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Abstract

Abstract

Mapping and explaining the distribution of vegetation helps land managers to make
systematic conservation planning decisions. This is typically achieved using models that
correlate the distribution of species with environmental factors, and can predict the
vegetation at unsurveyed locations. These Species Distribution Models (SDMs) have
numerous unresolved issues, but serve as a useful first-pass approximation for planning
purposes.

This thesis investigates some of the uncertainties of SDMs, including the impact of
data accuracy, the incorporation of spatial processes, the evaluation of alternative
models, and the benefits and challenges of producing models at the landscape scale. The
research was conducted on the Illawarra Escarpment, 80 km south of Sydney, Australia
(34.4°S, 150.9 °E). The escarpment contains a north-south trend in eucalypts
(Eucalyptus spp.) that cannot be explained in terms of elevation or geology. It also
exhibits a patchy distribution of rainforest communities, some unique to the Illawarra. It
is not known which environmental factors determine the distribution of either the
eucalypts or rainforest species, or how they may respond to a changing climate.

Species distributions are sensitive to the accuracy of data used, and yet many
models only use elevation as a surrogate for temperature, or use simple elevation
sensitive interpolations from weather stations. I collected hourly temperature data from
40 sites on the Illawarra Escarpment, and investigated whether elevation was an
adequate surrogate for temperatures in this landscape. I then investigated whether
temperature surfaces could be improved by considering other topographic and
geographic factors, including exposure to wind, distance to coast, radiation, and the

average conditions in the surrounding neighbourhood. Elevation was well correlated
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with moderate seasonal temperatures (e.g. summer minima and winter maxima), but
was poorly correlated with the extreme temperatures (summer maxima, winter minima)
that are physiologically limiting for many species. Using neighbourhood influences,
exposure to wind and distance to coast improved the accuracy of temperature surfaces,
and increased the explanatory performance of vegetation models. I concluded that
elevation was not always an adequate surrogate for temperature. Temperatures are also
affected by other topographic and geographic factors, and these should be considered
when developing models for systematic conservation planning activities.

Species distribution models are typically based solely on niche factors. Where
spatial processes are included, it is typically by employing autologistic regression, or
other techniques that use survey data as a predictor. This precludes the models being
used to make predictions in times or places where survey data is unavailable, and
reduces ecological explanation because it is an interpolation technique. I used
neighbourhood (contextual) indices based on environmental factors as an alternative
method to overcome these problems. I demonstrate that contextual indices improve
SDMs over purely niche-based models, and are capable of predicting unknown
populations in unsurveyed areas. I conclude that contextual indices have numerous
advantages over autologistic regression, and can capture a continuum between niche and
dispersal limited species.

Models that predict how species will respond to climate change either use coarse-
scale climate surfaces, or idealised predictions of uniform warming. These methods may
dramatically over-estimate extinction risk because they neglect fine-scale variations in
warming, and refugia where species can persist despite unfavourable regional
conditions. I created fine-scale estimates of warming by combining 35 years of Bureau

of Meteorology observations with one year of intensive fine-scale temperature
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monitoring. | found that warming was greatest at inland locations, at lower elevations,
away from streams, and at sites exposed to hot, dry northwesterly winds. As species are
biased in the geographic and topographic positions they occupied, some species have
experienced more warming than others and are at greater threat from climate change. |
concluded that it was important to continue developing methods to downscale coarse-
grained climate surfaces, and suggest that the accuracy of this process could be
improved by using a range of topographic factors.

There are many methods for selecting predictors in SDMs, and the competing
models often make highly variable predictions. I addressed this uncertainty by
comparing the performance of models with and without a given environmental factor. I
found that there was relatively strong support for the geology and winter minimum
temperature predictors, as well as predictors based on contextual indices, as there was a
significant drop in model performance when these predictors were excluded. In contrast,
there was less support for summer maximum temperature, as other temperature
predictors could combine to produce similar model performance. Model performance
varied more between models for different species than between different predictor
combinations for the same species. I concluded that it was inappropriate to assess
models based on subjective benchmarks, such as an AUC of more than 0.7. A
comparison between competing models for the same species gives a better indication of
the validity of the model building procedure.

The results of this research provide important insights into the benefits and
challenges of creating SDMs at the landscape scale (extent of 10-200 km). It is a major
challenge to obtain spatially and thematically accurate environmental predictors and
biotic data at this scale, and studies should include the collection of data to ensure

models are adequate. Landscapes will not have as much environmental variation as
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coarse-scale models, and this will limit the ability to transfer the models to new study
areas. However, there are a number of benefits that justify these studies. Producing
accurate temperature surfaces at the landscape scale will result in less pseudoreplication
and less predictor colinearity. This will improve the robustness of models. Landscape
scale studies also allow modellers to capture fine-scale refugia, and this will improve
the accuracy of climate change predictions. Finally, many ecological processes operate
at a scale that is too fine to be detected with coarse-scale models. Landscape scale
models may be the only alternative to detect these processes. There is no optimal scale
for SDMs, however, and a future challenge is to better integrate coarse and fine-scale

models to make more ecologically robust predictions.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Modelling the spatial distribution of vegetation

Modelling the spatial distribution of vegetation assists environmental managers to
design reserve systems and pursue other aspects of systematic conservation planning
(Margules and Pressey 2000). These spatial distributions are especially important at the
regional and landscape scales, as this is the scale at which most environmental
management decisions are made (Ferrier et al. 2002; Lookingbill and Urban 2003).

The distribution of vegetation can be modelled using an increasingly large number
of statistical methods (e.g. Elith et al. 2006). These methods can be broadly separated
into either dynamic, mechanistic, process-based models; or static, correlative, niche-
based models (Guisan and Zimmermann 2000).

Dynamic, mechanistic or process-based models have been presented as being a
more robust method for modelling species distributions, as they are based on species
physiology and consider transient responses and dispersal limitations (Loehle and
LeBlanc 1996; Hampe 2004). However, mechanistic models are not feasible for most
species, because there is insufficient knowledge about these traits (Guisan and
Zimmermann 2000). Indeed, correlative niche-based models may be less reliably linked
with species physiology and stochastic processes, but serve as a useful first pass
approximation when there is insufficient knowledge for mechanistic models (Pearson

and Dawson 2004).

1.1.1 Dynamic, mechanistic or process-based models

There are many types of dynamic, mechanistic or process-based models (hereafter

simply mechanistic models) that can be used to model the distribution of species.
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Arguably the simplest of these is a Markov chain model (Balzter 2000). Markov chain
models consist of a set of spatially discrete locations, each of which is in one of a
discrete number of states at any point in time. A matrix is determined from a time series
of observations that defines the transition probabilities for each combination of states.
That is, the probability that a location in state x at time t will be in state y at time t + 1,
for all combinations of x and y. Markov chain models are usually based on the
assumption that transition probabilities are constant in time, independent of the state of
the surrounding locations, and independent of previous states, although this need not be
the case (Balzter 2000).

Markov chain models are perhaps best suited to modelling systems where there is a
fixed and deterministic successional process (Childress et al. 1998). The biggest
drawbacks are that transition probabilities are not necessarily constant from year to year
(Childress et al. 1998), and a long time-series of data is necessary to calibrate models
(Dale et al. 2002).

Another type of mechanistic model is called a cellular automata model (Balzter et
al. 1998). While Markov chains ignore spatial context, cellular automata determine the
state at time t + 1 using the state of adjoining locations at time t. These approaches are
somewhat complementary, and cellular automata and Markov chain methods have been
combined to produce spatio-temporal Markov chains (Balzter et al. 1998). Cellular
automata are useful when neighbouring locations interact strongly, such as when there
are invading species, or when dispersal or competition has a strong effect (Arii and
Parrott 2006). They can also be used when land-use changes are spatially
autocorrelated, such as the clearing, farming, abandonment and succession of
Amazonian rainforests (Soares-Filho et al. 2002). Like Markov chains, cellular

automata models require a large amount of data to calibrate models. Both models are
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perhaps best viewed as simple models of the conceptual dynamics, and not a precise
description of how the ecosystem behaves (Ruxton and Saravia 1998).

The simplicity of Markov chain and cellular automata models is more evident when
they are compared with process-based forest gap models or landscape models. These
models typically model at least some aspects of the lifecycle of individual trees (or
small cohorts), including growth (Schumacher et al. 2004); mortality (Bigler and
Bugmann 2004; Schumacher et al. 2004; Wunder et al. 2006); seed dispersal and
germination (Liu and Ashton 1998; He et al. 1999; Bleher et al. 2002); herbivory
(Weisberg and Bugmann 2003); and disturbances such as fire (Roberts 1996;
Schumacher et al. 2006), windthrow and forestry (He et al. 2002). There are usually
numerous assumptions, estimations and simplifications that are needed for the
parameterisation and definition of these models, and therefore it is necessary to quantify
the uncertainty in model output that is due to potential errors in the model inputs
(Crosetto et al. 2000; Lexer and Honninger 2004).

Another type of mechanistic model is non-dynamic, but relates suitable habitat to
the physiology of the species (Kearney and Porter 2004). These models determine the
fundamental niche by experimentally determining the range of environmental
conditions that are suitable for a species’ reproduction, movement, or other critical life
phases. These models are different from other mechanistic models in that they are non-
dynamic, but they are further differentiated from correlative models in that they are
based on mechanisms rather than correlations between the environment and species
current distributions.

None of the mechanistic models discussed in this section are used in this thesis,
however it was important to consider them as alternative methods. They were not used

primarily because there was insufficient data available to estimate how growth,
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germination, mortality, and seed dispersal processes varied with environmental
conditions for each of the species I considered, and it is difficult to experimentally
determine these factors for long-lived tree species. Not all species reproduce every year
(e.g. mast flowering in rainforest species), and reproduction for some species may be

higher after periodic disturbances such as fire.

1.1.2 Static, correlative, niche-based models

A number of statistical methods have been used to correlate the current distribution of
species with the corresponding environmental conditions (e.g. Elith et al. 2006). These
have been collectively referred to by a number of terms including species distribution
models, bioclimatic envelope models, ecological niche-models, or static-equilibrium
models. They have been thoroughly reviewed and discussed in the ecological literature
(e.g. Guisan and Zimmermann 2000; Austin 2002; Guisan et al. 2002; Rushton et al.
2004; Guisan and Thuiller 2005; Aradjo and Guisan 2006; Guisan et al. 2006a; Austin
2007), and are not reviewed further here. Instead, the following sections establish the
context for the chapters in this thesis by discussing how the techniques evolved over the
lifetime of this research. Species distribution models, or SDMs as they will now be
referred to, are evolving rapidly, and techniques which were considered best-practice at
the start of this research are now under greater scrutiny and some considered out-dated.
I briefly outline some of these developments to illustrate the context in which the
various chapters were prepared, and to better demonstrate the contributions that the

chapters made to advance the field of research.

1.1.3 Statistical methods for developing SDMs

All statistical methods used to produce species distribution models are based on

correlations between species’ distributions and environmental conditions. It is usually
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assumed these relationships are causal, and can be used to predict the invasion potential
of species (e.g. Peterson 2003) or how species will respond to climate change (e.g.
Thomas et al. 2004). In broad terms, the methods differ in how complex the responses
to environmental gradients can be. For example, simple and early methods, such as
BIOCLIM, have fixed limits on each gradient that are independent of other gradients
(see Guisan and Zimmermann 2000 for a comparison between methods that were
commonly used at that time). Generalised Linear Models (GLMs) were developed later,
and allowed the responses to be various parametric shapes, including Gaussian curves
and B-functions (Austin et al. 1994). Generalised Additive Models (GAM; Hastie and
Tibshirani 1990) are more flexible than GLMs, as they are non-parametric, and
smoothing functions allow the data to determine the shape of the response functions.
GLMs and GAMs were viewed more favourably than other methods when I began this
research, and were the focus of international workshops conducted in 2001 and 2004
(Guisan et al. 2002; Guisan et al. 2006a).

During the course of this research, a number of new methods were developed, or
gained popularity, including Maxent (Phillips et al. 2004; Phillips et al. 2006; Phillips
and Dudik 2008), Generalised Dissimilarity Modelling (GDM; Ferrier et al. 2007) and
Multivariate Adaptive Repression Splines (MARS; Leathwick et al. 2005). These
methods became especially popular after they performed well in a comparative study
against the more established methods, including GLMs and GAMs (Elith et al. 2006).
Importantly, however, these methods have not been tested for ecological realism, and
only evaluated using data from the same study area as the models were developed (Elith
et al. 2006). This is not a truly independent dataset to make general inferences, and
these complex models may be overfitting to the study area and have poor transferability

(Peterson et al. 2007).
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The initial chapters in this thesis are based solely on GAMs (Chapters 2—4),
although methods did ‘evolve’ to include Maxent (Chapter 6). While GAMs only
performed moderately in the comparative study (Elith et al. 2006), they are potentially
less prone to overfitting than more complex methods, and may be superior when
validations are performed with truly independent data (i.e. different study area and
time). No method is unanimously considered superior, and GAMs and Maxent are still
powerful and valid methods to produce SDMs.

The evolution of statistical methods is likely to continue. New methods have
already been suggested, including quantile regression, structural equation modelling and
geographically weighted regression (Austin 2007). Some scientists are combining the
results of models produced with different methods to produce a consensus estimate
(Aratjo and New 2006). Further testing with truly independent data may shed new light
on the balance between statistical complexity and overfitting, although obtaining truly
independent data is impossible in many situations (Austin 2007), and testing using

artificial data may be necessary (Austin et al. 2006).

1.1.4 Model evaluation

All ecological models are simplifications of reality, and hence contain errors. The
magnitude of these errors needs to be quantified before models can be reliably used for
conservation purposes. SDMs generally produce some sort of habitat suitability index as
a continuous variable, and a threshold must be used if this is to be converted to a binary
map of suitable or unsuitable habitat (or predicted presence or absence). Therefore,
model evaluation methods can be broadly separated into those that use a threshold, and
those that are independent of a threshold (Fielding and Bell 1997).

For the duration of this research, the ‘best-practice’ method for model evaluation

was considered to be Area Under the receiver operating characteristic Curve (AUC;
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Pearce and Ferrier 2000b; Austin 2007). This was largely because it is insensitive to the
subjective selection of a threshold. However, towards the end of the research, doubt was
raised over the effectiveness of the method. Austin (2007) suggested that models with
similar AUC could produce vastly different predictions, and Lobo et al. (2008) showed
it neglected spatial errors, ignored differences between errors in omission and
commission, and was sensitive to the extent of the study area.

In this thesis I provided further evidence that AUC is an insufficient measure of
predictive success, and developed new methods to address some of its shortcomings. In
Chapter 4, I complimented AUC by also employing other validation techniques,
including a novel method to consider the spatial context of errors. In chapter 6 I
highlight the dangers of using subjective benchmarks to evaluate model performance,
such as an AUC of more than 0.7. Most candidate models for a given species had
similar AUC values, and therefore AUC was not sensitive to the predictor selection and
model building process.

Chapters in this thesis that were focused on producing temperature surfaces
(Chapters 2, 3 and 5) avoided the shortcomings of AUC by not performing a
comprehensive model evaluation. They only demonstrating that correlations were
improved (in terms of the deviance explained, or D?). The approach taken throughout
this thesis is to compare alternative models for the same species with each other, and
provide evidence as to which models have stronger correlations than others. I accepted
that evaluation against an ‘independent’ dataset from the same study area did not protect
against overfitting, and instead avoided overfitting by limiting the complexity of
response curves and the number of predictors in models. Model evaluation is an
unresolved issue (Guisan et al. 2006a), and I do not claim that the evaluations in this

thesis are complete. Nevertheless, the thesis makes a valuable contribution to improving
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validation techniques by introducing new validation methods (Chapter 4) and

highlighting the shortcomings of existing methods (Chapter 6).

1.1.5 Issues with species distribution modelling

Species distribution models are based on a number of assumptions. For example,
models assume that species are at equilibrium with the environment, and that the
distribution of species is causally determined by environmental factors such as climate
(Guisan and Zimmermann 2000). These assumptions are not usually tested when
models are developed, yet results are used to estimate extinction risk from climate
change (Thomas et al. 2004), determine whether species are occupying their full range
(Svenning and Skov 2004), determine if species are niche or dispersal limited (Moore
and Elmendorf 2006), predict the extent of species invasions (Peterson 2003), or to
select areas for species persistence in protected areas (Aratjo and Williams 2000). The
conclusions of all these studies may be incorrect if the assumptions on which the SDMs
are based are invalid. There are numerous issues with the assumptions and
simplifications surrounding SDMs (e.g. Loehle and LeBlanc 1996; Hampe 2004), and
these have received increasing attention.

Some of the less critical issues that have received attention concern which datasets
are suitable for modelling. For example, investigating the appropriate scale (Scott et al.
2002; Graf et al. 2005; Guisan et al. 2007; Trivedi et al. 2008), sample size (Stockwell
and Peterson 2002; Coudun and Gégout 2006), and method for selecting pseudo-
absences (e.g. Zaniewski et al. 2002; Engler et al. 2004) does not cast doubt over SDMs
as a whole, but determines which datasets are most suited to use in SDMs.

Recent studies have cast more serious doubts over SDMs in general, and the
remainder of this section will detail five key issues with SDMs that have arisen in the

scientific literature. These issues are central to this thesis, and the remaining chapters
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provide new insights into these issues and develop new methods to improve the
robustness of SDMs.

The first issue concerns the assumption that correlations between species
distributions and environmental factors are causal. Bahn and McGill (2007)
demonstrated that randomly generated, but spatially structured, environmental variables
were also able to satisfactorily explain species distributions, and this suggests that many
species-environment correlations may be spurious. Species distributions are often
clustered, and environmental conditions are usually more similar in locations in close
proximity. It is possible that species distributions are correlated with environmental
factors simply because they are both spatially structured (Currie 2007).

The second issue concerns the underlying assumption that SDMs capture the
ecological niche of species. SDMs are based on actual distribution data, which is a
result of biotic interactions as well as environmental conditions. Therefore, SDMs are
usually reported to capture the realised niche of the species (Austin 2002). However,
SDMs do not necessarily capture competition unless it is included as an extra predictor
(Leathwick and Austin 2001), and some suggest that SDMs actually capture the
fundamental niche (Soberén and Peterson 2005). Others have suggested that SDMs do
not capture the niche per se, as there is no functional or physiological relationship
(Kearney 20006). Instead, it has been suggested that simple SDMs, for example those
based on environmental envelopes, may capture the potential distribution, while more
complex methods capture the realised distribution (Jiménez-Valverde et al. 2008).
Clarifying the niche theory on which SDMs are based is one of the biggest challenges
(Aratjo and Guisan 2006; Guisan et al. 2006a), as it is difficult to justify SDMs when

they do not have a strong ecological basis. A strong ecological grounding may provide
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confidence that correlations are not simply due to the spatially structured environmental
predictors.

The third issue with SDMs is the uncertainty in predictions. Predictions from SDMs
vary dramatically according to the statistical method used, the scale of the analysis, the
climate data used, and the parameters selected (Thuiller et al. 2004a; Thuiller 2004;
Aratjo et al. 2005a; Aratjo and New 2006; Beaumont et al. 2007). This variability can
be large enough to compromise the usefulness of the methods (Araujo et al. 2005a). The
outputs from multiple models can be combined to produce a narrower range of
predictions (Aratjo and New 2006), however Beaumont et al. (2007) argue that this
merely hides the uncertainty, and increases the risk of overestimating the confidence
that should be placed in SDMs. Further research is needed to determine if the range of
uncertainty can be reduced, and to develop methods that are better at conveying the
inherent uncertainty of SDMs to users.

The fourth issue with SDMs, and one that has received comparatively little
attention, is that they are sensitive to the accuracy of the data used (Dormann et al.
2008). Data errors can affect many aspects of the SDMs, including the statistical
significance, the shape of response curves, the predictors that are selected, prediction
accuracy, and the spatial extent of predictions (Van Niel et al. 2004; Van Niel and
Austin 2007). In some respects, this is associated with model uncertainty, however data
uncertainty has other implications with respect to the complexity of models that can be
justified. For example, some of the better performing methods in the study of Elith et al.
(2006) produce complex response curves to environmental factors. Given that the shape
of response curves is sensitive to data accuracy (Van Niel and Austin 2007), it may be

difficult to justify complex responses to environmental gradients that have large errors.

10
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The fifth issue with SDMs concerns spatial processes and spatial autocorrelation.
Spatial autocorrelation is problematic for SDMs as it can affect the apparent
significance of predictors (Legendre 1993). However, autologistic regression (Miller et
al. 2007) or contextual indices (Ferrier et al. 2002; Wintle et al. 2005) can be used to
include spatial context in SDMs, and this may be an opportunity to account for
dispersal, home range size, or species interactions. Indeed, if SDMs are purely niche-
based, then they can be criticised for failing to consider spatial processes such as these
(Hampe et al. 2004). Autologistic regression is not a complete solution to this problem,
as it is uses data from the response variable as a predictor. Therefore, autologistic
regression becomes interpolation rather than explanation, and it cannot be used to make
predictions at locations or times where survey data is unavailable (Segurado et al.
2006). In addition, autologistic regression can lead to biased models, and underestimate
the effect of environmental variables (Dormann 2007). There is consensus that spatial
processes need to be considered when modelling species distributions (e.g. Dirnbock
and Dullinger 2004; Dullinger et al. 2004; de Frutos et al. 2007), yet the manner in
which this should be achieved is an unresolved issue (Guisan et al. 2006a).

This list of issues is not complete, but demonstrates increasing attention to the
limitations of SDMs in recent years. Other issues that have not been listed here include
genetic variation within species (Hampe 2004), the difficulty in extrapolating SDMs
into novel climates, and the potential effects of rising CO; levels (Loehle and LeBlanc

1996).

1.2 The vegetation of the lllawarra Escarpment

The Illawarra Escarpment is situated approximately 80 km south of Sydney, Australia
(Figure 1.1; 34.4 °S, 150.9 °E). It is oriented northeast to southwest, and rises 300 to

600 m above the city of Wollongong on the coastal plain (Figure 1.2). Its well-vegetated
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slopes create a conspicuous and contrasting backdrop to the city, and this has led to it
being listed as a “scenic landscape of statewide significance” by the National Trust of
Australia (NPWS 2003). The escarpment is an important component of the local
community, as demonstrated by the Commission of Inquiry that was conducted to

address its long-term management issues.
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Figure 1.1: The location of the study area.
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Figure 1.2: The elevation of the Illawarra Escarpment (yellow to blue), with the

area cleared for the city of Wollongong shown in red.

Mt Keira and Mt Kembla protrude eastward from the escarpment (Figure 1.2)
and create variations in aspect and shelter from winds and radiation. The combination of

the topography and geology create an environment that is rare within the Sydney Basin
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bioregion, and many of the vegetation communities are unique to the Illawarra (NPWS
2003).

Despite the uniqueness and importance of the local vegetation, there is still a
poor knowledge of the factors that determine the distribution of species and
communities. For example, there is a north-south trend in eucalypts, with Escarpment
Blackbutt forest dominating the escarpment north of Mt Keira, Escarpment Moist Blue-
Gum Forest dominating between Mt Keira and Mt Kembla, and Moist Coastal White
Box forest dominating south of Mt Kembla (NPWS 2002; Figure 1.3). While local and
regional literature provide distributional maps of communities (NPWS 2002), and a
rough guide to where individual species are located (Fuller 1995), these do not explain

this north-south trend in eucalypts, or other distributional patterns.

Figure 1.3: The north south trend in eucalypts that occurs on the Illawarra

Escarpment (from NPWS 2002).
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There are three types of rainforest on the Illawarra Escarpment, which have a
relatively patchy distribution (Figure 1.4). Lowland Dry Subtropical Rainforest is an
endangered ecological community that occupies exposed foothills and drier gullies at
low elevations. Coachwood Warm Temperate Rainforest and Illawarra Escarpment
Subtropical Rainforest occupy moister sites, typically at sites that are sheltered from
hot, dry northwesterly winds (Fuller 1995). The rainforests of the Illawarra have
received comparatively more attention than the eucalypt communities. Numerous
studies at the University of Wollongong have examined the composition of rainforests
(Mills 1986), and examined the effects of edaphic factors (Bywater 1985) and fire
(Erskine 1984). These studies are consistent with broader scale studies that have
examined the effects of these factors (e.g. Beadle 1954, 1966), but importantly, all are
non-spatial. That is, they seek to determine whether or not a factor affects the
composition or presence of rainforest communities or species, but they cannot be used
to produce a map of rainforest distribution, or quantitatively explain or predict the
spatial distribution in terms of environmental factors. This limits the ability to quantify
distributional changes that will occur due to, for example, climate change or various

disturbance events.
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- Coachwood Warm Temperate Rainforest
W lllawarra Escarpment Subtropical Rainforest
= Lowland Dry-Subtropical Rainforest

Figure 1.4: The patchy distribution of the moist (blue, green) and dry (red)
rainforest communities that are located on the Illawarra Escarpment (from NPWS

2002). Elevation is depicted in the background as a grey-scale image (Figure 1.1).
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1.3 Research aims and thesis outline

Many methods have been used to explain the relationships between species’
distributions and environmental conditions. There have been times when scientists
thought they had developed methods that could adequately identify these relationships,
only to later realise that the assumptions behind these methods were not appropriate
(Wiens 2002). To avoid this trap, I deliberately avoided trying to identify one ‘true’
model or ‘correct’ ecological relationship. Instead, the goal of this thesis was to assess
and improve the methods used to produce SDMs, and contribute to the ongoing
evolution of methods in the scientific literature. The remaining chapters focus on the
five issues with SDMs discussed in Section 1.1.5—with a particular focus on data
accuracy, spatial processes, and the variability of competing models. The specific aims

WEIe:

1. To produce accurate fine-scale temperature surfaces based on a variety of
topographic and geographic factors, and determine if this improved the
performance of SDMs. Most SDMs assume that elevation is an adequate
surrogate for temperature, but I demonstrate that this assumption is not valid
(Ashcroft 2006; Ashcroft et al. 2008; Chapters 2 and 3). I further demonstrate
that increasing the accuracy of temperature surfaces improves the ability of

SDMs to explain the distribution of vegetation.

2. To determine whether SDMs could be improved by considering the spatial
context of predictors. In Chapter 4, I demonstrate the benefits of using
contextual indices to incorporate spatial processes into SDMs, and how this

overcomes the shortcomings of autologistic regression (see Section 1.1.5).
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3. To produce accurate fine-scale surfaces of the climate change that has occurred
over the last 35 years. I develop a novel approach to estimate landscape scale
climate change, quantify the spatial variability in warming, and demonstrate that
species differ in the amount of warming they have experienced (Chapter 5;
Ashcroft et al. 2009). This research assists land managers to locate refugia from
climate change and identify the species that are most at risk from climate

change.

