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Abstract

In this thesis, three mechanical models arising from nanoscale and biological systems

are investigated, namely the dynamics of various nanostructures, the axial buckling

of carbon nanotubes and nanopeapods, and the worm-like chain model for stretched

semi-flexible molecules and the utilization of such a model for investigating molecular

stretching in the connective tissue extracellular matrix.

In nanomechanics, we investigate the motion of both a carbon atom inside a

carbon nanotube and a C60 fullerene inside a carbon nanotube. We assume a con-

tinuous model for which the atoms are assumed to be smeared across the surface of

the molecule, so that the pairwise molecular energy can be approximated by per-

forming surface integrals. The spiral path of the atom is found to be stable, but

the spiral path of the C60 fullerene is shown to only exist for a few pico seconds.

Next, we investigate the motion of a nano tippe top spinning on the interior of a

single-walled carbon nanotube in the presence of a variable magnetic field. Unlike

the classical tippe top, the nanoscale tippe top does not flip over since the grav-

itational effect is insignificant at the nanoscale. After the precession, if we apply

an opposite retarding magnetic force at the contact point, then the molecule will

return to its original standing up position. We next investigate some nanoscale or-

biting systems, and in particular, we study an atom and a C60 fullerene orbiting

around a single infinitely long carbon nanotube and a C60 fullerene orbiting around

a C1500 fullerene. We find that the circular orbiting frequencies of the proposed nano

systems are in the gigahertz range and the classification of their orbiting paths are

determined numerically.
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For the axial buckling of carbon nanotubes and nanopeapods, we investigate the

buckling behavior of doubly clamped multi-walled carbon nanotubes and nanopeap-

ods as nano-electromechanical systems. We incorporate the bending curvature of the

tube into the elastic energy and determine the nanotube’s maximum displacement

for all bending regimes. We find that while the approximate solution (without cur-

vature) underestimates the maximum displacement of the buckled carbon nanotube

in the weak bending regime, our numerical solution provides an entirely different

prediction in comparison to the approximate solution in the strong bending regime.

Furthermore, we derive an instability condition for multi-walled carbon nanotubes

and nanopeapods under an axial load by taking into account the van der Waals

forces between molecules. We observe that the critical force derived from the axial

buckling stability criterion decreases as a result of the molecular interactions be-

tween adjacent layers of the nanotubes and the molecular interactions between the

embedded fullerenes and the inner carbon nanotube.

The worm-like chain model arises as a model for stretched semi-flexible molecules

and for its applications to molecular stretching in the extracellular matrix, we adopt

a variational principle to examine the model and then we utilize the model to de-

scribe anionic glycosaminoglycan between collagens. The worm-like chain model has

been proposed assuming that each monomer resists the bending force. We deter-

mine a force-extension formula for the worm-like chain model analytically, and find

that our formula suggests new terms such as the free energy and the cut-off force

for a molecule. In addition, we predict two possible phase changes for a stretched

molecule, and show theoretically that a molecule must undergo two phase changes

when they are stretched beyond their total contour lengths. Furthermore, we adopt

the worm-like chain model to describe the mechanical properties of a collagen pair

in the connective tissue extracellular matrix. We find that the growth of fibrils is

intimately related to the maximum length of the anionic glycosaminoglycan and the

relative displacement of two adjacent fibrils.
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Chapter 1

Introduction

In this introduction, we firstly discuss the nature of mathematical modeling, followed

by a general overview of carbon nanotubes and fullerenes and an introduction into

the technological applications of both molecules. We then turn our attention to

biotechnology and discuss the importance of structural polymers in maintaining

the shape modulus of animal tissues. Finally, an outline of the thesis structure is

provided.

1.0.1 Mathematical modeling

Most mathematical modeling builds on universal physical laws, such as the con-

servation of mass, momentum and energy, and hence reflects the beauty and order

of nature by means of formulae and numbers. Applied mathematical modeling

describes real-world problems constrained by particular assumptions. It may be ap-

plied to a vast number of physical systems, over widely different length scales from

the analysis of galactic structures to life-sized structures such as water waves, and

down to the micro and submicroscopic scales for molecular structures. The merit of

mathematical modeling is that one may derive reasonable predictions subject to pre-

scribed assumptions, and often such predictions may reduce the production costs by

avoiding implementing some expensive experimental investigations. Mathematical

modeling may be roughly divided into the following three steps:
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1. Quantification of the scientific or the technological problem,

2. Formulation as a mathematical model,

3. Solving the established mathematical equations,

4. Empirical verification of the numerical solutions.

We note that all these steps are equally important in advancing our knowledge. The

third step, which may involve numerous methodologies such as Fourier analysis,

perturbation theory, asymptotic expansions, potential theory, numerical methods,

molecular dynamics simulation, probabilistic theory etc, may often require knowl-

edge from a skilled mathematician.

Nanotechnology is the study of technology at the nanoscale, which is a newly

emerging field intertwining all the traditional sciences of physics, chemistry, biology,

engineering and mathematics. Biotechnology involves applications that utilize bio-

logical systems, living organisms, or derivatives thereof, to make or modify products

or processes for specific usage; and investigates the sustainability and analysis of

biological systems. Mathematical modeling is a powerful tool which allows us to

quantify certain scientific phenomenon and then carry out a deductive reasoning to

gain new insights. It acts as a predictive tool which may indicate optimal research

outcomes and directions in rapidly developing areas. The motivation for the models

developed in this thesis is provided by the three specific areas for both the nano and

biotechnologies:

1. Mechanics of fullerenes and carbon nanotubes nano structures,

2. Axial buckling of carbon nanotubes and nanopeapods and applications,

3. The worm-like chain model for stretched semi-flexible molecules and the math-

ematical modeling of molecular stretching in the extracellular matrix.

2
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Figure 1.1: Chirality in graphene sheet. Each pair of integers (n,m) represents a
possible nanotube structure. Thus, the chirality can be expressed as C = na1+ma2,
where a1 and a2 are the unit cell base vectors. While m = 0 represents for all zig-zag
tubes, n = m represents for all armchair tubes. All the other combinations of n and
m are chiral type (left) and carbon nanotube (right).

1.0.2 Carbon nanotubes

The scientific realization of carbon nanotubes (CNTs) was first initiated by Iijima

[66], who published a paper with the title “Helical microtubules of graphitic carbon”

in the journal Nature. Carbon nanotubes (see Fig. 1.1 for details) are allotropes of

carbon atoms having novel and superior physical properties [100] such as very high

mechanical strength [131, 133], low weight, and the ability to be either metallic

or semi-conducting depending on their geometric configurations [111, 174]. Their

unique chemical properties [108] also make them potentially useful in many nan-

otechnology and material science applications.

The chemical bonding of a pure carbon nanotube is composed entirely of sp2

bonds, as predicted by quantum mechanics. This bonding structure is equivalent

to a graphene sheet, a single layer of graphite, and provides carbon nanotubes with

their superior mechanical strength since the sp2 bonds are even stronger than the sp3

bonds found in diamond. Mechanically, carbon nanotubes possess the largest known

axial Young’s modulus, which arises due to the strong sp2 bonding between carbon

atoms. Under high pressure carbon nanotubes can merge together by exchanging

some sp2 bonds for sp3 bonds, giving rise to the possibility of producing strong
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one-dimensional cables through high-pressure nanotube linking, and they can be

elastically reversible after large twisting, kinking and bending deformations.

Owing to the non-polar nature of their molecular bonds, carbon nanotubes are

insoluble and therefore very stable in water. However, they can be covalently fuc-

tionalized, i.e. they respond very well to some strong acids and chemical oxidizers to

carry out some particular tasks. Since they have a very large surface area to volume

ratio, they provide ideal candidates for gas filtration, sensing and energy storage.

Furthermore, their electrical properties differ depending on the chirality (n,m) of

the nanotube (see Fig. 1.1 for details). As mentioned in [100], one third of carbon

nanotubes are metallic and the rest are semi-conductors.

1.0.3 Fullerenes

Jones [71] suggested in the New Scientist, under the name of Daedalus, the possibil-

ity of a cage-like hollow all-carbon molecules. However, it was not until two decades

later, that Kroto [84] experimentally discovered C60 and C70 fullerenes by mass spec-

trometry (an illustration for C60 is shown in Fig. 1.2). The C60 molecule possesses Ih

symmetry, and has a spherical shape. Euler’s theorem for regular polyhedra states

that F + V = E + 2, where F , V and E denote the numbers of faces, vertices

and edges respectively [100]. After some simple manipulation of this equation, one

can show that the smallest possible fullerene is C20. However, the formation of

the C20 molecule is not energetically favorable owing to the high curvature of the

carbon bonding between atoms of the C20 fullerene, and also the isolated pentagon

rule, which states that two adjacent pentagons will not be energetically favorable

[83, 136]. By considering both Euler’s theorem and the isolated pentagon rule, we

may conclude that C60 is the smallest possible stable fullerene. As discussed by

Goldberg [48], Yoshida and Osawa [176] and Dresselhaus et al. [37], an icosahedral

fullerene consists of twenty equilateral triangles, each specified by a pair of integers

(n, m) such that the total number of carbon atoms N in the fullerenes CN is given

by
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Figure 1.2: C60 fullerene.

N = 20(n2 + nm+m2), (1.1)

and the diameter of the icosahedron is given by the expression

D =
5
√

3dcc

π
(n2 + nm+m2)1/2, (1.2)

where dcc is the bond length between two carbon atoms. In general, a fullerene CN

belongs to either I- or Ih-symmetry. In particular, Ih-symmetry can be divided into

two main types, namely type 1 when n = m and type 2 when n = 0 or m = 0,

which have an ellipsoidal shape. C60 has (n,m) = (1, 1), and belongs to type 1

Ih-symmetry. The first five fullerenes of type 1 Ih-symmetry are C60, C240, C540,

C960 and C1500.

1.0.4 Nano-electromechanical systems

Carbon nanotubes are ideal candidates for nano-electromechanical systems, and

have opened up a vast area of potential novel applications [24]. For example, car-

bon nanotubes have been implemented as nanotube-based pressure and mass sensors

[150, 107], nanotweezers [76, 1], switches in random access memory devices [129], and

actuators [10]. Moreover, recent research reveals that carbon nanotubes can also be

utilized as nano-electromechanical switches [34, 78, 23], resonating charge shuttles

[39], single electron spin detectors [130] and gigahertz oscillators [179, 90, 27, 28].

The main advantages for such nano devices over their micro counterparts are that
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they are not only ultra fast and highly sensitive but they have a very low power con-

sumption [138, 60]. System biology explores the basic structures of living organisms

by modeling the inter and intra cellular processes [79], and may utilize nano sensors

to provide data for quantitative modeling verification. Nano-electromechanical sys-

tems can also be utilized in the detection of quantum mechanical states of motion

[138, 104].

Further electronic system miniaturization will create a high demand for the

down-scaling of sensor functions [61]. The small diameter of the nanotube en-

ables probes to measure an area of approximately to 1 nm × 1 nm, for which

a deflection can be measured, and which cannot be reached by most conventional

methods [60, 166]. Recent research has been undertaken on the doubly clamped nan-

otube as a nano-electromechanical system. Stampfer et al. [151] investigate a nano-

electromechanical sensing device, which is based on a suspended single-walled carbon

nanotube to measure small deflections at the nanoscale. These authors discuss both

the fabrication process and the measurement methodology of such nano devices,

and the corresponding piezoresisitive gauge factors can attain up to 2900, which

is much greater than the values for existing conventional strain gauges. Charge-

induced buckling in a single-walled carbon nanotube has also been experimentally

manipulated. Furthermore, Sazonova et al. [135] report on the guitar-string-like

oscillation models of doubly clamped nanotube oscillators, and show experimentally

that the resonance frequency of such systems can be tuned and therefore can be uti-

lized to transduce very small forces. Theoretical studies on the suspended nanotube

oscillators are also widely investigated in various papers [169, 47, 117].

1.0.5 Gigahertz oscillators

One of the many applications of carbon nanotubes that has attracted much attention

is the idea that they can be utilized as components in a nanoscale gigahertz oscillator

[179]. Both experimental [31] and theoretical studies, including molecular dynamics

simulation [94] and mathematical modeling [120, 27, 28], have shown that the sliding
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of an inner shell inside an outer shell of a multi-walled carbon nanotube can generate

oscillatory frequencies in the gigahertz range. However, a successful experimental

realization for such nanoscale oscillators has yet to be reported. The concept of

nanoscale oscillators is based upon the experiments of Cumings and Zettl [31] on

multi-walled carbon nanotubes, who remove the cap from one end of the outer shell

and attach a moveable nanomanipulator to the core in a high-resolution transmission

electron microscope. By pulling the core out and pushing it back into the outer

shell, they report an ultra-low sliding frictional force (∼ 10−14NÅ−2), which is also

confirmed by Yu et al. [177]. Further, Cumings and Zettl [31] observe that the

extruded core, after release, quickly and fully retracts inside the outer shell due to the

restoring force resulting from the van der Waals interaction acting on the extruded

core. These experimental results led to the molecular dynamics studies of Zheng and

Jiang [179] who show that the oscillating of the inner shell between the open ends

of the outer shell of a multi-walled carbon nanotube generates a frequency in the

gigahertz range. Molecular dynamics simulation undertaken by Legoas et al. [90],

Rivera et al. [125, 126] and others also confirm such gigahertz frequency phenomena.

From a mathematical modelling perspective, Baowan and Hill [7] investigate the

force distribution for a double-walled carbon nanotube oscillator by utilizing the

continuous approach for the Lennard-Jones potential together with Newton’s second

law, assuming a frictionless environment. They obtain an analytical expression for

the interaction force and their model also predicts gigahertz oscillatory behavior for

double-walled carbon nanotube oscillators.

Zheng and Jiang [179] suggest that the oscillatory frequency increases as the

inner oscillating tube becomes shorter. This result leads to the molecular dynamics

study of Liu et al. [94] on the oscillation of a C60 fullerene inside a single-walled

carbon nanotube. While Liu et al. [94] focus on the oscillation frequency, the study

of Qian et al. [120] concerns the suction and the repulsion of a C60 molecule in the

vicinity of the tube’s open end and the velocity of the molecule after being sucked

into the nanotube. Based on the molecular dynamics simulation of both Liu et
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al. [94] and Qian et al. [120], Cox et al. [27, 28] develop a mathematical model

employing fundamental mechanical principles and classical applied mathematical

techniques to determine the acceptance condition and the suction energies of the C60

fullerene upon entering a nanotube. They determine the minimum radius of a carbon

nanotube for which the C60 fullerene will be accepted from rest and the maximum

total energy once the C60 molecule is sucked inside the nanotube by the van der

Waals forces. In addition, Cox et al. [27, 28] show that the gigahertz oscillatory

behavior arises from the two peak-like forces operating at the nanotube’s open ends.

The analytical model of Cox et al. [27, 28] may be extended to more complicated

gigahertz oscillators, including nanotube bundle oscillators for which the oscillating

molecule inside the bundle is either a single nanotube or a C60 fullerene [30, 29].

Other types of nanoscale oscillators are also possible. Hilder and Hill [63, 62]

find that gigahertz frequencies can also be obtained from a sector of a nanotorus

orbiting inside a carbon nanotorus, and also for an atom or a C60 fullerene orbiting

inside a nanotorus. In this thesis, we investigate further orbiting phenomenon at

the nanoscale. In particular, we consider an atom and a C60 fullerene orbiting about

the outside of a carbon nanotube and also a C60 fullerene orbiting around a C1500

molecule.

1.0.6 Connective tissue extracellular matrix

Structural polymers help to maintain an animal’s body shape when experiencing

large external tractions. Perhaps the most important structural polymer is colla-

gen, which exists in the connective tissue extracellular matrix (CTs), for example,

skin, cartilage and bone. CTs are bridged and bonded by anionic glycosaminoglycan

GAGs, such as parallel rows of decoran, which are the only molecules in CTs apart

from protein fibres that can be visualized by an electron microscope [141, 140, 153].

A pair of segments on neighboring collagen fibrils, which are linked by GAGs chains,

is termed a shape module, and must deform reversibly to protect the general struc-

ture of the organism against various external stresses [55]. These GAGs transmit
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Figure 1.3: 4C1 chair configuration. 1C4 chair configuration can be viewed by flipping
vertices C1 and C4 upside down (all the notations Ci and Oi we adopt here, are just
for the sake of clarification). In addition, F and I denote applied force and lever
respectively.

forces from the local area of molecules to global fibrils by converting compression

into disseminated tensile stress [139]. The collagen and the elastin fibril behave

mainly like a Hookean spring in the low stress limit, but the elasticity of GAGs’

molecules is still under intensive investigation [21].

GAGs can go through conformational transitions, which are defined by the sud-

den elongation of bio-molecules due to the change in their atomic allocations without

an increase in external forces. GAGs, e.g. pectinate, have two distinct chair struc-

tures, namely 4C1 and 1C4 [9] (see Fig. 1.3 for details), separated by an energy barrier

of approximately 11 kcal/mol [73]. Moreover, there exists a boat conformation 1,4B

(see Fig. 1.4 for details) with an energy level of approximately 5− 8 kcal/mol above

the most stable 4C1 chair energy [35]. In the low energy configuration, nature prefers

the 4C1 chair state over other possible states because it possesses the minimum en-

ergy configuration. However, under an external stress, these polysaccharides can

undergo two conformational transitions reversibly beyond some critical stresses [99].

For example, amylose undergoes its first conformational transition when the applied

force is around 200 pN and its second transition when the applied force is around 500

pN. However, some polysaccharides like pigskin DS only go through one transition,

while other polysaccharides like poly-anionic HA, neutral methyl cellulose and poly-

cationic chitosan undergo no transitions at all. The reason for these conformational

transitions is closely linked to the total number of axial or equatorial linkages exist-
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Figure 1.4: 1,4B boat configuration.

ing in each pyranose ring (monosaccharide). It is evident that the glycosidic linkages

I, which are indicated in Fig. 1.3 may act as levers to generate a sufficient torque to

undertake the work done, which is necessary to perform ring conformational transi-

tions. Hence only glycosidic linkages with axial linkages can generate enough torque

to flip the levers beyond a given critical stress while equatorial linkages can not. For

a more extensive treatment of the conformational transitions, see Marszalek et al.

[99] for details. This phenomena provides a crucial step for a molecule to transform

from the entropic region into the Hookean regime. Although the above interpreta-

tion of the kinking conformational changes is largely accepted by most researchers,

there exists alternative interpretations to explain these conformational transitions

[85].

1.0.7 Thesis structure

This thesis is presented in six parts. Chapter 1 comprises the introduction and

background. Chapter 2 examines the mechanics of three proposed nanostructures,

namely the gigahertz oscillators, the nano tippe top and the nanoscale orbiting

systems. Chapter 3 develops various continuum mechanical models for the axial

buckling of carbon nanotubes and nanopeapods and their applications in nano-

electromechanical systems. Chapter 4 investigates the worm-like chain model for

stretched semi-flexible molecules by utilizing a variational principle and discusses

applications to structural polymers. Chapter 5 contains the conclusion of the thesis

10
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and finally Chapter 6 comprises the Appendices1.

1Due to the diverse areas discussed in this thesis, all symbols are consistent throughout each

section but may vary across different sections. In addition, at the end of each chapter, there is a

list of symbols for that chapter, which a different list for each of the sections in the chapter. These

lists comprise the page number where the symbol is first defined.
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Chapter 2

Nanomechanics

In this Chapter, we investigate the mechanics of three distinct nanoscale systems,

namely the spiral motion of a C60 fullerene inside a carbon nanotube, the spinning

motion of a C60 fullerene which is joined by a small carbon segment, subsequently

referred to as a nano tippe top which is precessing on a graphene sheet or the interior

of a nanotube, and certain nanoscale two body problems which resemble planetary

motion of the solar system. Both the continuous approximation and the dynamics

of rigid bodies are employed to formulate for these problems.

2.1 Spiral motion of carbon atoms and C60 fullerenes

inside single-walled carbon nanotubes

In this section, we investigate the scenario in which an atom or a C60 fullerene is

oscillating in the axial direction of a carbon nanotube and it is also spiraling inside

the nanotube about its axis. Such spiral motion is particularly prominent if the van

der Waals forces arising between the nanotube wall and the molecules confine the

defining path of the atom or the C60 fullerene. Although at present this oscillatory

motion has yet to be experimentally confirmed, we can mathematically model such

motions by adopting the continuous approach to approximate the van der Waals

interactions and then utilizing Newton’s second law to determine the equations of
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motion of the atom or the C60 molecule inside the nanotube. Our model differs from

other theoretical studies mentioned above since the spiral motion is predicted solely

from a mechanical perspective without taking into account either the symmetries

of the C60 fullerene or the helical structure of the nanotubes. Although we do not

directly take into account any thermal effects into the derivation of the equations of

motion of the atom or the fullerene, we may identify the root mean square velocity

of the atom or the fullerene through classical kinetic theory, which can be related

to the temperature of the system. Such a root mean square velocity can then be

utilized to calculate the centrifugal forces experienced by the atom or the fullerene,

which counteract the repulsive van der Waal forces between the nanotube and the

atom or the fullerene, giving rise to a path of the atom or the fullerene at a preferred

radius while oscillating axially inside the nanotube. We first examine how a single

carbon atom behaves inside a nanotube and then we extend this case to the behavior

of a C60 fullerene inside a nanotube taking into account a frictional effect.

In the following sub-section, we briefly state the interaction energy between

two molecules upon adopting the continuous approach. In sub-section 2.1.2, we

assume cylindrical symmetry of the nanotube and determine the mutual forces acting

on a single carbon atom inside a single-walled carbon nanotube. As a result, we

can determine the trajectory of the atom by requiring that the net force, which

comprises both the van der Waals forces and the centrifugal forces due to the atomic

circular motion, to vanish at the equilibrium configuration. In sub-section 2.1.3, we

discuss the frictional force at the nanoscale. In sub-section 2.1.4, we incorporate

the frictional form derived in sub-section 2.1.3 to investigate the motion of a C60

fullerene inside a nanotube. Some conclusions and possible future research directions

are given in the final sub-section.

2.1.1 Potential energy between molecules

The total non-bonded pairwise molecular interactions is conventionally obtained by

summing all of the interaction energies between each atomic pair E, namely
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E =
∑

i

∑

j

Φ (ρij) , (2.1)

where Φ(ρij) denotes the potential function between atoms i and j separated by

a distance ρij . Upon adopting the continuous approach, which assumes that the

carbon atoms are uniformly distributed over the surfaces of the C60 fullerene and

the nanotube, we can approximate Eq. (2.1) by the double surface integral

E = ntnf

∫

Σt

∫

Σf

Φ(ρ)dSfdSt, (2.2)

where nt, nf , ρ, dSf and dSt denote the mean atomic surface density of the nan-

otube, the mean atomic surface density of the C60 molecule, the distance between

two typical surface elements, and the surface elements of the C60 molecule and the

nanotube, respectively. The value of the constants utilized in this thesis are given

in Table 2.1. In particular, the potential function adopted here is the classical

Lennard-Jones potential,

Φ = −A

ρ6
+

B

ρ12
, (2.3)

where A and B denote the attractive and the repulsive constants respectively. From

Eq. (2.2), the non-bonded molecular potential energy between two molecules can be

written as

E = ntnf

∫

Σt

∫

Σf

(

−A

ρ6
+

B

ρ12

)

dSfdSt. (2.4)

We note that for the case of a carbon atom oscillating inside a nanotube, only a

single surface integral over the nanotube is necessary.
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Radius of (6,6) a = 4.071 Å
Radius of (10,10) a = 6.766 Å
Radius of (16,16) a = 10.860 Å
Radius of C60 b = b1 = 3.55 Å
Radius of C1500 b2 = 17.5225 Å
Carbon-carbon bond length σ = 1.421 Å
Mean surface density of
a single layer graphene nt = 0.3812 Å−2

Mean surface density of C60 nf = n1 = 0.3789 Å−2

Mean surface density of C1500 n2 = 0.3789 Å−2

Mass of a single carbon atom ma = 1.993 × 10−26 kg
Mass of a single C60 fullerene m = m1 = 1.196 × 10−24 kg
Mass of a single C1500 fullerene m2 = 2.990 × 10−23 kg
Attractive constant A = 17.4 eV× Å6

Repulsive constant B = 29 × 103 eV×Å12

Table 2.1: Numerical values of constants utilized in Section 2.1 and Section 2.3.

2.1.2 Oscillatory motion of carbon atom inside a single-

walled carbon nanotube

In this sub-section, we examine the dynamics of a single carbon atom oscillating in-

side a single-walled carbon nanotube. Although the case of an isolated single carbon

atom does not generally exist, the mathematics involved in calculating the molecular

potential energy between the atom and the nanotube and the corresponding residual

molecular force are relatively simple and they can be conceptually extended to the

study of more complicated molecular structures, such as the molecular interactions

between a C60 fullerene and a nanotube. Since the atomic distance between the

carbon atom and the nanotube is sufficiently large, even though the carbon atom

has four valance electrons, these electrons will not tend to form chemical bonding

with the wall of the nanotube. As a result, the friction between the carbon atom

and the single-walled carbon nanotube can be neglected in this case [31].

Following the work of Cox et al. [27] (here, we develop a more realistic math-

ematical model by incorporating both the thermal and frictional effects into the

existing gigahertz oscillatory model developed by Cox et al. [27, 28] to investigate

both the stable and unstable spiral motions instead of a pure linear motion of the
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Figure 2.1: Atom-nanotube system.

carbon atom and the C60 fullerene inside carbon nanotubes of various radii), upon

utilizing a cylindrical coordinate system, we can parametrize the position of the

atom and an arbitrary point on the wall of the nanotube by (r, α, z1) and (a, θ, z)

respectively, where a denotes the radius of the nanotube (see Fig. 2.1). We can then

determine the distance ρ between the atom and an arbitrary atom on the wall of

the nanotube in terms of the prescribed parametrization, which is given by

ρ =
[

a2 + r2 − 2ar cos(θ − α) + (z − z1)
2
]1/2

. (2.5)

The molecular potential energy between the atom and the nanotube can be found

by utilizing Eq. (2.4) to become

E = ant

∫ π

−π

∫

∞

−∞

(−A
ρ6

+
B

ρ12

)

dzdθ. (2.6)

Upon making the following substitution λ = [a2 + r2 − 2ar cos(θ − α)]
1/2

, we obtain

ρ = [λ2 + (z − z1)
2]1/2. We further substitute z − z1 = λ tanψ, leading Eq. (2.6) to

E = ant

∫ π

−π

∫ π/2

−π/2

(−A cos4 ψ

λ5
+
B cos10 ψ

λ11

)

dψdθ. (2.7)
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Upon utilizing the established result from [69], for positive integers m we have

∫ π/2

−π/2

cos2m ψdψ =
(2m− 1)!!π

(2m)!!
, (2.8)

where !! denotes a double factorial operator, which is defined by (2m)!! = 2 · 4 · 6 ·

. . . · 2(m− 1) · 2m and (2m− 1)!! = 1 · 3 · 5 · . . . · (2m− 3) · (2m− 1). As a result, E

becomes

E =
3πant

8

∫ π

−π

(

−A

λ5
+

21B

32λ11

)

dθ =
3πant

8

[

−AI5 +
21B

32
I11

]

, (2.9)

where the integral In are defined as

In =

∫ π

−π

1

λn
dθ =

∫ π

−π

1

[a2 + r2 − 2ar cos(θ − α)]n/2
dθ.

In the Appendix A of Cox et al. [27], these integrals have been evaluated in terms

of the generalized hypergeometric function, thus

E =
3πant

8

[

− 2Aπ

N5/2
F

(

5

2
,
1

2
; 1;−M

N

)

+
21Bπ

16N11/2
F

(

11

2
,
1

2
; 1;−M

N

)]

, (2.10)

where F denotes the hypergeometric function, N = (a − r)2 and M = 2ar. From

Eq. (2.10), we can obtain the atomic force acting on the atom in the r, the θ and the z

directions by F vdW = −∇E, where ∇ denotes the usual gradient operator. To relate

this van der Waals forces with the other mechanical forces such as the centrifugal

forces arising from the atomic circular motion, we derive the full expression for the

atomic forces by utilizing the cylindrical symmetry of the nanotube and the resulting

force components are as follows:
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Fr = −∂E
∂r

, Fθ = −1

r

∂E

∂θ
, Fz = −∂E

∂z
. (2.11)

We note that the distant interactions between molecules can be modeled by classical

mechanics as long as energy exchange between molecules does not generally exist

[95]. It is noteworthy from Eq. (2.10) that E only depends on r and therefore we

have Fθ = Fz = 0. Employing Newton’s second law, the three mutual equations for

the atomic forces can be shown to become

Fr = −∂E
∂r

= m
[

r̈(t) − r(t)θ̇(t)2
]

,

Fθ = m
[

2ṙ(t)θ̇(t) + r(t)θ̈(t)
]

= Fz = mz̈(t) = 0, (2.12)

where m denotes the mass of a particle, and from which we can deduce that z(t)

adopts the form z(t) = Ct+D, where C and D denote arbitrary constants. Hence

the translational velocity vt in the z-direction is constant. This result has been sepa-

rately confirmed by Cox et al. [27] who show that the atom oscillates linearly inside

the nanotube in the axial direction. Since Fθ = 0, we can then recast Eq. (2.12)2 in

terms of an integral upon utilizing d/dt[r2(dθ/dt)] = 0 to obtain

h = r(t)2dθ

dt
, (2.13)

where the constant h is referred to as the angular momentum of the atom. To obtain

the radial acceleration, from Eq. (2.12)1, we have

d2r

dt2
=

h2

r(t)3
− 1

m

dE

dr
. (2.14)
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If we assume that the atom stays at a preferred stable radius rs, the acceleration of

the atom at rs has to vanish and we obtain

Fr = −mv
2

rs
, (2.15)

where v denotes the circumferential velocity of the atom inside the nanotube and

we note that Fr denotes the centripetal forces generated by the repulsive van der

Waals forces, which must have the same magnitude but in the opposite direction

to the centrifugal forces mv2/rs caused by the circular motion. The combination of

the circular motion and the linear translational velocity in z-direction defines the

spiral-like path of the atom.

