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Abstract

Mapping and explaining the distribution of vegetation helps land managers to make 

systematic conservation planning decisions. This is typically achieved using models that 

correlate the distribution of species with environmental factors, and can predict the 

vegetation at unsurveyed locations. These Species Distribution Models (SDMs) have 

numerous unresolved issues, but serve as a useful first-pass approximation for planning 

purposes. 

This thesis investigates some of the uncertainties of SDMs, including the impact of 

data accuracy, the incorporation of spatial processes, the evaluation of alternative 

models, and the benefits and challenges of producing models at the landscape scale. The 

research was conducted on the Illawarra Escarpment, 80 km south of Sydney, Australia 

(34.4 oS, 150.9 oE). The escarpment contains a north-south trend in eucalypts 

(Eucalyptus spp.) that cannot be explained in terms of elevation or geology. It also 

exhibits a patchy distribution of rainforest communities, some unique to the Illawarra. It 

is not known which environmental factors determine the distribution of either the 

eucalypts or rainforest species, or how they may respond to a changing climate. 

Species distributions are sensitive to the accuracy of data used, and yet many 

models only use elevation as a surrogate for temperature, or use simple elevation 

sensitive interpolations from weather stations. I collected hourly temperature data from 

40 sites on the Illawarra Escarpment, and investigated whether elevation was an 

adequate surrogate for temperatures in this landscape. I then investigated whether 

temperature surfaces could be improved by considering other topographic and 

geographic factors, including exposure to wind, distance to coast, radiation, and the 

average conditions in the surrounding neighbourhood. Elevation was well correlated 
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with moderate seasonal temperatures (e.g. summer minima and winter maxima), but 

was poorly correlated with the extreme temperatures (summer maxima, winter minima) 

that are physiologically limiting for many species. Using neighbourhood influences, 

exposure to wind and distance to coast improved the accuracy of temperature surfaces, 

and increased the explanatory performance of vegetation models. I concluded that 

elevation was not always an adequate surrogate for temperature. Temperatures are also 

affected by other topographic and geographic factors, and these should be considered 

when developing models for systematic conservation planning activities. 

Species distribution models are typically based solely on niche factors. Where 

spatial processes are included, it is typically by employing autologistic regression, or 

other techniques that use survey data as a predictor. This precludes the models being 

used to make predictions in times or places where survey data is unavailable, and 

reduces ecological explanation because it is an interpolation technique. I used 

neighbourhood (contextual) indices based on environmental factors as an alternative 

method to overcome these problems. I demonstrate that contextual indices improve 

SDMs over purely niche-based models, and are capable of predicting unknown 

populations in unsurveyed areas. I conclude that contextual indices have numerous 

advantages over autologistic regression, and can capture a continuum between niche and 

dispersal limited species. 

Models that predict how species will respond to climate change either use coarse-

scale climate surfaces, or idealised predictions of uniform warming. These methods may 

dramatically over-estimate extinction risk because they neglect fine-scale variations in 

warming, and refugia where species can persist despite unfavourable regional 

conditions. I created fine-scale estimates of warming by combining 35 years of Bureau 

of Meteorology observations with one year of intensive fine-scale temperature 
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monitoring. I found that warming was greatest at inland locations, at lower elevations, 

away from streams, and at sites exposed to hot, dry northwesterly winds. As species are 

biased in the geographic and topographic positions they occupied, some species have 

experienced more warming than others and are at greater threat from climate change. I 

concluded that it was important to continue developing methods to downscale coarse-

grained climate surfaces, and suggest that the accuracy of this process could be 

improved by using a range of topographic factors. 

There are many methods for selecting predictors in SDMs, and the competing 

models often make highly variable predictions. I addressed this uncertainty by 

comparing the performance of models with and without a given environmental factor. I 

found that there was relatively strong support for the geology and winter minimum 

temperature predictors, as well as predictors based on contextual indices, as there was a 

significant drop in model performance when these predictors were excluded. In contrast, 

there was less support for summer maximum temperature, as other temperature 

predictors could combine to produce similar model performance. Model performance 

varied more between models for different species than between different predictor 

combinations for the same species. I concluded that it was inappropriate to assess 

models based on subjective benchmarks, such as an AUC of more than 0.7. A 

comparison between competing models for the same species gives a better indication of 

the validity of the model building procedure. 

The results of this research provide important insights into the benefits and 

challenges of creating SDMs at the landscape scale (extent of 10–200 km). It is a major 

challenge to obtain spatially and thematically accurate environmental predictors and 

biotic data at this scale, and studies should include the collection of data to ensure 

models are adequate. Landscapes will not have as much environmental variation as 
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coarse-scale models, and this will limit the ability to transfer the models to new study 

areas. However, there are a number of benefits that justify these studies. Producing 

accurate temperature surfaces at the landscape scale will result in less pseudoreplication 

and less predictor colinearity. This will improve the robustness of models. Landscape 

scale studies also allow modellers to capture fine-scale refugia, and this will improve 

the accuracy of climate change predictions. Finally, many ecological processes operate 

at a scale that is too fine to be detected with coarse-scale models. Landscape scale 

models may be the only alternative to detect these processes. There is no optimal scale 

for SDMs, however, and a future challenge is to better integrate coarse and fine-scale 

models to make more ecologically robust predictions. 
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Chapter 1:  Introduction 

1.1 Modelling the spatial distribution of vegetation 

Modelling the spatial distribution of vegetation assists environmental managers to 

design reserve systems and pursue other aspects of systematic conservation planning 

(Margules and Pressey 2000). These spatial distributions are especially important at the 

regional and landscape scales, as this is the scale at which most environmental 

management decisions are made (Ferrier et al. 2002; Lookingbill and Urban 2003). 

The distribution of vegetation can be modelled using an increasingly large number 

of statistical methods (e.g. Elith et al. 2006). These methods can be broadly separated 

into either dynamic, mechanistic, process-based models; or static, correlative, niche-

based models (Guisan and Zimmermann 2000). 

Dynamic, mechanistic or process-based models have been presented as being a 

more robust method for modelling species distributions, as they are based on species 

physiology and consider transient responses and dispersal limitations (Loehle and 

LeBlanc 1996; Hampe 2004). However, mechanistic models are not feasible for most 

species, because there is insufficient knowledge about these traits (Guisan and 

Zimmermann 2000). Indeed, correlative niche-based models may be less reliably linked 

with species physiology and stochastic processes, but serve as a useful first pass 

approximation when there is insufficient knowledge for mechanistic models (Pearson 

and Dawson 2004). 

1.1.1 Dynamic, mechanistic or process-based models 

There are many types of dynamic, mechanistic or process-based models (hereafter 

simply mechanistic models) that can be used to model the distribution of species. 
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Arguably the simplest of these is a Markov chain model (Balzter 2000). Markov chain 

models consist of a set of spatially discrete locations, each of which is in one of a 

discrete number of states at any point in time. A matrix is determined from a time series 

of observations that defines the transition probabilities for each combination of states. 

That is, the probability that a location in state x at time t will be in state y at time t + 1, 

for all combinations of x and y. Markov chain models are usually based on the 

assumption that transition probabilities are constant in time, independent of the state of 

the surrounding locations, and independent of previous states, although this need not be 

the case (Balzter 2000). 

Markov chain models are perhaps best suited to modelling systems where there is a 

fixed and deterministic successional process (Childress et al. 1998). The biggest 

drawbacks are that transition probabilities are not necessarily constant from year to year 

(Childress et al. 1998), and a long time-series of data is necessary to calibrate models 

(Dale et al. 2002). 

Another type of mechanistic model is called a cellular automata model (Balzter et 

al. 1998). While Markov chains ignore spatial context, cellular automata determine the 

state at time t + 1 using the state of adjoining locations at time t. These approaches are 

somewhat complementary, and cellular automata and Markov chain methods have been 

combined to produce spatio-temporal Markov chains (Balzter et al. 1998). Cellular 

automata are useful when neighbouring locations interact strongly, such as when there 

are invading species, or when dispersal or competition has a strong effect (Arii and 

Parrott 2006). They can also be used when land-use changes are spatially 

autocorrelated, such as the clearing, farming, abandonment and succession of 

Amazonian rainforests (Soares-Filho et al. 2002). Like Markov chains, cellular 

automata models require a large amount of data to calibrate models. Both models are 
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perhaps best viewed as simple models of the conceptual dynamics, and not a precise 

description of how the ecosystem behaves (Ruxton and Saravia 1998).  

The simplicity of Markov chain and cellular automata models is more evident when 

they are compared with process-based forest gap models or landscape models. These 

models typically model at least some aspects of the lifecycle of individual trees (or 

small cohorts), including growth (Schumacher et al. 2004); mortality (Bigler and 

Bugmann 2004; Schumacher et al. 2004; Wunder et al. 2006); seed dispersal and 

germination (Liu and Ashton 1998; He et al. 1999; Bleher et al. 2002); herbivory 

(Weisberg and Bugmann 2003); and disturbances such as fire (Roberts 1996; 

Schumacher et al. 2006), windthrow and forestry (He et al. 2002). There are usually 

numerous assumptions, estimations and simplifications that are needed for the 

parameterisation and definition of these models, and therefore it is necessary to quantify 

the uncertainty in model output that is due to potential errors in the model inputs 

(Crosetto et al. 2000; Lexer and Hönninger 2004). 

Another type of mechanistic model is non-dynamic, but relates suitable habitat to 

the physiology of the species (Kearney and Porter 2004). These models determine the 

fundamental niche by experimentally determining the range of environmental 

conditions that are suitable for a species’ reproduction, movement, or other critical life 

phases. These models are different from other mechanistic models in that they are non-

dynamic, but they are further differentiated from correlative models in that they are 

based on mechanisms rather than correlations between the environment and species 

current distributions. 

None of the mechanistic models discussed in this section are used in this thesis, 

however it was important to consider them as alternative methods. They were not used 

primarily because there was insufficient data available to estimate how growth, 
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germination, mortality, and seed dispersal processes varied with environmental 

conditions for each of the species I considered, and it is difficult to experimentally 

determine these factors for long-lived tree species. Not all species reproduce every year 

(e.g. mast flowering in rainforest species), and reproduction for some species may be 

higher after periodic disturbances such as fire. 

1.1.2 Static, correlative, niche-based models 

A number of statistical methods have been used to correlate the current distribution of 

species with the corresponding environmental conditions (e.g. Elith et al. 2006). These 

have been collectively referred to by a number of terms including species distribution 

models, bioclimatic envelope models, ecological niche-models, or static-equilibrium 

models. They have been thoroughly reviewed and discussed in the ecological literature 

(e.g. Guisan and Zimmermann 2000; Austin 2002; Guisan et al. 2002; Rushton et al. 

2004; Guisan and Thuiller 2005; Araújo and Guisan 2006; Guisan et al. 2006a; Austin 

2007), and are not reviewed further here. Instead, the following sections establish the 

context for the chapters in this thesis by discussing how the techniques evolved over the 

lifetime of this research. Species distribution models, or SDMs as they will now be 

referred to, are evolving rapidly, and techniques which were considered best-practice at 

the start of this research are now under greater scrutiny and some considered out-dated. 

I briefly outline some of these developments to illustrate the context in which the 

various chapters were prepared, and to better demonstrate the contributions that the 

chapters made to advance the field of research. 

1.1.3 Statistical methods for developing SDMs 

All statistical methods used to produce species distribution models are based on 

correlations between species’ distributions and environmental conditions. It is usually 
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assumed these relationships are causal, and can be used to predict the invasion potential 

of species (e.g. Peterson 2003) or how species will respond to climate change (e.g. 

Thomas et al. 2004). In broad terms, the methods differ in how complex the responses 

to environmental gradients can be. For example, simple and early methods, such as 

BIOCLIM, have fixed limits on each gradient that are independent of other gradients 

(see Guisan and Zimmermann 2000 for a comparison between methods that were 

commonly used at that time). Generalised Linear Models (GLMs) were developed later, 

and allowed the responses to be various parametric shapes, including Gaussian curves 

and ß-functions (Austin et al. 1994). Generalised Additive Models (GAM; Hastie and 

Tibshirani 1990) are more flexible than GLMs, as they are non-parametric, and 

smoothing functions allow the data to determine the shape of the response functions. 

GLMs and GAMs were viewed more favourably than other methods when I began this 

research, and were the focus of international workshops conducted in 2001 and 2004 

(Guisan et al. 2002; Guisan et al. 2006a). 

During the course of this research, a number of new methods were developed, or 

gained popularity, including Maxent (Phillips et al. 2004; Phillips et al. 2006; Phillips 

and Dudík 2008), Generalised Dissimilarity Modelling (GDM; Ferrier et al. 2007) and 

Multivariate Adaptive Repression Splines (MARS; Leathwick et al. 2005). These 

methods became especially popular after they performed well in a comparative study 

against the more established methods, including GLMs and GAMs (Elith et al. 2006). 

Importantly, however, these methods have not been tested for ecological realism, and 

only evaluated using data from the same study area as the models were developed (Elith 

et al. 2006). This is not a truly independent dataset to make general inferences, and 

these complex models may be overfitting to the study area and have poor transferability 

(Peterson et al. 2007). 
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The initial chapters in this thesis are based solely on GAMs (Chapters 2–4), 

although methods did ‘evolve’ to include Maxent (Chapter 6). While GAMs only 

performed moderately in the comparative study (Elith et al. 2006), they are potentially 

less prone to overfitting than more complex methods, and may be superior when 

validations are performed with truly independent data (i.e. different study area and 

time). No method is unanimously considered superior, and GAMs and Maxent are still 

powerful and valid methods to produce SDMs. 

The evolution of statistical methods is likely to continue. New methods have 

already been suggested, including quantile regression, structural equation modelling and 

geographically weighted regression (Austin 2007). Some scientists are combining the 

results of models produced with different methods to produce a consensus estimate 

(Araújo and New 2006). Further testing with truly independent data may shed new light 

on the balance between statistical complexity and overfitting, although obtaining truly 

independent data is impossible in many situations (Austin 2007), and testing using 

artificial data may be necessary (Austin et al. 2006). 

1.1.4 Model evaluation 

All ecological models are simplifications of reality, and hence contain errors. The 

magnitude of these errors needs to be quantified before models can be reliably used for 

conservation purposes. SDMs generally produce some sort of habitat suitability index as 

a continuous variable, and a threshold must be used if this is to be converted to a binary 

map of suitable or unsuitable habitat (or predicted presence or absence). Therefore, 

model evaluation methods can be broadly separated into those that use a threshold, and 

those that are independent of a threshold (Fielding and Bell 1997). 

For the duration of this research, the ‘best-practice’ method for model evaluation 

was considered to be Area Under the receiver operating characteristic Curve (AUC; 
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Pearce and Ferrier 2000b; Austin 2007). This was largely because it is insensitive to the 

subjective selection of a threshold. However, towards the end of the research, doubt was 

raised over the effectiveness of the method. Austin (2007) suggested that models with 

similar AUC could produce vastly different predictions, and Lobo et al. (2008) showed 

it neglected spatial errors, ignored differences between errors in omission and 

commission, and was sensitive to the extent of the study area. 

In this thesis I provided further evidence that AUC is an insufficient measure of 

predictive success, and developed new methods to address some of its shortcomings. In 

Chapter 4, I complimented AUC by also employing other validation techniques, 

including a novel method to consider the spatial context of errors. In chapter 6 I 

highlight the dangers of using subjective benchmarks to evaluate model performance, 

such as an AUC of more than 0.7. Most candidate models for a given species had 

similar AUC values, and therefore AUC was not sensitive to the predictor selection and 

model building process. 

Chapters in this thesis that were focused on producing temperature surfaces 

(Chapters 2, 3 and 5) avoided the shortcomings of AUC by not performing a 

comprehensive model evaluation. They only demonstrating that correlations were 

improved (in terms of the deviance explained, or D2). The approach taken throughout 

this thesis is to compare alternative models for the same species with each other, and 

provide evidence as to which models have stronger correlations than others. I accepted 

that evaluation against an ‘independent’ dataset from the same study area did not protect 

against overfitting, and instead avoided overfitting by limiting the complexity of 

response curves and the number of predictors in models. Model evaluation is an 

unresolved issue (Guisan et al. 2006a), and I do not claim that the evaluations in this 

thesis are complete. Nevertheless, the thesis makes a valuable contribution to improving 
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validation techniques by introducing new validation methods (Chapter 4) and 

highlighting the shortcomings of existing methods (Chapter 6).  

1.1.5 Issues with species distribution modelling 

Species distribution models are based on a number of assumptions. For example, 

models assume that species are at equilibrium with the environment, and that the 

distribution of species is causally determined by environmental factors such as climate 

(Guisan and Zimmermann 2000). These assumptions are not usually tested when 

models are developed, yet results are used to estimate extinction risk from climate 

change (Thomas et al. 2004), determine whether species are occupying their full range 

(Svenning and Skov 2004), determine if species are niche or dispersal limited (Moore 

and Elmendorf 2006), predict the extent of species invasions (Peterson 2003), or to 

select areas for species persistence in protected areas (Araújo and Williams 2000). The 

conclusions of all these studies may be incorrect if the assumptions on which the SDMs 

are based are invalid. There are numerous issues with the assumptions and 

simplifications surrounding SDMs (e.g. Loehle and LeBlanc 1996; Hampe 2004), and 

these have received increasing attention. 

Some of the less critical issues that have received attention concern which datasets 

are suitable for modelling. For example, investigating the appropriate scale (Scott et al. 

2002; Graf et al. 2005; Guisan et al. 2007; Trivedi et al. 2008), sample size (Stockwell 

and Peterson 2002; Coudun and Gégout 2006), and method for selecting pseudo-

absences (e.g. Zaniewski et al. 2002; Engler et al. 2004) does not cast doubt over SDMs 

as a whole, but determines which datasets are most suited to use in SDMs. 

Recent studies have cast more serious doubts over SDMs in general, and the 

remainder of this section will detail five key issues with SDMs that have arisen in the 

scientific literature. These issues are central to this thesis, and the remaining chapters 
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provide new insights into these issues and develop new methods to improve the 

robustness of SDMs. 

The first issue concerns the assumption that correlations between species 

distributions and environmental factors are causal. Bahn and McGill (2007) 

demonstrated that randomly generated, but spatially structured, environmental variables 

were also able to satisfactorily explain species distributions, and this suggests that many 

species-environment correlations may be spurious. Species distributions are often 

clustered, and environmental conditions are usually more similar in locations in close 

proximity. It is possible that species distributions are correlated with environmental 

factors simply because they are both spatially structured (Currie 2007). 

The second issue concerns the underlying assumption that SDMs capture the 

ecological niche of species. SDMs are based on actual distribution data, which is a 

result of biotic interactions as well as environmental conditions. Therefore, SDMs are 

usually reported to capture the realised niche of the species (Austin 2002). However, 

SDMs do not necessarily capture competition unless it is included as an extra predictor 

(Leathwick and Austin 2001), and some suggest that SDMs actually capture the 

fundamental niche (Soberón and Peterson 2005). Others have suggested that SDMs do 

not capture the niche per se, as there is no functional or physiological relationship 

(Kearney 2006). Instead, it has been suggested that simple SDMs, for example those 

based on environmental envelopes, may capture the potential distribution, while more 

complex methods capture the realised distribution (Jiménez-Valverde et al. 2008). 

Clarifying the niche theory on which SDMs are based is one of the biggest challenges 

(Araújo and Guisan 2006; Guisan et al. 2006a), as it is difficult to justify SDMs when 

they do not have a strong ecological basis. A strong ecological grounding may provide 
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confidence that correlations are not simply due to the spatially structured environmental 

predictors. 

The third issue with SDMs is the uncertainty in predictions. Predictions from SDMs 

vary dramatically according to the statistical method used, the scale of the analysis, the 

climate data used, and the parameters selected (Thuiller et al. 2004a; Thuiller 2004; 

Araújo et al. 2005a; Araújo and New 2006; Beaumont et al. 2007). This variability can 

be large enough to compromise the usefulness of the methods (Araújo et al. 2005a). The 

outputs from multiple models can be combined to produce a narrower range of 

predictions (Araújo and New 2006), however Beaumont et al. (2007) argue that this 

merely hides the uncertainty, and increases the risk of overestimating the confidence 

that should be placed in SDMs. Further research is needed to determine if the range of 

uncertainty can be reduced, and to develop methods that are better at conveying the 

inherent uncertainty of SDMs to users. 

The fourth issue with SDMs, and one that has received comparatively little 

attention, is that they are sensitive to the accuracy of the data used (Dormann et al. 

2008). Data errors can affect many aspects of the SDMs, including the statistical 

significance, the shape of response curves, the predictors that are selected, prediction 

accuracy, and the spatial extent of predictions (Van Niel et al. 2004; Van Niel and 

Austin 2007). In some respects, this is associated with model uncertainty, however data 

uncertainty has other implications with respect to the complexity of models that can be 

justified. For example, some of the better performing methods in the study of Elith et al. 

(2006) produce complex response curves to environmental factors. Given that the shape 

of response curves is sensitive to data accuracy (Van Niel and Austin 2007), it may be 

difficult to justify complex responses to environmental gradients that have large errors. 
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The fifth issue with SDMs concerns spatial processes and spatial autocorrelation. 

Spatial autocorrelation is problematic for SDMs as it can affect the apparent 

significance of predictors (Legendre 1993). However, autologistic regression (Miller et 

al. 2007) or contextual indices (Ferrier et al. 2002; Wintle et al. 2005) can be used to 

include spatial context in SDMs, and this may be an opportunity to account for 

dispersal, home range size, or species interactions. Indeed, if SDMs are purely niche-

based, then they can be criticised for failing to consider spatial processes such as these 

(Hampe et al. 2004). Autologistic regression is not a complete solution to this problem, 

as it is uses data from the response variable as a predictor. Therefore, autologistic 

regression becomes interpolation rather than explanation, and it cannot be used to make 

predictions at locations or times where survey data is unavailable (Segurado et al. 

2006). In addition, autologistic regression can lead to biased models, and underestimate 

the effect of environmental variables (Dormann 2007). There is consensus that spatial 

processes need to be considered when modelling species distributions (e.g. Dirnböck 

and Dullinger 2004; Dullinger et al. 2004; de Frutos et al. 2007), yet the manner in 

which this should be achieved is an unresolved issue (Guisan et al. 2006a). 

This list of issues is not complete, but demonstrates increasing attention to the 

limitations of SDMs in recent years. Other issues that have not been listed here include 

genetic variation within species (Hampe 2004), the difficulty in extrapolating SDMs 

into novel climates, and the potential effects of rising CO2 levels (Loehle and LeBlanc 

1996).  

1.2 The vegetation of the Illawarra Escarpment 

The Illawarra Escarpment is situated approximately 80 km south of Sydney, Australia 

(Figure 1.1; 34.4 oS, 150.9 oE). It is oriented northeast to southwest, and rises 300 to 

600 m above the city of Wollongong on the coastal plain (Figure 1.2). Its well-vegetated 
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slopes create a conspicuous and contrasting backdrop to the city, and this has led to it 

being listed as a “scenic landscape of statewide significance” by the National Trust of 

Australia (NPWS 2003). The escarpment is an important component of the local 

community, as demonstrated by the Commission of Inquiry that was conducted to 

address its long-term management issues. 

 

 

Figure 1.1: The location of the study area. 
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Figure 1.2: The elevation of the Illawarra Escarpment (yellow to blue), with the 

area cleared for the city of Wollongong shown in red. 

 

Mt Keira and Mt Kembla protrude eastward from the escarpment (Figure 1.2) 

and create variations in aspect and shelter from winds and radiation. The combination of 

the topography and geology create an environment that is rare within the Sydney Basin 
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bioregion, and many of the vegetation communities are unique to the Illawarra (NPWS 

2003). 

Despite the uniqueness and importance of the local vegetation, there is still a 

poor knowledge of the factors that determine the distribution of species and 

communities. For example, there is a north-south trend in eucalypts, with Escarpment 

Blackbutt forest dominating the escarpment north of Mt Keira, Escarpment Moist Blue-

Gum Forest dominating between Mt Keira and Mt Kembla, and Moist Coastal White 

Box forest dominating south of Mt Kembla (NPWS 2002; Figure 1.3). While local and 

regional literature provide distributional maps of communities (NPWS 2002), and a 

rough guide to where individual species are located (Fuller 1995), these do not explain 

this north-south trend in eucalypts, or other distributional patterns. 

 

Figure 1.3: The north south trend in eucalypts that occurs on the Illawarra 

Escarpment (from NPWS 2002). 

‘Please see print copy for image’



Chapter 1: Introduction 

 15

There are three types of rainforest on the Illawarra Escarpment, which have a 

relatively patchy distribution (Figure 1.4). Lowland Dry Subtropical Rainforest is an 

endangered ecological community that occupies exposed foothills and drier gullies at 

low elevations. Coachwood Warm Temperate Rainforest and Illawarra Escarpment 

Subtropical Rainforest occupy moister sites, typically at sites that are sheltered from 

hot, dry northwesterly winds (Fuller 1995). The rainforests of the Illawarra have 

received comparatively more attention than the eucalypt communities. Numerous 

studies at the University of Wollongong have examined the composition of rainforests 

(Mills 1986), and examined the effects of edaphic factors (Bywater 1985) and fire 

(Erskine 1984). These studies are consistent with broader scale studies that have 

examined the effects of these factors (e.g. Beadle 1954, 1966), but importantly, all are 

non-spatial. That is, they seek to determine whether or not a factor affects the 

composition or presence of rainforest communities or species, but they cannot be used 

to produce a map of rainforest distribution, or quantitatively explain or predict the 

spatial distribution in terms of environmental factors. This limits the ability to quantify 

distributional changes that will occur due to, for example, climate change or various 

disturbance events. 
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Figure 1.4: The patchy distribution of the moist (blue, green) and dry (red) 

rainforest communities that are located on the Illawarra Escarpment (from NPWS 

2002). Elevation is depicted in the background as a grey-scale image (Figure 1.1). 

 

‘Please see print copy for image’
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1.3 Research aims and thesis outline 

Many methods have been used to explain the relationships between species’ 

distributions and environmental conditions. There have been times when scientists 

thought they had developed methods that could adequately identify these relationships, 

only to later realise that the assumptions behind these methods were not appropriate 

(Wiens 2002). To avoid this trap, I deliberately avoided trying to identify one ‘true’ 

model or ‘correct’ ecological relationship. Instead, the goal of this thesis was to assess 

and improve the methods used to produce SDMs, and contribute to the ongoing 

evolution of methods in the scientific literature. The remaining chapters focus on the 

five issues with SDMs discussed in Section 1.1.5—with a particular focus on data 

accuracy, spatial processes, and the variability of competing models. The specific aims 

were: 

 

1. To produce accurate fine-scale temperature surfaces based on a variety of 

topographic and geographic factors, and determine if this improved the 

performance of SDMs. Most SDMs assume that elevation is an adequate 

surrogate for temperature, but I demonstrate that this assumption is not valid 

(Ashcroft 2006; Ashcroft et al. 2008; Chapters 2 and 3). I further demonstrate 

that increasing the accuracy of temperature surfaces improves the ability of 

SDMs to explain the distribution of vegetation. 

 

2. To determine whether SDMs could be improved by considering the spatial 

context of predictors. In Chapter 4, I demonstrate the benefits of using 

contextual indices to incorporate spatial processes into SDMs, and how this 

overcomes the shortcomings of autologistic regression (see Section 1.1.5). 
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3. To produce accurate fine-scale surfaces of the climate change that has occurred 

over the last 35 years. I develop a novel approach to estimate landscape scale 

climate change, quantify the spatial variability in warming, and demonstrate that 

species differ in the amount of warming they have experienced (Chapter 5; 

Ashcroft et al. 2009). This research assists land managers to locate refugia from 

climate change and identify the species that are most at risk from climate 

change. 

 

4. To investigate the uncertainty associated with species distribution models and 

how this relates to commonly used evaluation techniques such as AUC (see 

Section 1.1.4). In Chapter 6 I demonstrate that it is inappropriate to assess SDMs 

against benchmark performance standards, and present a method to compare 

competing models and increase confidence in the selected predictors. 

 

5. To review how the landscape scale models produced in this thesis advance the 

scientific literature. The discussion chapter, Chapter 7, presents the challenges 

and benefits of producing SDMs at the landscape scale, using the methods 

developed in this thesis as examples. I discuss the benefits over models at other 

scales, and how they could be combined to improve the model building process. 

 

The remaining chapters of this thesis have been published in scientific journals 

(Chapters 2, 3 and 5), or been formatted so that they can be submitted to journals in 

future (Chapters 4, 6 and 7). This formatting has resulted in some duplication of site 

descriptions and methods in each chapter, although this has been minimised through 
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cross references. The most comprehensive description of the study area is included in 

the supplementary material for Chapter 4, including the vegetation and geology. Section 

4.5.2 provides the most detailed account of the vegetation survey and design. The most 

comprehensive assessment of DEM and data accuracy is included in the supplementary 

material for Chapter 3. The comparison between the sampling design I use to create 

temperature surfaces and existing coarse-scale methods is included in Section 7.4.
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Chapter 2:  A method for improving landscape scale 

temperature predictions and the implications for 

vegetation modelling1

2.1 Introduction 

Understanding the relationship between environmental factors and the distribution of 

vegetation can provide a meaningful contribution to environmental planning and 

management (Austin 2002; Ferrier et al. 2002). This is especially true at the landscape 

scale where environmental decisions are often made (Lookingbill and Urban 2003; 

Chuanyan et al. 2005). Quantifying the environmental niche of different species and 

communities can provide evidence as to what would occur if the land were used 

differently (Guisan and Zimmermann 2000), allows the estimation of past climate from 

fossils (Arundel 2005), can be used to aid ecological restoration (Chuanyan et al. 2005), 

and can be used to predict how future climate change will alter the distribution of 

vegetation (Hörsch 2003). 

