory

on the CD.

Table 9

The retrieved and candidate set size statistics presented in table 11.9 were

generated using a sha.cpp source code file. A copy of this file can be found

in the table9 directory on the CD.

298 APPENDIX A: A GUIDE TO THE ACCOMPANYING CD

Appendix B: Publications

Relating to this Thesis

This appendix very briefly descibes the author’s puplications that relate to

this thesis.

E. Rayner. Developing a method of algorithm classification for

computer algorithm library applications. 2003. Honours Thesis.

This honours thesis motivates, develops and presents an application program

for the organisation and presentation of algorithms. An algorithm classifica-

tion space is formed from a number of hierarchical and ordinal dimensions.

This early work is formalised and generalised in this (Ph.D.) thesis. The

graphical user interface used in the application program is discussed in sec-

tion 12.4.2 (of this Ph.D. thesis.)

E. Rayner, Searching for the Science in Information Science, Rhi-

zome. 1, 2005, pp215-228.

This journal paper discusses the status and value of information science

and how efforts towards establishing more formal information organisation

systems (such as Knowledge Libraries and information space) can make an

important, even critical, contribution.

299

300 APPENDIX B: PUBLICATIONS RELATING TO THIS THESIS

E. Rayner, I. Piper, M. Bunder. Introducing N-Tree Space: A

Classification System for Knowledge Library Applications. Proceed-

ings IEEE Tencon, November 2005, pp399-403.

This conference paper discusses some of the limitations of information re-

trieval and how N -Tree Space, a precurser to information space, can provide

a formal basis for some Knowledge Libraries.

E. Rayner, The Organisation of Information, Proceedings of the 2nd

International Conference on Information Management and Business, Syd-

ney, February, 2006.

This conference paper discusses the nature of information, describes Knowl-

edge Libraries and motivates their development, and describes how informa-

tion space could be used to provide a formal basis for Knowledge Libraries.

This paper represents an early stage in the formal development of information

space.

Appendix C: Glossary of

Information Organisation

Terms

This appendix provides a glossary of Information Organisation terms used

in more than seven distinct computing disciplines (enumerated below) and,

in particular, in this thesis. After each entry it is indicated, through the

following notation, which discipline or disciplines a term is directly relevant

to—within the context of this research.

1. Traditional classification (c).

2. Databases (d).

3. Computer file systems (f).

4. The internet, the world wide web and the semantic web (i).

5. Knowledge libraries and information space (k).

6. Information retrieval (r).

7. Data warehousing (w).

8. Metric space queries (non traditional databases) (m).

The symbol (o) is used to denote a term that has its origin in this thesis.

Cross referenced terms are introduced with the notation cf.

301

302 APPENDIX C: INFORMATION ORGANISATION TERMS

Example 12.1. In the glossary entry for the term access path consis-

tency, the notation (c, k, o) indicates that the term is directly relevant to

the discussion on traditional classification and Knowledge Libraries and in-

formation space, and is originally defined in this thesis. At the end of the

entry,

cf dynamic dimension, hospitality, indexing consistency.

lists other closely related terms included in the glossary.

This glossary has a dual purpose. First, it describes relevant objects or

concepts and so provides a ready reference for this thesis. Second, it describes

some important terms in the “language of information organisation”. As

such, it is part of the research findings of this thesis.

Abstract. See classification.

Access path consistency. A classification scheme is access path

consistent if, when new classes are added, the path that users of the

scheme use to navigate to existing classes remains unchanged. For

example, hierarchical classification schemes are access path consis-

tent if new classes are always leaf nodes, rather than internal nodes

(and the hierarchy remains otherwise unchanged). See section 2.3.3.

(c, k, o)

cf dynamic dimension, hospitality, indexing consistency.

Analytico-synthetic classification [scheme]. A type of classifi-

cation scheme that is developed by first analysing the subject matter

to identify separate concepts. Classes are then synthesised by joining

together a number of separate concepts[16]. (c)

cf bottom-up classification, enumerative classification, top-down

classification.

303

Apex topic. An apex topic is an information element that is

attached to a coordinate in a precedence dimension and is dependent

on a number of other topics. See scenario 2.1, section 3.3. (k, o)

cf information element, information space, precedence dimension.

Application program. “a computer program that interacts with

the database by issuing an appropriate request... to the data base

management system[95].” (d)

cf database, data base management system.

Attach. See index.

Automatic dimension. A type of implemented information space

dimension. Information units added to (n-dimensional) information

spaces are automatically attached to a coordinate in automatic di-

mensions. See scenario 1, section 3.3. (k, o)

cf dimension, dynamic dimension, information space, information

unit, manual dimension, n-dimensional space.

Background. See classification.

Bottom-up classification [scheme]. A type of classification

scheme where classes are “built-up” from component terms[16]. (c)

cf analytico-synthetic classification, enumerative classification, top-

down classification.

Call number. “Assigned by the cataloguer... composed of a classi-

fication number [often called “class number”] followed by additional

notation to make the call number unique[78].” (c)

cf cataloguer, class.

304 APPENDIX C: INFORMATION ORGANISATION TERMS

Candidate point. An element of a candidate set. Candidate points

are also known as considered points as they are considered (and pos-

sibly rejected) for retrieval. (m, o)

cf Candidate set, k Nearest neighbour query, range query, ranked

query, retrieved set.

