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Abstract

Autonomous agents are software agents that are self-contained, capable of making

independent decisions, and taking actions to satisfy internal goals based upon their

perceived environment. Agent negotiation is a means for autonomous agents to com-

municate and compromise to reach mutually beneficial agreements. By considering

the complexity of negotiation environments, agent negotiation can be classified into

three levels, which are the Bilateral Negotiation Level, the Multilateral Negotiation

Level, and the Multiple Related Negotiation Level.

In the Bilateral Negotiation Level, negotiations are performed between only two

agents. The challenges on this level are how to predict an opponent’s negotiation

behavior, and how to reach the optimal negotiation outcome when the negotiation

environment becomes open and dynamic. The contribution of this thesis on this

level is (1) to propose a regression-based approach to learn, analyze and predict the

opponent negotiation behaviors in open and dynamic environments based on the

historical records of the current negotiation; and (2) to propose a multi-issue nego-

tiation approach to estimate the opponent’s negotiation preference, and to search

for the bi-beneficial negotiation outcome when the opponent changes its negotiation

strategies dynamically.

In the Multilateral Negotiation Level, negotiations are performed among more

than two agents. Agents need more efficient negotiation protocols, strategies and

approaches to handle outside options as well as competitions. Especially when nego-

tiation environments become open and dynamic, future possible upcoming outside

options still need to be considered. The challenge in this level is how to guide agents

to efficiently and effectively reach agreements in highly open and dynamic negotia-

tion environments, such as e-marketplaces. The contribution of this thesis on this

level is (1) to propose a negotiation partner selection approach to filter out unex-

pected negotiation opponents before a multilateral negotiation starts; (2) to extend
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a market-driven strategy for multilateral single issue negotiation in dynamic envi-

ronments by considering upcoming changes of the environment; and (3) to propose

a market-based strategy for multilateral multi-issue negotiation by considering both

markets situations and agents specifications.

In the Multiple Related Negotiation Level, several negotiations are processed to-

gether by agents in order to achieve a global goal. These negotiations are not abso-

lutely independent, but some how related. In order to ensure the global goal can be

efficiently achieved, factors such as the negotiation procedure, the success rate, and

the expected utility for each of these related negotiations should be considered. The

contribution of this thesis on this level is to introduce a Multi-Negotiation Network

(MNN) and a Multi-Negotiation Influence Diagram (MNID) to search for the opti-

mal policy to concurrently conduct the multiple related negotiation by considering

both the joint success rate and the joint utility.
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Chapter 1

Introduction

Up to now, although no standard definition is accepted by all people as an expla-

nation for an autonomous agent, a common understanding is that it can be realized

as a software agent, is self-contained, capable of making independent decisions, and

taking actions to satisfy internal goals based upon its perceived environment. A

multi-agent system (MAS) is a system composed of multiple interacting agents.

During the last decade, multi-agent systems (MASs) have experienced rapid growth

in both techniques and applications, and become one of the most important and

representative AI techniques. MASs have been widely applied in many fields, such

as E-commerce, grid computing, decision support systems, and engineering [Woo02].

In a competitive MAS, agents may have different individual goals, and conflicts may

appear. In a cooperative MAS, agents usually share a common goal, and conflicts

may still happen during interactions when agents use different approaches, resources,

and undstanding to achieve the common goal. In order to solve conflicts during in-

teractions, negotiation is introduced as a general mechanism to help agents achieve

their individual and/or common goals.

Negotiation is a means for autonomous agents to communicate and compro-

mise to reach mutually beneficial agreements when conflicts appear between them

[FWJ04a, Kra01]. In general, agents can be characterized as self-interested agents

[San96] and cooperative agents [Les99]. Agent negotiation plays an important role

for both types of agent.

Commonly, a negotiation among self-interested agents is named competitive ne-

gotiation [GM98]. Agents in a competitive negotiation usually have different indi-

vidual goals and interests in maximizing their own benefits. If an agent’s goal in a

competitive negotiation meets a conflict, normally the agent shows selfish behavior

and will not sacrifice its benefit to help other agents to achieve their goals. Agent

negotiation actualizes a mechanism for self-interested agents to make concessions on

1
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their original goals so as to ensure partial achievements, but not absolute failure on

their goals.

By contrast, agent negotiation among cooperative agents is usually named co-

operative negotiation [MLH03]. Agents in a cooperative negotiation normally work

together towards a common goal, and they always show cooperative behaviors to

maximize the global benefit. For cooperative agents, even though they have a com-

mon goal, each agent may have different knowledge, understanding and approaches

to achieve the common goal, conflicts may also happen. Agent negotiation pro-

vides a mechanism for cooperative agents to generate an agreement among them to

efficiently achieve the common goal.

Nowadays, many MASs operate in complex, open and dynamic environments

with different constructions and relationships among agents. Such an environment

has brought new challenges for researchers to develop negotiation approaches and

strategies in MASs. The purpose of this Ph.D study is to investigate these challeng-

ing problems in agent negotiation, and to develop new negotiation mechanisms to

solve these challenges in more effective and efficient ways.

The organization of this chapter is as follows: Section 1.1 introduces a personal

view of agent negotiation, and classifies agent negotiation approaches into three

levels by considering the complexity of negotiation environments. Based on a three-

level view, Section 1.2 introduces the main research topics covered in each level,

and points out four major challenging problems in developing approaches of agent

negotiation in complex environments. Section 1.3 gives the motivations of this thesis,

and Section 1.4 presents the contributions of this thesis. Finally, Section 1.5 details

the organization of this thesis.

1.1 A Personal View of Agents Negotiation

In this section, a personal view and a classification of agent negotiation are intro-

duced. Usually, two key settings need to be considered when agent negotiation is

discussed, ie. the agent setting and the environment setting. The agent setting

indicates an agent’s individual understanding and reactions in a negotiation, while

the environment setting represents the whole negotiation environment shared by all

participants. Different agents may have different agent settings for the negotiation

with the same environment setting, and agents can also modify their agent setting

for a negotiation when necessary. However, the environment setting is relatively
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‘static’, and usually will be not modified once all negotiation participants reach con-

sensus. This section introduces both the agent setting and the environment setting,

and presents a classification of agent negotiation by considering the complexity of

the environment settings.

1.1.1 Agent Setting

Normally, the agent setting of a negotiation consists of six factors, which are the ne-

gotiation protocol, negotiation strategy, negotiation preference, negotiation procedure,

negotiation equilibrium and information privacy. These six factors are specified as

follows.

1. Negotiation protocol

A negotiation protocol specifies the rules of encounter in an agent negotiation.

It defines what kinds of (1) interactions between agents can be taken under

different circumstances; (2) offer sequences are allowed, and (3) deals can be

made in the negotiation. Rubinstein’s alternating offer protocol is a very

commonly used negotiation protocol [Rub82]. In Rubinstein’s protocol, two

agents are involved in a negotiation. Either agent can start the negotiation

with an initial offer, and waits for a response from the other agent. The

opponent may respond by either accepting the offer, rejecting the offer, or

opting itself out of the negotiation. If the opponent chooses to accept an offer,

the negotiation is successful in reaching an agreement; if the opponent chooses

to reject an offer, a counter-offer will be returned to the agent; and if the

opponent chooses to opt out of the negotiation, then the negotiation will fail

without reaching an agreement. Such a process is repeated until one possible

ending is achieved. Besides Rubinstein’s protocol, others protocols may also be

adopted in different situations [IHK07, HSLM07, End06]. However, no matter

which negotiation protocol is adopted, agents should reach a consensus on the

negotiation protocol before a negotiation starts.

2. Negotiation strategy

A negotiation strategy specifies the sequence of actions that the negotiation

participants plan to make during a negotiation. In a competitive negotiation,

an agent is usually interested in maximizing its own benefit, and an individual

negotiation goal may be considered prior to choosing a negotiation strategy.
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For example, Fatima et al. [FWJ04a] proposed a NDF negotiation strategy for

self-interested agents when the negotiation time is the crucial decision making

factor. In a cooperative negotiation, agents work together toward a common

goal, and the global benefit may become a signification consideration. For

instance, Czajkowski et al. [CFK+02] proposed a SLA negotiation strategy

for cooperative agents on resource allocation. It must be pointed out that a

negotiation strategy which performs well with a certain negotiation protocol

may not necessarily do so well with other negotiation protocols. Therefore,

the negotiation protocol in use should be considered when agents choose their

negotiation strategies.

3. Negotiation Preference

A negotiation preference indicates an agent’s emphasis level on the negotiated

issues when more than one negotiation issue is considered. Usually, a negoti-

ation preference is represented linearly as a serial of weight values [FWJ04b],

where each weight value indicates the agent’s concern on a particular issue.

The greater/lower the weight value assigned to an issue, the more/less con-

cern will be paid to the issue. However, when an agent’s preference cannot be

represented as a linear relationship, a non-linear representation may also be

adopted [IHK07, SP06].

4. Negotiation procedure

A negotiation procedure specifies how issues are settled in a negotiation when

it contains more than one issue. Broadly speaking, package deal procedure,

simultaneous procedure, and sequential procedure [FWJ06a] are three common

procedures acknowledged by most researchers. Some hybrid negotiation pro-

cedures for special negotiation purposes are also proposed to improve both the

effectiveness and efficiency of negotiations [DH05].

5. Negotiation equilibrium

A negotiation equilibrium indicates the stability of a negotiation. When agents

choose the negotiation protocol and negotiation strategy, agents create nego-

tiation mechanisms. During a negotiation, the negotiation mechanism must

be stable, i.e. a strategy profile must constitute an equilibrium. The Nash

equilibrium [Nas50b, Rub82] is a commonly used concept when a negotiation
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agreement is discussed. If a negotiation is in Nash equilibrium, no negotiation

participant can increase its individual benefit through unilaterally changing

only its negotiation strategy. The negotiation equilibrium is a very important

and necessary condition for a negotiation system to be stable. For different

negotiation protocols, the negotiation equilibrium may be different. However,

it is required that each agent should select an equilibrium strategy before a

negotiation starts.

6. Information privacy

An information privacy specifies the access authority for negotiation informa-

tion, which is classified as the private information and the public information

[FWJ04b, FWJ06b]. The private information indicates that negotiation in-

formation is only accessible by an individual agent, such as the negotiation

strategy and the negotiation procedure, while the public information can be

accessed by all negotiation participants. In a negotiation, if all negotiation

participants would like to share their private information, then the negotiation

is named a complete information negotiation. Otherwise, if any negotiation

participant does not want to share its private information, then the negotia-

tion is named a incomplete information negotiation. An agent’s information

privacy may impact its choice on the negotiation strategy.

Besides the above six factors, other factors which may indicate an agent’s indi-

vidual opinions and/or activities in a negotiation can also be added into an agent

setting. However, an agent setting only describes possible situations that an agent

may face during a negotiation and possible actions that the agent may perform un-

der different situations. The real action that an agent may perform in a particular

negotiation usually depends on the environment setting of the negotiation.

1.1.2 Environment Setting

The environment setting of a negotiation describes the objective situations of a

negotiation environment, which may contain the factors number of issues, number

of participants, environment state, and multiple negotiation relationship. The four

factors for an environment setting are specified as follows.

1. Number of issues
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The number of issues indicates how many issues a negotiation contains. Based

on this factor, agent negotiation can be classified as single issue negotiation

[JFL+01] and multiple issue negotiation [FWJ02]. In a single issue negotiation,

agents negotiate on just one attribute. The success or failure of the negotiation

fully depends on whether an agreement can be reached on the only issue.

Usually, the pie splitting model from Game Theory [FUP91] is employed to

represent the negotiation process in single issue negotiation. By contrast, in a

multiple issue negotiation, agents need to negotiate on several issues in order

to achieve final agreement. So the negotiation result depends on agreements

on each individual issue. Usually, multiple issue negotiation is more efficient

than single issue negotiation by considering the speed of negotiations and the

quality of negotiation outcomes. However, multiple issue negotiation requires

a more complex negotiation protocol and a negotiation strategy.

2. Number of participants

The number of participants indicates how many participants a negotiation con-

tains. Based on this factor, agent negotiation can be classified into bilateral

negotiation [CI86] and multilateral negotiation [BR88]. A bilateral negotiation

is only performed between two agents, and the negotiation will fail if an agree-

ment cannot be reached between the only pair of participants. By contrast,

a multilateral negotiation contains more than two agents. Agents may have

outside options, and face competition from other competitors. If an agent fails

to reach an agreement with one opponent, it still has a chance to reach agree-

ments with other opponents. Usually, multilateral negotiation provides more

chances for agents to reach agreement, but needs more complex negotiation

protocols to deal with concurrent negotiation threads [LGS06] between each

pair of participants.

3. Environment state

An environment state indicates the possible change of negotiation environ-

ments in the future. If there is no upcoming outside options entering into a

negotiation in the future, the negotiation is called static negotiation, while if

outside options may enter into the negotiation in the future, the negotiation is

named dynamic negotiation [Sim02]. In contrast to a static negotiation, a dy-

namic negotiation is more difficult to handle. Agents usually need a prediction
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Figure 1.1: A nested view of general negotiation models [LS06].

mechanism to estimate future possible changes of negotiation environments in

dynamic negotiation, so as to perform pre-actions to maximize negotiation

outcomes.

4. Multiple negotiation relationship

A multiple negotiation relationship indicates the relationship between individ-

ual negotiations. If the outcome of a negotiation does not depend on other

negotiations, the negotiation is named solo negotiation. However, if the out-

come of one negotiation depends on the outcomes of other negotiations, these

negotiations are called multiple related negotiations [ZL02]. Usually, a solo

negotiation is performed if the goal of the negotiation is independent, while a

multiple related negotiation is performed when several dependent goals need

to be achieved together.

1.1.3 A Classification of Agent Negotiation

Based on the personal view of agent negotiation introduced in the previous sub-

section, a classification of agent negotiation will be introduced in this subsection.

However, before introducing our model, a famous classification model proposed by

other researchers is firstly presented.

In Figure 1.1, Sycara et al. [LGS06] introduced a three-level nested view of agent

negotiation. The first level in their model is named single-threaded negotiations,

which represents static bilateral negotiations. The second level is synchronized multi-

threaded negotiations, which represents static multilateral negotiations. And the

third level is named dynamic multi-threaded negotiations, which represents dynamic

multilateral negotiations. Since Sycara’s model only considers solo negotiation, a

Please see print copy for image
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Figure 1.2: Three levels hierarchical view of agent negotiation.

new three-level hierarchical view is proposed in this thesis by including consideration

of multiple related negotiations as shown in Figure 1.2.

Figure 1.2 classifies negotiation models based on the complexity of environment

settings in agent negotiation, which contains a Bilateral Level, a Multilateral Level,

and a Multi-Negotiation Level. Each level is specified as follows.

1. Bilateral Level

The first level is named the Bilateral Level, which covers static, bilateral ne-

gotiations. In this level, agents focus on sophisticated negotiation with only

one opponent. In order to achieve an optimal negotiation outcome, agents

may adopt different procedures [FWJ04a, FWJ06a], strategies [FSJ98, Kra01],

equilibriums [Rub82] and preferences [FWJ07, FWJ09, MMLCVH09] based on

their individual agent settings.

2. Multilateral Level
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The second level is named the Multilateral Level, which covers dynamic, mul-

tilateral negotiations. In this level, agents negotiate with more than one op-

ponent synchronously. Researchers on this level may pay attention to nego-

tiation partner selections [BK05, WCD98], multilateral negotiation protocols

[HSLM07, NJ04a], and negotiation strategies for open and dynamic environ-

ments [LGS06, RZS09].

Both the first and second levels focus on solo negotiation.

3. Multi-Negotiation Level

The third level is named the Multi-Negotiation Level, which pays attention to

multiple related negotiations. Negotiations in this level are somehow related,

and agents need to complete them all in order to achieve a final goal.

Each individual negotiation in the Multi-Negotiation Level could be an in-

stance of either the Bilateral Level or the Multilateral Level.

In this section, both the agent setting and the environment setting of agent

negotiation were introduced, and a three-level hierarchical view also introduced to

represent negotiation models among autonomous agents within different complexity

levels.

1.2 Research Issues and Challenges in Agent Ne-

gotiation

Although research in agent negotiation has resulted in significant advancements,

some existing research issues have yet to be solved properly, and many new issues

also emerged with the development of autonomous agents and MASs. In this section,

research issues for agent negotiation at each level of the three-level hierarchical view

are firstly discussed, then four major challenging problems are summarized based

on these research issues.

1.2.1 Research Issues in Agent Negotiation

In the Bilateral Level

In the Bilateral Level, negotiations are processed between only two agents; research

issues of this level include:
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1. Bilateral negotiation protocol

A bilateral negotiation protocol is a basic research issue in agent negotiation,

which specifies the rules of encounter in a negotiation between two agents.

The major challenge of this research issue is how to improve the effectiveness

and efficiency of a bilateral negotiation for both single and multiple issue

negotiation when the negotiation environment becomes open and dynamic.

2. Agent behavior prediction

In agent negotiation, an agent will have a great advantage if the opponent’s

negotiation behaviors can be acquired by the agent. However, most oppo-

nents will not share their private information with other agents, which makes

the negotiation process harder and inefficient. The major challenge of this

research issue at the present time is how to effectively and efficiently predict

an opponent’s negotiation behaviors in open and dynamic environments, and

how to improve the negotiation outcome by using the prediction results.

3. Agent preference prediction

In multiple issue negotiation, a ‘win-win’ negotiation outcome can be possibly

achieved between two agents, which can benefit both negotiation participants.

An agent’s preference plays a crucial role in multiple issue negotiation when a

mutually beneficial agreement is discussed. However, agents usually keep their

preferences as private information, which increases the difficulty of reaching

a mutually beneficial agreement for both participants. The major challenge

of this research issue at the present time is how to effectively and efficiently

predict an opponent’s preference, and how to search for a ‘win-win’ negotiation

outcome by employing the prediction results.

In the Multilateral Level

In the Multilateral Level, negotiations are processed between more than two agents

with future possible upcoming outside options. Negotiation environments become

unstable and uncertain, the research issues at this level may include:

1. Multilateral negotiation protocol

Multilateral negotiation protocol specifies the rules of encounter in negotiation

between more than two agents. The major challenges of this research issue



1.2. Research Issues and Challenges in Agent Negotiation 11

at the present time include (1) how to synchronize the negotiation process

between several opponents, (2) how to make a reasonable reaction based on all

opponents’ responses, and (3) how to generate suitable reactions by considering

the unstability and uncertainty of the negotiation environment.

2. Negotiation partner selection

In multilateral negotiation, an agent may face many opponents. Usually, not

all of these opponents have the potential to reach an agreement with the agent.

For example, some opponents may suddenly leave off the negotiation midway;

some opponents may unqualified for the agent requirement; and some oppo-

nents might not have a potential agreement zone with the agent. Therefore, it

is not necessary for the agent to perform a sophisticated negotiation with all

opponents, and an agent can eliminate unnecessary opponents before a nego-

tiation starts. The major challenge of this research issue at the present time

is how to efficiently identify opponents who have a great potential to reach

an agreement based on different criteria in an open and dynamic negotiation

environment.

3. Single issue negotiation in multilateral environment

In an open and dynamic multilateral negotiation environment, agent negoti-

ation strategies on single issue negotiation may need to consider outside op-

tions and future possible changes in the negotiation environment. The major

challenge of this research issue at the present time is how to improve agent

negotiation strategies in single issue negotiation by considering the impact of

competition from competitors, as well as by considering the impact of oppor-

tunities from outside options. Also, future possible changes of the negotiation

environment should be taken into account when upcoming outside options

enter into the negotiation in the future.

4. Multiple issue negotiation in multilateral environment

An agent’s preference on negotiated issues plays a significant role in determin-

ing whether a ‘win-win’ outcome can be achieved in a multiple issue negotia-

tion. In an open and dynamic multilateral environment, opponents may mod-

ify their negotiation preferences when the negotiation environment changes.

Some agents may even have several negotiation preferences at the same time,
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and present different preferences when facing different negotiation opponents.

The major challenge of this research issue at the present time is how to employ

multiple preferences on different issues in an open and dynamic multilateral

environment to increase agents’ opportunities for reaching a mutually benefi-

cial agreement.

In the Multi-Negotiation Level

In the Multi-Negotiation Level, negotiations are somehow related. If agents fail

one negotiation, other related negotiations may also be impacted. Therefore, these

multiple related negotiations should be considered relatively. The research issues in

this level include:

1. Multiple related negotiation procedure

Multiple related negotiation can be performed sequentially, or concurrently, or

based on a hybrid procedure by combining the previous two procedures. The

major challenge of this research issue at the present time is how to decide an

appropriate procedure for agents when multiple related negotiations need to

be performed with different environment settings.

2. Multiple related negotiation optimization

In multiple related negotiations, agents’ actions and/or agreements for one

negotiation may impact other related negotiations. Therefore, in order to op-

timize the outcome for all related negotiations, a negotiation strategy should

be invented to instruct agents to optimally perform and synchronize their ne-

gotiation behaviors between related negotiations. The major challenge of this

research issue at the present time is how to dynamically determine a decision

policy for agents in multiple related negotiations to optimize the negotiation

outcome.

1.2.2 Four Major Challenging Problems in Agent Negotia-

tion

Based on the research issues discussed in the previous subsection, four major chal-

lenging problems which might occur in different levels in agent negotiation are sum-

marized in this subsection. These four major challenging problems are:
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1. Different criteria on negotiation issues

In multiple issue negotiation, agents may have different preferences and ex-

pectations on different issues, and different criteria might be used to evaluate

different issues [LJS+03]. How to efficiently and effectively reach an optimal

negotiation outcome among agents by considering different criteria becomes a

very challenging problem in agent negotiation.

2. Multiple participants involving negotiation

A complex MAS may contain many individual agents nowadays. When a con-

flict happens in such a MAS with multiple participants, in order to achieve

an optimal agreement, an agent may need to negotiate with more than one

opponent at the same time. Obviously, the traditional one-to-one negotiation

(bilateral negotiation) is not powerful enough to handle such situations; mul-

tilateral negotiation is needed to overcome this limitation. How to efficiently

and effectively reach an agreement in multilateral negotiation is another chal-

lenging problem in agent negotiation.

3. Unstable and uncertain negotiation environment

When the negotiation environment becomes open and dynamic, such as on

the Internet, agents are not isolated from the outside world anymore, but

can freely acquire information and communicate with other agents without

considering the geographical limitations. An agent can also freely join or leave

a negotiation midway, which makes the negotiation environment become more

“unstable” and “uncertain”. The traditional negotiation mechanisms designed

for a “static” and “certain” negotiation environment cannot handle such a

new requirement anymore. Therefore, how to efficiently and effectively reach

an agreement in an open and dynamic environment is the third challenging

problem in agent negotiation.

4. Optimization of Multiple Related Negotiation

An agent may need to perform several negotiations in order to finally achieve

a global goal. Sometimes, these multiple negotiations are not absolutely inde-

pendent, but somehow related. An unsuccessful negotiation on any one of these

related negotiations may lead to failure or damage to the global goal. Most

existing approaches sequentially process these related negotiations, and have



1.3. Motivation of the Thesis 14

difficulty in producing optimal outcomes for achieving global goals. Therefore,

how to efficiently and effectively process multiple related negotiations in or-

der to optimize the global outcome is the fourth challenging problem in agent

negotiation.

In this section, several research issues were discussed for each level in the three-

level hierarchical model based on the complexity of environment settings. To sum-

marize these research issues, four major challenging problems in agent negotiation

were further introduced.

1.3 Motivation of the Thesis

Based on the four major challenging problems summarized in the previous subsec-

tion, the motivations of this thesis are described as follows.

1. To Predict Agent behavior in bilateral single issue negotiation

In single issue negotiation, prediction of the opponent’s negotiation behaviors

is a significant research problem. The prediction results can be employed by

agents as references to guide their decision making during negotiation behav-

iors. An accurate prediction result definitely can help agents to increase their

negotiation outcomes. Bayesian learning and machine learning approaches are

widely used to solve the agent behavior prediction problem. However, both of

them have disadvantages. Bayesian-learning-based approaches usually require

prior domain knowledge and prior hypothesis to calculate the posterior prob-

ability for the hypothesis, but this information may not available in some cir-

cumstances. Machine-learning-based approaches usually need pre-processing

to train agents, but no training algorithm can guarantee that an agent will

be trained perfectly. If an opponent’s behavior is not included in the train-

ing dataset, the prediction result may not be accurate. The first motivation of

this thesis is to provide solutions to overcome the limitations of Bayesian learn-

ing and machine learning approaches in agent behavior prediction in bilateral

single issue negotiation.

2. To optimize outcomes in bilateral multiple issue negotiation
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Multiple issue negotiation has become an active research topic in recent years.

By comparison with single issue negotiation, the major advantage of multi-

ple issue negotiation is that a ‘win-win’ negotiation outcome can be found to

benefit both negotiation participants, which cannot be achieved in single issue

negotiation. An agent’s preference on negotiated issues in multiple issue nego-

tiation is a significant factor in searching such a mutually beneficial agreement.

The second motivation of this thesis is to propose an agent preference predic-

tion approach and an optimization method to help agents reach the mutually

beneficial negotiation outcome in bilateral multiple issue negotiation.

3. To select partner in multilateral negotiation

In multilateral negotiations, agents need to face more than one opponent. Es-

pecially when a negotiation environment becomes open and dynamic, existing

opponents can leave off the negotiation midway and a new opponent can enter

the negotiation freely as well. In this case, it is almost impossible and also

unnecessary for agents to perform a sophisticated negotiation with each oppo-

nent. Some opponents which do not have the potential to reach an agreement

with the agent can be eliminated before a negotiation starts. The third mo-

tivation of this thesis is to develop a partner selection approach to eliminate

unqualified opponents from potential partners so as to improve the efficiency

of multilateral negotiations.

4. To handle multilateral single issue negotiation

When the negotiation environment becomes open and dynamic, agents will get

more opportunities to reach an agreement, and also will face more competition

from other competitors. The fourth motivation of this thesis is to propose a

negotiation approach for efficiently handling multilateral single issue negoti-

ation by considering future possible changes on negotiation environments, ie.

number of outside options, number of competitors, and opponents’ negotiation

strategies.

5. To handle multilateral multiple issue negotiation

In order to reach a mutually beneficial agreement in multilateral multiple

issue negotiation, agents may have different preferences when they perform

negotiations with different opponents. The fifth motivation of this thesis is to
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propose a negotiation approach for multilateral multiple issue negotiation by

considering a complex environment setting and multiple preferences.

6. To optimize multiple related negotiation outcome

In the real world, agents may need to perform several negotiations in order to

reach a global goal. Usually, these negotiations are somehow related. Most

existing approaches just perform multiple related negotiations sequentially.

Because the result of the latter negotiation is not predictable by using a se-

quential procedure, agents cannot optimally execute all related negotiations

in sequential order. In some cases, when the final goal of related negotiations

cannot be reached, the former performed negotiations may become meaning-

less and agreements on these negotiations may lead to unnecessary losses. The

sixth motivation of this thesis is to propose an approach to concurrently and

optimally handle multiple related negotiations.

1.4 Contribution of the Thesis

Based on the motivations introduced in the previous section, six major contributions

are achieved in this thesis, which are:

1. An agent behavior prediction approach is proposed to estimate opponents ne-

gotiation behaviors for bilateral single issue negotiation in dynamic negotiation

environments.

A regression-based approach is proposed in this thesis to perform an efficient

and accurate prediction of opponents behaviors. The proposed prediction ap-

proach includes three regression algorithms, ie. a linear regression algorithm,

a quadratic regression algorithm and a power regression algorithm, based only

on the historical offers of the current negotiation without a training process.

Therefore, both efficiency and accuracy of prediction can be guaranteed. Each

regression algorithm has both advantage and disadvantage. Agents can choose

any algorithm during negotiations according to their negotiation specification

and requirements.

2. An agent preference prediction approach and an optimization approach are

developed to estimate the opponent’s preference and to search for the mutually
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beneficial negotiation outcome (if it is applicable) for bilateral multiple issue

negotiation in dynamic negotiation environments.

The proposed preference prediction approach is based on the extension of a

quadratic regression function. By employing the prediction approach, the op-

ponent’s preference can be efficiently estimated. The proposed optimization

approach contains an algebraic algorithm and a geometric algorithm. The alge-

braic algorithm is good at handling negotiations with more than two negotiated

issues, and the geometric algorithm is good at representing the optimization

problem as a graph. Agents can choose any algorithm during negotiations

according to their agent settings. Both algorithms can lead a multiple issue

negotiation to a ‘win-win’ outcome (if applicable).

3. A negotiation partner selection approach is proposed in advance of multilat-

eral negotiations to filter out unqualified opponents according to the agent’s

selection criteria.

The proposed partner selection approach contains a linear selection algorithm

and a non-linear selection algorithm. The linear selection algorithm is easily

implemented and can generate satisfactory selection results. The non-linear

selection algorithm is a supplement for the linear selection algorithm, and

can handle situations when the selection criteria cannot be represented lin-

early. Agents can choose either algorithm during negotiations according to

their agent settings and selection criteria.

4. A market-driven-based negotiation approach is proposed to handle multilateral

single issue negotiation in open and dynamic environments.

The proposed approach considers possible changes of factors of negotiation op-

portunities, negotiation competitions, negotiation strategies and negotiation

eagerness for single issue negotiation when the negotiation environment be-

comes open and dynamic. Both the current and future possible situations of

the negotiation environment are considered in the proposed approach. Agents

can employ the proposed approach in dynamic negotiation environments to

perform efficient negotiations.

5. A market-based negotiation approach and a multiple preference strategy are

proposed to handle multilateral multiple issue negotiation in open and dynamic

environments.
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In order to increase the success rate of negotiations in a complex environ-

ment, the relationship between supply and demand is considered. The pro-

posed market-based approach can monitor changes in the negotiation environ-

ment, and help agents to make more appropriate reactions in negotiation when

the negotiation environment changes. Also, the proposed multiple preference

strategy greatly increases an agent’s opportunity for reaching a mutually bene-

ficial agreement when it faces opponents with different preferences in dynamic,

multilateral and multiple issue negotiations.

6. A Multi-Negotiation Network (MNN) and a Multi-Negotiation Influence Di-

agram (MNID) are proposed to concurrently and optimally handle multiple

related negotiations.

In the proposed approaches, the joint success rate and the joint utility of

all related negotiations are considered in deciding the policy for optimally

conducting a multiple related negotiation. An agent’s possible decision on

each related negotiation is considered and reflected by the value of expected

utility. The optimal policy is generated through comparing expected utilities

between all possible policies so as to optimize the outcome of multiple related

negotiations.

1.5 Organization of the Thesis

In this thesis, each chapter starts with an introduction and concludes with a sum-

mary.

Chapter 1 introduces backgrounds of agent negotiation, challenging problems in

agent negotiation, motivations of this thesis, and contributions of this thesis.

Chapter 2 is a literature review of the key concepts and current research in agent

negotiation based on a three-level hierarchical model. Research issues of bilat-

eral single issue negotiation, bilateral multiple issue negotiation, negotiation

pattern selection, multilateral single issue negotiation, multilateral multiple

issue negotiation, and multiple related negotiations are discussed.

Chapter 3 introduces an agent’s behavior prediction approach for bilateral single

issue negotiation. Three regression algorithms, ie. a linear regression algo-

rithm, a quadratic regression algorithm, and a power regression algorithm, are
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proposed for predicting opponents behaviors under different situations.

Chapter 4 introduces an optimization approach for bilateral multiple issue negoti-

ation. Firstly, based on the historical offers, a prediction algorithm is proposed

based on the extension of a quadratic regression function to predict the oppo-

nent’s preference. Then an algebraic algorithm and a geometric optimization

algorithm are introduced to search for a mutually beneficial agreement for

both negotiation participants.

Chapter 5 introduces a negotiation partner selection approach by using a linear

algorithm and a non-linear algorithm. Based on considerations of how likely

an agreement can be reached with an opponent, opponents which do not sat-

isfy agents specifications or unlikely to reach agreement are eliminated from

potential negotiation partners before a multilateral negotiation starts.

Chapter 6 introduces a market-driven negotiation approach for multilateral single

issue negotiation in open and dynamic environments. Four concession factors

are considered in open and dynamic e-market environments to help agents

make efficient reactions in negotiations.

Chapter 7 introduces a market-based negotiation approach for multilateral multi-

ple issue negotiation in open and dynamic environments. Both the negotiation

environment and the agent’s negotiation expectation are considered. Also, a

multiple preference strategy is proposed to increase the agent’s opportunity in

reaching a mutually beneficial agreement with opponents.

Chapter 8 introduces an approach to perform multiple related negotiations concur-

rently and optimally. A Multi-Negotiation Network and a Multi-Negotiation

Influence Diagram are proposed in this approach. The optimal policy for ne-

gotiation procedure is generated by considering both the success rate and the

payoff of all related negotiations.

Chapter 9 provides a summary of this thesis, and indicates further problems which

could provide the basis for future research work.



Chapter 2

Literature Review

2.1 Introduction

The complexity of agent negotiation is increased along with the changes of a negoti-

ation environment. The simplest negotiation is processed between only two agents.

They negotiate on only one issue, and share their private information, such as initial

offers, reservation offers and deadlines, between each other. This type of negotia-

tion is named bilateral single issue negotiation with complete information [MW95].

However, this type of negotiation is more like a theoretical model than a real world

agent negotiation mechanism, since in reality most agents would not like to share

their private information with others in the real world. In order to bridge this gap,

negotiation approaches which can be applied within incomplete information settings

are proposed for bilateral single issue negotiation [CS83]. A typical instance of this

types of negotiation is the bargaining problem between a buyer and a seller over

the price of an item. Both agents have different initial prices, reservation prices,

negotiation strategies, and negotiation deadlines. This information is kept by each

agent as private information, and agents will process the negotiation according to

these predefined parameters.

In order to solve a complex task, sometimes agents need to consider multiple

criteria during their interactions. If a conflict happens, agents usually need to take

several factors into account during the negotiation before an agreement can be made

for solving the conflict. Since single issue negotiation cannot handle the situation

when multiple factors need to be considered; bilateral multiple issue negotiation has

been invented by researchers to take multiple issues into account when a negotiation

involves multiple criteria [FWJ02, LJS+03, FWJ04a]. By using such a negotiation

mechanism, two agents can effectively and efficiently handle complicated conflicts

during interactions between them.

20
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When a conflict involves more than two agents, bilateral negotiation does not

work. This limitation definitely impacts on the performance of a MAS when an

agreement needs to be accepted by several agents. In order to solve such a problem,

some multilateral negotiation mechanisms have been proposed by researchers [BR88,

Wal90, KC03]. In a multilateral negotiation, agents could synchronously negotiate

with several opponents, which greatly increases the chance for agents to reach an

agreement in a MAS.

In the last decade, as the rapid development of information technology, espe-

cially the communication technology and the Internet, agents are not isolated from

the outside world. Through the Intranet and/or Internet, agents can easily acquire

information/services from remote resources, communicate with other agents located

in remote areas, and supply information/services to other remote enquiries. The

static structure of MASs is replaced by a dynamic structure, and agents can easily

generate, dismiss, join, or leave a MAS. By comparison with the traditional static

MASs, MASs in the current stage are more open and dynamic. In such a highly

complex environment, it is more likely that conflicts may happen between agents.

Furthermore, the uncertainty of future possible environments makes the agent nego-

tiation more challenging. In order to meet these new requirements, agent negotiation

in open and dynamic environments has become a very challenging and important

topic in the area of MASs [LGS06, MLH03, FWJ07].

Besides agent negotiation in open and dynamic environments, another research

topic which studies the relationships between multiple negotiations has also become

an important topic in recent years [ZPL00, RZL00, ZL02]. The motivation of this

research is derived from the fact that in a MAS, agents usually need to perform

several negotiations with different opponents in order to achieve a final goal, and

these multiple negotiations are not absolutely independent, but somehow related.

Investigations on this topic at the current time focus on the negotiation procedure

on multiple related negotiations, as well as the optimization of such negotiations.

There are many negotiation mechanisms proposed or developed by prior re-

searchers, which might be applied under different circumstances. In this chapter,

some related work about negotiation strategies, protocols, and models is investi-

gated and studied based on the three-level hieratical view introduced in Chapter 1,

ie. the Bilateral Level, the Multilateral Level, and the Multi-Negotiation Level. Also,

through comparisons and discussions of these negotiation mechanisms in different

levels, the limitations of existing approaches will be pointed out, which show the
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significance of this Ph.D study.

The organization of this chapter is as follows: Section 2.2 reviews and investi-

gates negotiation mechanisms in the Bilateral Level, which includes both bilateral

single issue negotiation and bilateral multi-issue negotiation. Section 2.3 reviews

and investigates negotiation mechanisms in the Multilateral Level, which includes

both static and dynamic multilateral environments. Section 2.4 reviews and inves-

tigates negotiation mechanisms in the Multi-Negotiation Level, which includes the

procedure and optimization of multiple related negotiation. Finally, Section 2.5

summarizes this chapter and clarifies the significance of this thesis.

2.2 Bilateral Level

In this section, bilateral negotiation mechanisms are reviewed and discussed, which

includes both bilateral single issue negotiation and bilateral multiple issue negotia-

tion.