A common way of explaining the distribution of vegetation is through the static 

modelling of survey data (see Guisan and Zimmermann 2000 for a review). These 

models capture the realised niche of vegetation in terms of environmental variables, but 

are based on the assumption that the vegetation is a result of, and in equilibrium with, 

the current environment and not a relict from the past (Austin 2002). 

Static models require detailed maps of the environmental factors that influence the 

vegetation, the majority of which are based on Digital Elevation Models (DEMs) and 

                                                 
1 This chapter has been published as: Ashcroft MB (2006) A method for improving landscape scale 
temperature predictions and the implications for vegetation modelling. Ecological Modelling, 197, 394–
404. 
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contain some level of error (Van Niel et al. 2004). For example, the DEM can be used to 

estimate the slope, aspect, hydrology and radiation for the study area. 

Elevation is often used as an indirect predictor of temperature (Lookingbill and 

Urban 2003), or is used in techniques (e.g. BIOCLIM) that interpolate data from 

weather stations (Hughes et al. 1996; Lindenmayer et al. 1999, 2000; Dymond and 

Johnson 2002). These methods are prone to error when predicting local temperature 

variations because there is often a lack of weather stations on which to base the 

interpolation, they ignore the influence of the local topography (Guisan and Zimmerman 

2000), and they fail to account for effects such as cold air drainage and evaporative 

cooling (Lookingbill and Urban 2003). 

Mountainous terrain can be especially difficult to model because the high spatial 

variability of environmental factors leads to a complex mosaic of vegetation (Hörsch 

2003). In Australia, there can be ten species of eucalypt (Myrtaceae: Eucalyptus spp.) in 

a small area (Florence 2004). Whilst it is accepted that there are changes in dominant 

canopy species associated with slope and aspect, the exact relationship with direct 

predictors is uncertain (Bell and Williams 1997). Environmental factors such as climate, 

phosphorus (Beadle 1954, 1966), fire (Florence 2004), and moisture (Wardell-Johnson 

et al. 1997) have been associated with the distribution of Australian vegetation, but no 

vegetation models have yet been able to satisfactorily explain the distribution of 

eucalypts (Austin et al. 1997), possibly because some scientists assume that the same 

environmental factors are limiting all the species (Arundel 2005). In addition, most 

studies have ignored the interaction between environmental factors at a location and 

those of neighbouring areas. 

The complexity of Australian vegetation is well illustrated by the Illawarra 

Escarpment, approximately 80 km south of Sydney, Australia (Figure 2.1). There is a 
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complex mosaic of eucalypt forests, woodlands, and rainforests on the Woronora 

Plateau and the slopes of the escarpment. The city of Wollongong lies on the coastal 

plain and foothills to the south and east, but there are also some remnants of native 

vegetation. The climate of the Illawarra region is humid and mild, with average daily 

minimum temperatures of 9 to 18 oC and maximum temperatures of 17 to 26 oC 

throughout the year (Fuller 1995). Annual rainfall ranges from 1000–1200 mm on the 

coastal plain to 1500–1600 mm on the escarpment, with slightly more rain falling in 

February-May than in August-November (Fuller 1995). 

 

Figure 2.1: The topography of the Illawarra Escarpment in the vicinity of 

Wollongong, Australia. The inset is a Digital Elevation Model showing the rising 

elevation from the coastal plain to the Woronora Plateau, with Mt Keira and Mt 

Kembla protruding eastward. 
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Preliminary modelling of the study area using Generalised Additive Models (GAMs; 

Hastie and Tibshirani 1990) confirmed that it was difficult to quantitatively explain the 

current distribution of vegetation using the available predictors. It has been suggested 

that obtaining better quality predictor variables would be a good first step to address this 

problem (Guisan and Zimmermann 2000; Austin 2002). This could include replacing 

the elevation predictor with more accurate and/or direct maps of average maximum and 

minimum temperatures. 

The aims of this study were to develop more accurate maps of average summer 

maximum and minimum temperatures, and to quantify the improvement in vegetation 

modelling performance when these were used instead of elevation. Whilst estimates of 

temperature have been developed for other study areas, this study aimed to determine 

whether the estimates could be improved by considering the interaction between a 

location and its surrounding environment. 

It was hypothesised that wind and air movements would average out large 

differences in radiation and elevation over small distances and cause temperatures to be 

more strongly correlated with the average elevation and radiation in the surrounding 

area than they are with the actual elevation and radiation where the temperature was 

recorded. This was tested by comparing the linear regression of temperature against the 

local average radiation and elevation with the linear regression of temperature against 

the actual elevation and radiation where temperature sensors were located. A stronger 

relationship would indicate that the local averages were better correlated with 

temperature, and would therefore be more appropriate for any temperature prediction 

method including linear regression and elevation sensitive interpolation methods such as 

ANUSPLIN and GIDS (Price et al. 2000). 
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Chuanyan et al. (2005) have also suggested that elevation is an unsatisfactory 

predictor for capturing the environmental niche of vegetation, and recently compared a 

number of other temperature estimation techniques. It is hoped that using the locally 

averaged elevation and radiation will further increase the accuracy of any of these 

methods, and lead to more ecologically realistic vegetation models. 

2.2 Materials and methods 

2.2.1 Environmental predictor variables 

Elevation data for the Illawarra Escarpment was available in the form of a digital 

elevation model (DEM) with a 10 m cell size. Whilst it is unknown how the DEM was 

created, it appears to have been derived from the contours of a topographic map and 

contains some noticeable imperfections. Airborne Laser Scanning (ALS) data that is 

available for a subset of the study area (courtesy of AAMHatch Pty Ltd) suggest that the 

errors in elevation are generally in the order of 5–10 m for most of the study area, but 

may be up to 30 m near the steep cliffs around Mt Keira (See Section 3.6.1 for a more 

comprehensive assessment of data accuracy). 

Three maps were also obtained. A map of vegetation communities was available 

courtesy of the Department of Environment and Conservation (NPWS 2002). Spatial 

errors for community boundaries are within 24 m for 93% of the map area, but may be 

up to 70 m in some areas on the escarpment. Communities are described in terms of 

species composition, and the canopy cover of each structural layer is estimated. Cultural 

data (roads, walking trails, powerlines, and gas pipelines) was provided by the 

Department of Infrastructure, Planning and Natural Resources (DIPNR). A comparison 

with high-resolution aerial photos (courtesy of AAMHatch Pty Ltd) suggests that spatial 

errors for the cultural data may be up to 50 m in the vicinity of the escarpment. A 
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geology map was available for part of the study area courtesy of Phil Flentje at the 

University of Wollongong. This was in the form of categorical data, with one value for 

each of the 20 geological units. An extra categorical value, ‘unknown’, was added for 

those areas outside the geological map. The geology map was used as a surrogate for 

soil properties (such as phosphorus) that are known to influence the distribution of 

vegetation. 

Streamlines were calculated from the DEM where the flow accumulation (as 

determined using ESRI ArcMap hydrology functionality) was greater than 500 cells. 

The distance to the streams was calculated using Euclidean distance, with values less 

than one being rounded up so that the log transformation would produce values greater 

than zero and the output would be more sensitive to areas that are near streams. 

Lookingbill and Urban (2003) used a similar log transformation of distance to streams 

in their estimations of temperature. 

The distance to disturbance was estimated by calculating the minimum distance to 

either the lines in the cultural data or the ‘Cleared’ polygons in the vegetation data. 

Values less than one were rounded up and the data was also log transformed. 

Exposure to winds was estimated by calculating the angle to the horizon for each 

azimuth that is a multiple of 15. This was done in ArcGIS using an AML script to 

calculate the shadow using ‘hillshade’ at altitudes of 0.125, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 

2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 21, 25, 29, 34, 39, 45, 51, 58, 65, 73, and 81 

degrees. The cells in the resulting raster grid contained the minimum angle that resulted 

in no shadow. This grid was incremented by one and log transformed so that the output 

was more sensitive to changes near low altitudes. 

Exposure to warm and dry westerly to northwesterly winds was estimated by 

averaging the log-transformed angles for azimuths of 255, 270, 285, 300, 315, and 330 
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degrees. Exposure to cold, moist southerly winds was estimated by averaging the log-

transformed angles for azimuths of 150, 165, 180, 195, and 210 degrees. Exposure to 

moist northeasterly winds was estimated by averaging the log-transformed angles for 

azimuths of 30, 45, and 60 degrees. These azimuths were chosen based on preliminary 

modelling and existing literature on the area. Dry westerly winds are dominant in winter 

and moist south and northeasterly winds are common in spring and summer (Erskine 

1984; Bywater 1985; Mills 1986; Fuller 1995). Northwesterly winds are not as 

common, but are dry and warm in summer and can have a desiccating influence on the 

local rainforests (Fuller 1995). 

Averages were employed to the wind directions because it had the effect of 

allowing wind to ‘bend’ around mountains, thus avoiding the long wind-shadows that 

stretch across the entire coastal plain when considering only one direction. Kramer et al. 

(2001) used the EXPOS model for a similar effect, but their model also allows wind to 

bend over the top of mountains. In any event, these are still approximations for exposure 

to wind, as wind is also influenced by valleys, mountaintops, and elevation (Raupach 

and Finnigan 1997; Finardi et al. 1998; Uchida and Ohya 1999; Ruel et al. 2001). 

Incoming solar radiation was calculated using the DEM and the Solar Analyst 

(USDA Forest Service) extension for ESRI ArcView. The total direct radiation was 

calculated for January 18th 2005, and is referred to in this chapter as simply ‘radiation’. 

The 18th January was selected because it was near the middle of the observation period. 

2.2.2 Predicting maximum and minimum temperatures 

Geographic Information System (GIS) data was used to stratify the study area according 

to elevation, radiation, and distance to streams, as these factors have been identified as 

influencing maximum and/or minimum temperature (Moore et al. 1993; Lookingbill 

and Urban 2003). Forty locations for temperature loggers were selected based on the 
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stratification results to overcome a number of problems with random sampling. These 

problems include the clustering of high elevation and low radiation sites which would 

cause random sites to be so close that they may be spatially auto-correlated, access 

restrictions to privately owned lands, and other access problems caused by the steep 

topography and dense vegetation that could not be identified until the sites were visited. 

Whilst it is recognised that non-random sampling can lead to bias, attempts were 

made to minimise this risk by ensuring the full range of each predictor was sampled, 

and by ensuring the environmental predictors were poorly correlated for the sampled 

locations. Radiation was poorly correlated with both elevation (r2 = 0.009) and distance 

to streams (r2 = 0.015) due to the stratification, whilst elevation was moderately 

correlated with distance to streams (r2 = 0.306) because there were fewer streams near 

the drainage divides at high altitudes. 

Temperatures were recorded using DS1921G iButton temperature loggers (Dallas 

Semiconductor/MAXIM). Recordings where made every 30 minutes from 29th 

November 2004 to 9th January 2005, and from 15th January 2005 to 25th February 2005. 

Sensors were placed on the surface of the ground with as much shelter from direct 

radiation as possible given the vegetation at each location. Each sensor was pinned to 

the ground inside a small, coarse meshed bag, however three sensors moved by 1–2 m 

during the study period due to disturbance from falling trees, erosion, and possibly 

lyrebirds (See Section 7.4 for a comprehensive discussion on sensor placement). 

In previous studies, temperature sensors have been placed at a variety of heights 

including 10 cm and 5 cm below the surface, and 15 cm, 30 cm, 1.3 m and 2 m above 

the surface (Lookingbill and Urban 2003; Lemenih et al. 2004; Porté et al. 2004; Ritter 

et al. 2005). Some have used radiation screens to avoid direct radiation (Ritter et al. 

2005), whilst others used the shade of the trees (Lookingbill and Urban 2003). It is not 
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evident which height provides the most useful predictor for the distribution of 

vegetation, but it has been shown that both soil and air temperatures influence the 

growth rate of eucalypts (Bell and Williams 1997). It is also not clear how well the 

surface temperature correlates with either the subsurface soil temperatures or canopy air 

temperatures, but it has been suggested that surface temperatures have the maximum 

diurnal variation and may be 5–10 oC different from the air temperature at 1.5 m – 

where meteorological measurements are made (Campbell and Norman 1998). Surface 

temperatures may be more spatially variable, because they are less subjected to the 

winds and advection that can mix air (Porté et al. 2004), and are obviously more 

exposed to solar radiation than subsurface measurements. 

When the sensors were reprogrammed in mid January 2005, the percentage canopy 

cover of each site was visually estimated to the nearest 10% and recorded. The full 

range of canopy covers were observed (0-100%), and canopy cover was poorly 

correlated with elevation (r2 = 0.065), radiation (r2 = 0.117) and distance to streams (r2 = 

0.072). Therefore, canopy cover was considered for inclusion in models for predicting 

temperature. It should, however, be noted that the visual assessment of canopy cover is 

prone to error. The relative importance of different canopy and sub-canopy layers is not 

obvious, and it is unknown how much the canopy cover varies temporally, or whether 

measurements should be biased towards the path of the sun. 

One site had to be discarded because the data on the temperature logger was lost. 

For each of the remaining 39 sites the daily maximum and minimum temperatures were 

recorded, and then averaged to determine the mean maximum and minimum 

temperatures for each of the 39 sites. Linear regression was used to determine how well 

elevation explained the average maximum and minimum temperatures, as done by 

Lookingbill and Urban (2003). The results of the regression were compared with the 
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regression using elevation in combination with the other predictors (radiation, log 

distance to streams, and percentage canopy cover). 

Partial response graphs and residuals were examined to ensure that the regression 

was, as expected, linear, and that the residuals appeared to be normally distributed. 

Linear relationships have already been established (Lookingbill and Urban 2003). 

In order to establish whether or not the relationship between elevation and 

temperature varies during the course of the day, the average temperature for each 30-

minute period was calculated for each site. Regression was used to calculate the 

relationship for each 30-minute interval, and the correlation coefficients recorded. The 

regression was conducted using elevation alone, and elevation in combination with 

radiation and canopy cover. The lapse rate was estimated from the coefficient of the 

elevation parameter in the regression. 

2.2.3 Using a low pass filter to improve estimates 

It was hypothesised that wind and air movements would cause the maximum 

temperature at a given site to be more strongly correlated with the average elevation and 

radiation over the surrounding area than with the actual elevation and radiation where 

the temperature was recorded. For example, a site surrounded by areas of consistently 

high radiation would be warmer than a site surrounded by a mosaic of low and high 

radiation. 

In order to test this hypothesis, the radiation and elevation predictors were 

transformed using low pass filters. This process averaged the values of each predictor 

over a circular region around each pixel in the predictor map, and calculated the moving 

average of elevation and radiation. The low pass filters were performed using the 

neighbourhood functionality of ESRI ArcMap, with radii of 100 m, 200 m, 500 m, 750 

m, 1000 m, 1250 m, and 1500 m. 
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For each radius, linear regression was used to examine the effect of the low pass 

filter on the correlation coefficient between maximum temperature and elevation and/or 

radiation (in comparison to the regression with the unfiltered predictors). The radius that 

maximised the r2 of the regression was used to estimate the optimal radius for the low 

pass filter. The low pass filter was also used to examine the effect on the correlation 

coefficient of the regression for the average temperature for each 30-minute period 

during the day. 

As the minimum radius (100 m) is ten times the cell size of the DEM (10 m), the 

resolution of the DEM is not expected to have a significant influence on the optimal 

radius. As averaging will cancel out random errors, it is also expected that DEM 

accuracy will become less significant once the low pass filter is used. Problems may be 

encountered in future if the cell size approaches the radius of the filter, but there is no 

reason to believe that the optimal radius in terms of distance would change, even though 

the radius would obviously be less in terms of the number of cells. 

2.2.4 Vegetation modelling 

A dataset of random points (defined by an easting and northing in the study area) was 

created and the vegetation community was determined for each point from the 

vegetation map (NPWS 2002). Rare and non-vegetated communities were discarded, 

which left 23 different communities. There were also a small number of points (<1%) 

that had to be discarded because there were spatial or other inconsistencies between the 

different data layers. For each remaining point, the environmental predictors were 

extracted from the appropriate themes in ArcMap, and the data set was randomly split 

into a training data set of 4995 points and a validation data set of 2306 points. 

A GAM was produced in SPlus (Insightful Corp.) for each of the 23 communities 

using the training dataset and the predictors (see Section 2.2.1 for more details) of 
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elevation, geology, log distance to streams, log distance to disturbance, and exposure to 

the three wind directions (EGWD models). Each of the models was then applied to the 

validation data set and each point classified into one of the 23 communities according to 

the model that produced the highest predicted probability of occurrence. 

The GAMs were then repeated using the predicted average summer maximum and 

minimum temperatures instead of elevation. In the first instance, the maximum was 

predicted using the filtered elevation and radiation (ER model), and in the second 

instance the maximum was predicted using the filtered elevation and radiation and the 

canopy cover (CER model). It was necessary to estimate the canopy cover from the 

vegetation map, with each community assumed to have a constant summer canopy 

cover of between 30% and 90%, estimated according to the community descriptions by 

the NPWS (2002). This is in contrast with the visual estimates of canopy cover that 

were used to derive the formula for maximum temperature. In future, the canopy cover 

could be estimated more accurately using remote sensing (Wang et al. 2003). 

No attempts were made to trim insignificant predictors from any of the GAMs, or 

to vary the degrees of freedom for each predictor. This ensures that the comparison 

between models is only comparing the effect of the maximum temperature predictor, 

but runs a risk of over-fitting. It has also been suggested that excessive absences past the 

recorded distribution of a species need to be culled (Austin and Meyers 1996; 

Leathwick et al. 1996). This was not done because the output was the “most probable 

entity” rather than the “probability of occurrence” (Guisan and Zimmermann 2000). 

Whilst it is recognised that a GAM can predict a non-zero probability of occurrence 

outside the observed range, this will not result in it being the most probable entity as 

long as another community it more likely to occur in that location. 
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2.3 Results 

2.3.1 Predicting minimum temperature 

Elevation was highly significant for predicting the average summer minimum 

temperatures (r2 = 0.763, t = -10.92, d.f. = 37, P < 0.001). Distance to streams was also 

significant (r2 = 0.196, t = -3.000, d.f. = 37, P < 0.01), but this must be treated with 

caution due to the moderate correlation between elevation and distance to streams. This 

is emphasised by the fact that when distance to streams and elevation were both used to 

model the average minimum temperature, the distance to streams was no longer 

significant (r2 = 0.766, telev = -9.355, d.f. = 36, Pelev < 0.001, tstream = 0.603, d.f. = 36, 

Pstream > 0.05), and there was negligible improvement in correlation from the regression 

with elevation alone. The average minimum temperature was not significantly 

influenced by either radiation (r2 = 0.006, t = -0.461, d.f. = 37, P > 0.05) or canopy 

cover (r2 = 0.015, t = 0.754, d.f. = 37, P > 0.05), nor were they significant when 

combined with elevation and/or distance to streams. 

Based on these results, the minimum temperature was predicted based on elevation, 

with the equation: 

 

Tmin = 17.3 – 0.0052 * Elevation 

 

Where Tmin is the predicted average summer minimum temperature (oC) at each 

location, and the Elevation (m) is taken from the DEM. The graph of the predicted 

average minimum temperature against the recorded average minimum temperature is 

shown in Figure 2.2a. 
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Figure 2.2: The relationship between the predicted average summer minimum (a) 

and maximum (b) temperatures and the corresponding minimum and maximum 

temperatures that were recorded by 39 temperature sensors placed at ground level 

on the Illawarra Escarpment. The predicted average minimum temperature is based 

on the regression of the actual recorded minimum temperatures against the 

elevation of each site, whilst the predicted average maximum temperature is based 

on the regression of the actual recorded maximum temperature against the elevation 

and canopy cover of each site. 
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2.3.2 Predicting maximum temperature 

Linear regression with each predictor individually showed that both canopy cover (r2 = 

0.303, t = -4.014, d.f. = 37, P < 0.001) and elevation (r2 = 0.185, t = -2.896, d.f. = 37, P 

< 0.01) were significantly correlated with maximum temperature, but radiation (r2 = 

0.055, t = 1.473, d.f. = 37, P > 0.05) and distance to streams (r2 = 0.005, t = -0.433, d.f. 

= 37, P > 0.05) were not. When both elevation and canopy cover were used in the 

regression the correlation improved substantially (r2 = 0.651, tcanopy = -6.934, d.f. = 36, 

Pcanopy < 0.001, telev = -5.988, d.f. = 36, Pelev < 0.001). When all the parameters were 

included in a multiple regression the r2 improved to 0.680, but elevation and canopy 

cover were the only predictors that were significant. The equation for predicting the 

average maximum temperature using the canopy cover and elevation was: 

 

Tmax = 28.9 – 6.6 * Canopy – 0.0127 * Elevation 

 

Where Tmax is the predicted average maximum temperature (oC), Canopy is the 

visually estimated canopy cover as a ratio between 0 and 1, and Elevation (m) is taken 

from the DEM. The graph of the predicted average summer maximum temperature 

against the recorded average summer maximum temperature is shown in Figure 2.2b. 

2.3.3 The effects of low pass filters 

When a low pass filter was used to average the radiation over various radii, the 

correlation with the average maximum temperature increased substantially, reaching a 

maximum value at a radius of 1000 m (r2 = 0.199, t = 3.029, d.f. = 37, P < 0.01, Figure 
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2.3a). It can also be seen that the relationship became more significant, and transformed 

radiation from an insignificant parameter (P > 0.05) into a significant one (P < 0.01). 

 

 

Figure 2.3: The r2 and P values that resulted from the regression of the average 

summer maximum temperature against various predictors for 39 temperature 

sensors placed at ground level on the Illawarra Escarpment. Predictors were the low 

pass filtered radiation (a), the low pass filtered elevation (b), the low pass filtered 

radiation and the low pass filtered elevation (c), and the canopy cover, low pass 

filtered radiation and low pass filtered elevation (d). 

 

There was also an improvement in the significance of the relationship between 

maximum temperature and elevation when using a low pass filter, with the best result 

also at a radius of 1000 m (r2 = 0.248, t = -3.493, d.f. = 37, P < 0.01, Figure 2.3b). 

Elevation was significant at every radius (P < 0.01), but there were slight improvements 

in the correlation coefficient and significance. 
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The correlation coefficient was also improved when average summer maximum 

temperature was regressed against both filtered elevation and filtered radiation (Figure 

2.3c). In this case, there was a slight degradation in correlation with radii of 100 m to 

200 m, but the best results were once again with a radius of 1000 m (r2 = 0.379, telev = -

3.236, d.f. = 36, Pelev < 0.01, trad = 2.760, d.f. = 36, Prad < 0.01). This represented a 

substantial improvement from when the unfiltered elevation was used alone (r2 from 

0.185 to 0.379). Elevation was significant for each radii (P < 0.01), but radiation was 

only significant for radii between 750 m and 1500 m (P < 0.05). 

When canopy cover was included as a predictor in the linear regression, along with 

the low pass filtered elevation and radiation, the best correlation was at a radius of 750 

m (r2 = 0.699, tcanopy = -6.233, d.f. = 35, Pcanopy < 0.001, telev = -5.517, d.f. = 35, Pelev < 

0.001, trad = 2.617, d.f. = 35, Prad < 0.05, Figure 2.3d). Both elevation and canopy cover 

were highly significant at every radii (P < 0.001), but radiation only became significant 

with radii greater than 500 m (P < 0.05). There was a marginal improvement in 

correlation between the low pass filtered result and the unfiltered result (r2 from 0.654 

to 0.699). 

2.3.4 Intra-day trends 

Regression of the average temperature for each 30-minute period against elevation 

emphasised the poor relationship between elevation and daytime temperatures. Not only 

is elevation an inadequate predictor of the average maximum temperature (r2 = 0.185), 

but it is also a poor predictor of the average temperature for every time interval from 

10:00am to 4:30pm inclusive (r2 < 0.4). In contrast, the estimate using the low pass 

filtered elevation and radiation maintained a reasonable correlation throughout the day 

(r2 > 0.43). The result using the filtered predictors was higher than the result based on 
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unfiltered elevation for every time interval from 8:00am to 9:00pm inclusive (Figure 

2.4a). 

 

 

Figure 2.4: A comparison between the r2 values for the different regressions 

predicting the average temperature for each 30-minute period throughout the day 

(based on 39 temperature sensors at ground level). Elevation refers to the regression 

using the unfiltered elevation (m) taken directly from the DEM. El1000Rad1000 

refers to the regression using the elevation (m) and radiation (W/m2) as averaged 

over a radius of 1000 m. CanElRad refers to the regression using the canopy cover, 

unfiltered elevation (m) and unfiltered radiation (W/m2). CanEl1000Rad1000 refers 

to the regression using canopy cover, the low pass filtered elevation (m) and the 

low pass filtered radiation (W/m2) as averaged over a radius of 1000 m. Difference 

refers to the difference between the r2 values of the two regressions involving 

canopy cover, with positive values indicating that the filtered result is higher. 



Chapter 2: A method to improve temperature predictions 

 38

 

When canopy cover, radiation and elevation are included in a multiple linear regression, 

then once again the low pass filtered results for day time average temperatures 

(10:30am to 5:00pm inclusive) are an improvement over the unfiltered results, but the 

night-time temperatures are substantially better using the unfiltered elevation (Figure 

2.4b). 

The intra-day results emphasise that whilst the low pass filtered radiation and 

elevation improve daytime temperature predictions, they are not as good at predicting 

the nighttime temperatures. This is consistent with using unfiltered elevation to predict 

the minimum temperature, but using the low pass filtered elevation and radiation to 

predict the maximum temperature. 

2.3.5 Vegetation modelling 

The overall accuracy of the GAM model using elevation, geology, distance to streams, 

distance to disturbance, and exposure to the 3 wind directions (EGWD model) was quite 

poor at 46.4%. When the average summer maximum temperatures were predicted using 

the low pass filtered elevation and radiation (ER model), the overall accuracy of the 

GAM model improved to 49.0%. The formula used was: 

 

Tmax = -32.7 + 0.01327 * Rad1000 – 0.0115 * Elev1000 

 

Where Tmax is the predicted average summer maximum temperature (oC), Rad1000 

is the radiation (W/m2) averaged over a 1000 m radius, and Elev1000 is the elevation 

(m) averaged over a 1000 m radius. 
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Alternatively, when the maximum temperature was predicted using the canopy 

cover and the low pass filtered radiation and elevation (CER model), the overall 

accuracy improved substantially to 61.8%. The formula used was: 

 

Tmax = -13.3 + 0.00955 * Rad1000 – 0.0137 * Elev1000 – 5.3 * Canopy 

 

Where Tmax is the predicted maximum temperature (oC), Rad1000 is the radiation 

(W/m2) averaged over a 1000 m radius, Elev1000 is the elevation (m) averaged over a 

1000 m radius, and Canopy is the canopy cover as a fraction between 0 and 1. 

Figure 2.5 illustrates the estimated average summer maximum temperature based 

on the low pass filtered elevation and radiation. The distributional patterns of maximum 

temperatures are shown to be vastly different to the distributional patterns of the 

average summer minimum temperature that are based on elevation alone. These 

differences are maintained when the average summer maximum temperatures are 

predicted based on canopy cover, and the low pass filtered elevation and radiation. 

2.4 Discussion 

2.4.1 Temperature prediction 

The average summertime maximum temperature could not be accurately predicted using 

elevation alone (r2 = 0.185), but a much better estimate could be made using the 

percentage canopy cover, the low pass filtered elevation and the low pass filtered 

radiation (r2 = 0.685). The estimates based on the low pass filtered predictors also 

outperformed elevation for predicting the average temperature for each 30-minute 

period from 8:00am to 9:00pm inclusive. In all cases the optimal radius for the low pass 
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filter was between 750 m and 1000 m. Elevation was a better predictor for the average 

summer minimum and overnight temperatures.  

 

Figure 2.5: A comparison between the predicted average summer minimum 

temperature based on elevation (top left) and the predicted average summer 

maximum temperature based on the low pass filtered elevation and low pass filtered 

radiation (bottom right). Whilst the minimum temperature south of Mt Kembla is 

similar to the minimum temperature north of Mt Keira (15.5 oC – 16.5 oC), the 

maximum temperature appears to be 1 oC – 2 oC cooler (20 oC – 21 oC versus 21 oC 

– 23 oC). 
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Using a low pass filter is a crude method to consider the interaction between a site 

and its neighbours, but appears to be effective for this study area. This is possibly 

because it reflects the movement of hot and cold air to and from surrounding locations, 

and allows locations where there is consistently higher radiation to be hotter than those 

locations where there is a mosaic of high and low radiation. It remains to be tested 

whether this local phenomenon can be replicated at other sites, and how the relationship 

varies according to latitude and relief. In areas with more constant canopy cover and 

radiation it would be expected that elevation would become more dominant. 

Likewise, as the diurnal variation in temperature decreases at locations deeper into 

the soil or higher off the surface (Campbell and Norman 1998), it is possible that the 

influence of radiation and/or canopy cover may be reduced when the temperature 

sensors are placed at different locations, or if radiation screens are used. Under these 

circumstances, it is also possible that the effect of the surrounding environment is 

reduced, and hence the effect of low pass filtering may be diminished or absent. 

It is possible that the filtering method could be improved by weighting the 

elevation/radiation in the surrounding locations according to distance from the centre 

(similar to Price et al. (2000) and Ferrier et al. (2002)), predominate wind directions, or 

the shape of the topography. It also needs to be confirmed that the low pass filtered 

elevation and radiation would also improve the results of other temperature estimation 

techniques such as ANUSPLIN and GIDS (Price et al. 2002). At the continental scale, 

where the pixel size is roughly the size of the filter used in this study (e.g. 1000 m in 

Price et al. 2000), a low pass filter may not have any effect. At the regional scale where 

the pixel size is 100 m or less (e.g. Ferrier et al. 2002), filtering the elevation used by 

ESOCLIM may slightly improve the accuracy of the model, but this also depends on 
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whether the effect is valid for non-surface temperatures, and whether it is valid for other 

study areas. 