Candidate set. Spatial partitioning range query (also k-NN and

ranked query) algorithms (discussed in chapter 10) and the sequential-

hybrid range query algorithm (introduced in section 11.9) initially

produce a candidate set of points from which the final retrieved set

is determined. (m, o)

cf Candidate point, k Nearest neighbour query, range query, ranked

query, retrieved set.

Cataloguer. “A librarian primarily responsible for preparing bibli-

ographic records to represent the items acquired by a library...[78].”

(c)

cf call number, classificationist, classifier.

Class. “A grouping of objects or concepts based on one or more

characteristics, attributes, properties, qualities, etc., that they have

in common...[78].” (c)

cf call number.

Classificationist. “...the person who devises a scheme of

classification[76].” Bliss prefers the term “classificationer”[13]. (c)

cf cataloguer, classifier.

305

Classification.

i) “[a] division or category within a system...[89]”—essentially a syn-

onym for “class”.

ii) “[the] process of putting things into groups according to similari-

ties or relationships[89]”—essentially a synonym for “classify”.

iii) an abbreviation for “classification scheme”. (c)

cf analytico-synthetic classification, bottom-up classification, classi-

fication scheme, enumerative classification, strong classification, weak

classification, top-down classification.

iv) The classification of an information element in an information

space is the point to which it is attached. (k, o)

cf information element, information space.

Classification Scheme. “[A] system of organising things by divid-

ing them into groups based on their similarities[89]. (c)

cf classification.

Classification Space. The space that provides the points that are

used to give distances between information elements of an informa-

tion space. See the discussion section 8.4 and definitions sections

8.6.2 and 8.7. (k, o)

cf information element, information space, space.

Classifier. “...the one who constructs class numbers for subjects in

accordance with a preferred scheme of classification[76].” (c)

cf cataloguer, classificationist.

Collocation. “the act or result of placing or arranging together[1].”

(c)

Coordinate. See dimension.

Data. Raw facts without structure or context. (d, f, k)

cf field, file, information.

306 APPENDIX C: INFORMATION ORGANISATION TERMS

Database. “A shared collection of logically related data, and a de-

scription of this data, designed to meet the information needs of an

organisation[95].” (d)

cf data, database management system, database system, data direc-

tory, operational database, relational database.

Database management system. “a software system that en-

ables users to define, create, maintain, and control access to the

database[95].” Abbreviated DBMS. (d)

cf data, database, database system, data directory.

Database system. “a collection of application programs that in-

teract with the database along with the database management system

and database itself[95].” (d)

cf data, database, database management system, data directory.

Data dictionary. Also known as a data directory, system cata-

logue, or metadata. A file that describes the data in a database[95,

78]. (d)

cf data, database, database management system, database system.

Data mart. A database that provides specialised data analysis[75].

(w)

cf database, data warehouse, data warehousing, dimensional data-

mart.

Data warehouse. A generic solution to a business’s data analysis

needs[75]. (w)

cf data, data mart, data warehousing.

Data warehousing. A topic about building databases that have been

optimised for analysis[75]. (w)

cf data, data mart, data warehouse.

307

Dimension. Mathematically, a dimension is one of the spaces

making up an n-dimensional space. The points in the dimension

are called coordinates in the n-dimensional space. See definitions,

section 4.4. (k, o)

cf space, n-dimensional space.

The term dimension is also used, with less formality, to de-

scribe Knowledge Libraries, information retrieval systems and data

marts. (k, r, w)

cf Automatic dimension, dimensional data mart, dynamic dimen-

sion, information retrieval, manual dimension, static dimension.

Dimensional data mart. A data mart that is constructed using

dimensional modelling techniques[75]. (w)

cf data mart, star-join schema.

Directory. A special type of file that can “contain” other files. Direc-

tories are sequential files where each record is a list of file attributes.

The file name is the key field[88, 92]. (f)

cf field, file, filesystem.

Distance. See distance function.

Distance function. A distance function over M is a function

d that maps pairs of elements (points) of a set M into R≥0. d(x, y)

is called the distance from x to y. A metric is a type of distance

function. See definitions section 4.2.1. (k)

signed distance function, space.

Document. The fundamental “information unit” of information

retrieval. (r)

cf information retrieval, information unit.

308 APPENDIX C: INFORMATION ORGANISATION TERMS

Drill down operator. A dimensional data mart function that ex-

pand reports to show more detail by adding further domains (table

columns)[75]. (w)

cf data mart, dimensional data mart, drill up, slice and dice.

Drill up operator. A dimensional data mart function that sum-

marise reports by removing domains (table columns)[75]. (w)

cf data mart, dimensional data mart, drill down, slice and dice.

Dynamic dimension. A type of implemented information space di-

mension. In a dynamic dimension the coordinates and/or distances

are automatically determined, usually based on the information ele-

ments in the information space. Hence adding information units to

the information space can change existing classifications. See sce-

nario 1, section 3.3. (k, o)

cf access path consistency, automatic dimension, dimension, infor-

mation element, information space, information unit, manual dimen-

sion, static dimension.

Enumerative classification [scheme]. A type of classification

scheme where all classes within the scheme are enumerated[16]. (c)

cf analytico-synthetic classification, bottom-up classification, top-

down classification.