2.2.1 Bilateral Single Issue Negotiation

with complete information

A general bilateral single issue negotiation with complete information can be repre-

sented by the following case. Two agents, a buyer agent and a seller agent, negotiate

on the price of an item. Each agent knows the public information of the negotia-

tion environment, as well as the private information of its opponent, which may

include the negotiation protocol, negotiation equilibrium, initial price, reservation

price, negotiation strategy, and negotiation deadline. During the negotiation, agents

exchange their offers in each negotiation round by using the alternating offer pro-

tocol [OR94]. The negotiation is successful when an agreement is reached between

the two agents. Otherwise, the negotiation fails. Because each agent already knows

the complete information about the negotiation, each agent should make its best

response to the other agent in order to maximize the utilities for both of them. If an

agent tries to increase itself’s utility through diminishing the other’s utility, such a

behavior will definitely not be accepted by the other agent because the other agent

is requested to make more concession than it should. Finally, when neither agent

can make a further offer, which may increase its own utility without decreasing the
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other’s utility, an Nash equilibrium is achieved [Nas50a, Nas51]. In bilateral single

issue negotiation with complete information, the Nash equilibrium is the agreement.

with incomplete information

However, not all agents would like to share their private negotiation with their oppo-

nents in a real world negotiation, especially for self-interested agents. In such a case,

each agent only knows its own negotiation parameters and the public information,

but without knowing the other agent’s private information. Agents cannot perform

a reaction during negotiations by considering both negotiation participators, just by

taking their own expectations into account.

A typical negotiation strategy in incomplete information settings was proposed

by Faratin, Sierra and Jennings in [FSJ98], which uses time as a decision factor to

determine an agent’s concession during a negotiation. In such a time-based strategy,

an agent usually starts a negotiation with its initial offer, and ends the negotiation at

the deadline by offering its reservation offer. Theoretically, agents can have infinite

possibilities for generating an offer between the initial offer and the reservation offer

during the negotiation. However, in order to ensure the efficiency and stability of a

negotiation, three typical behaviors are commonly employed by agents (see Figure

2.1), which are Conceder, Boulware, and Linear.

∙ Conceder represents a negotiation behavior that an agent will give larger con-

cessions during the early stages of a negotiation, but smaller concessions during

the later stages of the negotiation.

∙ Linear represents a negotiation behavior that an agent will give a constant

concession throughout a negotiation.

∙ Boulware represents a negotiation behavior that an agent will give smaller

concessions during the early stages of a negotiation, but larger concessions

during the later stages of the negotiation.

Agents may employ other factors in determining its negotiation strategies based

on different considerations and specifications of a negotiation. Besides the time-

based strategy, resource-based and behavior-based strategies may also be employed

by agents [FSJ98]. In a resource-based negotiation strategy, agents will make conces-

sions based on the amount of available resources [CFK+02], and in a behavior-based
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Figure 2.1: Negotiation decision functions for the buyer.

negotiation strategy, agents will make concessions based on the negotiation behav-

iors of its opponent [PRR01].

Because in an incomplete information setting, agents do not have their oppo-

nent’s private information, the equilibrium is much harder to be achieved than in a

complete information setting. In order to help agents to efficiently reach an agree-

ment in an incomplete information setting, different approaches are proposed to

predict the opponent’s private information.

Agent Behavior Prediction

In complete information settings, agents share all information with opponents, and

the negotiation equilibrium can be reached effectively. But in an incomplete informa-

tion setting, private negotiation parameters, such as the reservation offer, deadline

and negotiation strategy are kept by agents in confidence. The negotiation equilib-

rium is usually harder to reach in incomplete information settings. Evidence from

both theoretical analysis and real world observations suggest that for cooperative

agents, if an agent can make a prediction on its opponent’s negotiation behavior,

it will be much easier for them to reach an agreement. For self-interested agents,

if the opponent’s negotiation behavior can be predicted during interactions, a self-

interested agent will have a greater chance to increase its own utility. Therefore,

in order to help cooperative agents to efficiently reach an agreement, as well as to

help self-interested agents to maximize their utilities, agents should have an abil-

ity to learn from their opponent’s historical negotiation behaviors, and to predict

their opponent’s possible negotiation behaviors in the future. In this subsection, we
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review and compare some agent behavior prediction approaches.

In [ZS98, ZS97], D. Zeng and K. Sycara introduced a sequential decision making

model to predict an opponent’s reservation price, named Bazaar. Bazaar employs

Bayesian learning to update the knowledge and belief that each agent has about the

environment and other agents. The learning process is based on the prior knowledge

of the negotiation domain and the agent’s hypotheses on the opponent’s reservation

price, then a posterior probability to verify that the agent’s hypotheses could be

estimated. Through comparing all posterior probabilities for all hypotheses on the

opponent’s reservation price, the most likely reservation price for the opponent can

be estimated. However, in the cases of (1) prior knowledge of the negotiation do-

main not being available for the agent, and (2) the agent not presenting reasonable

hypotheses on the opponent’s reservation price, this approach will fail to estimate

the opponent’s reservation price.

In [NJ05, NJ06], V. Narayanan and N. Jennings adopted a Markov chain frame-

work to model bilateral negotiations and employed Bayesian learning to enable

agents to learn an optimal strategy in incomplete information settings. The main

purpose of this framework is to learn a mixed-strategy profile of an opponent and

determine a strategy in response to this profile that maximizes an agent’s pay-off

at each stage of the negotiation process. Because the agent has no information

about its opponent’s negotiation strategy, a non-stationary Markov chain is used.

Firstly, a state space including all possible strategies that the opponent may employ

is constructed. Then the probability that the opponent will employ a particular

strategy at each negotiation round is calculated. During negotiation, based on his-

torical offers from the opponent, the probabilities that each negotiation strategy

may be adopted by the opponent are dynamically updated. Finally, by comparing

these probabilities, the strategy employed by the opponent can be estimated. The

shortcomings of this approach are that (1) an agent needs special knowledge to con-

struct a reasonable state space; and (2) an agent needs a strong computation ability

to dynamically update the probability matrix for each potential strategy in each

negotiation step.

In [BK06], J. Brzostowski and R. Kowalczyk proposed an approach to predict

the opponent’s behaviors based only on the historical offers of the current negoti-

ation. The authors claimed that time and imitation are two main factors which

influence an opponent’s behaviors during negotiation. This approach allows an op-

ponent to adopt either a time-dependant strategy or a behavior-dependant strategy.
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Firstly, this approach needs to determine whether a time-dependant strategy or a

behavior-dependent strategy is employed by the opponent. In order to achieve this,

the differences between each two conjoint offers in the opponent’s historical offers are

calculated. If all the differences have the same sign (ie. all positive or all negative),

then there are more chances for the opponent to adopt the time-dependant strategy.

Otherwise, the opponent will have most likely adopt the behavior-dependent strat-

egy. In order to determine the opponent’s negotiation parameter for time-dependant

strategy, (Conceder, Linear or Boulware), the sum of differences for each order for

the opponent’s historical offers is calculated. In order to determine the opponent’s

behavior for the behavior-dependant strategy, the differences between the agent’s

offers and the opponent’s offers in each negotiation round are compared. Eventually,

the opponent’s negotiation strategy can be estimated. The shortcoming of this ap-

proach is the assumption that a time-dependant opponent should make monotonous

concessions during the negotiation. However, such an assumption is not always true

in real world negotiations.

In [FWJ04a], S. Fatima, M. Wooldridge and N. Jennings investigated negotiation

outcomes in incomplete information settings through a comparison of the difference

between two agent’s negotiation deadlines, and proposed an agenda-based frame-

work to help self-interested agents to maximize their utilities. This approach is

based on an assumption that both agents use a time-dependent strategy, and can

deliver their reservation offers at their deadlines. Since both agents do not know

the other’s deadline, they need to make a prediction of the opponent’s deadline

through observing the opponent’s negotiation behaviors. If an agent estimates that

its opponent’s deadline is earlier than its own, then the agent can wait for the oppo-

nent’s reservation offer. If the agent estimates that the opponent’s deadline is later

than its own, the agent should manage its negotiation behavior in order to avoid

a failure. This approach presents a straightforward way for agents to adjust their

negotiation behaviors based on the estimation results on the opponent’s negotiation

deadlines, but fails to consider that the opponent may adjust its behaviors during a

negotiation.

Chajewska et al. [CKO01] proposed a decision-tree approach to learning and

estimating an opponent’s utility function. The authors assumed that each agent

is rational and self-interested, and only interested in maximizing its own utility.

Firstly, a decision tree is established which contains all possible endings for a nego-

tiation, and each possible ending is assigned a particular utility value and possibility.
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Based on the opponent’s previous decisions in the decision tree, a linear function is

generated analogous to the opponent’s utility function. However, such an estimation

approach has two shortcomings: (1) if an opponent’s utility function is a non-linear

function, such as a discrete function, this estimation approach will not work well;

and (2) if an agent misses some possible negotiation endings before generating the

decision tree, the accuracy of the estimation result may be decreased.

In [GP06], Gal and Pfeffer presented a machine learning approach to predict

the opponent’s negotiation behaviors based on a statistical method. Firstly, the

proposed approach is trained by using records of different types of negotiation be-

haviors. Then an opponent’s negotiation behavior is compared with the existing

records. If the opponent’s negotiation behavior matches any existing record, then

the type of the opponent’s negotiation behavior can be confirmed. Otherwise, the

type of the opponent’s negotiation behavior will be represented as a combination of

some existing negotiation behaviors. The shortcoming of this approach is that the

performance of the estimation approach depends on the training result. If the system

cannot be trained by sufficient data to cover all types of behaviors, the performance

of the estimation result would be poor.

In this subsection, we reviewed and investigated related work in bilateral single

issue negotiation. Firstly, it is pointed out that a real world negotiation is often

processed in an incomplete information setting, and agents do not have knowledge

about an opponent’s private information. In order to efficiently reach an agreement,

agents need to be able to estimate the opponent’s negotiation behaviors. Bayesian

learning [ZS98, ZS97, NJ05, NJ06, BK06] is one of the most popular mechanisms

to achieve such prediction. However, bayesian-learning-based approaches usually

require prior knowledge about the negotiation domain and reasonable hypotheses

for the possible results, which may limit their application in real world negotiations.

Also, agenda-based [FWJ04a], decision-tree-based [CKO01], and machine-learning-

based approaches [GP06] have been proposed by researchers to predict opponents’

behaviors. However, agent-based approaches may have problems when an opponent

dynamically modifies its negotiation behaviors; decision-tree-based approaches may

have problems when the opponent’s utility function cannot be represented linearly;

and the machine-learning-based approaches may have problems when training data

is not sufficient. In order to solve these problems, a regression-based approach is

proposed in Chapter 3 to predict the opponent’s negotiation behaviors just based

on the opponent’s historical offers in the current negotiation.
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2.2.2 Bilateral Multiple Issue Negotiation

Multiple issue negotiation has become an important research topic during the last

decade. By comparison with single issue negotiation, multiple issue negotiation has

three major advantages, which are that (1) in real world applications, negotiations

between people or businesses usually include many criteria, and these multiple crite-

ria are almost impossible to be negotiated in a single issue negotiation; (2) multiple

issue negotiation is more efficient than single issue negotiation because several at-

tributes can be handled together; and (3) it is almost impossible to achieve an agree-

ment to benefit both negotiation participators in single issue negotiation. Because

agents may have different preferences in multiple issue negotiation, it is possible

that a bi-beneficial negotiation agreement can be achieved. In this subsection, the

basic approaches and procedures for multiple issue negotiation are reviewed. Some

related work for searching the bi-beneficial negotiation outcome is investigated and

discussed.

Negotiation Procedure

A bilateral multiple issue negotiation is processed between two agents. The negoti-

ation contains more than one issue. For each issue, each agent usually has an initial

offer and a reservation offer to indicate the range of acceptable values. Also, each

agent has a preference to indicate its concerns on all negotiated issues. An agent’s

preference is usually represented linearly as a series of weights. During the negotia-

tion, an agent may adopt different negotiation procedures to process the issues, and

make decisions for the following actions by considering the evaluations on all issues.

For instance, in a time-dependant strategy, if an agent’s counter-offer cannot bring

more utility than an opponent’s offer in the next negotiation round, the agent will

accept the opponent’s offer and an agreement is achieved. Otherwise, the opponent’s

offer will be rejected and the counter-offer will be sent back to the opponent. This

process is repeated until either an agreement is reached or one participator quits

the negotiation. If any participator quits the negotiation without an agreement, the

negotiation fails.

Because multiple issue negotiation has several issues to be negotiated, the ne-

gotiation procedure between single issue negotiation and multiple issue negotiation

differs greatly. In general, there are three typical procedures in multiple issue ne-

gotiation, which are the sequential procedure, the simultaneous procedure, and the
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package deal procedure [FWJ02, FWJ06b]. Each negotiation procedure defines an

order to process the negotiated issues.

∙ By using the sequential procedure, issues in a multiple issue negotiation are ne-

gotiated sequentially, one after another. A Sequential procedure is also named

as issue-by-issue procedure. In a sequential procedure, once bargaining on an

issue is completed, the negotiation outcome for this issue is fixed. The later

started negotiations on remaining issues may be impacted by the outcomes

of pervious negotiations, but cannot change the outcomes of pervious nego-

tiations. The sequential procedure is usually employed when the relationship

between negotiated issues is not absolutely independent. Therefore, while one

issue is being negotiated, the negotiation outcomes of completed issues can be

considered.

∙ By using the simultaneous procedure, issues in a multiple issue negotiation

are negotiated simultaneously, but independently. The difference between the

simultaneous procedure and the sequential procedure is that the sequential pro-

cedure processes one issue at a time, and all issues are processed in a sequential

order, while the simultaneous procedure processes all issues together. Usually,

the simultaneous procedure is employed when the relationships between nego-

tiated issues are absolutely independent.

∙ In contrast to the previous two procedures, in the package deal procedure, issues

are negotiated simultaneously as a bundle. The bundled offer from an agent to

an opponent is a package, which includes all sub-offers for each individual issue.

The agent can choose either accepting the whole offer package, or rejecting the

whole offer package, but cannot only accept some sub-offers in the package

and reject the other sub-offers in the package. The package deal procedure is

suitable for negotiating dependant issues simultaneously.

In order to compare the performance of the three negotiation procedures, Fatima,

Wooldridge and Jennings [FWJ06a] suggested four criteria to judge the negotiation

outcomes by employing these procedures, which are (1) time of agreement, (2) time

to compute equilibrium, (3) pareto optimal, and (4) unique equilibrium. Gener-

ally, criteria (1) and (2) evaluate the efficiency of each procedure, and criteria (3)

and (4) evaluate the effectiveness of each procedure. If a negotiation agreement is

in equilibrium, then no agent can increase its payoff by changing its negotiation
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Figure 2.2: An example of Pareto optimal and equilibrium.

strategy unilaterally. Equilibrium ensures the stability of the negotiation. A nego-

tiation procedure may generate one or several equilibrium outcomes. However, not

all outcomes are guaranteed to be a Pareto optimal agreement. In multiple issue

negotiation, if a change of agreement can improve an agent’s benefit on one issue

without sacrificing its benefits on other issues, such a change is named the Pareto

improvement. An agreement is Pareto optimal when no further Pareto improve-

ments can be made. Therefore, a Pareto optimal agreement is the optimal outcome

for multiple issue negotiation. The evaluation results indicate that the package deal

procedure outperforms the other two procedures by considering the effectiveness

to reach Pareto optimality. The package deal procedure theoretically ensures that

the Pareto optimality can always be reached, but the other two procedures cannot

guarantee that. However, the computational cost for Pareto optimality is huge, the

package deal procedure needs more time to find the Pareto optimality.

In Figure 2.2, an example of Pareto optimality and equilibrium is illustrated.

Suppose that Agent b and Agent s negotiate on two issues (Issue 1 and Issue 2) with

two procedures. The negotiation status by using the package deal procedure is indi-

cated by a single-line, and the negotiation status by using the sequential procedure is

indicated by a double-line. Equilibriums B and C are the two agreements achieved

by using the two procedures, respectively. Points A and B are on the Pareto frontier,

and Point B is the Pareto optimality. Point C is not the Pareto optimality, because

Point C is dominated by both Point A (uA2 > uC2 ) and Point B (uB1 > uC1 ).
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In order to overcome the disadvantages of the three common negotiation pro-

cedures, a hybrid procedure, named the coalition deal procedure, was proposed by

Dang and Huhns [DH05] for services negotiation between two interacting agents.

The purpose of the coalition deal procedure is to make a better trade-off between the

sequential procedure and the package deal procedure to provide an agent with the

flexibility to balance time and utility. The basic idea of the coalition deal procedure

is that all negotiation issues are divided into disjoint partitions. Each partition is

negotiated independently by using the sequential procedure, and issues inside the

same partition are negotiated together by using the package deal procedure. The

coalition deal procedure has the advantages of providing (i) better utility than the

sequential procedure, (ii) less computational cost than the package deal procedure,

(iii) more flexible negotiation, and (iv) better management for service negotiation.

Optimization of Multiple Issue Negotiation

In order to efficiently reach an optimal agreement in multiple issue negotiation, many

negotiation strategies, approaches and models have been proposed by researchers.

Fatima et al. [FWJ04a] proposed an agenda-based negotiation to help agents

reach the Pareto optimality. Six possible negotiation scenarios were addressed by

considering both agents’ negotiation deadline and the negotiation strategy, and an

optimal negotiation strategy was proposed for each scenario. During the negotiation,

through observing an opponent’s negotiation behavior, an agent can estimate the

state of the current negotiation by comparing with the six possible scenarios, and

performs the predefined negotiation strategy in order to optimize the negotiation

outcome. However, this approach does not consider the situation that the opponent

may change its strategy during the negotiation, which may limit its application in

dynamic negotiation environments.

In [FWJ04b], Fatima et al. introduced their studies on a bilateral two-issue

(Issues A and B) negotiation between two self-interested agents. Based on whether

a particular issue has or does not have a zone of agreement between the two agents,

the two issue negotiation can be divided into four scenarios: (1) both issues have

a zone of agreement, (2) only issue A has a zone of agreement, (3) only issue B

has a zone of agreement, and (4) both issues do not have a zone of agreement.

During the negotiation, agents can employ either the sequential procedure or the

package deal procedure. The authors proposed an optimal negotiation agenda for
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each scenario when agents employ different negotiation procedures. By following

the suggested agenda, agents will have more chance to reach an optimal negotiation

outcome. However, this approach may have a huge computational cost when the

number of negotiated issues becomes large. Agents need to consider all possible

situations before the optimal agenda can be found.

In [LLS06], a non-biased mediator is adopted to help agents to achieve Pareto

optimality and overcome the difficulty of decisions due to incomplete information

and the lack of explicit utility functions. The package deal procedure is used in this

approach. Firstly, the mediator sends an offer to both agents, and asks each agent

to return two equivalent offers. For each agent, the utility gained from the two

equivalent offers should be the same as the utility gained from the mediator’s offer.

By comparing these four equivalent offers from both negotiation participators, the

mediator may find a new offer to increase both negotiators’ utilities. This process

is repeated until the mediator cannot find a further offer to increase both partici-

pators’ utilities. The final agreement is an approximate value of Pareto optimality.

However, such a mediator approach has two shortcomings: (1) in real world negoti-

ation, it will be hard to find a non-biased meditator simultaneously trusted by both

agents; and (2) after submitting their offers to the mediator, the agents can do noth-

ing but just wait for the mediator’s instructions. If the number of negotiated issues

is large, such a wait will be long and the negotiation process will become inefficient.

In order to solve the limitations caused by the mediator, in [LSL07], this approach is

extended through replacing the mediator’s role by negotiation participators. How-

ever, when an agent delivers its equivalent offers to its opponent, the agent also

takes the risk that its negotiation preference may be leaked to the opponent (if the

opponent compares the differences between these equivalent offers). Therefore, this

mechanism may not be widely applied in real world negotiations, especially between

self-interested agents.

Hindriks and Tykhonov [HT08] proposed a generic framework based on a Bayesian

model to learn an opponent’s negotiation behavior in multiple issue negotiation. The

purpose of this framework is to learn both the opponent’s negotiation preference and

the utility function. The opponent’s preference is estimated based on an assumption

that the opponent will make a greater concession on a less-valued issue and a smaller

concession on a more-valued issue. Through comparing the opponent’s concessions

for each issue, the opponent’s preference can be estimated. In order to learn the op-

ponent’s utility function, three basic functions are proposed. The opponent’s utility
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function is finally represented as a combination of the three possible functions. By

using the estimated preference and utility function, an agent can efficiently search

for an optimal negotiation outcome. However, this approach can only generate a

satisfying result when the opponents perform a relative simple behavior. If the op-

ponent’s behavior becomes complex and changeful, it will not be estimated easily

and an optimal negotiation outcome may not be reached effectively.

In [JR04], C. Jonker and V. Robu presented a model for integrative bilateral

multiple issue negotiation, in which the package deal procedure is adopted. In this

model, an opponent may agree to reveal its preference on issues of less-concern, but

still keeps its preference private for high-concern issues. A heuristic guessing strat-

egy is proposed to estimate the opponent’s preference for those high-concern issues

based on existing incomplete preference knowledge and the opponent’s historical

offers. Finally, complete knowledge of the opponent’s preference can be estimated.

The estimated preference can be employed by an agent to search for the optimal

outcome. However, this model may have a problem in a real world negotiation when

an opponent would not like to reveal any information about its preference.

In [FWJ09], Fatima et al. studied bilateral multi-issue negotiation between self-

interested agents whose utility functions are nonlinear. The authors argued that

even though the package deal procedure leads multiple negotiation to Pareto opti-

mality, computing the equilibrium for the package deal procedure is not always easy,

especially for non-linear utility functions. In order to solve such a problem, the

authors introduced two approaches: (1) to approximate non-linear utility functions

by linear functions; and (2) to use the simultaneous procedure to negotiate issues

in parallel but independently. By employing these two approaches, the approxi-

mate equilibrium will be found in polynomial time. This paper also showed that

although the package deal procedure is known to generate Pareto optimal outcomes,

the simultaneous procedure may outperform in some cases by considering economic

properties. However, the first approach may fail to reach an optimal outcome when

an approximate linear is hard to find, and the second approach may fail to reach an

optimal outcome when the negotiated issues are not absolutely independent.

In this subsection, we reviewed and investigated related work in bilateral multi-

ple issue negotiation. At the beginning, we pointed out that a bi-beneficial agree-

ment may be achieved in multiple issue negotiation, and reviewed three common
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negotiation procedures. In order to efficiently achieve optimal negotiation out-

comes, several approaches are investigated and discussed. The agenda-based ap-

proach [FWJ04a, FWJ04b] predefines the optimal negotiation strategies by consid-

ering possible situations during the negotiation. However, when an environment

setting becomes complex, such as the number of negotiated issues becomes large, or

the environment becomes dynamic, the agenda-based approach may become ineffi-

cient. The mediator-based approach [LLS06, LSL07] introduces a mediator to help

agents search for the optimal outcome. During a negotiation, a mediator will possess

complete information on both negotiation participators, and search for an optimal

negotiation outcome for them. However, in a real life situation, such a non-biased

mediator, who is trusted by both negotiation participators, may not be hard to find.

Learning approaches [HT08, JR04] are also employed in multiple issue negotiation

to predict opponent’s preferences. However, these approaches may face the same

problem when necessary prior knowledge cannot be acquired. Because the Pareto

optimality is not easily achieved in a non-linear situation, an approximate optimal

outcome [FWJ09] is proposed to increase the computational efficiency. However, ap-

proximate optimality is still not the best solution. In order to solve these problems,

an opponent’s preference prediction approach and an optimization approach for mul-

tiple issue negotiation will be proposed in Chapter 4 of this thesis to efficiently and

effectively search for optimal negotiation outcomes.

2.3 Multilateral Level

In this section, techniques and approaches for multilateral negotiations are reviewed.

Subsection 2.3.1 investigates and discusses main related work on negotiation part-

ner selection, and Subsection 2.3.2 reviews the main related work for multilateral

negotiation.

2.3.1 Negotiation Partner Selection

In multilateral negotiation, an agent may negotiate with many opponents. How-

ever, not all opponents have the potential to reach an agreement with the agent.

For example, some opponents may suddenly leave off a negotiation midway; some

opponents have lower qualifications than the agent’s requirement; and some oppo-

nents do not have an agreement zone with the agent. Therefore, it is not necessary
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for the agent to perform a sophisticated negotiation with all opponents. In this Sub-

section, we investigate and discuss the main related work for filtering out unqualified

opponents before a multilateral negotiation starts.

Social network analysis has been used for a long time by sociologists as a mech-

anism to infer and explain social behaviors. In [SS01], J. Sabater and C. Sierra

used techniques in social network analysis in a reputation system to solve partner

selection problems in multilateral negotiation. They proposed a reputation model

to monitor how an existing contract is fulfilled by an opponent. If the fulfillment

of the contract from an opponent is worse than that promised, then the opponent

will be assigned a low score on its reputation. If the fulfillment of the contract of an

opponent is better than expected, opponent will have a high score on its reputation.

Once an agent needs to select partners for a future negotiation, the reputation scores

for each potential opponent will be employed as references to decide whether an op-

ponent will be selected. The shortcoming of this approach is that if an agent never

had an interaction with an opponent before, then the agent would lack historical

records as a reference to judge the opponent’s fulfillment ability, and to perform an

efficient selection.

The trust-based approach is also one of the most popular mechanisms for partner

selection. In [RJSG04], Ramchurn et al. proposed a trust-based model to consider

both confidence and reputation in evaluating a negotiation partner. The confidence

is an agent’s personal view on a negotiation partner, which is generated by the

agent itself based on evidence from past direct interactions with the partner. The

reputation is a social view of a negotiation partner, which indicates the perception of

groups of agents on the negotiation partner’s ability. Usually, the reputation can be

acquired from other trusted agents. When a potential partner needs to be evaluated,

both confidence and reputation of the partner are combined as a trust. The value

of trust can be used to determine which partners are selected for a negotiation. By

comparson with Sabater’s approach [SS01], this approach takes both individual and

social opinions into account when an opponent is evaluated. However, it still has a

limitation in handling the evaluation on a new opponent.

As shown in [SS01, RJSG04], when an agent needs to decide whether an opponent

can be selected, the agent’s past experience with the opponent or the opponent’s

reputation provided by a third-party agent is usually considered. However, Fullam

and Barber [FB07] argued that not all information for trust computation is accurate

and reliable, and may be influenced by parameters such as: frequency of transactions
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with the opponent, trustworthiness of the opponent, and accuracy of the provided

reputations. To address such a problem, the authors proposed a Markov Decision

Process (MDP) for dynamically learning the best source of trust information. In

MDP, both an experience resource and a reputation resource are considered, and a

learning process is introduced to dynamically balance between these two information

resources. Opponents which are believed to have a potential ability to fulfill an

agent’s requirement will be finally selected.

Brzostowski and Kowalczyk [BK05, BK04] proposed a possibilistic model based

on Case-Based Reasoning (CBR) theory [Lea96, GS95] to solve the partner selection

problem. Firstly, negotiations in the historical records are summarized by consider-

ing a situation attribute and an outcome attribute. The situation attribute indicates

an opponent’s negotiation behavior in the historical records, and the outcome at-

tribute indicates the historical outcome by negotiating with the opponent. Based on

an assumption that “the more similar the situation description attributes are, the

more likely that the outcome attributes are similar”, the possibility that a successful

negotiation may be performed with each potential opponent is estimated. Through

comparing an opponent’s situation attribute with the historical records, the oppo-

nent’s situation can be approximated by existing cases. Then the potential outcome

through negotiating with the opponent can be estimated. Finally, all potential op-

ponent are ranked according to the expected outcome. In [BK07], this work was

extended by employing a Fuzzy Logic function [YRP94, KY95]. A fuzzyfication is

used in the case matching process to improve the efficiency of this model. However,

such a case-based approach may have a shortcoming when applied in a dynamic en-

vironment, ie. because an opponent may modify its behavior during a negotiation,

a similar situation attribute may not result in a similar outcome attribute.

Munroe et al. [MLd04, ML05] proposed a motivation-based partner selection

mechanism to evaluate identified opponents. Opponents are evaluated in terms

of the amount of conflict they are expected to bring to a negotiation, and the

amount of cost they are expected to spend in the negotiation. To perform the

selection process, firstly, an agent sends its negotiation goal, negotiable attributes,

and an opponent’s historical information to an issue analyser. The issue analyser

calculates a possible conflict between the agent and the opponent. Then information

about current negotiation resources, the agent’s reservation, and the opponent’s

price profile are sent to a resource manager. The resource manager calculates the

expected cost of the opponent. Then, both the possible conflict and expected cost
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are sent to an opponent rater to rank the opponent. Finally, opponents are selected

based on the ranking results. The advantage of this approach is to consider both

potential conflicts and costs, but the selection process is not sensitive to a dynamic

environment, such as an e-marketplace.

Banerjee and Sen [BS00] proposed a multinomial distribution-based mechanism

for partner selection. The purpose of this mechanism is to select an opponent who is

most likely to return a maximum total utility. Firstly, for each potential opponent,

a payoff-structure is constructed, which indicates all possible utilities that an agent

may gain by negotiating with the opponent. Then pairwise comparisons among

all opponents’ payoff-structures are performed. Finally, the opponent who has the

greatest probability of offering the maximum utility to the agent will be selected.

However, for an unknown opponent, the payoff-structure is usually not available,

and the selection result may not be effective.

In this subsection, some related work for partner selection was reviewed and

discussed. Different criteria were considered to evaluate a potential opponent. In

detail, the approaches introduced in [SS01, RJSG04, FB07] focus on an opponent’s

reputation, the approach introduced in [BK05, BK04] is based on the dependency

between an opponent’s negotiation setting and the negotiation outcome, the ap-

proaches in [MLd04, ML05] consider both negotiation conflicts and costs, and the

approach in [BS00] considers the expected utility. However, all of these approaches

consider only an agent’s own benefit when a partner is evaluated, but not the ben-

efits of all negotiation participators. In Chapter 5, a dual-concern-based partner

selection approach is proposed to overcome this limitation by the consideration and

balance of both an agent’s and the opponents’ benefits during the process of partner

selection.

2.3.2 Multilateral Negotiation

In this subsection, the main related work on the negotiation strategies, protocols

and models in multilateral negotiation are investigated and discussed. Both a static

negotiation environment and a dynamic negotiation environment are considered.

Static Environment

In [NJ03, NJ04a, NJ04b], Nguyen and Jennings proposed a flexible model about

commitments in multilateral negotiations. In order to maximize an agent’s utility in
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multilateral negotiation, a coordinator and a commitment manager are introduced.

Each bilateral negotiation is represented as a single thread. During the negotiation,

the coordinator decides the negotiation strategies for each thread. After each round,

each thread reports its negotiation status to the coordinator. If any thread reaches

an agreement with a particular opponent, this thread will be terminated and waits

for the negotiation deadline. Then the coordinator notices other threads about the

new reservation for the negotiation, and may modify negotiation strategies for these

threads. The commitment manager handles commitment and decommitment issues.

For instance, the commitment manager needs to decide whether a proposed offer

from a thread should be accepted based on the agent’s current commitment and its

decommitment strategy. If a new offer can increase the agent’s utility after a decom-

mitment fee, then the commitment manager will renege from an existing committed

deal. Otherwise, the existing committed deal will not be replaced. The result of

the commitment manager on each new offer will be passed through the coordinator

for cross checking with other threads before getting back to the calling thread. By

following such a process, the agent can maximize its utility in a multilateral nego-

tiation. However, this model may not work properly in a dynamic environment,

because an opponent who makes a contract with the agent may also decommit the

contract, and this model does not take this situation into account.

Hemaissia et al. [HSLM06, HSLM07] introduced a multilateral multi-issue ne-

gotiation protocol for a cooperative context. In order to take into account the com-

plexity that exists between the negotiated issues, a multi-criteria decision aiding

(MCDA) tool named MYRIAD [LH05] is employed. At the beginning of a negotia-

tion, a mediator makes a proposal and broadcasts the proposal to all agents. Once

an agent receives the proposal, the agent will make a decision based on its situation.

If the agent has no chance to gain more benefit than the proposal in the remain-

der of the negotiation, then the agent has to accept the proposal. Otherwise, the

agent will reject the proposal and return a counter-proposal to the mediator. Then

the mediator will make a new proposal by considering all counter-proposals from

unsatisfied agents. This process will be repeated until a proposal is accepted by all

agents or no more proposal can be made by the mediator, in which case all agents

must accept a predefined default proposal. However, by employing such a protocol,

even though an all-acceptable agreement can be reached among negotiators, such

an agreement may not be the optimal outcome.
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In [End06], Endriss analyzed several key issues in bilateral negotiation and pro-

posed a monotonic concession protocol for multilateral negotiation. This protocol

contains three major steps: (1) all agents make their initial proposal at the first

round of a negotiation; (2) in each negotiation round, each agent either makes a

concession or sticks with its current proposal; and (3) Step (2) is repeated until

either a conflict situation arises (no agent makes a concession) or an agreement is

reached. In addition, in order to help agents to efficiently reach an all accepted

agreement, seven concession strategies for different negotiation strategies are pro-

posed. Each concession strategy has both advantages and disadvantages. However

only strong concession, weak concession and Pareto concession are proven to be ver-

ifiable in a multilateral negotiation. Finally, five common negotiation strategies are

introduced to help agents to efficiently reach an agreement. However, this protocol

cannot handle an upcoming outside option in a dynamic negotiation environment.

Dynamic Environment

In this subsection, negotiation models for dynamic environments are investigated

and discussed.

Sim et al. [Sim02, SC03] introduced a market-driven model to help agents to

make adjustable rates of concession by reacting to changing market situations. To

determine the amount of concession for each negotiation round in a multilateral

environment, four mathematical functions are proposed to guide agents in mak-

ing decisions, which are trading opportunity function, trading competition function,

trading time function, and eagerness function. The trading opportunity function

monitors the probability that an agent’s proposal can be accepted by at least one

of its negotiation opponents. Usually, the higher the probability, the more chance

that the agent can get the expected utility, and the less concession the agent would

like to make during the negotiation. The trading competition function monitors

the situation of competition in a marketplace. Usually, an agent will make a large

concession when the competition is high, and a small concession when the compe-

tition is low. The trading time function calculates an agent’s concession based on

time consideration. Negotiation tactics, such as Boulware, Concedure and Linear,

are employed in this function. Finally, the eagerness function monitors an agent’s

eagerness to achieve an agreement for the current negotiation. A higher eagerness

will lead to a greater concession during the negotiation, while a lower eagerness will
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lead to a smaller concession. By employing these four functions, an agent can make

reasonable concession in a multilateral negotiation in order to maximize its utility,

and also efficiently reach agreement.

In [OR01], Oliveira and Rocha proposed an e-market architecture model to han-

dle agent negotiation in dynamic e-marketplaces. In this model, each participator of

an e-market is served by two software agents, ie. a market agent and a organization

agent. The market agent focuses on the pre-processing of a negotiation, and the

organization agent controls the negotiation process. Once an e-market participa-

tor submits its requirement for a particular item to the system, the market agent

will represent the requirement as several sub-goals. Meanwhile, the market agent

will send a set of invitations (one for every sub-goal) to the system, and perform

a partner selection process to filter out unfavorable opponents before a negotiation

starts. Once the negotiation partners are confirmed, the organization agent will

perform a negotiation between these partners by considering both the individual

and e-market’s situations. During the negotiation, the organization agent will dy-

namically update information about the e-market, and may modify its negotiation

behaviors when necessary. Finally, when an agreement is achieved, the organization

agent will execute the contract that it committed to.

Li et al. [LSG05, LGS06] proposed a synchronized multi-threaded process and a

dynamic multi-threaded process to handle the multilateral negotiation in both static

and dynamic negotiation environments, respectively. Each bilateral negotiation be-

tween an agent and an opponent is considered as a single-threaded process. For the

synchronized multi-threaded process without considering future possible upcoming

outside options, the expected utility for each single-threaded process is estimated in

each negotiation round by four heuristic approaches, which are conservative estima-

tion, medium estimation, uniform approximation, and learning. Then in order to

maximize self’s utility, the agent will adjust its attentions among opponents based

on the estimation of expected utilities. For the dynamic multi-thread process con-

sidering future possible upcoming outside options, a Poisson process is proposed

to predict the number of upcoming outside options in the next round or few nego-

tiation rounds. Then, by employing the historical records of each single-threaded

process and the estimation approaches in the synchronized multi-threaded process,

the utility that the agent expected from the dynamic multi-threaded process is pre-

dicted. The agent can use this predicted result to adjust its negotiation strategies

and reservation offers for each single-threaded process within a dynamic multi-thread
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process.

In this subsection, we investigated and discussed strategies, approaches and

models for multilateral negotiations. The approaches introduced in [NJ03, NJ04a,

NJ04b, HSLM06, HSLM07, End06] focus on a static environment. The limitation of

these approaches is that future possible outside options are not considered. There-

fore, once a multilateral negotiation starts, the outside options cannot join the nego-

tiation anymore. However, by considering real-life negotiations, such as negotiation

in e-marketplaces, the future possible upcoming outside options should be consid-

ered. Although the approaches introduced in [Sim02, SC03, OR01, LSG05, LGS06]

can handle negotiations in a dynamic environment, they can still be improved in

two aspects: (1) to predict the future possible changes of a dynamic environment

actively, but not just monitor the changes of the environment passively; and (2) to

consider multiple preferences when agents negotiate with different opponents. In

order to solve these two problems, a market-driven based approach is proposed in

Chapter 6 to deal with single issue negotiation in dynamic multilateral environ-

ments, and a market-based approach is proposed in Chapter 7 to handle multiple

issue negotiation in dynamic multilateral environments.