Here, we first investigate a carbon atom inside a (6,6) and a (10,10) nanotube.

We ignore the frictional force between the atom and the nanotube due to the ultra-

low frictional effect at the nanoscale for the atom-nanotube system. The molecular

potential energies E as a function of the radial distance r from the axis of the (6,6)

and (10,10) nanotubes are described by Eq. (2.10) and are plotted in Fig. 2.2. The

minimum energy configurations for the proposed systems are reported as -0.15 eV

and -0.1 eV with the corresponding preferred radial distances r0 of 0.48 Å and 3.25 Å

respectively. We note that here the subscript “0” denotes the ideal system without

taking the centrifugal forces into account for the circular motion of the carbon

atom inside the nanotube. It is interesting to note that the interaction energy as a

function of distance between the carbon atom and the (6,6) and (10,10) nanotubes

shows some substantial differences because the carbon atom is confined by the large

curvature induced by (6.6) nanotube, from which it restricts the carbon atom almost

at the center of the (6,6) nanotube. These minimum energy configurations can be

demonstrated by investigating the radial forces acting on the atom described by

Eq. (2.12)1. We plot the radial forces for the proposed systems in Fig. 2.3 and note

that while the atomic force attracts the atom towards r0 from the axis due to the

attractive van der Waals forces, it is pushing away from the wall of the nanotube
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due to the repulsive van der Waals forces. In particular, the radial force is zero

when the atom is located at its preferred position r0. We comment that the van

der Waals forces acting on the atom at r = 0 is also zero but it is not stable due

to the fact that a small perturbation from the axis, i.e. r = ε where ε denotes

a small non-zero quantity, will push the atom away from r = 0. If the atom is

sucked into the nanotube in the axial direction, the dynamics is a purely linear

oscillatory motion. That is, the atom will oscillate inside the nanotube at r0 with a

gigahertz frequency in the z-direction [27, 28]. However if the atom is sucked into

the nanotube in the non-axial direction, for example due to thermal fluctuations,

the resulting preferred radial position rs will be bigger than r0 owing to the induced

centrifugal forces caused by thermal fluctuations acting on the atom. It is easy to

observe that the carbon atom is always unstable when r < r0 for both the axial and

non-axial intrusions. For the latter case, the resultant path (rs, α, z1) hence forms a

spiral-like motion, which can be determined by balancing the van der Waals forces

F vdW = −∇E with the centrifugal forces given by Eq. (2.15).

The circumferential velocity v, which keeps the atom at the preferred radial

distance rs is shown in Fig. 2.4. We note that for all proposed nanotubes, v = 0 when

rs = r0, which corresponds to the case of the ideal system while for other nonzero

values of v, rs will differ by the amount of the centrifugal forces induced by thermal

fluctuations. It is easy to observe that rs possesses a positive relationship with the

circumferential velocity v, which implies that the higher the circumferential velocity,

the closer the atom will be to the wall of the nanotube. The physical circumferential

velocity may be estimated by the kinetic theory assuming that the atom is sucked

into the nanotube at room temperature T = 300 K. The root mean square velocity

vrms for an arbitrary direction of a non-interacting atom at room temperature can be

calculated from vrms =
√

kBT/ma = 456 ms−1, where ma and kB denote the mass of

the single carbon atom and Boltzmann’s constant respectively. Upon comparing the

root mean square velocity with the circumferential velocity in Fig. 2.4, we find that

on average, the atom has a stable spiral trajectory at rs = 0.6 Å and rs = 3.32 Å for
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Figure 2.2: Interaction energy E of carbon atom at distance r from the axis of (a)
(6,6) and (b) (10,10) carbon nanotube.

the (6,6) and (10,10) nanotubes respectively. Hence, we can conclude that the spiral

path of the atom inside the (10,10) nanotube is more prominent than that of the

(6,6) nanotube. This indicates that the nanotube curvature serves to strengthen the

interactions between the atom and the wall of the nanotube to create the spiral-like

path. However, if the curvature is very large, as in the case for the (6,6) nanotube,

spiral motion will unlikely to be observed because the atom is forced to move to the

axis of the (6,6) nanotube.
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Figure 2.3: Atomic force FvdW of carbon atom at distance r from the axis of (a)
(6,6) and (b) (10,10) carbon nanotube.

These findings are compatible with the molecular dynamics simulation performed

by Gan et al. [46], who show that the escaped carbon atoms inside a (10,10) nan-

otube, after introducing an electron beam cut on the (10,10) nanotube, follow a

spiral trajectory at T = 775 K. From our model, we can calculate vrms = 732 ms−1

at T = 775 K for the carbon atom, and hence we predict that the spiral motion

occurs at rs = 3.38 Å.
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Figure 2.4: Circumferential velocity v of carbon atom at preferred radius rs from
the axis of (a) (6,6) and (b) (10,10) carbon nanotube.

2.1.3 Frictional force at nanoscale

The dynamics of a C60 fullerene is more complicated than that of a single atom

since the C60 fullerene can admit both rotational and vibrational degrees of freedom

which are not present for the carbon atom. Moreover, for the C60 the frictional effect

may be far more significant than that for the atom, and therefore we incorporate a

frictional force between the C60 fullerene and the nanotube into our model. There
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are a number of experimental, molecular dynamics simulation and analytical studies

[42, 58, 142, 144] aiming to determine the frictional force at the nanoscale. In terms

of experimental investigations, these mainly involve the application of scanning tun-

neling microscopy [15] and atomic force microscopy [14] to find the force spectrum

of the targeted molecules. In particular, experimental results suggest that the fric-

tional force at the nanoscale is ultra-low [41, 80] leading to neglecting the frictional

effect for the case of atom-nanotube oscillators, as in the previous sub-section. Fur-

thermore, frictional force can be classified as either dissipative or non-dissipative,

where the former case represents a non-reversible dynamical process due to the en-

ergy losses to the environment, usually in the form of heat or sound. The latter case

has been adopted by Zheng and Jiang [179] where the non-dissipative frictional force

resulting form the inter-atomic locking is assumed to cause a frictional effect on the

double-walled nanotube gigahertz oscillator. Here, we examine the notion of a dissi-

pative frictional force between the C60 molecule and the nanotube at the nanoscale.

Since both the C60 fullerene [4, 165] and the carbon nanotube [119, 118, 102] possess

dielectric properties, we can adopt a dynamical force arising from electromagnetic

fluctuations [32] to determine such a frictional force. The simplest possible case

that can be considered is the frictional force between a moving dielectric atom and

a cylindrical surface [86]. The general atom-surface interactions U and the rate of

energy dissipation W can be described by

U = −1

2
< d · E0 >, −dW

dt
=

∫

< j · E0 > dr = Ff · V, (2.16)

where d, j, E0, Ff and V denote the bulk dipole moment, the current density,

the interacting electrical field, the frictional force and the horizontal velocity of the

atom respectively. Assuming a cylindrical symmetry of the nanotube, Kyasov and

Dedkov [86] find that the frictional force can be expressed as equation (18) given

in Kyasov and Dedkov [86]. Although this equation incorporates the curvature of

the cylindrical surface, it is extremely difficult to work with, at least for our current
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Figure 2.5: Schematic of electromagnetic interactions between a carbon atom and
a graphite layer (left) and between a C60 and the graphite layer (right), moving
parallel with (x,y) plane.

purposes, and therefore we adopt a simpler form of equation (18) as given in Kyasov

and Dedkov [86] by assuming that the curvature of the cylindrical surface is zero,

which is particularly valid provided that the van der Waals forces is a “short” range

interactions and that the radius of the nanotube is sufficiently large. One may then

find the following simple expression for the frictional force Ff ∼ V/z5, where z and

V denote the perpendicular distance between the atom and the flat surface and

the horizontal velocity respectively (See Fig. 2.5 for details). In order to determine

the total frictional force F tot
f between the C60 fullerene and the graphene sheet, we

simply integrate the frictional force Ff over the entire surface of the C60 fullerene,

namely

F tot
f = −

(

∫

Σf

c

z5
dSf

)

V, (2.17)

where c denotes a physical constant, which is both frequency and temperature de-

pendent, dSf = b2 sin θdθdφ and z = a − r + b cos θ, as indicated in Fig. 2.5. Note

that a and b denote the radius of the nanotube and the C60 fullerene respectively.

However, we do not determine the constant c from first principles due to the tedious

expression of the frequency dependent atomic polarization and the dielectric func-
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tion of the graphene sheet. We simply determine the value of c by fitting Eq. (2.17)

with a molecular dynamics simulation result [52]. Upon integrating, we obtain

F tot
f = −πcb

2

{

1

(a− r − b)4
− 1

(a− r + b)4

}

V,

= −4πb2c

{

(a− r) [(a− r)2 + b2]

[(a− r)2 − b2]4

}

V = −η(r)V, (2.18)

where η(r) denotes the usual frictional coefficient but which depends on the radius r.

We note that this frictional coefficient is proportional to the area of the overlapping

section b2, which is consistent with the perspective of modern tribology. This total

frictional force will be utilized to represent the energy dissipation between the C60

fullerene and the nanotube in the next sub-section. To proceed, we determine the

coefficient c by matching Eq. (2.18) with the molecular dynamics simulation results

given by Haibin et al. [52], who study the dynamical frictional force due to phonon

excitation for the C60@(10,10) nanopeapod oscillator. Upon substituting Ff = 150

pN, a = 6.77 Å, b = 3.55 Å, r = 0 Å (since Haibin et al. [52] assume the axially

oscillatory motion of a C60 fullerene inside a (10,10) nanotube) and vt = V =

480ms−1 into Eq. (2.18), we obtain c = 6.04 × 10−42 kgm3s−1 at T = 300 K. Fixing

the temperature T = 300 K, we can plot the frictional force against the C60 velocity

V in Fig. 2.6. Again this result agrees well with the result obtained by Haibin et al.

[52], especially within the linear force regime.

2.1.4 Oscillatory motion of C60 fullerene inside a single-

walled carbon nanotube

In this sub-section, we extend the model developed by Cox et al. [27] to investigate

the dynamical behavior of a C60 fullerene inside a single-walled carbon nanotube

by considering the frictional effect arising from the molecular interactions between

molecules within a short range r to determine the unstable spiral motion of the

C60 inside the nanotubes and its final oscillatory frequency. However, for the time
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Figure 2.6: Frictional force against the translational velocity of C60 inside (10,10)
with T = 300K and r = 0.

being we first ignore the frictional force and only consider the spiral motion of a

C60 fullerene inside a single-walled carbon nanotube, in particular the (10,10) and

(16,16) nanotubes. Later we incorporate the frictional force into our model to study a

more realistic oscillatory phenomenon of such gigahertz oscillators. We parametrize

the center of the fullerene by (r, α, Z) and an arbitrary point on the shell of the

nanotube by (a, θ, z), where a denotes the radius of the nanotube. The distance

from the center of the fullerene to a point on the wall of the nanotube is hence given

by

ρ =
[

a2 + r2 − 2ar cos(θ − α) + (z − Z)2
]1/2

. (2.19)

The carbon atoms are assumed to be uniformly distributed over the surfaces of both

the fullerene and the nanotube, so that we can then adopt a continuous approach

to average out the molecular potential energy between the fullerene and the carbon

nanotube by a double surface integral, i.e. Eq. (2.2). Following the Appendix A of

Cox et al. [27], by performing the surface integral of the Lennard-Jones potential

27



Y. Chan

(r, α, z)

Nanotube wall

(a, θ, z) 

C60 fullerene

z

Figure 2.7: Fullerene-nanotube system.

over the surface of the fullerene, it can be shown that the molecular energy between

an arbitrary point on the nanotube and the entire C60 molecule is given by

P =
2nfπb

ρ

{

A

4

[

1

(ρ+ b)4
− 1

(ρ− b)4

]

− B

10

[

1

(ρ+ b)10
− 1

(ρ− b)10

]}

, (2.20)

where ρ denotes the distance between the center of the fullerene and an arbitrary

point on the nanotube surface. Now, the molecular potential energy between the

C60 fullerene and the nanotube can be determined by performing another surface

integral of Eq. (2.20) over the cylindrical shell of the nanotube. That is

E = ant

∫ π

−π

∫

∞

−∞

Pdzdθ. (2.21)

Following [28], upon making λ2 = a2 + r2 −2ar cos(θ−α)− b2 and ℓ = z−Z, which

result in ρ2 = λ2 + b2 + ℓ2, we can rewrite Eq. (2.20) as

P = 4πb2nf

{

B

5

[

5

(λ2 + ℓ2)6
+

80b2

(λ2 + ℓ2)7
+

336b4

(λ2 + ℓ2)8
+

512b6

(λ2 + ℓ2)9
+

256b8

(λ2 + ℓ2)10

]

− A

[

1

(λ2 + ℓ2)3
+

2b2

(λ2 + ℓ2)4

]}

. (2.22)

Given that, E can be shown to be given by
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E = 4π2ab2ntnf

{

B

5

(

315

256
I11 +

1155b2

64
I13 +

9009b4

128
I15 +

6435b6

64
I17 +

12155b8

256
I19

)

− A

8

(

3I5 + 5b2I7
)

}

, (2.23)

where

In =
2π

[(a− r)2 − b2]n/2
F

(

n

2
,
1

2
; 1;− 4ar

(a− r)2 − b2

)

.

C60@(10,10) and C60@(16,16) are utilized as the only two examples in this sub-

section and the graph of E, which is derived from Eq. (2.23) with respect to the

radial distance r from the axis of the (10,10) and (16,16) nanotubes are plotted

in Fig. 2.8. The minimum energy configurations for the two proposed systems are

reported as -3.2 eV and -1.2 eV with the corresponding preferred radius of r0 = 0

Å and 4.28 Å respectively. We then utilize Eq. (2.12)1 and plot the radial forces

as a function of r for the C60 fullerene inside the (10,10) and (16,16) nanotubes

in Fig. 2.9. Again we consider the circular motion of the C60 fullerene inside the

nanotubes and the circumferential velocity of the C60 fullerene inside the (10,10) and

(16,16) nanotubes are plotted in Fig. 2.10. Such circular motion can be induced from

the thermal fluctuations and so that we calculate the root mean square velocity vrms

of the C60 fullerene at room temperature T = 300 K as vrms =
√

kBT/m = 59 ms−1,

where m denotes the mass of a C60 fullerene. If we make the comparison between

the vrms and the circumferential velocity given in Fig. 2.10. On average, we can

determine the preferred radial position rs for the (10,10) and (16,16) nanotubes as

0.08 Å and 4.3 Å respectively. We conclude that the spiral motion of the C60@(16,16)

is more prominent than the spiral motion of the C60@(10,10).

Since the C60 fullerene moves closer to the tube wall as it is orbiting about

the axis of the nanotube, we can no longer neglect the frictional effect. We note
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Figure 2.8: Interaction energy E of C60 at distance r from the axis of (a) (10,10)
and (b) (16,16) carbon nanotube.

that Eq. (2.18) derived in the previous sub-section will be utilized to determine

the frictional force in this sub-section. As a comparison with previous molecular

dynamics simulation results, we simply choose the C60@(10,10) as an example and

the whole physical process is given as follows. Once the C60 fullerene is sucked

into the (10,10) nanotube in the non-axial direction, the frictional force between

molecules slows down the circumferential velocity of the C60 fullerene from v = 59

ms−1 to 0 ms−1 where we can determine the transitional time t∗ from the spiral-
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Figure 2.9: Molecular force F of C60 at distance r from the axis of (a) (10,10) and
(b) (16,16) carbon nanotube.

like motion at rs to the linear oscillatory motion at r0. Given t∗, we can then

determine the reduction in the translational velocity vt of the C60 fullerene and

therefore the resultant oscillatory frequency can eventually be achieved. We note

that for simplicity, we assume no frictional effect once the C60 fullerene is oscillating

linearly at r0. For the case of the C60@(10,10), since r0 < rs = 0.08 Å, we can

approximate rs and r0 by zero, and Eq. (2.18) reduces to
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Figure 2.10: Circumferential velocity v of C60 at preferred radius rs from the axis
of (a) (10,10) and (b) (16,16) carbon nanotube.

Ff = −4πab2c

{

a2 + b2

(a2 − b2)4

}

v, (2.24)

where v denotes the initial circumferential velocity of the C60 fullerene. Upon uti-

lizing Ff = m(dv/dt), where m denotes the mass of an isolated C60 fullerene and

that the final circumferential velocity is zero, we can approximate dv/dt by −v/t∗
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provided that t∗ is small, and Eq. (2.24) can be recast to become

t∗ =
( m

4πab2c

)

[

(a2 − b2)4

a2 + b2

]

. (2.25)

If we substitute all the required parameters into Eq. (2.25), we obtain t∗ = 4 ps,

which confirms our assumption and gives excellent agreement with the molecular

dynamics simulation results obtained by both Tuzun et al. [156] and Haibin et al.

[52]. According to Tuzun et al. [156], the period of the C60@(10,10) oscillator is

given by 20 ps, which is equivalent to the oscillatory frequency of 50 GHz, and the

initial translational velocity vti of the C60 is also given by 480 ms−1. Hence, we can

calculate the length of the nanotube L as 10 nm. The equation of motion of the

translational velocity vt can be written as

dvt

dt
= −4πab2c

m

[

a2 + b2

(a2 − b2)4

]

vt = − 1

t∗
vt. (2.26)

Upon integrating Eq. (2.26) from t = 0 to t∗ s and denoting the final translational

velocity of the C60 fullerene by vtf , we may deduce

vtf = exp(ln vti − 1), (2.27)

from which we obtain vtf = 177 ms−1. Hence the resultant oscillatory frequency can

be calculated as 17 GHz, which is 33 GHz less than the ideal case where the C60

fullerene oscillates in the axial direction along the (10,10) nanotube. The dramatic

reduction in the oscillatory frequency occurs as a consequence of energy losses due

to the unstable spiral motion resulting from the sudden increase in r from the axial

center. The case of the C60@(16,16) can be examined in an analogous way. However,

we can no longer assume that the equilibrium location is situated on the axis, which
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gives rise to a more complicated mathematical derivation. Such a derivation can only

be resolved by utilizing a numerical method to determine rs first from Eq. (2.15) and

then substituting rs = r into Eq. (2.24) and the rest of the arguments are equivalent

to that for C60@(10,10). Since currently no molecular dynamics simulation results

exist for C60@(16,16), we might also find it difficult to determine the frictional

coefficient for such an oscillatory system.

2.1.5 Conclusion

In this section, we investigate the dynamics of a carbon atom or a C60 fullerene inside

a carbon nanotube. We assume that the carbon atoms are uniformly distributed

over the surface of the carbon nanotube so that the molecular potential energy

can be approximated by the continuous approach, and from which we can derive

the equations of motion utilizing Newton’s second law. We also assume that the

preferred radial position rs of the carbon atom and the C60 fullerene is defined when

the net radial force, which comprises both the van der Waals forces and centrifugal

forces is zero. We determine the oscillatory motion of a carbon atom inside various

nanotubes; and in particular spiral-like motion is found when the atom is oscillating

inside sufficiently large nanotubes due to the thermal and curvature effects. Upon

incorporating the frictional effect into the C60-nanotube oscillators, we find that the

spiral-like motion of the C60 fullerene oscillating inside the nanotube is induced but

it is not stable, which allows us to determine the resultant oscillatory frequency

of such oscillators. In future work, we aim to extend the study presented here to

consider a collection of several atoms or molecules flowing inside the nanotube.

2.2 Magnetic field driven nano tippe top

The discovery of fullerenes [84] and carbon nanotubes [66] has led to numerous

studies on their properties and their various potential applications in nano devices.

In this section, we focus on the mechanics of a nanoscale tippe top comprising a C60
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fullerene which for example might be joined to a carbon nanotube and is spinning

on a graphene sheet or inside a large single-walled carbon nanotube. We assume

that the nano tippe top is at the equilibrium configuration either on the graphene

sheet or inside the outer carbon nanotube and that the spinning occurs due to the

application of an external magnetic field. We refer to this structure as a nano tippe

top or simply as a nano top. We note that in the case of the top spinning inside

a nanotube, that although the effect of the outer carbon nanotube is not directly

incorporated into our calculations, we have in mind that the outer carbon nanotube

acts as a barrier between the nano top and the external environment.

The flip over of the classical tippe top has attracted much attention due to

its “apparent” violation of the principle of conservation of energy during the top’s

inversion (i.e. the rise in its center of mass results in the sudden increase in its

potential energy but apparently no gain in other energies) as well as the lack of a

complete mathematical description of this inversion phenomenon in the early dis-

covery [18, 65, 113, 91, 38, 51, 16]. However, it is until Cohen [25] who provides a

comprehensive analysis and a satisfactory numerical study on the tippe top showing

the inversion of the top when the precession angle is π. In particular, he views the

tippe top as an eccentric sphere, for which its center of mass is different from its

geometric center, and he incorporates Coulomb friction into his model at the contact

point to describe the tippe top’s motion (reduction in rotational kinetic energy of

the top due to the frictional effect to offset the increase in the potential energy of

the top during the inversion). In our case, the nano tippe top (this eccentric sphere)

can be manufactured either by creating the top with two different mass densities or

by puncturing the sphere and inserting a stem. At the nanoscale, the latter method

may be achieved by introducing a defect on the surface of a C60 fullerene and then

joining to this defect a small segment of a carbon nanotube. We refer the reader to

Nasibulin et al. [105] for the possible creation of such nano tippe tops.

Classically, the friction between the eccentric sphere and the relatively rough

surface plays a vital role for the top’s inversion. Assuming the conservation of the
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total energy, the sudden gain in the potential energy during the inversion results

from the loss in the top’s rotational kinetic energy, which can also be observed from

the reduction in the spinning of the inverted top. Furthermore, since gravity and

the normal force act solely along the axis fixed in space and provide zero torque

to the top, the friction, which acts offset from the space-fixed axis and against

the rotational motion of the top, is therefore the only source providing an external

torque to slow the spinning of the top down [18]. In addition, Ueda et al. [157]

show theoretically that the top’s initial spinning and the ratio of the top’s two

different principal moments of inertia at the center of mass play an important role

to determine the top’s inversion. For example, the flip over phenomenon can only

occur when its initial spinning is above a certain threshold.

At the nanoscale, since frictional force is ultra-low [41, 80], our numerical results

show that the friction itself is insufficient to make the nano tippe top precessing

about the fixed-body axis. Therefore, we introduce a sufficiently large retarding

magnetic force at the contact point to act analogously to the effect of friction.

However, we find numerically that instead of flipping over, the nano top prefers to

spin in a stable lying down configuration, which suggests that the effect of gravity

is negligible at the nanoscale. In particular, the nano top behaves more like a hard-

boiled egg spinning on a rough surface [103].

As mentioned above, to induce the spinning effect of a nano top we introduce

a retarding magnetic force at the contact point between the C60 fullerene and the

carbon nanotube’s wall. We find from Wood et al. [170] who experimentally produce

ferromagnetic fullerenes C60 that the magnetically strongest fullerenes are formed

at 800 K with the magnetic moment per molecule of 0.38µB, where µB denotes the

Bohr magneton constant. This result indicates that we can initiate the spinning

of a fullerene in a preferred direction by applying an external magnetic field to the

center of the fullerene and similarly at the contact point for generating the retarding

magnetic force.

In the following sub-section, we briefly state vector equations which are utilized
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Figure 2.11: Schematic of nano tippe top.

to describe motion of a tippe top. We note that explicit forms of these equations

are given in Appendix 6.1. In sub-section 2.2.2, we provide numerical results for

a nano tippe top, which is driven by a constant magnetic force in both x- and y-

directions. We verify our numerical schemes by examining the classical tippe top, as

presented in Appendix 6.1. Conclusion of the section is given in sub-section 2.2.3. In

Appendix 6.2, we utilize the basic equations as given in Appendix 6.1 to study the

stability for certain configurations of a nano tippe top and in particular Appendix 6.3

considers the compatibility between our numerical results and asymptotic expansions

when the nano top is in the lying position. Finally, while sub-section 2.2.2 considers

Hx = Hy = H , in Appendix 6.4 we assume a magnetic force which is applied only

in the y-direction and only for a finite time t0.

2.2.1 Equations of motion

In this sub-section, we state the equations of motion for a nano tippe top, which is

schematically illustrated in Fig. 2.11. Owing to the axial symmetry of the density

of the nano top and its eccentric structure, we assume that the center of mass O is

at a distance a away from its geometric center C. We denote coordinates (X, Y, Z)

as the space-fixed frame of the top while (x, y, z) as the body-fixed frame. We

37



Y. Chan

adopt (φ, θ, ψ) as the usual Euler angles relative to the space-fixed frame so that

Ω = φ̇. In addition, we choose the axes OY and Oy such that they coincide for

all time. Therefore, the space-fixed frame and the body-fixed frame are different

only through the rotation of the nutation angle θ. Furthermore, we suppose that

the spinning about the space-fixed frame is Ω(t) = (0, 0,Ω) and the spinning about

the body-fixed frame as ω where Ω denotes angular frequency about the Z-axis,

and the nano top is assumed to be initially spinning about the axis Oz with an

angular frequency ω. The distance between the surface and the center of mass is

h(θ) = R − a cos θ and the position vector OP is r = (a sin θ, 0,−h(θ)). From the

above quantities, the total angular velocity n and the total angular momentum L

of the nano tippe top’s system in the body-fixed frame are given respectively by

n = ((ω − Ω cos θ) sin θ, θ̇,Ω sin2 θ + ω cos θ),

L = ((Cω − AΩ cos θ) sin θ, Aθ̇, AΩ sin2 θ + Cω cos θ),

(2.28)

where (A,A,C) denote the principal moments of inertia at the center of mass O.

In addition, the translational velocity at the contact point P with respect to O

can be written as vrP
= n × r and hence the sliding velocity at P is given by

vp = Ẋ + vrP
, where Ẋ = (ux, uy, uz) denotes the velocity of the center of mass

of the nano top. The equations of motion of the nano top can then be determined

for the six degrees of freedom motion comprising three rotational equations derived

from the Euler equations and three translational equations derived from Newton

second law, namely

∂L

∂t
+ Ω × L = r × (N + F ),

m(Ẍ + Ω × Ẋ) = N + F + W , (2.29)

where m, N , F , W denote the mass, the normal force, the retarding force and the

weight of the nano top, respectively. Explicit forms of these equations of motion
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are given in Appendix A of Ueda et al. [157] and they are also briefly stated in the

appendix of this thesis. Next, we determine a suitable form of the frictional force

for the proposed nano tippe top system. Various theoretical [33, 32] and molecular

dynamics studies [42, 142] suggest that under the low velocity limit, the frictional

force between two molecules is linearly proportional to their relative velocity. In

addition, Heo et al. [58] propose that the frictional force between a fullerene and

a carbon nanotube is also proportional to the fullerene’s normal reaction, namely

|F f | = µN . Further, molecular dynamics simulation of Heo et al. [58] show that

the frictional coefficients for various nanostructures, namely single-walled carbon

nanotubes, nanopeapods and double walled carbon nanotubes, under a low pressure

regime, are essentially the same, i.e. µ = 0.13. Here, we also incorporate a retarding

magnetic force to the model and we propose that the total retarding force of the

nano top inside the carbon nanotube is given by

F = −F f − H(B) = −0.13N

| vP | vP − H(B), (2.30)

where H(B) denotes the retarding magnetic force acting at P and vP is the velocity

at the contact point P .

2.2.2 Numerical results and discussion

A fourth order Runge-Kutta method [20] is adopted here to numerically solve this

system of six ordinary differential equations, namely Eq. (2.29) (the full algorithm

of the fourth order Runge-Kutta method is shown step by step by Burden and Faires

[20] on pp. 278-279. We can also utilize the prescribed command, e.g. ode45 built

internally by Matlab numerical solver to implement such algorithm). Ueda et al.

[157] show that in macro scale the top’s inversion is strongly dependent on the ratio

of two principal moments of inertia at the center of mass. Therefore, we check

whether the inversion of the nano top is possible by running the numerical scheme

with various values of C/A ∈ (0, 1), but we find that this ratio does not affect our
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Figure 2.12: Nutation angle θ for g = 0, 9.8 and 100 ms−2 during precession.

numerical results. However, in all cases a sufficiently large initial spinning of the

nano top is required. Therefore, we choose the following physical parameters for the

numerical iteration: R = 3.55 Å, a = 0.1R, m = 1.196 × 10−24 kg, A = (2/3)mR2,

C = 0.5A and Hx = Hy = 0.1 zN with the following initial conditions: θ = 0.1,

Ω = 0, θ̇ = 0, ω = 100 and Ẋ = (0, 0, 0). These initial conditions can be interpreted

that we release the nano top with its initially spinning (100 Hz) about the z-axis,

having 0.1 rad deflection from the Z-axis and zero sliding velocity at the contact

point P . We utilize 500 grid points to carry out the numerical iteration and the

numerical results obtained for θ, Ω and ω are illustrated in Figs. 2.12, 2.13 and 2.14,

respectively.

Under the total retarding force, which comprises both the frictional and the mag-

netic forces at the point of contact P , Fig. 2.12 shows that the nano top precesses

from its standing up configuration (θ = 0) during the first 5 µs but asymptotically

approaches the lying down configuration (θ = π/2) after 50 µs with the decrease in

its oscillating amplitude. During the precession, as shown in Fig. 2.13, the angular

frequency Ω about the Z-axis increases dramatically in the first micro second indi-

cating the sudden drop down of the nano top but oscillating around zero while the
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Figure 2.13: Angular frequency Ω about the Z-axis during precession.
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Figure 2.14: Angular frequency ω about the z-axis during precession.

nano top has laid down. On the other hand, from Fig. 2.14 the angular frequency ω

about the z-axis also drops from its initial positive value to zero and then monoton-

ically increases in magnitude to 30 MHz but in the opposite direction with respect

to the direction of the initial spinning. This implies that the nano top reverses its

spinning direction and gains its spinning speed due to the opposite motion and the

energy gained from the retarding magnetic force respectively. We also note that
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Figure 2.15: Precession of nano tippe top.

the center of mass of the nano top moves in the X, Y -directions only resulting in

sliding friction but remains intact in the Z-direction (see Figs. 6.4 and 6.5). The

whole precession process is illustrated in Fig. 2.15. Unlike the classical tippe top,

we observe no flip over phenomenon in the nano top’s precession. This no inversion

phenomenon arises from the fact that the gravitational force is negligibly small at

the nanoscale. As confirmed by Fig. 2.12, the precession is not effected by the grav-

itational force since the numerical results for g = 0 and 9.8 ms−2 almost coincide

with each other, and the same behaviour is obtained for g = 100 ms−2.