Explicit classification.

...a purposeful classification, which may be either hierar-
chical or non-hierarchical, to facilitate retrieval... Most
explicit classification schemes are constructed to encom-
pass a particular point of view—either that of the classi-
fier or that of a typical or most frequent user[93]. (c)

cf implicit classification.

309

Extension and intention. The extension of a class is the set of

objects in that class, while the intension is the set of attributes that

are shared by the objects in that class. Both these terms are also used

in formal concept analysis with the same meaning[16]. (c)

cf specific subject.

Field. A field is the basic element of data. An individual field

contains a single value... It is characterised by its length and data

type... Depending on the file design, fields may be of fixed or variable

length ...[88]. (f)

cf data, file, record.

File. An interface that allows access to information without the

need to explicitly consider details such as the data’s location on disk,

block length, process blocking, security, encoding, ... etc. Files are

identified by name. Many operating systems support two-part file

names with each part separated by a period. The second part, called

the file extension, indicates the type of the file. A File has a number

of attributes, such as name, type, size, location, etc.[88, 92]. (f)

cf directory, filesystem.

Filesystem. “a structure for keeping and locating data in files

...[66].” The purpose of a filesystem is to make it easy to find and

access these data files. (f)

cf data, directory, file.

Fringe subject. A fringe subject is a subject that is not really part

of a (specialised) collection, but can be usefully included in the clas-

sification scheme nevertheless. Statistics, for example, is a frequent

fringe subject[16]. (c)

310 APPENDIX C: INFORMATION ORGANISATION TERMS

Granularity (of information space). The larger and more com-

plex the information elements of an information space, the coarser

the granularity of the space. The smaller and simpler the elements

of an information space the finer the granularity. See scenario 1,

section 3.3.. (k, o)

cf information element, information space.

Homonym. A word that has a number of different—unrelated—

meanings. (r)

cf polyseme.

Hospitality. A measure of the degree to which a classification

scheme can accommodate new classes[78]. (c)

cf access path consistency.

Implicit classification.

The assignment of words (index terms, descriptors, etc.),
whether on the basis of human judgement or by a priori
rules carried out by machine, to represent a document...
in essence a non-hierarchical classification of the docu-
ment. This classification of the document is unintentional
since the emphasis is on the selection of index terms[93].
(c, r)

cf explicit classification.

311

Index. Mathematically, an index is a structure that attaches

information units to points in space. A space with an index is called

an information space. Information units attached to points can be

referred to as information elements of the information space. See

definitions sections 8.6.2 and 8.7. (k, o)

cf information space, information unit, space

More traditionally, an index is an alphabetised list of key terms

with page numbers to refer the reader to the point in a document at

which information pertaining to the term is found[78]. In computer

and information science index is often used more generally—a data

structure to speed up searches[7]. (c, k, r)

Indexing. The process of creating an (information science type)

index (especially in information retrieval.)

cf index.

Indexing consistency. An information retrieval system is index

consistent if, when documents are added or removed from the collec-

tion, the terms that index each document remain unchanged, and the

same documents (in the collection) are retrieved by the same queries.

See section 4.2.3. (r, o)

cf access path consistency, document, information retrieval system.

Information. Structured data in context. (d, k, r)

cf data, information element, information retrieval, information unit.

Information element. An information unit that has been at-

tached to a point in an information space. The information unit

becomes an information element of the information space after it

is attached. See the discussion scenario 1, section 3.3 and the defi-

nition section 8.7. (k, o)

cf index, information space, information unit, space.

312 APPENDIX C: INFORMATION ORGANISATION TERMS

Information island. A collection of documents that is isolated from

other documents—about similar things—because of the special termi-

nology used. See section 2.6.2. (r, o)

cf document, information swamp.

Information retrieval. A topic about modelling user information

needs with queries, and then matching these queries with “docu-

ments” in a collection. Abbreviated IR. (r)

cf document, information retrieval system.

Information retrieval system. A mechanism—usually a computer

program—that accepts queries and outputs sets of documents that it

deems to be “relevant” to these queries. See section 2.6. (r, o)

cf document, information retrieval.

Information space. Mathematically, an information space is a

space, called a classification space, and an index. Distances between

points in the classification space are used to give distances between the

information elements of the information space. See definition section

8.7. (k, o)

cf classification space, distance function, index, information element,

signed distance function, space.

Information swamp. A collection of documents—about dissim-

ilar things—that are often retrieved together because they are in-

dexed by keywords that are homonyms or polysemes. Also called

“infogluts[90]”. (r, o)

cf document, homonym, information island, polyseme.

313

Information unit. The basic unit of information in a Knowl-

edge Library. Each unit of information has a classification in the

library. Equivalent to information retrieval’s “documents” and rela-

tional data’s “atomic values”. Information units can be research

papers, web sites, math equations, digital photographs, quotations,

questionnaires, algorithms, numbers, (k, o)

cf information, information element, information space, information

retrieval, Knowledge Library.

the Internet. A worldwide computer network. Computers attached

to the internet, called “hosts”, communicate with one another by

sending “packets” of information. Smaller computer networks are

connected together using dedicated packet-switching computers called

“gateways” or “IP routers” or “Intermediate Systems”. The inter-

net protocol suite specifies how information is transmitted between

computers in the network[94]. (i)

Introduction. See classification.