The pixel size is obviously important for studies in mountainous areas, because the 

elevation may vary by hundreds of meters within one pixel when the pixel size is 100–

1000 m. This could translate to a within pixel temperature variations of 2-3 oC. It is also 

worth noting that in the Illawarra region, there are many vegetation patches that occupy 

small areas that could not be captured using a pixel size of 100–1000 m, and so a 

landscape scale model is necessary to capture to fine scale changes in temperature and 

vegetation. It is at the landscape scale that low pass filtering probably has the greatest 

potential to improve temperature estimates and modelling results. 

Previous studies have shown that the lapse rate of temperature is in the order of 

6 oC/1000 m, with daily variations from 3.8 oC/1000 m near the minimum temperature 

to 7.0 oC/1000 m near the maximum (Lookingbill and Urban 2003). In this study, the 

lapse rate varied from a minimum of 4.9 oC/1000 m at 6am to a maximum of 

8.4 oC/1000 m during the day. A lapse rate of 5.2 oC was determined for the minimum 

temperature based on elevation alone, and values of approximately 9-13 oC/1000 m 

were used in the various formulas for maximum temperature, depending on the 

parameters that were included in the regression. Therefore, the results of this study 

appear to be consistent with previous research. 

The relationship between canopy cover and temperature is also consistent with 

previous studies, with the effect ranging from 2 oC to 10 oC depending on the location 

of the sensor and the range of canopy cover examined (Porté et al. 2004; Lemenih et al. 

2004; Ritter et al. 2005). In this study, a 50% difference in canopy cover accounted for a 

2.6 oC to 3.3 oC difference in maximum temperature, depending on the other parameters 

included in the regression. 
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The effect of radiation is more difficult to compare with previous studies because it 

was not significant as a predictor unless the low pass filter was used. Lookingbill and 

Urban (2003) found that radiation slightly improved the estimation of the maximum 

temperature for their mountainous area (r2 from 0.41 to 0.48), but the effects may vary 

according to latitude and the time of year. 

It is possible that the predictions of maximum temperature could be improved 

further. Qualitatively, moist sites appeared to be cooler than dry sites.  This is consistent 

with a study by Bywater (1985), which suggested that diurnal variations are lower 

during rainy periods, and the study by Ritter et al. (2005), which considered soil 

moisture as one factor leading to lower temperatures. 

Note that temperatures were only recorded for the summer period from December 

2004 until February 2005. These recordings may not be representative of the long-term 

average for this time of year, and may differ from the temperatures recorded at any 

other height. Therefore, all temperatures discussed in this chapter should be treated as 

relative temperatures rather than absolute temperatures. In addition, it is unknown 

whether this time of year and these sensor locations have the most predictive power for 

modelling species distribution. It is possible that another season or sensor height may be 

more biologically important. 

2.4.2 Vegetation modelling 

When the vegetation on the Illawarra Escarpment (Figure 2.1) is modelled, using a 

GAM for each of the 23 communities, and the validation data set classified according to 

which community has the highest probability of occurrence, the results are quite poor. 

Using the predictors of elevation, radiation, distance to streams, distance to disturbance, 

and exposure to 3 wind directions the overall accuracy is only 46.4%. If the elevation 

predictor is replaced with the predicted average summer minimum temperature (using 
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elevation) and the predicted average summer maximum temperature (using canopy 

cover, and the low pass filtered elevation and radiation at a radius of 1000 m) the 

overall accuracy improves substantially to 61.8%. 

Caution must be used, however, since this improvement may be artificially high 

because the vegetation map was used to estimate canopy cover and therefore predict 

maximum temperature. This may have introduced feedback into the system when the 

maximum temperature was subsequently used to predict the vegetation community. 

There are still improvements in the overall GAM accuracy from 46.4% to 49% 

when canopy cover is not used, and the maximum temperature is predicted using the 

low pass filtered elevation and radiation alone. Therefore, the better estimates of 

maximum temperature improve vegetation models regardless of whether or not canopy 

cover is used. Whilst the improvement without canopy cover is not large, this would be 

expected given that the estimate of maximum temperature is much poorer than when 

canopy cover is included (r2 = 0.379 versus r2 = 0.685). 

The vegetation modelling results will also have been affected by the accuracy of the 

vegetation maps that were used. Subsequent surveying has highlighted some limitations 

of these maps, and the vegetation models in subsequent chapters of this thesis give a 

more reliable assessment of performance. However, even survey data has inaccuracies, 

and vegetation models are inherently trying to explain inaccurate distributional data. 

The training and test samples that were generated in this chapter were very large given 

the small size of the study area, and this potentially introduced spatial autocorrelation. 

Under these circumstances, the training and test datasets are not truly independent, and 

the performance may be overstated. Once again, the models in subsequent chapters are 

not affected by this issue, and are a more reliable indication of model performance. 
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In this study, the standard deviation of the regression residuals decreased from 

2.8 oC in the formula for maximum temperature using elevation alone, to 2.5 oC in the 

formula that also included radiation, to 1.8 oC in the formula that also included canopy 

cover. Whilst these may not be indicative of the whole study area due to the 

stratification and selection of sensor locations, they imply the prediction errors are 

reduced by possibly 30–40%. Errors of this magnitude cannot be ignored as it has been 

suggested that 41% of eucalypts have a mean annual temperature range of less than 2 oC 

(Hughes et al. 1996). Including the canopy cover feedback into the prediction of 

maximum temperatures and vegetation is not ideal, but it may be necessary to include 

canopy cover in the models if the errors are going to be reduced to a satisfactory level. 

The best solution might be to obtain the canopy cover from alternative sources such as 

remote sensing (Wang et al. 2003). 

Qualitative analysis of the GAM partial response graphs from this study suggests 

that the actual improvement in modelling results depends on which environmental 

factors are limiting each community. If a community is being limited by minimum 

temperature then including maximum temperature into the model may have less effect 

than a community that is being limited by maximum temperature. Also, the 

improvement depends not only on the predictive power for that community, but also on 

the degree to which that community can be distinguished from other communities, and 

which factors are limiting their distribution. 

Previous studies have suggested that eucalypt communities and species may be 

significantly influenced by summer maximum temperatures (Passioura and Ash 1993) 

and/or winter minimum temperatures (Moore et al. 1993). These studies, and the results 

of this research, suggest that the limiting factors vary from species to species and 
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community to community, and it is unlikely that any one temperature predictor can 

differentiate the 23 communities found in this study area. 

One problem with using multiple temperature predictors is that they can be highly 

correlated with each other – leading to problems in the GAMs. Lehmann et al. (2003) 

solved this problem by utilising the difference between the mean annual temperature 

and the winter average, however, in the Illawarra the average summer minimum and 

maximum temperatures were poorly correlated and could both be included in the 

models without introducing any problems with the GAMs. Moore et al. (1993) suggest 

that the relative contributions of elevation and radiation vary from summer to winter, 

and therefore it is possible that winter temperatures could be included as well if they are 

poorly correlated with the summer temperatures. 

Austin (2002) suggests that it is difficult to determine whether poor vegetation 

models result from an unidentified environmental variable, or from other factors such as 

competition or poor dispersal. This study highlights that it could also be due to using 

inaccurate predictors, as suggested by Ferrier et al. (2002). This study has shown that 

the performance of vegetation models can be improved by developing more accurate 

estimates of seasonal maximum and minimum temperatures. 

Whilst the improvement in prediction from using direct predictors has been noted 

(Austin and Meyers 1996; Guisan and Zimmermann 2000), it has also been suggested 

that they allow the model to be applied to wider areas (Guisan and Zimmermann 2000; 

Austin 2002). Two possible issues were seen during this study that may cause this to not 

always be the case. Firstly, the temperature range of each community and the overlap 

between them varied according to which formula was used to predict the maximum 

temperature. Clearly, it would be dangerous to apply the models to another area unless 

the maximum temperature had been calculated in the same manner as when the model 
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was developed—especially if the temperatures were based around air, soil, or canopy 

temperatures at a different height, taken during a different year, or during a different 

season. This is similar to the findings of Weiss and Hays (2005). 

Secondly, the relationships in this study area are not necessarily applicable to the 

broader region. For example, Eucalyptus sieberi is known to be dominant on the 

Hawkesbury sandstone (Fuller 1995), which is found along the top of the escarpment in 

this study area. The models produced in this study area suggest it can only occur where 

the minimum temperature is low (due to high elevation), however it does grow where 

the Hawkesbury sandstone occurs at lower elevations to the north of the study area. It is 

unknown how many of the models reflect the ‘local’ rather than the ‘global’ 

environment, or whether other factors such as competition with new species would 

change the relationship in other areas. 

2.5 Conclusions 

Using the low pass filtered radiation and elevation for temperature predictions improved 

the estimates of maximum temperature for all combinations of elevation, radiation 

and/or canopy cover. The low pass filter also improved the temperature estimates for all 

30-minute periods during the day from 8am to 9pm inclusive.  The optimal radius was 

750 m to 1000 m in all cases, but this may change in other study areas, in other seasons, 

or for other temperature sensor locations. 

Including the improved estimates of maximum temperature in vegetation 

community models substantially improved the overall classification accuracy from 

46.4% to 61.8%. This suggests that the effort spent to produce more direct or accurate 

predictors can reap large rewards, and it should not always be assumed that elevation is 

a good surrogate for temperature. 
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Chapter 3:  The effect of exposure on landscape scale 

soil surface temperatures and species distribution 

models2

3.1 Introduction 

Species distribution models (SDMs) provide information that is valuable for 

environmental planning activities (Ferrier et al. 2002), however better management 

outcomes may be achieved if landscape scale models are improved (Lookingbill and 

Urban 2003; Chuanyan et al. 2005; Lookingbill and Urban 2005). Current predictions 

may be inadequate if data used to produce models has insufficient spatial resolution or 

thematic accuracy (Guisan and Zimmermann 2000), or there are unsuitable predictors 

(Austin et al. 2006). 

Spatial variations in temperature have a large influence on the distribution of 

vegetation (Lookingbill and Urban 2003; Pearson and Dawson 2003; Lookingbill and 

Urban 2005) and are therefore a vital component of SDMs. Temperature influences 

many ecological and physiological processes such as photosynthesis, energy and carbon 

balances, water and nutrient cycles, decomposition and mineralisation (Lookingbill and 

Urban 2003; Peng and Dang 2003; Bond-Lamberty et al. 2005). Both air and soil 

temperatures affect the growth rate and survival of plants (e.g. Peng and Dang 2003; 

Rocha Corrêa and Fett-Neto 2004). 

Many temperature dependant ecological processes are non-linear in nature, which 

means that small differences in temperature can have a large influence on vegetation 

                                                 
2 This chapter has been published as: Ashcroft MB, Chisholm LA, French KO (2008) The effect of 
exposure on landscape scale soil surface temperatures and species distribution models. Landscape 
Ecology, 23, 211–225. 
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(Wang et al. 2003; Bond-Lamberty et al. 2005; Weiss and Hays 2005). Hughes et al. 

(1996) found that 41% of eucalypts in Australia had a mean annual temperature range of 

less than 2 oC, and 25% less than 1 oC. Therefore, obtaining accurate temperature 

estimates is vital, and has become increasingly relevant due to climate change. 

Predicting temperature variations at the landscape scale (extent of 10 – 200 km 

(Pearson and Dawson 2003)) poses different problems than at the global (> 10 000 km), 

continental or regional (200 – 2000 km) scales. Elevation may be the dominant factor at 

coarse scales, but variations in radiation, wind, moisture and aspect may be of greater 

importance when examining finer scale regions with low elevational ranges 

(Lookingbill and Urban 2003; Chuanyan et al. 2005). Consider a hypothetical situation 

where temperatures decrease at a rate of 6 oC/1000 m with fluctuations (mean = 0 oC, 

s.d. = 2 oC) that reflect variations in exposure (see Figure 3.6 in Supplementary 

Material). Variations of this magnitude are consistent with, for example, the 300 m 

elevational differences in the tree line in the European Alps (as noted by Frank and 

Esper (2005)). Despite that fact that these variations would be critical for many species, 

such as the eucalypts discussed above, the correlation between elevation and 

temperature is high (r2 = 0.893) over an elevational range of 3000 m. This is because 

elevation is causing an 18 oC difference in temperature over its range, and variations in 

the order of 2 oC barely affect the correlation. As the elevational range of the study area 

becomes smaller, the variations in exposure become more comparable with the effect of 

temperature. For example, over an elevational range of 1000 m, elevation is only 

causing a 6 oC difference in temperature, and the variations in exposure reduce the 

correlation substantially (r2 = 0.539, Figure 3.6). This illustrates that the range of 

conditions in a study area can affect how important each factor appears to be. If the 

‘influence’ (coefficient * range) of exposure became greater than that of elevation, then 
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this would be expected to have dramatic effects on the strength of the correlation (r2), 

and alter the predicted distribution of temperatures. This concept of ‘influence’ will be 

discussed further throughout this chapter. 

SDMs often use elevation as a surrogate for temperature (Guisan et al. 1999; 

Hörsch 2003), or use elevation and location to improve interpolations from weather 

stations (e.g. Hughes et al. 1996; Coudun et al. 2006; Randin et al. 2006). Interpolations 

from weather stations may improve bioclimatic models at global to regional scales, but 

smoothing is not desirable at the landscape scale as complex heterogeneous patterns are 

common and need to be explained (Wu and Hobbs 2002; Wu 2006). Interpolation 

methods may also be prone to error in mountainous landscapes because weather stations 

are often sparse, and may not sample the full range of microclimates (Guisan et al. 

1999; Guisan and Zimmermann 2000; Lookingbill and Urban 2003). 

As a range of environmental factors determines the temperature of each site, 

predictions of landscape scale soil surface temperatures should incorporate as many of 

these influences as possible. The aim of this chapter was to improve the accuracy of 

landscape scale soil surface temperature estimates by utilising models with four 

environmental factors: elevation, radiation, moisture and exposure. The first three 

factors have already been shown to be important in other study areas (e.g. Lookingbill 

and Urban 2003), but the impact on SDMs needs further investigation. The potential 

influence of winds has been noted elsewhere without being quantified (Lookingbill and 

Urban 2003; Lassueur et al. 2006), and this chapter introduces exposure predictors that 

may serve as a surrogate for winds. These have the potential to not only quantitatively 

improve soil surface temperature estimates, but to differentiate temperature patterns at 

different times of the year as wind directions change. This may be especially beneficial 
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for species that are limited by conditions during a specific part of their lifecycle, such as 

flowering, growth, or germination. 

This chapter focuses on soil surface temperatures rather than air temperatures. Soil 

temperatures have higher diurnal variations (Campbell and Norman 1998), are 

influenced more by radiation and canopy cover, and spatial differences are not affected 

as much by convection and mixing of air (Porté et al. 2004). Therefore soil surface 

temperatures have the potential to be more spatially heterogeneous than air 

temperatures, and may be better able to explain patchy vegetation patterns. Minimum 

and maximum temperatures are especially of interest because they can be less correlated 

with elevation than mean temperatures (e.g. Lookingbill and Urban 2003), and mean 

temperatures can give misleading indications of ecological processes (Bond-Lamberty 

et al. 2005). 

3.2 Methods 

3.2.1 Study area 

The study was conducted on approximately 12000 ha of the Illawarra Escarpment and 

Woronora Plateau (34.4 oS, 150.9 oE), approximately 80 km south of Sydney, Australia 

(Figure 3.1). The study area contains a complex mosaic of moist and dry rainforests, 

moist eucalypt forests, tall open eucalypt forests, upland swamps and woodlands 

(NPWS 2002), with the City of Wollongong on the coastal plain. The canopy cover of 

trees ranges from 0% in upland swamps to almost 100% in moist rainforests. The 

elevation ranges from sea level to 573 m. Temperatures in the region have been 

associated with exposure to radiation, winds and coastal influences (Bywater 1985; 

Mills 1986; Fuller 1995), but these effects have not been quantified. 
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Figure 3.1: The Illawarra Escarpment, 80 km south of Sydney, Australia. The inset 

shows the topography of the study area as a digital elevation model, with the 600 

vegetation survey sites and 40 temperature-monitoring sites shown by black and 

white circles respectively. 

 

The most common wind directions at 9am (Table 3.2 in supplementary material) 

are from the NE and SW, while the most common at 3pm are from the NE and SE 

(Table 3.3 in supplementary material). The highest average wind speeds are associated 

with winds from the W to NW, and these are also associated with higher temperatures 

and lower humidities. For example, 3pm winds from the WNW in summer are 

associated with an average humidity of only 31% - less than half that from most other 

directions, and the maximum temperature is up to 8.5 oC warmer (Table 3.3). The wind 

direction at 3pm is associated with variations of 3.1 oC to 6.9 oC in maximum 

temperature during other seasons, whilst 9am wind direction is associated with 

variations of 1.4 oC to 3.4 oC in seasonal minimum temperatures. These statistics 

illustrate that wind direction can dramatically affect the temporal variations in 

maximum and minimum temperatures at a given site, however the purpose of this 
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chapter is to test whether differences in exposure will affect the spatial distribution of 

average maximum and minimum temperatures. That is, if WNW winds are hot and dry, 

are sites that are exposed to this direction hotter because they receive the winds more 

frequently, or because direct exposure to the winds has more effect? The influence 

winds have on local soil surface temperatures will be determined by both the frequency 

of winds arriving from various directions and the associated attributes of those winds 

(such as the ‘drying power’ caused by the wind speed and vapour pressure deficit). 

Therefore, WNW winds may have a large influence on local temperatures, even though 

they are rare. 

3.2.2 Data 

A vegetation survey of 600 sites (Figure 3.1) was completed between July 2005 and 

March 2006 (See Section 4.5.2 for more details on survey design). Each site (20 m by 

20 m) was surveyed for presence or absence of 37 common species, of which the 

majority were trees (Table 3.1). All species will be referred to by their abbreviation 

hereafter. 

 



Chapter 3: The effect of exposure on temperatures 

 54

Table 3.1: The 37 species from the Illawarra Escarpment that were modelled as part 

of this study. * marks an introduced species. 

Abbreviation Common name Scientific name 
TVH Two-veined hickory Acacia binervata 
GW Green wattle A. mearnsii 
LP Lilly pilly Acmena smithii 
BS Black she-oak Allocasuarina littoralis 

ROP Red olive plum Cassine australis 
CW Coachwood Ceratopetalum apetalum 
HC Hairy clerodendrum Clerodendrum tomentosum 
RB Red bloodwood Corymbia gummifera 
NC Native cascarilla Croton verreauxii 
JW Jackwood Cryptocarya glaucescens 
MG Murrogun C. microneura 
PT Prickly tree fern Cyathea leichhardtiana 

GST Giant stinging tree Dendrocnide excelsa 
SF Sassafras Doryphora sassafras 

MGG Mountain grey gum Eucalyptus cypellocarpa 
YS Yellow stringybark E. muellerana 
BB Blackbutt E. pilularis 

SPM Sydney peppermint E. piperita 
CWB Coast white box E. quadrangulata 
SG Scribbly gum E. racemosaXhaemastoma 

BGH Blue gum hybrid E. salignaXbotryoides 
SA Silvertop ash E. sieberi 
GG Gully gum E. smithii 

FRG Forest red gum E. tereticornis 
BWR Bolwarra Eupomatia laurina 
CSF Creek sandpaper fig Ficus coronata 
LT Lantana Lantana camara*

CTP Cabbage tree palm Livistona australis 
HLD Hairy-leaved doughwood Melicope micrococca 
VMO Veined mock-olive Notelaea venosa 
SP Sweet pittosporum Pittosporum undulatum 
FW Featherwood Polyosma cunninghamii 
WB Whalebone tree Streblus brunonianus 
TT Turpentine Syncarpia glomulifera 
SR Scentless rosewood Synoum glandulosum 
BP Brush pepperwood Tasmannia insipida 
RC Red cedar Toona ciliata 
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Soil temperatures were collected at 40 sites (Figure 3.1) from November 2004 until 

August 2006 using DS1921G iButton temperature loggers (Dallas 

Semiconductor/MAXIM). For the first 3 months (summer 2004/5) soil temperatures 

were recorded every 30 minutes, and the sensors were placed on the surface of the soil 

with as much protection from direct radiation as possible given the vegetation at the 

site. For the next 6 months (autumn and winter 2005) recordings were made every hour 

with the sensors located 1 cm below the soil surface to eliminate the effect of direct 

radiation, but potentially introducing errors when deposition and erosion changed the 

burial depth, or where differences in soil properties altered the effect of burial depth. 

For the final 12 months recordings were made every hour and sensors were located both 

on the surface and 1 cm below. Duplication of sensors was performed as consistent 

results would imply that neither direct radiation nor burial depth was causing the results 

to differ substantially from the other sensor placement (see Section 7.4 for a discussion 

on sensor placement). For this study I was primarily concerned with the spatial pattern 

of temperature estimates, as this was what was used to predict the distribution of 

vegetation. It was not critical if there was a consistent bias between subsurface and 

surface temperatures, unless the spatial pattern of temperatures changed. 

The data was collected every three months at the end of the four seasons (February 

for summer, May for autumn, August for winter and November for spring). There was 

no data in the last week of every season as the data had to be downloaded and the 

sensors reprogrammed. Some sensors failed, were discarded due to spurious or outlying 

data, or could not be relocated. The sample size varied between 35 and 40 (median = 

39). 
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The data was divided into 28 periods of 21 or 22 days (four periods within each 

season), but there were 44 datasets due to the duplication of sensors during the final 12 

months. Dividing into months was not performed as the missing week at the end of each 

season meant that there was more data for some months than others. Three-week 

periods were selected as a trade-off between longer periods (more data but variable 

conditions) and shorter periods (less data but more constant conditions). Future studies 

may be able to use shorter periods if there are more sensors. 

Twenty-four exposure predictors were developed based on the log transform of the 

angle to the horizon in selected directions. Kramer et al. (2001) showed that the angle to 

the horizon was a strong predictor of windthrow, and the exposure predictors are 

designed to capture the influence of winds. For the 24 azimuths that were a multiple of 

15 (0 o to 345 o), the ArcMap hillshade command was used with altitudes of 0.125, 0.25, 

0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 21, 25, 29, 34, 39, 45, 

51, 58, 65, 73, and 81 degrees. The ‘shadows’ that were produced for each altitude were 

combined into a raster grid for that azimuth so that each cell contained the minimum 

angle that resulted in no shadow. The value in each cell was effectively the angle to the 

horizon in that direction (azimuth). A low angle indicated that horizontal winds from 

that direction could blow almost directly onto the site, whereas a high angle indicated 

that they would need to ‘bend’ over or around the topography, as the site was sheltered. 

The angles in the raster grid were incremented by one and log transformed so that the 

final exposure predictor would be more sensitive to lower angles. For example, an angle 

of 0.125 o became an exposure of 0.05 (very exposed), 2 o became 0.48 (exposed), 9 o 

became 1.00 (moderate), 25 o became 1.41 (sheltered), and 81 o became 1.91 (very 

sheltered). In effect, the exposure predictors are a measure of topographic ‘shading’, 

and this is very different from the aspect of the site. For example, a site can have a 



Chapter 3: The effect of exposure on temperatures 

 57

northwest aspect, but be sheltered from that direction if it is behind a mountain (See 

Section 3.6.2 in the supplementary material for more details on the difference between 

exposure and aspect). 

3.2.3 Temperature analysis 

For each of the 44 datasets, the mean daily maximum, daily minimum and average 

temperature were calculated for each site. The spatially averaged minimum, maximum 

and average temperatures were then calculated for each dataset. This provided a general 

indication of the seasonal variation in soil temperatures.  

Linear regression was used to determine the relationship between elevation and 

temperature. This involved 132 separate regressions, with 44 datasets of minimum, 

maximum and average temperatures. Multiple regression was then used to explain 

minimum, maximum and average temperatures for each dataset in terms of elevation, 

exposure and moisture. For average and maximum temperatures radiation was also 

used, but this was excluded from minimum temperatures as these usually occur during 

the night. Therefore, the equations used to predict temperature were: 

 

Tmin = an + bn.Elevation + cn.Moisture + dn.Exposure 

Tave = aa + ba.Elevation + ca.Moisture + da.Exposure + ea.Radiation 

Tmax = ax + bx.Elevation + cx.Moisture + dx.Exposure + ex.Radiation 

 

The elevation predictor was the same in all regressions (see Section 3.6.1 in the 

supplementary material for more detail on the source and accuracy of predictors). A 

different radiation predictor was used in each regression, which was estimated for the 

central day of the recording period using the Solar Analyst (USDA Forest Service 2007) 

extension for ArcView (ESRI). The estimates were only based on topographic factors 
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— not cloud cover or actual measurements. The moisture predictor was either distance 

to streams (DS), log of distance to streams (LD), distance to coast (DC) or a 

topographic wetness index (TWI). The four temporally invariant moisture parameters 

(DS, LD, TWI, DC) and 24 exposure parameters (0 o to 345 o in 15 o increments) were 

tested in each of 96 combinations, and the regression with the highest correlation (r2) 

selected. The moisture predictors are designed to reflect soil moisture, proximity to 

coastal influences or creeks, but DS may also reflect cold air drainage at night. Note that 

no measurements of wind, moisture or radiation were made as part of this study, and I 

only examined the correlation between temperature and topographically derived 

surrogates. 

For each regression, the coefficient of each predictor was multiplied with its 

observed range over the 40 sites in order to estimate the influence of that predictor in 

the study area. For example, if the coefficient for elevation was 6 oC/1000 m and the 

sensor locations spanned an elevational range of 500 m, then the predicted influence 

was 3 oC. Converting the coefficients in this manner allows the influence of elevation to 

be compared with the influence of the other factors, as well as allowing seasonal 

comparisons. This is not meant to replace r2 and P-values, but to complement them by 

looking at how much variation in temperature each predictor can cause in the study 

area. Not all predictors were significant in all regressions (P < 0.05), but none were 

removed because it was desirable to have the same number of parameters when making 

comparisons between different seasons. 

3.2.4 Species distribution models 

The distribution of each species was modelled using 134 Generalised Additive Models 

(GAMs, Hastie and Tibshirani (1990)). The first model contained only the geology 

predictor — obtained from a geology map (NSW Department of Primary Industries) and 
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used as a surrogate for soil properties (see Section 4.5.1 for more information on the 

geology of the study area). The second model contained the geology and elevation 

predictors. The remaining 132 models contained geology and either the predicted 

minimum, maximum or average temperature from one of the 44 datasets. The two-

predictor models would explain more deviance than a model that only contained 

geology, but only the models with geology/elevation and geology/temperature were 

compared. All comparisons are between models with two predictors and so any 

improvement in deviance is not because of extra predictors. 

The data was analysed using the 16 recording periods throughout the year (four per 

season). For each recording period, there were 1–2 above ground estimates and 1–2 

below ground estimates. Spurious results could be detected if there was a lack of 

consistency between 2004/5 and 2005/6, or between surface and subsurface sensor 

placements. Temperature estimates were considered to perform better than elevation if 

they consistently explained more deviance, at least during certain seasons. 

The results of the SDMs are included only to indicate which predictors may be 

more useful, and do not represent a final model. Developing such a model would require 

a more considered choice of statistical method, a predictor selection algorithm and more 

thorough independent validation. Multiple seasonal temperature estimates may be 

included in any SDM, and the significance of each may vary according to the statistical 

method and the other predictors in the model. Comparing models where each has 

geology and one other predictor ensures that any detected differences are due to the 

predictors themselves — not due to other factors. 

3.3 Results 

As predicted by Campbell and Norman (1998), the surface sensors had marginally 

higher maximums and lower minimums than the subsurface sensors. However, the 
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correlation coefficients were similar (low standard deviation) for each time of the year 

(Figure 3.2), and the factors affecting the spatial distribution of temperatures did not 

differ substantially. For example, the selected exposure directions at any time of the 

year were similar between 2004/5 and 2005/6 as well as subsurface and surface sensor 

placements (Figure 3.3). Therefore all results for the same time of year were averaged, 

as I was primarily interested in spatial patterns and the influence of different factors – 

not the absolute magnitude of temperatures.

3.3.1 Maximum temperatures 

The mean seasonal maximum temperatures for the study area ranged from 10.7 oC to 

21.8 oC (Figure 3.2a). The spatial distribution of summer maximum temperatures could 

not be adequately explained by elevation, with a mean (s.d.) r2 of only 0.083 (±0.037) in 

early summer. There was a clear seasonal trend that elevation had a lower correlation in 

early summer and higher in late autumn (Figure 3.2b), however the r2 only reached a 

mean of 0.541 (±0.127) at its peak. Including radiation, exposure and moisture in the 

regressions caused some large improvements in the ability to predict maximum 

temperatures. The r2 for early summer maximums increased by 0.381 (±0.052) to 0.464 

(±0.025) and winter maximums by 0.207 (±0.044) to 0.598 (±0.089) (Figure 3.2b). 

Elevation had a fairly consistent influence (coefficient * range) on the study area of 

4.0 oC (±1.1) throughout the year (Figure 3.3a), representing a rate of change of 

approximately 7.7 oC/1000 m. The influence was highest in early spring and summer. 

The mean influence (coefficient * range) of radiation, wetness and exposure were 1.3 oC 

(±1.3), 1.6 oC (±1.0), and 2.3 oC (±1.5) respectively (Figure 3.3a). These were much 

smaller than the influence of elevation, but were significant (P < 0.05, Tables 3.4, 3.5 in 

supplementary material) during a number of seasons. In particular, the mean influence 
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of exposure in early summer was 5.2 oC (±1.6), and this was higher than elevations 

mean influence of 4.9 oC (±1.8) during the same period. 

