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Abstract

Studies about ocean waves have been evolving over a period of time. Re-

cently, there has been renewed interest in problems of refraction, diffraction

and radiation of ocean waves around structures. In this thesis, the analytic

solutions for linear waves propagating in an ocean with variable bottom to-

pography and their applications in renewable wave energy are presented. In

the first part, we present an analytic solution to the shallow water wave equa-

tion for long waves propagating over a circular hump. As a useful tool in

coastal engineering, the solution may be used to study the refraction of long

waves around a circular hump. It may also be used as a validation tool for

any numerical model developed for coastal wave refraction. To validate the

new analytic solution, we have compared our new analytical solution with

a numerical solution obtained by using the finite difference method. The

agreement between these two solutions is excellent. By using the analytic so-

lution, the effect of the hump dimensions on wave refraction over the circular

hump are examined.

In the second part of this thesis, based on the mild-slope equation derived

by Smith and Sprinks [1] and the extended refraction-diffraction equation

developed by Massel [2], we have constructed a two-layer mild-slope equation

for interfacial waves propagating on the interface of a two-layer ocean model.

First, we follow Smith and Sprinks’s [1] approach to derive the mild-slope

equation for the propagation of interfacial waves, with the higher-order terms

proportional to the bottom slope and bottom curvature all being neglected.

We then derived the extended version of the mild-slope equation with the

higher-order terms included. While we were able to solve the first equation



analytically, we presented a numerical solution for the second equation. As

a part of the verification process, both solutions were compared with each

other and also with the single-layer mild-slope equation when the density of

the upper layer goes to zero. We then used the new solution to study the

effect of the hump dimensions on the refraction of the interfacial waves over

a circular hump.

Finally, in the final section of this thesis, we have used what we have

developed before to construct the two-layer mild-slope equation with free

surface on top. By utilizing this equation, we then derived an analytic solu-

tion for long waves propagating over a circular hump with a hollow circular

cylinder floating in the free surface. In order to validate our new analytic

solution, we have compared our problem with Mac Camy and Fuchs [3] solu-

tion, because our solution has reduced to their solution when the lower water

depth, h2, goes to zero. We have also compared our solution with the flat

bottom case in order to further verified our solution. Finally, by using the

new solution, both diffraction and refraction effects from the hollow cylinder

and hump dimensions are examined and discussed.

2



Acknowledgements

I would like to express profound gratitude to my supervisor, Prof. Song-

Ping Zhu, for his invaluable support, encouragement, supervision and useful

suggestions throughout this research work. His moral support and continuous

guidance enabled me to complete my work successfully.

I would also like to thank all staff and fellow friends in School of Math-

ematics and Applied Statistics, especially Carolyn Silveri for helping me in

Latex, Dr. Xiao-ping Lu for her help when I get some trouble in my calcu-

lations and Jean-Roch for his help in my programming.

Special thanks must go to my lovely husband, Mr. Fathy Kameel Mohd

Fadzil for his encouragement and patience, my dear parent, Mr. Harun Mat

and Mrs. Zaini Rasdi, and all my family members for their love and support

throughout my life.

My indebtedness must be expressed to the financial support from Univer-

siti Malaysia Terengganu, which allow me to pursue a Ph.D at The University

of Wollongong.

i



Contents

1 Introduction 1

2 Basic Wave Theory 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Basic Wave Characteristic . . . . . . . . . . . . . . . . . . . . 8

2.3 Governing Equations for Water Waves . . . . . . . . . . . . . 11

2.4 The mild-slope equation . . . . . . . . . . . . . . . . . . . . . 12

3 Long Wave Refraction Over a Circular Hump 16

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Comparison with the circular pit . . . . . . . . . . . . . 25

3.3.2 Comparison with a numerical solution . . . . . . . . . 30

3.3.3 Effect of the hump size . . . . . . . . . . . . . . . . . . 32

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Refraction of interfacial waves by a circular hump 42

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii



4.2.1 The Mild-slope equation for the propagation of interfa-

cial waves in a two-layer fluid model . . . . . . . . . . 47

4.2.2 Long waves propagating over a circular hump . . . . . 52

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Comparison with the single-layer fluid model . . . . . . 59

4.3.2 Comparison with the numerical solution . . . . . . . . 60

4.3.3 Effect of the density ratio . . . . . . . . . . . . . . . . . 61

4.3.4 Effect of the Layer Thickness . . . . . . . . . . . . . . 62

4.3.5 Topographic Effects . . . . . . . . . . . . . . . . . . . . 64

4.4 The Mild-slope Equation For The Propagation Of Interfacial

Waves In A Two-layer Fluid Model With Higher-order Terms

Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Derivation for the extended two-layer fluid model . . . 70

4.4.2 Numerical Solution and Results . . . . . . . . . . . . . 79

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Wave diffraction around floating structures 82

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 The two-layer fluid model . . . . . . . . . . . . . . . . 85

5.2.2 The Mild-slope equation in a two-layer fluid model . . . 88

5.2.3 Wave diffraction around floating structure over a vari-

able water depth . . . . . . . . . . . . . . . . . . . . . 90

5.2.4 Wave diffraction around floating structure over a flat

bottom . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Comparison with the Mac Camy and Fuchs Solutions . 100

5.3.2 Comparison with the flat bottom . . . . . . . . . . . . . 102

iii



5.3.3 Effect of the cylinder height . . . . . . . . . . . . . . . 104

5.3.4 Topographic and radius Effects . . . . . . . . . . . . . . 106

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions 111

A Elevations of the Inner Products 115

B Calculation of the Limit 120

C Derivation for Equation (5.20) 123

D Publications of the Author 124

Bibliography 125

iv



List of Figures

1.1 A definition sketch showing how an OWC works . . . . . . . . 4

1.2 An OWC prototype locate at Port Kembla, NSW, Australia . 5

2.1 Waves characteristic . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 A definition sketch of a hump located on the floor of an ocean

with otherwise constant water depth (top figure: side view,

bottom figure: top view) . . . . . . . . . . . . . . . . . . . . . 20

3.2 Convergence test for Frobenius series solution . . . . . . . . . 26

3.3 Contour plots of relative wave amplitude for waves propagat-

ing over a hump . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Contour plots of relative wave amplitude for waves propagat-

ing over a pit . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Comparison of relative wave amplitudes along the x-axis . . . 29

3.6 Comparison of relative wave amplitudes along the y-axis . . . 30

3.7 Contour plots of relative wave amplitude for waves propagat-

ing over a hump . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Contour plots of relative wave amplitude for waves propagat-

ing over a pit . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Comparison of relative wave amplitudes along the x-axis . . . 33

3.10 Comparison of relative wave amplitudes along the y-axis . . . 34

v



3.11 Comparison of relative wave amplitudes along the x-axis be-

tween the numerical and analytical solutions . . . . . . . . . . 35

3.12 Comparison of relative wave amplitudes along the y-axis be-

tween the numerical and analytical solutions . . . . . . . . . . 36

3.13 Comparison of relative wave amplitudes along the x-axis with

different h0 values . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.14 Comparison of relative wave amplitudes along the y-axis with

different h0 values . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.15 Comparison of relative wave amplitudes along the x-axis with

different hump radius . . . . . . . . . . . . . . . . . . . . . . . 39

3.16 Comparison of relative wave amplitudes along the y-axis with

different hump radius . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 A definition sketch for bounded interfacial waves . . . . . . . . 48

4.2 A definition sketch of a hump located on the floor in two-layer

fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Comparison of relative wave amplitudes between single-layer

and two-layer fluid models with ρ1 = 0 along x-axis at y=0 . . 59

4.4 Comparison of relative wave amplitudes between single-layer

and two-layer fluid models with ρ1 = 0 along y-axis at x=0 . . 60

4.5 Comparison of relative wave amplitudes using numerical and

analytical solution when ρ1/ρ2 are varied along the x-axis at

y=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Comparison of relative wave amplitudes using numerical and

analytical solution when ρ1/ρ2 are varied along the y-axis at

x=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Comparison of relative wave amplitudes when ρ1/ρ2 are varied

along the x-axis at y=0 by using the analytic solution . . . . . 64

vi



4.8 Comparison of relative wave amplitudes when ρ1/ρ2 are varied

along the y-axis at x=0 by using the analytic solution . . . . . 65

4.9 Contour plots of relative wave amplitude for waves propagat-

ing over a hump with ρ1/ρ2 = 3/5 and h10/h20 = 1/2 . . . . . 65

4.10 Contour plots of relative wave amplitude for waves propagat-

ing over a hump with ρ1/ρ2 = 3/5 and h10/h20 = 2 . . . . . . . 66

4.11 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along x-axis with h10/h20 varied . . . . . . . . . . . . . . . . . 66

4.12 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along y-axis with h10/h20 varied . . . . . . . . . . . . . . . . . 67

4.13 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along the x-axis with b/L varied . . . . . . . . . . . . . . . . . 68

4.14 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along the y-axis with b/L varied . . . . . . . . . . . . . . . . . 69

4.15 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along the x-axis with d varied . . . . . . . . . . . . . . . . . . 70

4.16 Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5

along the y-axis with d varied . . . . . . . . . . . . . . . . . . 71

4.17 Comparison of relative wave amplitudes with high-order terms

included(- -) and without high-order terms included (-) . . . . 79

5.1 An OWC prototype locate at Port Kembla, NSW, Australia . 84

5.2 A definition sketch for a two-layer fluid with free surface on top 86

5.3 A definition sketch of a hump located on the floor in a two-

layer fluid system . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 A definition sketch of a hollow circular cylinder floating on the

upper layer in a two-layer fluid system . . . . . . . . . . . . . 97

vii



5.5 Comparison of relative wave amplitudes between MacCamy

and Fuchs solution and our solution when h20 = 0 along x-axis 101

5.6 Comparison of relative wave amplitudes between MacCamy

and Fuchs solution and our solution when h20 = 0 along y-axis 102

5.7 A definition sketch of a hump located on the floor in a two-

layer fluid system . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Comparison of relative wave amplitudes between the flat sea

bottom and tiny little hump along the x-axis . . . . . . . . . . 103

5.9 Comparison of relative wave amplitudes between the flat sea

bottom and tiny little hump along the y-axis . . . . . . . . . . 104

5.10 Comparison of relative wave amplitudes when h10 are varied

along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.11 Comparison of relative wave amplitudes when h10 are varied

along the y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.12 Comparison of relative wave amplitudes along the x-axis with

b/L varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.13 Comparison of relative wave amplitudes along the y-axis with

b/L varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.14 Comparison of relative wave amplitudes along the x-axis with

d varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.15 Comparison of relative wave amplitudes along the y-axis with

d varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



List of Tables

4.1 Comparison of relative wave amplitude with higher-order and

without higher-order terms . . . . . . . . . . . . . . . . . . . . 80

ix



Chapter 1

Introduction

Studies about ocean waves have been evolving over a period of time. Even

though it is not a branch of new knowledge, many new theories, applications

and technologies based on ocean waves have been discovered, developed and

discussed among the researchers until today. Many unsolved problems, now

can be solved using the new techniques and methods [4, 5].

In recent years, there has been a great deal of interest in solving various

problem involving tsunamis. Tsunamis are a very large waves, included in

long waves or shallow water waves categories. It is cause by earthquakes, the

eruption of volcanoes and any other kind of land movement on the ocean floor

such as landslide, explosion, impact etc [6]. In the deep ocean, the amplitude

of the tsunamis are about half a meter, however, when these waves approach

some obstacles such as an island, their amplitudes increase drastically due to

decrease in depth. The most recent tsunami was recorded on December 26,

2004. It attacked coastlines of nearly every Indian ocean country and resulted

in the largest toll of tsunami ever recorded. More than 225,000 people were

killed and millions became homeless as an impact of this tragedy [7].

Due to undoubted practical importance in understanding the propaga-
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tion of tsunami waves and their impact in human life, the research interest in

studying this kind of waves have been renewed [8]. There is a lot of equations

that already exist to model this kind of problem. Navier-Stokes equations

are the first equations that govern the motion of tsunamis. However, it is dif-

ficult to solve a free-surface geophysical flows. Therefore, an approximations

are introduced and resulting in a new equations such as nonlinear shallow

water wave equation, Boussinesq equations and also Euler equations for the

nonlinear regime. In the linear regime, some of the equations that have been

used are the Hemholtz equation, the linear shallow water equation and the

mild-slope equation.

In this thesis, we are interested in mild-slope equations. This equation

was firstly derived by Berkhoff [9], which is a powerful tool to study the phe-

nomenon of combined refraction-diffraction of ocean waves over a mild topog-

raphy. The mild-slope equation has also been studied by many researchers

since it was introduced, mainly due to its advantage in dimensionality re-

duction, i.e., by reducing a three-dimensional problem to a two-dimensional

problem with the calculated velocity as an average velocity across the water

column. For example, Johnson et al. [10] solved the mild-slope equation

numerically for the diffraction and refraction around the island and later on,

Smith and Sprinks [1], gave a formal derivation of the equation.

This thesis is organized as follows, in Chapter 2, the basic wave theory

is presented to give a better understanding to the readers. The derivation

given by Smith and Sprinks is also briefly presented in this chapter. Then,

in Chapter 3, by using the mild-slope equation given by Smith and Sprinks

[1], the analytical solution for long waves propagating over a circular hump

is presented. The solution that obtained from this chapter can be used to

study the refraction of long waves around a circular hump, as a useful tool in
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coastal engineering. It may also be used as a validation tool for any numerical

model develop for coastal wave refraction. For readers information, most of

the work described in Chapter 3 have been published in Zhu and Harun [11].

Then, in Chapter 4, we constructed a two-layer mild-slope equation for

interfacial waves propagating on the interface of a two-layer ocean model with

rigid-lid approximation being imposed at the free surface. Replacing the free

surface with a rigid-lid approximation is reasonable in many cases, especially

at the regional ocean scale, because “internal-wave mode” only induces small

deformation on the free surface and thus a rigid-lid approximation would ex-

clude the fast mode associated with barotropic free surface waves and greatly

simplify the theoretical analysis without loss of a great deal of accuracy. To

constructed the equation for this chapter, first, we follow Smith and Sprinks’

[1] approach to derive the mild-slope equation for the propagation of interfa-

cial waves, with the higher-order terms proportional to the bottom slope and

bottom curvature all being neglected. We then derive the extended version

of the mild-slope equation with the higher-order terms included. While we

were able to solve the first equation analytically, we present a numerical solu-

tion for the second equation. More literature and the significance of internal

wave will be discussed in this chapter. Some details discussed in Chapter 4

are also given in Zhu and Harun [12] and Harun and Zhu [13].

The awareness of the importance of a renewable energy to substitute

the existing energy resources in order to combat climate changes has made

the study about ocean waves become very popular among the researchers.

Ocean waves can produce a lot of energy through the process of refraction,

diffraction, reflection and also shoaling. However, this energy could easily

disappear due to friction and other waves processes. Therefore, the energy

that comes from the ocean waves have to be captured, before it is gone to
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waste. Having realized about this, more studies have been done to determine

which methods and devices are suitable in order to capture and extract more

energy from waves [14, 15].

Figure 1.1: A definition sketch showing how an OWC works

One of the popular devices that can capture the energy from the waves

is oscillating water column (OWC)[16]. The OWC consists of a partially

submerged concrete or steel structure that has an opening to the sea below

the waterline as shown in Fig. 1.1. It encloses a column of air above a column

of water. As waves enter the air column, they cause the water column to rise

and fall. This alternately compresses and depressurizes the air column. As

the wave retreats, the air is drawn back through the turbine as a result of the

reduced air pressure on the ocean side of the turbine. One of the company

that have used and studied this device is Oceanlinx Limited Australia. This

company has successfully installed this prototype at Port Kembla, NSW,

4



Australia as shown in Fig. 1.2. This device has successfully converted ocean

wave energy into electricity in a number of tests being executed since it was

installed.

Figure 1.2: An OWC prototype locate at Port Kembla, NSW, Australia

Therefore, as the last object in this thesis, the mild-slope equation is fur-

ther extended to be applied to the OWC problem. By removing the rigid lid

approximation that we used in Chapter 4, the two-layer mild-slope equation

for two-layer fluid with free surface on the top is derived. The reason that we

have solved our problem using the two-layer model is, we need to satisfy all

the boundary conditions that exist in this case. By using the two-layer fluid

model, it is much easier to determine the boundary condition in both layers.

Furthermore, by utilizing this equation, we then construct an analytic solu-

tion for long waves propagating over a circular hump located at the bottom

of an ocean with a hollow circular cylinder floating on the top of the free

5



surface. Then, by using the new solution, we then discuss the effects of the

hump dimensions and the hollow cylinder structures on the wave diffraction.

The main findings in this chapter will be briefly summarized at the end of

this chapter.

Finally, a summary of the work presented, together with the concluding

remarks and suggestions for future research is concludes in Chapter 6 of this

thesis.
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Chapter 2

Basic Wave Theory

2.1 Introduction

Waves are very importance in our lives. They have an impact to anything

that is near or in the body of water. For example, waves-induced currents

can cause the erosion of the coastline as a result of the sand movement along

the shore. It could also damage houses, destroy structures during the storms

and even cause casualties when very large waves struck the coastlines. In

the water, when very rogue waves occur especially during the bad weather,

it can be very devastating too. A lot of people and ships have been missing

due to the disastrous waves. On the other hand, the waves also can create a

lot of activities for us, such as surfing. Furthermore, waves provide us with

a source of renewable energy that has been actively studied recently.

Ocean wave theory is an attempt to explain the nature of ocean waves.

Because the irregularity of these waves, it is hard to determine their true

nature. There are many conditions which impact waves from local wind

and ocean bottom structures to distant events like earthquake, tsunamis and

storms. The speed, the length, the force and the magnitude of the object
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impacting the water surface would create vast difference in the sizes of waves.

Therefore, the linear wave equations and a number of assumption is used to

help explain these waves with recognition that even with these assumptions,

it may still not cover the totality of the explanation [17]. Thus, in the next

section, the basic waves characteristics and equations for the linear waves are

briefly discussed.

2.2 Basic Wave Characteristic

Ocean waves come in many shapes and sizes. They range in length from

a fraction of a centimeter for the smallest ripples to half the circumference

of Earth for the tides. They are formed by wind, gravitation, earthquakes,

and submarine landslides disturbing the water surface. Once formed, and

regardless of origin, ocean waves can travel great distances before reaching

the coast. Ocean waves have characteristics that can be measured and used

to describe each wave. Among the most useful of these are wave height,H,

and wavelength, L. From these two parameters, we can determine the waves

velocities, accelerations and all other parameters theoretically [5].