314 APPENDIX C: INFORMATION ORGANISATION TERMS

Join.

i) If (M,≤) is a partially ordered set, the join of two elements

x, y ∈ M is the least upper bound (the supremum) of x and y and is

denoted x ∨ y. See sections 4.2.5 and 6.2.3. (d,k)

ii) In relational algebra, the join of two relations R1 and R2 is the

composition R2 ◦R1 of R1 and R2[24]. See section 4.2.6. (d,k)

iii) When sets are generalised so that each element x has an as-

sociated multiplicity or “membership”, union can be generalised in

two ways to produce two different operators merge and join. When

two (generalised) sets are joined, the multiplicity of each ele-

ment common to both (generalised) sets is a supremum—usually the

maximum—of the multiplicities of the element in each operand (gen-

eralised) set. If the operands are sets, join is equivalent to union. See

section 6.2.3. (k,o)

iv) The join form of union is defined for L-collections in section 6.3.

(k,o)

cf merge.

k Nearest neighbour query. Given an information space (M,d, I)

where I = (J,m), a point x ∈M and a limit k ∈ N1, the k nearest

neighbour (abbreviated k-NN) query qk−NN(x, k) is any (minimal)

set Y ⊆M I where
∑
{y∈Y }m(y) ≥ k, for all y ∈ Y and y′ ∈M I−Y ,

d(x, y) ≤ d(x, y′). That is, k-NN query qk−NN(x, k) “retrieves” a

minimal set of points (with at least k information units attached)

“nearest” to x. If each point in M can have at most one information

unit attached, |Y | = k simplifies
∑
{y∈Y }m(y) ≥ k. (m)

cf Candidate set, range query, ranked query, retrieved set.

Knowledge Library. An idealised system that provides a range of

functionality for the organisation and presentation of information.

Each Knowledge Library is based on an information space which

models the relationships between information units in the library. See

section 1.6 and chapter 3. (k, o)

cf information space, information unit.

315

Knowledge precedence. If the information elements of an infor-

mation space are used to model knowledge, precedence dimensions can

be used to model the knowledge requirements of information elements.

See section 3.3. (k, o)

cf information space, information element, knowledge requirement,

precedence dimension.

Knowledge requirement. Consider two information elements, a

and b, in a Knowledge Library. If it is necessary to know a, before

one can understand b, we say that a is a knowledge requirement

of b. Conversely, b is knowledge dependent on a. See section 3.3.

(k, o)

cf information space, information element, Knowledge Library,

knowledge precedence, precedence dimension.

Knowledge space. If the information elements of an information

space model knowledge, then a region in the information space can

be used to model the knowledge of a user. If a region in information

space is used to model the knowledge of a user it is called the user’s

knowledge space. See section 3.3. (k, o)

cf information element, information space.

Manual dimension. A type of implemented information space di-

mension. In manual dimensions, information elements must be man-

ually attached to coordinates—manual dimensions are not associated

with algorithms to automatically classify information units. See sec-

tion 3.3. (k, o)

cf automatic dimension, dimension, dynamic dimension, index, in-

formation space, information unit, static dimension.

316 APPENDIX C: INFORMATION ORGANISATION TERMS

Map. A representation—by way of a graphical display, summary

statistics and text—of a region (set of points) in information space.

A map might display the coordinates in each dimension currently

of interest, an indication of which coordinates the user has selected,

and a list of information elements in the region selected by the user.

Useful summary statistics include various counts of information

elements, various distances including mean and/or median distances

between information element classifications and points selected by the

user, proportions indicating the size of the region selected, and the

classification of each information element in the region selected by

the user. Text includes the names of dimensions and coordinates

and the titles of information elements. The relationships between co-

ordinates may also be outlined using text. Maps can represent large

regions, such as an entire information space, and small regions, such

as a single point in an information space. The map of an informa-

tion element is the same thing as the map of the point to which the

information element is attached—it displays, at least, the coordinates

of the point. See section 3.3. (k, o)

cf classification, dimension, information element, information space,

space.

Merge.

i) When sets are generalised so that each element x has an associated

multiplicity or “membership”, union can be generalised in two ways

to produce two different operators merge and join. The merge op-

erator, is often represented by the symbol]. When two “generalised

sets” are merged, the multiplicity of each element common to both

generalised sets is a function of the sum of the multiplicities of the

element in each operand generalised set. See section 6.2.3. (k,o)

ii) The merge form of union is defined for L-collections. See section

6.3. (k,o)

cf join.

317

Meta Information. See classification.

Monothetic classification [scheme]. A type of classification

scheme wherein classes are defined by necessary and sufficient at-

tributes. Objects that belong to a (monothetic) class possess these

attributes[79]. (c, r)

cf polythetic classification.

n-dimensional space. A space made up from n spaces, called di-

mensions. See definitions section 4.4.(k)

cf dimension, space.

Operational database. A database that records and retrieves the

everyday transactions of an organisation[75]. (d, w)

cf database.

Outline. See classification.

Overview. See classification.

Point. See space.

Polyseme. A word that has a number of different—but related—

meanings. (r)

cf homonym.