2.4 Multi-Negotiation Level

The Multi-Negotiation Level represents a situation in which an agent needs to per-

form several negotiations in order to reach a global goal, and relationships between

these negotiations are somehow related. At the present time, not very much work

has been done on this level. In this section, some related work on multiple related

negotiations is reviewed and discussed.

2.4.1 Multiple Related Negotiation

Zhang et al. proposed a meta-level coordination approach to solve a negotiation

chain problem in a semi-cooperative multi-agent system [ZL02, ZLA05, ZL07]. In

a complex negotiation chain scenario, agents need to concurrently perform several

negotiations in order to complete their goals on time. The order and structure in

which negotiations occur may impact on the performance of both individual agents

and the whole system. A pre-negotiation approach is introduced to transfer meta-

level information, such as starting time, deadlines and durations of negotiation to
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decision factors. By using these factors, agents can estimate the success rate for each

concurrent negotiation, and model the flexibility for the negotiation. For example,

when a consumer agent wants to purchase a computer and some computer hardware,

the consumer agent negotiates with a computer producer agent on issues related to

the computer and a hardware producer agent on issues related to the hardware at

the same time. The computer producer agent needs to arrange procedures of get

hardware, get software, install software, and shipping computer according to the

time series. The hardware producer agent needs to handle requests from both the

consumer agent and computer producer agent at the same time. The outcome of

these complex negotiations is a well organized time series that can ensure both

the computer and the hardware can be delivered to the consumer agent on time.

However, the shortcoming of this approach is that only the time information is

considered to arrange related negotiations, without specification of how to maximize

the global utility considering all related negotiations.

He et al. [HRLJ06] proposed an approach to solve the optimization problem in

Supply Chain Management (SCM). In order to handle procedures of components

order, computer assembly, customer order and customer delivery for a computer

manufacturer, a component agent, a factory agent and a customer agent are pro-

posed. Each agent works in a specified procedure to maximize local payoffs. Mean-

while, agents cooperate to maximize the global outcome. A market predictor and a

price tracker are employed by a component agent to estimate market situations for

a computer component. Fuzzy rules are employed by a customer agent to heuristi-

cally calculate offer prices for customers. Also a production scheduling strategy is

employed by a factor agent to allocate supply resources and factory time. However,

this approach only solves the optimization problem for cooperative negotiations, and

does not handle competitive situations.

Proper and Tadepalli [PT09] proposed an assignment-based decomposition ap-

proach by employing the Markov Decision Process (MDP) to solve an optimal deci-

sion making problem in an assignment decomposition between multiple collaborative

agents. A centralized controller which has relevant information about the states of

all agents is assumed in their approach. The approach contains two levels, where

the upper level focuses on task assignment, and the lower level focuses on task ex-

ecution. The centralized controller solves the assignment problem through a search

algorithm and solves the task execution problem through coordinated reinforcement

learning. After the controller solves problems in these two levels, solutions will
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be sent to agents for implementation. However, this approach still only considers

a cooperative environment, and fails to handle related negotiations in competitive

environments.

In summary, the approaches introduced in [ZL02, ZLA05, ZL07] employed a

meta-level coordination approach to solve negotiation chain problems by consider-

ing time series, but not attempting to maximize the global utility. The approaches

in [HRLJ06, PT09] introduced optimization approaches for multiple related negotia-

tions, but only a cooperative situation is considered, and may not handle a compet-

itive environment. In order to solve these problems, a Multi-Negotiation Network

(MNN) and a Multi-Negotiation Influence Diagram (MNID) are proposed in Chapter

8 to optimize the outcome of multiple related negotiations. The proposed approach

can be used in both cooperative and competitive negotiations.

2.5 Summary

Agents usually need to modify their negotiation strategies, approaches and proto-

cols when a negotiation environment changes. At the beginning of the chapter, we

indicated how different complexity levels of negotiation environments affect agent

negotiation behaviors. Some related work in each level is investigated and discussed

in detail, which include agent behavior prediction (Subsection 2.2.1), optimization

of multiple issue negotiation (Subsection 2.2.2), negotiation partner selection (Sub-

section 2.3.1), multilateral negotiation (Subsection 2.3.2), and multiple related nego-

tiation (Subsection 2.4.1).

Even though many researchers have proposed different negotiation protocols, ne-

gotiation procedures, negotiation strategies, and negotiation models to solve these

research issues in different levels, limitations still exist which require further re-

search and improvement. This thesis proposes several new approaches to solve some

limitations of current approaches in each negotiation level. Firstly, a regression-

based partner behavior prediction approach is proposed to efficiently estimate an

opponent’s negotiation behaviors in bilateral negotiation (Chapter 3). Secondly, an

algebraic algorithm and a geometric algorithm are proposed to search for mutually

beneficial agreement in bilateral multiple issue negotiation (Chapter 4). Thirdly, lin-

ear and non-linear partner selection approaches are proposed to filter out unqualified

partners before negotiations are performed between multilateral parties (Chapter 5).

Fourthly, a market-driven negotiation approach is proposed to handle single issue
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negotiations in a dynamic multilateral environment (Chapter 6). Fifthly, a market-

based negotiation approach is proposed to handle multiple issue negotiations in a

dynamic multilateral environment (Chapter 7). Lastly, a Multi-Negotiation Network

and a Multi-Negotiation Influence Diagram are proposed to handle multiple related

negotiations, and to optimize the outcome of these related negotiations (Chapter 8).

The following chapters will concentrate on solving each individual problem, and

on overcoming the limitations of previous work.



Chapter 3

Agent Behavior Prediction in Bilateral
Single Issue Negotiation

Chapters 3 and 4 focus of research issues on the bilateral negotiation, (the first level

of our proposed hierarchical negotiation view).

3.1 Introduction

In this chapter, an agent behavior prediction approach in bilateral single issue nego-

tiation is introduced. As described in Subsection 2.2.1, in most situations, agents do

not have complete information about their opponents, which may cause difficulties

to make a decision on future negotiation, such as how to select suitable partners

for further negotiation [BK04, MLd04] or how to generate a suitable counter-offer

for the next negotiation round [PSJ98]. Estimation approaches which can predict

uncertain situations and possible changes in future are required for helping agents

to perform efficient negotiation by considering uncertainties. Research on such an

issue has been an active area in recent years. Many estimation approaches have

been proposed [ZS98, CN04, CKO01, RZ07b, RZ07a] to handle the opponent be-

havior estimation problem. However, these estimation approaches still have some

limitations in terms of the efficiency and effect of the estimation results.

Bayesian learning [ZS98, ZS97, NJ05, NJ06, BK06] is one of the most popular ap-

proaches to estimate an opponent’s behavior. The Bayesian-learning-based [BK07]

approaches usually contain two steps. Firstly, based on the prior domain knowl-

edge about a negotiation and hypotheses on the possible negotiation outcomes, a

Bayesian learning algorithm can be generated to represent the likelihood for each

hypothesis. Secondly, during a negotiation, the likelihood for each hypothesis is dy-

namically updated according to an opponent’s negotiation behaviors, and an agent

45
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can find the most possible negotiation outcome based on its hypotheses. How-

ever, when the domain knowledge is not available, and/or an agent cannot generate

reasonable hypotheses for possible negotiation outcomes, the performance of the

Bayesian-learning-based approaches will be limited.

Machine learning [GP06] is another kind of popular mechanism adopted by re-

searchers in agent behavior estimation. In general, this kind of approach contains

two steps in order to properly estimate an opponent’s behavior. In the first step,

the proposed estimation function is required to be well trained by training data.

Therefore, the performance of the estimation function is somehow decided by the

training result. The training data could be both synthetic or collected from the

real world. Usually, synthetic data are helpful in training a function to enhance

its problem solving skill for some particular issues, while real world data can help

the function to improve its ability in complex problem solving. After the estimation

function is trained, the function is employed to predict an opponent’s behavior in the

second step. However, no matter how many data are employed to train the estima-

tion function, the training data may still not be comprehensive enough to cover all

situations in reality. Therefore, it is very likely that the behavior estimation results

cannot truly reflect an opponent’s behavior which is not included in the training

data. Also, when the negotiation environment becomes open and dynamic, agents

with different negotiation purposes, preferences and strategies can enter and leave a

negotiation process dynamically. The machine learning based agent behavior esti-

mation approaches may not work well in such an uncertain situation by considering

the limitations of (1) lack of sufficient data to train the system and (2) requesting

plenty of resources in each training process.

In order to address those issues mentioned above, in this chapter we propose

three regression functions to analyze and estimate an opponent’s behaviors in nego-

tiation, which are linear, power and quadratic regression functions. By comparison

with Bayesian learning and machine learning mechanisms, the proposed approach

only uses the historical offers in the current negotiation to estimate an opponent’s

behaviors without requiring any additional training process or domain knowledge,

so it is suitable to be used in an open and dynamic negotiation environment. Also,

because the proposed approach does not make any strict assumption on an agent’s

negotiation strategy, it can be employed widely in negotiation by different types

of agents. Furthermore, the proposed approach not only estimates an opponent’s

possible behaviors in the future, but also provides the likelihood for each predicted
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behavior.

The rest of this chapter is organized as follows: Section 3.2 introduces some

general agent behaviors in negotiation. Section 3.3 introduces the three proposed

regression functions, respectively. Section 3.4 introduces the approach to predict an

opponent’s behaviors by employing the regression functions. Section 3.5 illustrates

the performance of the proposed regression functions through experiments. Section

3.6 summarizes this chapter.

3.2 An Agent’s Behavior in Negotiation

In this section, we introduce some general agent behaviors in single-issue bilateral

negotiations. Generally, there are four kinds of behaviors which agents usually per-

form in a negotiation. The four possible behaviors are Boulware, Linear, Conceder

and Sit-and-Wait [FWJ04a, Sim05].

Figure 3.1: Agents’ behaviors in negotiation

In Figure 3.1, we illustrate the four possible agent behaviors. Let the x-axis

stand for the negotiation rounds and the y-axis stand for the concession that an

agent can make in negotiation. Details of the four possible behaviors are as follows:

∙ Boulware: the rate of change in the slope is increasing, corresponding to small

concessions in the early rounds but large concessions in the later rounds.

∙ Linear: the rate of change in the slope is zero, corresponding to making a

constant concession throughout whole negotiation.
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∙ Conceder: the rate of change in the slope is decreasing, corresponding to large

concessions in the early rounds but small concession in the later rounds.

∙ Sit-and-Wait: the rate of change of the value of slope and the slope itself

are always zero, corresponding to not making any concession throughout a

negotiation.

Since the curves of an agent’s possible behaviors illustrated in Figure 3.1 are

monotonic, so we introduce three regression functions to predict an opponent’s be-

havior in the single-issue bilateral negotiation for different accuracy purposes.

3.3 Regression Analysis in Agent Negotiation

3.3.1 Linear Regression Function

Firstly, we propose the linear regression function as follows:

R(t) = b× t+ a (3.1)

where t (0 ≤ t ≤ �) denotes the negotiation time and a, b are the coefficients which

need to be calculated. Both coefficients a and b are independent of t.

Let pairs (t0, û0), . . . , (tn, ûn) be the historical offers from an opponent in a ne-

gotiation, where ti (ti < ti+1) indicates the negotiation round and ûi (ûi ≤ ˆui+1)

indicates the utility that an agent gained from the opponent. Let "i be the difference

between the estimated results (ui, ui = R(ti)) and the real utility (ûi) at round ti.

It is assumed that all "i obey the Normal distribution, then each historical offer can

be represented as ûi = b× ti + a+ "i, and the joint probability density function for

ûi is defined as follows:

L =
n∏
i=1

1

�
√

2�
exp[− 1

2�2
(ûi − bti − a)2]

= (
1

�
√

2�
)n exp[− 1

2�2

n∑
i=1

(ûi − bti − a)2] (3.2)

In order to minimize the error between the predicted results and real utilities

(ie. maximize L), obviously
∑n

i=1(ûi − bti − a)2 should achieve its minimum value.

Let

Q(a, b) =
n∑
i=1

(ûi − bti − a)2 (3.3)
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We calculate the first-order partial derivative for Q(a, b) on a and b respectively,

and let the results equal to zero as follows:⎧⎨⎩
partialQ
partiala

= −2
∑n

i=1(ûi − bti − a) = 0

partialQ
partialb

= −2
∑n

i=1(ûi − bti − a)ti = 0

(3.4)

Then it equals: ⎧⎨⎩
na+ (

∑n
i=1 ti)b =

∑n
i=1 ûi,

(
∑n

i=1 ti)a+ (
∑n

i=1 t
2
i )b =

∑n
i=1 tiûi

(3.5)

Because the value of Equation 3.5’s coefficient matrix is:∣∣∣∣∣ n
∑n

i=1 ti∑n
i=1 ti

∑n
i=1 t

2
i

∣∣∣∣∣ = n
n∑
i=1

t2i − (
n∑
i=1

ti)
2 (3.6)

= n
n∑
i=1

(ti − t)2 ∕= 0

So both coefficients a and b have an unique solution, which is:⎧⎨⎩
a =

∑n
i=1 ûi

∑n
i=1 t

2
i−

∑n
i=1 ti

∑n
i=1 tiûi

n
∑n
i=1 t

2
i−(

∑n
i=1 ti)

2

b =
n
∑n
i=1 tiûi−

∑n
i=1 ti

∑n
i=1 ûi

n
∑n
i=1 t

2
i−(

∑n
i=1 ti)

2

(3.7)

Then by employing the coefficients a and b, a linear regression function can

be generated. The advantage of the linear regression function is that it is easily

implemented. However the disadvantage of the linear regression is that it can only

represent the opponent’s behaviors, which belong to Linear and Sit-and-Wait as

follows:

∙ Linear: when b ∕= 0, the rate of change in the slope is zero, corresponding to

a constant concession throughout a negotiation.

∙ Sit-and-Wait: When b = 0, the rate of change of the slope and the value

of slope itself are always zero, corresponding to not making any concession

throughout a negotiation.
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3.3.2 Power Regression Function

In order to represent all possible opponent’s behaviors, we propose a power regression

function as follows:

R(t) = a× tb (3.8)

Firstly, we perform the equivalence transformation on Equation 3.8:

ln(R(t)) = ln(a× tb) = ln(a) + b× ln(t) (3.9)

Let u∗ = ln(R(t)), a∗ = ln(a) and t∗ = ln(t), Equation 3.9 can be rewritten as

u∗ = a∗ + b × t∗. Then by employing the approach introduced in the Subsection

3.3.1 (see Equations 3.2 to 3.5), we can obtain solutions for coefficients a and b as

follows: ⎧⎨⎩
a = exp(

∑n
i=1 û

∗
i

∑n
i=1 t

∗2
i −

∑n
i=1 t

∗
i

∑n
i=1 t

∗
i u
∗
i

n
∑n
i=1 t

∗2
i −(

∑n
i=1 t

∗
i )2

)

b =
n
∑n
i=1 t

∗
i û
∗
i−

∑n
i=1 t

∗
i

∑n
i=1 u

∗
i

n
∑n
i=1 t

∗2
i −(

∑n
i=1 t

∗
i )2

(3.10)

Compared with the linear regression function, the power regression function can

represent all four common behaviors of an opponent as follows:

∙ Boulware: when b > 1, the rate of change in the slope is decreasing, corre-

sponding to small concessions in the early rounds but large concessions in later

rounds.

∙ Linear: when b = 1, the rate of change in the slope is zero, corresponding to

a constant concession throughout a negotiation.

∙ Conceder: when 0 < b < 1, the rate of change in the slope is increasing,

corresponding to large concessions in the early rounds but small concessions

in the later rounds.

∙ When b = 0, the rate of change of the slope and the value of slope itself

are always zero, corresponding to not making any concession throughout a

negotiation.

3.3.3 Quadratic Regression Function

Using a quadratic regression function is another option to represent an opponent’s

possible behaviors. The quadratic regression function is proposed as follows:

R(t) = a× t2 + b× t+ c (3.11)
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Let x = t2 and y = t, then Equation 3.11 is firstly transferred to a linear function

as follows:

R(t) = a× x+ b× y + c (3.12)

The joint probability density function for the difference between the predicted

value ui and the real value ûi is:

L =
n∏
i=1

1

�
√

2�
exp[− 1

2�2
(ûi − axi − byi − c)2] (3.13)

= (
1

�
√

2�
)n exp[− 1

2�2

n∑
i=1

(ûi − axi − byi − c)2]

In order to minimize the prediction error (maximize L in math),
∑n

i=1(ûi−axi−
byi − c)2 should achieve its minimum value. Let

Q(a, b, c) =
n∑
i=1

(ûi − axi − byi − c)2 (3.14)

We calculate the first-order partial derivative for Q(a, b, c) on a, b and c, and let

the results equal to zero.⎧⎨⎩
partialQ
partiala

= −2
∑n

i=1(ûi − axi − byi − c)xi = 0

partialQ
partialb

= −2
∑n

i=1(ûi − axi − byi − c)yi = 0

partialQ
partialc

= −2
∑n

i=1(ûi − axi − byi − c) = 0

(3.15)

Equation 3.15 can be rewritten as follows:⎧⎨⎩
(
∑n

i=1 x
2
i )a+ (

∑n
i=1 xiyi)b+ (

∑n
i=1 xi)c =

∑n
i=1 xiûi

(
∑n

i=1 xiyi)a+ (
∑n

i=1 y
2
i )b+ (

∑n
i=1 yi)c =

∑n
i=1 yiûi

(
∑n

i=1 xi)a+ (
∑n

i=1 yi)b+ nc =
∑n

i=1 ûi

(3.16)

Then let

PU =

∣∣∣∣∣∣∣∣
∑n

i=1 x
2
i

∑n
i=1 xiyi

∑n
i=1 xi∑n

i=1 xiyi
∑n

i=1 y
2
i

∑n
i=1 yi∑n

i=1 xi
∑n

i=1 yi n

∣∣∣∣∣∣∣∣ (3.17)

PA =

∣∣∣∣∣∣∣∣
∑n

i=1 xiûi
∑n

i=1 xiyi
∑n

i=1 xi∑n
i=1 yiûi

∑n
i=1 y

2
i

∑n
i=1 yi∑n

i=1 ûi
∑n

i=1 yi n

∣∣∣∣∣∣∣∣ (3.18)
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PB =

∣∣∣∣∣∣∣∣
∑n

i=1 x
2
i

∑n
i=1 xiûi

∑n
i=1 xi∑n

i=1 xiyi
∑n

i=1 yiûi
∑n

i=1 yi∑n
i=1 xi

∑n
i=1 ûi n

∣∣∣∣∣∣∣∣ (3.19)

PC =

∣∣∣∣∣∣∣∣
∑n

i=1 x
2
i

∑n
i=1 xiyi

∑n
i=1 xiûi∑n

i=1 xiyi
∑n

i=1 y
2
i

∑n
i=1 yiûi∑n

i=1 xi
∑n

i=1 yi
∑n

i=1 ûi

∣∣∣∣∣∣∣∣ (3.20)

Because PU ∕= 0, so coefficients a, b and c have an unique solution as follows:⎧⎨⎩
a = PA

PU

b = PB
PU

c = PC
PU

(3.21)

The quadratic regression function can also represent the four common behaviors

of agents as follows:

∙ Boulware: when a > 0, the rate of change in the slope is decreasing, corre-

sponding to small concessions in the early rounds but large concessions in later

rounds.

∙ Linear: when a = 0 and b ∕= 0, the rate of change in the slope is zero,

corresponding to a constant concession throughout a negotiation.

∙ Conceder: when a < 0, the rate of change in the slope is increasing, corre-

sponding to large concessions in the early rounds but small concessions in the

later rounds.

∙ When a = b = 0 and c ∕= 0, the rate of change of the slope and the value

of slope itself are always zero, corresponding to not making any concession

throughout a negotiation.

3.4 Opponent Behaviors Prediction

In the previous section, we proposed three regression functions to predict an op-

ponent’s behaviors. However, it has to be mentioned that the proposed regression

functions can only provide an estimation on an opponent’s possible behaviors, which

might not exactly accord with the opponent’s real behaviors. In this chapter, we

make an assumption that the differences (") between the estimation behaviors and
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the real behaviors obey the Gaussian distribution N(0, �2) [PR96]. The reason for

such an assumption is that most estimated utilities from the opponent are close to

the real utilities. Thus, if the deviation �2 can be calculated, we can make a precise

decision on the range of an opponent’s behaviors. It is known that there is more

than 99% probability that the opponent’s real utilities will be located in the interval

[u−3�, u+ 3�]. In this section, we introduce an approach to calculate the deviation

� and the interval to accurately represent an opponent’s utility.

To calculate the deviation �, we firstly calculate the distance between the esti-

mated utility ui (ui = R(t), for t = i) and an opponent’s real utility as follows:

di = ûi − ui (3.22)

It is known that all di (i ∈ [1, n]) obey the Gaussian distribution N(0, �2). Then

� can be calculated as follows:

� =

√∑n
i=1(di − d)2

n
(3.23)

where

d =
1

n

n∑
i=1

di (3.24)

Then by employing Chebyshev’s inequality, we can calculate (i) the interval of an

opponent’s behavior according to any accuracy requirements; and (ii) the probability

that any particular behavior may be performed by the opponent in the future. The

Chebyshev inequality is given by Equation 3.25:

P (∣X − �∣ ≥ ") ≤ �2

"2
(3.25)

where X is an instance, � is the mathematical expectation, � is the deviation, and

" is the accuracy requirement.

Equation 3.25 indicates the probability that the distance from a real offer ûi to

the estimated offer ui is shorter than di and greater than �2

"2
. So the probability that

the opponent will generate a new offer within [�− di, �+ di] in the future is 1− �2

"2
.

By employing the three proposed regression functions and Chebyshev’s inequal-

ity, an agent can estimate an opponent’s possible negotiation behaviours in advance,

and plan a suitable strategy as a response.
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3.5 Experiments

In this section, we demonstrate three scenarios to test our proposed regression func-

tions by comparing with the Tit-For-Tat and Random approaches. In order to

simplify the implementation process, all agents in the experiment employ the NDF

negotiation strategy [FWJ04a], and the alternating-offer protocol [Rub82]. Agents’

negotiation behaviors cover all general possible situations, which are conceder, linear

and boulware. During the negotiation, all agents employ the following function to

generate offer in each negotiation round:

oi = oini + (ores − oini)× (
ti
�

)� +REi

where oini and ores are an agent’s initial and reservation offer respectively; ti

is the negotiation round; � is the negotiation deadline; and � is the parameter to

indicate an agent’s negotiation strategy, such as conceder and linear. In order to

simulate the real world, we also employ the factor Random Error (REi) as a random

number between −∣oini − ores∣ × 5% and ∣oini − ores∣ × 5%.

In the experiment, we use the average error (AEk =
∑k

i=1(ûi− ui)/k, where k is

the total number of negotiation rounds) to evaluate the experimental results. AEk

indicates the difference between the estimated result and the real value. The smaller

the value of AEk, the better the prediction result.

3.5.1 Scenario 1

In the first scenario (S1), a buyer wants to purchase a mouse pad from a seller. The

acceptable price for the buyer is in [$0, $1.4]. The deadline for the buyer to finish

this negotiation is the 11tℎ round. In this experiment, the buyer adopts Conceder

negotiation behavior, and the seller employs the three proposed regression functions

to estimate the buyer’s price. The estimated results are displayed in Figure 3.2.

Linear Function

It can be seen that the linear approach dose not fit the instances very well, because

it can only estimate the main trend of the buyer’s offers but cannot provide more

accurate values. The average error for the linear function is AEl
10 = 0.0189, which

is 1.35% of the buyer’s reservation price.
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Figure 3.2: All Prediction results in S1.

Power Function

By contrast, the power approach provides more accurate prediction results. The

estimated results for all negotiation rounds are displayed in Table 3.1. Each row in

Table 3.1 illustrates the estimation result in each negotiation round in the form of

estimated power regression function, estimation results (�), and deviation (�). For

example, it can be seen in the 7tℎ round, the power regression approach estimates

a price of $1.26 from the buyer in the next round. Then according to the historical

record in the 8tℎ round, the real price given by the buyer in this round is $1.27,

which is very close to the estimated price. Figure 3.3 illustrates the situation in the

last negotiation round. It can be seen that the accuracy of the estimation is very

high because all estimated prices are in the interval [� − 2�, � + 2�] except during

the 4tℎ and 5tℎ rounds, and all estimated results are almost exactly the same as

the real prices. Figure 3.4 shows a comparison between the proposed approach and

the other two estimation approaches, (Tit-For-Tat and Random ) in the last round.

It can be seen that even though the Tit-For-Tat approach can follow the trend of

the buyer’s price changing, the errors (10% of the buyer’s reservation price) are also

large. The Random approach cannot even catch the main trend. The experimental

results convince us that the proposed approach outperforms both the Tit-For-Tat

and Random approaches when a buyer adopts conceder negotiation behaviors. The

average error for the power approach is AEp
10 = 0.0165, which is 1.17% of the buyer’s

reservation price.



3.5. Experiments 56

Figure 3.3: Power function prediction results in S1.

Figure 3.4: Power function prediction results comparison in S1.
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Round Instance Power regression Estimated
function (�, �)

(0.98, 1.07)
2 price=0.98t0.14 (1.14, 0.00)

(0.98, 1.07, 1.12)
3 price=0.98t0.13 (1.17, 0.00)

(0.98, 1.07, 1.12, 1.13)
4 price=0.98t0.11 (1.17, 0.01)

(0.98, 1.07, 1.12, 1.13,
5 1.14) price=0.99t0.10 (1.18, 0.02)

(0.98, 1.07, 1.12, 1.13,
6 1.14, 1.23) price=0.98t0.11 (1.21, 0.02)

(0.98, 1.07, 1.12, 1.13,
7 1.14, 1.23, 1.26) price=0.98t0.12 (1.25, 0.02)

(0.98, 1.07, 1.12, 1.13,
8 1.14, 1.23, 1.26, price=0.97t0.12 (1.26, 0.02)

1.27)

(0.98, 1.07, 1.12, 1.13,
9 1.14, 1.23, 1.26, price=0.97t0.13 (1.31, 0.02)

1.27, 1.30)

(0.98, 1.07, 1.12, 1.13,
10 1.14, 1.23, 1.26, price=0.97t0.13 (1.32, 0.02)

1.27, 1.30, 1.32)

Table 3.1: Power function prediction results in S1.
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Quadratic Function

The quadratic function’s curve is in the middle of other two curves. The estimated

results are displayed in Figure 3.5 and the regression function is:

R(t) = −0.002 ∗ t2 + 0.055 ∗ t+ 0.948

It can be seen that in the 8tℎ negotiation round, the proposed approach esti-

mates a price of $1.26 from the buyer in the next round. Then according to the

historical record in the 8tℎ round, the real price given by the buyer is $1.26, which

is exactly the same as the estimation price. Furthermore, it can be seen that in

rounds 4, 6, 9 and 10, the estimated prices are also the same as the real value. The

estimated prices for the 2tℎ, 3tℎ and 7tℎ rounds are $1.05, $1.10 and $1.25 respec-

tively, and the real prices given by the buyer in these rounds are $1.07, $1.13, and

1.26, which differ little from the estimated prices. According to Figure 3.5, all real

prices are located in the interval [� − 2�, � + 2�]. AE10 = 0.015, which is only 1%

of the buyer’s reservation price. Therefore, the prediction results by employing the

proposed quadratic approach are very reliable.

Figure 3.6 illustrates the comparison results between the quadratic approach

and other two estimation approaches (Tit-For-Tat and Random). It can be seen

that even though the Tit-For-Tat approach can follow the trend of changes in the

buyer’s price, AE10 = 0.078, which is five times that of our proposed approach.

For the Random approach, it cannot even catch the main trend. AE10 for the

random approach is 0.11, which is ten times more than our proposed approach. The

experimental results convince us that the proposed quadratic approach significantly

outperforms both the Tit-For-Tat and Random approaches when a buyer adopts

Conceder negotiation behaviors.

3.5.2 Scenario 2

In the second scenario (S2), a buyer wants to buy a keyboard from a seller. The

acceptable prices for the buyer are in [$0, $14]. In this scenario, the buyer employs

the Linear negotiation strategy, and the seller employs the proposed regression func-

tions to estimate the buyer’s offer. The prediction results are shown in Figure 3.7.
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Figure 3.5: Quadratic function prediction results in S1.

Figure 3.6: Quadratic function prediction results comparison in S1.
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Figure 3.7: All prediction results in S2.

Linear Function

It can be seen that when the buyer employs the Linear negotiation strategy, the

prediction results by using the linear function perform very well. The average error

for the linear function is AEl
10 = 0.256, which is only 1.8% of the buyer’s reservation

price.

Power Function

The estimated results by using the power function are displayed in Table 3.2 and

Figure 3.8. It can be seen that the estimated power regression function also fits the

real prices. In Figure 3.9, the comparison results among the Tit-For-Tat approach,

Random approach and our proposed approach in the last negotiation round is il-

lustrated. It can be seen that the overall error between the estimated prices and

the real prices achieves the smallest value by employing the proposed approach, and

achieve the largest value by employing the Random approach. Even the Tit-For-Tat

approach can follow the buyer’s trend, but distances between the estimated prices

and the real prices are also very large. The experimental results demonstrate that

when the buyer performs the linear negotiation strategy, the proposed power re-

gression approach also outperforms both the Tit-For-Tat and Random estimation

approaches.
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Figure 3.8: Power function prediction results in S2.

Figure 3.9: Power function prediction results comparison in S2.
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Round Instance Power regression Estimated
function (�, �)

(0.79, 1.50)
2 price=0.79t0.94 (2.22, 0.00)

(0.79, 1.50, 3.15)
3 price=0.74t1.23 (4.07, 0.21)

(0.79, 1.50, 3.15, 4.35,)
4 price=0.74t1.26 (5.62, 0.18)

(0.79, 1.50, 3.15, 4.35,
5 5.09) price=0.75t1.22 (6.67, 0.24)

(0.79, 1.50, 3.15, 4.35,
6 5.09, 5.74) price=0.77t1.17 (7.50, 0.34)

(0.79, 1.50, 3.15, 4.35,
7 5.09, 5.74, 7.40,) price=0.77t1.17 (8.77, 0.31)

(0.79, 1.50, 3.15, 4.35,
8 5.09, 5.74, 7.40, price=0.79t1.15 (9.89, 0.35)

7.94)

(0.79, 1.50, 3.15, 4.35,
9 5.09, 5.74, 7.40, price=0.80t1.12 (10.55, 0.42)

7.94, 8.55)

(0.79, 1.50, 3.15, 4.35,
10 5.09, 5.74, 7.40, price=0.81t1.11 (11.60, 0.40)

7.94, 8.55, 10.15)

Table 3.2: Power function prediction results in S2.
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Figure 3.10: Quadratic function prediction results in S2.

Quadratic Function

The estimated results by employing the quadratic function are illustrated in Figure

3.10 and the estimated quadratic regression function is:

R(t) = −0.015 ∗ t2 + 1.178 ∗ t− 0.439

It can be seen that in the 3tℎ, 5tℎ and 8tℎ rounds, the estimated prices are exactly

the same as the real offers given by the buyer. The biggest difference between the

estimated price and the real price is just 0.4, which happens in the 9tℎ round. The

average error in this experiment is only AE10 = 0.24, which is no more than 2% of

the buyer’s reservation price. The estimated quadratic regression function fits the

real prices very well.

In Figure 3.11, the comparison results among the Tit-For-Tat, Random and the

quadratic approaches are illustrated. The average error for the Tit-For-Tat approach

is AE10 = 2.52, namely 18% of the buyer’s reservation price. The average error for

the Random approach is very high, which is AE10 = 4.82 and more than 34% of the

buyer’s reservation price. These experimental results demonstrate that when the

buyer employs the Linear negotiation strategy, the proposed quadratic regression

approach outperforms both the Tit-For-Tat and random approaches.
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Figure 3.11: Quadratic function prediction results comparison in S2.

Figure 3.12: All prediction results in S3.

3.5.3 Scenario 3

In the third scenario (S3), a buyer wants to purchase a monitor from a seller. The

acceptable prices for the buyer are in [$0, $250] and the buyer employs the Boulware

negotiation strategy. The prediction results are shown in Figure 3.12.

Linear Function

It can be seen that the linear approach performs much worse than other two proposed

approaches. Actually, only one prediction result (at the 3rd round) in the linear

function is the same as the real price from the buyer. The average error for the
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Figure 3.13: Power function prediction results in S3.

linear regression function is AEl
10 = 19.872, which is 7.94% of the buyer’s reservation

price.

Power Function

According to Table 3.3, the estimated price from the power regression function is

price = 0.64 × t2.45. According to Figure 3.13, it can be seen that in the last

negotiation round, the estimated price from the power function almost exactly fits

all the real prices given by the buyer. Therefore, the seller could have sufficient

reason to trust and adopt the estimation result for the next round. Finally, Figure

3.14 illustrates the comparison results with the Tit-For-Tat and Random estimation

approaches. It can be seen that when the buyer adopts a Boulware behavior, the

proposed power regression approach outperforms both the other two approaches.

According to experimental results, the average error for the power regression function

is AEp
10 = 5.196, which is only 2% of the buyer’s reservation price.

Quadratic Function

The quadratic regression function is:

R(t) = 3.038 ∗ t2 − 12.568 ∗ t+ 15.632

The estimated results by using the quadratic regression approach are shown in

Figure 3.15. It can be seen that the proposed quadratic regression approach pre-

dicted buyer’s prices successfully and accurately. Except in the 4tℎ and 8tℎ rounds,
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Figure 3.14: Power function prediction results comparison in S3.

Round Instance Power regression Estimated
function (�, �)

(0.59, 4.71)
2 price=0.59t3.01 (16.11,

0.00)

(0.59, 4.71, 8.06)
3 price=0.65t2.45 (19.41,

1.11)

(0.59, 4.71, 8.06, 21.94)
4 price=0.64t2.52 (36.95,

1.27)

(0.59, 4.71, 8.06, 21.94,
5 27.51) price=0.67t2.40 (49.39,

2.59)

(0.59, 4.71, 8.06, 21.94,
6 27.51, 46.12) price=0.68t2.38 (69.80,

2.36)

(0.59, 4.71, 8.06, 21.94,
7 27.51, 46.12, 78.45) price=0.67t2.41 (100.58,

3.50)

(0.59, 4.71, 8.06, 21.94,
8 27.51, 46.12, 78.45, price=0.67t2.41 (133.60,

99.38) 3.29)

(0.59, 4.71, 8.06, 21.94,
9 27.51, 46.12, 78.45, price=0.65t2.43 (174.95,

99.38, 148.86) 5.15)

(0.59, 4.71, 8.06,21.94,
10 27.51, 46.12, 78.45, price=0.64t2.45 (227.82,

99.38, 148.86, 199.08) 6.95)

Table 3.3: Power function prediction results in S3.
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Figure 3.15: Quadratic function prediction results in S3.

the estimated prices on the other rounds exhibit almost no difference with the buyer’s

real offers. The average error for the quadratic approach in this experiment is only

AE10 = 4.07, which is only 1.6% of the buyer’s reservation price. Therefore, we

can say with confidence that from these estimation results, the seller can make very

accurate judgement on the buyer’s negotiation strategy, and make very reasonable

responses in order to maximize its own benefit.

Finally, Figure 3.16 illustrates the comparison results with the Tit-For-Tat and

Random approaches. For the Tit-For-Tat approach, the average error is AE10 =

57.74, which is 23% of the buyer’s reservation price. For the Random approach,

the average error is AE10 = 83.12, which is 33% of the buyer’s reservation price.

Therefore, it can be seen that when the agent performs Boulware behavior, the pro-

posed quadratic regression approach outperforms both the Tit-For-Tat and Random

approaches.

From the above experimental results, we can say that both the proposed power

and quadratic regression functions can estimate an opponent’s potential behaviors

successfully, and the estimation results are also accurate and reasonable enough to

be adopted by agents to modify their strategies in a negotiation. However, the linear

regression function can only represent an opponent’s behaviors when the negotiation

strategy is Linear.
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Figure 3.16: Quadratic function prediction results comparison in S3.

3.6 Summary

In this chapter, we proposed three regression functions to estimate an opponent’s

negotiation behavior. We introduced the procedures to calculate the coefficients in

each regression function, and the method to predict the opponent’s possible behav-

iors. The experimental results demonstrate that the proposed approaches are novel

and valuable to estimate an opponent’s negotiation behavior.



Chapter 4

Optimization of Bilateral Multiple Issue
Negotiation

4.1 Introduction

In the previous chapter, an agent behavior prediction approach was introduced.