Fig. 2.1 shows the water waves characteristic for wave propagating in the

x-direction. From this figure, the wavelength, L, is the horizontal distance

measured between any two adjacent wave crests (wave crests that are next to

each other) or any two adjacent wave troughs in a wave. The wave height, H,

is the vertical distance between the crest and the trough of the waves. The

wave period, T , is the time required for two consecutive crests or troughs

to pass a particular point. From the wavelength, L, and wave period, T ,

we then can define the phase velocity, or celerity, C, as the wavelength, L

divided by the wave period, T , because the waves are move in one wavelength

8
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Figure 2.1: Waves characteristic

at a time.

There are four main waves phenomena that can occur during the prop-

agation of the water waves. They are wave shoaling, diffraction, refraction

and reflection. Shoaling and refraction of waves occur when the waves are

in shallow water. Generally, when the water depth, h, is less than half of

the wavelength, L, then the waves are considered to be in shallow water.

When the waves move into shallow water, they begin to feel the bottom of

the ocean.

Shoaling occurs as the waves enter shallower water. This significantly

affects their motion and shape. As the wave speed and wavelength decrease

in shallow water, the energy per unit area of the wave has to increase, so the

wave height increases. The wave period remains the same in shoaling (the

wave period is the time taken by a wave crest to travel the distance of one

wave length). When the wave crest becomes too steep, it becomes unstable,

curling forward and breaking. This usually happens when the height of the

wave becomes about the same size as the local water depth.
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The bending of the wave crest in response to changes in the wave speed,

results in wave refraction. As waves travel from the deep water into the

shallower water, the part of the waves in a shallow water moves slower than

the part of the waves in a deeper water. This differential speed along the

crest causes the wave to bend and wave direction changes. For example, as

waves approach a straight shoreline at an angle, the water depth beneath the

crest varies. It is because the speed of shallow water waves depends on the

depth, different parts of the same crest, which lies at an angle to the shore

and to the bottom contours, are traveling shoreward at various speeds.

Diffraction normally occurs when waves encounters an obstacle such as an

even seabed. It involves a change in direction of waves as they pass through

an opening or around a barrier in their path. Water waves have the ability to

travel around corners, around obstacles and through openings. This ability

is most obvious for water waves with longer wavelengths. The amount of

diffraction (the sharpness of the bending) increases with the increase of the

wavelength and decreases with the decrease of the wavelength. In fact, when

the wavelengths of the waves are smaller than the obstacle, no noticeable

diffraction occurs. Diffraction of water waves is observed in a harbor as

waves bend around small boats and are found to disturb the water behind

them. The same waves however are unable to diffract around larger boats

since their wavelengths are smaller than the boat.

Like sound waves, surface waves can be bent (refracted) or bounced back

(reflected) by solid objects. Waves do not propagate in a strict line but tend

to spread outward while becoming smaller. Where a wave front is large, such

spreading cancels out and the parallel wave fronts are seen traveling in the

same direction. Where a lee shore exists, such as inside a harbour or behind

an island, waves can be seen to bend towards where no waves are. In the

10



lee of islands, waves can create an area where they interfere, causing steep

and hazardous seas. When approaching a gently sloping shore, waves are

slowed down and bent towards the shore. When approaching a steep rocky

shore, waves are bounced back, creating a ’confused sea’ of interfering waves

with twice the height and steepness. Such places may become hazardous to

shipping in otherwise acceptable sea conditions.

2.3 Governing Equations for Water Waves

Consider now the problem which is depicted in Fig. 5.1 under a Cartesian

Coordinate system in which x and y denote a pair of orthogonal horizon-

tal coordinates and z denotes the vertical coordinate measured positively

upward from the mean surface level (MSL). By assuming that the fluid is

incompressible and the flow is irrotational, the governing equation for the

wave field Φ(x, y, z, t), is the Laplace equation and can be written as

∂2Φ

∂z2
+∇2Φ = 0, (2.1)

where Φ is defined as a velocity potential. The Laplace equation is an elliptic-

type of the differential equation and to solve it we need the following condi-

tions on all the boundaries of the domain:

∂Φ

∂z
+∇h∇Φ = 0, z = −h(x, y) (2.2)

∂ζ

∂t
+∇h∇ζ =

∂Φ

∂z
, z = ζ(x, y, t) (2.3)

∂Φ

∂t
+

1

2
[|∇Φ|2 + (

∂Φ

∂z
)2] + gζ = 0 z = ζ(x, y, t) (2.4)

where h is the water depth and g is the gravity acceleration. This system of

differential equations has nonlinear free surface boundary conditions, so it is
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not possible to use standard technique to find an analytic solution. However,

for simple harmonic motion with frequency ω, linearity of the problem allows

separation of the time factor e−iωt, and the Laplace equation (2.1) can be

reduced to the two-dimensional version. In linear regime, the most powerful

approximation is the mild-slope wave equation(MSWE), and in nonlinear

regime, the most popular one is the Boussinesq equation.

2.4 The mild-slope equation

The mild-slope equation is one of the most powerful equation for solving

a three-dimensional Laplace equation in the linear regime. This equation,

which has a combining effects of diffractive and refractive, was originally

proposed by Eckart [18], but with a shallow water restriction. Then, in

1967, Svendsen [19], rederived this equation independently in one dimension

and later on, Berkhoff [9] presented this equation in two-dimension without

restriction on the water depth. The mild-slope equation derived by Berkhoff

[9] is a depth-integrated version of the Laplace equation. Since then, many

researchers, such as Schonfeld [20], Jonsson et. al. [10], Smith and Sprinks

[1], Lozano and Meyer [21], and Booij [22], have also studied this equation.

To give a better understanding about mild-slope equation to our readers, the

derivation of mild-slope equation given by Smith and Sprinks [1] is presented.

In the linear regime, for simple harmonic motion, the assumption that

the wave slope ϵ = kA is small, i.e., ϵ ≪ 1 allows the separation of the time

factor e−iωt from ζ(x, y, t) and Φ(x, y, z, t), i.e.,

ζ(x, y, t) = η(x, y)e−iωt, Φ(x, y, z, t) = ϕ(x, y, z)e−iωt, (2.5)

lead the Laplace equation in Eq. (2.1) and the nonlinear boundary condition

12



in Eqs. (2.2)-(2.4) to be simplified into

∂2ϕ

∂z2
+∇2ϕ = 0, −h(x, y) ≤ z ≤ 0 (2.6)

∂ϕ

∂z
+∇h∇ϕ = 0, z = −h(x, y) (2.7)

∂ϕ

∂z
− ω2

g
ϕ = 0, z = 0 (2.8)

By assuming that the water depth variation is moderate, i.e., |∇h|/(kh) ≪

1, the velocity potential may be written as

ϕ(x, y, z) =
ig

ω
η(x, y)f, (2.9)

where

f =
cosh k(z + h)

cosh(kh)
, ω2 = gk tanh(kh) (2.10)

with f satisfying

∂2f

∂z2
− k2f = 0, −h(x, y) ≤ z ≤ 0 (2.11)

∂f

∂z
= 0, z = −h(x, y) (2.12)

∂f

∂z
− ω2

g
f = 0, z = 0 (2.13)

where k is a wave number. Considering Eq. (2.6) as an ordinary differential

equation in z, and applying Green’s formula for ϕ and f , and using Eqs.

(2.6) - (2.8) and (2.11) - (2.13), we obtain

∫ 0

−h

(k2ϕf + f∇2ϕ)dz = −(f∇h · ∇ϕ)−h (2.14)

13



By invoking Eqs. (2.9) and (2.10) and calculating ∇ϕ and ∇2ϕ, and

inserting in Eq. 2.14), we have

∫ 0

−h

[f 2∇2η + 2f
∂f

∂h
∇η · ∇h

+ηf
∂2f

∂h2
(∇h)2 + ηf

∂f

∂h
∇2h+ k2ηf 2]dz

= −∇h · ∇ηf 2|−h − η(∇h)2f
∂f

∂h
|−h (2.15)

Since |∇h|/(kh) ≪ 1, all the higher order terms (∇h)2 and ∇2h can be

neglected and we can rewrite Eq (2.15) as

∇ · [(
∫ 0

−h

f 2dz)∇η] + k2(

∫ 0

−h

f2dz)η = 0 (2.16)

this equation also can be written as

∇ · (CCg∇η) + k2CCgη = 0 (2.17)

where

C =

√
g

k
tanh(kh) (2.18)

Cg =
C

2
(1 +

2kh

sinh(2kh)
) (2.19)

are the phase velocity and the group velocity, respectively.

Eq. (2.17) is known as the mild-slope equation. This equation can be

reduced to the linear shallow water equation,

∇ · (h∇η) +
ω2

g
η = 0 (2.20)
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because the phase velocity, C and group velocity, Cg, have reduced to C =

Cg =
√
gh and ω2 ≈ k2gh in shallow water.

On the other hand, for short waves or in deep water, Eq. (2.17) reduces

to Hemholtz equation

∇2η + k2η = 0 (2.21)

with the assumption C ≈
√

g
k
, Cg ≈ 1

2
C, and ω ≈

√
gk in deep water.

By utilizing the mild-slope equation presented in this chapter, we have

further extended this equation to solve the two-layer fluid with the rigid lid

assumption being imposed on the free surface in Chapter 4. Furthermore,

we have also added the higher-order terms that was neglected before in our

solution to study the influence of the terms in our solution. Both derivations

are discussed in Chapter 4 of this thesis. Finally, in Chapter 5, by removing

the rigid-lid assumption on the free surface, the mild-slope equation in two-

layer fluid model with free surface on top is presented.
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Chapter 3

Long Wave Refraction Over a

Circular Hump

3.1 Overview

On December 26, 2004, a never-forgotten tsunami attacked the coastlines

of nearly every Indian Ocean countries and resulted in the largest toll of

tsunami ever recorded. According to Geist et. al. [7], more than 225,000

people were killed within a matter of hours and millions became homeless

as a result of this tragedy. Since then, the research interest in studying long

waves propagating in shallow water, such as tsunami, has been renewed [8].

Studies on long waves propagating over waters of variable depth have

been conducted by many researchers for more than five decades. Some of the

previous studies include Homma [23] who obtained an analytical solution in

1950 for the scattering of long waves around a cylindrical island mounted on

a parabolic shoal. An exact solution was given by MacCamy and Fuch [3] for

plane waves diffracted by a large surface-piercing vertical circular cylinder in

an open sea of constant depth.
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In early 1970s, Berkhoff [9] derived a two-dimensional equation which

describes the phenomenon of combined refraction-diffraction for simple har-

monic waves and also a method to solve it. Jonsson et. al. [10] then solved

the mild-slope equation [9] numerically for the diffraction and refraction

around the island studied by Homma [23]. Based on the mild-slope equation

initially derived by Berkhoff, Bettess and Zienkiewicz [24] proposed a general

approach to solve wave diffraction and refraction problems numerically using

finite and infinite elements.

In early 1990s Zhang and Zhu [25] derived analytical solutions for the

propagation of long surface waves around a conical island and over a paraboloi-

dal shoal, based on the linearized long-wave equation. Then in 1996, Zhu

and Zhang [26] derived another analytical solution for scattering of simple

harmonic waves by a cylindrical island mounted on a conical shoal in an

otherwise open sea of constant depth based on shallow water wave theory.

Recently, Yu and Zhang [27] further extended Zhu and Zhang’s [26] approach

and presented an analytic solution for the wave motion with combined re-

fraction and diffraction around a circular island mounted on the top of a

hyperparabolic shoal.

There are also several authors who have experimentally studied the wave

propagation over a shoal before. However, most of them concentrated on

the short waves or irregular waves. For example, Ito and Tanimoto [28]

conducted an experiment for the short waves propagating over a shoal and

Williams et. al. [29] solved the same problem numerically using the finite

difference method. On the other hand, Panchang et. al. [30] and Chawla et.

al. [31] focused on the propagation of irregular and breaking waves over a

circular shoal.

More recently, Suh et. al. [32] developed an analytical solution for long
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waves propagating over a circular, bowl-shaped pit located on the floor of an

ocean with otherwise constant water depth. In fact, their solution was an

extension of Lamb’s [33] solution for a hemisphere with specific values of the

coefficients in the first two terms of Lamb’s series solution. In order to verify

their solution, Suh et. al. [32] constructed a numerical solution based on a

similar finite difference method used by Copeland [34], and they found that

their results with the analytical solutions were nearly identical.

In this chapter, we present an analytical solution for long waves propa-

gating over a circular hump. The solution technique that we have adopted

in order to solve this problem is similar to that given by Suh et. al. [32].

However, the different bottom geometry in our case has introduced some

additional difficulties in the solution process and care must be taken before

a final solution can be worked out. In addition, we have also worked out a

numerical solution for long waves propagating over a circular hump in the

variable depth region using the finite difference method. In Section 3.2, we

derived an analytic solution for long waves propagating over a circular hump.

Then, in Section 3.3, an example is presented to compare our new analytic

solution with Suh et. al.’s [32] solution. As a part of the verification process,

we have also compared our new analytical solution with a numerical solution

obtained by using the finite difference method. Utilizing the new solution,

we then discussed the effects of the hump dimensions on the wave refraction.

Finally, the main findings in this chapter are briefly summarized in the last

section.
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3.2 Analytic solution

Consider a train of plane waves which propagate in an open sea of constant

depth h1 and is refracted by an axi-symmetric hump-shaped shoal located on

the ocean floor. The cross-section of the hump is of the shape of a parabola

and the surface of the hump is formed through revolving the parabola around

the vertical axis of revolution, which is marked with the z coordinate of a

Cartesian coordinate system chosen with its origin located at the center of

the hump as demonstrated in Fig. 3.1. The parabolic hump surface intersects

with the ocean floor at z = 0, resulting a circle with its radius denoted as

b. The maximum height of the hump is controlled by a parameter h0, which

simply denotes the still water depth right above the point of maximum hump

height as shown in Fig. 3.1. In the corresponding cylindrical coordinate

system with r being the radial distance from the origin and θ being the

angle measured counterclockwise from the positive x-axis, the water depth

is prescribed by a parabolic function

h =

 h(r) = h0(1 +
r2

a2
), r < b,

h1 = h0(1 +
b2

a2
), r ≥ b.

(3.1)

in which a is determined by a = b
√

h0

h1−h0
, for a given set of h1 and h0, with

h0 ̸= 0 and a > b. Therefore, geometrically, a is the radius of the cross-

sectional circle of the paraboloid intersecting with a horizontal plane located

below the seabed. While h0 is used to control the height of a hump, either b

or a is used to control the horizontal dimension of the hump. The steepness

of a hump is then represented by the ratio of h0/b.

The propagation of water waves over a topography with gentle variation

can be modeled by the mild-slope equation, which is a depth-integrated ver-

sion of Laplace equation [9] and has been studied by many researchers since
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Figure 3.1: A definition sketch of a hump located on the floor of an ocean

with otherwise constant water depth (top figure: side view, bottom figure:

top view)

it was originally derived by Berkhoff in 1972. This is mainly due to its advan-

tage in reducing a three-dimensional problem to a two-dimensional problem.

With the water surface elevation, η, being expressed as a complex variable,

the mild-slope equation is written as

∇ · (CCg∇η) + k2CCgη = 0, (3.2)

where C is the phase speed, Cg the group velocity and ∇ is a horizontal

gradient operator ( ∂
∂x
, ∂
∂y
). If we further assume that the incident waves are

long in wavelength in comparison with the constant water depth h1, this

equation can be reduced to long (shallow water) waves equation which is of
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the form

∇ · (h∇η) +
σ2

g
η = 0, (3.3)

under the long waves assumptions C ∼= Cg
∼=

√
gh and σ2 ∼= gk2h, where g

is the gravitational acceleration, h is the local water depth, σ is the angular

velocity of the incident plane waves and k is the wave number.

Under the polar coordinates, Eq. (3.3) can be written as

h(
∂2η

∂r2
+

1

r

∂η

∂r
+

1

r2
∂2η

∂θ2
) +

dh

dr

∂η

∂r
+

σ2

g
η = 0. (3.4)

This equation can be solved using the method of separation of variables with

η being of the form

η(r, θ) = R(r)Θ(θ). (3.5)

Upon substituting Eq. (3.5) into Eq. (3.4), we can obtain the eigen-function

in the θ as

Θn = C1n cosnθ + C2n sinnθ, (3.6)

where C1n and C2n are arbitrary constants.

We divide the fluid domain on the r-θ plane into two subdomains: a region

with variable water depth (r < b) and the remaining region with constant

water depth (r ≥ b).

In the far field, the undisturbed long-crested incident waves propagate

towards the positive x- direction and its surface elevation is given by [4]:

η0 = aie
ikx, (3.7)

where ai is the incident wave amplitude and i =
√
−1. Eq. (3.7) can be

expanded as

η0 = ai

∞∑
n=0

inεnJn(kr) cosnθ, (3.8)
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where Jn is the Bessel function of the first kind of order n, and εn is the

Jacobi symbol defined by

εn =

 1, n = 0,

2, n ≥ 1.
(3.9)

In the constant depth region (r ≥ b), the general solution is well known [3],

and is given by

η1 = η0 +
∞∑
n=0

DnH
(1)
n (kr) cosnθ, (3.10)

where Dn is a set of complex constants yet to be determined, and H
(1)
n is the

Hankel function of the first kind of order n.

In the near field, the water depth is varying and we need to solve Eq.

(3.4). By substituting Eq. (3.1) into Eq. (3.4) and solving the resulting

equation, we can obtain a differential equation for Rn(r) of each wave mode

n to be satisfied as

(a2 + r2)r2
d2Rn

dr2
+ (a2r + 3r3)

dRn

dr
+ (v2r2 − n2a2 − n2r2)Rn = 0, (3.11)

where v is defined as

v =
σa√
gh0

. (3.12)

Eq. (3.11) then can be solved using the method of Frobenius [35]:

Rn(r) =
∞∑

m=0

αm,nr
m+c, (3.13)

with α0,n being unity and c being a constant to be determined by the indicial

equation. As shown in [35], the series solution converges when r < a. There-

fore, the solution always converges in the hump region with r < b. Solving

Eq. (3.11) using the method of Frobenius, we obtain the indicial equation,

c2 − n2 = 0, which yields two roots:

c = ±n. (3.14)
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These two distinct roots of the indicial equation lead to two sets of linearly

independent solutions:

Rn,1 =
∞∑

m=0

αm,nr
m+n, (3.15)

Rn,2 = Rn,1 ln r + βm,nr
m−n. (3.16)

The imposition of the regularity condition at r = 0 differs the current solution

from Suh et. al ’s solution. The condition that water surface elevation must

be finite at the origin implies that Rn,2 has to be discarded. Otherwise, the

solution would be singular at r = 0.

Now, substituting Eq. (3.13) with c = n into Eq. (3.11) and collecting

the terms of the same order of r, we obtain

α1,n = 0, (3.17)

αm+2,n =
−[(m+ n)(m+ n+ 2) + v2 − n2]

a2(m+ 2)(m+ 2n+ 2)
αm,n, (3.18)

and m = 0, 1, 2, ...

