
University of Wollongong - Research Online
Thesis Collection

Title: Network attacks and securing streaming content

Author: Liang Lu

Year: 2010

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong
Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

2010

Network attacks and securing streaming content
Liang Lu
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact Manager
Repository Services: morgan@uow.edu.au.

Recommended Citation
Lu, Liang, Network attacks and securing streaming content, Doctor of Philosophy thesis, School of Computer Science and Software
Engineering - Faculty of Informatics, University of Wollongong, 2010. http://ro.uow.edu.au/theses/3158

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Network Attacks and Securing
Streaming Content

A thesis submitted in fulfillment of the

requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Liang Lu

School of Computer Science and Software Engineering

July 2010

c© Copyright 2010

by

Liang Lu

All Rights Reserved

ii

Dedicated to

My mother and my father

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Liang Lu
July 22, 2010

iv

Abstract

Despite many years of effort by the industry as well as the research community,

attacks on computer systems via access networks are still a severe threat. In the

battle against network attacks, firewalls and Intrusion Detection Systems (IDSs)

have played one of the most important roles. However, conventional firewalls and

IDSs have technical limitations and as such have difficulties dealing with emerging

network applications, a notable example of which being streaming content. Besides,

configuring firewall rule tables for large networks with complex security requirements

is a difficult and error prone task.

In this thesis, we study the behavior of streaming content applications and look

into techniques for enhancing firewalls/IDSs capabilities to cater for this new net-

work application requirement. To assist system administrators to correctly imple-

ment organisational policies, we also develop a method of representing a firewall rule

table that allows comparison of two tables, and provide an algorithm that determines

if two tables are equivalent.

Even enhanced with techniques we provided, conventional firewalls/IDSs them-

selves still have difficulties dealing with complicated network threats and challenges.

A notable example is multi-stage attacks where each stage itself does not violate se-

curity policy and is not detected by firewalls/IDSs.

A new mechanism, namely attack graphs, has emerged to model and defend

against multi-stage attacks. However like any other new technologies, attack graphs

have technical limitations such as sizing or scaling issues. In this thesis, we present

our contribution to the area of ranking attack graphs. Our contribution lies in two

major areas: accurate ranking of attack graphs, and efficient ranking by an artificial

intelligence approach.

v

Acknowledgement

My experience as a graduate student in the University of Wollongong has been

wonderful. I am grateful to my principal supervisor Prof. Rei Safavi-Naini for this

opportunity. Rei has been an excellent supervisor who has offered me directions and

yet enough freedom for me to explore different areas. I would like to express my

gratitude to my co-supervisor Prof. Willy Susilo and Dr. Jeffrey Horton for their

guidance. Willy and Jeffrey have always been nice to me.

My sincere thanks to Dr. Markus Hargenbuckner and his artificial intelligence

research group for all their support and advice. Their help has been invaluable for

my research work on combining techniques in the network security field and artificial

intelligence field. Special thanks to S. L. Yong with his valuable comments on much

of my work. All the discussions are very helpful in the development of this thesis.

I am fortunate to be here with a team of interesting people. Discussions are

always stimulating and rewarding. I have enjoyed discussions with Angela Piper,

Noi Rungrat, Xinyi Huang, Mohammad Reza Reyhanitabar, Man Ho Au, Shams

Ud Din Qazi, Siamak Fayyaz Shahandashti, etc. The list goes on and on.

I would like to acknowledge the support that I have received from all the academic

and general staff in the School of CS & SE from the University of Wollongong,

Australia.

Finally, my love and gratitude to my parents and families for their enduring

love and support. A special thanks to my beloved girl friend Yi Gao, nicknamed

colored-piggy.

vi

Publications

The following papers have been published or presented, and contain materials based

on the content of this thesis.

1. Liang Lu, Rei Safavi-Naini, Markus Hagenbuchner, Willy Susilo, Jeffrey Hor-

ton, Sweah Liang Yong, Ah Chung Tsoi. Ranking Attack Graphs with Graph

Neural Networks. The 5th Information Security Practice and Experience Con-

ference (ISPEC 2009), Lecture Notes in Computer Science 5451, pp. 345 - 359,

2009.

2. Liang Lu, Jeffrey Horton, Rei Safavi-Naini and Willy Susilo. Transport Layer

Identification of Skype Traffic. The International Conference on Information

Networking (ICOIN 2007), Lecture Notes in Computer Science 5200, Springer-

Verlag, pp. 465 - 281, 2008.

3. Liang Lu, Jeffrey Horton, Rei Safavi-Naini and Willy Susilo. An Adversary

Aware and Intrusion Detection Aware Attack Model Ranking Scheme. The

5th International Conference on Applied Cryptography and Network Security

(ACNS’07), Lecture Notes in Computer Science 4521, Springer-Verlag, pp.

65-86, 2007

4. Liang Lu, Rei Safavi-Naini, Jeff Horton and Willy Susilo. Comparing and

Debugging Firewall Rule Tables. IET Information Security, Vol. 1 No. 4, pp.

143 - 151, 2007.

5. Liang Lu, Rei Safavi-Naini, Jeffrey Horton and Willy Susilo. On Securing

RTP-Based Streaming Content With Firewalls. The 4th International Con-

ference on Cryptology and Network Security (CANS2005), Lecture Notes in

Computer Science 3810, Springer-Verlag, pp. 304 - 319, 2005.

vii

6. Liang Lu, Rei Safavi-Naini and Willy Susilo. Design of Policy Tables For Im-

plementation of Hybrid Distributed Firewalls. Australian Telecommunication

Networks and Applications Conference (ATNAC) 2004, pp. 68 - 73, 2004.

viii

Contents

Abstract v

Acknowledgement vi

Publications vii

1 Introduction 1

1.1 Network Attack and Firewalls . 1

1.2 The Challenge . 2

1.2.1 Conventional Firewalls . 2

1.2.2 Modeling Multi-Stage Attacks 4

1.3 Our Contribution and Thesis Organisation 5

2 Preliminaries 7

2.1 Streaming Protocols . 8

2.1.1 Real-Time Streaming Protocol 8

2.1.2 Session Initiation Protocol . 9

2.1.3 H.323 . 11

2.1.4 Real Time Transport Protocol 13

2.2 Other Literature . 15

2.3 Conclusion . 17

3 Preventing Malicious Streaming Traffic Into A Secured Network 18

3.1 Introduction . 18

3.2 Preliminaries . 19

3.2.1 Streaming Content Overview 19

3.2.2 Incapacity of Conventional Firewalls to Handle Streaming Con-

tent . 20

ix

3.3 Injection of Malicious Traffic . 21

3.4 Streaming Content Modelling and the Inspection Scheme 23

3.4.1 Arrival Process Modelling of Streaming Content 23

3.4.2 Application of The Central Limit Theorem 25

3.4.3 Inspection Scheme . 26

3.5 Experiments and Results . 28

3.5.1 Experimental Setup . 28

3.5.2 Result on Packet Injection . 29

3.5.3 Effectiveness of The Inspection Scheme 31

3.6 Conclusion . 34

4 Preventing Streaming Traffic From Flowing Out Of A Secured Net-

work 37

4.1 Introduction . 37

4.1.1 Skype Overview . 39

4.1.2 Related work . 40

4.2 Payload Based Detection . 41

4.2.1 Notations and Preliminaries 42

4.2.2 Simple Signatures . 42

4.2.3 Composite Signatures . 43

4.3 Characterisation of Skype Traffic . 44

4.3.1 Realtime Characteristics . 45

4.3.2 Connection patterns . 49

4.4 Non-payload Based Detection Technique 51

4.4.1 Conventional client-server applications and other peer-to-peer

applications . 52

4.4.2 Realtime applications . 52

4.4.3 Final Algorithm . 53

4.4.4 Discussions . 54

4.5 Implementation and Experiments . 56

4.5.1 False-Positive Evaluation . 56

4.5.2 False-Negative Evaluation . 57

4.6 Conclusion and Further Work . 62

4.6.1 A Related Problem . 63

x

5 Comparing Firewall Rules 64

5.1 Introduction . 64

5.2 Related Work . 66

5.3 Formally Representing Firewall Rules and Rule Tables 68

5.3.1 Firewall Rules . 69

5.3.2 Firewall Rule Table . 70

5.3.3 An Example . 70

5.4 Preliminaries . 71

5.4.1 An Example . 74

5.5 Comparing Firewall Rule Tables . 75

5.5.1 Algorithms to Compare Firewall Rule Tables 78

5.6 Implementation and a Complete Example 79

5.6.1 An implementation . 79

5.6.2 A Complete Example . 80

5.7 Conclusions and Further Work . 82

5.7.1 Deficiency of Firewall Techniques and Further Work 84

6 Using Attack Graphs to Analyse Network Security 87

6.1 Introduction . 87

6.1.1 Related Work . 88

6.1.2 Our Contribution . 90

6.2 Modeling Adversary and Intrusion Detection Capability in Ranking

Attack Models . 93

6.2.1 Background and Preliminaries 93

6.2.2 Modelling Adversary and Intrusion Detection Capability in

Ranking Attack Models . 96

6.2.3 Web Graph Adjustment . 97

6.2.4 Transition Matrix Construction 99

6.2.5 Ranking Attack Models . 100

6.3 Implementation and Experiments . 102

6.3.1 Implementation . 102

6.3.2 The Network Model for Experiments 104

6.3.3 Experimental Results Analysis and Evaluation 118

6.4 Ranking Attack Graphs with Graph Neural Network 123

6.4.1 Preliminaries . 123

xi

6.4.2 Ranking Attack Graph using GNNs 128

6.4.3 Experiments and Results . 129

6.5 Conclusion . 135

7 Concluding Remarks 140

7.1 Thesis Contribution . 140

7.2 Limitations . 142

7.3 Open Problems . 142

Bibliography 144

xii

List of Tables

3.1 Experimental result under confidence level α = 0.98 31

3.2 Experimental results with confidence level α = 0.98 for fast injection . 33

3.3 Experimental results with confidence level α = 0.98 for medium speed

injection. Interestingly, this is the case when crafted traffic is injected

at a similar rate to that of legal traffic. 33

3.4 Experimental results with confidence level α = 0.98 for slow injection 34

4.1 Simple Signatures . 43

4.2 Composite Signatures . 44

4.3 characteristics matrix . 54

4.4 OC-48 Traffic Traces . 56

5.1 Firewall rule table using both negative and positive rules 71

5.2 Firewall rule table using positive rules only 71

5.3 An example of rule table . 75

5.4 Dividing R5 into sub-rules . 75

5.5 Another example of rule table . 76

5.6 The security policy . 86

5.7 The rule table by the chief administrator 86

5.8 The rule table by the assistant administrator 86

6.1 Web Model Notations . 94

6.2 Atomic Attacks Modelled in the Sample Network 138

6.3 Connectivity . 139

6.4 Trust Relation . 139

6.5 Position Pair Coupling Error . 139

xiii

List of Figures

1.1 Illustration of that how a firewall works 2

2.1 Typical Protocol Stack of Streaming Applications 15

3.1 Experimental Setup . 30

3.2 Variation of Packet Arrival Rates: Legal Traffic 32

3.3 Variation of Packet Arrival Rates: Legal and Injected Traffic 35

4.1 An example of composite signature 44

4.2 Packet Size Distribution Diagram . 46

4.3 Packet Size Cumulative Density Function 47

4.4 Packet Inter-Arrival Time Cumulative Density Function 48

4.5 Packet Inter-Arrival Time Cumulative Density Function Captured at

Residential ADSL . 49

4.6 Bandwidth Burstiness of the start-up 30 seconds 50

4.7 Bandwidth Burstiness of 30 minutes 50

4.8 Bandwidth Burstiness Captured Behind Shared ADSL 51

4.9 Experimental Setup . 58

4.10 Experimental Results Day 1 . 59

4.11 Experimental Results Day 2 . 59

4.12 Experimental Results Day 3 . 60

4.13 Experimental Results Day 4 . 60

4.14 Experimental Results Day 5 . 61

4.15 Experimental Results Day 6 . 61

4.16 Experimental Results Day 7 . 62

xiv

5.1 The Venn Diagram illustrating R′, R′′, and R′′′. R′′′ is the set of

packet “only” matched by R. Here it is assumed that R has overlap

with earlier rules; R′, R′′, and R′′′ may be empty otherwise. 73

5.2 The Prototype . 80

5.3 An example of network setup . 81

5.4 Rule table compare result . 82

5.5 Rule table compare result . 83

6.1 An example of web graph . 95

6.2 Transitions in attack models . 99

6.3 Toolkit Architecture . 103

6.4 Network . 105

6.5 Comparison of Ranked Attack Models. (a) The complete ranked at-

tack model (b) Attack Model after fixing up the SSH vulnerability

(c) Attack Model after fixing FTP vulnerability 120

6.6 Rank varies with attack probabilities 121

6.7 Rank varies with decaying rate . 121

6.8 Rank varies with decaying rate and attack probabilities 122

6.9 An example of a multi-layered perceptron neural network, where F1,

and F2 form the input layer, F3 and F4 form the hidden layer, while

F5 forms the output layer. 124

6.10 The dependence of state s1 on neighborhood information 126

6.11 The encoding network . 127

6.12 Effect of number of training epochs 132

6.13 Relative Position Diagram when trained on real-world attack graphs . 134

6.14 Effect of number of attack graphs used in the training data set 135

6.15 Relative Position Diagram when training on pseudo attack graphs . . 136

xv

Chapter 1

Introduction

1.1 Network Attack and Firewalls

Network attacks can take various forms from eavesdropping at physical layer, to

session hijacking at transport layer, and to attacks at application level such as buffer

overflow exploits. As computer systems are becoming larger and more complicated

every day, the complexity of network attacks also increases. It is rarely the case that

an attacker can launch a single attack and achieve their goal. Typically, the attacker

needs to combine several techniques and execute several simple attacks to bypass a

number of tools deployed to protect the system against unauthorised access [16].

In the battle against network attacks, firewalls have played one of the most im-

portant roles. A firewall is a security system consisting of a combination of hardware

and/or software that limits the exposure of a protected network to attacks from out-

side [117]. It protects networks against malicious attacks by filtering out unwanted

network traffic from entering the network. In the primitive form of firewalls, filtering

decisions are made using a table of rules (or policies) that defines the forms of traffic

allowed into the network [51]. In more advanced firewalls, filtering decision can also

be based on application layer data or session metadata [117]. Figure 1.1 illustrates

a typical deployment of a firewall that separates the protected Local Area Network

(LAN) and the outside world, Wide Area Network (WAN), where any computing

element can be potentially a threat to the LAN.

In addition to blocking malicious traffic to a protected network, firewalls can also

be used to enforce organisational network access policy. In this case, it is used to

filter out traffic that is considered of no value to the organisation. Examples include

but are not limited to undesired contents such as pornographic web sites, instant

messaging software, and online games.

1

1.2. The Challenge 2

Figure 1.1: Illustration of that how a firewall works

1.2 The Challenge

Recently computer systems have become more complicated and hence difficult to

model. This presents challenges to conventional network security tools such as fire-

walls that rely on a thorough understanding of network topology and architecture

to define a strict security policy. As computer systems grow larger, there also ex-

ist potentially more security vulnerabilities that can be exploited by attackers to

compromise the system or to gain unauthorised access. This further challenges

conventional network security tools as well as people using these tools. A notable

example is that conventional firewalls are unable to deal with newly emerged Inter-

net applications such as streaming media. The rest of this section elaborates threats

that conventional security tools are facing amid computer technology advancement.

1.2.1 Conventional Firewalls

In the face of new network attacks and threats, firewalls have gone through gen-

erations of evolution from primitive packet filters that only examine packets based

on user-defined rules, to stateful firewalls that make decision based on packet series

as well as individual packets, and to application layer firewalls that have specific

and detailed knowledge of a set of Internet application and are able to perform an

in-depth, complete scan for traffic generated by these applications.

Although a set of new technologies have been created to stop new forms of

network attacks, firewall technology has not been able to catch up with advancement

1.2. The Challenge 3

of new Internet technologies. Situations have arisen where conventional firewalls are

incapable of securing a network that employs new Internet technologies [53, 55].

A challenge to conventional firewalls is to handle the traffic generated by new

types of Internet applications, such as applications delivering streaming content.

These applications do not follow conventional Internet application models, and

therefore present other challenges to conventional network security tools. For exam-

ple, applications delivering streaming content tend to communicate on dynamically

negotiated ports at the time of connection establishment. As a result, conventional

firewalls need to open a wide range of ports to let through traffic generated by

such applications [37, 67, 40]. Opening unused ports increases the chance that an

attacker can penetrate through the firewall and this is unacceptable. A better solu-

tion is required, instead of simply opening the entire range of ports that streaming

applications may randomly choose one from.

The behavior of randomly selecting a port to carry traffic also increases diffi-

culties for conventional firewalls to enforce a network access policy. Conventional

firewalls can no longer block the use of a streaming application, such as Skype,

by blocking all ports that it may use, without interfering with other applications.

Coupled with the fact that Skype, like many other streaming applications, has traf-

fic encrypted, not even an application level proxy is capable of analysing packet

payloads. This is not even to mention the fact that many streaming applications

are built on proprietary protocols such that building an application level proxy to

analyse its payload is not legal nor practical.

Conventional firewalls also have the problem of the correct implementation of

organisation security policies. Translating a high-level security policy written in

a natural language into firewall rule tables, a much lower-level description of the

policy, is an error prone task. Moreover, correct translation of a high-level security

policy into a firewall rule table is not unique. The “middle-level” policy languages

[5, 120, 104, 39] designed to simplify the task of designing firewall rules also have

similar deficiencies. In this thesis, we develop an algorithm to compare and anal-

yse firewall rules at a low level to assist firewall users in design and analysis of

their implementation of organisation security policies. The algorithm is based on a

technique that we propose to uniquely represent any firewall rule table.

1.2. The Challenge 4

1.2.2 Modeling Multi-Stage Attacks

Having devoted much effort into enhancing conventional network security tools and

techniques to deal with new threats and challenges, the research community has

also placed a strong focus on new techniques to fight against new threats such as

multi-stage attacks [41, 87, 98]. An example of such techniques is the use of a model

checking mechanism [73] to discover all potential multi-stage attacks as well as their

execution sequences within a modeled network [75], and also the use of attack graphs

to intuitively present discovered attack and the execution sequences[95].

However, like any other new technologies, the use of attack graphs is limited by

a number of factors such as sizing or scaling problems. In other words, generation

and analysis of attack graphs is difficult because of the state explosion problem. In

recent years, a fair amount of research has been conducted to resolve this issue with

the main focus on two aspects: scalable attack graph generation [74, 99, 105], and

improving attack graph visualisation by highlighting important portions of attack

graphs [111, 85, 42, 59].

In this thesis, attention is given to the research area of improving the visualisa-

tion of attack graphs. In particular, the thesis looks into a scheme that highlights

important portions of attack graphs by computing a rank for each node in an attack

graph. Ranks are computed based on “importance” of a node. By ranking all the

nodes, the focus of an attack graph is given to the nodes that have higher ranks.

The current ranking scheme of attack graphs is based on Google PageRank [89].

In Page Rank, the rank of a web page is defined as the probability that a web

surfer hits the page eventually when starting from a random page. Similarly, the

existing attack graph ranking scheme [111] computes the rank of an attack graph

node based on the probability that an intruder reaches the node after exploiting a

sequence of individual vulnerabilities. This scheme has not given much consideration

to the dissimilarity between web surfing scenarios and computer system intrusion

scenarios. This is one of the areas that this thesis contributes to by presenting a

scheme that better models computer system intrusion scenarios.

PageRank is not an efficient algorithm [62]. It is mainly suitable to be used on

a relatively stable structure such as the Web graph that will have little change over

time. On the other hand, a network model may vary into many different forms.

These can be a real improvement or change of design on the network, or can be

a hypothetical alteration in order to observe the effect by any proposed change.

1.3. Our Contribution and Thesis Organisation 5

Because of PageRank inefficiency, it may be difficult to rank many attack graphs

each resulting from one of many possible changes in the modeled network. This

thesis presents an alternative scheme to estimate ranks of attack graphs based on

the Graph Neural Network (GNN) [29], a new neural network model capable of

processing graph structures. By learning from a certain number of training samples,

GNN can learn the the attack graph ranking functions and quickly produces new

results for any new input.

1.3 Our Contribution and Thesis Organisation

As mentioned earlier in the Chapter, new Internet applications have brought new

threats to conventional firewalls. In this thesis, we examine the mechanism for

firewalls to handle traffic generated by new Internet applications, and in particular,

streaming applications.Our contributions to the area of defending against network

attacks include

• A mechanism provided for conventional firewalls to handle malicious streaming

content into a protected network is presented.

• A technique for a conventional firewall to filter out traffic generated by appli-

cation whose existence is considered a violation of network usage policy.

• A formal approach to compare and analysis firewall tables.

• A ranking scheme of attack graphs to improve accuracy in ranking attack

graphs.

• An artificial intelligence approach to ranking attack graphs to improve the

efficiency of ranking attack graphs.

The rest of this thesis is organised as follows. Chapter 3 presents a vulnerability

in streaming protocol that allows an attacker to inject malicious traffic into a data

stream, and then presents a scheme that enables conventional firewalls to detect and

filter out such malicious traffic. Chapter 4 looks at the other aspect of firewalls -

dropping off traffic that is considered of no value to an organisation. A technique

is provided for conventional firewall to detect undesired streaming content for an

organisation. Chapter 5 provides a technique that lessens the difficulties system

1.3. Our Contribution and Thesis Organisation 6

administrators face to correctly implement an organisation policy. This is a rule

table representing method that allows comparison of two rule tables. Chapter 6

looks into a technique, namely attack graphs, for modeling and fighting against

more complicated, multi-stage network attacks. It presents an accurate ranking

scheme for attack graphs as well as an efficient ranking scheme based on an artificial

intelligence approach. Chapter 7 concludes the thesis.

Chapter 2

Preliminaries

Delivering streaming content has gained a strong focus in the research community as

well as in industry in recent years. The majority of the work is focused on delivery

of streaming content other than the security aspect of streaming content delivery.

Historically the Internet has been used primarily for reliable data transmission with

minimal or no delay constraints. The TCP transport protocol was designed to meet

this purpose and has worked well in this context. However, streaming content usually

requires timely delivery other than reliable transmission. This differs significantly

than the requirement driving TCP and hence requires the use of a different protocol

to provide the required transmission characteristics. TCP has been proven to be

not suitable for delivery of streaming content due to a number of constraints. First

of all, waiting for TCP retransmission can cause noticeable and undesirable delay in

playback of streaming content, no matter whether it is audio, video, or something

else. Moreover, the “slow start” TCP congestion-control mechanism can interfere

with the audio and video “natural” playback rate. Because there is no fixed path

for packets to flow across the Internet, no mechanism exists to ensure that the

bandwidth needed for streaming content delivery is available between the sender

and receiver, and as such quality of service cannot be guaranteed. Finally, TCP

does not provide timing information. This is highly desired in streaming content

playback [102, 7].

Streaming content applications usually do not need the complexity of TCP and,

instead, require a relatively simple transport protocol. Many playback algorithms

can tolerate missing data better than disruptions caused by retransmission. They

do not require guaranteed in-sequence delivery either. The research community and

the industry have developed a number of streaming protocols to support timely

delivery of streaming content like audio, video and other types of media. On the ap-

plication layer, there are Real-Time Streaming Protocol (RTSP), H.323 and Session

7

2.1. Streaming Protocols 8

Initialisation Protocol (SIP). On the transport layer, the most widely used protocol

for streaming content transmission is Real-time Transport protocol (RTP). These

real-time oriented protocols are designed to be used in both multicast and unicast

network services to provide timely delivery of datagrams. Many streaming appli-

cations provide better performance when using IP multicast. Therefore, the ability

to use IP multicast has been taken into account when designing these protocols.

Examples include multicast routing, scalability and adaptation to large numbers of

receivers and heterogeneous receivers [102, 7].

2.1 Streaming Protocols

2.1.1 Real-Time Streaming Protocol

Real-Time Streaming Protocol (RTSP) [35] is an application level protocol which

aims at offering a robust mechanism to deliver streaming content over multicast and

unicast networks in “one to many” applications. It takes advantage of streaming

content by breaking a large chunk of data into many packets sized according to

the bandwidth available between client and server. When the client has “buffered”

enough packets, it can start to play the buffered data while continuing to download

the rest. The client is thus able to play the media content almost in real time

without having to download the entire media file first. The source for the media

content can either be live data or a stored media file.

RTSP does not typically deliver streaming content itself, although interleaving of

a continuous media stream with a control stream is possible. In other words, RTSP

acts as a “network remote control” for streaming content providers. RTSP provides

an extensible framework, more than a streaming protocol, to enable controlled, on-

demand delivery of streaming content. It is designed to provide control over multiple

data delivery sessions. RTSP does not mandate the underlying transport protocol

to use. It can be set to use UDP, multicast UDP, TCP, or RTP as the underlying

data delivery channel.

RTSP does not have the notion of connection. A server maintains a session

labeled by an identifier. An RTSP session is in no way tied to a transport level

connection such as a TCP connection. During an RTSP session, an RTSP client

may open and close many underlying transport connections to the server to send

RTSP requests. The underlying transport protocol can be either connection oriented

2.1. Streaming Protocols 9

or connectionless.

RTSP is intentionally designed to have similar syntax and operations to HTTP/1.1

so that extension mechanisms to HTTP can be seamlessly added to RTSP. RTSP

differs only in a number of aspects from HTTP/1.1 as shown below. RTSP provides

no security mechanism other than basic HTTP authentication.

• RTSP provides a number of new methods and has a different protocol identifier.

• An RTSP server needs to maintain state by default in almost all cases, as

opposed to the stateless nature of HTTP.

• Both RTSP server and client can issue requests.

• Data is carried out-of-band by a chosen transport protocol, in most cases.

• RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1.

• The Request-URI always contains the absolute URI. HTTP/1.1 carries only

the absolute path in the request and puts the host name in a separate header

field for backward compatability.

The following operations are supported by the RTSP protocol.

• Retrieval of media from media server, i.e. a client can request a presentation

description via HTTP formatted URI.

• Invitation of a media server to a conference, i.e. a media server can be “invited”

to join an existing conference, either to play back media into the presentation

or to record all or a subset of the media in a presentation.

• Adding media to an existing presentation, particularly for live presentations.

This is useful if server can notify clients when additional media becomes avail-

able.

2.1.2 Session Initiation Protocol

Session Initiation Protocol (SIP) [67] is another IETF defined application level proto-

col designed to deliver streaming content, however mainly voice data, over multicast

or unicast network. Similar to RTSP, SIP does not mandate the use of a specific

transport protocol. It is up to the negotiation process to select TCP, UDP or RTP.

2.1. Streaming Protocols 10

SIP is not a transport but a signalling protocol used to establish sessions for VoIP

applications. Functions and characteristics that SIP offers include:

• Adaptability. SIP is able to adjust seamlessly to various network infrastruc-

tures and to provide non-interrupted and reliable service.

• Scalability: The magnitude of serving capability can be easily increased and

also designed in such a way as to provide full redundancy architecture.

• Text based programming: This simplifies the task of application support. Due

to its simple presentation using plain text, SIP services can easily be imple-

mented and diagnosed.

• Similarity with HTTP: SIP bears much similarity with HTTP in syntax, such

as cause codes and message header syntax.

• End-devices control support: SIP carries most intelligence at the end devices.

Session control is initialed from end devices. As a result, end devices partici-

pate in and have control over the session establishment and tear down setup.

• Accommodation for new services: SIP can seamlessly support new session

control requirement by new services. SIP can transport almost any service

requirements, such as the underlying transport other protocol to use.

• Mobility support: SIP can effectively support mobile and ported users and

services. Its interaction with server farms supports mobile users by providing

location-based services.

SIP has been proposed for quite a few years. However only until the last couple

of years has SIP been adopted by the VoIP community as the dominating protocol

for signaling [118]. A session could be a simple two-way IP telephony call or it could

be a collaborative multi-media conference session. The following list summarises

session forms that SIP supports.

• two-party sessions

• multi-party sessions

• multi-cast sessions

2.1. Streaming Protocols 11

The ability to establish these sessions enables SIP to host innovative services

such as voice-enabled e-commerce, Instant Voice Messaging (IVM) with selected

buddies lists, and IP-Central services.

The design philosophy of SIP is to specify merely what needs to be specified

and nothing more. SIP is purely developed as a mechanism to establish between

VoIP applications. It does not know the details of the established session. It is

only responsible for initiating, terminating and accepting modification to sessions.

As such, SIP is scalable and extensible, and is able to work with various system

architectures and deployment scenarios.

SIP is a request-response protocol that bears resemblance to many other Inter-

net protocols, e.g. RTSP and HTTP. As a result, SIP sits comfortably alongside

other web applications. Using SIP, telephony becomes another web application and

integrates seamlessly into other Internet services. SIP is a simple protocol which

service providers can use to deliver integrated voice and multimedia services. Pa-

rameters of services are negotiated and agreed by all participating parties during

session establishment. SIP itself does not control the negotiation process - it merely

is a negotiation protocol for the participating parties to agree on a common set of

features and parameters.

SIP is clearly a vital protocol to VoIP and is increasingly widely deployed. It is

a catalytic protocol that delivers key signaling elements. SIP can be used to deliver

VoIP and multi-party conferencing services based on IP network, which is capable

of delivering next generation integrated services. SIP is powerful, and yet simple.

This is by the philosophy of “doing what it does best”, and playing nicely with other

protocols in the integrated protocol sandbox.

SIP shares many characteristics with RTSP. However SIP is designed for a dif-

ferent purpose than RTSP, which is designed to control the media stream during

delivery. SIP is not directly involved in controlling media streams.

2.1.3 H.323

Another popular VoIP protocol is ITU-developed H.323 [40]. Unlike SIP which is a

simple and self-contained protocol, H.323 is a protocol suite rather than a specific

protocol. It contains a range of specific protocols for call setup, data transmission

and capabilities negotiation. The H.323 model considers inter-networking between

IP voice network and traditional PSTN network. It consists of a gateway which

2.1. Streaming Protocols 12

is responsible for connecting PSTN networks into IP-based voice network. The

gateway needs to understand both PSTN protocols and H.323 protocol suite. Also

within an H.323 zone, a gatekeeper may exist to manage end-users registration and

admission control within a given zone of operation. End users in this model are

referred to as terminals.

The main protocols within the H.323 protocol suite are:

• RAS (Registration/Admission/Status): defined as H.225 (RAS) protocol in

the standard. RAS messages are originated by the gateway at the moment a

terminal initiates a call. These messages are transported using UDP to the

gatekeeper.

• H.225: also known as H.225.0 - call control signaling. This protocol specifies

the use and support of Q.931 signaling messages. This protocol is responsible

for establishing and releasing connections.

• H.245: used after connection establishment between two gateways to negotiate

parameters of a call such as codecs to be used, video or conference support,

timer values, and etc. Moreover, IP logical channel ports are exchanged for

RTP sessions and eventually transmission of data and/or voice traffic.

Although both are VoIP protocols, SIP and H.323 differ in many aspects.