 

Figure 3.2: From top to bottom are the statistics for maximum (a-b), minimum (c-d) 

and average (e-f) temperatures. The left hand panels (a, c, e) illustrate the spatially 

averaged temperatures from 40 temperature monitoring sites. The right hand panels 

(b, d, f) illustrate the correlation (r2) between the temperatures at each site and 

elevation, and the correlation between temperatures and a model containing 

elevation, moisture, wind and radiation. Each point is the mean (s.d.) that was 

produced by averaging the data from that time of year (2004/5 and 2005/6, surface 

and subsurface measurements). 



Chapter 3: The effect of exposure on temperatures 

 62

 

Figure 3.3: From top to bottom are the statistics for maximum (a-b), minimum (c-d) 

and average (e-f) temperatures. The left hand panels (a, c, e) illustrate the influence 

of radiation, elevation, moisture and exposure in the temperature regressions. Each 

point is the mean (s.d.) that was produced by averaging the data from that time of 

year (2004/5 and 2005/6, surface and subsurface measurements). The influence is 

determined by multiplying the coefficient of each predictor by the range of values 

observed over the 40 temperature monitoring sites. The right hand panels (b, d, f) 

illustrate the direction of the exposure predictor that was selected to maximise the 

correlation with elevation. 
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The selected directions for the exposure predictors corresponded somewhat closely 

with the wind directions that were most influential for temperatures at the BOM station 

(Table 3.3). Winds from the WNW were associated with the highest temperatures and 

lowest humidities in summer, and this corresponds somewhat with the selected NW 

exposure variables. Winds from the SSW in spring were associated with the lowest 

maximum temperatures, although SW winds were also cold and more common (Table 

3.3). The selected exposure parameter in spring was SW in 63% of regressions and it 

always had a significant (P < 0.05) cooling effect. Winds from the N to NE were often 

amongst the warmest and most frequent directions during winter and autumn, and the 

selected exposure predictor was often from the NNE. 

Radiation and moisture were more often significant (P < 0.05, Table 3.4) during 

autumn, winter and spring. The selected moisture parameter was DS in more than 50% 

of models during summer, autumn and winter, while LD was more frequently selected 

in spring (Table 3.4). In all of the models that included DS it was predicted that sites 

near streams would be cooler than those further away, but the parameter was only 

significant (P < 0.05) in 36% of models. Overall, moisture was significant (P < 0.05) in 

23% of regressions for maximum temperatures, radiation 32%, exposure 75% and 

elevation 100%. 

3.3.2 Minimum temperatures 

The mean seasonal minimum temperatures for the study area ranged from 8.5 oC to 

17.7 oC (Figure 3.2c). Elevation was correlated more with minimum temperatures than 

maximum temperatures, with the opposite seasonal trend (Figure 3.2d). That is, the 

correlation was highest in spring (r2 = 0.708 (±0.112)) and lowest in winter (r2 = 0.429 

(±0.117)). The use of moisture and exposure predictors caused the r2 for winter 
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minimums to increase by 0.085 (±0.034) to 0.514 (±0.122) and for summer minimums 

by 0.088 (±0.060) to 0.732 (±0.026). 

There appeared to be little difference in the factors influencing the minimum 

temperatures for spring, summer and autumn, but winter temperatures presented a 

different pattern for both years and sensor placements. For spring, summer and autumn 

the mean influence (coefficient * range) of elevation was 2.9 oC (±0.4), but this dropped 

to 2.0 oC (±0.7) in winter (Figure 3.3c). These represented rates of change of 

approximately 5.5 oC/1000 m and 3.8 oC/1000 m respectively. The seasonal variations 

in the coefficients for elevation were consistent with previously reported results for air 

temperature in other regions (e.g. McVicar et al. 2007). 

The influence of moisture was 1.1 oC (±0.4) in winter, but this dropped to 0.6 oC 

(±0.3) during the rest of the year (Figure 3.3c). In 75% of cases DC was the selected 

moisture parameter in winter, but it was only significant (P < 0.05, Table 3.4) in 44% of 

cases. Nevertheless, this was a clear trend, as DC was only selected in 19% of models 

during other times of the year, and was never significant. The coefficients suggested 

that sites nearer the coast had consistently higher winter minimums than those further 

away, confirming the continentality effect. DS was often significant (P < 0.05) for 

summer minimum temperatures, while LD was occasionally significant for summer and 

spring minimums. 

The mean influence of exposure was only 0.7 oC (±0.2) throughout the year. 

Exposure to the NE, and to a lesser extent N, were consistently selected and significant 

(P < 0.05) in summer, autumn and spring, whilst SE and NW exposures were often 

significant (P < 0.05) in winter (Table 3.5). These directions for the exposure predictors 

closely matched the directions of winds that were most influential for minimum 

temperatures at the BOM weather station (Table 3.2). These directions, as well as the 
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use of the DC predictor, suggest that coastal influences play a role in moderating 

minimum temperatures. Overall, elevation was significant (P < 0.05) in 93% of 

regressions for minimum temperature, moisture 25% and exposure 50%. Interestingly, 

exposure was noticeably more significant (P < 0.05) for subsurface temperatures than 

surface temperatures (71% versus 25%). 

3.3.3 Average temperatures 

The results for average temperatures were similar to the results for both minimum and 

maximum temperatures and are presented in Section 3.6.3 in the supplementary 

material. 

3.3.4 Species distribution models 

For seven of the 37 species (19%) elevation consistently explained more deviance than 

temperature over the whole year (Figure 3.4a). For another five species (14%), 

temperatures explained marginally more deviance at inconsistent times during the year 

(Figure 3.4c), or marginally more during winter (Figure 3.4e). 

For the remaining 25 species (68%) temperature consistently explained much more 

deviance than elevation during at least part of the year. For five species, elevation 

explained approximately the same amount of deviance as temperature during most of 

the year, but temperature explained more during certain periods – usually winter, and 

usually minimum temperatures (Figure 3.4b). For another 13 species, temperatures 

explained more deviance than elevation over almost the entire year, with large 

improvements in summer and for maximum temperatures in particular (Figure 3.4d). 

These species were mostly moist rainforest species. For the final group of seven species, 

temperature explained more deviance than elevation over almost the whole year, but the 
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largest improvements were usually seen in winter and/or with minimum temperatures 

(Figure 3.4f). 

 

Figure 3.4: 132 SDMs were produced for each species based on different 

temperature estimates. The performance was assessed in terms of the amount of 

deviance explained (y-axis), and a model containing elevation and geology was 

compared against models containing temperature and geology. Each point is the 

mean (s.d.) that was produced by averaging the data from that time of year (2004/5 

and 2005/6, surface and subsurface measurements). Data in each panel is for the 

first species listed, while the species in parentheses produced similar results. 
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The increase in the amount of deviance explained by models with summer 

maximums is not surprising given their low correlation with elevation. However the 

extra deviance explained when using winter minimums is somewhat surprising given 

that the r2 values were only increased by a mean of 0.085 when moisture and exposure 

were included, and the predictors were not always significant (P < 0.05). The difference 

was that summer maximums and winter minimums were the two occasions when the 

influence (coefficient * range) of elevation was predicted to be less than that of the 

exposure and moisture predictors respectively (Figure 3.3a, c). This dramatically 

changed the spatial distribution of temperatures (Figure 3.5). 

During seasons when elevation had a much higher influence than the other factors 

(e.g. summer minimums, Figure 3.3c), the predicted distribution of temperatures 

resembled that of elevation (Figure 3.5). This is despite the fact that DS, LD and 

exposure to the N and NE were often significant (P < 0.05). For winter minimums, the 

moisture and exposure parameters were not as often significant (P < 0.05), but the high 

influence of DC relative to elevation dramatically changed the expected temperature 

distribution. This new distribution matched the distribution of species that were only 

found at cooler locations away from the coast (e.g. MGG, Figure 3.5), and species that 

were only found on the escarpment slopes occurred at locations with a minimum of 

approximately 9 oC. For summer maximum temperatures the coolest locations no longer 

occurred at high elevations, but in locations that were at moderate elevations and 

sheltered from the NW. The map of low summer maximums closely matched the 

distribution of moist rainforest communities (NPWS 2002), and therefore it is not 

surprising that there was more deviance explained by the models for many rainforest 

species (e.g. CW, Figure 3.5). 
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Figure 3.5: The surfaces of elevation, summer minimum, summer maximum and 

winter minimum temperatures. The temperature surfaces (oC) were calculated by 

averaging all surfaces for each season (2004/5 and 2005/6, surface and subsurface 

measurements, 4 recording periods). Presence data for two species has been 

included on the surfaces that explained the most amount of deviance in their 

models. 
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3.4 Discussion 

It is commonly suggested that climate is the dominant factor in SDMs at coarse scales, 

but factors such as topography and land-use are more influential at smaller extents 

(Pearson and Dawson 2003; Thuiller et al. 2004b; Coudun et al. 2006). This opinion 

may be proposed because of the widespread use of coarse-grained temperature grids 

produced by the interpolation of weather station data, which do not adequately capture 

higher resolution variability. With a 50 km grain size the within-cell temperature 

variation can be as much as 33.8 oC (mean 1.8 oC), as assessed using 1 km cells 

(Hijmans et al. 2005). The results of this study suggest there could still be large within-

cell variation within the 1 km cells. Temperature variations may be equally important 

for SDMs at finer scales, but innovative methods are needed to develop high-resolution 

temperature surfaces that are sufficiently accurate to explain landscape scale vegetation 

mosaics. Technology now exists to create accurate estimates of direct environmental 

predictors at the landscape scale, and this could lead to a new generation of vegetation 

models and a better understanding of species’ response to environmental gradients 

(Lookingbill and Urban 2005). 

3.4.1 Factors affecting landscape scale temperatures 

Elevation was clearly the most consistent, and usually most influential, determinant of 

temperature, but other factors were also found to be important. Elevation was 

particularly well suited to predicting the more moderate temperatures such as spring and 

autumn averages, summer minimums and winter maximums. Exposure and coastal 

influences were more important for the extreme temperatures such as winter minimums 

and summer maximums, and these are likely to be physiologically limiting the 

distribution of many species. 



Chapter 3: The effect of exposure on temperatures 

 70

Coastal moderators had a large influence on winter minimums, with sites that were 

exposed to the NE or SE warmer than sheltered sites, and sites that were closer to the 

coast warmer than those further away. This is consistent with continentality effects, and 

interpolations from weather stations can detect similar trends at coarser scales (McVicar 

et al. 2007). The increase in r2 was small and the predictors were not always significant 

(P < 0.05), but the influence (coefficient * range) of DC in particular exceeded that of 

elevation, and this dramatically changed the expected spatial distribution of winter 

minimum temperatures. Similarly, NW exposure was found to be more influential than 

elevation for summer maximums, and this also drastically altered the expected spatial 

distribution of temperatures. In each case, the new spatial distribution of temperatures 

was better able to explain the distribution of vegetation. The novel use of influence 

(coefficient * range) therefore appears to complement the r2 and P-value statistics, as it 

provides an indication of which factors dominate the predicted spatial distribution of 

temperatures. High r2 values do not necessarily mean that all the important predictors 

have been included (see introduction), and small improvements in r2 can have a big 

impact on the predicted distribution of temperatures if the extra predictors are 

influential. 

The exposure predictors that were developed for this study were very successful for 

landscape scale temperature prediction. They were significant (P < 0.05) in 60% of 

regressions, and this was more than both radiation (26%) and moisture (30%) 

predictors. Specific exposure directions were consistently selected in each season, and 

these closely matched the directions that were identified as the most influential wind 

directions based on BOM observations (Tables 3.2, 3.3) and literature on the study area 

(Mills 1986; Fuller 1985). 
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The exposure predictors were designed to capture winds but may instead be, for 

example, reflecting the meteorological conditions at the time-of-day most radiation is 

received.  For example, if all else is equal, an east-facing site receives its radiation 

earlier in the day when the temperatures are lower, and hence vapour pressure deficits 

are lower. This means that the east-facing site will have lower rates of 

evapotranspiration than the west-facing site, all else being equal, and the east-facing site 

would be moister. This explanation would not, however, explain why a range of 

exposure directions were significant over the year, why the BOM station experiences 

vastly different temperatures under different wind directions (Tables 3.2, 3.3) or why 

the exposure directions in this study matched those from the BOM observations. 

Other researchers are encouraged to test the exposure predictors in other study areas 

to determine if they are widely applicable, or whether they only become important in 

coastal mountain ranges. Larger study areas may benefit from techniques such as 

Geographically Weighted Regression (e.g. Foody 2004) so that the wind direction 

and/or influence can vary spatially. 

The exposure predictors may also prove beneficial when placed directly into SDMs, 

as winds may have direct influences on plants as well as indirect influences through 

temperature. They are potentially much less sensitive to DEM errors than aspect 

because they are based on topographic shading (Van Niel et al. 2004). Therefore, a 

variable that represents shelter from both the east and west may be able to capture N-S 

gullies without the accuracy problems noted by Van Niel and Austin (2007). 

The topographic wetness index (TWI) and log of distance to streams (LD) 

predictors were rarely significant (P < 0.05) in the regressions, although LD was often 

significant in spring. Distance to streams (DS) was the selected moisture predictor in 

most regressions, but distance to coast (DC) became increasingly important in winter - 
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especially for winter minimums. DC was also selected in some estimates of summer 

maximum, and so regressions with both DS and DC may prove beneficial. One 

outstanding question is whether the DC predictor should be modified to measure 

distance to coast in the direction of the prevailing winds rather than Euclidean distance. 

Radiation was rarely significant (P < 0.05), but it might be more so if canopy or 

cloud cover was considered. Canopy cover is known to influence surface temperatures 

(Paul et al. 2004; Porté et al. 2004; Bond-Lamberty et al. 2005; Ashcroft 2006; Chapter 

2), but it was not used in this study as it could potentially confound results when SDMs 

are produced. That is, it was undesirable to use vegetation to predict temperatures, and 

then use temperature to predict the distribution of vegetation. The effect of canopy 

cover may be higher during summer days and winter nights (Paul et al. 2004). This may 

indicate why summer maximums and winter minimums were not explained as well in 

this study as more moderate temperatures.  

3.4.2 Which environmental factors influence the distribution of 

species?

Many of the SDMs in this study were dramatically improved by using soil surface 

temperatures, however further research is needed to determine why this occurs. It is 

possible that the distribution of some species is directly limited by seasonal 

temperatures associated with the optima for germination, growth, flowering or seed 

production, however temperature is not necessarily the limiting factor. Another 

possibility is that high soil temperatures are providing an indicator of low soil moisture. 

While topographic wetness indices are commonly used in SDMs, topography is only the 

dominant factor for moisture during periods of high rainfall (Moore et al. 1993; Ridolfi 

et al. 2003; Lookingbill and Urban 2004). However, under wet conditions, plants are 

less likely to find moisture the limiting factor. During dry periods, radiation, 
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temperature, soils and canopy cover can become more important (Ridolfi et al. 2003; 

Lookingbill and Urban 2004). Therefore higher soil temperatures may provide a better 

indication of where soil moisture will be low during dry periods. Lookingbill and Urban 

(2004) found that soil moisture increased with increasing elevation, decreasing distance 

to streams and decreasing radiation. All these factors were identified as leading to lower 

temperatures in this study. Moisture availability has already been identified as a strong 

determinant of species distribution (Leathwick and Whitehead 2001; Lookingbill and 

Urban 2003, 2004) and has been suggested as an important factor in other studies on the 

Illawarra Escarpment (Erskine 1984; Bywater 1985; Mills 1986). 

Soil moisture may directly influence species distribution or it may indirectly 

influence distributions through mediation of fire frequency and/or intensity. The links 

between temperature, soil moisture and fire regime have been recognised (Lindenmayer 

et al. 1999; Schumacher et al. 2006), and fire has been cited as a factor affecting the 

distribution of vegetation in the Illawarra (Erskine 1984; Bywater 1985). Therefore, if 

soil temperatures provide an indication of moisture, they may also be providing an 

indication of fire regime. Further research is needed to determine whether temperature, 

moisture, and/or fire regime are influencing the distribution of each species. The results 

of this study only prove a correlation between temperature and the distribution of 

vegetation, and this could also be due to chance. 

3.4.3 Why is elevation a better predictor for some species? 

The fact that elevation explained more deviance than almost every temperature estimate 

for a group of species (Figure 3.4a, c, e) is worthy of further examination. This result 

may be because the species are limited by a number of different seasons throughout the 

year, and elevation provides a good indication of mean annual temperatures. 

Alternatively, it could be that for these species the seasonal temperature of highest 
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importance is well correlated with elevation. The data collected during 2004–2006 may 

not represent the conditions present when the trees became established, and the 

distribution may be associated with past soil temperatures. Elevation may be associated 

with rainfall or other environmental factors, and the limiting factor may not be 

temperature. Finally, convection and mixing average out spatial variations in air 

temperature relative to soil surface temperatures. This would mean that the high spatial 

variability that is caused by differences in radiation, moisture and exposure are less 

prevalent in air temperatures, and species that are limited by air temperatures may be 

better modelled using elevation. There is some evidence to support this last possibility, 

as exposure was often more significant for the subsurface sensors than the surface 

sensors. 

3.5 Conclusions 

The direction of prevailing winds makes a large difference to the temperatures and 

humidities observed at a given site on a given day (Tables 3.2, 3.3). The exposure of 

each site to the most influential directions (e.g. NW) affects its average seasonal 

maximum and minimum temperatures. Incorporating exposure and coastal influences 

into temperature estimates can change the predicted spatial distribution of temperatures, 

and these are better able to explain the distribution of many plant species. 

3.6 Supplementary material 

3.6.1 Source and accuracy of predictors 

Elevation was determined from a 25 m grain sized Digital Elevation Model (DEM, 

courtesy of NSW Department of Environment and Climate Change). Lidar data that is 

available for a subset of the study area showed the DEM generally contained elevational 
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errors of less than 10 m, but they were 30–50 m where there were steep slopes, and this 

was partly caused by the relatively coarse grain size. To reduce the ‘stepped’ 

appearance, the DEM was interpolated to a grain size of 5 m, although it is 

acknowledged that this did not eliminate all elevational errors.  

The DEM errors were thoroughly assessed and will not affect the main results or 

conclusions of this or other chapters in this thesis. For example, elevational errors of 

30–50 m are rare, but even these will only result in errors of 0.2–0.3 oC given that 

temperature changes at ~6 oC per 1000 m. These errors are trivial compared with the 

spatial and temporal changes in temperature, and the overall errors in the models 

specified (e.g. 1.8–2.8 oC in Chapter 2). The effect of DEM errors on derived 

environmental factors (e.g. aspect, slope, wetness indices) is more difficult to quantify 

(Van Niel et al. 2004), and the overall importance of each factor may be underestimated 

if it has high errors (see also Chapter 7). However, environmental factors are less useful 

if they are sensitive to errors, and should be avoided anyway. Indeed, we highlight that 

one of the benefits of the exposure predictors introduced in this chapter is that they are 

less sensitive to DEM errors. The temperature surfaces developed in this chapter are 

predominately based on variables that are relatively insensitive to DEM errors 

(elevation, distance to coast, distance to streams, exposure, radiation), and therefore the 

DEM has little impact on the models in this thesis that use those surfaces. 

Total (direct plus diffuse) radiation was calculated for the central date of each of the 

28 periods using the Solar Analyst (USDA Forest Service 2007) extension for ArcView 

(ESRI). No measurements of cloud cover or radiation were made during this study, and 

so the radiation predictor is an estimate of the insolation that each site would receive on 

a clear day based only on the topography of the study area. 
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Streams were located using the hydrology functionality of ArcMap (ESRI), where 

the flow accumulation was more than 500 cells. The distance to streams (DS) was 

calculated using Euclidean distance, and the log (distance to streams + 1) (LD) was 

determined. Streams may contain spatial errors, as the DEM was not hydrologically 

corrected, although the magnitude of the errors is expected to be small due to the 

typically steep gullies (see Figure 3.7). The topographic wetness index (TWI, Moore et 

al. 1993) was calculated using the formula: 

 

TWI = log(A/Tan(�)) 

 

where A is the upstream area (flow accumulation plus one times the area of each cell), 

and � is the slope. Distance to coast (DC) was calculated using a vector map of the 

coastline. Spatial errors of the Distance to coast (DC) predictor were negligible relative 

to the range. Of greater concern is whether lakes and harbours have the same effect as 

the open ocean, and whether the distance should be measured in the direction of the 

prevailing winds rather than Euclidean distance. The vegetation survey covered a 

broader range of DC (1.3 to 11.3 km) than the temperature sensors (1.9 to 7.6 km), and 

this means that the influence (coefficient * range) of DC may be underestimated in this 

study. 

The only available soil map for the area was at a coarse scale (1:100,000), and was 

deemed to be insufficiently accurate. For example, it did not differentiate the sandy soils 

atop Mt Keira from the nutrient rich soils on the escarpment slopes. Therefore, a 

geology map (NSW Department of Primary Industries) was used in SDMs as a 

surrogate for soil properties, and contained spatial errors in the order of 50 to 200 m. 
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Whilst it was also at a scale of 1:100,000, it was more accurate than the soil map, 

probably due to the presence of economically viable coal deposits in the study area. 

Due to poor GPS reception, spatial errors for the vegetation survey locations were 

estimated to be within 15 m for most sites, but possibly up to 50 m for sites in close 

proximity to cliffs and/or with a dense canopy cover. Some sites where the surface 

temperatures were recorded contained no trees, and so it was not possible to ensure 

consistency in microclimate by placing all sensors, for example, on the shady side of 

trees (as done by Lookingbill and Urban (2003)). Some sites used shrubs, groundcovers 

or debris for shelter while others used trees. 

3.6.2 The differences between exposure and aspect 

Aspect suffers from a number of problems, and exposure may offer solutions to many of 

these. Firstly, as aspect is measured on a circular scale, it cannot be easily interpreted 

(Pfeffer et al. 2003; Lassueur et al. 2006). It can be transformed using sine or cosine to 

yield predictors that reflect north-south or east-west trends (Hörsch 2003; Hengl et al. 

2004), but this still does not cater for topographic shading (Graf et al. 2005; Pierce Jr. et 

al. 2005). Finally, errors in aspect can be large depending on the slope of the site, and 

how the DEM was derived (Wise 2000; Hengl et al. 2004; Van Niel et al. 2004). Pierce 

Jr. et al. (2005) conclude that aspect is unsuitable for mapping landscape scale 

vegetation patterns, and local studies (Bywater 1985) have stressed that local rainforest 

communities can have any site orientation as long as they have suitable shelter. 

The differences between aspect and exposure are readily seen in the selected study 

area. Even if aspect is transformed (using cosine(aspect – 315 o)) to yield NW aspects, it 

differs substantially from the exposure to NW predictor (Figure 3.7). The aspect 

predictor is noisy in places where the slope is low, while the exposure predictor does not 

show any effects of DEM errors. Different predictors that are derived from the same 
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DEM can vary in their sensitivity to errors, and aspect is highly prone to error (Van Niel 

et al. 2004). It is clear (Figure 3.7) that the exposure predictor indicates the foothills of 

the escarpment are all sheltered from the NW, while they have variable aspect. 

3.6.3 Results for average temperatures 

The average seasonal temperatures for the study area ranged from 9.7 oC to 19.1 oC 

(Figure 3.2e). Elevation was a reasonably consistent representation of average 

temperatures throughout the year (Figure 3.2f), with a mean r2 of 0.569 (±0.109). The 

correlation was marginally better in autumn and spring than in summer and winter. The 

inclusion of radiation, moisture and exposure (Figure 3.2f) increased the correlation by 

a mean of 0.143 (±0.053) to 0.712 (±0.095). Once again, autumn and spring 

temperatures had marginally higher correlations. 

The factors influencing average temperatures were a combination of factors 

affecting minimum and maximum temperatures. Elevation had an influence between 

that of minimum and maximum temperatures, and similar to the effect on minimum 

temperatures, was noticeably lower in winter (Figure 3.3e). Similarly to maximum 

temperatures, radiation was more significant (P < 0.05) in late winter and early spring, 

exposure to the SW had a cooling influence in spring, and exposure to the NW had a 

warming influence in early summer (Table 3.4, 3.5). Similarly to minimum 

temperatures, exposure to the N and NE was often significant (P < 0.05) throughout the 

year, and always had a warming influence. DS was often significant (P < 0.05) 

throughout the year, but DC was significant in winter and LD in spring. Overall, 

elevation was significant (P < 0.05) in 100% of regressions for average temperatures, 

radiation 20%, moisture 43% and exposure 55%. 
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Figure 3.6: A hypothetical dataset created by assuming temperatures decrease at a 

rate of 6 oC/1000 m, but with fluctuations (mean = 0, s.d. = 2 oC) introduced to 

simulate variations in exposure. Two regressions have been performed – one over 

the full range of 3000 m, and one over only 1000 m. 
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Figure 3.7: A comparison between northwesterly aspect (left) and northwesterly 

exposure (right). Aspect is more sensitive to DEM errors and does not consider 

topographic shading. 
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Chapter 4:  Addressing spatial autocorrelation in 

species distribution models without using survey data 

as a predictor 

4.1 Introduction 

The geographic distribution of a species is determined by factors such as its 

environmental niche, its dispersal ability, and interspecific competition (Pulliam 

2000). Species Distribution Models (SDMs, Guisan and Zimmermann 2000; Rushton 

et al. 2004; Guisan and Thuiller 2005), however, usually focus on the environmental 

niche and neglect competition and dispersal (Guisan et al. 2006a). Where competition, 

dispersal or other spatial factors are considered, it is usually by utilising survey data in 

the surrounding neighbourhood (e.g. autologistic models), and taking advantage of 

spatial autocorrelation in the response variable or that of other species (Leathwick 

1998; Araújo and Williams 2000; Leathwick and Austin 2001). 

Spatial autocorrelation is a problem with respect to independent observations and 

can therefore affect the statistical significance of predictors in models (Legendre 

1993; Keitt et al. 2002; Segurado et al. 2006). However, the statistical significance of 

predictors is not the only factor that is utilised to develop SDMs. Statistical skill, 

judgement and the ecological model utilised are now accepted as being important—

maybe even more so than the statistical method (Austin 2002, 2007; Keitt et al. 2002; 

Guisan et al. 2006a). 

Incorporating ecological theories into models can help develop new insights or 

questions (Olden et al. 2006), and combining niche and spatial factors has the 

potential to lead to models that are more useful and realistic than purely statistical and 
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niche oriented methods. There are limited ecological insights that can be gained from 

autologistic models because spatial clustering can be caused by a number of 

alternative ecological processes (Legendre 1993; Keitt et al. 2002; Dirnböck and 

Dullinger 2004; Wintle and Bardos 2006) and autologistic models cannot be used to 

test alternative hypotheses (analogous to McGill 2003). In addition, autologistic 

models cannot be used when there are sparse presences (Araújo and Williams 2000), 

and may simply be compensating for missing environmental factors (Leathwick 1998; 

Austin 2002; Guisan and Thuiller 2005). In an extreme situation, autologistic models 

can ‘explain’ a clumped distribution without any environmental factors as predictors 

(Araújo and Williams 2000; Bahn and McGill 2007), although this is interpolation 

rather than an actual explanation or prediction. Autologistic models may be useful for 

predicting the current distribution of species when the spatial distribution of direct 

predictors is poorly known and the ecological reason for the distribution is 

unimportant. However, they cannot be applied to different regions or times (Guisan 

and Thuiller 2005; Randin et al. 2006; Segurado et al. 2006), and are therefore 

inappropriate for climate change studies or predicting unknown populations in 

unsurveyed areas. 

An alternative method to incorporate spatial factors into SDMs is by utilising 

contextual indices, such as the amount of rainforest within a 500 m radius (Ferrier et 

al. 2002; Wintle et al. 2005). In effect, they include spatial information using 

environmental factors (predictor variables) instead of the survey data (response 

variable). This reduces circularity in the model building process, and allows the 

models to be applied in unsurveyed regions and times. They have already been 

recommended for fauna with large home ranges (Ferrier et al. 2002), but the concept 

is also applicable to trees. This is because if there is more favourable habitat for a 
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species in the surrounding area, there are likely to be more trees of that species in the 

surrounding area, and therefore more seeds on the ground that can take advantage of 

any gaps that open in the canopy. 

To illustrate the potential benefits of contextual indices, consider a hypothetical 

example where presence/absence data from 20 sites was available for a species in a 

study area containing two geological units, G1 and G2 (Figure 4.1). A traditional 

niche-based Generalised Additive Model (GAM; Hastie and Tibshirani 1990) assigns 

the same probability of existence (POE) to every location on each geological unit 

based on the ratio of presences to absences on that substrate (Figure 4.1a). This 

ignores the fact that, in this example, all presences are located near the large patch of 

G2 geology. A contextual model produced based on the amount of G2 geology within 

150 m (for example) offers an alternative explanation for the observed distribution 

(Figure 4.1b), and produces a result more consistent with spatial or dispersal-oriented 

ecological theories such as island biogeography (MacArthur and Wilson 1967), 

source-sink models (Pulliam 1988, 2000) and fragmentation models (Fahrig and 

Merriam 1994; Hill and Curran 2003). Small patches of habitat have lower POE than 

the large patch, and the edges of the large habitat patch have lower POE than the 

centre. In addition, the contextual model provides some protection from spatial errors 

in the predictor maps and survey locations, as contextual indices create smoother 

transitions between discrete classes. This solves the problem whereby locations near 

soil boundaries may incorrectly be recorded on the wrong side of a boundary (as 

noted by Mummery and Battaglia 2002). 
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Figure 4.1: A hypothetical example for a study area with two geological units, G1 

and G2, and presence/absence data for a selected species. Panels indicate the 

predicted probability of existence (POE) produced by a Generalised Additive 

Model without (a) and with (b) contextual indices. 