However, when the number of negotiated issues becomes more than one, a new

research problem appears. In [FWJ04b], Fatima et. al. pointed out that the pro-

cedure of multi-issue negotiation plays a critical role in determining the negotiation

outcome. In general, there are three main procedures in multi-issue negotiation

[FWJ06a], which are package deal, simultaneous and sequential procedure. In a

package deal, all issues are bundled and discussed together; in a simultaneous pro-

cedure, all issues are discussed simultaneously but independent of each other; and

in a sequential procedure, all issues are discussed one after another. By considering

the time complexity and optimality, the package deal procedure is highly encouraged

since it can outperform the two other procedures in most situations. In this chapter,

we focus our attention on the package deal multi-issue negotiation procedure.

The most significant feature of multi-issue negotiation by use of the package

deal procedure is that it may lead the negotiation results to mutually beneficial

negotiation outcomes, i.e. both negotiation participators could receive benefits on

their profits from the outcome, which otherwise cannot be achieved by single issue

negotiation [LLS06, LSL07]. The mutually benefit can outcome makes multi-issue

negotiation important and valuable in practice. Many researchers have paid atten-

tion to optimal negotiation outcome searching in multi-issue negotiation and some

approaches have been successfully developed [FWJ04a, FWJ04b, FWJ06a]. How-

ever, most existing approaches mainly focus on static negotiation environments, in

which negotiators predefine their preferences on negotiated issues and do not modify

their preferences throughout the negotiation. After studying and analyzing peoples’

69



4.2. Historical-Offer Regression 70

real behaviours in traditional markets on multiple issue bargaining, we noticed that

usually people would like to modify their preferences during negotiation when the

negotiation environment changes. Also, in electronic marketplaces, bargain hunters

usually modify their preferences directly after the market information is updated.

In order to successfully lead a negotiation result to a mutually benefit outcome, an

optimal approach for multi-issue negotiation under time constraints in open and

dynamic environments is proposed in this chapter.

The proposed approach contains three major steps, which are (i) opponent his-

torical offers regression, (ii) opponent preferences estimation and (iii) optimal offer

generation. In the first step, one or multiple quadratic regression function/s is/are

generated to optimally fit opponents historical offers by extending the opponent

behavior prediction approach introduced in Chapter 3. In the second step, an oppo-

nent’s preference on all negotiated issues is predicted based on regression functions

estimated in the first step. The preference estimation method in this step is based

on a simple assumption that an opponent normally gives more concession to its low

concern issues and less concession to its high concern issues. By analyzing differ-

ences between an opponent’s concessions in all negotiated issues, the opponent’s

preferences on different issues can be estimated. In the third step, based on the

estimation results on an opponent’s preference, an optimal offer will be generated

(if it is applicable) by employing the two proposed methods, which are the geometric

method and the algebraic method, to benefit all negotiation participators.

The rest of this chapter is organized as follows. Section 4.2 extends the agent

behavior prediction approach from a simple situation to a complex situation. Sec-

tion 4.3 introduces a method to estimate an opponent’s preference; Section 4.4

introduces two methods to dynamically generate mutually benefit offers based on

current negotiation environment; Section 4.5 demonstrates experiments using the

proposed approach and discusses experimental results; and Section 4.6 concludes

this chapter.

4.2 Historical-Offer Regression

In this section, a historical offer regression method for multi-issue negotiation is

introduced. It is an extended work based on Chapter 3.
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Figure 4.1: An example of complex agent behavior.

4.2.1 Complex Behaviors Prediction

In Chapter 3, we introduced four common agent behaviors in negotiation and pro-

posed three regression functions to estimate agent negotiation behaviors. According

to the experimental results, the quadratic regression function outperforms the other

two functions. In this subsection, the quadratic regression function is extended to

handle complex negotiation behaviors.

In multiple issue negotiation, agents may perform more complex behaviors than

those four common behaviors introduced before. For example, agents may perform

a Boulware negotiation strategy on one issue when the negotiation environment

is disadvantageous to themselves, and change the strategy to Conceder when the

environment improves. If the global utility for all issues does not change, an agent

can modify its utilities on each individual issue. In Figure 4.1, we illustrate an

example of a complex negotiation behavior. Obviously, such a complex behavior

cannot be represented by a single quadratic regression function. In order to solve

this issue, we introduce a multiple regression method to represent complex agent

behavior.

The pseudocode of the multiple regression algorithm is displayed in Algorithm

1. The input of this algorithm is a negotiator’s historical offers, and the output

of this algorithm is a series of quadratic regression functions to optimally fit the

negotiator’s offers. Let Û indicate the historical offers from an opponent, R indicate

the quadratic regression function set, and Ũ indicate a temporary set for calculation

purpose. The basic procedure of the multiple regression algorithm is as follows.

Step 1 Initialize both the regression data set Ũ and the regression function set R

to the empty set ∅;
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Algorithm 1 Multiple Regression Algorithm.

Input: Historical utility set Û = {ût∣t = 1 . . . T}, and all ût have been normalized
to [0, 1]. Threshold � ∈ [0, 1].
Output: Multiple regression function set R = {Rj(t)∣j = 1 . . . J}. Each regres-
sion function indicates a kind of behaviour performed by an agent in a certain
period, and is in the form of Rj(t) = aj × t2 + bj × t+ cj, t ∈ [tminj , tmaxj ].

Initialization: Initialize the set Ũ and R to ∅.
for each utility ût in the set Û do

Ũ← Ũ
∩
{ût}

if the size of Ũ is smaller than 2 then
go to the next iteration

end if
generate the quadratic regression function, namely ˜R(t) by using the set Ũ and
the regression approach introduced in Chapter 3.
initialize avg to 0
for each utility ût in the set Ũ do
avg ← avg + ∣ût − ut∣1

end for
avg ← avg

sizeof(Ũ)

if avg > � then
reset the set Ũ to ∅
R← R

∩
{ ˜R(t)}

end if
end for
return the set R
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Figure 4.2: An example of multiple regression.

Step 2 If the input set Û is empty, then terminate the algorithm and output the

set R. Otherwise, move forward to Step 3;

Step 3 Move a historical offer from the set Û to the set Ũ according to the time

series. If the size of set Ũ is smaller than 2, then repeat Step 3. Otherwise

move forward to Step 4;

Step 4 Generate a temporal regression function R(t)∗ by using the dataset Ũ and

the regression method introduced in Chapter 3;

Step 5 Calculate the average distance between the historical offers in set Ũ and the

regression results. If the average distance is smaller than a predefined value,

then add the temporal function ˜R(t) to the output set R, empty the set Ũ,

and move back to Step 2. Otherwise, move back to Step 2 directly;

In Figure 4.2, we illustrate a regression result by applying the multiple regression

algorithm on the example displayed in Figure 4.1. It can be seen that all regression

functions fit the agent’s complex behaviours very well. The regression functions

generated by the multiple regression algorithm are listed in Table 4.1. From this

example, we demonstrated that by employing the multiple regression algorithm,

complex agent behaviours can also be represented by quadratic regression functions.
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Table 4.1: Multiple quadratic regression functions.
Index Regression Function Round

1 R(t) = −0.085 ∗ t2 + 0.59 ∗ t− 0.004 t ∈ [1, 4]
2 R(t) = 0.037 ∗ t2 − 0.789 ∗ t+ 3.573 t ∈ [4, 11]
3 R(t) = −0.023 ∗ t2 + 0.87 ∗ t− 7.097 t ∈ [11, 17]
4 R(t) = 0.024 ∗ t2 − 1.093 ∗ t+ 12.536 t ∈ [17, 24]
5 R(t) = −0.026 ∗ t2 + 1.551 ∗ t− 21.76 t ∈ [24, 30]
6 R(t) = 0.017 ∗ t2 − 1.176 ∗ t+ 21.045 t ∈ [30, 36]
7 R(t) = −0.01 ∗ t2 + 0.869 ∗ t− 17.745 t ∈ [36, 42]
8 R(t) = 0.004 ∗ t2 − 0.365 ∗ t+ 9.551 t ∈ [42, 47]
9 R(t) = 0.004 ∗ t2 − 0.355 ∗ t+ 8.396 t ∈ [47, 50]

4.3 Preference Prediction

In this section, we introduce an approach to predict an opponent’s preference in

bilateral multi-issue negotiation. A negotiation preference indicates a negotiator’s

emphasis level on the negotiated issues when more than one negotiation issue is

considered. Usually, a negotiation preference is represented linearly as a sequence

of weight values [FWJ04b], and each weight value indicates a negotiator’s concern

on a particular issue. The greater/lower a weight value is assigned to an issue,

the more/less concern will be paid to that issue. Let Wt = {wmt ∣m ∈ [1,M ]}
(
∑M

m=1w
m
t = 1) be an opponent’s preference on all negotiated issues, where wmt

is the opponent’s concern on the mtℎ issue, and M is the total number of issues

in a multi-issue negotiation. In order to estimate the opponent’s preference, firstly

for each single issue m (m ∈ [1,M ]), we adopt the multiple quadratic regression

algorithm introduced in the previous section to generate a set of regression functions

Rm = {Rm
j (t)∣j = 1 . . . J} to specify the opponent’s negotiation behaviors. Each

Rm
j (t) is in the form of Equation 4.1.

Rm
j (t) = amj × t2 + bmj × t+ cmj , t ∈ [tminm,j , t

max
m,j ] (4.1)

Now negotiators may have different preferences and may change their prefer-

ences when a negotiation environment changes. By consideration of the real world

situation, we make the following assumption.

A negotiator gives concessions to issues in a multi-issue negotiation based on

its preference. The more/less significant an issue, the less/more concession will be

given on the issue, and vice versa.

For example, in a two-issue negotiation scenario, a buyer and a seller bargain
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over a car’s price and warranty. If the buyer is more concerned about the price,

then he/she will give little concession on the price, but may make a large concession

on the warranty. If the seller considers both the price and the warranty equally,

then he/she will make similar concessions on the two negotiated issues. Based on

the above assumption, we can inspect an opponent’s historical offers on each issue

and then predict the opponent’s preference. Firstly, an opponent’s modification on

issue m at round t is represented by the derivative of the regression function Rm
j (t),

namely cmt (cmt ∈ Cm). cmt is defined as follows.

cmt =
partialRm

j (t)

partialt

= 2amj × t+ bmj (4.2)

It is noticed that the greater cmt , the less significant that issue m is considered

by an opponent at round t, and the more concession the agent would like to give on

the issue at round t. Let wmt (wmt ∈Wt) be the opponent’s concern on issue m at

the round t, wmt is calculated as follows.

wmt =
1/cmt∑M
n=1 1/cnt

=

∏M
n=1,n∕=m c

n
t∑M

n=1(
∏M

p=1,p ∕=n c
p
t )

(4.3)

Then by calculating the opponent’s concerns on all negotiated issues, ie. Wt,

the opponent’s preference at round t is estimated.

4.4 Optimal Offer Generation

In this section, we introduce methods to generate an optimal offer in bilateral multi-

issue negotiation by employing the predicted preference in the previous section.

Before introducing the proposed methods, we firstly define some notations. Let

Agents p and q be the two negotiators. For one agent (either Agent p or q), we assume

that it already knew its own negotiation strategy, utility function and preference at

any particular negotiation round t, namely �t, U(t) and Wt = {wmt ∣m = t . . .M}
(
∑M

m=1w
m
t = 1), respectively. Secondly, by employing the prediction method in-

troduced in section 4.3, the agent can estimate its opponent’s preference at round
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t, namely Wo
t = {wo,mt ∣m = 1 . . .M} (

∑M
m=1w

o,m
t = 1). Furthermore, according

to the “pie splitting” theory [Rub82], if the whole utility of an item is 1 and one

negotiator claims u (u ∈ [0, 1]) out of 1, then the other negotiator’s utility is 1− u.

In multi-issue negotiation, the situation on each single issue can be treated similar

as the “pie splitting” game, ie. if an agent claims umt utility for issue m at the round

t, then its opponent can only get (1− umt ) utility.

Let set Ut = {umt ∣m = 1 . . .M, umt ∈ [0, 1]} be an agent’s utilities on all issues at

round t according to its utility function U(t). Normally, for any negotiation round t,

umt = U(t) and
∑M

m=1 u
m
t ×wmt = U(t). Let set U∗t = {um∗t ∣m = 1 . . .M, um∗t ∈ [0, 1]}

be an agent’s utilities on all issues at round t by adopting the optimal offer. Then

the purpose of this chapter is to find the set U∗t which benefits all negotiation

participators, i.e. maximizing an agent’s utility and also increasing the opponent’s

loss as much as possible. Let Inequality 4.4 indicate such a requirement for the

optimal offer U∗t as follows.⎧⎨⎩
∑M

m=1 u
m∗
t × wmt ≥

∑M
m=1 u

m
t × wmt (a)

∑M
m=1(1− um∗t )× wo,mt ≥

∑M
m=1(1− umt )× wo,mt (b)

(4.4)

Equation 4.4 indicates that the optimal offer U∗t should provide more utility to

both negotiation participators than an agent’s original offer Ut. In order to solve

this problem, firstly, we transform Inequality 4.4 to Inequality 4.5, then we will

introduce two methods, i.e. a geometric method and an algebraic method, in the

following two subsections to solve the problem.⎧⎨⎩
∑M

m=1 u
m∗
t × wmt −

∑M
m=1 u

m
t × wmt ≥ 0 (a)

∑M
m=1 u

m∗
t × w

o,m
t −

∑M
m=1 u

m
t × w

o,m
t ≤ 0 (b)

(4.5)

4.4.1 A Geometric Method

In this subsection, we introduce a geometric method to calculate the solution for

Inequality 4.5, and try to equally increase both negotiators’ utilities. In order to

simplify the discussion, we specify the size of negotiation issues to two (M = 2).

Then Inequality 4.5 can be rewritten as follows:
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⎧⎨⎩
w1
t × u1∗

t + w2
t × u2∗

t − ut ≥ 0 (a)

wo,1t × u1∗
t + wo,2t × u2∗

t − (1− uot ) ≤ 0 (b)

(4.6)

where ⎧⎨⎩
ut = w1

t × u1
t + w2

t × u2
t

uot = wo,1t × (1− u1
t ) + wo,2t × (1− u2

t )

(4.7)

Let the x-axis indicate an negotiator’s utility on issue 1, and the y-axis an ne-

gotiator’s utility on issue 2, then some possible situations of Inequality 4.6 are illus-

trated in Figure 4.3. Let Line A be the line indicated by the function w1
t ×u1∗

t +w2
t ×

u2∗
t −ut = 0 and Line B be the line indicated by the function wo,1t ×u1∗

t +wo,2t ×u2∗
t −

(1−uot ) = 0, then Line A indicates an agent’s utility function at negotiation round t,

and Line B indicates an opponent’s utility function. Let Point P (if it is applicable)

be the interaction between Line A and Line B, then Point P is a solution to satisfy

Inequality 4.6. However, because negotiators may have different preferences, it is

possible to find other points to increase both negotiators’ utilities together.

According to the geometric meaning of Inequality 4.6, a point located above Line

A will enlarge an agent’s utility, and a point located below Line B will enlarge an

opponent’s utility. If we can find a point, namely Point O, which is located above

Line A as well as below Line B, then both negotiators’ utilities can be increased

at the same time. The distance between Point O and Line A/B indicates the

increment on an agent’s/opponent’s utility. Theoretically, more than one point (if

this is applicable) may be found to increase both negotiators’ utilities, in order to

equally and maximally enlarge both negotiators utilities. We consider three possible

cases, which are (i) Line A and Line B are not parallel, (ii) Line A and Line B are

parallel, and (iii) Line A and Line B are identical. We will discuss the existence of

Point O and the approach to calculate Point O (if it is applicable) in each case.

Before we start the discussion on the three possible cases, some useful points

which may help us to solve the problem are firstly defined. Let Point Ax be the

intersection between Line A and the x-axis, and Point Ay be the intersection between

Line A and the y-axis. Let Point Bx be the intersection between Line B and the

x-axis, and Point By be the intersection between Line B and the y-axis, then Points

Ax, Ay, Bx, By, and P are defined as follows.
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(a) By > Ay and Bx > Ax (b) By > Ay and Bx < Ax

(c) By < Ay and Bx > Ax (d) By < Ay and Bx < Ax

Figure 4.3: Lines A and B have an intersection.
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(4.8)

Line A and Line B are not Parallel

If Line A and Line B are not parallel, in order to equally and maximally increase

both negotiators’ utilities, we propose that Point O is the center of the inscribed

circle of triangle P −Ay−By (if Ay < By) or triangle P −Ax−Bx (if Ax < Bx).

The reason behind such a proposal is that the center of the inscribed circle has

maximal and equal distance to the three edges of the triangle, which indicates both

negotiators’ utilities can be equally maximized. In Figure 4.3, we illustrate four

possible cases when Line A and Line B intersect. For the cases illustrated in Figure

4.3(a)-(c), if the three vertices of the triangle are located at point (xa, ya), point

(xb, yb) and point (xc, yc), and the opposite sides of the triangle have lengths a, b,

and c, then the incenter is at point O(ox, oy). Point O can be calculated by Equation

4.9. For the case illustrated in Figure 4.3(d), if Point P is out of the first quadrant

and Ay > Ax, because Line A is located above Line B in the first quadrant, it is

not possible to find the Point O to increase both negotiators’ utilities together.

In general, if Line A and Line B intersect, this means that both negotiators have

(1) different preferences on the negotiation issues, and (2) different acceptance areas

on the negotiation outcome, and Line A and Line B will have different slopes and

different intersections with the x-axis and y-axis. For example, in a two-issue nego-

tiation related to a car’s price and warranty, a buyer’s initial offer on the two issues

is ($4000, 5years), reservation offer is ($5500, 2years) and the preference on the two

issues is (0.7, 0.3). On the other hand, a seller’s initial offer is ($6000, 3years), the

reservation offer is ($5000, 4years), and the seller’s preference is (0.5, 0.5). Because

the seller and the buyer have different considerations on both the preference and

acceptance areas of the two negotiated issues, Point O exists and can be determined

by employing Equation 4.9.
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(a) By > Ay and Bx > Ax (b) By < Ay and Bx < Ax

Figure 4.4: Lines A and B do not have an intersection.

⎧⎨⎩
ox = axa+bxb+cxc

a+b+c

oy = aya+byb+cyc
a+b+c

(4.9)

where ⎧⎨⎩
a =

√
(xb − xc)2 + (yb − yc)2

b =
√

(xc − xa)2 + (yc − ya)2

c =
√

(xa − xb)2 + (ya − yb)2

(4.10)

Line A and Line B are Parallel

If Line A and Line B do not intersect, then Line A may be located below or above

Line B. If Line A is located below Line B, according to Figure 4.4(a), any point

on the middle line (Line C) between Line A and Line B can be the optimal point.

However, in order to decrease the impact caused by inaccurately estimating the

opponent’s utility function and preference, we set the middle point on Line C as the

Point O(ox, oy) as follows.
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⎧⎨⎩
ox = Axx+Bxx

4

oy = Ayy+Byy
4

(4.11)

where Axx and Bxx are the x-axis values of Points Ax and Bx, and Ayy and Byy

are the y-axis value of Point Ay and By, respectively.

For the case illustrated in Figure 4.4(b), because Line A is located above Line

B, it is impossible to find a point located above Line A as well as below Line B,

so the Point O does not exist. In general, if Line A and Line B are parallel, this

means that both negotiation participators have a similar preference on negotiated

issues but different acceptance areas on the negotiation outcome. Let us use the

example in Subsection 4.4.1 again. If the seller modifies its preference to (0.7, 0.3),

which is the same as the buyer’s preference, then Line A and Line B will be par-

allel. Nevertheless, because both negotiators have different acceptance areas on the

negotiation outcome, the optimal offer still exists. However, as shown in Figure 4.4,

if negotiators’ acceptance areas do not intersect, an optimal offer does not exist.

Line A and Line B are Identical

If Line A and Line B are identical, it is impossible to find the Point O to benefit

all negotiators. When Line A and Line B are identical, this indicates that both

negotiation participators have a similar preference, and also the same acceptance

area on the negotiation outcome. Taking the example we used before, if the seller

modifies its initial offer to ($5500, 2years), its reservation offer to ($4000, 5years),

and its preference to (0.7, 0.3), the seller and buyer will have the same preference

and acceptance area on the negotiation outcome, then the offer to benefit both

negotiators at the same time does not exist.

In summary, for the four cases discussed above, if Point O exists, by setting u1∗
t

to the x-axis value of Point O and u2∗
t to the y-axis value of Point O, the optimal

offer for an agent at round t is generated. However, if Point O does not exist, we

can only adopt the original offer, i.e. u1
t = u2

t = U(t).

4.4.2 An Algebraic Method

The geometric method introduced in the previous subsection might be hard to imple-

ment when the number of negotiated issues is greater than three. In this subsection,
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we introduce an algebraic method to calculate the optimal offer.

The principle of the algebraic method is as follows. Generally, it is proposed that

an agent’s optimal offer at round t should satisfy two requirements. (i) The optimal

offer should maximize an agent’s profit as much as possible. The reason behind this

requirement is based on the consideration that all negotiators in a bargain situation

are selfish and seek maximal benefits [Kra01]. Also (ii) the optimal offer should

minimize an opponent’s loss. The reason behind this consideration is based on the

situation that an opponent will not accept an offer which damages its benefit too

much. In order to make an optimal offer more acceptable for an opponent so as to

increase the negotiation efficiency, the second requirement should also be satisfied

as much as possible.

In order to find out the optimal offer by using an algebraic method, we employ

Lagrange Multipliers. The purpose of Lagrange Multipliers is to try to maximize a

function f(x) by considering a constraint g(x) = c, where x indicates variables and

c is a constant.

Let Equation 4.12(a) be an agent’s increment on utility after employing the

optimal offer U∗t at round t, then Equation 4.12(a) is the function that the agent

tries to maximize. Let Equation 4.12(b) be an opponent’s loss on utility if it accepts

the optimal offer U∗t, then Equation 4.12(b) is the constraint that the agent tries to

satisfy. We use variable c to indicate the amount of possible loss for the opponent.

In order to minimize the opponent’s loss, we set the default value of c’s to 0. If an

optimal offer does not exist under such a constraint, the constraint will be relaxed

according to a predefined criteria. For example, the constraint can be enlarged

gradually by 0.1 until an optimal offer is achieved or until, c = 1. Based on the

above consideration, we let 4.12(a) be the f(x) function in a Lagrangian and 4.12(b)

be the g(x) function in the Lagrangian, then in order to find the optimal offer U∗t,

the Lagrangian is defined in Equation 4.13.⎧⎨⎩
f(U∗t) =

∑M
m=1 u

m∗
t × wmt −

∑M
m=1 u

m
t × wmt (a)

f o(U∗t) =
∑M

m=1 u
m∗
t × w

o,m
t −

∑M
m=1 u

m
t × w

o,m
t (b)

(4.12)

where U∗t = {um∗t ∣m = 1 . . .M}.

Λ(U∗t, �) = f(U∗t) + �× (f o(U∗t)− c) (4.13)
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Firstly, by setting the partial derivative for Λ(U∗t, �) on each variable in set U∗t

and � to zero, respectively, we can obtain Equation (4.14) as follows:⎧⎨⎩

partialΛ(U∗t ,�)

partialu1∗t
=

partialf(U∗t )

partialu1∗t
+ �× partialfo(U∗t )

partialu1∗t
= 0

...

partialΛ(U∗t ,�)

partialum∗t
=

partialf(U∗t )

partialum∗t
+ �× partialfo(U∗t )

partialum∗t
= 0

...

partialΛ(U∗t ,�)

partialuM∗t
=

partialf(U∗t )

partialuM∗t
+ �× partialfo(U∗t )

partialuM∗t
= 0

partialΛ(U∗t ,�)

partial�
= f o(U∗t)− c = 0

(4.14)

Equation (4.14) contains M + 1 variables and formulas, and by solving Equation

(4.14), we may get three possible results, which are:

1. No solution. Then we can enlarge an opponents’ losses (the value of c) accord-

ing to a predefined criteria and recalculate the optimal offer;

2. A single solution U∗t = {um∗t ∣m = 1 . . .M}, where um∗t indicates the offer on

the mtℎ issue. Then U∗t is the optimal solution;

3. Multiple solutions, namely set MU∗t = {U∗t,i}. Then the optimal solution U∗t

can be found as follows:

∀U∗t,i ∈MU∗t,∃U∗t ∈MU∗t ⇒ f(U∗t) ≥ f(U∗t,i) (4.15)

4.4.3 Discussion

In this section, we introduced a geometric and an algebraic method to generate the

optimal offer in bilateral multi-issue negotiation. According to our studies, both

proposed methods have advantages and disadvantages.

For the geometric method, the advantage is that an optimal solution for a ne-

gotiation can be intuitively illustrated by a graph. However, when the number of

negotiated issues is greater than three, the calculation cost for the optimal offer will

become huge because of the large number of possible cases on relationships between

the two negotiators’ preferences and acceptable outcome areas.

For the algebraic method, the advantage that it can handle negotiations which

contain more than three issues. However, the disadvantage is that the selection of

constraint value will impact the negotiation outcome. An agent needs to carefully
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choose the constraint value in order to reach the optimal outcome effectively and

efficiently.

Therefore, an agent should choose a suitable method to calculate the optimal

offer according to its own specification and requirement in an application domain.

However, no matter which method is selected by an agent, during a negotiation,

both negotiators can employ the proposed methods alternately until an agreement

is accepted by all negotiators, or one negotiator quits the negotiation. Also, by

analyzing the optimal offers in different cases, we make the following discovery:

In a multi-issue negotiation, the possibility that a negotiator can increase its

utility from an optimal offer is impacted by the difference between the negotiator’s

and the opponent’s preferences. The greater/smaller the difference, the more/less

possibility that the negotiator’s utility can be increased by the optimal offer.

The proof of the above discovery is as follows:

Let dmt = wmt − w
o,m
t ,m ∈ [1,M ] be the difference between an agent’s and the

opponent’s preferences on issue m at round t, then Equation 4.5 can be written as

follows:

⎧⎨⎩
∑M

m=1 u
m∗
t × wmt −

∑M
m=1 u

m
t × wmt ≥ 0 (a)

∑M
m=1 u

m∗
t × (wmt − dmt )−

∑M
m=1 u

m
t × (wmt − dmt ) ≤ 0 (b)

(4.16)

which can be transformed to,⎧⎨⎩
∑M

m=1 u
m∗
t × wmt −

∑M
m=1 u

m
t × wmt ≥ 0 (a)

∑M
m=1 u

m∗
t × wmt −

∑M
m=1 u

m
t × wmt ≤

∑M
m=1 d

m
t × (um∗t − umt ) (b)

(4.17)

Obviously, if the agent and the opponent have the same preference, i.e. dmt =

wmt − wo,mt = 0,m ∈ [1,M ], then the only possible solution for Equation 4.17 is∑M
m=1 u

m∗
t ×wmt −

∑M
m=1 u

m
t ×wmt = 0, which means the proposed optimal offer U∗t

cannot enlarge any negotiator’s utility at all. On the other hand, if any dmt ∕= 0

(m ∈ [1,M ]), i.e. the agent and the opponent have a different preference, then it

is highly possible that the optimal offer U∗t can maximize
∑M

m=1 d
m
t × (um∗t − umt ).

So the possibility that a negotiator can increase its utility by adopting the optimal

solution U∗t is impacted by the difference between two negotiator’s preferences.
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4.5 Experiment

In this section, we examine our proposed bilateral multi-issue negotiation approach

through comparson with the NDF negotiation approach [FWJ04a].

4.5.1 Experimental Setup

All experiments are performed on a DELL OPTIPLEX GX620 machine. In order

to simplify the experiments, we employ three agents (one seller and two buyers)

in a two-issue negotiation. Because the proposed geometric optimization method

can easily handle two-issue negotiation and can illustrate the negotiation outcome

by a 2-D graph, we will adopt the geometric optimization method in experiments.

Of course, agents can choose either the geometric method or the algebraic method,

according to their specifications and applications. The correctness of the algebraic

method was proved mathematically in Subsection 4.4.2.

The experimental setup is described as follows: A seller agent seller1 wants to

sell a car and also provides warranty for a number of years, and both buyer agents

buyer1 and buyer2 want to purchase the car from seller1. In order to make the ne-

gotiation results more reliable, the buyer agent and the seller agents adopt different

initial offers, reservation offers, preferences, negotiation strategies, deadlines. Also,

in order to make the negotiation results more comparable, two buyer agents (i.e.

buyer1 and buyer2 ) adopt the same negotiation parameters during the negotiation.

All negotiators’ parameters are listed in Table 4.2. More specifically, the buyer’s

initial price is randomly selected within [$1600, $2400], and the initial warranty is

randomly selected within [4years, 6years]. The buyer’s reservation price is randomly

selected within [$2400, $3600], and the buyer’s reservation warranty is randomly se-

lected within [2.4years, 3.6years]. In order to ensure both negotiation participators

have an agreement zone, the seller’s initial offer is set to the buyer’s reservation

offer, and the seller’s reservation offer is set to the buyer’s initial offer. All nego-

tiators’ negotiation strategies are randomly selected among the Boulware, Conceder

and Linear negotiation strategies. The negotiation deadlines are randomly selected

within [16, 24] rounds, and all agents’ preferences are also generated randomly.

During the negotiation, all agents employ Rubinstein’s alternating offer protocol

[Rub82] as the negotiation protocol and the package deal procedure as the negoti-

ation procedure. All agents keep their negotiation parameters privately. In order



4.5. Experiment 86

Table 4.2: Negotiation parameters.
Agent Name Initial Offer Reserved Offer Preference

Price Warranty Price Warranty Price Warranty

Buyer 1 and 2 [$1600, $2400] [4y, 6y] [$2400, $3600] [2.4y, 3.6y] [0, 1] [0, 1]
Seller 1 [$2400, $3600] [2.4y, 3.6y] [$1600, $2400] [4y, 6y] [0, 1] [0, 1]

Strategy Deadline PMP
Buyer 1 and 2 [0, 2] [16, 24] 0%

Seller 1 [0, 2] [16, 24] [0%, 100%]

to simulate an open and dynamic negotiation environment, seller1 will randomly

modify its preference. The probability that seller1 will modify its preference is

indicated by the factor Probability Modify Preference (PMP). The value of PMP is

randomly selected between [0%, 100%]. If PMP = 0%, this indicates that seller1

will not modify its preference at all. If PMP = 50%, this indicates that seller1 has

50% likelihood of modifying its preference. Also if PMP = 100%, this indicates

that seller1 will definitely modify its preference in each negotiation round. Let wp

indicate seller1 ’s concern on the price, and ww indicate seller1 ’s concern on the

warranty, then a preference is generated randomly by seller1, ie. wp = rand(0, 1)

and ww = 1−wp. Both seller1 and buyer2 will employ the NDF negotiation model

to generate their counter-offers, and buyer1 will employ the proposed geometric

method to generate its counter-offers. The NDF negotiation approach is explained

briefly as follows.

In the NDF negotiation approach, an agent’s response in each negotiation round

is defined as follows [FWJ04a]:

As(t, ptâ→a) =

⎧⎨⎩
Quit if t > �a,

Accept if Ua(ptâ→a) ≥ Ua(pt
′

a→â),

Offer pt
′

a→â at t′ otherwise.

(4.18)

where �a is Agent a’s deadline, pt
′

a→â is the counter-offer from Agent a to Opponent

â at round t′, and Ua(ptâ→a) indicates Agent a’s utility on the given offer ptâ→a

from Opponent â at round t. Agent a’s counter-offer pt
′

a→â and evaluation function

Ua(ptâ→a) are defined as follows.

pta→â = RP a × (
t

�a
)�
a

+ IP a × [1− (
t

�a
)�
a

] (4.19)
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and,

Ua(ptâ→a) =
ptâ→a −RP a

IP a −RP a
(4.20)

where IP a indicates Agent a’s initial offer, RP a indicates Agent a’s reservation

offer, and �a indicates Agent a’s negotiation strategy. For more detail about the

NDF negotiation model, please refer to references [FSJ98, LSG05].

4.5.2 Experimental Results

By repeating the experiments 1000 times, (parameters being selected randomly from

the domains displayed in Table 4.2), we summarize the experimental results from

Figures 4.5 through 4.8 to illustrate the improvement by adopting the proposed

geometric optimization method. The x-axis indicates the probabilities that the seller

agent may modify its preference in each negotiation round, namely PMP, and the

y-axis indicates the ratio between the negotiation outcomes by using the proposed

method and the NDF approach. In Figure 4.5, it can be seen that when the value

of PMP shifts from 0% to 100%, buyer1 ’s increment on utility decreases from 13%

to 3%. This experimental result indicates that the more likely that an opponent is

to modify its preference during a negotiation, the more difficult for an agent to find

the optimal offer to increase the agent’s utility. That is because when an opponent

frequently modifies its preference, it will be more difficult for the agent to accurately

estimate the opponent’s preference, so the effectiveness of the optimal offer will be

decreased. However, in reality, an opponent may not modify its preference very

frequently during a negotiation, so the increment on utility in real-world cases will

be greater than 9% in general.

In Figure 4.6, the seller’s utilities by negotiating with different buyers are also

compared. It can be seen that by negotiating with buyer1, seller1 ’s utility is im-

proved by at least 20% compared with the negotiation outcome with buyer2. The

reason behind such a performance is because seller1 can decide whether an opti-

mal offer from buyer1 will be accepted based on its own benefit. For example, if

buyer1 wrongly estimates seller1 ’s preference at a certain negotiation round, and

generates an incorrect optimal offer, then seller1 can reject this offer, and reply

with a counter-offer. However, buyer1 will not always wrongly estimate seller1 ’s

preference and generate an incorrect optimal offer. If buyer1 ’s estimation is correct

at a certain round, then seller1 will accept the optimal offer, so that seller1 ’s utility

is improved similarly for all PMPs.
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Figure 4.5: The ratio of buyer1 ’s utility to buyer2 ’s utility.

Table 4.3: Negotiation parameters for the study case.
Agent Name Initial Offer Reserved Offer Preference

Price Warranty Price Warranty Price Warranty

Buyer 1 and 2 $2090.9 5.1y $3001.5 3.45y 0.66 0.34
Seller 1 $3591.96 3.1y $2260.88 5.29y dynamic dynamic

Strategy Deadline PMP
Buyer 1 and 2 1.77 22 0%

Seller 1 1.33 21 30%

In Figure 4.7, it can be seen that the number of negotiation rounds is decreased

by 20% on average when the geometric method is employed. However, as shown in

Figure 4.8, the proposed geometric method needs more computational time to find

the optimal offers. The computational time spent on the geometric method is 1.8

times as much as the computational time spent on the NDF approach.

Based on the above experimental results, it can be concluded that by adopting

the geometric method, all negotiators’s utilities can be increased compared with the

original offers, and the negotiation round is also decreased. However, the proposed

approach needs more computational time to calculate the optimal offer compared

with that of the NDF approach.

4.5.3 Case Study

In order to show the detail negotiation process, we adopt an example to demon-

strate the proposed negotiation approach, which includes the opponent’s behavior
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Figure 4.6: The ratio of seller1 ’s utility by negotiating with buyer1 to seller1 ’s
utility by negotiating with buyer2.

Figure 4.7: The ratio of buyer1 ’s negotiation rounds to buyer2 ’s negotiation rounds.

Table 4.4: Seller1 ’s preference and buyer1 ’s estimation.
Negotiation Round Seller1 ’s Preference Buyer1 ’s Estimation

Price Warranty Price Warranty
1–5 0.886 0.114 0.880 0.120
6 0.988 0.012 0.866 0.134
7 0.499 0.501 0.483 0.517

8–10 0.166 0.834 0.158 0.842
11 0.320 0.680 0.300 0.700

12–13 0.176 0.824 0.167 0.833
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Figure 4.8: The ratio of buyer1 ’s negotiation time to buyer2 ’s negotiation time.

Figure 4.9: Buyer1 ’s estimation on seller1 ’s utility.

prediction, opponent’s preference prediction, and optimal offer calculation. All ne-

gotiation parameters of this example are listed in Table 4.3. During the negotiation,

seller1 will modify its preference randomly, and the probability of seller1 modifying

its preference in each negotiation round is PMP = 30%. Adopting such a PMP, in

Table 4.4, seller1 ’s preferences in each negotiation round are listed in the column

“Seller1 ’s Preference”.

Firstly, by adopting the multiple regression method introduced in Section 4.2,

buyer1 can estimate seller1 ’s utility functions for each single issue. The threshold

of acceptable error (�) for multiple regression is set to 0.05. The regression graph is

displayed in Figure 4.9, and all multiple regression functions are listed in Table 4.5.
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Table 4.5: Buyer1 ’s regression functions on seller1 ’s utility function.
Index Regression Function Domain

Regression functions on price
1 R(t) = −0.002t2 − 0.013t+ 1.649 [1, 5]
2 R(t) = −0.11t+ 2 [5, 6]
3 R(t) = 0.258t2 − 2.278t+ 6.390 [6, 8]
4 R(t) = −0.087t2 + 1.166t− 0.855 [8, 11]
5 R(t) = 0.41t− 1.969 [11, 12]

Regression functions on warranty
7 R(t) = −0.017t2 − 0.097t+ 1.23 [1, 5]
8 R(t) = −0.712t+ 3.414 [5, 6]
9 R(t) = −0.161t2 + 2.288t− 7.572 [6, 8]
10 R(t) = −7.893E − 4t2 − 0.025t+ 0.793 [8, 10]
11 R(t) = −0.241t+ 2.668 [10, 11]
12 R(t) = 0.082t− 0.562 [11, 12]

Regression functions on overall utility
13 R(t) = 0.573t+ 1 [1, 2]
14 R(t) = −0.003t2 − 0.029t+ 1.605 [2, 5]
15 R(t) = 0.0673t2 − 0.81t+ 3.602 [5, 7]
16 R(t) = −0.512 ∗ t+ 4.235 [7, 8]
17 R(t) = 0.258t− 1.155 [8, 9]
18 R(t) = −0.011t2 + 0.148t+ 0.426 [9, 12]
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Figure 4.10: Buyer1 ’s view of the negotiation.