Once the nano top is spinning about the lying down axis, it is important to

determine a possible way for which the nano top can retract to its initial standing

up position. We find that the nano top will retract smoothly back to its standing

up axis upon applying a magnetic force of the same magnitude but in the opposite

direction to the previous retarding magnetic force and the numerical solution for θ

is shown in Fig. 2.16.

Accordingly, by adjusting the magnetic field, we can manually control the nano

top’s switching between the standing up and the lying down states and hence it can

be utilized as a nano-computing memory device. Moreover, the main advantages of

utilizing the nano tops as a memory device are that it possesses a remarkably short

relaxation time (≈ 50 µs) resulting in a higher computational speed, and it is small

in size and hence provides a larger memory capacitance. Most importantly, it is

simpler to control as compared with the electron-spin quantum memories. Finally,

the integration of the self-assembled hybrid nanostructure known as nanopeapods

and the ideas of nano tippe top developed here may lead to practical computing
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Figure 2.16: Nutation angle θ after applying the reversed retarding magnetic field
at P .

memory devices, which currently require large numbers of bit handling.

2.2.3 Conclusion

A nano tippe top formed from a C60 fullerene and spinning either on a graphene sheet

or inside a carbon nanotube is investigated as a possible candidate for a computing

memory device. The equations of motion for such a nano top are described and we

find that while the retarding magnetic force makes the nano top precess, it does not

flip over as in the classical tippe top, but due to the fact that gravity is negligible

at the nanoscale, it adopts a lying down position. In addition, while the nano top

is in the lying down position, if we apply the magnetic force which is of the same

magnitude but in the opposite direction to the previous retarding magnetic force,

then the nano top will return to its standing up position. Hence, the standing up

and lying down configurations of the nano top might be considered as two bit states,

which gives rise to their potential utilization as a future memory device.
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2.3 Mechanics of nanoscale orbiting systems

Here, we investigate orbiting phenomenon at the nanoscale. In particular, we con-

sider an atom and a C60 fullerene orbiting around the outside a carbon nanotube and

also a C60 fullerene orbiting around a C1500 molecule. The van der Waals interaction

energy is modelled utilizing the 6-12 Lennard-Jones potential and a continuous ap-

proach, in which we assume a uniform distribution of carbon atoms on the surfaces

of the carbon nanotube and the fullerene. We find that the interacting molecules

move with respect to each other under the influence of their mutual central force.

While their loci cannot be integrated in terms of well-known special functions, they

can be determined numerically. Some analytical and perturbation solutions for spe-

cial cases can be obtained if it is assumed that attractive forces dominate and that

the total energy of both the atom and the fullerene are small, then one can ob-

tain analytical results, which provide some insight into suitable forms of the loci.

Finally, the circular radii of orbits are estimated by finding the minimum energy

configuration of the effective potential energies, and a stability analysis is employed

to ensure the stability of the circular radii, which is of practical importance in cre-

ating certain nanodevices. For all cases, the circular orbiting frequencies reach the

gigahertz range. We comment that this thesis ignores any thermal fluctuations aris-

ing from the environment. If such effects are incorporated, the orbiting motion of

these systems may be critically disrupted and the orbiting phenomenon might not

be observed.

The section is structured as follows. In the following sub-section, we give the

basic equations of motion for a two-body problem. In sub-sections 2.3.2 to 2.3.7, an

atom–carbon nanotube system, a fullerene–carbon nanotube system and a fullerene–

fullerene system are examined, respectively. For all cases, the classification of their

loci, in terms of both numerical and analytical investigations is given, and their

circular orbiting frequencies are provided.
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2.3.1 Equations of motion

In this sub-section, a brief description of the equations of motion for a two-body

problem is presented. A more detailed derivation and explanation can be found

in many classical mechanics graduate textbooks, such as [49]. For a system of

two objects, the connecting potential energy V (r) depends only on the relative

displacement between the two objects r = r2 − r1, where r1 and r2 denote the

position vectors of the two masses M1 and M2 relative to their center of mass

respectively (it is essential for a central force problem that the potential energy

between two bodies depends only on r). Thus, let P denote the position vector of

the center of mass and the Lagrangian L for the two-body problem is defined by

L = T (Ṗ , ṙ)− V (r), (2.31)

where T and V denote the kinetic and the potential energies respectively. The total

kinetic energy T can be expressed as the sum of the kinetic energy owing to the

motion of the center of mass and the kinetic energy owing to the motion about the

center of mass. That is,

T =
1

2
MṖ

2
+

1

2
M1ṙ1

2 +
1

2
M2ṙ2

2, (2.32)

where M = M1 + M2 is the total mass of the two-body system. The two position

vectors can then be related to the relative displacement vector r by

r1 = − M2

M1 +M2
r, r2 =

M1

M1 +M2
r, (2.33)

which upon substituting Eq. (2.33) and Eq. (2.32) into Eq. (2.31), the Lagrangian

can be rewritten as

L =
1

2
MṖ

2 +
1

2
µṙ

2 − V (r), (2.34)
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where µ = M1M2/(M1+M2) is called the reduced mass of the system. Therefore, the

two-body problems can always be reduced to the reduced mass µ, moving about the

center of mass of the system as is incorporated in Eq. (2.34). If we assume V (r) =

V (r) and express the Lagrangian in terms of polar coordinates, then Eq. (2.34)

becomes

L =
1

2
µ(ṙ2 + r2θ̇2) − V (r), (2.35)

and the angular momentum of the system is obtained from L by p = ∂L/∂θ̇ = µr2θ̇.

Without any external torque, it is known that the angular momentum of the system

is conserved, so that

h = µr2θ̇, (2.36)

where h denotes an arbitrary constant. Finally, the total energy E is given by

E =
1

2
µ(ṙ2 + r2θ̇2) + V (r) =

1

2
µṙ2 +

h2

2µr2
+ V (r) =

1

2
µṙ2 + Veff(r), (2.37)

where Veff (r) = h2/2µr2 + V (r) denotes the effective potential energy, which com-

prises both the angular kinetic energy h2/2µr2 and the potential energy V (r). A

circular orbit of radius R can be computed by finding the minimum energy config-

uration of Veff .

2.3.2 Atom–carbon nanotube system

In this sub-section, we investigate a single carbon atom orbiting around a thin

infinitely long carbon nanotube, which is approximated by a line. Since the inter-

actions between the molecules occur at a sufficiently large distance, it is reasonable

to model the non-bonded intermolecular interactions by the van der Waals forces

utilizing the 6-12 Lennard-Jones potential. We adopt the continuous approach and
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Figure 2.17: Atom–carbon nanotube system.

the van der Waals interaction energy of this system is given by

V (ρ) = nt

∫

∞

−∞

(−A
ρ6

+
B

ρ12

)

dz, (2.38)

where A and B are the attractive and repulsive constants, respectively, ρ denotes the

distance between the orbiting atom and an arbitrary atom on the carbon nanotube,

and nt is the mean surface density of atoms on the carbon nanotube. The numerical

values of the constants utilized throughout this thesis are presented in Table 2.1.

From Fig. 2.17, we have ρ2 = z2 + r2 so that the molecular potential energy V (r)

can be expressed as

V (r) = nt

∫

∞

−∞

{ −A
(z2 + r2)3

+
B

(z2 + r2)6

}

dz, (2.39)

which upon making the substitution z = r tan θ, Eq. (2.39) becomes

V (r) = nt

∫ π/2

−π/2

{

−A

r5
cos4 θ +

B

r11
cos10 θ

}

dθ = −A
′

r5
+
B′

r11
, (2.40)

where A′ = 3πntA/8 = 7.8 eVÅ5 and B′ = 63πntB/256 = 8547 eVÅ11 are the

modified attractive and repulsive constants respectively. This potential energy is
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illustrated graphically in Fig. 2.18. According to Eq. (2.37), the effective potential

energy Veff(r) is given by

Veff (r) =
C ′

r2
− A′

r5
+
B′

r11
, (2.41)

where C ′ = h2/2ma and ma denotes the mass of a carbon atom. The extra term

C ′/r2 corresponds to the atom’s angular kinetic energy. The classification of the

atom’s loci can then be obtained by analyzing the total energy of the system E,

which from Eqs. (2.37) and (2.41) becomes

E =
1

2
maṙ

2 +

(

C ′

r2
− A′

r5
+
B′

r11

)

, (2.42)

and upon changing the coordinate system from t to θ by utilizing Eq. (2.36), we

obtain

dθ =

√
C ′dr

r2
√

E + A′/r5 −B′/r11 − C ′/r2
. (2.43)

We can simplify the above equation by making the substitution u = r−1, and by

integrating both sides of Eq. (2.43) to yield

θ − θ0 = −
∫

√
C ′du√

E −B′u11 + A′u5 − C ′u2
. (2.44)

Unlike the classical two-body problem, for which the polynomial under the square

root is a quadratic, in this case the polynomial under the square root has a max-

imum degree of 11, which makes the integration much harder to effect in terms

of well-known special functions. Thus, some numerical and perturbation methods

are presented in order to gain some physical insight into this problem. The atom’s

orbiting circular radius can be readily computed by finding the minimum energy

configuration of the effective potential energy. Since, there is a one-to-one relation-

ship between its circular orbiting radius and its circular orbiting frequency (2.45), in

the following sub-section the circular orbiting frequency of this system is estimated
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and it is found to be operating in the gigahertz range.

2.3.3 Circular orbiting frequency of atom–carbon nanotube

system

In this sub-section, the circular orbiting frequency of an atom orbiting around a

carbon nanotube is estimated by examining the minimum energy configuration of

the effective potential energy, since it can be shown from classical mechanics that

the minimum energy configuration of Eq. (2.41) corresponds to a circular orbit of

the atom. By solving V ′

eff(r) = 0, the circular angular velocity, ω, is given by

ω2 =
5A′

maR7
− 11B′

maR13
, (2.45)

where R is the atom’s circular orbiting radius. In order to obtain Eq. (2.45), the

conservation of angular momentum of the system is utilized. Note that Eq. (2.45)

by itself is not sufficient to determinate the circular orbiting frequency of the atom.

However, the stability of a nearly circular orbit and the boundness of the atom’s

locus at R have to be satisfied for the atom to keep orbiting in its circular orbit.

To determine the stability of the atom’s circular orbit, differentiating both sides of

Eq. (2.42) with respect to t, yields

mar̈ +

(

−2C ′

r3
+

5A′

r6
− 11B′

r12

)

= 0, (2.46)

so that upon making the substitution u = 1/r, we get

d2u

dθ2
− ma

h2
(5A′u4 − 11B′u10 − 2C ′u) = 0. (2.47)

Now we consider the substitution u = 1/R+ ε , where ε is an infinitesimal quantity,

so that Eq. (2.47) gives

d2ε

dθ2
− ma

h2

(

20A′

R3
− 110B′

R9
− 2C ′

)

ε = 0. (2.48)
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For ε to be convergent, it is obvious that the following inequality has to be satisfied

2C ′R9 − 20A′R6 + 110B′ > 0, where from the definition of C ′ and the conservation

of angular momentum of the system, we find R < (33B′/5A′)1/6. In addition, the

boundness of the atom at r = R, i.e. Veff < 0 has to be verified. From Eq. (2.41),

this gives the following condition

C ′

R2
− A′

R5
+

B′

R11
< 0 ⇒ R <

(

3B′

A′

)1/6

. (2.49)

Therefore, R must satisfy the following criteria for the atom orbiting in its stable

and bounded circular orbit

R < min

{

(

33B′

5A′

)1/6

,

(

3B′

A′

)1/6
}

=

(

3B′

A′

)1/6

≈ 3.8 Å. (2.50)

Upon taking R = 3.8 Å, the circular orbiting frequency f can be estimated to

be f = 29 GHz by utilizing Eq. (2.45). Given the circular orbiting frequency, the

angular kinetic energy can be easily calculated as 0.074/r2 eV by fixing the angular

momentum of the system h = 5.4 × 10−14 kgm2s−1, and the effective potential

energy Veff can then be computed by incorporating the angular kinetic energy.

For comparison, we plot the angular kinetic energy, the molecular potential energy

and the effective potential energy, as shown in Fig. 2.18. The effective potential

energy of this system is found to resemble classical planetary motion and all possible

classifications of the atom’s loci can be explained in terms of its total energy. Note

that the circular orbiting radius R, estimated in Eq. (2.50), agrees with the value

of R suggested from Fig. 2.18. For an atom to stay orbiting in its circular orbit,

the total energy must be equal to the minimum energy configuration of the effective

potential energy Veff , namely

E =
B′

R11
− A′

R5
− C ′

R2
≈ −1.14 meV. (2.51)
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Figure 2.18: Comparison between angular kinetic energy, molecular potential energy
and effective potential energy for atom–carbon nanotube system.

2.3.4 Numerical locus for atom–carbon nanotube system

In this sub-section, numerical solutions for the loci of Eq. (2.44) is determined. For

a given value of angular momentum of the system h, we examine the conditions for

which the atom’s orbit is either bounded or unbounded. From Eq. (2.44), we have

du

dθ
= ±

√
E −B′u11 + A′u5 − C ′u2

√
C ′

, (2.52)

so that if we discretize a complete revolution into N grid points then a first order

numerical scheme, utilizing Euler’s method [20], is given by

ui+1 = ui ± ε

√

E −B′u11
i + A′u5

i − C ′u2
i√

C ′

, (2.53)

where i ∈ [1, N ], ε = 2π/N and N is the total number of grid points. We comment

that the Euler’s method is sufficiently accurate numerical scheme to be utilized here

because of the smooth function on the right hand side of Eq. (2.52). For Eq. (2.53)

to have real solutions, E ≥ B′u11
i − A′u5

i + C ′u2
i is required to be satisfied for all i.

In particular, when E = B′u11
0 −A′u5

0 +C ′u2
0, ui+1 = ui for all i and this corresponds

to a circular orbit. The constant C ′ is taken to be 0.074 and this numerical scheme
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Figure 2.19: Locus for E = −1.14 meV with initial position 3.8 Å. Atom is orbiting
in its stable circular orbit.

is carried out for different values of the total energy E.

Here, unless otherwise stated, we apply the numerical scheme to 20 revolutions

of the orbiting atom, where 100 grid points are utilized. Owing to the feature of the

effective potential energy in Fig. 2.18, one dip and one crest are observed, where the

crest’s tail goes to infinity. Therefore, we consider E = −1.14, −0.6, 0 , 0.5 and 1.1

meV, where −1.14 meV is the value of E at the dip of Veff , −0.6 meV is the mid-

point between 0 eV and the dip, 0.5 meV is the mid-point between the crest and the

zero potential and 1.1 meV is the crest’s energy. For a given total energy E, feasible

initial positions are determined utilizing the expression E = (1/2)mav
2 + Veff , for

which the velocity is real if and only if E ≥ Veff . The numerical outcomes are

presented below with physical explanations.

Case 1 (E = −1.14 meV): In this case (see Fig. 2.19), the only possible initial

position r0 is the atom’s own circular orbit, which is equal to R = 3.8 Å. All other

values of r0 gives rise to E < Veff , which is not physically feasible.

Case 2 (E = −0.6 meV): In this case, possible initial positions r0 lie between 3.58

Å and 4.191 Å, which are determined numerically by solving r from Veff = −0.6

meV. An orbit with this total energy is clearly bounded between 3.58 Å and 4.191

Å, which corresponds to an elliptic orbit (where here we define an elliptic orbit to be

an orbit that is bounded by two different radii). Therefore, three initial positions,

namely 3.6, 3.8 and 4 Å have been examined (see Fig. 2.20). From the figure, it is

clear that any carbon atom with this total energy departs from its initial positions
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Figure 2.20: Loci for E = −0.6 meV with initial positions 3.6 Å, 3.8 Å and 4 Å
from left to right respectively. Atom is bounded between 3.58 Å and 4.191 Å for all
these initial positions.
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Figure 2.21: Loci for E = 0 eV with initial positions 3.6 Å, 3.8 Å and 4 Å from left
to right respectively. Atom is swirling away from its bounded loci gradually for all
these initial positions.

and then oscillates between the two boundaries r = 3.58 Å and r = 4.191 Å, which

indicates that the molecular potential energy is strong enough to hold the atom in

a bounded orbit but weak enough to keep it in a stable circular orbit.

Case 3 (E = 0 eV): In this case, r0 lies between 3.504 Å and 4.509 Å. Unlike the

previous cases, orbiting motion involving this energy level are bounded but unstable,

owing to the fact that a point at infinity is also an initial accessible point. This form

of locus corresponds to a parabolic orbit (where here we define a parabolic orbit

to be an orbit such that an atom orbits to the outer-shell radius and then swirls

away to infinity gradually). Similar to the second case, 3 initial positions have been

chosen to examine, namely 3.6, 3.8 and 4 Å (see Fig. 2.21). It is clear that an atom

will move away from its initial positions to the outer boundary r = 4.509 Å and

then gradually swirls away to infinity.

Case 4 (E = 0.5 meV): In this case, r0 lies between 3.46 Å and 4.86 Å and
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Figure 2.22: Loci for E = 0.5 meV with initial positions 3.6 Å, 3.8 Å and 4 Å from
left to right respectively. Atom is oscillating between r = 3.46 Å and r = 4.86 Å for
all these initial positions.
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Figure 2.23: Locus for E = 0.5 meV with initial position 12 Å. Atom escapes from
its initial position to infinity very quickly.

between 11.765 Å and infinity. In particular, the boundness of an atom’s orbit

depends heavily on its initial positions r0. If 3.46 Å ≤ r0 ≤ 4.86 Å, its locus

is elliptic, which is bounded, while if r0 ≥ 11.765 Å, its locus is a hyperbolic orbit

(where here we define a hyperbolic orbit to be an orbit such that an atom swirls away

from the nanotube quickly), which is unbounded. Four initial positions, namely 3.6,

3.8, 4 and 12 Å, have been examined (see Figs. 2.22 and 2.23). For r0 = 3.6, 3.8,

4 Å, an atom departs from its initial positions and then oscillates between the two

boundaries r = 3.46 Å and r = 4.86 Å. However, for r0 = 12 Å, the numerical

scheme is unstable, even in the third revolution, which indicates that the molecular

potential energy is too weak to hold the atom in a bounded orbit and the atom

escapes from its initial position to infinity quickly.

Case 5 (E = 1.1 meV): In this case, r0 ≥ 3.42 Å and the atom’s locus is an

hyperbola, which is unbounded. Two initial positions, namely 3.8 and 10 Å, have
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Figure 2.24: Loci for E = 1.1 meV with initial positions 3.8 Å and 10 Å from left
to right respectively. Atom escapes from its initial position to infinity very quickly
for all these initial positions.

been examined (see Fig. 2.24). For r0 = 3.8 Å, the numerical scheme becomes

unstable after 10 revolutions, while for r0 = 10 Å the numerical scheme becomes

unstable even after two revolutions. Therefore, the atom swirls away from its initial

position to infinity for all accessible initial positions.

2.3.5 Perturbation solution for atom–carbon nanotube sys-

tem

We suppose that an atom is introduced from infinity to a regime, where the attractive

forces dominate. This assumption is particularly valid when the 6-12 Lennard-Jones

potential is replaced by the hard-sphere repulsive potential given by Hirschfelder et

al. [64], namely

V (ρ) =











−D
ρ6 r > σ,

∞ r ≤ σ,
(2.54)

where D and σ are the modified attractive constant and the collision diameter

respectively. At infinity, the total energy is simply equal to the atom’s kinetic energy,

and this initial energy helps the atom to gain its initial angular momentum orbiting

around the carbon nanotube. According to this assumption, the total energy can

be represented by E = E0 + εE1 + ε2E2 + . . ., where E0 is approximately zero, and

ε is a small positive quantity. Initially, only E = 0 is considered, so that Eq. (2.44)
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Figure 2.25: Orbiting path described by Eq. (2.56).

gives

dθ = −
√
C ′

du√
A′u5 − C ′u2

. (2.55)

It is interesting to note that the above equation is integrable and from [149], Eq. (2.55)

can be integrated to yield

r =

(

A′

C ′

)1/3

cos2/3

[

3

2
(θ − θ0)

]

, (2.56)

where θ0 is an initial angle and r results from the substitution u = 1/r. Eq. (2.56)

suggests that without the initial energy, the atom is captured by the Lennard-Jones

potential from infinity. After it encounters a repulsive potential barrier, which is

located at the center of the nanotube, it bounces back to an amplitude of (A′/C ′)1/3.

Once there, the atom is re-captured by the attractive molecular potential energy and

this process repeats periodically and endlessly. The graph of Eq. (2.56) is plotted

in Fig. 2.25. We note that in Eq. (2.55), the repulsive energy is ignored. If it

is included, r will not reach the center of the carbon nanotube as suggested by

Eq. (2.56) and Fig. 2.25. Instead, the atom will start to bounce back when it enters

the repulsive region of the carbon nanotube.

Now, we construct a small perturbation, i.e. E = εE1 + O(ε2), so that from

56



Chapter 2: Nanomechanics

Eq. (2.44) we find

dθ = −
√
C ′

du√
εE1 + A′u5 − C ′u2

,

≈ −
√

C ′

A′

{

du

u
√

u3 − ξ3
− εE1

2

du

u3(u3 − ξ3)3/2

}

, (2.57)

where ξ = (C ′/A′)1/3. Next, we transform Eq. (2.57) by making dθ = θf − θi and

du = uf − ui, where θi, ui, θf and uf denote the initial angle, the initial radius, the

final angle and the final radius, respectively. After some manipulation, we find that

the evolution equation for r, is given by

rf = H(ui, E1)ri, (2.58)

where H(ui, E1) denotes Θ(ui, E1)/(Θ(ui, E1)− δ) and the expressions for Θ(ui, E1)

and δ are

Θ(ui, E1) =
1

√

u3
i − ξ3

− εE1

2

1

u2
i (u

3
i − ξ3)3/2

δ =

√

A′

C ′
(θf − θi) > 0. (2.59)

We note that when Θ(ui, E1) = δ/2, |H(ui, E1)| = 1, the atom always stays on the

circular orbit. If |H(ui, E1)| > 1, then the atom moves away from the carbon nan-

otube, while if |H(ui, E1)| < 1, then the atom moves towards the carbon nanotube.

It can be easily shown that |H(ui, E1)| > 1 is satisfied whenever Θ(ui, E1) > δ/2,

except for the case of Θ(ui, E1) = δ/2, whereas |H(ui, E1)| < 1 is satisfied whenever

Θ(ui, E1) < δ/2. Given that, we can determine the minimum circular energy ER by

solving Θ(ui, Ec) = δ/2 and the cut-off energy Ec by solving Θ(ui, Ec) = 0, thus

Ec = −2u2
i

ε
(ξ3 − u3

i ), ER = Ec −
δu2

i (u
3
i − ξ3)3/2

ε
. (2.60)

It is interesting to note that ER < Ec. For simplicity, we assume here that E1, Ec

and ER are all negative real numbers. However, this cut-off energy is not sufficient
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to determine the atom’s loci. For example, if E1 > Ec, then |H(ui, E1)| > 1 follows.

But, it is naive to think that r will always keep increasing, which corresponds to

either a parabolic or a hyperbolic orbit. An increment in r may also increase the

value of Ec if and only if ui < (2/5)1/3ξ. Assuming that the value of E1 is suffi-

ciently small such that E1 falls below Ec, then |H(ui, E1)| < 1 occurs and the atom

will start to move towards the carbon nanotube, which corresponds to an elliptic

orbit. Hence, both the initial position and the initial total energy are paramount

to determine the atom’s loci. Note that in this sub-section, we investigate only a

qualitative description of the atom’s loci, where the full prediction of its loci can

only be determined by solving Eq. (2.44).

2.3.6 Fullerene–carbon nanotube system

In this sub-section, we determine the loci of a C60 fullerene orbiting around a (6,6)

carbon nanotube of infinite length. To obtain the interaction potential energy be-

tween the two molecules, we perform double integrals of the Lennard-Jones potential

over the surface of the fullerene and the carbon nanotube. In addition, the classical

spinning of a fullerene, which arises from atomic vibrations, is also incorporated into

the model to encapsulate the possible physical phenomenon at the nanoscale. Due

to the symmetry of the problem, there is a radial force acting between the center

of the fullerene and the carbon nanotube, which provides a centripetal force to the

fullerene moving around the carbon nanotube, so that the fullerene eventually or-

bits around the center of mass of the carbon nanotube in a perpendicular plane.

Results from the previous atom–carbon nanotube system can be employed in this

system. The illustration of this system is shown in Fig. 2.26, where a, b and r de-

note the radius of a (6, 6) carbon nanotube, the radius of the C60 fullerene and the

distance between the center of the carbon nanotube and the center of the fullerene

respectively. The molecular potential energy of this system can be written as

V = ntnf

∫

Σt

∫

Σf

(

−A

ρ6
+

B

ρ12

)

dSfdSt, (2.61)
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Figure 2.26: Fullerene orbiting around a carbon nanotube.

where nt, nf and ρ denote the mean surface density of atoms on the carbon nanotube,

the mean surface density of atoms on the fullerene, and the distance between an atom

on the fullerene and an atom on the carbon nanotube, respectively. In addition, dSf

and dSt denote the surface area segments of the fullerene and the carbon nanotube,

respectively. Following Mahanty and Ninham [96] and Ruoff and Lorentz [131], the

potential energy for an atom interacting with a fullerene of radius b can be deduced

as P (ρ) = −Q6(ρ) +Q12(ρ), where Qn(ρ) is defined by

Qn =
2Cnnfπb

ρ(2 − n)

{

1

(ρ+ b)n−2
− 1

(ρ− b)n−2

}

, (2.62)

where the constants C6 and C12 denote A and B, respectively. By performing

another surface integral over the surface of the carbon nanotube, the molecular

potential energy becomes

V (ρ) = nta

∫ +∞

−∞

∫ 2π

0

Pdθdz = ntnfπab

∫ +∞

−∞

∫ 2π

0

1

ρ

(

A

2

[

1

(ρ+ b)4
− 1

(ρ− b)4

]

− B

5

[

1

(ρ+ b)10
− 1

(ρ− b)10

])

dθdz, (2.63)
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Figure 2.27: Molecular potential energy (2.64) and its approximation (2.65) for
fullerene–carbon nanotube system.

where ρ =
√
λ2 + z2 and λ =

√
r2 − 2ar cos θ + a2. Upon integrating Eq. (2.63), we

obtain

V (r) = 16ntnfπab

[

−A
(

bJ3 + 2b3J4

)

+
B

5

(

5bJ6 + 80b3J7 + 336b5J8 + 512b7J9 + 256b9J10

)

]

, (2.64)

where

Jn =
(2n− 3)!!π2

(2n− 2)!!

F (n− 1/2, 1/2; 1;−4ar/[(r− a)2 − b2])

[(r − a)2 − b2]n−1/2
,

where F and !! denote the usual hypergeometric function [26] and the double factorial

notation such that (2n−1)!! = (2n−1)(2n−3)...3 ·1 and (2n)!! = (2n)(2n−2)...4 ·2,

respectively. It is easy to observe from Eq. (2.64) that the molecular potential energy

has a singularity at r = a + b owing to the repulsive potential energy from the

Lennard-Jones potential. The molecular potential energy of the system is plotted

in Fig. 2.27.

We note that the behaviour of the potential energy (2.64) is similar to that of

the atom–carbon nanotube system. However, the potential well is two orders of
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Figure 2.28: Fullerene’s angular energy, ensemble molecular energy and effective
potential energy.

magnitude larger than that of the atom–carbon nanotube system. This indicates

that this system would be less sensitive to any thermal fluctuations arising from the

environment. It is therefore expected that experimentally, the orbiting behavior of

a fullerene can be observed easier than that of a single atom. Assuming that all the

thermal energy, which is equal to the potential difference between the zero potential

and the dip, is converted into the kinetic energy of the fullerene, the escape velocity

is estimated to be 287.31 ms−1, which can be achieved in laboratories by liquid

helium cooling [137]. To simplify our analysis, if a < r and only the lowest order of

b is considered, then Eq. (2.64) reduces to a potential form, which is similar to the

atom–carbon nanotube system, namely

V (r) = − A′′

[(r − a)2 − b2]5/2
+

B′′

[(r − a)2 − b2]11/2
, (2.65)

where A′′ = 6ntnfπ
3ab2A = 24×102 eVÅ5 and B′′ = 39.375ntnfπ

3ab2B = 0.26×108

eVÅ11 are modified attractive and repulsive constants respectively. As shown in

Fig. 2.27, the approximate potential energy (2.65) is in good agreement with the

actual molecular potential energy (2.64).

Owing to the symmetry of this problem, the results in the atom-carbon nanotube
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system can be readily extended to this system by utilizing the substitution of R →
√

(R− a)2 − b2. According to Eq. (2.50), the threshold circular orbiting radius of

this system, which is bounded and stable, is given by

√

(R− a)2 − b2 = (3B′′/A′′)
1/6

= 5.6 Å ⇒ R = 10.7 Å. (2.66)

The orbiting frequency of the fullerene can be calculated utilizing Eq. (2.45), and

is equal to f = 4 GHz, given that the angular momentum of the system h is equal

to 3.44 × 10−12 kgm2s−1. In addition, the fullerene’s angular kinetic energy can be

computed to be equal to 5/r2 eV. The angular kinetic energy, molecular potential

energy and effective potential energy for a C60–carbon nanotube system are plotted

together in Fig. 2.28 for comparison. Since the angular kinetic energy in this system

is small in comparison to the molecular potential energy, the effective potential

energy is essentially the same as the molecular potential energy and this gives rise

to a different interpretation of the classification of loci in comparison to the atom–

carbon nanotube system. In particular;� The fullerene is in a circular orbit, which is bounded at the potential well of

Veff ,� When the total energy of the fullerene increases but remains below 0 eV, the

fullerene’s locus is elliptic, which is bounded,� When its total energy equals 0 eV, its locus is parabolic, which is unbounded,� When its total energy becomes strictly positive, its locus is hyperbolic, which

is unbounded.