• SIP is a self-contained simple protocol. It does nothing more than assist

participating parties to negotiate and agree on call parameters. On the other

hand, H.323 is a monolithic suite of protocols that cover everything including

encoding/decoding, call control, conferencing, and many other functions in

one vertically integrated stack.

• SIP is designed to work only with IP based VoIP network. On the other hand,

H.323 was proposed at early days when IP based voice transmission had not

gain its popularity. As a result, H.323 design also considers interaction and

collaboration between IP based and conventional PSTN networks. The H.323

model consists of a gateway which is responsible for connecting PSTN networks

into IP network. The gateway needs to understand both PSTN protocols (e.g.

MTP3) and the H.323 protocol suite.

• SIP is a publicly open and free protocol developed by IETF, while H.323 is

more or less proprietary by ITU.

2.1. Streaming Protocols 13

• SIP is easy to extend to work with other protocols and applications. H.323

cannot easily support new services, especially those that require mobility and

location-awareness. In general H.323 is not open to extensions.

H.323 and RTSP are complementary in function. H.323 is suitable for delivering

streaming content in moderately sized peer-to-peer groups, whereas RTSP is suitable

for setting up large-scale broadcast streaming applications.

2.1.4 Real Time Transport Protocol

RTSP, SIP and H.323 are all defined at application layer. They rely on transport

(network) layer protocols to actually transmit streaming data, e.g. voice, video,

multi-party conferencing or gaming data. TCP and UDP have been long established

in the transport protocol family. TCP features connection oriented and reliable data

delivery. It offers functions such as sequence number and loss recovery to ensure

data is delivered reliably. However it has been proved that TCP is not suitable

for the task of delivering streaming content [4]. This is because in the streaming

content delivering scenario, minor data loss is more tolerable than transmission de-

lay. Waiting for retransmission of one packet may introduce perceptible delay to

the streaming session and is not desirable. UDP is generally used to deliver stream-

ing data but lacks the ability to deliver critical control signals such as parameters

negotiated between participating parties.

To combine the “streaming content favored” features of TCP and UDP, Real-

Time Transport Protocol (RTP) [37] has been proposed and standardized to provide

end-to-end delivery services for data with real-time characteristics, such as inter-

active audio and video data, which can be transmitted over multicast or unicast

network services. RTP usually runs on top of UDP to deliver audio and video data

to achieve timely delivery. It may also run on top of TCP to reliably transmit

controlling signals. RTP may also be used with other suitable underlying network

or transport protocols. RTP supports data transfer to multiple destinations using

multicast distribution if provided by the underlying network. RTP consists of two

closely-linked parts: the real-time transport protocol (RTP) and the RTP control

protocol (RTCP). RTP carries data that has real-time properties. RTCP is the

controlling aspect of RTP and defines the controlling segments.

RTP itself does not provide any mechanism to ensure timely delivery or provide

other quality-of-service guarantees, but relies on lower-layer services, usually UDP,

2.1. Streaming Protocols 14

to do so. It does not guarantee delivery or prevent out-of-order delivery, nor does

it assume that the underlying network is reliable and delivers packets in sequence.

The sequence numbers included in RTP allow the receiver to reconstruct the sender’s

packet sequence. However the sequence validation scheme within RTP has a security

flaw and can be used to compromise system security. This will be presented in

Chapter 3.

RTP itself has no built-in security mechanisms. To overcome this problem, Se-

cure RTP [61] is developed to provide confidentiality, message authentication, and

replay protection to the RTP traffic and to the control traffic for RTP, i.e. RTCP.

SRTP provides a framework for encryption and message authentication of RTP and

RTCP streams, defines a set of default cryptographic transforms, and allows new

transforms to be introduced in the future. SRTP can achieve high throughput and

low packet expansion. It proves to be a suitable protection scheme for RTP in het-

erogeneous environments, i.e. mix of wired and wireless networks. These features

are based on an additive stream cipher for encryption, a keyed-hash based function

for message authentication, and an “implicit” index for sequencing/synchronization

based on the RTP sequence number for SRTP and an index number for Secure

RTCP (SRTCP).

A number of RTP capturing and monitoring tools are publicly available in the

research community. Among these are rtpdump [97] and rtpmon [18]. rtpdump parses

on a specified address and port pair for RTP and RTCP packets, and generates report

to output files. rtpmon monitors RTP sessions by viewing packet loss rate and jitter

information presented in RTCP feedback packets.

Putting all the above streaming protocols together, we depict the typical protocol

stack and data packet format of streaming applications in Figure 2.1. Note that

although RTP may run over TCP and others may run over UDP, it is not a typical

scenario which is beyond the scope of the thesis.

The industry has also invented various streaming protocols, mostly proprietary,

for audio, video, or Internet telephony application. One of the most notable exam-

ples is Skype [100]. Details of such protocols are mostly unknown due to their pro-

prietary nature. Although there has been work to reverse-engineer Skype [88, 106],

it remains mostly a black box because of two reasons. Firstly, Skype and its protocol

evolves over time, and secondly the reverse-engineering work is only empirical and

lacks formal verification.

2.2. Other Literature 15

Figure 2.1: Typical Protocol Stack of Streaming Applications

2.2 Other Literature

Not much work has been done on securing delivery of streaming content. On the

contrary, a fair amount of work has been conducted to bypass firewall checking in

delivering streaming content, with Skype being the most famous (and infamous)

example. Baset et al. [88] provided details on techniques that Skype uses to bypass

firewall checking. This causes problems for system administrators in the case where

Skype traffic is not desired. Techniques Skype uses to bypass firewall checking are

summarized in the following list. Chapter 4 further details on how Skype bypasses

conventional firewall checking.

• Skype is based on peer-to-peer technology. It transports data on a dynamically

negotiated port with other participants. This can bypass conventional firewalls

IP address and port checking.

• Skype encrypts its voice data and prevents content inspection by firewalls.

• Skype uses a proprietary protocol for call setup and encryption negotiation.

It is difficult to analyze the protocol to work out port and encryption key it

uses to bypass firewall inspection.

Little has been done in the area of enhancing conventional firewall technology to

handle streaming content. Fung et al. [31, 50] proposed a transport-level proxy to

secure multimedia streams. An extended SOCKS UDP binding model with appro-

priate socket calls is proposed to provide complete support for UDP-based, multime-

dia streaming applications. However, they mainly analyzed streaming application

at application and UDP layer, without considering the in-between RTP layer. As a

2.2. Other Literature 16

result, packet injection and session hijacking are only prevented at the UDP layer,

i.e. based on IP addresses and port numbers. Gupta et al. [80] performed an

in-depth analysis of VoIP protocols. Potential security flaws in various streaming

protocols are found vulnerable to replay attack and man-in-the-middle attack. The

paper demonstrated how to cause the SRTP protocol to repeat the keystream used

for datagram encryption. This enables the attacker to obtain the XOR of plaintext

datagrams or even to completely decrypt them. It also demonstrated an attack on

the SRTP protocol that allows an attacker to convince SRTP session participants

that they have lost the shared secret. Additionally several minor weaknesses and

potential vulnerabilities to denial of service in other streaming protocols are ana-

lyzed. It is worth noting that the paper only presents the potential attacks against

streaming protocols without providing curing methods.

Much research has been done on identifying peer-to-peer traffic. These have the

potential to be employed by conventional firewalls to detect violations such as using

Skype. Sen et al. [96] presented a signature-based approach to identifying traf-

fic generated by five popular P2P applications. They derived TCP signatures for

each application mainly by examining packet-level traces and some available docu-

ments. Karagiannis et al. [108] extended this approach to nine P2P applications.

Furthermore, they proposed two non-payload based heuristics to identify P2P ap-

plications, namely “TCP/UDP IP pairs” and “{IP, port} pairs”. The “TCP/UDP

IP pairs” heuristic identifies source-destination IP pairs that use both TCP and

UDP transport protocols. It is based on the observation that most file-sharing P2P

applications use UDP and TCP to transfer, respectively, query or query responses

and actual data. The “{IP, port} pairs” heuristic utilizes the connection patterns of

P2P applications. In P2P networks, a peer advertises its IP and port on the network

so that other peers can connect. As a result, the number of distinct IPs connected

to the advertised <IP, port> pair will be roughly equal to the number of distinct

ports used to connect to it. It should be noted that the research effort mentioned

above aims at detecting general peer-to-peer traffic, other than to detect and block

streaming traffic based on peer-to-peer technology to by pass firewall checking.

There is also considerable research interest in detecting Skype traffic [1] [115]

[52]. When either caller or callee or both are behind NATs or firewalls that prevent

direction connection, Skype traffic must be relayed via a third node. This situation

is referred to as Skype traffic relaying. Suh et al. [52] proposed to detect relaying

of Skype traffic by an end-host in a monitored network based on the correlation

2.3. Conclusion 17

of packet sizes and bit rates between the incoming and outgoing (relayed) Skype

traffic flows. They take the perspective of the operator of a large network, who is

monitoring incoming and outgoing traffic at an access link. The goal is to deter-

mine whether Skype traffic is being relayed through an end-host belonging to the

network. Their detection heuristic is based on the facts that 1) two flows carrying

Skype-relayed traffic must have opposite directions (one entering, the other leaving

the network), have the same end-host (same IP address) within the network being

monitored, and have different end-hosts (different IP addresses) outside the moni-

tored network; 2) Skype-relayed traffic is voice traffic and poses strict constraints

on maximum delays and minimum bit rates; and 3) patterns of packet sizes and bit

rates in Skype-relayed flows are well preserved during the relaying process by the

relaying node. That being said, outgoing (relayed) Skype flow demonstrates similar

patterns of packet sizes and bit rates to that of incoming Skype flow. Putting these

together, two flows satisfying 1) with a relatively small delay in time are considered

to be relaying Skype traffic if enough correlation can be found in their packet size

and bit rate patterns.

In industry, although several commercial products [1] [115] claim the ability to

detect or block Skype traffic, their details have not been made public and their

source code is not available. Hence, we have not had the opportunity to evaluate

the mechanisms used by these products.

2.3 Conclusion

In general, an important piece of work for securing streaming content delivery has

been missing from open literature. Providing a mechanism for conventional fire-

walls to inspect streaming content will benefit system administrators in two aspects.

First, firewalls can be used to block malicious content mixed in streaming content

into a protected network. Second, firewalls can be used to block undesired traffic

from entering or leaving a controlled network. Moreover, streaming content often

is delivered using dynamic port numbers. Configuring firewall policies to enable

streaming content is difficult. In the rest of the thesis, we will be looking at these

specific problems.

Chapter 3

Preventing Malicious Streaming Traffic
Into A Secured Network

3.1 Introduction

Internet streaming applications such as live video or audio broadcasting, IP tele-

phony and teleconferencing have gained increasing popularity in recent years. Ad-

vancement of several technologies have combined to drive the growth of streaming

applications. Examples of such technologies are personal computer performance im-

provement, increasingly available residential broadband access, and virtual-reality

technology advancement. With further advancement of these technologies, growth

of streaming applications is expected to continue.

Similar to other Internet applications, applications involved in processing stream-

ing content may be vulnerable to network attacks. It is highly desirable to have a

firewall that can filter out malicious content in streaming traffic. However, streaming

applications behave fundamentally different than conventional Internet applications.

Whereas conventional Internet applications are mostly based on Transmission Con-

trol Protocol (TCP), streaming applications largely rely on Real Time Transport

Protocol (RTP) for content delivery. Typically, RTP uses User Datagram Protocol

(UDP) as the underlying transport mechanism. TCP can be used too, however only

for tunneling through firewalls at the cost of timely delivery. This behavior of stream-

ing applications has created a new threat against conventional firewalls which are

mainly designed to handle connection-oriented, TCP-based Internet applications.

Due to connectionless nature of UDP protocol, conventional firewalls have technical

difficulties in detecting malicious content injected into streaming applications.

The rest of this Chapter first explains the reasons why conventional firewalls

have difficulties in filtering streaming applications. An analysis of the streaming

protocol stack is then provided. The streaming protocol stack shows where reliable

18

3.2. Preliminaries 19

information to distinguish good traffic from injected or malicious content can be

obtained. This information is not utilised effectively in current systems and results

in vulnerabilities which an attacker can exploit to “hijack” a streaming session.

In this case, an attacker can replace content in a streaming session with arbitrary

payload without the receiver detecting the replacement. Then a novel and effective

inspection scheme is provided to enhance conventional firewalls to deal with such

attacks. In the end, experimental results are presented as a proof of concept to

demonstrate the effectiveness of the proposed traffic inspection scheme. Part of this

Chapter appeared in [53].

3.2 Preliminaries

3.2.1 Streaming Content Overview

Before streaming applications gained popularity, people had to fully download a

media file to local storage devices before they could begin to play the file. It could

take from seconds to hours to download a media file depending on the file size. With

streaming technology, media files can be played almost immediately after download

starts or after a short buffering time. This is achieved by packetising a media file

into a large number of much smaller portions. Each small portion then streams

like little drops of water through the network pipe. Streaming technology also

enables users to select a particular section of a media file such as a certain episode

of a TV series. Communication with other peers in realtime is also made a reality

with streaming technology. Major applications of streaming technology include IP

telephony, teleconferencing, live video/audio broadcast and stock monitoring. The

only disadvantage of streaming technology from a user’s perspective is that received

content cannot be archived or redistributed easily.

Streaming application protocols such as Real Time Steaming Protocol (RTSP)

[35], Session Initiation Protocol (SIP) [67], and H.323 [40] are defined at the appli-

cation layer. Typically, these protocols use TCP to reliably deliver session control

messages such as setup, manipulate, and tear down commands. The data stream

containing the streaming content itself is typically delivered using a UDP based pro-

tocol, because timeliness is typically more important to data delivery than reliability

and waiting for retransmission of a lost frame would have worse impact on viewers’

impression than dropping it.

3.2. Preliminaries 20

However, as UDP itself does not provide sequence reconstruction, packets arriv-

ing out of order cannot be reconstructed to their original sequence. To solve this

problem, IETF developed the Real Time Transport Protocol (RTP) [37] (formerly

as RFC 1889 [36]), which was also published by ITU-T as H.225.0. Same as UDP

and TCP, RTP is also defined at the transport layer. It provides protocol elements

necessary for the delivery of streaming content such as

• Sequence number: a 16-bit number that increments by one for each RTP data

packet sent for the receiver to detect packet loss or to restore packet sequence.

• Timestamp: a 32-bit number reflecting the sampling instant of the first octet

in the RTP data packet.

• Payload type: a 7-bit number indicating RTP payload format and its inter-

pretation by the application.

RTP is typically run on top of UDP which provides the end-to-end delivery for RTP

data packets. RTP Control Protocol (RTCP) [37] can be optionally used to provide

feedback on the quality of the data distribution.

3.2.2 Incapacity of Conventional Firewalls to Handle Stream-

ing Content

The three types of conventional firewalls today are packet filtering firewalls, appli-

cation gateways [117] and stateful firewalls [17]. As stated previously, conventional

firewalls are built on technology fundamentals which have not considered the capa-

bility to work with streaming content applications.

Packet filtering firewall is the most basic, fundamental type of firewall. Access

control is governed strictly by a statically predefined rule set mainly consisting of

IP addresses and port numbers. Hence, it is unsuitable for inspection of streaming

content, which sends/receives data via dynamically negotiated ports.

Application gateways are firewalls that provide filtering functions at the appli-

cation layer in addition to access control at the network and transport layer. It

has numerous advantages over packet filtering firewalls, such as user authentication,

application logging, and content filtering. However, in order to scan application

headers and payloads apart from IP and TCP headers, application gateways need

to spend a fair bit of effort and time copying packets from system kernel to users

3.3. Injection of Malicious Traffic 21

space. Hence, they are “are not generally well suited to high-bandwidth or real-time

applications [46]”.

Similar to packet filtering firewalls, stateful firewalls also enforce access control

at the network and transport layer. They are more effective than packet filtering

firewalls in that they enforce the notion of “stateful connection”, i.e. incoming

packets are passed through only if they belong to an established session. Compared

with the above 2 types of firewalls, stateful firewalls have the following advantages

in inspecting streaming content:

• They are able to open dynamic ports for packets that belong to an established

session.

• Working at the transport and network layer, they are suitable for high-bandwidth

and real-time applications.

However, stateful firewalls identify a session only by session-specific protocol

fields such as IP address and port numbers, they cannot prevent injecting malicious

packets with forged IP address and port number into streaming content. In the

rest of this Chapter, we will look into injection of forged content into a streaming

session by exploiting vulnerabilities in current traffic sanitizing schemes in streaming

protocols, when data delivery is accomplished by UDP. We will also present an

inspection scheme that can be used to filter out such injected content. The presented

scheme relies on protocol fields defined at the transport layer of streaming content,

and thus can be easily incorporated into stateful firewall kernels.

3.3 Injection of Malicious Traffic

TCP traffic contains more stateful information about an established connection than

UDP traffic does. This includes TCP flags and sequence and acknowledgement num-

bers. Stateful firewalls thus can handle TCP traffic effectively. On the other hand,

inspection of UDP traffic is usually based merely on IP addresses, port numbers,

and a virtual timer [17]. These fields do not change over time in an established

session and are easy to forge. Consequently, injection into a continuous UDP traffic

sequence is straight forward if the IP addresses and port numbers are known by

an attacker. Therefore, although possessing some advantages in scanning stream-

ing content, stateful firewalls cannot prevent injection of packets when streaming

applications use UDP for data delivery, which is often the case for timely delivery.

3.3. Injection of Malicious Traffic 22

Although sequence numbers that change over time are also provided at the trans-

port layer of RTP-based streaming applications, their behavior is very different to

TCP sequence numbers. Most notably, sequence numbers in an RTP session may

form a loose sequence with missed sequence numbers. Sequence numbers can be

missed if a packet is dropped because UDP does not provide for retransmission of

dropped packets. Packets with duplicate sequence numbers are not expected to be

received before sequence numbers wrap around for the same reason.

Therefore, sequence numbers of RTP cannot be used in the same way in which

TCP sequence numbers are employed in stateful firewalls. Schulzrinne et al. [37]

proposed a sequence number validation scheme, where a sequence number is con-

sidered valid only if it is no more than MAX DROPOUT ahead of the max se-

quence number ever received nor more than MAX MISORDER behind, where

MAX DROPOUT and MAX MISORDER are constants determined by an ad-

ministrator. Additionally, a stream is considered restarted if two consecutive pack-

ets with neighboring sequence numbers, both considered invalid, are received. This

scheme utilises RTP sequence numbers to a certain extent, but leaves a number of

exploitable vulnerabilities unsolved:

• Packet Injection: Legal packets and injected packets are placed into a “fairly-

competing” situation. A packet is considered legal as long as it hits the ac-

ceptable range of sequence numbers. Currently, the RFC for RTP defines a

16-bit sequence number, resulting in a good chance of randomly hitting this

range. Moreover, this acceptable range may be “pushed” forward by an in-

jected packet, resulting in successive legal packets being rejected for falling

behind the acceptable range. Consequently, an attacker may take over the

entire session if he can completely “push” the acceptable range off the legal

stream. To increase the chance of a successful injection, an attacker can inject

a sequence of packets whose sequence numbers increase by more than 1, or at

a faster rate than a legal sequence.

• Session Restart: The validation scheme considers that a session is restarted if

two consecutive packets with neighboring sequence numbers, both considered

invalid, are received. An attacker may exploit this scheme to take over a

session by injecting packets at a faster rate than a legal stream. As long as

two consecutive injected packets arrive in the gap between two legal packets,

the streaming session will be restarted, and consequently the next legal packet

3.4. Streaming Content Modelling and the Inspection Scheme 23

may be rejected for falling out of the acceptable range set by the injected

packets.

• Use of Magic Numbers: Use of MAX DROPOUT and MAX MISORDER

is a trade-off between fault-tolerance and effectiveness of sequence validation.

Administrators may have difficulties in selecting appropriate values of such

numbers as their effectiveness is connection dependent. For instance, by as-

suming a maximum misordering time of 2 seconds at 50 packets/second and a

maximum dropout of 1 minute, H. Schulzrinne el al [37] setMAX DROPOUT

and MAX MISORDER to 3000 and 100 respectively. That being said, any

injected packet with a random sequence number has about 4.7% (3100/65535)

success rate. We can see that although setting a maximum dropout of 1 minute

allows a certain degree of fault-tolerance, it also increases the success rate of

random packet injection to a non-trivial level.

3.4 Streaming Content Modelling and the Inspec-

tion Scheme

In this Section, we provide an inspection scheme against vulnerabilities presented

above. Our inspection scheme is based on modelling the arrival process of streaming

content. Packet arrival process in the past was often assumed to be Poisson process

because such process has attractive theoretical properties [110]. However, some

recent research has pointed out failures of Poisson Process in modelling packet arrival

process of both wide-area and local-area network traffic [82, 33, 34, 77, 112]. Hence,

we have not assumed arrival process of RTP-based streaming traffic to be Poisson

process. Our inspection scheme uses the Central Limit Theorem [47], which does

not require that the population follow a particular statistical distribution.

3.4.1 Arrival Process Modelling of Streaming Content

A streaming session essentially delivers a large number of packets of media con-

tent from a server to a receiver. Packets arrive sequentially at the receiver with

non-overlapping time intervals. Let P denote the set of all packets in a particular

streaming sequence, and pi denote the ith packet that arrives in sequence, then P

can be represented by an ordered set of sequential packets {p0, p1, . . . , pn}, where

3.4. Streaming Content Modelling and the Inspection Scheme 24

pi+1 arrives after pi. Each packet pi essentially consists of a 4-tuple: {seq, time,
ordered, rate}, meanings of which are explain in the following.

p.seq denotes the sequence number, and p.time denotes the arrival time (wall

clock time) of a packet p. p is accepted if p.seq falls in the acceptable range at

p.time.

Packets may arrive out of order. We represent whether a packet p arrives out of

order with p.ordered, which is formally defined as follows,

p.ordered =


false, if p.seq < MAX SEQ

true, if p.seq > MAX SEQ

null, if p.seq = MAX SEQ

where MAX SEQ denotes the maximum valid sequence number previously re-

ceived. In practice, sequence numbers can wrap around. Hence, when comparing

p.seq and MAX SEQ, we may need to add a multiple of 65536 to p.seq. Unless

otherwise stated, we will refer to p.seq as p.seq+k∗65535 in the following discussion,

where k denotes the number of times that a sequence has wrapped around.

p.rate denotes a packet p’s arrival rate which is defined as the ratio between

sequence number increment and arrival time difference from the last ordered packet.

Formally, assume we have a sequence of packets P = {p0, p1, . . . , pn}, then ∀pi ∈ P
where i > 0, we define the arrival rate of a packet pi as follows,

pi.rate =



pi.seq−pj .seq
pi.time−pj .time , where pj.seq = MAX SEQ (pi.ordered = true)

pi.seq−pj .seq
pi.time−pj .time , where ∀k, 0 ≤ k ≤ i− 1, and

0 < pi.seq − pj.seq < pi.seq − pk.seq,
that is, pj.seq is nearest to pi.seq in any sequence

numbers less than pi.seq

(pi.ordered = false)

Confining packet arrival rate to a reasonable range is essential to filtering out

injected malicious traffic from a legal stream. This prohibits an attacker to increase

the chance of success by sending a stream whose sequence numbers increase faster

than those of the legal stream, as we discussed in section 3.3.

Due to characteristics of streaming content, the following restrictions apply to

P :

3.4. Streaming Content Modelling and the Inspection Scheme 25

• ∀i, j, if i 6= j, then pi.seq 6= pj.seq. This is because streaming applications do

not resend lost packets.

• ∀i, j, if i > j, then pi.time > pj.time

• ∀i, if pi.ordered = true, then ∀j where 0 ≤ j < i, pj.seq < pi.seq

• ∀i, if pi.ordered = false, then ∃j where 0 ≤ j < i, pj.seq > pi.seq

• ∀i, pi.rate > 0

3.4.2 Application of The Central Limit Theorem

Before the detailed discussion on our inspection scheme, we provide a review of the

relevant statistical background.

Assume we have a sample S = {s1, s2, . . . , sn} gathered from a population P ,

regardless of what statistical distribution P follows. Let S̄ and P̄ denote the average

of S and P respectively, and σP denote the standard deviation of P . The Central

Limit Theorem tells us that distribution of

S̄ − P̄
σP/
√
n

(3.1)

is increasingly well approximated by the normal distribution N(0, 1) as the sample

size, n, gets larger. Since we have the statistical table for this normal distribution,

we can figure out the probability that S̄−P̄
σP /
√
n

lies in a particular interval (a, b) using

the equation

lim
n→∞

[a ≤ S̄ − P̄
σP/
√
n
≤ b] = α (3.2)

where α =
∫ b
a

1√
2π
e−

u2

2 du. This means that, with the specified probability α, we

believe that

a ≤ S̄ − P̄
σP/
√
n
≤ b (3.3)

which can be transformed to

S̄ − b ∗ σP√
n
≤ P̄ ≤ S̄ − a ∗ σP√

n
(3.4)

This enables us to estimate the range of P̄ based on the value of S̄ with a certain

confidence level α. The meaning of α can be explained intuitively as follows: if,

for example, we set α = 0.95 = 95%, then the possibility that any S̄ ′ lies in the

estimated interval of P̄ is 95% on average.

3.4. Streaming Content Modelling and the Inspection Scheme 26

3.4.3 Inspection Scheme

Typically, packetised streaming content arrives at a relatively constant rate. Change

or fluctuation of arrival rate usually takes place gradually over a non-trivial period

of time [76]. Even though there exists on-demand media encoding techniques such

as Variable Bitrate (VBR), they are more applicable to the application layer than

the transport layer. Moreover, there exist smoothing techniques which can smooth

and reduce imposed burstiness [86].

For this reason, we can assume that, in a particular streaming session, arrival

rates of successive packets follow the same distribution as preceding packets. An

empirical justification of this assumption was provided by media traffic captured

using mmdump [44]. By the Central Limit Theorem, we can estimate the interval in

which arrival rates of successive packets will lie based on arrival rates of preceding

packets. Assuming that we have a sample of legal packets P = {p0, p1, . . . , pn}
collected at the beginning of a streaming session, we are then able to estimate the

acceptable range of arrival rate for packets in this stream using equation (3.4), where

a and b are specified by equation (3.2) given a certain confidence level α. Successive

packets are accepted if their arrival rates lie in the corresponding estimated interval,

or otherwise dropped.

The algorithm that enforces our inspection scheme is presented in algorithm

1. Because of the fact that arrival rate may change gradually in the long run, we

estimate the acceptable interval of arrival rate for packet pn+1 from the arrival rates

of the most recent n packets preceding pn+1.

Validating RTP-based streaming packets on the basis of their arrival rates has

the following advantages over the validation scheme based on sequence numbers [37]:

• It is more difficult to forge a packet’s arrival rate than its sequence number.

Unlike real fields such as IP addresses, port numbers and sequence numbers,

packet arrival rates are dynamically computed using non-static sequence num-

bers and packet arrival times. To successfully inject a packet, an attacker

must be able to choose a suitable sequence number and launch the injection

at the right time for the selected sequence number. More subtly, even though

an attacker may be able to launch an injection at a precisely specified time,

he still has difficulties in foreseeing the arrival time which is governed by the

Round Trip Time (RTT) between the receiver and himself.

3.4. Streaming Content Modelling and the Inspection Scheme 27

Algorithm 1: Validate(p0 − pn, pn+1)

/* The function infers the validity of a packet pn+1 based on n
preceding packets p0− pn that have been assumed or verified as

valid. */

/* pn+1: the packet to be validated. */

/* p0, . . . , pn: n+ 1 packets that precede pn+1 and have been

assumed or verified as valid */

/* r1, . . . , rn+1: arrival rates of packet p1, . . . , pn+1 */

begin

/* the confidence level associated with the estimation */

const CONFIDENCE LEV EL;

/* set up sample parameters */

for l = 1 to n+ 1 do
rl = pl.rate

set r̄ =
∑n

l=1 rl
n

set σr =
√∑n

l=1(rl−r̄)2
n−1

set rmax = r̄ + CONFIDENCE LEV EL ∗ σr√
n

set rmax = r̄ - CONFIDENCE LEV EL ∗ σr√
n

/* set up parameters of the validated packet */

set r̄′ =
∑n

l=1 rl
n+1

if rmin ≤ r̄′ and r̄′ ≤ rmax then
accept pn+1 ;

else
drop pn+1 ;

• Administrators are relieved from the task of selecting magic numbers such as

MAX DROPOUT and MAX MISORDER. This is a difficult task as the

effectiveness of MAX DROPOUT and MAX MISORDER is connection-

dependent. For example, smallerMAX DROPOUT andMAX MISORDER

would be expected in a stable connection. In our scheme, we just need to se-

lect the confidence level, the value of which determines the effectiveness of the

inspection scheme. This is achieved by the underlying statistical model.

• Packet arrival rate is a relatively stable measurement. Packets arriving after a

network disruption period, regardless of how long it is, are expected to present

3.5. Experiments and Results 28

arrival rates similar with previously received packets, and be accepted. Hence,

fault-tolerance ability is increased without trading off effectiveness, as opposed

to the use of MAX DROPOUT and MAX MISORDER which represents

a trade-off between fault-tolerance and effectiveness.

3.5 Experiments and Results

3.5.1 Experimental Setup

To send and receive RTP-based streaming content, we employed the Java Media

Framework (JMF) [103] which enables audio, video and other time-based media to

be added to applications built on Java technology.

For packet injection, we employed Nemesis [45] which is a command-line network

packet crafting and injection utility. We modified its source code and enabled it to

craft RTP packets with some configurable RTP parameters as follows,

• Sequence Hop (-h): Sequence hop between a pair of crafted RTP packets. For

example, we can send a sequence of crafted packets with sequence number

{1, 2, 3, ...}, or {100, 200, 300, ...}, where h = 1 or h = 100 respectively.

• Injection Interval (-i): The interval between which two RTP packets are crafted

and injected, measured in milliseconds.

• Packet Count (-c): Number of crafted packets to be injected.

Setup of our experiments is depicted in Figure 3.1, where arrival rates of crafted

RTP packets vary in the following 3 categories,

• Fast: Sending crafted RTP packets without specifying an injection interval,

which means no substantial interval between crafting and sending two packets.

Arrival rate of an injected sequence is around hundreds of thousands of packets

per second.

• Medium: Sending crafted RTP packets with a substantial interval as specified

by the “-i” parameter. We are then able to inject a sequence of packets with

an arrival rate similar to the legal stream, typically around 30-60 packets per

second, i.e. i ≈ 16-33.

3.5. Experiments and Results 29

• Slow: Sending only one crafted RTP packet each time when Nemesis is in-

voked. Number of injected packets in this case is governed by a for-loop script

which repeatedly creates a new process to invoke Nemesis. The “-c” parameter

(packet count) is implicitly set to be 1, and need not be specified. Typically,

arrival rate is around 5 packets per second, as process creation and invocation

takes quite a bit time.

3.5.2 Result on Packet Injection

We send a clip of music using JMF representing the legal sequence, and inject using

Nemesis a clip of human conversation representing the illegal sequence. The illegal

sequence is a live dump of the clip being replayed normally. Nemesis is used to read

packets from the live dump and inject the packets by controlled parameter described

earlier in the section.