Finally, the water surface elevation for long waves over a hump can be written

as

η =
∞∑
n=0

AnRn(C1n cosnθ + C2n sinnθ), (3.19)

where An, C1n and C2n are arbitrary constants to be determined. One should

note that there is no need to have An as an arbitrary constant in addition

to the introduction of two arbitrary constants C1n and C2n. However, the

reason we did this is for the easiness of comparing our solution with that of

Suh et. al. [32], who used this additional constant An at this stage of the

derivation. For the general solution in the finite region with variable depth

r < b, the water surface elevation can be written as:

η2 =
∞∑
n=0

BnRn cosnθ, (3.20)
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where Bn = AnC1n is a set of complex constants to be determined. The

terms associated with sinnθ in Eq. (3.19) have been dropped based on the

symmetry condition.

The solutions in two sub-regions must be matched on the common bound-

ary r = b to ensure the continuity of wave heights and the hydrodynamic

pressure across it [5]. At r = b, the dynamic and kinematic matching condi-

tions are

η1 = η2, (3.21)

∂η1
∂r

=
∂η2
∂r

. (3.22)

Therefore, from Eqs. (3.10), (3.20) - (3.22), the coefficients Bn and Dn can

be determined as

Bn = aiki
nεn

Jn(kb)H
′(1)
n (kb)− J ′

n(kb)H
(1)
n (kb)

kRn(b)H
′(1)
n (kb)−R′

n(b)H
(1)
n (kb)

, (3.23)

Dn = aii
nεn

kJ ′
n(kb)Rn(b)− Jn(kb)R

′
n(b)

H
(1)
n (kb)R′

n(b)− kH
′(1)
n (kb)Rn(b)

, (3.24)

in which the primes denote the derivatives with respect to the argument. By

substituting back these coefficients into Eqs. (3.10) and (3.20), the water

surface elevation for the entire domain can be computed. Some results of

specific calculations are presented in the next section.

3.3 Results and discussions

In this section, firstly, we present an example to compare our new analytic

solution with the Suh et. al.’s [32] solution. Then, we compare our solution

with a numerical solution obtained by using the finite difference method, as

part of the verification process. Lastly, using the new solution, we discuss

the effect of hump dimensions on the wave refraction process over a hump.
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3.3.1 Comparison with the circular pit

Since the bottom shape in our case is exactly the same as that used in Suh

et. al. [32], except they are the mirror reflection of each other, i.e. the pit

has now become a hump, it would be very interesting to compare the two

different refraction processes subject to the same incident waves.

However, if we try to do a direct flip over of the Suh et. al.’s profile while

other parameters are kept the same, we run into problems. In Suh et. al.’s

configuration, the water depth in the far field is 3.2 m, which is the same as

the maximum depth of their pit. If this pit is flipped by 180o to become a

hump, the water depth right above the center of hump would become zero.

Clearly, this means that if we want to have a direct comparison with their

solution, we are forced to increase the water depth in the far field, resulting in

a comparison that only serves the purpose of verification of our new solution.

A much more meaningful comparison with physical significance is to adopt

a much smaller size of bowl pit, and thus when it is flipped into a hump, the

water depth directly above the hump is still much larger than the maximum

height of hump. Such a case will be discussed later.

Therefore, in the first example presented here, we compare Suh et. al.’s

[32] case with a case in which the hump is created by flipping their bowl pit

180o and in the mean time, raise the constant water depth, h1, to 4.8 m (the

corresponding relative water depth becomes k1h1 = 0.167). The rest of the

parameters are set exactly the same as that for the pit case discussed in Suh

et. al.’s [32] case, i.e., b/L = 0.5, the wavelength, L = 120.4 m.

Since, the analytic solution for η involves an infinite series, it must be

truncated, for the purpose of numerical calculations. To have a meaningful

comparison with Suh et. al. [32], we truncated our series solution in exactly

the same way as they did, i.e., to set N= 70 and M= 30. Fig. 3.2 shows the
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Figure 3.2: Convergence test for Frobenius series solution

convergence of the Frobenius series solution test for various values of N and

M until it converged at the desired values. The Bessel and Hankel functions

in the analytical solution were computed using the built-in subroutines in

MATLAB.

Fig. 3.3 and Fig. 3.4 are the contour plots of the relative wave amplitudes

(i.e. the wave amplitude relative to the incident amplitude) for long waves

propagating over the hump and the circular bowl pit, respectively. The re-

sults in this comparison are presented in terms of dimensionless coordinates,

x/L and y/L. The centers of the pit and the hump are located at the origin

and the contour lines in the each plot show the values of the relative wave

amplitude. As can be seen, the wave patterns are quite different for these

two cases. For example, refraction effects for the hump case is weaker than

those for the bowl pit case. The primary reason for this phenomenon is, the
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Figure 3.3: Contour plots of relative wave amplitude for waves propagating

over a hump

water depth for the latter case is much larger, resulting a stronger diffraction.

We have also plotted out the relative wave amplitudes along the x- and

y-axis, respectively, in Figs. 3.5 and 3.6. As expected, waves are amplified

behind a hump, whereas there is a great suppression of waves behind a pit (see

Fig. 3.5). Physically, this shows that the region behind a pit can be taken as if

it was a harbor, whereas if a wave-energy conversion device is to be mounted,

it would be far better to place it behind a hump. We also observed that

behind the disturbance (i.e., the hump and pit in each case respectively), the

relative wave amplitudes for both cases are no longer oscillating. Rather, they

gradually reduce (for the hump case) or increase (for the pit case) towards the

unity, which is supposed to be the relative wave amplitude far downstream.
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Figure 3.4: Contour plots of relative wave amplitude for waves propagating

over a pit

Furthermore, from Fig. 3.6, one can clearly see that the variations of relative

wave amplitude for these two distinct cases along the lateral direction are

out of phase, which naturally corresponds to the system’s response to the

180o flip over of the bottom topography.

Next, we shall make a direct comparison of the influences of hump and

pit to the wave refraction process by keeping all the physical conditions the

same, except a pit is replaced by a hump. To do that, we have to choose a

new set of parameters. The new set of parameters we chose are h1 = 3.2 m,

b/L = 0.5 and the maximum height for both shapes is set to 0.8 m. Therefore

the value of h0 for the pit case becomes 4.0 m, while it is 2.4 m for the hump

case.
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Figure 3.5: Comparison of relative wave amplitudes along the x-axis

Figs. 3.7 and 3.8 show the contour plots of the relative wave amplitudes

generated with the new set of parameters for long waves propagating over

the hump and the bowl pit, respectively.

To make a better comparison, we have also plotted out the relative wave

amplitude along the x− and y− axis, respectively, in Figs. 3.9 and 3.10.

From these two figures, one should notice that the relative wave amplitudes

for these two physically completely opposite cases are almost symmetrical

about the undisturbed free surface. For example, from Fig. 3.10, the relative

wave amplitudes at the lateral cross section x = 0 for both solutions seem

to be almost mirror reflection of each other. However, in the longitudinal

cross section y = 0, the mirror reflection effects are not as strong as those

in the lateral cross section x = 0; the maximum drop of the relative wave
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Figure 3.6: Comparison of relative wave amplitudes along the y-axis

amplitude for waves propagating over the pit case is now smaller than the

maximum rise of the relative wave amplitude for the hump case. Therefore,

we can conclude that, by using all the same of physical conditions, except

the bottom profile being flipped over by 180o, almost symmetrical relative

wave amplitudes are obtained, which is within our expectation.

3.3.2 Comparison with a numerical solution

For the purpose of validation, the new analytic solution is also compared

with a numerical solution.

Because in the outer region (r ≥ b), or the constant depth region, the

wave propagation is dictated by the incident waves from far left, the solution

is already known [3] and is given in Eq. (3.10), we only need to solve Eq.
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Figure 3.7: Contour plots of relative wave amplitude for waves propagating

over a hump

(3.11) in the inner region (r < b) numerically. This equation is only a

second-order linear ordinary differential equation, which can be easily solved

numerically using the 2nd-order central finite difference scheme, with two

boundary conditions being imposed at the center of the region r = 0 and the

outer boundary of the region r = b. At r = 0, the boundary condition is

dRn

dr
= 0, (3.25)

which reflects the fact that the slope of the wave elevation at the origin must

be continuous. The boundary condition at r = b can be determined from the

matching conditions Eq. (3.21) and (3.22).

Fig. 3.11 and Fig. 3.12 show the comparison between the analytic and

numerical solutions for the case of h1 = 4.8 m, h0 = 3.2 m, a/L =
√
0.5,
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Figure 3.8: Contour plots of relative wave amplitude for waves propagating

over a pit

b/L = 0.5, and the center of the hump is located at the origin along the x−

and y−axis, respectively. The numerical results were obtained with the grid

spacing ∆r = 0.025 m, when two solutions became hardly distinguishable.

With the excellent agreement between the analytic and numerical solutions,

as displayed in Fig. 3.11 and Fig. 3.12, we are confident that the derivation

of our new analytical solution is correct.

3.3.3 Effect of the hump size

In this section, we discuss the effect of the hump size to the wave refraction

when the radius and the maximum height of the hump are varied. As men-

tioned in Section 2, instead of using the value of h1−h0 to specify the height
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Figure 3.9: Comparison of relative wave amplitudes along the x-axis

of a hump, we used h0 to control the height of a hump (cf, Fig. 3.1). This

implies that for a fixed h1, a smaller value of h0 results in a larger hump

height and a larger value of h0 corresponds to a smaller hump height. In

other words, both h1 and h0 are independent input parameters; when h1 is

changed to a different value, h0 does not have to change accordingly. This is

different from a traditional specification in which the hump height is given,

independent from the value of h1. Our specification of hump height with the

values of both h1 and h0 involved is from the convenience of describing the

hump shape profile with Eq. (3.1). So, to test the effect of the hump size,

we have varied the hump height via changing h0 while holding h1 as well as

all other parameters constant.

Fig. 3.13 and Fig. 3.14 show the relative wave amplitude along the x- and
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Figure 3.10: Comparison of relative wave amplitudes along the y-axis

y-axis, respectively, for the cases of h0 = 2.2, 3.2 and 4.2 m with the hump

radius being fixed at b/L = 0.5 and h1 = 4.8 m. It is clearly seen that, as the

height of the hump increases, the relative wave amplitude becomes larger,

which is as expected. For example, along the x- axis, as we increase the

water depth by 31.25% from 3.2 m to 4.2 m, the maximum value of relative

wave amplitude has decreased by approximately 4.84%. In contrast, when

the water depth is decreased by the same percentage from 3.2 m to 2.2 m, the

maximum value of relative wave amplitude increases by about 8.87%, which

is almost twice of the total percentage change of the relative wave amplitude

as the case before. This shows that there is bias towards the reduction of

water depth, as the refraction effects appear to have been amplified much

more with an increase of the height of a hump.
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Figure 3.11: Comparison of relative wave amplitudes along the x-axis be-

tween the numerical and analytical solutions

It is quite interesting to have observed that for a given hump profile, a

smaller h0 induces a larger relative wave amplitude behind the hump, which

is expected. But, what is not expected is that it also induces the smallest

wave amplitude, in the three cases presented in Fig. 3.13 in front of the

hump. This is because the incident waves can “feel” the hump more when

the h0 is small and thus the reaction to the disturbance (the hump in this

case) behind the hump is larger in comparison with the other two cases. In

the mean time, the reaction to the disturbance in front of the hump has

little to do with the hump itself. Thus, a smaller h0 corresponds to a greater

relative wave amplitude behind the hump, or from the viewpoint of energy

conservation, we can say that, the bigger the hump size, the more energy
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Figure 3.12: Comparison of relative wave amplitudes along the y-axis be-

tween the numerical and analytical solutions

from waves can be captured.

In Fig. 3.15 and Fig. 3.16, we have also plotted the relative wave am-

plitudes along the x- and y-axis, respectively, for different hump radii, b/L

= 0.25, 0.5, 0.75, and 1.0 with a fixed h0 = 3.2 m and h1 = 4.8 m. As the

radius of the hump increases, the relative wave amplitude behind the hump

also increases. For instance, in the both cross-sections where we have output

the relative wave amplitude, the maximum value of relative wave amplitude

is about 1.1 with b/L = 0.25. Then when we have increased the radius

to 0.5, the increment of the maximum value of relative wave amplitude is

about 11.8%. When we further increase the radius to b/L = 0.75 and 1.0,

respectively, we can obviously observe that two peaks of the relative wave
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Figure 3.13: Comparison of relative wave amplitudes along the x-axis with

different h0 values

amplitude form behind the hump in the longitudinal direction as shown in

Fig. 3.15, whereas such two-peak structure in the relative wave amplitude

cannot be prominently observed for smaller hump radius.

A similar two-peak relative wave amplitude structure can be seen in Fig.

3.16 when b/L = 1.0. In fact, it is quite interesting to have observed that

when the hump radius is gradually increased from b/L = 0.25, the maximum

relative wave amplitude continuously increases too. However, this monotonic

increase terminates when the hump radius is further increased beyond b/L

= 0.75. When b/L = 1.0, a double-peak relative wave amplitude structure

is formed. A physical explanation for this phenomenon is that when the

hump radius is increased, the total amount of disturbance is increased too
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Figure 3.14: Comparison of relative wave amplitudes along the y-axis with

different h0 values

to produce a larger relative wave amplitude in the hump region. But, then

such an increase in relative wave amplitude becomes unsustainable when the

hump radius is further increased beyond a point where the gravitational force

can no longer sustain such increase in wave amplitude; in other words, the

gravity would eventually prevents any further increase of the relative wave

amplitude. Therefore, as a result of the balance of the gravitational force and

the free-surface reaction to the disturbance, one single peak breaks down to

a double-peak structure in relative wave amplitude as shown in Fig. 3.16.
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Figure 3.15: Comparison of relative wave amplitudes along the x-axis with

different hump radius

3.4 Conclusions

We have constructed an analytic solution for the shallow water wave equation

for long waves propagating over a circular hump located on the floor of an

ocean with otherwise constant depth. This analytic solution was derived

based on the analytic solution for the long waves propagating over a circular

pit obtained by Suh. et. al. [32]. We make a comparison for both solutions,

and found that along the x−axis, waves are amplified in front of the hump,

whereas there is a relative calm region behind a pit. Along the y−axis, the

relative wave amplitudes in these two distinct cases are out of phase.

To make a physically meaningful comparison between the cases of pit and

hump, we designed a new set of parameters so that all the physical conditions
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Figure 3.16: Comparison of relative wave amplitudes along the y-axis with

different hump radius

such as the incident wavelength, the water depth at the infinity are the same,

except a pit is replaced by a hump. Then, we found that the relative wave

amplitudes are reversed by 180o along the lateral line passing through the

origin. In the longitudinal direction, the drop of the relative wave amplitude

in the pit region is smaller than the rise of the relative wave amplitude right

in front of the hump, in contrast with a huge drop of relative wave amplitude

for the case Suh. et. al. [32] studied with the depth of the pit being of the

same order as the water depth at infinity.

We have also verified our new analytical solutions by constructing a nu-

merical solution for the purpose of validation. The two solutions were almost

identical and hardly distinguishable.
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Finally, we have examined and discussed the effects of the hump dimen-

sion when radius and minimum water depth are varied. While an increase

of the hump height definitely induces a stronger response of the system with

larger wave amplitude behind the hump, an increase in the radius of a hump

also leads to an increase of the wave amplitude behind the hump as well.

However, if the radius becomes too big while the height of the hump is held

constant, eventually a double-peak relative amplitude will form behind the

hump.
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Chapter 4

Refraction of interfacial waves

by a circular hump

4.1 Overview

Internal waves have been of great interest among the researchers since Ek-

man’s theoretical explanation of “dead water” experience by slowly-moving

vessels [36]. Internal waves just like surface waves that breaking on the

beaches because they often have surface manifestation. Changes in the den-

sity of the water, temperature, topography, moving ship through highly strat-

ified water, winds, air-pressure fluctuations, and surface swell are capable of

creating internal waves in the ocean [37]. The study of internal waves has

become significant because they carry a lot of energy, which may destroy

structures, such as deep-sea drilling rigs, drillers, and vertical pipes when

traveling in the interior of the ocean body [38].

In the ocean, there exists a thin layer of water, separating the warmer

surface zone from the colder deep zone. This thin layer is called thermo-

cline, across which the density as a function of the water temperature also
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jumps significantly [37]. Hence, the two-layer ocean models with a sharp den-

sity interface separating fluids with two constant densities are very popular

in modeling the dynamics of internal wave propagations in an ocean. The

propagation of waves on the interface of two different fluid layers was first

investigated by Stokes [39] and a description of internal waves in the form of

linear motion can also be found in [33]. Since then, many authors have stud-

ied internal wave problems in which the upper fluid is either with the presence

of a free surface or bounded by a rigid lid. Replacing the free surface with a

rigid-lid approximation is reasonable in many cases, especially at the regional

ocean scale, because “internal-wave mode” only induces small deformation

on the free surface and thus a rigid-lid approximation would exclude the fast

mode associated with barotropic free surface waves and greatly simplify the

theoretical analysis without loss of a great deal of accuracy. Much work also

has been done on internal solitary waves in two-layer fluids, pioneered by

authors such as Keulegan [40], Long [41], and Benjamin [42].

The study of internal waves has become important because they are asso-

ciated with the energy transfer mechanism across continental shelf edges. In

addition, they cause strong localized departures from the surrounding ocean

conditions, resulting in increased shear stresses on underwater structures and

large variations in acoustic transmission properties of the ocean [43]. There-

fore, the internal waves cause problems in many areas such as offshore oil

recovery, acoustic propagation in the ocean, and deep water outfall. For

example, in offshore recovery, the greater part of new offshore oil and gas

fields are in deep waters, which are only economically viable due to the de-

velopment of new recovery technologies that involve cable and wire moorings

or long fragile structures such as riser pipes and drill columns. The energy

contained in solitary internal waves can result in strong localized currents

43



which generate high level of shear stress on these structures, causing signifi-

cant level of damage and representing a potential safety hazard to operations

personnel [44].

The mild-slope equation which was firstly derived by Berkhoff [9] is a

powerful tool to study the phenomenon of combined refraction-diffraction

of ocean waves over a mild topography. The mild-slope equation has also

been studied by many researchers since it was introduced, mainly due to its

advantage in dimensionality reduction, i.e., by reducing a three-dimensional

problem to a two-dimensional problem with the calculated velocity as an

average velocity across the water column. For example, Jonsson et al. [10]

solved the mild-slope equation numerically for the diffraction and refraction

around the island and later on, Smith and Sprinks [1], gave a formal deriva-

tion of the equation.