Figure 4.11: Seller1 ’s view when negotiating with buyer1.

Secondly, by adopting the proposed preference estimation method introduced in

Section 4.3, buyer1 can estimate seller1 ’s preference in each negotiation round. The

estimation results are listed in Table 4.4 in the column “Buyer1 ’s Estimation”. It

can be seen that the estimated preferences are very close to seller1 ’s real preferences.

Lastly, by adopting the geometric method introduced in Section 4.4, buyer1

can calculate the optimal offer in each negotiation round (if it is applicable). The

detailed negotiation procedure between buyer1 and seller1 is displayed in Figures

4.10 through 4.12. In Figure 4.10, it can be seen that in the 8tℎ, 10tℎ and 12tℎ

negotiation rounds, buyer1 modifies its original offers on the car’s price and warranty

to increase seller1 ’s utility. However, the total utility of buyer1 is not damaged.



4.5. Experiment 93

Figure 4.12: Utilities comparison between buyer1 and seller1.

Figure 4.13: Buyer2 ’s view of the negotiation.

Contrary to the buyer’s view, it can be seen in Figure 4.11 that after buyer1

modifies its offers on the two issues, seller1 ’s utility is improved considerably. In

Figure 4.12, both buyer1 ’s and seller1 ’s utilities in each negotiation round are dis-

played. Obviously, it can be seen that in the 8tℎ, 10tℎ and 12tℎ rounds, seller1 ’s

utility was improved significantly. Finally, when an agreement is achieved in the

13tℎ round, buyer1 ’s utility was 0.706, and seller1 ’s utility was 0.599.

In order to show the improvement by adopting the geometric method, we also

illustrate the negotiation process between buyer2 and seller1 from Figures 4.13

to 4.15. Buyer2 ’s negotiation parameters are exactly the same as buyer1 ’s, and

seller1 ’s negotiation parameters are not changed. In Figures 4.13 and 4.14, it can
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Figure 4.14: Seller1 ’s view when negotiating with buyer2.

Figure 4.15: Utilities comparison between buyer2 and seller1.
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Figure 4.16: Buyer1 ’s optimal offer generation in the 8tℎ round.

be seen that buyer2 only employs the NDF approach to generate counter-offers in

each negotiation round, and no negotiator gains any extra benefit during the nego-

tiation. Finally, in Figure 4.15, it can be seen that buyer2 failed to enlarge its own

and seller1 ’s utilities. When agreement is achieved in the 16tℎ round, buyer2 ’s util-

ity is 0.551, and seller1 ’s utility is 0.389. By comparing these negotiation outcomes

with the outcomes using the geometric method, it can be seen that after adopting

the geometric method, the buyer agent’s utility is improved by 28%, and the seller

agent’s utility is improved by 54%. The number of negotiation rounds is also de-

creased by 19%. However, the computational time spent by the geometric method

is around 60% more than the NDF approach.

In detail, for example, in the 7tℎ round, when seller1 ’s preference is 0.166 on

price and 0.834 on warranty, seller1 sends an offer ($4896.99, 4.13year) to both

buyers. If buyer1 or buyer2 accepts this offer, then seller1 will get 0.768 utility in

total, which is 1.98 on price and 0.527 on warranty. In the 8tℎ round, by employ-

ing the NDF negotiation approach, buyer2 rejects seller1 ’s offer, and generates a

counter-offer ($2210.92, 4.84year), which claims 0.868 utility on all issues for itself.

If seller1 accepts this offer, seller1 will get utilities (−0.038, 0.205), i.e. 0.165 in

total. Contrary to buyer2, in the 8tℎ round, buyer1 estimates that seller1 ’s prefer-

ence is (0.158, 0.842), and sends a counter-offer ($1325.26, 3.89year) as a response.

If seller1 accepts this offer, buyer1 will get utilities (1.84, 0.27), i.e. 0.868 in total,

and seller1 will get utilities (−0.73, 0.64), i.e. 0.413 in total. Without damaging its
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own utility, buyer1 ’s offer increases seller1 ’s utility by 0.248 compared with buyer2 ’s

offer. The calculation procedure for buyer1 at the 8tℎ negotiation round by using

the geometric method is illustrated in Figure 4.16.

In this section, we illustrated experimental results by applying the proposed ge-

ometric method. From both statistical results and the individual case study, we can

confidently say that the proposed bilateral optimal multi-issue negotiation approach

successfully improves both negotiators’ utilities and decreases the numbers of nego-

tiation rounds. However, it needs more computational time to perform sophisticated

calculations.

4.6 Summary

In this chapter, we proposed an approach for bilateral multi-issue negotiation in

open and dynamic environments. Firstly, a multiple regression method is intro-

duced to capture an opponent’s negotiation behaviour based only on the opponent’s

historical offers. Secondly, a preference estimation method is introduced to predict

the opponent’s preference dynamically during a negotiation. Thirdly, two methods

are introduced to find the optimal offer dynamically. The geometric method can

illustrate the optimal offer details by a 2D graph directly, but the complexity of

the geometric method increases as the number of issues becomes greater than three.

By contrast, the algebraic method can easily handle large numbers of issues, but

the selection of the constraint value will impact the negotiation result. To sum

up, a negotiator should choose a suitable method according to its own specification

and requirement in a negotiation. Finally, the geometric method is evaluated by

a series of experiments. Both the statistical results and a case study demonstrate

improvements of the proposed method on both negotiator’s utilities.



Chapter 5

Negotiation Partner Selection

Chapters 3 and 4 proposed two approaches to solve the research problem on the

bilateral level, which are agent behavior prediction in bilateral single issue negoti-

ation, and optimization of bilateral multi-issue negotiation. From Chapters 5 to 7,

we will turn our attention to the multilateral negotiation level.

5.1 Introduction

Traditional negotiation approaches in multi-agent systems (MASs), such as game

theory [RC03, LSG05, FSJ98, LLS06, SFJ97] and argumentation-based negotiation

[RRJ+04, PSJ98, ADM07, nP07], emphasize decision making models to determine

the optimal coalition structure and the division of payoff, with a little devotion

to the negotiation partners selection. However, when a negotiation contains more

participators, it will be inefficient for an agent to perform a sophisticated bargain

with each potential partner. If the unqualified partners can be filtered out before a

negotiation starts, an agent can pay more concern to partners with a high likelihood

of reaching an agreement, so as to improve the efficiency and effectiveness of a

negotiation.

In the last decade, researchers have recognized the importance of partner selec-

tion in multilateral negotiation and proposed some approaches for selecting suitable

partners during the negotiation. In [FSJ98], a significant model was introduced by

Faratin et al., which defines a range of strategies and can be employed by computa-

tional agents to generate initial offers, evaluate proposals and offer counter proposals.

With such a model, in each round of a negotiation, a comprehensive analysis is ap-

plied to help agents find the most suitable partners. Kraus [Kra01] further classified

negotiations into three categories, which are data allocation, resource allocation and

task distribution, according to the application domain of negotiations. In each of

97
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these categories, several complicated and heuristic methods were introduced to help

agents find the optimal negotiation agreements under different situations. However,

as the rapid development of agents and the Internet techniques, most work envi-

ronments of MASs become uncertain and dynamic [RSZ07, SC03]. In such open

and dynamic environments, when the number of potential partners is huge, to per-

form complicated negotiations with all of the potential partners may be expensive

in terms of computational time and resources, or even impractical. Thus, an appro-

priate approach which can be employed by agents to choose partners with a high

chance of reaching a good agreement in subsequent negotiation from a large num-

ber of potential partners is required greatly. Such a selection mechanism is very

important because of practicality and efficiency of MASs interactions.

Nevertheless, it is noticed that an agent may perform various behaviors in ne-

gotiation by considering its motivation and aim, which makes the partner selection

process much more complicated and difficult to steer than expected. Therefore, it

is necessary to discuss the kinds of agent behaviors in negotiation before a partner

selection mechanism is given. In general, agents may compete or cooperate with

each other in order to gain their own goals or a common goal in MASs. The final

agreements about how to compete or cooperate are achieved through negotiating.

Therefore, negotiations can be classified into competitive negotiation and cooper-

ative negotiation according to the behaviors of its participants. In a competitive

negotiation, participators perform the roles as challengers, while in a cooperative

negotiation, participators are cooperators. Thus, criteria on partner selection are

also different in these two kinds of negotiations. For example, in a cooperative nego-

tiation, since an agent treats other agents’ gains as its own, it will select the agents

which can increase global benefits as its parters. In a competitive negotiation, an

agent prefers to choose a partner which can supply the highest benefit to itself.

These two kinds of partner selection strategy are the most simple and direct ap-

proaches in extreme situations. Actually, researches [ZLW02, JTK01] found that

it is not always beneficial for an agent to only cooperate with others about global

tasks in cooperative negotiation. Also in a competitive negotiation, an agent might

need to commit to global tasks for other agents. What is more, in some circum-

stance, when an agent’s behavior is beyond these two extreme situations, an agent

cannot adopt these two extreme partner selection approaches simply, because an

agent needs both appropriate competition and cooperation to maximize both the

local and global utilities.
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In order to address above issues mentioned , an extended dual concern model for

partner selection in negotiation is proposed in this chapter. Furthermore, based on

this model, both linear and non-linear partner selection approaches are proposed.

The linear approach employs an agent’s preference, and tries to balance the partner

selection process between the two extreme situations mentioned above. By contrast,

the non-linear approach employs a fuzzy logic mechanism to model and control part-

ner selection process. The advantage of the linear approach is ease of implementation

and the generation of results in a short time, while the non-linear approach can han-

dle the situation when an agent’s selection criteria cannot be presented linearly. In

general, these two approaches have three common merits, which are that: (1) both

an agent’s own benefit and its partners’ benefits are considered; (2) an agent’s atti-

tude to its partners is captured; (3) both the linear and non-linear approaches are

sensitive to changes in the negotiation environment and can be employed in an open

and dynamic negotiation environment.

The remainder of this chapter is organized as follows. In Section 5.2, an extended

dual concern model is proposed, the partner selection problem is formally described,

and potential partners in a general negotiation are further classified and analyzed. In

Section 5.3, a linear approach for the partner selection is proposed. In Section 5.4, a

non-linear approach is proposed. In Section 5.5, several examples are demonstrated

to evaluate the performance of the proposed partner selection approaches. Finally,

Section 5.6 concludes this chapter.

5.2 Potential Partners Analysis in General Nego-

tiations

5.2.1 The Extended Dual Concern Model

In [ZLW06], Zhang et al. proposed a dual concern model to illustrate the degree of

concern between two agents’ negotiation outcomes. However, this model just briefly

presents the main trend of these degrees, not offering any calculation method about

how to decide the values of these degrees and how to compare these degrees. To

address these problems, we further extend this dual concern model in order to allow

an agent to make reasonable decisions to select partners. The extended dual concern

model is shown in Figure 5.1.
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Figure 5.1: The extended dual concern model.

In Figure 5.1, the x-axis indicates the percentage of self-concern of an agent,

while the y-axis is the percentage of other-concern from the agent. � presents a

ReliantDegree (i.e. reflection of the collaboration degree), where � ∈ [0∘, 90∘]. We

use selfness to represent the percentage of self-concern of an agent, which can be

calculated by cos(�), and selflessness to represent the percentage of other-concern,

which can be evaluated by sin(�). A ReliantDegree can illustrate the level of

collaboration between the agent and its potential partners. From the extended

model, we can find that there are two extreme cases. (1) When the agent only

emphases on its own benefit, its negotiation attitude is selfish (� = 0∘); and (2) When

the agent only cares about its partners’ benefits, its attitude is selfless (� = 90∘).

From this model, it is clear that there are many other cases between selfish and

selfless negotiation behaviors. In subsection 5.2.2, a formal problem description will

be given.

5.2.2 Problem Description

Suppose that there are n potential partners for an agent IDx in a MAS. If we use

a four-tuple pxi to represent the ith potential partner, pxi can be formally defined as

follows:
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pxi =< IDi, GainRatio
x
i , ContributionRatio

x
i , ReliantDegree

x
i > (5.1)

where IDi is the unique identification of the ith potential partner, andGainRatioxi ,

ContributionRatioxi and ReliantDegreexi are factors used to evaluate the potential

partner IDi. These three factors are defined in Definitions 5.1 through 5.3, respec-

tively.

Definition 5.1 GainRatioxi is the ratio between Agent IDx’s benefit to the overall

benefit of a negotiation, and is defined by Equation 5.2.

GainRatioxi =
S

L
× 100% (5.2)

where GainRatioxi ∈ [0, 100%], S denotes the benefit that agent IDx gains by

selecting Agent IDi as its partners, and L denotes the overall benefit by completing

a task.

Definition 5.2 ContributionRatioxi is the ratio between Agent IDi’s benefit to the

overall benefit of a negotiation, and is defined by Equation 5.3.

ContributionRatioxi =
I

L
× 100% (5.3)

where ContributionRatioxi ∈ [0, 100%], I denotes the benefit that Agent IDi

gains by negotiating with Agent IDx, and L denotes the global benefit by completing

a task.

Definition 5.3 ReliantDegreexi represents Agent IDx’s attitude to a negotiation,

which includes selfness, selflessness and behaviors between these two extreme cases.

ReliantDegreexi is defined by Equation 5.4.

ReliantDegreexi = arctan(
Crix
Crxi

) (5.4)

where ReliantDegree ∈ [0∘, 90∘], Crix indicates how Agent IDx trusts Agent

IDi, which can be defined as the trading success ratio between agent IDx and IDi,

or can be assigned by the Agent IDx based on the commitment fulfill record of
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Agent IDi. Cr
i
x indicates how Agent IDi trusts Agent IDx, which can be defined

in a similar way as Crix.

Then the collaboration degree between Agent IDx and its potential partner IDi

is generated as Equation 5.5

CollaborationDegreexi = f(IDx, p
x
i ) (5.5)

By calculating the collaboration degree between agent IDx and all of its potential

partners, the collaboration degree set (CollaborationDegreex) is generated as

follows:

CollaborationDegreex = {CollaborationDegreexi ∣i ∈ [1, n]} (5.6)

In general, a selfless agent will select agents with a higher ContributionRatio

value as its partners, while a selfish agent will select partners based only on the

value of GainRatio. However, in most cases, agents will behave between these two

extreme situations. An agent needs to consider both its own benefit and its partners’

benefits. In order to balance the benefit between an agent and its partners, a linear

partner selection approach is proposed in the next section.

5.3 Partner Selection by Using a Linear Approach

Based on the proposed extended dual concern model of Figure 5.1, a linear approach

to select partners by considering the relationship between negotiation participators

is proposed in this section.

In order to cover all potential cases in partner selection, we need to consider

not only both GainRatio and ContributionRatio, but also an agent’s concerns on

these two criteria. An agent’s concerns on GainRatio and ContributionRatio can be

represented linearly by a weight. Let wg indicate an agent’s concern on GainRatio,

and wc indicate an agent’s concern on ContributionRatio, then wc + wg = 1. The

CollaborationDegree between Agent IDx and a potential partner, Agent IDi, is

defined as follows:

CollaborationDegreexi = GainRatioxi × wg + ContributionRatioxi × wc (5.7)

The CollaborationDegree (∈ [0, 1]) indicates the likelihood that a potential part-

ner is selected by an agent. The greater the CollaborationDegree, the more likely
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that the potential partner will be selected by the agent. In general, there are three

extreme cases between wc’s and wg’s values.

∙ When wg = 0 and wc = 1, CollaborationDegree is calculated based only on

ContributionRatio, ie. Agent IDx’s attitude for a negotiation is absolutely

selfless.

∙ When wg = 1 and wc = 0, CollaborationDegree is calculated based only on

GainRatio, ie. Agent IDx’s attitude for a negotiation is absolutely selfish.

∙ When wg = wc = 0.5, CollaborationDegree is calculated based on both Gain-

Ratio and ContributionRatio equally, ie. Agent IDx’s attitude for a negotia-

tion is equitable.

Generally, an agent’s concerns on the GainRatio and the ContributionRatio are

calculated by employing the ReliantDegree as displayed in Equation 5.8 and Equa-

tion 5.9, respectively.

wg = cos2(ReliantDegree) (5.8)

wc = sin2(ReliantDegree) (5.9)

These definitions of wg and wc reflect the relationships between the factor of

ReliantDegree and an agent’s preference successfully. For example, as shown in

Figure 5.1,

∙ when ReliantDegree = 0∘, it is supposed that Agent IDx should perform a

selfness behavior and only consider its own benefits. According to Equations

5.7 to 5.9, wg = cos2(0∘) = 1, wc = sin2(0∘) = 0, and CollaborationDegreexi =

GainRatioxi . So Agent IDx selects its partners by considering only the Gain-

Ratio, which accords with the expectation on Agent IDx’s behavior.

∙ when ReliantDegree = 45∘, Agent IDx should consider both its own and its

partners’ benefits equally. In this case, wg = cos2(45∘) = 0.5, wc = sin2(0∘) =

0.5, and CollaborationDegreexi = GainRatioxi × 0.5 + ContributionRatioxi ×
0.5, so Agent IDx considers all negotiators’ benefits equally during the partner

selection process;
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∙ when ReliantDegree = 90∘, it is supposed that Agent IDx should perform

a selfless behavior, and only consider about its partners’ benefits. In this

case, wg = cos2(90∘) = 0, wc = sin2(90∘) = 1, so CollaborationDegreexi =

ContributionRatioxi , and Agent IDx performs selflessly during the partner

selection process.

Finally, by combining Equations 5.7 to 5.9, a potential partner is evaluated by

considering the factors of GainRatio, ContributionRatio and ReliantDegree. Agent

IDx’s evaluation result on a potential partner IDi is defined as follows:

CollaborationDegreexi = GainRatioxi × cos2(ReliantDegreexi ) +

ContributionRatioxi × sin2(ReliantDegreexi )(5.10)

Then by calculating each collaboration degree between Agent IDx and its poten-

tial partners, the collaboration degrees set (CollaborationDegreex) are generated,

which is:

CollaborationDegreex = {CollaborationDegreexi ∣i ∈ [1, n]} (5.11)

Finally, a sorting algorithm can be employed to select favorable partners or to

exclude unqualified partners from the set CollaborationDegreex.

By employing the proposed approach, the relationships between an agent and its

potential partners can be captured. The advantage of this linear approach is easily

implemented. However, when an agent’s concerns between the factors of GainRatio

and ContributionRatio cannot be represented linearly, such a linear approach cannot

handle the partner selection process anymore. In order to solve such a problem, we

will introduce a non-linear partner selection approach in the next section, which

employs Fuzzy Logic to capture an agent’s opinion during the partner selection

process.

5.4 Partner Selection by Using a Non-Linear Ap-

proach

In some cases, an agent’s preference cannot be modeled by a linear function simply.

So in order to solve this problem and generate more reasonable selection results,
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Figure 5.2: The framework of the non-linear partner selection approach.

we propose a non-linear approach for partner selection by employing a Fuzzy Logic

[YRP94, KY95] mechanism. The structure of this section is organized as follows. In

Subsection 5.4.1, the principle of the proposed non-linear approach and a framework

are introduced. In Subsections 5.4.2 through 5.4.4, the methods of fuzzification,

approximate reasoning, and defuzzification are introduced in detail, respectively.

5.4.1 Framework of a Fuzzy-Based Approach

We assume that an agent can select its suitable partners dynamically by considering

its own and its partners’ benefits.

The framework of the non-linear approach is graphically illustrated in Figure 5.2.

There are five units in this approach, which are: (1) a library of fuzzy functions, (2)

a fuzzy rule base, (3) a fuzzification module, (4) an approximate reasoning module,

and (5) a defuzzification module.

The input parameters of the framework are GainRatio, ContributionRatio and

ReliantRatio which have been defined in Section 5.2. The output of this framework

provides suggestions to an agent for partner selection by considering these three

factors.
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5.4.2 Fuzzification

Fuzzy Membership Functions for Input Parameters:

The linguistic states of the three input parameters (GainRatio, ContributionRatio

and ReliantDegree) are defined as follows.

∙ GainRatio

For the input parameter GainRatio, five linguistic states are selected and

expressed by appropriate fuzzy sets, which are {VerySmall, Small, Medium,

Large, VeryLarge}.

Figure 5.3 depicts these fuzzy sets as applied to the parameter GainRatio.

The triangular membership function [ESD96] is adopted here to define fuzzy

memberships. Fuzzy membership functions for fuzzy sets {VerySmall, Small,

Medium, Large,VeryLarge} are defined in Equations 5.12 through 5.16, respec-

tively.

FV erySmall(x) =

⎧⎨⎩20−x
20

0 ≤ x ≤ 20

0 x > 20
(5.12)

FSmall(x) =

⎧⎨⎩

0 x ≤ 10

x−10
20

10 < x ≤ 30

50−x
20

30 < x ≤ 50

0 x > 20

(5.13)

FMedium(x) =

⎧⎨⎩

0 x ≤ 30

x−30
20

30 < x ≤ 50

70−x
20

50 < x ≤ 70

0 x > 70

(5.14)

FLarge(x) =

⎧⎨⎩

0 x ≤ 50

x−50
20

50 < x ≤ 70

90−x
20

70 < x ≤ 90

0 x > 90

(5.15)
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Figure 5.3: Fuzzy quantization of the range [0, 100] for GainRatio.

Figure 5.4: Fuzzy quantization of the range [0, 100] for ContributionRatio.

FV eryLarge(x) =

⎧⎨⎩0 x ≤ 80

x−80
20

x > 80
(5.16)

where x ∈ [0, 100]

∙ ContributionRatio

For the parameter ContributionRatio, both the fuzzy sets and membership

functions are the same as GainRatio’s (Equations 5.12 to 5.16). Figure 5.4

depicts the fuzzy sets as applied to the parameter ContributionRatio.

∙ ReliantDegree

For the parameter ReliantDegree, five linguistic states are selected and ex-

pressed by appropriate fuzzy sets, which are {Complete Self-Driven, Self-

Driven, Equitable, External-Driven, Complete External-Driven}. Figure 5.5
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depicts these fuzzy sets as applied to the parameter ReliantDegree. Fuzzy

membership functions for fuzzy sets {Complete Self-Driven, Self-Driven, Eq-

uitable, External-Driven, Complete External-Driven} are defined in Equations

5.17 through 5.21, respectively.

FCompleteSelfDriven(x) =

⎧⎨⎩22.5−x
22.5

0 ≤ x ≤ 22.5

0 x > 22.5
(5.17)

FSelfDriven(x) =

⎧⎨⎩
x

22.5
0 < x ≤ 22.5

45−x
22.5

22.5 < x ≤ 45

0 x > 45

(5.18)

FEquitable(x) =

⎧⎨⎩

0 x ≤ 22.5

x−22.5
22.5

22.5 < x ≤ 45

67.5−x
22.5

45 < x ≤ 67.5

0 x > 67.5

(5.19)

FExternalDriven(x) =

⎧⎨⎩
0 x ≤ 45

x−45
22.5

45 < x ≤ 67.5

90−x
22.5

67.5 < x ≤ 90

(5.20)

FCompleteExternalDriven(x) =

⎧⎨⎩0 x ≤ 67.5

x−67.5
22.5

x > 67.5
(5.21)

where x ∈ [0∘, 90∘].

Fuzzy Membership Functions for Output Parameters:

For the output parameter CollaborationDegree, five linguistic states are selected

and expressed by corresponding fuzzy sets {Averse, Reluctant, Indifferent, Accept-

able, Anticipant}. Figure 5.6 depicts these fuzzy sets as applied to the parameter

CollaborationDegree. The fuzzy membership functions for the parameter Collabora-

tionDegree are defined in Equations 5.22 through 5.26.

FAverse(x) =

⎧⎨⎩20−x
20

0 ≤ x ≤ 20

0 x > 20
(5.22)
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Figure 5.5: Fuzzy quantization of the range [0∘, 90∘] for ReliantDegree.

FReluctant(x) =

⎧⎨⎩

0 x ≤ 10

x−10
20

10 < x ≤ 30

50−x
20

30 < x ≤ 50

0 x > 20

(5.23)

FIndifferent(x) =

⎧⎨⎩

0 x ≤ 30

x−30
20

30 < x ≤ 50

70−x
20

50 < x ≤ 70

0 x > 70

(5.24)

FAcceptable(x) =

⎧⎨⎩

0 x ≤ 50

x−50
20

50 < x ≤ 70

90−x
20

70 < x ≤ 90

0 x > 90

(5.25)

FAnticipant(x) =

⎧⎨⎩0 x ≤ 80

x−80
20

x > 80
(5.26)

where x ∈ [0, 100]
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Figure 5.6: Fuzzy quantization of range [0, 100] for CollaborationDegree.

GainRetio ContributionRetio CollaborationDegree
VerySmall Any Averse

Small Any Reluctant
Medium Any Indifferent

Large Any Acceptable
VeryLarge Any Anticipant

Table 5.1: Fuzzy rule base (ReliantDegree=Complete Self-Driven).

5.4.3 Approximate Reasoning

Approximate reasoning is employed to calculate output membership values, which

can be further used to compute corresponding output values. The approximate

reasoning is based on the use of rules in the rule base.

Rule Base:

A rule base is a matrix of combinations of the input linguistic parameters. The rule

bases in this approach are displayed in Tables 5.1 through 5.5.

The Determination of Output Membership Values:

Each entry of the rule base is a rule, which is defined by AND ing three linguistic

input parameters to produce an individual output, in the form of:

IF((F (GainRatio) = �)AND(F (ContributionRatio) = �)

AND(F (ReliantDegree) = 
))

THENF (CollaborationDegree) = �

(5.27)
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GainRetio ContributionRetio CollaborationDegree
VerySmall VeryLarge Reluctant

Others Averse
Small VeryLarge Indifferent

Others Reluctant
Medium VeryLarge Acceptable

Large Acceptable
Others Indifferent

Large VerySmall Indifferent
Others Acceptable

VeryLarge VerySmall Acceptable
Others Anticipant

Table 5.2: Fuzzy rule base (ReliantDegree=Self-Driven).

GainRetio ContributionRetio CollaborationDegree
VerySmall VeryLarge Indifferent

Large Reluctant
Medium Averse
Small Averse

VerySmall Averse
Small VeryLarge Acceptable

Large Indifferent
Medium Reluctant
Small Averse

VerySmall Averse
Medium VeryLarge Anticipant

Large Acceptable
Medium Indifferent
Small Reluctant

VerySmall Averse
Large VerySmall Anticipant

Large Anticipant
Medium Acceptable
Small Indifferent

VerySmall Reluctant
VeryLarge VerySmall Anticipant

Large Anticipant
Medium Anticipant
Small Acceptable

VerySmall Indifferent

Table 5.3: Fuzzy rule base (ReliantDegree=Equitable).
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ContributionRetio GainRetio CollaborationDegree
VerySmall VeryLarge Reluctant

Others Averse
Small VeryLarge Indifferent

Others Reluctant
Medium VeryLarge Acceptable

Large Acceptable
Others Indifferent

Large VerySmall Indifferent
Others Acceptable

VeryLarge VerySmall Acceptable
Others Anticipant

Table 5.4: Fuzzy rule base (ReliantDegree=External-Driven).

ContributionRetio GainRetio CollaborationDegree
VerySmall Any Averse

Small Any Reluctant
Medium Any Indifferent

Large Any Acceptable
VeryLarge Any Anticipant

Table 5.5: Fuzzy rule base (ReliantDegree=Complete External-Driven).

where � ∈ {VerySmall, Small, Medium, Large, VeryLarge}, � ∈ {VerySmall,

Small, Medium, Large, VeryLarge}, 
 ∈ {Complete Self-Driven, Self-Driven, Equi-

table, External-Driven, Complete External-Driven}, � ∈ {Averse, Reluctant, Indif-

ferent, Acceptable, Anticipant}, and F(CollaborationDegree) denotes a fuzzy set into

which the parameter CollaborationDegree is mapped.

An output membership value ��(�) can be calculated by Equation 5.28.

��(�) = min(��(GainRatio), ��(ContributionRatio),

�
(ReliantDegree))
(5.28)

5.4.4 Defuzzification

There are many defuzzification approaches. The centroid defuzzification method

[ESD96] is used to defuzzify the output membership values.

DV =

∑k
i=1(�i × �(�i))∑k

i=1 �(�i)
(5.29)
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Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 0∘

gb 50% 50% 0∘

gc 20% 80% 0∘

Table 5.6: Input parameters for Scenario 1.

where �(�i) is the ith output membership value, �i is its corresponding output

value, and k is the number of fuzzy rules which are activated.

DV is the final output value of CollaborationDegree in a particular case. DV can

be used to evaluate the relationship between the agent and its potential partners,

and can also be used as an important factor for selecting or adopting a most suitable

partner for an agent in a particular case.

In this section, we proposed a non-linear approach for the partner selection.

By comparison with the linear approach introduced in Section 5.3, the non-linear

approach is more logical and accurate. However, it needs a more complex process

to achieve the selection results.

5.5 Case Study

In this session, four scenarios are demonstrated. In each Scenario, Agent g is going

to select the most suitable partner from three potential partners (Agents ga, gb and

gc). These scenarios illustrate how both our linear and non-linear approaches select

the most suitable partner for Agent g.

5.5.1 Scenario 1

In Scenario 1, all three potential partners share a common ReliantDegree, which is

0∘. Agent g is a Complete Self-Driven agent so that Agent ga should be selected as

the most suitable partner because it can contribute the highest GainRatio to Agent

g among three potential partners. All input parameters for the three potential

partners are shown in Table 5.8

In Table 5.7, the selection results by using the proposed linear function are

presented. Since wg = cos2(0∘) = 1 and wc = sin2(0∘) = 0, the GainRatio is used

to make the final decision. Therefore, Agent ga is selected by Agent g as the most

preferable partner, which is the same as the estimation.
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Partner wg ×GainRatio wc × ContributionRatio CollaborationDegree
ga 0.8 0 0.8
gb 0.5 0 0.5
gc 0.2 0 0.2

Table 5.7: Output for Scenario 1 by using the linear function.

Partner ReliantDegree GainRatio ContributionRatio CollaborationDegree Defuzzification
Complete

ga Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%
Complete

gb Self-Driven=1 Medium=1 Medium=1 Indifferent=1 50%
gc Self-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%

Table 5.8: Output for Scenario 1 by using the non-linear function.

The results for Scenario 1 by using the proposed non-linear function are shown in

Table 5.8. According to the selection results generated by the proposed approach,

Agent ga is the most suitable partner, which is the same as the selection result

generated by the linear approach.

5.5.2 Scenario 2

In Scenario 2, all three potential partners share a common ReliantDegree, which is

90∘. Both the GainRatio and ContributionRatio are the same as Scenario 1. Agent g

is a Complete External-Driven agent so that Agent gc should be selected as the most

suitable partner because it has the largest ContributionRatio. All input parameters

for the three potential partners are shown in Table 5.9.

Since ReliantDegree is 90∘, wg = 0 and wc = 1 according to Equations 5.8 and

5.9. Agent g selects a partner based on ContributionRatio only. The selection results

by using the linear function are displayed in Table 5.10. According to these results,

Agent gc should be selected as the most suitable partner for Agent g. This selection

result is exactly the same as the output generated by using the non-linear function

as shown in Table 5.11.

Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 90∘

gb 50% 50% 90∘

gc 20% 80% 90∘

Table 5.9: Input parameters for Scenario 2.
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Partner wg ×GainRatio wc × ContributionRatio CollaborationDegree
ga 0 0.2 0.2
gb 0 0.5 0.5
gc 0 0.8 0.8

Table 5.10: Output for Scenario 2 by using the linear function.

Partner ReliantDegree ContributionRatio GainRatio CollaborationDegree Defuzzification
Complete

ga External-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%
gb External-Driven=1 Medium=1 Medium=1 Indifferent=1 50%
gc Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%

Table 5.11: Output for Scenario 2 by using the non-linear function.

5.5.3 Scenario 3

In Scenario 3, ReliantDegree = 45∘ and all others parameter are the same as Scenario

1. In this case, Agent g is an Equitable agent so that the estimation partner is any of

the potential partners by considering both GainRatio and ContributionRatio equally.

All input parameters for the three potential partners are shown in Table 5.12.

According to the proposed linear function, since ReliantDegree = 45∘, then

wg = wc = 0.5. The CollaborationDegree for all potential partners is exactly the

same (0.5), as shown in Table 5.13. Any partner agent could be selected as the

most preferable partner for Agent g. The non-linear approach selection results are

displayed in Table 5.14. It also suggests that any potential partner could be the

most suitable partner in this case.

5.5.4 Scenario 4

In Scenario 4, all three potential partners share a common GainRatio and Contri-

butionRatio, but have a different ReliantDegree. Agent g has different attitudes to

its potential partners. For potential partner ga, Agent g performs as a Complete

Self-Driven agent so that only the GainRatio (80%) will be used to select the most

suitable partner. For potential partner gb, Agent g performs as an Equitable agent,

Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 45∘

gb 50% 50% 45∘

gc 20% 80% 45∘

Table 5.12: Input parameters for Scenario 3.
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Partner wg ×GainRatio wc × ContributionRatio CollaborationDegree
ga 0.4 0.1 0.5
gb 0.25 0.25 0.5
gc 0.1 0.4 0.5

Table 5.13: Output for Scenario 3 by using the linear function.

Partner ReliantDegree GainRatio ContributionRatio CollaborationDegree Defuzzification
ga Equitable=1 Large=0.5 Small=0.5 Indifferent=0.5 50%
gb Equitable=1 Medium=1 Medium=1 Indifferent=1 50%
gc Equitable=1 Small=0.5 Large=0.5 Indifferent=0.5 50%

Table 5.14: Output for Scenario 3 by using the non-linear function.

so that both GainRatio (80%) and ContributionRatio (20%) will be used to evalu-

ate whether gb could be chosen as a suitable partner. Therefore, the final benefit of

considering both GainRatio and ContributionRatio for gb should be between 20%

and 80%. For potential partner gc, Agent g performs as a Complete External-Driven

agent so that only the benefit of ContributionRatio (20%) will be used for the selec-

tion of gc as a partner. By comparing the three cases, Agent ga should be selected as

the most suitable partner because Agent g would gain the largest benefit(80%) when

collaborating with Agent ga. All input parameters for the three potential partners

are shown in Table 5.15

By employing the proposed linear approach, partner ga is selected as the most

suitable partner shown in Table 5.16. Because these three partners can offer the same

GainRatio and ContributionRatio, the relationships between Agent g and each of

them are crucial for partner selection in this case. As the GainRatio is bigger than

ContributionRatio, and Agent g’s attitude on partner ga is selfness, so ga is the

preferred partner. In Table 5.17, the selection results by employing the non-linear

function are presented, which are the same as the linear approach.

Therefore, from these four different scenarios, it can be seen that by considering

the factors of GainRatio, ContributionRatio and ReliantDegree between the agent

and its potential partners, both of our proposed partner selection mechanisms can

Agent GainRatio ContributionRatio ReliantDegree
ga 80% 20% 0∘

gb 80% 20% 45∘

gc 80% 20% 90∘

Table 5.15: Input parameters for Scenario 4.
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Partner wg ×GainRatio wc × ContributionRatio CollaborationDegree
ga 0.8 0 0.8
gb 0.4 0.1 0.5
gc 0 0.2 0.2

Table 5.16: Output for Scenario 4 by using the linear function.

Agent ReliantDegree GainRatio ContributionRatio CollaborationDegree Defuzzification
ga Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%
gb Equitable=1 Large=0.5 Small=0.5 Indifferent=0.5 50%
gc External-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%

Table 5.17: Output for Scenario 4 by using the non-linear function.

be employed by agents to generate reasonable judgement on their potential partners

and to select the most suitable partner for the agent. Also, it is noticed that both

of the proposed approaches is easily administrated by agents in a dynamic negotia-

tion environment to filter partners according to agents’ expectations. However, the

proposed linear and non-linear approaches have their own individual merits. The

linear approach is suitable for a negotiation environment where the situation is not

complex and the requirement on accuracy is not very high, but where a quick solu-

tion is needed for any changes to the situation. Furthers, the non-linear approach

can be employed in a more complex negotiation, where agents’ behaviors cannot be

represented by linear function simply. The non-linear function is sensitive to changes

of situation and can generate more reasonable and accurate selection results by em-

ploying predefined fuzzy linguistic languages and membership functions. Therefore,

the purpose of proposing two partner selection functions is to satisfy most kinds of

requirements in different negotiation environments.