When we use fast injection with sequence hop (the “-h” parameter) 1, we are

always able to hijack the legal session and replace its content with the selected

conversation. This is caused by the restarting mechanism as we analysed in section

3.3. As we can see from Figure 3.1, any two consecutive crafted packets that arrive

between a pair of legal packets can take over the streaming session and “push away”

the acceptable range of sequence numbers so that packets belonging to the legal

stream are not accepted.

When we use slow or medium injection with a large sequence hop (e.g. 500),

we can inject some noise being voice fragment into a legal stream, as sequence

numbers of the injected stream travel faster and can “catch up” the acceptable

range. However, we have not been able to hijack an entire session. Although an

injected packet that accidently falls in the acceptable range of sequence numbers can

push it away, any two consecutive legal packets that arrive between a pair of injected

packets can take over the streaming session and “pull back” the acceptable range of

sequence numbers so that packets belonging to the injected stream are dropped. On

the contrary, two injected packets that arrive consecutively at the receiver cannot

“pull back” the acceptable range since their sequence numbers are not consecutive.

3.5. Experiments and Results 30

Figure 3.1: Experimental Setup

3.5. Experiments and Results 31

3.5.3 Effectiveness of The Inspection Scheme

With a statistical approach, it is always possible that legal packets are dropped or

injected packets are accepted. We refer to these cases as false-positive and false-

negative respectively. A low false-positive rate guarantees system usability, while a

low false-negative rate assures legitimacy of received streaming content. To measure

effectiveness of our inspection scheme by false-positive and false-negative rates, we

performed an offline analysis on RTP-based streaming content from various sources,

including web radio stations (lexp web radio1 and webtalk radio2), Microsoft MSN

live conversation, and JMF -generated streaming content.

Result On Passing Through Legal Streaming Content

We first performed an experiment on normal streaming content, i.e. streaming

content that is delivered without injection. We have included experiments during

which the network cable was disconnected for 10 to 61 seconds to simulate network

disruption. Similarly, we have included silent periods in MSN conversations to

simulate burstiness in VoIP.

The experimental result is summarised in Table 3.1.

lexp radio webtalk radio JMF MSN

bit rate 128kbps 28kbps not specified not specified
number of packets 47135 36471 54023 55738
number of bytes 64.9M 28.9M 11.9M 42.8M

duration 4021.1s 6819.2s 1832.6s 1474.6s
false-positive 0.004% 0.0% 0.06% 0.2%
false-negative N/A N/A N/A N/A

Table 3.1: Experimental result under confidence level α = 0.98

Figure 3.2 demonstrates variation of packet arrival rates in the above experi-

ments, as well as that of the estimated acceptable range. It illustrates that a very

small portion of legal packets are dropped because of dramatic fluctuations in their

arrival rates. Apart from that, arrival rates of most packets belonging to a particular

stream do not fluctuate greatly.

1www.lexp.org
2http://www.webtalkradio.com/

3.5. Experiments and Results 32

Figure 3.2: Variation of Packet Arrival Rates: Legal Traffic

3.5. Experiments and Results 33

Result On Filtering Out Injected Streaming Content

Our experimental environment is separated from the outside world by a firewall

not under our control that prohibits incoming UDP traffic, so that we have not

had the opportunity to test the inspection scheme with injection against streaming

content received from a commercial streaming server on Internet, such as the lexp or

webtalk server. Instead, we performed experiments on filtering out injected packets

with streaming content generated by JMF which is open source and free to use. The

legal dataset used in the experiment is part of the JMF dataset as used in Table

3.1. Only part of the dataset is used because the injected clip is shorter than the

legal clip.

We performed experiments for all 3 categories of packet injection methods as

discussed in section 3.5.1. The results are summarised in Table 3.2 to Table 3.4.

Note that the situation that h=1 does not apply to Table 3.3 and Table 3.4 which

represent slow and medium speed injection. For all types of injection, big hops

(100 and 500 respectively) are selected to ensure injected sequence have a even

distribution into the legal stream sequence where each packet hops by 1. The overall

packet rates range from 40 to 70 packets per second which is larger than normal

streaming rates ranging from 30 to 60 packets per second because injected packets

are mixed in.

fast injection -c=10000, -h=1 -c=10000, -h=100

number of packets 22761 24746
number of bytes 17.0M 18.7M

duration 329.2s 405.7s
false-positive 0.067% 0.17%
false-negative 0.0% 0.0%

Table 3.2: Experimental results with confidence level α = 0.98 for fast injection

medium speed injection -c=1000, -h=500

number of packets 28085
number of bytes 20.9M

duration 461.1s
false-positive 0.033%
false-negative 0.0%

Table 3.3: Experimental results with confidence level α = 0.98 for medium speed
injection. Interestingly, this is the case when crafted traffic is injected at a similar
rate to that of legal traffic.

3.6. Conclusion 34

slow injection -c=10000, -h=100

number of packets 29986
number of bytes 22.9M

duration 738.0s
false-positive 0.012%
false-negative 0.0%

Table 3.4: Experimental results with confidence level α = 0.98 for slow injection

Figure 3.3 demonstrates variation of packet arrival rates of legal and injected

packets. We can see that the arrival rates of injected packets significantly deviate

from those of legal packets.

The experiment shows a remarkable result against packet injection and stream-

ing session hijacking. The results of all three configurations (slow, medium and

fast injections) consistently demonstrate 0% false-negative rate indicating that all

injected packets are successfully identified. That is, variation in attack traffic rate

(controlled by the parameter h) has no adverse impact on the proposed filtering

scheme, the effectiveness of which is based on the fact that sequence numbers of

injected packets have to increase significantly faster than those of legal packets in

order to “catch up” a legal stream.

The results of all three configurations also consistently demonstrate a low false-

positive rate. That is, in all configurations a small portion of legal packets are mis-

identified as injected traffic This is because by accident arrival rate of these packets

significantly deviated from that of other packets in the legal stream. However due

to the redundant nature of streaming content, dropping a small portion of packets

is usually tolerable.

3.6 Conclusion

This Chapter first provides an in-depth analysis of the typical protocol stack for

delivering streaming content, followed by discussion on deficiencies in conventional

firewalls that lead to incapability of securing streaming content. After that, an in-

spection technique that makes use of sequence numbers at the transport layer of

streaming applications is presented. We believe that, when armed with this tech-

nique, conventional stateful firewalls will be able to handle streaming content more

effectively and securely. In the end, this Chapter presents substantial amount of

experiments carried out to demonstrate the effectiveness of the proposed technique.

3.6. Conclusion 35

Figure 3.3: Variation of Packet Arrival Rates: Legal and Injected Traffic

3.6. Conclusion 36

A piece of practical follow-on would be to investigate how variation of the controlled

parameters affect the effectiveness of the inspection scheme. More experiments are

to be conducted with different parameters to allow analysis on connection between

controlled parameters and effective of the inspection scheme.

Blocking malicious content off a secured border is only one aspect of firewall

functionalities. The other aspect is to prevent unwanted traffic type from leaving

the border. This may be due to legal, privacy, or performance issues. Capability

of conventional firewalls in this aspect is also challenged by emerging streaming

content technologies. In the next Chapter, we will look into this area and present

our contribution.

Chapter 4

Preventing Streaming Traffic From
Flowing Out Of A Secured Network

In addition to blocking unwanted content from entering secured network, firewalls

are also often used to prevent certain types of traffic from leaving a network. There

may be performance, legal or privacy issues that traffic must be confined within a

private network. This Chapter looks into challenges that conventional firewalls are

facing to fulfil this requirement, with focus on capability to filter outbound traffic

generated by emerging streaming applications. In particular, we look in-depth into

Skype, an Internet telephony application that has gained its reputation for capability

to tunnel through firewalls. We examine the technical details that Skype relies on to

bypass firewall inspection, and provide a counter-measure for firewalls to effectively

detect Skype traffic.

4.1 Introduction

Recent years have seen increasing application and deployment of Voice over IP

(VoIP) - the transmission of voice over traditional packet-switched IP networks.

Compared to conventional Public Switched Telephone Network (PSTN) service,

VoIP offers lower cost, greater flexibility and easier integration with value-added

services such as call monitoring and auditing if traffic is not encrypted.

Among VoIP applications, Skype has gained a reputation for ease of use, su-

perior sound quality and secure communication. Skype offers seamless penetration

through Network Address Translations (NAT) devices and firewalls. It also provides

better voice quality than other major free-to-use VoIP applications such as I-Seek-

You (ICQ), Yahoo AIM and Microsoft MSN [8]. Moreover, Skype voice calls are

encrypted “end-to-end” to offer protection against call tapping. Finally, being built

on a decentralised overlaying peer-to-peer network allows Skype calls to be related

37

4.1. Introduction 38

through an intermediate node in the situation when both end nodes are behinds

NAT devices or firewalls which prevent direct connections. Skype hence claims to

offer a higher call completion rate than any other VoIP applications [8].

However, there may be circumstances where the ability of Skype to penetrate

firewalls or encrypt calls is not desirable. For example, phone calls are of a personal

nature but not business-related. In this case it may be desired to prevent if possible

this abuse of network access. Also, phone calls to certain organisations such as

government agencies or financial institutions may need to be recorded for training or

tracking purposes, and therefore must not be encrypted. Additionally, from personal

computer users’ point of view, Skype running on a personal computer may route

calls for other Skype users silently in the background. In all the above situations,

the capability of Skype to intelligently tunnel through firewall and to encrypt calls

increases the difficulty to enforce access policy in a managed network. The ability to

detect and/or block Skype traffic is therefore highly desirable in order to simplified

the task of network management.

Unfortunately, conventional firewalls are not suitable for the tasks of detecting

or blocking Skype traffic. Conventional network layer firewalls are designed for tra-

ditional Internet applications, most of which run on pre-defined, well-known ports.

The ability to tunnel through firewalls using random ports increases the difficulty

of detecting or blocking Skype traffic at the network layer without blocking some

other required applications. For example, blocking ports greater than 1024 to in-

coming data packets in order to block incoming Skype calls also throttles some other

streaming protocols [9] [71] that may be required by an organisation. Application

layer firewalls do not offer much help either as Skype traffic is encrypted. The above

factors have combined to make detecting or blocking Skype a difficult task for fire-

walls or intrusion detection systems. To the best of our knowledge, there has not

been a systematic approach described in an open literature to detect Skype traffic

from other use of streaming content such as real-audio or gaming traffic.

Our research focuses on detecting the use of Skype for phone call purposes in

a managed network. In other words, our objective is to identify end hosts that

participate in phone calls using Skype. We study both payload and non-payload

based schemes to identify Skype traffic. We start with an empirical, payload based

scheme relying on signatures collected from captured Skype call traces. Hosts are

considered to have participated in Skype calls if they generate traffic that contains

such signatures. After that, we looked into a non-payload based scheme which is

4.1. Introduction 39

based on realtime characteristics and connection pattern of Skype traffic. Realtime

characteristics that are used to determine if traffic is generated by Skype include

packet size pattern, byte rate pattern, and packet inter-arrival time pattern. Accu-

racy and effectiveness of the non-payload based scheme is evaluated by comparing

results from running the payload based approach against the same sample traces.

The experimental results reveal that, at least to a certain extent, the effort by Skype

to avoid content analysis using encryption and randomised ports can be overcome.

It is not always practical to be able to collect signatures from traffic traces.

There may be legal or ethical constraints on monitoring and analysing traffic dump.

Moreover, Skype is built on a proprietary protocol which has not been made pub-

licly available. Signatures of Skype traffic are only empirically derived from our

observations on traffic generated by a particular version of Skype. The signatures

may change and become more elusive as Skype evolves. These have combined to

make payload based identification a fragile detection scheme that is not resistant

against change of protocols and software upgrade. Our research therefore focuses on

the non-payload based scheme for Skype identification, and uses the payload based

scheme mainly to verify its non-payload based counterpart. Our results demonstrate

that the non-payload based identification scheme is more resistant to Skype version

upgrade than the payload based scheme.

Skype tends to use UDP for data transfer as much as it can [88]. However, there

are circumstances where Skype has to fall back to TCP. We leave this situation as

an open research subject.

4.1.1 Skype Overview

Skype is a proprietary but free peer-to-peer VoIP application developed by N.

Zennstre and J. Friis, the creators of KaZaA. It allows users to participate in voice

calls, send text messages and files to other users. Skype has the reputation for

working seamlessly across firewalls and NATs, and providing better voice quality

than Microsoft MSN and Yahoo AIM [88]. Skype provides data confidentiality us-

ing end-to-end 256-bit AES encryption. Symmetric AES keys are negotiated using

1024 bit RSA [101].

Before a Skype user can participate in phone calls with other Skype users, he or

she must first join the Skype peer-to-peer network. This process is referred to as the

login stage. It is during this process that Skype determines the type of NAT and

4.1. Introduction 40

firewall it is behind, authenticates its user name and password with the login server,

and advertises its presence to other peers and its buddies [88]. After login, users can

make calls to other Skype clients through call establishment stage. During this stage

a connection between caller and callee is created and a session key is generated if

one does not exist already [106]. Voice media is packetised and transferred between

participating peers after that. Baset et al. [88] observed that call establishment was

always signalled by TCP, while voice media was transferred over UDP as much as

possible. In the following discussions, we refer to traffic regarding login, connectivity

establishment, and call setup/teardown as signalling messages, and packetised voice

data as voice traffic.

Skype has attracted many users because of its advantages, such as seamless NATs

and firewalls traversal, superior voice quality, and higher call completion rate. One

year after Skype being launched, it had more than 9.5 million users, with more than

1.5 million connections per day and 500,000 people connected at any time [90].

4.1.2 Related work

Although interesting and related, Suh et al.’s detection heuristic cannot be applied in

the situation discussed in this Chapter [52]. On one hand, Skype flows entering and

leaving the network in which the end-host participating in a Skype phone call resides

have the same destination (IP address) outside the network. This is different to the

situation with Skype-relayed flows. Moreover, patterns of packet sizes and bit rates

of the incoming and outgoing flow may be considerably dissimilar due to transmission

delays on Internet (see Section 4.3). These issues combined to invalidate Suh et al.’s

detection heuristic. On the other hand, more metrics are available in our situation

for identification of Skype traffic. For example, the peer-to-peer connection pattern

of Skype can be used to distinguish its traffic from non peer-to-peer softwares and

other VoIP applications which are mostly based on standard protocols such as SIP

or H.323. In addition, as a software providing realtime communication, Skype emits

packets at a considerably smaller time interval than most other applications. This

pattern is typically expected to be well preserved in local network, and can be used to

distinguish Skype from other applications, including most peer-to-peer file sharing

applications, which are not operating under strict time constraints. Applications

that can be distinguished from Skype by these metrics, which are not available

to relaying nodes, represent a significant portion of false-positives in Suh et al.’s

4.2. Payload Based Detection 41

heuristic in detecting Skype-relayed traffic.

Branch et al. provided a machine learning technology to identify Skype traffic

based on learning from realtime Skype traffic characteristics, including packet length

and packet inter-arrival time [76]. However the peer-to-peer nature of Skype has not

been considered. As a result, possibilities are that other streaming application may

demonstrate similar realtime characteristics with Skype and are incorrectly identified

as Skype traffic.

In the following of this Chapter, Section 4.2 introduces our payload based de-

tection techniques. Section 4.3 analyses the realtime characteristics of Skype voice

traffic. Section 4.4 presents our non-payload based detection techniques of Skype

traffic, and Section 4.5 provides experimental results. A conclusion is provided in

Section 4.6. Part of this Chapter appeared in [55].

4.2 Payload Based Detection

We now describe our Skype traffic detection techniques. This section focuses on

payload based techniques, and the section following presents non-payload based

techniques. In the rest of this Chapter, all observations and experiments are per-

formed for Skype version 1.3, unless otherwise stated.

Our payload-based identification of Skype traffic is based on characteristic sig-

natures, i.e. bit strings, observed in packet payload, which potentially represent

Skype signalling messages such as login or call establishment traffic. As Skype uses

a proprietary protocol, we empirically derived a set of signatures by observing TCP

and UDP traffic to and from Skype nodes. Note that because voice payloads are en-

crypted, the signatures are derived only from signalling payloads. Traffic is captured

and recorded using Ethereal [25] on end-point computers.

We define two signature types — simple signatures and composite signatures.

A simple signature is certain characteristics that a single packet presents, and a

composite signature represents characteristics that are presented collectively by a

number of consecutive packets. We empirically derived a set of simple and com-

posite signatures by observing traffic generated by Skype. We repetitively carry

out independent experiments and observations over months by varying a number

of factors, including caller ID, callee ID, caller IP type, callee IP type, date and

time and duration of call, to ensure the effectiveness and stability of our signature

4.2. Payload Based Detection 42

set. Note that because of limitation by payload based detection scheme stated ear-

lier, it is mainly developed as a verification approach against the non-payload based

detection scheme, which is the focus of this research.

4.2.1 Notations and Preliminaries

Let [a,b] denote the set of numbers x such that a ≤ x ≤ b. Let SrcIPAd, DestIPAd,

SrcPort, DestPort, Protocol, Payload, Dir denote source IP address, destination

IP address, source port number, destination port number, transport protocol, packet

payload, and direction of the packet respectively, where SrcIPAd, DestIPAd ∈
[0, 232− 1], SrcPort, DestPort ∈ [1, 216− 1], Protocol ∈ {TCP,UDP}, Dir ∈ {in,

out}, and Payload represents a byte sequence of variable length. Note that protocol

can be TCP because signalling payloads are also considered. We use |Payload| to

denote the length of byte sequence represented by Payload. We also use Payload[i−
j], where i, j ∈ N , to denote the sub-sequence that begins with the ith and ends

with the jth byte of Payload.

We assume that a packet is convertible to the following 7-tuple: {SrcIPAd,

DestIPAd, SrcPort, DestPort, Protocol, Payload, Dir}. Packets can then be clas-

sified into flows, defined by the 5-tuple {SrcIPAd, DestIPAd, SrcPort, DestPort,

Protocol}. A packet p belongs to a flow f if they have the same SrcIPAd, DestIPAd,

SrcPort, DestPort, and Protocol. In the following, we use p.X or f.X to denote a

particular field X that belongs to packet p or flow f . To simplify our notation, we

also use p[i− j] to denote p.Payload[i− j].

4.2.2 Simple Signatures

For a packet p = {SrcIPAd, DestIPAd, SrcPort, DestPort, Protocol, Payload,

Dir}, let ByteV al denote a sub-sequence of Payload, i.e. ∃i, j ∈ N , such that

ByteV al = Payload[i − j], and we use Idx to represent the pair {i, j}. Then we

define a simple signature as a 5-tuple {ByteV al, Idx, |Payload|, Protocol, Dir}.
A signature does not have a timeout component as only the start of Skype flow

is of our concern. In any case, The payload based scheme is only used to verify

effectiveness of non-payload based scheme.

For example, assume outgoing UDP packets of length 18 having the third byte

0x02 are observed frequently, then the simple signature for it can be denoted as

{0x02, {2, 2}, 18, UDP, out}.

4.2. Payload Based Detection 43

Table 4.1 summarises the repetitively occurring simple signatures that we iden-

tified during the observation period on Skype traffic. It is worth noting that oc-

currences of these signature are independent of firewall and NAT configurations, as

Skype always starts with the same signalling messages in any attempt to connect to

the outside world.

Number ByteV al Idx |Payload| Protocol Dir

#1 0x02 {2, 2} 18 UDP out
#2 0x01 {3, 3} 23 UDP out
#3 SrcIPAd {3, 6} 11 UDP in

Table 4.1: Simple Signatures

4.2.3 Composite Signatures

The rationale behind composite signatures is that, although encrypted by a propri-

etary protocol, Skype traffic still presents some characteristics of its protocol. For

example, a query/response pair may contain the same cipher text that is encrypted

from a common value shared by the query/response messages.

Let f denote a flow which consists of packet sequence {p1, p2, . . ., pN} in flow

f . Let SigLength denote the number of packets in f , i.e. N . Let PktLengths

denote a sequence of natural numbers representing payload length of each packet,

i.e. {|p1.Payload|, |p2.Payload|, . . ., |pN .Payload|}. Let BoolCondition denote a

boolean condition pa[ia − ja] <|=|> pb[ib − jb], where a, b ∈ [1, N], ia, ja ∈ [1,

|pa.Payload|], and ib, jb ∈ [1, |pb.Payload|], meaning that the numeric value of byte

sequence consisted of the iath to jath byte of pa.Payload is greater than, equal to,

or less than that consisted of the ibth to jbth byte of pb.Payload. For example,

assume p1.Payload = 1d500250ed4f9528 and p2.Payload = 1d5007829528, then we

say p1[0 − 1] = p2[0 − 1], p1[2 − 3] < p2[2 − 3], and p1[6 − 7] = p2[4 − 5]. Let

Condition denote a set of boolean conditions, i.e. Condition = {BoolCondition1,

BoolCondition2, . . ., BoolConditionK}. We then define a composite signature as a

5-tuple {SigLength, PktLengths, Condition, Protocol, Dir}.
For example, assume that flows containing the sequence of consecutive packets

as depicted in Figure 4.1 has been observed frequently,

Then the signature of the above pattern can be represented by a composite

signature as {3, {18, 11, 23}, {p1[0 − 1] = p2[0 − 1] = p3[0 − 1], p1[6 − 7] =

p2[4− 5] < p3[9− 10]}, UDP, {out, in, out}}.

4.3. Characterisation of Skype Traffic 44

Figure 4.1: An example of composite signature

Table 4.2 summarises the repetitively occurring simple signatures that we iden-

tified during the observation period on Skype traffic. Note that the potential com-

plexity of the process to generate the complete set of composite signatures over a

large flow of packets is astronomic. It is not the intention of this research to generate

the complete set of composite signatures. Only a small set of composite signatures

has been empirically derived and is used mainly to verify the non-payload based

detection scheme.

We have no intention of doing so and instead only empirically derived a small

set of composite signature as we use payload based detection scheme only to verify

the non-payload based detection scheme.

SigLength PktLengths Condition Protocol Dir

3 {18, 11, 23}

p1[2] = p4[2]
= 0x02,

p1[0− 1] = p2[0− 1]
= p3[0− 1],

p2[8− 10] = p3[5− 7]

UDP {out, in, out, in}

2 {18, 26} p1[2] = p2[2] = 0x02 UDP {out, in}

Table 4.2: Composite Signatures

4.3 Characterisation of Skype Traffic

We now introduce a systematic approach to identifying Skype voice traffic at the

transport layer, i.e. based on the IP and TCP/UDP header and packet arrival times,

without relying on packet payload.

As an Internet telephony application, Skype traffic demonstrates realtime stream-

ing characteristics, i.e. smaller packet sizes and short packet inter-arrival time. On

the other hand, being a peer-to-peer software, Skype presents almost identical con-

nection patterns to other peers as do other P2P applications. In the following,

we characterise the behavior of Skype traffic from these two aspects, i.e. realtime

characteristics and connection patterns.

4.3. Characterisation of Skype Traffic 45

4.3.1 Realtime Characteristics

Real-time applications need to emit packets at a relatively small interval for the

simulation of continuous and non-delaying effect. This is not a major concern for

traditional non-realtime applications that are not operating under strict time con-

straints. As a result, real-time applications tend to produce smaller packets than

traditional client-server applications such as HTTP or FTP. Additionally, for VoIP

applications that transfer real-time traffic, UDP is usually preferred over TCP for

its timely delivery and smaller header overhead.

We study the realtime characteristics of Skype voice traffic from 3 aspects, i.e.

packet size, packet inter-arrival time, and bandwidth burstiness. We study these

realtime characteristics by analysing traffic captured on end-point hosts running

Skype. Skype traffic is generated with a number of independent and varying factors,

including caller ID, callee ID, caller IP type, callee IP type, audio type, date and

time, and duration of call. Experiments are repeated over months to ensure that

the realtime characteristics observed are consistent and stable.

We illustrate the realtime characteristics of Skype by an example where calls

are established between a host in a research lab and a host connected with shared

residential ADSL and behind NAT. Call durations vary from 10 seconds to 30 min-

utes. In respect to the traffic capture point which is the host at the research lab in

this example, voice traffic that is sent to/from the host behind residential ADSL is

outbound/inbound traffic respectively.

Packet Size Characteristics

Figure 4.2 depicts distribution of packet sizes when call durations vary in 10 seconds,

30 seconds, 1 minute, 3 minutes, 10 minutes and 30 minutes. It can be seen that

packet size distributions are self-similar over various call durations and time-scale

independent. That being said, packet size distribution is consistent over varying

durations, and mainly centers around 120 bytes. Packets that are longer than 50

bytes and shorter than 150 bytes constitute the major portion. We observed that

packets falling outside this range are mainly captured at the call establishment stage,

and thus believe that they are signalling messages instead of voice traffic.

Figure 4.3 depicts the same scenario with cumulative density function (CDF). It

can be seen that cumulative density of packets with packet size around [50, 150] bytes

(corresponding to the major portion in Figure 4.2) increases as calls last longer. This

4.3. Characterisation of Skype Traffic 46

Figure 4.2: Packet Size Distribution Diagram

4.3. Characterisation of Skype Traffic 47

Figure 4.3: Packet Size Cumulative Density Function

justifies our hypothesis that packets longer than 150 bytes and shorter than 50 bytes

are signalling messages and are emitted mainly during call establishment stage. It

can also be observed that the inbound traffic contains many packets between 20 to

30 bytes. We attribute this to signalling messages that are related to NAT, as they

are only observed when the host that we communicate with is behind NAT. CDFs

in Figure 4.3 also demonstrates strong self-similarity over varying time scales — in

all sub-diagrams, the curve between x-coordinate [50, 150] is highly similar to the

second quadrant portion of the normal distribution curve with mean value 0, and

its slope (dy
dx

) peaks at around x=120.

Both Figure 4.2 and 4.3 show that Skype sends considerably smaller packets than

the typical Internet traffic, which is dominated by specific packet sizes and average

out at around 400 bytes [68] [15].

Packet Inter-Arrival Characteristics

Figure 4.4 depicts packet inter-arrival time cumulative density function (CDF) of

Skype voice traffic. It can be seen that most outbound packets, i.e. packets sent to

the host behind residential ADSL, are sent in the range between 0.02 to 0.04 second.

In addition, the percentage of packets arriving within 0.04 second increases as call

4.3. Characterisation of Skype Traffic 48

Figure 4.4: Packet Inter-Arrival Time Cumulative Density Function

duration becomes longer. We believe that packets with inter-arrival time greater

than 0.04 second are signalling messages. For inbound traffic, packets arrive fairly

uniformly over a range of 0.01 to 0.1 second. We attribute this spread of times

to the delay imposed by the shared residential ADSL connection with very limited

upload capability (128Kbps). To verify our hypothesis, we ran Ethereal on the host

behind the residential ADSL, and the result is depicted in Figure 4.5. It can be

seen that the discrepancy in packet inter-arrival time distribution between inbound

and outbound traffic is significantly smaller. Similar to packet size distributions as

depicted in Figures 4.2 and 4.3, both inbound and outbound traffic demonstrates

similarity over varying call durations.

Bandwidth Burstiness Characteristics

We measure bandwidth burstiness by not only byte rate but also packet rate, i.e. the

number of packets sent per time unit. Figure 4.6 and 4.7 depict byte rate and packet

rate consumed by Skype voice traffic in the start-up 30 seconds and over a 30-minute

period, respectively. It can be seen that, for outbound traffic, both packet rate and

byte rate are fairly constant after a rise-up stage in the first few seconds. Packet rates

stayed at 33 or 34 packets per second, and byte rate slightly fluctuated between 3

4.3. Characterisation of Skype Traffic 49

Figure 4.5: Packet Inter-Arrival Time Cumulative Density Function Captured at
Residential ADSL

to 5 kilobytes per second. This observation is also supported by the empirical study

at a larger scale in [91]. On the other hand, inbound traffic demonstrates strong

fluctuation. We again attribute this fluctuation to delay and packet loss imposed by

the shared residential ADSL connection which has very limited upload capability.

To verify this hypothesis, we ran Ethereal on the host behind the residential ADSL,

and observed that packet rate and byte rate are fairly constant when monitored at

this point. Figure 4.8 presents the packet rate and byte rate demonstrated by traffic

captured on the host behind the shared residential ADSL connection.

4.3.2 Connection patterns

Peer-to-peer traffic demonstrates certain connection characteristics. Karagiannis et

al. [108] proposed two non-payload based heuristics, namely “TCP/UDP IP pairs”

and “{IP, port} pairs”, to identify peer-to-peer traffic from other traffic. However, it

is worth noting that they can only distinguish peer-to-peer traffic from other types

of traffic, but cannot distinguish peer-to-peer traffic generated by one particular

application from another.

“TCP/UDP IP pairs” identifies source-destination IP pairs that operate TCP

and UDP on the same port. Unfortunately, we have observed frequent departure

from this pattern in our experiments, i.e. Skype uses only one protocol for each

source-destination IP pair. Hence, we are not going to use this pattern in identifying

Skype voice traffic.

“{IP, port} pair” utilises the fact that for the advertised {IP, port} pair of host

4.3. Characterisation of Skype Traffic 50

Figure 4.6: Bandwidth Burstiness of the start-up 30 seconds

Figure 4.7: Bandwidth Burstiness of 30 minutes

4.4. Non-payload Based Detection Technique 51

Figure 4.8: Bandwidth Burstiness Captured Behind Shared ADSL

A, the number of distinct IPs connected to it will be equal to the number of distinct

ports used to connect to it. As do most peer-to-peer applications, the advertised

port used by Skype can be configured by users. Change to the port will be applied

the next time Skype is started. In our experiments, we observed that this advertised

port is not only used as a destination port for incoming connection attempts, but

also as a source port for outbound voice traffic.

4.4 Non-payload Based Detection Technique

In this section we will introduce our non-payload based technique to identify Skype

voice traffic from other types of traffic. Our identification heuristic combines the

realtime characteristics of Skype voice traffic as discussed in Section 4.3 and the

“{IP, port} pair” heuristic. That being said, we consider a host has had Skype

conversation if a port is identified to be an advertised peer-to-peer port by the “{IP,

port} pair” heuristic, and traffic associated with this peer-to-peer advertised port

demonstrates realtime characteristics as discussed in section 4.3. We only consider

outbound traffic with respect to the monitoring point which is relatively close to the

point where outbound traffic is generated, as it can be seen from Figures 4.4, 4.6

and 4.7 that realtime characteristics of inbound traffic may not be well preserved

4.4. Non-payload Based Detection Technique 52

due to transmission delay on Internet.

4.4.1 Conventional client-server applications and other peer-

to-peer applications

Conventional client-server applications, such as HTTP and FTP, demonstrate sub-

stantially distinct characteristics from Skype voice traffic. They usually use pre-

defined, well-known source and/or destination port numbers; they exclusively rely

on TCP, and exhibit large packet sizes. We considered a flow was generated by

conventional client-server applications if its traffic conforms to such characteristics.

Many peer-to-peer applications are used for file and music sharing. In such

applications, while reducing transmission errors and header overhead is considered

important, timely delivery of data is usually trivial and not relevant. Hence, they

typically use TCP for actual data transfer but may use UDP for signalling. On the

other hand, Skype was designed from the beginning to deliver data in realtime, and

prefers the use of UDP for voice transmission as much as possible [88]. We hence

distinguish Skype from other conventional peer-to-peer applications.