Finally, the classical spinning effect of the fullerene may be incorporated into the

model. Since the fullerene can spin due to the atomic vibrations at the nanoscale,

the spinning kinetic energy may be written as Iω2/2, where I = 2mb2/3 and ω are

the moment of the inertia and the spinning frequency of the C60 molecule, respec-

tively. The presence of the spinning shifts the effective potential energy upward
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Figure 2.29: Geometry of a C60 molecule orbiting around a C1500 fullerene.

by the amount of Iω2/2, however the analysis to determine the fullerene’s locus is

principally the same as shown in this sub-section.

2.3.7 Fullerene–fullerene system

In this sub-section, we study the orbiting of a C60 fullerene around a C1500 fullerene.

An illustration of this system is given in Fig. 2.29. The C1500 fullerene is chosen

due to the fact that the center of mass of this system coincides with the center of

the C1500 fullerene, which therefore simplifies our calculations. The solution method

for this system is very similar to the fullerene–carbon nanotube system. However,

due to the spherical symmetry of this system, the molecular potential energy can

be obtained in a simpler manner because the axis of the line joining the centers of

the two fullerenes can be aligned with the z-axis of the larger fullerene, and the

molecular potential energy of the system becomes

V (ρ) = n1n2πb1

∫

Σ2

1

ρ

{

A

2

[

1

(ρ+ b1)4
− 1

(ρ− b1)4

]

−B
5

[

1

(ρ+ b1)10
− 1

(ρ− b1)10

]}

dS2,

(2.67)

where n1, n2 and b1 denote the mean surface densities of atoms on the C60, the

C1500 fullerenes and the radius of the C60 fullerene respectively. By exploring the

symmetry of this system, the orbital radius r can be aligned with the z-axis of the

larger C1500 fullerene. Hence, from the cosine law we have ρ =
√

b22 + r2 − 2b2r cos θ,
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Figure 2.30: Molecular potential energy, angular kinetic energy and effective poten-
tial energy for C60–C1500 system.

where b2 denotes the radius of the C1500 fullerene. By performing the integration

over the surface of C60 and C1500 fullerenes, the molecular potential energy V (r)

becomes

V (r) = −Q6(r) +Q12(r), (2.68)

where

Qn(r) =
4π2Cnb1b2n1n2

r(n− 2)(n− 3)

{

1

(b1 + b2 + r)n−3
+

1

(b1 − b2 − r)n−3

− 1

(b1 + b2 − r)n−3
− 1

(b1 − b2 + r)n−3

}

,

(2.69)

where C6 = A and C12 = B. The molecular potential energy is plotted as shown in

Fig. 2.30.

We observe that this energy becomes singular at r = b1 + b2, similar to that

of the fullerene–carbon nanotube system. Further, the circular orbiting radius in

this system becomes very close to the radius obtained directly by minimizing the
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molecular potential energy alone. Therefore, according to Fig. 2.30, the circular

orbiting radius can be readily read off as R = 24 Å and the orbiting frequency is

calculated as

f =
1

2π

√

V ′(R)

mR
= 1.6 GHz, (2.70)

where m is the total mass of the C60 molecule. The angular kinetic energy, which is

given by 24.5/r2 eV, and the effective potential energy are plotted together with the

molecular potential energy in Fig. 2.30. Similar to the fullerene–carbon nanotube

system, the classical spinning effect can also be incorporated in this system and the

classification of loci can be similarly examined. This orbiting effect may be detected

experimentally since the fullerene’s escape velocity is calculated to be 365.76 ms−1.

2.3.8 Conclusion

In this section, three two-body nanoscale problems are examined, namely an atom-

carbon nanotube system, a fullerene-carbon nanotube system and a fullerene-fullerene

system. The effective potential energy of these proposed systems are found to be

similar to the classical planetary potential energy. The circular orbiting radii of all

the proposed nano systems are estimated by seeking the minimum energy configura-

tion of their effective potential energies. Since the loci for these nano systems cannot

be determined in terms of well-known analytical functions, a numerical method has

been employed to obtain the various loci of the orbiting paths. In addition, a pertur-

bation method has been utilized in order to gain some insight into possible analytical

formulations of the loci. Most importantly, the circular orbiting frequencies of all

three proposed nano systems reach the gigahertz range.
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Chapter 3

Axial buckling of carbon

nanotubes and nanopeapods

In this chapter, we utilize continuum mechanics to model the axial buckling and

the instability of carbon nanotubes and nanopeapods and discuss their applications

in nano-electromechanical systems (NEMS), which couple between the mechanical

properties of nanotubes and nanopeapods and the applied external electrostatics

forces.

3.1 Single-walled carbon nanotubes as a nonlin-

ear buckled beam for nano-electromechanical

systems

In this section, the nano-electromechanical effects on a doubly clamped suspended

carbon nanotube are studied. Doubly clamped suspended carbon nanotubes have

been previously manufactured and their electronic transport [155, 109, 168, 44],

acoustoelectric [122], thermal [77] and elastic [75] properties have been measured.

We assume that a carbon nanotube is attached to two electrodes by tunneling con-

tacts, in which Coulomb-blockade effects dominate the transport. We note that

subtle effects like shuttle-like electromechanical instability may result in additional
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charges transporting through the system due to the unstable ground state with re-

spect to any small spatial deviations from the equilibrium position when the gate

voltage exceeds a certain threshold, are ignored in this section [72]. The applied

gate voltage bends the tube and affects both the carbon nanotube’s electrical and

mechanical properties (see Fig. 3.1 for a schematic picture). That is, the applied

gate voltage pushes electrons inside the nanotube downwards by means of the elec-

trostatic force which changes the nanotube’s mechanical status. The nanotube un-

dergoes an axial mechanical deflection, which leads to a prominent change in the

tube electronic band gap, and these results in a sensitive change of the conductance

of the nanotube. Since the buckled nanotube can act as an internal transistor [36],

it can be utilized to sense its own motion through the electrical detection of conduc-

tance change [151]. Furthermore, the recent realization of nano-electromechanical

sensors based on carbon nanotubes shows that the electrical measurement of the re-

sistance of doubly clamped single-walled carbon nanotube under a mechanical load,

such as pressure coming from an atomic force microscopy-tip, undergoes a significant

increase in the nanotube resistance with respect to the deflection of the nanotube

and such measurement is reversible owing to the sp2 bonding of carbon atoms in

the nanotube [60]. However, Sapmaz et al. [134] model this nano-electromechanical

system by a linear beam theory, which completely ignores curvature effects at the

nanoscale. We extend their model by fully incorporating curvature into the elastic

energy term and we find that the numerical solution admits quite different buckling

behavior to that obtained by Sapmaz et al. [134].

The section is organized as follows. In sub-section 3.1.1, we incorporate curvature

into the elastic energy and we re-examine the electrostatic energy of the buckled

carbon nanotube. The maximum displacement of the buckled carbon nanotube is

then presented in the following two sub-sections, where both an approximate solution

and a numerical solution, which incorporates curvature, are examined. While the

approximate solution can be expressed analytically in both the weak and strong

bending regimes, the full solution incorporating curvature obtained here can only be
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Figure 3.1: Schematic of experimental setup.

determined numerically. In sub-section 3.1.4, some numerical results and discussion

are made and some conclusions are presented in the final sub-section of this section.

3.1.1 Total energy of nanotube with incorporation of cur-

vature

In this sub-section, we examine a single-walled carbon nanotube of total length 2L,

which is strongly suspended between two electrodes through tunneling contacts. An

electrostatic force, arising from the gate voltage, bends the nanotube in a discrete

way when an electron is tunneled through the nanotube. Further the nanotube is

assumed to be initially lying along the x-axis and the displacement of the nanotube,

which arises due to the electrostatic force between the nanotube and the gate voltage,

is denoted by y and is illustrated in Fig. 3.1. The elastic energy of this system Wel[y],

which is determined in Appendix 6.5, is given by

Wel[y] =

∫ 2L

0

{

1

2
EI

y′′2

(1 + y′2)5/2
+ Ttotal[

√

1 + y′2 − 1]

}

dx, (3.1)
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where E and I = πr4/4 (r further denotes the thickness of the nanotube), denote the

elastic modulus and the inertial moment, respectively. In addition, Ttotal is defined

as the sum of the residual stress T0 resulting from the fabrication of the nanotube

and the induced stress T resulting from the buckling of the nanotube caused by the

gate voltage. Note that if y′ ≈ 0 is assumed, Eq. (3.1) reduces to the equation (1)

in Sapmaz et al. [134], namely

Wel[y] =

∫ 2L

0

{

EI

2
y′′2 +

1

2
Ttotaly

′2

}

dx.

For simplicity, the residual stress is assumed to be zero, so that the total stress Ttotal

denotes only the induced stress T . By utilizing Hooke’s law, the explicit form of T

can be deduced. The infinitesimal stress is given by

dT = ES
ds− dx

2L
= ES

√

dx2 + dy2 − dx

2L
, (3.2)

where S denotes the cross-sectional area of the nanotube. Upon integrating Eq. (3.2),

we find

T =
ES

2L

∫ 2L

0

(

√

1 + y′2 − 1

)

dx. (3.3)

Similarly, Eq. (3.3) reduces to the equation (2) in Sapmaz et al. [134] if y′ ≈ 0 is

assumed, namely

T =
ES

4L

∫ 2L

0

y′2dx. (3.4)

Before determining the electrostatic energy of the system, we denote CL, CR, CG

and c(y) as the capacitance of the left electrode, the right electrode, the gate voltage

73



Y. Chan

and the capacitance of the gate per unit length, respectively. In addition, we define

the distance between the nanotube in its relaxed state and the gate voltage by R

and assume y is much smaller than R, which are illustrated in Fig. 3.1. Thus, c(y)

is given by

c(y) =
1

2

[

ln
2(R− y)

r

]

−1

≈ 1

2

[

ln
2R

r

]

−1

+ y(x)

[

2R ln2 2R

r

]

−1

. (3.5)

A detailed derivation of Eq. (3.5) can be found in Appendix 6.6. The general

expression for any electrostatic energy West is given by

West =
1

2
ViC

i
jV

j , (3.6)

where Vi and Ci
j denote the electrostatic potential and capacitance tensors respec-

tively, and we utilize the suffix notation to imply summation over a repeated index.

Due to the configuration of the system, V i, which is the conjugate of Vi, and Ci
j are

accordingly defined by

V i =













ne

V

VG













,

Ci
j =

1

CL + CR + CG













1 −CL −CG

−CL −CL(CR + CG) CLCG

−CG CLCG −CG(CL + CR)













. (3.7)

Therefore, the West becomes
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West =
1

2(CL + CR + CG)

{

(ne)2 − 2ne(CLV + CGVG)

− CL(CR + CG)V 2 − CG(CL + CR)V 2
G + 2CLCGV VG

}

, (3.8)

where by the definition of c(y), the capacitance of the gate CG is defined as

CG =

∫ 2L

0

c(y)dx. (3.9)

Since our interest lies in examining how curvature affects the bending of the nan-

otube, CL and CR are assumed to be zero and the expression for West simplifies

to

West =
(ne)2 ln 2R

r

2L
− (ne)2

4L2R

∫ 2L

0

y(x)dx− neVG, (3.10)

where n ane e denote the number of electrons and the electron charge, respectively.

The total energy Wn, which is the sum of the elastic and the electrostatic energy, is

then given by

Wn =

∫ 2L

0

{

EI

2

y′′2

(1 + y′2)5/2
+ T

(

√

1 + y′2 − 1

)

− (ne)2

4L2R
y

}

dx

+
(ne)2 ln 2R

r

2L
− neVG. (3.11)

Owing to the minimum energy configuration of the buckled nanotube at statistical

equilibrium, the total energy Wn has to be minimized. The functional F can be

easily extracted from Eq. (3.11) as
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F =
EI

2

y′′2

(1 + y′2)5/2
+ T

(

√

1 + y′2 − 1

)

− (ne)2

4L2R
y. (3.12)

In the following sub-sections, this functional is utilized to obtain the maximum

displacement of the buckled nanotube for both the approximate analytical solution

and the numerical solution.

3.1.2 Displacement for buckled nanotube with y′ ≈ 0

In this sub-section, for the sake of completeness, we restate the buckled displacement

of the nanotube, which is given by section II.A. in Sapmaz et al. [134] by neglecting

the curvature. Owing to the fact that the buckled nanotube will eventually reach its

statistical equilibrium, variational principles can be utilized and the Euler-Lagrange

equation reads

IEy′′′′ − Ty′′ = K0, (3.13)

where K0 = (ne)2/(4L2R). To solve the above equation, the stress T has to be

initially assumed to be constant, where the value of T can be determined later by

utilizing the self-consistent Eq. (3.3) once the displacement y is known. If the origin

of the coordinate system is located at the center of the relaxed nanotube, and the

following Cauchy boundary conditions: y(−L) = y(L) = y′(−L) = y′(L) = 0, are

employed, then the solution to the above equation can be easily obtained as

y =
K0L

Tξ

{

sinh 2ξL

cosh 2ξL− 1

[

cosh ξ(x+ L) − 1

]

− sinh ξ(x+ L)

+ ξ(x+ L) − ξ

2L
(x+ L)2

}

, (3.14)
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where ξ =
√

T/(EI). For this approximation, the stress T given by Eq. (3.3)

reduces to the stress T given by Eq. (3.4), so that upon substituting Eq. (3.14) into

Eq. (3.4), one may find the stress T in the weak and the strong bending limit as

T =











K2
0L

6S/945EI2 T ≪ (EI)/(4L2),

(ESK2
0L

2/6)
2/3

T ≫ (EI)/(4L2),
(3.15)

where the solution for T ≪ (EI)/(4L2) in Eq. (3.15) corresponds to the weak

bending of the nanotube, while the solution for T ≫ (EI)/(4L2) in Eq. (3.15)

corresponds to the strong bending of the nanotube. We note that these stresses are

asymptotic expression by taking the limit of stresses in both regimes. Furthermore,

Eq. (3.15) can be substituted into Eq. (3.14) to obtain the displacement of the

buckled nanotube. Owing to the symmetry of the buckled nanotube, the maximum

displacement occurs at x = 0, so that the maximum displacement of the nanotube

for both the weak bending and strong bending regimes are determined to be

ymax
n =











0.012
(

neL/
√
ERr2

)2

T ≪ (EI)/(4L2),

0.381
(

neL/
√
ERr2

)2/3

T ≫ (EI)/(4L2).
(3.16)

Eq. (3.16) states that whenever an extra electron is tunneled through the potential

barrier V by the gate potential VG, the nanotube bends further, which is known as

nano-electromechanical effect. However, the bending behavior is different for both

the weak and strong bending regimes. In the weak bending regime, the maximum

displacement ymax
n depends on n2, while in the strong bending regime, ymax

n de-

pends only on n2/3, which indicates that the nanotube responds more sensitively

to the existence of encapsulated electrons in the weak bending regime than in the

strong bending regime. However, we doubt the result given by Eq. (3.16) in the

strong bending regime due to the fact that Sapmaz et al. [134] adopt a strong stress

limitation over the approximated beam theory, which may incur contradiction. In
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practice, the number of electrons n is rather hard to measure experimentally, but we

can relate the gate voltage to the number of the encapsulated electrons by substi-

tuting Eq. (3.14) into the electrostatic energy West and minimizing Eq. (3.10) with

respect to the number of electrons n. Upon performing the calculation, one may

find that

n = int

{

VGL

e ln(2R/r)
+

1

2
+ δn

}

, (3.17)

where int represents taking the closest minimum integer value.

3.1.3 Displacement for a buckled nanotube with incorpora-

tion of curvature

In this sub-section, the displacement of a buckled nanotube is sought by incorporat-

ing the full expression for curvature into the elastic energy of the buckled nanotube,

which can be seen as a natural extension of the previous sub-section. However,

in this scenario we are not able to solve the governing Eq. (3.21) analytically, and

therefore a modified numerical method, which is analogous to Euler’s method, is

employed to obtain the maximum displacement of the buckled nanotube. Similar to

the approximate case, we employ the Euler-Lagrange equation on the total energy

Wn to derive the governing equation of the buckled nanotube. The Euler-Lagrange

equation, which involves terms of y up to the second derivative, is given by

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ = 0 ⇒ Fy′ − d

dx
Fy′′ = −K0x+ c1, (3.18)

where from Eq. (3.12), −Fy = K0 = (ne)2/(4L2R) and c1 denotes a constant of

integration. However, upon substituting the functional (3.12) into Eq. (3.18), we

find that to solve the above Euler-Lagrange equation is in vain. Instead, we employ

the first integral (see Appendix 6.7 for details) to reduce the order of the differential
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equation by one, which takes the invariance of F in the x-coordinate into account,

such that the first integral is given by

F − y′
(

Fy′ − d

dx
Fy′′

)

− y′′Fy′′ = c2, (3.19)

where c2 is another constant of integration. After simplifying Eq. (3.19) utilizing

the Euler-Lagrange equation (3.18), gives

y′′2

(1 + y′2)5/2
− 2ξ2

√

1 + y′2 + F0y − y′(F0x− c3) = c, (3.20)

where F0 = (ne)2/(2IERL2), c3 = (2c1)/(IE) and c is a recast constant. Upon

applying the following Cauchy boundary conditions: y(−L) = y(L) = y′(−L) =

y′(L) = 0, and exploring the symmetry of the buckled nanotube, c3 is found to be

zero, which further reduces Eq. (3.20) into

y′′2

(1 + y′2)5/2
− 2ξ2

√

1 + y′2 + F0(y − xy′) = c. (3.21)

To determine c, the Cauchy conditions are again substituted into Eq. (3.21), giving

c = α2 − 2ξ2, (3.22)

where α = y′′(−L) = y′′(L). For natural boundary problems, i.e. by relaxing

the fixed boundaries to obtain extra physical insights into a physical problem, see

Appendix 6.7, we find that the second derivative and the third derivative of the

displacement, i.e. y′′(x) and y′′′(x), correspond to the bending moment and the

shear force of the buckled nanotube respectively. The maximum displacement ymax

is given by
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ymax = 2

{

y′′2(L) − y′′2(0)

}

IERL2

(en)2
. (3.23)

However, the solution of ymax requires the known general solution for y in the first

place. To determine y, we adopt a modified Euler’s method to solve Eq. (3.21)

numerically. Given Cauchy boundary conditions, the numerical solution of a second

order differential equation, for example Eq. (3.21), can be obtained naturally and

progressively. As a benchmark, we also show the compatibility between Eq. (3.23)

and Eq. (3.16) in the weak bending regime given in Appendix 6.8. The numerical

scheme is outlined as follows: The displacement y at a small distance, ε > 0, from

the two ends of the nanotube can be found by utilizing Taylor expansions. That is

y(−L+ ε) = y(−L) + εy′(−L), y(L− ε) = y(L) − εy′(L). (3.24)

In addition, the second derivative of the displacement at any point on the interval

2L, including the two end points, can be determined utilizing the governing equation

(3.21) with the prescribed boundary conditions, namely

y′′(±a) = ±
√

[c− F0(y(a) − ay′(a)) + 2ξ2
√

1 + y′(a)2][1 + y′(a)2]5/2, (3.25)

where a takes values between 0 and L. Note that the positive moment y′′ is defined

as an anticlockwise moment and vice versa. The first derivative of the displacement

y′, can then be obtained utilizing Taylor expansions, in particular

y′(−L+ ε) = y′(−L) + εy′′(−L), y′(L− ε) = y′(L) − εy′′(L). (3.26)
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Upon utilizing Eq. (3.25) and Cauchy boundary conditions, Eq. (3.26) can be de-

termined uniquely. Likewise, y(∓L ± 2ε) and y′(∓L ± 2ε) can be evaluated in a

similar manner. As a result, the Cauchy data propagates from the two ends to-

wards the center of the nanotube gradually and hence the governing equation (3.21)

can be solved numerically in this manner. If y(−L + ε) is assumed to be equal to

y(L−ε), then y′(L) must be equal to −y′(−L) and more generally, y′(a) = −y′(−a)

for a ∈ [0, L]. After a close examination of Eq. (3.26), one may also find that the

bending moment is symmetric, i.e. y′′(a) = y′′(−a). Owing to the symmetry of the

buckled nanotube, it is enough to consider only one half interval, i.e. [0, L], where

the displacement on the other half interval [−L, 0] can be obtained by reflection.

In addition, the buckled nanotube’s curvature changes from concave up to concave

down within the region from x = 0 to x = L, and for simplicity, we assume that the

change of curvature occurs at x = L/2 for all n (we test this assumption and find

that the change of curvature at x = L/2 gives us the correct buckling shape for all

force regimes investigated in this section).

3.1.4 Numerical results and discussion

In this sub-section, numerical results for the maximum displacement of the buckled

nanotube including the incorporation for the full expression of curvature into the

elastic energy of the buckled nanotube are investigated and discussed. According

to Figs. 3.2 and 3.4, the numerical solution indicates that while the approximate

solution underestimates the maximum displacement of the buckled nanotube in the

weak bending regime, it provides an entirely different prediction of the maximum

displacement in the strong bending regime. We observe that the displacement y

and its first derivative will both vanish if c = −2ξ2, which corresponds to the case

n = 0. For other values of n, the second derivative of the approximate solution

given in Eq. (3.14), and the corresponding value of T in Eq. (3.15), are utilized to

approximate c and the parameter F0. For example, upon assuming that r = 0.65

nm, E = 1.25 TPa, L = 250 nm and R = 100 nm, then for 10 grid points and n
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ranging from 0 to 1000. We note that the conversion between the number of the

encapsulated electrons and the gate voltages VG is related by Eq. (3.17) and the

range is chosen for the comparison purposes only and may be practically difficult to

detect but shows the sensitivity of the nano-electromechanical system. We determine

numerical values of the maximum displacement of the buckled nanotube in the

weak bending regime and the numerical solution, the semi-analytical solution, i.e.

Eq. (6.50) and the approximate solution are shown in Fig. 3.2. The numerical

results indicate that although there is a discrepancy between the numerical solution

and the approximation solution/the semi-analytical solution (since they overlap) in

the weak bending regime, the difference between the two solutions is linear, i.e.

there is a 10% difference in comparison between two solutions. Hence, a scaling

factor can be utilized to calibrate the discrepancy between both solutions in the

weak bending regime. In addition, we note that the magnitude of the maximum

displacement is small for the proposed range of gate voltage VG due to the fact that

the corresponding stress is small (see Fig. 3.3). We will expand these ranges later

to obtain more measurable values of the maximum displacement.

We now examine the numerical results for the strong bending regime, for which

we maintain the values of previous parameters but we employ the strong bend-

ing stress T from Eq. (3.15) to carry out the numerical scheme. In this case, for

10 grid points and n ranging from 0 to 5000, we determine both the numerical

solution and the approximation solution and are shown in Fig. 3.4. The correspond-

ing stress is also shown in Fig. 3.5 to indicate the small maximum displacement,

which is suggested in Fig. 3.4. We note that the maximum displacement obtained

from the numerical solution exceeds the maximum displacement obtained from the

approximate solution after approximately n = 3500. Therefore, the numerical so-

lution provides an entirely different picture in comparison to the results from the

approximate solution in the strong bending regime, and for which the factor scal-

ing proposed in the weak bending regime is no longer sufficient to correct for the

discrepancy between both solutions owing to the non-linear effect arising from the
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Figure 3.2: Numerical results for buckled nanotube in weak bending regime, where
the upper line represents the numerical solution with the incorporation of curvature
into the elastic energy of the buckled nanotube, the middle line represents Eq. (6.50)
and the lower line represents the approximate solution without curvature.

utilization of the full expression for the curvature in the elastic energy. Therefore,

according to the compatibility between the approximate solution and the numerical

solution established in Appendix 6.8, we may only adopt the numerical solution to

predict the more accurate maximum displacement in the strong bending regime.

Given the above numerical results, it is beneficial to plot the maximum displace-

ment of the numerical solutions in both the weak and strong bending regimes as

given in Fig. 3.6. The crossing from the weak bending regime to the strong bending

regime is clearly demonstrated at approximately n = 100. Therefore, in practice

we can totally ignore the weak bending regime provided that the corresponding

maximum displacement is difficult to be measured experimentally. In addition, the

numerical solution reveals that the buckled nanotube responds more sensitively, i.e.

there is a higher rate of change of the maximum displacement with respect to the

external electrostatic force in the strong bending regime than in the weak bending

regime, which is shown to be reversible for the results given by the approximate

solution. To determine a practically measurable maximum displacement, we relax
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Figure 3.3: Stress for buckled nanotube in the corresponding weak bending regime
shown in Fig. 3.2.
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Figure 3.4: Numerical results for buckled nanotube in strong bending regime, where
the flatter curve represents the approximate solution while the other curve represents
the numerical solution.

the number of electrons to n = 1×104 and the numerical results for both regimes to-

gether with the corresponding stress are plotted in Figs. 3.7 and 3.5 respectively. It

is noteworthy that the buckling displacement in the weak bending region is severely

compressed in comparison to the buckling displacement in the strong bending re-
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Figure 3.5: Stress for buckled nanotube in the corresponding strong bending regime
shown in Fig. 3.4 and Fig. 3.7.
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Figure 3.6: Numerical results for buckled nanotube in both weak and strong bending
regimes, where the crossing between both bending regimes occurs around n = 100.

gion. Since the most practical bending usage lies in the strong bending regime, the

full curvature effects must be addressed at the nanoscale.
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Figure 3.7: Numerical results for buckled nanotube in both weak and strong bending
regimes with the maximum n = 10000.

3.1.5 Conclusion

We have determined a new solution for the maximum displacement of a buckled

nanotube in both the weak and strong bending regimes by incorporating the full

expression for curvature into the elastic energy of the buckled nanotube, which is

ignored in previous investigations. We find that while the approximate solution

underestimates the maximum displacement of the buckled nanotube in the weak

bending regime, our numerical solution predicts an entirely different bending be-

havior in comparison to the approximate solution in the strong bending regime.

Further, in the former case, a scale factor can be utilized to calibrate the discrep-

ancy between the approximate solution and the numerical solution. However, this

scale factor is found not to be sufficient in correcting the maximum displacement

of the buckled nanotube due to the nonlinear bending phenomenon in the strong

bending regime. Hence, for most practical purposes a numerical solution with the

full curvature effects has to be utilized in this bending regime.
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3.2 Axial buckling of multi-walled carbon nan-

otubes and nanopeapods

Continuum mechanics has been widely and successfully applied for the mechani-

cal analysis of carbon nanotubes as an alternative to the overwhelming Molecular

dynamics simulation approaches. More recently, Govindjee et al. [50] adopt the

Benoulli-Euler beam theory to obtain the Young’s modulus of multi-walled nan-

otubes. According to a multiple-elastic beam model, Yoon et al. [175] examine

resonant frequencies and obtain vibrational modes of an individual multi-walled

carbon nanotube embedded inside an elastic medium. Li et al. [92] also utilize

a space truss model to determine the Young and shear moduli of a single-walled

carbon nanotube. Moreover, Yakobson et al. [171] utilize a traditional continuum

shell model to predict the buckling of a single-walled carbon nanotube and their

results are compared with molecular dynamics simulation. Last but not least, a

finite element method [116] and a molecular dynamics simulation [110, 147, 93, 178]

is also utilized to investigate the buckling behavior of nanotubes.

Here, we further investigate the axial buckling of a nanopeapod, which possesses

a chain of fullerenes inside a carbon nanotube. Nanopeapods have been experi-

mentally observed by Smith et al. [145, 146] through high-resolution transmission

electron microscopy. It is suggested that encapsulation of C60 molecules occurs ei-

ther through a large opening in the tube wall [13] or through the open ends of

the nanotube [158, 159]. For the different possible equilibrium configurations of

fullerenes inside a nanotube (e.g. linear, zigzag and spiral patterns), we refer the

reader to Baowan et al. [8].

Axial buckling can be practically demonstrated as a nano-electromechanical ef-

fect on a doubly clamped suspended nanotube or nanopeapod. We assume that a

nanotube or a nanopeapod is attached by two electrodes through tunneling con-

tacts, in which Coulomb-blockade effects dominate the transport. The applied gate

voltage bends the tube by an applied external electrical field E0 and affects both
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Figure 3.8: Experimental setup for doubly clamped suspended nanopeapods.

the electrical and mechanical properties of the nanostructure, which is generally

called nano-electromechanical system (see Fig. 3.8). Similar to the case of doubly

clamped single-walled carbon nanotubes, such hybrid molecular structures as multi-

walled carbon nanotubes and nanopeapods can be implemented as nanotweezers

[76, 1], switches in a random access memory device [129], actuators [10] and nano-

electromechanical switches [34, 78]. In addition, with its electronic properties in

nature, nanopeapods with metallofullerenes embedded can be utilized as more effi-

cient on-and-off gigahertz oscillators [179, 90, 27, 28] through an applied external

electric field.

This section is structured as follows. In sub-section 3.2.1, we introduce Don-

nell’s equation and from which we determine the critical forces for single- and

double-walled carbon nanotubes and single- and double-walled nanopeapods. We

also comment on the issues regarding the various interactions between molecules

mainly van der Waals interactions which affect the critical forces of our proposed

systems. In sub-section 3.2.2, we approximate the single-walled carbon nanotube

and the single-walled nanopeapods by one-dimensional structures so that we may

adopt Euler-Bernoulli beam theory to study the doubly clamped suspended single-

walled nanopeapods, and the resulting buckling displacements are compared with

the buckling displacement of a single-walled carbon nanotube. Some conclusions

are given in the final sub-section and certain detailed mathematical derivations are
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presented in three appendices to avoid logical disruption in the main text.