 

Contextual indices are not a perfect representation of niche theory or spatial 

processes, but are a simple method to approximate the combined effects. It has 

already been recognised that environmental conditions need to be included in source-

sink models (Pulliam 2000) and fragmentation studies (Hobbs and Yates 2003; 
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Debinski 2006), and including spatial processes in SDMs allows them to be more 

consistent with these other areas of ecology. Contextual indices are an extension of 

SDMs and are therefore not dynamic or process-based. However, process-based 

models often require potentially erroneous assumptions to be made about dispersal 

abilities or other ecological traits, as there is little information available on most 

species (Guisan and Zimmermann 2000; del Barrio et al. 2006). Contextual indices 

have the advantage that they can be fitted to presence/absence data without making a

priori assumptions about the ecological traits of a species. 

Throughout this chapter I use terms such as ‘patches’ for areas of favourable 

environmental conditions—even though they may be within a continuous forest. This 

differs from traditional fragmentation studies that often involve a matrix of cleared or 

disturbed land. Note also that I use the term ‘habitat quality’ as a measure of the 

ability to maintain a population under specific environmental conditions when spatial 

factors are ignored. The POE also considers the spatial context. Species can have high 

POE in ‘sink’ areas with low habitat quality if there is sufficient nearby ‘source’ 

habitat. Similarly, an isolated and small patch of high quality habitat can have a low 

POE. This terminology further illustrates the differences between contextual models 

and traditional niche-based models—where the habitat quality and POE are 

synonymous. 

4.1.1 Extending the contextual indices methodology 

The manner in which contextual indices have been applied to date (Ferrier et al. 2002; 

Wintle et al. 2005) is typically in fauna models, with a fixed and pre-specified radius 

(e.g. 500 m) and Boolean type predictors (e.g. rainforest or not rainforest). That 

implementation is a specific example of a more general methodology. For example, 

all cells could contribute equally to neighbourhood averages, or they could be 
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weighted such that distant points contribute less to the contextual indices (e.g. see 

Canham and Uriarte 2006). However, such comparisons are outside the scope of this 

chapter, and I focused on extending the contextual indices methodology by using 

continuous and categorical predictors, allowing the data to determine the optimal 

radius for each contextual model, and applying the models to flora rather than fauna. 

I assessed these extensions using both single-predictor and multiple-predictor 

models. Single-predictor models were used to investigate alternative methods for 

incorporating continuous and categorical predictors, and to determine which factors 

influenced the optimal radius for contextual indices. Based on the best results from 

the single-predictor models, multiple-predictor models were developed to ensure the 

improvements were still valid when interactions between predictors were included. A 

more comprehensive comparison between contextual and non-contextual models was 

performed for one species.

4.2 Methods 

The study was conducted on the Illawarra Escarpment and Woronora plateau, 80 km 

south of Sydney, Australia (34.4 oS, 150.9 oE). The escarpment runs NE to SW, with 

Mt Keira and Mt Kembla rising over the city of Wollongong on the predominately 

cleared coastal plain in the south and east (Figure 4.2). The uppermost geology in the 

study area, Hawkesbury sandstone, forms the summit of both mountains as well as the 

top of the escarpment. This geology supports vegetation communities that are vastly 

different from other substrates, and is dominated by eucalypt woodlands and upland 

swamps. The gullies on the Woronora plateau are predominately Bald Hill claystone 

and Bulgo sandstone, and support tall-open eucalypt forests, moist eucalypt forests, 

and rainforests (NPWS 2002). The escarpment slopes and foothills also contain moist 

eucalypt forests and rainforests, but have a different composition of eucalypts from 
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the gullies on the plateau. See the supplementary material (Section 4.5.1) for a more 

detailed description of the geology and vegetation.  

 

Figure 4.2: The topography of the Illawarra Escarpment in the vicinity of 

Wollongong, Australia (34.4 oS, 150.9 oE). The inset is a Digital Elevation Model 

showing the rising elevation (m) from the coastal plain to the Woronora Plateau, 

with Mt Keira and Mt Kembla protruding eastward. See Supplementary Material 

(Section 4.5.1) for maps of geology and vegetation. 

 

Presence-absence data was collected (see Section 4.5.2 in supplementary material 

for details on survey design) for eight canopy tree species between July 2005 and 
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March 2006 at 600 sites (20 m by 20 m). All models were developed using the data 

from the first 360 sites, with additional sites used to test predictions in a simulated 

‘unsurveyed’ area (see below). Silvertop ash (Eucalyptus sieberi) and red bloodwood 

(Corymbia gummifera) were selected because they were common in the woodland 

communities on the Hawkesbury sandstone; coastal white box (E. quadrangulata) and 

blackbutt (E. pilularis) were selected because they were common on the escarpment 

slopes; gully gum (E. smithii) and mountain grey gum (E. cypellocarpa) were selected 

because they occurred in plateau gullies; and, red cedar (Toona ciliata) and lilly pilly 

(Acmena smithii) were selected as two rainforest species. The number of presences for 

each species in the initial 360 sites ranged from 26 to 186. Two species had less than 

the recommended number of 50 presences (Stockwell and Peterson 2002; Coudun and 

Gégout 2006), but were still analysed as the fine spatial resolution in this study had 

the potential to produce better results with fewer presences than that recommended at 

coarser resolutions (Engler et al. 2004). 

Seven environmental factors were used: elevation; average summer maximum 

temperature; geology; log of distance to streams; and, an estimation of the exposure to 

northeasterly, southerly, and west to northwesterly winds. Elevation was based on a 

10 m-resolution Digital Elevation Model (DEM; see Section 3.6.1 for more 

information on accuracy). The average summer maximum temperature was based on 

the established relationship with low pass filtered elevation and radiation (Ashcroft 

2006; Chapter 2). A geology map (NSW Department of Primary Industries) was used 

as a surrogate for soil properties, such as phosphorus, known to influence the 

distribution of Australian vegetation (Beadle 1954, 1966), and known to be influential 

for fine scale vegetation models (Coudun et al. 2006).  Spatial errors of boundaries 

were 50 to 200 m (see Section 3.6.1 for more information on accuracy). The log of 
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distance to streams and the exposure to winds were derived using the DEM. Streams 

were located using the flow accumulation functionality of ArcGIS (ESRI, Redlands, 

US), whilst exposure to winds was based on the log transformed angle to the horizon. 

The complete derivation of the maximum temperature, distance to streams, and 

exposure to wind parameters has been provided by Ashcroft (2006; Chapter 2). The 

exposure to winds predictors were included as indirect predictors of landscape scale 

temperatures (see Ashcroft et al. 2008; Chapter 3), and were the best predictors that 

were available at the time the analysis was conducted. A comparison with other 

predictors and previous studies on the selected species is included in the discussion. 

4.2.1 Single-predictor models 

GAMs with single-predictors were used to compare the statistical performance of 

models with contextual indices with those produced using the same predictor without 

contextual indices. I also used these models to investigate how the optimal radius for 

contextual indices varied between different species and predictors, and how 

continuous and categorical predictors should be incorporated into contextual indices. 

It was not possible to simply apply contextual indices to the raw predictors. 

Categorical predictors cannot be averaged, and the average of continuous predictors, 

such as elevation, gives no indication of how much of the surrounding area is 

favourable habitat. Therefore, I converted the raw environmental predictors to ‘habitat 

quality’ before using contextual indices. I tested three methods by which this may be 

done, although other methods are also possible. 

The first method used a GAM (using S-PLUS, Insightful Corp., Seattle, US) to 

produce a response curve for each species in terms of each environmental factor. This 

is effectively using the non-contextual model to generate the habitat quality for input 

to the contextual model. The outputs were exported to ArcGIS using a lookup table 
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(similar to Ferrier et al. 2002), and the predictor maps reclassified to produce habitat 

quality maps. These habitat quality maps were averaged using neighbourhood 

statistics to produce contextual indices. This approach may lead to excessively broad 

niches if there were numerous presences in sink areas (Austin 2002). Therefore, a 

second approach was used for each continuous predictor whereby 100% habitat 

quality was assigned to all locations where the environmental conditions were 

between the 10th and 90th percentile of the presences detected for that species, with 

0% habitat quality assigned to everywhere else. Similar to using the response curves, 

the habitat quality was then averaged over the surrounding region to produce 

contextual indices. The third approach was identical to the second, but the 25th and 

75th percentile were used. Each model was tested using contextual indices with radii 

of 30 m, 60 m, 100 m, 150 m, 200 m, 300 m, 400 m, 600 m, 800 m, and 1000 m, as 

well as the unfiltered predictor. 

For each of the eight species and seven predictors the best GAM with contextual 

indices was selected by determining the radius and habitat quality selection method 

that maximised the deviance explained by the model (D2, Guisan and Zimmermann 

2000). Each of the 56 single-predictor models without contextual information was 

compared with the best contextual model using that same species and predictor. Both 

the contextual and non-contextual models only had one predictor, as the contextual 

index was used instead of the raw environmental factor. 

4.2.2 Multiple-predictor models 

Multiple-predictor models were developed to ensure that the improvements in single-

predictor models were not simply compensating for missing predictors. The best two-

predictor models for each species were determined by testing each combination of the 

seven predictors. In each case the contextual and non-contextual models that 



Chapter 4: Spatial autocorrelation in SDMs 

 95

explained the most deviance were selected and compared. The multiple-predictor 

models were repeated using three to seven predictors. It is important to note that all 

comparisons are between models with contextual indices and models using 

corresponding raw predictor(s) instead of the contextual indices. Both models in all 

comparisons contain the same number of predictors and are based on the same 

environmental factors, although varying the radius of the contextual index could be 

viewed as an extra degree of freedom. For the contextual models, the seven candidate 

predictors were selected using the best radius and habitat quality selection method 

from the single-predictor models. 

One species (E. cypellocarpa) was selected as a case study to do a more 

comprehensive investigation of a multiple-predictor model, and the contextual model 

for this species was assessed more comprehensively. The four most significant 

predictors in models for E. cypellocarpa (elevation, geology, and exposure to 

southerly and west to northwesterly winds) were selected for the comparison. The 

non-contextual model was produced using the four environmental variables as 

predictors. The contextual model converted each to habitat quality, calculated the 

average habitat quality within 500 m, and then used the contextual index in the model 

instead of the environmental variables. The radius was selected based on the average 

radius of the four predictors in the single-predictor contextual models. The habitat 

quality was determined using environmental envelopes, with the niche made as 

narrow as possible as long as all presences were within a reasonable geographical 

distance of favourable habitat. For example, E. cypellocarpa was actually observed on 

four geological units, but the presences on two of these, including Hawkesbury 

sandstone, were rare and only occurred in locations near more favourable units. 
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The statistical performances of the contextual and non-contextual models were 

compared using D2 and Area Under the receiver operating characteristics Curve 

(AUC). The spatial autocorrelation of the residuals was examined using Moran’s I (de 

Frutos et al. 2007) in ArcMap to determine if the contextual indices eliminated or 

reduced the problems discussed earlier. The Minimum Predicted Area (MPA) method 

was modified such that instead of using a fixed (e.g. 90% in Engler et al. 2004) 

threshold for occurrences, the full range of thresholds was examined (similar to AUC) 

and the average percentage difference between the two alternative models compared. 

In short, a lower MPA suggests a better model because a smaller predicted area 

contains the same proportion of presences. A new evaluation method was used which 

also examined the full range of thresholds. For each threshold, the map was classified 

into locations where the species was predicted to be present or absent. The average 

geographic distance of errors was estimated by calculating the minimum distance 

from each false positive to a recorded presence, and from each false negative to a 

recorded absence. A low average distance would indicate that most incorrect 

classifications were close to a location where they would be consistent with the survey 

data. Finally, the predictions of both the contextual and non-contextual models were 

compared using AUC in a simulated unsurveyed area. This was done using 167 of the 

240 sites that were not used to develop the models. Not all sites could be used, as the 

original 360 sites did not cover the full range of environmental conditions, and I 

wanted to avoid testing extrapolation.



Chapter 4: Spatial autocorrelation in SDMs 

 97

4.3 Results 

4.3.1 Single-predictor models 

Of the 56 single-predictor models developed (eight species, seven predictors), 55 

(98%) were improved by including contextual information (Figure 4.3). The average 

magnitude of the improvement was 7.3% (s.d. = 6.4%), increasing the average 

deviance explained by the models from 13% (s.d. = 10.4%) to 20% (s.d. = 11.3%). 

This increase was significant (P < 0.001) according to a paired t-test. Only the best 

radius was selected to make these comparisons, but overall, 80% of the contextual 

models (response curve habitat selection method) performed better than the 

corresponding models without contextual indices. Choosing the optimal radius 

maximised the magnitude of the improvement—not merely select a rare case where 

an improvement occurred. 

In 35 of the 48 models with continuous predictors (73%), at least one of the 

environmental envelopes with contextual information performed better than the 

models without contextual information. However, for 32 of the 48 models (67%) the 

best contextual result was obtained using the response curve for determining the 

habitat quality. This compares with 12 cases (25%) where the 50-percentile 

environmental envelope method performed best and four cases (8%) where the 80-

percentile environmental envelope method performed best.  

The optimal radius for contextual indices varied from 30 m to 1000 m. The 

average optimal radius for the seven predictors varied from 366 m for geology, up to 

769 m for exposure to southerly winds (See Figure 4.9 in supplementary material). 

The general trend was that predictors that explained more deviance in the models, 

such as geology, elevation, and exposure to NE winds, tended to favour lower radii 
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than the predictors that explained less deviance. There were large differences in the 

optimal radius between species, with the median radii varying from 200 m for 

silvertop ash and lilly pilly up to 1000 m for coastal white box, blackbutt, and red 

cedar (See Figure 4.10 in supplementary material). The mean radii showed a similar 

trend to the medians, but one or two predictors that explained little deviance skewed 

results. The best predictors (highest D2) for each species typically peaked at 

approximately the same radius (Figure 4.4), suggesting that the optimal radius of the 

best models was determined more by the species than the predictor. 

 

 

Figure 4.3: A comparison between the deviance explained by single-predictor 

models with and without contextual indices. The different symbols represent the 

eight species used in the study: gully gum (GG), mountain grey gum (MGG), 

coastal white box (CWB), blackbutt (BB), silvertop ash (SA), red bloodwood 

(RB), red cedar (RC) and lilly pilly (LP). There are seven points for each species 

– one for each of the seven environmental factors. 
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Figure 4.4: The deviance explained by the contextual models for lilly pilly (a), 

mountain grey gum (b) and red cedar (c) as a function of the radius of the 

contextual indices. The seven predictors are geology (Geol), elevation (Elev), 

summer maximum temperature (MaxER), shelter from WNW, S and NE winds 

(WindWNW, WindS, WindNE), and log of distance to stream (LogDS). Missing 

values occur due to problems with model convergence. 
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The two eucalypts from the gullies on the Woronora Plateau, gully gum and 

mountain grey gum, had similar optimal radii (median 600 m). This was also true for 

the two eucalypts from the escarpment slopes, coastal white box and blackbutt 

(1000 m). There was, however, a large difference between silvertop ash (200 m) and 

red bloodwood (600 m), even though both species occupied similar areas of 

Hawkesbury sandstone. The only noticeable difference between the distributions of 

the two species was that silvertop ash was observed atop small Hawkesbury sandstone 

‘islands’ (Mt Keira and Mt Kembla), whereas red bloodwood was not. Red cedar had 

a larger radius (1000 m) than the other rainforest species, lilly pilly (200 m). Once 

again the species with the larger radius was only found in large fragments, while the 

species with lower radius was also found in smaller fragments. 

 

4.3.2 Multiple-predictor models 

Multiple-predictor models produced using contextual predictors performed 4.7% to 

7.5% better than the equivalent models without contextual information (Figure 4.5), 

demonstrating that the statistical improvement in single-predictor models was mostly 

maintained when extra predictors were considered. To further investigate multiple-

predictor models, a non-contextual GAM was produced for E. cypellocarpa using the 

predictors of elevation, geology, and exposure to west to northwesterly and southerly 

winds. The predicted probability of existence (POE) map that was produced by this 

model showed that although there were areas of moderate (25-50%), and occasionally 

high (>50%), POE that coincided with the observed occurrences of E. cypellocarpa 

(Figure 4.6a), similar POE values were also found in the central and northeastern 

portions of the study area—even though only one presence was recorded in these 

areas. 
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Figure 4.5: A comparison between the average deviances explained by multiple-

predictor models, with and without contextual indices, for eight tree species in the 

Illawarra region. 

 

The environmental envelopes that were selected for the contextual model for E.

cypellocarpa were: elevation of 320 m to 420 m; exposure to southerly winds of 0.8 

to 1.4 (moderately sheltered); exposure to west to northwesterly winds of 0.5 to 1.0 

(exposed); and, geology of Bulgo sandstone or Bald Hill claystone. The GAM that 

was produced using the four contextual indices produced four similarly shaped partial 

response curves (See Figure 4.11 in supplementary material). According to each, the 

species was less likely to exist in locations where there was less than 40% favourable 

habitat in the surrounding area. 

The model produced using the contextual indices explained more deviance (39%) 

than the model without contextual information (28%), and produced a dramatically 

different POE map (Figure 4.6b). In comparison to the non-contextual model, more 
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areas were classified as very unlikely (0% POE) or highly likely (>50% POE). There 

were three large patches of high POE, the northernmost two of which corresponded 

closely with two clusters where E. cypellocarpa was observed during the initial 

survey of the 360 sites that were used to develop the model, whilst the third was in the 

simulated unsurveyed area. The predicted POE in the central and northeastern 

portions of the study area was lower (0–25% instead of 10–50%), and this fitted the 

low observed occurrences in these areas better. 

 

 

Figure 4.6: The probability of existence (POE) maps produced by the multiple-

predictor models for E. cypellocarpa using predictors of elevation, shelter from 

southerly winds, geology and shelter from west to northwesterly winds. Circles 

represent the presence/absence data from the 360 sites that were used to train both 

models, while the triangles represent the additional sites that were used to test 

predictions in another area. The model produced without using contextual indices 

(Non cont., (a)) uses the same environmental variables as the contextual model 

(b). 

 



Chapter 4: Spatial autocorrelation in SDMs 

 103

The contextual model was substantially more confident (>50% POE) that the 

species would be found in the simulated unsurveyed area. The species was observed 

at 13 sites in that area, demonstrating that the prediction was accurate (Figure 4.6b). 

The model without contextual indices indicated there was a low to moderate (10-50%) 

chance of finding the species in that location, but this was a less confident, and less 

reliable prediction given that similar POE values were also predicted for other areas 

where the species was not observed. 

The AUC in the models for E. cypellocarpa increased from 0.866 to 0.903 when 

using contextual indices, indicating better classification performance on the training 

data. The AUC calculated with data in the simulated unsurveyed area suggested a 

larger improvement in the contextual model—from 0.761 to 0.905. This confirms the 

better predictions in the simulated unsurveyed area. 

The residuals of the contextual model were spatially autocorrelated (P < 0.05), 

but less so than the non-contextual model (P < 0.01). Therefore, contextual indices 

reduced, but did not eliminate, the amount of spatial autocorrelation in the residuals. 

The contextual model consistently, but not always, predicted a smaller MPA than the 

non-contextual model. The output was very sensitive to the threshold, with the 

contextual model varying from an area 32% larger to 59% smaller. The contextual 

model had lower MPA in 86% of cases, and was on average 17% smaller. 

The contextual model for E. cypellocarpa also performed better in terms of the 

average spatial error of false presences and false absences. When the model output 

threshold was high, the false positives and false negatives were both within 

approximately 200 to 300 m (Figure 4.7) of a location where there was a recorded 

presence or absence respectively, and this was approximately equal to the distance 
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between survey points. Therefore, whilst they were erroneous, there were 

neighbouring sites where the prediction was valid. 

As the threshold was lowered the number of true positives and false positives 

increased. For the contextual model the average distance of these false positive errors 

was consistently between 280 and 305 m when the threshold was set to achieve less 

than 55% true positives, but increased sharply as the threshold was lowered further 

(Figure 4.7a). The larger errors indicated that the false positives were consistently in 

locations further away from observed presences—raising doubts about the realism of 

the predictions. The non-contextual model showed a similar trend, but its false 

positive predictions started to appear in apparently unrealistic locations as soon as 

there were more than 30% true positives. 

The average spatial error of false negatives did not change dramatically as the 

threshold changed, but the contextual model consistently had smaller errors than the 

non-contextual model. There was a slight trend towards smaller distances as the 

number of false negatives decreased (Figure 4.7b), but the results became sporadic 

when there were only a few errors. The trend may be more pronounced in common 

species, as absences would be rare. 
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Figure 4.7: The estimated average spatial errors of (a) false positives (FP) and (b) 

false negatives (FN) as determined by averaging the distances (Ave. dist.) to the 

nearest presences and absences respectively. The two lines illustrate the results 

for the multiple-predictor contextual and non-contextual models for E.

cypellocarpa. 
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4.4 Discussion 

Using contextual indices to incorporate spatial factors into vegetation models 

produced statistically better results than purely niche-based models for both single and 

multiple-predictor models. The average deviance explained by single-predictor 

models increased from 13% to 20% using contextual indices, and average gains of 

4.7% to 7.5% were observed in multiple-predictor models. The multiple-predictor 

contextual model for E. cypellocarpa performed better in terms of D2, AUC, Moran’s 

I, average MPA, and the average spatial error of incorrect classifications. 

The ecological interpretations of the two models for E. cypellocarpa are different, 

but it cannot be proven which conclusion is correct. The non-contextual model could 

not adequately explain the observed distribution, which implies that there was a 

missing predictor (Austin 2002), the species was not at equilibrium (Guisan and 

Zimmermann 2000), the predictors were not accurate enough, or the species was 

influenced by competition (Leathwick and Austin 2001), source-sink effects (Pulliam 

2000) or dispersal limitation (Svenning and Skov 2004; Moore and Elmendorf 2006). 

On the other hand, the contextual model could explain the distribution in terms of an 

environmental envelope for each predictor, and suggested there needed to be more 

than 40% suitable habitat within 500 m. This could be because dispersal effects or 

other spatial processes were included in the model, but there is always the possibility 

that the improvements were due to an increasing correlation with more significant and 

missing predictors. 

While the statistical improvement in performance of models containing 

contextual information is worth noting, the improvements in predictions are even 

more significant. After all, it is the predictive power of models that will ultimately 
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determine their usefulness (Rushton et al. 2004). The model for E. cypellocarpa that 

was based on contextual indices more confidently predicted where the species would 

be located by subsequent surveying, and its predictions were more accurate in terms 

of AUC. These predictions could not have been made with an autologistic model, as 

we were simulating a situation where there was no survey data in that vicinity. 

The statistical improvement in the contextual model for E. cypellocarpa (28% to 

39%) was larger than the average improvement that was reported for all models. 

Therefore, this result is not necessarily indicative of other species. Lilly pilly, for 

example, had a much lower optimal radius and there was less statistical improvement 

when using contextual indices. These factors combined to produce less obvious 

differences in the POE maps when comparing models with and without contextual 

indices.

4.4.1 What determines the optimal radius? 

The results suggested that the success of contextual indices in vegetation models was 

more likely due to ecological factors than spatial errors or correlation between 

predictors. If spatial errors in GPS locations or plot size were the reason for the 

success, then the optimal radii should have been low—approximately equal to the 

errors. This was not the case, as the radii were typically 200–1000 m, while the errors 

were less than 50 m (and usually estimated to be less than 10 m). If the spatial errors 

in predictor layers were the reason for the success, then it was expected that the 

geology map would have a higher radius than other predictors due to its higher spatial 

errors. On the contrary, the geology predictor, and the other predictors that usually 

explained a high amount of deviance, had the lowest average radii. The larger radii of 

less significant predictors probably indicates an increasing correlation with more 

significant predictors, but this result is of little importance given that predictors that 
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explain little deviance are usually omitted. The large difference in radii between 

species was consistent with ecological differences, and is the most likely cause for the 

improvements in contextual models. The largest statistical improvements were when 

the optimal radius was large, and for species with a distribution that was clumped into 

large patches. Species that could be found in both large and small patches had lower 

radii, and smaller improvements. 

It is already well known that species vary in their ability to exist in small patches 

of habitat (Hobbs and Yates 2003). Common species are typically observed in both 

large and small patches, but rare species are affected more by fragmentation and are 

likely to be found only in large patches (Honnay et al. 1999; Davies et al. 2000; Hill 

and Curran 2003; Debinski 2006). There is reduced seed rain in fragments (Hobbs and 

Yates 2003), but it is worth noting that the ability for species to persist in small 

patches is determined by its colonisation capabilities, not just dispersal. Colonisation 

ability is also influenced by factors such as fecundity, dormancy, seedling 

establishment characteristics, species interactions, and habitat quality (Fahrig and 

Merriam 1994; Levin et al. 2003; Levine and Murrell 2003; Guisan and Thuiller 

2005). Dispersal may cause seedlings to be clumped, but such patterns can disappear 

as plants mature and habitat quality and competition have more influence (Levine and 

Murrell 2003). Therefore, although contextual indices do not capture an accurate short 

distance seed dispersal curve, there may not be a large benefit in doing so (e.g. by 

weighting cells in contextual indices according to distance from the centre) if other 

factors are more important in determining the colonisation ability. Indeed, I found that 

larger radii were associated with species with poorer dispersal ability, which is 

contrary to what would be expected if the radius reflected dispersal distance. This 

reinforces that view that contextual indices captured the combined effects of multiple 
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spatial processes— not just seed dispersal. I did, however, test one method for 

weighting based on radius (unpublished data), and found little difference in results. 

The extra complexity was not justified, and constant weighting was the more 

parsimonious solution. I cannot exclude the possibility that some methods of 

weighting could perform better. 

I propose that species that can exist in both large and small patches will be good 

colonisers, have a low optimal radius for contextual indices, require accurate response 

curves to model their distribution, be more common, and have less potential for 

improvement from using contextual indices. The distribution of these species will be 

predominately determined by environmental niche factors. Conversely, poor 

colonisers would exist mainly in large patches, have a large optimal radius, be 

modelled less well using response curves, be less common, and obtain greater 

improvements from contextual indices. The distribution of these species is strongly 

influenced by fragmentation and source-sink effects. Some species may be distinctly 

niche or dispersal limited, but these are the extreme ends of a continuum (Gravel et al. 

2006; Moore and Elmendorf 2006), and contextual indices offer a simple method to 

model species in between the two extremes as they consider both habitat quality and 

spatial factors. 

4.4.2 Comparison with other models and predictors 

Some of the species modelled in this study have been included in previous studies in 

an adjacent region, albeit at a coarser scale (e.g. Austin and Meyers 1996 and 

references therein). The models in the current study are not directly comparable with 

these models because of the differences in predictors and scale. Indeed, Pearson and 

Dawson (2003) propose that the environmental factors that affect the distribution of 

species are expected to be different given the difference in scale. 
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The predictors used in this study were the best that were available at the time the 

analysis was undertaken, but more accurate temperature estimates are now available 

(Ashcroft et al. 2008; Chapter 3). These predictors explain more deviance than those 

used in this study, and this reduces the benefit of using contextual indices 

(unpublished data). Indeed, it appears that the more deviance is explained by 

environmental factors, the less the improvement when contextual information is 

included (e.g. Figure 4.3). This makes intuitive sense in the context of niche and 

dispersal limited species, but it is also important to note that Bahn and McGill (2007) 

proposed that niche and spatial predictors were competing to explain the same portion 

of the variance rather than complementing each other. Combining niche and spatial 

factors using contextual indices is a promising method to investigate whether 

environmental factors only perform well because they are spatially autocorrelated, 

whether spatial autocorrelation terms are compensating for missing predictors, or 

whether there are truly a continuum of niche and dispersal limited species. 

4.4.3 How should habitat quality be determined? 

The contextual models produced significantly better results than non-contextual 

models, but they are almost certainly not optimal. There was some doubt as to 

whether response curves were the best method to determine habitat quality, as 

environmental envelopes performed better in a third of the models tested. New 

methods are needed to analyse data in both niche and geographic space without the 

need to transfer data between GIS and statistical packages used for modelling. This 

will increase the ability to answer ecological questions on the interactions between 

niche and spatial characteristics.
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4.4.4 Further recommendations 

Contextual indices were originally justified in this study because they could 

approximate the supply of seeds at a given site, although the results suggest that seed 

dispersal is not the only reason for the success of contextual indices (see above). 

Nevertheless, if results are influenced by seed production and dispersal, then there are 

a number of ways in which models could be further improved. Firstly, not all 

individuals may produce the same number of seeds. The conversion to habitat quality 

may produce better results if it is based on the number of seeds produced under given 

environmental conditions rather than simply the presence or absence of the species. 

Secondly, the output from the contextual model may be better used as a predictor 

rather than as a final model. That is, for E. cypellocarpa a better model may have 

included the four raw environmental factors as well as the output from the contextual 

model. This was not performed here, as it would mean the models did not have the 

same number of predictors and could not be as easily compared. Nevertheless, it 

would make more ecological sense, as two sites with the same supply of seeds may 

have different POE under different environmental conditions. 

4.5 Supplementary material 

4.5.1 Geology and vegetation communities in the study area 

The Hawkesbury sandstone (TRh, Figure 4.8) is the most distinct unit in the study 

area. It forms the top of the escarpment, including Mt Keira and Mt Kembla (Figure 

4.2), and supports vastly different vegetation communities to the rest of the study 

area. These communities include Escarpment Edge Silvertop Ash Forest (EESAF), 

Exposed Sandstone Scribbly Gum Woodland (ESSGW), Cliffline Coachwood Scrub 

(CCS), and Sandstone Gully Peppermint Forest (SGPF, all communities in shades of 
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grey in Figure 4.8). Upland swamps develop where the drainage on the Hawkesbury 

sandstone is poor. The geology for these upland swamps (Qs) is distinguished from 

the rest of the Hawkesbury sandstone. The upland swamps are often treeless, and 

support sedgelands, shrublands of species such as Hakea spp. (USSHC – Upland 

Swamps: Sedgeland-Heath Complex), or dense thickets of Banksia spp. or 

Leptospermum spp. (USBT – Upland Swamps: Banksia Thicket, both communities 

shown in shades of yellow in Figure 4.8). 