5.6 Summary

In this chapter, we identified four potential cases of relationships between an agent

and its potential partners. Both linear and non-linear partner selection approaches

were proposed. For the linear approach, the ReliantDegree is employed to calculate

the normalized weights for both GainRatio and ContributionRatio. Agents attitudes

on their potential partners are represented and controlled by these two normalized

weights. For the non-linear approach, a framework is proposed which consists of

a fuzzification module, a fuzzy rule base, an approximate reasoning module, a de-

fuzzification module, and a library of fuzzy membership functions. All of the fuzzy
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membership functions for corresponding fuzzy sets have been carefully defined and

rules of fuzzy logic operations during the procedure of approximate reasoning have

also been defined.



Chapter 6

Market-Driven Strategy for Multilateral
Single Issue Negotiation

6.1 Introduction

In Chapter 5, linear and non-linear partner selection approaches were introduced

to filter out unqualified partners before a negotiation starts. By employing such

a mechanism, an agent can pay more attention to negotiation with partners who

have a greater likelihood to reach an agreement. In this chapter, a market-driven

negotiation strategy is introduced to handle multilateral single issue negotiation.

Automated negotiation [RZ94] has been an active research area in recent years.

Research on agent negotiation [JFL+01, LWJ03] has received a great deal of atten-

tion in the areas of multi-agent systems and e-commerce [HJL03, GSW04]. Cur-

rently, one of the most crucial issues for automated negotiation is how to reach an

agreement when the negotiation environment becomes open and dynamic, ie. a ne-

gotiation contains more than two negotiators. Although some agent-based systems

[RAMN+98, CM96, CDGM01, GM99, GM98, WWW98, LJS+03] have been pro-

posed and implemented successfully by researchers, agents involved in these systems

usually can only adopt predetermined strategies to negotiate with others. Therefore,

when a negotiation environment is open and dynamic, such as more products and

services becoming available and negotiators either entering or leaving the negotiation

dynamically, agents cannot provide reasonable responses to changes in the negoti-

ation environment by adopting their current negotiation strategies straightaway.

Furthermore, negotiators may also be bounded by restrictions such as deadlines

and resource limitations. Agents may also need to modify their negotiation strate-

gies when the pressure from these restrictions changes. The Market-Driven Agents

(MDAs) model [Sim02, SC03, Sim04, RSZ07] is one strategy which takes into ac-

count the relationship between an agent’s negotiation strategies and a negotiation

119
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environment. Through comparing the MDAs model [Sim04, Sim02, SW01] and other

negotiation strategies [RAMN+98, CM96, CDGM01, GM99, GM98, WWW98], the

efficient performance of the MDAs model has been illustrated. In the MDAs model,

agents are guided by four concession factors, and these factors determine how much

concession agents can give during the negotiation based on the environment. These

concession factors are trading opportunity (see Subsection 6.2.2), trading competi-

tion (see Subsection 6.2.3), trading time and strategy (see Subsection 6.2.4) and

eagerness (see Subsection 6.2.5).

However, even though the MDAs model considers the relationship between an

agent’s strategies and the negotiation environment, it does not take into account the

situation when the negotiation environment becomes open and dynamic. In an open

and dynamic environment, agents may enter into and leave off a negotiation freely,

and so the uncertainty of the negotiation may increase. In order to have a broad

view on the negotiation environment, we adopt Sycara’s model [LGS06, LSG05] to

classify negotiations according to the complexity of their environment. The model

is illustrated in Fig. 6.1, and according to this model, negotiations are divided into

three levels. The negotiation which is processed within the simplest environment

is named single-threaded negotiation. In this level, the negotiation is carried out

between only two agents without any outside options. None of the negotiators

can leave off the negotiation before an agreement is reached or a deadline is met,

and also no agent can enter into the negotiation during the process. The second

level is named synchronized multi-threaded negotiations, in which the negotiation is

processed among multiple agents. Therefore, agents need more complex negotiation

strategies in order to reach an agreement when they face more than one negotiator.

As with the first level, all negotiators are still not allowed to leave off and enter

into the negotiation freely. Therefore, in this level, agents make any decision in the

negotiation based on the current negotiation environment only. The third level is

named dynamic multi-threaded negotiations. In this level, all negotiators can leave

and enter the negotiation dynamically. Therefore, agents should think about not

only the current situation but also possible changes to the negotiation environment.

According to the classification, at the present time, the MDAs model can work well

on the first two levels, but cannot handle negotiation on the third level. In order to

address this issue, in this chapter, we propose to extend the MDAs model to third

level negotiation by considering the uncertain and dynamic outside options.

The rest of this chapter is organized as follows. In Section 6.2, the principle of the
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Figure 6.1: A nested view of general negotiation models [LGS06].

MDAs model is introduced briefly. Section 6.3 introduces the proposed mechanisms

to extend the MDAs model. Section 6.4 illustrates the experimental results. Section

6.5 concludes this chapter.

6.2 A Model for Market-Driven Agents

In this section, the principle of the MDAs model [SC03] is recalled briefly and in

particular all four concession factors in MDA are also recaped. Finally, we discuss

the limitations of the MDAs model in order to highlight the motivation of this

chapter.

6.2.1 Principle of the MDAs Model

In order to make reasonable negotiation strategies according to the negotiation en-

vironment, agents may need to modify the spread k that is defined as the difference

between an agent’s proposal and the counterproposal of its trading partners. For

example, if the price of a car is $10000, and the buyer would only like to pay $9000,

then the spread k for both seller and buyer is $1000. In general, when k is large,

the probability that agents may complete the negotiation will be decreased, and

conversely when k is small, the probability will be increased. Therefore, by modify-

ing the spread k, agents can maintain the benefits gained from their partners and

increase the likelihood of completing the negotiation. Let k′ denote the spread in

the next negotiation round, then k′ is determined by assessing current negotiation

situation as follows:

Please see print copy for imagePlease see print copy for image
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k′ = O(n, !i, �)C(m,n)T (t, t′, �, �)E(")k (6.1)

where O(n,wi, v) is the factor for trading opportunity that determines the amount

of concession according to an agent’s expectation about the negotiation outcome,

the number of partners and partners’ offers (see Subsection 6.2.2); C(m,n) is the

factor for trading competition, which is determined by the probability that an agent

is ranked as the most preferred trader by at least one of its partners (see Subsection

6.2.3); T (t, t′, �, �) is the factor for trading time and strategy that determines an

agent’s rate on concession by considering time constraints (see Subsection 6.2.4);

and E(") is the factor for eagerness that determines the amount of concession by

considering an agent’s eagerness to finish the negotiation (see Subsection 6.2.5). In

the following subsections, each of these concession factors will be discussed in detail,

respectively.

6.2.2 Trading Opportunity

In MDAs, the following factors are considered in order to determine the trading

opportunity:

∙ the number of partners n;

∙ the spread k between an agent and its partners; and

∙ the probability p of completing a negotiation.

Let p and p′ represent the probabilities of an agent completing a negotiation in

the current and next negotiation round, respectively. Let k and k′ be values of the

current and next spreads, respectively. If the distance between p and p′ is large,

in order to keep a reasonable probability of finishing the negotiation, an agent may

increase the distance between k and k′. By contrast, if the distance between p and p′

is small, an agent may decrease the distance between k and k′ in order to maintain

its benefit. The relationship between these four factors is represented as follows:

k′ =
p

p′
× k (6.2)

Suppose in a negotiation round, agent B1’s last offer is represented as a utility

vector � = (�b, �s) and its partner S1’s offer as a utility vector ! = (!b, !s). B1’s

last offer generates a payoff of �b for itself and �s for S1; and S1’s offer generates a
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payoff of !s for itself and !b for B1. Let cb denote the worst possible utility (conflict

utility) for B1. If the subjective probability of B1 obtaining cb is pc, we have:

[(1− pc)�b + pccb] ≤ !b (6.3)

According to inequality (6.3), the highest conflict probability that B1 may encounter

is the maximum value of pc as follows:

pc =
�b − !b
�b − cb

=
k

�b − cb
(6.4)

Consequently, the aggregated conflict probability that B1 may encounter by consid-

ering all partners is:

Pc =
n∏
i=1

pi =
n∏
i=1

ki
�b − cb

=

∏n
i=1(�b − !i)
(�b − cb)n

(6.5)

where ki is the spread between B1’s offer and Si’s offer, and n is the number of B1’s

partners. Therefore, the probability p that B1 will obtain a utility �b with at least

one partner is:

p = 1− Pc = 1−
∏n

i=1(�b − !i)
(�b − cb)n

(6.6)

From Equation (6.2) and (6.6), we get the relationship between the current and next

negotiation round as follows:

k′ =
1

p′

(
1−

∏n
i=1(�b − !i)
(�b − cb)n

)
k (6.7)

Then the function to represent the concession factor trading opportunity is:

O(n, !i, �) =
1

p′

(
1−

∏n
i=1(� − !i)
(� − c)n

)
(6.8)

6.2.3 Trading Competition

The concession factor trading competition in the MDAs model is calculated by tak-

ing into account the probability that an agent will not be considered as the most

preferred partner by its partners. Suppose that Agent B1 has m − 1 competitors

B2, . . . , Bm and n partners S1, . . . , Sn. The probability that B1 is not considered as

the most preferred partner by all Si is (m−1
m

)n. Hence, the concession factor trading
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competition is defined in Equation (6.9), which indicates the probability that B1 is

considered as the most preferred partner by at least one of Si.

C(m,n) = 1− (
m− 1

m
)n (6.9)

6.2.4 Trading Time and Strategy

To enable an agent to change its negotiation strategy during a negotiation to get

better outcomes, Fatima et. al. [FWJ04a] designed negotiation strategies such as:

1. To complete the negotiation as quickly as possible, an agent makes large con-

cessions at the early stages of a negotiation, and small concessions when at

the later stages of a negotiation;

2. To guarantee their benefits, an agent makes small concessions at the early

stages of a negotiation. However, when the deadline is approaching, in order

to avoid negotiation failure, agents will make large concessions;

3. To process negotiation in a smooth way, an agent makes constant concessions

throughout a negotiation.

4. To act on behalf of some human users who are obstinate, an agent keep its

original offers throughout a negotiation without any concession.

In general, the concession strategies mentioned above can be Equationted by

considering the time constraints as follows [FWJ04a]:

k′ = [1− (t/�)�]× k0 (6.10)

where k0 is the initial spread, t is the current negotiation time, � is the negotiation

deadline (t ≤ �) and � is a nonnegative temporal sensitivity factor that decides

agents’ negotiating strategies as shown in Figure 6.2.

1. When � > 1, the rate of change in the slope is increasing, corresponding to

smaller concessions in the early stages of a negotiation but large concessions

in the later stages.

2. When 0 < � < 1, the rate of change in the slope is decreasing, corresponding

to large concessions in the early stages but smaller concessions in the later

stages.
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Figure 6.2: Modeling different rates of concession.

3. When � = 1, the rate of change in the slope is zero, corresponding to making

a constant concession throughout a negotiation.

4. When � = 0, the rate of change of the slope and the slope itself are always

zero, corresponding to not making any concession throughout a negotiation.

Let the spread at t (when the last bid/offer was made) be k, and the next spread

at time t′ (when the next bid/offer will be made) be k′. From Equation 6.10, it

follows that k′ = [1 − (t′/�)�]k0 and k0 = k
1−(t/�)�

. With other market factors

unchanged, an agent’s next spread is:

k′ =
1− ( t

′

�
)�

1− ( t
�
)�
k (6.11)

Thus, the concession factor trading time and strategy is formed by considering the

changes of the spread current negotiation time t and the next negotiation round t′

as follows:

T (t, t′, �, �) =
1− ( t

′

�
)�

1− ( t
�
)�

(6.12)

6.2.5 Eagerness

The concession factor eagerness considers an agent’s desire to complete a negotiation

and to make concessions during a negotiation. Let " (0 ≤ " ≤ 1) represent the
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percentage of convergence of the spread k, then the spread k′ in the next negotiation

round is given by k′ = (1 − ") × k. " corresponds to an agent’s desire to make

concession to narrow the differences between itself and others in each negotiation

iteration, independent of the current trading time, number of competitors, and

number of trading partners. The greater the value of ", the more desire by an agent

to make concession. In MDAs, " is supplied by the user and is assumed to be a

constant. The concession factor eagerness is represented as follows:

E(") = 1− " (6.13)

6.2.6 Limitations of MDAs

In the above, we recaped the basics of MDAs. Now we disclose its limitations that

may impact the negotiation outcomes. Even though the MDAs model has shown

good performance [Sim04, Sim02, SW01], there still exist some limitations which

may restrict its application in the real world. In fact, the current MDAs model

cannot handle the situation where the negotiation environment becomes open and

dynamic, and the outside options become uncertain. The main reason is that the

current MDAs model does not employ any mechanism to handle possible changes

on the negotiation environment. Therefore, when potential outside options become

available in the future, agents cannot make reasonable responses to these changes,

and cannot update their negotiation strategies according to these changes. For

example, the concession factor trading opportunity is assessed by the total number

of partners and spreads between an agent’s offer and its partners’ offers (see Equation

(6.8)). However, it does not involve the forecast that partners may enter or leave the

negotiation dynamically. Therefore, if the negotiation is processed with uncertain

outside options, using these strategies agents cannot make effective decisions to

change partners. Also, the concession factor trading competition cannot handle the

situation where the number of partners and competitors are changed in the future.

Thus, if the negotiation environment is changed, Equation (6.9) cannot represent

the probability that an agent is being considered as the most preferred partner by all

of its partners correctly anymore. Furthermore, for the concession factors trading

time and strategy and eagerness, it will be more efficient for an agent to change

its negotiation strategy and eagerness dynamically rather than keep these factors

as constants when potential outside options are available. Therefore, in order to
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remove the limitations mentioned above, an extended MDAs model is proposed in

this chapter. Ways of modifying all concession factors are introduced in detail in

the following section.

6.3 MDAs with Uncertain and Dynamic Outside

Options

In this section, an extended MDAs model is introduced. The major approaches

to modifying the concession factors trading opportunity (see Subsection 6.3.1) and

trading competition (see Subsection 6.3.2) are: 1) to handle possible changes (i.e.

uncertainties when negotiators will enter into or leave off the negotiation) on the

negotiation environment; 2) to generate the corresponding reactions for each possi-

ble change; and 3) to make the final decision by combining all reactions based on

their individual probabilities. The concession factors trading time and strategy (See

subsection 6.3.3) and eagerness (See subsection 6.3.4) are modified based on the

consideration that an agent may change its negotiation strategy and eagerness in

order to reach an agreement.

6.3.1 Trading Opportunity

This subsection details how to modify the concession factor trading opportunity in

an open and dynamic negotiation environment by considering the three cases: 1)

the negotiating partners are allowed to enter negotiation only; 2) the negotiating

partners are allowed to leave negotiations only; and 3) the negotiating partners are

allowed to enter into and leave off negotiations at will.

Partners Enter into Negotiation Only

∙ Only one partner enters into the negotiation:

When only one partner enters the negotiation in the next round of negotiation,

according to Equation (6.5) the aggregated conflict probability is:

P 1
c =

n∏
i=1

pi × pn+1 (6.14)
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Since pi (i ∈ [1, n]) is already known, then the key point is how to obtain the

conflict probability pn+1 for the new incoming partner. Because pn+1 is un-

known until the next negotiation round, so we can determine an approximate

value to replace pn+1 based on the situation of the current negotiation round.

Let pcn+1 be the most approximate value of pn+1 in all pi, then any pi has the

same possibility ( 1
n
) to be pcn+1. Thus the mathematical expectation of pcn+1 is∑n

i=1 pi/n. Because pcn+1 is the approximation of pn+1, then Equation (6.14)

can be rewritten as:

P 1
c =

n∏
i=1

pi ×
∑n

i=1 pi
n

(6.15)

Therefore, according to Equation (6.6), the extended trading opportunity, in

the case of only one partner entering into the negotiation, is:

O(n, !i, �) =
1

p′

(
1−

n∏
i=1

pi ×
∑n

i=1 pi
n

)
(6.16)

∙ Only s partners enter into the negotiation:

Similar to Equation (6.14), when exactly s partners enter the negotiation in

the next round, under the independent assumption the aggregated conflict

probability is:

P s
c =

n∏
i=1

pi × pn+1 × . . .× pn+s (6.17)

The pi (i ∈ [1, n]) is known and each new incoming partner’s (sn+k, k ∈ [1, s])

conflict probability pn+k can be approximated by
∑n+k−1

i=1 pi/(n+ k− 1) (sim-

ilarly to pcn+1). Thus Equation (6.17) can be expanded as:

P s
c =

n∏
i=1

pi ×
s∏

k=1

pn+k =
n∏
i=1

pi ×
s∏

k=1

∑n+k−1
i=1 pi

n+ k − 1
(6.18)

Therefore, trading opportunity can be rewritten when exactly s partners enter

the negotiation, as follows:

O(n, !i, �) =
1

p′

(
1−

n∏
i=1

pi ×
s∏

k=1

∑n+k−1
i=1 pi

n+ k − 1

)
(6.19)
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It can be seen that when k = 1, Equation (6.19) will be exactly the same as

Equation (6.16).

∙ At most m partners enter into the negotiation:

When there are at most m partners, (the actual number of new incoming

partners could be in [0,m]) enter into the negotiation in the next round, if the

probability of each partner entering the negotiation is pin, then the extended

concession factor trading opportunity is:

O(n, !i, �)in =
1

p′

m∑
i=0

[Ci
m(pin)i(1− pin)m−i × (1−

n∏
j=1

pj ×
i∏

k=1

∑n+i−1
j=1 pj

n+ i− 1
)]

(6.20)

where Ci
m(pin)i(1 − pin) is the probability that exactly i partners enter into

the negotiation in the next round. Thus, Equation (6.20) includes all possible

cases when at most m partners are allowed to enter the negotiation in the next

round freely.

Partners Leave off Negotiation Only

∙ Only one partner leaves off the negotiation:

When only one partner, say partner j leaves the negotiation in the next round,

according to Equation (6.5) the aggregated conflict probability is
∏n

i=1,i ∕=j pi.

Because any one of the existing partners has the same probability (1/n) to

leave off the negotiation, then the aggregated conflict probability is:

p1
c =

n∑
i=1

∏n
j=1,i ∕=j pj

n
(6.21)

Therefore, according to Equation (6.6), the extended trading opportunity, in

the case of only one partner leaving off the negotiation, is:

O(n, !i, �) =
1

p′

(
1−

n∑
i=1

∏n
j=1,i ∕=j pj

n

)
(6.22)

∙ Only s partners leave off the negotiation:
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When there are exactly s (0 ≤ s ≤ n) partners leaving off the negotiation in

the next round, let p be the set of all existing partners in the current round,

's be the set of partners leaving, and 's be the set of partners that stay in the

next round ( 's ∪ 's = p and 's ∩ 's = ∅). According to Equation (6.5), the

aggregated conflict probability, when exactly s ('s) leave off the negotiation,

is
∏

i∈'s
pi. Thus the extended trading opportunity, by considering exactly s

partners leaving off the negotiation, is:

O(n, !i, �) =
1

p′

(
1−

Csn∑
i=1

∏
j∈'is

pj

Cs
n

)
(6.23)

where Cs
n is the number of possible combinations from the set p with n ele-

ments. It can be seen that when s = 1, Equation (6.23) will be exactly the

same as Equation (6.22).

∙ At most m partners leave off the negotiation:

When at most m (0 ≤ m ≤ n) partners leave off the negotiation in the next

round (the actual number of partners leaving could be between 0 and n), if the

probability of each partner leaving the negotiation is pout, then the concession

factor trading opportunity is:

O(n, !i, �)out =
1

p′

m∑
i=0

[Ci
m(pout)

i(1− pout)m−i × (1−
Cim∑
j=1

∏
k∈'ji

pk

Ci
m

)] (6.24)

where Ci
m(pout)

i(1−pout)m−i is the probability that exactly i partners leave the

negotiation in the next round. Therefore, Equation (6.24) includes all possible

situations when at most m partners leave off the negotiation.

Partners Enter into and Leave off Negotiation Freely

When there are at most m partners entering into the negotiation and/or leaving off

the negotiation as they wish, the extended trading opportunity, by considering all

situations mentioned above (i.e. Equations (6.20) and (6.24)) is:

O(m,!i, �)all = O(n, !i, �)in × win +O(n, !i, �)out × wout (6.25)
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where win ∈ [0, 1], wout ∈ [0, 1], and win+wout = 1, represent the significance of each

individual situation. Usually, both of them are simply assigned as 0.5 to indicate

that the same attention is paid to both incoming and outgoing changes.

6.3.2 Trading Competition

In this subsection, we extend the concession factor of trading competition by fol-

lowing a similar method to extending trading opportunity. There are three cases

that need to be considered, namely: (1) only competitors change; (2) only partners

change; and (3) both competitors and partners change.

Only Competitors Change

In the first instance, we will consider the situation where the number of competitors

changes during the negotiation only.

∙ At most q competitors enter into the negotiation:

When at most q competitors enter the negotiation, the probability that the

agent is considered as the most preferred trader by at least one of their partners

(see Subsection 6.2.3) is:

Ccin(m,n) =

q∑
i=0

[Ci
q(pin)i(1− pin)q−i × (1− (

m+ i− 1

m+ i
)n)] (6.26)

where 1− (m+i−1
m+i

)n is the trading competition factor when exactly i (i ∈ [0, q])

competitors enter the negotiation.

∙ At most p competitors leave off the negotiation:

When there are at most p competitors leaving the negotiation, then the prob-

ability that the agent is considered as the most preferred trader by at least

one partner is:

Ccout(m,n) =

p∑
i=0

[Ci
p(pout)

i(1− pout)p−i × (1− (
m− i− 1

m− i
)n)] (6.27)

where 1− (m−i−1
m−i )n is the trading competition factor when exactly i (i ∈ [1, p])

competitors leave off the negotiation.
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∙ Competitors enter into and leave off the negotiation freely:

Based on the considerations about the two situations mentioned above (see

Equations (6.26) and (6.27)), when competitors are allowed to enter into and

leave off the negotiation freely, the trading competition is represented as:

Cc(m,n) = Ccin(m,n)win + Ccout(m,n)wout (6.28)

where win and wout are weights. The default values are 0.5 for equal weighting.

Only Partners Change

In the second stage, we keep the number of competitors unchanged, but take into

account the situation where the number of partners change.

∙ At most w partners enter into the negotiation:

When there are at most w partners entering the negotiation, then the prob-

ability that the agent is considered as the most preferred partner by at least

one partner is:

Cpin(m,n) =
w∑
i=0

[Ci
w(pin)i(1− pin)w−i × (1− (

m− 1

m
)n+i)] (6.29)

where 1 − (m−1
m

)n+i is the trading competition factor when exactly i partners

enter the negotiation.

∙ At most v partners leave off the negotiation:

When there are at most v partners leaving off the negotiation, the concession

factor trading competition is:

Cpout(m,n) =
v∑
i=0

[Ci
v(pout)

i(1− pout)v−i × (1− (
m− 1

m
)n−i)] (6.30)

where 1 − (m−1
m

)n−i is the trading competition factor when exactly i partners

leave off the negotiation.

∙ Partners enter into and leave off the negotiation freely:
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Based on the two considerations mentioned above (see Equations (6.29) and

(6.30)), by considering the change of partners only, the concession factor trad-

ing competitor is:

Cp(m,n) = Cpin(m,n)win + Cpout(m,n)wout (6.31)

where win and wout are weights. The default values are 0.5 for equal weighting.

Both Competitors and Partners Change

In the last stage, we combine all situations and allow both competitors and partners

to change freely. Then the probability that the agent is considered as the most

preferred trader by at least one of their partners is:

C(m,n) = Cc(m,n)wc + Cp(m,n)wp (6.32)

where Cc(m,n) is defined by Equation (6.28), Cp(m,n) is defined by Equation

(6.31), and wc and wp are the weights on each term.

6.3.3 Trading Time and Strategy

In this subsection, the concession factor trading time and strategy is extended by

considering changes of the parameter �. According to the explanation of � (see

Equation (6.10)), the bigger the value of �, the smaller the concession agents will

give in the early negotiation round, and the larger the concession agents will give in

the later negotiation round, and vice versa. Furthermore, if the value of concession

factors trading opportunity and trading competition changes, the amount of conces-

sion should also be changed. Therefore, the parameter � should be determined by

both trading opportunity and trading competition. Accordingly, the extended trading

time and strategy is:

T (t, t′, �, �t) =
1− ( t

′

�
)�t′

1− ( t
�
)�t

(6.33)

where �t is calculated by:

�t = �0 ×Ot(n, !i, �)× Ct(m,n) (6.34)
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where the �0 is the initial value of the concession, and is assigned by the user.

Ot(n, !i, �) is the factor trading competition at negotiation round t (see Equation

(6.32)), and Ct(m,n) is the factor trading opportunity at negotiation round t (see

Equation (6.25)). Equation (6.34) indicates that when the number of partners is

greater than the number of competitors during a negotiation (positive to the agent),

in order to maximize its profit, the agent should decrease its concession. However

when the number of partners is less than the number of competitors, the agent

should give more concession in order to keep its partners.

6.3.4 Eagerness

In this subsection, the concession factor of eagerness is extended by considering

changes in the negotiation environment. The general idea of the extension is that:

according to economists, people’s eagerness to complete a trade should be directly

related to their benefits. So it is proposed to extend eagerness by considering agents’

benefits. In each negotiation round, when an agent’s benefits are changed by part-

ners’ offers, the agent’s eagerness to reach an agreement should also be changed. Let

brt (brt > 0) denote the ratio between an agent’s maximal benefits in two conjoint

negotiation rounds; brt can be calculated as:

brt =
mbt
mbt∗

(6.35)

where mbt is the agent’s maximal benefit in the current round, and mbt∗ is the

maximal benefit in the last round. Both mbt and mbt∗ can be easily gained from

the negotiation records. Then the factor of trading eagerness is extended as:

E("t) = 1− "t (6.36)

where

"t =

⎧⎨⎩"0 t = 0

"t−1 × brt t > 0
(6.37)

where "0 is the initial value of eagerness and is assigned by the user. From Equations

(6.37) and (6.35), it can be seen that the more benefits the agent gains than the last

negotiation round, the more eagerness that the agent wants to reach an agreement

for the negotiation. For example, when brt > 1, this indicates that the agent’s benefit
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is increased in the current round, so the agent will be more eager to complete the

trading; when 0 < brt < 1, this indicates that the agent’s benefit is decreased in the

current round, so the agent will be less eagerness to complete the trading; and when

brt = 1, this indicates that the agent’s benefit does not change in the current round,

so the agent will not change its eagerness. The purpose of this updating strategy on

"t is to help agents modify their eagerness as the negotiation environment changes.

6.3.5 Discussion

In this section, we introduced the extended MDAs model by considering dynamic

changes in the negotiation environment. By comparison with the original MDAs

model, each concession factor has been extended as follows:

∙ Trading opportunity

By employing the extended MDAs model, an agent can calculate the trading

opportunity in the current negotiation round, and can also handle changes

of trading opportunity. The agent can handle the opportunity of completing

the negotiation in future rounds. Then the agent can modify its negotiation

strategy in order to maximize self profits and ensure an agreement can be

achieved successfully as well.

∙ Trading competition

The agent can handle future situations of competition in the dynamic negotia-

tion environment. In multi-lateral negotiation, competition is a very significant

issue, and impacts on both the negotiation strategy and the result. By em-

ploying the extended MDAs model, an agent can gain more advantages during

competitions.

∙ Trading time and strategy

In the original MDAs model, the agent’s negotiation strategy is predefined by

the client and will not be changed throughout the negotiation. However, in an

open and dynamic negotiation environment, a constant negotiation strategy

cannot respond to changes in the environment, so the agent may face loss of

profits or negotiation partners. In the extended MDAs model, we improve this

factor and agents are allowed to modify their negotiation strategies according

to a changing environment. Therefore, the agent can get more advantages in
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open and dynamic negotiation by employing the extended MDAs model rather

than the original MDAs model;

∙ Eagerness

In the original MDAs model, the eagerness of an agent to complete a negotia-

tion is also predefined by the client. However, in reality, an agent’s eagerness to

complete the negotiation should be impacted by the negotiation environment

and the benefits the agent can gain. Usually, agents prefer higher benefits.

In the extended MDAs model, we take account of this situation and allow an

agent to modify its eagerness when a negotiation environment changes.

6.4 Experiments

In this section, we illustrate our experimental results based on each of the four

concession factors. These are trading opportunity (see Subsection 6.4.2), trading

competition (see Subsection 6.4.3), trading time and strategy (see Subsection 6.4.4)

and eagerness (see Subsection 6.4.5). In Subsection 6.4.6, experimental results by

combining all concession factors are illustrated.

6.4.1 Setup of Experiments

Firstly, we briefly introduce the setup of our experiments:

1. Negotiation participators are divided into two types, namely “partners” and

“competitors”; the initial numbers for both are 5.

2. The maximum number of agents that can enter or leave the negotiation is

between 0 and 5, which is from 0% to 100% of the initial number.

3. The probability that an agent will enter into or leave off the negotiation is

assigned to 0.5.

4. The maximum negotiation round is assigned to 10.

5. It is only assumed that both the number of partners and number of competitors

are always greater than 0; there is no assumption about agents’ negotiation

strategies and protocols.
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6.4.2 Experiment 1: Trading Opportunity

According to Subsection 6.3.1, the concession factor trading opportunity only con-

siders changes of partners. In this subsection, experiments are illustrated to test the

performance of the proposed extension approach on trading opportunity.

∙ Partners can only enter into the negotiation:

In this experiment, partners are only allowed to enter the negotiation. The

experimental results are displayed in Figure 6.3. The x-axis indicates the

negotiation round, while the y-axis is the value of trading opportunity. The

higher the value of trading opportunity, the more possibility that agents can

finish the negotiation. When only one partner (10% of initial partners) enters

the negotiation, the negotiation success rate increases significantly. As the

number of entering partners increases, the success rate also increases. How-

ever, the increment becomes slow. The reason is that no matter how many

prospective partners exist, only one agreement can be reached with one part-

ner. Therefore, it is noticed that there is a bottleneck between the number of

prospective partners and the negotiation success rate. When the number of

prospective partners is higher than a threshold (60% of initial partners), its

effect will not be so significant as it used to be. In this case, agents have to

seek another approach to increase their negotiation success rate. Furthermore

the experimental result indicates that in a negotiation, especially in an open

and dynamic environment, agents do not need to undertake a comprehensive

investigation of all prospective partners. A reasonable search for prospective

partners within the local society is adequate to keep the negotiation success

rate at a desirable level.

∙ Partners can only leave off the negotiation:

In this experiment, partners are only allowed to leave off the negotiation.

The experimental results are displayed in Figure 6.4. It can be seen that as

the number of leaving partners increases, the negotiation success rate keeps

decreasing. When only one partner (10% of initial partners) leaves the ne-

gotiation, the negotiation success rate decreases by more than one third. As

the number of leaving prospective partners increases, the negotiation success

rate drops quickly. When the number of leaving partners is larger than three

(60% of initial partners), the success rate decreases very little compared to the
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Figure 6.3: Trading opportunity when partners enter freely.

Figure 6.4: Trading opportunity when partners leave freely.

original one. Therefore, the experimental result indicates that in order to en-

sure success of the negotiation, agents should keep the number of prospective

partners to a reasonable level.

∙ Partners can enter into and leave off the negotiation:

In this experiment, partners can enter into and leave off the negotiation freely.

In Figure 6.5, it can be seen that as the number of entering and leaving prospec-

tive partners increases, the negotiation success rate decreases. However, even

for the most complex situation, at most five prospective agents (100% of initial

partners) can enter and leave the negotiation freely, the decrease in negotiation
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Figure 6.5: Trading opportunity when partners enter and leave freely.

success rate is only 10%. This experimental result indicates that in an open

and dynamic environment, when the number of prospective partners fluctu-

ates, negotiation success will be impacted only minimally. The reason could be

that (1) when the new incoming partners replace existing ones, the uncertainty

of the new incoming partner’s bids will impact on the negotiation success rate;

and (2) since competitors also exist during the negotiation, the new incoming

partners may have more interest in other competitors. Therefore, fluctuation

of the environment may have very little impact on the negotiation success rate.

In order to maintain the success rate, agents should retain their prospective

partners as much as they can.

According to the experimental results in this subsection, it can be seen that

the proposed approach successfully handles uncertainties in the negotiation envi-

ronment, and helps agents to update their negotiation strategies to increase the

negotiation success rate.

6.4.3 Experiment 2: Trading Competition

According to Subsection 6.3.2, both partners and competitors can impact on the

value of trading competition. Therefore, we test the extended approach on trading

competition by considering changes on both partners and competitors.
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Figure 6.6: Trading competition when partners enter freely.

Considering partners only

In this part, only changes of partners are considered, and the number of competitors

is kept as a constant.

∙ Partners can only enter into the negotiation

In this experiment, partners are only allowed to enter the negotiation. The

experimental results are displayed in Figure 6.6. The higher the value of trad-

ing competition, the less competition the agent will meet during negotiation.

In Figure 6.6, it can be seen that as the number of prospective partners in-

creases, the agent will face less competition during the negotiation. When

two prospective partners (40% of initial partners) enter the negotiation, the

value of trading competition is increased by more than 50%. However, when

the number of incoming partners is bigger than three (60% of initial partners),

the value of trading competition is not increased significantly. This experiment

result is very similar to the experiment on trading opportunity. It indicates

that when the number of prospective partners is bigger than a threshold, the

increase in the number of partners will have little impact on agent competi-

tion. In this case, the method of eliminating existing competitors will have

more effect on decreasing agents’ competition in the negotiation.

∙ Partners can only leave off the negotiation

In this experiment, partners are only allowed to leave the negotiation. The



6.4. Experiments 141

experimental results are displayed in Figure 6.7. It can be seen that as the

number of prospective partners decreases, agents will face more competition

during the negotiation. In general, each 20% loss of prospective partners will

increase similar pressure on agent competition.

Figure 6.7: Trading competition when partners leave freely.

∙ Partners enter into and leave off the negotiation

In this experiment, partners can enter and leave the negotiation freely. In

Figure 6.8, it can be seen that as the number of prospective partners fluctuates,

the agent’s competition will increase slightly on average, but will also fluctuate.

The more changes in the negotiation environment, the more fluctuation will

occur. Also this experiment obtains a similar result as the experiment on

trading opportunity, which is that fluctuation of perspective partners in the

negotiation environment has very little impact on agent competition during

negotiation.

Considering competitors only

In this part, only changes of competitors are considered; the number of partners

remains constant.

∙ Competitors can only enter into the negotiation

In this experiment, competitors are only allowed to enter the negotiation. The

experimental results are displayed in Figure 6.9, which indicates that the more
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Figure 6.8: Trading competition when partners enter and leave freely.

Figure 6.9: Trading competition when competitors enter freely.

competitors entering the negotiation, the more competition agents will face. A

40% increase in the number of competitors can increase competition by more

than 50% during negotiation.

∙ Competitors can only leave off the negotiation

In this experiment, competitors are only allowed to leave the negotiation. The

experimental results displayed in Figure 6.10 indicate that as the number of

competitors decreases, the competition between agents also decreases. Each

20% loss of the number of competitors will release agents’ pressure to a similar

level.
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Figure 6.10: Trading competition when competitors leave freely.

∙ Competitors enter into and leave off the negotiation

In this experiment, competitors can enter and leave the negotiation freely.

The experimental results are displayed in Figure 6.11. In contrast to the

experimental results on partners, the fluctuation on the number of competitors

has considerable impact on agent competition. The more competitors that are

allowed to enter and leave the negotiation freely, the less competition agents

will meet during the negotiation. The leaving competitors can release pressure

immediately, but the incoming competitors cannot exert more pressure to

the existing agents in a short time. Therefore, changes in the number of

competitors can take benefits to both the negotiation participators and the

whole market.

Considering both partner and competitor

In this part, both changes of partners and competitors are considered. As shown

in Figure 6.12, when both partners and competitors can enter and leave during

the negotiation freely, the values of trading competition fluctuate relative to the

original value. The more changes of negotiation participators, the more complex the

situation will be and the bigger the fluctuation. It can be seen that our experimental

results, which indicate the relationship between negotiation environment and agent

pressure, are reasonable. This relationship can be employed by agents to modify

their negotiation strategies when the negotiation environment changes.
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Figure 6.11: Trading competition when competitors enter and leave freely.

Figure 6.12: Trading competition when both partners and competitors enter and
leave freely.
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6.4.4 Experiment 3: Trading Time and Strategies

According to Subsection 6.3.3, both the number of partners and competitors can

impact on the value of trading time and strategy. What is more, the values of

trading time and strategy are also dependent on the parameter � and the remaining

time. Therefore, we test the proposed approach in terms of changes of partners and

competitors, respectively.

Considering partners only

In this part, only the changing of partners is considered, and not the changing of

competitors.

∙ Partners can only enter into the negotiation

In this experiment, partners are only allowed to enter the negotiation. The

experimental results are displayed in Figure 6.13. The x-axis indicates the

negotiation time, while the y-axis is the value of � (see Subsection 6.2.4). The

higher the value of �, the less concession the agent will make in the early round,

and conversely. As shown in Figure 6.13, when the number of prospective

partners increases, much less concession will be made in the early rounds. That

is because the agents’ trading opportunity is increased and trading competition

is decreased. Therefore agents make a decision to decrease their concession in

order to enlarge their benefits. The more prospective partners that enter the

negotiation, the less concession the agent concedes.