4.4.2 Realtime applications

We now focus on other types of realtime UDP-based applications. In the top 25

UDP application categories seen on Internet [68], Real Audio [72] accounts for the

largest number of bytes among non-anonymous UDP applications. In addition to

being a realtime application, Real Audio also demonstrates certain characteristics

similar to peer-to-peer applications — it uses both TCP and UDP to transport data.

To distinguish Real Audio from Skype traffic, we develop two heuristics as follows

• Real Audio traffic is dominated by specific packet sizes [69].

• Real Audio traffic is unidirectional. Volumes of inbound and outbound traffic

are highly asymmetric.

Out of the top 25 UDP applications [68], 14 of them are Internet realtime strate-

gic games, such as Starcraft and Half Life. Karagiannis’s heuristic to identify gam-

ing traffic is based on the viewpoint that Internet based realtime strategic games

are inclined to employ packets dominated by specific packet sizes. This pattern is

expected by Internet based games as each player sends out multiple copies of its

4.4. Non-payload Based Detection Technique 53

current state to each other player [64] [2] [116]. However, games and gaming traf-

fic differ a lot from one another, and some may employ packets not dominated by

specific size. Due to different gaming types, packet sizes may vary in a wide range

which is hard to predict. We hence extend Karagiannis’s heuristic by taking into

consideration the periodicity of gaming traffic, i.e. frequencies by which each player

sends update of its status to other players. Our viewpoint is based on that gaming

traffic demonstrates this periodicity with bandwidth consumption fluctuation and

burstiness [116] [48]. On the other hand, packet rate of Skype traffic is relatively

constant as demonstrated in Figures 4.6, 4.7 and 4.8.

Besides Real Audio and gaming traffic, other VoIP applications such as Mi-

crosoft MSN or GnomeMeeting may also potentially demonstrate realtime charac-

teristics that are not distinguishable from Skype. However, they are mostly built on

standard-based protocols such as H.323 or SIP, and transfer voice traffic through a

dynamically negotiated port. As opposed to the advertised port that Skype uses to

transfer voice traffic with the chatting peer and to signal other peers simultaneously,

this negotiated port is dedicated to transferring voice traffic by the chatting peers of

a particular session. We can therefore distinguish Skype from other standard-based

VoIP applications.

4.4.3 Final Algorithm

We use x and y1, y2, y3 to denote, respectively, the {IP, Port} pair connection

pattern and the realtime characteristics that Skype presents as follows,

• x <IP, Port> pair heuristics.

• y1 Packet sizes are relatively small and the majority follows normal distribu-

tion.

• y2 Relatively constant packet and byte rate.

• y3 Packet inter-arrival time mainly resides in between [0.02, 0.04] second.

We use the matrix as shown in Table 4.3 to summarise distinct characteristics

of various applications. It can be seen that Skype can be distinguished from each

of other applications by at least one differentiating characteristic. Note that here

we assume the worst case for other VoIP applications, i.e. they present the same

realtime characteristics as do Skype.

4.4. Non-payload Based Detection Technique 54

Application x y1 y2 y3

Skype X X X X
Conventional Web Apps

Other P2P Apps X
Real Audio X

Online Games X X
Other VoIP Apps X X X

Table 4.3: characteristics matrix

Combining the techniques of all previous sections yields our final non-payload

based identification method for Skype voice traffic. Note that our algorithm is

designed for analysis of passive traffic traces, allowing multiple passes over the data

if necessary. Adapting our algorithm to detect and block Skype traffic dynamically

is part of our ongoing work. Our final algorithm is presented in Algorithm 5.

4.4.4 Discussions

Traffic classification techniques based on pattern recognition, including signature

based techniques, can be invalidated by applying variations to the distinctive pat-

terns. In particular, our non-payload based technique is built upon realtime char-

acteristics of Skype traffic such as packet size and bandwidth consumption char-

acteristics in addition to the peer-to-peer connection pattern, and hence can be

circumvented by applying changes and variations to such realtime characteristics.

For example, “junk bytes” can be added to Skype packets to change packet sizes.

This also changes the bandwidth consumed by Skype. However, Skype is designed

to deliver packets in realtime as much as possible. Although increase in packet

size or bandwidth consumption can circumvent our detection scheme, it could also

severely degrade call quality of Skype. On the other hand, unless voice compres-

sion techniques can be significantly improved in the near future, reducing packet

size is desirable but not quite practical. Moreover, downward compatibility must

be considered for any change made to a widely deployed application. This requires

significant efforts and takes a relatively long time. Therefore, realtime character-

istics presented by Skype as it is now is expected to remain at least in the near

future. We empirically justified our viewpoint by experimenting our non-payload

based technique, developed from Skype 1.3, with the latest Skype version 2.0 in

Section 4.5.2.

4.4. Non-payload Based Detection Technique 55

Algorithm 2: Nonpayload algorithm for Skype voice traffic identification

begin

/* constants definition */

const FT = All Flows ;

for each flow f in FT ;
do

if Use of <IP, Port> pair connection pattern then
if Packet sizes are relatively small and the majority follows normal
distribution then

Packet Size Heuristic = true
if Relatively constant packet and byte rate then

Packet Rate Heuristic = true
if Packet inter-arrival time mainly resides in between [0.02, 0.04]
second then

Inter Arrival Heuristic = true
if Packet Size Heuristic and Packet Rate Heuristic and
Inter Arrival Heuristic then

SkypeCall.insert(f) ;
else

OtherP2P.insert(f);

else
NoneP2P.insert(f);

4.5. Implementation and Experiments 56

4.5 Implementation and Experiments

We implemented the algorithm and techniques presented in previous sections in

Java. The experiments were performed on a Dell Optiplex GX280 with 1 GBytes of

RAM and a 2.8GHz processor running Windows XP Professional.

We evaluate our schemes from two perspectives — false-positive and false-negative.

False-positive evaluates accuracy of our schemes, i.e. likelihood that other non-

Skype traffic are misclassified as Skype traffic. False-negative indicates the extent

of misclassification where our schemes fail to identify Skype traffic.

4.5.1 False-Positive Evaluation

We first evaluate the false-positive, i.e. non-Skype traffic being identified as Skype

traffic, of both payload and non-payload based schemes. We obtained from CAIDA
1 two OC-48 traffic traces that were captured in early 2003. They offered us large

data sets that were expected to contain little or no Skype traffic because the initial

version of Skype was released on August 29, 2003. All packets are truncated to 48

bytes, and hence UDP packets are preserved up to 16 bytes of data 2. This is not an

issue in our situation as the payload-based signatures examine packet headers and

up to the 10th byte in payloads as shown in Table 4.2, and our non-payload based

scheme does not rely on any payload. Details of the traffic traces are described by

trace file #1 and #2 in table 4.4.

No. Packets Bytes Start Time Dur. Flows UDP Flows

1 84 Mil. 43G 5:00pm, Apr 24, 2003 60 min. 8136 K 1498 K
2 88 Mil. 62G 4:59am, Jan 16 2003 26 min. 3176 K 653 K
3 14 Mil. 4.2G 4:00am, Mar 16, 2006 1 week 154 K 77 K

Table 4.4: OC-48 Traffic Traces

On one hand, our non-payload based scheme identified 6 Skype flows in trace #1

and 1 Skype flow in trace #2. Therefore, it has resulted in at most 7 false-positives

out of 2.1 million UDP flows, i.e. about 0.00003% flows are mis-identified as Skype

calls.

On the other hand, the payload based scheme identified 916 simple signature #1

and 4 simple signature #2 identified in Table 4.1 from trace #1, and 844 simple

1http://www.caida.org
2Taking away 4 bytes Cisco HDLC header, 20 bytes IP header, and 8 bytes UDP header

4.5. Implementation and Experiments 57

signature #1 from trace #2. Therefore, it has resulted in at most 1764 false-positives

out of 172 million packets, i.e. about 0.001% packets are mis-identified as simple

signature. No packet sequence is mis-identified as composite signature.

4.5.2 False-Negative Evaluation

We next explore the extent of misclassification, where the non-payload based scheme

fails to identify Skype traffic, by comparing the result from payload based scheme.

We do not investigate the false-negative of our payload based scheme directly. In-

stead, we ensure that the signature set we derived is at least sufficient to the or-

ganisation and environment where the experiments are conducted by repetitively

carrying out independent experiments over months with a number of varying fac-

tors including caller ID, callee ID, caller IP type, callee IP type, date and time and

duration of call.

We monitored a week’s traffic on a boundary firewall in our organisation. The

experimental setup is illustrated in Figure 4.9. All hosts are Dell Optiplex series

running Windows XP Professional and connected to Ethernet Switches. Trace file

#3 in table 4.4 details the specification of traffic captured. We use Skype to call

or receive calls from other users located on the other side of the firewall or on

Internet, as indicated by dashed lines in Figure 4.9. As our non-payload based

scheme heavily relies on packet inter-arrival timing, delay by traffic filtering may

degrade its effectiveness and accuracy. Therefore, in order to study the effectiveness

of our non-payload based scheme in the presence of filtering delay, we kept the

firewall busy outside normal office hours by running random traffic generators. The

randomly generated traffic traverses through the firewall as indicated by solid lines in

Figure 4.9. During the experiment period, we also made a frequent use of other types

of streaming applications when no Skype call is happening, including streaming video

and audio, real time strategic online games, and other types of VoIP applications

such as MSN, Yahoo! Messenger and Google Talk, which including Skype combined

to generate 4.2 GBytes streaming traffic.

During a week’s time, we made in total 80 calls with varying caller ID, callee

ID, caller IP type, callee IP type, date and time and durations of call which vary

from 1 to 106 minutes averaging at 28 minutes. Our non-payload based scheme

successfully identified all 80 calls. Within the duration of each identified call, at

least one simple or composite payload based signature is also identified. Note that

4.5. Implementation and Experiments 58

Figure 4.9: Experimental Setup

payload based signatures are also detected outside the 80 calls. However these are

false-positives of only the payload based detection and is not of our concern. Figure

4.10 to Figure 4.16 present the results of both schemes. Each sub-figure represents

a 24 hour period during the experiment, starting at 4am, March 16, 2006. X-axis

denotes time elapsed in seconds since 4am on the day of capture, and Y-axis denotes

source and destination of calls. Each diamond on the diagram denotes an occurrence

of signature, and each horizontal red line denotes a detected call duration by our

non-payload scheme. It can be seen from the consistency of the results that, although

being encrypted, Skype traffic can still be effectively identified without looking at

its encrypted payload, or at least as effective as its payload based counterpart.

Upgrade to Skype 2.0

All the experiments so far are performed with Skype 1.3. In order to test the

resistance of our non-payload scheme against Skype version upgrade, we repeat the

experiments in Section 6.2 with Skype 2.0. We made in total 60 calls with Skype

2.0 in a week’s time. Call durations vary from 2 to 46 minutes, and average at 7

4.5. Implementation and Experiments 59

Figure 4.10: Experimental Results Day 1

Figure 4.11: Experimental Results Day 2

4.5. Implementation and Experiments 60

Figure 4.12: Experimental Results Day 3

Figure 4.13: Experimental Results Day 4

4.5. Implementation and Experiments 61

Figure 4.14: Experimental Results Day 5

Figure 4.15: Experimental Results Day 6

4.6. Conclusion and Further Work 62

Figure 4.16: Experimental Results Day 7

minutes. Our non-payload based scheme successfully identified all 60 calls with no

false-positive. It is worth noting that our payload based scheme has not detected

any occurrence of simple signature #2 and composite signature #1, i.e. these two

signatures do not survive from version upgrade. This result shows that, although our

non-payload based scheme is built on pattern recognition that can be invalidated

by future changes to Skype protocol or variations to Skype traffic patterns, it is

at least more resistant to such changes and variations than its payload (signature)

based counterpart. The experimental result also empirically justifies our hypothesis

that realtime characteristics of Skype will remain within at least the near future.

4.6 Conclusion and Further Work

We presented both payload and non-payload based techniques for detecting Skype

activities, especially Skype voice traffic. The presented technique can be used by

firewalls to detect and block Skype traffic. Counter-measures can be taken on de-

tection of breach of network access policies. A limitation of our technique is that it

is based on empirical study of Skype traffic which may change over software version.

4.6. Conclusion and Further Work 63

However, we believe it will only be a trivial task to re-collect and to sample new

version of Skype traffic and apply the same technique presented in this Chapter.

4.6.1 A Related Problem

A related problem arises here. Streaming content like Skype and RTP tends to use

dynamically negotiated ports. This makes translation of network access policies into

firewall rule sets a task even more difficult. Translating a high-level security policy

written in a natural language into firewall rule tables, a much lower-level description

of the policy, is an error prone task particularly in the context of streaming content.

Unlike traditional web services such as HTTP or FTP which have been studied

thoroughly and have almost fixed pattern firewall configurations, defining firewall

permit/deny rules to securely and effectively handle streaming content is still in the

age of darkness and represents a serious challenge by system administrators.

The next Chapter presents our contribution to solving this problem. We provide

a technique to compare and to analyse firewall rule tables. The proposed technique

allows us to analyse firewall rule tables at a much fine-grained level, and to find out

potentially incorrectly interpreted rules.

Chapter 5

Comparing Firewall Rules

One critical step towards enforcing network security with firewalls is to have correct

filtering rules. However, developing firewall rules for large networks with complex

security requirements is a difficult and error prone task. The situation is wors-

ened when configuring firewall rules for complicated, dynamically port negotiating

protocols such as RTP.

In this Chapter, we present our contribution to solving this problem. A formal

method of representing firewall rules is developed to allow comparison of two sets

of firewall rules. Then an algorithm is provided to determine if two rule sets are

equivalent. The meaning of equivalencies is that the two sets of firewall rules have

the same filtering effect on any packet. We demonstrate how the provided technique

can assist system administrators to diagnose correctness of firewall rules translated

from organisational access policies that are written in high level, human language.

5.1 Introduction

With the rapid growth of Internet-based information sharing in recent years, net-

work security is gaining an increasingly strong focus in the research and industrial

communities. In the battle against network attacks, firewalls have played one of the

most important roles. A firewall protects secure networks against malicious attacks

and penetration by filtering out unwanted network traffic from traffic entering the

secure network. The filtering decision is made according to a set of ordered rules

translated from a high level organisational security policy by an administrator [117].

Translating a security policy described in a high-level natural language into fire-

wall rule sets, a very much lower-level expression of the security policy, is a difficult

task. It is likely that, for example, an understanding of the assets and culture of

64

5.1. Introduction 65

an organisation as well as technical proficiency with a firewall system will be re-

quired for a correct translation. Also, the security policy needs to be clearly and

unambiguously written.

As an aid to increasing management’s confidence that a security policy has been

implemented correctly to the extent possible by a firewall rule set, two rule sets can

be translated independently from a high level description of network policy and the

results compared for equivalence. That is verifying both rule sets perform the same

operation (pass or deny) on every packet. An implementation is adoptable if two

rule sets translated independently from the same high level description of network

policy are considered to be equivalent. In the case where equivalency is not found,

it is highly desirable to be able to “debug” the rule sets. That is locating rules

which permit packets denied by the other rule set. Such rules may exist for various

reasons such as ambiguity in the policy description or inconsistent understanding of

organisation assets. Being able to locate such rules therefore allows us to inspect

closely problems in policy description and translation like the above.

A similar question arises when firewall rules need to be adjusted. Adding a new

rule, or changing an existing rule, is often required because of a policy change or in

response to a discovered security flaw. A new rule is added to a firewall to permit a

new set of packets, or stop a set of permitted packets. The new rule may be added

at the top of the table, or as an intermediate rule. The new set of packets, although

may not have been explicitly specified by a single rule in the firewall rule set, might

have already been implicitly covered by the combination of existing rules which

precede the new rule. In this situation the new rule is redundant and unnecessary.

This may indicate incorrect configuration of firewall by the existing rules, especially

when the new rule is positive and specifies packets that, although not intended, have

already been permitted by existing rules. Therefore, it is worth investigating rules

which permit packets that should have been permitted “only” by the addition of the

new rule, as well as the consequence of permitting packets which was not explicitly

intended. In general, an administrator needs to be able to examine the effect of the

new rule by determining the set of packets that are permitted (or denied) “only”

because of the new rule.

This Chapter provides a systematical and provable approach that allows us to

answer questions like the above. For a rule set T , starting from the first rule and

sequentially going through each rule, we construct a new rule set T ′ consisting of

only positive, non-overlapping rules. Non-overlapping means that each incoming

5.2. Related Work 66

packet is matched by exactly one rule. Therefore in T ′, the set of packets permitted

by the firewall is the union of a number of disjoint subsets. The order of rules in

T is considered and used in the phase of constructing non-overlapping rules, and is

irrelevant afterwards in T ′. This is an important property that allows us to easily

compare two rule sets, or analyse the effect of adding rules to a rule set. That is to

compare two rule sets T1 and T2, we need to determine if T ′1 = T ′2 where T ′1 and T ′2

are T1 and T2, respectively, written in the new form, i.e. positive non-overlapping

rules. In the case equality does not hold, the new form of rule set can be used to

find rules that pass packets not permitted by the other rule set (See Section 5.5).

Also, to add a new rule r to the rule set T , we will write the extended table Tr (T

enhanced with r) in this new form T ′r and if T ′ = T ′r conclude the rule is redundant

and not required. In this case, the new form of rule set can be used to find rules

which combine to pass packets that should have been permitted “only” because of

the new rule. We implemented in Java a GUI prototype of the above technique, and

demonstrated in a case study its application for comparing and debugging firewall

rule sets.

In the rest of this Chapter, Section 5.2 provides an summary of previous work

related to the issues introduced above. Section 5.3 presents related background

knowledge on firewall rules and rule tables. In Section 5.4, we give a formal yet

intuitive definition of equivalence between firewall rule tables, as well as some other

fundamental definitions. In Section 5.5, we present a theorem and a set of algorithms

for determining whether two rule tables are equivalent, and locating the rules that

permit packets denied by the other rule table in the case that inequality holds. In

Section 5.6, we provide an GUI prototype written in Java, along with a complete

example of applying the prototype to compare and debug firewall configurations.

Section 5.7 provides a conclusion of the Chapter. Part of this Chapter appeared in

[58].

5.2 Related Work

Management tools for developing firewall rule tables have found much attention

in recent years. Modeling languages that are more expressive and closer to natural

language than firewall rules alleviate the error-prone translation tasks [121, 107, 70].

On the other hand, less attention has been paid in particular to the problem of

comparing firewall rules and rule tables.

5.2. Related Work 67

Much research has been conducted on rule management problems. Two main

threads of research [21] in this area are packet classification [109, 63, 3, 60, 79, 43, 26,

119, 114, 113] and detecting (and resolving) conflict between rules [21, 12, 107, 122,

19, 20]. Given a number of ordered filtering rules and an incoming packet, packet

classification refers to the process of determining the appropriate action (pass or

drop) on the packet as specified by the filtering rules. Rule conflict refers to the

situation where two or more filtering rules cover a common set of packets, creating

an ambiguity in packet classification.

Although previous works in the area provided techniques potentially applicable

to comparing and analysing firewall rule sets, little attention has been paid to this

particular area. Hazelhurst et al. provided an approach to comparing firewall rule

sets using Binary Decision Diagrams (BDD) [93, 92]. A rule set is converted into a

boolean expression, which can be compactly and uniquely represented by a BDD.

The uniqueness of BDD is an important property that allows us to determine the

equivalency of different rule sets by comparing their BDD representations. Moreover,

as rule sets are represented as boolean expressions, extensive analysis can be made

by performing symbolic boolean operations on boolean expressions representing rule

sets. For example, suppose we have two rule sets represented respectively by boolean

expressions T1 and T2, then we can perform a variety of analysis on T1 and T2 such

as

• Are T1 and T2 equivalent, i.e. do they accept the same set of packets? — T1

= T2.

• Are all the packets accepted by T1 also accepted by T2? — T1 ⇒ T2.

• Are there packets accepted by T2 but not by T1? — T1 ∧ T2.

Although representing rule sets with BDDs provides a wide range of analysis

on rule sets, the original form and order of rules are not preserved in the BDD

representation. That being said, for example, although it is able to determine that

T1 and T2 are not permitting the same set of packets, it cannot locate the rules

that are permitting packets denied by the other rule set. This is important in the

situation where further analysis is needed for debugging unexpected results, e.g.

T1 and T2 are not permitting the same set of packets when they are expected and

required to do so. For debugging purposes, it needs to be able to locate rules that

are permitting packets denied by the other rule set, as such rules exist typically

5.3. Formally Representing Firewall Rules and Rule Tables 68

because of ambiguous policy description or incorrect translation of security policy

into firewall rules.

Being able to locate such rules is a significant advantage of our approach over

the use of BDD. Given two rule sets T1 and T2, we can perform analysis on T1 and

T2 such as

• Are T1 and T2 equivalent, i.e. do they accept the same set of packets? If not,

which rules in T1 permit packets denied by T2, and vice versa.

• Are all the packets accepted by T1 also accepted by T2? If not, which rules in

T1 accept packets not permitted by T2?

• Are there packets accepted by T2 but not by T1? If so, which rules in T2 accept

packets denied by T1?

Al-Shaer et al. provided a tool to assist in inserting or editing rules in a rule table

[24, 23]. An inserted rule is compared sequentially with each rule in the table to

ensure that the set of packets it matches is not in the meantime already matched by

any preceding rule such that the insertion would not have been necessary, which is

usually considered an error. A similar approach is applied to rule editing. However,

it is often the case that the packets matched by the new rule, although had not been

explicitly matched by a single existing rule, may already have been matched by a

combination of existing rules and so the new rule need not be added. The approach

proposed in this Chapter detects such cases and so enhances Al-Shaer et al.’s work.

5.3 Formally Representing Firewall Rules and Rule

Tables

In the following discussion, protocol means transport layer protocol such as TCP

or UDP 1. Let SrcIPAd, DestIPAd, SrcPort, DestPort, Protocol denote source

IP address, destination IP address, source port number, destination port number,

and protocol respectively. Let [a, b] denote the set of numbers x between a and b;

that is a ≤ x ≤ b. Then SrcIPAd, DestIPAd ∈ [1, 232 − 1], SrcPort, DestPort

∈ [1, 216 − 1], and Protocol ∈ {TCP,UDP}. We also use [X] to denote a specific

1Note that our discussion focuses on only IPv4.

5.3. Formally Representing Firewall Rules and Rule Tables 69

range of numbers that can be assigned to element X, e.g. [IP] represents the range

of legal IP addresses. We assume a packet can be represented in the following form

(SrcIPAd,DestIPAd, SrcPort,DestPort, Protocol)

Let P denote the set of all packets. It can be seen that P is a finite set of size

|P|= 232 × 232 × (216 − 1)× (216 − 1)× 2.

5.3.1 Firewall Rules

A firewall filters packets based on fields defined in the network and/or transport

layer, including source IP address ([SrcIPAd]), destination IP address ([DestIPAd]),

and service (Srv).

[SrcIPAd] and [DestIPAd] specify an acceptable range of source/destination IP

addresses respectively. Srv is the combination of protocol, source port number and

destination port number. Note that the source port number is rarely significant, and

commonly any source port is acceptable. Each rule is associated with an action (Act)

field, the value of which is either “pass” or “drop”, indicating whether a packet is

passed or dropped when it is matched by this rule. Rules with the pass/drop action

are referred to as positive/negative rules respectively.

There may also be other relevant fields, such as the rule number (rn) that

identifies order of rules. In general, a firewall rule can be presented as a 4-tuple

([SrcIPAd], [DestIPAd], Srv, Act).

A rule r specifies a subset Pr ⊆ P of packets that it matches. A packet p is

matched by a rule r (and so p ∈ Pr), if SrcIPAdp ∈ [SrcIPAdr], DestIPAdp ∈
[DestIPAdr] and the combination of (Protocolp, SrcPortp, DestPortp) = Srvr.

When a packet arrives at the firewall, it is mapped into the form of firewall rules

and then matched against the firewall rule table. The first rule that matches the

packet will determine the action on the packet. For example, if a packet p is matched

by two rules r and r′ where r′ precedes r in the order, then r′ will be applied to p

but r will not. If p is matched by multiple rules preceding r, then which rule will

be applied to p depends on the order of the matching rules. If no preceding rule

matches p, then r will be applied to p.

We use {R} to denote the set of packets to which rule R is applied. These are the

packets for which R is the first rule matched in the rule table. In general, {R} ⊆ PR

5.3. Formally Representing Firewall Rules and Rule Tables 70

— that is, the set of packets to which R is applied is a subset of the set of packets

that R matches.

5.3.2 Firewall Rule Table

A firewall rule table, T , is an ordered set of rules, and specifies a set of packets PT
that are passed by the rule table. We use (R1, R2, . . . , Rn) to denote a rule table

consisting of rules R1, R2, . . . , Rn in order.

Let Match(p, T) denote a function that takes a packet p and a rule table T and

returns the first rule that matches p. This rule, denoted by rp,T , is the rule that will

be applied to the packet p. There can be more rules that match p but only rp,T will

be applied to p.

A firewall defaults to accept or drop packets not matched explicitly. In most

situations, firewalls use “drop packet” as the default action so that only packets

that are explicitly permitted are passed by the firewall [51], and this is the assumed

default action in the following discussion. That being said, if rp,T = φ where φ

denotes the empty set, T will drop p. As a result, we need not use negative rules

explicitly to drop prohibited packets. Explicit positive rules are needed to accept

legitimate packets. Negative rules provide readability and compactness for firewall

table by denying packets that are permitted by subsequent positive rules. For ex-

ample, consider the case that connections from a large block of network addresses

are permitted with the exception of a small range of addresses in the middle of the

larger block. This can be implemented more compactly using a negative rule deny-

ing traffic from the small range of addresses followed by a positive rule that permits

traffic from the larger block.

5.3.3 An Example

Consider the firewall rule table shown in Table 5.1. R1 drops packets from 192.168.13.10

and to 192.168.13.11 for the RTP service so that R2 can be written in a more com-

pact and readable form.

The rule table presented in Table 5.1 can be written with only positive rules as

shown in Table 5.2. It is seen that Table 5.1 is more compact and readable (allowing

packets from 192.168.13.0/24 to go anywhere with the exception that packets from

192.168.13.10 are not allowed to reach 192.168.13.11), and is also more efficient

5.4. Preliminaries 71

Rule # Source IP range Destination IP range Service Action

1 192.168.13.10 192.168.13.11 RTP Drop
2 192.168.13.0/24 0.0.0.0-255.255.255.255 RTP Pass

Table 5.1: Firewall rule table using both negative and positive rules

because a firewall does not have to try to match all the rules before a packet can be

dropped.

Rule # Source IP range Destination IP range Service Action

1 192.168.13.10 0.0.0.0-192.168.13.10 RTP Pass
2 192.168.13.10 192.168.13.12-255.255.255.255 RTP Pass
3 192.168.13.0-192.168.13.9 0.0.0.0-255.255.255.255 RTP Pass
4 192.168.13.11-193.168.13.255 0.0.0.0-255.255.255.255 RTP Pass

Table 5.2: Firewall rule table using positive rules only

This example shows that negative rules can be used to drop a subset of packets

matched by subsequent positive rules, and could make the rule table more compact

and readable. A negative rule r will not affect the set of permitted packets if Pr
has no intersection with (or has only empty intersection) with the sets PR1 , · · · PRi

where R1, · · ·Ri are positive rules following r. That is, a negative rule r will not

affect PT if ∀Rj, PRj
∩ Pr = φ, where Rj are positive rules following r.

5.4 Preliminaries

Definition 1 Two firewall rule tables T1 and T2 are equivalent if PT1 = PT2.

We assume that firewalls drop all packets by default, and there is a “deny all

packets” at the end of the firewall rule table. We only need to consider packets

that can pass the firewall. This is because P , the set of all packets, is a finite

set, if PT1 = PT2 , then T1 and T2 will also drop the same set of packets since

P − PT1 = P − PT2 .
A positive rule specifies a set of packets that are permitted by the rule. However,

the set of packets that will be permitted by the rule will also depend on other

rules and their order. To assist with Definition 2, consider a table with rule list

5.4. Preliminaries 72

(R1, · · ·Rn). A packet p that matches a rule Ri in the table will be in one of the

following categories.

1. p is matched by Ri and at least one rule Rj where j < i. In this case p will

be dropped or passed depending on Rj being negative or positive respectively.

In both cases Ri will not be applied.

2. p is matched by Ri and at least one rule Rj where j < i and Rj is positive. In

this case p is matched by both r and at least one preceding rule so that r will

not be applied and p will be passed if the first rule that matches p is positive;

3. p is matched only by Ri but not any rule Rj where j < i. In this case Ri will

be applied to p and Match(p, T) = Ri.

Note that in Point 1 and Point 2 above there may be multiple such Rj rules. In

the following, we show how a positive rule can be divided into sub-rules to capture

above cases. A rule R′ is called a sub-rule of a rule R if PR′ ⊂ PR.

Consider a firewall table with rule list T = (R1, · · ·Rn).

Definition 2 For a rule Ri,

• R′i is the redundant part of Ri with respect to table T if R′i is a sub-rule

of Ri, and for some positive rule Rj ∈ T , where j < i, PR′i ⊆ PRj
. In this

case R′i will never be applied and {R′i} = φ.

• R′′i is the shadowed part of Ri with respect to table T if R′′i is a sub-rule

of Ri, and for some negative rule Rj ∈ T , where j < i, PR′′i ⊆ PRj
. In this

case R′′i will never be applied and {R′i} = φ.

• R′′′i is the effective part of Ri with respect to table T if R′′′i is a sub-rule

of Ri, and matches packets that are not matched by any rule Rj ∈ T , where

j < i. In other words, PR′′′ = PR − (PR′ ∪ PR′′).

Following Definition 2, it can be seen that any positive rule R can be re-written

as three sub-rules R′, R′′ and R′′′ in general.

If R is written as ([SrcIPAd], [DestIPAd], Srv, pass), then R′, R′′ and R′′′ can

be written as, respectively, ([SrcIPAd1], [DestIPAd1], Srv, pass), ([SrcIPAd2],

[DestIPAd2], Srv, pass) and ([SrcIPAd3], [DestIPAd3], Srv, pass) where [SrcIPAd1]

∪ [SrcIPAd2] ∪ [SrcIPAd3] = [SrcIPAd] and [DestIPAd1] ∪ [DestIPAd2] ∪

5.4. Preliminaries 73

[DestIPAd3] = [DestIPAd]. This implies that PR = PR′ ∪ PR′′ ∪ PR′′′ . The Venn

Diagram in Figure 5.1 illustrates the relation between R, R′, R′′, and R′′′.

Al-Shaer et al. also used the concepts of shadowed and redundant rule in firewall

rule tables [24]. Our definition differs in that a rule Ri is divided into three sub-rules

and the redundant/shadowed relation is defined between one of the sub-rules and a

preceding rule Rj where j < i, as opposed to between Ri itself and Rj.

Figure 5.1: The Venn Diagram illustrating R′, R′′, and R′′′. R′′′ is the set of packet
“only” matched by R. Here it is assumed that R has overlap with earlier rules; R′,
R′′, and R′′′ may be empty otherwise.