Deep valleys occur on the Woronora Plateau (Figure 4.2), draining into water 

supply dams (shown in red in Figure 4.8). The slopes of the valleys consist of Bald 

Hill claystone (TRnz) and Bulgo sandstone (TRnbu), with Hawkesbury sandstone 

forming the ridges in between. The Hawkesbury sandstone forms cliffs of up to 40 m 

where it meets the Bald Hill claystone. Where the gullies are exposed to hot, dry NW 

winds, temperatures are warmer (see Ashcroft et al. 2008; Chapter 3), and tall open 

eucalypt forests are found (i.e. Tall Open Blackbutt Forest – TOBF, Tall Open 

Peppermint-Blue Gum Forest – TOPBGF, and Tall Open Gully Gum Forest – 

TOGGF, shades of orange in Figure 4.8). Rainforest species are uncommon in the 

understorey of these communities. In contrast, where there is shelter from the NW 

winds, moist eucalypt forests (shown in shades of green) and rainforests (shades of 

blue) occur. Communities include Moist Gully Gum Forest (MGGF), Moist Blue 

Gum-Blackbutt Forest (MBGBF) and Coachwood Warm Temperature Rainforest 

(CWTR), all of which contain many rainforest species in the understorey. 

The escarpment slopes consists of numerous layers of sandstones, claystones, and 

coal seams from the Narrabeen Group and Illawarra Coal Measures. There are also 

areas of Quaternary alluvium and talus (Qa, Qt). The escarpment slopes support a 

variety of moist eucalypt forests and rainforests, including Escarpment Blackbutt 
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Forest (EBF), Escarpment Moist Blue Gum Forest (EMBGF), Moist Coastal White 

Box Forest (MCWBF), CWTR, and Illawarra Escarpment Subtropical Rainforest 

(IESR). The foothills support many of the same species, but also contain Moist Box-

Red Gum Foothills Forest (MBRGFF) and Lowland Dry-Subtropical Rainforest 

(LDSR). Much of the coastal plain is Cleared (C), or Modified Lands (ML) due to the 

City of Wollongong. Disturbance related communities (shown in shades of purple) 

occur throughout the study area, but are especially common on the lower escarpment. 

These include Acacia Scrub (AS), Turpentine Regeneration (TR) and Weeds and 

Exotics (WAE). While these communities are disturbed, they are generally semi-

natural communities (unmanaged land), and support many native species. 

While the distribution of vegetation communities is known, there is less 

information available on individual species (but see Fuller 1995 for rough maps). It is 

unknown which factors are influencing the distribution of species and communities. 

For example, there is a distinct NE-SW trend in eucalypts on the escarpment slopes 

(from EBF to EMBGF to MCWBF) and it is unknown why this occurs. Each of the 

dominant species (Blackbutt, Blue Gum, and White Box) occurs at similar elevations 

and on similar geologies. 

4.5.2 Survey design 

A survey of presence and absence of 37 species was undertaken with the explicit 

purpose of species distribution modelling in mind. The target species (listed in 

Ashcroft et al. 2008; Chapter 3) consisted of common rainforest and eucalypt species, 

as well as a selection of disturbance related species. I was particularly mindful that I 

needed 50 presences of each species for modelling to be robust (Stockwell and 

Peterson 2002; Coudun and Gégout 2006), and also that models would be most useful 

if the dominant eucalypts were included. The documentation on the communities in 
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the study area (NPWS 2002) gave approximate frequencies of each species in each 

community. Based on these figures, I determined that a survey of 600 sites was 

necessary to achieve at least 50 presences of the common eucalypts. This 

approximation proved accurate and I achieved the target of 50 presences for most 

species. 

The survey locations were randomly chosen subject to a number of constraints 

that were imposed to ensure that a representative and complete range of communities 

and environmental conditions were sampled. First, the proportion of each community 

in the study area was used to determine the approximate number of samples that 

should be taken from each community shown in Figure 4.8 (apart from ML and C). 

Some rare communities are not shown. Some communities were very common (e.g. 

CWTR) and the number of samples in these communities was reduced. Other 

communities were less common, and it was necessary to over-sample these 

communities to ensure that the full range of environmental conditions could be 

sampled. 

Once the number of samples for each community had been determined, a list of 

potential locations was placed in a random order. The highest ranked locations were 

selected provided the locations were spread geographically and environmentally, and I 

had permission to access the land. If a potential location was too close or too similar 

to another location then it was discarded and the next site in the list used. I was 

particularly careful to ensure that, where possible, each community was sampled on 

each geological unit on which it occurred, and locations spanned all large and most 

small patches of the community. For example, I determined that randomly selecting 

20 sites of IESR usually omitted at least one of the large patches and one of the main 

geologies, and sites were often close together. The constraints I imposed ensured the 
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full range of conditions was sampled, which is more beneficial for modelling than 

ensuring the sample is random (Hirzel and Guisan 2002). 

A GPS was used to locate selected sites. No bias was introduced by ensuring sites 

were qualitatively homogenous or pristine, and many sites were disturbed or 

contained transition zones between communities. The disturbed communities (WAE, 

AS, TR) were found to contain many of the target native species (each contained an 

average of 4–8) — more than USSHC, USBT, ESSGW, CCS, and SGPF. The 

rainforest and moist eucalypt forests had more target species, as 20 of the 37 species 

were rainforest species. The disturbed communities usually contained similar species 

to adjacent ‘natural’ communities – albeit in lower abundance. Therefore, the effect of 

disturbance is somewhat compensated for when using presence-absence instead of 

abundance. All sites were accessed where practical, however some dense thickets of 

prickly weeds, particularly Caesalpinia decapetala (cat’s claw, wait-a-while) were 

avoided. Where access could not be achieved from another direction, or a site was 

found to be managed rather than semi-natural, the site was replaced with the next 

suitable one from the random list (as above). 

Overall, the survey contains no bias towards or away from roads (to ensure easy 

access or avoid edge effects), no subjectivity introduced by only surveying 

‘homogeneous’ or ‘pristine’ sites, and all reasonable attempts were made to ensure a 

representative and complete range of vegetation and environmental conditions were 

sampled. While some sites were close together, this only occurred where the sites 

contained different vegetation communities, and usually on different geologies as 

well. The average walking distance between sites was approximately 300 m, and 

many transitions in vegetation were typically seen over this distance. This can be seen 

from the relatively small size of vegetation patches relative to the distance between 
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sites (Figure 4.8). Therefore, the spatial auto-correlation in the survey has been kept to 

a minimum. There are relatively few sites on the coastal plain, and these are typically 

near creeks or in hilly areas, but this bias reflects land clearing preferences rather than 

a bias in the survey design itself. As the vast majority of sites are on the escarpment 

slopes and Woronora plateau, the locations on the coastal plain do not affect the 

models for most species. 

 

Figure 4.8 (next page): The geology (left) and vegetation communities (right) 

present in the study area. Geology map is provided by the NSW Department of 

Primary Industries. Vegetation map is from NPWS (2002). Black and white spots 

in the vegetation diagram illustrate the locations where the vegetation survey was 

conducted. See Section 4.5.1 for definitions and descriptions of each geology and 

community. 

 



C
ha

pt
er

 4
: S

pa
tia

l a
ut

oc
or

re
la

tio
n 

in
 S

D
M

s  11
7 



Chapter 4: Spatial autocorrelation in SDMs 

 118

 

Figure 4.9: The optimal radius of the contextual indices for seven predictors, as 

determined using eight canopy tree species in single predictor models. The 

diamonds show the mean and standard deviation. The boxes show the median and 

quartiles. The seven predictors were geology (Geol), elevation (Elev), the average 

summer maximum temperature (MaxER), the log of distance to streams (LogDS), 

and exposure to northeasterly, southerly and west to northwesterly winds (WindNE, 

WindS, WindWNW). 

 

 

Figure 4.10: The optimal radius of the contextual indices for eight tree species in 

the Illawarra region, as determined using seven environmental factors in single 

predictor models. The diamonds show the mean and standard deviation. The boxes 

show the median and quartiles. The eight species were gully gum (GG), mountain 

grey gum (MGG), coastal white box (CWB), blackbutt (BB), silvertop ash (SA), 

red bloodwood (RB), red cedar (RC) and lilly pilly (LP). 
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Figure 4.11: The response curves generated by a four-predictor GAM for E.

cypellocarpa using contextual indices. Each predictor represents the average habitat 

quality within 500 m, where 100% habitat quality is defined as either: Elevation 

between 320 m and 420 m (EL500); Exposure to southerly winds of between 0.8 

and 1.4 (S500); Geology of either ‘TRnbu’ or ‘TRnz’ (G500); or, Exposure to west 

to northwesterly winds of between 0.5 and 1.0 (W500). 
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Chapter 5:  Climate change at the landscape scale: 

predicting fine-grained spatial heterogeneity in 

warming and potential refugia for vegetation3

5.1 Introduction 

Current predictive modelling of the response of species to climate change produces 

highly variable results according to variations in the Global Climate Model (GCM, 

Beaumont et al. 2007) and statistical technique used (Araújo et al. 2005a). These 

differences raise questions regarding the usefulness of the models (Araújo et al. 2005a), 

and highlight a need to improve methodologies. 

Much discussion on methodology has concerned the choice between mechanistic 

process-based models of plant demographics and bioclimatic models based on the 

correlation between climatic factors and the current distribution of species. Both 

approaches have advantages and disadvantages (Loehle and LeBlanc 1996; Pearson and 

Dawson 2003, 2004), yet there are a number of problems common to both that are 

associated with the climate data used. First, climatic data is typically either from coarse-

grained (e.g. 50 km) GCMs, or from an idealised scenario of a fixed and uniform 

increase in temperature (see Beaumont et al. 2007 for a comprehensive list of 

examples). Both cases are unable to distinguish fine-scale heterogeneity in climate 

change, and this may introduce a bias in predictions (Loehle and LeBlanc 1996; Araújo 

and Rahbek 2006). Temperature increases will vary across microclimates (Beaumont 

and Hughes 2002), and species respond to spatially heterogeneous regional climates 

                                                 
3 This chapter has published as: Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the 
landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for 
vegetation. Global Change Biology, 15, 656–667. 
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rather than global averages (Walther et al. 2002). Local scale effects of climate change 

have been poorly explored (del Barrio et al. 2006), and further investigation is needed to 

identify refugia from apparently unfavourable conditions at coarser scales (Pearson 

2006). These refugia are a known problem with coarse-scale models, and may mean that 

predictions of extinctions are exaggerated (Thuiller et al. 2005; Anciães and Peterson 

2006; Pearson 2006; Botkin et al. 2007). 

The second issue is that seasonal temperatures are often reduced to a limited and 

predefined set of variables prior to modelling species distributions—most commonly 

mean annual temperature, winter minimum, and either summer maximum or an estimate 

of growing degree-days (e.g. Araújo et al. 2005a; Thuiller et al. 2005; Anciães and 

Peterson 2006; Beaumont et al. 2007). While these variables have been selected based 

on the general physiological response of species, this a priori selection of predictors 

will lead to erroneous predictions for species that are limited by temperatures during 

other seasons. Some seasons have warmed more than others, and minimum 

temperatures have increased by more than maximum and average temperatures (Loehle 

and LeBlanc 1996). Seasonal fine-tuning of climatic variables has been shown to 

improve bird models (Heikkinen et al. 2006), and this may be true for plants as well. 

The third issue concerns the accuracy of temperature predictions. Errors in 

temperature estimates are usually stated as being less than 5% (e.g. Beaumont and 

Hughes 2002), but the absolute magnitude of these errors can still be in the order of 1 oC 

when temperatures are approximately 20 oC. In addition, there can be variations of up to 

33.8 oC within one 50 km cell (mean 1.8 oC, Hijmans et al. 2005), and errors of this 

magnitude are significant for many species. For example, Hughes et al. (1996) found 

that 41% of eucalypts in Australia had a mean annual temperature range of less than 

2 oC, and 25% less than 1 oC. 
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Errors in temperature estimates are partially due to the assumption that temperature 

can be interpolated based only on elevation. While elevation is the dominant factor 

controlling the distribution of most seasonal temperatures, coastal influences and 

exposure to wind are more important in some seasons—especially the extreme 

temperatures that are limiting for many species (Ashcroft et al. 2008; Chapter 3). 

Incorporating these other factors into temperature predictions changes the spatial 

distribution of seasonal temperature estimates and dramatically affects model 

predictions. 

This chapter addressed these issues with the temperature data used in climate 

change models by estimating the fine-scale spatial heterogeneity in warming that has 

occurred between 1972 and 2007 in an approximately 10 km by 10 km area. A better 

understanding of these past changes in temperature could assist scientists to improve 

predictions of future changes. I used the estimates of past warming to investigate 

whether some locations were potential refugia because they had warmed by less than 

others. The reduced warming in refugia could act to prevent extinctions, or at least slow 

the rate at which climate change affects species. I estimated the average amount of 

warming that 37 plant species had experienced to determine if any species was at more 

risk because of the bias in the topographic and geographic locations they occupied. 

5.2 Materials and methods 

5.2.1 Overview of approach 

The approach I adopted combined 35 years of data from Bureau of Meteorology (BoM) 

weather stations with one year of personal observations of soil-surface temperatures. 

BoM weather stations provided a good record of historical climate change, but were not 

sufficient to make fine-grained predictions of warming as there were not enough 
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stations, they were too sparsely distributed, and they did not cover the full range of 

microclimates in the study area. By recording soil temperatures at 40 sites for one year, 

and determining the relationship between the air temperatures at the BoM stations and 

the soil temperatures at each site, I could estimate the fine-grained spatial distribution of 

temperatures for the whole period of interest (1972–2007). This was based on the 

assumption that the soil-air temperature relationships were temporally stable. The 

relationships between BoM air temperatures and site soil temperatures were determined 

separately for each weather pattern (e.g. wind speed and direction, humidity) as these 

factors can affect the spatial distribution of soil temperatures (Ashcroft et al. 2008; 

Chapter 3). 

5.2.2 Temporal changes in weather patterns 

The study was conducted on approximately 12000 ha of the Illawarra Escarpment and 

Woronora Plateau (34.4 oS, 150.9 oE), approximately 80 km south of Sydney, Australia 

(Figure 5.1). The study area was selected because it contains a complex mosaic of 

vegetation (NPWS 2002), and the patterns cannot be easily explained using common 

predictors such as elevation and geology. I suspected that elevation may have been a 

poor surrogate for temperature in this area, and have subsequently shown that this is the 

case for the extreme temperatures (winter minimums, summer maximums) that have a 

strong influence on the distribution of species (Ashcroft et al. 2008; Chapter 3). 

Long-term weather data from the Bureau of Meteorology (www.bom.gov.au) was 

only available for one weather station within the study area (Wollongong University). 

Therefore, I also obtained data from the five nearest long-term stations in a variety of 

directions (Figure 5.1). Data for the period of March 1972 to February 2007 was 

obtained for all six stations, although the Nowra and Point Perpendicular data was 

actually a combination of two stations for different periods. 
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Hierarchical cluster analysis (using JMP, Ward method) was performed to group 

days with similar weather patterns. There were 48 variables used, eight for each of the 

six weather stations. The eight variables were northerly wind component at 9am and 

3pm, easterly wind component at 9am and 3pm, humidity at 9am and 3pm, and the 

relative minimum and maximum temperatures. The northerly and easterly wind 

components were calculated as wind speed × sine/cosine(wind direction). The relative 

minimum and maximum temperatures were the difference between each station and the 

average of all stations. The relative temperatures were used so that uniform spatial 

warming within and between years would not cause the weather pattern to change. 

Clusters would only be affected if there were changes in wind speed, wind direction or 

humidity, or some stations had larger temporal differences in temperature than others. A 

small number of observations were missing from each weather station, but these could 

be estimated using linear regression and the data from other stations. Any errors 

introduced by this process are considered negligible due to the small amount of missing 

data relative to the 48 variables considered for each day (8 variables × 6 stations), and 

the high correlations that I observed between data at different stations. 

Cluster analysis was used to group all individual days from March 1972 to 

February 2007 into one of eight groups—each representing a different weather pattern. 

The number of groups was selected as a trade-off between more groups (less data in 

each group to establish relationships between air and soil temperatures) and less groups 

(more variable weather conditions within each group). I could just have validly used 

more or less than 8 groups, and the implications of this trade-off are included in the 

discussion. 

The number of days of each weather pattern in each calendar year (1973–2006) was 

regressed against years to determine if there was an increase or decrease in the 
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frequency of different weather patterns. I also calculated the percentage of days in each 

calendar month that belonged to each weather pattern to determine if there was a 

seasonal trend. I assessed selected statistics for each weather pattern by calculating the 

mean (and standard deviation) of daily variables using all days in all years that were 

part of that pattern. Daily variables were northerly and easterly wind component at 3pm 

and 9am, humidity at 3pm and 9am, and minimum and maximum temperatures. All 

variables were the average of the respective values at the six weather stations. Note that 

relative temperatures were used to produce clusters (see above), but weather patterns 

were assessed using actual temperatures. 

5.2.3 Relationships between air and soil temperatures 

The weather station data used above was only available at 6 locations, and was therefore 

insufficient to determine the fine-grained spatial distribution of warming. To counter 

this problem, I obtained soil temperatures at 40 locations (Figure 5.1) for the period 

September 2005 to August 2006, and determined the relationship between soil and air 

temperatures for this period. These relationships were used to predict minimum and 

maximum soil temperatures at all 40 sites for each day that BoM data was available 

(1972-2007, as above). 

Soil temperatures were recorded using DS1921G iButton temperature loggers 

(Dallas Semiconductor/MAXIM), which were placed 1 cm below the surface and 

recorded hourly temperatures (Ashcroft et al. 2008; Chapter 3). Linear regression was 

used to relate the daily minimum and maximum air temperatures (the average of the six 

BoM stations) with the respective minimum and maximum soil temperatures from the 

iButtons for the period September 2005 to August 2006. I used the average of six 

stations, rather than simply the one station that was recorded within the study area, 

because I wanted to relate the soil temperatures to the average air temperature and 
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weather pattern of the region. Individual weather stations vary in factors such as 

distance to coast and exposure to key wind directions, and therefore have greater 

potential to be biased. Using the regional temperature and weather pattern means the 

method has greater potential to downscale coarse-grained GCM data. 

 

 

Figure 5.1: The topography of the study area (right) as an elevation between 0 and 

573 m. Superimposed are 40 locations where temperatures were recorded with 

iButtons, and 600 sites where a vegetation survey was conducted. Daily Bureau of 

Meteorology observations were obtained from six nearby locations (left). 

 

Analysis was performed separately for each of the eight weather patterns and 40 

sites (320 regressions for maximum and minimum temperature), as air temperature may 

have a different effect on soil temperature at different sites according to wind direction 

or humidity. In addition, different sites are affected differently according to the 

exposure to those wind directions (Ashcroft et al. 2008; Chapter 3). The established 

relationships between air and soil temperatures were used to estimate the soil 

temperatures at each of the 40 iButton sites for each day from March 1972 to February 

2007. 

I investigated a number of factors that had the potential to affect the relationships 

between soil and air temperatures. First, the average slopes of the air-soil relationships 
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for the eight weather patterns were regressed against their average humidity, average 

minimum and maximum temperatures, and average northerly and easterly wind 

components. Second, the average slopes of the air-soil relationships for the 40 sites 

were regressed against their elevation, distance to coast, distance to streams, and 

exposure to different directions. The ‘exposure’ predictors were topographically derived 

estimates of exposure to wind based on the angle to the horizon in a given direction (see 

Ashcroft et al. 2008; Chapter 3 for the accuracy and source of all predictors). Exposure 

has a number of advantages over aspect, and has been shown to be important for the 

spatial and temporal variations in temperature (Ashcroft et al. 2008; Chapter 3). 

5.2.4 Estimating spatial variations in temperature change from 1972 

to 2007 

The average seasonal minimum and maximum temperatures for each site in each of the 

35 years (from March 1972–February 1973 to March 2006–February 2007) were 

calculated by averaging the respective daily temperatures. Seasons conformed to those 

of the southern hemisphere. That is, summer (December–February), autumn (March–

May), winter (June–August) and spring (September–November). For each site, the 35 

years of seasonal average minimum and maximum temperatures were regressed against 

years to determine the trend in temperatures. The amount of warming was estimated as 

the slope of the regression × 34 (the difference in years between the start and end dates). 

The four respective seasonal estimates of warming at each site were averaged to 

estimate the annual warming in minimum and maximum temperatures. In total, there 

were 10 estimates of warming for each of the 40 sites—minimum and maximum 

temperatures for four seasons plus an annual average. The averages across the 40 sites 

were used to estimate the amount of warming in each season that had occurred between 

1972/3 and 2006/2007. 
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The factors influencing the spatial distribution of warming were examined by 

regressing the warming at the 40 sites (10 separate regressions—one for each of the 

seasonal temperatures above) against elevation, distance from coast, distance from 

streams and exposure. These predictors are known to influence the distribution of 

temperatures in this study area (Ashcroft et al. 2008; Chapter 3). The selected direction 

of the exposure predictor was the one that maximised the r2 of the regression. 

The relative contribution that each environmental factor made to the amount of 

warming was compared with other factors by multiplying the coefficient of each 

predictor with its range. This estimated its overall ‘influence’ in degrees Celsius, and 

allowed predictors with different units and ranges to be directly compared (Ashcroft et 

al. 2008; Chapter 3). 

5.2.5 Estimating the impact of climate change on plants 

The established relationships, between the amount of warming at a site and the 

respective environmental variables, were used to generate ‘warming surfaces’ for the 

whole landscape in a GIS. These warming surfaces were then used to estimate the 

amount of warming at each of 600 sites where a vegetation survey was conducted 

(Figure 5.1). 

The study area contains a complex mosaic of moist and dry rainforests, moist 

eucalypt forests, tall open eucalypt forests, upland swamps and woodlands (NPWS 

2002). Each site (20 m by 20 m) was surveyed for presence or absence of 37 species 

that were common in these communities (NPWS 2002), of which the majority were 

trees (Table 5.1). Previous results have shown that the distributions of these species are 

explained well by models with landscape scale soil temperatures (Ashcroft et al. 2008; 

Chapter 3). 



Chapter 5: Climate change at the landscape scale 

 129

For each species, I averaged the amount of warming in the 10 seasonal temperature 

gradients using only the sites where that species was found. This produced 10 estimates 

of warming for each species—each representing the average amount of warming for that 

species in terms of that seasonal temperature. I determined the potential bias in coarse-

grained climate models by determining the difference in warming that different species 

experienced on each gradient. If there were no bias in coarse grained models, then all 

species should experience the same amount of warming. Differences in the amount of 

warming could occur if species were biased in the topographic and geographic locations 

they occupied within the landscape. 

For each of the 10 seasonal temperatures, I ranked all species using a linear scale 

from 0% (experienced the least amount of warming) to 100% (experienced the most 

amount of warming). I calculated the mean and standard deviation for each species 

across the 10 seasonal temperatures to determine if they consistently experienced a 

similar amount of warming relative to the other species. This was used to determine 

whether the bias in warming for each species was predictor specific, or whether the bias 

was consistent across all temperature predictors. 



Chapter 5: Climate change at the landscape scale 

 130

 

Table 5.1: The 37 species from the Illawarra Escarpment that were modelled as part 

of this study.  

Abbreviation Common name Scientific name 
TVH Two-veined hickory Acacia binervata 
GW Green wattle A. mearnsii 
LP‡ Lilly pilly Acmena smithii 
BS Black she-oak Allocasuarina littoralis 
ROP‡ Red olive plum Cassine australis 
CW‡ Coachwood Ceratopetalum apetalum 
HC‡ Hairy clerodendrum Clerodendrum tomentosum 
RB Red bloodwood Corymbia gummifera 
NC‡ Native cascarilla Croton verreauxii 
JW‡ Jackwood Cryptocarya glaucescens 
MG‡ Murrogun C. microneura 
PT‡ Prickly tree fern Cyathea leichhardtiana 
GST‡ Giant stinging tree Dendrocnide excelsa 
SF‡ Sassafras Doryphora sassafras 
MGG Mountain grey gum Eucalyptus cypellocarpa 
YS Yellow stringybark E. muellerana 
BB Blackbutt E. pilularis 
SPM Sydney peppermint E. piperita 
CWB Coast white box E. quadrangulata 
SG Scribbly gum E. racemosaXhaemastoma 
BGH Blue gum hybrid E. salignaXbotryoides 
SA Silvertop ash E. sieberi 
GG Gully gum E. smithii 
FRG Forest red gum E. tereticornis 
BWR‡ Bolwarra Eupomatia laurina 
CSF‡ Creek sandpaper fig Ficus coronata 
LT† Lantana Lantana camara 
CTP‡ Cabbage tree palm Livistona australis 
HLD‡ Hairy-leaved doughwood Melicope micrococca 
VMO‡ Veined mock-olive Notelaea venosa 
SP‡ Sweet pittosporum Pittosporum undulatum 
FW‡ Featherwood Polyosma cunninghamii 
WB‡ Whalebone tree Streblus brunonianus 
TT Turpentine Syncarpia glomulifera 
SR‡ Scentless rosewood Synoum glandulosum 
BP‡ Brush pepperwood Tasmannia insipida 
RC‡ Red cedar Toona ciliata 
† introduced species 
‡ rainforest species 
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5.3 Results 

5.3.1 Temporal changes in weather patterns 

The eight weather patterns that were identified using cluster analysis each favoured 

different seasons during the year. Winter was dominated by group 7 conditions, which 

were characterised by low temperatures, intermediate humidity, and light west to 

northwest winds (Figure 5.2). Group 7 days decreased in frequency from approximately 

64 to 46 days per year over the period of interest. Group 8 and group 4 were also 

common in early and late winter respectively. Group 4 days were characterised by 

strong westerly winds, low temperatures, and low humidity. They increased from 

approximately 33 to 38 days per year. Group 8 days were characterised by light NE to 

NW winds, low temperatures, but relatively high humidity. They decreased in frequency 

from 35 to 18 days per year, the largest percentage drop of any of the weather patterns 

(Figure 5.2f). All of the three groups that were common in winter had similar average 

temperatures, but the higher humidity groups (7, 8) decreased in frequency, and were 

replaced by group 4 (lower humidity, stronger westerly winds) and an increasing 

frequency of spring conditions (see group 2 below). This suggested a change towards 

drier and/or shorter winters. 
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Figure 5.2: Eight weather patterns were identified for the study area. Each weather 

pattern is represented as the average northerly (a) and easterly (b) components of 

the wind across the six BoM weather stations (wind speed × sine/cosine of wind 

direction), average minimum and maximum temperatures (c), the average humidity 

at 9am and 3pm (d). Panel (e) illustrates the seasonal change in weather patterns 

using the percentage of days in each month that belonged to each of the eight 

weather patterns (average between 1973 and 2006). Panel (f) shows the inter-annual 

change in the annual number of days in weather patterns 2 and 8 over that period. 
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The most common conditions in summer were group 5 and group 6. Both were 

characterised by high temperatures and moderate humidity, but group 5 had northeast 

winds, while group 6 had southeast winds. Both increased in frequency, with group 5 

increasing from 60 to 67 days per year, and group 6 from 48 to 50. This suggested an 

increase in the frequency and/or length of summer conditions. 

Spring and autumn were transition periods where both winter and summer 

conditions were observed. However, spring also contained the peak of group 2 days. 

Group 2 was characterised by high temperatures and low humidity under the influence 

of westerly winds. These conditions are desiccating for moist rainforest plants, and pose 

bushfire hazards (Fuller 1995). They increased in frequency from 20 to 36 days per 

year, which was the biggest increase in frequency of all the weather patterns (Figure 

5.2f). 

The final two groups (1 and 3) were observed over the whole year, but were more 

common in summer than winter. Both had moderate temperatures, low diurnal ranges, 

and high humidity, suggesting they occurred during rainy periods. Group 1 was 

characterised by strong southerly winds and increased from 55 to 66 days per year. 

Group 3 was characterised by light easterly winds, and decreased from 50 to 44 days per 

year. 

5.3.2 The relationships between soil and air temperatures 

The 640 correlations (40 sites, 8 weather patterns, minimum and maximum 

temperatures) between soil and air temperatures were strong (mean r2 = 0.83, s.d. = 

0.10), however the slope of the regressions varied dramatically from 0.30 to 1.35 (mean 

= 0.71, s.d. = 0.15). This illustrates that, on average, a 1 oC increase in average air 

temperatures across the six weather stations corresponded with a 0.71 oC rise in soil 

temperatures on the Illawarra Escarpment, but there were noticeable variations. 
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There were large differences in the average slope of the air-soil temperature 

relationships between the eight different weather patterns (mean = 0.71, s.d. = 0.12, n = 

8), which were best explained in terms of humidity (r2 = 0.54, P < 0.05, Figure 5.3). The 

weather patterns with low average humidity (groups 2, 4, 7) were less sensitive to 

changes in air temperature than those with high humidity. 

 

 

Figure 5.3: The relationship between average slope of the air-soil temperature 

regressions and average humidity, where each point corresponds with one of the 

eight weather patterns used in this study. 

 

There were smaller differences in average slope of the air-soil relationships 

between the 40 different sites (mean = 0.71, s.d. = 0.07, n = 40), but these were 

significantly correlated with exposure to the WNW (r2 = 0.14, P < 0.05). Exposed sites 

had higher regression slopes, indicating that a 1 oC change in air temperature had more 

affect on ‘west facing’ slopes than ‘east facing’ slopes. 
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5.3.3 Estimating the spatial distribution of warming from 1972 to 

2006

The amount of warming (averaged over the 40 sites) that was estimated to have 

occurred over the last 34 years was higher in winter and spring than summer and 

autumn, and was higher for minimum temperatures than maximum temperatures (Figure 

5.4). The 10 estimates of warming (minimum and maximum temperatures for the four 

seasons and annual period) at the 40 sites were explained using multiple regressions 

against environmental factors (mean r2 = 0.39, s.d. = 0.07). 