Polythetic classification [scheme]. A type of classification

scheme wherein classes are not defined by necessary and sufficient

attributes. Each member of a (polythetic) class may posses only

a portion of all the attributes possessed by all the members of that

class[79]. (c, r)

cf monothetic classification.

318 APPENDIX C: INFORMATION ORGANISATION TERMS

Precedence dimension. A type of information space dimension.

A distance greater than 0 between coordinates a and b indicates a is

knowledge dependent on b and so information elements attached to

coordinate a are dependent on information elements attached to b—

effectively assigning a partial ordering to information elements. See

section 3.3. (k, o)

cf dimension, distance, information element, information space,

knowledge precedence, knowledge requirement.

Precision. A measure of the effectiveness of an information retrieval

system. Given that D is the set of retrieved documents and T is

the set of documents in a collection that are relevant to a query,

precision = |D∩T |
|D| . (r)

cf document, information retrieval system, recall.

Range query. Given an information space (M,d, I), a point x ∈M
and a limit t ∈ R, a range query qrange(x, t) is the set of all points

{y ∈M I |d(x, y) ≤ t}. That is, the range query qrange(x, t) “retrieves”

all points y ∈M (with information units attached) where d(x, y) ≤ t.

See chapter 10. (m)

cf Candidate set, k nearest neighbour query, ranked query, retrieved

set.

Ranked query. A ranked query is a k Nearest neighbour (k-NN)

query where the resulting set Y is ranked according to d(x, y) for each

y ∈ Y . (m)

cf Candidate set, k Nearest neighbour query, range query, ranked

query, retrieved set.

Recall. A measure of the effectiveness of an information retrieval

system. Given that D is the set of retrieved documents and T is

the set of documents in a collection that are relevant to a query,

recall = |D∩T |
|T | . (r)

cf document, information retrieval system, precision.

319

Record. A Record is a collection of related fields that can be treated

as a unit... depending on design, records may be of fixed or variable

length. A record will be of variable length if some of its fields are of

variable length or the number of fields may vary...[88]. (d, f)

cf field.

Region. A set of points in information space. Users specify regions

in information space by selecting coordinates. A region specified by

a user in this way is called the user’s position in the information

space. (k, o)

cf coordinate, information space, point.

Relational database. A database based on the relational model [of

data]. (d)

cf database.

Retrieved set. The set of points “retrieved” by a range (or k-NN,

or ranked) query. (m)

cf Candidate set, k Nearest neighbour query, range query, ranked

query.

Signed distance. See signed distance function.

Signed distance function. A signed distance function over M

is a function d that maps pairs of elements (points) of a set M into

R. d(x, y) is called the signed distance from x to y. The “sign”

can be used to indicate direction, in which case d(x, y) = −d(y, x).

Each signed distance function has a corresponding distance function

|d(x, y)|. See definitions section 4.2.1. (k, o)

cf distance function, space.

320 APPENDIX C: INFORMATION ORGANISATION TERMS

Static dimension. A type of information space dimension. In a

static dimension the coordinates and/or distances are not automati-

cally determined. Hence adding information units to the information

space can not change existing classifications. See section 3.3. (k, o)

cf attach, automatic dimension, coordinate, dimension, dynamic di-

mension, information space, information unit, manual dimension.

Strong Classification. In strong classification, the classification

of information specifies the relative “position” of the information in

a “universe of knowledge.” See section 1.3. (c, k, o)

cf classification, weak classification.

Slice and dice. The use of arbitrary dimensional constraints to

aggregate “fact table” data in a star-join dimensional data mart[75].

(w)

cf data mart, dimensional data mart, drill down, drill up.

Space. Mathematically, a space is a set M over which a (signed)

distance function d is defined. Elements of M are called points

in the space. See definitions section 4.2.1. (k, o)

cf distance function, signed distance function.

Specific subject. “...the subject whose extension and intention

exactly coincide with the contents of the book...[76].” (c)

cf extension and intention.

321

Star-join schema. A technique for using relational databases to

implement dimensional data marts. The schema consists of a single

fact table and a number of dimension tables. The primary key in

the fact table is composite and consists of a number of domains that

are foreign keys. Each of these foreign keys is the primary key in one

of the dimension tables. Domains in the fact table that are not for-

eign keys are generally numeric and their values can be meaningfully

summed[75]. (d, w)

cf database, data mart, dimensional data mart, relational database.

Summary. See classification.

Surrogate. A surrogate is a “stand-in” for a book. Books may

be arranged on the shelves in one way, while the surrogates of books

may be arranged in catalogues in another way[16]. Reitz uses “Bibli-

ographic record” in[78]. (c)

cf collocation.

Top-down classification [scheme]. A type of hierarchical classi-

fication scheme where the root of the classification hierarchy corre-

sponds to the entire universe, with ever smaller subdivisions towards

the leaves of the tree[16]. (c)

cf analytico-synthetic classification, bottom-up classification, enu-

merative classification.

Weak classification. Classification to simplify the retrieval of in-

formation. Also called indexing. See section 1.3 (c, k, o)

cf classification, indexing, strong classification.

322 APPENDIX C: INFORMATION ORGANISATION TERMS

Bibliography

[1] Merriam-webster online dictionary, 2004. URL: http://www.m-w.com.

[2] CSIRO library network, 2004. URL: http://voyager.its.csiro.au/.