4. To investigate the uncertainty associated with species distribution models and
how this relates to commonly used evaluation techniques such as AUC (see
Section 1.1.4). In Chapter 6 I demonstrate that it is inappropriate to assess SDMs
against benchmark performance standards, and present a method to compare

competing models and increase confidence in the selected predictors.

5. To review how the landscape scale models produced in this thesis advance the
scientific literature. The discussion chapter, Chapter 7, presents the challenges
and benefits of producing SDMs at the landscape scale, using the methods
developed in this thesis as examples. I discuss the benefits over models at other

scales, and how they could be combined to improve the model building process.

The remaining chapters of this thesis have been published in scientific journals
(Chapters 2, 3 and 5), or been formatted so that they can be submitted to journals in
future (Chapters 4, 6 and 7). This formatting has resulted in some duplication of site

descriptions and methods in each chapter, although this has been minimised through
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cross references. The most comprehensive description of the study area is included in
the supplementary material for Chapter 4, including the vegetation and geology. Section
4.5.2 provides the most detailed account of the vegetation survey and design. The most
comprehensive assessment of DEM and data accuracy is included in the supplementary
material for Chapter 3. The comparison between the sampling design I use to create

temperature surfaces and existing coarse-scale methods is included in Section 7.4.
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Chapter 2: A method for improving landscape scale
temperature predictions and the implications for

vegetation modelling’

2.1 Introduction

Understanding the relationship between environmental factors and the distribution of
vegetation can provide a meaningful contribution to environmental planning and
management (Austin 2002; Ferrier et al. 2002). This is especially true at the landscape
scale where environmental decisions are often made (Lookingbill and Urban 2003;
Chuanyan et al. 2005). Quantifying the environmental niche of different species and
communities can provide evidence as to what would occur if the land were used
differently (Guisan and Zimmermann 2000), allows the estimation of past climate from
fossils (Arundel 2005), can be used to aid ecological restoration (Chuanyan et al. 2005),
and can be used to predict how future climate change will alter the distribution of
vegetation (Horsch 2003).

A common way of explaining the distribution of vegetation is through the static
modelling of survey data (see Guisan and Zimmermann 2000 for a review). These
models capture the realised niche of vegetation in terms of environmental variables, but
are based on the assumption that the vegetation is a result of, and in equilibrium with,
the current environment and not a relict from the past (Austin 2002).

Static models require detailed maps of the environmental factors that influence the

vegetation, the majority of which are based on Digital Elevation Models (DEMs) and

' This chapter has been published as: Ashcroft MB (2006) A method for improving landscape scale
temperature predictions and the implications for vegetation modelling. Ecological Modelling, 197, 394—
404.
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contain some level of error (Van Niel et al. 2004). For example, the DEM can be used to
estimate the slope, aspect, hydrology and radiation for the study area.

Elevation is often used as an indirect predictor of temperature (Lookingbill and
Urban 2003), or is used in techniques (e.g. BIOCLIM) that interpolate data from
weather stations (Hughes et al. 1996; Lindenmayer et al. 1999, 2000; Dymond and
Johnson 2002). These methods are prone to error when predicting local temperature
variations because there is often a lack of weather stations on which to base the
interpolation, they ignore the influence of the local topography (Guisan and Zimmerman
2000), and they fail to account for effects such as cold air drainage and evaporative
cooling (Lookingbill and Urban 2003).

Mountainous terrain can be especially difficult to model because the high spatial
variability of environmental factors leads to a complex mosaic of vegetation (Horsch
2003). In Australia, there can be ten species of eucalypt (Myrtaceae: Eucalyptus spp.) in
a small area (Florence 2004). Whilst it is accepted that there are changes in dominant
canopy species associated with slope and aspect, the exact relationship with direct
predictors is uncertain (Bell and Williams 1997). Environmental factors such as climate,
phosphorus (Beadle 1954, 1966), fire (Florence 2004), and moisture (Wardell-Johnson
et al. 1997) have been associated with the distribution of Australian vegetation, but no
vegetation models have yet been able to satisfactorily explain the distribution of
eucalypts (Austin et al. 1997), possibly because some scientists assume that the same
environmental factors are limiting all the species (Arundel 2005). In addition, most
studies have ignored the interaction between environmental factors at a location and
those of neighbouring areas.

The complexity of Australian vegetation is well illustrated by the Illawarra

Escarpment, approximately 80 km south of Sydney, Australia (Figure 2.1). There is a
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complex mosaic of eucalypt forests, woodlands, and rainforests on the Woronora

Plateau and the slopes of the escarpment. The city of Wollongong lies on the coastal

plain and foothills to the south and east, but there are also some remnants of native

vegetation. The climate of the Illawarra region is humid and mild, with average daily

minimum temperatures of 9 to 18 °C and maximum temperatures of 17 to 26 °C

throughout the year (Fuller 1995). Annual rainfall ranges from 1000—1200 mm on the

coastal plain to 1500-1600 mm on the escarpment, with slightly more rain falling in

February-May than in August-November (Fuller 1995).
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Figure 2.1: The topography of the Illawarra Escarpment in the vicinity of

Wollongong, Australia. The inset is a Digital Elevation Model showing the rising

elevation from the coastal plain to the Woronora Plateau, with Mt Keira and Mt

Kembla protruding eastward.
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Preliminary modelling of the study area using Generalised Additive Models (GAMs;
Hastie and Tibshirani 1990) confirmed that it was difficult to quantitatively explain the
current distribution of vegetation using the available predictors. It has been suggested
that obtaining better quality predictor variables would be a good first step to address this
problem (Guisan and Zimmermann 2000; Austin 2002). This could include replacing
the elevation predictor with more accurate and/or direct maps of average maximum and
minimum temperatures.

The aims of this study were to develop more accurate maps of average summer
maximum and minimum temperatures, and to quantify the improvement in vegetation
modelling performance when these were used instead of elevation. Whilst estimates of
temperature have been developed for other study areas, this study aimed to determine
whether the estimates could be improved by considering the interaction between a
location and its surrounding environment.

It was hypothesised that wind and air movements would average out large
differences in radiation and elevation over small distances and cause temperatures to be
more strongly correlated with the average elevation and radiation in the surrounding
area than they are with the actual elevation and radiation where the temperature was
recorded. This was tested by comparing the linear regression of temperature against the
local average radiation and elevation with the linear regression of temperature against
the actual elevation and radiation where temperature sensors were located. A stronger
relationship would indicate that the local averages were better correlated with
temperature, and would therefore be more appropriate for any temperature prediction
method including linear regression and elevation sensitive interpolation methods such as

ANUSPLIN and GIDS (Price et al. 2000).
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Chuanyan et al. (2005) have also suggested that elevation is an unsatisfactory
predictor for capturing the environmental niche of vegetation, and recently compared a
number of other temperature estimation techniques. It is hoped that using the locally
averaged elevation and radiation will further increase the accuracy of any of these

methods, and lead to more ecologically realistic vegetation models.

2.2 Materials and methods

2.2.1 Environmental predictor variables

Elevation data for the Illawarra Escarpment was available in the form of a digital
elevation model (DEM) with a 10 m cell size. Whilst it is unknown how the DEM was
created, it appears to have been derived from the contours of a topographic map and
contains some noticeable imperfections. Airborne Laser Scanning (ALS) data that is
available for a subset of the study area (courtesy of AAMHatch Pty Ltd) suggest that the
errors in elevation are generally in the order of 5—10 m for most of the study area, but
may be up to 30 m near the steep cliffs around Mt Keira (See Section 3.6.1 for a more
comprehensive assessment of data accuracy).

Three maps were also obtained. A map of vegetation communities was available
courtesy of the Department of Environment and Conservation (NPWS 2002). Spatial
errors for community boundaries are within 24 m for 93% of the map area, but may be
up to 70 m in some areas on the escarpment. Communities are described in terms of
species composition, and the canopy cover of each structural layer is estimated. Cultural
data (roads, walking trails, powerlines, and gas pipelines) was provided by the
Department of Infrastructure, Planning and Natural Resources (DIPNR). A comparison
with high-resolution aerial photos (courtesy of AAMHatch Pty Ltd) suggests that spatial

errors for the cultural data may be up to 50 m in the vicinity of the escarpment. A
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geology map was available for part of the study area courtesy of Phil Flentje at the
University of Wollongong. This was in the form of categorical data, with one value for
each of the 20 geological units. An extra categorical value, ‘unknown’, was added for
those areas outside the geological map. The geology map was used as a surrogate for
soil properties (such as phosphorus) that are known to influence the distribution of
vegetation.

Streamlines were calculated from the DEM where the flow accumulation (as
determined using ESRI ArcMap hydrology functionality) was greater than 500 cells.
The distance to the streams was calculated using Euclidean distance, with values less
than one being rounded up so that the log transformation would produce values greater
than zero and the output would be more sensitive to areas that are near streams.
Lookingbill and Urban (2003) used a similar log transformation of distance to streams
in their estimations of temperature.

The distance to disturbance was estimated by calculating the minimum distance to
either the lines in the cultural data or the ‘Cleared’ polygons in the vegetation data.
Values less than one were rounded up and the data was also log transformed.

Exposure to winds was estimated by calculating the angle to the horizon for each
azimuth that is a multiple of 15. This was done in ArcGIS using an AML script to
calculate the shadow using ‘hillshade’ at altitudes of 0.125, 0.25, 0.5, 0.75, 1, 1.25, 1.5,
2,25,3,3.5,4,5,6,7,8,9, 11, 13, 15, 18, 21, 25, 29, 34, 39, 45, 51, 58, 65, 73, and 81
degrees. The cells in the resulting raster grid contained the minimum angle that resulted
in no shadow. This grid was incremented by one and log transformed so that the output
was more sensitive to changes near low altitudes.

Exposure to warm and dry westerly to northwesterly winds was estimated by

averaging the log-transformed angles for azimuths of 255, 270, 285, 300, 315, and 330
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degrees. Exposure to cold, moist southerly winds was estimated by averaging the log-
transformed angles for azimuths of 150, 165, 180, 195, and 210 degrees. Exposure to
moist northeasterly winds was estimated by averaging the log-transformed angles for
azimuths of 30, 45, and 60 degrees. These azimuths were chosen based on preliminary
modelling and existing literature on the area. Dry westerly winds are dominant in winter
and moist south and northeasterly winds are common in spring and summer (Erskine
1984; Bywater 1985; Mills 1986; Fuller 1995). Northwesterly winds are not as
common, but are dry and warm in summer and can have a desiccating influence on the
local rainforests (Fuller 1995).

Averages were employed to the wind directions because it had the effect of
allowing wind to ‘bend’ around mountains, thus avoiding the long wind-shadows that
stretch across the entire coastal plain when considering only one direction. Kramer et al.
(2001) used the EXPOS model for a similar effect, but their model also allows wind to
bend over the top of mountains. In any event, these are still approximations for exposure
to wind, as wind is also influenced by valleys, mountaintops, and elevation (Raupach
and Finnigan 1997; Finardi et al. 1998; Uchida and Ohya 1999; Ruel et al. 2001).

Incoming solar radiation was calculated using the DEM and the Solar Analyst
(USDA Forest Service) extension for ESRI ArcView. The total direct radiation was
calculated for January 18" 2005, and is referred to in this chapter as simply ‘radiation’.

The 18" January was selected because it was near the middle of the observation period.

2.2.2 Predicting maximum and minimum temperatures

Geographic Information System (GIS) data was used to stratify the study area according
to elevation, radiation, and distance to streams, as these factors have been identified as
influencing maximum and/or minimum temperature (Moore et al. 1993; Lookingbill
and Urban 2003). Forty locations for temperature loggers were selected based on the
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stratification results to overcome a number of problems with random sampling. These
problems include the clustering of high elevation and low radiation sites which would
cause random sites to be so close that they may be spatially auto-correlated, access
restrictions to privately owned lands, and other access problems caused by the steep
topography and dense vegetation that could not be identified until the sites were visited.

Whilst it is recognised that non-random sampling can lead to bias, attempts were
made to minimise this risk by ensuring the full range of each predictor was sampled,
and by ensuring the environmental predictors were poorly correlated for the sampled
locations. Radiation was poorly correlated with both elevation (r* = 0.009) and distance
to streams (1 = 0.015) due to the stratification, whilst elevation was moderately
correlated with distance to streams (r* = 0.306) because there were fewer streams near
the drainage divides at high altitudes.

Temperatures were recorded using DS1921G iButton temperature loggers (Dallas
Semiconductor/MAXIM). Recordings where made every 30 minutes from 29™
November 2004 to 9" January 2005, and from 15" January 2005 to 25™ February 2005.
Sensors were placed on the surface of the ground with as much shelter from direct
radiation as possible given the vegetation at each location. Each sensor was pinned to
the ground inside a small, coarse meshed bag, however three sensors moved by 1-2 m
during the study period due to disturbance from falling trees, erosion, and possibly
lyrebirds (See Section 7.4 for a comprehensive discussion on sensor placement).

In previous studies, temperature sensors have been placed at a variety of heights
including 10 cm and 5 cm below the surface, and 15 cm, 30 cm, 1.3 m and 2 m above
the surface (Lookingbill and Urban 2003; Lemenih et al. 2004; Porté et al. 2004; Ritter
et al. 2005). Some have used radiation screens to avoid direct radiation (Ritter et al.

2005), whilst others used the shade of the trees (Lookingbill and Urban 2003). It is not
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evident which height provides the most useful predictor for the distribution of
vegetation, but it has been shown that both soil and air temperatures influence the
growth rate of eucalypts (Bell and Williams 1997). It is also not clear how well the
surface temperature correlates with either the subsurface soil temperatures or canopy air
temperatures, but it has been suggested that surface temperatures have the maximum
diurnal variation and may be 5-10 °C different from the air temperature at 1.5 m —
where meteorological measurements are made (Campbell and Norman 1998). Surface
temperatures may be more spatially variable, because they are less subjected to the
winds and advection that can mix air (Porté et al. 2004), and are obviously more
exposed to solar radiation than subsurface measurements.

When the sensors were reprogrammed in mid January 2005, the percentage canopy
cover of each site was visually estimated to the nearest 10% and recorded. The full
range of canopy covers were observed (0-100%), and canopy cover was poorly
correlated with elevation (r* = 0.065), radiation (r* = 0.117) and distance to streams (1> =
0.072). Therefore, canopy cover was considered for inclusion in models for predicting
temperature. It should, however, be noted that the visual assessment of canopy cover is
prone to error. The relative importance of different canopy and sub-canopy layers is not
obvious, and it is unknown how much the canopy cover varies temporally, or whether
measurements should be biased towards the path of the sun.

One site had to be discarded because the data on the temperature logger was lost.
For each of the remaining 39 sites the daily maximum and minimum temperatures were
recorded, and then averaged to determine the mean maximum and minimum
temperatures for each of the 39 sites. Linear regression was used to determine how well
elevation explained the average maximum and minimum temperatures, as done by

Lookingbill and Urban (2003). The results of the regression were compared with the
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regression using elevation in combination with the other predictors (radiation, log
distance to streams, and percentage canopy cover).

Partial response graphs and residuals were examined to ensure that the regression
was, as expected, linear, and that the residuals appeared to be normally distributed.
Linear relationships have already been established (Lookingbill and Urban 2003).

In order to establish whether or not the relationship between elevation and
temperature varies during the course of the day, the average temperature for each 30-
minute period was calculated for each site. Regression was used to calculate the
relationship for each 30-minute interval, and the correlation coefficients recorded. The
regression was conducted using elevation alone, and elevation in combination with
radiation and canopy cover. The lapse rate was estimated from the coefficient of the

elevation parameter in the regression.

2.2.3 Using a low pass filter to improve estimates

It was hypothesised that wind and air movements would cause the maximum
temperature at a given site to be more strongly correlated with the average elevation and
radiation over the surrounding area than with the actual elevation and radiation where
the temperature was recorded. For example, a site surrounded by areas of consistently
high radiation would be warmer than a site surrounded by a mosaic of low and high
radiation.

In order to test this hypothesis, the radiation and elevation predictors were
transformed using low pass filters. This process averaged the values of each predictor
over a circular region around each pixel in the predictor map, and calculated the moving
average of elevation and radiation. The low pass filters were performed using the
neighbourhood functionality of ESRI ArcMap, with radii of 100 m, 200 m, 500 m, 750
m, 1000 m, 1250 m, and 1500 m.
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For each radius, linear regression was used to examine the effect of the low pass
filter on the correlation coefficient between maximum temperature and elevation and/or
radiation (in comparison to the regression with the unfiltered predictors). The radius that
maximised the r* of the regression was used to estimate the optimal radius for the low
pass filter. The low pass filter was also used to examine the effect on the correlation
coefficient of the regression for the average temperature for each 30-minute period
during the day.

As the minimum radius (100 m) is ten times the cell size of the DEM (10 m), the
resolution of the DEM is not expected to have a significant influence on the optimal
radius. As averaging will cancel out random errors, it is also expected that DEM
accuracy will become less significant once the low pass filter is used. Problems may be
encountered in future if the cell size approaches the radius of the filter, but there is no
reason to believe that the optimal radius in terms of distance would change, even though

the radius would obviously be less in terms of the number of cells.

2.2.4 Vegetation modelling

A dataset of random points (defined by an easting and northing in the study area) was
created and the vegetation community was determined for each point from the
vegetation map (NPWS 2002). Rare and non-vegetated communities were discarded,
which left 23 different communities. There were also a small number of points (<1%)
that had to be discarded because there were spatial or other inconsistencies between the
different data layers. For each remaining point, the environmental predictors were
extracted from the appropriate themes in ArcMap, and the data set was randomly split
into a training data set of 4995 points and a validation data set of 2306 points.

A GAM was produced in SPlus (Insightful Corp.) for each of the 23 communities
using the training dataset and the predictors (see Section 2.2.1 for more details) of
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elevation, geology, log distance to streams, log distance to disturbance, and exposure to
the three wind directions (EGWD models). Each of the models was then applied to the
validation data set and each point classified into one of the 23 communities according to
the model that produced the highest predicted probability of occurrence.

The GAMs were then repeated using the predicted average summer maximum and
minimum temperatures instead of elevation. In the first instance, the maximum was
predicted using the filtered elevation and radiation (ER model), and in the second
instance the maximum was predicted using the filtered elevation and radiation and the
canopy cover (CER model). It was necessary to estimate the canopy cover from the
vegetation map, with each community assumed to have a constant summer canopy
cover of between 30% and 90%, estimated according to the community descriptions by
the NPWS (2002). This is in contrast with the visual estimates of canopy cover that
were used to derive the formula for maximum temperature. In future, the canopy cover
could be estimated more accurately using remote sensing (Wang et al. 2003).

No attempts were made to trim insignificant predictors from any of the GAMs, or
to vary the degrees of freedom for each predictor. This ensures that the comparison
between models is only comparing the effect of the maximum temperature predictor,
but runs a risk of over-fitting. It has also been suggested that excessive absences past the
recorded distribution of a species need to be culled (Austin and Meyers 1996;
Leathwick et al. 1996). This was not done because the output was the “most probable
entity” rather than the “probability of occurrence” (Guisan and Zimmermann 2000).
Whilst it is recognised that a GAM can predict a non-zero probability of occurrence
outside the observed range, this will not result in it being the most probable entity as

long as another community it more likely to occur in that location.
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2.3 Results

2.3.1 Predicting minimum temperature

Elevation was highly significant for predicting the average summer minimum
temperatures (r* = 0.763, t =-10.92, d.f. = 37, P < 0.001). Distance to streams was also
significant (r2 =0.196, t =-3.000, d.f. =37, P <0.01), but this must be treated with
caution due to the moderate correlation between elevation and distance to streams. This
is emphasised by the fact that when distance to streams and elevation were both used to
model the average minimum temperature, the distance to streams was no longer
significant (1* = 0.766, teey = -9.355, d.f. = 36, Pejey < 0.001, tyream = 0.603, d.f. = 36,
Pstream > 0.05), and there was negligible improvement in correlation from the regression
with elevation alone. The average minimum temperature was not significantly
influenced by either radiation (r* = 0.006, t = -0.461, d.f. = 37, P > 0.05) or canopy
cover (r2 =0.015,t=0.754, d.f. =37, P > 0.05), nor were they significant when
combined with elevation and/or distance to streams.

Based on these results, the minimum temperature was predicted based on elevation,

with the equation:

Tmin=17.3 —0.0052 * Elevation

Where Ty is the predicted average summer minimum temperature (°C) at each

location, and the Elevation (m) is taken from the DEM. The graph of the predicted

average minimum temperature against the recorded average minimum temperature is

shown in Figure 2.2a.
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Figure 2.2: The relationship between the predicted average summer minimum (a)
and maximum (b) temperatures and the corresponding minimum and maximum
temperatures that were recorded by 39 temperature sensors placed at ground level
on the [llawarra Escarpment. The predicted average minimum temperature is based
on the regression of the actual recorded minimum temperatures against the
elevation of each site, whilst the predicted average maximum temperature is based
on the regression of the actual recorded maximum temperature against the elevation

and canopy cover of each site.
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2.3.2 Predicting maximum temperature

Linear regression with each predictor individually showed that both canopy cover (r* =
0.303, t=-4.014, d.f. = 37, P < 0.001) and elevation (r* = 0.185, t = -2.896, d.f. = 37, P
<0.01) were significantly correlated with maximum temperature, but radiation (1* =
0.055,t=1.473, d.f. =37, P > 0.05) and distance to streams (r2 =0.005,t=-0.433, d.f.
=37, P> 0.05) were not. When both elevation and canopy cover were used in the
regression the correlation improved substantially (r2 =0.651, teanopy = -6.934, d.f. = 36,
Peanopy < 0.001, terey = -5.988, d.f. = 36, Peiey < 0.001). When all the parameters were
included in a multiple regression the r* improved to 0.680, but elevation and canopy
cover were the only predictors that were significant. The equation for predicting the

average maximum temperature using the canopy cover and elevation was:

Tax = 28.9 — 6.6 * Canopy — 0.0127 * Elevation

Where Th.x is the predicted average maximum temperature (°C), Canopy is the
visually estimated canopy cover as a ratio between 0 and 1, and Elevation (m) is taken
from the DEM. The graph of the predicted average summer maximum temperature

against the recorded average summer maximum temperature is shown in Figure 2.2b.

2.3.3 The effects of low pass filters

When a low pass filter was used to average the radiation over various radii, the
correlation with the average maximum temperature increased substantially, reaching a

maximum value at a radius of 1000 m (r2 =0.199,t=3.029, d.f. =37, P <0.01, Figure
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2.3a). It can also be seen that the relationship became more significant, and transformed

radiation from an insignificant parameter (P > 0.05) into a significant one (P < 0.01).
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Figure 2.3: The r* and P values that resulted from the regression of the average

summer maximum temperature against various predictors for 39 temperature

sensors placed at ground level on the Illawarra Escarpment. Predictors were the low

pass filtered radiation (a), the low pass filtered elevation (b), the low pass filtered

radiation and the low pass filtered elevation (c), and the canopy cover, low pass

filtered radiation and low pass filtered elevation (d).

There was also an improvement in the significance of the relationship between

maximum temperature and elevation when using a low pass filter, with the best result

also at a radius of 1000 m (r2 =0.248,t=-3.493, d.f. =37, P <0.01, Figure 2.3b).

Elevation was significant at every radius (P < 0.01), but there were slight improvements

in the correlation coefficient and significance.
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The correlation coefficient was also improved when average summer maximum
temperature was regressed against both filtered elevation and filtered radiation (Figure
2.3¢). In this case, there was a slight degradation in correlation with radii of 100 m to
200 m, but the best results were once again with a radius of 1000 m (r2 =0.379, tejev = -
3.236, d.f. = 36, Pejey < 0.01, trog = 2.760, d.f. = 36, Pr,q < 0.01). This represented a
substantial improvement from when the unfiltered elevation was used alone (r* from
0.185 to 0.379). Elevation was significant for each radii (P < 0.01), but radiation was
only significant for radii between 750 m and 1500 m (P < 0.05).

When canopy cover was included as a predictor in the linear regression, along with
the low pass filtered elevation and radiation, the best correlation was at a radius of 750
m (1" = 0.699, teanopy = -6.233, d.f. = 35, Peanopy < 0.001, tejey = -5.517, d.f. = 35, Pejey <
0.001, traq = 2.617, d.f. = 35, Prog < 0.05, Figure 2.3d). Both elevation and canopy cover
were highly significant at every radii (P < 0.001), but radiation only became significant
with radii greater than 500 m (P < 0.05). There was a marginal improvement in
correlation between the low pass filtered result and the unfiltered result (1* from 0.654

to 0.699).

2.3.4 Intra-day trends

Regression of the average temperature for each 30-minute period against elevation
emphasised the poor relationship between elevation and daytime temperatures. Not only
is elevation an inadequate predictor of the average maximum temperature (r* = 0.185),
but it is also a poor predictor of the average temperature for every time interval from
10:00am to 4:30pm inclusive (r* < 0.4). In contrast, the estimate using the low pass
filtered elevation and radiation maintained a reasonable correlation throughout the day

(1’ > 0.43). The result using the filtered predictors was higher than the result based on
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unfiltered elevation for every time interval from 8:00am to 9:00pm inclusive (Figure

2.4a).
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Figure 2.4: A comparison between the r* values for the different regressions
predicting the average temperature for each 30-minute period throughout the day
(based on 39 temperature sensors at ground level). Elevation refers to the regression
using the unfiltered elevation (m) taken directly from the DEM. E11000Rad1000
refers to the regression using the elevation (m) and radiation (W/m?) as averaged
over a radius of 1000 m. CanEIRad refers to the regression using the canopy cover,
unfiltered elevation (m) and unfiltered radiation (W/m?). CanE11000Rad1000 refers
to the regression using canopy cover, the low pass filtered elevation (m) and the
low pass filtered radiation (W/m?) as averaged over a radius of 1000 m. Difference
refers to the difference between the r* values of the two regressions involving

canopy cover, with positive values indicating that the filtered result is higher.
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When canopy cover, radiation and elevation are included in a multiple linear regression,
then once again the low pass filtered results for day time average temperatures
(10:30am to 5:00pm inclusive) are an improvement over the unfiltered results, but the
night-time temperatures are substantially better using the unfiltered elevation (Figure
2.4b).

The intra-day results emphasise that whilst the low pass filtered radiation and
elevation improve daytime temperature predictions, they are not as good at predicting
the nighttime temperatures. This is consistent with using unfiltered elevation to predict
the minimum temperature, but using the low pass filtered elevation and radiation to

predict the maximum temperature.