3.2.1 Axial buckling stability analysis

Thin shell theories based on continuum mechanics have been successfully applied

to predict several mechanical properties of carbon nanostructures, such as single-

and double-walled carbon nanotubes. In particular, Ru et al. [128, 56] investigate

an axial stability and the wave-like behavior of double- and multi-walled carbon

naotubes by incorporating van der Waals interactions between layers of the car-

bon structures. Similar approaches have also been utilized in other studies, such as

for the vibration of a multi-layered graphene sheet [12] and the torsional and axial

bending stability of carbon nanotubes [53, 173, 164]. While some studies have been

done on the torsional stability of nanopeapods [161, 147]. Only recently, Sohi and

Naghdabadi [148] investigate the stability of single-walled carbon nanopeapods un-

der both the axial and compressive load by utilizing Donnell’s equilibrium equation.

Here, we extend the work from Sohi and Naghdabadi [148] but determine the axial

buckling stability of multi-walled carbon nanotubes and nanopeapods theoretically

but only analytically investigate up to double-walled nanopeapods. In addition,

Euler-Bernoulli beam equation has also been adopted to predict the post-buckling

behavior of the single-walled nanotube and nanopeapods with the incorporation of

curvature effect. We have to emphasize that all results presented in this section are

obtained analytically, which set our work apart from the prior work of Sohi and

Naghdabadi [148].

Here, we investigate axial stability of the proposed nanostructures by utilizing

Donnell’s equation. Forces between the layers of carbon nanotubes with different

radii must satisfy Newton’s third law, i.e. pi,jRi = −pj,iRj , where pi,j denotes the

pressure exerted from the jth layer to the ith layer, Ri denotes the tube radius for the

ith layer and where subscripts i = 1...N denote the ith layer of the carbon nanotube.

We further assume that the incremental pressure ∆pi of the ith layer arising from

an adjacent jth layer to be linear in the displacement difference between the two

89



Y. Chan

layers, i.e. ωj − ωi, where ωi denotes the displacement of the ith layer. From these

assumptions we may deduce

∆p1 = p1,2 = c1(ω2 − ω1),

∆p2 = p2,3 + p2,1 = c2

[

(ω3 − ω2) −
R1

R2
(ω2 − ω1)

]

,

...
...

∆pN = pN,N−1, (3.27)

where ci denotes the linearity constant for the ith layer, which is derived in Ap-

pendix 6.9 utilizing the van der Waals interactions between nanotubes’ layers and

Taylor’s expansion around an equilibrium configuration. On the other hand, the in-

ternal van der Waals pressure caused by fullerenes to the inner nanotube is defined

by

pvdW (z) = FvdW (z)

(

3
√

3

4
d2

cc

)

−1

, (3.28)

where FvdW (z) denotes the internal van dar Waals force and (3
√

3d2
cc)/4 is the effec-

tive surface area of a carbon atom [132], and where dcc is the carbon-carbon bond

length. The circumferential membrane force per unit length (nanotube) or simply

called circumferential membrane force caused by the van der Waals pressure pvdW

is given by

N1θ = −R1pvdW (z), (3.29)

where the negative sign accounts for the inward forces acting by fullerenes against the

external forces. We model the carbon nanotubes utilizing infinitesimal buckled beam

theory and Donnell’s equation [128, 53], which originates from thin-shell theory,

namely

D∇8ω +
Eh

R2

∂4ω

∂z4
−∇4

[

Nz
∂2ω

∂z2
+ 2Nzθ

∂2ω

∂z∂θ
+Nθ

∂2ω

∂θ2

]

−∇4p(z, θ) = 0, (3.30)
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Figure 3.9: Nanopeapods.

where D, E, R, h, Nz, Nzθ, Nθ and p(z, θ) denote the bending stiffness of the carbon

nanotube, elastic modulus of the nanotube, the radius of the nanotube, the thickness

of the nanotube, the axial force, the shear membrane force, the circumferential mem-

brane force due to pre-buckling loading conditions, and the pressure exerted on the

nanotube, respectively. Here, the operator ∇2 is defined by ∂2/∂z2 + (1/R2)∂2/∂θ2

and p(z, θ) comprises the van der Waals pressure between fullerenes and the wall of

the inner nanotube as well as the pressure between two adjacent layers of nanotubes

(see Fig. 3.9). Since we are only considering axial buckling, the shear membrane

force Nzθ can be omitted, and this simplifies Eq. (3.30) to

D∇8ω +
Eh

R2

∂4ω

∂z4
−∇4

[

Nz
∂2ω

∂z2
+Nθ

∂2ω

∂θ2

]

−∇4p(z, θ) = 0, (3.31)

Note that, we can practically determine Nz from the net applied axial force T ,

which is acting on the system arising practically from electrostatic forces, e.g. met-

allofullerenes so that we may write T as

T = qE0/2πRi, (3.32)

where q, E0 and Ri denote the total charge existing in the system, the strength of the

externally applied electric field and the radius of the outer nanotube respectively.

Assuming that the molecules are at equilibrium, the force per unit length acting on
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different layers must be equal, which can be written as

N1z = R1p1 = N2z = R2p2 = . . . = NNz = RNpN . (3.33)

Thus, for the total applied force per unit length T , we have

T = R1p1 +R2p2 + . . .+RNpN ,

= R1p1 +R2

(

R1

R2
p1

)

+ . . .+RN

(

R1

RN
pN

)

= NR1p1, (3.34)

from which we obtain

p1 =
T

NR1
, Nz1

= R1

(

T

NR1

)

=
T

N
, (3.35)

where Eq. (3.33) is utilized to obtain Eq. (3.35). Following the same argument as

that stated above, we may deduce

pi =
T

NRi

, N1z = N2z = . . . =
T

N
. (3.36)

We now propose that the axial buckling stability of doubly clamped suspended

nanotubes or nanopeapods is periodic and the low-amplitude solution applies which

takes the form

ωi = Ai sin(αz) cos(τθ), (3.37)

where α = (kπ)/L and L is the length of the nanotube, k and τ are the axial

and circumferential wave numbers, respectively. Upon substituting Eq. (3.37) into

Eq. (3.31), we obtain the system of equations which may be written in terms of the

matrix equation as

FΩ = 0, (3.38)
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where the matrices F and Ω are given by

F =

























F11 F12 0 · · · · · · 0

F21 F22 F23 · · · · · · 0

· · · · · ·

· · · · · ·

0 0 0 · · · FNN−1 FNN

























,

ΩT =

[

ω1, ω2, · · · ωN

]

, (3.39)

and the elements Fij of the matrix F are given explicitly by

F11 = D

[

α2 +

(

τ

R1

)2
]4

+
Eh

R2
1

α4 +

[

α2 +

(

τ

R1

)2
]2{

Tα2 − pvdW (z)

(

τ

R1

)2

− c1

}

,

F12 = −c2
[

α2 +

(

τ

R2

)2
]2

,

F21 = −c1
(

R1

R2

)

[

α2 +

(

τ

R1

)2
]2

,

F22 = D

[

α2 +

(

τ

R2

)2
]4

+
Eh

R2
2

α4 +

[

α2 +

(

τ

R2

)2
]2
{

Tα2 − c2

(

1 +
R1

R2

)}

,

F23 = −c3
[

α2 +

(

τ

R3

)2
]2

,

...
...

FNN−1 = −cN−1

(

RN−1

RN

)

[

α2 +

(

τ

RN−1

)2
]2

,

FNN = D

[

α2 +

(

τ

RN

)2
]4

+
Eh

R2
N

α4 +

[

α2 +

(

τ

RN

)2
]2
{

Tα2 − cN
RN−1

RN

}

, (3.40)

and further denotes c1 = c, where c is the constant arising from the van der Waals

pressure between the first two layers and is defined by Eq. (6.58) in Appendix 6.9.

For Eq. (3.38) to have a non-zero solution, it is necessary that detF = 0. For a

double-walled nanopeapod, we obtain F11F22 − F21F12 = 0. Since F11 ≈ F22, we

can simply approximate F11F22 by F 2
11 but we also adopt the mean approximation

of R1 = R = (R1 + R2)/2 to correct any small variation between F11 and F22.
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Thus, we find the axial force per unit length T = T (k, τ) for the single-walled

nanotube (10,10), the single-walled nanopeapods C60@(10,10), the double-walled

nanotube (10,10)@(16,16) and the double-walled nanopeapods C60@(10,10)@(16,16)

to be given respectively as

|T | =











































































D[α2+(τ/R1)2]4+(Eh/R2

1
)α4

α2[α2+(τ/R1)2]2
,

D[α2+(τ/R1)2]4+(Eh/R2

1
)α4

−pvdW (τ2/R1)[α2+(τ/R1)2]2

α2[α2+(τ/R1)2]2
,

D[α2+(τ/R)2]4+(Eh/R
2
)α4

−c[α2+(τ/R)2]2+
√

cc2(R1/R2)[α2+(τ/R1)2][α2+(τ/R2)2]

α2[α2+(τ/R)2]2
,

D[α2+(τ/R)2]4+(Eh/R
2
)α4

−[pvdW (z)(τ2/R)+c][α2+(τ/R)2]2+
√

cc2(R1/R2)[α2+(τ/R1)2][α2+(τ/R2)2]

α2[α2+(τ/R)2]2
.

(3.41)

For the buckling of a single-walled nanotube without any fullerene enclosed, we have

F11 = 0 with pvdW = c = 0, namely there is no interaction arising from fullerenes and

other layers between nanotubes. Similarly, for the single-walled nanopeapods, we

incorporate pvdW into Eq. (3.41)2 to account for the molecular interactions arising

from fullerenes. While we add both c and c2 to describe the correct physical behavior

arising from the layer’s interactions for the double-walled nanotube, an extra van

der Waals pressure pvdW is also incorporated into Eq. (3.41)4 to take the effect

of the fullerenes inside the double-walled nanotube as the form of double-walled

nanapeapods. We note that while the forces for (10,10) and (10,10)@(16,16) have

the same analytical forms as stated in He et al. [56], the forces for C60@(10,10) has

the analytical forms as stated in Sohi and Naghdabadi [148]. However, Eq. (3.41)3

and Eq. (3.41)4 are obtained by mean approximation.

Further, we note that pvdW can be determined analytically by utilizing the molec-

ular interactions between a fullerene and an atom on the carbon nanotube (see

Fig. 3.10). Such potential energy between a fullerene and an atom on the carbon

nanotube, E∗ is determined utilizing the 6-12 Lennard-Jones potential and the con-
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Figure 3.10: An atom on a carbon nanotube interacting with a C60 fullerene.

tinuous approximation, namely

E∗ = nf

∫

Σf

(

−A

ρ6
+

B

ρ12

)

dSf , (3.42)

where A and B are the attractive and repulsive constants, nf is the surface density

of carbon atoms on the fullerene, ρ denotes a typical distance between the carbon

atom and an atom on the fullerene and dSf is the surface element of the fullerene.

The numerical values of constants utilized in this model are given in Table 3.1. As

Radius of (10,10) R1 = 6.784 Å
Radius of (16,16) R2 = 10.846 Å
Radius of C60 b = 3.55 Å
Carbon-carbon bond length dcc = 1.421 Å
Mean surface density of C60 nf = 0.3789 Å−2

Attractive constant A = 17.4 eV×Å6

Repulsive constant B = 29 × 103 eV×Å12

Table 3.1: Numerical values of constants utilized in Section 3.2.

shown in Cox et al. [27, 28], the potential E∗ is given by

E∗(r) =
πbnf

r

{

A

2

[

1

(r + b)4
− 1

(r − b)4

]

− B

5

[

1

(r + b)10
− 1

(r − b)10

]}

, (3.43)

where b denotes the radius of the C60 fullerene. As such, the molecular force FvdW
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Figure 3.11: Radial force for an atom on a carbon nanotube interacting with a C60

fullerene.

between the atom and the fullerene can be determined from

FvdW = −∇E∗. (3.44)

Eq. (3.44) is plotted in Fig. 3.11 indicating that the maximum attractive force of

21 pN occurs at z = 7.4 Å, which is in agreement with the numerical data obtained

from Smith et al. [145]. Hence, according to Eq. (3.28), the maximum pvdW is found

to be 0.8 GPa and the critical axial force can be obtained by minimizing the right

hand side of Eq. (3.41).

Further, utilizing Eq. (3.41) we adopt the following parameter values: L = 36.8

Å, D = 0.85 eV, h = 3.4 Å, Eh = 360 J/m2, R1 = 6.784 Å, R2 = 10.846 Å to

determine the axial force distribution for (10,10), C60@(10,10), (10,10)@(16,16) and

C60@(10,10)@(16,16). These results are shown graphically in Figs. 3.12, 3.13, 3.14

and 3.15 for the axial wave number k ranging from 1 to 50 and the circumferential

wave number τ ranging from 1 to 10, respectively. For all four cases, we note

that the critical forces Tc, or local minimum for such axial forces are obtained as

86 nN, 69 nN, 64 nN and 56 nN for (10,10), C60@(10,10), (10,10)@(16,16) and
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Figure 3.12: Applied force T for different k and τ for (10,10).

C60@(10,10)@(16,16), respectively. We note that while the first two are obtained

by multiplying the corresponding critical forces per unit length by 2πR1, the last

two are obtained by multiplying by 2πR2. The numerical results for the critical

forces indicate that both the molecular interactions from the layers between the

inner and the outer nanotubes as well as fullerenes and the inner nanotube decrease

the resistance to the axial buckling of the nanostructures in order to maintain the

global stable minimum energy state of the material. That is consistent with classical

beam theory for which it is known that the presence of the inward internal force

reduces the critical force of a cylindrical shell [154].

Upon utilizing Hooke’s law, we can relate the critical strain εc with the critical

force Tc by εc = Tc/(SE), where S and E = 1.06 TPa denote the cross-section area

and elastic modulus of the nanotube, respectively. For (10,10) nanotube, we obtain

from Fig. 3.12 that εc = 5.7%. This value is generally well in agreement with the

range of published data obtained by utilizing molecular dynamics (MD) simulation

on (10,10) nanotube with various methodologies. The critical strain comes close to

the results of Yakobson et al. [171], i.e. εc = 5.68%. Moreover, our value also lies

between Liew et al. [93], i.e. εc = 6.6% and Zhang et al. [178], i.e. εc = 5.6%. As
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Figure 3.13: Applied force T for different k and τ for C60@(10,10).
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Figure 3.14: Applied force T for different k and τ for (10,10)@(16,16).

for the case of C60@(10,10) nanopeapods, upon comparing between Figs. 3.12 and

3.13, the critical force for the C60@(10,10) is around 69 nN, which is 25% less than

the critical force for (10,10) nanotube, i.e. 86 nN. Such reduction in the critical

force of the single-walled nanopeapods in comparison to that of the single-walled

nanotube can be explained by the existence of the inward van der Waals pressure

between the wall of the nanotube and the nearby fullerene. The critical strain for the
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Figure 3.15: Applied force T for different k and τ for C60@(10,10)@(16,16).

single-walled nanopeapods can be analogously obtained as εc = 4.5%, which is also

comparable with the molecular dynamics simulation result obtained by Shen [143],

who investigates the axial buckling of nanopeapods either filled with or without

argon atoms. For the empty capacity, the author reports εc = 4.8%. Since most

literature investigates the buckling instability of a smaller nanotube embedded inside

a (10,10) nanotube as a double-walled nanotube, we adopt the same methodology

presented above but replace R1 and R2 by 3.39 Å and 6.78 Å representing for the

radius of the (5,5) nanotube and the (10,10) nanotube, respectively and obtain the

critical stress for the (5,5)@(10,10) as 84.6 nN, which are comparable with Zhang et.

al [178], i.e. 88 nN. The comparison between the results arising from our continuum

model and the MD results are then summarized in Table. 3.2

For the buckling phenomena for the double-walled nanotubes and nanopeapods,

upon comparing between Fig. 3.12 and Fig. 3.14, the critical force for the double-

walled nanotube (10,10)@(16,16) is slightly less than the critical force for the single-

walled nanopeapods by 5 nN due to the fact that the larger outer-tube radius in the

former case resulting in a smaller critical force [3]. The small discrepancy between

the critical forces for the single-walled nanopeapods and the double-walled nanotube
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Molecular type Our results MD results
(10,10) εc = 5.7% εc = 5.6% (Zhang et al. [178])

εc = 5.68% (Yakobson et al. [171])
εc = 6.6% (Liew et al. [93])

C60@(10,10) εc = 4.5% εc = 4.8% (Shen et al. [143])
(10,10)@(16,16) Tc = 64 nN NiL
(5,5)@(10,10) Tc = 84.6 nN Tc = 88 nN (Zhang et al. [178])
C60@(10,10)@(16,16) Tc = 56 nN NiL

Table 3.2: Comparison between our continuum model and MD results.

can also be explained by (I) the short interaction range of the van der Waals forces,

(II) the effective contact surface area and (III) the distance between the internal

molecular structures. Since we model the van der Waals force in particular by the

Lennard-Jones potential, which is a short range potential, for each atom on the

outer shell of the nanotube, it experiences a spectrum of molecular forces arising

from the inner shell in the case of the double-walled nanotube, but only experiences

molecular forces arising from the nearby fullerene in the case of the single-walled

nanopeapods. In other words, the effective contact surface area between layers of

nanotubes is larger than the effective contact surface area between fullerenes and

the inner nanotube. In addition, since we assume that the fullerenes are located

along the axis due to the prescribed radius of the inner nanotube (10,10) [8], but

the layers come closer to each other and hence the larger inward van der Waals

forces acting between layers rather than fullerenes and the inner wall of (10,10)

nanotube gives rise to the smaller critical force. Comparing Fig. 3.14 and Fig. 3.15,

the further reduction of the critical force for the double-walled nanopeapods by 8 nN

in comparison to the critical force for the double-walled nanotube can be explained

from a combination of the analysis in this paragraph and the previous one. We have

not derived the stability analysis for multi-walled nanotubes/nanopeapods because

of the difficulty of solving detF = 0 analytically in general. However, we strongly

suspect that the critical forces for multi-walled nanopeapods will be reduced even

further as the number of layers increases due to the increasing influence of the van

der Waals interactions between layers [56], while the van der Waals forces arising
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Figure 3.16: Applied force T for k=1 for all proposed systems.

from fullerenes in the multi-walled nanopeapods is almost negligible.

To investigate the influence of the embedded fullerenes and the layer effect in the

high force regime, we can plot a graph by fixing k, for instance k = 1, but varying

τ for four different proposed nanostructures. Numerical results for T are then plot-

ted in Fig. 3.16 for τ ranging from 1 to 5. We observe that the force distributions

for all four proposed nanostructures are degenerate at τ < 2. However, the force

distribution of the double-walled nanotube falls below the force distribution of the

single-walled nanotube, which is linear owing to the linearity assumption embodied

in Eq. (3.27). However, the existence of fullerenes inside both the single and the

double-walled nanotubes has almost no contribution for the force distribution in the

strong force regime, which is demonstrated again in the next sub-section from the

Euler-Bernoulli beam equation. Unlike Wang [161], who utilizes molecular dynam-

ics simulation to investigate the torsional stability of the single-walled nanopeapods,

we can not predict the rippling effect on the nanotube’s surface (decrease in local

stability by the incursion of fullerenes inside the single-walled nanotube under tor-

sional load) due to the fact that we assume perfect rigidity of the cylindrical carbon

structures in this sub-section.
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3.2.2 Buckling of nanopeapods utilizing Euler-Bernoulli beam

equation

In this sub-section, we approximate a single-walled nanotube and a single-walled

nanopeapod as a one-dimensional beam so that Euler-Bernoulli beam theory can be

applied to study the axial bending of such nanostructures. Sapmaz et al. [134] have

previously utilized this technique to investigate a doubly clamped suspended single-

walled carbon nanotube. However, Sapmaz et al. [134] ignore curvature effects by

letting y(x) ≈ 0 when investigating a buckled nanotube. We comment that the

effect of curvature is crucial at the nanoscale, and we incorporate the curvature into

the Euler-Bernoulli beam equation for both weak and strong force regimes. Since

we investigate the axial bending of the single-walled nanopeapods, the molecular

interactions between fullerenes and the nanotube, i.e. FvdW is also incorporated

into the total force but negative given by Eq. (3.46). For the case with the inclusion

of the curvature, we derive the Euler-Bernoulli beam equation from first principles

by utilizing a variational principle, and we utilize a first integral to obtain both

semi-analytical solutions and numerical solutions. The elastic energy of this system

Wel[y], which is derived in Appendix 6.5, is given by

Wel[y] =

∫ L

0

{

1

2
EI

y′′2

(1 + y′2)5/2
+ Ttot[

√

1 + y′2 − 1]

}

dx, (3.45)

where E and I denote the elastic modulus and the inertial moment of the single-

walled carbon nanotube, respectively. We note that both molecular potential energy

and electrostatic energy could be incorporated in to the total. However, they are

constant, which incur no effect on the variational formulation. We utilize x instead

of z to avoid z defined later as y′(x). In addition, we assume the linearity of the

total force Ttot under infinitesimal buckling, which involves the sum of the molecular

forces FvdW between fullerenes and the carbon nanotube and the induced external

forces Text resulting from the electrostatic forces caused by the uniform gate voltage
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qE0, is given by

Ttot =
ES

L

∫ L

0

(

√

1 + y′2 − 1

)

dx = Text − FvdW , (3.46)

where S denotes the cross section of the nanotube and negative sign represents

the internal repulsive force against the applied load. Eq. (3.46) tells us that both

electrostatic and van der Waals forces alter y′ and eventually change Ttot. We note

that if we assume that y′ ≈ 0, the Eq. (3.45) and Eq. (3.46) reduce to

Wel[y] =

∫ L

0

{

EI

2
y′′2+

1

2
Ttoty

′2

}

dx, Ttot =
ES

2L

∫ L

0

y′2dx = Text−FvdW . (3.47)

Case 1: Without curvature

Assuming statistical equilibrium, i.e. constant temperature, we apply the Euler-

Lagrange equation (6.43) to Eq. (3.47)1 to obtain the Euler-Bernoulli beam equation

IEy′′′′ − Ttoty
′′ = 0. (3.48)

The general solution obtained from Eq. (3.48) can be written as

y(x) = C1 + C2x+ C3 sinh γx+ C4 cosh γx, (3.49)

where γ =
√

Ttot/IE, C1, C2, C3 and C4 denote constants of integration. We utilize

Dirichlet boundary conditions, i.e. y(0) = y(L) = 0, to deduce

y(x) = C1

{

1 − 1 − cosh γL

sinh γL
sinh γx− cosh γx

}

, (3.50)

where C1 can be determined by the maximum buckling displacement ymax from

experimental data. For simplicity, we normalized C1 to be 1 and the following

constants are adopted; E = 1.25 TPa, r = 0.65 nm, L = 81.36 Å, I = (πr4)/4

[134]. Due to the symmetry of the buckled beam, the maximum displacement ymax
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Figure 3.17: Maximum displacement ymax as a function of applied force Text for the
approximate case.

is calculated upon letting x = L/2. The numerical result for Eq. (3.50) at x = L/2

is plotted in Fig. 3.17 for both cases of with and without FvdW . We note that the

response of ymax relates linearly to the external applied load. This is owing to the fact

that the curvature effect is ignored in Eq. (3.50). However, due to the molecular

interactions between fullerenes and the host carbon nanotube, residual molecular

force is incurred, which causes a reduction in bending of 1 × 10−3 m, even though

there is no external force is applied. We note that such bending magnitudes are not

physical owing to the fact that we have normalized C1 = 1. Since the difference

between the two curves is linear, one may obtain the bending of the single-walled

nanopeapods simply by the correction from the results of the single-walled nanotube.

Case 2: With curvature

In this case, we relax the approximation y′ ≈ 0 in Case 1 by incorporating the

curvature effect. We start with Eq. (3.45), upon utilizing the first integral, i.e.

Eq. (6.45) shown in Appendix 6.7 and simplifying the result with those obtained
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from the Euler-Lagrange equation and the symmetry of the buckled beam, we obtain

z′ = ±
√

(c+ 2γ2
√

1 + z2)(1 + z2)5/2, (3.51)

where z = y′ and + and − correspond to concave downwards and concave upwards,

respectively. From which, we can transform the differential equation into the integral

equation. Now, if we introduce z = tan θ, then we obtain

cos θdθ
√

c cos θ + 2γ2
= ±dx. (3.52)

Upon making the substitution θ = 2φ and integrating both sides with respect to x,

we have

4

k2

∫ arctan y′

0

√

1 − k2 sin2 udu−
(

4

k2
− 2

)
∫ arctan y′

0

1
√

1 − k2 sin2 u
du = ±βx, (3.53)

where k2 = (2c)/(c+ 2γ2) and β =
√

c+ 2γ2. We note that while c = y′′(0)2 − 2γ2

can be estimated by the approximate solution, i.e. Eq. (3.50), y′ can be numerically

determined upon solving Eq. (3.53) for different x. If we further assume Neumann

condition, i.e. y′(0) = y′(L) = 0, we can solve Eq. (3.53) numerically. However, it

is time consuming to solve the semi-analytical solution (3.53) in this way. Instead

we utilize Dirichlet conditions and solve Eq. (3.51), which is similar to Eq. (3.25)

numerically as given in sub-section 3.1.3 but with the modification of the nanotube

length from 2L to L.

Upon utilizing the same parameters as given in Case 1, we plot the buckled

displacement against x-axis as shown in Fig. 3.18 for the case of the applied force

equals to 1 × 10−10 N. We note that the internal van der Waals force due to FvdW

resists the bending of the rod in comparison to the bending displacement of the

single-walled carbon nanotube under the same applied force. In order to see how

the curvature affects the buckling behavior of the proposed systems, we follow Case

1 by plotting the maximum displacement (letting x = L/2) from Text = 1 × 10−10
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Figure 3.18: Displacements of (10,10) and C60@(10,10) for Text = 1 × 10−10 N with
the corporation of curvature.
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Figure 3.19: Variation of ymax with applied force Text from 1×10−10 to 5×10−10 N.

N to 5 × 10−10 N and Text = 1 × 10−10 N to 1 × 10−8 N, as shown in Figs. 3.19 and

3.20. The effect of the internal molecular force can also be observed in Fig. 3.19.

Comparing with the case of no curvature effect (see Fig. 3.17), we note that in

the low force limit, while the response of ymax to the applied external forces is non-

linear, ymax is linear in the strong force limit, which can be demonstrated in Fig. 3.20

106



Chapter 3: Axial buckling of carbon nanotubes and nanopeapods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−8

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−9

T
ext

 (N)

y
m

a
x
 (

m
)

 

 

C
60

@(10,10)

(10,10)

Figure 3.20: Variation of ymax with applied force Text from 1× 10−10 to 1× 10−8 N.
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Figure 3.21: Difference between maximum displacements as a function of the applied
force Text.

by raising the applied force up to 10 nN. Such effect is non-linear and as such we

cannot deduce the buckling results from the single-walled carbon nanotube to those

for the single-walled nanopeapods, especially in the low force limit. In order to

find the effect of FvdW on the nanopeapods’ buckling, we plot the difference of two

displacements in Fig. 3.21, and we observe that the effect of FvdW fades out when
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the applied force becomes very large. Given Figs. 3.16 and 3.21, we can conclude

that while both internal forces from fullerenes and layers of nanotube contribute to

the global buckling phenomenon in the low force regime, only internal force from

layers of nanotube counts for the global buckling phenomenon in the strong force

regime.

3.2.3 Conclusion

We investigate the buckling of the (10,10), (10,10)@(16,16), the C60@(10,10), and

the C60@ (10,10)@(16,16) nanostructures by incorporating the van der Waals molec-

ular potential energies between the various components of the carbon nanotubes.