[3] ISSN international centre, 2006. URL: www.issn.org.

[4] Benjamin Bustos A, Gonzalo Navarro B, Edgar Chavez C, Ciudad Uni-

versitaria, and Mich Mexico. Pivot selection techniques for proximity

searching in metric spaces. Pattern Recognition Letters, 2003.

[5] Rakesh Agrawal, A. Gupta, and Sunita Sarawagi. Modeling multidi-

mensional databases. In Proc. 13th Int. Conf. Data Engineering, ICDE,

pages 232–243. IEEE Computer Society, 1997.

[6] Cristian Mendoza Alric and Norma Edith Herrera. Center selection

techniques for metric indexes. Computer Science and Technology, 7:98–

104, 2007.

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

ACM Press, New York, 1999.

[8] Rudolf Bayer and E. M. McCreight. Organization and maintenance of

large ordered indexes. Acta Informatica, 1:173–189, 1972.

[9] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource iden-

tifier (uri): Generic syntax. http://tools.ietf.org/html/rfc2854.

[10] T Berners-Lee, J Hendler, and O Lassila. The semantic web. Scientific

American, pages 1–18, 2001.

323

324 BIBLIOGRAPHY

[11] Tim Berners-Lee and Mark Fischetti. Weaving the Web. Harper, San-

Francisco, 1999. ISBN 9780062515872.

[12] Paul Beynon-Davies. Database Systems. Palgrave MacMillan, New

York, 3 edition, 2004.

[13] H.E. Bliss. The organization of knowledge in libraries and the subject-

approach to books. H.W. Wilson company, New York, 3 edition, 1939.

[14] Bliss classification association. 2001.

URL: http://www.sid.cam.ac.uk/bca/bchist.htm.

[15] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in

high-dimensional spaces: Index structures for improving the perfor-

mance of multimedia databases. ACM Comput. Surv., 33(3):322–373,

2001.

[16] Vanda Broughton. Essentail Classification. Neal-Schuman, New York,

2004.

[17] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A Course in Metric

Geometry, volume 33. American Mathematical Society, Providence,

Rhode Island, 2001.

[18] V. Bush. As we may think. The Atlantic Monthly, 1945. URL:

www.theatlantic.com/doc/194507/bush.

[19] George Cain. Introduction to General Topology. Addison-Wesley, Syd-

ney, 1994.

[20] G. Cantor. Beiträge zur begründung der transfiniten mengenlehre [con-

tributions to the founding of the theory of transfinite numbers]. Math-

ematische Annalen, 46:481–512, 1895. Translation from German.

[21] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured

english query language. pages 249–264. ACM SIGFIDET Workshop on

Data Description, Access and Control, 1974.

BIBLIOGRAPHY 325

[22] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Searching

in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

[23] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient

access method for similarity search in metric spaces. In 23rd VLDB

Conference, pages 426–435, 1997.

[24] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[25] E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support.

Computerworld, 27(30):87–89, 1993.

[26] E. F. Codd, S. B. Codd, and C. T. Salley. Providing olap (on-line

analytical processing) to user-analysts: an it mandate, 1993. Technical

report.

[27] D. Connolly and L. Masinter. The ‘text/html’ media type.

http://tools.ietf.org/html/rfc2854.

[28] The Gene Ontology Consortium. Gene ontology: tool for

the unification of biology. Nature Genet, (25):25–29, 2000.

URL:http://www.geneontology.org.

[29] C.J. Crouch, D.B. Crouch, and K.R. Nareddy. The automatic gener-

ation of extended queries. Number 13, pages 369–383. ACM SIGIR

conference, 1989.

[30] CiteSeer.Continuity Database. Most cited authors in computer sci-

ence - august 2006 (citeseer.continuity), Accessed August 2007. URL:

http://citeseer.ist.psu.edu/allcited.html Zadeh is number 275 in this

list.

[31] Anindya Datta and Helen Thomas. The cube data model: a conceptual

model and algebra for on-line analytical processing in data warehouses.

Decision Support Systems, 27(3):289–301, 1999.

326 BIBLIOGRAPHY

[32] M.-P. Dubuisson and A.K. Jain. A modified distance for object match-

ing. volume 1, pages 566–568. the 12th IAPR International Conference

on Computer Vision & Image Processing, 1994.

[33] M.-P. Dubuisson, A.K. Jain, and W.C. Taylor. A vision-based vehicle

matching system. pages 266–271. Intelligent Vehicles ’94 Symposium,

October 1994.

[34] E.A.Fox. Compisite document extended retrieval. Number 8, pages

42–53, Montreal, 1985. ACM SIGIR conference.

[35] J. Blake et. al. Creating the gene ontology resource: De-

sign and implementation. Genome Research, 2001. URL:

www.genome.org/cgi/doi/10.1101/.

[36] R. Fielding, UC Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee. Hypertext transfer protocol—http/1.1.

http://tools.ietf.org/html/rfc2854.

[37] International Organization for Standardization. Website, accessed Au-

gust 2007. URL: http://www.iso.org.

[38] A.C. Foskett. The universal decimal classification. Clive Bingley, Lon-

don, 1973.

[39] Eugene Garfield. A tribute to Calvin N. Mooers, a pioneer of

information retrieval. The Scientist, 11(6):9–12, 1997. URL:

www.garfield.library.upenn.edu/commentaries/tsv11(06)p09y19970317.pdf.