∙ Partners can only leave off the negotiation

By contrast, while partners are only allowed to leave the negotiation, agents

should enlarge their concession in order to increase the negotiation success

rate. The experimental results are displayed in Figure 6.14. It can be seen

that as the number of prospective partners decreases, much larger concession

is made during the early rounds.

∙ Partners can enter into and leave off negotiation

In this experiment, partners can enter into and leave off the negotiation freely.

The experimental results are displayed in Figure 6.15. It can be seen that

as the number of prospective partners fluctuates, the value of � is slightly

decreased. The reason for this is that when the number of prospective partners
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Figure 6.13: Trading strategy when partners enter freely.

Figure 6.14: Trading strategy when partners leave freely.
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Figure 6.15: Trading strategy when partners enter and leave freely.

is changed, the agent’s trading opportunity is decreased (see experiments on

trading opportunity Subsection 6.4.2) and its trading competition is increased

(see experiments on trading competition Subsection 6.4.3). Therefore agents

have to increase their concession to respond to such changes.

Considering competitors only

In this part, only changes of competitors are considered, not changes of partners.

∙ Competitors can only enter into the negotiation

In this experiment, competitors are only allowed to enter the negotiation. In

Figure 6.16, it can be seen that the results are very similar to the situation

where partners are only allowed to leave the negotiation freely. When the total

number of competitors increases, agents tend to increase their concession from

the early negotiation rounds.

∙ Competitors can only leave off the negotiation

In this experiment, competitors are only allowed to leave the negotiation. In

Figure 6.17, it can be seen that as the total number of competitors decreases,

agents tend to give less concession during the early rounds of the negotiation.

This is very similar to the situation where prospective partners are allowed to

enter the negotiation freely.

∙ Competitors enter into and leave off the negotiation
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Figure 6.16: Trading strategy when competitors enter freely.

Figure 6.17: Trading strategy when competitors leave freely.
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Figure 6.18: Trading strategy when competitors enter and leave freely.

When competitors can enter and leave the negotiation freely, the experimental

results are displayed in Figure 6.18. It can be seen that as the total number

of competitors fluctuates, agents increase the value of � and decrease their

concession from the early rounds. Similar to the experiments on trading com-

petition (see Subsection 6.4.3), the explanation of these results is that the

leaving competitors can release the pressure from agents immediately, but in-

coming competitors cannot place more pressure on agents in the short term.

Therefore, agents tend to decrease their concession level.

Considering both partner and competitor

In this part, changes of both partners and competitors are considered. As shown in

Figure 6.19, when both partners and competitors can enter and leave the negotiation

freely, agents’ strategies on the amount of concession also fluctuate relative to their

initial values. The more changes in the number of participators, the bigger the

fluctuation will be. Therefore, in an open and dynamic environment, agents need a

proper approach to estimate the potential changes of the negotiation environment

and to make reasonable responses.

6.4.5 Experiment 4: Eagerness

In this subsection, we perform experiments to test the proposed approach on ea-

gerness. According to Subsection 6.3.4, the value of eagerness will be impacted by
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Figure 6.19: Trading strategy when both partners and competitors enter and leave
freely.

benefit ratio brt. In order to simplify the experiment, we set brt to 0.5, 1 and 2

respectively, and compare them. In fact, the value of brt is changed dynamically in

each negotiation round.

In Figure 6.20, it can be seen that as the value of benefit ratio increases, the value

of eagerness also increases and the agents are more eager to finish the negotiation.

Therefore, it can be seen that the proposed approach successfully adjusts the value

of eagerness according to the agents’ negotiation environment.

6.4.6 Experiment 5: Combining all factors

In this subsection, we illustrate the experimental results by combining all concession

factors in Figure 6.21. It can be seen that when only 1 (i.e., 20%) or 2 (i.e., 40%)

negotiation participator/s enters/enter into or leaves/leave off the negotiation freely,

the agent can decrease its concession by comparison with the original MDAs model.

The reason behind this result is that when few negotiation participators can enter

into or leave off the negotiation freely, the agent will get more chances to find a

‘better’ negotiation partner. Even though the existing negotiation partner may leave

off the negotiation as well, the negotiation partners with higher opportunity may

not leave off the negotiation, so the agent will not be impacted too much by existing

partners’ leaving. On the other hand, pressure from the negotiation competitors is

not so heavy because as shown in Figure 6.8, when at most 1 (i.e., 20%) or 2 (i.e.,

40%) competitor/s enters/enter into or leaves/leave off the negotiation freely, the
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Figure 6.20: Eagerness.

Figure 6.21: Combine all factors.
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agent will not obtain too much competition in the environment. However, when

there are more than 3 (i.e., 60%) negotiation participators who enter into or leave

off the negotiation freely, the situation changes. The agent has to face more pressure

from competitors, and existing partners with higher opportunity may also leave off

the negotiation, so in order to ensure that the negotiation can reach an agreement,

the agent has to increase its concession. It can be seen from the curve that for

each increment (10% of all negotiation participators) on changing the number of

negotiation participator, the agent has to increase its concession value by 10% of its

maximum concession on average. In the extreme case, when at most 5 participators

can enter into or leave off the negotiation, the agent has to make 20% more concession

to its negotiation partners compared with the original MDAs model in order to

ensure that negotiation agreement can be reached successfully.

In this section, we illustrate the experimental results on each individual con-

cession factor, as well as the combined factors. In general, from the experimental

results, it can be seen that when less than 40% of negotiation participators may enter

into or leave off the negotiation, the agent’s negotiation strategy does not necessarily

need much updating. Furthermore, a little change of the negotiation environment

may bring some advantages to most negotiation participators. However, when more

than 40% of negotiation participators may enter into or leave off the negotiation,

an agent has to modify its strategy in order to reach an agreement. Usually, a big

change in the negotiation environment has a negative impact on most negotiation

participators.

6.5 Summary

In this chapter, four concession factors in MDAs (namely trading opportunity, trad-

ing competition, trading time and strategy and eagerness) were modified by taking

into account uncertain and dynamic outside options. In an open and dynamic nego-

tiation environment, negotiators were allowed to enter and leave a negotiation freely.

Through analyzing the uncertain negotiation environment, the proposed approach

can generate reasonable decisions to update agents’ strategies in a dynamic environ-

ment. The experimental results also illustrated both the efficiency and accuracy of

the proposed approach.



Chapter 7

Market-Based Strategy for Multilateral
Multiple Issue Negotiation

7.1 Introduction

Electronic commerce has changed traditional methods of business in recent years

and has become a very important commercial phenomenon. Nowadays, many busi-

nesses operate in e-marketplaces and intelligent agents can help businesses to make

e-trading more efficient. Due to different interests in trades, negotiation mechanisms

are normally adopted by agents to communicate and compromise to reach mutually

beneficial agreements when conflicts happen. In a dynamic electronic marketplace,

people can easily access the e-market to publish information, to retrieve items of

interest, to negotiate with opponents synchronously and to terminate any ongoing

negotiation freely. In Chapter 6, a market-driven negotiation model was introduced

to consider the uncertainty of a dynamic negotiation environment. However, the

market-driven negotiation model proposed in Chapter 6 considered only negotia-

tions with a single issue, but did not take multiple issues into account. The ma-

jor differences between single issue negotiation and multi-issue negotiation is that:

(1) multi-issue negotiation between intelligent agents can lead negotiators to ‘win-

win’ negotiation outcomes, which can hardly be achieved by single issue negotiation

[LSL07]; (2) multi-issue negotiation can process multiple issues synchronously. In

an e-marketplace, multi-issue negotiation can definitely help agents to improve their

negotiation outcomes as well as the negotiation efficiency. Therefore, this chapter

tries to propose a model to solve a research issue in agent negotiation by considering

both multiple issues and the uncertainty of negotiation.

Although researchers have successfully proposed many multi-issue negotiation

models from different considerations, very few of them consider dynamic e-market

153
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environments and multiple preferences. Fatima et al. [FWJ07] proposed a multi-

issue negotiation model to achieve optimal negotiation outcomes for online negoti-

ation. However, their model only worked in the situation of bilateral negotiation

without consideration of dynamic changes of negotiation environments. Lai et al.

[LSL07, LLS06] presented a model for multi-attribute negotiations between two ne-

gotiators. However, impacts on negotiators’ strategies from outside options are still

not taken into account. Hemaissia et al. [HSLM07] proposed a multilateral multi-

issue negotiation protocol in a cooperative scenario by employing a mediator agent.

However, when the number of negotiation participators fluctuates, the mediator can

hardly make an unbiased and accurate response to all negotiators. Fatima et al.

[FWJ02, FWJ04a] studied negotiation models in incomplete information settings

in different negotiation scenarios and illustrated equilibrium solutions for different

negotiation agendas and procedures. However, their work only presented multi-issue

negotiation in static negotiation environments.

In this chapter, a market-based multiple-offer model for multi-issue negotiation

in a complex environment was proposed to help negotiators to make wiser decisions

during negotiations by considering both market situations and the negotiator’s own

requirements. Furthermore, this model allowed agents to deliver multiple offers

based on different preferences. By sending these alternative offers, opponents can

select their favorite one without sacrificing the negotiator’s own profits, so as to

increase the utilities of all negotiation parties and the efficiency of the negotiation

system.

The rest of this chapter is organized as follows. Section 7.2 proposes the market-

based multiple-offer negotiation model, including issues and negotiation environment

representations, counter-offer generation, offer evaluation and a negotiation proto-

col. Section 7.3 illustrates experimental results of the proposed model in different

negotiation environments. Section 7.4 concludes this chapter.

7.2 Market-Based Model

7.2.1 Issue Representation

In most existing multi-issue negotiation models [FWJ04a, BJT04], negotiators’ pref-

erences are presented linearly. Although such a linear representation is convenient

in modeling and calculation, it is not very suitable to represent humans’ concerns
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in real world situations. For example, if 1 indicates 100% concern on an item, very

few people can really realize how great the difference between 0.6 and 0.7 is when

they define concerns on the item. So nonlinear indicators are more suitable to fulfill

such a task. In some models [FIK08], nonlinear indicators are adopted to represent

negotiators concerns, but the significance on each issue is still fixed and negotiators

cannot deliver different preferences. For example, alternative criteria from a car

buyer between ‘lower price’ and ‘longer warranty’ cannot be expressed by existing

issue representation approaches. In this subsection, we propose a non-linear issue

representation to solve this problem. The purpose of the following definitions is to

introduce a novel way to represent both the significance of issues and the relation-

ships between issues in multi-issue negotiation, and to express multiple preferences

in negotiations.

Definition 7.1 A negotiator’s concern on a negotiated issue is represented by a

unique concern tag �, � ∈ {S,N, I}, where tag S indicates a significant issue, tag

N indicates a normal important issue and tag I indicates an inessential issue. The

negotiator may have different negotiation strategies and outcome expectations for

issues marked by different concern tags.

Definition 7.2 The relationship between two issues or two AIEs is represented by

a unique role tag �, � ∈ {∩,∪}. Tag ∩ indicates a union relationship between parties

on two sides, and a negotiator’s expectation on both sides must be satisfied together

by the final agreement. Tag ∪ indicates an alternative relationship between parties

on two sides, and a negotiator’s expectation on either side must be satisfied by the

final agreement.

Definition 7.3 An Atomic Issue Expression (AIE) is a combination of all nego-

tiated issues. Each issue in an AIE must be assigned a unique concern tag. The

relationship between issues must be the union relationship and indicated by role tag

∩. Each AIE indicates one preference of a negotiator.

Definition 7.4 A Complete Issue Expression (CIE) is a combination of AIEs. The

relationship between any two AIEs in a CIE must be the alternative relationship and

indicated by the role tag ∪. A CIE indicates all preferences of a negotiator. A

negotiator could have multiple preferences, but a satisfaction on any preference will

lead negotiators to a final agreement.
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For example, in a three-issue negotiation, if a negotiator’s CIE is (IS1 ∩ IN2 ∩ II3 )

∪(IN1 ∩ IS2 ∩ II3 ), this indicates that the negotiator has two different preferences on

negotiated issues. The first AIE (IS1 ∩ IN2 ∩ II3 ) indicates a preference which has

significant concern tag on Issue I1, normal concern tag on Issue I2 and inessential

concern tag on Issue I3, and the second AIE (IN1 ∩ IS2 ∩ II3 ) indicates a preference

which has normal concern tag on Issue I1, significant concern tag on Issue I2 and

inessential concern tag on I3. However, a satisfaction on either AIE can lead the

negotiator to an agreement.

7.2.2 Negotiation Environment Representation

Through our studies, we notice that in real-world markets, although people can de-

fine reserved offers in advance to represent their expectations, in most cases it is

not necessary for them to make their final decisions exactly based on the predefined

reserved offers; people may modify their predefined reserved offers. For example, a

hesitant buyer may look forward to gaining more profit when he/she notices that

his/her expectations can be satisfied easily by most sellers. On the other hand, a

rush buyer may accept an offer even if it is worse than his original expectation. How-

ever, most existing negotiation approaches do not take these situations into account,

and negotiators have to make their final decisions exactly based on the predefined

reserved prices. In this subsection, we introduce a market-based negotiation model

to consider impacts from environment changes on negotiations, and to help negotia-

tors to make more accurate judgements and wise decisions in e-marketplaces when

the status of an e-marketplace changes.

Let s (s ≥ 1) denote the number of suppliers, c (c ≥ 1) denote the number of

consumers, � denote a negotiator’s role (a supplier or a consumer), and � denote

the negotiator’s attitude on the changes of a negotiation environment. If we employ

the relationship between supply and demand to represent a market’s situation at a

certain moment, then the market’s situation can be defined as:

Φ(s, c, �) =
c− s
c+ s

× � (7.1)

where � = −1 for consumers and � = 1 for suppliers.

The range of Equation 7.1 is in-between −1 and 1, and representing the status

of a negotiation environment. If 0 < Φ < 1, the environment is in a beneficial status

and the negotiator has an advantage in such an environment. If −1 < Φ < 0, the
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Figure 7.1: Negotiators’ responses to markets’ situations

environment is in an inferior status and the negotiator has a disadvantage in the

environment. If Φ = 0, the environment is in an equitable status and the negotiator

does not have an advantage or disadvantage in the environment. Objectively, Equa-

tion (7.1) represents the relationship between supply and demand in a negotiation

environment at a certain moment. However, even for the same situation, negotia-

tors may also have different considerations on environment changes based on their

individual situation. Therefore, we generate a graph in Figure 7.1 to map objective

negotiation environments to subjective responses of negotiators.

In Figure 7.1, the x-axis represents situations of a negotiation environment (Φ),

and the y-axis indicates a response from a negotiator (Ψ). In general, it can be

seen that negotiators may have three typical attitudes to respond to changes in an

environment.

1. Cautious (� > 1): when an environment’s status shifts away from equitable to

beneficial or inferior, a negotiator’s response is very calm when changes of the

environment are not significant. However, when changes in the environment

are evident, the negotiator’s response will become more vehement.

2. Acuminous (1 > � > 0): when an environment’s status shifts away from eq-

uitable to beneficial or inferior, a negotiator performs very sensitively even

though the change in the environment is not very obvious. However, when

the environment’s status changes a lot, the negotiator has to control its re-

sponse for some objective reasons (e.g. the negotiator cannot make further
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concession).

3. Normal (� = 1): when an environment’s status shifts away from equitable to

beneficial or inferior, a negotiator’s response is also shifted from calmness to

vehemence gradually.

Even though the above three typical responses cannot cover all possible situations

of negotiators’ attitudes on market changes, they can still cover most general cases.

Based on such a consideration, an agent’s response to the negotiation environment

can be defined as follows by considering both objective and subjective factors from

marketplaces and negotiators, respectively:

Ψ(s, c, �, �) =

⎧⎨⎩
Φ(s, c, �)�, Φ(s, c, �) ≥ 0

−[−Φ(s, c, �)]�, Φ(s, c, �) < 0

(7.2)

In the following subsections, we introduce a counter-offer generation approach

and an offer evaluation approach based on an agent response to a negotiation envi-

ronment, respectively.

7.2.3 Counter-Offer Generation

Single Issue

We firstly introduce a counter-offer generation approach on single issue. According

to Fatima et al. [FWJ02], a package deal procedure is the optimal procedure in

incomplete information settings compared with simultaneous and sequential pro-

cedures. In our model, negotiators will adopt the package deal procedure. For

Negotiator P , let vector O⃗t,i = (o1
t,i, . . . , o

m
t,i, . . . , o

M
t,i) denote an offer P received from

the itℎ opponent at round t, where t ≤ � (� is Negotiator P ’s deadline), and i ≤ A,

where A is the total number of Negotiator P ’s opponents, M indicates the total num-

ber of negotiated issues, and omt,i is a particular offer on the mtℎ issue at round t. Let

matrix Ot = {O⃗t,1, . . . , O⃗t,i, . . . , O⃗t,A}T denote offers from all available opponents at

round t and vector O⃗m
t = (omt,1, . . . , o

m
t,i, . . . , o

m
t,A) denote all offers from all available

opponents on the mtℎ issue at round t. Let ombt denote the ‘best’ offer in O⃗m
t , omwt

denote the ‘worst’ offer in O⃗m
t , omat denote the average of O⃗m

t (omat = 1
A

∑n
i=1 o

m
t,i),

ombt′ denote the estimated ‘best’ offer in next round t′, comt denote Negotiator P ’s
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Figure 7.2: Counter-offer generation

last counter-offer on the mtℎ issue and comt′ denote Negotiator P ’s counter-offer for

next round on the mtℎ issue. Suppose Negotiator P plays as a buyer and the negoti-

ated issue is a car’s price, then one possible situation of the counter-offer generation

procedure in round t on the mtℎ issue as illustrated in Figure 7.2.

In Figure 7.2, the x-axis indicates offers, and the y-axis represents the occurrence

density of each offer. The solid curve indicates the distribution of O⃗m
t in round

t (distributions may be different from case to case), and the dotted line is the

estimated distribution of O⃗m
t′ in the next round. We make the assumption that the

shape of the distribution curve of set O⃗m
t′ is similar to O⃗m

t ’s, but just the range

of span is changed. Because the negotiator plays as a buyer and the negotiated

issue is a car’s price, so the market represented in Figure 7.2 is a beneficial market

(Ψ > 0). In a beneficial market, for buyers, opponents’ offers on a car’s price in next

round O⃗m
t′ is estimated to be smaller than O⃗m

t on average. The distance between

the current counter-offer comt and the estimated ‘best’ offer ombt′ in next round is the

bargaining area. The new counter-offer comt′ is generated within this area according

to the negotiator’s strategies, remaining rounds and importance of issue m.

Firstly, we estimate the ‘best’ offer ombt′ in the next round t′ as follows:

ombt′ = ombt + Ψ(s, c, �, �)×
√
D(O⃗m

t )× 
 (7.3)

D(O⃗m
t ) =

A∑
i=1

(omt,i − E(O⃗m
t ))2pi (7.4)

where D(O⃗m
t ) indicates the variance of O⃗m

t , 
 = −1 for issues in which an agent
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Figure 7.3: Counter-offer generation

prefers a lower value, and 
 = 1 for issues in which an agent prefers a greater value,

E(O⃗m
t ) indicates the mathematical expectation of O⃗m

t , pi indicates the distribution of

omt,i and Ψ(s, c, �, �) indicates the agent’s response to the market situation. Usually,

when the distribution of O⃗m
t is a Gaussian distribution, then E(O⃗m

t ) = omat , pi = 1
A

and Equation 7.4 is specified as:

D(O⃗m
t ) =

∑A
i=1(omt,i − omat )2

A
(7.5)

Then the new counter-offer comt′ for the mtℎ issue is generated as follows:

comt′ =

⎧⎨⎩

omini t = 0,

comt + (ombt′ − comt )× ( t
�
)� �(m) = S and t ≤ �,

comt + 1
2
(ombt′ − comt )× (1 + t

�
)� �(m) = N and t ≤ �,

ombt′ �(m) = I and t ≤ �.

(7.6)

where omini is the negotiator’s initial offer on the mtℎ issue, �(m) indicates issue m’s

concern tag, and we simply adopt parameter � in Faratin et al.’s model [FSJ98] to

represent the negotiator’s bargaining strategies.

In Figure 7.3, it can be seen that when the market becomes very beneficial to the

buyer agent, it is possible that ombt′ < comt and comt′ < comt . So in the market-based

negotiation model, we propose a decommitment mechanism which allows negotiators

to reject previous offers if these offers are not formally accepted by any opponents.

The reason behind such a mechanism is that in the market-based negotiation model,

both offer evaluation approach and counter-offer generation approach are impacted

by market situations. When the market situation changes, negotiators may change
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Figure 7.4: Counter-offer generation

their considerations on both the offer evaluations and the counter-offer generations

in order to gain more profits. For example, a buyer may generate disadvantageous

counter-offers when the market is inferior. However, when the buyer notices that

the market may become better, and if the previous counter-offer is not accepted

by any seller, then the buyer can reject the previous disadvantageous counter-offers

and re-generate advantageous counter-offers in order to increase its profit. On the

other hand, if a seller notices that the market may become inferior for him/her in

advance, then the seller may accept that buyer’s latest offer in order to avoid loss

in the future.

Also, markets may become inferior for buyers. In Figure 7.4, it can be seen that

when a market is inferior for buyers, the estimated ‘best’ offer for the following round

t′ is worse than the ‘best’ offer in round t (i.e., ombt′ > ombt ). During negotiations, if a

new counter-offer in round t′ can bring more profits to a negotiator than the ‘best’

offer in round t, then the negotiator will keep on bargaining with opponents and send

out the new counter-offer comt′ . However, if the new counter-offer is worse than the

‘best’ offer from opponents, then the negotiator will not send the new counter-offer

comt′ , but make its final decision based on the comparison result between the ‘best’

offer (ombt ), the new counter-offer (comt′ ), and the negotiator’s eagerness to reach an

agreement. The eagerness (" ∈ [0, 1]) is predefined by the negotiator to indicate its

eagerness for completing negotiations (see Subsection 7.2.4 for more detail about

eagerness).
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Multi-issue

Based on the single issue counter-offer generation approach, we introduce a counter-

offer generation approach for multi-issue negotiation by considering multiple prefer-

ences. In this approach, negotiators can provide multiple choices in each negotiation

round according to their different preferences. For example, when a prospective car

purchaser negotiates with several car dealers on a car’s price and warranty, usu-

ally dealers will not make great concessions on both price and warranty, and the

purchaser may have a consideration such as ‘I would like to purchase the car if its

price is lower than $30, 000 or if its warranty is longer than 5 years’. In this situa-

tion, the purchaser has alternative expectations on negotiation outcomes, but such

a situation is not considered by most existing negotiation models. In order to solve

this problem, we introduce a multi-issue counter-offer generation approach to deliver

negotiators’ multiple preferences during negotiations.

In multi-issue negotiation, by assigning concern tags and relationship tags on

negotiated issues (see Subsection 7.2.1), a CIE can be generated. A negotiator’s

multiple preferences on multi-issue are indicated by the CIE. Therefore, in this

multiple-offer approach, the number of offers delivered by the negotiator in each

round at one time equals the AIEs’ number in the CIE. Each AIE indicates one

preference of the negotiator. By employing the counter-offer generation function

introduced in the previous subsection on each issue in each AIE, multiple offers can

be generated based on the CIE and delivered to opponents as follows:

Γ(t, AIE) = ⃗COt′ = (co1
t′ , . . . , co

m
t′ , . . . , co

M
t′ ) (7.7)

Γ(t, CIE) =
∩

Γ(t, AIE),∀AIE ∈ CIE (7.8)

where each comt′ in each AIE is calculated by adopting Equation 7.6. Γ(t, AIE)

indicates an counter-offer based on the preference implied by an AIE, and Γ(t, CIE)

indicates all counter-offers based on multiple preferences implied by all AIEs in a

CIE.



7.2. Market-Based Model 163

7.2.4 Offer Evaluation

When negotiators receive offers from opponents, negotiators should make a response

based on the evaluation result on offers. In this section, we introduce an offer evalua-

tion approach to consider both outcome expectations of negotiators and negotiation

environments. In a dynamic situation, an offer evaluation result may also be im-

pacted by a change of the negotiation environment. For example, if a car’s real value

can be evaluated correctly by buyers in an equitable market, then the car should be

overvalued in a seller’s market and undervalued in a buyer’s market. Based on such

a consideration, we propose an offer evaluation approach sensitive to the negotiation

environments as follows.

Single Issue

Let O⃗t,i = (o1
t,i, . . . , o

m
t,i, . . . , o

M
t,i) represent a given vector offer from the itℎ op-

ponent at round t, where omt,i denotes the offer on the mtℎ issue. Let O⃗ini =

(o1
ini, . . . , o

m
ini, . . . , o

M
ini) denote Negotiator P ’s initial offer vector. Then, without

considering the market situation, each single offer omt,i in vector O⃗t,i is evaluated by

Negotiator P as follows.

Λ(omt,i, o
m
ini, 
) = th

(
omt,i − omini
omini

× 

)

+ 1 (7.9)

where 
 = −1 for issues in which an agent prefers a lower value, such as a buyer

prefers a lower price on a car; and 
 = 1 for issues in which an agent prefers a

greater value, such as a buyer prefers a longer warranty on a car. th(x) is defined

as follows.

th(x) =
ex − e−x

ex + e−x
(7.10)

The result of Equation 7.9 (Λ ∈ (0, 2)) indicates how Negotiator P ’s initial offer

is satisfied by the offer omt,i. For example, assume Negotiator P plays as a consumer

and wants to evaluate a price offer. Because a lower price is better for Negotiator

P , so 
 = −1. For a given price offer omt,i, when omt,i = omini then Λ = 1. This means

that the consumer’s expectation is satisfied. When omt,i > omini then 0 < Λ < 1,

which indicates that the consumer’s expectation is only partially achieved. And

when omt,i ≤ omini then 1 < Λ < 2, which implies that the consumer’s expectation is

overachieved.

Because Equation (7.9) only evaluates the offer omt,i based on Negotiator P ’s initial
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offer but does not take the situation of the negotiation environment into account, so

the evaluation results may not be accurate enough to reflect the value of the given

offer in a particular market. Therefore, by considering market situations, negotiators

can get a more accurate evaluation result on the offer omt,i as follows:

Θ(omt,i, s, c, o
m
ini, �, �, 
) =

Λ(omt,i, o
m
ini, 
)

Ψ(s, c, �, �) + 1
(7.11)

The result of Equation 7.11 (Θ ∈ (0, 1)) indicates the negotiator’s utility by accept-

ing the offer omt,i in a certain market. If it is an equitable market (Ψ = 0 and Θ = Λ),

then the offer omt,i is evaluated unbiasedly. If it is in a beneficial market (0 < Ψ < 1

and Θ < Λ), then the offer omt,i is undervalued. And if it is in an inferior market

(−1 < Ψ < 0 and Θ > Λ), then the offer omt,i is overvalued.

Multi-Issue

In our model, since negotiators’ preferences are represented by concern tags, the

traditional approach for multi-issue utility calculation is not applicable anymore.

We introduce a non-linear utility calculation approach which takes concern tags into

account. For the offer vector O⃗t,i, Negotiator P generates the combined evaluation

result by considering concern tags in a AIE as follows:

Υ(O⃗t,i, AIE) = min
(

Θ(omt,i)∣m ∈ [1,M ], omt,i ∈ O⃗t,i, �(m) = �(AIE)
)

(7.12)

where Θ(omt,i) is a simplification of Equation (7.11), and AIE indicates one of Ne-

gotiator P ’s preferences, �(m) is the concern tag of the mtℎ issue in the AIE, and

�(AIE) is the highest significant concern tag in the AIE. If Negotiator P has mul-

tiple preferences on negotiated issues (i.e. more than one AIE in a CIE), then

Negotiator P ’s final evaluation result by considering all preferences in the CIE is

calculated as:

Υ(O⃗t,i, CIE) = max
(

Υ(O⃗t,i, AIE), AIE ∈ CIE
)

(7.13)

It can be seen that in the offer evaluation approach (see Equation 7.9), the

reserved offer, which is employed by most negotiation models, is no longer adopted.

That is because in dynamic negotiation environments, when the situation of the

environment changes, the predefined reserved offer may not be applicable anymore.

Instead we use a parameter eagerness (" ∈ [0, 1]) to express negotiators’ eagerness

on completing the negotiation. When " = 1, the negotiator would like to accept
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any offer finally in order to complete the negotiation; when " = 0, the negotiator

will reject all offers which are worse than the initial offer; when 0 < " < 1, the

negotiator can only accept the offer O⃗t,i if Υ(O⃗t,i, CIE) ≥ 1 − ". Therefore, when

the market situation changes, negotiators can adjust their evaluations on opponents’

offers based on market situations in order to have a more accurate and reasonable

reaction.

7.2.5 Protocol and Equilibrium

In this subsection, a negotiation protocol for the market-based multi-issue negotia-

tion model is proposed based on Rubinstein’s alternating offers protocol [FSJ98].

Step 1 A negotiator assigns negotiation parameters, i.e., initial offer (O⃗ini, includ-

ing concerns tags and role tags), eagerness ("), negotiation deadline (�), role

in negotiation (�), attitude on the environment changing (�), attitude on is-

sues’ value (
) and bargaining strategy (�). The number of consumers (c)

and suppliers (s) can be obtained from the marketplace directly. A CIE is

generated based on the negotiator’s preference/s. The negotiator initializes t

to 0 and counter-offer/s Γ(t, CIE) to o⃗ini.

Step 2 The negotiator broadcasts counter-offer/s Γ(t, CIE) to all opponents and

waits for responses.

Step 3 Once the negotiator gets responses, if any opponent accepts any offer in

counter-offer/s Γ(t, CIE), then the negotiation is completed. Otherwise, if

t > � , the procedure goes to Step 4. If t ≤ � , the procedure goes to Step 5.

Step 4 The negotiator has to make the final decision on opponents’ offers. For all

offers O⃗t from all opponents at round t, let O⃗b
t denote the offer which brings

greatest profit to the negotiator. If Υ(O⃗b
t , CIE) ≥ 1−", the negotiator accepts

O⃗b
t and the negotiation is completed. Otherwise, the negotiation fails.

Step 5 The negotiator will generate new counter-offer/s Γ(t, CIE) for the next

round. Let Υ (Γ(t, CIE), CIE) denote the utility that the negotiator may

gain from the counter-offer/s Γ(t, CIE). If Υ(O⃗b
t , CIE) is greater than both

Υ (Γ(t, CIE), CIE) and 1 − ", then O⃗b
t is accepted by the negotiator and

the negotiation is completed. If 1 − " is greater than both Υ(O⃗b
t , CIE) and
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Υ (Γ(t, CIE), CIE), then the negotiator leaves off the procedure and the ne-

gotiation fails. If Υ (Γ(t, CIE), CIE) is greater than both Υ(O⃗b
t , CIE) and

1− ", then the procedure goes to Step 6.

Step 6 The negotiator updates t to t′ (t′ = t+ 1), Γ(t, CIE) to Γ(t′, CIE), param-

eters c, and s according to the current market situation and parameter ", and

the procedure goes back to Step 2.

Based on the above procedure, the negotiator’s equilibrium in round t is defined

as follows :

Ω(t) =

⎧⎨⎩

Quit,when t ≥ � ∧Υ(O⃗b
t , CIE) ≥ 1− " or t < �∧

max(Υ(O⃗b
t , CIE),Υ (Γ(t, CIE), CIE) , 1− ") = 1− ",

Accept O⃗b
t ,when t ≥ � ∧Υ(O⃗b

t , CIE) ≥ 1− " or

t < � ∧max(Υ(O⃗b
t , CIE),Υ (Γ(t, CIE), CIE) , 1− ") = Υ(O⃗b

t , CIE),

Offer Γ(t, CIE),when t < �∧

max(Υ(O⃗b
t , CIE),Υ (Γ(t, CIE), CIE) , 1− ") = Υ(Γ(t, CIE), CIE).

(7.14)

7.3 Experiment

The experiment includes six agents, three of them are consumers and the other

three are suppliers. The two negotiated issues are a car’s price and warranty. Two

consumers employ the proposed market-based model, and the others employ the

commonly used NDF model [FSJ98]. All agents employ the package deal procedure

and each offer is delivered in the form of (dollar, year). All settings about agents

and the negotiation environment are displayed in Table 7.1. In the first scenario,

three buyer agents, (Agents db1, db2 and nb1) and two seller agents, (Agents nb1

and nb2) participate in the negotiation. Based on the negotiation environment of

Scenario 1, one seller agent (Agent nb3) will join the negotiation in the second

scenario and one seller agent (Agent nb2) will leave off the negotiation in the third

scenario, respectively. Figures 7.5 to 7.7 show how the proposed market-based model

captures the changes of the negotiation environment, and offers in each negotiation
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Agent role Consumer Supplier

Agent name db1 db2 nb1 ns1 ns2 ns3

Negotiation model Market-based model NDF model

Initial offer ($2000, 5y) ($3000, 2y) ($2700, 1.8y) ($3300, 2.2y)

Reserved offer eagerness=1 ($3000, 2y) ($2000, 5y) ($1800, 4.5y) ($2200, 5.5y)

Preference (dS ∩ yS) (dS ∩ yN ) ∪ (dN ∩ yS) (0.5, 0.5)

Table 7.1: Experiment setup

Figure 7.5: Negotiation in an equitable market.

round are highlighted by index number. Agent db1 employs the market-based model

and its CIE is (dS ∩ yS). Agent db2 employs the market-based model as well and

its CIE is (dS ∩ yN) ∪ (dN ∩ yS). Agent db2 delivers two offers in each negotiation

round. Finally, in order to fairly evaluate the performance of different negotiation

approaches, their agreements are compared based on the Euclidean distance to the

initial offer ($2000, 2y).

In the first scenario, because the consumer’s number is greater than the supplier’s

number, the market status is inferior for consumers. In Figure 7.5, it can be seen that

Figure 7.6: Negotiation in a beneficial market.
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Figure 7.7: Negotiation in a inferior market.

Agent db2 delivers two offers in each round and sellers can pick up either one based

on their individual preferences. Because Agent db2 provides more options to its

opponents, Agent db2 reaches an agreement firstly with Agent ns2 at ($2484, 3.2y).

Since Agent db1 does not provide alternative offers to opponents, offers delivered

by Agent db1 are located between Agent db2’s paratactic offers. In round-6, Agent

db1 achieves an agreement secondly with Agent ns1 at ($2480, 3.2y). By comparing

these two agreements, it can be seen that Agent db2 gets a little bit more profit

than Agent db1 in a shorter time. In this scenario, Agent nb1 does not reach an

agreement with any seller agents and fails the negotiation.

In the second scenario, because the consumer’s number equals the supplier’s

number, the market is in equitable status for all negotiators. In Figure 7.6, when

seller Agent ns3 enters into the negotiation, the environment becomes better for

buyers than the first scenario. Agent db2 reaches an agreement firstly with Agent

ns3 at ($2457, 3.2y) and agent db1 achieves an agreement secondly with Agent ns1

at ($2470, 3.2y). By comparison with the first scenario, it can be seen that both

market-based buyer agents gain more profits as the environment improves. The NDF

Agent nb1 reaches an agreement with Agent ns2 finally at ($2750, 3.8y). Obviously,

Agents db2 and db1’s outcomes are much better than Agent nb1’s, based on the

consideration of Euclidean distance to the initial offer ($2000, 2y). Also, it can be

confirmed that the agent which provides multiple options to opponents can gain

more profits in multilateral negotiations.

In the third scenario (Figure 7.7), it can be seen that when seller Agent ns2 leaves

off the negotiation, the negotiation environment becomes more disadvantageous for

buyer agents (i.e. more competitive). Finally, buyer Agent db2 won the negotiation

with the only seller Agent ns1 at ($2726, 3.4y). Even though this agreement is worse
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than the previous two scenarios for Agent db2, Agent db2 defeats other buyer agents

and reaches agreement with the only seller agent. Therefore, we can say that the

market-based agent can win the negotiation in competition and the multiple offer

strategy increases the chance for it to be the winner.

In Figure 7.8, we illustrate a model to demonstrate how environments and agents’

eagerness impact agents’ strategies and decisions in negotiations. The x-axis denotes

negotiation environments (refer to Equation (7.1)), the y-axis denotes agents’ eager-

ness for completing negotiations, and the z-axis denotes agents’ evaluation results on

offers (refer to Equation (7.9)). Then by setting all negotiation parameters (� and

�) to 1, a trading surface for the market-based negotiation model can be formulated

as follows.

Λ(Φ, ") =

⎧⎨⎩(1 + Φ) ∗ (1− "), when − 1 ≤ Φ ≤ 0,

(Φ− 1) ∗ "+ 1, when 0 < Φ ≤ 1.
(7.15)

where " ∈ [0, 1] and Φ ∈ [−1, 1].

The trading surface defines a set of thresholds on agents’ profits. During a nego-

tiation, agents will accept offers above or on the surface, but reject offers below the

surface. Also, we display another trading surface for the NDF model. Comparison

with the market-based model, the trading surface of the NDF model is just a plane

surface. That means agents in the NDF model fix their thresholds in all situations

as a constant, and do not consider changes of the environment and eagerness of

completion of negotiations.