These potential energies are determined analytically from the Lennard-Jones poten-

tial and a continuous approach. We find that the critical forces reduce as a result of

the molecular interactions between layers of carbon nanotubes and the interactions

between fullerenes. The Euler-Bernoulli beam equation is also utilized to obtain

the buckling displacement of the (10,10) and C60@(10,10), and we find that while

the response to the applied force is linear in the strong force regime, the curvature

effect is dominant in the low force limit. In addition, we note that the molecular

interactions arising from fullerenes and layers of nanotubes affects the buckling in

the low force regime. While the molecular interactions between the layers of the

nanotubes has an increasing effect on the buckling with increasing outer nanotube

radius, the molecular interactions between fullerenes and nanotubes fades out in the

strong force regime. This suggests that the enclosure of fullerenes inside nanotubes

might be the sole means of the buckling (e.g. metallofullerene) but insignificantly

affects the general buckling phenomenon. Finally, we comment that the study of

buckling of nanopeapods, such as the C60@(10,10) and C60@(10,10)@(16,16) struc-

tures, may lead to the development of potential nano devices, such as biological

sensing, measuring devices for small forces, electric charges or Casimir forces.
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2L is the total length of the (6,6) nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CG is the capacitance of the gate voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CL,R,G are the capacitances of electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Ci
j is the capacitance tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E is the elastic modulus of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

I is the inertial moment of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

K0 K0 = (ne)2/(4L2R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

R is the distance between the electrode and the gate voltage . . . . . . . . .74

S is the cross-sectional area of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . .73

T is the induced stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Ttotal is the total stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Vi is the electrostatic potential tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Wel[y] is the elastic energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

West[y] is the electrostatic energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Wn is the total energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

c(y) is the capacitance of the gate per unit length . . . . . . . . . . . . . . . . . . . . . .73

n is the number of electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

y is the buckling displacement of the buckled nanotube . . . . . . . . . . . . . 72

ymax
n is the maximum displacement of the buckled nanotube . . . . . . . . . . . . 77

α is the bending moment at the ends of the buckled nanotube . . . . . . . 79

ξ ξ =
√

T/(EI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

109



Y. Chan

Section 3.2

A is the attractive constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B is the repulsive constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D are the bending stiffness of the carbon nanotube . . . . . . . . . . . . . . . . . . 91

E is elastic modulus of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

E∗

is the potential energy between a fullerene and an atom on the carbon

nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

E0 is the strength of the applied electric field . . . . . . . . . . . . . . . . . . . . . . . . . 91

FvdW (z) is the van dar Waals force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

I is the inertial moment of the single-walled carbon nanotube . . . . . . 102

L is the length of the nanopeapods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Nz is the axial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Nzθ is the shear membrane force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Nθ is the circumferential membrane force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

R is the radius of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

R R = (R1 +R2)/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Ri is the radius of the ith layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

S is the cross section of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

T is the net applied axial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Tc is the critical force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Ttot is the total external force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Wel[y] is the elastic energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

b is the radius of the C60 fullerene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ci is the linearity constant for the ith layer . . . . . . . . . . . . . . . . . . . . . . . . . . 90

dSf is the surface element of the fullerene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

dcc is the carbon-carbon bond length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

h is the thickness of the nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

k is the axial wave number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

nf is the surface density of of the fullerene . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

pi,j is the pressure exerted from the jth layer to the ith layer . . . . . . . . . 89

110



Chapter 3: Axial buckling of carbon nanotubes and nanopeapods

p(z, θ) is the van der Waals pressure between molecules . . . . . . . . . . . . . . . . . . 91

pvdW is the van dar Waals pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

q is the total charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ymax is the maximum buckling displacement . . . . . . . . . . . . . . . . . . . . . . . . . . .103

y(x) is the displacement of the buckled nanotube or nanopeapod . . . . . . 102

∆pi is the incremental pressure of the ith layer . . . . . . . . . . . . . . . . . . . . . . . . 89

α α = (kπ)/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

γ γ =
√

Ttot/IE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ρ
is the distance between the carbon atom on the nanotube and an atom

on the fullerene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

τ is the circumferential wave number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

ωi is the displacement of the ith layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

111



Chapter 4

Worm-like chain model and

applications

In this chapter, we re-examine the worm-like chain model from the perspective of a

variational principle. Some extra information, namely that of the free energy and the

cut off force of a stretched molecule, are newly defined. In addition, we apply Hooke’s

law and the worm-like chain model to investigate the molecular stretching in the

extracellular matrix and find that the toughness of the connective tissue is intimately

related to the microscopic characteristics of the anionic glycosaminoglycan.

4.1 Force-extension formula for the worm-like chain

model from a variational principle

A force-extension relationship for some biomacromolecules can be experimentally

measured by stretching a single molecule, utilizing either an atomic force microscope

[22, 67] or an optical tweezer [153], and the force-extension curves can be theoret-

ically predicted from models of semi-flexible polymers. Butt et al. [22] provide an

excellent review on the force measurements utilizing an atomic force microscope.

The freely-jointed chain (FJC) model and the worm-like chain (WLC) model

[160] are commonly utilized to describe semi-flexible polymers and a good introduc-

112



Chapter 4: Worm-like chain model and applications

tion of these two models can be found in Storm et al. [152]. While the WLC model

describes an isotropic and homogeneous rod that is continuously flexible, the FJC

model discretizes the molecule into Kuhn segments, which are unbendable, com-

pletely straight and can only rotate around the joints. Therefore, in comparison to

the FJC model, the WLC model provides better predictions for the force and exten-

sion relationship of stiffer polymers like single-stranded DNA, unstructured RNA

and polypeptides. In addition, an extensible WLC model has also been proposed

for an enthalpic region where deterministic mechanics takes place [160]. Both in-

terpolation formulae and exact solutions for the WLC model have been previously

obtained [97, 160]. However, an exact solution can only be determined numerically

due to the fact that a variational parameter has to be minimized for any given force

[97, 152]. Recently, [152, 127] attempt to seek an exact solution utilizing the FJC

model. Such a solution would provide a good mathematical basis for the incorpora-

tion of the ring conformational transitions because each segment can be easily scaled

with a preferred monomer’s length . In this section, the WLC model is utilized and

the calculus of variations is employed to determine an analytical force-extension

formula for the WLC model, which turns out to be expressed in terms of elliptic

integrals.

The section is structured as follows. In sub-section 4.1.1, the WLC model is

introduced, which is followed by the derivation of an analytical force-extension for-

mula of the WLC model utilizing variational principle in sub-section 4.1.2. In sub-

section 4.1.3, the possible phase changes of the molecule undergoing an external

applied force are examined, while in sub-section 4.1.4 our new force-extension for-

mula is compared with some recent experimental data. In the final sub-section, a

summary and some general conclusions are made.

4.1.1 Worm-like chain model

The WLC model was first introduced by Fixman and Kovac [43] and after a pre-

liminary analytical approach by Kovac and Crabb [82], a comprehensive treatment
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was given by Marko and Siggia [97]. The WLC model has some advantages over

the FJC model; for example, the best-fit value of the Kuhn segment for a typi-

cal double-stranded DNA from utilizing the FJC model is approximately 100 nm,

which is completely different from its physical contour length per base pair of 0.34

nm, and the FJC model provides a poor prediction over the intermediate-force re-

gion. Therefore, we choose to examine the WLC model instead of the FJC model.

We note that the WLC model can be thought of as a limiting case of the FJC model

when the Kuhn segment length approaches zero. Since there are different versions

of the force-extension formulae for the WLC model, the interpolation solution [97],

which is most commonly utilized by biologists and chemists to fit their experimental

data, is given by

fA

kBT
=
z

L
+

1

4(1 − z/L)2
− 1

4
, (4.1)

where f , A, kB, T , z and L denote the applied external force, the bending stiffness of

the molecule, the Boltzmann’s constant, the absolute temperature, the extension of

the molecule and the total molecular contour length respectively. This interpolation

formula provides a good fit for most of the experimental data. However, it has up

to 6% error when compared to the exact solution in an intermediate-force regime.

4.1.2 An analytical force-extension formula for the WLC

model by utilizing the variational principle

In this sub-section, we assume that a molecule behaves like an isotropic and homoge-

neous rod. The effective energy of the stretched molecule W can be expressed as an

integral of the segmental bending energy, AkBTκ
2/2 over the entire polymer curve,

constrained by the external force f for end to end extension as given by [43, 172]
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W =

∫ L

0

{

AkBT

2
κ2 − f cos θ

}

ds, (4.2)

where κ is the principal curvature of the molecule. We comment that while the first

term inside the integration is the usual strain energy, the second term corresponds

to the work done performed by the external force during stretching, which can be

viewed as Lagrangian multiplier (constraint) in mathematical sense. Unlike previous

statistical mechanical approaches; for example those adopted by Marko and Siggia

[97], they derive a partition function from the Boltzmann distribution for a given

elastic energy. Upon minimizing the eigen-energy obtained from the partition func-

tion, useful information such as the extension can be naturally extracted, here we

utilize a variational principle approach to examine analytically the minimum energy

configuration of a stretched molecule by incorporating all possible orientations of the

monomers under thermal equilibrium to determine the force-extension formula for

the WLC model. The displacement vector R of a molecule is firstly parametrized

by its arc length s ∈ [0, L] (see Fig. 4.1 for details). Since all possible orientations

of each monomer can be projected onto a unit sphere, the principal curvature can

be further parametrized by the polar angles (θ, φ). That is,

x = sin θ sinφ, y = sin θ cos φ, z = cos θ. (4.3)

Given the relationship of the Cartesian coordinate system in terms of the usual

spherical coordinate system, the unit tangential vector t̂ and the principal curvature

κ can be shown to be

t̂ = (sin θ sin φ, sin θ cos φ, cos θ), κ2 = |∂t̂
∂s

|2 = φ̇2 sin2 θ + θ̇2, (4.4)
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where θ̇ and φ̇ denote dθ/ds and dφ/ds, respectively. Substituting Eq. (4.4) back

into Eq. (4.2), gives

W =

∫ L

0

{

AkBT

2

(

φ̇2 sin2 θ + θ̇2
)

− f cos θ

}

ds, (4.5)

where the functional F can be extracted from Eq. (4.5) to give

F =
AkBT

2
(φ̇2 sin2 θ + θ̇2) − f cos θ. (4.6)

The two independent Euler-Lagrange equations for θ and φ are easily obtained from

∂F

∂θ
=

d

ds

∂F

∂θ̇
,

∂F

∂φ
=

d

ds

∂F

∂φ̇
. (4.7)

The functional, which is given in Eq. (4.6), can then be substituted into Eq. (4.7),

to obtain

φ̈ sin2 θ + 2θ̇φ̇ sin θ cos θ = 0, θ̈ = φ̇2 sin θ cos θ + µ sin θ, (4.8)

where µ denotes f/(AkBT ). From Eq. (4.8), one possible solution is given by sin θ =

0, which gives rise to trivial solutions. Therefore, assuming sin θ 6= 0 leads us to the

following integrals

φ̇ =
c1

sin2 θ
, θ̇2 = − c21

sin2 θ
− 2µ cos θ + c2, (4.9)

where c1 and c2 are constants of integration. In terms of classical mechanics, c1

and c2 can be regarded as the conservation of the “angular momentum” and the
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x
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t
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Figure 4.1: Worm-Like Chain model. An external force is applied to the molecule
in the z-direction. The position vector of each monomer is parametrized by s with
tangential vector t(s).

conservation of the “total energy” respectively. In addition, we note that Eq. (4.9)

resembles the mathematical description of a spinning heavy top with one point fixed

on the ground [49].

To proceed, given Eq. (4.9), φ̇ and θ̇ can be substituted back into Eq. (4.5) to

obtain

W = −2

∫ L

0

f cos θds+
c2AkBTL

2
. (4.10)

As an aside, it is evident from Eq. (4.10) that the free energy, which is defined

by the total energy required to stretch the molecule from its relaxed state to its

total contour length, is given by (aAkBTL)/2, where a is set equal to c2, which is

evaluated at µ = 0 and is an invariant constant. Now, we define I as

I = −2

∫ L

0

f cos θds = −2

∫ π

0

f cos θ

θ̇
dθ,

= ∓ lim
ǫ→0

∫ π−ǫ

ǫ

2f sin θ cos θ
√

−c21 − 2µ cos θ sin2 θ + c2 sin2 θ
dθ, (4.11)

where the second equality in Eq. (4.11) is achieved when the coordinate system is
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transformed from the arc-length reference frame into the angular reference frame,

and then θ is integrated from zero to π so as to sum all possible orientations of the

monomers under thermal equilibrium T in the entropic regime. In addition, when

θ approaches either zero or π, c1 has to be sufficiently small in order to ensure that

the integral remains real, which leads to the conclusion that c1 = 0 and therefore

Eq. (4.11) is further reduced to

I = ∓
∫ π

0

2f cos θ√
c2 − 2µ cos θ

dθ. (4.12)

This equation is found to be integrable in terms of complete elliptic integrals of

first and second kinds, where a basic treatment of elliptic integrals can be found in

[17]. We note that the positive sign of Eq. (4.12) has been taken to carry on our

investigation. It can be shown that Eq. (4.10) becomes

W (f) = 2AkBT

{

√

c2 − 2µE [k(f)] − c2√
c2 − 2µ

K [k(f)] +
c2L

4

}

, (4.13)

where k2(f) = −4µ/(c2 − 2µ), K =
∫ π/2

0
1/
√

1 − k2 sin2 xdx is the complete elliptic

integral of the first kind and E =
∫ π/2

0

√

1 − k2 sin2 xdx is the complete elliptic

integral of the second kind. In addition, the effective energy W must not become

complex, which forces c2 > 2µ, where this inequality gives rise to the cut-off force of

the stretched molecule and the possible phase changes of the molecule, which will be

discussed later. Adopting the same approach from Lai et al. [87], we may determine

c2 utilizing a boundary condition that the molecule is fixed on the attached substrate

and is free on the other end

c2 = bµ+ a, (4.14)
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where a and −2 ≤ b ≤ 2 are real constants. Thus, Eq. (4.14) can be interpreted

as the total energy of the system, which is interpreted by the modification of its

ground energy a by the work done bµ, and this technique has also been employed by

Haverkamp et al. [54] in their study of the ring conformational transitions by mod-

ifying the Gibbs energy with an additional work term. Given that, c2 is substituted

back into Eq. (4.13) to get

W (f) = 2AkBT

{

√

a− (2 − b)µE [k(f)]− (a+ bµ)
√

a− (2 − b)µ
K [k(f)]+

L(a+ bµ)

4

}

,

(4.15)

where k2 = −4µ/[a − (2 − b)µ]. Since the effective energy is expressed entirely in

terms of the function f , one may find the extension z of the molecule by utilizing

z = −∂W
∂f

, (4.16)

which gives

z =
(2 − b)(2 + b)µ− ab

√

a− (2 − b)µ[a+ (b+ 2)µ]
E(k) +

b
√

a− (2 − b)µ
K(k) + ξ(δT ), (4.17)

where ξ(δT ) denotes the error due to thermal fluctuations, which will be addressed

in sub-section 4.1.4 but is found to be neglectable. To achieve the above equation,

the following elliptic integral identities have been utilized [167], namely, dE/dk =

(E −K)/k and dK/dk = E/ [k(1 − k2)] −K/k. Note that Eq. (4.17) is compatible

with equation (2) obtained by Neumann [106] for his study on the polymer stretching

under an homogeneous elongational flow, especially the singularity under the square

root. We observe that z approaches zero when µ approaches zero; Hooke’s Law is

re-discovered in the low-force limit; and z possesses a non-linear effect such that
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z approaches L with a distinctive 1/f 1/2 behavior [82], which constitute a special

characteristic of the WLC model. The above equation can then be easily extended

into the extensible WLC model by releasing the elasticity of the molecule. That is,

z =
(2 − b)(2 + b)µ− ab

√

a− (2 − b)µ[a + (b+ 2)µ]
E(k) +

b
√

a− (2 − b)µ
K(k) +

f

Φ
, (4.18)

where Φ is the modulus of elasticity.

Upon comparing Eq. (4.17) with the interpolation formula given in Eq. (4.1),

we see that apart from the bending stiffness A, two extra parameters a and b need

to be fitted utilizing experimental data. In particular, these extra parameters can

be determined by matching experimental data in the low and high forces regimes.

For the low forces limit, where up to the first order of bµ is considered, Eq. (4.17)

reduces to Hooke’s Law. That is,

f =
4
√

2AkBT

πa2
z. (4.19)

While for the high forces limit, one may obtain

L =
(2 − b)(2 + b)µc − ab

√

a− (2 − b)µc[a+ (b+ 2)µc]
E(kc) +

b
√

a− (2 − b)µc

K(kc), (4.20)

where µc = fc/(AkBT ) and k2
c = −4µc/[a − (2 − b)µc]. We refer the reader to

Eq. (4.21) for the definition of fc. The new exact force-extension formula has more

degrees of freedom than the interpolation formula given in Eq. (4.1), and as such it is

expected to produce more accurate results in comparison to the naive interpolation

formula. For example, a relates to “the ground energy”; b is related to the tendency

of the molecule to lie towards the z-axis and hence affects the force-extension curve

in the high force regime; and most importantly, the newly derived force-extension
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formula predicts the cut-off force, which is defined as the force that is required to

stretch a molecule into its total contour length, but is absent in the interpolation

formula. The asymptotic solution of the interpolation formula implies the utilization

of an infinite applied force to stretch a molecule into its total contour length. It is

easy to observe from Eq. (4.17) that the cut-off force is defined as

fc =
aAkBT

2 − b
. (4.21)

We note that this cut-off force is equivalent to the case of c = 1 introduced in

Neumann [106] where 0 ≤ c < 1 while determines the entropic regime, c ≥ 1

determines the enthalpic regime. We also note that the linear dependence of fc

in temperature and the existence of the singularity are compatible with the simple

derivation of the new molecular model, i.e. equation (5), introduced by Misof et

al. [101] for his study of stress-strain relationship for a collagen pair. That is,

σ = Kǫ/(1 − ǫ/ǫ0), where σ and ǫ denote stress and strain of the collagen pair

respectively. Readers are referred to the definition of the constants K and ǫ0 in

Misof et al. [101] but note that K depends linearly on temperature. It is easy to

observe from Eq. (4.21), and the constraint for b, that the minimum cut-off fmin
c

force is given by

fmin
c =

aAkBT

4
. (4.22)

4.1.3 Phase changes of a stretched molecule

In this sub-section, the Euler-Lagrange equations, Eq. (4.9), are utilized to obtain

some observation that the mathematics suggests the possibility of phase changes

existing in such molecules, which has also been previously investigated by Fain

et al.[40] for their study on, in particular the conformations of linear DNA and
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separately confirmed by a molecular dynamic calculation performed by Kuttel et al.

[85]. In our study, two phase changes of the molecule’s configuration are predicted

to occur when it is stretched beyond its total physical contour length L. To derive

the phase change of the molecule, the second equation of Eq. (4.9) is rearranged to

obtain

(θ̇ sin θ)2 = −c21 − 2µ cos θ sin2 θ + c2 sin2 θ, (4.23)

so that upon making the substitution x = cos θ, Eq. (4.23) becomes

ẋ = ±
√

−c21 − (1 − x2)(2µx− c2), (4.24)

which is separable. Thus after rewriting, Eq. (4.24) becomes

dx
√

−c21 − 2µx(1 − x2) + c2(1 − x2)
= ±ds, (4.25)

where if c1 = 0, then Eq. (4.25) is further simplified to

dx
√

(x− 1)(x+ 1)(x− c)
= ±

√

2µds, (4.26)

where c = c2/(2µ). Physically, Eq. (4.26) is a special case of the governing equations

of a spinning top, which describes what is called a vertical top, as the locus lies

between 0 and π, and covers the entire surface of a sphere S2. Upon integrating

Eq. (4.26), we obtain

∫

dx
√

(x− 1)(x+ 1)(x− c)
= ±

√

2µs+ C, (4.27)

122



Chapter 4: Worm-like chain model and applications

Figure 4.2: Schematic of super-helix, soliton and twisted vertical lines are shown
from left to right.

where C is a constant of the integration, which may be complex depending on the

value of c. Since the polynomial under the radical is a cubic, Eq. (4.27) is integrable

in terms of elliptic integrals. Solutions for both the non-degenerate case (three

distinct real roots) and the degenerate case (double roots) are presented below.

The non-degenerate case (i.e., c 6= −1, 1):

− 2√
c− 1

∫

dθ
√

1 − k2 sin2 θ
= − 2√

c− 1
F = ±

√

2µs + C, (4.28)

where a substitution of x = cos θ has been made to obtain the above equation and

F is the incomplete elliptic integral of the first kind with k2 = 2/(1− c). Note that

s is complex when c < 1, which gives rise to a spiral structure.

The degenerate case (i.e., c = 1 and −1 ):

∓
√

2 tanh−1

(

√

x± 1

2

)

= ±
√

2µs+ C, (4.29)
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where the ± correspond to c = ±1. This solution is obtained by examining the

derivative of the tanh function. When the applied force increases from 0 to infinity,

c decreases from the infinity towards b/2 ∈ [−1, 1]. It is interesting to observe that

when c > 1, the solution in Eq. (4.28) represents a super-helix, while if c = 1, then

the solution in Eq. (4.29) is a soliton, and finally for −1 < c < 1, the solution in

Eq. (4.28) corresponds to a twisted vertical line (see Fig. 4.2 for details). Hence the

driving force f changes the general structure of the stretched molecule gradually

and creates phase changes for the stretched molecule. However, whether a given

molecule will undergo all these phase changes (i.e., from a super-helix to a soliton

and then to a twisted vertical line), just one (i.e., from a super-helix to a soliton),

or none (i.e., remains in the super-helix) depends entirely on the cut-off force fc,

which is derived in Eq. (4.21). It is not obvious that all molecules must undergo two

phase changes when they are stretched beyond their total contour lengths. In the

following, we derive criteria for which these phase changes take place. It is obvious

that all molecules must start from the super-helix when µ = 0.

For a molecule with no phase changes:

In this case, a molecule remains in the initial super-helix configuration and the root

c has to be greater than 1. This requires that

c =
aAkBT

2f
+
b

2
> 1,

After rearrangement, the above inequality becomes

f <
aAkBT

2 − b
= fc. (4.30)

Therefore, the molecule undergoes no phase change before it is fully stretched into

its total contour length.
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For a molecule with one phase change:

In this case, one phase change takes place from a super-helix to a soliton, for which

the root c must be equal to 1. Following the same line of the argument as the first

case, we find that

f =
aAkBT

2 − b
= fc. (4.31)

Therefore, the molecule undergoes one phase change when it is exactly stretched

into its contour length.

For a molecule with two phase changes:

In this case, the root c is smaller than one and the following inequality is held

f > fc. (4.32)

Hence, the molecule undergoes another phase change from a soliton to a twisted

vertical line while it is stretched beyond its contour length, which implies that

all molecules have to undergo two phase changes after entering into the enthalpic

regime. From further examination of the definition of the constant c, the critical

force fs for the phase change is related to the critical angle θs as follows

fs =
aAkBT

2(1 − cos θs)
, (4.33)

and this result can be checked by the available experimental results. It is worth

noting that all of the criteria derived so far ignore the existence of external forces

from thermal fluctuations, which could affect the outcome. Until now, one question

still remains open: Can we possibly have a case that c = −1? For this to occur, b
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must be equal to -2 and the molecule has to be stretched into its total contour length

by an infinite external force, which corresponds to a nonphysical outcome from the

interpolation formula. However, for a very stiff molecule, a phase change from a

vertical twisted line into a stiff vertical twisted line might occur. These results for

phase changes need to be checked by molecular stretching experiments.

4.1.4 Numerical results

In this sub-section, the new force-extension formula for the WLC model is employed

to fit some recent force-extension data of the response of the polysaccharide hyaluro-

nan given by Haverkamp et al. [55]. Our newly derived force-extension formula has

been fitted to this data, where the outcome is reported in Fig. 4.3 and Fig. 4.4 with

the domains of the applied force ranging from 0 nN to 0.7 nN and 0 nN to 8 nN

correspondingly. Note that the extensions in both Fig. 4.3 and Fig. 4.4 have been

normalized by the total contour length L, which is assumed to be equal 76 nm. We

utilize the new extensible WLC model, i.e. Eq. (4.18), to fit the data.

According to the results coming from the curve-fitting (we first fit the curve at

the low force regime to obtain AkBT and a and b is obtained by examining the curve

at the high force regime by fixing the values of AkBT and a), the best fitted value

of AkBT and Φ are given by 2.3 × 10−25 m−1 and 2.9 × 10−2 Nm−1 respectively. In

addition to the existing parameter AkBT and Φ, two new parameters a and b have

been introduced in the new force-extension formula, which in this case are equal to

6.5 ×1014 Nm and 1.982 respectively. The parameter “A” is traditionally referred

to as the stiffness of the polysaccharide, while the new parameter a corresponds

to “the ground energy”. Hence, a and AkBT combine to give the free energy, as

derived previously in this sub-section, i.e. aAkBTL/2. Given the fitted values of

a and A, the free energy can also be verified from the force-extension curve. That

is, the energy that is put into the system to stretch the molecule from the relaxing

state to its total contour length, can be approximated by taking the area under

the un-normalized force-extension curve from Fig. 4.3, gives 7.1 × 10−18 J, which is
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Figure 4.3: The fitting of the new force-extension formula with the experimental
data. The applied force ranges from 0 nN to 0.7 nN and the extension has been
normalized by its total contour length L, which is equal to 75.85 nm.
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Figure 4.4: The fitting of the new force-extension formula with the experimental
data. The applied force ranges from 0 nN to 8 nN.

comparable with the free energy calculated theoretically by aAkBTL/2 = 5.7×10−18

J.

To determine the full features of this force-extension curve, the z-domain of the

force-extension curve is extended from the total contour length L to 6L, which is
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Figure 4.5: A force-extension curve of the WLC model with b = 1.87, 1.89, ......, 1.99
with an increment of 0.02, which correspond to the curves from bottom to top
respectively.

shown in Fig. 4.4. The cut-off force, which results from the singularity of the force-

extension formula, can be observed in Fig. 4.4. This cut-off force occurs when the

applied force is around 8 nN and can be directly obtained upon utilizing Eq. (4.21).

The same phenomenon can also be demonstrated in Figure 1 of Neumann [106].

We note that this value is substantially larger than the usual value of maximum

bond stretching forces, which is around 2 nN [98]. However, the new model does

predict the cut-off force in the right magnitude and we don’t have sufficient exper-

imental data for curve fitting in the very high forces regime. Finally, the physical

meaning of b can be determined by varying b while keeping the other parameters

constant. Values ranging from 1.87 to 1.99 with an increment of 0.02 have been

chosen because they reflect the wide spectrum of deflection curves in the high-force

regime. Note that very low values of b correspond to Hooke’s law in all regimes

whereas very large values of b ≈ 2 correspond to the fracture of the molecule in

the high-force regime. The numerical results are plotted in Fig. 4.5. Apparently, b

affects the stretching behavior of the molecule in the high-force limit, while keep-

ing the stretching behavior of the molecule in the low-force limit almost intact (see
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Figure 4.6: Error analysis of the new force-extension formula subject to thermal
fluctuations.

Eq. (4.19) for string constant in the low forces regime). Mathematically, according

to Eq. (4.14), b affects the amount of work done arising from the applied force put

into the system, and therefore b becomes decisive in the high-force limit when the

entropy of the system is essentially removed. In particular, the new force-extension

formula suggests a family of force-extension curves in the high-force regime, where

the new formula covers almost all possibilities of the deflection of the force-extension

curve in this limit by choosing different values of b, and this property makes our

new formula more powerful than previous interpolation formulae in capturing the

mechanical behavior of molecules in the high-force regime.

Finally, we investigate the error of our new force-extension formula subject to

thermal fluctuations, i.e. we consider the change of temperature T → T + δT

leading to the change of extension z → z + δz. A simple mathematical deviation

gives δz = (∂z/∂T ) δT . Upon using the same values of parameters given in this

sub-section and assuming that δT = 1K, we numerically obtain the relative error in

the extension, i.e. δz/L, which is plotted in Fig. 4.6. As the numerical result for

the instability suggests, extension in our new formula does not respond sensitively

within δT = 1K for most of the force regimes, and the relative error of extension
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decreases while the applied force increases as the stretching approaches the enthalpic

regime.

4.1.5 Conclusion

In this section, a new analytical force-extension formula for the WLC model is deter-

mined by minimizing the effective energy of the molecule by the variational principle.

We have utilized the new formula to predict additional physical parameters such as

expressions for the free energy and the cut-off force of the stretched molecule, which

are absent in the existing interpolation formula. In addition, the new force-extension

formula predicts phase changes of the stretched molecule and anticipates that all

molecules must undergo two phase change, i.e. changing from a super-helix to a

soliton, from a super-helix to a soliton and then from a soliton to a vertical line,

after they are entering into the enthalpic regime. The new force-extension formula

is then utilized to fit some recent experimental data. However, in the future more

work needs to be undertaken to incorporate a Boltzmann energy distribution into

the model to account for the effect of thermal fluctuations.

4.2 Mechanical model for a collagen fibril pair in

the connective tissue extracellular matrix

Numerous computational and continuum mechanical methodologies have been uti-

lized to study the mechanics of such connective tissue (CTs) [121, 2, 45, 57, 68,

70, 81, 162]. However, most tend to ignore the microscopic details of CTs or as-

sume a simple form of the molecular potential energy in order to make their models

tractable. In particular, for a continuum mechanical approach, generally a homoge-

neous structure of CTs is assumed. Since the CTs comprise of collagen pairs, here we

adopt basic physical concepts and simple mathematical techniques to investigate the

mechanical properties of a single collagen pair. While utilizing a quadratic energy

form for the collagen, we incorporate the statistical nature of anionic glycosamino-
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Figure 4.7: Collagen pair before stretching, where L1 and L2 denote the colla-
gens 1 and 2 respectively, v1 . . . vN and u1 . . . uN denote the position coordinates of
oligomers in L1 and L2 respectively, lc and lg are the natural lengths of the collagens
and GAGs respectively and N is the total number of oligomers that could exist in
each collagen.

glycan (GAGs) into our model by utilizing the worm-like chain model, which has

both theoretically and experimentally been proved to be applicable to wide ranges of

bio-macromolecules including unstructured DNA, RNA, GAGs and polysaccharide

[55, 11, 124, 123, 112]. We note that our work may form a theoretical basis for

experimentalists for their work on collagen pairs.

This section is divided into four sub-sections. In sub-section 4.2.1, we derive a

mathematical model for CTs, while in sub-section 4.2.2, numerical results and some

extension work on CTs are developed. In the last sub-section, we present some

conclusions.

4.2.1 Theory

In this sub-section, we consider some simple applied mathematical models for a

collagen pair. Since CTs contain repeated units of collagen pairs, a collagen pair

is denoted by a single unit of such repeated collagen pairs, which is illustrated

in Fig. 4.7. While we model collagens utilizing Hooke’s law, GAGs are modeled
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Figure 4.8: Collagen pair after stretching, by an applied force F assumed to be
acting on L1 causing an induced force F ′ in L2, while s denotes the offset length
between L1 and L2, ∆1 and δ1 denote the length of the first oligomer in L1 and L2

respectively and so on.

utilizing the worm-like chain model, which has carefully taken the entropic nature

of the molecular chain into account. Due to the symmetry of CTs, we consider

a pair of collagens with axial and regular GAGs in between, especially bone. In

reality, to assemble such segments into a whole CTs is a challenging task owing to

the complicated molecular interactions between fibrils. In addition, to simplify our

study of external applied forces, which consist of both tensile and compressive forces,

only the tensile stress is examined because GAGs can convert compression stress into

tensile stress and hence the total tensile stress is assumed to be the vectorial sum

of both tensile and compression forces.