[40] L.M. Garshol. Metadata? thesauri? taxonomies? topic maps! making

sense of it all. Journal of Information Science, 30(4):378–391, 2004.

[41] J. Gehrke. International ISBN agency, accessed September 22, 2003.

URL: www.isbn-international.org.

[42] J.A. Goguen. l-fuzzy sets. Journal of Mathematical Analysis and Ap-

plications, 18(1):145–174, 1967.

BIBLIOGRAPHY 327

[43] Gisli Hjaltason and Hanan Samet. Index-driven similarity search in

metric space. ACM Transactions on Database Systems, 28(4):517–580,

2003.

[44] Gisli Hjaltason and Hanan Samet. Index-driven similarity search in

metric space. ACM Transactions on Database Systems, 28(4):517–580,

2003.

[45] David K. Hsiao. ACM transactions on database systems: aim and

scope. ACM Transactions on Database Systems, 1(1):1–2, 1976.

[46] Chun-Che Huanga, Tzu-Liang (Bill) Tsengb, Ming-Zhong Lic, and

Roger R. Gungd. Models of multi-dimensional analysis for qualitative

data and its application. European Journal of Operational Research,

174(2):983–1008, 2006.

[47] American Library Association’s ALCTS/LITA/RUSA Machine-

Readable Bibliographic Information Committee in conjunction with

Network Development and MARC Standards Office Library

of Congress. The marc 21 formats: Background and principles,

1996. URL: http://www.loc.gov/marc/96principl.html.

[48] Wikimedia Foundation Inc. Wikipedia, 2001. URL:

http://en.wikipedia.org/.

[49] Bill Inmon. The problem with dimensional modeling. DM Review Mag-

azine, 2000. URL:www.dmreview.com/article sub.cfm?articleId=2184.

[50] William H. Inmon. Building the Data Warehouse. John Wiley and

Sons, 2005.

[51] American National Standards Institute. Website, accessed August

2007. URL: http://ansi.org.

[52] Thomson ISI. ISI highlycited.com, Accessed August 2007. URL:

http://isihighlycited.com/ This implies that Zadeh is in the top 250

cited authors in his field.

328 BIBLIOGRAPHY

[53] B Javidi. Image Recognition and Classification: Algorithms, Systems,

and Applications. CRC Press, 2002.

[54] W. Kent. Data and Reality: Basic Assumptions in Data Processing

Reconsidered. Elsevier Science, New York, 1978.

[55] David M. Kroenke. Database Processing. Macmillan, New York, 1992.

[56] F.W. Lancaster. Information retrieval systems: characteristics, testing

and evaluation. Wiley, New York, 1968.

[57] Chang Li and Xiaoyang Sean Wang. A data model for supporting

on-line analytical processing. In CIKM, pages 81–88, 1996.

[58] Kwan-Ho Lin, Baofeng Guo, Kin-Man Lam, and Wan-Chi Siu. Human

face recognition usign a spatially weighted modified hausdorff distance.

pages 477–480, Hong Kong, May 2001. International Symposium on

Intelligent Multimedia, Video and Speech Processing.

[59] Christian Lindig. Concept-based component retrieval. In J. Köhler,

F. Giunchiglia, C. Green, and C. Walther, editors, Working Notes of

the IJCAI-95 Workshop: Formal Approaches to the Reuse of Plans,

Proofs, and Programs, pages 21–25, 1995.

[60] Paul Love, Joe Merlino, Jeremy Reed, Craig Zimmerman, and Paul

Weinstein. Beginning Unix. Wiley, Indianapolis, 2005.

[61] D. Maddison. The tree of life web project, 2001. URL:

http://tolweb.org/tree/.

[62] Davide Maltoni, D. Maio, Anil K. Jain, and S. Prabhakar. Handbook of

Fingerprint Recognition. Springer Professional Computing. Springer,

1st edition, 2003.

[63] G. Mazzola, G. Milmeister, and J. Weissmann. Comprehansive Math-

ematics for Computer Scientists, volume 1. Springer-Verlag, Berlin,

1998.

BIBLIOGRAPHY 329

[64] J. Mills. The universal decimal classification. Rutgers state university,

New Jersey, 1964.

[65] P. Mockapetris. Domain names—implementation and specification.

http://tools.ietf.org/html/rfc1035.

[66] John Muster. Introduction to UNIX and Linux. McGraw-Hill Osborne,

Berkeley, 2003.

[67] Gonzalo Navarro. Searching in metric spaces by spatial approximation.

The VLDB Journal The International Journal on Very Large Data

Bases, 11(1):28–46, 2002.

[68] Library of Congress. The cataloging in publication program, accessed

May 2, 2002. URL: http://cip.loc.gov/cip.

[69] Office of declassification. history of classification and declassification,

July 1996. URL: http://www.fas.org/irp/doddir/doe/history.htm.

[70] B.I. Palmer. Itself an education (six lectures on classification), chapter

The socio-historical background to library classification, pages 7–15.

The library association, Kent, 1971.

[71] Z. Pawlak. Rough sets. International Journal of Computer and Infor-

mation Science, 11:341–356, 1982.

[72] Z. Pawlak. Rough sets: Theoretical Aspects of Reasoning About Data.