In this section, we illustrated experimental results in different negotiation en-

vironments and also compared outcomes between the market-based model and the

NDF model. Based on these results, we can claim that the market-based agents can

modify their negotiation strategies dynamically when the negotiation environment

changes. Also, the multiple offer strategy increases the probability for agents to

enlarge their outcome profits and/or to enlarge their chances to win negotiation.

Therefore, the market-based multiple offer model can help agents to make wiser

decisions in complex negotiation environments.
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Figure 7.8: Trading surface of negotiation models.

7.4 Summary

This chapter presented a market-based multiple-offer negotiation model to help

agents to make wise decisions in multilateral, multi-issue negotiation. In our model,

the offer evaluation approach and counter-offer generation approach have taken the

negotiation environment into account. Offers from opponents are evaluated rela-

tively by considering the negotiation environment and agents’ eagerness for trading.

Based on experimental results, we further put forward the concept of ‘trading sur-

face’ and discovered that the trading surface of the market-based negotiation model

is more applicable than the NDF model’s in complex e-marketplaces.



Chapter 8

Multiple Related Negotiations

In the previous three chapters 5 to 7, three approaches to solve three research is-

sues in multilateral negotiation (on the second level of our proposed hierarchical

negotiation model) where proposed, namely negotiation partner selection, multilat-

eral single issue negotiation, and multilateral multi-issue negotiation. This chapter

investigates and introduces our solution to solve some research issues in multiple

related negotiation (the third level of the hierarchical negotiation model).

8.1 Introduction

In complex negotiation environments, one agent may perform more than one negoti-

ation with different opponents for different goals at the same time. Sometimes, these

goals are not independent, and these multiple negotiation are somehow related. For

instance, in a scheduling problem, the negotiation result on the deadline of an early

occurring event will definitely impact the negotiation on the starting time of a later

occurring event. The negotiation result between a mortgagor and a banker on a

mortgage will determine the mortgagor’s reservation in the negotiation with a real

estate agent on a property’s price.

According to our studies, significant achievements have been reached in agent

negotiation in the first two levels (bilateral negotiation level and multilateral nego-

tiation level) with state-of-the-art techniques and approaches [FWJ04a, FWJ06a,

FWJ09, HSLM07]. However, very few of them consider the third level and can

handle multiple related negotiation properly [HRLJ06, PT09, ZL07]. Most existing

approaches just separate these related negotiations and treat each of them individ-

ually. The major disadvantage of dealing with those negotiations separately is that

if related negotiations are not considered together, the negotiation outcomes may

not be optimized and may even be damaged in some cases. For instance, if a doctor

171
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schedules one patient’s booking without considering other bookings, his schedules

will be inefficient or conflicting. If a mortgagor does not take the possible negoti-

ation result with a banker into account during the negotiation with a real estate

agent, she may not successfully borrow sufficient money to purchase a property, or

may borrow more money than the requested amount and has to pay unnecessary

interest.

In order to solve the problem mentioned above in multiple related negotiation,

we introduce a Multi-Negotiation Network (MNN) and a Multi-Negotiation Influ-

ence Diagram (MNID) in this chapter. Firstly, multiple related negotiation are

represented by a MNN. Secondly, the MNN is extended to a MNID. The joint suc-

cess rate and the joint utility by considering all related negotiations in the MNID

is calculated. Thirdly, an optimal policy to conduct multiple related negotiation is

calculated for the MNID, by considering both the joint success rate and the joint

utility, to optimize the negotiation outcome of multiple related negotiation in the

MNID.

The chapter is organized as follows. In Section 8.2, a Multi-Negotiation Net-

work is proposed to handle multiple related negotiation. In Section 8.3, a Multi-

Negotiation Influence Diagram is introduced to solve the decision problem in a

MNN. In Section 8.4, experiments are demonstrated in two scenarios to illustrate

the performance of the proposed approach. Section 8.5 concludes this chapter.

8.2 A Multi-Negotiation Network

8.2.1 Construction of A MNN

In this subsection, we introduce notations for a MNN and the procedure to construct

a MNN based on Bayesian Networks [JN01]. Let a four-tuple < G,R,P,Φ >

indicate a MNN, where G = (V,E) is a directed acyclic graph, set R indicates the

restriction function between two related negotiations, P is a set of success rates,

and Φ is a set of utility functions. V is a finite, nonempty set of vertices and each

vertex indicates a negotiation in a MNN. E is a set of ordered pairs of distinct

elements of V. Each element of E is called a restriction edge with a direction to

represent a dependency relationship of two related negotiations, (i.e. a link with

an arrow between two vertices in a MNN). For example, if a pair (Vi, Vj) ∈ E, we

say that there is an edge from Vi to Vj. In other words, Vj depends on Vi, and
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Vi is one of Vj’s parents. We use function rij : Φj → Φj (rij ∈ R, Φj ∈ Φ) to

indicate the restriction between Vi and Vj. If there is no restriction between Vi and

Vj, rij is nil. (That means two negotiations Vi and Vj are independent and there

is no impact on each other.) pi (pi ∈ P, pi ∈ [0, 1]) indicates the success rate of Vi

and pi = P (Vi∣pa(Vi)), where pa(Vi) are the parents of Vi. Φi (Φi ∈ Φ) indicates

the utility function of Negotiation Vi. Figure 8.1 is an example of a MNN. In this

example, the set of vertices in the MNN is V = {X, Y, Z,W}, the set of edges is

E = {(X, Y ), (X,Z), (Y, Z), (Y,W ), (Z,W )}, the set of restriction functions is R =

{rxy, rxz, ryz, ryw, rzw}, the set of probabilities is P = {P (X), P (Y ∣X), P (Z∣X, Y ),

P (W ∣Y, Z)}, and the set of utility functions is Φ = {Φx,Φy,Φz,Φw}.
From a MNN, an agent can view its related negotiations based on dependency

relationships of these negotiations. The basic procedure to construct a MNN includes

the following three steps.

Step 1 to represent each negotiation by a unique vertex Vi (Vi ∈ V) and to assign

a utility function Φi (Φi ∈ Φ) for Vi. Of course, the agent can modify the

utility function anytime;

Step 2 to generate all restriction edges, which belong to E, between each two

related negotiations; and to define restriction functions R in the form of

rij : Φj → Φj (rij ∈ R);

The restriction function indicates how an ongoing or accomplished negotia-

tion impacts another ongoing negotiation. An accomplished negotiation will

not be impacted by other negotiations anymore. For instance, if a buyer syn-

chronously performs two negotiations between a banker and a real estate agent

under the condition that the buyer’s reservation on a property’s price depends

on the mortgage, then there is a restriction edge from the mortgage negotiation

to the property negotiation, and the restriction between these two negotiations

can be described as ‘the buyer’s reservation on a property’s price depends on

the banker’s latest offer in mortgage negotiation’. If the negotiation between

the buyer and the banker is completed first, its impact on the negotiation

between the buyer and the real estate agent will be fixed. However, if the

negotiation between the buyer and the real estate agent is completed first,

the mortgage negotiation will not have any further impact on the property

negotiation. In a MNN, if Negotiation Vi is an independent negotiation, other
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Figure 8.1: A Multi-Negotiation Network.

negotiations will have no impact on its utility function Φi. Otherwise, if Ne-

gotiation Vi has K dependent negotiations, then its utility function will be

modified by the consideration of all impacts from these K dependent negoti-

ations as follows:

r1i ∘ . . . ∘ rKi : Φi → Φi (8.1)

Taking the MNN in Figure 8.1 as an example. Negotiation X has no dependent

negotiations, its utility function does not need modification; Negotiation Y is

dependent on Negotiation X, its utility function is modified as Φy = rxy(Φy);

Negotiation Z is dependent on Negotiations X and Y , its utility function is

modified as Φz = rxz(ryz(Φz)); and Negotiation W is dependent on Negotiation

Y and Z, it utility function is modified as Φw = ryw(rzw(Φw)).

Step 3 to define the success rate pi (pi ∈ P) for Negotiation Vi.

The success rate pi indicates how likely an agent’s latest offer will be accepted

by its opponents in the remaining negotiation rounds. Suppose in negotiation

round t, the agent’s latest offer is represented as a utility vector (Φi(t),Φi(t)
o),

and one of its opponents’ offers is a utility vector (uto, u
t
a). The agent’s latest

offer generates a payoff of Φi(t) for itself and Φi(t)
o for its opponents; and the

opponent’s offer generates a payoff of uto for itself and uta for the agent. Let

uw denote the worst possible utility, (a conflict utility) for the agent. If the

subjective probability of the agent obtaining uw is pw, we have:

[(1− pw)Φi(t) + pwuw] ≤ ua (8.2)

According to the above inequality, the highest conflict probability that the
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agent may encounter with the opponent in the next negotiation round is the

maximum value of pw:

pw =
Φi(t)− ua
Φi(t)− uw

(8.3)

Equation 8.3 indicates the conflict probability that the agent may encounter

in the following negotiation round. Let � be the negotiation deadline and t be

the current round, then the conflict probability that the agent may encounter

with the opponent by considering all remaining rounds can be estimated as

follows:

pw =

(
Φi(t)− ua
Φi(t)− uw

)�−t
(8.4)

Consequently, the aggregated conflict probability that the agent may encounter

before the deadline by considering all opponents in Negotiation Vi is:

pa =

(∏Si
s=1(Φi(t)− us)

(Φi(t)− uw)Si

)�−t

(8.5)

where Si is the number of opponents in Negotiation Vi. Therefore, for Nego-

tiation Vi, the success rate pi that the agent’s offer Φi(t) will be accepted by

at least one opponent before the deadline is:

pi = 1− pa = 1−

(∏Si
s=1(Φi(t)− us)

(Φi(t)− uw)Si

)�−t

(8.6)

A MNN can be dynamically modified according to changes of the negotiation en-

vironment. In the following subsections, we will explain how to dynamically update

a MNN.

8.2.2 Updating of a MNN

Since negotiation environments can be highly complex and dynamic in real-world

situations, agents may need some modifications on their multiple related negotiation

in order to respond to changes in negotiation environments. Such modifications

may include the following cases: starting a new negotiation, terminating an ongoing

negotiation, adjusting utility functions, adjusting restriction functions, changing
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negotiation opponents etc. When these changes happen, agents should immediately

update their MNNs. In this subsection, we introduce two major operations and

suggest other operations incorporating several major changes on MNN updating.

Starting a Negotiation

Assume that there are i related negotiations. If a new negotiation is commenced

by an agent, a vertex Vi+1 should be inserted into the MNN to indicate the new

negotiation. Also, the agent should define a utility function Φi+1 for Negotiation

Vi+1, and specify restriction edges between all existing negotiations and Negotiation

Vi+1. If there is a restriction edge from an existing Negotiation Vi to the new

Negotiation Vi+1, restriction functions ri(i+1) should be specified, and the utility

function Φi+1 should be modified according to this restriction. If there is a restriction

edge from the new Negotiation Vi+1 to an existing Negotiation Vi, then Negotiation

Vi’s success rate pi and utility function Φi should also be updated. In Figure 8.2(a),

an example of adding new Negotiation Z in a MNN is demonstrated.

Terminating a Negotiation

If an ongoing Negotiation Vi is terminated by an agent, no matter whether Negoti-

ation Vi would be successful or fail to reach an agreement, we use lower case letters

on Negotiation Vi’s caption to indicate that the negotiation is in a final state. Mean-

while, the success rate for Negotiation Vi is set to 1 for a successful negotiation or

to 0 for a failed negotiation. For any Negotiation Vj which Negotiation Vi depends

on, the restriction function rji is set to nil and Negotiation Vi’s utility function Φi is

replaced by a constant to indicate the payoff of Negotiation Vi. For any Negotiation

Vk which depends on Negotiation Vi, the restriction function rik is eventually fixed

and its impact on Negotiation Vk’s utility function is also fixed. In Figure 8.2(b),

an example of terminating an ongoing Negotiation Z in a MNN is demonstrated.

Other Operations

Besides the previous two situations, agents may modify some ongoing negotiations

without adding or deleting negotiation. For example, an agent may modify its nego-

tiation strategy for a negotiation when the number of opponents in the negotiation is

changed. An agent can modify its utility function according to its new expectation

on negotiation outcome. An agent may delete an existing restriction between two
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Figure 8.2: Multi-Negotiation Network update.

related negotiations or generate a new restriction between two independent negoti-

ations. In Figure 8.2(c), an example of these operations in a MNN is demonstrated.

8.3 Decision Making in a MNN

Because a MNN may contain more than one negotiations, and these negotiation

are processed concurrently, whether to accept or reject an offer or even quit from

an ongoing negotiation involves a decision making process during negotiations. An

agent’s decision on a single negotiation may impact its other negotiations or even the

whole MNN. This section introduces an efficient procedure which can help agents

to make advisable decisions for each negotiation in a MNN in order to optimize the

outcome of the MNN by considering both joint utility and success rate.

8.3.1 Multi-Negotiation Influence Diagram

Suppose there are I negotiations in a MNN =< G,R,P,Φ >. The decision problem

in the MNN is how to make an advisable decision policy for all related negotiations in

order to optimize the outcome of the MNN. A decision policy is a set of decisions that

the agent makes for all negotiations in a MNN. In general, agents could have three

typical decisions on an ongoing negotiation, there being (1) to accept the best offer

from opponents, (2) to reject all offers and send a counter-offer and (3) to quit the

negotiation. If a MNN contains I negotiations, the number of total decision policies

for the MNN is I3, and each policy will generate different outcomes for the MNN. In

order to model the relationships between decision policies and corresponding global

outcomes, we propose a Multi-Negotiation Influence Diagram (MNID).
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Figure 8.3: A Multi-Negotiation Influence Diagram.

A MNID can be defined by a six-tuple < G,R,P,Φ,D, U >, where G, R, P,

Φ are the same as in a MNN, set D indicates decisions on each negotiation and

U indicates the joint utility of the MNID by considering all related negotiations.

Di = {a, r, q} (Di ∈ D) indicates three possible decisions for Negotiation Vi, where

a indicates accept, r indicates reject, and q indicates quit. A MNN can be extended to

a MNID by adding a rectangular node Di for each Negotiation Vi and one diamond

node U for the whole MNN. The edge from each Decision Di to the corresponding

Negotiation Vi are added, and all edges from Decision Di and Negotiation Vi to node

U are added as well. In Figure 8.3, a MNID is illustrated. Let u(D) be the joint

utility of the MNID based on decisions D, and p(D) indicates the joint success rate,

and EU(D) indicates the expected utility, then

u(D) =
I∑
i=1

ui(Di)× wi (8.7)

p(D) =
I∏
i=1

P (Vi∣pa(Vi), Di) (8.8)

EU(D) = p(D)× u(D) (8.9)

where wi (
∑I

i=1wi = 1) is the preference on Negotiation Vi, ui(Di) is the utility of

Negotiation Vi by performing Decision Di, and P (Vi∣pa(Vi), Di) is the success rate

of Negotiation Vi by considering all dependent negotiations and Decision Di. Then

the optimal policy for a MNID is defined as follows:

� = arg max
D

(EU(D)) (8.10)
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Di p(D) u(D)

a 1×
∏I
j=1,j ∕=i P (Vj ∣pa(Vj), Dj) ui,b × wi +

∑I
j=1,j ∕=i uj(Dj)× wj

r pi ×
∏I
j=1,j ∕=i P (Vj ∣pa(Vj), Dj) Φi(t)× wi +

∑I
j=1,j ∕=i uj(Dj)× wj

q 0×
∏I
j=1,j ∕=i P (Vj ∣pa(Vj), Dj) 0× wi +

∑I
j=1,j ∕=i uj(Dj)× wj

Table 8.1: The joint probability and utility for a general MNID.

8.3.2 Four Typical Cases in a MNID

In this subsection, we discuss four typical cases in a MNID. In Table 8.1, the joint

success rate and the joint utility for a MNID in different Decision Di are listed,

where ui,b is the best utility gained in Negotiation Vi from opponents.

Case 1: D1 = . . . = Di . . . = DI = a

When an agent chooses to accept the best offer from opponents for all negoti-

ations, ie. D1 = . . . = Di . . . = DI = a, then the expected utility is:

EU(a, . . . , a, . . . , a) (8.11)

=
I∏
i=1

P (Vi∣pa(Vi), a)× U(a, . . . , a, . . . , a)

=
I∑
i=1

ui,b × wi

Equation 8.11 indicates that if an agent makes a decision to accept opponents’

offers for all negotiations, the expected utility for a MNID is the weighted sum

of utilities for all negotiations.

Case 2: D1 = . . . = Di . . . = DI = r

If an agent chooses to reject offers from opponents for all negotiations in a

MNN, then the expected utility is:
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Cases Φi(t) = ui,s Φi(t) = 1

I = 1, S1 = 1 u1,1 1− (1− u1,1)�i−t

I = 1, S1 > 1 u1,s 1− (
∏S1
s=1(1− u1,s)

�i−t)

I > 1, Si = 1
∑I

i=1 ui,1 × wj
∏I
i=1(1− (1− ui,1)�i−t)

I > 1, Si > 1
∑I

i=1 ui,s × wj
∏I
i=1(1−

∏Si
s=1(1− ui,s)�i−t)

Table 8.2: Expected utilities in typical cases.

EU(r, . . . , r, . . . , r) (8.12)

=
I∏
i=1

P (Vi∣pa(Vi), r)× U(r, . . . , r, . . . , r)

=
I∏
i=1

pi ×
I∑
i=1

(Φi(t)wi)

=
I∏
i=1

(1− (

∏Si
s=1(Φi(t)− ui,s)

(Φi(t)− ui,w)Si
)�i−t)×

I∑
i=1

(Φi(t)× wi)

where �i is the deadline for Negotiation Vi, Φi(t) is the utility for Negotiation

Vi at time t, and ui,w is the worst possible utility for Negotiation Vi.

Equation 8.12 indicates that if an agent decides to reject offers from its all op-

ponents and sends out a counter-offer for each negotiation, the expected utility

is impacted by the number of negotiations (I) and the number of opponents in

each negotiation (Si). In Table 8.2, we list the expected utility in four cases for

different I and Si. The second column indicates the expected utility when an

agent sends out its worst counter-offer Φi(t) = ui,b, (where ui,b is the best offer

that the agent receives from opponents in Negotiation Vi). The last column in-

dicates the situation when an agent sends out its best counter-offer Φi(t) = 1.

Usually, Φi(t) is between these two extreme values (i.e. Φi(t) ∈ [ui,s, 1]). The

agent will reject offer ui,s from opponents for Negotiation Vi if and only if the

counter-offer Φi(t) can bring more expected utility than ui,s, Φi(t) > ui,s.

Case 3: situations between Case 1 and Case 2

Besides the two extreme situations listed in Case 1 and Case 2, an agent

may choose to accept some negotiations and to reject others. Let set Da be

negotiations which the agent decides to accept, and set Dr be negotiations
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which the agent decides to reject, then Da ∪Dr = D and Da ∩Dr = ∅. The

expected utility can be calculated as

EU(Da,Dr) (8.13)

=
∏

Dj∈Da

P (Vj∣pa(Vj), Dj)×
∏

Di∈Dr

P (Vi∣pa(Vi), Di)×

U(Da,Dr)

=
∏

Di∈Dr

(1− (

∏Si
s=1(Φi(t)− ui,s)

(Φi(t)− ui,w)Si
)�i−t)×

(
∑

Dj∈Da

uj,b × wj +
∑
Di∈Dr

Φi(t)× wi)

Equation 8.13 indicates that an agent decides to accept some negotiations and

to reject the others. In order to calculate the expected utility, the joint success

rates and the joint utilities for accepted negotiations and rejected negotiations

should be calculated separately, and then combined together.

Case 4: D1 = q or . . . Di = q or . . . DI = q

If an agent chooses to quit from a negotiation, such as Negotiation Vi, then

the expected utility is:

EU(D1, . . . , q, . . . , DI) (8.14)

= 0×
I∏

j=1,j ∕=i

P (Vj∣pa(Vj), Dj)× U(D1, . . . , q, . . . , Di)

= 0

Equation 8.14 indicates that if an agent chooses to quit from Negotiation Vi,

then the expected utility for a MNID is 0. That is because all negotiations in

a MNN are related and a failure of any negotiation in a MNN will lead to a

failure to achieve the global goal of negotiations. For instance, an agent has

two related negotiations, ie. a mortgage negotiation between several bankers

and a property negotiation between several real estate agents. If the agent fails

any negotiation, then the global goal of these two negotiations, ie. ‘to purchase
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Figure 8.4: The MNN and MNID for the experiment.

a property by using a mortgage’, definitely cannot be achieved. So when an

agent chooses to quit from any negotiation, the expected utility decreases to

0.

8.4 Experiment

The experimental results of the proposed approach, together with a performance

comparison with the NDF approach [FSJ98] are reported in this section .

8.4.1 Experiment Setup

Suppose that Agent b’s global goal is to get a mortgage and to purchase a property

with the mortgage, so Agent b needs to perform two negotiations. The first negoti-

ation, (mortgage negotiation), is processed between Agent b and two bankers (Op-

ponents om1, om2) on the issues of mortgage amount and interest rate. The second

negotiation, (property negotiation), is processed between Agent b and two real estate

agents (Opponents op1, op2 or Opponents op3, op4) on the issue of property price. It

is assumed that Agent b believes that the property negotiation depends on the result

of the mortgage negotiation. In Figure 8.4, the MNN and MNID for Agent b are

displayed. Circle nodes M and P indicate the mortgage negotiation and the property

negotiation, respectively. Rectangular nodes DM and DP are decisions on two nego-

tiations, respectively. Diamond node U is the joint utility of the MNID. We adopt

equal weighting between these two negotiations, so wm = wp = 0.5. Because Agent

b cannot afford a property price which is higher than the mortgage amount, the

restriction from mortgage negotiation to property negotiation is rmp, which indicates

that ‘the reserved property price is the mortgage amount’. Negotiation parameters

for the two negotiations are listed in Table 8.3 and Table 8.4, respectively. Because

mortgage negotiation contains two issues, (i.e. mortgage amount and interest rate),
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Agent Initial Offer Reserved Offer Deadline
Agent b (500k, 5%) (300k, 7%) 10

Opponent om1 (310k, 6.9%) (450k, 5.2%) 15
Opponent om2 (330k, 6.5%) (500k, 5.5%) 9

Table 8.3: Parameters for mortgage negotiation.

Agent Initial Offer Reserved Offer Deadline
Agent b 200k depends 12

Opponent op1 550k 330k 15
Opponent op2 500k 350k 9
Opponent op3 650k 450k 10
Opponent op4 630k 470k 11

Table 8.4: Parameters for property negotiation.

we adopt the package deal procedure [FWJ06a] for this multi-issue negotiation and

equally weight the two issues. We demonstrate experimental results in two scenar-

ios, ie. a successful scenario, (Scenario A) and an unsuccessful scenario, (Scenario

B). In Scenario A, Agent b negotiates with Opponents om1, om2, op1 and op2, while

in Scenario B, Agent b negotiates with Opponents om1, om2, op3 and op4.

8.4.2 Scenario A (a successful scenario)

In Scenario A, Agent b negotiates with Opponents om1 and om2 for mortgage negotia-

tion, (the first negotiation) and with Opponents op1 and op2 for property negotiation,

(the second negotiation). Firstly, we adopt the NDF approach to sequentially pro-

cess mortgage negotiation and property negotiation and the outcomes of the two

negotiations are illustrated in Figures 8.5 and 8.6, respectively. Let letter a indicate

accept, letter r indicate reject and letter u indicate utility. The legend u1a (or u2a)

indicates the utility of the first (or second) negotiation by accepting opponents’ of-

fers, and legend u1r (or u2r) indicates the utility of the first (or second) negotiation

by sending a counter-offer. In Scenario A, both negotiations successfully reached an

agreement by adopting the NDF negotiation model. The utility of mortgage nego-

tiation is 0.5, and the mortgage amount is $405, 556. Then the amount $405, 556

is used as Agent b’s reserved price in property negotiation. The utility for property

negotiation is 0.19. Because these two negotiations are equally weighted, the overall

utility is 0.35.

The negotiation outcomes of the proposed approach are illustrated in Figures 8.7
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Figure 8.5: Mortgage negotiation using NDF approach for Scenario A.

Figure 8.6: Property negotiations using NDF approach for Scenario A.
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Figure 8.7: Success rate of mortgage negotiation for Scenario A.

Figure 8.8: Utility of mortgage negotiation for Scenario A.
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Figure 8.9: Success rate of property negotiation for Scenario A.

Figure 8.10: Utility of property negotiation for Scenario A.
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Figure 8.11: Expected utilities for both mortgage and property negotiation for Sce-
nario A.

through 8.10. By adopting the MNN and MNID, mortgage negotiation and property

negotiation are synchronously processed. Agent b’s reserved price in property negoti-

ation is dynamically updated in each negotiation round according to the latest offer

from mortgage negotiation. The success rate and utility for mortgage negotiation

are illustrated in Figures 8.7 and 8.8, respectively. The success rate and utility for

property negotiation are illustrated in Figures 8.9 and 8.10, respectively. Let letter

s indicate success rate and letter e indicate expected utility. For instance, Legend

s1r2a indicates the success rate of the MNID by rejecting all opponents’ offers in

mortgage negotiation and accepting the best offer from opponents in property nego-

tiation, and Legend e1a2r indicates the expected utility of the MNID by accepting

the best offer from opponents in mortgage negotiation and rejecting all opponents’

offers in property negotiation.

The expected utility for the MNID is illustrated in Figure 8.11. It can be seen

that before round-6, curve e1r2r leads to the highest expected utility; from round-6

to round-8, curve e1a2r leads to the highest expected utility; after round-8, curve

e1a2a leads to the highest expected utility. Therefore, in order to maximize the out-

come of the MNID, Agent b should reject all opponents’ offers in both negotiations

in the first five rounds. At round-6, Agent b should accept the best offer from oppo-

nents in mortgage negotiation but keep on bargaining in property negotiation until

round-8. At round-9, Agent b should accept the best offer in property negotiation.

By adopting such a decision policy, the utility of mortgage negotiation increases to
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Figure 8.12: Mortgage negotiation using NDF approach for Scenario B.

0.58 and the utility of property negotiation increases to 0.26, so the global utility is

increased to 0.42, which is 20% more than the result from the NDF approach.

The result of Scenario A indicates that if the global goal of related negotia-

tions can be achieved, the proposed approach can improve the negotiation outcome

through considering both joint success rate and joint utility. By comparison with the

sequential negotiation processes, the proposed approach can synchronously process

all related negotiations and dynamically optimize the global outcome.

8.4.3 Scenario B (an unsuccessful scenario)

In Scenario B, Agent b negotiates with Opponents om1 and om2 in mortgage negoti-

ation and with Opponents op3 and op4 in property negotiation. Also, we adopt the

NDF approach to sequentially process mortgage negotiation and property negotia-

tion. The outcomes of the two negotiations are illustrated in Figures 8.12 and 8.13,

respectively. In contrast to Scenario A, Agent b successfully completes mortgage

negotiation, but fails property negotiation. In this case, the result of mortgage nego-

tiation is meaningless or even has a negative impact by considering the global goal

of related negotiations. That is because without purchasing a property, the approval

of a mortgage proposal can only lead to an unnecessary cost on mortgage interest

and a penalty from the bank. Therefore, if Agent b is not absolutely sure that the

global goal of its related negotiations can be finally achieved, it is not efficient to

process these negotiations sequentially.
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Figure 8.13: Mortgage negotiation using NDF approach for Scenario B.

However, if we employ the proposed approach for Scenario B, the outcome is

different. In Figures 8.14 and 8.18, we illustrate the experimental results by adopt-

ing the proposed approach. In order to avoid partially reaching the global goal,

Agent b can only select policies between curves e1a2a and e1r2r (see Figure 8.18),

which means accepting or rejecting both negotiations together. It can be seen that

before round-8, curve e1r2r exceeds the curve e1a2a. At round-8, curve e1a2a can

bring more utility to Agent b than curve e1r2r. It seems that Agent b can accept

opponents’ offers in both negotiations at round-8. However, because Agent b cannot

purchase a property whose price is higher than the mortgage amount, so the utility

property negotiation must be greater than 0. At round-8, by accepting the best

offer from opponents, Agent b will lose utility by 0.17 (see Figure 8.17), so Agent b

cannot reach agreement in both negotiations at round-8. However, if Agent b stays

on curve e1r2r at round-8, the expected utility will be a negative number as well

in round-9. Therefore, in order to avoid any loss, Agent b cannot choose either to

accept or to reject both negotiations at round-8, but must quit from negotiations

without achieving any agreement with any opponent. So Agent b does not need to

worry about the unnecessary interest and the penalty from the bank anymore. The

results of Scenario B indicate that if the global goal of related negotiations cannot

be achieved, then the proposed approach can help agents to avoid unnecessary losses

caused by the sequential procedure.
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Figure 8.14: Success rate of mortgage negotiation for Scenario B.

Figure 8.15: Utility of mortgage negotiation for Scenario B.
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Figure 8.16: Success rate of property negotiation for Scenario B.

Figure 8.17: Utility of property negotiation for Scenario B.
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Figure 8.18: Expected utilities for both mortgage and property negotiation for Sce-
nario B.

8.5 Summary

In this chapter, we proposed a Multi-Negotiation Network (MNN) and a Multi-

Negotiation Influence Diagram (MNID) to handle multiple related negotiations in

a multi-agent system. In the real world, an agent may need to process several re-

lated negotiations in order to reach a global goal. Most state-of-the-art approaches

perform these related negotiations sequentially. However, because the result of the

latter negotiation is not predictable by using a sequential procedure, agents cannot

optimally execute all negotiations in correct sequential order. In some cases, when

the global goal cannot be reached, the former performed negotiations may become

meaningless and agreements on these negotiations may lead to unnecessary losses.

The motivation of our approach is to solve such a problem and handle multiple re-

lated negotiations concurrently. Firstly, the joint success rate and the joint utility

by considering all related negotiations are calculated dynamically based on a MNN.

Secondly, by employing a MNID, an agent’s possible decisions on each negotiation

are considered and reflected by the value of an expected utility. Lastly, through com-

paring expected utilities between all possible policies, an optimal policy is generated

to optimize the global outcome of multiple related negotiations. The experimental

results indicate that the proposed approach can improve an agent’s global utility

of multiple related negotiations in a successful end scenario, and avoid unnecessary

losses for the agent in an unsuccessful end scenario.



Chapter 9

Conclusion and Future Work

Agent negotiation is one of the major issues of both research and application in multi-

agent systems. The remarkable growth of MAS applications in open and dynamic

environments brings higher requirements and more challenges to agent negotiation.

In recognizing these challenges, this thesis deeply investigated agent negotiation

problems, and proposed agent negotiation approaches based on three negotiation

levels. In this chapter, the major contributions of this thesis are summarized and

future work on this research is outlined.

9.1 Summary of Major Contributions

In this thesis, we have presented a personal view of agent negotiation through both

agent setting and environment setting, and classified agent negotiation into three

hierarchical levels based on the complexity of environment setting. We have dis-

cussed the challenges and research issues in agent negotiation at the present time

based on our classification. The major contribution of this thesis is to develop agent

negotiation approaches on each level of the proposed hierarchical classification.

∙ Contributions on the Bilateral Level

– Bilateral single issue negotiation is a fundamental research problem in

agent negotiation. In Chapter 3, a regression-based prediction approach

was proposed to estimate agent behaviors in single issue negotiation.

Three regression functions, i.e. a linear function, a power function and a

quadratic function, were introduced to predict agent behavior in differ-

ent situations. It was shown that the proposed prediction approach could

estimate agent negotiation behaviors accurately and efficiently. This pre-

diction approach overcomes the major limitation of the most existing

193
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prediction approaches, i.e. only needing the historical record of the cur-

rent negotiation without a pre-training process.

– Chapter 4 studied the research issue of optimal negotiation outcome on

bilateral multi-issue negotiation, which is one of the most active research

issues in current agent negotiation studies. Based on the agent behavior

prediction approach proposed in Chapter 3, an agent preference predic-

tion approach is proposed. Firstly, through observing an agent’s counter-

offers, the agent’s negotiation behavior on each single issue was estimated.

Secondly, through analyzing the differences between the agent’s negoti-

ation behaviors throughout all issues, the agent’s preference could be

predicted as well. Lastly, two optimal offer generation approaches were

proposed to search for the bi-beneficial negotiation outcome based on the

predicted preference. It was shown that the proposed preference predic-

tion approach and the optimal offer generation approaches could esti-

mate an agent’s preference and lead to a ‘win-win’ negotiation outcome

efficiently and effectively in bilateral multi-issue negotiation.

∙ Contributions on the Multilateral Level

– Chapter 5 studied the research issue of partner selection in multilateral

negotiation. Usually, a multilateral negotiation contains many partici-

pators, and it will be inefficient for an agent to perform a sophisticated

negotiation with each potential partner, especially when negotiation en-

vironments become open and dynamic. Linear and non-linear partner

selection approaches were proposed in this chapter to filter out unqual-

ified partners before negotiations start, so agents can pay more concern

to partners with a high likelihood to reach an agreement; the efficiency

and effectiveness of multilateral negotiations were also improved.

– Chapter 6 extended the market-driven based negotiation model from

static negotiation environments to dynamic environments. Four conces-

sion factors in MDAs (namely trading opportunity, trading competition,

trading time and strategy and eagerness) are modified by taking into

account uncertain and dynamic outside options. In the extended market-

driven negotiation model, agents are allowed to enter or leave an ongoing
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negotiation freely. Agents will notice the changes of negotiation envi-

ronments, and update their concession strategies dynamically in order to

increase their negotiation outcomes and success rates. It was shown that

the extended model successfully reflected the dynamic changes of negoti-

ation environments, and modified agents negotiation strategies efficiently.

– Chapter 7 studied multi-issue negotiation by considering dynamic envi-

ronments. The major differences between single issue negotiation and

multi-issue negotiation are that: (1) multi-issue negotiation between in-

telligent agents can lead negotiators to ‘win-win’ negotiation outcomes,

which can hardly be achieved by single issue negotiation; and (2) multi-

issue negotiation can process multiple issues synchronously. In this chap-

ter, we proposed a marketed-based multi-issue negotiation model by con-

sidering the uncertainty of negotiation environments, the uncertainty of

negotiators, and non-linear preferences. It was shown that the proposed

approaches can successfully capture the dynamic changes of negotiation

environments, and modify agents’ negotiation strategies. Also, the mul-

tiple offers strategies successfully increased agents’ negotiation outcomes

and success rates in complex environments.

∙ Contributions on the Multi-Negotiation Level

– Multiple related negotiation is a new research issue in the area of agent

negotiations, and has not been studied deeply in the literature. Chapter 8

proposed a Multi-Negotiation Network and a Multi-Negotiation Influence

Diagram to dynamically represent the dependency relationships among

multiple negotiations, and tried to search for an optimal execution policy

to perform the related negotiations concurrently and optimally. It was

shown that the proposed approaches can successfully improve an agent’s

global utility of multiple related negotiation in a successful end scenario,

and avoid unnecessary losses for the agent in an unsuccessful end scenario.

9.2 Future Work

This research can be extended by engaging in investigations focussing on the follow-

ing aspects.
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∙ Chapter 3 proposed an agent behavior prediction approach to estimate possible

agent negotiation behavior by analyzing their historical negotiation records.

However, the proposed approach only focused on agents with linear utility

functions, and cannot handle cases when agents employ non-linear utility func-

tions. In the future, the current approach could be extended from linear do-

mains to non-linear domains.

∙ Chapter 4 proposed an agent preference prediction approach, as well as compu-

tational approaches for mutually beneficial negotiation outcomes in bilateral

multi-issue negotiation. Currently, the non-linear preferences are temporar-

ily not considered. Future work on this research may focus on multi-issue

negotiation with non-linear preferences.

∙ Chapter 5 proposed partner selection mechanisms by employing both linear

and non-linear approaches. Further, the proposed approaches can be employed

in both cooperative and competitive negotiation environments. Future work

on this research could pay attention to extend our current work by using

trust-based and/or reputation-based technologies, so as to produce a more

comprehensive evaluation on partners.

∙ Chapter 6 extended the market-driven negotiation model from a static ne-

gotiation environment to a dynamic negotiation environment by considering

changes of outside options. Currently, consideration of future possible changes

of the negotiation environment is based on the assumption that all negotiators

will have the same probability to enter or leave a negotiation. In real world

applications, such an assumption is not always true. Therefore, our future

work on this research will take each agent’s individual situation into account

when possible changes of negotiation environment need to be predicted.

∙ Chapter 7 proposed a market-based negotiation model in considering mul-

tilateral negotiators, multiple issues, multiple non-linear preferences, and a

dynamic environment. Future work on this research could focus on searching

for the optimal bi-beneficial negotiation outcome in dynamic environments.

∙ Chapter 8 proposed a Multi-Negotiation Network and a Multi-Negotiation

Influence Diagram to handle multiple related negotiations concurrently and
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optimally in dynamic environments. At the present time, only two depen-

dency relationships between negotiations are considered. Future work on this

research may pay attention to generating a comprehensive model to express

the dependency relationships between multiple negotiations.
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