A well constructed and stable collagen pair is assumed to maintain its structure

by the attachment of GAGs, subject to at least a small perturbation due to molec-

ular interactions between collagen-collagen, collagens-GAGs, thermal fluctuations,

sudden shocks etc. Suppose that we apply a tensile stress on one end of the colla-

gen 1 (see Fig. 4.8), where this perturbation alters the mechanical structure of the

collagen pair.
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The displacements between vi+1 and vi are denoted by ∆i for i = 1, . . . , N − 1

where N is the total number of oligomers, which are defined by a segment of the

collagen pair with two GAGs attached at its ends. Likewise for the collagen 2,

the displacements of ui+1 and ui are denoted by δi. Schematic diagrams of an un-

stretched and a stretched collagen pair are shown in Fig. 4.7 and Fig. 4.8 respectively.

We postulate the potential energy of collagens utilizing Hookes’s law, which reads

V =
1

2
kδ2,

where k is a spring constant and δ is the extension. Given the potential energy

form, it is straightforward to show that the potential energy of a collagen pair, Vc,

is given by

Vc =
N
∑

i=1

1

2
kc

(

δi −
ℓc
N

)2

+
N
∑

i=1

1

2
kc

(

∆i −
ℓc
N

)2

, (4.34)

where N , kc and ℓc are the total number of oligomers that exist in the collagen, the

spring constant of the collagen, and the natural length of a collagen respectively.

Moreover, δi and ∆i are defined by δi = ui+1 − ui and ∆i = vi+1 − vi for i =

1, 2, . . . , N − 1 respectively. In addition, we postulate the potential energy of GAGs

utilizing the worm-like chain model. We now leave the more sophisticated model of

section 4.1 and return here to Eq. (4.1) restated here for convenience as

f =
kBT

A

{

z

L
+

1

4

(

1 − z

L

)

−2

− 1

4

}

, (4.35)

where f , kB, T , A, z, L denote the applied force, Boltzmann’s constant, the absolute

temperature, the persistence length, extension and the total contour length of the

GAG respectively. Then, the potential energy of all GAGs, Vg, can then be obtained
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by integrating Eq. (4.35) with respect to z and summing up the total number of

GAGs, N , to yield

Vg =
N
∑

i=1

{

1

2
kg

{

√

(vi − ui)2 + (ℓg)2 − ℓg

}2

+
L2

4
kg

{

1 −
√

(vi − ui)2 + (ℓg)2 − ℓg
L

}

−1

− L

4
kg

{

√

(vi − ui)2 + (ℓg)2 − ℓg

}}

, (4.36)

where kg and ℓg denote (kBT )/(AL) and the natural length of GAGs respectively.

We can then relate ui and vi to δi, ∆i and s, which is the off-set between fibrils

(See Fig. 4.8). Notice that s is a function of f as the collagen pair starts to slide

away with respect to each other, subject to the external force. Hence, ui and vi are

geometrically related by

v1 = u1 + s,

v2 = u2 + s+ (∆1 − ℓc/N) − (δ1 − ℓc/N) = u2 + s+ (∆1 − δ1),

...

vi = ui + s+
i
∑

k=1

(∆k − δk),

...

vN = uN + s+

N
∑

k=1

(∆k − δk). (4.37)

After we relate the kinematics between the collagen pair, we can simplify Eq. (4.36)

in terms of the displacements δi and ∆i, giving
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Vg =

N
∑

i=1

{

1

2
kg











√

√

√

√

[

s +

i
∑

k=1

(∆k − δk)

]2

+ (ℓg)2 − ℓg











2

+
L2

4
kg















1 −

√

[

s+
∑i

k=1(∆k − δk)
]2

+ (ℓg)2 − ℓg

L















−1

− L

4
kg











√

√

√

√

[

s+
i
∑

k=1

(∆k − δk)

]2

+ (ℓg)2 − ℓg











}

. (4.38)

Since the elongation of collagen 1 causes the elongation of collagen 2, we can relate

δi and ∆i by the relative displacements ǫi. That is

∆i = δi + ǫi. (4.39)

Assuming statistical equilibrium, we let δi = δ, ∆i = ∆ and ǫi = ǫ for all i. Hence,

Eqs. 4.34 and 4.38 reduce to

Vc =
1

2
kcN

{

(

δ − ℓc
N

)2

+

(

δ + ǫ− ℓc
N

)2
}

,

Vg =
N
∑

i=1

{

1

2
kg

{

√

(s+ iǫ)2 + (ℓg)
2 − ℓg

}2

+
L2

4
kg

{

1 −
√

(s+ iǫ)2 + (ℓg)
2 − ℓg

L

}

−1

− L

4
kg

{

√

(s+ iǫ)2 + (ℓg)
2 − ℓg

}}

. (4.40)

Since each GAG has its own maximum length K and the displacement between uN

and vN corresponds the maximum length of GAG given in the collagen pair, which

must be smaller or equal to K. Given that, we have
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|vN − uN | =
√

(s+Nǫ)2 + (ℓg)2 ≤ K, (4.41)

from which, we show that the maximum number of oligomers Nmax allowed in a

given collagen satisfies the following inequality

Nmax ≤
√

(K)2 − (ℓg)2 − s

ǫ
= ⌊
√

(K)2 − (ℓg)2 − s

ǫ
⌋, (4.42)

where ⌊ ⌋ denotes minimum integer value of the enclosed real number, e.g. ⌊4.3⌋ =

4 respectively. Note that Eq. (4.42) ignores the maximum strain that can be held

by a collagen, and while ǫ is a rather abstract quantity, it can be expressed in

terms of s by minimizing the maximum potential energy Emax of the collagen pair

with respect to ǫ at equilibrium (see Appendix 6.10 for details). At first glance,

s is insignificant under small natural external forces, i.e. thermal fluctuations and

internal molecular interactions. However, s becomes crucial when we consider the

collagen pair under large external tractions. One interesting thing about the above

equation is that it limits the possible number of oligomers that can exist for a given

stable collagen and it is model independent because it arises solely from a geometric

point of view. Also, the inequality reveals the importance of GAGs in relation to

the growth of the collagen pair. Hence, the longer the maximum length of GAGs,

the longer the structural collagen pair can be. Although the inequality does not

prove the possibility of the existence of ring conformational transitions of GAGs,

it does provide evidence that the existence of conformational transitions increases

K and hence encourages the growth of the collagen pair. Further, the higher the

effectiveness of the force transmission of GAGs between fibril and fibril, the lower

the value of ǫ, and hence longer the collagen can be.

The induced force, F ′, in collagen 2, generated by collagen 1 and the relative

displacement, ǫ, of the system, can be determined to be
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F ′ = F − kcǫ, ǫ =
1

N
(L1 − L2), (4.43)

where L1 and L2 are the total molecular contour length of the collagen 1 and 2

respectively. F ′ and ǫ can hence be determined experimentally by knowing kc, F ,

N , L1 and L2. In particular, ǫ can be measured to find Nmax. Given Nmax, we can

obtain the maximum molecular energy for a collagen pair, Emax, namely

Emax =
1

2
kcNmax

{(

δ − ℓc
Nmax

)2

+

(

δ + ǫ− ℓc
Nmax

)2}

+

Nmax
∑

i=1

{

1

2
kg

{

√

(s+ iǫ)2 + (ℓg)
2 − ℓg

}2

+
L2

4
kg

{

1 −
√

(s+ iǫ)2 + (ℓg)
2 − ℓg

L

}

−1

− L

4
kg

{

√

(s+ iǫ)2 + (ℓg)
2 − ℓg

}}

. (4.44)

The maximum molecular energy Emax grows quadratically with the extension δ and

is related linearly to Nmax, which is given by Eq. (4.42) and determined by K and

ǫ. Hence, the existence of flexible GAGs with long maximum length K increases

the number of oligomers Nmax, which in return tightens the system dramatically. In

addition, assuming a large Nmax and a small ǫ, the modulus of a collagen pair, kt,

can be determined easily by the second derivative of Emax with respect to δ. Upon

performing two differentiations, we approximate the modulus of the collagen pair,

kt, as

kt ≈ kcNmax. (4.45)

Again, kt depends linearly on Nmax, where the rest of arguments are very similar to
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the discussion for the maximum molecular energy above.

4.2.2 Numerical results and analysis

In this sub-section, we carry out a numerical analysis on the results derived in the

previous sub-section, and finally we examine the breaking point of a collagen pair.

Firstly, given Eq. (4.44), we assume the value of the parameters given in [121],

namely kc = 0.2 GPa, kg = 0.02 GPa, ℓc = 100 µm, ℓg = 0.02 nm, L = 0.2 nm and

3 maximum numbers of oligomer are examined, namely Nmax1 = 1 K, Nmax2 = 10

K and Nmax3 = 0.1 M. Further, without loss of generality, the offset s is assumed

to be zero, which corresponds to the tight molecular interaction between fibrils or

the collagen pair under a small traction. The potential energy of GAGs is neglected

due to its insignificance in comparison to the potential energy of the collagen pair

that is demonstrated in Fig. 4.9, where ǫ has been linearized with the extension δ.

The numerical result shows that the potential energy of GAGs utilizing the above

parameters is 6 orders of magnitude smaller than the potential energies of the paired

collagen for all three cases we considered. Given that, the potential energies of the

collagen pair versus the extension δ, ranging from 0 to 100 nm for Nmax1, Nmax2 and

Nmax3, are plotted together in Fig. 4.10.

Note that the maximum molecular energy increases quadratically when the ex-

tension increases linearly. In addition, δ is determined by the applied force F and

the relative displacement ε. For example, for a constant ∆, δ achieves its maximum

value when ε = 0. Further, Emax increases linearly with Nmax, which in return de-

pends positively on K but negatively on ε. The toughness of a collagen pair, kt, is

defined in the previous sub-section as the second derivative of Emax with respect to

δ, and hence the higher the slope of Emax with respect to the extension δ, the stiffer

the collagen pair is. In conclusion, given a collagen pair, it is tougher whenever

GAGs have a higher value of K and a higher ability in transmitting forces between

fibrils. However, the existence of GAGs contributes almost nothing to the toughness

of the collagen pair but is significant to maintain the stable structure and boost up
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Figure 4.9: Potential energy of GAG, Vg, versus extension, δ ranging from 0 to 100
nm, for Nmax1 = 1 K, Nmax2 = 10 K and Nmax3 = 0.1 M respectively.
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Figure 4.10: Potential energy of the collagen pair, Emax, versus extension, δ ranging
from 0 to 100 nm, for Nmax1 = 1 K, Nmax2 = 10 K and Nmax3 = 0.1 M respectively.

the toughness of the collagen pair, which are consistent to the results that an in-

creased PYD or DPD ratio (the most abundant mature GAGs in bone collagen) is

related to the increased compressive strength in bone (CTs) [89, 5, 114, 115, 6] but

has no huge effect on toughness or ductility of bone [180, 163, 74, 59].
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We end this sub-section by extending concepts that we developed above to deter-

mine the point at which a collagen pair will break. For the study of a collagen pair,

an important parameter is the fraction of the collagen pair, χR, in which the break-

ing point occurs (see Fig. 4.11). The breaking point is assumed to occur when the

bridge between u1 and v1 is finally broken (see Figs. 4.7 and 4.8). From Fig. 4.11,

we write

Lmax
1 + Lmax

2 − χR = sR + Lmax
1 , (4.46)

where Lmax
1 and Lmax

2 are the critical lengths of collagens 1 and 2 respectively and

sR is the critical off-set of the system. After some re-arrangement, we find that

χR = Lmax
2 − sR. (4.47)

In addition, we know that when the collagen pair is about to be torn apart, Nmax = 0,

from Eq. (4.42), we deduce
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sR =
√

(K)2 − (ℓg)2. (4.48)

Therefore, upon comparing Eqs. 4.47 and 4.48, we have

χR = Lmax
2 −

√

(K)2 − (ℓg)2. (4.49)

Notice that the above equation links the macro-quantity χR to micro-quantities

such as Lmax
2 , K and ℓg. Once again, the larger the possible length of GAGs, the

smaller the breaking fraction of the collagen pair, which implies that we need to put

more forces in the system to tear the collagen pair apart, which is consistent to the

theoretical result obtained by [19].

4.2.3 Conclusion

In this section, we utilize simple applied mathematical modeling techniques to de-

scribe the mechanics of a stretched collagen pair. We find that the maximum number

of oligomers that can exist in a given collagen depends on the maximum length of

GAGs and the effectiveness of the GAGs in transferring forces between fibrils. That

is, a collagen can grow longer for the longer GAGs and the higher effectiveness of

GAGs in transferring forces between fibrils. This concept can then be extended nat-

urally to the toughness and the breaking point of a collagen pair, which are found

to be intimately related to the microscopic characteristics of GAGs. In addition,

the possible conformational transitions of GAGs strengthen the whole structure of

CTs and as such CTs maintain our body shape from any large external traction.

Last but not least, we refer the reader who is interested in utilizing computing sim-

ulations and continuum mechanics to model the macroscopic structure of CTs, to

those references listed in the introduction of this section.
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Conclusion

In this thesis, physical principles, classical continuum mechanics and applied math-

ematical modeling have been employed to the fields of nano and biotechnology. The

topics fall into three broad areas, namely the mechanics of three distinct nano struc-

tures, the axial buckling of nanotubes and nanopeapods and the worm-like chain

model for stretched semi-flexible molecules and its applications to molecular stretch-

ing in the extracellular matrix. For each section wherever possible, we compare the

applied mathematical models with experimental or molecular dynamics simulation

results, and we find that the major merit of the applied mathematical modeling

lie in the fast computational times and the ability to produce illustrative insightful

arguments. The broad overview of each chapter is now summarized.

In Chapter 2, we investigate the dynamics of a carbon atom or a C60 fullerene

inside a carbon nanotube. We assume that the carbon atoms are uniformly dis-

tributed over the surface of the carbon nanotube so that the molecular potential

energy can be approximated by the continuous approach. We determine the oscilla-

tory motion of a carbon atom inside various nanotubes. In particular, the spiral-like

motion is found when the atom is oscillating inside sufficiently large nanotubes. A

similar phenomena is also predicted for a C60 fullerene oscillating inside a nanotube.

However, we find that the spiral-like motion of C60-nanotube oscillators is induced

but it is unstable, which allows us to determine the resultant oscillatory frequency of

such oscillators. Next, we investigate a nano tippe top spinning either on a graphene
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sheet or inside a carbon nanotube in the presence of an applied magnetic field. We

find that while the retarding magnetic force makes the nano top precess, it does not

flip over like the classical tippe top, due to the fact that gravity is insignificant at the

nanoscale but rather lies to one side. In addition, while the nano top is in the lying

down position, if we apply the magnetic force which is of the same magnitude but in

the opposite direction to the previously applied retarding magnetic force, then the

nano top will return to its original standing up position. Hence, the “standing up”

and “lying down” configurations of the nano top might be considered for a future

memory device. We next examine three two-body nanoscale problems, namely an

atom–carbon nanotube system, a fullerene–carbon nanotube system and a fullerene–

fullerene system. The circular orbiting radii of all the proposed nano systems are

estimated by seeking the minimum energy configuration of their effective potential

energies. Since the loci for these nano systems cannot be determined in terms of

well-known analytical functions, a numerical method has been employed to obtain

the various loci of the orbiting paths. In addition, a perturbation method has been

utilized in order to gain some insight into possible analytical formulations of the

loci. Finally, the circular orbiting frequencies of all three proposed nano systems are

shown to reach the gigahertz range.

In Chapter 3, we have determined a new solution for the nano-electromechanical

system of a buckled nanotube by incorporating the full expression for curvature into

the elastic energy of the buckled nanotube. We find that while the approximate solu-

tion underestimates the maximum displacement of the buckled nanotube in the weak

bending regime, our numerical solution predicts an entirely different bending behav-

ior in comparison to the approximate solution in the strong bending regime. Next,

we investigate the buckling of the (10,10), (10,10)@(16,16), the C60@(10,10), and the

C60@ (10,10)@(16,16) nanostructures by incorporating the van der Waals molecular

potential energies between the various components of the carbon nanotubes. We find

that the critical forces reduce as a result of the molecular interactions between layers

of carbon nanotubes and the interactions between fullerenes. The Euler-Bernoulli
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beam equation is also utilized to obtain the buckling displacement of the (10,10)

nanotube and C60@(10,10) nanopeapod. The influence of the molecular interactions

between fullerenes and nanotubes decreases in the strong force regime. This sug-

gests that the enclosure of fullerenes inside nanotubes might be the sole means of

the buckling, which may lead to the development of potential nano devices, such

as biological sensing, measuring devices for small forces, electric charges or Casimir

forces.

In Chapter 4, we derive a new analytical force-extension formula for the worm-

like chain model, which is determined by minimizing the effective energy of a

stretched molecule by incorporating all possible orientations of the monomers under

thermal equilibrium. We have utilized our new formula to predict additional physi-

cal parameters such as the expressions for the free energy and the cut-off force for the

stretched molecule. In addition, the new force-extension formula predicts the phase

changes of the stretched molecule and anticipates that all molecules must undergo

one phase change when they are stretched into their total contour lengths and two

phase changes when they are stretched beyond their total contour lengths. The new

force-extension formula is then utilized to fit some recent experimental data. How-

ever, in the future we may be able to incorporate the Boltzmann energy distribution

into the model to account for the effect of entropy. Next, we utilize simple applied

mathematical modeling techniques to describe the structure of a collagen pair in

the extracellular matrix. We find that the maximum number of oligomers that can

exist in a given collagen pair depends on the maximum length of the GAGs and the

effectiveness of the GAGs in transferring forces between fibrils. That is, collagen

can grow longer when the GAGs increase in length and increase their effectiveness

in transferring forces between fibrils. This concept can be extended to consider the

toughness and the breaking point of a collagen pair, which are also found to be

intimately related to the microscopic characteristics of the GAGs.
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Appendix

6.1 Equations of motion

We briefly state explicit forms of equations of motion obtained from Eq. (2.29).

From Eq. (2.29)1, the three rotational equations are given by

Aθ̈ = −Ω(Cω −AΩ cos θ) sin θ − aN sin θ − h(θ)Fx,

A sin θΩ̇ = (Cω − 2AΩ cos θ)θ̇ + (a−R cos θ)Fy,

Cω̇ = R sin θFy, (6.1)

where h(θ) = R− a cos θ. From Eq. (2.29)2 the three translational equations are of

the form

mu̇x = mΩuy + Fx,

mu̇y = −mΩux + Fy,

mu̇z = N −mg, (6.2)
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where

Fx =
−µN

{

ux − h(θ)θ̇
}

√

{

ux − h(θ)θ̇
}2

+ {uy + [R(ω − Ω cos θ) + aΩ] sin θ}2

−Hx,

Fy =
−µN {uy + [R(ω − Ω cos θ) + aΩ] sin θ}

√

{

ux − h(θ)θ̇
}2

+ {uy + [R(ω − Ω cos θ) + aΩ] sin θ}2

−Hy, (6.3)

and Hx and Hy denote the strength of the retarding magnetic force in the x- and

y-directions respectively. By multiplying sin θ both sides of Eq. (6.1)2 we obtain

A sin2 θΩ̇ = (Cω − 2AΩ cos θ) sin θθ̇ + (a−R cos θ)Fy sin θ. (6.4)

From Eq. (6.1)3 we have Fy sin θ = Cω̇/R, which upon substituting into Eq. (6.4)

we have

A sin2 θΩ̇ + 2AΩ cos θ sin θθ̇ = Cω sin θθ̇ − Cω̇ cos θ + aCω̇/R,

which can be written as

A
d(Ω sin2 θ)

dt
=
aC

R

dω

dt
− C

d(ω cos θ)

dt
. (6.5)

Thus, from Eq. (6.5) we obtain

AΩ sin2 θ = aCω/R− Cω cos θ + J∗, (6.6)

where J∗ is a constant of integration. By multiplying R both sides of Eq. (6.6) we

have

J = AΩR sin2 θ + Cω(R cos θ − a), (6.7)
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Figure 6.1: Nutation angle θ for classical macro scale tippe top.

where the constant J is referred to as the Jellett’s constant [157] and our numerical

result indicates that this constant is zero throughout the precession process. Since

J is an invariant constant, if we let J = 0 and a ≪ R, for a large t and Ω = 0, we

obtain the asymptotic nutation angle as θ = π/2.

As a benchmark, we utilize our numerical scheme to show the behaviour of

the classical macro scale tippe top with zero magnetic force. Here, the values of

parameters are taken to be R = 0.015 m, a = 0.1R m, M = 0.015 kg, A = C =

(2/5)MR2 and µ = 0.1, with initial conditions: θ = 0.1, ω = 100, Ω = 0 and

Ẋ = (0, 0, 0). Thus, from Eqs. (6.2) and (6.3) we obtain numerical results for

nutation angle θ(t) as illustrated graphically in Fig. 6.1. From this figure, we can

see that θ approaches π implying that the top flips over, which is consistent with

Ueda et al. [157].

6.2 Stability analysis

We utilize a simple stability argument to investigate the stability of the nano top for

θ = 0, π/2 and π. Without the external magnetic retarding force, i.e. Hx = Hy = 0,

we consider a small perturbation around the standing up axis, namely θ = ǫ for
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small ǫ > 0. Eq. (6.1)1 becomes

ǫ̈ = −aNǫ/A, (6.8)

which implies that the spinning nano top is always stable. If we incorporate the

external magnetic retarding force, i.e. Hx = Hy = H , which is a constant. For

θ = ǫ, Eq. (6.1)1 becomes

ǫ̈ = −aNǫ/A + (R− a)H/A, (6.9)

which also implies that the nano top is stable. We note that for the case θ = ǫ, we

assume Ω = 0.

Next, we check the stability of the nano top at θ = π. Upon substituting

θ = π − ǫ, Eq. (6.1)1 becomes

ǫ̈ =
(C + A)Ω2 + aN

A
ǫ− (R + a)H

A
, (6.10)

noting that ω = Ω when θ tends to π. Eq. (6.10) implies that the nano top is always

unstable, and therefore it does not flip over.

For the lying down position, i.e. θ = π/2 − ǫ, Eq. (6.1)1 becomes

ǫ̈ = −AΩ2 − aH

A
ǫ− HR− CωΩ − aN

A
, (6.11)

which is stable if AΩ2 − aH > 0 or Ω2 > aH/A.

6.3 Asymptotic expansion for θ = π/2

We check the compatibility between our numerical results and the asymptotic ex-

pansions for the governing ordinary differential equations given in Eq. (2.29) or

Eq. (6.1) when the nano top is lying down and the time t is sufficiently large. Upon
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Figure 6.2: Asymptotic expansion for ω.

substituting θ = π/2 into Eqs. (6.1)1, (6.1)3, (6.2)1 and (6.2)2, we obtain

Ω = RH/(Cω), ω̇ = −RH/C,

mu̇x = mΩuy −H, mu̇y = −mΩux −H, (6.12)

respectively. Noting here that we assume Hx = Hy = H . From Eq. (6.12)2, upon

integrating both sides by t, we have

ω = −RHt/C + c1. (6.13)

This asymptotic expansion and its corresponding numerical result for ω are plotted

together in Fig. 6.2. We note that the constants utilized here are given by R = 3.55

Å, C = 0.5A, A = (2/3)mR2, m = 1.196 × 10−24 kg and H = 0.1 zN. We fit

Eq. (6.13) with the numerical solution for ω and obtain c1 = 3×106. Upon knowing

ω, we can determine Ω by utilizing Eq. (6.12)1 as

Ω =
RH

c1C − RHt
, (6.14)
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where this asymptotic equation decays to zero for a sufficiently large t and the

corresponding result with its numerical solution are plotted in Fig. 6.3. Given the

asymptotic expansions for Ω, we can determine the asymptotic expansions for both

ux and uy, which are given by

mu̇x =
mRH

(c1C −RHt)
uy −H,

mu̇y = − mRH

(c1C −RHt)
ux −H. (6.15)

We can solve Eq. (6.15) analytically by introducing v = ux+iuy, where i =
√
−1.

By multiplying i both sides of Eq. (6.15)2 and combining with Eq. (6.15)1 we have

v̇ +
RHi

(c1C −RHt)
v = −H

m
(1 + i). (6.16)

By multiplying both sides of Eq. (6.16) by an integrating factor exp (−i log (c1C − RHt)) =

1/(c1C − RHt)i we obtain

d

dt

(

v

(c1C −RHt)i

)

= −H
m

(1 + i)

(c1C − RHt)i
,
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which on integrating we deduce

v

(c1C −RHt)i =
(1 + i)

(1 − i)

1

Rm
(c1C − RHt)1−i + c2,

where c2 denotes a constant. Thus, the solution of Eq. (6.16) is given in the form

v(t) =
(1 + i)

(1 − i)

(c1C −RHt)

Rm
+ c2e

i log(c1C−RHt). (6.17)

To determine the complex constant c2 to fit our numerical data, we assign at t = t∗,

ux(t
∗) = u1 and uy(t

∗) = u2, where u1 and u2 are constants. Thus, c2 is given by

c2 = e−i log λ

{

u1 + iu2 −
iλ

Rm

}

,

where λ = c1C −RHt∗. Upon substituting into Eq. (6.17) and simplifying we have

v(t) =
i(c1C −RHt)

Rm
+ eiβ(t)

{

u1 + iu2 −
iλ

Rm

}

,

where β(t) = log ([c1C − RHt]/λ). Next, we expand the above equation utilizing

Euler’s formula, eiβ = cos β + i sin β, to obtain

v(t) = u1 cosβ(t) +

{

λ

Rm
− u2

}

sin β(t) +
i(c1C − RHt)

Rm

+iu1 sin β(t) − i

{

λ

Rm
− u2

}

cosβ(t). (6.18)

Since v = ux + iuy, Eq. (6.18) gives rise to analytical solutions for ux and uy, namely

ux = u1 cosβ(t) +

{

λ

Rm
− u2

}

sin β(t),

uy =
(c1C − RHt)

Rm
+ u1 sin β(t) −

{

λ

Rm
− u2

}

cos β(t).

(6.19)

The solutions (6.19) for ux and uy are plotted together with their corresponding

numerical results in Figs. 6.4 and 6.5, respectively. We note that the values of
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Figure 6.4: Asymptotic expansion for ux (6.19)1 in comparison with numerical result.
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Figure 6.5: Asymptotic expansion for uy (6.19)2 in comparison with numerical result.

constants utilized here are taken to be t∗ = 5 × 10−5 s, u1 = −6 × 10−7 ms−1 and

u2 = −4 × 10−3 ms−1. As can be seen from these figures, the solutions (6.19) agree

with the numerical results for sufficiently large t.
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Figure 6.6: Nutation angle θ for nano top when Hx = 0 and Hy = HH(t0 − t) where
t0 = 0.8 × 10−5 s.

6.4 Retarding magnetic force as step function

We investigate the precession of the nano top subject to a magnetic force which

is applied only in the y-direction and only for a finite time t0. In particular, we

consider Hy = HH(t0 − t), where H is a constant representing the strength of the

magnetic force, H(t) is the Heaviside unit step function and t0 denotes the time when

the magnetic force is switched off. Two cases are examined, namely t0 = 0.8× 10−5

and 10−6 seconds. We observe that in the former case the nano top precesses from

its initial standing up position to θ = 2.1 soon after the retarding magnetic field is

switched off and then it oscillates about θ = π/2, as demonstrated in Fig. 6.6.

The effect of the Heaviside function can be seen from the behaviour of ω, which

is shown in Fig. 6.7. From this figure, before the switch off time t0 = 0.8×10−5, the

magnitude of ω increases but in the opposite direction with respect to the direction

of the initial spin due mainly to the retarding magnetic force. After t = 0.8× 10−5,

since the retarding force is switched off, the magnitude of ω starts to decrease by the

effect of the frictional force only. For the latter case, we find from Fig. 6.8 that the

application of Hy for 10−6 s does not provide sufficient angular momentum for the
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Figure 6.7: Angular frequency ω for nano top when Hx = 0 and Hy = HH(t0 − t)
where t0 = 0.8 × 10−5 s.
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Figure 6.8: Nutation angle θ for nano top when Hx = 0 and Hy = HH(t0 − t) where
t0 = 10−6 s.

nano top to lie down in a stable configuration. The variation of the corresponding

ω for this case is presented in Fig. 6.9.
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Figure 6.9: Angular frequency ω for nano top when Hx = 0 and Hy = HH(t0 − t)
where t0 = 10−6 s.