Due to some seemingly tight restrictions on the bottom topography for

the validity of the mild-slope equation, many researchers have tried to im-

prove the versatility of this equation in terms of including some higher-order

terms of the bottom slope. For instance, Massel’s [2], used the Galerkin-

Eigenfunction Method to derive the extension for mild-slope equation. His

resulting equation contains higher-order terms proportional to bottom slope

and bottom curvature, as well as the evanescent modes. Then in 1995, Cham-

berlain and Porter [45] constructed the modified mild-slope equation using

the variational principle approach and the resulting equation was shown to

be capable of describing scattering properties of singly and doubly periodic

ripple beds, in which the Berkhoff’s [9] original mild-slope equation fails. Fur-

thermore, in the same year, using the same approach as Chamberlain and

Porter [45], Porter and Staziker [46] came out with the extended mild-slope

equation which contains the jump conditions to ensure the mass flow continu-
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ity at the discontinuous bed slope. By using the original Berkhoff’s equation

[9] and the modified mild-slope equation derived by Chamberlain and Porter

[45], Porter [47] has re-examined these two equations. By identifying the dis-

crepancies between both solutions, he then derived an alternative form for

the mild-slope equation, having the simplicity of the standard form [9] and

also containing the essential features of the modified mild-slope equation [45]

at the same time.

More recently, in 2005, by utilizing the modified mild-slope equation con-

structed previously by Chamberlain and Porter [45] in 1995, Chamberlain and

Porter [48] then derived a mild-slope equation for a two-layer fluid model.

Their derivation is based on the variational principle which removes the ver-

tical coordinate, reducing the problem to a pair of coupled partial differential

equations for the wave potential of depth-averaged velocity as a function of

two horizontal variables. Their resulting equation, which contains the higher-

order terms of bottom slope, is capable of accurately calculating wave scatter-

ing induced by singly and doubly periodic ripple beds, in which the Berkhoff’s

mild-slope equation fails. On the other hand, Massel’s extended mild-slope

equation [2] is based on the Galerkin-Eigenfunction Method, which is a more

straightforward method for calculating all terms within the mild-slope ap-

proximation. His resulting equation also contains higher-order terms propor-

tional to bottom slope and bottom curvature, in addition to retaining the

evanescent modes. Therefore, this equation is capable of dealing with wave

scattering over a relatively steep bed and yielding a smooth transition range

of wave amplitude through the caustic line. Moreover, Massel’s extended

mild-slope equation can also be used to determine the waves propagating

over a patch of sinusoidal ripples as well. Hence, Massel’s approach appears

to have led to a more versatile modified mild-slope equation; it is certainly
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worthwhile to deduce an extended mild-slope equation for a two-layer fluid

model based on Massel’s approach, which is part of the objectives of this

chapter.

In this chapter, a two-layer mild-slope wave equation is constructed for

two-layer fluid model with the rigid-lid assumption being made at the free

surface. In Section 4.2, the basic mild-slope equation is derived for the in-

terfacial waves using the same approach used by Smith and Sprinks [1]. By

utilizing this equation, we then constructed an analytic solution for long

waves propagating over a circular hump located at the bottom of a two-layer

ocean. Then, in Section 3, an example is given to compare our new analytic

solution in a special case of the two-layer fluid model, i.e ρ1 = 0 with the

solution in a single-layer fluid model. As a part of the verification process,

we also compared our analytic solution with a numerical solution. Using the

new solution, we then discussed the effects of the hump dimensions on the

wave refraction. Following Massel’s [2] approach, we derived the extended

version of mild slope equation, in Section 4.4, with the second-order terms of

bottom topography being included. Results obtained from the newly-derived

extended mild-slope equation were then compared with those obtained from

the conventional one. Finally, the main findings in this chapter are briefly

summarized in Section 4.5.

4.2 Analytic Solution

This section presents the derivation of mild-slope equation in two-layer fluid

model. Then, we use the results to study long waves propagating in two-layer

fluid over a circular hump.
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4.2.1 The Mild-slope equation for the propagation of interfa-

cial waves in a two-layer fluid model

Consider the stratified, two-layer bounded system depicted in Fig. 4.1, under

a Cartesian Coordinate system in which x and y denote a pair of orthogo-

nal horizontal coordinates and z denotes the vertical coordinate measured

positively upwards from the interface. By assuming that the two fluids are

immiscible, the flow within each layer is irrotational, the interfacial waves

are of small amplitude1 relative to their wavelength and the upper surfaces

is bounded by a rigid wall, the velocity potential Φ(x, y, z, t) can be written

as

Φ(x, y, z, t) = ϕ(x, y, z)e−iσt (4.1)

where i =
√
−1, and σ is a angular velocity of the incident plane waves.

Upon assuming that each layer is irrotational, we can define independent

1Internal waves are usually associated with large amplitude and thus linear theory is

not adequate to model internal waves. However, linear approximation is usually the first

step in any modeling and thus we have made such an assumption, with an intention that

our solution can be used at least as the first-order approximation when a second-order or

even higher-order theory is developed in the future.
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Figure 4.1: A definition sketch for bounded interfacial waves

velocity potentials in each layer; thus, our governing equations are

∂2ϕ1

∂z2
+∇2ϕ1 = 0, 0 ≤ z ≤ h1 (4.2)

∂ϕ1

∂z
= −∇h1∇ϕ1, z = h1 (4.3)

∂ϕ1

∂z
=

∂ϕ2

∂z
, z = 0 (4.4)

ρ1(
∂ϕ1

∂z
− σ2

g
ϕ1) = ρ2(

∂ϕ2

∂z
− σ2

g
ϕ2), z = 0 (4.5)

∂ϕ2

∂z
= −∇h2∇ϕ2, z = −h2 (4.6)

∂2ϕ2

∂z2
+∇2ϕ2 = 0, −h2 ≤ z ≤ 0 (4.7)

where g is the gravitational acceleration, and the densities and the waves

heights of the upper and lower fluid layer are denoted by ρ1, h1, and ρ2, h2

respectively, with ρ1 < ρ2.

By assuming that the variation of water depth is moderate, the velocity

potential can be written as
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ϕ1 = i
σ

k
ηf1 (4.8)

ϕ2 = −i
σ

k
ηf2 (4.9)

with k as a wave number and

f1 =
cosh k(z − h1)

sinh kh1

(4.10)

f2 =
cosh k(z + h2)

sinh kh2

(4.11)

σ2 =
gk(ρ2 − ρ1)

ρ1 coth(kh1) + ρ2 coth(kh2)
(4.12)

with f1 and f2 satisfying

∂2f1
∂z2

− k2f1 = 0, 0 ≤ z ≤ h1 (4.13)

∂f1
∂z

= 0, z = h1 (4.14)

∂f1
∂z

=
∂f2
∂z

=
σ2

g

(f2ρ2 + f1ρ1)

ρ2 − ρ1
, z = 0 (4.15)

∂f2
∂z

= 0, z = −h2 (4.16)

∂2f2
∂z2

− k2f2 = 0, −h2 ≤ z ≤ 0 (4.17)

One should note that the dispersion relation, Eq.(4.12), has only one

positive solution for the wave number k. This is a natural consequence of the

rigid-lid assumption, which has removed the “free-surface-wave mode”. In

other words, the wave number k obtained from Eq.(4.12) already represents

the slow “internal-wave mode”, which dominates ocean circulation.

Employing the Green’s Identity
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∫ h1

0

[f1(
∂2ϕ1

∂z2
− k2ϕ1)− ϕ1(

∂2f1
∂z2

− k2f1)]dz

+

∫ 0

−h2

[f2(
∂2ϕ2

∂z2
− k2ϕ2)− ϕ2(

∂2f2
∂z2

− k2f2)]dz

= [f1
∂ϕ1

∂z
− ϕ1

∂f1
∂z

] + [f2
∂ϕ2

∂z
− ϕ2

∂f2
∂z

] (4.18)

we have

∫ h1

0

[f1(∇2ϕ1 − k2ϕ1)]dz +

∫ 0

−h2

[f2(∇2ϕ2 − k2ϕ2)]dz =

−[f1∇h · ∇ϕ1]h1 + [f1∇h · ∇ϕ1]−h2 − [
σ2

g
(f1ϕ2 − f2ϕ1)]0 (4.19)

By calculating ∇ϕ1,∇2ϕ1,∇ϕ2 and ∇2ϕ2 from Eqs. (4.8) and (4.9) and

inserting them into Eq. (4.19), we have

∫ h1

0

[f2
1∇2η + 2f1

∂f1
∂h1

∇η · ∇h1 + ηf1
∂2f1
∂h2

1

(∇h1)
2 + ηf

∂f1
∂h1

∇2h1 − k2ηf 2
1 ]

−
∫ 0

h2

[f 2
2∇2η + 2f2

∂f2
∂h2

∇η · ∇h2 + ηf2
∂2f2
∂h2

2

(∇h2)
2 + ηf

∂f2
∂h2

∇2h1 − k2ηf 2
2 ]

= −∇h1∇ηf 2
1 |h1 − ηf1

∂f1
∂h1

(∇h1)
2|h1 −∇h2∇ηf 2

2 |−h2

− ηf2
∂f2
∂h2

(∇h2)
2|−h2 (4.20)

From the Leibniz rule and using the assumption that the variation of

water depth is moderate, we can ignore all the terms of order (∇h1)
2, (∇h2)

2,

∇2h1 and ∇2h2 and rewrite Eq. (4.20) as

∇ · (
∫ h1

0

f2
1dz −

∫ 0

h2

f 2
2dz)∇η + k2(

∫ h1

0

f 2
1dz −

∫ 0

h2

f2
2dz)η = 0 (4.21)

which leads to
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∇ · (CCg∇η) + k2CCgη = 0 (4.22)

with

C =

√
g

k

(ρ2 − ρ1)

ρ1 coth kh1 + ρ2 coth kh2

(4.23)

Cg =
C

2
{1 + σ2

g(ρ2 − ρ1)
(

ρ1h1

sinh2kh1

+
ρ2h2

sinh2kh2

)} (4.24)

being the phase velocity and the group velocity for two-layer mild-slope equa-

tion, respectively.

Eq. (4.22) is the mild-slope equation for our two-layer fluid model with

the rigid-lid assumption being used as an approximation for the free surface.

In the ocean, internal gravity waves generally have quite small amplitudes at

the free surface [27]. Therefore, replacing the free surface with a rigid upper

boundary is reasonable to simplify the theoretical analysis without great loss

of accuracy [49].

Eq. (4.22) has the same form as the single-layer mild-slope equation

derived by Smith and Sprinks [1], except with different group velocity, Cg

and phase velocity, C. Because of the restoring force excited by the internal

deformation of the water layers of equal density is much smaller than that in

the case of surface waves, internal waves generally have smaller period and

length, slower speed than surface waves. If we let ρ1 = 0, then we see that the

phase velocity, C, and the group velocity Cg for the two-layer waves reduces

to C and Cg for the single-layer mild-slope equation. As a result, Eq. (4.22)

also reduces to the single-layer mild-slope equation. Thus, the single-layer

mild-slope equation is a special case for two-layer mild-slope equation, as we

have expected.
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4.2.2 Long waves propagating over a circular hump

Now, consider a train of plane long waves which propagates in two-layer fluids

with constant water depth h10 and h20 and is refracted by an axi-symmetric

hump-shaped shoal located on the ocean floor.

incident waves
h10

h20

h2(r)

x

z

x

y

b

a
r

0

d

p
1 O1

p
2
    O

2

z=h1

z= -h
2

z=0

Figure 4.2: A definition sketch of a hump located on the floor in two-layer

fluid systems

The cross-section of the hump is of the shape of a parabola and the surface

of the hump is formed through revolving the parabola around the vertical

axis of revolution, which is marked with the z coordinate of a Cartesian

coordinate system chosen with its origin located at the center of the hump

as demonstrated in Fig. 4.2. The parabolic hump surface intersects with the

ocean floor at z = −h2, resulting in a circle with its radius denoted as b, and

the height of the hump is controlled by a parameter d as shown in Fig. 4.2.

In the corresponding cylindrical coordinate system with r being the radial
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distance from the origin and θ being the angle measured counterclockwise

from the positive x−axis, the water depth for the lower layer is prescribed

by a parabolic function

h2 =

 (h20 − d)(1 + r2

a2
), r < b

(h20 − d)(1 + b2

a2
), r ≥ b

(4.25)

In Eq. (4.25), a is determined by a = b
√

(h20−d)
d

, for a given set of d and

h20 and a > b. Therefore, geometrically, a is the radius of the cross-sectional

circle of the paraboloid intersecting with a horizontal plane located below

the seabed. While d is used to control the height of the hump, either b or a

is used to control the horizontal dimension of the hump.

When the wavelength is much longer than the wave height, Eq. (4.22)

can be reduced to a long (shallow water) wave equation which takes the form

∇ · ((ρ2 − ρ1)h1h2

ρ1h2 + ρ2h1

∇η) +
σ2

g
η = 0 (4.26)

under the assumptions C ∼= Cg
∼=

√
g(ρ2−ρ1)h1h2

ρ1h2+ρ2h1
and σ2 ∼= gk2(ρ2−ρ1)h1h2

ρ1h2+ρ2h1
,

where g is the gravitational acceleration, h1 and h2 are the local water depth

for the upper and lower layer respectively, σ is the angular velocity of the

incident plane waves and k is the wave number. We shall now present an exact

solution as Zhu and Harun [11] did for the refraction of progressive waves on

the free surface of a single layer of fluid over an axi-symmetric hump-shaped

shoal located on the ocean floor. The Frobenius series expansion approach

we use here has also been used by Zhang and Zhu [25], and Suh et. al. [32].

It is convenient to adopt a cylindrical coordinate system (r, θ, z) with

x = r cos(θ) and y = r sin(θ), because the bottom topography of this problem

is axi-symmetric with respect to the z−axis. In this case, h2 is a function of

r only and a solution to Eq. (4.26) can be constructed via the separation of
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variables as

η =
∞∑
n=0

Rn(r) cos(nθ) (4.27)

with Rn(r) satisfying

(a2 + r2)(ρ1h2 + ρ2h1)r
2d

2Rn

dr2
+ ((a2 + r2)(ρ1h2 + ρ2h1) + 2ρ2h1r

2)r
dRn

dr

+(
(ρ1h2 + ρ2h1)

2

(ρ2 − ρ1)h1

v2r2 − n2(a2 + r2)(ρ1h2 + ρ2h1))Rn = 0 (4.28)

where v is defined as

v =
σa√

g(h21 − d)
(4.29)

The general solution of Eq. (4.28) can be obtained in terms of the Frobe-

nius series [35]:

Rn(r) =
∞∑

m=0

αm,nr
m+c (4.30)

with α0,n being unity and c being a constant to be determined by the indicial

equation. As shown in [35], it should be emphasized here that convergence

of the series solution is guaranteed at r < a. Therefore, the solution always

converges in the hump region with r < b. Solving Eq. (4.28) using the

method of Frobenius, we obtain the indicial equation, c2 − n2 = 0, which

yields two roots:

c = ±n (4.31)

These two distinct roots of the indicial equation lead to two sets of linearly

independent solutions:
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Rn,1 =
∞∑

m=0

αm,nr
m+n (4.32)

Rn,2 = Rn,1 ln r + βm,nr
m−n (4.33)

Since Rn,2 becomes singular at r = 0, it has to be discarded, with the

imposition of the condition that water surface elevation must be finite at the

origin.

Now, substituting Eq. (4.30) with c = n into Eq. (4.28) and collecting

the terms of the same order of r, we obtain

α1,n = α3,n = α5,n = 0 (4.34)

α2,n = − α0,n

a4(ρ1(h21 − d) + ρ2h1)((n+ 1)(n+ 2) + n+ 2− n2)

(2a2ρ1(h21 − d)(n(n− 1) + n− n2) +

ρ2h1a
2(n(n− 1) + 3n− n2 + γ1 + γ2 + γ3)) (4.35)

α4,n = − 1

a4(ρ1(h20 − d) + ρ2h1)((n+ 4)(n+ 3) + n+ 4− n2)

[(ρ1(h21 − d)(n(n− 1) + n− n2 + γ4 + γ5))α0,n

+(2a2ρ1(h21 − d)(n(n− 1)(n+ 2) + n+ 2− n2))α2,n

+(ρ2h1a
2((n+ 1)(n+ 2) + 3(n+ 2)− n2)

+γ1 + γ2 + γ3)α2,n] (4.36)

αm+6,n = −γ6αm,n + γ7αm+2,n + γ8αm+4,n

γ9
, with m = 0, 1, 2, ...

(4.37)

and
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γ1 =
µ2((ρ1)

2(h21 − d)a4

h1(ρ2 − ρ1)
(4.38)

γ2 =
2a4µ2ρ1ρ2
ρ2 − ρ1

(4.39)

γ3 =
µ2(ρ2)

2h1a
4

(h21 − d)(ρ2 − ρ1)
(4.40)

γ4 =
2γ1
a2

(4.41)

γ5 =
2γ2
a2

(4.42)

γ6 =
γ1
a4

(4.43)

γ7 = ρ1(h21 − d)((m+ n+ 2)(m+ n+ 1) +m+ n+ 2− n2

+γ4 + γ5) (4.44)

γ8 = 2a2ρ1(h20 − d)((m+ n+ 4)(m+ n+ 3) +m+ n+ 4− n2) +

a2ρ2h1((m+ n+ 4)(m+ n+ 3) + 3(m+ n+ 4)− n2) +

γ1 + γ2 + γ3 (4.45)

γ9 = a4(ρ1(h21 − d) + ρ2h1)((m+ n+ 6)(m+ n+ 5)

+m+ n+ 6− n2) (4.46)

where m denotes the number of recurrence solutions for Frobenius series

solution that we have to find until our solution is converged to a desire point,
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while n corresponds to the wave propagation modes.

For the general solution in the finite region with variable depth r < b, the

water surface elevation can be written as:

η2 =
∞∑
n=0

BnRn cosnθ (4.47)

where Bn is a set of complex constants to be determined by matching the

solution in this region with that in the region of constant water depth. The

undisturbed long-crested incident waves propagate in the positive x-direction

and its surface elevation is given by [4]:

η0 = aie
ikx = ai

∞∑
n=0

inεnJn(kr) cosnθ (4.48)

where ai is the incident wave amplitude and i =
√
−1, Jn is the Bessel

function of the first kind of order n, and εn is the Jacobi symbol defined by

εn =

 1, n = 0

2, n ≥ 1
(4.49)

In the constant depth region (r ≥ b), the solution is well known as given

in [3],

η1 = η0 +
∞∑
n=0

DnH
(1)
n (kr) cosnθ (4.50)

where Dn is some unknown coefficients to be determined later, and H
(1)
n is

the Hankel function of the first kind of order n.