2.3.5 Vegetation modelling

The overall accuracy of the GAM model using elevation, geology, distance to streams,
distance to disturbance, and exposure to the 3 wind directions (EGWD model) was quite
poor at 46.4%. When the average summer maximum temperatures were predicted using
the low pass filtered elevation and radiation (ER model), the overall accuracy of the

GAM model improved to 49.0%. The formula used was:

Timax =-32.7+0.01327 * Rad1000 — 0.0115 * Elev1000

Where T is the predicted average summer maximum temperature (°C), Rad1000

is the radiation (W/m?) averaged over a 1000 m radius, and Elev1000 is the elevation

(m) averaged over a 1000 m radius.
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Alternatively, when the maximum temperature was predicted using the canopy
cover and the low pass filtered radiation and elevation (CER model), the overall

accuracy improved substantially to 61.8%. The formula used was:

Timax =-13.3 +0.00955 * Rad1000 — 0.0137 * Elev1000 — 5.3 * Canopy

Where Th.x is the predicted maximum temperature (°C), Rad1000 is the radiation
(W/m?) averaged over a 1000 m radius, Elev1000 is the elevation (m) averaged over a
1000 m radius, and Canopy is the canopy cover as a fraction between 0 and 1.

Figure 2.5 illustrates the estimated average summer maximum temperature based
on the low pass filtered elevation and radiation. The distributional patterns of maximum
temperatures are shown to be vastly different to the distributional patterns of the
average summer minimum temperature that are based on elevation alone. These
differences are maintained when the average summer maximum temperatures are

predicted based on canopy cover, and the low pass filtered elevation and radiation.

2.4 Discussion

2.4.1 Temperature prediction

The average summertime maximum temperature could not be accurately predicted using
elevation alone (r* = 0.185), but a much better estimate could be made using the
percentage canopy cover, the low pass filtered elevation and the low pass filtered
radiation (1* = 0.685). The estimates based on the low pass filtered predictors also
outperformed elevation for predicting the average temperature for each 30-minute

period from 8:00am to 9:00pm inclusive. In all cases the optimal radius for the low pass
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filter was between 750 m and 1000 m. Elevation was a better predictor for the average

summer minimum and overnight temperatures.
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Figure 2.5: A comparison between the predicted average summer minimum
temperature based on elevation (top left) and the predicted average summer
maximum temperature based on the low pass filtered elevation and low pass filtered
radiation (bottom right). Whilst the minimum temperature south of Mt Kembla is
similar to the minimum temperature north of Mt Keira (15.5 °C — 16.5 °C), the
maximum temperature appears to be 1 °C — 2 °C cooler (20 °C — 21 °C versus 21 °C
—-23°0).

40



Chapter 2: A method to improve temperature predictions

Using a low pass filter is a crude method to consider the interaction between a site
and its neighbours, but appears to be effective for this study area. This is possibly
because it reflects the movement of hot and cold air to and from surrounding locations,
and allows locations where there is consistently higher radiation to be hotter than those
locations where there is a mosaic of high and low radiation. It remains to be tested
whether this local phenomenon can be replicated at other sites, and how the relationship
varies according to latitude and relief. In areas with more constant canopy cover and
radiation it would be expected that elevation would become more dominant.

Likewise, as the diurnal variation in temperature decreases at locations deeper into
the soil or higher off the surface (Campbell and Norman 1998), it is possible that the
influence of radiation and/or canopy cover may be reduced when the temperature
sensors are placed at different locations, or if radiation screens are used. Under these
circumstances, it is also possible that the effect of the surrounding environment is
reduced, and hence the effect of low pass filtering may be diminished or absent.

It is possible that the filtering method could be improved by weighting the
elevation/radiation in the surrounding locations according to distance from the centre
(similar to Price et al. (2000) and Ferrier et al. (2002)), predominate wind directions, or
the shape of the topography. It also needs to be confirmed that the low pass filtered
elevation and radiation would also improve the results of other temperature estimation
techniques such as ANUSPLIN and GIDS (Price et al. 2002). At the continental scale,
where the pixel size is roughly the size of the filter used in this study (e.g. 1000 m in
Price et al. 2000), a low pass filter may not have any effect. At the regional scale where
the pixel size is 100 m or less (e.g. Ferrier et al. 2002), filtering the elevation used by

ESOCLIM may slightly improve the accuracy of the model, but this also depends on
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whether the effect is valid for non-surface temperatures, and whether it is valid for other
study areas.

The pixel size is obviously important for studies in mountainous areas, because the
elevation may vary by hundreds of meters within one pixel when the pixel size is 100—
1000 m. This could translate to a within pixel temperature variations of 2-3 °C. It is also
worth noting that in the Illawarra region, there are many vegetation patches that occupy
small areas that could not be captured using a pixel size of 100—1000 m, and so a
landscape scale model is necessary to capture to fine scale changes in temperature and
vegetation. It is at the landscape scale that low pass filtering probably has the greatest
potential to improve temperature estimates and modelling results.

Previous studies have shown that the lapse rate of temperature is in the order of
6 °C/1000 m, with daily variations from 3.8 °C/1000 m near the minimum temperature
to 7.0 °C/1000 m near the maximum (Lookingbill and Urban 2003). In this study, the
lapse rate varied from a minimum of 4.9 °C/1000 m at 6am to a maximum of
8.4 °C/1000 m during the day. A lapse rate of 5.2 °C was determined for the minimum
temperature based on elevation alone, and values of approximately 9-13 °C/1000 m
were used in the various formulas for maximum temperature, depending on the
parameters that were included in the regression. Therefore, the results of this study
appear to be consistent with previous research.

The relationship between canopy cover and temperature is also consistent with
previous studies, with the effect ranging from 2 °C to 10 °C depending on the location
of the sensor and the range of canopy cover examined (Porté et al. 2004; Lemenih et al.
2004; Ritter et al. 2005). In this study, a 50% difference in canopy cover accounted for a
2.6 °C to 3.3 °C difference in maximum temperature, depending on the other parameters

included in the regression.
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The effect of radiation is more difficult to compare with previous studies because it
was not significant as a predictor unless the low pass filter was used. Lookingbill and
Urban (2003) found that radiation slightly improved the estimation of the maximum
temperature for their mountainous area (r* from 0.41 to 0.48), but the effects may vary
according to latitude and the time of year.

It is possible that the predictions of maximum temperature could be improved
further. Qualitatively, moist sites appeared to be cooler than dry sites. This is consistent
with a study by Bywater (1985), which suggested that diurnal variations are lower
during rainy periods, and the study by Ritter et al. (2005), which considered soil
moisture as one factor leading to lower temperatures.

Note that temperatures were only recorded for the summer period from December
2004 until February 2005. These recordings may not be representative of the long-term
average for this time of year, and may differ from the temperatures recorded at any
other height. Therefore, all temperatures discussed in this chapter should be treated as
relative temperatures rather than absolute temperatures. In addition, it is unknown
whether this time of year and these sensor locations have the most predictive power for
modelling species distribution. It is possible that another season or sensor height may be

more biologically important.

2.4.2 Vegetation modelling

When the vegetation on the Illawarra Escarpment (Figure 2.1) is modelled, using a
GAM for each of the 23 communities, and the validation data set classified according to
which community has the highest probability of occurrence, the results are quite poor.
Using the predictors of elevation, radiation, distance to streams, distance to disturbance,
and exposure to 3 wind directions the overall accuracy is only 46.4%. If the elevation
predictor is replaced with the predicted average summer minimum temperature (using
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elevation) and the predicted average summer maximum temperature (using canopy
cover, and the low pass filtered elevation and radiation at a radius of 1000 m) the
overall accuracy improves substantially to 61.8%.

Caution must be used, however, since this improvement may be artificially high
because the vegetation map was used to estimate canopy cover and therefore predict
maximum temperature. This may have introduced feedback into the system when the
maximum temperature was subsequently used to predict the vegetation community.

There are still improvements in the overall GAM accuracy from 46.4% to 49%
when canopy cover is not used, and the maximum temperature is predicted using the
low pass filtered elevation and radiation alone. Therefore, the better estimates of
maximum temperature improve vegetation models regardless of whether or not canopy
cover is used. Whilst the improvement without canopy cover is not large, this would be
expected given that the estimate of maximum temperature is much poorer than when
canopy cover is included (r* = 0.379 versus r* = 0.685).

The vegetation modelling results will also have been affected by the accuracy of the
vegetation maps that were used. Subsequent surveying has highlighted some limitations
of these maps, and the vegetation models in subsequent chapters of this thesis give a
more reliable assessment of performance. However, even survey data has inaccuracies,
and vegetation models are inherently trying to explain inaccurate distributional data.
The training and test samples that were generated in this chapter were very large given
the small size of the study area, and this potentially introduced spatial autocorrelation.
Under these circumstances, the training and test datasets are not truly independent, and
the performance may be overstated. Once again, the models in subsequent chapters are

not affected by this issue, and are a more reliable indication of model performance.
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In this study, the standard deviation of the regression residuals decreased from
2.8 °C in the formula for maximum temperature using elevation alone, to 2.5 °C in the
formula that also included radiation, to 1.8 °C in the formula that also included canopy
cover. Whilst these may not be indicative of the whole study area due to the
stratification and selection of sensor locations, they imply the prediction errors are
reduced by possibly 30—40%. Errors of this magnitude cannot be ignored as it has been
suggested that 41% of eucalypts have a mean annual temperature range of less than 2 °C
(Hughes et al. 1996). Including the canopy cover feedback into the prediction of
maximum temperatures and vegetation is not ideal, but it may be necessary to include
canopy cover in the models if the errors are going to be reduced to a satisfactory level.
The best solution might be to obtain the canopy cover from alternative sources such as
remote sensing (Wang et al. 2003).

Qualitative analysis of the GAM partial response graphs from this study suggests
that the actual improvement in modelling results depends on which environmental
factors are limiting each community. If a community is being limited by minimum
temperature then including maximum temperature into the model may have less effect
than a community that is being limited by maximum temperature. Also, the
improvement depends not only on the predictive power for that community, but also on
the degree to which that community can be distinguished from other communities, and
which factors are limiting their distribution.

Previous studies have suggested that eucalypt communities and species may be
significantly influenced by summer maximum temperatures (Passioura and Ash 1993)
and/or winter minimum temperatures (Moore et al. 1993). These studies, and the results

of this research, suggest that the limiting factors vary from species to species and
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community to community, and it is unlikely that any one temperature predictor can
differentiate the 23 communities found in this study area.

One problem with using multiple temperature predictors is that they can be highly
correlated with each other — leading to problems in the GAMs. Lehmann et al. (2003)
solved this problem by utilising the difference between the mean annual temperature
and the winter average, however, in the Illawarra the average summer minimum and
maximum temperatures were poorly correlated and could both be included in the
models without introducing any problems with the GAMs. Moore et al. (1993) suggest
that the relative contributions of elevation and radiation vary from summer to winter,
and therefore it is possible that winter temperatures could be included as well if they are
poorly correlated with the summer temperatures.

Austin (2002) suggests that it is difficult to determine whether poor vegetation
models result from an unidentified environmental variable, or from other factors such as
competition or poor dispersal. This study highlights that it could also be due to using
inaccurate predictors, as suggested by Ferrier et al. (2002). This study has shown that
the performance of vegetation models can be improved by developing more accurate
estimates of seasonal maximum and minimum temperatures.

Whilst the improvement in prediction from using direct predictors has been noted
(Austin and Meyers 1996; Guisan and Zimmermann 2000), it has also been suggested
that they allow the model to be applied to wider areas (Guisan and Zimmermann 2000;
Austin 2002). Two possible issues were seen during this study that may cause this to not
always be the case. Firstly, the temperature range of each community and the overlap
between them varied according to which formula was used to predict the maximum
temperature. Clearly, it would be dangerous to apply the models to another area unless

the maximum temperature had been calculated in the same manner as when the model
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was developed—especially if the temperatures were based around air, soil, or canopy
temperatures at a different height, taken during a different year, or during a different
season. This is similar to the findings of Weiss and Hays (2005).

Secondly, the relationships in this study area are not necessarily applicable to the
broader region. For example, Eucalyptus sieberi is known to be dominant on the
Hawkesbury sandstone (Fuller 1995), which is found along the top of the escarpment in
this study area. The models produced in this study area suggest it can only occur where
the minimum temperature is low (due to high elevation), however it does grow where
the Hawkesbury sandstone occurs at lower elevations to the north of the study area. It is
unknown how many of the models reflect the ‘local’ rather than the ‘global’
environment, or whether other factors such as competition with new species would

change the relationship in other areas.

2.5 Conclusions

Using the low pass filtered radiation and elevation for temperature predictions improved
the estimates of maximum temperature for all combinations of elevation, radiation
and/or canopy cover. The low pass filter also improved the temperature estimates for all
30-minute periods during the day from 8am to 9pm inclusive. The optimal radius was
750 m to 1000 m in all cases, but this may change in other study areas, in other seasons,
or for other temperature sensor locations.

Including the improved estimates of maximum temperature in vegetation
community models substantially improved the overall classification accuracy from
46.4% to 61.8%. This suggests that the effort spent to produce more direct or accurate
predictors can reap large rewards, and it should not always be assumed that elevation is

a good surrogate for temperature.
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Chapter 3: The effect of exposure on landscape scale
soil surface temperatures and species distribution

models?

3.1 Introduction

Species distribution models (SDMs) provide information that is valuable for
environmental planning activities (Ferrier et al. 2002), however better management
outcomes may be achieved if landscape scale models are improved (Lookingbill and
Urban 2003; Chuanyan et al. 2005; Lookingbill and Urban 2005). Current predictions
may be inadequate if data used to produce models has insufficient spatial resolution or
thematic accuracy (Guisan and Zimmermann 2000), or there are unsuitable predictors
(Austin et al. 2006).

Spatial variations in temperature have a large influence on the distribution of
vegetation (Lookingbill and Urban 2003; Pearson and Dawson 2003; Lookingbill and
Urban 2005) and are therefore a vital component of SDMs. Temperature influences
many ecological and physiological processes such as photosynthesis, energy and carbon
balances, water and nutrient cycles, decomposition and mineralisation (Lookingbill and
Urban 2003; Peng and Dang 2003; Bond-Lamberty et al. 2005). Both air and soil
temperatures affect the growth rate and survival of plants (e.g. Peng and Dang 2003;
Rocha Corréa and Fett-Neto 2004).

Many temperature dependant ecological processes are non-linear in nature, which

means that small differences in temperature can have a large influence on vegetation

? This chapter has been published as: Ashcroft MB, Chisholm LA, French KO (2008) The effect of
exposure on landscape scale soil surface temperatures and species distribution models. Landscape
Ecology, 23, 211-225.
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(Wang et al. 2003; Bond-Lamberty et al. 2005; Weiss and Hays 2005). Hughes et al.
(1996) found that 41% of eucalypts in Australia had a mean annual temperature range of
less than 2 °C, and 25% less than 1 °C. Therefore, obtaining accurate temperature
estimates is vital, and has become increasingly relevant due to climate change.
Predicting temperature variations at the landscape scale (extent of 10 — 200 km
(Pearson and Dawson 2003)) poses different problems than at the global (> 10 000 km),
continental or regional (200 — 2000 km) scales. Elevation may be the dominant factor at
coarse scales, but variations in radiation, wind, moisture and aspect may be of greater
importance when examining finer scale regions with low elevational ranges
(Lookingbill and Urban 2003; Chuanyan et al. 2005). Consider a hypothetical situation
where temperatures decrease at a rate of 6 °C/1000 m with fluctuations (mean = 0 °C,
s.d. = 2 °C) that reflect variations in exposure (see Figure 3.6 in Supplementary
Material). Variations of this magnitude are consistent with, for example, the 300 m
elevational differences in the tree line in the European Alps (as noted by Frank and
Esper (2005)). Despite that fact that these variations would be critical for many species,
such as the eucalypts discussed above, the correlation between elevation and
temperature is high (r* = 0.893) over an elevational range of 3000 m. This is because
elevation is causing an 18 °C difference in temperature over its range, and variations in
the order of 2 °C barely affect the correlation. As the elevational range of the study area
becomes smaller, the variations in exposure become more comparable with the effect of
temperature. For example, over an elevational range of 1000 m, elevation is only
causing a 6 °C difference in temperature, and the variations in exposure reduce the
correlation substantially (r* = 0.539, Figure 3.6). This illustrates that the range of
conditions in a study area can affect how important each factor appears to be. If the

‘influence’ (coefficient * range) of exposure became greater than that of elevation, then
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this would be expected to have dramatic effects on the strength of the correlation (1%),
and alter the predicted distribution of temperatures. This concept of ‘influence’ will be
discussed further throughout this chapter.

SDMs often use elevation as a surrogate for temperature (Guisan et al. 1999;
Horsch 2003), or use elevation and location to improve interpolations from weather
stations (e.g. Hughes et al. 1996; Coudun et al. 2006; Randin et al. 2006). Interpolations
from weather stations may improve bioclimatic models at global to regional scales, but
smoothing is not desirable at the landscape scale as complex heterogeneous patterns are
common and need to be explained (Wu and Hobbs 2002; Wu 2006). Interpolation
methods may also be prone to error in mountainous landscapes because weather stations
are often sparse, and may not sample the full range of microclimates (Guisan et al.
1999; Guisan and Zimmermann 2000; Lookingbill and Urban 2003).

As a range of environmental factors determines the temperature of each site,
predictions of landscape scale soil surface temperatures should incorporate as many of
these influences as possible. The aim of this chapter was to improve the accuracy of
landscape scale soil surface temperature estimates by utilising models with four
environmental factors: elevation, radiation, moisture and exposure. The first three
factors have already been shown to be important in other study areas (e.g. Lookingbill
and Urban 2003), but the impact on SDMs needs further investigation. The potential
influence of winds has been noted elsewhere without being quantified (Lookingbill and
Urban 2003; Lassueur et al. 2006), and this chapter introduces exposure predictors that
may serve as a surrogate for winds. These have the potential to not only quantitatively
improve soil surface temperature estimates, but to differentiate temperature patterns at

different times of the year as wind directions change. This may be especially beneficial
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for species that are limited by conditions during a specific part of their lifecycle, such as
flowering, growth, or germination.

This chapter focuses on soil surface temperatures rather than air temperatures. Soil
temperatures have higher diurnal variations (Campbell and Norman 1998), are
influenced more by radiation and canopy cover, and spatial differences are not affected
as much by convection and mixing of air (Porté et al. 2004). Therefore soil surface
temperatures have the potential to be more spatially heterogeneous than air
temperatures, and may be better able to explain patchy vegetation patterns. Minimum
and maximum temperatures are especially of interest because they can be less correlated
with elevation than mean temperatures (e.g. Lookingbill and Urban 2003), and mean
temperatures can give misleading indications of ecological processes (Bond-Lamberty

et al. 2005).

3.2 Methods

3.2.1 Study area

The study was conducted on approximately 12000 ha of the Illawarra Escarpment and
Woronora Plateau (34.4 °S, 150.9 °E), approximately 80 km south of Sydney, Australia
(Figure 3.1). The study area contains a complex mosaic of moist and dry rainforests,
moist eucalypt forests, tall open eucalypt forests, upland swamps and woodlands
(NPWS 2002), with the City of Wollongong on the coastal plain. The canopy cover of
trees ranges from 0% in upland swamps to almost 100% in moist rainforests. The
elevation ranges from sea level to 573 m. Temperatures in the region have been
associated with exposure to radiation, winds and coastal influences (Bywater 1985;

Mills 1986; Fuller 1995), but these effects have not been quantified.
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Figure 3.1: The Illawarra Escarpment, 80 km south of Sydney, Australia. The inset
shows the topography of the study area as a digital elevation model, with the 600
vegetation survey sites and 40 temperature-monitoring sites shown by black and

white circles respectively.

The most common wind directions at 9am (Table 3.2 in supplementary material)
are from the NE and SW, while the most common at 3pm are from the NE and SE
(Table 3.3 in supplementary material). The highest average wind speeds are associated
with winds from the W to NW, and these are also associated with higher temperatures
and lower humidities. For example, 3pm winds from the WNW in summer are
associated with an average humidity of only 31% - less than half that from most other
directions, and the maximum temperature is up to 8.5 °C warmer (Table 3.3). The wind
direction at 3pm is associated with variations of 3.1 °C to 6.9 °C in maximum
temperature during other seasons, whilst 9am wind direction is associated with
variations of 1.4 °C to 3.4 °C in seasonal minimum temperatures. These statistics
illustrate that wind direction can dramatically affect the temporal variations in

maximum and minimum temperatures at a given site, however the purpose of this
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chapter is to test whether differences in exposure will affect the spatial distribution of
average maximum and minimum temperatures. That is, if WNW winds are hot and dry,
are sites that are exposed to this direction hotter because they receive the winds more
frequently, or because direct exposure to the winds has more effect? The influence
winds have on local soil surface temperatures will be determined by both the frequency
of winds arriving from various directions and the associated attributes of those winds
(such as the ‘drying power’ caused by the wind speed and vapour pressure deficit).
Therefore, WNW winds may have a large influence on local temperatures, even though

they are rare.

3.2.2 Data

A vegetation survey of 600 sites (Figure 3.1) was completed between July 2005 and
March 2006 (See Section 4.5.2 for more details on survey design). Each site (20 m by
20 m) was surveyed for presence or absence of 37 common species, of which the
majority were trees (Table 3.1). All species will be referred to by their abbreviation

hereafter.
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Table 3.1: The 37 species from the [llawarra Escarpment that were modelled as part

of this study. " marks an introduced species.

Abbreviation Common name Scientific name
TVH Two-veined hickory Acacia binervata
GW Green wattle A. mearnsii
LP Lilly pilly Acmena smithii
BS Black she-oak Allocasuarina littoralis
ROP Red olive plum Cassine australis
Cw Coachwood Ceratopetalum apetalum
HC Hairy clerodendrum Clerodendrum tomentosum
RB Red bloodwood Corymbia gummifera
NC Native cascarilla Croton verreauxii
JW Jackwood Cryptocarya glaucescens
MG Murrogun C. microneura
PT Prickly tree fern Cyathea leichhardtiana
GST Giant stinging tree Dendrocnide excelsa
SF Sassafras Doryphora sassafras
MGG Mountain grey gum Eucalyptus cypellocarpa
YS Yellow stringybark E. muellerana
BB Blackbutt E. pilularis
SPM Sydney peppermint E. piperita
CwB Coast white box E. quadrangulata
SG Scribbly gum E. racemosaXhaemastoma
BGH Blue gum hybrid E. salignaXbotryoides
SA Silvertop ash E. sieberi
GG Gully gum E. smithii
FRG Forest red gum E. tereticornis
BWR Bolwarra Eupomatia laurina
CSF Creek sandpaper fig Ficus coronata
LT Lantana Lantana camara’
CTP Cabbage tree palm Livistona australis
HLD Hairy-leaved doughwood Melicope micrococca
VMO Veined mock-olive Notelaea venosa
SP Sweet pittosporum Pittosporum undulatum
FW Featherwood Polyosma cunninghamii
WB Whalebone tree Streblus brunonianus
TT Turpentine Syncarpia glomulifera
SR Scentless rosewood Synoum glandulosum
BP Brush pepperwood Tasmannia insipida
RC Red cedar Toona ciliata
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Soil temperatures were collected at 40 sites (Figure 3.1) from November 2004 until
August 2006 using DS1921G iButton temperature loggers (Dallas
Semiconductor/MAXIM). For the first 3 months (summer 2004/5) soil temperatures
were recorded every 30 minutes, and the sensors were placed on the surface of the soil
with as much protection from direct radiation as possible given the vegetation at the
site. For the next 6 months (autumn and winter 2005) recordings were made every hour
with the sensors located 1 cm below the soil surface to eliminate the effect of direct
radiation, but potentially introducing errors when deposition and erosion changed the
burial depth, or where differences in soil properties altered the effect of burial depth.
For the final 12 months recordings were made every hour and sensors were located both
on the surface and 1 cm below. Duplication of sensors was performed as consistent
results would imply that neither direct radiation nor burial depth was causing the results
to differ substantially from the other sensor placement (see Section 7.4 for a discussion
on sensor placement). For this study I was primarily concerned with the spatial pattern
of temperature estimates, as this was what was used to predict the distribution of
vegetation. It was not critical if there was a consistent bias between subsurface and
surface temperatures, unless the spatial pattern of temperatures changed.

The data was collected every three months at the end of the four seasons (February
for summer, May for autumn, August for winter and November for spring). There was
no data in the last week of every season as the data had to be downloaded and the
sensors reprogrammed. Some sensors failed, were discarded due to spurious or outlying

data, or could not be relocated. The sample size varied between 35 and 40 (median =

39).
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The data was divided into 28 periods of 21 or 22 days (four periods within each
season), but there were 44 datasets due to the duplication of sensors during the final 12
months. Dividing into months was not performed as the missing week at the end of each
season meant that there was more data for some months than others. Three-week
periods were selected as a trade-off between longer periods (more data but variable
conditions) and shorter periods (less data but more constant conditions). Future studies
may be able to use shorter periods if there are more sensors.

Twenty-four exposure predictors were developed based on the log transform of the
angle to the horizon in selected directions. Kramer et al. (2001) showed that the angle to
the horizon was a strong predictor of windthrow, and the exposure predictors are
designed to capture the influence of winds. For the 24 azimuths that were a multiple of
15 (0 ° to 345 °), the ArcMap hillshade command was used with altitudes of 0.125, 0.25,
0.5,0.75,1,1.25,1.5,2,2.5,3,3.5,4,5,6,7,8,9, 11, 13, 15, 18, 21, 25, 29, 34, 39, 45,
51, 58, 65, 73, and 81 degrees. The ‘shadows’ that were produced for each altitude were
combined into a raster grid for that azimuth so that each cell contained the minimum
angle that resulted in no shadow. The value in each cell was effectively the angle to the
horizon in that direction (azimuth). A low angle indicated that horizontal winds from
that direction could blow almost directly onto the site, whereas a high angle indicated
that they would need to ‘bend’ over or around the topography, as the site was sheltered.
The angles in the raster grid were incremented by one and log transformed so that the
final exposure predictor would be more sensitive to lower angles. For example, an angle
of 0.125 ° became an exposure of 0.05 (very exposed), 2 ° became 0.48 (exposed), 9 °
became 1.00 (moderate), 25 ° became 1.41 (sheltered), and 81 ° became 1.91 (very
sheltered). In effect, the exposure predictors are a measure of topographic ‘shading’,

and this is very different from the aspect of the site. For example, a site can have a
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northwest aspect, but be sheltered from that direction if it is behind a mountain (See
Section 3.6.2 in the supplementary material for more details on the difference between

exposure and aspect).

3.2.3 Temperature analysis

For each of the 44 datasets, the mean daily maximum, daily minimum and average
temperature were calculated for each site. The spatially averaged minimum, maximum
and average temperatures were then calculated for each dataset. This provided a general
indication of the seasonal variation in soil temperatures.