Kluwer, Netherlands, 1991.

[73] P.J. Phillips, Hyeonjoon Moon, S.A. Rizvi, and P.J. Rauss. The feret

evaluation methodology for face-recognition algorithms. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22:1090—1104,

2000.

[74] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech

recognition. Prentice-Hall, Upper Saddle River, NJ, USA, 1993.

330 BIBLIOGRAPHY

[75] Margy Ross Ralph Kimball. The Data Warehouse Toolkit: The Com-

plete Guide to Dimensional Modeling. John Wiley and Sons,, New

York, 2 edition, 2002.

[76] S.R. Ranganathan. Elements of library classification. Asia publishing

house, Bombay, 1962.

[77] E. Rayner. Developing a method of algorithm classification for com-

puter algorithm library applications, 2003. Honours Thesis.

[78] Joan M. Reitz. Dictionary for Library and Information

Science. Libraries Unlimited, Portsmouth, 2004. URL:

http://lu.com/odlis/index.cfm.

[79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,

Newton, 1979.

[80] S.E. Robertson and K. Sparck Jones. Relevance weighting of search

terms. Journal of the American Society for Information Sciences,

27:129–146, 1976.

[81] R.E. Rubin. Foundations of library and information science. Neal-

Schuman, New York, 1998.

[82] G. Salton. Developments in automatic text retrieval. Science, 253:974–

980, 1991.

[83] G. Salton. Automatic structuring and retrieval of large text files. Com-

munications of the ACM, 37(2):98–108, February 1994.

[84] G. Salton and M.H. McGill. Introduction to Modern Information Re-

trieval. McGraw-Hill, New York, 1983.

[85] M. Shapiro. The choice of reference points in best-match file searching.

Communications of the ACM, 20(5):339–343, May 1977.

[86] Amit Singhal. Modern information retrieval: A brief overview. Bulletin

of the IEEE Computer Society Technical Committee on Data Engineer-

ing, pages 1–9, 2001.

BIBLIOGRAPHY 331

[87] American Mathematics Society. 2000 mathematics subject classifica-

tion, 2000. URL: http://www.ams.org/msc/.

[88] Willaim Stallings. Operating Systems—Internals and Design Princi-

ples. Prentice Hall, New Jersey, 4 edition, 2001.

[89] Janet Stevenson. Dictionary of Library and Information Management.

Peter Collin Publishing, Teddington, 1997.

[90] E. Svenonius. The epistemological foundations of knowledge represen-

tations. Library Trends, 52:571–587, 2004.

[91] A. Kenneth Swanson. Development and management of a computer-

centered data base: part 4: A computer-centered data base serving

usaf personnel managers., 1963. URL:http://stinet.dtic.mil Accession

Number:AD0662956.

[92] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, New

Jersey, 2nd edition, 2001.

[93] D.E. Taulbee. Classification in information storage and retrieval. pages

119–137. the 20th national conference, 1965.

[94] the Internet Engineering Task Force. Requirements for internet hosts—

communication layers. http://tools.ietf.org/html/rfc1122.

[95] Carolyn Begg Thomas Connolly. Database Systems: A practical ap-

proach to design, implementation, and management. Addison-Wesley,

Sydney, 4 edition, 2005.

[96] UDC Consortium. Universal decimal classification consortium (UDC),

2004. URL: http://www.udcc.org/, accessed September 2004.

[97] Panos Vassiliadis. Modeling multidimensional databases, cubes and

cube operations. In Statistical and Scientific Database Management,

pages 53–62, 1998.

[98] H. G. Wells. World Brain. Meuthuen & Co., 1938.

332 BIBLIOGRAPHY

[99] R. Wille. Ordered sets, chapter Restructuring lattice theory: an

approach based on hierarchies of concepts, pages 445–470. Reidel,

Dordrecht-Boston, 1982.

[100] R. Wille. Formal Concept Analysis, volume 3626/2005 of Lecture Notes

in Computer Science, chapter Formal Concept Analysis as Mathemati-

cal Theory of Concepts and Concept Hierarchies, pages 1–33. Springer,

Berlin / Heidelberg, 2005.

[101] Edward O. Wilson. The encyclopedia of life. Trends in Ecology and

Evolution, 18:77–80, 2003. URL: http://www.eol.org/.

[102] S.K.M. Wong, W. Ziarko, V.V. Raghavan, and P.C.N. Wong. On mod-

eling of information retrieval concepts in vector spaces. ACM Trans-

actions on Database Systems, 12:299–321, 1987.

[103] P. N. Yianilos. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proceedings of the 4th Annual ACM-

SIAM Symposium in Discrete Algorithms, pages 311–321, 1993.

[104] L. A. Zadeh. Fuzzy sets. Inf. Control, 8:338–353, 1965.

[105] Hubert Zimmermann. OSI reference model–the OSI model of architec-

ture for open systems interconection. IEEE Transactions on Commu-

nications, 28(4):425–432, 1980.

	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Certification
	Contents
	List of figures
	List of tables
	Abbreviation, notation and typographical conventions
	Abstract
	Acknowledgements
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Chapter seven
	Chapter eight
	Chapter nine
	Chapter ten
	Chapter eleven
	Chapter twelve
	Appendices
	Bibliography