The solutions in these two sub-regions must be matched on the common

boundary r = b to ensure the continuity of wave heights and the hydrody-

namic pressure across it [5]. Thus, it requires that
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η1 = η2 (4.51)

∂η1
∂r

=
∂η2
∂r

(4.52)

Therefore, from Eqs. (4.47)-(4.52), the coefficients Bn and Dn can be

determined as

Bn = aiki
nεn

Jn(kb)H
′(1)
n (kb)− J ′

n(kb)H
(1)
n (kb)

kRn(b)H
′(1)
n (kb)−R′

n(b)H
(1)
n (kb)

(4.53)

Dn = aii
nεn

kJ ′
n(kb)Rn(b)− Jn(kb)R

′
n(b)

H
(1)
n (kb)R′

n(b)− kH
′(1)
n (kb)Rn(b)

(4.54)

in which the primes denote the derivatives with respect to the argument. By

substituting these coefficients back into Eqs. (4.47) and (4.50), the water

surface elevation for the entire domain can be computed. Some results of

specific calculations are presented in the next section.

4.3 Results and Discussions

In this section, we present an example to compare our new analytic solution

for a special case of the mild-slope equation in two-layer fluid model i.e.

taking ρ1/ρ2 = 0 with the single-layer mild-slope equation discussed in Zhu

and Harun [11]. For ρ1/ρ2 ̸= 0, we have compared our analytical solution with

a numerical solution as part of the verification process. Then, we examine

the effect of wave refraction when the ratio of the densities, ρ1/ρ2 and the

ratio of upper and lower water depth, h10/h20 are varied. Lastly, using the

new solution, we discuss the effect of hump dimensions on the wave refraction

process over a hump.
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Figure 4.3: Comparison of relative wave amplitudes between single-layer and

two-layer fluid models with ρ1 = 0 along x-axis at y=0

4.3.1 Comparison with the single-layer fluid model

Since the mild-slope equation for a two-layer fluid model should reduce to

that derived from a single-layer model when ρ1 = 0, it would be interesting

to compare both models, as part of the verification process.

We set ρ1 = 0, ρ2 = 5, h10 = h20 = 4.8, and take the remaining param-

eters exactly the same as those used in single-layer fluid model discussed in

Zhu and Harun [11], i.e, b/L = 0.5, and the wave length, L = 120.4. Since,

the analytic solution for η involves an infinite series, it must be truncated for

the purpose of numerical solution, so we set N = 70 and M = 30, because

the solution had already 100% converged with these values. The Bessel and

Hankel functions in the analytical solution were computed using the built-in

subroutines in MATLAB.

Fig. 4.3 and Fig. 4.4 show the comparison of the relative wave ampli-
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Figure 4.4: Comparison of relative wave amplitudes between single-layer and

two-layer fluid models with ρ1 = 0 along y-axis at x=0

tudes along the x- and y-axes respectively for the two- and single-layer fluid

models. The results in this comparison are presented in terms of dimen-

sionless coordinates, x/L and y/L, and the centers of the hump is located

at the origin. As expected, both solutions are identical and became hardly

distinguishable. With the excellent agreement between these solutions, we

are confident that the derivation of our new analytical solution is correct.

4.3.2 Comparison with the numerical solution

In order to further verify the newly derived mild-slope equation for the case

ρ1/ρ2 ̸= 0, the new analytic solution is also compared with a numerical

solution.

Eq. (4.28) is only the ordinary differential equation, which can be easily

solved numerically using the 2nd-order central finite difference scheme, with
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two boundary conditions being imposed at the center of the region r = 0 and

the outer boundary of the region r = b. At r = b, the boundary condition

can be easily obtained by the matching condition in Eqs. (4.51) and (4.52).

The boundary condition at r = 0, can be determined by

dRn

dr
= 0 (4.55)

which reflects the fact that the slope of the wave elevation at the origin must

be continuous.

Figs. 4.5 and 4.6 show the comparison between the analytic and numerical

solutions for the case of h10 = h20 = 4.8, d = 1.6, a/L =
√
0.5, b/L = 0.5.

When the grid spacing was reduced to ∆r = 0.025, the numerical solution and

analytic solution became hardly distinguishable. Such an excellent agreement

is manifested through Fig. 4.5 and Fig. 4.6. Therefore, this adds additional

confidence on the correctness of our derivation.

4.3.3 Effect of the density ratio

In this section, we discuss the effect of the wave refraction when the ratio of

the densities, ρ1/ρ2 is varied, while other parameters are held constant.

To examine this, we set ρ1/ρ2 = 0, 1/5, 2/5, 3/5, and 4/5 with the hump

radius being fixed at b/L = 0.5 and h10 = h20 = 4.8. The comparisons

for each value of ρ1/ρ2 along the x- and y-axes are shown in Fig. 4.7 and

Fig. 4.8, respectively. It can be clearly seen that, an increase in the ratio

of the densities, ρ1/ρ2 results in the smaller relative wave amplitudes. This

phenomenon occurs because there is a smaller density difference between the

two layers with the increase of the ratio, resulting in a weaker restoring force

for both layers.
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Figure 4.5: Comparison of relative wave amplitudes using numerical and

analytical solution when ρ1/ρ2 are varied along the x-axis at y=0

4.3.4 Effect of the Layer Thickness

Next, we study the effect of the wave refraction when the ratio of the upper

and lower water depth, h10/h20 is varied, while the total water depth and

other parameters remain unchanged.

Fig. 4.9 and Fig. 4.10 are the contour plots of the relative wave ampli-

tudes for waves propagating over a hump with ρ1/ρ2 = 3/5 and h10/h20 = 1/2

and h10/h20 = 2.0, respectively. As can be seen, the wave patterns are quite

different for these two cases especially near the hump area. To make a better

comparison, we have also plotted out the relative wave amplitude along the

x- and y-axis, respectively, in Figs. 4.11 and 4.12.

Figs. 4.11 and 4.12 illustrate the relative wave amplitude for three differ-

ent values of h10/h20, with ρ1/ρ2 = 3/5 along the x- and y-axes to examine

the effects of the layer thickness to the wave refraction. Here, we set the
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Figure 4.6: Comparison of relative wave amplitudes using numerical and

analytical solution when ρ1/ρ2 are varied along the y-axis at x=0

others parameters as before and only vary the upper and lower water depth

in such a way that the total water depth is kept the same.

As can be clearly seen from both figures, the relative wave amplitude has

been amplified more when the upper layer is thicker than the lower layer,

i.e h10/h20 = 2.0. This is because, when the lower layer has less fluid than

the upper layer, the incident waves can “feel” the bottom topography more,

as the interface is closer to the seabed. Therefore, the interfacial waves can

refract more, resulting in a bigger relative wave amplitude. As a contrast,

when the lower layer is thicker than upper layer, i.e h10/h20 = 1/2, there is

more fluid in lower layer, and thus the influence of seabed is less, resulting

in the smaller relative wave amplitude.
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Figure 4.7: Comparison of relative wave amplitudes when ρ1/ρ2 are varied

along the x-axis at y=0 by using the analytic solution

4.3.5 Topographic Effects

After observing the effects of the relative wave amplitude with the various

values of ρ1/ρ2 and h10/h20, it is interesting to examine the effects of the

wave refraction when the dimension of the bottom topography is varied.

In Figs. 4.13, and 4.14 we plot the relative wave amplitudes along the

x− and y−axes for different hump radii, b/L = 0.25, 0.5, 0.75 and 1.0 with

a fixed d = 1.6 and h20 = 4.8 with ρ1/ρ2 = 3/5, respectively.

Along the x−axis, the relative wave amplitude increases with the increase

of the hump radius. For a small hump radius, the maximum relative wave

amplitude occurs in front of the hump (as shown by the dotted line in Fig.

4.13). As the radius of the hump, b/L is increased, the location of the

maximum relative wave amplitude moves towards the center of the hump,

passes it, and then continues to move into the lee region. This is due to the
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Figure 4.8: Comparison of relative wave amplitudes when ρ1/ρ2 are varied

along the y-axis at x=0 by using the analytic solution

0.98

0.98

0.98

0.98
0.98

0.98

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1.01

1.01

1.01

1.01

1.01

1.01

1.01

1.01

1.01

1.01

1.02

1.02
1.03

x/L

y/
L

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

Figure 4.9: Contour plots of relative wave amplitude for waves propagating

over a hump with ρ1/ρ2 = 3/5 and h10/h20 = 1/2
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Figure 4.10: Contour plots of relative wave amplitude for waves propagating

over a hump with ρ1/ρ2 = 3/5 and h10/h20 = 2
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Figure 4.11: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

x-axis with h10/h20 varied
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Figure 4.12: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

y-axis with h10/h20 varied

concentration of wave energy in the lee region of an obstacle, as a result of

refractive focusing, when the disturbance of the obstacle is sufficiently large.

However, along the y−axis, as shown in Fig. 4.14, at the origin, the relative

wave amplitude for the biggest hump size, b/L = 1.0, is lower than those

with b/L = 0.5 and b/L = 0.75, as a result of maximum wave amplitude

moves backward.

Next, we discuss the effects of the wave refraction when the height of the

hump, d is varied. Fig. 4.15 and Fig. 4.16 show the relative wave amplitude

along the x− and y- axes, respectively, for the cases of d = 0.5, 1.0, 1.5,

and 2.0 with the hump radius being fixed at b/L = 0.5, ρ1/ρ2 = 3/5, and

h10 = h20 = 4.8. As can be clearly seen from Fig. 4.15 and Fig. 4.16, as the

height of the hump increases, the relative wave amplitude becomes larger as

expected.
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Figure 4.13: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

the x-axis with b/L varied

For a hump with a smaller hump height, d, the refraction effects are weak,

resulting in an almost even distribution of wave heights across the hump.

On the other hand, for a higher hump height, d, there is more refractive

focusing and thus the reaction to the disturbances behind the hump is larger

in comparison with the lower d. For example, along the x−axis, as we increase

the height of the hump, from 0.5 to 1.0, the maximum value of relative

wave amplitude obtained has increased too from 1.04 to 1.09, and if we

further increase the hump height to 2.0, the maximum value of relative wave

amplitude obtained is about 1.35. The same phenomenon is occurred along

the y-axis, as we can see that the increasing of the hump height will increase

the relative wave amplitude as well.
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Figure 4.14: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

the y-axis with b/L varied

4.4 The Mild-slope Equation For The Prop-

agation Of Interfacial Waves In A Two-

layer Fluid Model With Higher-order Terms

Included

In this Section, we follow Massel [2] and use Galerkin-Eigenfunction Method

to derive the extended mild-slope equation with higher-order terms propor-

tional to the bottom slope and bottom curvature included. Like Massel, we

also focus our attention to the propagating waves only, leaving the discussion

of the evanescent modes to the future work, because these modes only rep-

resent localized effect anyway and they disappear exponentially away from

the disturbance.
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Figure 4.15: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

the x-axis with d varied

4.4.1 Derivation for the extended two-layer fluid model

Considering the solutions of Eqs. (4.2) - (4.7), we expand the ϕ1(x, y, z) and

ϕ2(x, y, z) in terms of N depth-dependant functions f1,n(z) and f2,n(z). The

functions of f1,n(z) and f2,n(z) are continously differentiable and satisfy the

boundary conditions as shown in Eqs. (4.13) - (4.17). Thus, these functions

can be written as:

f1,n(z) =
cos(αn(z − h1))

sin(αnh1)
(4.56)

f2,n(z) =
cos(αn(z + h2))

sin(αnh2)
(4.57)

where f1,n denotes the eigenfunction associated with the upper layer and

f2,n denotes the eigenfunction associated with the lower layer as defined in
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Figure 4.16: Comparison of relative wave amplitudes with ρ1/ρ2 = 3/5 along

the y-axis with d varied

Eq. (4.10) and Eq. (4.11), respectively, and the wave numbers, αn, are the

solution of the following dispersion relation:

λ =
ω2

g
=

αn(ρ2 − ρ1)

ρ1 cot(αnh1) + ρ2 cot(αnh2)
(4.58)

Dispersion relation in Eq. (4.58) has an infinite discrete set of real roots

±αn and a pair of imaginary roots α0 = ±ik. The function with n = 0,

corresponding to the propagating wave mode, while the function with n ≥ 1,

represent to the evanescent modes. However, as we stated before, the func-

tions corresponding to the evanescent modes will not discussed here, because

these modes only represent localized effects and they disappear exponentially

away from the disturbance.

Thus, we define an inner product of two functions in the following manner
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< f1,m, f1,n > =

∫ h1

0

(f1,m · f1,n)dz (4.59)

< f2,m, f2,n > =

∫ 0

−h2

(f2,m · f2,n)dz (4.60)

Therefore, we have

< f1,m, f1,n > =

 h1

2sin2(αmh1)
(1 + sin(2αmh1)

2αmh1
), m = n

0, m ̸= n
(4.61)

< f2,m, f2,n > =

 h2

2sin2(αmh2)
(1 + sin(αmh2)

2αmh1
), m = n

0, m ̸= n
(4.62)

The Galerkin approach assumes that function ϕ1(x, y, z) and ϕ2(x, y, z)

can be approximated by an expansion

ϕ1(x, y, z) =
N∑

n=0

φ1n(x, y)f1,n(z) (4.63)

ϕ2(x, y, z) =
N∑

n=0

φ2n(x, y)f2,n(z) (4.64)

in which the functions φ1,n and φ2,n should be found from the conditions of

orthogonality of functions f1,n(z) and f2,n(z) and the left hand side of Eqs.

(4.8) and (4.9) as:

φ1,n(x, y) = i
σ

αn

η(x, y) (4.65)

φ2,n(x, y) = −i
σ

αn

η(x, y) (4.66)
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Using the orthogonality condition and after substitute Eqs. (4.61) and

(4.63) into Eq. (4.2) for the upper layer case, we obtain

N∑
n=0

< f1,m(z), [∇2(φ1,n(x, y)f1,n(z))] > = 0 (4.67)

or can be written as∫ h1

0

(f1,m(z)
N∑

n=0

[f1,n(z)∇2φ1,n∇2f1,n(z) + 2∇φ1,n · ∇f1,n(z)

+φ1,n
∂2f1,n(z)

∂z2
]) dz = 0 (4.68)

for m = 0, 1, ...M and n = 0, 1, ...N .

Substituting Eq. (4.63) into Eq. (4.3), we then have:

N∑
n=0

∂f1,n
∂z

φ1,n + f1,n∇h1∇φ1,n +∇f1,n · ∇h1φ1,n = 0, at z = h1(x, y)

(4.69)

Using Green’s formula

∫ h1

0

f1,m
∂2f1,n
∂z2

dz = −
∫ h1

0

∂f1,m
∂z

∂f1,n
∂z

dz + f1,m
∂f1,n
∂z

|z=h1
z=0 (4.70)

and the boundary conditions in Eqs. (4.6) and (4.69) into Eq. (4.68), we

have

N∑
n=0

∫ h1

0

f1,mf1,n∇2φ1,ndz +

∫ h1

0

2∇φ1,n · ∇f1,m(f1,n)dz +∫ h1

0

(f1,m∇2f1,n + f1,m
∂2f1,n
∂z2

)φ1,ndz = 0 (4.71)

This equation can be written in the following matrix form:

A1∇2φ1,n +B1 · ∇φ1,n + C1φ1,n = 0 (4.72)
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where elements of A1, B1, and C1 are defined as:

A1 =

∫ h1

0

f1,mf1,n dz =< f1,m, f1,n > (4.73)

B1 =

∫ h1

0

2∇f1,mf1,ndz = 2· < ∇f1,m, f1,n > (4.74)

C1 =

∫ h1

0

(f1,m∇2f1,n + f1,m
∂2f1,n
∂z2

)dz

= < f1,m,∇2f1,n > + < f1,m,
∂2f1,n
∂z2

> (4.75)

The diagonal terms of matrix A1 ,B1, and C1 can be written as

a1,n,n = < f1,n, f1,n > (4.76)

b1,n,n = ∇(a1,n,n),

=
∂a1,n,n
∂h1

+
χ1,n

χn

∂a1,n,n
∂αn

∇h1 +
χ2,n

χn

∂a1,n,n
∂αn

∇h2 (4.77)

c1,n,n = < f1,n,∇2f1,n > − <
∂f1,n
∂z

,
∂f1,n
∂z

> +f1,n
∂f1,n
∂z

|z=h1

− f1,n
∂f1,n
∂z

|z=0 (4.78)

where

χ1,n = α2
n(ρ1 − ρ1cot

2(αnh1)) (4.79)

χ2,n = α2
n(ρ2 − ρ2cot

2(αnh2)) (4.80)

χn = ρ1cot(αnh1) + ρ2cot(αnh2)− αnρ1h1 + αnρ1h1cot
2(αnh1)

− αnρ2h2 + αnρ2h2cot
2(αnh2) (4.81)
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< f1,n,∇2f1,n > = < f1,n,
∂2f1,n
∂h2

1

> (∇h1)
2+ < f1,n,

∂2f1,n
∂α2

n

> (∇αn)
2

+ 2 < f1,n,
∂2f1,n
∂h1∂αn

> (∇h1)(∇αn)+ < f1,n,
∂f1,n
∂h1

> (∇2h1)

+ < f1,n,
∂f1,n
∂αn

> (∇2αn) (4.82)

<
∂f1,n
∂z

,
∂f1,n
∂z

> =
α2
nh1

2sin2(αnh1)
(1− sin(2αnh1)

2αnh1

) (4.83)

f1,n
∂f1,n
∂z

|z=h1 − f1,n
∂f1,n
∂z

|z=0 = f1,n(∇f1,n∇h1)z=h1

− λcot(αnh1)
ρ2coth(αnh2) + ρ1cot(αnh1)

ρ2 − ρ1
(4.84)

By using the same approach, we can obtain the equation for the lower

layer as:
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A2 = a2,n,n

= < f2,n, f2,n >

=
h2

2sin2(αnh2)
(1 +

sin(2αnh2)

2αnh2

) (4.85)

B2 = b2,n,n

= ∇(a2,n,n)

=
∂a2,n,n
∂h2

+
χ2,n

χn

∂a2,n,n
∂αn

(∇h2) + (
χ1,n

χn

∂a2,n,n
∂αn

)(∇h1) (4.86)

C2 = c2,n,n

= < f2,n,∇2f2,n > − <
∂f2,n
∂z

,
∂f2,n
∂z

>

+ f2,n
∂f2,n
∂z

|z=−h2 + f2,n
∂f2,n
∂z

|z=0 (4.87)

where

< f2,n,∇2f2,n > = < f2,n,
∂2f2,n
∂h2

2

> (∇h2)
2+ < f2,n,

∂2f2,n
∂α2

n

> (∇αn)
2

+ 2 < f2,n,
∂2f2,n
∂h2∂αn

> (∇h2)(∇αn)+ < f2,n,
∂f2,n
∂h2

> (∇2h2)

+ < f2,n,
∂f2,n
∂αn

> (∇2αn) (4.88)

<
∂f2,n
∂z

,
∂f2,n
∂z

> =
α2
nh2

2sin2(αnh2)
(1− sin(2αnh2)

2αnh2

) (4.89)

f2,n
∂f2,n
∂z

|z=−h2 + f2,n
∂f2n
∂z

|z=0 = f2,n(∇f2,n∇h2)z=−h2

− λcot(αnh2)
ρ2cot(αnh2) + ρ1cot(αnh1)

ρ2 − ρ1
(4.90)
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Thus, we have two set of equations

A1∇2φ1,n +B1 · ∇φ1,n + C1φ1,n = 0 (4.91)

A2∇2φ2,n +B2 · ∇φ2,n + C2φ2,n = 0 (4.92)

By letting n = m = 0 for propagating wave modes and substituting back

Eqs. (4.65) and (4.66) into Eqs. (4.91) and (4.92) and after some algebraic

manipulations, we have

(A1 + A2)∇2η + (B1 +B2) · ∇η + (C1 + C2)η = 0 (4.93)

where

(A1 + A2) = g[
ρ1(kh1 + coth(kh1)sinh

2(kh1))

ksinh2(kh1)(ρ1coth(kh1) + ρ2coth(kh2))

+
ρ2(kh2 + coth(kh2)sinh

2(kh2))

ksinh2(kh2)(ρ1coth(kh1) + ρ2coth(kh2))
]

= CCg (4.94)

(B1 +B2) = ∇(A1 + A2)

= ∇CCg (4.95)

(C1 + C2) = k2CCg + [β
(1)
1 (∇h1)

2 + β
(2)
1 (∇2h1)

+β
(1)
2 (∇h2)

2 + β
(2)
2 (∇2h2) + β(3)(∇h1∇h2)] (4.96)

in which β
(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 , and β(3) are the complicated expressions involv-

ing the evaluations of the inner products and products of wave numbers.