 

 

Figure 5.4: The mean (and standard deviation) amount of warming (1972-2007) 

estimated at 40 sites where soil temperatures were recorded. 
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Distance from coast was, on average, the most influential predictor of warming, 

with inland sites warming by more than coastal sites in all ten models. The magnitude of 

the effect varied from 0.06 oC to 0.30 oC, with highest influence on winter minimums. 

Distance from streams was the least influential predictor, but there was more warming 

away from streams in all ten models. The effect ranged from 0.01 oC to 0.11 oC. 

Elevation was the most influential predictor of warming in minimum temperatures, but 

was less influential than exposure and distance to coast for maximum temperatures. All 

ten models suggested there was more warming at lower elevations, and the difference 

ranged from 0.02 oC to 0.37 oC. Exposure was the most influential predictor for 

maximum temperatures, but was less significant than elevation and distance from coast 

for minimum temperatures. The effect ranged from 0.05 oC to 0.20 oC. Annual 

minimums, and autumn and winter temperatures were best explained using an exposure 

direction of S to SE, with exposed sites warming by less than sheltered sites. Annual 

maximums and spring and summer temperatures were best explained using exposure to 

the W to NW or N to NE, with exposed sites warming by more than sheltered sites. 

These directions were consistent with more warming at sites exposed to the warm-dry 

NW winds, and less warming at sites exposed to cold SE sea breezes (Fuller 1995; 

Ashcroft et al. 2008; Chapter 3). 

The different contributions of environmental factors in different seasons meant that 

the surfaces for warming displayed different spatial patterns (Figure 5.5). For example, 

summer maximums only displayed a small amount of warming (< 0.35oC), and were 

heavily influenced by distance to coast. In contrast, spring maximums displayed a high 

level of warming (0.4–1.0oC), with exposure to the WNW the dominant factor. This was 

consistent with the increasing frequency of the group 2 weather pattern (westerly winds 
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in spring) noted above. Finally, winter minimums had the most warming (0.4–1.4oC), 

and were influenced by both distance to coast and elevation. 

 

Figure 5.5: The spatial distribution of warming (1972-2007) in the study area 

(Figure 5.1) as estimated by regressing the amount of warming at the 40 sites where 

temperatures were recorded against environmental factors. All surfaces are in 

degrees Celsius. 



Chapter 5: Climate change at the landscape scale 

 138

5.3.4 Effect of warming on vegetation 

The difference in warming between species on the same temperature gradient varied 

from 15% to 197% (Table 5.2). For the less extreme temperature gradients (winter 

maximums and spring and summer minimums), there was less than 16% difference in 

warming between all 37 species. For the more extreme temperatures (winter minimums 

and summer, autumn and annual maximums), there was more than 30% difference 

between species (Table 5.2). 

 

Table 5.2: The amount of warming in ten seasonal temperature variables was 

estimated at 600 sites where a vegetation survey was conducted. I calculated the 

average amount of warming for each of 37 species by averaging the warming at the 

sites at which those species were observed. The middle columns represent the mean 

warming for those species with the lowest and highest averages respectively. The 

final column indicates the percentage difference between these two values. 

Seasonal temperature Lowest warming (oC) Highest warming (oC) Percentage difference 

Summer maximum 0.15 0.23 47% 

Autumn maximum 0.05 0.16 197% 

Winter maximum 0.47 0.55 16% 

Spring maximum 0.60 0.74 24% 

Annual maximum 0.32 0.42 31% 

Summer minimum 0.38 0.44 15% 

Autumn minimum 0.54 0.69 28% 

Winter minimum 0.74 0.96 30% 

Spring minimum 0.71 0.82 15% 

Annual minimum 0.59 0.73 23% 

 

Most species had a similar amount of warming relative to other species over all ten 

temperature gradients (Figure 5.6). Species that were only found at inland sites, and 

typically on drier slopes exposed to the west and northwest, experienced a relatively 

high amount of warming on all ten gradients. These species included Eucalyptus
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cypellocarpa (MGG), E. piperita (SPM), Acacia binervata (TVH) and A. mearnsii 

(GW). In contrast, species that experienced a relatively low amount of warming on all 

ten gradients included moist and dry rainforest species (e.g. Acmena smithii (LP), 

Doryphora sassafras (SF), Toona ciliata (RC) and Cassine australis (ROP)) as well as 

species that were predominately restricted to the sheltered slopes of the escarpment (e.g. 

Syncarpia glomulifera (TT) and Eucalyptus pilularis (BB)). The species that did vary in 

relative warming (high standard deviation in Figure 5.6) were typically those that were 

common on the Hawkesbury sandstone peaks (e.g. Eucalyptus sieberi (SA) and 

Corymbia gummifera (RB)) and dry rainforest species from the foothills and coastal 

plain (e.g. Croton verreauxii (NC) and Melicope micrococca (HLD)). The former two 

species (SA and RB) were below the 30th percentile in terms of relative warming for 

winter minimum, but above the 70th percentile in terms of summer maximum. The 

latter two species (NC and HLD) were below the 16th percentile in terms of summer 

maximum, but above the 80th percentile in terms of winter minimum. 

5.4 Discussion 

5.4.1 The importance of weather patterns for climate change 

predictions 

The results of this study provide further evidence that the spatial distributions of 

landscape scale soil temperatures are heavily dependent on weather patterns such as the 

speed and direction of prevailing winds (Ashcroft et al. 2008; Chapter 3). This is an 

important finding with respect to climate change studies, because any change in weather 

patterns could dramatically change the spatial distribution of temperatures, and cause 

large differences in the temperature changes that different locations experience. 

Locations where there is less warming could act as refugia, and prevent extinctions that 



Chapter 5: Climate change at the landscape scale 

 140

are typically predicted by coarse-scale models, or at least reduce the rate at which 

climate change affects different species. 

 

 

Figure 5.6: The average amount of warming (1972-2006) was estimated for 37 

species (Table 5.1) using ten seasonal temperature gradients (Table 5.2). The 

relative warming for each species on each gradient was calculated on a linear scale 

from 0% (least warming of all species) to 100% (most warming of all species). This 

graph illustrates the mean (standard deviation) relative warming for each species 

over the ten gradients. 

 

Less warming has occurred at sites that are nearer the coast, closer to streams, at 

higher elevations, exposed to cold S to SE winds, or sheltered from warm, dry, W to 

NW or N to NNE winds. Species are biased in the topographic and geographic positions 

they occupy, and therefore different species have experienced different amounts of 

warming over the last 34 years. For example, moist rainforest species are typically 

found in locations that are sheltered from the warm, dry W to NW winds. Therefore, 
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these species have experienced less warming than species such as Eucalyptus

cypellocarpa, E. piperita and E. salignaXbotryoides, which are often found at inland 

sites exposed to these winds. In this context, moist rainforest species are already 

restricted to refugia within the landscape. 

The topographic and geographic biases in species distributions are not unique to 

this study area. For example, rainforest species are restricted to sheltered gullies at other 

locations along the east coast of Australia (e.g. Van Niel and Austin 2007), and 

eucalypts have consistent biases in the topographic positions they favour (e.g. Austin 

and Meyers 1996). Therefore, although this study has only determined the species-

specific bias in warming in one study area, it is possible that these biases result in 

consistent over or underestimates across the whole range. If this were the case, then it 

would represent a consistent bias in each cell of coarse-grained SDMs. 

The results of this study highlight the need to improve the accuracy of methods that 

are used to downscale coarse-grained temperature surfaces. Currently, coarse-scale 

bioclimatic models are downscaled using elevation as a surrogate for temperature 

(Trivedi et al. 2008), or SDMs consider fine-scale heterogeneity by including the 

elevational range of each cell as an extra predictor (Luoto and Heikkinen 2008). The 

accuracy of these approaches could be improved by considering the regional weather 

pattern (wind speed, direction, humidity) and the topographic exposure to key wind 

directions. To successfully implement this over large geographic regions, it will be 

necessary to develop general rules as to how regional weather patterns relate to fine 

scale temperature distributions. This will require applying methods similar to those in 

this chapter to numerous other study areas, and determining whether generally 

applicable relationships can be established. 
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Further research is also needed to confirm how the fine-grained spatial variability 

of climate change, and the species-specific biases, affects the results of Species 

Distribution Models. However, it is already known that climate change predictions vary 

substantially according to variations in the GCM (Beaumont et al. 2007) and statistical 

technique (Araújo et al. 2005a), and the results of SDMs vary when fine-grained spatial 

variability in temperature is considered (Ashcroft et al. 2008; Chapter 3). Therefore, it is 

likely that new methods to downscale temperature data would dramatically change 

climate change predictions from SDMs. 

5.4.2 Selecting the correct temperature predictors in models 

While spatial variations in temperature change caused small differences (up to 0.22 oC, 

Table 5.2) in the average warming each species experienced on the same temperature 

gradient, these differences were small when compared to the difference between 

different temperature gradients (0.68 oC–0.81 oC). For example, minimum temperatures 

increased almost twice as much as maximum temperatures (except in spring), and 

winter and spring temperatures increased approximately twice as much as those in 

summer and autumn. Therefore, an important area for climate change studies is 

determining which seasonal temperatures are limiting the distribution of each species. 

Modelling species with the wrong seasonal temperature estimate will dramatically alter 

estimates of extinction risk. 

Determining the seasonal temperatures that are limiting each species is not a simple 

task. Many seasonal temperatures are highly correlated (especially if they are all derived 

using only elevation and location), and there may be little difference in model 

performance using temperature estimates from different seasons. The wrong predictors 

can easily be selected, and this can drastically alter predictions if they are in different 

seasons than the true limiting factors. One of the advantages of deriving fine-grained 
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temperature estimates using distance to coast, distance to streams, exposure to key wind 

directions and elevation, is that it reduces the correlation between alternative 

temperature predictors. This reduces the probability that the wrong predictor will be 

selected, although it does not eliminate it completely when multiple seasons have a 

similar spatial distribution of temperature. 

5.4.3 The relationship between soil and air temperatures 

An unexpected and interesting result from this study was that the relationship between 

soil and air temperatures varied according to the humidity of the weather pattern and the 

exposure of the site to the WNW. Humidity was low when winds were from the west 

(groups 2, 4, 7), and a 1 oC difference in air temperature made an average difference of 

0.53–0.64 oC to soil temperatures under these conditions. In contrast, for the other 

weather patterns, a 1 oC difference in air temperature made an average difference of 

0.71–0.86 oC to soil temperatures. 

The reason that humidity affects the relationship between soil and air temperatures 

is not clear, but there are at least two possibilities. Firstly, the high specific heat of water 

may affect the transfer of heat between soil and air. That is, it may be more efficient to 

transfer heat to the soil when the air is humid and the soil is dry, than when the air is dry 

and the soil is moist. Secondly, this result may reflect a bias in the locations of the 

iButtons relative to the broader study area covered by the weather stations. The study 

area where the iButtons were placed is near the coast, and many of the sites are 

sheltered from the westerly winds by the escarpment. These possibilities require further 

investigation. 

Understanding the interactions between soil and air temperatures is important, as 

both may be important for determining the response to climate change. More data is 

available from the BoM on air temperatures, but soil temperatures are more spatially 
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heterogeneous and may be better able to explain the patchy nature of vegetation 

(Ashcroft et al. 2008; Chapter 3). The results of this study suggest that a change in 

humidity may affect soil temperatures, and therefore the distribution of species, even if 

there is no change in mean air temperatures. 

5.4.4 Assumptions and limitations 

The primary assumption of this study is that the relationships between soil and air 

temperatures are temporally stable. This assumption needs to be tested to ensure that 

there has been no bias in the relationships introduced by climate change. The primary 

limitation is that the study is restricted to one 10 km by 10 km study area, and further 

research is needed to determine if the results are indicative of other areas. 

I selected eight weather patterns to conduct my analysis. This ensured that I had 

sufficient data to determine the air-soil temperature relationships, but meant I only had 

eight points (Figure 5.3) when determining which factors affected the slope of the 

regressions. Increasing the period (one year) over which soil temperatures were 

recorded would provide extra data, and this would allow more weather patterns to be 

analysed without compromising the strength of relationships between soil and air 

temperatures. 

5.5 Conclusions 

Spatial variations in temperature are influenced by the prevailing weather pattern (wind 

direction, wind speed, humidity), and geographic and topographic factors such as 

distance to coast and exposure to winds. Climate change has altered the frequency of 

different weather patterns and this has led to fine-grained spatial differences in the 

amount of warming. As species are biased in the topographic and geographic locations 

they occupy, these spatial variations in warming mean that some species are at more 
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risk of extinction than others, and these differences can not be detected by coarse-

grained models. Determining which seasonal temperatures affect each species’ 

distribution and improving the accuracy of temperature distributions will improve the 

accuracy with which models can predict the response of species to climate change.
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Chapter 6:  An evaluation of the environmental factors 

in species distribution models for vegetation on the 

Illawarra Escarpment 

6.1 Introduction 

Species Distribution Models (SDMs; Guisan and Zimmermann 2000; Rushton et al. 

2004; Guisan and Thuiller 2005) explain or predict the distribution of species using 

environmental factors such as temperature, moisture availability, topographic position, 

and geology. These models are developed based only on correlations, yet the 

relationships are implicitly assumed to be causal when they are used to predict the 

response of species to climate change (e.g. Bakkenes et al. 2002; Pearson and Dawson 

2003; Thomas et al. 2004), applied to other regions (e.g. Randin et al. 2006), or used to 

estimate the potential spread of invasive species (e.g. Peterson 2003). Correlations alone 

are insufficient to justify these applications of SDMs, and a paradigm shift is necessary 

to improve the methods that are used to build and evaluate models (Araújo and Rahbek 

2006). 

The most common process for producing SDMs involves randomly dividing 

presence/absence data on the distribution of species into separate calibration and 

validation data sets (Araújo et al. 2005b). The calibration data set is used to choose 

which environmental factors are included in the selected model, and determine the 

response function for each gradient. The selected model is then evaluated by calculating 

statistics such as the Area Under the receiver operating characteristic Curve (AUC; 

Swets 1988; Pearce and Ferrier 2000b) on the separate validation data set. 
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One issue with this model building process is that only the selected model is 

validated with the independent dataset. Corroboration assessment (Faith 2003; Faith et 

al. 2004) suggests that this provides weak inference to accept the selected model, as 

there is no information on how it compares with the alternative models. The alternatives 

may perform similarly, and be equally valid alternative models (hypotheses) for the 

distribution of species. 

The dangers of accepting any model with a strong correlation is further illustrated 

by recent results showing that random spatially structured predictors offer statistically 

strong explanations for species distributions (Bahn and McGill 2007; Currie 2007). As 

species distributions and environmental factors are often spatially autocorrelated, SDMs 

are expected to have strong correlations even when there is no causal link between the 

two. Therefore, demonstrating that the selected model has good explanatory ability is 

insufficient to justify its use in environmental management. 

To address these problems, it is necessary to consider the theoretical basis of model 

production and hypothesis testing. In many ecological studies, a strong correlation 

between two variables can be used to reject the null hypothesis that there is no 

relationship between them. However, model building in a multivariate context is more 

about weight of evidence than null hypothesis testing (Stephens et al. 2007). There may 

be many models that produce similar results, especially when predictors are highly 

correlated, and this makes it difficult to determine the model with the most support. 

Many commonly used modelling methods can produce erroneous results, or identify 

spurious correlations, and it may be more ecologically beneficial to provide evidence on 

causal factors rather than identify the ‘best model’ (MacNally 2002). 

MacNally (2002) detailed a hierarchical partitioning approach whereby the effect of 

an environmental factor was estimated by averaging its effect in all candidate models in 
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which it occurred. Hierarchical partitioning offers a method to increase confidence in 

the predictors that are selected in models, however the method is limited because all 

models are produced using the same data. If there is a spurious correlation between a 

species distribution and an environmental factor, due to spatial structure for example, 

then that variable may appear important in all candidate models that use that same data. 

Hierarchical partitioning may help resolve ambiguities due to correlated predictors, but 

cannot help avoid spurious correlations between a species distribution and an 

environmental factor. 

In this chapter I introduce an alternative method that is designed to examine the 

strength of evidence that an environmental factor affects species distributions. There are 

two key differences from other model building processes. First, all candidate models are 

validated using the independent dataset. This provides better protection against 

overfitting. For example, if a candidate model is overfitting the training data, then it 

should have a lower performance on the independent validation data set. If only the 

selected model is validated, then the process will be capable of detecting overfitting, but 

it will not prevent an overfitted model being selected in the first place. However, if all 

candidate models are validated using the independent dataset, then any overfitting is 

detected during the model building process, and can be used to avoid selecting 

overfitted models. 

The second difference is that the performance of an environmental factor is 

assessed using models for multiple species. Environmental factors that are only 

important for one species are unlikely to be detected using this approach, but it is 

difficult to distinguish these from spurious correlations. Environmental factors that are 

strongly correlated with multiple species are less likely to be spurious correlations, as 

different distributional data is used in each of the models. Hence, the method avoids the 
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problem associated with hierarchical partitioning, which is based on multiple models 

but with the same data in each candidate model. 

  The method is applied in this chapter to provide a more robust examination of 

three environmental factors that appear to be key determinants of the distribution of 

vegetation on the Illawarra Escarpment. Geology, summer maximum temperature, and 

winter minimum temperature all have strong correlations with the distribution of 

multiple species (Ashcroft et al. 2008; Chapter 3) but have not been comprehensively 

evaluated in a multivariate context. Here, the three predictors are examined to determine 

if they make a unique contribution to the performance of SDMs, or whether other 

predictors can combine to produce alternative, and potentially equally plausible 

hypotheses for the distribution of species. 

Furthermore, the methods are used to test whether it is important to consider spatial 

predictors in SDMs. The distribution of a species is not just determined by 

environmental niche factors, with dispersal, source-sink effects, mass-effects, 

fragmentation and other spatial processes also contributing to observed patterns 

(Pulliam 2000). In Chapter 4 I demonstrated that contextual indices (Ferrier et al. 2002; 

Wintle et al. 2005) could capture spatial processes without the problems of autologistic 

regression, and could improve the performance of SDMs over purely niche-based 

models. Here, I provide a more comprehensive evaluation to determine whether 

contextual indices provide information that is not captured by the raw environmental 

factors. 

Finally, I evaluate whether species distributions are better correlated with past or 

present temperatures. The spatial distribution of warming has not been uniform between 

1972 and 2006 (Ashcroft 2009; Chapter 5), and species that have not adjusted their 

distribution may be better correlated with past temperatures. 
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6.2 Methods 

6.2.1 Study area 

This study was conducted on approximately 12000 ha of the Illawarra Escarpment and 

Woronora Plateau, 80 km south of Sydney, Australia (34.4 oS, 150.9 oE; Figure 6.1). 

The escarpment runs northeast to southwest through the study area, and separates the 

Woronora Plateau in the northwest from the city of Wollongong on the coastal plain in 

the southeast. The escarpment slopes and gullies on the Woronora Plateau contain a 

complex mosaic of moist and dry rainforests, moist eucalypt forests, and tall open 

eucalypt forests, while the Hawkesbury sandstone ridges and mountaintops support 

upland swamps and eucalypt woodlands (NPWS 2002). The foothills and coastal plain 

are largely disturbed by urban development, but there are many semi-natural areas in 

parklands and along creek lines. 

The geology of the study area consists of approximately horizontal layers, with 

Hawkesbury sandstone at the highest elevations, and interspersed layers of sandstones, 

claystones and coal seams on the escarpment slopes. The gullies on the Woronora 

Plateau are predominately on the uppermost two of these units—Bald Hill claystone and 

Bulgo sandstone (see Section 4.5.1 for more details on geology in the study area). 

6.2.2 Environmental predictors 

A categorical geology layer was obtained courtesy of the NSW Department of Primary 

Industries and contained spatial errors of up to 150 m in the locations of boundaries (see 

Section 3.6.1 for more information on predictor accuracy). I developed a range of fine-

scale temperature surfaces for the study area, including the minimum and maximum 

temperatures for spring (September–November), autumn (March–May), summer 

(December–February), and winter (June–August), as well as the average annual 
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maximums and minimums (Ashcroft et al. 2008; Chapter 3). The surfaces were 

developed by recording temperatures using DS1921G iButtons at 40 sites for a period of 

21 months from December 2004 to August 2006. The data was originally collected and 

analysed in three-week periods (Ashcroft et al. 2008; Chapter 3), however all surfaces 

for each season were later averaged to produce the seasonal temperature surfaces 

(referred to hereafter as 2005 temperature surfaces). 

 

Figure 6.1: The topography of the Illawarra Escarpment, 80 km south of Sydney, 

Australia (34.4 oS, 150.9 oE). A vegetation survey was conducted at each of the 600 

sites indicated. 
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The spatial distribution of climate change between 1972 and 2006 was estimated by 

establishing the relationships between Bureau of Meteorology weather station records 

and the iButton observations (Ashcroft et al. 2009; Chapter 5). The results suggested 

that inland sites warmed more than coastal sites, and there was more warming at sites 

that were exposed to hot-dry northwesterly winds, away from streams, or at lower 

elevations (Ashcroft et al. 2009; Chapter 5). This spatial and seasonal heterogeneity 

meant that the distribution of 1972 temperatures was different to that of the 2005 

temperature surfaces. Therefore, I subtracted the amount of warming from the 2005 

surfaces to create the 1972 surfaces. In all, there were 20 temperature surfaces used—

minimum and maximum temperatures for spring, summer, autumn, winter and annual 

periods for both 1972 and 2005. 

6.2.3 Vegetation data 

A vegetation survey of 600 sites (Figure 6.1) was conducted between July 2005 and 

March 2006. Sites were purposively selected for modelling (see Hirzel and Guisan 

2002) and covered a broad range of environmental conditions. For each of the 21 

communities that were common in the study area (NPWS 2002), sites were randomly 

selected from a list of potential locations subject to a number of constraints. First, no 

sites from the same community could be close together, and were distributed among 

different patches where possible. Secondly, within each community, sites were selected 

such that they covered a broad elevational range and all geologies on which the 

community was commonly found. No subjective bias was introduced by searching for 

pristine or homogeneous sites, and there was no bias towards or away from roads (to 

eliminate edge effects or gain easy access). See Section 4.5.2 for more details on survey 

design. 
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Table 6.1: The 37 species from the Illawarra Escarpment that were modelled as part of 

this study. 

All sites were 20 m by 20 m and were surveyed for presence or absence of 37 

common species (Table 6.1). Species were selected based on the vegetation 

communities present in the region (NPWS 2002), with the sample size of 600 selected 

so that I would obtain approximately 50 presences for most of the dominant eucalypt 

species. This proved effective, and only 4 of the 37 species had less than 40 presences. 

‘Please see print copy for image’
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6.2.4 Model production 

All models were produced using Maxent version 3.2.1 (Phillips et al. 2006; Phillips and 

Dudík 2008). Maxent is a machine-learning modelling method, which has recently 

gained attention due to its favourable performance in comparison to other modelling 

methods (Elith et al. 2006). It is more flexible than methods such as Generalised Linear 

Models (GLMs) and Generalised Additive Models (GAMs) as it can capture complex 

response curves to environmental gradients. 

A benchmark model was produced using geology and all 20 temperature surfaces as 

candidate predictors. Maxent tends to produce models where many predictors have zero 

coefficients (Phillips and Dudík 2008) and therefore not all 21 predictors influenced the 

models produced. Models were calibrated using a random 70% of the 600 sites, and 

validated using the AUC in the remaining 30%. 

The benchmark model was compared against a separate model for each time 

period—each containing geology and the 10 temperatures surfaces from either 1972 or 

2005. The AUC results on the validation data were compared using a 2-sided paired 

Student t-test. 

A spatial predictor was developed for each species using contextual indices. For 

each species, the neighbourhood average of the output from the benchmark model was 

calculated using a radius of 500 m. This created a smooth surface of the model output 

and provided a general indication of which areas have more favourable habitat. I then 

produced a contextual model using the contextual predictor as well as the original 21 

predictors in the benchmark model. As above, the differences in AUC results were 

compared using a paired t-test to determine whether the contextual (spatial) models 

were significantly better than the benchmark (purely niche-based) models. 
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I investigated whether the geology, winter minimum or summer maximum 

predictors were important by looking at their ‘drop’ contributions (Lehmann et al. 

2003). If there were a significant drop in performance when predictors were excluded 

from models, then this would suggest that they contain unique information that cannot 

be captured by the other predictors. Alternatively, if there were no drop in model 

performance, then this would reduce confidence in models using that predictor, because 

there are feasible alternative explanations. For these tests, the models based on geology 

and the ten 2005 temperature predictors were compared against the models with the 

geology, winter minimum or summer maximum omitted. 

Finally, I determined whether more parsimonious models could perform as well as 

the models that considered all 21 predictors. I tested two models with only three 

predictors—geology, winter minimum and either summer maximum or summer 

minimum. Summer minimum is well correlated with elevation, while winter minimum 

and summer maximum had very different distributional patterns (Ashcroft et al. 2008; 

Chapter 3). All four predictors performed well when evaluated on their ‘alone’ 

contributions (Lehmann et al. 2003). 

6.3 Results 

The models produced for the 37 species varied in AUC from 0.599 to 0.976. The 

differences were mainly due to which species was modelled, with the same species 

having similar AUC regardless of which predictors were included in models (Figure 

6.2). Three species were more variable in AUC than the others (Eucalyptus pilularis 

(BB), Syncarpia glomulifera (TT), and Acacia mearnsii (GW)), and therefore t-tests 

were performed with and without these species to avoid the results being influenced by 

three ‘outliers’. 
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Figure 6.2: The results of Maxent models for 37 species (Table 6.1) as evaluated 

using the Area Under the receiver operating characteristics Curve (AUC) on a 

random validation dataset consisting of 30% of the surveyed sites. The ‘all’ model 

used geology and 20 temperature surfaces as predictors. The ‘05only’ and ‘72only’ 

models used geology and the 10 temperature surfaces from either 2005 or 1972 

respectively. The ‘all+cont’ model used the predictors from the ‘all’ model, but 

added a contextual index as an additional predictor. The ‘nosummax’, ‘nogeol’ and 

‘nowinmin’ models were the same as the ‘05only’ models, but excluded either 

summer maximum temperature, geology, or winter minimum respectively. The 

‘geolsnwn’ and ‘geolsxwn’ models only used geology, winter minimum, and either 

summer minimum or summer maximum respectively. 
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There were no significant (P < 0.05) differences between the benchmark model and 

those based only on the 1972 or 2005 predictors (Figure 6.2a). The benchmark models 

had the highest average AUC over the 37 models (0.818) followed by the 1972 models 

(0.817) and the 2005 models (0.815). The paired t-tests suggested these differences 

were not significant when the three outlying species were excluded (P > 0.4), however 

the 2005 models were almost significantly poorer than the benchmark models when all 

species were used (P = 0.058). 

The contextual indices significantly improved models when evaluated with either 

all species (P = 0.012) or without the three outliers (P = 0.026). The improvements did 

not appear related to the AUC of the benchmark models. Models with either good (AUC 

> 0.9) or fair (AUC < 0.8) performance were improved, although 9 of the 37 contextual 

models had marginally poorer performance than the benchmark models (Figure 6.2b). 

Contextual indices increased the average AUC of the 37 models from 0.818 to 0.827. 

Excluding summer maximum temperatures from models did not have a significant 

effect (P = 0.235 with all 37 species, P = 0.928 without 3 outliers), with the average 

AUC of the 37 models increasing from 0.815 (2005 models) to 0.817 (Figure 6.2c). In 

contrast, excluding winter minimum or geology did have a significant effect (P < 0.02) 

regardless of whether or not the three outlying species were considered (Figure 6.2d). 

Excluding geology decreased the average AUC of the 37 models from 0.815 to 0.797, 

while excluding winter minimum decreased it to 0.806. 

Models produced using only geology, winter minimum and summer maximum 

performed significantly worse than the 2005 models (P < 0.004), with the average AUC 

of the 37 models decreasing from 0.815 to 0.806 (Figure 6.2e). Models produced using 

geology, winter minimum and summer minimum were almost significantly worse than 

the 2005 models when evaluated without the three outlying species (P = 0.058), but 
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were not significantly different when evaluated using all species (P = 0.859). The 

average AUC of the 37 models decreased from 0.815 to 0.814. 

The large difference in performance between species appeared to be due to the 

extent and specialisation in their distribution. The species with the highest AUC 

typically had clustered distributions that were restricted to the Hawkesbury sandstone at 

higher elevations (SG, SA, RB), the slopes of the escarpment (GST, NC, RC), the 

gullies on the Woronora Plateau (MGG, GG, SPM), or rainforest patches (SF, CW, 

BWR, BP, FW, PT). The species that had lower AUC were widespread, and found 

across a number of these habitats (GW, BGH, VMO, HC, CTP, SP). The nine species 

with the highest AUC were relatively rare species (fewer than 83 presences), while five 

of the six worst performing species were common (more than 142 presences). 

The species with high AUC had good models with a number of different predictor 

combinations. For example, the species on the Hawkesbury sandstone had distributions 

that were predominately restricted to a single geological unit, high elevations, and 

certain temperature regimes to which these topographic positions are subjected. Any of 

these factors offered statistically good explanations for their distribution. In contrast, the 

common and widespread species were found over a range of conditions for all 

environmental factors I considered, and it was difficult to come up with any explanation 

that performed as well as the restricted species. 

Two of the three species that were sensitive to the predictors used (BB, TT) were 

restricted to the northern portion of the study area. Indeed, there is a north-south trend in 

vegetation communities in the region, with Escarpment Blackbutt forest dominating in 

the north, Moist Coastal White Box Forest in the south, and Escarpment Moist Blue-

Gum Forest in between (NPWS 2002). The benchmark models that only used niche 
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factors could not explain why BB and TT were restricted to the north of the study area, 

but the contextual model could (Figure 6.3). 