Linear regression was used to determine the relationship between elevation and
temperature. This involved 132 separate regressions, with 44 datasets of minimum,
maximum and average temperatures. Multiple regression was then used to explain
minimum, maximum and average temperatures for each dataset in terms of elevation,
exposure and moisture. For average and maximum temperatures radiation was also
used, but this was excluded from minimum temperatures as these usually occur during

the night. Therefore, the equations used to predict temperature were:

Tmin = an + by.Elevation + c,.Moisture + d,.Exposure
Tave = a4 + ba.Elevation + c,.Moisture + d,.Exposure + e,.Radiation

Tmax = ax + bx.Elevation + cy.Moisture + dy.Exposure + e.Radiation

The elevation predictor was the same in all regressions (see Section 3.6.1 in the
supplementary material for more detail on the source and accuracy of predictors). A
different radiation predictor was used in each regression, which was estimated for the
central day of the recording period using the Solar Analyst (USDA Forest Service 2007)
extension for ArcView (ESRI). The estimates were only based on topographic factors
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— not cloud cover or actual measurements. The moisture predictor was either distance
to streams (DS), log of distance to streams (LD), distance to coast (DC) or a
topographic wetness index (TWI). The four temporally invariant moisture parameters
(DS, LD, TWI, DC) and 24 exposure parameters (0 ° to 345° in 15 ° increments) were
tested in each of 96 combinations, and the regression with the highest correlation (r?)
selected. The moisture predictors are designed to reflect soil moisture, proximity to
coastal influences or creeks, but DS may also reflect cold air drainage at night. Note that
no measurements of wind, moisture or radiation were made as part of this study, and I
only examined the correlation between temperature and topographically derived
surrogates.

For each regression, the coefficient of each predictor was multiplied with its
observed range over the 40 sites in order to estimate the influence of that predictor in
the study area. For example, if the coefficient for elevation was 6 °C/1000 m and the
sensor locations spanned an elevational range of 500 m, then the predicted influence
was 3 °C. Converting the coefficients in this manner allows the influence of elevation to
be compared with the influence of the other factors, as well as allowing seasonal
comparisons. This is not meant to replace r* and P-values, but to complement them by
looking at how much variation in temperature each predictor can cause in the study
area. Not all predictors were significant in all regressions (P < 0.05), but none were
removed because it was desirable to have the same number of parameters when making

comparisons between different seasons.

3.2.4 Species distribution models

The distribution of each species was modelled using 134 Generalised Additive Models
(GAMs, Hastie and Tibshirani (1990)). The first model contained only the geology
predictor — obtained from a geology map (NSW Department of Primary Industries) and
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used as a surrogate for soil properties (see Section 4.5.1 for more information on the
geology of the study area). The second model contained the geology and elevation
predictors. The remaining 132 models contained geology and either the predicted
minimum, maximum or average temperature from one of the 44 datasets. The two-
predictor models would explain more deviance than a model that only contained
geology, but only the models with geology/elevation and geology/temperature were
compared. All comparisons are between models with two predictors and so any
improvement in deviance is not because of extra predictors.

The data was analysed using the 16 recording periods throughout the year (four per
season). For each recording period, there were 1-2 above ground estimates and 1-2
below ground estimates. Spurious results could be detected if there was a lack of
consistency between 2004/5 and 2005/6, or between surface and subsurface sensor
placements. Temperature estimates were considered to perform better than elevation if
they consistently explained more deviance, at least during certain seasons.

The results of the SDMs are included only to indicate which predictors may be
more useful, and do not represent a final model. Developing such a model would require
a more considered choice of statistical method, a predictor selection algorithm and more
thorough independent validation. Multiple seasonal temperature estimates may be
included in any SDM, and the significance of each may vary according to the statistical
method and the other predictors in the model. Comparing models where each has
geology and one other predictor ensures that any detected differences are due to the

predictors themselves — not due to other factors.

3.3 Results

As predicted by Campbell and Norman (1998), the surface sensors had marginally

higher maximums and lower minimums than the subsurface sensors. However, the
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correlation coefficients were similar (low standard deviation) for each time of the year
(Figure 3.2), and the factors affecting the spatial distribution of temperatures did not
differ substantially. For example, the selected exposure directions at any time of the
year were similar between 2004/5 and 2005/6 as well as subsurface and surface sensor
placements (Figure 3.3). Therefore all results for the same time of year were averaged,
as I was primarily interested in spatial patterns and the influence of different factors —

not the absolute magnitude of temperatures.

3.3.1 Maximum temperatures

The mean seasonal maximum temperatures for the study area ranged from 10.7 °C to
21.8 °C (Figure 3.2a). The spatial distribution of summer maximum temperatures could
not be adequately explained by elevation, with a mean (s.d.) r* of only 0.083 (+0.037) in
early summer. There was a clear seasonal trend that elevation had a lower correlation in
early summer and higher in late autumn (Figure 3.2b), however the r* only reached a
mean of 0.541 (+0.127) at its peak. Including radiation, exposure and moisture in the
regressions caused some large improvements in the ability to predict maximum
temperatures. The r* for early summer maximums increased by 0.381 (£0.052) to 0.464
(£0.025) and winter maximums by 0.207 (+0.044) to 0.598 (£0.089) (Figure 3.2b).
Elevation had a fairly consistent influence (coefficient * range) on the study area of
4.0 °C (£1.1) throughout the year (Figure 3.3a), representing a rate of change of
approximately 7.7 °C/1000 m. The influence was highest in early spring and summer.
The mean influence (coefficient * range) of radiation, wetness and exposure were 1.3 °C
(£1.3), 1.6 °C (£1.0), and 2.3 °C (£1.5) respectively (Figure 3.3a). These were much
smaller than the influence of elevation, but were significant (P < 0.05, Tables 3.4, 3.5 in

supplementary material) during a number of seasons. In particular, the mean influence
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of exposure in early summer was 5.2 °C (£1.6), and this was higher than elevations

mean influence of 4.9 °C (+1.8) during the same period.
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Figure 3.2: From top to bottom are the statistics for maximum (a-b), minimum (c-d)
and average (e-f) temperatures. The left hand panels (a, c, ) illustrate the spatially
averaged temperatures from 40 temperature monitoring sites. The right hand panels
(b, d, f) illustrate the correlation (r*) between the temperatures at each site and
elevation, and the correlation between temperatures and a model containing
elevation, moisture, wind and radiation. Each point is the mean (s.d.) that was
produced by averaging the data from that time of year (2004/5 and 2005/6, surface

and subsurface measurements).
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Figure 3.3: From top to bottom are the statistics for maximum (a-b), minimum (c-d)

and average (e-f) temperatures. The left hand panels (a, c, ) illustrate the influence

of radiation, elevation, moisture and exposure in the temperature regressions. Each

point is the mean (s.d.) that was produced by averaging the data from that time of
year (2004/5 and 2005/6, surface and subsurface measurements). The influence is
determined by multiplying the coefficient of each predictor by the range of values
observed over the 40 temperature monitoring sites. The right hand panels (b, d, f)
illustrate the direction of the exposure predictor that was selected to maximise the

correlation with elevation.

62



Chapter 3: The effect of exposure on temperatures

The selected directions for the exposure predictors corresponded somewhat closely
with the wind directions that were most influential for temperatures at the BOM station
(Table 3.3). Winds from the WNW were associated with the highest temperatures and
lowest humidities in summer, and this corresponds somewhat with the selected NW
exposure variables. Winds from the SSW in spring were associated with the lowest
maximum temperatures, although SW winds were also cold and more common (Table
3.3). The selected exposure parameter in spring was SW in 63% of regressions and it
always had a significant (P < 0.05) cooling effect. Winds from the N to NE were often
amongst the warmest and most frequent directions during winter and autumn, and the
selected exposure predictor was often from the NNE.

Radiation and moisture were more often significant (P < 0.05, Table 3.4) during
autumn, winter and spring. The selected moisture parameter was DS in more than 50%
of models during summer, autumn and winter, while LD was more frequently selected
in spring (Table 3.4). In all of the models that included DS it was predicted that sites
near streams would be cooler than those further away, but the parameter was only
significant (P < 0.05) in 36% of models. Overall, moisture was significant (P < 0.05) in
23% of regressions for maximum temperatures, radiation 32%, exposure 75% and

elevation 100%.

3.3.2 Minimum temperatures

The mean seasonal minimum temperatures for the study area ranged from 8.5 °C to
17.7 °C (Figure 3.2¢). Elevation was correlated more with minimum temperatures than
maximum temperatures, with the opposite seasonal trend (Figure 3.2d). That is, the
correlation was highest in spring (r* = 0.708 (+0.112)) and lowest in winter (r* = 0.429

(+0.117)). The use of moisture and exposure predictors caused the r* for winter
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minimums to increase by 0.085 (+£0.034) to 0.514 (+0.122) and for summer minimums
by 0.088 (£0.060) to 0.732 (£0.026).

There appeared to be little difference in the factors influencing the minimum
temperatures for spring, summer and autumn, but winter temperatures presented a
different pattern for both years and sensor placements. For spring, summer and autumn
the mean influence (coefficient * range) of elevation was 2.9 °C (+0.4), but this dropped
to 2.0 °C (+0.7) in winter (Figure 3.3¢). These represented rates of change of
approximately 5.5 °C/1000 m and 3.8 °C/1000 m respectively. The seasonal variations
in the coefficients for elevation were consistent with previously reported results for air
temperature in other regions (e.g. McVicar et al. 2007).

The influence of moisture was 1.1 °C (£0.4) in winter, but this dropped to 0.6 °C
(£0.3) during the rest of the year (Figure 3.3c). In 75% of cases DC was the selected
moisture parameter in winter, but it was only significant (P < 0.05, Table 3.4) in 44% of
cases. Nevertheless, this was a clear trend, as DC was only selected in 19% of models
during other times of the year, and was never significant. The coefficients suggested
that sites nearer the coast had consistently higher winter minimums than those further
away, confirming the continentality effect. DS was often significant (P < 0.05) for
summer minimum temperatures, while LD was occasionally significant for summer and
spring minimums.

The mean influence of exposure was only 0.7 °C (£0.2) throughout the year.
Exposure to the NE, and to a lesser extent N, were consistently selected and significant
(P <0.05) in summer, autumn and spring, whilst SE and NW exposures were often
significant (P < 0.05) in winter (Table 3.5). These directions for the exposure predictors
closely matched the directions of winds that were most influential for minimum

temperatures at the BOM weather station (Table 3.2). These directions, as well as the
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use of the DC predictor, suggest that coastal influences play a role in moderating
minimum temperatures. Overall, elevation was significant (P < 0.05) in 93% of
regressions for minimum temperature, moisture 25% and exposure 50%. Interestingly,
exposure was noticeably more significant (P < 0.05) for subsurface temperatures than

surface temperatures (71% versus 25%).

3.3.3 Average temperatures

The results for average temperatures were similar to the results for both minimum and
maximum temperatures and are presented in Section 3.6.3 in the supplementary

material.

3.3.4 Species distribution models

For seven of the 37 species (19%) elevation consistently explained more deviance than
temperature over the whole year (Figure 3.4a). For another five species (14%),
temperatures explained marginally more deviance at inconsistent times during the year
(Figure 3.4c¢), or marginally more during winter (Figure 3.4e).

For the remaining 25 species (68%) temperature consistently explained much more
deviance than elevation during at least part of the year. For five species, elevation
explained approximately the same amount of deviance as temperature during most of
the year, but temperature explained more during certain periods — usually winter, and
usually minimum temperatures (Figure 3.4b). For another 13 species, temperatures
explained more deviance than elevation over almost the entire year, with large
improvements in summer and for maximum temperatures in particular (Figure 3.4d).
These species were mostly moist rainforest species. For the final group of seven species,

temperature explained more deviance than elevation over almost the whole year, but the
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largest improvements were usually seen in winter and/or with minimum temperatures

(Figure 3.4f).
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Figure 3.4: 132 SDMs were produced for each species based on different
temperature estimates. The performance was assessed in terms of the amount of
deviance explained (y-axis), and a model containing elevation and geology was
compared against models containing temperature and geology. Each point is the
mean (s.d.) that was produced by averaging the data from that time of year (2004/5
and 2005/6, surface and subsurface measurements). Data in each panel is for the

first species listed, while the species in parentheses produced similar results.
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The increase in the amount of deviance explained by models with summer
maximums is not surprising given their low correlation with elevation. However the
extra deviance explained when using winter minimums is somewhat surprising given
that the r* values were only increased by a mean of 0.085 when moisture and exposure
were included, and the predictors were not always significant (P < 0.05). The difference
was that summer maximums and winter minimums were the two occasions when the
influence (coefficient * range) of elevation was predicted to be less than that of the
exposure and moisture predictors respectively (Figure 3.3a, c¢). This dramatically
changed the spatial distribution of temperatures (Figure 3.5).

During seasons when elevation had a much higher influence than the other factors
(e.g. summer minimums, Figure 3.3c), the predicted distribution of temperatures
resembled that of elevation (Figure 3.5). This is despite the fact that DS, LD and
exposure to the N and NE were often significant (P < 0.05). For winter minimums, the
moisture and exposure parameters were not as often significant (P < 0.05), but the high
influence of DC relative to elevation dramatically changed the expected temperature
distribution. This new distribution matched the distribution of species that were only
found at cooler locations away from the coast (e.g. MGG, Figure 3.5), and species that
were only found on the escarpment slopes occurred at locations with a minimum of
approximately 9 °C. For summer maximum temperatures the coolest locations no longer
occurred at high elevations, but in locations that were at moderate elevations and
sheltered from the NW. The map of low summer maximums closely matched the
distribution of moist rainforest communities (NPWS 2002), and therefore it is not
surprising that there was more deviance explained by the models for many rainforest

species (e.g. CW, Figure 3.5).
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Figure 3.5: The surfaces of elevation, summer minimum, summer maximum and
winter minimum temperatures. The temperature surfaces (°C) were calculated by
averaging all surfaces for each season (2004/5 and 2005/6, surface and subsurface
measurements, 4 recording periods). Presence data for two species has been
included on the surfaces that explained the most amount of deviance in their

models.
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3.4 Discussion

It is commonly suggested that climate is the dominant factor in SDMs at coarse scales,
but factors such as topography and land-use are more influential at smaller extents
(Pearson and Dawson 2003; Thuiller et al. 2004b; Coudun et al. 2006). This opinion
may be proposed because of the widespread use of coarse-grained temperature grids
produced by the interpolation of weather station data, which do not adequately capture
higher resolution variability. With a 50 km grain size the within-cell temperature
variation can be as much as 33.8 °C (mean 1.8 °C), as assessed using 1 km cells
(Hijmans et al. 2005). The results of this study suggest there could still be large within-
cell variation within the 1 km cells. Temperature variations may be equally important
for SDMs at finer scales, but innovative methods are needed to develop high-resolution
temperature surfaces that are sufficiently accurate to explain landscape scale vegetation
mosaics. Technology now exists to create accurate estimates of direct environmental
predictors at the landscape scale, and this could lead to a new generation of vegetation
models and a better understanding of species’ response to environmental gradients

(Lookingbill and Urban 2005).

3.4.1 Factors affecting landscape scale temperatures

Elevation was clearly the most consistent, and usually most influential, determinant of
temperature, but other factors were also found to be important. Elevation was
particularly well suited to predicting the more moderate temperatures such as spring and
autumn averages, summer minimums and winter maximums. Exposure and coastal
influences were more important for the extreme temperatures such as winter minimums
and summer maximums, and these are likely to be physiologically limiting the

distribution of many species.
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Coastal moderators had a large influence on winter minimums, with sites that were
exposed to the NE or SE warmer than sheltered sites, and sites that were closer to the
coast warmer than those further away. This is consistent with continentality effects, and
interpolations from weather stations can detect similar trends at coarser scales (McVicar
et al. 2007). The increase in r* was small and the predictors were not always significant
(P <0.05), but the influence (coefficient * range) of DC in particular exceeded that of
elevation, and this dramatically changed the expected spatial distribution of winter
minimum temperatures. Similarly, NW exposure was found to be more influential than
elevation for summer maximums, and this also drastically altered the expected spatial
distribution of temperatures. In each case, the new spatial distribution of temperatures
was better able to explain the distribution of vegetation. The novel use of influence
(coefficient * range) therefore appears to complement the r* and P-value statistics, as it
provides an indication of which factors dominate the predicted spatial distribution of
temperatures. High 1* values do not necessarily mean that all the important predictors
have been included (see introduction), and small improvements in r* can have a big
impact on the predicted distribution of temperatures if the extra predictors are
influential.

The exposure predictors that were developed for this study were very successful for
landscape scale temperature prediction. They were significant (P < 0.05) in 60% of
regressions, and this was more than both radiation (26%) and moisture (30%)
predictors. Specific exposure directions were consistently selected in each season, and
these closely matched the directions that were identified as the most influential wind
directions based on BOM observations (Tables 3.2, 3.3) and literature on the study area

(Mills 1986; Fuller 1985).
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The exposure predictors were designed to capture winds but may instead be, for
example, reflecting the meteorological conditions at the time-of-day most radiation is
received. For example, if all else is equal, an east-facing site receives its radiation
earlier in the day when the temperatures are lower, and hence vapour pressure deficits
are lower. This means that the east-facing site will have lower rates of
evapotranspiration than the west-facing site, all else being equal, and the east-facing site
would be moister. This explanation would not, however, explain why a range of
exposure directions were significant over the year, why the BOM station experiences
vastly different temperatures under different wind directions (Tables 3.2, 3.3) or why
the exposure directions in this study matched those from the BOM observations.

Other researchers are encouraged to test the exposure predictors in other study areas
to determine if they are widely applicable, or whether they only become important in
coastal mountain ranges. Larger study areas may benefit from techniques such as
Geographically Weighted Regression (e.g. Foody 2004) so that the wind direction
and/or influence can vary spatially.

The exposure predictors may also prove beneficial when placed directly into SDMs,
as winds may have direct influences on plants as well as indirect influences through
temperature. They are potentially much less sensitive to DEM errors than aspect
because they are based on topographic shading (Van Niel et al. 2004). Therefore, a
variable that represents shelter from both the east and west may be able to capture N-S
gullies without the accuracy problems noted by Van Niel and Austin (2007).

The topographic wetness index (TWI) and log of distance to streams (LD)
predictors were rarely significant (P < 0.05) in the regressions, although LD was often
significant in spring. Distance to streams (DS) was the selected moisture predictor in

most regressions, but distance to coast (DC) became increasingly important in winter -
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especially for winter minimums. DC was also selected in some estimates of summer
maximum, and so regressions with both DS and DC may prove beneficial. One
outstanding question is whether the DC predictor should be modified to measure
distance to coast in the direction of the prevailing winds rather than Euclidean distance.
Radiation was rarely significant (P < 0.05), but it might be more so if canopy or
cloud cover was considered. Canopy cover is known to influence surface temperatures
(Paul et al. 2004; Porté et al. 2004; Bond-Lamberty et al. 2005; Ashcroft 2006; Chapter
2), but it was not used in this study as it could potentially confound results when SDMs
are produced. That is, it was undesirable to use vegetation to predict temperatures, and
then use temperature to predict the distribution of vegetation. The effect of canopy
cover may be higher during summer days and winter nights (Paul et al. 2004). This may
indicate why summer maximums and winter minimums were not explained as well in

this study as more moderate temperatures.

3.4.2 Which environmental factors influence the distribution of
species?
Many of the SDMs in this study were dramatically improved by using soil surface
temperatures, however further research is needed to determine why this occurs. It is
possible that the distribution of some species is directly limited by seasonal
temperatures associated with the optima for germination, growth, flowering or seed
production, however temperature is not necessarily the limiting factor. Another
possibility is that high soil temperatures are providing an indicator of low soil moisture.
While topographic wetness indices are commonly used in SDMs, topography is only the
dominant factor for moisture during periods of high rainfall (Moore et al. 1993; Ridolfi
et al. 2003; Lookingbill and Urban 2004). However, under wet conditions, plants are

less likely to find moisture the limiting factor. During dry periods, radiation,
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temperature, soils and canopy cover can become more important (Ridolfi et al. 2003;
Lookingbill and Urban 2004). Therefore higher soil temperatures may provide a better
indication of where soil moisture will be low during dry periods. Lookingbill and Urban
(2004) found that soil moisture increased with increasing elevation, decreasing distance
to streams and decreasing radiation. All these factors were identified as leading to lower
temperatures in this study. Moisture availability has already been identified as a strong
determinant of species distribution (Leathwick and Whitehead 2001; Lookingbill and
Urban 2003, 2004) and has been suggested as an important factor in other studies on the
[llawarra Escarpment (Erskine 1984; Bywater 1985; Mills 1986).

Soil moisture may directly influence species distribution or it may indirectly
influence distributions through mediation of fire frequency and/or intensity. The links
between temperature, soil moisture and fire regime have been recognised (Lindenmayer
et al. 1999; Schumacher et al. 2006), and fire has been cited as a factor affecting the
distribution of vegetation in the Illawarra (Erskine 1984; Bywater 1985). Therefore, if
soil temperatures provide an indication of moisture, they may also be providing an
indication of fire regime. Further research is needed to determine whether temperature,
moisture, and/or fire regime are influencing the distribution of each species. The results
of this study only prove a correlation between temperature and the distribution of

vegetation, and this could also be due to chance.

3.4.3 Why is elevation a better predictor for some species?

The fact that elevation explained more deviance than almost every temperature estimate
for a group of species (Figure 3.4a, c, e) is worthy of further examination. This result
may be because the species are limited by a number of different seasons throughout the
year, and elevation provides a good indication of mean annual temperatures.
Alternatively, it could be that for these species the seasonal temperature of highest
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importance is well correlated with elevation. The data collected during 2004—-2006 may
not represent the conditions present when the trees became established, and the
distribution may be associated with past soil temperatures. Elevation may be associated
with rainfall or other environmental factors, and the limiting factor may not be
temperature. Finally, convection and mixing average out spatial variations in air
temperature relative to soil surface temperatures. This would mean that the high spatial
variability that is caused by differences in radiation, moisture and exposure are less
prevalent in air temperatures, and species that are limited by air temperatures may be
better modelled using elevation. There is some evidence to support this last possibility,
as exposure was often more significant for the subsurface sensors than the surface

SENSOors.

3.5 Conclusions

The direction of prevailing winds makes a large difference to the temperatures and
humidities observed at a given site on a given day (Tables 3.2, 3.3). The exposure of
each site to the most influential directions (e.g. NW) affects its average seasonal
maximum and minimum temperatures. Incorporating exposure and coastal influences
into temperature estimates can change the predicted spatial distribution of temperatures,

and these are better able to explain the distribution of many plant species.

3.6 Supplementary material

3.6.1 Source and accuracy of predictors

Elevation was determined from a 25 m grain sized Digital Elevation Model (DEM,
courtesy of NSW Department of Environment and Climate Change). Lidar data that is

available for a subset of the study area showed the DEM generally contained elevational
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errors of less than 10 m, but they were 30—50 m where there were steep slopes, and this
was partly caused by the relatively coarse grain size. To reduce the ‘stepped’
appearance, the DEM was interpolated to a grain size of 5 m, although it is
acknowledged that this did not eliminate all elevational errors.

The DEM errors were thoroughly assessed and will not affect the main results or
conclusions of this or other chapters in this thesis. For example, elevational errors of
30-50 m are rare, but even these will only result in errors of 0.2-0.3 °C given that
temperature changes at ~6 °C per 1000 m. These errors are trivial compared with the
spatial and temporal changes in temperature, and the overall errors in the models
specified (e.g. 1.8-2.8 °C in Chapter 2). The effect of DEM errors on derived
environmental factors (e.g. aspect, slope, wetness indices) is more difficult to quantify
(Van Niel et al. 2004), and the overall importance of each factor may be underestimated
if it has high errors (see also Chapter 7). However, environmental factors are less useful
if they are sensitive to errors, and should be avoided anyway. Indeed, we highlight that
one of the benefits of the exposure predictors introduced in this chapter is that they are
less sensitive to DEM errors. The temperature surfaces developed in this chapter are
predominately based on variables that are relatively insensitive to DEM errors
(elevation, distance to coast, distance to streams, exposure, radiation), and therefore the
DEM has little impact on the models in this thesis that use those surfaces.

Total (direct plus diffuse) radiation was calculated for the central date of each of the
28 periods using the Solar Analyst (USDA Forest Service 2007) extension for ArcView
(ESRI). No measurements of cloud cover or radiation were made during this study, and
so the radiation predictor is an estimate of the insolation that each site would receive on

a clear day based only on the topography of the study area.
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Streams were located using the hydrology functionality of ArcMap (ESRI), where
the flow accumulation was more than 500 cells. The distance to streams (DS) was
calculated using Euclidean distance, and the log (distance to streams + 1) (LD) was
determined. Streams may contain spatial errors, as the DEM was not hydrologically
corrected, although the magnitude of the errors is expected to be small due to the
typically steep gullies (see Figure 3.7). The topographic wetness index (TWI, Moore et

al. 1993) was calculated using the formula:

TWI = log(A/Tan(p))

where A is the upstream area (flow accumulation plus one times the area of each cell),
and P is the slope. Distance to coast (DC) was calculated using a vector map of the
coastline. Spatial errors of the Distance to coast (DC) predictor were negligible relative
to the range. Of greater concern is whether lakes and harbours have the same effect as
the open ocean, and whether the distance should be measured in the direction of the
prevailing winds rather than Euclidean distance. The vegetation survey covered a
broader range of DC (1.3 to 11.3 km) than the temperature sensors (1.9 to 7.6 km), and
this means that the influence (coefficient * range) of DC may be underestimated in this
study.

The only available soil map for the area was at a coarse scale (1:100,000), and was
deemed to be insufficiently accurate. For example, it did not differentiate the sandy soils
atop Mt Keira from the nutrient rich soils on the escarpment slopes. Therefore, a
geology map (NSW Department of Primary Industries) was used in SDMs as a

surrogate for soil properties, and contained spatial errors in the order of 50 to 200 m.
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Whilst it was also at a scale of 1:100,000, it was more accurate than the soil map,
probably due to the presence of economically viable coal deposits in the study area.
Due to poor GPS reception, spatial errors for the vegetation survey locations were
estimated to be within 15 m for most sites, but possibly up to 50 m for sites in close
proximity to cliffs and/or with a dense canopy cover. Some sites where the surface
temperatures were recorded contained no trees, and so it was not possible to ensure
consistency in microclimate by placing all sensors, for example, on the shady side of
trees (as done by Lookingbill and Urban (2003)). Some sites used shrubs, groundcovers

or debris for shelter while others used trees.