These expressions are defined as:
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β
(1)
1 = I

(1)
1 + (

χ1,0

χ3
0

)2I
(2)
1 + 2(

χ1,0

χ3
0

)I
(3)
1 + (

χ3,0

χ3
0

)I
(4)
1 + (

χ1,0

χ3
0

)2I
(5)
2 + (

χ3,0

χ3
0

)I
(4)
2

− coth(kh1)

sinh2(kh1)
(k + h1

χ1,0

χ0

) (4.97)

β
(2)
1 = I

(5)
1 + (

χ1,0

χ3
0

)I
(4)
1 + (

χ1,0

χ3
0

)I
(4)
2 (4.98)

β
(1)
2 = I

(1)
2 + (

χ2,0

χ3
0

)2I
(2)
2 + 2(

χ2,0

χ3
0

)I
(3)
2 + (

χ4,0

χ3
0

)I
(4)
2 + (

χ2,0

χ3
0

)2I
(5)
1 + (

χ4,0

χ3
0

)I
(4)
1

− coth(kh2)

sinh2(kh2)
(k + h2

χ2,0

χ0

) (4.99)

β
(2)
2 = I

(5)
2 + (

χ2,0

χ3
0

)I
(4)
2 + (

χ2,0

χ3
0

)I
(4)
1 (4.100)

β(3) = 2(
χ1,0

χ3
0

)I
(3)
2 + (

χ5,0

χ3
0

)I
(4)
2 − h2(

χ1,0

χ0

)
coth(kh2)

sinh2(kh2)

+2(
χ2,0

χ3
0

)I
(3)
1 + (

χ5,0

χ3
0

)I
(4)
1 − h1(

χ2,0

χ0

)
coth(kh1)

sinh2(kh1)
(4.101)

in which I
(1)
1 , I

(2)
1 , I

(3)
1 , I

(4)
1 , I

(5)
1 , I

(1)
2 , I

(2)
2 , I

(3)
2 , I

(4)
2 , and I

(5)
2 are some inner

products while χ0, χ1,0, χ2,0, χ3,0, χ4,0, and χ5,0 are products of wave numbers,

defined in the Appendix A.

If we omit all the terms that contain the higher-order terms, (∇h1)
2,

(∇2h1), (∇h2)
2, (∇2h2), and (∇h1∇h2), our results, (Eq. (4.93)), reduce to

the mild-slope equations for the two-layer fluid model discussed in Section

4.2 (Eq. (4.22)). And, if we set ρ1 = 0, this equation reduces to the Massel’s

extended mild-slope equation, as a special case.
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4.4.2 Numerical Solution and Results

In this section, we shall show some numerical solution results obtained from

the extended mild-slope equation for a two-layer fluid model. In order to

verify the extended mild-slope equation with higher-order terms included, the

new solution is compared with the mild-slope equation with-out the higher-

order terms included which is already discussed in the earlier section.
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Figure 4.17: Comparison of relative wave amplitudes with high-order terms

included(- -) and without high-order terms included (-)

The numerical solution in this section is obtained exactly by following

the solution approach described in Section 4.3, except with the higher-order

terms included in this solution. Therefore, we set ρ1/ρ2 = 0, 1/5, 2/5, 3/5,

and 4/5 with the hump radius being fixed at b/L = 0.5 and h10 = h20 =

4.8. In Fig. 4.17, we display the comparison of relative wave amplitude

with and without the higher-order terms included, while Table 4.1 shows the

percentage difference between each graph at r=0.1, for each ρ1/ρ2 value.
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ρ1/ρ2 with higher-order without higher-order difference percentage%

0 0 0 0

1/5 1.195 1.192 0.086

2/5 1.168 1.160 0.171

3/5 1.150 1.142 0.696

4/5 1.139 1.129 0.878

Table 4.1: Comparison of relative wave amplitude with higher-order and

without higher-order terms

From the table, we can obviously seen that, for the special case, i.e

ρ1/ρ2 = 0, the extended mild-slope equation with higher-order terms included

reduces to the Massel’s extended mild-slope equation, thus no difference is

observed. Therefore, the relative wave amplitude for this case is shown to

be identical to each other. When the ρ1/ρ2 is increased gradually from zero

to 4/5, we can see that the relative wave amplitude with the higher-order

terms included also becomes larger than that obtained from the mild-slope

equation without the higher-order terms as shown in Fig. 4.17 and Table 4.1.

This shows that higher-order terms indeed induces more albeit small refrac-

tion. However, as can be seen in Table 4.1, the contribution of higher-order

terms for the parameter we have chosen here, is very small, usually less than

1%.

4.5 Conclusions

We have derived the mild-slope equation for a two-layer fluid model with the

rigid-lid approximation used on the free surface. This analytic solution was

derived based on the single-layer mild-slope equation obtained by Smith and
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Sprinks [1], and we have found that the single-layer mild-slope equation is

the special case for a two-layer mild-slope equation when the density of the

upper layer, ρ1 equal to zero, meaning that the two-layer mild-slope equation

should reduce to a single-layer mild-slope equation when ρ1 = 0. We then

made a comparison for both solutions, by letting ρ1 = 0 for the two-layer

fluid equation, and found that the two solutions were identical and hardly

distinguishable, as expected.

Furthermore, we have also examined and discussed the effects of the wave

refraction when the ratio of densities, ρ1/ρ2 and the ratio of the upper and

lower layer water depths, h10/h20 are varied. When the ratio of the densi-

ties, ρ1/ρ2 is increased, the relative wave amplitude decreases. This is be-

cause, when ρ1/ρ2 increases, the density difference between each layer became

smaller, resulting in a weaker restoring force. Thus, the weaker restoring force

induces a smaller relative wave amplitude. For the test of the h10/h20, the

relative wave amplitude increases with the increasing of h10/h20.

We have also observed and discussed the effect of the hump dimension

when the radius, b/L and the height of the hump, d are varied. Here, we

found that an increase in the radius and the height of the hump led to an

increase of the relative wave amplitude behind the hump as well.

Finally, we have derived an extended the mild-slope equation for the

propagation of interfacial waves with higher-order terms proportional to the

bottom slope and bottom curvature included. We found that the amplitude

of the refracted waves calculated from the equation with the higher-order

terms included is slightly higher than that calculated without the higher-

order terms.
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Chapter 5

Wave diffraction around

floating structures

5.1 Overview

In recent years, there has been a great deal of interest in renewable energy

resources with regards to combatting climate changes. One of the renewable

energy resources comes from ocean waves. Many researchers are astounded

by the force and energy extracted from the ocean waves. Renewable analysts

believe that the global power potential represented by waves that hit all

coastlines worldwide is estimated to provide up to 1 TW (1 terawatt=1012

watt) [50]. Therefore, ocean waves represent an enormous source of renewable

energy as it is believed that the market potential for energy from the waves

is in a very high demand if the technology to extract the energy from waves

are successfully developed [51].

A variety of technologies have been proposed to capture the energy from

the waves. These technologies can be installed either in onshore or offshore

locations. Offshore systems are situated in deep water, typically of more than
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40 meters water depth. Whereas, onshore systems are built along shorelines

and extract the energy in breaking waves. One of the technologies to extract

the energy from ocean waves that is becoming popular among the researchers

in the recent years is oscillating water column (OWC) [16]. The OWC con-

sists of a partially submerged concrete or steel structure that has an opening

to the sea below the waterline. It encloses a column of air above a column of

water. As waves enter the air column, they cause the water column to rise

and fall. This alternately compresses and depressurizes the air column. As

the wave retreats, the air is drawn back through the turbine as a result of the

reduced air pressure on the ocean side of the turbine. Fig. 5.1 is one of the

example of an OWC prototype installed by Oceanlinx Limited Australia at

Port Kembla, NSW, Australia. This device has successfully converted ocean

wave energy into electricity in a number of tests being conducted since it was

installed.

Early theories for OWC is introduced by Garret [52], who solved the first-

order diffraction problem for a suspended cylinder in ocean of a finite depth.

Since then, various mathematical approaches of problems relating to OWC

devices have been discussed in the literature over the years. For examples,

many authors had presented their work related to a simple two-dimensional

OWC models, such as Evans [53, 54], Smith [55], and Sarmento and Falcão

[56]. Recently, Falcão and Rodrigues [57] and Falcão [58] had developed a

stochastic model to evaluate the average performance of an OWC energy

device equipped with Wells turbine.

More recently, Martin-rivas and Mei [15] have carried out a theoretical

study of a single OWC being installed at the tip of a breakwater, with vertical

circular cylinder open in all direction. In the same year, they also presented

the linearized theory of an OWC installed on a straight coast with the vertical
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Figure 5.1: An OWC prototype locate at Port Kembla, NSW, Australia

cylinder half embedded in the cliff and open on the seaside [14].

As the last object in this thesis, in this chapter, the mild-slope equation is

further extended to be applied to the OWC problem. By removing the rigid

lid approximation that we have used in Chapter 4 (for readers information,

much of the work described in Chapter 4 have been discussed in Zhu and

Harun [12, 13]), the two-layer mild-slope equation for two-layer fluid with free

surface on the top is derived. By utilizing this equation, we then construct

an analytic solution for long waves propagating over a circular hump located

at the bottom of an ocean with a hollow circular cylinder floating on the top

of the free surface. Then, in Section 5.3.1, an example is given to compare

our new analytic solution in a special case of the two-layer fluid model, i.e

h2 = 0 with the solution obtained by Mac Camy and Fuchs [3]. To further

verified our solution, we have also compared our solution when the hump
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height, d is small enough with the flat bottom in Section 5.3.2. Then, by

using the new solution, we then discuss the effects of the hump dimensions

and the hollow cylinder structures on the wave diffraction. Finally, the main

findings in this chapter will be briefly summarized at the end of this chapter.

5.2 Analytic Solution

In Chapter 4, we have already discussed and presented the analytical solution

for two-layer fluid propagating over a circular hump with rigid lid approxi-

mation being imposed at the free surface. By using what we have developed

before for the two-layer model in the earlier chapter, we then presented the

derivation of the mild-slope equation in a two-layer fluid model with free

surface on the top by removing the rigid lid approximation that have been

discussed earlier in Chapter 4. For the OWC problem, we will treat our case

as for a single layer problem. Then, we will used the results that we have

derived for the mild-slope equation in a two-layer fluid to solve an OWC

problem. The reason that we have solved our problem using the two-layer

model is, we need to satisfy all the boundary conditions that exist in this

case. By using the two-layer fluid model, it is much easier to determine the

boundary condition in both layers. Hence, in this section, first, the two-layer

fluid model is presented. Then, we use the result to derive an analytic solu-

tion for long waves that are propagating over a circular hump and also over

a flat bottom with a hollow cylinder located at the free surface.

5.2.1 The two-layer fluid model

Considering a two-layer system depicted in Fig. 5.4, under a Cartesian Co-

ordinate system in which x and y denote a pair of orthogonal horizontal
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coordinates and z denotes the vertical coordinate measured positively up-

wards from the free surface. By assuming that the two fluids are immiscible,

the flow within each layer is irrotational, the free surface and the interfa-

cial waves are of small amplitude relative to their wavelength, the velocity

potential Φ(x, y, z, t) can be written as

Φ(x, y, z, t) =

 Φ1(x, y, z, t), −h1 ≤ z ≤ 0,

Φ2(x, y, z, t), −h ≤ z ≤ −h1

(5.1)

z=0

h1  p1 O1

h2  p2  O2

ni(x,y)

x

z=-h

z=-h1

nf(x,y)

Figure 5.2: A definition sketch for a two-layer fluid with free surface on top

The usual assumptions of the the linearized theory and removal of the

harmonic time dependant e−iωt lead to the equations for the time dependant

velocity potential, ϕ(x, y, z)

ϕ(x, y, z) =

 ϕ1(x, y, z), −h1 ≤ z ≤ 0,

ϕ2(x, y, z), −h ≤ z ≤ −h1

(5.2)

These equations therefore can be solved by using the following conditions

on all the boundaries of the domain:
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∂2ϕ1

∂z2
+∇2ϕ1 = 0, −h1 ≤ z ≤ 0 (5.3)

∂ϕ1

∂z
−Kϕ1 = 0, z = 0 (5.4)

∂ϕ1

∂z
=

∂ϕ2

∂z
, z = −h1 (5.5)

ρ1(
∂ϕ1

∂z
−Kϕ1) = ρ2(

∂ϕ2

∂z
−Kϕ2), z = −h1 (5.6)

∂ϕ2

∂z
+∇h · ∇ϕ2 = 0, z = −h (5.7)

∂2ϕ2

∂z2
+∇2ϕ2 = 0, −h ≤ z ≤ −h1 (5.8)

where K = ω2/g, ∇ = (∂/∂x, ∂/∂y), g is the gravitational acceleration, and

the densities and the waves heights of the upper and lower fluid layers are

denoted by ρ1, h1, and ρ2, h2 respectively, with ρ1 ≤ ρ2 and h = h1 + h2.

Using the separation of variables, we set ϕj(x, y, z) = Xj(x, y)Zj(z), in

the equations above, where j= 1,2, and we obtained

∂2Z1

∂z2
− k2Z1 = 0, −h1 ≤ z ≤ 0 (5.9)

∂Z1

∂z
−KZ1 = 0, z = 0 (5.10)

∂Z1

∂z
=

∂Z2

∂z
, z = −h1 (5.11)

ρ1(
∂Z1

∂z
−KZ1) = ρ2(

∂Z2

∂z
−KZ2), z = −h1 (5.12)

∂Z2

∂z
= 0, z = −h (5.13)

∂2Z2

∂z2
− k2Z2 = 0, −h ≤ z ≤ −h1 (5.14)

87



a direct solution for these equations are

Z1 = k cosh(kz) +K sinh(kz), −h1 ≤ z ≤ 0 (5.15)

Z2 =
K cosh(kh1)− k sinh(kh1)

sinh(kh2)
cosh(k(z + h)), −h ≤ z ≤ −h1

(5.16)

with the wave number k satisfying the dispersion relation

ω4(ρ1 + ρ2 coth(kh1) coth(kh2))− ω2gkρ2(coth(kh1) + coth(kh2)

+g2k2(ρ2 − ρ1) = 0 (5.17)

Since Eq. (5.17) is a quadratic in ω2, there are two possible roots of ω.

These two roots correspond to each layer of the fluids, one is for the upper

layer and another one is for the lower layer. Eq. (5.17) can also be reduced

to a single-layer fluid when ρ1 = ρ2 [33].

5.2.2 The Mild-slope equation in a two-layer fluid model

By assuming that the variation of water depth is moderate, the velocity

potential can be written as

ϕ1(x, y, z) = i
g

ω
ηfZ1, −h1 ≤ z ≤ 0 (5.18)

ϕ2(x, y, z) = i
g

ω
ηiZ2, −h ≤ z ≤ −h1 (5.19)

and the relationship between ηf and ηi is given by

ηf
ηi

=
K

k sinh(kh1)−K cosh(kh1)
(5.20)
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with ηf and ηi are the free surface waves elevation and interfacial waves eleva-

tion, respectively (the full derivation for Eq. (5.20) can be find in Appendix

C). Then, ηf and ηi can be written as

ηf = aie
i(kx−ωt), −h1 ≤ z ≤ 0 (5.21)

ηi = bie
i(kx−ωt), −h ≤ z ≤ −h1 (5.22)

where ai and bi are the incident wave amplitudes for the free and interfacial

waves respectively.

Considering Eq. (5.9) and Eq. (5.14) as an ordinary differential equation

in z, and applying the integration by substitution, we have

∫ 0

−h1

(k2ϕ1Z1 + Z1∇2ϕ1)dz +

∫ −h1

−h

(k2ϕ2Z2 + Z2∇2ϕ2)dz

= −(Z1∇h1 · ∇ϕ1)z=0 − (Z2∇h · ∇ϕ2)−h (5.23)

By calculating ∇ϕ1, ∇2ϕ1, ∇ϕ2, and ∇2ϕ2 from Eqs. (5.18) and (5.19),

then substituting back into Eq. (5.23), we have obtained by neglecting the

higher-order terms, the equation for the free surface waves as

∇ · (A1 · ∇ηf ) + k2A1ηf +∇ · (A2 · ∇ηi) + k2A2ηi = 0 (5.24)
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where

A1 =

∫ 0

−h

Z2
1dz

=
1

2k3
(k2 cosh(kh1) sinh(kh1) + k3h1 − 2Kk(cosh(kh1))

2

+K2 cosh(kh1) sinh(kh1)−K2kh1 + 2Kk) (5.25)

A2 =

∫ −h1

−h

Z2
2dz

=
(cosh(kh2) sinh(kh2) + kh2)

2 k3(sinh(kh2))2
(k sinh(kh1)−K cosh(kh1))

2

(5.26)

At the interface, by utilizing Eq.(5.19), and following the derivation for

mild-slope equation just as we did before, we have

∇ · [(
∫ −h1

−h

Z2
2dz)∇ · ηi] + k2(

∫ −h1

−h

Z2
2dz)ηi = 0 (5.27)

or can be written as

∇ · A2∇ · ηi + k2A2ηi = 0 (5.28)

Eqs. (5.24) and (5.28) are the mild-slope equation for the two-layer fluid

model with the free surface on the top. These equations can be reduced to

a single-layer mild-slope equation derived by Smith and Sprinks [1], when

ρ1 = ρ2. Thus, the single-layer mild-slope equation is a special case for

two-layer mild-slope equation, as we have expected.