As summer maximum temperature performed well in single factor models 

(Ashcroft et al. 2008; Chapter 3), it was somewhat surprising that excluding summer 

maximum did not have a detrimental effect on models (see above). Therefore, I 

investigated what the potential alternative explanations were. I found that although 

summer maximum temperatures provided a good explanation for the distribution of 

rainforests, there were other potential explanations such as a simple linear combination 

of winter minimum and summer minimum (Figure 6.4). 

6.4 Discussion 

6.4.1 Factors affecting the distribution of vegetation on the Illawarra 

Escarpment 

The methods introduced in this chapter were designed to provide evidence as to which 

environmental factors determine the distribution of vegetation on the Illawarra 

Escarpment. There was a significant decrease in model performance when either winter 

minimum temperatures or geology were excluded from models, thus providing strong 

support for these predictors. If the correlations were spurious and only due to spatial 

structure, then other spatially structured predictors should have been able to combine to 

produce similar results. Instead, the results suggest that winter minimum and geology 

contain unique information, at least within the predictors examined. There was also 

strong support for spatial predictors, as models with contextual indices performed 

significantly better than purely niche-based models. The results provide further 

evidence that contextual indices produce effects similar to what would be expected by 
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source-sink or fragmentation effects (Chapter 4), and increase the explanatory power of 

SDMs (Figure 6.3). 

 

Figure 6.3: The non-contextual (top) and contextual (bottom) Maxent models for 

Eucalyptus pilularis (Blackbutt). The non-contextual model is based only on 

environmental niche factors (temperature and geology), while the contextual model 

also includes a spatial predictor based on the average model output within 500 m. 

The presence or absence of E. pilularis illustrates that the species was only 

observed in the north and east of the area, but the non-contextual model predicts 

moderate quality habitat in the south and west. 
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Figure 6.4: Panel (a) indicates the location of moist rainforests on the Illawarra 

Escarpment (Coachwood Warm Temperate Rainforest or Illawarra Escarpment 

Subtropical Rainforest; NPWS 2002). Panel (b) indicates the locations where 

summer maximum temperatures are less than 20 oC, and panel (c) indicates where 

summer minimum temperatures – 0.4 * winter minimum temperatures is less than 

12.8. 
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 There was no significant difference in the performance between models that 

contained only 1972 or 2005 temperature predictors. There was no evidence that any 

species, or group of species, was better modelled by one set of predictors or the other. 

These results are most likely because both sets of predictors have similar spatial 

structure, and hence explanatory ability, even though the distributions of the climate 

surfaces are different (Ashcroft et al. 2009; Chapter 5). 

Somewhat surprisingly, there was less support for summer maximum temperature 

as a predictor. While summer maximums are strongly correlated with the distributions 

of many species (Ashcroft et al. 2008; Chapter 3), other predictors could combine to 

compensate for their exclusion. Summer maximums may still be an important 

determinant of species distributions, but there are alternative hypotheses that also need 

further investigation. Further evidence on causal factors may be obtained by further 

survey work to validate and refine models (Engler et al. 2004; Guisan et al. 2006b) or 

by manipulation experiments conducted to test the effect of different environmental 

factors. 

6.4.2 Evidence on causal and spurious predictors 

It is crucial that models include casual predictors rather than spurious correlations based 

on spatially structured predictors. For example, winter minimums have increased by 

approximately 1 oC between 1972 and 2005, while summer maximums have only 

increased by approximately 0.2 oC (Ashcroft et al. 2009; Chapter 5). If a spurious 

predictor is included in SDMs, then this will reduce predictive accuracy (Pearce and 

Ferrier 2000a) and dramatically alter predictions of species extinction risk. Currently, 

many ecological studies are over-reliant on statistical methods and parsimony, to the 

point that they defy known causal relationships (Clark and Agarwal 2007). While 

statistical methods are undoubtedly important, statistically valid models may lead to 
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negative conservation outcomes if they are not grounded in ecological reality (Austin 

2002; Burger and Page 2007). 

In this chapter I provided evidence on causality by investigating whether a predictor 

had consistently strong explanatory ability for a range of species, and provided 

information that could not be captured by other predictors. Another commonly used 

alternative is to make an a priori assumption on which predictors to include in candidate 

models. For example, temperature predictors are often reduced to mean annual 

temperature, winter minimum, and summer maximum or growing season degree-days 

(Araújo and Luoto 2007). While these variables will be physiologically limiting for 

many species, this will clearly impact model performance if their distributions are 

influenced by other seasonal temperatures. Indeed, the results of this study showed that 

models that were restricted to winter minimum and summer maximum performed 

significantly (P < 0.05) worse than models that also included temperature predictors 

from other seasons. 

6.4.3 Implications for model validation 

Many SDMs are justified by proving they exceed predefined performance benchmarks, 

such as an AUC of more than 0.7 or 0.9 (Swets 1988; Pearce and Ferrier 2000b). The 

results of this study suggest that these benchmarks provide little information on the 

model building process, and do not prove that the selected model is better than the 

alternatives. All alternative models produced for a given species resulted in a similar 

AUC, and this was determined by the rarity and extent of its distribution. Similarly, 

Elith et al. (2006) tested 10 different statistical methods and found that predictive 

success varied more between species than between methods. The use of performance 

benchmarks needs to be re-examined, and a greater emphasis placed on proving that the 

selected model is better than the alternatives. 
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For common species with widespread distributions, it may be difficult to determine 

any model that exceeds a given benchmark. However, the candidate models may still 

provide an important contribution to environmental management or suggest valid 

hypotheses for the factors that limit these species. Alternatively, there may be many 

models that exceed the benchmark for rare species with clustered distributions. Some of 

these models are likely to be based on spurious correlations with spatially structured 

environmental variables, and exceeding the benchmark may lead to underestimating 

uncertainty in the model. The alternative models for these species may have similar 

AUC, but their predictions may be dramatically different, especially when applied in a 

climate change setting (Araújo and New 2006; Austin 2007). The uncertainty can be 

dealt with by averaging the predictions from multiple alternative models (Araújo and 

New 2006), however this merely hides the uncertainty (Beaumont et al. 2007). 

One limitation of the methods used in this chapter is that the validation was not 

performed with a truly independent dataset. Dividing the data into separate training and 

evaluation datasets provides some protection against overfitting to the specific 

calibration data, but it does not prevent overfitting to the study area or climatic 

conditions if they are common to both the calibration and validation data sets. Methods 

that perform well when assessed using an ‘independent’ dataset from the same study 

area (e.g. Elith et al. 2006), can perform poorly when they are applied to other areas 

(Peterson et al. 2007). Similarly, models that perform well under current climatic 

conditions do not necessarily perform well under other climatic conditions (Araújo and 

Rahbek 2006). There is often no truly independent dataset that has the same species and 

environmental conditions as the calibration data set (Austin 2007), and care needs to be 

taken to ensure that validation with an apparently independent dataset is not used to 

provide an overly optimistic view of model performance (Araújo et al. 2005b). 
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Chapter 7:  Discussion: The benefits and challenges of 

Species Distribution Models at the landscape scale 

7.1 Introduction 

Species distributions can be modelled at a variety of spatial scales. Theory suggests that 

best results will be achieved when the spatial scale of the environmental predictors 

corresponds with the scale at which the important ecological processes operate, and also 

matches the resolution of the biological survey data (Graf et al. 2005; Guisan and 

Thuiller 2005). However, determining the optimal scale is also confounded by the 

accuracy of data used (Scott et al. 2002). If environmental data is of poor quality at any 

particular scale, then the corresponding species distribution models will not be optimal, 

and will underestimate the importance of those predictors at that scale. Therefore, 

studies that seek to determine the importance of environmental factors at different 

spatial scales need to consider the accuracy of predictors. 

I conducted a series of landscape scale studies on the Illawarra Escarpment, 80 km 

south of Sydney, Australia. These studies were unusual in that they did not rely on 

elevation as a surrogate for temperature, but used empirical data to create more accurate 

landscape scale temperature surfaces (Ashcroft 2006; Ashcroft et al. 2008; Chapters 2 

and 3). In addition, they did not rely on coarse-grained climate change models or 

assumptions of uniform warming, but estimated fine-scale variations in warming and 

potential refugia for vegetation (Ashcroft et al. 2009; Chapter 5). In this chapter I 

review the effects of these higher accuracy temperature surfaces on Species Distribution 

Models (SDMs), and discuss the lessons for the future of landscape scale modelling as a 

whole. 
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7.2 The challenges of landscape scale models 

Landscape scale models are crucially important for environmental planning, as this is 

the scale at which many management decisions are made (Lookingbill and Urban 2003). 

Landscape scale SDMs can provide different insights than coarse-scale models, and yet 

there are unique challenges that must be overcome to obtain these benefits. 

The first challenge that must be overcome is the spatial accuracy of biological data. 

Many studies use records from herbaria and museums, and these often have poor 

positional accuracy (Guisan et al. 2007). Fine-scale studies require data with higher 

spatial accuracy, resulting in smaller sample sizes (Engler et al. 2004). However, Engler 

et al. (2004) found that the higher data accuracy of fine-scale models could compensate 

for lower sample sizes, and lead to better results than coarse-scale models. 

If there is insufficient data for fine-scale models, then existing records will need to 

be supplemented with field surveys. Indeed, landscape scale studies often collect their 

own field data (e.g. Dirnböck et al. 2003; Randin et al. 2006; Trivedi et al. 2008), while 

continental scale studies often use data from existing databases. Therefore, the 

challenge of data accuracy at the landscape scale can be overcome if sufficient 

resources can be obtained to collect appropriate data. This task will be easier if the 

benefits of landscape scale studies are known, and these will be discussed later in this 

chapter.  

The second challenge of landscape scale studies that must be overcome is the 

accuracy of the environmental factors that are used in the models. Many landscape scale 

models use simplified climatic surfaces that are largely determined by elevation (e.g. 

Dirnböck et al. 2003; Trivedi et al. 2008). These may underestimate the potential 

contribution of climate at this scale. Indeed, I found large improvements in model 

performance when temperature surfaces based on empirical data were used instead of 
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elevation on the Illawarra Escarpment (Ashcroft et al. 2008; Chapter 3). Summer 

maximum temperatures were poorly correlated with elevation (r2 < 0.1), and were 

predominately determined by exposure to hot, dry northwesterly winds. Similarly, 

winter minimums were correlated more strongly with distance from coast than 

elevation. 

It has been known for sometime that elevation is not a sufficient surrogate for 

temperature at the landscape scale (Lookingbill and Urban 2003), and yet there has been 

little work done to determine how more accurate temperature surfaces affect SDMs. 

There is great potential for improved spatial datasets of environmental factors to lead to 

a new generation of gradient analysis at the landscape scale (Lookingbill and Urban 

2005). The resources required to generate these surfaces is much less than that to gather 

the necessary biotic data. For example, I spent approximately 75 days surveying the 

vegetation at 600 sites in my study area, but only needed 18 days to gather sufficient 

data on temperature. The cost of the temperature sensors (DS1921G iButtons in this 

case) was not high, and so approximately 30% more resources were required to 

supplement the biotic survey with higher accuracy temperature surfaces. This extra 

expense yielded models based on more direct and accurate environmental predictors, 

which more than justified the additional cost. Other iButtons are available that also 

measure humidity and these would provide further information on fine-scale variability 

in growing conditions. 

The third challenge for landscape scale models is to obtain data over a broad range 

of environmental conditions. The environmental niche of a species can only be properly 

defined if the conditions extend past the environmental limits (Austin 2007), and 

therefore a broad range of environmental conditions is needed to increase the 

applicability of landscape scale SDMs. 
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This challenge is more difficult to overcome, as landscapes are expected to have a 

narrower range of environmental conditions than the continents that they reside within. 

In addition, even if landscapes do cover a broad range of conditions, they may not cover 

all combinations of predictors. This problem was evident in my study on the Illawarra 

Escarpment. For example, Eucalyptus sieberi is common on the Hawkesbury sandstone 

in the Sydney basin. In my study area it only occurred at elevations of approximately 

300 m to 600 m, however I know it exists at other elevations elsewhere. A model based 

on elevation performed well for this species—even when validated with an 

‘independent’ dataset from the same study area—however it would not be broadly 

applicable. It is difficult to determine how many landscape scale models suffer this 

same problem. 

The third challenge can potentially be overcome by sampling multiple landscapes, 

however this may be prohibitively expensive given the cost of obtaining appropriate 

biotic and environmental data (discussed earlier), and may be beyond the immediate 

scope and needs of the research. Where landscape scale models do not cover the full 

range of environmental conditions, this will impact their transferability—that is, the 

applicability of the models in areas other than the one where they were created. There is 

already some evidence that this is the case. Continental scale models have been 

transferred with some success (e.g. Peterson 2003; Peterson et al. 2007), while 

landscape scale models have performed more poorly (Randin et al. 2006). This 

highlights an important limitation of landscape scale models—they can not be 

transferred to new areas without verifying that the range of conditions in the new areas 

are similar to those in the area where the models were developed. 
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These limitations and challenges that must be overcome to produce landscape scale 

SDMs must be offset against the potential benefits. I will now review four potential 

benefits of landscape scale SDMs that were apparent from my study. 

7.3 Benefit 1: reduction of pseudoreplication 

The first benefit of landscape scale models is a reduction in pseudoreplication. For 

example, consider the simple relationship between Eucalyptus cypellocarpa and 

summer maximum temperature. The species only occurs over a limited temperature 

range at the continental scale, however this temperature range only occurs in southeast 

Australia (Figure 7.1). Even though this is not a manipulative experiment, it is clear that 

there is pseudoreplication due to the lack of interspersion of ‘treatments’ (Hurlbert 

1984). E. cypellocarpa could be limited to southeast Australia by summer maximum 

temperature, but it may also be due to neutral processes (Hubbell 2001), or by any 

number of other spatially structured environmental factors or biological processes. A 

continental-scale model produced using Maxent performs very well statistically (AUC 

of 0.992 when 70% of data used to produce model and 30% to validate), but it is 

inappropriate to infer that summer maximum is important for this species because there 

are other possible explanations (Faith 2003; McGill 2003; Faith et al. 2004). 

This problem has recently gained attention by comparing how SDMs perform when 

compared with models produced using randomised spatially structured predictors (Bahn 

and McGill 2007; Currie 2007). These studies showed that almost any spatially 

structured predictor has the power to explain species distributions, and this casts doubt 

over many continental-scale models. 
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Figure 7.1: A comparison between the distribution of Eucalyptus cypellocarpa 

(black dots) and summer maximum temperature (oC) at the continental (left) and 

landscape (right) scales.  Continental scale data was obtained from the Global 

Biodiversity Information Facility (http://data.gbif.org) and ANUCLIM (Houlder et 

al. 2000). Landscape scale data was obtained from my study on the Illawarra 

Escarpment (Ashcroft et al. 2008; Chapter 3). 

 

Landscape scale models cannot solve this problem completely, but they can reduce 

the effect. For example, Eucalyptus cypellocarpa still favours a limited range of 

summer maximum temperatures at the landscape scale (Figure 7.1), but these are now 

distributed across the whole study area and there are interspersed patches of 

unfavourable temperature (treatment). This reduces pseudoreplication, and reduces the 

probability that a randomised spatially structured variable would be able to explain the 

distribution. This is not to say that the landscape scale will work best for all species, 

however, and modellers are encouraged to select a scale that maximises interspersion 

and minimises pseudoreplication. 

7.4 Benefit 2: less predictor colinearity 

Many climatic predictors are created using elevation sensitive interpolations (e.g. 

Houlder et al. 2000), and this leads to high colinearity between different seasonal 
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temperature predictors. This is a problem for model building, and can lead to the 

erroneous selection of environmental factors and distorted response curves (MacNally 

2002; Graham 2003; Lehmann et al. 2003; Chapter 6). 

The uncertainty introduced by correlated predictors is especially undesirable in a 

climate change context. For example, temperatures are typically increasing much more 

in winter and spring than summer and autumn, and minimum temperatures are 

increasing almost twice as much as maximum temperatures (Hughes 2000; Walther et 

al. 2002; Ashcroft et al. 2009; Chapter 5). If the wrong seasonal temperature predictors 

are included in models then this will dramatically over- or under-estimate the predicted 

effect of climate change, and hence introduce error into the estimated extinction risk. 

To mitigate the potential for the wrong predictors to be selected in SDMs, 

colinearity in temperature predictors should be reduced by establishing relationships 

with a variety of environmental factors—not just elevation. I did this on the Illawarra 

Escarpment, and found that the correlation between summer maximum temperatures 

and winter minimums temperatures was actually very low (r2 = 0.07; Ashcroft et al. 

2008; Chapter 3). As noted above, this was because temperatures were affected by 

different factors during different seasons, and the spatial distribution of seasonal 

temperatures displayed vastly different patterns (Ashcroft et al. 2008; Chapter 3). Some 

seasonal temperature predictors were still highly correlated with elevation and each 

other, but the methods did reduce the problem to some extent. It is especially 

noteworthy that it was the extreme temperatures that had the poorest correlation with 

elevation (summer maximum and winter minimum), and these are the factors that are 

frequently selected in models because they are physiologically limiting for many 

species (Ashcroft et al. 2008; Chapter 3). 
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Using a variety of factors to explain the spatial distribution of temperature is not 

necessarily a method that can only be applied at the landscape scale. Mountainous 

landscapes are more likely to have complex temperature mosaics than coarse-scale 

study areas (e.g. Figure 7.1), but factors other than elevation will also affect the 

distribution of regional and continental temperatures. To discuss this in more detail, it is 

necessary to consider the benefits and implications of standardised weather stations. 

Temperatures are affected by a number of factors. Standardisation of climatic 

recording equipment (e.g. Stevenson screens) is performed so that the temperatures in 

different locations can be easily compared and interpreted. That is, standardisation 

ensures that differences are due to coarse-scale positional factors (elevation, distance to 

coast, latitude) and not due to localised variations in vegetation, topography, moisture, 

human structures, or micro-climatic factors. 

Standardised temperature recordings are designed to be representative of the 

surrounding landscape, however they are really only representative of areas that match 

the standard. That is, 1.25 to 2 m above ground, no vegetation, flat topography, etc. 

Therefore, standardised climate data has been referred to as the ‘human climate’, and is 

a poor indicator of the ‘habitat climate’ that is of interest when studying species such as 

ground dwelling animals and trees that germinate in forests (Wolfe 1945; Geiger 1971). 

While it has long been known that human climate is not ideal for ecological studies, 

climate surfaces based on standardised data are still commonly used, as little else is 

available. 

It is possible to create climate surfaces that consider variations in topography and 

other factors (Lookingbill and Urban 2003; Ashcroft et al. 2008; Chapter 3), however 

this cannot be done with standard weather station data. Weather station data can be used 

to detect temperature trends associated with elevation, distance to coast (continentality) 
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and latitude (e.g. McVicar et al. 2007), but cannot predict the effects of vegetation, 

topography, and other factors that are standardised, because there is no information on 

how temperatures are affected as these factors vary. Therefore, creating surfaces that are 

better approximations of habitat climate requires a purpose built network of ‘climate 

stations’ with less standardisation. 

Climate stations with less standardisation will be less comparable with other 

locations, because differences could be due to any number of environmental differences. 

It will not be possible to take any one station from a region and imply it is 

representative of that region, nor compare two stations to make inferences about which 

region is hotter. Recorded temperatures may change over short distances due to changes 

in vegetation, moisture or topography, however this is not a problem if the data is 

analysed to determine the effect of each of these factors. More weather stations are 

needed so that the effect of each factor can be reliably determined, and the less 

standardisation is performed, the larger the sample size will need to be. 

There can actually be a certain amount of ‘error’ introduced by non-standardised 

weather stations, as the temperature at any location is no longer or primary concern. 

Instead, the data is used to determine how temperatures are affected as each 

environmental factor varies, as this is used to estimate the temperature at each location 

in the study area. For example, standardised weather stations may have a stronger trend 

between temperature and elevation, and even though reducing standardisation will 

weaken this trend, it will still be present (Figure 7.2). The advantage of this extra ‘noise’ 

is that the effect of other factors can also be determined. 
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Figure 7.2: The graphs illustrate simulated results from standardised (top) and 

unstandardised (bottom) weather stations. Standardised weather stations have 

limited noise introduced by factors such as vegetation and topography, and show a 

strong trend towards factors such as elevation. Unstandardised weather stations are 

noisier, because temperatures are influenced by a variety of factors. This means that 

it is more difficult to compare different locations, but it is now possible to work out 

how multiple factors affect temperatures (see text for more information). 

 

In summary, standardised weather stations give a better indication of the general 

climate in a region, and are better for comparing the ‘human climate’ in different 

regions. Reducing standardisation makes comparing different weather stations more 

problematic, but allows scientists to determine how different factors affect the 

distribution of temperatures, and produce temperature surfaces that are a better 

representation of ‘habitat climate’. As the relative effect of each factor varies 
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seasonally, this reduces colinearity between seasonal temperature predictors. Producing 

habitat climate surfaces may have been prohibitively expensive in the past, but is now 

possible due to the ready availability of cheap, automatic temperature sensors. 

7.5 Benefit 3: identification of refugia from climate change 

Current climate change models may dramatically overestimate extinction risk because 

they are at too coarse a scale to identify refugia where species can persist despite 

apparently unfavourable regional conditions (Thuiller et al. 2005; Anciães and Peterson 

2006; Pearson 2006; Botkin et al. 2007). This is classically illustrated by the long-term 

survival of the Wollemi Pine (Wollemia nobilis), an ancient species that has been able to 

survive in deep rainforest gorges 150 km northwest of Sydney, presumably because the 

topography offers shelter from regular bushfires and harsh climates (Offord et al. 1999). 

My work on the Illawarra Escarpment identified that rainforests were also confined 

to sheltered refugia within the landscape. Moist rainforests only occur where summer 

maximum temperatures are less than 20–20.5 oC (Figure 7.3; Ashcroft et al. 2008; 

Chapter 3), and these locations have not warmed by as much as the more exposed 

locations (Ashcroft et al. 2009; Chapter 5). Crucially, the identification of these refugia 

relied heavily on factors other than elevation, as their locations were predominately 

determined by shelter from the hot, dry northwesterly winds that are associated with 

extremely hot temperatures and bushfire hazards. It is not surprising, therefore, that 

landscape scale studies that rely on elevation to produce temperature surfaces cannot 

identify refugia (Trivedi et al. 2008). 
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Figure 7.3: The locations where summer maximum temperatures are less than 

20.5 oC are shown in red, while the locations of moist rainforest communities are 

shown as black polygons. Temperature data is from Ashcroft et al. (2008; Chapter 

3), while vegetation data is from NPWS (2002). 

 

Temperature surfaces based only on elevation predict that temperatures in the deep 

rainforest gorges are warmer than the surrounding area, because they are at lower 

elevation. They do not identify any difference between the gorges and locations at 
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similar elevations in more exposed positions. The data I gathered clearly illustrated that 

the rainforest gullies were cooler than the surrounding areas, and were very different 

from exposed locations at similar elevations. 

The identification of these rainforest refugia offers an alternative to the simplified 

generalisation that species will shift poleward and upward in response to climate change 

(Hughes 2000). Moist rainforest communities are already restricted to small patches 

where the summer maximum temperature is lower than the surrounding region (Figure 

7.3), and models suggest they cannot move in any direction in response to climate 

change. As temperatures warm, these rainforest patches will only be able to contract. 

Fortunately, however, summer maximum temperatures have not increased as much as 

other seasonal temperatures (Hughes 2000; Walther et al. 2002; Ashcroft et al. 2009; 

Chapter 5), and temperatures would have to increase substantially more to cause a 

complete loss of all favourable rainforest habitat. 

Many other species on the Illawarra Escarpment are best modelled using winter 

minimum temperatures, which are predominately determined by distance to the coast 

(Ashcroft et al. 2008; Chapters 3 and 6). Similarly to above, these species would not be 

expected to move upward or poleward either. Upward shifts are generally unlikely, 

because the species that currently occupy the nutrient-rich soils on the escarpment 

slopes are unlikely to survive on the nutrient-poor Hawkesbury sandstone that is found 

at higher elevations. Southward shifts are possible, but winter minimum temperatures 

decrease more rapidly towards inland areas, and therefore it is probably easier to move 

inland than southward. The eucalypts that are currently only found in the cooler areas of 

the Escarpment, such as Eucalyptus cypellocarpa, E. smithii, and E. piperita, are three 

examples of species which may struggle to persist at the easternmost limits of their 

distributions. 
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Landscape scale climate change predictions are important for conservation 

planning, as this is the scale at which management decisions are often made 

(Lookingbill and Urban 2003). It is problematic to associate landscape scale species 

distributions with continental scale climate predictors, and there is a need to ensure that 

both climatic data and biotic data are at the same scale (Walther et al. 2005). The fact 

that coarse scale generalisations of poleward and upward shifts to climate change did 

not hold on the Illawarra Escarpment illustrates the difference that landscape scale 

studies can make. 

7.6 Benefit 4: matching scale and process 

Species respond to different environmental conditions at different spatial scales, so it is 

impossible to determine an optimal scale at which modelling should be performed (Graf 

et al. 2005). Multi-scale studies often identify different environmental factors as being 

important at different spatial scales (e.g. Lindenmayer 2000; Lindenmayer et al. 2000; 

del Barrio et al. 2006), and this has lead to some general rules of thumb. For example, it 

has been suggested that climate may be the dominant factor in continental scale models, 

while land-use, soil variables and biotic interactions become more important at finer 

scales (Pearson and Dawson 2003). These rules of thumb require further examination to 

determine whether they truly reflect the scale at which these processes operate, or 

whether they reflect the scale at which the predictors are most accurately recorded. For 

example, my results provide strong evidence that climate is important in fine scale 

models (Ashcroft et al. 2008; Chapter 3), and it would be premature to discount this 

using fine-scale climate surfaces based on elevation or simple downscaling methods. 

Similarly, the importance of soil variables at coarse scales may be improved if better 

soil maps were made available at that scale.  



Chapter 7: Discussion 

 179

Landscape scale models have an advantage in that they can model processes that 

cannot be detected using coarse-grained analysis. For example, it is more robust to 

study plant competition at high spatial resolution models, where it is known that species 

coexist in small areas (Leathwick and Austin 2001; Austin 2007). It is more problematic 

to infer species are interacting in coarse-scale models, as species that coexist within 

large grains (up to 50 km by 50 km) may actually be geographically separate or in 

different habitats. 

Similarly, it has been shown that species respond to conditions in the surrounding 

areas. Contextual indices, such as the amount of rainforest within 500 m, have been 

used to model mobile fauna species (Ferrier et al. 2002; Wintle et al. 2005) as well as 

sessile flora (Chapter 4). Contextual indices offer a means to capture the home range of 

organisms, as well as source-sink, mass effects and fragmentation effects (Chapter 4). 

These processes cannot be studied if the grain-size is larger than the distance over which 

neighbouring locations have an effect. 

Another advantage of landscape scale models is that the temperature of each grain 

is more likely to represent the temperature that the species’ actually experiences. There 

can be up to 33.8 oC variation in temperature within one 50 km by 50 km grain (mean 

1.8 oC; Hijmans et al. 2005), and each grain usually contains the average for that area. A 

species that can only tolerate summer maximum temperatures of 20–25 oC may be 

found in locations with temperatures well outside this range in coarse-scale models. The 

optimal scale for models depends on their purpose (Austin 2007), and landscape scale 

models are better suited to studying the species responses curves along environmental 

gradients (Lookingbill and Urban 2005). 
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7.7 Conclusions 

There is no one correct scale to model species distributions, and landscape scale models 

have unique challenges and benefits. Landscape scale models require biotic and 

environmental data that is of higher accuracy, and will not be widely applicable unless 

they are produced in a landscape that has a broad range of environmental conditions. 

The benefits of landscape scale models include a reduction in pseudoreplication and 

predictor colinearity, improved ability to detect refugia from climate change, and the 

ability to detect processes that are obscured in coarser-scale models. 

The underlying theme that is common across a number of these challenges and 

benefits is predictor accuracy. Error in environmental predictors is usually ignored in 

SDMs (Austin 2007), but can have a large impact on the results (Van Niel et al. 2004; 

Van Niel and Austin 2007). More attention needs to be paid to predictor accuracy 

(Dormann et al. 2008), and should be considered before predictors are selected in 

species distribution models (Van Niel and Austin 2007). 

Environmental predictor data is not scale independent, and this hinders the 

development of SDMs that may otherwise be scale independent (Pearson et al. 2002). 

However, there are opportunities to better link landscape scale models with coarser 

scale models. One opportunity is to take advantage of fine-scale environmental data, 

even when biotic data is inaccurate and can only be used at a coarse-scale. Luoto and 

Heikkinen (2008) did this by incorporating the within-cell difference in elevation as a 

surrogate for the within-cell variability in climate noted earlier (Hijmans et al. 2005). 

Another option is to replace coarse-scale climate predictors with predictors based on 

contextual indices. For example, suppose a landscape scale models finds that a species 

favours locations where a large proportion of the surrounding landscape has a summer 

maximum temperature between 20 and 25 oC. Instead of producing a coarse-grained 
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model based directly on summer maximum temperature, fine-grained temperature data 

could be used to estimate the proportion of each coarse-grained cell that is within this 

temperature range. Effectively, the coarse-scale model would then be based on the 

amount of favourable habitat within each cell instead of the average conditions, and 

there would be stronger links between fine and coarse scale models. 

The other advantages of landscape scale models could also be incorporated into 

coarse scale models. If landscape scale models have less pseudoreplication and 

predictor colinearity, then they could be useful to select which predictors should be 

included in coarse scale models. If the locations of refugia are easier to identify with 

fine-scale models, then it may be possible to include these locations as predictors in 

coarse-scale models. Environmental planning and management will undoubtedly benefit 

if models at different scales are linked to obtain a more complete understanding of 

species ecology. Landscape scale models are undoubtedly useful for environmental 

planning and management, but they are not the complete solution.
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