A packet p that is matched by R′′′ implies that p will not be passed or dropped

by any preceding rule in the rule table and so R will be applied to p. A packet p

that is matched by R′ or R′′ will be passed or dropped by a preceding rule in the

rule table and so R will not be applied to it. We have the following properties for

R′, R′′ and R′′′.

A1 A packet p that matches a rule table T , is matched by the effective part of

exactly one rule R. That is, p ∈ PT ⇒ (∃R ∈ T such that p ∈ PR′′′) ∧ (∀r ∈
T we have r 6= R⇒ p /∈ Pr′′′).

5.4. Preliminaries 74

A2 The effective part of a rule does not overlap with that of another rule in the

same table. That is, (∀R1, R2 ∈ T, R1 6= R2 ⇒ PR′′′1 ∩ PR′′′2 = φ).

A3 It is possible to have PR′∩PR′′ 6= φ. However PR′∩PR′′′ = φ and PR′′∩PR′′′ =

φ.

A4 If p ∈ PR′′′ , then Match(p, T) = R.

A5 ∀R ∈ T , PR′′′ ⊆ PT .

A6 ∀R ∈ T , PR′′′ = {R} = {R′′′} and {R′} = {R′′} = φ.

Given a firewall rule table T = (R1 · · ·Rn), we call T ′ = (r1 · · · rn) the effective

representation of T , where ri = R′′′i if Ri is a positive rule in T , otherwise ri = φ.

Slightly abusing notations, if we denote the effective part of a negative rule by φ for

negative rules do not enlarge the set of allowed packets, then T ′ can be written as

T ′ = (R′′′1 · · ·R′′′n).

Definition 3 Consider two firewall rule tables T1 and T2 and let R denote a rule

in T . Assume both tables are converted into their effective representations. A rule

R ∈ T1 has equivalent rule set in T2 if there exists a subset R1, R2 . . . Rn ∈ T2 such

that PR′′′ ⊆ PR′′′1 ∪PR′′′2 ∪ . . .∪PR′′′n . Using property A1 this implies that PR′′′ ⊆ PT2.

The equivalent rule set of a negative rule is defined to be φ.

If R ∈ T1 has an equivalent rule set in T2 then packets in PR′′′ are also permitted

by the equivalent rule set. If R does not have an equivalent rule set in T2 then not all

packets in PR′′′ are permitted by T2. Note that Definition 3 applies to only positive

rules.

5.4.1 An Example

We use an example to explain the above concepts in details. Consider the rule table

shown in Table 5.3.

ForR5, source IP address range 192.168.13.0/24 = 192.168.13.1-20 ∪ 192.168.13.20-

30 ∪ 192.168.13.31-255. Destination IP address range 192.168.13.0/24 = 192.168.13.30-

40 ∪ 192.168.13.40-50 ∪ 192.168.13.1-29,51-255.

When packets from 192.168.13.1-20 and to 192.168.13.0/24, or from 192.168.13.0/24

and to 192.168.13.30-40 arrive at the firewall, they will be matched and passed by

5.5. Comparing Firewall Rule Tables 75

Rule # Source IP range Destination IP range Service Action

1 192.168.13.1-20 any RTP Pass
2 192.168.13.20-30 any RTP Drop
3 any 192.168.13.30-40 RTP Pass
4 any 192.168.13.40-50 RTP Drop
5 192.168.13.0/24 192.168.13.0/24 RTP Pass

Table 5.3: An example of rule table

R1 and R3. Although R5 also matches them, it will not be applied. When pack-

ets from 192.168.13.20-30 and to 192.168.13.0/24, or from 192.168.13.0/24 and to

192.168.13.40-50 arrive at the firewall, they will be matched and dropped by R2 and

R4. Although R5 also matches them, it will not be applied. As a result, we can

divide R5 as shown in Table 5.4.

sub-rule Source IP range Destination IP range Service Action

R’ 192.168.13.1-20 192.168.13.0/24 RTP Pass
192.168.13.0/24 192.168.13.30-40 RTP Pass

R” 192.168.13.20-30 192.168.13.0/24 RTP Pass
192.168.13.0/24 192.168.13.40-50 RTP Pass

R”’ 192.168.13.31-255 192.168.13.1-29,51-255 RTP Pass

Table 5.4: Dividing R5 into sub-rules

Consider another example as shown in Table 5.5, it can be seen that the effective

parts of rule R1, R3 and R6 are themselves, i.e. they have no redundant or shadowed

parts. Comparing Table 5.3 and Table 5.5, it can be seen that R5 in Table 5.3 has

equivalent rule set in Table 5.5, which are R1, R3 and R6.

5.5 Comparing Firewall Rule Tables

In this section, we first prove theorems that specify the condition under which two

rule tables are equivalent. We then use these results to give algorithms to determine

if two rule tables are equivalent. If the two table are not equivalent, the algorithms

will locate rules that are causing the conflict, that is rules that permit packets that

are denied by the second rule table.

5.5. Comparing Firewall Rule Tables 76

Rule Number Source IP range Destination IP range Service Action

1 192.168.13.31-255 192.168.13.1-29 RTP Pass
2 10.1.1.0/24 10.1.2.0/24 RTP Drop
3 192.168.13.31-100 192.168.13.51-255 RTP Pass
4 10.1.2.0/24 10.1.1.0/24 RTCP Pass
5 10.1.2.0/24 10.1.1.0/24 RTP Pass
6 192.168.13.101-255 192.168.13.51-255 HTTP Pass
7 any any any Drop

Table 5.5: Another example of rule table

By the definition of two sets being equivalent, two firewall rule tables T1 and

T2 are equivalent if PT1 ⊆ PT2 and PT2 ⊆ PT1 . Lemma 1 states the the condition

under which packets permitted by T1 is a subset of packets permitted by T2, i.e. the

PT1 ⊆ PT2 condition.

Lemma 1 Let T1 = (R1, R2, . . . , Rn). If all Ri, i = 1 · · ·n is either negative or has

equivalent rule set in T2, then P(R1,R2,...,Rn) ⊆ PT2

Proof: The proof is by induction on n, the number of rules in T1.

1. For the first rule R1 in T1 (situation when n=1)

(a) Assume R1 is positive

As R1 is the first positive rule, it is apparent that PR′1 = PR′′1 = φ,

PR1 = PR′′′1
Because R1 has equivalent rule set in T2, according to the definition of

equivalent rule set in Section 5.4, it can be concluded that PR′′′1 ⊆ PT2 .
This implies PR1 ⊆ PT2 as PR1 = PR′′′1 .

Therefore, when n = 1,P(R1) ⊆ PT2 .

(b) Assume R1 is negative

By definition, P(R1) = φ, which implies that P(R1) ⊆ PT2 .

2. Assume this theorem is true for n − 1 (n ≥ 1), i.e. we assume that if

R1, R2, . . . , Rn−1 in T1 all have equivalent rule set in T2, then P(R1,R2,...,Rn−1) ⊆
PT2 .

5.5. Comparing Firewall Rule Tables 77

Now we need to prove that the result is valid for n, i.e. we need to prove that

if R1, R2, . . . , Rn all have equivalent rule set in T2, then P(R1,R2,...,Rn) ⊆ PT2 .

If Rn is negative, then adding Rn to the rule table does not enlarge the set

of packets that are allowed to pass, i.e. P(R1,R2,...,Rn−1) = P(R1,R2,...,Rn). Thus

according to the induction assumption, P(R1,R2,...,Rn) ⊆ PT2 .

If Rn is positive, then

(a) For ∀p ∈ PR′n or ∀p ∈ PR′′n , if it can pass rule table consisting of

(R1, R2, . . . , Rn), then according to Fact 1 of R′, R′′ and R′′′, ∃R′′′k (1 ≤
k ≤ n − 1) such that p ∈ PR′′′k . Because Rk has equivalent rule set

in T2 according to our assumption, then according to the definition of

equivalent rule set, PR′′′k ⊆ PT2 , and hence p can also pass T2.

(b) For ∀p ∈ R′′′n
If Rn has equivalent rule set in T2, then according to the definition of

equivalent rule set, PR′′′n ⊆ PT2 , and hence p can also pass T2.

Finally, combining 1) and 2), we know that the theorem holds for ∀n ∈ N . �

Theorem 1 Two firewall rule tables T1 and T2 are equivalent if (i) all positive rules

in T1 have equivalent rule sets in T2; and (ii) all positive rules in T2 have equivalent

rule sets in T1,

Proof:

Let T1 = (R1, R2, . . . , Rn). Since all of R1, R2, . . . , Rn have equivalent rule sets

in T2, using Lemma 1 we have PT1 ⊆ PT2 .
Similarly, we can prove that PT2 ⊆ PT1 .
Hence, using the definition of equivalent firewall tables, we have that T1 and T2

are equivalent. �

Theorem 1 gives the condition under which two rule tables are equivalent. How-

ever, it is difficult to examine whether a rule has equivalent rule set in the second

table because of implications discussed in Section 5.3.1.

Theorem 2 A firewall rule table T and its effective representation are equivalent

5.5. Comparing Firewall Rule Tables 78

Proof:

Consider two rule tables T1 = (R1, R2, . . . , Rn) and T2 = (r1, r2, . . . , rn), where

rk = R′′′k if Rk is positive, otherwise rk = φ.

1. For each positive Rk, because Pr′k = Pr′′k = φ (otherwise ∃s < k such that

Prk ∩ Prs 6= φ. i.e. PR′′′k ∩ PR′′′s 6= φ. This cannot be true according to Fact 2

of R′, R′′ and R′′′.), it can be seen that rk = r′′′k , and R′′′k = rk = r′′′k .

Therefore, all positive rules in T1 have equivalent rule set in T2.

2. For each positive rk, because Pr′′′k ⊆ Prk = PR′′′k , all positive rules in T2 also

have equivalent rule set in T1.

Thus according to the Theorem 1, T1 and T2 are equivalent. �

Theorem 2 can be used to compare two rule tables T1 and T2. To compare T1

and T2, we need to compare their effective representation T ′1 with T ′2. Let T1 =

(R1, R2, . . . , Rn) and T2 = (r1, r2, . . . , rm). Then T ′′′1 = (R′′′1 , R
′′′
2 , . . . , R

′′′
n) and T ′′′2 =

(r′′′1 , r
′′′
2 , . . . , r

′′′
m). Since R′′′i ∩ R′′′j = ∅ for all i and j, for all rules in T1, we need to

determine if PR′′′i is covered by a union of Pr′′′j . That is if R′′′i has an equivalent rule

set in T ′2. Similarly, for all rules in T2 we need to determine if an equivalent rule set

in T1 exists.

5.5.1 Algorithms to Compare Firewall Rule Tables

In this section, we provide two algorithms where the first one determines the effective

part of a rule, and the second one determines if two tables are equivalent and the

rules that permit packets denied by the other table if inequality holds.

Algorithm 3 finds the effective part of a rule Ri in the rule table T = (R1, . . . , Rn)

where n ≥ i. The Algorithm 3 finds R′i and R′′i and in the last step obtains R′′′i from

R′i and R′′i . The algorithm examines every Rj (1 ≤ j ≤ i − 1) and accumulates in-

tersections Ri∩Rj (1 ≤ j ≤ i−1) in R′i and hence the part of Ri which is redundant

to at least one preceding positive rule is put into R′i. According to Definition 2, the

resulting R′i will be the redundant part of Ri. Similarly, the resulting R′′i will be the

shadowed part of Ri. Therefore, R′′′i will the effective part of Ri. Time complexity

required for Algorithm 3 is O(n)× β, where β denotes time complexity required for

computation of Rj ∩Ri, which can be reduced to the problem of 2-dimensional rect-

angle intersection. A number of methods for calculation of d-dimensional rectangle

5.6. Implementation and a Complete Example 79

intersection is summarised in [65], the best time-complexity for the 2-dimensional

case being O(NlogN).

Algorithm 3: Finding the effective part of a positive rule

input : rule Ri — The positive rule whose effective part is to be computed
input : array of rules (R1 . . . Ri−1) — The i− 1 preceding rules in the same

rule table as Ri

output: R′′′i — Effective part of Ri

set R′i = R′′i = R′′′i = φ
for each rule Rj (1 ≤ j ≤ i− 1) do

if Rj is positive then
R′i = R′i ∪ (Rj ∩Ri)

else
R′′i = R′′i ∪ (Rj ∩Ri)

set R′′′i = Ri −R′i −R′′i
return R′′′i

Algorithm 4 determines if two rule tables T1 and T2 are equivalent. First, using

Algorithm 3 the rules in T1 and T2 are converted into their corresponding effective

forms. Let T1 = (r1, r2, . . . , rn) and T2 = (R1, R2, . . . , Rn). We first construct T ′1

= (r′′′1 , r
′′′
2 , . . . , r

′′′
n) and T ′2 = (R′′′1 , R

′′′
2 , . . . , R

′′′
n). Then for each rule r′′′i in T ′1, we

examine if it has an equivalent rule set in T ′2. This step is repeated for all rules in T ′2

and if both steps produce a true results, we conclude the two tables are equivalent.

Correctness of this conclusion follows directly from Theorem 1 and Theorem 2. Time

complexity in relation to the number of rules required for Algorithm 4 is O(n2).

If T1 and T2 are not equivalent, Algorithm 4 returns the sets of packets permitted

only by T1 or T2 but not both, and also rules that permit these packets.

5.6 Implementation and a Complete Example

5.6.1 An implementation

We implemented a GUI prototype of the techniques presented above in Java, which

is illustrated in Figure 5.2. It can be seen that the prototype can be used to analyse

effective parts of rules in a rule table, equivalent rule set in another rule table, and

whether two rule tables are equivalent. We will explain in details how this prototype

can be used to compare rule tables and debug firewall configurations with a complete

example presented next.

5.6. Implementation and a Complete Example 80

Figure 5.2: The Prototype

5.6.2 A Complete Example

Consider the campus network configuration illustrated in Figure 5.3. The network

consists of 3 servers accessible from outside, and two student labs - the project lab

and the security lab. The project lab provides a platform for students to carry out

daily activities such as browsing Internet or writing assignments. The security lab

is for students studying network security to perform experiments such as sniffing or

packet spoofing. It is hence desirable to separate traffic of the security lab from that

of the project lab.

The security policy is described in Table 5.6. Description of the policy might be

ambiguous and not clear at this stage. This is often an important reason leading

to incorrect translation of network policy into firewall rules. We will demonstrate

later how the prototype can be used to clarify the ambiguity, and to elicit unstated

requirement in policy description.

Assume there are a chief administrator and an associate administrator in the

network department. The chief administrator has more experience and follows “who

can access what” to translate the security policy into firewall rule table. On the other

hand, the associate administrator has less experience and sequentially translates

each item in the policy description into corresponding firewall rules. The resulting

firewall rule tables are listed in Table 5.7 and 5.8 respectively.

Now we need to compare the rule tables to gain a confidence in their correct-

ness, as well as to explore possible ambiguity in policy description and incorrect

translation of the policy. To compare the rule tables, we first load them into the

prototype, then select “Analyse” ⇒ “Analyse Equivalence between Rule Tables”

from the menu, as illustrated in Figure 5.4. The result shows that the rule tables

are not equivalent, because rule 1,8,9,10 in rule table 1 and rule 1,3,10 in rule table

5.6. Implementation and a Complete Example 81

Figure 5.3: An example of network setup

2 have no equivalent rule set in the other rule table.

We then select “Analyse” ⇒ “Analyse Eql Rules” from the menu to analyse the

packets applied to and permitted only by these rules but not by the other rule table.

The prototype shows us, for each of the above rules, the set of packets that cannot

pass the other rule table, as illustrated in Figure 5.5. By a close look at the rule

tables and the results in Figure 5.5, we revealed a number of problems in the policy

description as well as its translation into firewall rules.

• The policy does not explicitly grant the use of DNS, which in practise is a

pre-requisite for using HTTP and FTP. The permission to use DNS should be

added explicitly to the policy description to reduce ambiguity.

• The policy does not mention which hosts the servers can access. The chief

administrator grants them access to the project lab, but the associate admin-

istrator does not. This conflict should be discussed further and addressed with

department managers.

• The associate network administrator translates each item in the policy de-

scription into firewall rules in order. By a mistake in representing “external

hosts” with “*”, the negative rules that prohibit external hosts to access the

servers also prohibit hosts in both student labs to access themselves. By a

5.7. Conclusions and Further Work 82

Figure 5.4: Rule table compare result

similar mistake, he also permits hosts in the security lab to access the SMTP

and FTP server.

• The statement “hosts in the project lab can access everything” in policy de-

scription is ambiguous, as “everything” can be taken as “everything in the

internal network” or “everything including both internal and external net-

work”. It can be seen that the chief administrator is more rigorous and take

it as “everything in the internal network”, while the associate administrator

takes the other understanding.

Counter-measures against these problems can be taken effectively after they are

revealed. The prototype can therefore assist in clarifying policy ambiguity and

debugging firewall configurations by accurately comparing firewall rule tables and

locating rules that cause inequality.

5.7 Conclusions and Further Work

In this Chapter, we presented an effective technique to compare firewall rule tables.

Our technique can not only determine whether rule tables represented in different

forms are equivalent, but also accurately locate the rules in their original form and

order that are causing the inequality. Multiple rule tables written by different ad-

ministrators to implement the same security policy can be compared to gain an

5.7. Conclusions and Further Work 83

Figure 5.5: Rule table compare result

5.7. Conclusions and Further Work 84

increased level of confidence in their correctness when the rule tables are equivalent;

otherwise the rules causing conflicts between rule tables can be accurately located,

as can assist in resolving conflicts between rule tables. Our technique can also be

used to analyse changes to a rule table, and determine whether desired changes

are made correctly by comparing the original rule table and the modified one. We

also implemented our technique with a GUI prototype written in Java, and demon-

strated a complete example of using the prototype to compare and debug firewall

configurations.

5.7.1 Deficiency of Firewall Techniques and Further Work

Although techniques have been provided to handle streaming content, conventional

firewalls still have inherent limitations like any other technologies. Defending against

multi-stage attacks is a prominent example among intrusion scenarios that conven-

tional firewalls are incapable to handle. In this scenario, each “atomic” action by an

attacker does not trigger a direct violation of firewall rules, nor imposes a sensible

threat to the system. In other words, each “atomic” action may only escalate the

attacker’s privilege by a such a small level that itself has only little impact on sys-

tem security and is not detected by firewall. However combining several “atomic”

actions an attacker may gain privileges to the system that is not supposed to be

granted.

In the rest of the thesis, we will look at an emerging technology, namely at-

tack graph, that supplements incapability of firewalls to defend against multi-stage

attacks. The following Chapter covers technical details of attack graphs and our

contribution to the area. An concrete example will also show how firewalls and

attack graphs can be used in conjunction to fight against multi-stage attacks.

5.7. Conclusions and Further Work 85

Algorithm 4: Check the equivalency of two rule tables T1 and T2

input : Rule table T1 = r1 . . . rn1 , and T2 = R1 . . . Rn2

output: A boolean value indicating whether T1 and T2 are equivalent, and if
not, difference between T1 and T2 and rules that are causing the
difference

/* Boolean value indicating if T1 and T2 are equivalent */

set isEquivalent = true
/* The rules that permit packets denied by the other rule table

*/

set DiffRules1 = DiffRules2 = φ
/* The set of packets permitted by only one rule table */

set Diff1 = Diff2 = φ

for each ri in T1 do
r′′′i = FindEffectivePart(rule ri, rule[] r1 . . . ri−1)

set T ′1 = (r′′′1 , r
′′′
2 , . . . , r

′′′
n)

for each Ri in T2 do
R′′′i = FindEffectivePart(rule Ri, rule[] R1 . . . Ri−1)

set T ′2 = (R′′′1 , R
′′′
2 , . . . , R

′′′
n)

for each r′′′i in T ′1 do
for each R′′′i in T ′2 do

r′′′i = r′′′i - R′′′i
if r′′′i 6= φ then

isEquivalent = false ;
DiffRule1.insert(ri) ;
Diff1 = Diff1 ∪ tempr′′′i

for each R′′′i in T ′2 do
for each r′′′i in T ′1 do

R′′′i = R′′′i - r′′′i
if R′′′i 6= φ then

isEquivalent = false ;
DiffRule2.insert(Ri) ;
Diff2 = Diff2 ∪ tempR′′′i

return isEquivalent, DiffRules1, DiffRules2, Diff1, Diff2

5.7. Conclusions and Further Work 86

Policy Description

I External hosts can only access the servers
I External hosts cannot access any machine in either lab
I Hosts in the project lab can access everything except the security lab
I Hosts in the security lab can only access the web server and other hosts in the security lab

Table 5.6: The security policy

Rule # Source IP range Destination IP range Service Action

1 * * DNS pass
2 111.222.1.200-111.222.1.220 111.222.1.1 SMTP deny
3 * 111.222.1.1 SMTP pass
4 * 111.222.1.2 HTTP pass
5 111.222.1.200-111.222.1.220 111.222.1.3 FTP deny
6 * 111.222.1.3 FTP pass
7 111.222.1.200-111.222.1.220 111.222.1.10-111.222.1.100 * deny
8 111.222.1-111.222.1.3 111.222.1.10-111.222.1.100 * pass
9 111.222.1.10-111.222.1.100 111.222.1.10-111.222.1.100 * pass
10 111.222.1.200-111.222.1.220 111.222.1.200-111.222.1.220 * pass

Table 5.7: The rule table by the chief administrator

Rule # Source IP range Destination IP range Service Action

1 * 111.222.1.1 SMTP pass
2 * 111.222.1.2 HTTP pass
3 * 111.222.1.3 FTP pass
4 * 111.222.1.10-111.222.1.100 * deny
5 * 111.222.1.200-111.222.1.220 * deny
6 111.222.1.10-111.222.1.100 111.222.1.1 SMTP pass
7 111.222.1.10-111.222.1.100 111.222.1.2 HTTP pass
8 111.222.1.10-111.222.1.100 111.222.1.3 FTP pass
9 111.222.1.10-111.222.1.100 111.222.1.200-111.222.1.220 * deny
10 111.222.1.10-111.222.1.100 * * pass
11 111.222.1.200-111.222.1.220 111.222.1.200-111.222.1.220 * deny
12 111.222.1.200-111.222.1.220 111.222.1.2 HTTP deny

Table 5.8: The rule table by the assistant administrator

Chapter 6

Using Attack Graphs to Analyse Network
Security

6.1 Introduction

A large computer system is often build upon multiple platforms, runs different op-

erating systems and software packages and has a complex connection policy to an

open network. Despite the best efforts by system designers to deploy security mea-

sures such as firewalls, an adversary or an attacker is often able to gain a level of

undesired access by system policy by exploiting bugs or design flaws in the system.

The act of exploiting a single system bug or design flaw is referred to as an “atomic

attack” or an “exploit”. An atomic attack often has only insignificant impact on the

system and may not be detectable by firewalls. However, an adversary may be able

to construct a severe system intrusion by combining a series of atomic attacks, each

escalating the privilege of the attacker to a slightly higher level. It can be seen that

to evaluate the security level of a large computer system, the system administrator

must deploy a more effective mechanism than firewalls to handle intrusion scenarios

where an adversary may inflict severe damage to the system by combining a series

of insignificant and undetectable atomic attacks.

Sheyner et al. proposed using attack models and attack graphs to provide a

global view of system security against exploiting the combination of vulnerabilities

[75] [99]. An attack model is a graph that consists of a set of nodes and edges.

Each node represents a reachable system state and each edge represents an atomic

attack that takes the system to another state where the attacker’s privilege may be

escalated. An attack graph is a sub-graph of attack model and contains only nodes

on paths that eventually reach a state where the modeled system is considered

compromised. With attack models and graphs, a global view on multi-stage attacks

by combination of individual vulnerabilities can be obtained by administrators to

87

6.1. Introduction 88

assist in implementation of effective security counter measures.

Another application of attack graph is to provide clues to questions such as “what

happens if a particular vulnerability is patched” or “what happens if a firewall rule

is altered, added or removed”. These are often raised in an organisation before

any planned network structural change takes place. Being able to answer such

questions (without actually implementing the reconfiguration) is necessary for the

network administrator to evaluate the results of the planned network changes. Clues

to answering such questions can be obtained from analysing attack graph resulted

from situation changes in the modeled system.

6.1.1 Related Work

Techniques for quantitative security measurement have been a strong focus in the

research community [66, 11, 83, 14]. Dacier et al. [66] modeled a computer system

using a Privilege Graphs exhibiting security vulnerabilities and convert it into a

Markov chain corresponding to all possible successful attack scenarios. The Markov

chain is then used to compute MTTF (mean time to failure) of the system, used as

the quantitative measure of the security level of a system. Time and effort required

by each type of attack is estimated from empirical and statistical data. Phillips

et al. [22] present a framework for evaluating the most likely attack paths in the

attack graph generated by an ad hoc algorithm. The framework requires attacker

profiles and attack templates in order to compute the likelihood of each type of

attack. Madan et al [11] proposed an approach to quantifying various security

related attributes of a computer system such as system availability, MTTF, and

probabilities of system failure. Quantification of security related attributes is by

solving the Semi-Markov Process (SMP) model describing state transitions in the

system. However, the proposed approach requires availability of a wide range of ad

hoc model parameters, restricting the approach feasible only for systems of a small

scale. Another related work presented in [83] provides a quantitative analysis of

attacker behavior based on empirical data collected from intrusion experiments.

A limitation of using attack graphs is that the size and complexity of attack

models/graphs usually greatly exceed human ability to visualise, understand and

analyse. It is highly desirable to have a scheme to identify important portions of

attack models/graphs. An effective method is to rank states in attack models/graphs

based on factors like the probability of an intruder reaching the state. Important

6.1. Introduction 89

portions of attack models/graphs can hence be identified by ranks of their states.

Analysis of attack graphs can then be focused on the important section. Mehta et al.

[111] propose to rank states of an attack model by the probability of an adversary

reaching a state by a sequence of atomic attacks. Their ranking algorithm is based

on the PageRank algorithm used by Google to measure importance of web pages on

the World Wide Web. Given a system to be analysed, first an attack model formally

describing the system is constructed. Then the ranking algorithm is applied to rank

states of the obtained attack model. Meanwhile, an attack graph is generated using

the attack graph generation tool [75], and is “projected” on the ranked attack model

to obtain a ranked attack graph. The ranked states of an attack graph provide

various security analysis for the system, such as measuring security of the system,

evaluating effectiveness of counter-measures, and identifying important portion for

visual analysis of the system.

Despite the similarity between ranking web pages and ranking system states,

differences not considered by Mehta’s scheme exist between the two scenarios. The

World Wide Web model adopted by PageRank assumes that a random surfer has

universally equal probabilities of following one of the links in a current page to the

next page, and correspondingly Mehta’s ranking scheme assumes that an attacker

has equal probability of remaining undetected at all states of an attack model.

However, the likelihood of an attacker remaining undetected at a state so as to

exploit a vulnerability that takes the system to another state could be considered to

be influenced by the number of steps required to reach the state from the starting

position. Consider a scenario where a network has implemented some sort of defense-

in-depth as an example. The more steps an attack has taken, the more likely that an

attacker is discovered. Therefore, we assume the probability of an attacker remaining

undetected at a state decreases with number of steps required to reach that state.

The decreasing rate is not universal amongst all computer systems but determined

by each system’s intrusion detection ability. This affects state transitions in attack

models and should be considered when ranking system states.

Moreover, the random transition model adopted by PageRank assumed that a

WWW surfer navigates to the next page by selecting one of the available succeeding

pages at random with equal probabilities. This assumption fits well with intrusions

that use a brute-force probe-scan approach. However, an adversary may exploit

vulnerabilities based on metrics such as cost, age, evaluation of probability of success

and being detected. In this case, vulnerabilities are not selected at random and

6.1. Introduction 90

different vulnerabilities have different probabilities of being exploited. The behavior

of an adversary selectively exploiting vulnerabilities has considerable effect on the

chance to reach the final goal, and therefore should be considered when ranking

system states of attack models and graphs.

6.1.2 Our Contribution

In this Chapter, we propose a ranking scheme that addresses problems stated above.

The proposed ranking scheme is adjusted from Mehta et al.’s scheme, but has the

advantage of modeling variation in intrusion detection abilities amongst computer

systems, and non-uniform distribution in probability that each vulnerability is ex-

ploited. First, in addition to modeling vulnerabilities in a system that could be

exploited to have system states changed, our ranking scheme also models intrusion

detection ability of computer systems defined as the system’s effort to detect and

prevent such state transitions by intruders exploiting vulnerabilities. Secondly, we

provide an instantiation of the biasing idea in [73] by modeling adversaries’ behav-

ior in exploiting vulnerabilities probabilistically based on certain metrics as stated

above but not by brute-force probing. The proposed ranking scheme produces more

accurate ranks of attack graphs when certain system metrics, such as evaluation of

system intrusion detection ability or adversaries’ ability in relation to probabilis-

tically exploit vulnerabilities, is available from for example empirical data or log

statistics. The proposed scheme can also be applied to other areas such as network

research or system design, e.g. determining minimum system intrusion detection

strength required to protect against best effort by an adversary.

To evaluate the effectiveness of the proposed ranking scheme, we implemented

a prototype of the scheme in Java. We experiment with the network example used

by Mehta et al. [111] and have the results compared with their scheme. The ex-

periments yielded promising results that demonstrated consistent ranks amongst

varying parameters modeled by the proposed ranking scheme.

One mechanism to answer questions like “what happens if a particular vulnera-

bility is patched” or “what happens if a firewall rule is altered, added or removed” is

to vary the network model accordingly and regenerate the attack graph. The regen-

erated attack graph often needs to be re-ranked. A network may be re-engineered

in many different forms, each resulting in generation of a new attack graph. The

PageRank algorithm is not of linear time complexity and thus it may be difficult to

6.1. Introduction 91

rank many attack graphs, each resulting from one of many possible changes in the

modeled system [62].

To solve this problem, we consider an alternative scheme to estimate ranks of

attack graphs based on the Graph Neural Network (GNN) [29], a new neural network

model capable of processing graph structures. The applications of GNN have been

successful in a number of areas where objects are naturally represented by a graph

structure, the most notable example being the ranking of web pages [28]. In [28] it

is shown that the GNN can be trained to simulate the PageRank function by using

a relatively small set of training samples. Once trained, the GNN can rank large

sets of web pages efficiently due to its ability to generalise over unseen data. In

other words, the GNN learns the ranking function (whether explicit, as in the case

of PageRank, or implicit) of web pages from a small number of training samples,

and can then generalise over unseen examples, possibly contaminated by noise.