5.2.3 Wave diffraction around floating structure over a vari-

able water depth

Now, consider a train of plane long waves which propagates in two-layer fluids

with constant water depth h10 and h20 and is refracted by an axi-symmetric
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hump-shaped shoal located on the ocean floor and diffracted by a hollow

cylinder located at the free surface of the upper layer.

incident waves

h10

h20

h2(r)

x

z

x

y

b

a
r

0

d

p
1 O1

p
2
    O

2

z=0

z= -h

z=-h1

Figure 5.3: A definition sketch of a hump located on the floor in a two-layer

fluid system

The cross-section of the hump is of the shape of a parabola and the surface

of the hump is formed through revolving the parabola around the vertical

axis of revolution, which is marked with the z coordinate of a Cartesian co-

ordinate system chosen with its origin located at the center of the hump as

demonstrated in Fig. 5.7. The parabolic hump surface intersects with the

ocean floor at z = −h, resulting in a circle with its radius denoted as b,

and the height of the hump is controlled by a parameter d as shown in Fig.

5.7. In this figure, we assume that the radius of the cylinder is the same as

the radius of the hump. This assumption is made to simplify the calcula-

tion of this problem. However, the same methodology can be expanded by
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making the hump radius bigger or smaller than the radius of the cylinder.

In the corresponding cylindrical coordinate system with r being the radial

distance from the origin and θ being the angle measured counterclockwise

from the positive x−axis, the water depth for the lower layer is prescribed

by a parabolic function

h2 =

 (h20 − d)(1 + r2

a2
), r < b

h20, r ≥ b
(5.29)

In Eq. (5.29), a is determined by a = b
√

(h20−d)
d

, for a given set of d and

h20 and a > b. Therefore, geometrically, a is the radius of the cross-sectional

circle of the paraboloid intersecting with a horizontal plane located below

the seabed. While d is used to control the height of the hump, either b or a

is used to control the horizontal dimension of the hump.

As we have already mentioned at the beginning of this section, in order

to solve the OWC problem, we have treated our case as a single-layer fluid

problem. The reason that we have solved our problem using the two-layer

model is, we need to satisfy all the boundary conditions that exist in this

case. By using the two-layer fluid model, it is much easier to determine the

boundary condition in both layers. Then, we used the two-layer fluid equation

that we have derived above, to determine all the boundary conditions that

have being imposed in this case.

By setting ρ1 = ρ2, for the lower layer, the solution that we have here is

similar to the solution that we have already discussed in Chapter 3. There-

fore, in this chapter, we only present the final solution as all the calculation

details already presented in Chapter 3. So, for the lower layer, we have the
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solution of the form

ηouti =
∞∑
n=0

(bi i
n ϵnJn(kr) +DnH

(1)
n (kr)) cosnθ, (5.30)

ηini =
∞∑
n=0

BnRn(r) cosnθ, (5.31)

where

Rn(r) =
∞∑
n=0

αm,n rm+n (5.32)

Bn = biki
nεn

Jn(kb)H
′(1)
n (kb)− J ′

n(kb)H
(1)
n (kb)

kRn(b)H
′(1)
n (kb)−R′

n(b)H
(1)
n (kb)

, (5.33)

Dn = bii
nεn

kJ ′
n(kb)Rn(b)− Jn(kb)R

′
n(b)

H
(1)
n (kb)R′

n(b)− kH
′(1)
n (kb)Rn(b)

, (5.34)

and the solution for αm,n is obtained by using the Frobenius series solution

and is in the form of

α0,n = 1, (5.35)

α1,n = 0, (5.36)

αm+2,n =
−[(m+ n)(m+ n+ 2) + v2 − n2]

a2(m+ 2)(m+ 2n+ 2)
αm,n, (5.37)

and m = 0, 1, 2, ...

For the upper layer, by using the separation of variables and writing

Eq. (5.24) in a cylindrical coordinate systems (r, θ, z) with x = r cos(θ) and

y = r sin(θ), we have

A1(r
2R′′

1,n(r)− rR′
1,n(r) + (k2r2 − n2)R1,n(r)) +

A2(R
′′
n(r) +

1

r
R′

n(r)−
n2

r2
Rn(r)) +

dA2

dr
R′

n(r) + k2A2Rn(r) = 0

(5.38)
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or can be written as

A1(r
2R′′

1,n(r)− rR′
1,n(r) + (k2r2 − n2)R1,n(r)) =

−(A2(R
′′
n(r) +

1

r
R′

n(r)−
n2

r2
Rn(r)) +

dA2

dr
R′

n(r)

+k2A2Rn(r)) (5.39)

Eq. (5.39) is the non-homogeneous ordinary differential equation with vari-

able coefficients. This equation can be solved using the method of variations

parameters. By finding the complementary solution and the particular solu-

tion for Eq. (5.39), and utilizing the solution obtained from the lower region,

we then have the solution for Rin
1,n inside the cylinder as

Rin
1,n = C9,nJn(kr) + C10,nYn(kr)− Yn(kr)

∫ r

0

πrBnRn(r)Jn(kr)

2
dr

+ Jn(kr)

∫ r

0

πrBnRn(r)Yn(kr)

2
dr (5.40)

We know that, at the origin, Yn(kr) is infinite, so we choose C10,n = 0. Thus,

Eq. (5.40) becomes

Rin
1,n = C9,nJn(kr)− Yn(kr)

∫ r

0

πrBnRn(r)Jn(kr)

2
dr

+ Jn(kr)

∫ r

0

πrBnRn(r)Yn(kr)

2
dr (5.41)

where BnRn(r) is the result from the lower layer. At r = b, in the upper

layer, we have the solid wall, therefore, this condition is required

∂ηinf
∂r

= 0 (5.42)

implying that
dRin

1,n

dr
= 0. (5.43)

By differentiating Eq. (5.41) and substituting it into Eq. (5.43), we then can

determine C9,n as
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C9,n =
Y ′
n(kb)

J ′
n(kb)

∫ b

0

πrBnRn(r)Jn(kr)

2
dr −

∫ b

0

πrBnRn(r)Yn(kr)

2
dr (5.44)

By substituting back Eq.(5.44) into Eq. (5.41), the solution for the inner

region of the upper layer, can now be solved. However, we have noticed from

Eq. (5.41), that the term involving Yn(kr) is singular at the origin. But by

taking the limit of this term using the L’hophital rules, we can show that,

this term approaches zero when r = 0. The detailed calculation is shown in

Appendix B.

For the region outside the cylinder in the upper layer, the solution is

Rout
1,n = D1,nJn(kr) +D2,nHn(kr)−Hn(kr)

∫ r

b

iπrDnHn(kr)Jn(kr)

2
dr

+Jn(kr)

∫ r

b

iπrDnHn(kr)Hn(kr)

2
dr (5.45)

at r = ∞, Eq. (5.45) should satisfies the Sommerfeld radiation condition

[59], which is in the form of

lim
r→∞

√
kr{

dRout
1,n

dr
− ikRout

1,n} = 0 (5.46)

As already known, the terms involving Hankel Function, Hn(kr) with any

constant, i.e D2,n already satisfies the radiation condition [59]. Therefore, by
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substituting Eq.(5.45) into Eq. (5.46), we then have

lim
r→∞

√
kr{

dRout
1,n

dr
− ikRout

1,n} = lim
r→∞

√
kr{D1,nJ

′
n(kr)

− H ′
n(kr)

∫ r

b

iπrDnHn(kr)Jn(kr)

2
dr

+ J ′
n(kr)

∫ r

b

iπrDnHn(kr)Hn(kr)

2
dr

− i k (D1,nJn(kr)

−Hn(kr)

∫ r

b

iπrDnHn(kr)Jn(kr)

2
dr

+ Jn(kr)

∫ r

b

iπrDnHn(kr)Hn(kr)

2
dr)}

= lim
r→∞

√
kr{[J ′

n(kr)− ikJn(kr)]

(D1,n +

∫ r

b

iπrDnHn(kr)Hn(kr)

2
dr)

− [H ′
n(kr) + ikHn(kr)]∫ r

b

iπrDnHn(kr)Jn(kr)

2
dr}

= 0 (5.47)

Knowing that

lim
r→∞

√
kr[H ′

n(kr)− ikHn(kr)] = 0 (5.48)

implying that only terms associated to Jn(kr) is left. Thus, these terms also

should go to zero in order to satisfy the radiation condition at the infinity.

So then, we have

lim
r→∞

√
kr[J ′

n(kr)− ikJn(kr)](D1,n +

∫ r

b

iπrDnHn(kr)Hn(kr)

2
dr) = 0

(5.49)

Thus,

D1,n = −
∫ ∞

b

iπrDnHn(kr)Hn(kr)

2
dr (5.50)

In the upper layer, at r = b, once again, the condition

∂ηoutf /∂r = 0 (5.51)
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is applied, because there is a solid cylinder wall being placed in here. Us-

ing this condition and substituting back Eq. (5.50) into Eq. (5.45) we then

determined

D2,n = −(aii
nϵn +D1,n)

J ′
n(kr)

H ′
n(kr)

(5.52)

By substituting back these coefficients into Eq. (5.45), the water surface

elevation for the upper layer now can be solved. If we set h20 = 0, for d ≥ 0,

in Eq. (5.45), we found that the inhomogeneous terms in this equation and the

lower layer equation are vanished, resulting in only the Hemholtz equation.

As a result, Eq. (5.45) also reduces to Mac Camy and Fuchs [3] solution.

Thus, the Mac Camy and Fuchs solution [3] is a special case for our solution

when h20 = 0, as we have expected.

5.2.4 Wave diffraction around floating structure over a flat

bottom

incident waves

h10

h20

p
1 O1

p
2
    O

2

z=0

z= -h

z=-h1

Figure 5.4: A definition sketch of a hollow circular cylinder floating on the

upper layer in a two-layer fluid system

When the hump is being removed from the ocean floor, there is no more

obstacle or barrier in the lower layer region, making it a special case for
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variable water depth. Hence, the equation for the lower layer region can be

simplified to the constant water depth or Hemholtz equation, making it a lot

more easier to be solved. Thus, our lower layer equation now is in the form

of

∇2η + k2∇η = 0 (5.53)

For the inner region, r < b, the solution for this equation is given by [3]

ηini =
∞∑
n=0

(C1,nJn(kr) + C2,nYn(kr)) cos(nθ) (5.54)

where Yn(kr) is the Bessel function of the second kind, because Yn(kr) is

singular at the origin, we set C2,n = 0. Therefore, for the inner region of the

lower layer, our solution is

ηini =
∞∑
n=0

C1,nJn(kr) cos(nθ) (5.55)

For the outer region, our solution is given by

ηouti =
∞∑
n=0

(bii
nϵnJn + C3,nHn(kr)) cos(nθ) (5.56)

where C1,n and C3,n are constants to be determined.

At r = b in the lower layer, the matching condition required, thus, by

using the equation of continuity like we did in Chapter 3 and 4, we obtained

C1,n = bii
nϵn (5.57)

C3,n = 0 (5.58)

By substituting these coeeficients back into Eqs. (5.55)and (5.56), we have

ηi =
∞∑
n=0

bii
nϵnJn cos(nθ) (5.59)
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which is the equation for the plane waves. On the other hand, for the upper

layer of the inner region (inside the cylinder), we have

Rin
1,n = C5,nJn(kr) + C6,nYn(kr)− Yn(kr)

∫ r

0

πrC1,n(Jn(kr))
2

2
dr

+Jn(kr)

∫ r

0

πrC1,nJn(kr))Yn(kr)

2
dr (5.60)

Once again, we set C6,n = 0, because Yn(kr) is singular at the origin. There-

fore, we have

Rin
1,n = C5,nJn(kr)− Yn(kr)

∫ r

0

πrC1,n(Jn(kr))
2

2
dr

+Jn(kr)

∫ r

0

πrC1,nJn(kr))Yn(kr)

2
dr (5.61)

For the upper layer, at r = b, as already known, there is a solid cylinder

wall. Hence, the condition that we have to satisfy is dR1,n/dr = 0. Thus, we

obtained the coefficient for C5,n as

C5,n =
Y ′
n(kr)

J ′
n(kr)

∫ r

0

πrC1,n(Jn(kr))
2

2
dr −

∫ r

0

πrC1,nJn(kr))Yn(kr)

2
dr (5.62)

For the outer region (r ≥ b), following the steps that we obtained for

Eq. (5.45), we have

Rout
1,n = C7,nJn(kr) + C8,nHn(kr)−Hn(kr)

∫ r

0

πrC3,nHn(kr))Jn(kr)

2
dr

+Jn(kr)

∫ r

0

πrC3,nHn(kr))Hn(kr)

2
dr (5.63)

From Eq. (5.58), we know that C3,n = 0, implying that C7,n = 0. Thus, the

only coefficient left is

Rout
1,n = C8,nHn(kr) (5.64)
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Therefore, the water surface elevation, for the free surface in the outer region

can be written as

ηoutf =
∞∑
n=0

((aii
nϵnJn(kr) + C8,nHn(kr)) cos(nθ) (5.65)

Once again, for the upper layer, at r = b, this condition

∂ηoutf /∂r = 0 (5.66)

is applied. Therefore, we can determine C8,n as

C8,n = −aii
nϵn

J ′
n(kr)

H ′
n(kr)

(5.67)

Having obtained all the coefficients that need to be determined, the entire

domain now can be computed. Some results of specific calculations are pre-

sented in the next section.

5.3 Results and Discussions

In this section, an example is presented to compare the new analytic solution

for a special case of our solution, that is taking h2 = 0, with the solution for

plane waves diffracted by a large surface-piercing vertical circular cylinder

in an open sea of constant depth discussed in Mac Camy and Fuchs [3].

Then, we compare our solution with the very tiny little hump with a flat

bottom on the seafloor, as part of the verification process. Finally, using the

new solution, the effects of the cylinder and hump dimensions on the wave

refraction and diffraction process is discussed.

5.3.1 Comparison with the Mac Camy and Fuchs Solutions

Since the mild-slope equation for a two-layer fluid model should be reduced

to the Hemholtz Equations model when h20 = 0, it would be interesting to
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Figure 5.5: Comparison of relative wave amplitudes between MacCamy and

Fuchs solution and our solution when h20 = 0 along x-axis

compare both models, as part of the verification process.

We set h10 = 2.4 and h20 = 0, and take the remaining parameters exactly

the same as those used in single-layer fluid model discussed in Zhu and Harun

[11], i.e, b/L = 0.5, and the wave length, L = 120.4. Since, the analytic

solution for η involves an infinite series, it must be truncated for the purpose

of numerical solution, so we set N = 70 and M = 30, because the solution

had already converged with these values. The Bessel and Hankel functions

in the analytical solution were computed using the built-in subroutines in

MATLAB.

Fig. 5.5 and Fig. 5.6 show the comparison of the relative wave ampli-

tudes along the x- and y-axes respectively for the two and single-layer fluid

models. The results in this comparison are presented in terms of dimension-

less coordinates, x/L and y/L and the center of the hump is located at the

origin. As expected, both solutions are identical and hardly distinguishable.
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Figure 5.6: Comparison of relative wave amplitudes between MacCamy and

Fuchs solution and our solution when h20 = 0 along y-axis

With the excellent agreement between these solutions, we are confident that

the derivation of our new analytical solution is correct.

5.3.2 Comparison with the flat bottom

As we already know, the flat bottom is the special case for the variable water

depth with hump is located on the sea floor. Therefore, to gain confidence

for the non-flat-bottom solution, and in order to further verify the newly

derived equation, we have compared the solution that we obtained from the

flat bottom with the solution with a very small size hump, d = 10−6 being

placed on the seabed.

The comparison for these two problems is shown in Figs. 5.8 and 5.9

respectively. As can been seen, both figures are identical and can’t be dis-

102



0.2

0.4
0.4

0.4
0.6

0.6

0.6

0.6
0.6

0.6
0.6

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.80.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2
1.2

1.2

1.2

1.2

1.2

1.2

1.21.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2
1.4

1.4

1.4
1.6

1.8

−4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

Figure 5.7: A definition sketch of a hump located on the floor in a two-layer

fluid system
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Figure 5.8: Comparison of relative wave amplitudes between the flat sea

bottom and tiny little hump along the x-axis
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Figure 5.9: Comparison of relative wave amplitudes between the flat sea

bottom and tiny little hump along the y-axis

tinguished. Therefore, this adds to our confidence that our derivation was

derived correctly. In addition, for the flat bottom case, we discovered that it

seemed like there was a plane wave propagating inside the cylinder because

based on our derivation, the lower layer is presented by the plane waves (cf.

Eq. (5.59)).

5.3.3 Effect of the cylinder height

In this section, we discuss the effect of the wave refraction when the height

of the cylinder, h10, is varied, while other parameters are held constant.

To examine this, we set h10 = 2.4, 4.8, and 7.2 with the hump radius

being fixed at b/L = 0.5, d/L = 0.5 and h20 = 4.8. The comparisons for each

value of h10 along the x- and y-axes are shown in Fig. 5.10 and Fig. 5.11,

respectively. It can be obviously seen that, an increase in the height of the

cylinder, h10, results in a larger relative wave amplitudes. From both figures,
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Figure 5.10: Comparison of relative wave amplitudes when h10 are varied

along the x-axis
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Figure 5.11: Comparison of relative wave amplitudes when h10 are varied

along the y-axis
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when we set h10 = 2.4, half of the reference cylinder height, h10 = 4.8, we

can see that, the relative wave amplitude was decreasing with the decrease

of the cylinder height. On the other hand, when the height of the cylinder

is 1/2 times higher than the reference cylinder, the relative amplitude also

becomes bigger in the disturbance area. This shows that, the refractive and

diffractive effects become stronger when we place a bigger obstacle in front

of the waves, resulting in a bigger relative amplitude in the lee region.

5.3.4 Topographic and radius Effects

After observing the effects of the relative wave amplitude with various values

of h10, it is interesting to examine the effects of the wave refraction when

the dimension of the bottom topography and the radius of the cylinder are

varied.

In Figs. 5.12, and 5.13 we plot the relative wave amplitudes along the

x− and y−axes for different hump and cylinder radii, b/L = 0.25, 0.5, and

1.0 with a fixed d = 0.25 and h10 = h20 = 4.8, respectively.

As the radius of the hump, b/L is increased, the relative wave amplitude

inside and outside the cylinder also increased as can be seen along the x- and

y- axes. This is due to the concentration of wave energy in the lee region

of an obstacle, as a result of refractive and diffractive focusing, when the

disturbance of the obstacle is sufficiently large. However, for a small hump

radius no waves are found inside the cylinder because the latter is smaller

than the wavelength, as can be clearly seen in both figures.