3.6.2 The differences between exposure and aspect

Aspect suffers from a number of problems, and exposure may offer solutions to many of
these. Firstly, as aspect is measured on a circular scale, it cannot be easily interpreted
(Pfeffer et al. 2003; Lassueur et al. 2006). It can be transformed using sine or cosine to
yield predictors that reflect north-south or east-west trends (Horsch 2003; Hengl et al.
2004), but this still does not cater for topographic shading (Graf et al. 2005; Pierce Jr. et
al. 2005). Finally, errors in aspect can be large depending on the slope of the site, and
how the DEM was derived (Wise 2000; Hengl et al. 2004; Van Niel et al. 2004). Pierce
Jr. et al. (2005) conclude that aspect is unsuitable for mapping landscape scale
vegetation patterns, and local studies (Bywater 1985) have stressed that local rainforest
communities can have any site orientation as long as they have suitable shelter.

The differences between aspect and exposure are readily seen in the selected study
area. Even if aspect is transformed (using cosine(aspect — 315 ©)) to yield NW aspects, it
differs substantially from the exposure to NW predictor (Figure 3.7). The aspect
predictor is noisy in places where the slope is low, while the exposure predictor does not
show any effects of DEM errors. Different predictors that are derived from the same
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DEM can vary in their sensitivity to errors, and aspect is highly prone to error (Van Niel
et al. 2004). It is clear (Figure 3.7) that the exposure predictor indicates the foothills of

the escarpment are all sheltered from the NW, while they have variable aspect.

3.6.3 Results for average temperatures

The average seasonal temperatures for the study area ranged from 9.7 °C to 19.1 °C
(Figure 3.2¢). Elevation was a reasonably consistent representation of average
temperatures throughout the year (Figure 3.2f), with a mean r* of 0.569 (£0.109). The
correlation was marginally better in autumn and spring than in summer and winter. The
inclusion of radiation, moisture and exposure (Figure 3.2f) increased the correlation by
a mean of 0.143 (£0.053) to 0.712 (£0.095). Once again, autumn and spring
temperatures had marginally higher correlations.

The factors influencing average temperatures were a combination of factors
affecting minimum and maximum temperatures. Elevation had an influence between
that of minimum and maximum temperatures, and similar to the effect on minimum
temperatures, was noticeably lower in winter (Figure 3.3e). Similarly to maximum
temperatures, radiation was more significant (P < 0.05) in late winter and early spring,
exposure to the SW had a cooling influence in spring, and exposure to the NW had a
warming influence in early summer (Table 3.4, 3.5). Similarly to minimum
temperatures, exposure to the N and NE was often significant (P < 0.05) throughout the
year, and always had a warming influence. DS was often significant (P < 0.05)
throughout the year, but DC was significant in winter and LD in spring. Overall,
elevation was significant (P < 0.05) in 100% of regressions for average temperatures,

radiation 20%, moisture 43% and exposure 55%.
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Figure 3.6: A hypothetical dataset created by assuming temperatures decrease at a

rate of 6 °C/1000 m, but with fluctuations (mean = 0, s.d. = 2 °C) introduced to

simulate variations in exposure. Two regressions have been performed — one over

the full range of 3000 m, and one over only 1000 m.
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Figure 3.7: A comparison between northwesterly aspect (left) and northwesterly
exposure (right). Aspect is more sensitive to DEM errors and does not consider

topographic shading.
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Chapter 4: Spatial autocorrelation in SDMs

Chapter 4: Addressing spatial autocorrelation in
species distribution models without using survey data

as a predictor

4.1 Introduction

The geographic distribution of a species is determined by factors such as its
environmental niche, its dispersal ability, and interspecific competition (Pulliam
2000). Species Distribution Models (SDMs, Guisan and Zimmermann 2000; Rushton
et al. 2004; Guisan and Thuiller 2005), however, usually focus on the environmental
niche and neglect competition and dispersal (Guisan et al. 2006a). Where competition,
dispersal or other spatial factors are considered, it is usually by utilising survey data in
the surrounding neighbourhood (e.g. autologistic models), and taking advantage of
spatial autocorrelation in the response variable or that of other species (Leathwick
1998; Aratjo and Williams 2000; Leathwick and Austin 2001).

Spatial autocorrelation is a problem with respect to independent observations and
can therefore affect the statistical significance of predictors in models (Legendre
1993; Keitt et al. 2002; Segurado et al. 2006). However, the statistical significance of
predictors is not the only factor that is utilised to develop SDMs. Statistical skill,
judgement and the ecological model utilised are now accepted as being important—
maybe even more so than the statistical method (Austin 2002, 2007; Keitt et al. 2002;
Guisan et al. 2006a).

Incorporating ecological theories into models can help develop new insights or
questions (Olden et al. 2006), and combining niche and spatial factors has the

potential to lead to models that are more useful and realistic than purely statistical and
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niche oriented methods. There are limited ecological insights that can be gained from
autologistic models because spatial clustering can be caused by a number of
alternative ecological processes (Legendre 1993; Keitt et al. 2002; Dirnbdck and
Dullinger 2004; Wintle and Bardos 2006) and autologistic models cannot be used to
test alternative hypotheses (analogous to McGill 2003). In addition, autologistic
models cannot be used when there are sparse presences (Aratjo and Williams 2000),
and may simply be compensating for missing environmental factors (Leathwick 1998;
Austin 2002; Guisan and Thuiller 2005). In an extreme situation, autologistic models
can ‘explain’ a clumped distribution without any environmental factors as predictors
(Aratjo and Williams 2000; Bahn and McGill 2007), although this is interpolation
rather than an actual explanation or prediction. Autologistic models may be useful for
predicting the current distribution of species when the spatial distribution of direct
predictors is poorly known and the ecological reason for the distribution is
unimportant. However, they cannot be applied to different regions or times (Guisan
and Thuiller 2005; Randin et al. 2006; Segurado et al. 2006), and are therefore
inappropriate for climate change studies or predicting unknown populations in
unsurveyed areas.

An alternative method to incorporate spatial factors into SDMs is by utilising
contextual indices, such as the amount of rainforest within a 500 m radius (Ferrier et
al. 2002; Wintle et al. 2005). In effect, they include spatial information using
environmental factors (predictor variables) instead of the survey data (response
variable). This reduces circularity in the model building process, and allows the
models to be applied in unsurveyed regions and times. They have already been
recommended for fauna with large home ranges (Ferrier et al. 2002), but the concept

is also applicable to trees. This is because if there is more favourable habitat for a
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species in the surrounding area, there are likely to be more trees of that species in the
surrounding area, and therefore more seeds on the ground that can take advantage of
any gaps that open in the canopy.

To illustrate the potential benefits of contextual indices, consider a hypothetical
example where presence/absence data from 20 sites was available for a species in a
study area containing two geological units, G1 and G2 (Figure 4.1). A traditional
niche-based Generalised Additive Model (GAM; Hastie and Tibshirani 1990) assigns
the same probability of existence (POE) to every location on each geological unit
based on the ratio of presences to absences on that substrate (Figure 4.1a). This
ignores the fact that, in this example, all presences are located near the large patch of
G2 geology. A contextual model produced based on the amount of G2 geology within
150 m (for example) offers an alternative explanation for the observed distribution
(Figure 4.1b), and produces a result more consistent with spatial or dispersal-oriented
ecological theories such as island biogeography (MacArthur and Wilson 1967),
source-sink models (Pulliam 1988, 2000) and fragmentation models (Fahrig and
Merriam 1994; Hill and Curran 2003). Small patches of habitat have lower POE than
the large patch, and the edges of the large habitat patch have lower POE than the
centre. In addition, the contextual model provides some protection from spatial errors
in the predictor maps and survey locations, as contextual indices create smoother
transitions between discrete classes. This solves the problem whereby locations near
soil boundaries may incorrectly be recorded on the wrong side of a boundary (as

noted by Mummery and Battaglia 2002).
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® Absent
® (O Present
()
POE

G1[ | 20%
o G2 0%

%

®
0 150 300 600 Metres ®
Y T I

® Absent
O Present

Figure 4.1: A hypothetical example for a study area with two geological units, G1
and G2, and presence/absence data for a selected species. Panels indicate the
predicted probability of existence (POE) produced by a Generalised Additive

Model without (a) and with (b) contextual indices.

Contextual indices are not a perfect representation of niche theory or spatial
processes, but are a simple method to approximate the combined effects. It has
already been recognised that environmental conditions need to be included in source-

sink models (Pulliam 2000) and fragmentation studies (Hobbs and Yates 2003;
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Debinski 2006), and including spatial processes in SDMs allows them to be more
consistent with these other areas of ecology. Contextual indices are an extension of
SDMs and are therefore not dynamic or process-based. However, process-based
models often require potentially erroneous assumptions to be made about dispersal
abilities or other ecological traits, as there is little information available on most
species (Guisan and Zimmermann 2000; del Barrio et al. 2006). Contextual indices
have the advantage that they can be fitted to presence/absence data without making a
priori assumptions about the ecological traits of a species.

Throughout this chapter I use terms such as ‘patches’ for areas of favourable
environmental conditions—even though they may be within a continuous forest. This
differs from traditional fragmentation studies that often involve a matrix of cleared or
disturbed land. Note also that I use the term ‘habitat quality’ as a measure of the
ability to maintain a population under specific environmental conditions when spatial
factors are ignored. The POE also considers the spatial context. Species can have high
POE in ‘sink’ areas with low habitat quality if there is sufficient nearby ‘source’
habitat. Similarly, an isolated and small patch of high quality habitat can have a low
POE. This terminology further illustrates the differences between contextual models
and traditional niche-based models—where the habitat quality and POE are

synonymous.

4.1.1 Extending the contextual indices methodology

The manner in which contextual indices have been applied to date (Ferrier et al. 2002;
Wintle et al. 2005) is typically in fauna models, with a fixed and pre-specified radius
(e.g. 500 m) and Boolean type predictors (e.g. rainforest or not rainforest). That
implementation is a specific example of a more general methodology. For example,

all cells could contribute equally to neighbourhood averages, or they could be
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weighted such that distant points contribute less to the contextual indices (e.g. see
Canham and Uriarte 2006). However, such comparisons are outside the scope of this
chapter, and I focused on extending the contextual indices methodology by using
continuous and categorical predictors, allowing the data to determine the optimal
radius for each contextual model, and applying the models to flora rather than fauna.
I assessed these extensions using both single-predictor and multiple-predictor
models. Single-predictor models were used to investigate alternative methods for
incorporating continuous and categorical predictors, and to determine which factors
influenced the optimal radius for contextual indices. Based on the best results from
the single-predictor models, multiple-predictor models were developed to ensure the
improvements were still valid when interactions between predictors were included. A
more comprehensive comparison between contextual and non-contextual models was

performed for one species.

4.2 Methods

The study was conducted on the Illawarra Escarpment and Woronora plateau, 80 km
south of Sydney, Australia (34.4 °S, 150.9 °E). The escarpment runs NE to SW, with
Mt Keira and Mt Kembla rising over the city of Wollongong on the predominately
cleared coastal plain in the south and east (Figure 4.2). The uppermost geology in the
study area, Hawkesbury sandstone, forms the summit of both mountains as well as the
top of the escarpment. This geology supports vegetation communities that are vastly
different from other substrates, and is dominated by eucalypt woodlands and upland
swamps. The gullies on the Woronora plateau are predominately Bald Hill claystone
and Bulgo sandstone, and support tall-open eucalypt forests, moist eucalypt forests,
and rainforests (NPWS 2002). The escarpment slopes and foothills also contain moist

eucalypt forests and rainforests, but have a different composition of eucalypts from
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the gullies on the plateau. See the supplementary material (Section 4.5.1) for a more

detailed description of the geology and vegetation.
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Figure 4.2: The topography of the Illawarra Escarpment in the vicinity of
Wollongong, Australia (34.4 °S, 150.9 °E). The inset is a Digital Elevation Model

0 500 1,000 Kilometres U

| I A T |

showing the rising elevation (m) from the coastal plain to the Woronora Plateau,
with Mt Keira and Mt Kembla protruding eastward. See Supplementary Material
(Section 4.5.1) for maps of geology and vegetation.

Presence-absence data was collected (see Section 4.5.2 in supplementary material

for details on survey design) for eight canopy tree species between July 2005 and
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March 2006 at 600 sites (20 m by 20 m). All models were developed using the data
from the first 360 sites, with additional sites used to test predictions in a simulated
‘unsurveyed’ area (see below). Silvertop ash (Eucalyptus sieberi) and red bloodwood
(Corymbia gummifera) were selected because they were common in the woodland
communities on the Hawkesbury sandstone; coastal white box (E. quadrangulata) and
blackbutt (E. pilularis) were selected because they were common on the escarpment
slopes; gully gum (E. smithii) and mountain grey gum (E. cypellocarpa) were selected
because they occurred in plateau gullies; and, red cedar (Toona ciliata) and lilly pilly
(Acmena smithii) were selected as two rainforest species. The number of presences for
each species in the initial 360 sites ranged from 26 to 186. Two species had less than
the recommended number of 50 presences (Stockwell and Peterson 2002; Coudun and
Gégout 2006), but were still analysed as the fine spatial resolution in this study had
the potential to produce better results with fewer presences than that recommended at
coarser resolutions (Engler et al. 2004).

Seven environmental factors were used: elevation; average summer maximum
temperature; geology; log of distance to streams; and, an estimation of the exposure to
northeasterly, southerly, and west to northwesterly winds. Elevation was based on a
10 m-resolution Digital Elevation Model (DEM; see Section 3.6.1 for more
information on accuracy). The average summer maximum temperature was based on
the established relationship with low pass filtered elevation and radiation (Ashcroft
2006; Chapter 2). A geology map (NSW Department of Primary Industries) was used
as a surrogate for soil properties, such as phosphorus, known to influence the
distribution of Australian vegetation (Beadle 1954, 1966), and known to be influential
for fine scale vegetation models (Coudun et al. 2006). Spatial errors of boundaries

were 50 to 200 m (see Section 3.6.1 for more information on accuracy). The log of
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distance to streams and the exposure to winds were derived using the DEM. Streams
were located using the flow accumulation functionality of ArcGIS (ESRI, Redlands,
US), whilst exposure to winds was based on the log transformed angle to the horizon.
The complete derivation of the maximum temperature, distance to streams, and
exposure to wind parameters has been provided by Ashcroft (2006; Chapter 2). The
exposure to winds predictors were included as indirect predictors of landscape scale
temperatures (see Ashcroft et al. 2008; Chapter 3), and were the best predictors that
were available at the time the analysis was conducted. A comparison with other

predictors and previous studies on the selected species is included in the discussion.

4.2.1 Single-predictor models

GAMs with single-predictors were used to compare the statistical performance of
models with contextual indices with those produced using the same predictor without
contextual indices. I also used these models to investigate how the optimal radius for
contextual indices varied between different species and predictors, and how
continuous and categorical predictors should be incorporated into contextual indices.
It was not possible to simply apply contextual indices to the raw predictors.
Categorical predictors cannot be averaged, and the average of continuous predictors,
such as elevation, gives no indication of how much of the surrounding area is
favourable habitat. Therefore, I converted the raw environmental predictors to ‘habitat
quality’ before using contextual indices. I tested three methods by which this may be
done, although other methods are also possible.

The first method used a GAM (using S-PLUS, Insightful Corp., Seattle, US) to
produce a response curve for each species in terms of each environmental factor. This
is effectively using the non-contextual model to generate the habitat quality for input

to the contextual model. The outputs were exported to ArcGIS using a lookup table
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(similar to Ferrier et al. 2002), and the predictor maps reclassified to produce habitat
quality maps. These habitat quality maps were averaged using neighbourhood
statistics to produce contextual indices. This approach may lead to excessively broad
niches if there were numerous presences in sink areas (Austin 2002). Therefore, a
second approach was used for each continuous predictor whereby 100% habitat
quality was assigned to all locations where the environmental conditions were
between the 10™ and 90" percentile of the presences detected for that species, with
0% habitat quality assigned to everywhere else. Similar to using the response curves,
the habitat quality was then averaged over the surrounding region to produce
contextual indices. The third approach was identical to the second, but the 25™ and
75" percentile were used. Each model was tested using contextual indices with radii
of 30 m, 60 m, 100 m, 150 m, 200 m, 300 m, 400 m, 600 m, 800 m, and 1000 m, as
well as the unfiltered predictor.

For each of the eight species and seven predictors the best GAM with contextual
indices was selected by determining the radius and habitat quality selection method
that maximised the deviance explained by the model (D?, Guisan and Zimmermann
2000). Each of the 56 single-predictor models without contextual information was
compared with the best contextual model using that same species and predictor. Both
the contextual and non-contextual models only had one predictor, as the contextual

index was used instead of the raw environmental factor.

4.2.2 Multiple-predictor models

Multiple-predictor models were developed to ensure that the improvements in single-
predictor models were not simply compensating for missing predictors. The best two-
predictor models for each species were determined by testing each combination of the

seven predictors. In each case the contextual and non-contextual models that
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explained the most deviance were selected and compared. The multiple-predictor
models were repeated using three to seven predictors. It is important to note that all
comparisons are between models with contextual indices and models using
corresponding raw predictor(s) instead of the contextual indices. Both models in all
comparisons contain the same number of predictors and are based on the same
environmental factors, although varying the radius of the contextual index could be
viewed as an extra degree of freedom. For the contextual models, the seven candidate
predictors were selected using the best radius and habitat quality selection method
from the single-predictor models.

One species (E. cypellocarpa) was selected as a case study to do a more
comprehensive investigation of a multiple-predictor model, and the contextual model
for this species was assessed more comprehensively. The four most significant
predictors in models for E. cypellocarpa (elevation, geology, and exposure to
southerly and west to northwesterly winds) were selected for the comparison. The
non-contextual model was produced using the four environmental variables as
predictors. The contextual model converted each to habitat quality, calculated the
average habitat quality within 500 m, and then used the contextual index in the model
instead of the environmental variables. The radius was selected based on the average
radius of the four predictors in the single-predictor contextual models. The habitat
quality was determined using environmental envelopes, with the niche made as
narrow as possible as long as all presences were within a reasonable geographical
distance of favourable habitat. For example, E. cypellocarpa was actually observed on
four geological units, but the presences on two of these, including Hawkesbury

sandstone, were rare and only occurred in locations near more favourable units.
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The statistical performances of the contextual and non-contextual models were
compared using D* and Area Under the receiver operating characteristics Curve
(AUC). The spatial autocorrelation of the residuals was examined using Moran’s I (de
Frutos et al. 2007) in ArcMap to determine if the contextual indices eliminated or
reduced the problems discussed earlier. The Minimum Predicted Area (MPA) method
was modified such that instead of using a fixed (e.g. 90% in Engler et al. 2004)
threshold for occurrences, the full range of thresholds was examined (similar to AUC)
and the average percentage difference between the two alternative models compared.
In short, a lower MPA suggests a better model because a smaller predicted area
contains the same proportion of presences. A new evaluation method was used which
also examined the full range of thresholds. For each threshold, the map was classified
into locations where the species was predicted to be present or absent. The average
geographic distance of errors was estimated by calculating the minimum distance
from each false positive to a recorded presence, and from each false negative to a
recorded absence. A low average distance would indicate that most incorrect
classifications were close to a location where they would be consistent with the survey
data. Finally, the predictions of both the contextual and non-contextual models were
compared using AUC in a simulated unsurveyed area. This was done using 167 of the
240 sites that were not used to develop the models. Not all sites could be used, as the
original 360 sites did not cover the full range of environmental conditions, and I

wanted to avoid testing extrapolation.
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4.3 Results

4.3.1 Single-predictor models

Of the 56 single-predictor models developed (eight species, seven predictors), 55
(98%) were improved by including contextual information (Figure 4.3). The average
magnitude of the improvement was 7.3% (s.d. = 6.4%), increasing the average
deviance explained by the models from 13% (s.d. = 10.4%) to 20% (s.d. = 11.3%).
This increase was significant (P < 0.001) according to a paired t-test. Only the best
radius was selected to make these comparisons, but overall, 80% of the contextual
models (response curve habitat selection method) performed better than the
corresponding models without contextual indices. Choosing the optimal radius
maximised the magnitude of the improvement—not merely select a rare case where
an improvement occurred.

In 35 of the 48 models with continuous predictors (73%), at least one of the
environmental envelopes with contextual information performed better than the
models without contextual information. However, for 32 of the 48 models (67%) the
best contextual result was obtained using the response curve for determining the
habitat quality. This compares with 12 cases (25%) where the 50-percentile
environmental envelope method performed best and four cases (8%) where the 80-
percentile environmental envelope method performed best.

The optimal radius for contextual indices varied from 30 m to 1000 m. The
average optimal radius for the seven predictors varied from 366 m for geology, up to
769 m for exposure to southerly winds (See Figure 4.9 in supplementary material).
The general trend was that predictors that explained more deviance in the models,

such as geology, elevation, and exposure to NE winds, tended to favour lower radii
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than the predictors that explained less deviance. There were large differences in the
optimal radius between species, with the median radii varying from 200 m for
silvertop ash and lilly pilly up to 1000 m for coastal white box, blackbutt, and red
cedar (See Figure 4.10 in supplementary material). The mean radii showed a similar
trend to the medians, but one or two predictors that explained little deviance skewed
results. The best predictors (highest D?) for each species typically peaked at
approximately the same radius (Figure 4.4), suggesting that the optimal radius of the

best models was determined more by the species than the predictor.
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Figure 4.3: A comparison between the deviance explained by single-predictor
models with and without contextual indices. The different symbols represent the
eight species used in the study: gully gum (GG), mountain grey gum (MGGQG),
coastal white box (CWB), blackbutt (BB), silvertop ash (SA), red bloodwood
(RB), red cedar (RC) and lilly pilly (LP). There are seven points for each species

— one for each of the seven environmental factors.
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Figure 4.4: The deviance explained by the contextual models for lilly pilly (a),
mountain grey gum (b) and red cedar (c) as a function of the radius of the
contextual indices. The seven predictors are geology (Geol), elevation (Elev),
summer maximum temperature (MaxER), shelter from WNW, S and NE winds
(WindWNW, WindS, WindNE), and log of distance to stream (LogDS). Missing

values occur due to problems with model convergence.
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The two eucalypts from the gullies on the Woronora Plateau, gully gum and
mountain grey gum, had similar optimal radii (median 600 m). This was also true for
the two eucalypts from the escarpment slopes, coastal white box and blackbutt
(1000 m). There was, however, a large difference between silvertop ash (200 m) and
red bloodwood (600 m), even though both species occupied similar areas of
Hawkesbury sandstone. The only noticeable difference between the distributions of
the two species was that silvertop ash was observed atop small Hawkesbury sandstone
‘islands’ (Mt Keira and Mt Kembla), whereas red bloodwood was not. Red cedar had
a larger radius (1000 m) than the other rainforest species, lilly pilly (200 m). Once
again the species with the larger radius was only found in large fragments, while the

species with lower radius was also found in smaller fragments.

4.3.2 Multiple-predictor models

Multiple-predictor models produced using contextual predictors performed 4.7% to
7.5% better than the equivalent models without contextual information (Figure 4.5),
demonstrating that the statistical improvement in single-predictor models was mostly
maintained when extra predictors were considered. To further investigate multiple-
predictor models, a non-contextual GAM was produced for E. cypellocarpa using the
predictors of elevation, geology, and exposure to west to northwesterly and southerly
winds. The predicted probability of existence (POE) map that was produced by this
model showed that although there were areas of moderate (25-50%), and occasionally
high (>50%), POE that coincided with the observed occurrences of E. cypellocarpa
(Figure 4.6a), similar POE values were also found in the central and northeastern
portions of the study area—even though only one presence was recorded in these

arcas.
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Figure 4.5: A comparison between the average deviances explained by multiple-
predictor models, with and without contextual indices, for eight tree species in the

[llawarra region.

The environmental envelopes that were selected for the contextual model for E.
cypellocarpa were: elevation of 320 m to 420 m; exposure to southerly winds of 0.8
to 1.4 (moderately sheltered); exposure to west to northwesterly winds of 0.5 to 1.0
(exposed); and, geology of Bulgo sandstone or Bald Hill claystone. The GAM that
was produced using the four contextual indices produced four similarly shaped partial
response curves (See Figure 4.11 in supplementary material). According to each, the
species was less likely to exist in locations where there was less than 40% favourable
habitat in the surrounding area.

The model produced using the contextual indices explained more deviance (39%)
than the model without contextual information (28%), and produced a dramatically

different POE map (Figure 4.6b). In comparison to the non-contextual model, more
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areas were classified as very unlikely (0% POE) or highly likely (>50% POE). There
were three large patches of high POE, the northernmost two of which corresponded
closely with two clusters where E. cypellocarpa was observed during the initial
survey of the 360 sites that were used to develop the model, whilst the third was in the
simulated unsurveyed area. The predicted POE in the central and northeastern
portions of the study area was lower (0-25% instead of 10-50%), and this fitted the

low observed occurrences in these areas better.
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Figure 4.6: The probability of existence (POE) maps produced by the multiple-
predictor models for E. cypellocarpa using predictors of elevation, shelter from
southerly winds, geology and shelter from west to northwesterly winds. Circles
represent the presence/absence data from the 360 sites that were used to train both
models, while the triangles represent the additional sites that were used to test
predictions in another area. The model produced without using contextual indices

(Non cont., (a)) uses the same environmental variables as the contextual model

(b).
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The contextual model was substantially more confident (>50% POE) that the
species would be found in the simulated unsurveyed area. The species was observed
at 13 sites in that area, demonstrating that the prediction was accurate (Figure 4.6b).
The model without contextual indices indicated there was a low to moderate (10-50%)
chance of finding the species in that location, but this was a less confident, and less
reliable prediction given that similar POE values were also predicted for other areas
where the species was not observed.

The AUC in the models for E. cypellocarpa increased from 0.866 to 0.903 when
using contextual indices, indicating better classification performance on the training
data. The AUC calculated with data in the simulated unsurveyed area suggested a
larger improvement in the contextual model—from 0.761 to 0.905. This confirms the
better predictions in the simulated unsurveyed area.

The residuals of the contextual model were spatially autocorrelated (P < 0.05),
but less so than the non-contextual model (P < 0.01). Therefore, contextual indices
reduced, but did not eliminate, the amount of spatial autocorrelation in the residuals.
The contextual model consistently, but not always, predicted a smaller MPA than the
non-contextual model. The output was very sensitive to the threshold, with the
contextual model varying from an area 32% larger to 59% smaller. The contextual
model had lower MPA in 86% of cases, and was on average 17% smaller.

The contextual model for E. cypellocarpa also performed better in terms of the
average spatial error of false presences and false absences. When the model output
threshold was high, the false positives and false negatives were both within
approximately 200 to 300 m (Figure 4.7) of a location where there was a recorded

presence or absence respectively, and this was approximately equal to the distance
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between survey points. Therefore, whilst they were erroneous, there were
neighbouring sites where the prediction was valid.