Because of the above stated properties, GNN may be considered suitable for the

task of ranking attack graphs. Moreover, [27] provides a universal approximation

theorem that the GNN is capable of learning to approximate any “reasonable” prob-

lem (reasonable in the sense that the problem is not a pathological problem) to any

arbitrary degree of desired precision. The universal approximation theorem further

justifies the suitability of ranking attach graphs using GNN. However on the other

hand, some properties of attack graphs differ fundamentally from those of the web

graph. The web graph is a single, large graph with a recursive link structure (web

pages referring to themselves) whereas attack graphs can be numerous, are relatively

small, and may be of strictly tree structured. This together with the observation

that PageRank is a link based algorithm whereas the GNN is a node based approach

in that it processes nodes more effectively than links, whether the GNN is suitable

for the task of ranking attack graphs is unknown. One of the key questions that this

Chapter wishes to answer is the suitability of GNN for the purpose of ranking attack

graphs. There were numerous prior approaches to the processing of attack graphs

and similar poli-instantiation problems. Research in this area was particularly ac-

tive in the 1980s and early 1990s (see for example [81]). Most of these work were

of an automated proof nature, desiring to show if an attack graph is vulnerable or

not. Such automated proof concept can be expressed in terms of graph structured

data [78]. However, any attempts to use a machine learning approaches required the

pre-processing of the graph structured data to “squash” the graph structure into a

6.1. Introduction 92

vectorial form as most popular machine learning approaches, e.g. multilayer percep-

trons, self organising maps [38], take vectorial inputs rather than graph structured

inputs. Such pre-processing steps can result in the loss of contextual information be-

tween atomic components of the data. The GNN is a relatively recent development

of a supervised machine learning approach which allows the processing of generic

graphs without first requiring the “squashing” of graph structured data into vecto-

rial form. It is shown in [27] that the GNN algorithm is guaranteed to converge,

and that it can model any set of graphs to any arbitrary degree of precision. Hence,

to the best of our knowledge, this work is the first reported one on ranking attack

graphs (without pre-processing) using a machine learning approach.

Training a GNN can take a considerable period of time. It is shown in [29] that

the computational burden of the training procedure can be quadratic. However, once

trained, a GNN is able to produce output in linear time. This is an improvement

over O(N log 1
ε
), the computational complexity of PageRank, where N is the number

of links and ε is the expected precision [62]. Moreover, GNN is able to learn the

ranking scheme from a small number of training examples and then generalise to

other unseen attack graphs. For reasons stated above, using GNN may be more

suitable than the PageRank algorithm in the case where it requires ranking many

attack graphs, each resulting from one of many possible changes in the modeled

system. A network administrator is hence able to better evaluate changes made to

the system by focusing on important portions of “prospective” attack graphs.

The rest of this Chapter first present an attack graph ranking scheme that ad-

dresses situations which PageRank does not take into consideration in attack graph

ranking scenario. Experiments are then conducted and results presented to demon-

strate improvement upon PageRank. Finally an alternative ranking scheme using

GNN is provided. Part of this Chapter appeared in [54, 56].

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 93

6.2 Modeling Adversary and Intrusion Detection

Capability in Ranking Attack Models

6.2.1 Background and Preliminaries

Attack Models and Attack Graph

Sheyner et al. first formally defined the concept of Attack Model and Attack Graph

[75]. An Attack Model is a formal description of security related attributes of the

attacker, the defender and the modelled system using graph representation. Nodes

represent the states of the system, such as the attacker’s privilege level on individual

system components. Transitions correspond to actions taken by the attacker which

lead to a change in the state of the system. Note that not necessarily every transition

is an exploit; however any unauthorised transition in state is still undesired by system

administrators. As such we do not distinguish transition in state from exploit in our

discussion. The starting state of the model denotes the state of the system where

no damage has occurred and the attacker is looking for an entry point to enter the

system. As an example, if we consider the case of a computer network attack model,

a state represents the state of the attacker, the running services, access privileges,

network connectivity and trust relations. The transitions correspond to actions of

the attacker such as exploiting vulnerabilities to obtain elevated privileges on the

computer system. Formally,

Definition 4 [75] Let AP be a set of atomic propositions. An Attack Model is a

finite automaton M = (S, τ , s0, l), where S is a set of states in relation to a

computer system, τ ⊆ S × S is the transition relation, s0 ∈ S is the initial state,

and l : S → 2AP is a labelling of states with the set of propositions true in that state.

The negation of an attacker’s goal in relation to an attack model can be used

as security properties that the system must satisfy in a secure state. An example

of a security property in computer networks would be “the intruder cannot gain

root access on the database server”. States in an attack model where the security

properties are not satisfied are called error states. Given an attack model and the

attacker’s goal, an Attack Graph is a subgraph of the attack model which contains

only paths leading to one of the error states. Formally,

Definition 5 [75] Let AP be a set of atomic propositions. An Attack Graph is a

finite automaton G = (S, τ , s0, Ss, l), where S is a set of states in relation to a

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 94

computer system, τ ⊆ S × S is the transition relation, s0 ∈ S is the initial state,

Ss ⊆ S is the set of error states in relation to the security properties specified for

the system, and l : S → 2AP is a labelling of states with the set of propositions true

in that state.

Given an attack model and the associated security properties, model checking

techniques can be used to generate attack graphs automatically [94].

Web Graph and PageRank

Web Graph and Notations For a web model consisting of N nodes (pages),

notations used in the our discussion are defined in Table 6.1. Consider the web

graph shown in Figure 6.1 as an example. Node 1 has three out links (node 2, 3

and 4) and hence h1 = 3. Node 4 is pointed to by two nodes (node 1 and 3) and

hence pa[4] = {node 1, node 3}. Equation 6.1 represents the transition matrix W

in relation to the web graph. It is noticeable that not all nodes have out links, and

we refer to these nodes as dangling nodes. When reaches at a web page that has no

out links, a web surfer is often assumed to select a random page to continue surfing

[89] [6]. To model this, a dangling node in a web graph is typically assumed to be

pointing to all other nodes with equal probabilities.

Notation Meaning

hj Number of nodes (pages) pointed to by node (page) j
pa[j] Set of nodes (pages) pointing to node (page) j.
d Probability that a random surfer continues surfing by navi-

gating to one of the pages linked by the current page, usually
referred to as damping factor. Correspondingly, 1 − d repre-
sents the probability that a random surfer continues surfing
and navigates to a random page

W W = {wi,j} is a transition matrix such that wi,j = 1
hj

if there is

a link from node j to node i, otherwise wi,j = 0. An important

property of W is that ∀j,
∑N

i=1wi,j = 1.
ΠN [1, . . ., 1]’, i.e. transpose of the N -dimension unit vector

Table 6.1: Web Model Notations

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 95

Figure 6.1: An example of web graph

W =



0 0 0 0 0 0 0 0 0
1
3

0 0 0 0 0 0 0 0
1
3

0 0 0 0 0 0 0 0
1
3

0 1
3

0 0 0 0 0 0

0 1 0 1
2

0 0 0 0 0

0 0 0 0 1
2

0 0 0 0

0 0 0 0 1
2

0 1 0 0

0 0 1
3

1
2

0 0 0 0 0

0 0 1
3

0 0 0 0 0 0



(6.1)

PageRank Algorithm PageRank [89] is the algorithm used by Google to determine

the relative importance of web pages on the World Wide Web. PageRank is based

on the behavior model of a random surfer in a web graph. It assumes that a random

surfer starts at a random page and keeps clicking on links and eventually gets bored

and starts on another random page. To capture the notion that a random surfer

might get bored and restart from another random page, a damping factor d is

introduced, where 0 < d < 1. The transition probability from a state is divided

into two parts: d and 1 - d. The d mass is divided equally among the state’s

successors. Random transitions are added from that state to all other states with

the residual probability 1 - d equally divided amongst them, modelling that if arrives

at a dangling page where no links are available, a random surfer is assumed to pick

another page at random and continue surfing from that page. The computed rank

of a page is the probability of a random surfer reaching that page. That is, consider

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 96

a web graph with N pages linked to each other by hyperlinks, the PageRank xp of

page (node) p is defined as the probability of the random surfer reaching p, formally

xp = d
∑
q∈pa[p]

xq
hq

+
1− d
N

(6.2)

When stacking all the xp into a vector x, it can be represented as

x = dWx +
1

N
(1− d)ΠN (6.3)

Using iterative expression, Equation 6.3 can be represented as

x(t) = dWx(t− 1) +
1

N
(1− d)ΠN (6.4)

The computation of PageRank can be considered a Markov Process, as can be

seen from Equation 6.4. It has been proved that after multiple iterations, Equation

6.4 will reach a stationary state where each xp represents the probability of the

random surfer reaching page p [62].

Mehta et al’s Ranking Scheme

Given an attack model M = (S, τ , s0, l), the transition probability from each state

is divided into d and 1-d, modelling respectively that an attacker is discovered and

isolated from the system, or that the attacker remains undetected and proceeds to

the next state with the intrusion. Similar to PageRank, the rank of a state in an

attack model is defined to be the probability of the system being taken to that state

by a sequence of exploits. The ranks of all states are computed using the method

for computing PageRank described in Section 6.2.1. Breadth first search starting

from the initial system state s0 is then performed for each atomic attack in τ to

construct the transition matrix W . The only adjustment from PageRank, where a

transition from each state pointing to all other states with probability 1-d equally

divided amongst all other states, is that a transition from each state pointing back

to the initial state with probability 1-d is added to model the situation where an

attacker is discovered and has to restart the intrusion from the initial state.

6.2.2 Modelling Adversary and Intrusion Detection Capa-

bility in Ranking Attack Models

Recall the discussion in Section 6.1. Unlike the web graph model adopted by PageR-

ank where the probability that a random surfer follows a link to the next page is

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 97

state independent, the likelihood of an attacker remaining undetected at a state so

as to exploit a vulnerability that takes the system to another state could be con-

sidered to be influenced by the number of steps required to reach the state from

the starting position. Therefore we assume the probability of an attacker remaining

undetected at a state decreases with number of steps required to reach that state.

The decreasing rate is not universal amongst all computer systems but system spe-

cific as determined by each system’s intrusion detection ability. Another important

dissimilarity between a web surfing scenario and a system intrusion scenario is that

exploits taking a computer system from one state to another may be “selected” not

at random but based on the adversary’s evaluation on metrics such as cost, effort,

probability of success and being detected, whereas links taking a web surfer to the

next page is always selected at random with equal probabilities. These factors affect

an adversary’s chance to reach the final goal, and therefore should be considered

when ranking states of attack models and graphs.

In this section, we propose an adversary aware and intrusion detection aware

ranking scheme that addresses problems stated above. Being adversary aware, the

proposed scheme considers how an adversary selectively exploiting vulnerabilities

affect the chance to compromise the system. Being intrusion detection aware, the

proposed scheme considers system intrusion detection ability and how it affects an

adversary’s chance to reach the final goal.

6.2.3 Web Graph Adjustment

The transition model of web graph needs to be adjusted to provide a more accu-

rate simulation of computer system state transitions in relation to system intrusion

scenario. As in Mehta et al.’s ranking scheme, we add a transition from each state

pointing back to the initial state with probability 1-d, modelling the situation where

an intrusion is detected and needs to be restarted from initial state. Furthermore,

our ranking scheme differs from Mehta et al.’s scheme in that

1. We assume that the probability of an attacker remaining undetected at a state

decreases with the number of steps required to reach that state, which in an

attack model can be represented as length of the intrusion path to reach that

state. The decreasing rate is determined by each system’s intrusion detec-

tion ability. In general, well-protected systems such as systems implementing

“defense-in-depth” have better ability to detect intrusions at earlier stages

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 98

and can be simulated with greater decreasing rates. As it is difficult to predict

the actual intrusion path, we simplify the situation by assuming that at each

state sj the probability of an attacker remaining undetected decreases at a

rate proportional to l(s0, sj), length of the shortest path between state sj and

initial state s0. That is, the probability of an attacker remaining undetected

at state sj exponentially decays with length of the shortest path from s0 to sj.

Consequently, transition probability from each state sj is divided into dj and

1-dj representing respectively the situation where an attacker remains unde-

tected and is able to take the system to another state, or where the attacker is

discovered and has to restart the intrusion. dj is the value of d exponentially

decaying with l(s0, sj) where d is the usual damping factor.

2. In a system intrusion scenario, it is more likely that an adversary has the ability

to prioritise and exploit “promising” vulnerabilities based on past experience

and knowledge, other than probing the target network with brute-force attack.

This is modelled in our ranking scheme by assigning a separate probability to

each type of exploit. We divide each dj among state sj’s successors according

to the probability that each type of exploit is selected to take sj to one of

its successors. The probability distribution can be obtained from empirical

data or other sources [84]. By doing so, that the adversary probes the system

with brute-force attack can be modelled by assigning equal probabilities to

all exploits. Similarly, intrusions by an experienced attacker who exploits

vulnerabilities selectively to maximise the chance of success can be modelled

by assigning higher probabilities to critical exploits.

3. We add a transition from each dangling state pointing back to the initial state

s0 with probability 1, modelling the situation that an adversary has come to a

state where the adversary cannot proceed with the intrusion and has to restart

from initial state.

Consider the graph illustrated in Figure 6.1 as an example. Assume we have

some empirical data that enables us to estimate that whenever the system is in s1, on

average it will take the transition to s2, s3 and s4 2, 5 and 3 times, respectively, out of

ten. We can then place probabilities 0.2, 0.5 and 0.3 on these transitions. Similarly,

assume that the empirical data enables us to place probability 0.3, 0.4 and 0.3 to

the transitions taking s3 to s4, s8 and s9 respectively, probability 0.8 and 0.2 to the

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 99

Figure 6.2: Transitions in attack models

transitions taking s4 to s5 and s8 respectively, and probability probability 0.4 and 0.6

to the transitions taking s5 to s6 and s7 respectively. Figure 6.2 illustrates the graph

with adjusted transition model from web graphs, which is a more accurate simulation

of computer system state transition in an intrusion scenario. The intensity of color

for each state sj visualise the probability dj that an intrusion is not detected at that

state.

6.2.4 Transition Matrix Construction

To rank an attack model M = (S, τ , s0, l), we need to construct the transition

matrix W = wij, the matrix representation of state transitions in an attack model,

where wij is the probability of the system being taken to state sj from state si.

Let τ(sj → si) denote the proportion between the number of exploits that take the

system from si to sj and the total number of exploits applicable to si and l(si, sj)

denote the length of the shortest path between si and sj, a concrete algorithm for

constructing W is presented in Algorithm 5. Depth-first-search or model checker

such as NuSMV [73] is first used to construct the N × N adjacency matrix AM

where N is the number of reachable states in M , such that AM [i, j] = 1 if state sj

is one of the successor states of state si, otherwise AM [i, j] = 0. Then the transition

matrix W is constructed following the above stated adjustment to state transitions

in web graphs.

Reconsider the web graph illustrated in Figure 6.1 as a example. We now con-

struct the transition matrix W according to the adjustment illustrated in Figure

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 100

6.2 using Algorithm 5. The generated W is shown in Equation 6.5 where each

di = d× e−λl(s1,si), d being the usual damping factor used in PageRank.

W =



0 1− d2 1− d3 1− d4 1− d5 1 1− d7 1 1

0.2 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.3 0 0.3d3 0 0 0 0 0 0

0 d2 0 0.8d4 0 0 0 0 0

0 0 0 0 0.4d5 0 0 0 0

0 0 0 0 0.6d5 0 d7 0 0

0 0 0.4d3 0.2d4 0 0 0 0 0

0 0 0.3d3 0 0 0 0 0 0



(6.5)

6.2.5 Ranking Attack Models

Following Mehta et al.’s definition, we define the rank for each state sj in an attack

model as the probability that sj is reached from the initial state s0. This can be

recursively represented as

xp =
∑
q∈pa[p]

wqp × xq (6.6)

When stacking all xp into one vector x, Equation 6.6 can be represented as

x = Wx (6.7)

x in Equation 6.7 can be computed by multiple iterations through the following

equation until a stationary state is reached.

x(t) = Wx(t-1) (6.8)

If Equation 6.8 reaches a stationary state, i.e. x(t) = x(t−1), after a long run of

computation, all states in attack graph can be ranked. However, Equation 6.8 may

or may not reach a stationary state after a long run of computation. Moreover, the

result after multiple iterations may not be interesting (for example, the stationary

state limt→∞ x(t) may be a vector of all 0s). A detailed proof of Theorem 1

is provided in the following to justify that Equation 6.8 constructed as above can

always reach a non-trivial stationary state after multiple iterations.

6.2. Modeling Adversary and Intrusion Detection Capability in Ranking Attack

Models 101

Lemma 2 Each column of the transition matrix W constructed by Algorithm 5

sums to 1, i.e.
∑N

i=1wi,j = 1.

Proof of the above lemma follows directly the way by which W is constructed.

Theorem 3 Equation 6.8 converges at a non-trivial vector x∗ where
∑

i x
∗
i = 1

after multiple iterations.

Proof: Consider a linear transformation of xp defined in Equation 6.2. Let

x′p = c1 × xp + c2 = c1 ×
∑
q∈pa[p]

xq × wpq + c2 (6.9)

where c2 = 1−c1
N

. Stacking all x′p into one vector x′ and using iterative expression,

Equation 6.9 is represented as

x(t)’ = c1Wx(t-1)’ + c2ΠN (6.10)

A well-known theory states that the condition that MX(K + 1) = NX(K) + b

converges at (M −N)−1b is ρ(M−1N) < 1 [32].

Here we have M = I and N = c1W . Therefore ρ(M−1N) = ρ(c1W) = c1ρ(W).

Assume x is an eigenvector of W and λ is the associated eigenvalue, then Wx =

λx, i.e. ∀i,
∑N

j=1wi,jxi = λxi. Extracting the common factor xi, this can be

written as xi(
∑N

j=1 wi,jxi − λ) = 0. As x is an eigenvector, there exist non-zero

xi. Therefore, λ =
∑N

j=1 wi,jxi. Following lemma 1,
∑N

i=1wi,j = 1, we know that

λ =
∑N

j=1wi,jxi = 1. Therefore, ρ(W) = 1. On the other hand, 0 < c1 < 1. As a

result, ρ(M−1N) = c1ρ(W) < 1, and hence Equation 6.10 converges at a stationary

state limt→∞ x(t)’.

We then prove by induction on t that the stationary state ‖ limt→∞ x(t)’‖1 of

Equation 6.10 is a unit vector, i.e. ‖ limt→∞ x(t)’‖1 = 1.

1. For t = 0, Let x(0)’ = 1
N

ΠN ; hence ‖x(0)’‖1 = 1.

2. Let t > 0 and assume by induction that ‖x(t)’‖1 = 1. Then, based on the

definition of stochastic matrices,

‖x(t+1)’‖ = Π′Nx(t+1)’ = c1Π′NWx(t)’ + c2Π′NΠN

= c1Π′Nx(t)’ + (1− c1) = 1 (6.11)

6.3. Implementation and Experiments 102

We hence proved that with the initial unit vector x(0)’ = 1
N

ΠN , ‖ limt→∞ x(t)’‖1

= 1. As stationary solution of Equation 6.10 is independent of the initial value

x(0)’ [32], it can be concluded immediately that ‖ limt→∞ x(t)’‖1 = 1 with

any initial vector x(0)’. Note that it can be seen from Equation 6.9 that

x′p > 0; hence ‖x(t)’‖1 =
∑N

p=1 x
′
p = 1

The stationary state x(t) of Equation 6.2 can be retrieved from x(t)’ with linear

conversion x(t) = (x(t)’−c2)
c1

. x(t) is not trivial, because

N∑
p=1

xp =
N∑
p=1

x′p − c2

c1

=

∑N
p=1 x

′
p −N × c2

c1

=
1−N × c2

c1

= 1 (6.12)

That is, the stationary state x(t) is a unit vector. �

Given an attack model and empirical data that enables us to evaluate proba-

bilities of different vulnerabilities being exploited, we first construct the transition

matrix W as presented in Algorithm 5. We then assign random initial value to the

rank of each state, and run Equation 6.8 for multiple iterations until it reaches the

stationary state, guaranteed to exist by Theorem 3.

6.3 Implementation and Experiments

To evaluate the effectiveness of the proposed ranking scheme, we developed a toolkit

in Java that ranks attack models with the proposed scheme. We ran the toolkit on

the network example used by Mehta et al [111] and have the results compared with

their ranking scheme. In this section, we first provide implementation details of the

toolkit, then present the network model and the experimental results.

6.3.1 Implementation

The implementation toolkit is developed in Java but relies on NuSMV [73] for model

checking functionalities, such as generating the complete set of reachable states

given an initial state and the set of allowed state transitions. We made a minor

modification to the source code of NuSMV (see below) to achieve interaction with

our Java-based implementation toolkit. In the following, we provide details on the

architecture of our implementation toolkit and its interaction with the modified

NuSMV.

6.3. Implementation and Experiments 103

Toolkit Architecture

Figure 6.3: Toolkit Architecture

The architecture of our Java-based attack model ranking toolkit is illustrated in

Figure 6.3. A network model along with the security specification written in NuSMV

modelling language are fed to NuSMV. NuSMV then generates the complete set of

reachable states S in the given model. We also modified NuSMV so that for each

state s ∈ S it generates the set of successors. The results generated as above

are then saved as files, and feeded to the implementation toolkit to construct the

adjacency matrix for states in the model. Combining the adjacency matrix, the

empirical evaluation on the probability that each type of vulnerability is exploited,

and the evaluation on the system’s intrusion detection ability, the implementation

toolkit generates the transition matrix W and ranks the states in the attack model

as described in Section 6.4.2.

Toolkit Components

State Builder With the NuSMV command print reachable states -v, we generate

the set of reachable states from the specified system initial state which are

saved to a text file. The State Builder then reads the set of reachable states

into Java-specific representation from the generated text file.

Adjacency Matrix Builder We modified NuSMV such that it generates and saves

into a text file the successor states of a given state with the -st command line

option. Iteratively using the -st option for each reachable state, the Adja-

cency Matrix Builder generates an N ×N adjacency matrix AM where N is

6.3. Implementation and Experiments 104

the number of states in the attack model such that AM [i, j] = 1 if state j is

one of the successor states of state i, otherwise AM [i, j] = 0.

Transition Matrix Builder Combining the adjacency matrix, the empirical eval-

uation on the probability that each type of vulnerability is exploited, and the

evaluation on the system’s intrusion detection ability, the Transition Matrix

Builder follows Algorithm 5 to generate the transition matrix W .

Attack Model Ranker Given the transition matrix W , the Attack Model Ranker

computes the ranks for all reachable states in the attack model using Equation

6.8 iteratively until the stationary is reached. A non-trivial stationary state is

guaranteed to exist after multiple iterations by Theorem 3.

6.3.2 The Network Model for Experiments

Our experiments are based upon a network model similar to the one used by Mehta

et al for comparison with their ranking scheme. The network model is illustrated in

Figure 6.4. There are two target hosts ip1 and ip2, and a firewall separating them

from the rest of the Internet. As shown each host is running two of three possible

services (ftp, sshd, database). We model the same 4 types of atomic attacks sum-

marised in Table 6.2 as in [95] [111] for comparable results. A detailed explanation

of each attack follows.

The intruder launches an attack starting from an external machine ipa that lies

outside the firewall. The eventual goal is to gain access to the database. For that,

the attacker needs root access on the database server ip2.

We construct a finite state model of the network such that each state represents

the system state including trust relation, connectivity, and adversary privilege on

each machine, and each state transition corresponds to a single atomic attack which

takes the system from one state to another.

Connectivity and Trust Relation Connectivity models the connection between

two machines. We denote the connectivity by a binary relation Reachable ⊆
Host × Host, where Reachable(h1, h2) = 1 if h1 can connect to h2, otherwise

Reachable(h1, h2) = 0, i.e. either there is no physical link between h1 and h2,

or the link is blocked by the firewall. Assuming the firewall policy is that the

ftp server (ip1) is publicly accessible while the database server (ip2) can only be

accessed internally, the connectivity relation is shown in Table 6.3. Similarly, we

6.3. Implementation and Experiments 105

Figure 6.4: Network

denote trust relation between machines by a binary relation Trust ⊆ Host×Host,
where Trust(h1, h2) = 1 if a user on h1 can login to h2 remotely without specifying

a password, Trust(h1, h2) = 0 otherwise. The trust relation is summarised in Table

6.4.

The Adversary and Privilege Privileges are {none, user, root}. There is an

ordering of privileges: none < user < root. The adversary has root on ipa and

no privileges on other machines initially. We use the function plvlA(H) : Hosts →
{none, user, root} to denote the level of privilege that intruder A has on machine H.

Vulnerabilities and Atomic Attacks We model the same 4 types of attacks

as in [95] [111], each taking the modelled network from one state to another as

described by the “effect” section of the attack. An attack is only applicable when

both the network precondition and intruder precondition are satisfied. Throughout

the following description, we denote source and target machine by S and T . To

simplify the notations, we use sshH , ftpH and localH to denote the presence of

a vulnerability by running ssh service, ftp service and a setuid root executable

respectively on host H.

1. sshd buffer overflow: Some versions of ssh services are vulnerable to a buffer

overflow attack that allows an intruder to obtain a root shell on the target

machine. Formally,

6.3. Implementation and Experiments 106

attack sshd-buffer-overflow is

intruder preconditions

[User-level privileges on host S]

plvlA(S) ≥ user

network preconditions

[Host T is running a vulnerable version of ssh service]

sshT

[Host T is reachable from S]

Reachable(S, T) = 1

intruder effects

[Root-level privileges on host T]

plvlA(T) = root

end

2. ftp .rhosts: With a writable home directory and an executable command shell

assigned to anonymous ftp users, an intruder can modify the .rhosts file in the

ftp home directory, so as to create a remote login trust relationship between

the attacker’s machine and the target machine. Formally,

attack ftp-rhosts is

intruder preconditions

[User-level privileges on host S]

plvlA(S) ≥ user

network preconditions

[Host T is running a ftp service in a writable directory,

which gives a user shell to ftp users]

ftpT

[Host T is reachable from S]

Reachable(S, T) = 1

network effects

6.3. Implementation and Experiments 107

[Trust relation between the intruder’s machine and the target]

Trust(S, T) = 1

end

3. remote login: Using an existing remote login trust relationship between two

machines, the intruder can login from the attacker’s machine to the target and

obtain a user shell without supplying a password. Although remote login is

usually considered a legitimate operation by regular users, it is however an

atomic attack from an intruder’s viewpoint. Formally,

attack remote-login is

intruder preconditions

[User-level privileges on host S]

plvlA(S) ≥ user

network preconditions

[Host T trusts S]

Trust(S, T) = 1

[Host T is reachable from S]

Reachable(S, T) = 1

intruder effects

[User-level privileges on host T]

plvlA(T) = user

end

4. local buffer overflow: The attacker exploits a buffer overflow vulnerability in

a setuid root executable to gain root access. Formally,

attack local-buffer-overflow is

intruder preconditions

[User-level privileges on host T]

plvlA(T) ≥ user

network preconditions

6.3. Implementation and Experiments 108

[Host T runs a vulnerable version of a setuid root executable]

localT

intruder effects

[Root-level privileges on host T]

plvlA(T) = root

end

A NuSMV Implementation A NuSMV model that implements the above network

model is as follows.