Next, we discuss the effects of the wave refraction when the height of the

hump, d is varied. Fig. 5.14 and Fig. 5.15 show the relative wave amplitude

along the x− and y- axes, respectively, for the cases of d = 0.05, 0.25, and

0.5 with the hump radius being fixed at b/L = 0.5, and h10 = h20 = 4.8. As
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Figure 5.12: Comparison of relative wave amplitudes along the x-axis with

b/L varied
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Figure 5.13: Comparison of relative wave amplitudes along the y-axis with

b/L varied
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can be clearly seen from Fig. 5.14 and Fig. 5.15, as the height of the hump

increases, the relative wave amplitude becomes larger as expected.
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Figure 5.14: Comparison of relative wave amplitudes along the x-axis with

d varied

For a hump with a smaller hump height, d, the refraction effects are

weak, resulting in a smaller wave heights inside and outside the cylinder.

On the other hand, for a higher hump height, d, there is more refractive

focusing and thus the reaction to the disturbances behind the hump is larger

in comparison with the lower d. For example, along the x−axis, as we increase

the height of the hump, from 0.05 to 0.25, the maximum value of relative

wave amplitude outside the cylinder obtained has increased too from 0.5 to

4.1, and if we further increase the hump height to 0.5, the maximum value

of relative wave amplitude obtained is about 8.5. The same phenomenon

occurs along the y-axis, as we can see that the increase of the hump height

will also increase the relative wave amplitude outside the cylinder as well.

Therefore, we can conclude that, the higher the hump high is, the bigger
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Figure 5.15: Comparison of relative wave amplitudes along the y-axis with

d varied

is relative waves amplitude will observed. Hence, the OWC device should

be installed in the shallow water, where waves would produce more energy

through the diffraction, refraction and shoaling processes.

5.4 Conclusions

The two-layer mild-slope equation with free surface on the top has been

derived and presented in this chapter. Utilizing this equation, we then solved

the problem for circular hollow cylinder floating over a variable water depth.

This analytic solution was derived based on the analytic solution of long

waves propagating over a circular hump that have been presented earlier in

Chapter 3 and Chapter 4.

To verify our solution, we have compared our solution with MacCamy and

Fuchs solution [3] when our solutions were reduced to their case when h20 = 0.
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The two solutions were identical and hardly distinguishable. To further verify

our solution, we have also compared the solution for the flat bottom and the

solution with very small hump size. Once again, both solutions were identical.

Furthermore, we have also examined and discussed the effects of the

height of the cylinder, hump dimensions and cylinder radius to the wave

refraction and diffraction when they are varied. When there is an increase in

the obstacle, the diffraction and refraction effects become stronger, resulting

in a bigger relative amplitudes. This is important for OWC industry because

from this results, we can find the best place to install the OWC device.
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Chapter 6

Conclusions

In this thesis, we have discussed and presented the analytic solutions for

linear waves propagating in an ocean with variable bottom topography and

their applications in renewable wave energy. We focus on the mild-slope

equation, which is known as a powerful tool to study the diffraction and

refraction problem in a linear wave theory. As already mentioned in Chapter

1 and 2, this equation has an advantage of reducing the three-dimensional

model to a two-dimensional model. It also reduces to Hemholtz equation in

a deep or constant water depth while in a shallow water, it reduces to the

linear shallow water equation.

Therefore, in Chapter 3 of this thesis, we have presented an analytical so-

lution for long waves refraction over a circular hump based on the mild-slope

equation that has been reduced to the shallow water equation presented by

Suh et. al [32] for the long waves propagating over a circular pit. We have

made a comparison for both solutions, and found that along the x−axis,

waves are amplified in front of the hump, whereas there is a relative calm

region behind the pit. Numerical solution for this analytical solution is also

constructed for the purpose of validation, and the comparisons between the
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analytical and numerical solution were almost identical and hardly distin-

guishable. Using the new model, we were able to examine and discuss the

effects of the hump dimension when the radius and the water depth are var-

ied. From these tests, we can conclude that, the bigger or the higher the

barrier or obstacle being placed, the bigger relative waves amplitude would

be produced, meaning that there is a significantly large amount of energy

presents in that area.

Furthermore, in Chapter 4, we have derived the mild-slope equation for a

two-layer fluid model with the rigid-lid approximation used on the free sur-

face. This analytic solution was derived based on the single-layer mild-slope

equation obtained by Smith and Sprinks [1], and we have found that the

single-layer mild-slope equation is the special case for a two-layer mild-slope

equation when the density of the upper layer, ρ1, equal to zero, meaning that

the two-layer mild-slope equation should reduce to a single-layer mild-slope

equation when ρ1 = 0. The two-layer mild-slope equations is derived be-

cause, in the ocean, there exists a thin layer of water, separating the warmer

surface zone and the colder deep zone. This thin layer is called the thermo-

cline, across which the density as a function of the water temperature also

jumps significantly [37]. Hence, two-layer ocean models with a sharp den-

sity interface separating fluids with two constant densities are very popular in

modeling the dynamics of internal wave propagations in an ocean. Replacing

the free surface with a rigid-lid approximation is reasonable in many cases,

especially at the regional ocean scale, because “internal-wave mode” only

induces small deformation on the free surface and thus a rigid-lid approxi-

mation would exclude the fast mode associated with barotropic free surface

waves and greatly simplify the theoretical analysis without loss of a great

deal of accuracy.
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By using our new analytic solution, we then solved the problem as already

discussed in Chapter 3, but now in a two-layer fluid. As what already been

discovered in the earlier chapter, the bigger the hump size being placed on

the ocean floor, the bigger relative waves amplitude will be induced. Further-

more, we have also examined and discussed the effects of the wave refraction

when the ratio of densities, ρ1/ρ2, and the ratio of the upper and lower layer

water depths, h10/h20 are varied. Here, we found that when the ratio of

densities, ρ1/ρ2, is increased, the relative waves amplitude decreases, while

for the test of the h10/h20, the relative wave amplitude increases with the

increase of h10/h20. Thus, in order to find a suitable location to install an

OWC device in the ocean, the place must have a low water density, because

high level water density can’t produce a bigger waves. In the other words,

the water that has more density level, has a weaker restoring force, resulting

in a smaller waves amplitude.

We have also derived an extended mild-slope equation for the propaga-

tion of interfacial waves with higher-order terms proportional to the bottom

slope and bottom curvature included in Chapter 4. Here, we found that

the amplitude of the refracted waves calculated using the equation with the

higher-order terms included is slightly higher than that calculated with the

classical mild-slope equation.

Lastly in Chapter 5, we further extended the mild-slope equation by de-

riving the two-layer mild-slope equation with a free surface on the top. By

utilizing this equation, we then solved the problem for a simple OWC prob-

lem, a circular hollow cylinder floating over a variable water depth. This

analytic solution was derived based on the analytic solution for long waves

propagating over a circular hump that has been presented earlier in Chapter

3 and Chapter 4, which also included in our papers [11, 12, 13]. To verify our
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solution, we have compared our solution with MacCamy and Fuchs solution

[3] when our solution reduced to their case when h20 = 0. The two solutions

were identical and hardly distinguishable. To further verify our solution, we

have also compared the solution with the flat bottom and the solution with

a very small hump size. Once again, both solutions were identical. Further-

more, we have also examined and discussed the effects of the height of the

cylinder, hump dimensions and cylinder radius to the wave refraction and

diffraction when they are varied. When there is an increase in the obstacle,

the diffraction and refraction effects become stronger, resulting in a bigger

relative amplitude in the disturbance area.

As already known, waves in the ocean are random and nonlinear. But,

the linear model is a good approximation in understanding the ocean waves,

before deriving the nonlinear model. This is because the nonlinear model

requires more complicated equations. However, in the near future, it is pos-

sible to solve the nonlinear mild-slope equation using the same problem as we

have done with the linear regime. It is also possible to make another bottom

topography and floating object both in linear and nonlinear regime to solve

the refraction and diffraction problem using analytical solution.
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Appendix A

Elevations of the Inner

Products

Some evaluations of the inner products and products of wave numbers in

Chapter 3 are listed here:

I
(1)
1 = < f1,0,

∂2f1,0
∂h2

1

>

=
1

2(sinh2(kh1))2
[kcosh(kh1)(sinh(kh1)− sinh(kh1)cosh(2kh1)

cosh(kh1)sinh(2kh1) + 2kh1cosh(kh1))] (A.1)

I
(2)
1 = < f1,0,

∂2f1,0
∂k2

>

=
1

8k3(sinh2(kh1)2
[sinh(kh1)(sinh(2kh1)− 2kh1cosh(2kh1))

+
(2kh1)

3

3
(1 + 2cosh2(kh1))

+kh1sinh(2kh1)(2kh1 + sinh(2kh1))] (A.2)
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I
(3)
1 = < f1,0,

∂2f1,0
∂h1∂k

>

=
1

16k(sinh2(kh1)2
[−2kh1sinh(2kh1) + 2− 2cosh22(kh1)

+12(kh1cosh(kh1))
2 + (2kh1)

2 − 2cosh(2kh1)

−(sinh(2kh1)
2 + 8kh1cosh

2(kh1)sinh(2kh1)

−4kh1sinh(2kh1)cosh(2kh1) + 2cosh2(kh1)cosh(2kh1)] (A.3)

I
(4)
1 = < f1,0,

∂f1,0
∂k

>

= − 1

8k2sinh3(kh1)
(−2kh1sinh(kh1)cosh(2kh1) + 4k2h2

1cosh(kh1)

+sinh(kh1)sinh(2kh1) + 2kh1cosh(kh1)sinh(2kh1)) (A.4)

I
(5)
1 = < f10,

∂f1,0
∂h1

>

= − 1

4sinh3(kh1)
(−sinh(kh1)cosh(2kh1) + cosh(kh1)cosh(2kh1)

+sinh(kh1) + 2kh1cosh(kh1)) (A.5)

I
(1)
2 = < f2,0,

∂2f2,0
∂h2

2

>

=
1

2(sinh2(kh2))2
[kcosh(kh2)(sinh(kh2)− sinh(kh2)cosh(2kh2)

cosh(kh2)sinh(2kh2) + 2kh2cosh(kh2))] (A.6)

I
(2)
2 = < f2,0,

∂2f2,0
∂k2

>

=
1

8k3(sinh2(kh2)2
[sinh(kh2)(sinh(2kh2)− 2kh2cosh(2kh2))

+
(2kh2)

3

3
(1 + 2cosh2(kh2))

+kh2sinh(2kh2)(2kh2 + sinh(2kh2))] (A.7)
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I
(3)
2 = < f2,0,

∂2f2,0
∂h2∂k

>

=
1

16k(sinh2(kh2)2
[−2kh2sinh(2kh2) + 2− 2cosh22(kh2)

+12(kh2cosh(kh2))
2 + (2kh2)

2 − 2cosh(2kh2)

−(sinh(2kh2)
2 + 8kh2cosh

2(kh2)sinh(2kh2)

−4kh2sinh(2kh2)cosh(2kh2) + 2cosh2(kh2)cosh(2kh2)] (A.8)

I
(4)
2 = < f2,0,

∂f2,0
∂k

>

= − 1

8k2sinh3(kh2)
[−2kh2sinh(kh2)cosh(2kh2) + 4(kh2)

2cosh(kh2)

+sinh(kh2)sinh(2kh2) + 2kh2cosh(kh2)sinh(2kh2)] (A.9)

I
(5)
2 = < f2,0,

∂f2,0
∂h2

>

=
1

4sinh3(kh2)
[sinh(kh2)(1− cosh(2kh2))

+cosh(kh2)(2 + sinh(2kh2))] (A.10)
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χ1,0 = k2(ρ1 − ρ1coth
2(kh1)) (A.11)

χ2,0 = k2(ρ2 − ρ2coth
2(kh2)) (A.12)

χ3,0 =
2k3ρ1

sinh2(kh1)
(kh1ρ

2
1q

4
1 + 2ρ21q

3
1 + 3ρ1ρ2q

2
1q2 − ρ1ρ2k

2h2
2q

2
1q2

+ ρ1ρ2k
2h2

2q
2
1q

3
2 − 3ρ1ρ2kh2q

2
1 + 3ρ1ρ2kh2q

2
1q

2
2

− 2ρ21kh1q
2
1 − 2ρ22k

2h2
2q1q

2
2 − 2ρ22kh2q1q2 + ρ22q1q

2
2

+ k2ρ22h
2
2q1 + ρ22k

2h2
2q1q

4
2 + 2kh2ρ

2
2q1q2

3 − ρ21q1 + ρ1ρ2k
2h22q2 + ρ1ρ2kh2

+ ρ21kh1 − ρ1ρ2kh2q
2
2 − ρ1ρ2k

2h2
2q

3
2 − ρ1ρ2q2) (A.13)

χ4,0 =
2k3ρ2

sinh2(kh1)
(kh2ρ

2
2q

4
2 + 2ρ22q

3
2 + 3ρ1ρ2q

2
2q1 − ρ1ρ2k

2h2
1q

2
2q1

+ ρ1ρ2k
2h2

1q
2
2q

3
1 − 3ρ1ρ2kh2q

2
2 + 3ρ1ρ2kh1q

2
1q

2
2

− 2ρ22kh2q
2
2 − 2ρ21k

2h2
1q2q

2
1 − 2ρ21kh1q1q2 + ρ21q2q

2
1

+ k2ρ21h
2
1q2 + ρ21k

2h2
1q2q

4
1 + 2kh1ρ

2
1q2q1

3 − ρ22q2 + ρ1ρ2k
2h12q1 + ρ1ρ2kh1

+ ρ22kh2 − ρ1ρ2kh1q
2
1 − ρ1ρ2k

2h2
1q

3
1 − ρ1ρ2q1) (A.14)

χ5,0 =
4k3ρ1ρ2

sinh2(kh1) sinh
2(kh2)

(ρ1k
2h1h2q

2
1q2

+ ρ2h1h2k
2q1q

2
2 + ρ2kh1q1q2 + ρ1kh2q1q2− ρ1q1

− ρ2k
2h1h2q1 − ρ1k

2h1h2q2 − ρ2q2 + k(ρ1h1 + ρ2h2)) (A.15)

χ0 = ρ1coth(kh1) + ρ2coth(kh2)− kρ1h1 + kρ1h1coth
2(kh1)

− kρ2h2 + kρ2h2coth
2(kh2) (A.16)

where
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q1 = coth(kh1) (A.17)

q2 = coth(kh2) (A.18)
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Appendix B

Calculation of the Limit

The calculation of limit involving in Chapter 5 is presented here.

For small r, the argument for the Bessel Function of the first kind Jn(kr)

and Bessel Function for the second kind Yn(kr) is given by [60]

Y0(kr) ∼ 2

π
ln r (B.1)

Yn(kr) ∼ −2n(n− 1)!

πrn
(B.2)

Jn(kr) ∼ rn

2nn!
(B.3)

We want to show that,

lim
r→0

Yn(kr)

∫ r

0

πrBnRn(r)Jn(kr)

2
dr = 0 (B.4)

Jn(kr)

∫ r

0

πrBnRn(r)Yn(kr)

2
dr = 0 (B.5)

But, we know that the limit for these equations are

lim
r→0

Yn(kr)

∫ r

0

πrBnRn(r)Jn(kr)

2
dr = ∞ · 0 (B.6)

lim
r→0

Jn(kr)

∫ r

0

πrBnRn(r)Yn(kr)

2
dr = 0 · ∞ (B.7)
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By using the L’hopital rule, and substituting Eq. (B.2), into Eq. (B.6),

and let f(r) =
∫ r

0
πrBnRn(r)Jn(kr)

2
, we have

lim
r→0

Yn(kr)

∫ r

0

πrBnRn(r)Jn(kr)

2
dr = lim

r→0

−2n(n− 1)!

πrn

∫ r

0

f(r)dr

=
−2n(n− 1)!

π
lim
r→0

1

rn

∫ r

0

f(r)dr

=
−2n(n− 1)!

π
lim
r→0

∫ r

0
f(r)dr

rn

=
−2n(n− 1)!

π
lim
r→0

D[
∫ r

0
f(r)dr]

D[rn]

=
−2n(n− 1)!

π
lim
r→0

f(r)dr

nrn−1

=
−2n(n− 1)!

π
lim
r→0

BnRn(r)r
n+1 π

2·2nn!
nrn−1

=
−2n(n− 1)!

π
lim
r→0

BnRn(r)r
2 π

2 · 2nn!n
= 0 (B.8)

Utilizing the same approach as we use in Eq. (B.6, in Eq. (B.7 and let

F (r) =
∫ r

0
πrBnRn(r)Yn(kr)

2
, we obtain
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lim
r→0

Jn(kr)

∫ r

0

F (r)dr = lim
r→0

rn

2nn!

∫ r

0

F (r)dr

=
1

2nn!
lim
r→0

rn
∫ r

0

F (r)dr

=
1

2nn!
lim
r→0

rn

1∫ r
0 F (r)dr

=
1

2nn!
lim
r→0

D[rn]

D[ 1∫ r
0 F (r)dr

]

=
1

2nn!
(
Bn(−2n(n− 1)!)

2
) lim
r→0

rn−1 r

rn
Rn(r)

=
1

2nn!
(
Bn(−2n(n− 1)!)

2
) lim
r→0

Rn(r)

= [
1

2nn!
(
Bn(−2n(n− 1)!)

2
)][0]

= 0 (B.9)
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Appendix C

Derivation for Equation (5.20)

The derivation of Eq. (5.20) in Chapter 5 is presented here.

From Eq. (5.15) and (5.16) we know that

Z1 = k cosh(kz) +K sinh(kz), −h1 ≤ z ≤ 0 (C.1)

Z2 =
K cosh(kh1)− k sinh(kh1)

sinh(kh2)
cosh(k(z + h)), −h ≤ z ≤ −h1

(C.2)

At the interface, we have

ϕ1(x, y, z) = ϕ2(x, y, z), z = −h1 (C.3)

Substituting Eqs. (5.18) and (5.19) into Eq. (C.3), we have

ηf
ηi

=
K

k sinh(kh1)−K cosh(kh1)
(C.4)

which is the relationship between ηf and ηi.
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Appendix D

Publications of the Author

1. S.-P. Zhu and F.N. Harun, An analytical solution for long wave refraction

over a circular hump, J. Appl. Math Comput (2009) 30: 315-333

2. S.-P. Zhu and F.N. Harun, Refraction of interfacial waves by a circular

hump, Journal of Engineering and Computational Mechanics (2009) (Ac-

cepted and In Press)

3. F.N. Harun and S.-P. Zhu, A study of the propagation of interfacial waves

over a circular hump, Proceedings of the 5th Asian Mathematical Conference,

Malaysia (2009) (In Press)

4. F.N. Harun and S.-P. Zhu, An analytical solution for a hollow cylinder

floating in a variable water depth. (In preparation)
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