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Abstract

In this thesis, three mechanical models arising from nanoscale and biological systems
are investigated, namely the dynamics of various nanostructures, the axial buckling
of carbon nanotubes and nanopeapods, and the worm-like chain model for stretched
semi-flexible molecules and the utilization of such a model for investigating molecular
stretching in the connective tissue extracellular matrix.

In nanomechanics, we investigate the motion of both a carbon atom inside a
carbon nanotube and a Cgg fullerene inside a carbon nanotube. We assume a con-
tinuous model for which the atoms are assumed to be smeared across the surface of
the molecule, so that the pairwise molecular energy can be approximated by per-
forming surface integrals. The spiral path of the atom is found to be stable, but
the spiral path of the Cgy fullerene is shown to only exist for a few pico seconds.
Next, we investigate the motion of a nano tippe top spinning on the interior of a
single-walled carbon nanotube in the presence of a variable magnetic field. Unlike
the classical tippe top, the nanoscale tippe top does not flip over since the grav-
itational effect is insignificant at the nanoscale. After the precession, if we apply
an opposite retarding magnetic force at the contact point, then the molecule will
return to its original standing up position. We next investigate some nanoscale or-
biting systems, and in particular, we study an atom and a Cgy fullerene orbiting
around a single infinitely long carbon nanotube and a Cgy fullerene orbiting around
a Cis00 fullerene. We find that the circular orbiting frequencies of the proposed nano
systems are in the gigahertz range and the classification of their orbiting paths are

determined numerically.
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For the axial buckling of carbon nanotubes and nanopeapods, we investigate the
buckling behavior of doubly clamped multi-walled carbon nanotubes and nanopeap-
ods as nano-electromechanical systems. We incorporate the bending curvature of the
tube into the elastic energy and determine the nanotube’s maximum displacement
for all bending regimes. We find that while the approximate solution (without cur-
vature) underestimates the maximum displacement of the buckled carbon nanotube
in the weak bending regime, our numerical solution provides an entirely different
prediction in comparison to the approximate solution in the strong bending regime.
Furthermore, we derive an instability condition for multi-walled carbon nanotubes
and nanopeapods under an axial load by taking into account the van der Waals
forces between molecules. We observe that the critical force derived from the axial
buckling stability criterion decreases as a result of the molecular interactions be-
tween adjacent layers of the nanotubes and the molecular interactions between the
embedded fullerenes and the inner carbon nanotube.

The worm-like chain model arises as a model for stretched semi-flexible molecules
and for its applications to molecular stretching in the extracellular matrix, we adopt
a variational principle to examine the model and then we utilize the model to de-
scribe anionic glycosaminoglycan between collagens. The worm-like chain model has
been proposed assuming that each monomer resists the bending force. We deter-
mine a force-extension formula for the worm-like chain model analytically, and find
that our formula suggests new terms such as the free energy and the cut-off force
for a molecule. In addition, we predict two possible phase changes for a stretched
molecule, and show theoretically that a molecule must undergo two phase changes
when they are stretched beyond their total contour lengths. Furthermore, we adopt
the worm-like chain model to describe the mechanical properties of a collagen pair
in the connective tissue extracellular matrix. We find that the growth of fibrils is
intimately related to the maximum length of the anionic glycosaminoglycan and the

relative displacement of two adjacent fibrils.
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