MODULE main

VAR

ip1 : machine;

ip2 : machine;

c : Connection;

t : Trust;

attackIP1ssh : process AttackMachineSSH(ip1 ip2 c.conn t.trust);

attackIP1ftp : process AttackMachineFTP(ip1 ip2 c.conn t.trust);

attackIP1remote : process AttackMachineRemote(ip1 ip2 c.conn t.trust);

attackIP1local : process AttackMachineLocal(ip1 ip2 c.conn t.trust);

attackIP2ssh : process AttackMachineSSH(ip2 ip1 c.conn t.trust);

attackIP2ftp : process AttackMachineFTP(ip2 ip1 c.conn t.trust);

attackIP2remote : process AttackMachineRemote(ip2 ip1 c.conn t.trust);

attackIP2local : process AttackMachineLocal(ip2 ip1 c.conn t.trust);

ASSIGN

init(ip1.id) := 2;

init(ip2.id) := 3;

init(ip1.vulnerability[1]) := 1;

init(ip1.vulnerability[2]) := 1;

init(ip1.vulnerability[3]) := 1;

6.3. Implementation and Experiments 109

init(ip1.vulnerability[4]) := 1;

init(ip2.vulnerability[1]) := 0;

init(ip2.vulnerability[2]) := 1;

init(ip2.vulnerability[3]) := 1;

init(ip2.vulnerability[4]) := 1;

init(ip1.access) := none;

init(ip2.access) := none;

init(ip1.exploit[1]) := 0;

init(ip1.exploit[2]) := 0;

init(ip1.exploit[3]) := 0;

init(ip1.exploit[4]) := 0;

init(ip2.exploit[1]) := 0;

init(ip2.exploit[2]) := 0;

init(ip2.exploit[3]) := 0;

init(ip2.exploit[4]) := 0;

SPEC AG !(ip2.access = root)

MODULE machine

VAR

id : {1 2 3};

access : { none user root };

vulnerability : array 1..4 of boolean;

exploit : array 1..4 of boolean;

ASSIGN

MODULE Connection

6.3. Implementation and Experiments 110

VAR

conn : array 1..3 of array 1..3 of boolean;

ASSIGN

init(conn[1][1]) := 1;

init(conn[1][2]) := 1;

init(conn[1][3]) := 0;

init(conn[2][1]) := 1;

init(conn[2][2]) := 1;

init(conn[2][3]) := 1;

init(conn[3][1]) := 1;

init(conn[3][2]) := 1;

init(conn[3][3]) := 1;

MODULE Trust

VAR

trust : array 1..3 of array 1..3 of boolean;

ASSIGN

init(trust[1][1]) := 1;

init(trust[1][2]) := 0;

init(trust[1][3]) := 0;

init(trust[2][1]) := 0;

init(trust[2][2]) := 1;

init(trust[2][3]) := 1;

init(trust[3][1]) := 0;

init(trust[3][2]) := 1;

init(trust[3][3]) := 1;

6.3. Implementation and Experiments 111

MODULE AttackMachineSSH(targetCharacter‘ route conn trust)

VAR

ASSIGN

next(target.exploit[1]) :=

case

target.vulnerability[1]

& (

(target.id = 2 & (conn[1][2] | (route.id=3 &

(route.access=user | route.access=root)

& conn[1][3] & conn[3][2]))) |

(target.id = 3 & (conn[1][3] | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3])))

)

& !target.exploit[1]

: 1;

1 : target.exploit[1];

esac;

next(target.access) :=

case

target.vulnerability[1]

& (

(target.id = 2 & (conn[1][2] | (route.id=3

& (route.access=user | route.access=root)

& conn[1][3] & conn[3][2]))) |

(target.id = 3 & (conn[1][3] | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3])))

)

6.3. Implementation and Experiments 112

& !target.exploit[1]

: root;

1 : target.access;

esac;

next(target.id) := target.id;

next(target.vulnerability[1]) := target.vulnerability[1];

next(target.vulnerability[2]) := target.vulnerability[2];

next(target.vulnerability[3]) := target.vulnerability[3];

next(target.vulnerability[4]) := target.vulnerability[4];

next(conn[1][1]) := conn[1][1];

next(conn[1][2]) := conn[1][2];

next(conn[1][3]) := conn[1][3];

next(conn[2][1]) := conn[2][1];

next(conn[2][2]) := conn[2][2];

next(conn[2][3]) := conn[2][3];

next(conn[3][1]) := conn[3][1];

next(conn[3][2]) := conn[3][2];

next(conn[3][3]) := conn[3][3];

next(trust[1][1]) := trust[1][1];

next(trust[1][2]) := trust[1][2];

next(trust[1][3]) := trust[1][3];

next(trust[2][1]) := trust[2][1];

next(trust[2][2]) := trust[2][2];

next(trust[2][3]) := trust[2][3];

next(trust[3][1]) := trust[3][1];

next(trust[3][2]) := trust[3][2];

next(trust[3][3]) := trust[3][3];

FAIRNESS

running;

6.3. Implementation and Experiments 113

MODULE AttackMachineRemote(target route conn trust)

VAR

ASSIGN

next(target.exploit[3]) :=

case

target.vulnerability[3]

& (

(target.id = 2 & ((conn[1][2] & trust[1][2]) | (route.id=3

& (route.access=user | route.access=root)

& conn[1][3] & conn[3][2] & trust[3][2]))) |

(target.id = 3 & ((conn[1][3] & trust[1][3]) | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3] & trust[2][3])))

)

& !target.exploit[3]

: 1;

1 : target.exploit[3];

esac;

next(target.access) :=

case

target.vulnerability[3]

& (

(target.id = 2 & ((conn[1][2] & trust[1][2]) | (route.id=3

& (route.access=user | route.access=root)

& conn[1][3] & conn[3][2] & trust[3][2]))) |

(target.id = 3 & ((conn[1][3] & trust[1][3]) | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3] & trust[2][3])))

)

& !target.exploit[3]

6.3. Implementation and Experiments 114

: user;

1 : target.access;

esac;

next(target.id) := target.id;

next(target.vulnerability[1]) := target.vulnerability[1];

next(target.vulnerability[2]) := target.vulnerability[2];

next(target.vulnerability[3]) := target.vulnerability[3];

next(target.vulnerability[4]) := target.vulnerability[4];

next(conn[1][1]) := conn[1][1];

next(conn[1][2]) := conn[1][2];

next(conn[1][3]) := conn[1][3];

next(conn[2][1]) := conn[2][1];

next(conn[2][2]) := conn[2][2];

next(conn[2][3]) := conn[2][3];

next(conn[3][1]) := conn[3][1];

next(conn[3][2]) := conn[3][2];

next(conn[3][3]) := conn[3][3];

next(trust[1][1]) := trust[1][1];

next(trust[1][2]) := trust[1][2];

next(trust[1][3]) := trust[1][3];

next(trust[2][1]) := trust[2][1];

next(trust[2][2]) := trust[2][2];

next(trust[2][3]) := trust[2][3];

next(trust[3][1]) := trust[3][1];

next(trust[3][2]) := trust[3][2];

next(trust[3][3]) := trust[3][3];

FAIRNESS

running;

6.3. Implementation and Experiments 115

MODULE AttackMachineFTP(target route conn trust)

VAR

ASSIGN

next(target.exploit[2]) :=

case

target.vulnerability[2]

& (

(target.id = 2 & (conn[1][2] | (route.id=3

& (route.access=user | route.access=root)

& conn[1][3] & conn[3][2]))) |

(target.id = 3 & (conn[1][3] | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3])))

)

& !target.exploit[2]

: 1;

1 : target.exploit[2];

esac;

next(trust[1][2]) :=

case

target.vulnerability[2]

& (

(target.id = 2 & (conn[1][2] | (route.id=3

& (route.access=user | route.access=root)

& conn[1][3] & conn[3][2])))

)

& !target.exploit[2]

: 1;

1 : trust[1][2];

esac;

6.3. Implementation and Experiments 116

next(trust[1][3]) :=

case

target.vulnerability[2]

& (

(target.id = 3 & (conn[1][3] | (route.id=2

& (route.access=user | route.access=root)

& conn[1][2] & conn[2][3])))

)

& !target.exploit[2]

: 1;

1 : trust[1][3];

esac;

next(target.id) := target.id;

next(target.vulnerability[1]) := target.vulnerability[1];

next(target.vulnerability[2]) := target.vulnerability[2];

next(target.vulnerability[3]) := target.vulnerability[3];

next(target.vulnerability[4]) := target.vulnerability[4];

next(conn[1][1]) := conn[1][1];

next(conn[1][2]) := conn[1][2];

next(conn[1][3]) := conn[1][3];

next(conn[2][1]) := conn[2][1];

next(conn[2][2]) := conn[2][2];

next(conn[2][3]) := conn[2][3];

next(conn[3][1]) := conn[3][1];

next(conn[3][2]) := conn[3][2];

next(conn[3][3]) := conn[3][3];

next(trust[1][1]) := trust[1][1];

next(trust[2][1]) := trust[2][1];

next(trust[2][2]) := trust[2][2];

6.3. Implementation and Experiments 117

next(trust[2][3]) := trust[2][3];

next(trust[3][1]) := trust[3][1];

next(trust[3][2]) := trust[3][2];

next(trust[3][3]) := trust[3][3];

FAIRNESS

running;

MODULE AttackMachineLocal(target route conn trust)

VAR

ASSIGN

next(target.exploit[4]) :=

case

target.vulnerability[4]

& !target.exploit[4]

& target.access = user

: 1;

1 : target.exploit[4];

esac;

next(target.access) :=

case

target.vulnerability[4]

& !target.exploit[4]

& target.access = user

: root;

1 : target.access;

esac;

next(target.id) := target.id;

6.3. Implementation and Experiments 118

next(target.vulnerability[1]) := target.vulnerability[1];

next(target.vulnerability[2]) := target.vulnerability[2];

next(target.vulnerability[3]) := target.vulnerability[3];

next(target.vulnerability[4]) := target.vulnerability[4];

next(conn[1][1]) := conn[1][1];

next(conn[1][2]) := conn[1][2];

next(conn[1][3]) := conn[1][3];

next(conn[2][1]) := conn[2][1];

next(conn[2][2]) := conn[2][2];

next(conn[2][3]) := conn[2][3];

next(conn[3][1]) := conn[3][1];

next(conn[3][2]) := conn[3][2];

next(conn[3][3]) := conn[3][3];

next(trust[1][1]) := trust[1][1];

next(trust[1][2]) := trust[1][2];

next(trust[1][3]) := trust[1][3];

next(trust[2][1]) := trust[2][1];

next(trust[2][2]) := trust[2][2];

next(trust[2][3]) := trust[2][3];

next(trust[3][1]) := trust[3][1];

next(trust[3][2]) := trust[3][2];

next(trust[3][3]) := trust[3][3];

FAIRNESS

running;

6.3.3 Experimental Results Analysis and Evaluation

Let the security property be “intruder cannot gain root access on ip2”. We ran our

attack model ranking toolkit presented in Section 6.3.1, and visualised the results

with the graphViz package [10]. Figure 6.5 illustrates the result obtained as such.

For each state, the intensity of color is proportional to the rank of that state. Any

path in the graph from the root node to a leaf node represents a sequence of exploits

6.3. Implementation and Experiments 119

with which the intruder can achieve the final goal. It can be seen that local buffer

overflow and remote login are critical exploits as each path from the root node to a

leaf node has exploited them at least once. After fixing either local buffer overflow or

remote login, NuSMV asserts security property “intruder cannot gain root access on

ip2” to be true. On the other hand, ftp.rhost and ssh buffer over flow are non-critical

exploits as an intruder can still reach the final goal without either of them.

To investigate how an attacker selectively exploiting vulnerabilities affects the

chance of compromising the system, we vary the probability assigned to each type of

exploit and have other exploits divide the remaining probability equally. Changes to

the ranks of states resulting from varying the probabilities of the exploits reflects how

an attacker selectively exploiting vulnerabilities affects the chance to compromise

the system. We also set the rate by which probability of an intrusion remaining

undetected decays with the shortest path to 0, so that changes to the rank of a state

are the result only of varying the probabilities of the exploits. The experimental

result is plotted in Figure 6.6 where the Y-axis represents the total rank of error

states, i.e. the probability of an adversary reaching the final goal. It can be seen that

the total rank of error states increases as the attacker prioritises critical exploits local

buffer overflow and remote login, modelled by assigning higher probabilities to the

two attacks. Similarly, the adversary’s chance to succeed decreases as the adversary

prioritise non-critical exploits ftp.rhosts and sshd buffer overflow. In general, our

scheme produces a higher rank when the attacker prioritise critical exploits and

hence has better chance to succeed. The rank produced by our scheme joins the

rank by Mehta’s scheme at the equal probability point, i.e. where all exploits are

assigned equal probabilities.

To investigate the effect that probability of an intrusion remaining undetected

decays at a rate proportional to length of the shortest path from initial state, we

vary the decaying rate λ while assigning equal probabilities to all exploits. The

experimental result is plotted in Figure 6.7. It can be seen that the total rank of

error states increases as the decaying rate decreases. This corresponds to the fact

that an attacker has less chance of success on well-protected systems such as systems

implementing “defense-in-depth” which at each step of the intrusion and thus on the

whole has a higher probability of being able to discover and thwart the intrusion.

The ranks produced by our ranking scheme consistently remain lower than the rank

by Mehta’s scheme, resulting from the decaying of probability that an adversary

remains undetected and is able to proceed.

6.3. Implementation and Experiments 120

Figure 6.5: Comparison of Ranked Attack Models. (a) The complete ranked attack
model (b) Attack Model after fixing up the SSH vulnerability (c) Attack Model after
fixing FTP vulnerability

6.3. Implementation and Experiments 121

Figure 6.6: Rank varies with attack probabilities

Figure 6.7: Rank varies with decaying rate

6.3. Implementation and Experiments 122

Figure 6.8 plots the experimental result by the overall effect of various decaying

rates and varying probability assigned to each type of exploit (still other exploits

divide remaining probability equally). It can be seen that ranking of system states is

dominated by decaying of probability that intrusion remains undetected. Variation

in probability assigned to each type of exploit only affects ranking of states to

a minor extent. It can also be see that, the greater the decaying rate is, the less

variation in probability assigned to each type of exploit affects ranking of states. The

result reveals that deployment of well-protected system offsets experienced intruder’s

strategy in selectively exploiting vulnerabilities to maximise the chance of success,

lowering the chance of success to no more than that of brute-force type of attack.

Figure 6.8: Rank varies with decaying rate and attack probabilities

The experimental results and analysis presented above demonstrates the advan-

tage and application of the proposed ranking scheme. Firstly, it considers the effect

on ranking of system states by an intruder selectively exploiting vulnerabilities to

6.4. Ranking Attack Graphs with Graph Neural Network 123

maximise the chance of success. Secondly, it is able to model the effect on ranking of

system states by system intrusion detection ability that aims at thwarting exploits

of vulnerabilities that take the system to another state where the intruder gains an

elevated privilege. Therefore, the proposed ranking scheme can rank attack mod-

els more accurately, and provide more realistic evaluation on the probability that

a system is in a compromised state. Intuitively, the probability of a system being

in a compromised state increases with the probability that an intruder is able to

prioritise critical exploits, and with weakening system intrusion detection ability;

however, our ranking scheme provides a quantitative measure for the increase. The

proposed scheme can also assist network researchers and architects in network design

and analysis, e.g. determining the minimum intrusion detection strength required

to thwart the best effort in selectively exploiting vulnerabilities by intruders.

6.4 Ranking Attack Graphs with Graph Neural

Network

6.4.1 Preliminaries

Multi-Layer Perceptron Neural Networks

The application of neural networks [38] for pattern recognition and data classification

has gained acceptance in the past. In this Section, supervised neural networks based

on layered structures are considered. Multilayer perceptrons (MLPs) are perhaps the

most well known form of supervised neural networks [38]. MLPs gained considerable

acceptance among practitioners from the fact that a single-hidden-layer MLP has a

universal approximation property [49], in that it can approximate a non-pathological

nonlinear function to any arbitrary degree of precision.

The basic computation unit in a neural network is referred to as a neuron [38].

It generates the output value through a parameterised function called a transfer

function f . An MLP can consist of several layers of neurons. The neuron layer that

accepts external input is called the input layer. The dimension of the input layer

is identical to the dimension of the data on which an MLP is trained. The layer

that generates the output of the network is called the output layer. Its dimension is

identical to the dimension of the target values. A layer between the input layer and

the output layer is known as a hidden layer. There may be more than one hidden

6.4. Ranking Attack Graphs with Graph Neural Network 124

layer but here for simplicity we will only consider the case of a single hidden layer.

Each layer is fully connected to the layer above or below1. The input to each hidden

layer neuron and the output layer neuron is the weighted sum from the previous

layer, parameterised by the connecting weights, known as synaptic weights. The

multiple layered structure described here has given MLP its name.

Figure 6.9: An example of a multi-layered perceptron neural network, where F1,
and F2 form the input layer, F3 and F4 form the hidden layer, while F5 forms the
output layer.

Figure 6.9 illustrates an example of a single-hidden-layered MLP. The transfer

function associated with each of the neurons is Fj = f(
∑n

i=0 wjixi), where n is the

total number of neurons in the previous layer, x0 = 1, xi is the i−th input (either

a sensory input or the output Fj from a previous layer), and wji is a real valued

weight connecting neuron (or input) i with neuron j. The transfer function f(·)
often takes the shape of a hyperbolic tangent function. The MLP processes data in

a forward fashion starting from the input layer towards the output layer.

Training an MLP [38] is performed through a backward phase known as error

back propagation, starting from the output layer. It is known that an MLP can

approximate a given unknown continuously differentiable function 2 g(x1, . . . xn) by

learning from a training data set {xi1, . . . xin, ti}, 1 ≤ i ≤ r where ti = g(xi1, . . . xin).

It computes the output for each inputXi = {xi1, xi2 . . . xin} and compares the output

with the target ti. Weights are then adjusted using the gradient descent algorithm

based on the error towards the best approximation of the target ti. The forward

and the backward phases are repeated a number of times until a given prescribed

accuracy (stopping criterion) is met e.g. the output is “sufficiently” close to the

target.

Once the stopping criterion is met, the learning stage is finished. The MLP is

1Fully connected layers are the most commonly studied and used architectures. There are some
neural network architectures which are connected differently.

2The function does not need to be continuously differentiable. However for our purpose in this
Section, we will assume this simplified case.

6.4. Ranking Attack Graphs with Graph Neural Network 125

then said to emulate the unknown nonlinear function g(·, . . . , ·). Given any input

Xi with unknown target ti, it will be able to produce an output from g or it is said

to be able to generalise from the training set to the unseen input Xi.

The application of MLP networks has been successful in many areas [29, 28, 38].

The inputs to the MLP would need to be in vectorial form, and as such, it cannot

be applied to graph structured inputs or inputs which relate to one another.

Graph Neural Network

In several applications including attack graphs and web page ranking, objects and

their relations can be represented by a graph structure such as a tree or a directed

acyclic graph. Each node in the graph structure represents an object in the problem

domain, and each edge represents relations between objects. For example, an attack

graph node represents a particular system state, and an edge represents that the

attacker can reach one state from the other. Graph Neural Network (GNN) is a

recently proposed neural network model for graph-based learning environments [29].

It is capable of learning topological dependence of information representing an object

such as its rank relative to its neighbors, i.e. information representing neighboring

objects and the relation between the object and its neighboring objects. The use

of GNN for determining information on objects represented as nodes in a graph

structure has been successfully shown in several applications [28, 30].

The GNN is a complex model. A detailed description of the model and its asso-

ciated training method cannot be described in the thesis. Hence, this Section only

summaries the key ideas behind the approach as far as it is necessary to understand

the method. The interested reader is referred to [29].

In order to encapsulate information on objects, a vector sn ∈ Rs referred to as

state3, which represents information on the object denoted by the node, is attached

to each node n. This information is dependent on the information of neighboring

nodes and the edges connecting to its neighbors. For example, in the case of page

rank determinations, the state of a node (page) is the rank of the page. Similarly,

a vector eij may also be attached to the edge between node ni and nj representing

attributes of the edge 4. The state of a node n is determined by states of its neighbors

3For historical reasons this is called a “state”, which carries slightly different meaning to the
meaning of “state” in the attack graph literature. However, there should not be any risk of
confusion as this concept of “state” in GNN is used in the training of the GNN model.

4GNN can also accept labels on nodes; however this will not be used in this Chapter and is
omitted here.

6.4. Ranking Attack Graphs with Graph Neural Network 126

and the labels of edges that connect it to one of its neighbors. Consider the GNN

shown in Figure 6.10, the state of node n1 can be specified by Equation (6.13).

s1 = fw(s2, s3, s5, e21, e13, e51) (6.13)

Figure 6.10: The dependence of state s1 on neighborhood information

More generally, let S(n) denote the set of nodes connected to node n and fw1

be a function parameterised by w1 that expresses the dependence of information

representing a node on its neighborhood, then the state sn is defined by Equation

(6.14) where w1 ∈ R is the parameter set of function f which is usually implemented

as an MLP described in Section 6.4.1.

sn = fw1(su, exy), u ∈ S(n), x = n ∨ y = n (6.14)

The state sn is then put through a parameterised output network gw2 , which is

usually also implemented as an MLP parameterised by w2, to produce an output

(e.g. a rank) on

on = gw2(sn) (6.15)

Equations (6.14) and (6.15) define a function ϕw(G, n) = on parameterised by

weights w1, and w2 that produces an output for the given graph G. The parameter

sets w1 and w2 are adapted during the training stage such that the output ϕ is the

best approximation of the data in the learning data set L = {(ni, oi)|1 ≤ i ≤ q},
where ni is a node and ti is the desired target for ni. Approximation to the targets

6.4. Ranking Attack Graphs with Graph Neural Network 127

can be measured by the quadratic error function

Jw =
∑
i

(ti − ϕ(G, ni))
2 (6.16)

Computing the states

The solution to Eqs. 6.14 and 6.15 can be obtained by iterating through the following

equations where r denotes the number of nodes in the given graph,

sn(t+ 1) = fw(su, exy), 1 ≤ n ≤ r, u ∈ S(n), x = n ∨ y = n (6.17)

on(t+ 1) = gw(sn(t+ 1)) (6.18)

Learning from a graph structure

To learn from a graph structure, an encoding network needs to be built as follows:

each node of the graph is replaced by a unit that implements the transfer function

fw and gw described in Eqs. 6.14 and 6.15. It is worth noting that the same MLPs

are used to implement fw and gw in all units. Each unit stores the current state

sn(t) and computes sn(t+ 1) using Eq. 6.17, taking input from the states stored in

its neighboring units. The procedure repeats until it comes to a stable point, i.e.

sn(t) = sn(t + 1). This procedure is referred to as the feed-forward phase of GNN.

Fig. 6.11 illustrates how to build the encoding network for a given graph structure.

Figure 6.11: The encoding network

Once a GNN has come to a stable point through the feed-forward phase, the stable

output on are compared against target value tn and the gradient ϑJw(T)
ϑw

is computed.

6.4. Ranking Attack Graphs with Graph Neural Network 128

The weights w are adapted towards the best approximation of the training data set

according to a gradient descent strategy based on the quadratic error function shown

in Eq. 6.15. This procedure is referred to as the back-propagation phase of GNN.

While the feed-forward phase moves the system to a stable point, the back-

propagation phase adapts the weights to change the outputs towards the desired

target. These two phases are repeated until the outputs are sufficiently close to the

targets, indicating that the GNN has finished the training stage and can be used to

simulate the target function. Once trained, the GNN only needs to run through the

feed-forward phase to produce an output for any given input graph.

A GNN described above provides an artificial approach to learning the pattern

by which, in several real world example, information (such as ranks) on objects are

structurally determined by information on their neighbors. It can learn the pattern

from given training set L = {(ni, oi)|1 ≤ i ≤ q} where ni is a node and ti is its

desired target, and generalise the result by applying the learnt pattern to data not

included in the training set.

6.4.2 Ranking Attack Graph using GNNs

The use of GNN for determining information on objects represented as nodes in a

graph structure has been shown in several applications such as ranking web pages.

In this Section, we develop an implementation of the GNN model as described in

Section 6.4.1 applied to ranking attack graphs. For attack graphs, nodes represent

computer system states and edges represent the transition relations between system

states. Hence, the state of a node is determined by states and outgoing links of its

parent nodes. Symbolic values 0 or 1 are also assigned to edge labels to distinguish

between incoming and outgoing links. The function fw1 that expresses the depen-

dence of the state sn of node n on its neighbors can be represented by Equation

(6.19) where S(n) denotes the set of nodes connected to node n,

sn = fw1(su, euv), u ∈ S(n) (6.19)

The output function gw2 with input from the states produces the rank of node

n.

on = gw2(sn) (6.20)

The two computing units fw1 and gw2 are implemented by MLPs [13]. Inputs

to the MLPs are the variables in Eqs. (6.19) and (6.20), i.e. states of neighboring

6.4. Ranking Attack Graphs with Graph Neural Network 129

nodes and labels of connecting edges. We use the sigmoid function [13] as the trans-

fer function of fw1 . The sigmoid function is commonly used in back-propagation

networks. The transfer function of the output network gw2 is a linear transfer

function that stretches the output from fw1 to the desired target. fw1 and gw2

are thus parameterised by weight sets w1 and w2 of the underlying MLPs. The

adaption of weights sets for the best approximation of training data is through a

back-propagation process [13].

It is known that the computational complexity of the forward phase of MLP is

O(n), where n is the number of inputs [22]. When considering that the functions

fw1 and gw2 can be implemented as MLPs, it becomes clear that the computational

complexity of the forward phase of GNN is also O(n). Note that a direct comparison

of the computational complexity of PageRank is difficult since the computational

complexity of PageRank depends on the number of links rather than on the number

of nodes.

The GNN implemented is initialised by assigning random weights to the under-

lying MLPs. The training data is generated using Mehta et al.’s ranking scheme on

a set of attack graphs. The trained GNN can take as input an attack graph and

output through the trained network ranks of each node.

6.4.3 Experiments and Results

The objectives of the experiments are to verify the effectiveness of the proposed

ranking approach: (1) if GNN can learn a ranking scheme applied to attack graphs,

and (2) if it can generalise the results to unseen data. In particular we consider the

PageRank scheme used by Mehta et al. to rank attack graphs.

It has been shown that GNN can learn PageRank on very large graphs [30, 28].

Our objective is to ascertain if it can learn the ranking scheme when applied to attack

graphs. We note that the WWW is a single very large graph and the aim of learning

has been to generalise the results to this large graph by learning from selected small

sub-graphs of WWW. However, in the case of ranking attack graphs, many small

graphs of various sizes exist. For a small network with few vulnerabilities, it can be

a small graph with few nodes and edges, while for more complex networks, it can

have hundreds of nodes and edges. One question is: what type/size of graph should

be used for training? It would be ideal to train GNN with a set of attack graphs

generated from networks of various complexity. However, while attack graphs can

6.4. Ranking Attack Graphs with Graph Neural Network 130

be generated quite easily from real networks, generation of realistic attack graphs of

artificial examples requires significant manual labor as well as computational effort

[75]. It is, in general, difficult to generate a large number of real attack graphs

on artificial examples as training samples. To solve this problem, we experiment

with training GNN with a set of automatically generated pseudo attack graphs that

have similar shapes and node connection patterns to those of manually generated

real attack graphs. Details for pseudo attack graph generation are provided in this

section further below.

Note that it is time consuming to generate artificial attack graphs which resemble

the type of attack graphs one would encounter in the real world. Real world attack

graphs can be easily generated (the process may even be automated). However,

due to a lack of access to large scale distributed system we were unable to obtain

real world attack graphs. Instead we use the time consuming task of generating

artificial data. We did not attempt to simulate attack graphs for small systems

since the resulting graphs would be rather small. Existing approaches to ranking

attack graphs are sufficient for small scale systems whereas the advantage of the

proposed approach is most pronounced on larger graphs.

A related question is how we determine the effectiveness of the proposed ranking

approach. GNN output produces a set of ranks for nodes of an attack graph. There

are many ways to define the “accuracy” of a set of ranks compared to the set of

ranks that is calculated by another scheme. In particular one may use the average

distances of the sets, or the maximum distance over all elements of the set. For

our particular application we use Relative Position Diagram (RPD) and Position

Pair Coupling Error (PPCE) as described in this section further below. The PPCE

measures the agreement between the proposed approach and the ordering imposed

on the nodes in an attack graph by PageRank. Hence, this ordering compares the

proposed approach with an existing approach. No attempt is made to assess whether

the PageRank order by itself makes sense.

Performance Measure

A ranking scheme can be denoted as a function that takes as input an attack graph

(AG) and outputs the ranks, i.e. f(AG) = R where R is a real vector of the same

size as the number of nodes in AG. A naive performance measure is to compare the

output ranks by GNN fG(AG) = RG and that produced by Mehta’s ranking scheme

6.4. Ranking Attack Graphs with Graph Neural Network 131

fM(AG) = RM . However, as ranks are used to identify important portions of an

attack graph, ordering of ranks are considered more important than their actual

numerical values. We therefore devised two performance measures to evaluate how

well rank orderings are preserved.

Relative Position Diagram (RPD): This visually illustrates how well rank orders

are preserved, and is obtained by sorting RM and RG and plotting the order of each

node in RM against that in RG. The X-axis and Y-axis represent the order of ranks

in RM and RG respectively. Therefore, nodes that have the same rank orders by

both schemes are plotted along the diagonal.

Position Pair Coupling Error: An RPD only intuitively shows how well rank

orders are preserved. We also provide a quantitative measure on rank order preser-

vation as follows. Let rMi and rGi denote the i-th element in RM and RG respectively.

For each pair of nodes, if rMi and rMj are not in the same order as rGi and rGj , then

a position-pair-coupling-error (PPCE) is found. Performance of the GNN ranking

scheme can therefore be quantitatively measured by the PPCE rate.

Experimental Results

We found that the computational demand of the attack graph generation method in

[75] is high. The generation of a single real world attack graph took several hours,

and hence, we were not able to produce more than 14 graphs within a reasonable

time frame for the experiments. The 14 attack graphs were generated using the

same computer network example as in a previous work [57], with variations created

by adding, removing, or varying vulnerabilities or network configurations. Eight

of the attack graphs were randomly selected to form the training data set of the

GNN. The remaining six attack graphs are used as the testing data set so as to

examine the GNN’s generalisation ability in different situations. The GNN used for

our experiments consists of two hidden layers, and each hidden layer has 5 neurons.

The number of external inputs is also set to 5. Such a GNN has been shown to be

successful when applied to ranking web pages [30, 28], and it produces a sufficiently

small network that allows for a fast processing of the data. However, this GNN was

used successfully on a problem involving much larger number of nodes, and hence,

it may be possible to use a somewhat smaller network when dealing with attack

graphs. This approach is not attempted in the Chapter and may be considered as

a topic for future work.

6.4. Ranking Attack Graphs with Graph Neural Network 132

We varied the number of training epochs from 500 to 20,000 and repeated the

experiment 6 times with randomized initial weights of the underlying MLPs. The

PPCE rate results are plotted in Fig. 6.12. It can be observed that when trained for

a sufficiently large number of epochs (around 10,000) the PPCE rate reduces asymp-

totically to an optimal value. Improvement by further training can be observed but

is not significant. Hence the number of training epochs is fixed to be 10,000 in

the rest of the experiments for an appropriate effort/time tradeoff. However when

applied to ranking attack graphs in practice the training epoch can be set to 20,000

or larger for more accurate results.

Figure 6.12: Effect of number of training epochs

From the above experimental results, it can be observed that the average PPCE

rate can be reduced to around 10% when GNN is trained with sufficient number

of training examples and training epochs. That being the case on an average the

proposed GNN-based ranking scheme sacrificed around 10% accuracy in terms of

relative position preservation. However, once trained, a GNN can produce output at

an O(N) time complexity where N is the size of input. This may be an improvement

compared with the O(N log 1
ε
) computational complexity required by PageRank [89].

Here PageRank is used as an established algorithm. Its maths background such

as under what circumstances it achieves the computation complexity is beyond the

scope of this thesis. Moreover, the generalisation ability of GNN allows us to train

GNN on only a small number of attack graphs and apply the results to unseen attack

graphs.

Figure 6.13 plots the RPDs resulting from ranking graphs from the testing data

set with GNN to visualise the effectiveness of relative position preservation. Each

subgraph represents the resulting RPD for one of the 6 attack graphs in the testing

data set, and hence it is of different scale to other subgraphs. It can be observed that

6.4. Ranking Attack Graphs with Graph Neural Network 133

the order of ranks are preserved to a reasonable degree. Although only a relatively

small portion of nodes remains at exactly the same position as the PageRank scheme,

most nodes remain centered around the diagonal and as a result important nodes

remain important and unimportant nodes remain unimportant. The GNN-based

ranking scheme therefore allows a system administrator to focus on most of the

important nodes in an attack graph.

Finally, we experimented with reducing the number of training samples. The

number of training attack graphs in the training data set is reduced from 8 to 2.

The effect on reducing the number of attack graphs used in the training data set

is plotted in Figure 6.14. It can be observed that the number of attack graphs in

the training data set has a significant impact on the accuracy in terms of relative

positions on the training results. Sufficient attack graphs must be provided in the

training data set to simulate the ranking scheme effectively.

Training with Pseudo Attack Graphs

Generating a large number of attack graphs for the training data set is difficult due

to significant manual labor and computational effort that it requires [75]. In the

following, we provided an alternative scheme for automated training set generation,

and train GNN with automatically generated pseudo attack graphs that have similar

shapes and node connection patterns to those of manually generated realistic attack

graphs.

That attack graphs are non-cyclic, tree shaped graphs resulting from a proce-

dure as follows: at the initial system state, the intruder looks for an entry point and

reaches the first layer of nodes in the attack graph by exploiting one of the vulner-

abilities applicable to the initial state. With the escalated privilege by the initial

exploit, the intruder obtains more intrusion options for the next intrusion step. This

procedure repeats and keeps expanding the attack graph until the intruder can reach

the intrusion goal. Leaf nodes in the attack graph are thus produced, and the attack

graph begins to contract until all attack paths reach the intrusion goal. We generate

pseudo attack graphs by simulating this procedure. A pseudo attack graph begins

with the root node representing the initial state. It then expands with increasing

number of nodes at each layer to simulate the expanding process of realistic attack

graphs. This repeats until presumably the intruder begins to reach the final goal.

Then the pseudo attack graph contracts till all paths are terminated at a leaf node.

6.4. Ranking Attack Graphs with Graph Neural Network 134

Figure 6.13: Relative Position Diagram when trained on real-world attack graphs

6.5. Conclusion 135

Figure 6.14: Effect of number of attack graphs used in the training data set

We repeat the experiments on the same 6 testing attack graphs but using pseudo

attack graphs generated by the above procedure as the training data set. In total,

40 pseudo attack graphs are included in the training data set, and GNN is trained

for 10,000 epochs for the asymptotic optimal result. The resulting Relative Position

Diagrams are as shown in Figure 6.15. It can be observed that orders of ranks are

preserved also to a reasonable degree, but these results are not as accurate as those

obtained when using real attack graphs in the training data set. Table 6.5 lists

maximum and minimum PPCE rate by repeating each experiment 3 times. The

average PPCE is between 12% to 16%, indicating that on an average the proposed

GNN-based ranking scheme sacrificed around 12% to 16% accuracy in terms of

relative position preservation. Therefore, using pseudo attack graphs decreases the

accuracy by around 2% to 4% compared with using real attack graphs for training,

but on the other hand it significantly reduces the effort required to generate real

attack graphs.