As the threshold was lowered the number of true positives and false positives
increased. For the contextual model the average distance of these false positive errors
was consistently between 280 and 305 m when the threshold was set to achieve less
than 55% true positives, but increased sharply as the threshold was lowered further
(Figure 4.7a). The larger errors indicated that the false positives were consistently in
locations further away from observed presences—raising doubts about the realism of
the predictions. The non-contextual model showed a similar trend, but its false
positive predictions started to appear in apparently unrealistic locations as soon as
there were more than 30% true positives.

The average spatial error of false negatives did not change dramatically as the
threshold changed, but the contextual model consistently had smaller errors than the
non-contextual model. There was a slight trend towards smaller distances as the
number of false negatives decreased (Figure 4.7b), but the results became sporadic
when there were only a few errors. The trend may be more pronounced in common

species, as absences would be rare.
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Figure 4.7: The estimated average spatial errors of (a) false positives (FP) and (b)
false negatives (FN) as determined by averaging the distances (Ave. dist.) to the
nearest presences and absences respectively. The two lines illustrate the results
for the multiple-predictor contextual and non-contextual models for E.

cypellocarpa.
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4.4 Discussion

Using contextual indices to incorporate spatial factors into vegetation models
produced statistically better results than purely niche-based models for both single and
multiple-predictor models. The average deviance explained by single-predictor
models increased from 13% to 20% using contextual indices, and average gains of
4.7% to 7.5% were observed in multiple-predictor models. The multiple-predictor
contextual model for E. cypellocarpa performed better in terms of D?, AUC, Moran’s
I, average MPA, and the average spatial error of incorrect classifications.

The ecological interpretations of the two models for E. cypellocarpa are different,
but it cannot be proven which conclusion is correct. The non-contextual model could
not adequately explain the observed distribution, which implies that there was a
missing predictor (Austin 2002), the species was not at equilibrium (Guisan and
Zimmermann 2000), the predictors were not accurate enough, or the species was
influenced by competition (Leathwick and Austin 2001), source-sink effects (Pulliam
2000) or dispersal limitation (Svenning and Skov 2004; Moore and Elmendorf 2006).
On the other hand, the contextual model could explain the distribution in terms of an
environmental envelope for each predictor, and suggested there needed to be more
than 40% suitable habitat within 500 m. This could be because dispersal effects or
other spatial processes were included in the model, but there is always the possibility
that the improvements were due to an increasing correlation with more significant and
missing predictors.

While the statistical improvement in performance of models containing
contextual information is worth noting, the improvements in predictions are even

more significant. After all, it is the predictive power of models that will ultimately
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determine their usefulness (Rushton et al. 2004). The model for E. cypellocarpa that

was based on contextual indices more confidently predicted where the species would
be located by subsequent surveying, and its predictions were more accurate in terms

of AUC. These predictions could not have been made with an autologistic model, as

we were simulating a situation where there was no survey data in that vicinity.

The statistical improvement in the contextual model for E. cypellocarpa (28% to
39%) was larger than the average improvement that was reported for all models.
Therefore, this result is not necessarily indicative of other species. Lilly pilly, for
example, had a much lower optimal radius and there was less statistical improvement
when using contextual indices. These factors combined to produce less obvious
differences in the POE maps when comparing models with and without contextual

indices.

4.4.1 What determines the optimal radius?

The results suggested that the success of contextual indices in vegetation models was
more likely due to ecological factors than spatial errors or correlation between
predictors. If spatial errors in GPS locations or plot size were the reason for the
success, then the optimal radii should have been low—approximately equal to the
errors. This was not the case, as the radii were typically 200—1000 m, while the errors
were less than 50 m (and usually estimated to be less than 10 m). If the spatial errors
in predictor layers were the reason for the success, then it was expected that the
geology map would have a higher radius than other predictors due to its higher spatial
errors. On the contrary, the geology predictor, and the other predictors that usually
explained a high amount of deviance, had the lowest average radii. The larger radii of
less significant predictors probably indicates an increasing correlation with more

significant predictors, but this result is of little importance given that predictors that
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explain little deviance are usually omitted. The large difference in radii between
species was consistent with ecological differences, and is the most likely cause for the
improvements in contextual models. The largest statistical improvements were when
the optimal radius was large, and for species with a distribution that was clumped into
large patches. Species that could be found in both large and small patches had lower
radii, and smaller improvements.

It is already well known that species vary in their ability to exist in small patches
of habitat (Hobbs and Yates 2003). Common species are typically observed in both
large and small patches, but rare species are affected more by fragmentation and are
likely to be found only in large patches (Honnay et al. 1999; Davies et al. 2000; Hill
and Curran 2003; Debinski 2006). There is reduced seed rain in fragments (Hobbs and
Yates 2003), but it is worth noting that the ability for species to persist in small
patches is determined by its colonisation capabilities, not just dispersal. Colonisation
ability is also influenced by factors such as fecundity, dormancy, seedling
establishment characteristics, species interactions, and habitat quality (Fahrig and
Merriam 1994; Levin et al. 2003; Levine and Murrell 2003; Guisan and Thuiller
2005). Dispersal may cause seedlings to be clumped, but such patterns can disappear
as plants mature and habitat quality and competition have more influence (Levine and
Murrell 2003). Therefore, although contextual indices do not capture an accurate short
distance seed dispersal curve, there may not be a large benefit in doing so (e.g. by
weighting cells in contextual indices according to distance from the centre) if other
factors are more important in determining the colonisation ability. Indeed, I found that
larger radii were associated with species with poorer dispersal ability, which is
contrary to what would be expected if the radius reflected dispersal distance. This

reinforces that view that contextual indices captured the combined effects of multiple
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spatial processes— not just seed dispersal. I did, however, test one method for
weighting based on radius (unpublished data), and found little difference in results.
The extra complexity was not justified, and constant weighting was the more
parsimonious solution. I cannot exclude the possibility that some methods of
weighting could perform better.

I propose that species that can exist in both large and small patches will be good
colonisers, have a low optimal radius for contextual indices, require accurate response
curves to model their distribution, be more common, and have less potential for
improvement from using contextual indices. The distribution of these species will be
predominately determined by environmental niche factors. Conversely, poor
colonisers would exist mainly in large patches, have a large optimal radius, be
modelled less well using response curves, be less common, and obtain greater
improvements from contextual indices. The distribution of these species is strongly
influenced by fragmentation and source-sink effects. Some species may be distinctly
niche or dispersal limited, but these are the extreme ends of a continuum (Gravel et al.
2006; Moore and Elmendorf 2006), and contextual indices offer a simple method to
model species in between the two extremes as they consider both habitat quality and

spatial factors.

4.4.2 Comparison with other models and predictors

Some of the species modelled in this study have been included in previous studies in
an adjacent region, albeit at a coarser scale (e.g. Austin and Meyers 1996 and

references therein). The models in the current study are not directly comparable with
these models because of the differences in predictors and scale. Indeed, Pearson and
Dawson (2003) propose that the environmental factors that affect the distribution of

species are expected to be different given the difference in scale.
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The predictors used in this study were the best that were available at the time the
analysis was undertaken, but more accurate temperature estimates are now available
(Ashcroft et al. 2008; Chapter 3). These predictors explain more deviance than those
used in this study, and this reduces the benefit of using contextual indices
(unpublished data). Indeed, it appears that the more deviance is explained by
environmental factors, the less the improvement when contextual information is
included (e.g. Figure 4.3). This makes intuitive sense in the context of niche and
dispersal limited species, but it is also important to note that Bahn and McGill (2007)
proposed that niche and spatial predictors were competing to explain the same portion
of the variance rather than complementing each other. Combining niche and spatial
factors using contextual indices is a promising method to investigate whether
environmental factors only perform well because they are spatially autocorrelated,
whether spatial autocorrelation terms are compensating for missing predictors, or

whether there are truly a continuum of niche and dispersal limited species.

4.4.3 How should habitat quality be determined?

The contextual models produced significantly better results than non-contextual
models, but they are almost certainly not optimal. There was some doubt as to
whether response curves were the best method to determine habitat quality, as
environmental envelopes performed better in a third of the models tested. New
methods are needed to analyse data in both niche and geographic space without the
need to transfer data between GIS and statistical packages used for modelling. This
will increase the ability to answer ecological questions on the interactions between

niche and spatial characteristics.
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4.4.4 Further recommendations

Contextual indices were originally justified in this study because they could
approximate the supply of seeds at a given site, although the results suggest that seed
dispersal is not the only reason for the success of contextual indices (see above).
Nevertheless, if results are influenced by seed production and dispersal, then there are
a number of ways in which models could be further improved. Firstly, not all
individuals may produce the same number of seeds. The conversion to habitat quality
may produce better results if it is based on the number of seeds produced under given
environmental conditions rather than simply the presence or absence of the species.
Secondly, the output from the contextual model may be better used as a predictor
rather than as a final model. That is, for E. cypellocarpa a better model may have
included the four raw environmental factors as well as the output from the contextual
model. This was not performed here, as it would mean the models did not have the
same number of predictors and could not be as easily compared. Nevertheless, it
would make more ecological sense, as two sites with the same supply of seeds may

have different POE under different environmental conditions.

4.5 Supplementary material

4.5.1 Geology and vegetation communities in the study area

The Hawkesbury sandstone (TRh, Figure 4.8) is the most distinct unit in the study
area. It forms the top of the escarpment, including Mt Keira and Mt Kembla (Figure
4.2), and supports vastly different vegetation communities to the rest of the study
area. These communities include Escarpment Edge Silvertop Ash Forest (EESAF),
Exposed Sandstone Scribbly Gum Woodland (ESSGW), Cliffline Coachwood Scrub

(CCS), and Sandstone Gully Peppermint Forest (SGPF, all communities in shades of
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grey in Figure 4.8). Upland swamps develop where the drainage on the Hawkesbury
sandstone is poor. The geology for these upland swamps (Qs) is distinguished from
the rest of the Hawkesbury sandstone. The upland swamps are often treeless, and
support sedgelands, shrublands of species such as Hakea spp. (USSHC — Upland
Swamps: Sedgeland-Heath Complex), or dense thickets of Banksia spp. or
Leptospermum spp. (USBT — Upland Swamps: Banksia Thicket, both communities
shown in shades of yellow in Figure 4.8).

Deep valleys occur on the Woronora Plateau (Figure 4.2), draining into water
supply dams (shown in red in Figure 4.8). The slopes of the valleys consist of Bald
Hill claystone (TRnz) and Bulgo sandstone (TRnbu), with Hawkesbury sandstone
forming the ridges in between. The Hawkesbury sandstone forms cliffs of up to 40 m
where it meets the Bald Hill claystone. Where the gullies are exposed to hot, dry NW
winds, temperatures are warmer (see Ashcroft et al. 2008; Chapter 3), and tall open
eucalypt forests are found (i.e. Tall Open Blackbutt Forest — TOBF, Tall Open
Peppermint-Blue Gum Forest —- TOPBGF, and Tall Open Gully Gum Forest —
TOGGF, shades of orange in Figure 4.8). Rainforest species are uncommon in the
understorey of these communities. In contrast, where there is shelter from the NW
winds, moist eucalypt forests (shown in shades of green) and rainforests (shades of
blue) occur. Communities include Moist Gully Gum Forest (MGGF), Moist Blue
Gum-Blackbutt Forest (MBGBF) and Coachwood Warm Temperature Rainforest
(CWTR), all of which contain many rainforest species in the understorey.

The escarpment slopes consists of numerous layers of sandstones, claystones, and
coal seams from the Narrabeen Group and Illawarra Coal Measures. There are also
areas of Quaternary alluvium and talus (Qa, Qt). The escarpment slopes support a

variety of moist eucalypt forests and rainforests, including Escarpment Blackbutt
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Forest (EBF), Escarpment Moist Blue Gum Forest (EMBGF), Moist Coastal White
Box Forest (MCWBF), CWTR, and Illawarra Escarpment Subtropical Rainforest
(IESR). The foothills support many of the same species, but also contain Moist Box-
Red Gum Foothills Forest (MBRGFF) and Lowland Dry-Subtropical Rainforest
(LDSR). Much of the coastal plain is Cleared (C), or Modified Lands (ML) due to the
City of Wollongong. Disturbance related communities (shown in shades of purple)
occur throughout the study area, but are especially common on the lower escarpment.
These include Acacia Scrub (AS), Turpentine Regeneration (TR) and Weeds and
Exotics (WAE). While these communities are disturbed, they are generally semi-
natural communities (unmanaged land), and support many native species.

While the distribution of vegetation communities is known, there is less
information available on individual species (but see Fuller 1995 for rough maps). It is
unknown which factors are influencing the distribution of species and communities.
For example, there is a distinct NE-SW trend in eucalypts on the escarpment slopes
(from EBF to EMBGF to MCWBF) and it is unknown why this occurs. Each of the
dominant species (Blackbutt, Blue Gum, and White Box) occurs at similar elevations

and on similar geologies.

4.5.2 Survey design

A survey of presence and absence of 37 species was undertaken with the explicit
purpose of species distribution modelling in mind. The target species (listed in
Ashcroft et al. 2008; Chapter 3) consisted of common rainforest and eucalypt species,
as well as a selection of disturbance related species. I was particularly mindful that I
needed 50 presences of each species for modelling to be robust (Stockwell and
Peterson 2002; Coudun and Gégout 2006), and also that models would be most useful

if the dominant eucalypts were included. The documentation on the communities in
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the study area (NPWS 2002) gave approximate frequencies of each species in each
community. Based on these figures, I determined that a survey of 600 sites was
necessary to achieve at least 50 presences of the common eucalypts. This
approximation proved accurate and I achieved the target of 50 presences for most
species.

The survey locations were randomly chosen subject to a number of constraints
that were imposed to ensure that a representative and complete range of communities
and environmental conditions were sampled. First, the proportion of each community
in the study area was used to determine the approximate number of samples that
should be taken from each community shown in Figure 4.8 (apart from ML and C).
Some rare communities are not shown. Some communities were very common (€.g.
CWTR) and the number of samples in these communities was reduced. Other
communities were less common, and it was necessary to over-sample these
communities to ensure that the full range of environmental conditions could be
sampled.

Once the number of samples for each community had been determined, a list of
potential locations was placed in a random order. The highest ranked locations were
selected provided the locations were spread geographically and environmentally, and I
had permission to access the land. If a potential location was too close or too similar
to another location then it was discarded and the next site in the list used. I was
particularly careful to ensure that, where possible, each community was sampled on
each geological unit on which it occurred, and locations spanned all large and most
small patches of the community. For example, I determined that randomly selecting
20 sites of IESR usually omitted at least one of the large patches and one of the main

geologies, and sites were often close together. The constraints I imposed ensured the
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full range of conditions was sampled, which is more beneficial for modelling than
ensuring the sample is random (Hirzel and Guisan 2002).

A GPS was used to locate selected sites. No bias was introduced by ensuring sites
were qualitatively homogenous or pristine, and many sites were disturbed or
contained transition zones between communities. The disturbed communities (WAE,
AS, TR) were found to contain many of the target native species (each contained an
average of 4-8) — more than USSHC, USBT, ESSGW, CCS, and SGPF. The
rainforest and moist eucalypt forests had more target species, as 20 of the 37 species
were rainforest species. The disturbed communities usually contained similar species
to adjacent ‘natural’ communities — albeit in lower abundance. Therefore, the effect of
disturbance is somewhat compensated for when using presence-absence instead of
abundance. All sites were accessed where practical, however some dense thickets of
prickly weeds, particularly Caesalpinia decapetala (cat’s claw, wait-a-while) were
avoided. Where access could not be achieved from another direction, or a site was
found to be managed rather than semi-natural, the site was replaced with the next
suitable one from the random list (as above).

Overall, the survey contains no bias towards or away from roads (to ensure easy
access or avoid edge effects), no subjectivity introduced by only surveying
‘homogeneous’ or ‘pristine’ sites, and all reasonable attempts were made to ensure a
representative and complete range of vegetation and environmental conditions were
sampled. While some sites were close together, this only occurred where the sites
contained different vegetation communities, and usually on different geologies as
well. The average walking distance between sites was approximately 300 m, and
many transitions in vegetation were typically seen over this distance. This can be seen

from the relatively small size of vegetation patches relative to the distance between
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sites (Figure 4.8). Therefore, the spatial auto-correlation in the survey has been kept to
a minimum. There are relatively few sites on the coastal plain, and these are typically
near creeks or in hilly areas, but this bias reflects land clearing preferences rather than
a bias in the survey design itself. As the vast majority of sites are on the escarpment
slopes and Woronora plateau, the locations on the coastal plain do not affect the

models for most species.

Figure 4.8 (next page): The geology (left) and vegetation communities (right)
present in the study area. Geology map is provided by the NSW Department of
Primary Industries. Vegetation map is from NPWS (2002). Black and white spots
in the vegetation diagram illustrate the locations where the vegetation survey was
conducted. See Section 4.5.1 for definitions and descriptions of each geology and

community.
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Figure 4.9: The optimal radius of the contextual indices for seven predictors, as
determined using eight canopy tree species in single predictor models. The
diamonds show the mean and standard deviation. The boxes show the median and
quartiles. The seven predictors were geology (Geol), elevation (Elev), the average
summer maximum temperature (MaxER), the log of distance to streams (LogDS),
and exposure to northeasterly, southerly and west to northwesterly winds (WindNE,

WindS, WindWNW).
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Figure 4.10: The optimal radius of the contextual indices for eight tree species in
the [llawarra region, as determined using seven environmental factors in single
predictor models. The diamonds show the mean and standard deviation. The boxes
show the median and quartiles. The eight species were gully gum (GG), mountain
grey gum (MGQG), coastal white box (CWB), blackbutt (BB), silvertop ash (SA),
red bloodwood (RB), red cedar (RC) and lilly pilly (LP).
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Figure 4.11: The response curves generated by a four-predictor GAM for E.

cypellocarpa using contextual indices. Each predictor represents the average habitat

quality within 500 m, where 100% habitat quality is defined as either: Elevation

between 320 m and 420 m (EL500); Exposure to southerly winds of between 0.8

and 1.4 (S500); Geology of either ‘TRnbu’ or ‘TRnz’ (G500); or, Exposure to west
to northwesterly winds of between 0.5 and 1.0 (W500).
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Chapter 5: Climate change at the landscape scale:
predicting fine-grained spatial heterogeneity in

warming and potential refugia for vegetation®

5.1 Introduction

Current predictive modelling of the response of species to climate change produces
highly variable results according to variations in the Global Climate Model (GCM,
Beaumont et al. 2007) and statistical technique used (Aragjo et al. 2005a). These
differences raise questions regarding the usefulness of the models (Araujo et al. 2005a),
and highlight a need to improve methodologies.

Much discussion on methodology has concerned the choice between mechanistic
process-based models of plant demographics and bioclimatic models based on the
correlation between climatic factors and the current distribution of species. Both
approaches have advantages and disadvantages (Loehle and LeBlanc 1996; Pearson and
Dawson 2003, 2004), yet there are a number of problems common to both that are
associated with the climate data used. First, climatic data is typically either from coarse-
grained (e.g. 50 km) GCMs, or from an idealised scenario of a fixed and uniform
increase in temperature (see Beaumont et al. 2007 for a comprehensive list of
examples). Both cases are unable to distinguish fine-scale heterogeneity in climate
change, and this may introduce a bias in predictions (Loehle and LeBlanc 1996; Aratjo
and Rahbek 2006). Temperature increases will vary across microclimates (Beaumont

and Hughes 2002), and species respond to spatially heterogeneous regional climates

3 This chapter has published as: Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the
landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for
vegetation. Global Change Biology, 15, 656—667.
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rather than global averages (Walther et al. 2002). Local scale effects of climate change
have been poorly explored (del Barrio et al. 2006), and further investigation is needed to
identify refugia from apparently unfavourable conditions at coarser scales (Pearson
2006). These refugia are a known problem with coarse-scale models, and may mean that
predictions of extinctions are exaggerated (Thuiller et al. 2005; Ancides and Peterson
2006; Pearson 2006; Botkin et al. 2007).

The second issue is that seasonal temperatures are often reduced to a limited and
predefined set of variables prior to modelling species distributions—most commonly
mean annual temperature, winter minimum, and either summer maximum or an estimate
of growing degree-days (e.g. Aratjo et al. 2005a; Thuiller et al. 2005; Ancides and
Peterson 2006; Beaumont et al. 2007). While these variables have been selected based
on the general physiological response of species, this a priori selection of predictors
will lead to erroneous predictions for species that are limited by temperatures during
other seasons. Some seasons have warmed more than others, and minimum
temperatures have increased by more than maximum and average temperatures (Loehle
and LeBlanc 1996). Seasonal fine-tuning of climatic variables has been shown to
improve bird models (Heikkinen et al. 2006), and this may be true for plants as well.

The third issue concerns the accuracy of temperature predictions. Errors in
temperature estimates are usually stated as being less than 5% (e.g. Beaumont and
Hughes 2002), but the absolute magnitude of these errors can still be in the order of 1 °C
when temperatures are approximately 20 °C. In addition, there can be variations of up to
33.8 °C within one 50 km cell (mean 1.8 °C, Hijmans et al. 2005), and errors of this
magnitude are significant for many species. For example, Hughes et al. (1996) found
that 41% of eucalypts in Australia had a mean annual temperature range of less than

2 °C, and 25% less than 1 °C.
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Errors in temperature estimates are partially due to the assumption that temperature
can be interpolated based only on elevation. While elevation is the dominant factor
controlling the distribution of most seasonal temperatures, coastal influences and
exposure to wind are more important in some seasons—especially the extreme
temperatures that are limiting for many species (Ashcroft et al. 2008; Chapter 3).
Incorporating these other factors into temperature predictions changes the spatial
distribution of seasonal temperature estimates and dramatically affects model
predictions.

This chapter addressed these issues with the temperature data used in climate
change models by estimating the fine-scale spatial heterogeneity in warming that has
occurred between 1972 and 2007 in an approximately 10 km by 10 km area. A better
understanding of these past changes in temperature could assist scientists to improve
predictions of future changes. I used the estimates of past warming to investigate
whether some locations were potential refugia because they had warmed by less than
others. The reduced warming in refugia could act to prevent extinctions, or at least slow
the rate at which climate change affects species. I estimated the average amount of
warming that 37 plant species had experienced to determine if any species was at more

risk because of the bias in the topographic and geographic locations they occupied.

5.2 Materials and methods

5.2.1 Overview of approach

The approach I adopted combined 35 years of data from Bureau of Meteorology (BoM)
weather stations with one year of personal observations of soil-surface temperatures.
BoM weather stations provided a good record of historical climate change, but were not

sufficient to make fine-grained predictions of warming as there were not enough
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stations, they were too sparsely distributed, and they did not cover the full range of
microclimates in the study area. By recording soil temperatures at 40 sites for one year,
and determining the relationship between the air temperatures at the BoM stations and
the soil temperatures at each site, I could estimate the fine-grained spatial distribution of
temperatures for the whole period of interest (1972—2007). This was based on the
assumption that the soil-air temperature relationships were temporally stable. The
relationships between BoM air temperatures and site soil temperatures were determined
separately for each weather pattern (e.g. wind speed and direction, humidity) as these
factors can affect the spatial distribution of soil temperatures (Ashcroft et al. 2008;

Chapter 3).

5.2.2 Temporal changes in weather patterns

The study was conducted on approximately 12000 ha of the Illawarra Escarpment and
Woronora Plateau (34.4 °S, 150.9 °E), approximately 80 km south of Sydney, Australia
(Figure 5.1). The study area was selected because it contains a complex mosaic of
vegetation (NPWS 2002), and the patterns cannot be easily explained using common
predictors such as elevation and geology. I suspected that elevation may have been a
poor surrogate for temperature in this area, and have subsequently shown that this is the
case for the extreme temperatures (winter minimums, summer maximums) that have a
strong influence on the distribution of species (Ashcroft et al. 2008; Chapter 3).
Long-term weather data from the Bureau of Meteorology (www.bom.gov.au) was
only available for one weather station within the study area (Wollongong University).
Therefore, I also obtained data from the five nearest long-term stations in a variety of
directions (Figure 5.1). Data for the period of March 1972 to February 2007 was
obtained for all six stations, although the Nowra and Point Perpendicular data was

actually a combination of two stations for different periods.
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Hierarchical cluster analysis (using JMP, Ward method) was performed to group
days with similar weather patterns. There were 48 variables used, eight for each of the
six weather stations. The eight variables were northerly wind component at 9am and
3pm, easterly wind component at 9am and 3pm, humidity at 9am and 3pm, and the
relative minimum and maximum temperatures. The northerly and easterly wind
components were calculated as wind speed x sine/cosine(wind direction). The relative
minimum and maximum temperatures were the difference between each station and the
average of all stations. The relative temperatures were used so that uniform spatial
warming within and between years would not cause the weather pattern to change.
Clusters would only be affected if there were changes in wind speed, wind direction or
humidity, or some stations had larger temporal differences in temperature than others. A
small number of observations were missing from each weather station, but these could
be estimated using linear regression and the data from other stations. Any errors
introduced by this process are considered negligible due to the small amount of missing
data relative to the 48 variables considered for each day (8 variables x 6 stations), and
the high correlations that I observed between data at different stations.

Cluster analysis was used to group all individual days from March 1972 to
February 2007 into one of eight groups—each representing a different weather pattern.
The number of groups was selected as a trade-off between more groups (less data in
each group to establish relationships between air and soil temperatures) and less groups
(more variable weather conditions within each group). I could just have validly used
more or less than 8 groups, and the implications of this trade-off are included in the
discussion.

The number of days of each weather pattern in each calendar year (1973-2006) was

regressed against years to determine if there was an increase or decrease in the
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frequency of different weather patterns. I also calculated the percentage of days in each
calendar month that belonged to each weather pattern to determine if there was a
seasonal trend. I assessed selected statistics for each weather pattern by calculating the
mean (and standard deviation) of daily variables using all days in all years that were
part of that pattern. Daily variables were northerly and easterly wind component at 3pm
and 9am, humidity at 3pm and 9am, and minimum and maximum temperatures. All
variables were the average of the respective values at the six weather stations. Note that
relative temperatures were used to produce clusters (see above), but weather patterns

were assessed using actual temperatures.

5.2.3 Relationships between air and soil temperatures

The weather station data used above was only available at 6 locations, and was therefore
insufficient to determine the fine-grained spatial distribution of warming. To counter
this problem, I obtained soil temperatures at 40 locations (Figure 5.1) for the period
September 2005 to August 2006, and determined the relationship between soil and air
temperatures for this period. These relationships were used to predict minimum and
maximum soil temperatures at all 40 sites for each day that BoM data was available
(1972-2007, as above).