6.5 Elastic energy

We derive the internal energy of the buckled beam but with the incorporation of

the curvature, which is usually ignored when the buckling is infinitesimal. A useful

reference can be like [88]. The strain in a Cartesian coordinate system xi (i =1,2,3)

is defined as usual by

eij =
1

2

(

∂ηi

∂xj

+
∂ηj

∂xi

)

, (6.20)

where eij and ηi denote respectively the second rank strain tensor and the displace-

ment in the i direction. For a linearly elastic material, the stress tensor σij is then

related to the strain by the stress-strain equation

σij = Cijklekl, (6.21)
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where Cijkl denotes stress-strain tensor. In particular, for an isotropic material, the

most general form of Cijkl can be written as

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (6.22)

where λ and µ denote the Lamé constants. Eq. (6.22) leads Eq. (6.21) to

σij = λδijδkl + µ(δikδjl + δilδjk)ekl = λδijekk + 2µeij. (6.23)

In the usual manner, we can determine the explicit form of the Young’s modulus E

and the Poisson’s ratio σ∗ in terms of the two Lamé constants λ and µ as follows

E =
µ(3λ+ 2µ)

λ+ µ
, σ∗ =

λ

2(λ+ µ)
. (6.24)

We can now derive the internal energy of the buckled beam. The deformations of

the buckled beam are defined as

ηx = −σ∗κxy,

ηy = κ[σ∗(x2 − y2) − z2]/2,

ηz = κyz, (6.25)

where κ denotes the curvature of the buckled beam, and from which we may deduce

the principal strains

exx = −σ∗κy,

eyy = −σ∗κy,

ezz = κy, (6.26)
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and the principal stresses become

σxx = σyy = 0,

σzz = λexx + λeyy + λezz + 2µezz,

= κ (−2σ∗λ+ 2µ+ λ) y = κEy. (6.27)

We note that from our choice of σ∗, σxx and σyy vanish automatically and therefore

the internal energy of the buckled beam is given by

Wint =

∫

beam

{

1

2
eijCijklekl

}

d3x =

∫

beam

{

1

2
ezzσzz

}

d3x,

=
Eκ2

2

∫
{
∫ ∫

y2dxdy

}

dz =

∫

1

2
EIzκ

2dz, (6.28)

where Iz denotes the moment of inertia about the z-axis. Further, if we denote Iz = I

and adopt κ = y′′/(1+y′2)3/2, upon making the substitution, dz2 = dx2 +dy2, where

z is the arc length of the beam, Eq. (6.28) becomes

Wint =
1

2
EI

∫

y′′2

(1 + y′2)5/2
dx. (6.29)

In addition to the internal energy, the buckled nanotube is also effected by an exter-

nal energy Wext, which is caused by the gate voltage. In particular, the infinitesimal

external energy is given by

dWext = Ttot[dz − dx] = Ttot[
√

dx2 + dy2 − dx] = Ttot[
√

1 + y′2 − 1]dx, (6.30)

where Ttot denotes the total force acting on the beam. Since the energy Wel is the

sum of both the internal elastic energy and the external energy, we have

Wel = Wint +Wext =

∫ L

0

{

1

2
EI

y′′2

(1 + y′2)5/2
+ Ttot[

√

1 + y′2 − 1]

}

dx. (6.31)
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6.6 Capacitance of the system

We determine the capacitance per unit length, c(y), of the nano-electromechanical

system. The procedure for finding c(y) is shown as follows: (I) Find the electric field

from first principles or the Gauss’s Law by exploiting the symmetry of the column,

(II) determine the electrostatic potential of the nano-electromechanical system uti-

lizing the method of images determined from the electric field just obtained, (III)

determine the capacitance of the system from a knowledge of the electrostatic po-

tential of the system. The electrostatic field E0 between an infinite cylinder and a

point, at a distance r away from the cylinder, is given by

E0 =
ρl

2πε0r
r, (6.32)

where E0, ρℓ, ε0 and r denote the external electrostatic field, charge density of the

cylinder, vacuum permittivity and the distance between the point and the cylinder

respectively. Given the electrostatic field, the method of images is now employed

to determine the electrostatic potential of the system which is guaranteed by the

theorem of uniqueness. The cross section of the tube and its image is illustrated in

Fig. 6.10. Before solving this problem, let us first consider a simpler case, i.e. the

potential of a line charge and a conducting cylinder, which is shown in Fig. 6.11.

The potential of any line charge V is given by

V = −
∫ r

r0

Erdr = − ρl

2πǫ0

∫ r

r0

1

r
dr =

ρl

2πǫ0
ln
r0
r
, (6.33)

where we have utilized Eq. (6.32) to obtain Eq. (6.33). For the time being we initially

ignore the value of the reference position r0. At the point M on the cylindrical

surface, which is shown in Fig. 6.10, the potential at M , VM , can be expressed as
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Figure 6.10: A geometric picture of the real charge and its image charge.

VM =
ρl

2πǫ0
ln
r0
r
− ρl

2πǫ0
ln
r0
ri

=
ρl

2πǫ0
ln
ri

r
. (6.34)

Since VM is constant on the equipotent surface, i.e. ri/r = constant, it is easy to

observe that OMPi and MPiP are two similar triangles, so that

PiM

PM
=
OPi

OM
=
OM

OP
. (6.35)

Thus, we obtain di = a2/d and from which we can determine the image charge’s

position di in terms of a and d. Now, let us consider the electrostatic potential of

two co-axial cylinders again and its geometry can be represented by a pair of line

charges ρl and −ρl (image) separated by the distance D − 2di (see again Fig. 6.11

for details). By letting V1 and V2 be the potentials at M , caused by the line charges

−ρl and ρl respectively, then

V1 =
−ρl

2πǫ0
ln
(a

d

)

, V2 =
ρl

2πǫ0
ln
(a

d

)

, (6.36)

where the expression of the electrostatic potential originates from Eq. (6.34). Next,

the capacitance per unit length c is then given by
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Figure 6.11: Method of images.

c =

∣

∣

∣

∣

ρl

V1 − V2

∣

∣

∣

∣

=
ρl

(ρl/πǫ0) ln(a/d)
=

πǫ0
ln(d/a)

, (6.37)

so that upon rewriting d in terms of D and a, we find

d = D − di = D − a2

d
⇒ d =

1

2
[D +

√
D2 − 4a2]. (6.38)

Eq. (6.38) is then substituted back into Eq. (6.37) to obtain

c =
πǫ0

ln[(D/2a) +
√

(D/2a)2 − 1]
.

Since D ≫ 2a, it is legitimate to approximate c by c = (πǫ0)/ ln(D/a) and further,

given D = 2R− 2y and Gauss’s unit (4πǫ0 = 1) is utilized, c(y) becomes

c(y) =
1

2 ln[2(R− y)/a]
. (6.39)
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6.7 Derivation of first integral for F (y, y′, y′′)

We determine the first integral for F (y, y′, y′′). From the variational principle, the

action can be defined as

S[y] =

∫ 2L

0

F (x, y, y′, y′′)dx, (6.40)

δS[y] becomes

δS =

∫ 2L

0

{

∂F

∂x
δx+

∂F

∂y
δy +

∂F

∂y′
δy′ +

∂F

∂y′′
δy′′
}

dx. (6.41)

Upon assuming δy = ǫy′ and utilizing the integration by parts, Eq. (6.41) becomes

δS =

[(

y′
∂F

∂y′′
+ y′

∂F

∂y′
+ y′′

∂F

∂y′′
− y′

d

dx

∂F

∂y′′

)

ǫ

]2L

0

+

∫ 2L

0

{

dF

dx
− y′

d

dx

∂F

∂y′
− y′′

∂F

∂y′
− y′′′

∂F

∂y′′
+ y′

d2

dx2

∂F

∂y′′

+y′′
d

dx

∂F

∂y′′
− y′′

d

dx

∂F

∂y′′

}

δydx. (6.42)

which gives rise to the so-called natural boundary conditions and the Euler-Lagrange

equation becomes

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ = 0. (6.43)

Eq. (6.42) is an identity for an arbitrary δy and the integrated-out terms give rise to

the natural boundary conditions, which in the context of the appendix, give rise to

the bending moment and the shear force of the buckled beam respectively. Assuming

that the integrated-out terms are zero, upon collecting terms, we have
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δS =

∫ 2L

0

δy
d

dx

{

F − y′
∂F

∂y′
− y′′

∂F

∂y′′
+ y′

d

dx

∂F

∂y′′

}

dx. (6.44)

Since δS = 0 for the stationary point y and ǫ 6= 0, we end up with the first integral

F − y′
∂F

∂y′
− y′′

∂F

∂y′′
+ y′

d

dx

∂F

∂y′′
= C1, (6.45)

where C1 is an arbitrary constant.

6.8 Compatibility between the numerical and ap-

proximate solutions

We show how to reduce Eq. (3.21) into the approximate solution (3.16) by letting

y′ ≈ 0 and neglecting the first derivative term of y, i.e. y′2 = 0. Upon assuming

this, we write

y′′2 − 2ξ2 + F0(y − xy′) = c. (6.46)

We note that although Eq. (6.46) is non-linear but not elementary. We can reduce

it into a linear ordinary equation by differentiating equation (6.46) and again set

y′ = 0 to obtain

y′′′ =
F0

2
. (6.47)

Then y admits the following simple solution form
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y =
F0

48
x4 + ax2 + bx2 + c, (6.48)

where a, b and c denote integration constants. Upon substituting the Cauchy bound-

ary conditions into Eq. (6.48), we obtain

y =
F0

48
(x2 − L2)2. (6.49)

It is then easy to infer that ymax is equal to

ymax = y(0) =
F0

48
L4 = 0.013

(neL)2

ERr4
, (6.50)

which is approximately equal to the Eq. (3.21).

6.9 Derivation of the constant c from molecular

interactions

We analytically determine the value of c from the interactions between an atom

on the inner nanotube and all the atoms on the outer nanotube. We follow the

same approach as that adopted by He et al. [56] but we express c in terms of a

hypergeometric function. In a cylindrical coordinate system, the location of the

atom is assumed given by (Ri, 0, 0) and the location of an atom on the outer tube is

taken to be (Rj cos θ, Rj sin θ, Z) (see Fig. 6.12), such that the distance between the

atom on the inner tube and the atom on the outer tube d0 can then be written as

ρ0 =
√

(Rj cos θ − Ri)2 +R2
j sin2 θ + Z2 =

√
λ2 + Z2, (6.51)
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Figure 6.12: Schematic of tube layers.

where λ2 = (Rj − Ri)
2 + 4RiRj sin2 ψ, and ψ = θ/2. We now utilize the Lennard-

Jones potential in the following form

V (d) = 4ε

[

(

σ

ρ

)12

−
(

σ

ρ

)6
]

, (6.52)

where ρ, ε and σ denote the distance between the interacting atoms, the well depth

and the van der Waals diameter. The van der Waals forces F (ρ) can then be obtained

from the derivative of Eq. (6.52), namely

F (ρ) = −dV (ρ)

dρ
=

24ε

σ

[

2

(

σ

ρ

)13

−
(

σ

ρ

)7
]

. (6.53)

The initial pressure contribution pij, caused by the van der Waals interaction, can

then be written by

pij =

(

4
√

3

9d2
cc

)

24ε

σ

∫ π

−π

∫ L/2

−L/2

[

2

(

σ

ρ0

)13

−
(

σ

ρ0

)7
]

Rjdzdθ, (6.54)

where dcc and 9d2
cc/(4

√
3) denote the carbon-carbon bond length and the effective

surface area of the carbon atom, respectively. Now we only consider infinitesimal

buckling of the nanopeapods around an equilibrium configuration so that the Taylor

expansion of the Lennard-Jones potential around the equilibrium position ρ0 can be

obtained as V (ρ) = V (ρ0) + (1/2)(d2V (ρ0)/dρ
2)(ρ − ρ0)

2 + O(ρ − ρ0)
3. Hence,
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∆V (ρ) = (1/2)(d2V (ρ0)/dρ
2)(ρ − ρ0)

2. Upon knowing F = −dV/dρ and utilizing

Eq. (6.54), the pressure increment ∆pij due to this buckling deflection can be written

by

∆pij =
dpij

dρ
(ρ0)(ρ− ρ0) ≈

dpij

dρ
(ρ0)(ωi − ωj),

= −
(

4
√

3

9d2
cc

)

(

24ε

σ2

)
∫ π

−π

∫ L/2

−L/2

[

26

(

σ

ρ0

)14

− 7

(

σ

ρ0

)8
]

(ωi − ωj)Rjdzdθ.

(6.55)

In order to evaluate Eq. (6.55) analytically, we need to evaluate the following inte-

grals for n = 4 and 7,

In =

∫ π

−π

∫ L/2

−L/2

dzdθ

ρ2n
0

=

∫ π

−π

∫ L/2

−L/2

1

(λ2 + Z2)n
dzdθ, (6.56)

where we have utilized Eq. (6.51) and λ2 = (Ri + Rj)
4 − 4RiRj cos(θ/2). After

substituting Z = λ tan ξ and letting the L goes to infinity, we obtain

In =
2π

(Ri +Rj)2n−1
F

(

2n− 1

2
,
1

2
, 1; 1 −

(

Ri − Rj

Ri +Rj

)2
)

∫ π/2

0

cos2(n−1) ξdξ, (6.57)

where F (a, b; c; z) denotes the usual hypergeometric function. Upon comparing

Eq. (6.55) with Eq. (3.27), we may deduce that

ci = 24εσ6

(

4
√

3

9d2
cc

)

(

26σ6I7 − 7I4
)

Ri. (6.58)

On substituting all the parameters into Eq. (6.58), we obtain c = c1 = 0.23 × 1018

Nm−3 and c2 = 0.37 × 1018 Nm−3.

6.10 Obtaining ǫ from minimization

From Eq. (4.44), if Nmax is sufficiently large, then we can approximate the summa-

tion by integration. Upon utilizing equation Eq. (4.42), we obtain
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Emax =
1

2
kc

(

Φ − s

ǫ

){(

δ − ℓc
Φ − s

ǫ

)2

+

[

δ +

(

1 − ℓc
Φ − s

)

ǫ

]2}

+

∫ Φ−s
ǫ

0

1

2
kg

{
√

(s+ ǫx)2 + ℓ2g − ℓg

}2

dx

+

∫ Φ−s
ǫ

0

L2

4
kg







1 −

√

(s+ ǫx)2 + ℓ2g − ℓg

L







−1

dx

−
∫ Φ−s

ǫ

0

L

4
kg

{√

(s+ ǫx)2 + ℓ2g − ℓg

}

dx, (6.59)

where Φ =
√

K2 − ℓ2g. If we substitute s+ǫx = ℓg tan θ and perform the integration,

we obtain

Emax =
1

2
kc

(

Φ − s

ǫ

){(

δ − ℓc
Φ − s

ǫ

)2 [

δ +

(

1 − ℓc
Φ − s

)

ǫ

]2}

+
H(s)

ǫ
, (6.60)

where H(s) = (1/2)kgℓ
3
ga(s) + (L2/4)kgℓgb(s) − (L/4)kgℓ

2
gc(s) and

a(s) = 2 tan θ +
1

3
tan3 θ − tan θ sec θ − ln(sec θ + tan θ)|arctan(Φ/ℓg)

arctan(s/ℓg) ,

b(s) =
L

ℓg
ln

(

tan θ
2
− 1

tan θ
2

+ 1

)

+ 2L

(

1 +
L

ℓg

) arctan

[

(L+2ℓg) tan θ
2√

L(L+2ℓg)

]

√

L(L+ 2ℓg)
|arctan(Φ/ℓg)

arctan(s/ℓg) ,

c(s) =
1

2
tan θ +

1

2
ln(tan θ + sec θ) − tan θ|arctan(Φ/ℓg)

arctan(s/ℓg) .

(6.61)

We note that the energy form given in Eq. (6.60) might be utilized to carry out

computer simulations or mathematical modelings for CTs in a more accurate way.

To find the minimum value of Emax with respect to ǫ, we require ∂Emax/∂ǫ = 0.

Given that, we have
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ǫ =

√

√

√

√

√

2
[

δ2 + H
kc(Φ−s)

]

[

(

ℓc

Φ−s

)2
+
(

1 − ℓc

Φ−s

)2
] . (6.62)

Upon knowing s, ǫ can be easily solved from the above equation.
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E. I. Kauppinen. A novel hybrid carbon material. Nat. Nanotechnol., 2:156–

161, 2006.

[106] R. M. Neumann. Polymer stretching in an elongational flow. J. Chem. Phys.,

110:7513–7515, 1999.

[107] M. Nishio, S. Sawaya, S. Akita, and Y. Nakayama. Carbon nanotube oscillators

toward zeptogram detection. Appl. Phys. Lett., 86:133111, 2005.

[108] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis,

and R. C. Haddon. Chemistry of single-walled carbon nanotubes. Acc. Chem.

Res., 35:1105–1113, 2002.

[109] J. Nygard and D. H. Cobden. Quantum dots in suspended single-wall carbon

nanotubes. Appl. Phys. Lett., 79:4216–4218, 2001.

[110] G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise. Equivalent-

continuum modeling of nano-structured materials. Composites Sci. Technol.,

62:1869–1880, 2002.

180



Bibliography

[111] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber. Atomic structure and

electronic properties of single-walled carbon nanotubes. Nature, 391:62–64,

1998.

[112] F. Oesterhelt, M. Rief, and H. E. Gaub. Single molecule force spectroscopy

by AFM indicates helical structure of poly(ethylene-glycol) in water. New J.

Phys., 1:6.1–6.11, 1999.

[113] A. C. Or. The dynamics of a tippe top. SIAM J. Appl. Math., 54:597–609,

1994.

[114] H. Oxlund, M. Barckmann, G. Ortoft, and T. T. Ancreassen. Reduced concen-

trations of collagen cross-links are associated with reduced strength of bone.

Bone, 17:365S–371S, 1995.

[115] H. Oxlund, Li Mosekilde, and G. Ortoft. Reduced concentration of colla-

gen reducible cross links in human trabecular bone with respect to age and

osteoporosis. Bone, 19:479–484, 1996.

[116] A. Pantano, D. M. Parks, and M. C. Boyce. Mechanics of deformation of

single- and multi-wall carbon nanotubes. J. Mech. and Phys. Solids, 52:789–

821, 2004.

[117] H. B. Peng, C. W. Chang, S. Aloni, T. D. Yuzvinsky, and A. Zettl. Ultrahigh

frequency nanotube resonators. Phys. Rev. Lett., 97:087203, 2006.

[118] V. N. Popov. Curvature effects on the structural, electronic and optical prop-

erties of isolated single-walled carbon nanotubes within a symmetry-adapted

non-orthogonal tight-binding model. New J. Phys., 6:17, 2004.

[119] V. N. Popov and L. Henrard. Comparative study of the optical properties of

single-walled carbon nanotubes within orthogonal and non-orthogonal tight-

binding models. Phys. Rev. B, 70:115407, 2004.

181



Y. Chan

[120] D. Qian, W. K. Liu, and R. S. Ruoff. Mechanics of C60 in nanotubes. J. Phys.

Chem. B, 105:10753, 2001.

[121] A. Redaelli, S. Vesentini, M. Soncini, P. Vena, S. Mantero, and F. M. Mon-

tevecchi. Possible role of decorin glycosaminoglycans in fibril to fibril force

transfer in relative mature tendons-a computational study from molecular to

microstructural level. J. Biomech., 36:1555–1569, 2003.

[122] B. Reulet, A. Y. Kasumov, M. Kociak, R. Deblock, II. Khodos, Y. B. Gor-

batov, V. T. Volkov, C. Journet, and H. Bouchiat. Acoustoelectric effects in

carbon nanotubes. Phys. Rev. Lett., 85:2829–2832, 2000.

[123] M. Rief, J. M. Fernandez, and H. E. Gaub. Elastically coupled two-level

systems as a model for biopolymer extensibility. Phys. Rev. Lett., 81:21, 1998.

[124] M. Rief, F. Oesterhelt, B. Heymann, and H. E. Gaub. Single molecule

force spectroscopy on polysaccharides by atomic force microscopy. Science,

275:1295–1297, 1997.

[125] J. L. Rivera, C. McCabe, and P. T. Cumming. Oscillatory behavior of double

nanotubes under extension: A simple nanoscale damped spring. Nano Lett.,

3:1001, 2003.

[126] J. L. Rivera, C. McCabe, and P. T. Cumming. The oscillatory damped be-

haviour of incommensurate double-walled carbon nanotubes. Nanotechnology,

16:186, 2005.

[127] A. Rosa, T. Hoang, and D. Marenduzzo. A new interpolation formula for

semiflexible polymers. Biophys. Chem., 115:251–254, 2005.

[128] C. Q. Ru. Axially compressed buckling of a doublewalled carbon nanotube

embedded in an elastic medium. J. Mech. Phys. Solids, 49:1265–79, 2001.

[129] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng andC. L. Cheung, and C. M.

182



Bibliography

Lieber. Carbon nanotube-based nonvolatile random access memory for molec-

ular computing. Science, 289:94–97, 2000.

[130] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui. Single spin detection

by magnetic resonance force microscopy. Nature, 430:329, 2004.

[131] R. S. Ruoff and D. C. Lorentz. Mechanical and thermal properties of carbon

nanotubes. Carbon, 33:925–930, 1995.

[132] R. Saito, G. Dresselhous, and M. S. Dresselhous. Physical properties of carbon

nanotubes. Imperial College Press, London, 1st edition, 1998.

[133] J. P. Salvetat, J. M. Bonard, N. H. Thomson, and A. J. Kulik. Mechanical

properties of carbon nanotubes. Appl. Phys. A, 69:255–260, 1999.

[134] S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zhant. Carbon

nanotubes as nanoelectromechanical systems. Phys. Rev. B, 67:235414, 2003.

[135] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen.

A tunable carbon nanotube electromechanical oscillator. Nature, 431:284–287,

2004.

[136] T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite. Elemental carbon

cages. J. Am. Chem. Soc., 110:1113, 1988.

[137] A. V. Schneidemesser, G. Thummes, and C. Heiden. Generation of liquid

helium temperatures using a lead regenerator in a GM precooled pulse tube

stage. Cryogenics, 40:67, 2000.

[138] K. C. Schwab and M. L. Roukes. Putting mechanics into quantum mechanics.

Phys. Today, July:36, 2005.

[139] J. E. Scott. Composition and structure of the pericellular environment: Phys-

iological function and chemical composition of pericellular proteoglycan (an

evolutionary view). Philos. Trans. R. Soc. Lond. B. Biol. Sci., 271:235–242,

1975.

183



Y. Chan

[140] J. E. Scott. Proteoglycan-fibrillar collagen interactions. Biochem. J., 252:313–

323, 1988.

[141] J. E. Scott. Proteoglycan: Collagen interactions and corneal ultrastructure.

Biochem. Soc. Trans., 19:877–881, 1991.

[142] J. Servantie and P. Gaspard. Translational dynamics and friction in double-

walled carbon nanotubes. Phys. Rev. B, 73:125428, 2006.

[143] H. Shen. Compressive and tensile properties of air filled carbon nano-peapods.

Mater. Lett., 61:527, 2007.

[144] I. L. Singer and H. M. Pollock. Fundamentals of friction. Dordrecht, Boston,

1st edition, 1992.

[145] B. W. Smith, M. Monthioux, and D. E. Luzzi. Encapsulated C60 in carbon

nanotubes. Nature, 396:232–234, 1998.

[146] W. B. Smith and E. D. Luzzi. Formation mechanism of fullerene peapods and

coaxial tube: A path to large scale synthesis. Chem. Phys. Lett., 321:169–174,

2000.

[147] A. N. Sohi and R. Naghdabadi. Torsional buckling of carbon nanopeapods.

Carbon, 45:952–957, 2007.

[148] A. N. Sohi and R. Naghdabadi. Stability of single-walled carbon nanopeapods

under combined axial compressive load and external pressure. Physica E,

41:513–517, 2009.

[149] M. R. Spiegel and J. Liu. Mathematical Handbook of Formulas and Tables.

McGraw-Hill, international edition, 1999.

[150] C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp, A. Jungen,

S. Roth, V. M. Bright, and C. Hierold. Fabrication of single-walled-carbon-

nanotube-based pressure sensors. Nano Lett., 6:233–237, 2006.

184



Bibliography

[151] C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, and C. Hierold.

Nano-electromechanical displacement sensing based on single-walled carbon

nanotubes. Nano Lett., 6:1449–1453, 2006.

[152] C. Storm and P. C. Nelson. Theory of high-force dna stretching and over-

stretching. Phys. Rev. E, 67:051906, 2003.

[153] K. Svoboda, F. Schmidt, S. M. Block, and B. J. Schnapp. Direct observation

of kinesin stepping by optical trapping interferometry. Nature, 365:721–727,

1993.

[154] S. P. Timoshenko and J. M. Gere. Theory of elastic stability. McGraw-Hill,

New York, 1961.

[155] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi,

M. Tang, and S. Y. Wu. Reversible electromechanical characteristics of carbon

nanotubes under local-probe manipulation. Nature, 405:769–772, 2000.

[156] R. E. Tuzun, D. W. Noid, B. G. Sumpter, and R. C. Merkle. Dynamics of

He/C60 flow inside carbon nanotubes. Nanotechnology, 8:112–118, 1997.

[157] T. Ueda, K. Sasaki, and S. Watanabe. Motion of the tippe top: Gyroscopic

balance condition and stability. SIAM J. Appl. Dyn. Syst., 4:1159–1194, 2005.

[158] H. Ulbricht and T. Hertel. Dynamics of C60 encapsulation into single-wall

carbon nanotubes. J. Phys. Chem. B, 107:14185–90, 2003.

[159] H. Ulbricht, G. Moos, and T. Hertel. Interaction of C60 with carbon nanotubes

and graphite. Phys. Rev. Lett., 90:095501, 2003.

[160] M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block. Stretching dna

with optical tweezers. Biophys. J., 72:1335–1346, 1997.

[161] Q. Wang. Torsional instability of carbon nanotubes encapsulating C60

fullerenes. Carbon, 47:507–512, 2009.

185



Y. Chan

[162] X. Wang and C. Qian. Prediction of microdamage formation using a mineral-

collagen composite model. J. Biomech., 39:595–602, 2006.

[163] X. Wang, X. Shen, X. Li, and C. M. Agrawal. Age-related changes in the

collagen network and toughness of bone. Bone, 31:1–7, 2002.

[164] X. Wang and H. K. Yang. Bending stability of multiwalled carbon nanotubes.

Phys. Rev. B, 73:085409, 2006.

[165] Y. Wang, G. T. Hager, and P. C. Eklund. Interband dielectric function of C60

and M6C60 (M=K, Rb, Cs). Phys. Rev. B, 45:24, 1992.

[166] M. Wautelet. Scaling laws in the macro-, micro- and nanoworlds. Eur. J.

Phys., 22:601–611, 2001.

[167] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge

University Press, 1st edition, 1990.

[168] P. A. Williams, S. J. Papadakis, M. R. Falvo, A. M. Patel, M. Sinclair,

A. Seeger, A. Helser, R. M. Taylor, S. Washburn, and R. Superfine. Con-

trolled placement of an individual carbon nanotube onto a microelectrome-

chanical structure. Appl. Phys. Lett., 80:2574–2576, 2002.

[169] B. Witkamp, M. Poot, and H. S. J. van der Zant. Bending-mode vibration of

a suspended nanotube resonator. Nano Lett., 6:2904, 2006.

[170] R. A. Wood, M. H. Lewis, M. R. Lees, S. M. Bennington, M. G. Cain, and

N. Kitamura. Ferromagnetic fullerene. J. Phys.: Condens. Matter, 14:385–391,

2002.

[171] B. I. Yakobson, C. J. Brabec, and J. Bernholc. Nanomechanics of carbon

tubes: Instabilities beyond linear response. Phys. Rev. Lett., 76:2511–2514,

1996.

[172] H. Yamakawa. Statistical mechanics of wormlike chains. Pure Appl. Chem.,

46:135–141, 1976.

186



Bibliography

[173] H. K. Yang and X. Wang. Torsional buckling of multi-walled carbon nanotubes

embedded in an elastic medium. Compos. Struct., 77:182–92, 2007.

[174] Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker. Carbon nanotube

intramolecular junctions. Nature, 402:273–276, 1999.

[175] J. Yoon, C. Q. Ru, and A. Mioduchowski. Vibration of an embedded multiwall

carbon nanotube. Composite Sci. Technol., 63:1533–1545, 2003.

[176] M. Yoshida and E. Osawa. Molecular mechanics calculations of giant- and

hyperfullerenes with eicosahedral symmetry. Fullerene Science & Technology,

1:55–74, 1993.

[177] M. F. Yu, B. I. Yakobson, and R. S. Ruoff. Controlled sliding and pullout of

nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B,

104:8764, 2000.

[178] H. W. Zhang, L. Wang, and J. B. Wang. Computer simulation of buckling be-

havior of double-walled carbon nanotubes with abnormal interlayer distances.

Comput. Mater. Sci., 39:664, 2007.

[179] Q. Zheng and Q. Jiang. Multiwalled carbon nanotubes as gigahertz oscillators.

Phys. Rev. Lett., 88:045503, 2002.

[180] P. Zioupos, J. D. Currey, and A. J. Hamer. The role of collagen in the declining

mechanical properties of aging human cortical bone. J. Biomed. Mater. Res.,

45:108–116, 1999.

187



List of the author’s publications

Journal articles

1. Y. Chan, R. G. Haverkamp and J. M. Hill. Force-extension formula for the

worm-like chain model from a variational principle. Journal of Theoretical

Biology, 262:498-504, 2010.

2. Y. Chan, N. Thamwattana and J. M. Hill. Spiral motion of carbon atoms and

C60 fullerenes inside single-walled carbon nanotubes. International Journal of

Theoretical and Applied Multiscale Mechanics, 1:176-193, 2009.

3. Y. Chan, N. Thamwattana and J. M. Hill. Restricted three body problems at

the nanoscale. Few-Body Systems, 46:1271-1291, 2009.

4. Y. Chan, G. M. Cox, R. G. Haverkamp and J. M. Hill. Mechanical model for a

collagen fibril pair in extracellular matrix. European Biophysics Journal with

Biophysics Letters, 38:487-493, 2009.

5. Y. Chan, N. Thamwattana, G. M. Cox and J. M. Hill. Mechanics of nanoscale

orbiting systems. Journal of Mathematical Chemistry, 46:1271-1291, 2009.

6. Y. Chan, N. Thamwattana and J. M. Hill. Magnetic field driven nano tippe

top. Journal of Computational and Theoretical Nanoscience, 6:1013-1020,

2009.

188



List of the author’s publications

Conference papers

1. Y. Chan, G. M. Cox and J. M. Hill. A carbon atom orbiting around the

outside of a carbon nanotube. In Proceedings of International Conference

on Nanoscience and Nanotechnology, 152-155 Feb 2008, ICONN 2008, Mel-

bourne, 2008.

Submitted manuscripts

1. Y. Chan, N. Thamwattana and J. M. Hill. Carbon nanotubes as a nonlinear

buckled beam for nanoelectromechanical systems, 2009 (Submitted to Inter-

national Journal of Nanotechnology).

2. Y. Chan, N. Thamwattana and J. M. Hill. Axial buckling of multi-walled

carbon nanotubes and multi-walled nanopeapods, 2009 (Submitted to Inter-

national Journal of Solids and Structures).

3. Y. Chan and J. M. Hill. Some novel plane trajectories for carbon atoms and

fullerenes captured by two fixed parallel carbon nanotubes, 2010 (Submitted

to European Physical Journal D)

Manuscript in preparation

1. Y. Chan and J. M. Hill. Benzene in metal-organic frameworks as molecular

gyroscope and turnstile, 2010.

189




	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Declaration
	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Bibliography
	List of the author’s publications