6.5 Conclusion

As the size and complexity of attack models/graphs usually greatly exceed human

ability to visualise, understand and analyse, ranking of states is often required to

identify important portions of attack models/graphs. Mehta et al proposed a ranking

scheme based on the PageRank algorithm used by Google to measure importance of

web pages on World Wide Web. We extend their scheme by modelling an attacker

selectively exploiting vulnerabilities to maximise the chance of compromising the

system, and intrusion detection ability of computer systems detecting and preventing

6.5. Conclusion 136

Figure 6.15: Relative Position Diagram when training on pseudo attack graphs

6.5. Conclusion 137

attackers to exploit system vulnerabilities. With the proposed ranking scheme,

evaluation of system intrusion detection ability or attackers’ ability in relation to

probabilistically exploit vulnerabilities, when available from for example empirical

data or log statistics, can be used to obtain more accurate ranks of computer system

states modelled by attack models and attack graphs.

We also produced evidence that the GNN model is suitable for the task of rank-

ing attack graphs. GNN learns a ranking function by training on examples and

generalises the function to unseen data. It thus provides an alternative and time-

efficient ranking scheme for attack graphs. The training stage for GNN, which is

required only once, may take a relatively long period of time compared with e.g.

PageRank scheme. However, once trained the GNN may compute ranks faster than

that required by the PageRank scheme.

Another advantage of using a machine learning approach is their insensitivity

to noise in a dataset. This is a known property of GNN which is based on the

MLP architecture. Existing numeric approaches such as PageRank or rule based

approaches are known to be sensitive to noise in the data.

The GNN provides much more flexible means for ranking attack graphs. A

GNN can encode labels that may be attached to nodes or links, and hence, is able

to consider additional features such as the cost of an attack or time required for

an exploit. This is not possible with the PageRank scheme which is strictly limited

to considerations of the topology features of a graph. We plan to investigate how

the ability to encode additional information can help to rank attack graphs in the

future.

Despite the proven ability of the GNN to optimally encode any useful graph

structure [27], the result in this Chapter showed that the performance of the GNN

has a potential for improvements. We suspect that this may be due to the choice

of training parameters, or the chosen configuration of the GNN. A more careful

analysis into this issue is left as a future task.

6.5. Conclusion 138

Algorithm 5: GenerateW (M)

/* The function generates the adjusted transition matrix W from

the given attack model M. */

/* Input: M = (S, τ, s1, L): the attack model where s1 is the

initial state of M. */

/* Output: W = wij, where wij represents the probability of an

adversary exploiting the vulnerability that takes the system

from state sj to state si. */

begin

AM = Construct Adjacency Matrix From Model(M)

/* Set the probabilities of transitions to and from the

initial state */

for i = 1 to N do
if AM [1, i] = 1 then

wi1 = τ(s1 → si)
else

wi1 = 0

if ∀j, AM [i, j] = 0 then
w1i = 1

else
w1i = 1− d× e−λl(s1,si)

/* Set the probabilities of transitions to and from other

states */

for i = 2 to N do
for j = 2 to N do

if AM [j, i] = 0 then
wij = 0

else
wij = d× τ(sj → si)× e−λl(s1,sj)

Attack Vulnerability Exploited

I sshd buffer overflow Some versions of ssh are vulnerable to buffer overflow
I ftp.rhosts Exploiting the vulnerability resulting from a writable ftp

home directory
I remote login Remote trust relation between machines
I local buffer overflow Some setuid root executables are vulnerable to buffer

overflow

Table 6.2: Atomic Attacks Modelled in the Sample Network

6.5. Conclusion 139

Reachable ipa ip1 ip2

ipa 1 1 0
ip1 1 1 1
ip2 1 1 1

Table 6.3: Connectivity
Trust ipa ip1 ip2

ipa 1 0 0
ip1 0 1 1
ip2 0 1 1

Table 6.4: Trust Relation

AG-1 AG-2 AG-3 AG-4 AG-5 AG-6 Avg
Min PPCE 0.16 0.11 0.14 0.12 0.12 0.11 0.12
Max PPCE 0.21 0.15 0.19 0.17 0.15 0.15 0.16

Table 6.5: Position Pair Coupling Error

Chapter 7

Concluding Remarks

7.1 Thesis Contribution

In this thesis, we looked into how conventional firewalls are challenged by new In-

ternet applications for streaming content delivery. The challenges mainly fall into

two areas, that is to block malicious streaming traffic into a secured network, and

to prevent unwanted streaming traffic from getting out of a controlled network.

The thesis first provided a detailed analysis of deficiencies in conventional fire-

walls that lead to incapability of handling streaming content. Following this, we

investigated and presented a vulnerability from the built-in security mechanism for

the Realtime Transport Protocol (RTP). By exploiting the vulnerability presented,

an attacker can fully bypass conventional firewall inspection to inject arbitrary con-

tent into an RTP stream into a secured network. We then presented a technique

to solve this problem so that conventional firewalls are able to effectively handle

streaming content. Compared with conventional firewalls that do not consider and

are unable to handle streaming traffic, the presented technique is fully aware of the

RTP protocol and uses state information in RTP to effectively filter out injected

malicious traffic.

The thesis then looked into the other area in streaming content handling, that

is to block unwanted streaming content using conventional firewalls. In particular,

we investigated the Internet telephony application Skype which is well-known for

its capability to intelligently tunnel through firewalls by selecting customised ports

and encrypting traffic to evade content based filtering. Although the capability to

by pass firewall filtering may give some convenience to Skype users, it increases

the difficulty of managing firewalls to filter out unwanted traffic. We proposed two

different schemes, namely payload-based and non-payload based, for identification

of Skype traffic. As payload based identification is not always practical due to legal,

140

7.1. Thesis Contribution 141

privacy, performance, protocol change and software upgrade issues, we focus on the

non-payload based scheme, and use the payload based scheme mainly to verify its

non-payload based counterpart. Our research results reveal that, at least to a certain

extent, effort by Skype to bypass firewall filtering can be overcome.

Then we looked at a related problem. Streaming content like Skype and RTP

tends to use dynamically negotiated ports, and hence network access polices cannot

be easily translated into rule sets that firewalls strictly enforce. Translating a high-

level security policy written in a natural language into firewall rule tables, a much

lower-level description of the policy, is an error prone task particularly in the context

of streaming content. We provided a technique to compare and analyse firewall rule

tables. With the provided technique, firewall rule tables can be analysed at a much

fine-grained level. This can assist in finding and locating potentially incorrectly

interpreted rules.

Although techniques have been provided to handle streaming content, conven-

tional firewalls still have limitation like any other technologies. Another scenario

that conventional firewalls are unable to handle is multi-stage intrusions. As an

effort to complement firewall capabilities in detecting multi-stage intrusions, attack

graphs are proposed and have gained much attention in the research community.

However, size and complexity of attack graphs usually greatly exceed human abil-

ity to visualise, understand and analyse. To identify important portions of attack

graphs, Mehta et al. proposed to rank attack graphs and highlight states that have

higher ranks. The proposed ranking scheme is based on similarity, but has not con-

sidered differences, between attack graphs and web graphs. We extend Mehta et

al.’s scheme by taking into consideration differences between web surfing scenarios

and computer system intrusion scenarios. We experiment with the extended ranking

scheme using a network model similar to what is used in Mehta et al.’s scheme, and

compared the results with Mehta et al.’s scheme. The experiments yielded promising

results where consistent and meaningful ranks are yielded for a range of parameters.

A network may be re-engineered into many different forms. This may result in

re-generation and re-ranking of attack graphs. We provided an alternative neural

network based ranking scheme to attack graphs in an effort to reduce computation

required for re-ranking of attack graph. Once trained, a neural network can rank

large sets of attack graphs efficiently due to its ability to generalise over unseen

data. In our experiments, the neural network based ranking scheme successfully

demonstrate the ability to generate similar ranks to that of the other ranking scheme

7.2. Limitations 142

proposed earlier in the thesis.

7.2 Limitations

Due to certain restrictions in our experimental environment, the technique provided

in Chapter 3 to filter out injected streaming content has only been applied to offline

traffic traces analysis. It has not been applied to live traffic scanning and hence

application of the presented technique may not suffice performance requirement for

live traffic processing.

Similarly, the Skype traffic detection scheme provided in Chapter 4 has not been

experimented with live Skype traffic. The experimental results are only derived from

scanning offline traffic traces. Application of the detection scheme may therefore be

limited by factors such as performance. Moreover, both detection schemes (payload

and non-payload based) are based upon empirical observation on captured Skype

traffic. Therefore, the presented techniques are vulnerable to situations such as

change of network configuration, or upgrade of software version.

The firewall rule set compare technique proposed in Chapter 5 is only applicable

to the packet filtering type of firewalls. It cannot be applied to more advanced types

of firewalls such as application gateways. Moreover, it can only be used to compare

rule sets which consists of IPv4 addresses.

Despite the proven ability of the GNN to optimally encode any useful graph

structure, the result in Chapter 6 shows potential room for improvement on the

presented GNN based ranking scheme. We suspect that this may be due to the

choice of training parameters, or the chosen configuration of the GNN.

7.3 Open Problems

Although the technique provided to filter out malicious streaming content has only

be tested with offline traffic traces, it has the potential to be applied to live traffic

scanning and filtering. Performance will need to be investigated and be experi-

mented before the provided technique can be applied to live traffic scanning. A

practical piece of future work is to build the presented technique into a firewall and

to experiment with the situation of live traffic filtering. It is also worth to investigate

how varying parameters affect the effectiveness of the presented filtering technique.

7.3. Open Problems 143

Similarly, the Skype traffic detection scheme has not been applied to live traffic

scanning. It would be interesting to implement the Skype detection technique into

a firewall and experiment with live Skype traffic. This will reveal any performance

issue as well as other potential issues with the presented technique. Also improving

robustness of the presented technique against situations such as change of network

configuration or upgrade of software version will be an interesting topic of future

research.

It can be seen that performance of the proposed GNN ranking scheme for attack

graphs has room to improve. This may be achieved by adjusting training parameters

or choose different configuration of the GNN. Therefore, it will be interesting to

experiment with different training parameters and different GNN configuration and

compare the performance with what is achieved in this thesis.

Bibliography

[1] http://www.websense.com.

[2] A. Pescape A. Dainotti and G. Ventre. A Packet-level Traffic Model of

Startcraft. In Proceedings of the 2005 Second International Workshop on Hot

Topics in Peer-to-Peer Systems, pages 33–42. IEEE, 2005.

[3] A. Feldmann and S. Muthukrishnan. Tradeoffs for Packet Classification. In

Proc. INFOCOM, volume 3, pages 1193–1202, March 2000.

[4] A. Grant, J. H. Meadows. Communication Technology Update and Fundamen-

tals. Elsevier, 2008.

[5] A. Wool. Architecting the Lumeta firewall analyzer. In 10th USENIX Security

Symposium, Washington, D.C., 2001. USENIX.

[6] A. Y. NG, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and

stability. In Proceedings of International Conference on Research and Devel-

opment in Information Retrieval (SIGIR 2001), New York, 2001. ACM.

[7] Anonymous. IP Multicast Initiative (IPMI). Stardust Forums Inc., 1998.

[8] Anonymous. Why is Skype better than Net2Phone, ICQ, AIM,

MSN, etc? http://support.skype.com/index.php? a=knowledgebase

& j=questiondetails& i=70&nav2=General, 2004.

[9] Anonymous. Using RealOne Player or RealPlayer with Firewalls.

http://service.real.com/firewall/rplay.html, 2004.

[10] ATT Research. http://www.graphviz.org, 2004.

144

BIBLIOGRAPHY 145

[11] B. B. Madan, K. G. Popstojanova, K. Vaidyanathan, and K. S. Trivedi. A

method for modeling and quantifying the security attributes of intrusion toler-

ant systems. In Dependable Systems and Networks-Performance and Depend-

ability Symposium, number 167-186, 2004.

[12] B. Hari, S. Suri and G. Parulkar. Detecting and Resolving Packet Filter

Conflicts. In IEEE INFOCOM, 2000.

[13] Bhadeshia, University Of Cambridge. Neural Networks in Materials Science,

2006.

[14] C. A. Phillips and L. P. Swiler. A graph based system for network vulnerability

analysis. In Proceedings of the DARPA Information Survivability Conference

and Exposition, 2000.

[15] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,

T. Seely, and C. Diot. Packet-Level Traffic Measurements from the Sprint IP

Backbone. IEEE Network, 17(6):6–16, 2003.

[16] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Com-

munication in a Public World. Prentice Hall PTR, 2002.

[17] Cisco. Stateful Inspection Technology. Technical report, CheckPoint Software

Technologies Ltd, 2004.

[18] D. Bacher, A. Swan, and L. A. Rowe. rtpmon: A Third-Party RTCP

Monitor, 1996. http://bmrc.berkeley.edu/people/drbacher/projects/mm96-

demo/index.html.

[19] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A

Modular and Extensible Software Framework for Modern High Performance

Integrated Services Router. Wucs-98-08, Washington University, February

1998.

[20] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A Soft-

ware Architecture for Next-generation Routers. IEEE Transaction on Net-

working, 8(1):2–15, February 2000.

BIBLIOGRAPHY 146

[21] D. Eppstein and S. Muthukrishnan. Internet Packet Filter Management and

Rectangle Geometry. In 12th Annual ACM SHAM Symposium on Discrete

Algorithms (SODA), 2001.

[22] E. Mizutani, S. E. Dreyfus. On complexity analysis of supervised MLP-

learning for algorithmic comparisons. In International Joint Conference on

Neural Networks (IJCNN), volume 1, 2001.

[23] E. S. Al-Shaer and H. H. Hamed. Discovery of Policy Anomalies in Distributed

Firewall. In IEEE INFOCOM, Twenty-third Annual Joint Conference of the

IEEE Computer and Communications Societies, volume 4, pages 2605 – 2616,

March 2004.

[24] E. S. Al-Shaer and H. H. Hamed. Firewall Policy Advisor For Anomaly Dis-

covery And Rule Editing. In IEEE/IFIP 8th Int. Symp. Integrated Network

Management, 2004.

[25] Ethereal. Ethereal. http://www.ethereal.com, 2006.

[26] F. Baboescu and G. Varghese. Scalable packet classification. IEEE/ACM

Transactions on Networking, 13(1):2–14, February 2005.

[27] A. C. Tsoi M. Hagenbuchner F. Scarselli, M. Gori and G. Monfardini. Compu-

tational capabilities of graph neural networks. IEEE Transactions on Neural

Networks, volume 20(number 1):81–102, January 2009.

[28] M. Gori M. Hagenbuchner A. C. Tsoi F. Scarselli, S. L. Yong and M. Maggini.

Graph neural networks for ranking web pages. In Web Intelligence Conference,

pages 666–672, 2005.

[29] F. Scarselli, A. C. Tsoi, M. Gori, and M. Hagenbuchner. A new neural network

model for graph processing. Technical Report DII 1/05, University of Siena,

Aug 2005.

[30] F. Scarselli, S. L. Yong, M. Hagenbuchner, A. C. Tsoi. Adaptive Page Ranking

with Neural Networks. In WWW (Special interest tracks and posters), pages

936–937, 2005.

[31] K. P. Fung. SOCKS5-based Firewall Support for UDP-based Applications.

Master’s thesis, The Hong Kong Polytechnic Univ., Dept. of Computing, Hong

BIBLIOGRAPHY 147

Kong, PRC, http://www2.comp.polyu.edu.hk/˜csrchang/MSc/Billy.pdf,

1999.

[32] G. H. Golub and V. Loan. Matrix computation. The Johns Hopkins University

Press, 1993.

[33] R. Gusella. A Measurement Study of Diskless Workstation Traffic on an Eth-

ernet. IEEE Transactions on Communications, 38(9):1557–1568, 1990.

[34] H. Fowler and W. Leland. Local Area Network Traffic Characteristics, with

Implications for Broadband Network Congestion Management. IEEE JSAC,

9(7):1139– 1149, 1991.

[35] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol

(RTSP). RFC 2336, Apr 1998.

[36] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. RFC 1889, Jan 1996.

[37] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. RFC 3550, Jul 2003.

[38] S. Haykin. Neural Networks, A Comprehensive Foundation. Macmillan College

Publishing Company, Inc., 866 Third Avenue, New York, New York 10022,

1994.

[39] HLFL. HLFL—high level firewall language. http://www.hlfl.org/, 2002.

[40] ITU-T. Recommendation H.323: Visual Telephone Systems and Equipment

for Local Area Networks Which Provide a Nonguaranteed Quality of Service.

ITU-T, 1996.

[41] J. Dawkins and J. Hale. A systematic approach to multi-stage network at-

tack analysis. In Proceedings of the Second IEEE International Information

Assurance Workshop, 2004.

[42] J. Homer, A. Varikuti, X. Ou and M. McQueen. Improving Attack Graph

Visualization through Data Reduction and Attack Grouping. In Visualization

for Computer Security, LNCS 5210, Hamburg, Germany, September 2008.

Springer.

BIBLIOGRAPHY 148

[43] J. Lunteren and T. Engbersen. Fast and scalable packet classification. IEEE

Journal on Selected Areas in Communications, 21(4):560– 571, May 2003.

[44] J. Merwe, R. Caceres, Y. Chu and C. Sreenan. mmdump: a tool for monitor-

ing internet multimedia traffic. ACM SIGCOMM Computer Communication

Review, 30:48–59, 2000.

[45] J. Nathan. http://nemesis.sourceforge.net/, 2004.

[46] J. Wack, K. Cutler, and J. Pole. Guidelines on Firewalls and Firewall Policy.

Technical report, National Institute of Standards and Technology, 2002.

[47] R. A. Johnson and D. W. Wichem. Applied Multivariate Statistical Analysis.

Upper Saddle river, New Jersey: Prentice Hall, 1998.

[48] K. Chen, P. Huang, C. Huang, and C. Lei. Game Traffic Analysis: An

MMORPG Perspective. In Proceedings of NOSSDAV, 2005.

[49] M. Stinchcombe K. Hornik and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.

[50] K. P. Fung and Rocky K. C. Chang. Secure media streaming & secure adap-

tation for non-scalable video. ICIP, 3:1763 – 1766, 2004.

[51] K. Strassberg, R. Gondek, and G. Rollie. Firewalls: The Complete Reference.

McGraw-Hill/Osborne, 2002.

[52] K. Suh, R. Figueiredo, J. Kurose, D. Towsley. Characterizing and Detecting

Skype-Relayed Traffic. In Proceedings of IEEE Infocom, Barcelona, Apr 2006.

[53] J. Horton L. Lu, R. Safavi-Naini and W. Susilo. On securing rtp-based stream-

ing content with firewalls. In CANS, pages 304–319, 2005.

[54] J. Horton L. Lu, R. Safavi-Naini and W. Susilo. An adversary aware and

intrusion detection aware attack model ranking scheme. In ACNS, pages 65–

86, 2007.

[55] J. Horton L. Lu, R. Safavi-Naini and W. Susilo. Transport layer identification

of skype traffic. In ICOIN, pages 465–481, 2007.

BIBLIOGRAPHY 149

[56] M. Hagenbuchner W. Susilo J. Horton S. L. Yong L. Lu, R. Safavi-Naini and

A. C. Tsoi. Ranking attack graphs with graph neural networks. In ISPEC,

pages 345–359, 2009.

[57] L. Lu, J. Horton, R. Safavi-Naini, and W. Susilo. An Adversary Aware and

Intrusion Detection Aware Attack Model Ranking Scheme. In Proceeding of

5th International Conference on Applied Cryptography and Network Security

(ACNS 07), Zhuhai, China, Jun 2007. Springer-Verlag.

[58] L. Lu, R. Safavi-Naini, J. Horton and W. Susilo. Comparing and Debugging

Firewall Rule Tables. IET Information Security, 1(4):143–151, 2007.

[59] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia. An Attack Graph-

Based Probabilistic Security Metric. In Data and Applications Security XXII,

LNCS 5094, Hamburg, Germany, July 2008. Springer.

[60] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous. Survey and taxonomy

of IP address lookup algorithms. IEEE Network, 5(2):8–23, Mar/Apr 2001.

[61] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The

Secure Real-time Transport Protocol (SRTP). RFC 3711, Mar 2004.

[62] M. Bianchini, M. Gori, and F. Scarsell. Inside PageRank. ACM Transactions

on Internet Technology, 5(1):92–118, Feb 2005.

[63] M. buddhikot, S. Suri, and M. Waldvogel. Space Decomposition Techniques

for Fast Layer-4 Switching, pages 25–41. Protocols for High SpeedNetworks

IV, 1999.

[64] D. LaPoint M. Claypool and J. Winslow. Network Analysis of Counter-strike

and Starcraft. In Proceedings of 22nd IEEE International Performance, Com-

putering and Communication Conference(IPCCC), Phoenix, Arizona, USA,

April 2003. IEEE.

[65] M. D. Petty and A. Mukherjee. Experimental Comparison of d-Rectangle In-

tersection Algorithms Applied to HLA Data Distribution. In Proceedings of the

1997 Distributed Simulation Symposium, pages 13–26, Orlando FL, September

1997.

BIBLIOGRAPHY 150

[66] M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of op-

erational security: Models and tools. Technical Report 96493, LAAS, May

1996.

[67] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session

Initiation Protocol. RFC 2543, Mar 1999.

[68] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic Pattern: A View

from Ames Internet Exchange. In Proceedings of ITC Specialist Seminar on

Measurement and Modeling of IP Traffic, pages 1–11. Cooperative Association

for Internet Data Analysis (CAIDA), September 2000.

[69] A. Mena and J. Heidemann. An Empirical Study of Real Audio Traffic. In

Proceedings of the IEEE Infocom, pages 101–110, Tel-Aviv, Israel, March 2000.

IEEE.

[70] N. Damianou, N. Dulay, E. Lupu and M. Sloman. The Ponder Policy Specifica-

tion Language. In Workshop on Policies for Distributed Systems and Networks,

LNCS, volume 1995, pages 18–38. Springer, 2001.

[71] D. Nelson. Firewall Information for Windows Media Services 9 Series.

http://www.microsoft.com/windows/windowsmedia/serve/firewall.aspx#PortAllocation,

2007.

[72] Real Networks. Real audio. http://asia-en.real.com/guide/radio/list.html,

2004.

[73] NuSMV. NuSMV: a new symbolic model checker. http://nusmv.irst.itc.it/,

2007.

[74] B. Wayne O, Xinming and A. McQueen. A scalable approach to attack graph

generation. In CCS ’06: Proceedings of the 13th ACM conference on Com-

puter and communications security, pages 336–345, New York, NY, USA, 2006.

ACM.

[75] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated gener-

ation and analysis of attack graphs. In Proceedings of the IEEE Symposium

on Security and Privacy, Oakland, CA, May 2002.

BIBLIOGRAPHY 151

[76] A. Heyde P. A. Branch and G. J. Armitage. Rapid identification of skype

traffic flows. In NOSSDAV ’09: Proceedings of the 18th international workshop

on Network and operating systems support for digital audio and video, pages

91–96, New York, NY, USA, 2009. ACM.

[77] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin. An Empirical

Workload Model for Driving Widearea TCP/IP Network Simulations. Inter-

networking: Research and Experience, 3(1):1–26, 1992.

[78] M. Gori P. Frasconi and A. Sperduti. A general framework for adaptive pro-

cessing of data structures. 9(5):768–786, September 1998.

[79] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Net-

work, 15(2):24–32, Mar/Apr 2001.

[80] P. Gupta and V. Shmatikov. Security Analysis of Voice-over-IP Protocols. In

Computer Security Foundations Symposium. IEEE, 2007.

[81] M. Catherine R. A. Kemmerer and J. K. Millen. Three system for crypto-

graphic protocol analysis. Cryptology, 7(2):79–130, 1994.

[82] R. Jain and S. Routhier. Packet Trains - Measurements and a New Model for

Computer Network Traffic. IEEE JSAC, 4(6):986–995, 1986.

[83] Y. Deswarte R. Ortalo and M. Kaaniche. Experimenting with quantitative

evaluation tools for monitoring operational security. Software Engineering,

25(5):633–650, 1999.

[84] R. Ortalo, Y. Deshwarte, and M. Kaaniche. Experimenting with quantitative

evaluation tools for monitoring operational security. In IEEE Transactions on

Software Engineering, pages 71–79, 1999.

[85] R. Sawilla and X. Ou. Identifying Critical Attack Assets in Dependency Attack

Graphs . In 13th European Symposium on Research in Computer Security,

LNCS 5283, Malaga, Spain, Octorber 2008. Springer.

[86] R. Zimmermann, K. Fu, C. Shahabi, and M. Jahangiri. A Multi-Threshold

Online Smoothing Technique for Variable Rate Multimedia Streams. Multi-

media Tools and Applications, 28(1):23–49, 2006.

BIBLIOGRAPHY 152

[87] R.P. Lippmann and K.W. Ingols. An Annotated Review of Past Papers on At-

tack Graphs. Technical Report ESC-TR-2005-054, Lincoln Laboratory, MAS-

SACHUSETTS INSTITUTE OF TECHNOLOGY, 2005.

[88] S. A. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer Inter-

net Telephony Protocol. Technical report, Department of Computer Science,

Columbia University, New York, 2004.

[89] S. Brin, L. Page, R. Motwani, and T. Winograd. The PageRank citation

ranking: Bringing order to the Web. Technical Report 1999-66, Stanford

University, 1999.

[90] S. Garfinkel. Can 9 Million Skype Users Be Wrong?

http://www.csoonline.com/read/030105/machine.html, 2004.

[91] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the Skype

Peer-to-Peer VoIP System. In Proceedings of IPTPS’06, Santa Barbara, CA,

Feb 2006.

[92] S. Hazehurst. Algorithms for Analyzing Firewall and Router Access Lists.

Technical report trwitscs-1999, Department of Computer Science, University

of the Witwatersrand, South Africa, 1999.

[93] S. Hazelhurst, A. Attar and R. Sinnappan. Algorithms for Improving the

Dependability of Firewall and Filter Rule Lists. In International Conference

on Dependable Systems and Networks (DSN 2000), 2000.

[94] S. Jha and J. Wing. Survivability analysis of networked systems. In 23rd

International Conference on Software Engineering(ICSE01), number 03-07,

2001.

[95] S. Jha, O. Sheyner, and J. Wing. Two Formal Analysis of Attack Graphs. In

15th IEEE Computer Security Foundations Workshop (CSFW’02), page 49.

IEEE, 2002.

[96] S. Oliver S. Subhabrata and W. Dongmei. Accurate, Scalable In-Network

Identification of P2P Traffic Using Application Signatures. In Proceedings

International WWW Conference, New York, USA, 2004.

BIBLIOGRAPHY 153

[97] H. Schulzrinne. rtpdump. http://www.cs.columbia.edu/˜hgs/rtp/rtpdump.html,

1999.

[98] O. Sheyner. Scenario Graphs and Attack Graphs. PhD in Computer science,

School of Computer Science, Computer Science Department, Carnegie Mellon

University, Pittsburgh, PA, 2004. CMU-CS-04-122.

[99] O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs.

In Formal Methods for Components and Objects, LNCS 3188, pages 344–371.

Springer Berlin / Heidelberg, 2004.

[100] Skype. http://www.skype.com, 2002.

[101] Skype FAQ. http://www.skype.com/help faq.html, 2004.

[102] W. Stallings. High Speed Networks, TCP/IP and ATM design principles.

Prentice-Hall Inc., 1998.

[103] Sun Microsystems Inc. Java Media Framework, 2005.

[104] H. Susan. Policy-based management: Bridging the gap. In ACSAC ’99:

Proceedings of the 15th Annual Computer Security Applications Conference,

page 209, Washington, DC, USA, 1999. IEEE Computer Society.

[105] L. P. Swiler, C. Phillips, and D. Ellis. Computer-attack graph generation

tool. In Proceedings of the DARPA Information Survivability Conference and

Exposition, 2001.

[106] T. Berson. Skype Security Evaluation. Technical report, Anagram Laborato-

ries, Palo Alto, CA 94301, USA, Oct 2005.

[107] T. K. Lee, S. Yusuf, W. Luk, M. Sloman, E. Lupu, and N. Dulay. Compiling

policy descriptions into reconfigurable firewall processors. In Systems, Man

and Cybernetics, IEEE International Conference, 2003.

[108] M. Faloutsos T. Karagiannis, A. Broido and K. Claffy. Transport Layer Identi-

fication of P2P Traffic. In Proceedings of the 4th ACM SIGCOMM conference

on Internet measurement, pages 121–134, Taormina, Sicily, Italy, 2004. ACM

Press.

BIBLIOGRAPHY 154

[109] T. Woo. A Modular Approach to Packet Classification: Algorithms and Re-

sults. In IEEE INFOCOM, 2000.

[110] V. Frost and B. Melamed. Traffic Modeling for Telecommunications Networks.

IEEE Communications Magazine, 32(3):70–80, 1994.

[111] V. Mehta, C. Bartzis, H. Zhu, E. Clarke and J. Wing. Ranking Attack Graphs.

In Proceeding of the 9th International Symposium On Recent Advances In

Intrusion Detection, Hamburg, Germany, September 2006. Springer.

[112] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking (TON), 3(3):226 – 244, 1995.

[113] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable

layer four switching. ACM Computer Communication Review, 28(4):191–202,

September 1998.

[114] V. Srinivasan, S. Suri, and G. Varghese. Packet Classfication using tuple space

search. ACM Computer Communication Review, pages 135 – 146, September

1999.

[115] Verso Technologies. Verso Netspective Enterprise.

http://www.verso.com/enterprise/netspective/netspectiv e brochure.pdf,

2004.

[116] W. Feng, F. Chang, W. Feng, and J. Walpole. A Traffic Characterization of

Popular On-Line Games. IEEE/ACM TRANSACTIONS ON NETWORK-

ING, 13(3):488–500, 2005.

[117] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security, Repelling

the Wily Hacker. Addison-Wesley, 1994.

[118] WikiPedia. List of SIP softwares. http://en.wikipedia.org/wiki/List of SIP software,

2010.

[119] X. Sun, S. K. Sahni, and Y. Q. Zhao. Packet classification consuming small

amount of memory. IEEE/ACM Transactions on Networking, 13(5):1135–

1145, 2005.

[120] K. Nissim Y. Bartal, A. Mayer and A. Wool. Firmato: A novel firewall man-

agement toolkit. ACM Trans. Comput. Syst., 22(4):381–420, 2004.

BIBLIOGRAPHY 155

[121] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A Novel Firewall-

Management Toolkit. In IEEE Symposium on Security and Privacy, 1999.

[122] Z. Fu, F. Wu, H. Huang, K. Lob, F. Gong, I. Baldine and C. Xu. IPSec/VPN

Security Policy: Correctness Conflict Dection and Resolution. In Policy’2001

Workshop, 2001.

	University of Wollongong - Research Online
	Cover page

	Copyright warning

	Title page

	Dedication

	Declaration

	Abstract

	Acknowledgement

	Publications

	Contents

	List of tables

	List of figures

	Chapter one

	Chapter two

	Chapter three

	Chapter four

	Chapter five

	Chapter six

	Chapter seven

	Bibliography