Soil temperatures were recorded using DS1921G iButton temperature loggers
(Dallas Semiconductor/MAXIM), which were placed 1 cm below the surface and
recorded hourly temperatures (Ashcroft et al. 2008; Chapter 3). Linear regression was
used to relate the daily minimum and maximum air temperatures (the average of the six
BoM stations) with the respective minimum and maximum soil temperatures from the
iButtons for the period September 2005 to August 2006. I used the average of six
stations, rather than simply the one station that was recorded within the study area,
because | wanted to relate the soil temperatures to the average air temperature and
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weather pattern of the region. Individual weather stations vary in factors such as
distance to coast and exposure to key wind directions, and therefore have greater
potential to be biased. Using the regional temperature and weather pattern means the

method has greater potential to downscale coarse-grained GCM data.
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Figure 5.1: The topography of the study area (right) as an elevation between 0 and
573 m. Superimposed are 40 locations where temperatures were recorded with
iButtons, and 600 sites where a vegetation survey was conducted. Daily Bureau of

Meteorology observations were obtained from six nearby locations (left).

Analysis was performed separately for each of the eight weather patterns and 40
sites (320 regressions for maximum and minimum temperature), as air temperature may
have a different effect on soil temperature at different sites according to wind direction
or humidity. In addition, different sites are affected differently according to the
exposure to those wind directions (Ashcroft et al. 2008; Chapter 3). The established
relationships between air and soil temperatures were used to estimate the soil
temperatures at each of the 40 iButton sites for each day from March 1972 to February
2007.

I investigated a number of factors that had the potential to affect the relationships

between soil and air temperatures. First, the average slopes of the air-soil relationships
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for the eight weather patterns were regressed against their average humidity, average
minimum and maximum temperatures, and average northerly and easterly wind
components. Second, the average slopes of the air-soil relationships for the 40 sites
were regressed against their elevation, distance to coast, distance to streams, and
exposure to different directions. The ‘exposure’ predictors were topographically derived
estimates of exposure to wind based on the angle to the horizon in a given direction (see
Ashcroft et al. 2008; Chapter 3 for the accuracy and source of all predictors). Exposure
has a number of advantages over aspect, and has been shown to be important for the

spatial and temporal variations in temperature (Ashcroft et al. 2008; Chapter 3).

5.2.4 Estimating spatial variations in temperature change from 1972

to 2007

The average seasonal minimum and maximum temperatures for each site in each of the
35 years (from March 1972—February 1973 to March 2006—February 2007) were
calculated by averaging the respective daily temperatures. Seasons conformed to those
of the southern hemisphere. That is, summer (December—February), autumn (March—
May), winter (June—August) and spring (September—November). For each site, the 35
years of seasonal average minimum and maximum temperatures were regressed against
years to determine the trend in temperatures. The amount of warming was estimated as
the slope of the regression x 34 (the difference in years between the start and end dates).
The four respective seasonal estimates of warming at each site were averaged to
estimate the annual warming in minimum and maximum temperatures. In total, there
were 10 estimates of warming for each of the 40 sites—minimum and maximum
temperatures for four seasons plus an annual average. The averages across the 40 sites
were used to estimate the amount of warming in each season that had occurred between

1972/3 and 2006/2007.
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The factors influencing the spatial distribution of warming were examined by
regressing the warming at the 40 sites (10 separate regressions—one for each of the
seasonal temperatures above) against elevation, distance from coast, distance from
streams and exposure. These predictors are known to influence the distribution of
temperatures in this study area (Ashcroft et al. 2008; Chapter 3). The selected direction
of the exposure predictor was the one that maximised the r* of the regression.

The relative contribution that each environmental factor made to the amount of
warming was compared with other factors by multiplying the coefficient of each
predictor with its range. This estimated its overall ‘influence’ in degrees Celsius, and
allowed predictors with different units and ranges to be directly compared (Ashcroft et

al. 2008; Chapter 3).

5.2.5 Estimating the impact of climate change on plants

The established relationships, between the amount of warming at a site and the
respective environmental variables, were used to generate ‘warming surfaces’ for the
whole landscape in a GIS. These warming surfaces were then used to estimate the
amount of warming at each of 600 sites where a vegetation survey was conducted
(Figure 5.1).

The study area contains a complex mosaic of moist and dry rainforests, moist
eucalypt forests, tall open eucalypt forests, upland swamps and woodlands (NPWS
2002). Each site (20 m by 20 m) was surveyed for presence or absence of 37 species
that were common in these communities (NPWS 2002), of which the majority were
trees (Table 5.1). Previous results have shown that the distributions of these species are
explained well by models with landscape scale soil temperatures (Ashcroft et al. 2008;

Chapter 3).
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For each species, I averaged the amount of warming in the 10 seasonal temperature
gradients using only the sites where that species was found. This produced 10 estimates
of warming for each species—each representing the average amount of warming for that
species in terms of that seasonal temperature. I determined the potential bias in coarse-
grained climate models by determining the difference in warming that different species
experienced on each gradient. If there were no bias in coarse grained models, then all
species should experience the same amount of warming. Differences in the amount of
warming could occur if species were biased in the topographic and geographic locations
they occupied within the landscape.

For each of the 10 seasonal temperatures, I ranked all species using a linear scale
from 0% (experienced the least amount of warming) to 100% (experienced the most
amount of warming). I calculated the mean and standard deviation for each species
across the 10 seasonal temperatures to determine if they consistently experienced a
similar amount of warming relative to the other species. This was used to determine
whether the bias in warming for each species was predictor specific, or whether the bias

was consistent across all temperature predictors.
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Table 5.1: The 37 species from the Illawarra Escarpment that were modelled as part

Scientific name

of this study.
Abbreviation Common name
TVH Two-veined hickory
GW Green wattle
LP* Lilly pilly
BS Black she-oak
ROP* Red olive plum
cw? Coachwood
HC* Hairy clerodendrum
RB Red bloodwood
NC* Native cascarilla
JwH Jackwood
MG* Murrogun
PT* Prickly tree fern
GST? Giant stinging tree
SF* Sassafras
MGG Mountain grey gum
YS Yellow stringybark
BB Blackbutt
SPM Sydney peppermint
CcwB Coast white box
SG Scribbly gum
BGH Blue gum hybrid
SA Silvertop ash
GG Gully gum
FRG Forest red gum
BWR* Bolwarra
CSF* Creek sandpaper fig
LT* Lantana
CTP? Cabbage tree palm
HLD* Hairy-leaved doughwood
VMO* Veined mock-olive
Sp* Sweet pittosporum
Fw* Featherwood
wB* Whalebone tree
TT Turpentine
SR* Scentless rosewood
BP* Brush pepperwood
RC* Red cedar

Acacia binervata

A. mearnsii

Acmena smithii
Allocasuarina littoralis
Cassine australis
Ceratopetalum apetalum
Clerodendrum tomentosum
Corymbia gummifera
Croton verreauxii
Cryptocarya glaucescens
C. microneura

Cyathea leichhardtiana
Dendrocnide excelsa
Doryphora sassafras
Eucalyptus cypellocarpa
E. muellerana

E. pilularis

E. piperita

. Quadrangulata

. racemosaXhaemastoma
. salignaXbotryoides

. sieberi

. Smithii

. tereticornis
Eupomatia laurina

Ficus coronata

Lantana camara
Livistona australis
Melicope micrococca
Notelaea venosa
Pittosporum undulatum
Polyosma cunninghamii
Streblus brunonianus
Syncarpia glomulifera
Synoum glandulosum
Tasmannia insipida
Toona ciliata

mmmMmmMmmm

T introduced species

! rainforest species
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5.3 Results

5.3.1 Temporal changes in weather patterns

The eight weather patterns that were identified using cluster analysis each favoured
different seasons during the year. Winter was dominated by group 7 conditions, which
were characterised by low temperatures, intermediate humidity, and light west to
northwest winds (Figure 5.2). Group 7 days decreased in frequency from approximately
64 to 46 days per year over the period of interest. Group 8 and group 4 were also
common in early and late winter respectively. Group 4 days were characterised by
strong westerly winds, low temperatures, and low humidity. They increased from
approximately 33 to 38 days per year. Group 8 days were characterised by light NE to
NW winds, low temperatures, but relatively high humidity. They decreased in frequency
from 35 to 18 days per year, the largest percentage drop of any of the weather patterns
(Figure 5.2f). All of the three groups that were common in winter had similar average
temperatures, but the higher humidity groups (7, 8) decreased in frequency, and were
replaced by group 4 (lower humidity, stronger westerly winds) and an increasing
frequency of spring conditions (see group 2 below). This suggested a change towards

drier and/or shorter winters.
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Figure 5.2: Eight weather patterns were identified for the study area. Each weather
pattern is represented as the average northerly (a) and easterly (b) components of
the wind across the six BoM weather stations (wind speed % sine/cosine of wind
direction), average minimum and maximum temperatures (c), the average humidity
at 9am and 3pm (d). Panel (e) illustrates the seasonal change in weather patterns
using the percentage of days in each month that belonged to each of the eight
weather patterns (average between 1973 and 2006). Panel (f) shows the inter-annual

change in the annual number of days in weather patterns 2 and 8 over that period.
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The most common conditions in summer were group 5 and group 6. Both were
characterised by high temperatures and moderate humidity, but group 5 had northeast
winds, while group 6 had southeast winds. Both increased in frequency, with group 5
increasing from 60 to 67 days per year, and group 6 from 48 to 50. This suggested an
increase in the frequency and/or length of summer conditions.

Spring and autumn were transition periods where both winter and summer
conditions were observed. However, spring also contained the peak of group 2 days.
Group 2 was characterised by high temperatures and low humidity under the influence
of westerly winds. These conditions are desiccating for moist rainforest plants, and pose
bushfire hazards (Fuller 1995). They increased in frequency from 20 to 36 days per
year, which was the biggest increase in frequency of all the weather patterns (Figure
5.29).

The final two groups (1 and 3) were observed over the whole year, but were more
common in summer than winter. Both had moderate temperatures, low diurnal ranges,
and high humidity, suggesting they occurred during rainy periods. Group 1 was
characterised by strong southerly winds and increased from 55 to 66 days per year.
Group 3 was characterised by light easterly winds, and decreased from 50 to 44 days per

year.

5.3.2 The relationships between soil and air temperatures

The 640 correlations (40 sites, 8 weather patterns, minimum and maximum
temperatures) between soil and air temperatures were strong (mean r° = 0.83, s.d. =
0.10), however the slope of the regressions varied dramatically from 0.30 to 1.35 (mean
=0.71, s.d. = 0.15). This illustrates that, on average, a 1 °C increase in average air
temperatures across the six weather stations corresponded with a 0.71 °C rise in soil
temperatures on the Illawarra Escarpment, but there were noticeable variations.
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There were large differences in the average slope of the air-soil temperature
relationships between the eight different weather patterns (mean = 0.71,s.d. =0.12, n =
8), which were best explained in terms of humidity (r* = 0.54, P < 0.05, Figure 5.3). The
weather patterns with low average humidity (groups 2, 4, 7) were less sensitive to

changes in air temperature than those with high humidity.
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Figure 5.3: The relationship between average slope of the air-soil temperature
regressions and average humidity, where each point corresponds with one of the

eight weather patterns used in this study.

There were smaller differences in average slope of the air-soil relationships
between the 40 different sites (mean = 0.71, s.d. = 0.07, n = 40), but these were
significantly correlated with exposure to the WNW (r* = 0.14, P < 0.05). Exposed sites
had higher regression slopes, indicating that a 1 °C change in air temperature had more

affect on ‘west facing’ slopes than ‘east facing’ slopes.

134



Chapter 5: Climate change at the landscape scale

5.3.3 Estimating the spatial distribution of warming from 1972 to

2006

The amount of warming (averaged over the 40 sites) that was estimated to have
occurred over the last 34 years was higher in winter and spring than summer and
autumn, and was higher for minimum temperatures than maximum temperatures (Figure
5.4). The 10 estimates of warming (minimum and maximum temperatures for the four
seasons and annual period) at the 40 sites were explained using multiple regressions

against environmental factors (mean > =0.39, s.d. = 0.07).
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Figure 5.4: The mean (and standard deviation) amount of warming (1972-2007)

estimated at 40 sites where soil temperatures were recorded.
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Distance from coast was, on average, the most influential predictor of warming,
with inland sites warming by more than coastal sites in all ten models. The magnitude of
the effect varied from 0.06 °C to 0.30 °C, with highest influence on winter minimums.
Distance from streams was the least influential predictor, but there was more warming
away from streams in all ten models. The effect ranged from 0.01 °C to 0.11 °C.
Elevation was the most influential predictor of warming in minimum temperatures, but
was less influential than exposure and distance to coast for maximum temperatures. All
ten models suggested there was more warming at lower elevations, and the difference
ranged from 0.02 °C to 0.37 °C. Exposure was the most influential predictor for
maximum temperatures, but was less significant than elevation and distance from coast
for minimum temperatures. The effect ranged from 0.05 °C to 0.20 °C. Annual
minimums, and autumn and winter temperatures were best explained using an exposure
direction of S to SE, with exposed sites warming by less than sheltered sites. Annual
maximums and spring and summer temperatures were best explained using exposure to
the W to NW or N to NE, with exposed sites warming by more than sheltered sites.
These directions were consistent with more warming at sites exposed to the warm-dry
NW winds, and less warming at sites exposed to cold SE sea breezes (Fuller 1995;
Ashcroft et al. 2008; Chapter 3).

The different contributions of environmental factors in different seasons meant that
the surfaces for warming displayed different spatial patterns (Figure 5.5). For example,
summer maximums only displayed a small amount of warming (< 0.35°C), and were
heavily influenced by distance to coast. In contrast, spring maximums displayed a high
level of warming (0.4—1.0°C), with exposure to the WNW the dominant factor. This was

consistent with the increasing frequency of the group 2 weather pattern (westerly winds
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in spring) noted above. Finally, winter minimums had the most warming (0.4—1.4°C),

and were influenced by both distance to coast and elevation.
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Figure 5.5: The spatial distribution of warming (1972-2007) in the study area
(Figure 5.1) as estimated by regressing the amount of warming at the 40 sites where
temperatures were recorded against environmental factors. All surfaces are in

degrees Celsius.
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5.3.4 Effect of warming on vegetation

The difference in warming between species on the same temperature gradient varied
from 15% to 197% (Table 5.2). For the less extreme temperature gradients (winter
maximums and spring and summer minimums), there was less than 16% difference in
warming between all 37 species. For the more extreme temperatures (winter minimums
and summer, autumn and annual maximums), there was more than 30% difference

between species (Table 5.2).

Table 5.2: The amount of warming in ten seasonal temperature variables was
estimated at 600 sites where a vegetation survey was conducted. I calculated the
average amount of warming for each of 37 species by averaging the warming at the
sites at which those species were observed. The middle columns represent the mean
warming for those species with the lowest and highest averages respectively. The

final column indicates the percentage difference between these two values.

Seasonal temperature Lowest warming (°C) Highest warming (°C) Percentage difference

Summer maximum 0.15 0.23 47%
Autumn maximum 0.05 0.16 197%
Winter maximum 0.47 0.55 16%
Spring maximum 0.60 0.74 24%
Annual maximum 0.32 0.42 31%
Summer minimum 0.38 0.44 15%
Autumn minimum 0.54 0.69 28%
Winter minimum 0.74 0.96 30%
Spring minimum 0.71 0.82 15%
Annual minimum 0.59 0.73 23%

Most species had a similar amount of warming relative to other species over all ten
temperature gradients (Figure 5.6). Species that were only found at inland sites, and
typically on drier slopes exposed to the west and northwest, experienced a relatively

high amount of warming on all ten gradients. These species included Eucalyptus
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cypellocarpa MGQG), E. piperita (SPM), Acacia binervata (TVH) and A. mearnsii
(GW). In contrast, species that experienced a relatively low amount of warming on all
ten gradients included moist and dry rainforest species (e.g. Acmena smithii (LP),
Doryphora sassafras (SF), Toona ciliata (RC) and Cassine australis (ROP)) as well as
species that were predominately restricted to the sheltered slopes of the escarpment (e.g.
Syncarpia glomulifera (TT) and Eucalyptus pilularis (BB)). The species that did vary in
relative warming (high standard deviation in Figure 5.6) were typically those that were
common on the Hawkesbury sandstone peaks (e.g. Eucalyptus sieberi (SA) and
Corymbia gummifera (RB)) and dry rainforest species from the foothills and coastal
plain (e.g. Croton verreauxii (NC) and Melicope micrococca (HLD)). The former two
species (SA and RB) were below the 30th percentile in terms of relative warming for
winter minimum, but above the 70th percentile in terms of summer maximum. The
latter two species (NC and HLD) were below the 16th percentile in terms of summer

maximum, but above the 80th percentile in terms of winter minimum.

5.4 Discussion

5.41 The importance of weather patterns for climate change

predictions

The results of this study provide further evidence that the spatial distributions of
landscape scale soil temperatures are heavily dependent on weather patterns such as the
speed and direction of prevailing winds (Ashcroft et al. 2008; Chapter 3). This is an
important finding with respect to climate change studies, because any change in weather
patterns could dramatically change the spatial distribution of temperatures, and cause
large differences in the temperature changes that different locations experience.

Locations where there is less warming could act as refugia, and prevent extinctions that
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are typically predicted by coarse-scale models, or at least reduce the rate at which

climate change affects different species.
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Figure 5.6: The average amount of warming (1972-2006) was estimated for 37

species (Table 5.1) using ten seasonal temperature gradients (Table 5.2). The

relative warming for each species on each gradient was calculated on a linear scale

from 0% (least warming of all species) to 100% (most warming of all species). This

graph illustrates the mean (standard deviation) relative warming for each species

over the ten gradients.

Less warming has occurred at sites that are nearer the coast, closer to streams, at

higher elevations, exposed to cold S to SE winds, or sheltered from warm, dry, W to

NW or N to NNE winds. Species are biased in the topographic and geographic positions

they occupy, and therefore different species have experienced different amounts of

warming over the last 34 years. For example, moist rainforest species are typically

found in locations that are sheltered from the warm, dry W to NW winds. Therefore,
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these species have experienced less warming than species such as Eucalyptus
cypellocarpa, E. piperita and E. salignaXbotryoides, which are often found at inland
sites exposed to these winds. In this context, moist rainforest species are already
restricted to refugia within the landscape.

The topographic and geographic biases in species distributions are not unique to
this study area. For example, rainforest species are restricted to sheltered gullies at other
locations along the east coast of Australia (e.g. Van Niel and Austin 2007), and
eucalypts have consistent biases in the topographic positions they favour (e.g. Austin
and Meyers 1996). Therefore, although this study has only determined the species-
specific bias in warming in one study area, it is possible that these biases result in
consistent over or underestimates across the whole range. If this were the case, then it
would represent a consistent bias in each cell of coarse-grained SDMs.

The results of this study highlight the need to improve the accuracy of methods that
are used to downscale coarse-grained temperature surfaces. Currently, coarse-scale
bioclimatic models are downscaled using elevation as a surrogate for temperature
(Trivedi et al. 2008), or SDMs consider fine-scale heterogeneity by including the
elevational range of each cell as an extra predictor (Luoto and Heikkinen 2008). The
accuracy of these approaches could be improved by considering the regional weather
pattern (wind speed, direction, humidity) and the topographic exposure to key wind
directions. To successfully implement this over large geographic regions, it will be
necessary to develop general rules as to how regional weather patterns relate to fine
scale temperature distributions. This will require applying methods similar to those in
this chapter to numerous other study areas, and determining whether generally

applicable relationships can be established.
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Further research is also needed to confirm how the fine-grained spatial variability
of climate change, and the species-specific biases, affects the results of Species
Distribution Models. However, it is already known that climate change predictions vary
substantially according to variations in the GCM (Beaumont et al. 2007) and statistical
technique (Aragjo et al. 2005a), and the results of SDMs vary when fine-grained spatial
variability in temperature is considered (Ashcroft et al. 2008; Chapter 3). Therefore, it is
likely that new methods to downscale temperature data would dramatically change

climate change predictions from SDMs.

5.4.2 Selecting the correct temperature predictors in models

While spatial variations in temperature change caused small differences (up to 0.22 °C,
Table 5.2) in the average warming each species experienced on the same temperature
gradient, these differences were small when compared to the difference between
different temperature gradients (0.68 °C—0.81 °C). For example, minimum temperatures
increased almost twice as much as maximum temperatures (except in spring), and
winter and spring temperatures increased approximately twice as much as those in
summer and autumn. Therefore, an important area for climate change studies is
determining which seasonal temperatures are limiting the distribution of each species.
Modelling species with the wrong seasonal temperature estimate will dramatically alter
estimates of extinction risk.

Determining the seasonal temperatures that are limiting each species is not a simple
task. Many seasonal temperatures are highly correlated (especially if they are all derived
using only elevation and location), and there may be little difference in model
performance using temperature estimates from different seasons. The wrong predictors
can easily be selected, and this can drastically alter predictions if they are in different
seasons than the true limiting factors. One of the advantages of deriving fine-grained
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temperature estimates using distance to coast, distance to streams, exposure to key wind
directions and elevation, is that it reduces the correlation between alternative
temperature predictors. This reduces the probability that the wrong predictor will be
selected, although it does not eliminate it completely when multiple seasons have a

similar spatial distribution of temperature.

5.4.3 The relationship between soil and air temperatures

An unexpected and interesting result from this study was that the relationship between
soil and air temperatures varied according to the humidity of the weather pattern and the
exposure of the site to the WNW. Humidity was low when winds were from the west
(groups 2, 4, 7), and a 1 °C difference in air temperature made an average difference of
0.53-0.64 °C to soil temperatures under these conditions. In contrast, for the other
weather patterns, a 1 °C difference in air temperature made an average difference of
0.71-0.86 °C to soil temperatures.

The reason that humidity affects the relationship between soil and air temperatures
is not clear, but there are at least two possibilities. Firstly, the high specific heat of water
may affect the transfer of heat between soil and air. That is, it may be more efficient to
transfer heat to the soil when the air is humid and the soil is dry, than when the air is dry
and the soil is moist. Secondly, this result may reflect a bias in the locations of the
iButtons relative to the broader study area covered by the weather stations. The study
area where the iButtons were placed is near the coast, and many of the sites are
sheltered from the westerly winds by the escarpment. These possibilities require further
investigation.

Understanding the interactions between soil and air temperatures is important, as
both may be important for determining the response to climate change. More data is
available from the BoM on air temperatures, but soil temperatures are more spatially
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heterogeneous and may be better able to explain the patchy nature of vegetation
(Ashcroft et al. 2008; Chapter 3). The results of this study suggest that a change in
humidity may affect soil temperatures, and therefore the distribution of species, even if

there is no change in mean air temperatures.

5.4.4 Assumptions and limitations

The primary assumption of this study is that the relationships between soil and air
temperatures are temporally stable. This assumption needs to be tested to ensure that
there has been no bias in the relationships introduced by climate change. The primary
limitation is that the study is restricted to one 10 km by 10 km study area, and further
research is needed to determine if the results are indicative of other areas.

I selected eight weather patterns to conduct my analysis. This ensured that I had
sufficient data to determine the air-soil temperature relationships, but meant I only had
eight points (Figure 5.3) when determining which factors affected the slope of the
regressions. Increasing the period (one year) over which soil temperatures were
recorded would provide extra data, and this would allow more weather patterns to be
analysed without compromising the strength of relationships between soil and air

temperatures.

5.5 Conclusions

Spatial variations in temperature are influenced by the prevailing weather pattern (wind
direction, wind speed, humidity), and geographic and topographic factors such as
distance to coast and exposure to winds. Climate change has altered the frequency of
different weather patterns and this has led to fine-grained spatial differences in the
amount of warming. As species are biased in the topographic and geographic locations

they occupy, these spatial variations in warming mean that some species are at more
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risk of extinction than others, and these differences can not be detected by coarse-
grained models. Determining which seasonal temperatures affect each species’
distribution and improving the accuracy of temperature distributions will improve the

accuracy with which models can predict the response of species to climate change.
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Chapter 6: An evaluation of the environmental factors
in species distribution models for vegetation on the

lllawarra Escarpment

6.1 Introduction

Species Distribution Models (SDMs; Guisan and Zimmermann 2000; Rushton et al.
2004; Guisan and Thuiller 2005) explain or predict the distribution of species using
environmental factors such as temperature, moisture availability, topographic position,
and geology. These models are developed based only on correlations, yet the
relationships are implicitly assumed to be causal when they are used to predict the
response of species to climate change (e.g. Bakkenes et al. 2002; Pearson and Dawson
2003; Thomas et al. 2004), applied to other regions (e.g. Randin et al. 2006), or used to
estimate the potential spread of invasive species (e.g. Peterson 2003). Correlations alone
are insufficient to justify these applications of SDMs, and a paradigm shift is necessary
to improve the methods that are used to build and evaluate models (Araujo and Rahbek
2006).

The most common process for producing SDMs involves randomly dividing
presence/absence data on the distribution of species into separate calibration and
validation data sets (Aragjo et al. 2005b). The calibration data set is used to choose
which environmental factors are included in the selected model, and determine the
response function for each gradient. The selected model is then evaluated by calculating
statistics such as the Area Under the receiver operating characteristic Curve (AUC;

Swets 1988; Pearce and Ferrier 2000b) on the separate validation data set.
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One issue with this model building process is that only the selected model is
validated with the independent dataset. Corroboration assessment (Faith 2003; Faith et
al. 2004) suggests that this provides weak inference to accept the selected model, as
there is no information on how it compares with the alternative models. The alternatives
may perform similarly, and be equally valid alternative models (hypotheses) for the
distribution of species.

The dangers of accepting any model with a strong correlation is further illustrated
by recent results showing that random spatially structured predictors offer statistically
strong explanations for species distributions (Bahn and McGill 2007; Currie 2007). As
species distributions and environmental factors are often spatially autocorrelated, SDMs
are expected to have strong correlations even when there is no causal link between the
two. Therefore, demonstrating that the selected model has good explanatory ability is
insufficient to justify its use in environmental management.

To address these problems, it is necessary to consider the theoretical basis of model
production and hypothesis testing. In many ecological studies, a strong correlation
between two variables can be used to reject the null hypothesis that there is no
relationship between them. However, model building in a multivariate context is more
about weight of evidence than null hypothesis testing (Stephens et al. 2007). There may
be many models that produce similar results, especially when predictors are highly
correlated, and this makes it difficult to determine the model with the most support.
Many commonly used modelling methods can produce erroneous results, or identify
spurious correlations, and it may be more ecologically beneficial to provide evidence on
causal factors rather than identify the ‘best model’ (MacNally 2002).

MacNally (2002) detailed a hierarchical partitioning approach whereby the effect of

an environmental factor was estimated by averaging its effect in all candidate models in
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which it occurred. Hierarchical partitioning offers a method to increase confidence in
the predictors that are selected in models, however the method is limited because all
models are produced using the same data. If there is a spurious correlation between a
species distribution and an environmental factor, due to spatial structure for example,
then that variable may appear important in all candidate models that use that same data.
Hierarchical partitioning may help resolve ambiguities due to correlated predictors, but
cannot help avoid spurious correlations between a species distribution and an
environmental factor.

In this chapter I introduce an alternative method that is designed to examine the
strength of evidence that an environmental factor affects species distributions. There are
two key differences from other model building processes. First, all candidate models are
validated using the independent dataset. This provides better protection against
overfitting. For example, if a candidate model is overfitting the training data, then it
should have a lower performance on the independent validation data set. If only the
selected model is validated, then the process will be capable of detecting overfitting, but
it will not prevent an overfitted model being selected in the first place. However, if all
candidate models are validated using the independent dataset, then any overfitting is
detected during the model building process, and can be used to avoid selecting
overfitted models.

The second difference is that the performance of an environmental factor is
assessed using models for multiple species. Environmental factors that are only
important for one species are unlikely to be detected using this approach, but it is
difficult to distinguish these from spurious correlations. Environmental factors that are
strongly correlated with multiple species are less likely to be spurious correlations, as

different distributional data is used in each of the models. Hence, the method avoids the
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problem associated with hierarchical partitioning, which is based on multiple models
but with the same data in each candidate model.

The method is applied in this chapter to provide a more robust examination of
three environmental factors that appear to be key determinants of the distribution of
vegetation on the [llawarra Escarpment. Geology, summer maximum temperature, and
winter minimum temperature all have strong correlations with the distribution of
multiple species (Ashcroft et al. 2008; Chapter 3) but have not been comprehensively
evaluated in a multivariate context. Here, the three predictors are examined to determine
if they make a unique contribution to the performance of SDMs, or whether other
predictors can combine to produce alternative, and potentially equally plausible
hypotheses for the distribution of species.

Furthermore, the methods are used to test whether it is important to consider spatial
predictors in SDMs. The distribution of a species is not just determined by
environmental niche factors, with dispersal, source-sink effects, mass-effects,
fragmentation and other spatial processes also contributing to observed patterns
(Pulliam 2000). In Chapter 4 I demonstrated that contextual indices (Ferrier et al. 2002;
Wintle et al. 2005) could capture spatial processes without the problems of autologistic
regression, and could improve the performance of SDMs over purely niche-based
models. Here, I provide a more comprehensive evaluation to determine whether
contextual indices provide information that is not captured by the raw environmental
factors.

Finally, I evaluate whether species distributions are better correlated with past or
present temperatures. The spatial distribution of warming has not been uniform between
1972 and 2006 (Ashcroft 2009; Chapter 5), and species that have not adjusted their

distribution may be better correlated with past temperatures.
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6.2 Methods

6.2.1 Study area

This study was conducted on approximately 12000 ha of the Illawarra Escarpment and
Woronora Plateau, 80 km south of Sydney, Australia (34.4 °S, 150.9 °E; Figure 6.1).
The escarpment runs northeast to southwest through the study area, and separates the
Woronora Plateau in the northwest from the city of Wollongong on the coastal plain in
the southeast. The escarpment slopes and gullies on the Woronora Plateau contain a
complex mosaic of moist and dry rainforests, moist eucalypt forests, and tall open
eucalypt forests, while the Hawkesbury sandstone ridges and mountaintops support
upland swamps and eucalypt woodlands (NPWS 2002). The foothills and coastal plain
are largely disturbed by urban development, but there are many semi-natural areas in
parklands and along creek lines.

The geology of the study area consists of approximately horizontal layers, with
Hawkesbury sandstone at the highest elevations, and interspersed layers of sandstones,
claystones and coal seams on the escarpment slopes. The gullies on the Woronora
Plateau are predominately on the uppermost two of these units—Bald Hill claystone and

Bulgo sandstone (see Section 4.5.1 for more details on geology in the study area).

6.2.2 Environmental predictors

A categorical geology layer was obtained courtesy of the NSW Department of Primary
Industries and contained spatial errors of up to 150 m in the locations of boundaries (see
Section 3.6.1 for more information on predictor accuracy). I developed a range of fine-
scale temperature surfaces for the study area, including the minimum and maximum
temperatures for spring (September—November), autumn (March—May), summer

(December—February), and winter (June—August), as well as the average annual
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maximums and minimums (Ashcroft et al. 2008; Chapter 3). The surfaces were
developed by recording temperatures using DS1921G iButtons at 40 sites for a period of
21 months from December 2004 to August 2006. The data was originally collected and
analysed in three-week periods (Ashcroft et al. 2008; Chapter 3), however all surfaces
for each season were later averaged to produce the seasonal temperature surfaces

(referred to hereafter as 2005 temperature surfaces).

Survey locations

0 1 2 4Km |

N Elevation (m)
. 1-100 [ 300 - 400
M 100 - 200 [7400 - 500
B 200 - 300 [_1500-600

Figure 6.1: The topography of the Illawarra Escarpment, 80 km south of Sydney,
Australia (34.4 °S, 150.9 °E). A vegetation survey was conducted at each of the 600

sites indicated.
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The spatial distribution of climate change between 1972 and 2006 was estimated by
establishing the relationships between Bureau of Meteorology weather station records
and the iButton observations (Ashcroft et al. 2009; Chapter 5). The results suggested
that inland sites warmed more than coastal sites, and there was more warming at sites
that were exposed to hot-dry northwesterly winds, away from streams, or at lower
elevations (Ashcroft et al. 2009; Chapter 5). This spatial and seasonal heterogeneity
meant that the distribution of 1972 temperatures was different to that of the 2005
temperature surfaces. Therefore, I subtracted the amount of warming from the 2005
surfaces to create the 1972 surfaces. In all, there were 20 temperature surfaces used—
minimum and maximum temperatures for spring, summer, autumn, winter and annual

periods for both 1972 and 2005.

6.2.3 Vegetation data

A vegetation survey of 600 sites (Figure 6.1) was conducted between July 2005 and
March 2006. Sites were purposively selected for modelling (see Hirzel and Guisan
2002) and covered a broad range of environmental conditions. For each of the 21
communities that were common in the study area (NPWS 2002), sites were randomly
selected from a list of potential locations subject to a number of constraints. First, no
sites from the same community could be close together, and were distributed among
different patches where possible. Secondly, within each community, sites were selected
such that they covered a broad elevational range and all geologies on which the
community was commonly found. No subjective bias was introduced by searching for
pristine or homogeneous sites, and there was no bias towards or away from roads (to
eliminate edge effects or gain easy access). See Section 4.5.2 for more details on survey

design.
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Table 6.1: The 37 species from the Illawarra Escarpment that were modelled as part of
this study.

All sites were 20 m by 20 m and were surveyed for presence or absence of 37

common species (Table 6.1). Species were selected based on the vegetation
communities present in the region (NPWS 2002), with the sample size of 600 selected
so that [ would obtain approximately 50 presences for most of the dominant eucalypt

species. This proved effective, and only 4 of the 37 species had less than 40 presences.
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6.2.4 Model production

All models were produced using Maxent version 3.2.1 (Phillips et al. 2006; Phillips and
Dudik 2008). Maxent is a machine-learning modelling method, which has recently
gained attention due to its favourable performance in comparison to other modelling
methods (Elith et al. 2006). It is more flexible than methods such as Generalised Linear
Models (GLMs) and Generalised Additive Models (GAMs) as it can capture complex
response curves to environmental gradients.

A benchmark model was produced using geology and all 20 temperature surfaces as
candidate predictors. Maxent tends to produce models where many predictors have zero
coefficients (Phillips and Dudik 2008) and therefore not all 21 predictors influenced the
models produced. Models were calibrated using a random 70% of the 600 sites, and
validated using the AUC in the remaining 30%.

The benchmark model was compared against a separate model for each time
period—each containing geology and the 10 temperatures surfaces from either 1972 or
2005. The AUC results on the validation data were compared using a 2-sided paired
Student t-test.

A spatial predictor was developed for each species using contextual indices. For
each species, the neighbourhood average of the output from the benchmark model was
calculated using a radius of 500 m. This created a smooth surface of the model output
and provided a general indication of which areas have more favourable habitat. I then
produced a contextual model using the contextual predictor as well as the original 21
predictors in the benchmark model. As above, the differences in AUC results were
compared using a paired t-test to determine whether the contextual (spatial) models

were significantly better than the benchmark (purely niche-based) models.
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I investigated whether the geology, winter minimum or summer maximum
predictors were important by looking at their ‘drop’ contributions (Lehmann et al.
2003). If there were a significant drop in performance when predictors were excluded
from models, then this would suggest that they contain unique information that cannot
be captured by the other predictors. Alternatively, if there were no drop in model
performance, then this would reduce confidence in models using that predictor, because
there are feasible alternative explanations. For these tests, the models based on geology
and the ten 2005 temperature predictors were compared against the models with the
geology, winter minimum or summer maximum omitted.

Finally, I determined whether more parsimonious models could perform as well as
the models that considered all 21 predictors. I tested two models with only three
predictors—geology, winter minimum and either summer maximum or summer
minimum. Summer minimum is well correlated with elevation, while winter minimum
and summer maximum had very different distributional patterns (Ashcroft et al. 2008;
Chapter 3). All four predictors performed well when evaluated on their ‘alone’

contributions (Lehmann et al. 2003).

6.3 Results

The models produced for the 37 species varied in AUC from 0.599 to 0.976. The
differences were mainly due to which species was modelled, with the same species
having similar AUC regardless of which predictors were included in models (Figure
6.2). Three species were more variable in AUC than the others (Eucalyptus pilularis
(BB), Syncarpia glomulifera (TT), and Acacia mearnsii (GW)), and therefore t-tests
were performed with and without these species to avoid the results being influenced by

three ‘outliers’.
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Figure 6.2: The results of Maxent models for 37 species (Table 6.1) as evaluated
using the Area Under the receiver operating characteristics Curve (AUC) on a
random validation dataset consisting of 30% of the surveyed sites. The ‘all”’ model
used geology and 20 temperature surfaces as predictors. The ‘05only’ and ‘72only’
models used geology and the 10 temperature surfaces from either 2005 or 1972
respectively. The ‘all+cont’ model used the predictors from the ‘all’ model, but
added a contextual index as an additional predictor. The ‘nosummax’, ‘nogeol’ and
‘nowinmin’ models were the same as the ‘05only’ models, but excluded either
summer maximum temperature, geology, or winter minimum respectively. The
‘geolsnwn’ and ‘geolsxwn’ models only used geology, winter minimum, and either

summer minimum or summer maximum respectively.
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There were no significant (P < 0.05) differences between the benchmark model and
those based only on the 1972 or 2005 predictors (Figure 6.2a). The benchmark models
had the highest average AUC over the 37 models (0.818) followed by the 1972 models
(0.817) and the 2005 models (0.815). The paired t-tests suggested these differences
were not significant when the three outlying species were excluded (P > 0.4), however
the 2005 models were almost significantly poorer than the benchmark models when all
species were used (P = 0.058).

The contextual indices significantly improved models when evaluated with either
all species (P = 0.012) or without the three outliers (P = 0.026). The improvements did
not appear related to the AUC of the benchmark models. Models with either good (AUC
>0.9) or fair (AUC < 0.8) performance were improved, although 9 of the 37 contextual
models had marginally poorer performance than the benchmark models (Figure 6.2b).
Contextual indices increased the average AUC of the 37 models from 0.818 to 0.827.

Excluding summer maximum temperatures from models did not have a significant
effect (P = 0.235 with all 37 species, P = 0.928 without 3 outliers), with the average
AUC of the 37 models increasing from 0.815 (2005 models) to 0.817 (Figure 6.2¢). In
contrast, excluding winter minimum or geology did have a significant effect (P < 0.02)
regardless of whether or not the three outlying species were considered (Figure 6.2d).
Excluding geology decreased the average AUC of the 37 models from 0.815 to 0.797,
while excluding winter minimum decreased it to 0.806.

Models produced using only geology, winter minimum and summer maximum
performed significantly worse than the 2005 models (P < 0.004), with the average AUC
of the 37 models decreasing from 0.815 to 0.806 (Figure 6.2¢). Models produced using
geology, winter minimum and summer minimum were almost significantly worse than

the 2005 models when evaluated without the three outlying species (P = 0.058), but
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were not significantly different when evaluated using all species (P = 0.859). The
average AUC of the 37 models decreased from 0.815 to 0.814.

The large difference in performance between species appeared to be due to the
extent and specialisation in their distribution. The species with the highest AUC
typically had clustered distributions that were restricted to the Hawkesbury sandstone at
higher elevations (SG, SA, RB), the slopes of the escarpment (GST, NC, RC), the
gullies on the Woronora Plateau (MGG, GG, SPM), or rainforest patches (SF, CW,
BWR, BP, FW, PT). The species that had lower AUC were widespread, and found
across a number of these habitats (GW, BGH, VMO, HC, CTP, SP). The nine species
with the highest AUC were relatively rare species (fewer than 83 presences), while five
of the six worst performing species were common (more than 142 presences).

The species with high AUC had good models with a number of different predictor
combinations. For example, the species on the Hawkesbury sandstone had distributions
that were predominately restricted to a single geological unit, high elevations, and
certain temperature regimes to which these topographic positions are subjected. Any of
these factors offered statistically good explanations for their distribution. In contrast, the
common and widespread species were found over a range of conditions for all
environmental factors I considered, and it was difficult to come up with any explanation
that performed as well as the restricted species.

Two of the three species that were sensitive to the predictors used (BB, TT) were
restricted to the northern portion of the study area. Indeed, there is a north-south trend in
vegetation communities in the region, with Escarpment Blackbutt forest dominating in
the north, Moist Coastal White Box Forest in the south, and Escarpment Moist Blue-

Gum Forest in between (NPWS 2002). The benchmark models that only used niche
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factors could not explain why BB and TT were restricted to the north of the study area,
but the contextual model could (Figure 6.3).

As summer maximum temperature performed well in single factor models
(Ashcroft et al. 2008; Chapter 3), it was somewhat surprising that excluding summer
maximum did not have a detrimental effect on models (see above). Therefore, 1
investigated what the potential alternative explanations were. I found that although
summer maximum temperatures provided a good explanation for the distribution of
rainforests, there were other potential explanations such as a simple linear combination

of winter minimum and summer minimum (Figure 6.4).

6.4 Discussion

6.4.1 Factors affecting the distribution of vegetation on the lllawarra

Escarpment

The methods introduced in this chapter were designed to provide evidence as to which
environmental factors determine the distribution of vegetation on the Illawarra
Escarpment. There was a significant decrease in model performance when either winter
minimum temperatures or geology were excluded from models, thus providing strong
support for these predictors. If the correlations were spurious and only due to spatial
structure, then other spatially structured predictors should have been able to combine to
produce similar results. Instead, the results suggest that winter minimum and geology
contain unique information, at least within the predictors examined. There was also
strong support for spatial predictors, as models with contextual indices performed
significantly better than purely niche-based models. The results provide further

evidence that contextual indices produce effects similar to what would be expected by
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source-sink or fragmentation effects (Chapter 4), and increase the explanatory power of

SDMs (Figure 6.3).

Maxent model output
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Figure 6.3: The non-contextual (top) and contextual (bottom) Maxent models for
Eucalyptus pilularis (Blackbutt). The non-contextual model is based only on
environmental niche factors (temperature and geology), while the contextual model
also includes a spatial predictor based on the average model output within 500 m.
The presence or absence of E. pilularis illustrates that the species was only
observed in the north and east of the area, but the non-contextual model predicts

moderate quality habitat in the south and west.
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Figure 6.4: Panel (a) indicates the location of moist rainforests on the Illawarra
Escarpment (Coachwood Warm Temperate Rainforest or [llawarra Escarpment
Subtropical Rainforest; NPWS 2002). Panel (b) indicates the locations where
summer maximum temperatures are less than 20 °C, and panel (c) indicates where

summer minimum temperatures — 0.4 * winter minimum temperatures is less than

12.8.
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There was no significant difference in the performance between models that
contained only 1972 or 2005 temperature predictors. There was no evidence that any
species, or group of species, was better modelled by one set of predictors or the other.
These results are most likely because both sets of predictors have similar spatial
structure, and hence explanatory ability, even though the distributions of the climate
surfaces are different (Ashcroft et al. 2009; Chapter 5).

Somewhat surprisingly, there was less support for summer maximum temperature
as a predictor. While summer maximums are strongly correlated with the distributions
of many species (Ashcroft et al. 2008; Chapter 3), other predictors could combine to
compensate for their exclusion. Summer maximums may still be an important
determinant of species distributions, but there are alternative hypotheses that also need
further investigation. Further evidence on causal factors may be obtained by further
survey work to validate and refine models (Engler et al. 2004; Guisan et al. 2006b) or
by manipulation experiments conducted to test the effect of different environmental

factors.

6.4.2 Evidence on causal and spurious predictors

It is crucial that models include casual predictors rather than spurious correlations based
on spatially structured predictors. For example, winter minimums have increased by
approximately 1 °C between 1972 and 2005, while summer maximums have only
increased by approximately 0.2 °C (Ashcroft et al. 2009; Chapter 5). If a spurious
predictor is included in SDMs, then this will reduce predictive accuracy (Pearce and
Ferrier 2000a) and dramatically alter predictions of species extinction risk. Currently,
many ecological studies are over-reliant on statistical methods and parsimony, to the
point that they defy known causal relationships (Clark and Agarwal 2007). While
statistical methods are undoubtedly important, statistically valid models may lead to
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negative conservation outcomes if they are not grounded in ecological reality (Austin
2002; Burger and Page 2007).

In this chapter I provided evidence on causality by investigating whether a predictor
had consistently strong explanatory ability for a range of species, and provided
information that could not be captured by other predictors. Another commonly used
alternative is to make an a priori assumption on which predictors to include in candidate
models. For example, temperature predictors are often reduced to mean annual
temperature, winter minimum, and summer maximum or growing season degree-days
(Araujo and Luoto 2007). While these variables will be physiologically limiting for
many species, this will clearly impact model performance if their distributions are
influenced by other seasonal temperatures. Indeed, the results of this study showed that
models that were restricted to winter minimum and summer maximum performed
significantly (P < 0.05) worse than models that also included temperature predictors

from other seasons.

6.4.3 Implications for model validation

Many SDMs are justified by proving they exceed predefined performance benchmarks,
such as an AUC of more than 0.7 or 0.9 (Swets 1988; Pearce and Ferrier 2000b). The
results of this study suggest that these benchmarks provide little information on the
model building process, and do not prove that the selected model is better than the
alternatives. All alternative models produced for a given species resulted in a similar
AUC, and this was determined by the rarity and extent of its distribution. Similarly,
Elith et al. (2006) tested 10 different statistical methods and found that predictive
success varied more between species than between methods. The use of performance
benchmarks needs to be re-examined, and a greater emphasis placed on proving that the
selected model is better than the alternatives.
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For common species with widespread distributions, it may be difficult to determine
any model that exceeds a given benchmark. However, the candidate models may still
provide an important contribution to environmental management or suggest valid
hypotheses for the factors that limit these species. Alternatively, there may be many
models that exceed the benchmark for rare species with clustered distributions. Some of
these models are likely to be based on spurious correlations with spatially structured
environmental variables, and exceeding the benchmark may lead to underestimating
uncertainty in the model. The alternative models for these species may have similar
AUC, but their predictions may be dramatically different, especially when applied in a
climate change setting (Araujo and New 2006; Austin 2007). The uncertainty can be
dealt with by averaging the predictions from multiple alternative models (Aratjo and
New 2006), however this merely hides the uncertainty (Beaumont et al. 2007).

One limitation of the methods used in this chapter is that the validation was not
performed with a truly independent dataset. Dividing the data into separate training and
evaluation datasets provides some protection against overfitting to the specific
calibration data, but it does not prevent overfitting to the study area or climatic
conditions if they are common to both the calibration and validation data sets. Methods
that perform well when assessed using an ‘independent’ dataset from the same study
area (e.g. Elith et al. 2006), can perform poorly when they are applied to other areas
(Peterson et al. 2007). Similarly, models that perform well under current climatic
conditions do not necessarily perform well under other climatic conditions (Aratjo and
Rahbek 2006). There is often no truly independent dataset that has the same species and
environmental conditions as the calibration data set (Austin 2007), and care needs to be
taken to ensure that validation with an apparently independent dataset is not used to

provide an overly optimistic view of model performance (Aragjo et al. 2005b).
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Chapter 7: Discussion: The benefits and challenges of

Species Distribution Models at the landscape scale

7.1 Introduction

Species distributions can be modelled at a variety of spatial scales. Theory suggests that
best results will be achieved when the spatial scale of the environmental predictors
corresponds with the scale at which the important ecological processes operate, and also
matches the resolution of the biological survey data (Graf et al. 2005; Guisan and
Thuiller 2005). However, determining the optimal scale is also confounded by the
accuracy of data used (Scott et al. 2002). If environmental data is of poor quality at any
particular scale, then the corresponding species distribution models will not be optimal,
and will underestimate the importance of those predictors at that scale. Therefore,
studies that seek to determine the importance of environmental factors at different
spatial scales need to consider the accuracy of predictors.

I conducted a series of landscape scale studies on the Illawarra Escarpment, 80 km
south of Sydney, Australia. These studies were unusual in that they did not rely on
elevation as a surrogate for temperature, but used empirical data to create more accurate
landscape scale temperature surfaces (Ashcroft 2006; Ashcroft et al. 2008; Chapters 2
and 3). In addition, they did not rely on coarse-grained climate change models or
assumptions of uniform warming, but estimated fine-scale variations in warming and
potential refugia for vegetation (Ashcroft et al. 2009; Chapter 5). In this chapter I
review the effects of these higher accuracy temperature surfaces on Species Distribution
Models (SDMs), and discuss the lessons for the future of landscape scale modelling as a

whole.
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7.2 The challenges of landscape scale models

Landscape scale models are crucially important for environmental planning, as this is
the scale at which many management decisions are made (Lookingbill and Urban 2003).
Landscape scale SDMs can provide different insights than coarse-scale models, and yet
there are unique challenges that must be overcome to obtain these benefits.

The first challenge that must be overcome is the spatial accuracy of biological data.
Many studies use records from herbaria and museums, and these often have poor
positional accuracy (Guisan et al. 2007). Fine-scale studies require data with higher
spatial accuracy, resulting in smaller sample sizes (Engler et al. 2004). However, Engler
et al. (2004) found that the higher data accuracy of fine-scale models could compensate
for lower sample sizes, and lead to better results than coarse-scale models.

If there is insufficient data for fine-scale models, then existing records will need to
be supplemented with field surveys. Indeed, landscape scale studies often collect their
own field data (e.g. Dirnbdck et al. 2003; Randin et al. 2006; Trivedi et al. 2008), while
continental scale studies often use data from existing databases. Therefore, the
challenge of data accuracy at the landscape scale can be overcome if sufficient
resources can be obtained to collect appropriate data. This task will be easier if the
benefits of landscape scale studies are known, and these will be discussed later in this
chapter.

The second challenge of landscape scale studies that must be overcome is the
accuracy of the environmental factors that are used in the models. Many landscape scale
models use simplified climatic surfaces that are largely determined by elevation (e.g.
Dirnbock et al. 2003; Trivedi et al. 2008). These may underestimate the potential
contribution of climate at this scale. Indeed, I found large improvements in model

performance when temperature surfaces based on empirical data were used instead of
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elevation on the Illawarra Escarpment (Ashcroft et al. 2008; Chapter 3). Summer
maximum temperatures were poorly correlated with elevation (r* < 0.1), and were
predominately determined by exposure to hot, dry northwesterly winds. Similarly,
winter minimums were correlated more strongly with distance from coast than
elevation.

It has been known for sometime that elevation is not a sufficient surrogate for
temperature at the landscape scale (Lookingbill and Urban 2003), and yet there has been
little work done to determine how more accurate temperature surfaces affect SDMs.
There is great potential for improved spatial datasets of environmental factors to lead to
a new generation of gradient analysis at the landscape scale (Lookingbill and Urban
2005). The resources required to generate these surfaces is much less than that to gather
the necessary biotic data. For example, I spent approximately 75 days surveying the
vegetation at 600 sites in my study area, but only needed 18 days to gather sufficient
data on temperature. The cost of the temperature sensors (DS1921G iButtons in this
case) was not high, and so approximately 30% more resources were required to
supplement the biotic survey with higher accuracy temperature surfaces. This extra
expense yielded models based on more direct and accurate environmental predictors,
which more than justified the additional cost. Other iButtons are available that also
measure humidity and these would provide further information on fine-scale variability
in growing conditions.

The third challenge for landscape scale models is to obtain data over a broad range
of environmental conditions. The environmental niche of a species can only be properly
defined if the conditions extend past the environmental limits (Austin 2007), and
therefore a broad range of environmental conditions is needed to increase the

applicability of landscape scale SDMs.
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This challenge is more difficult to overcome, as landscapes are expected to have a
narrower range of environmental conditions than the continents that they reside within.
In addition, even if landscapes do cover a broad range of conditions, they may not cover
all combinations of predictors. This problem was evident in my study on the Illawarra
Escarpment. For example, Eucalyptus sieberi is common on the Hawkesbury sandstone
in the Sydney basin. In my study area it only occurred at elevations of approximately
300 m to 600 m, however I know it exists at other elevations elsewhere. A model based
on elevation performed well for this species—even when validated with an
‘independent’ dataset from the same study area—however it would not be broadly
applicable. It is difficult to determine how many landscape scale models suffer this
same problem.

The third challenge can potentially be overcome by sampling multiple landscapes,
however this may be prohibitively expensive given the cost of obtaining appropriate
biotic and environmental data (discussed earlier), and may be beyond the immediate
scope and needs of the research. Where landscape scale models do not cover the full
range of environmental conditions, this will impact their transferability—that is, the
applicability of the models in areas other than the one where they were created. There is
already some evidence that this is the case. Continental scale models have been
transferred with some success (e.g. Peterson 2003; Peterson et al. 2007), while
landscape scale models have performed more poorly (Randin et al. 2006). This
highlights an important limitation of landscape scale models—they can not be
transferred to new areas without verifying that the range of conditions in the new areas

are similar to those in the area where the models were developed.
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These limitations and challenges that must be overcome to produce landscape scale
SDMs must be offset against the potential benefits. I will now review four potential

benefits of landscape scale SDMs that were apparent from my study.

7.3 Benefit 1: reduction of pseudoreplication

The first benefit of landscape scale models is a reduction in pseudoreplication. For
example, consider the simple relationship between Eucalyptus cypellocarpa and
summer maximum temperature. The species only occurs over a limited temperature
range at the continental scale, however this temperature range only occurs in southeast
Australia (Figure 7.1). Even though this is not a manipulative experiment, it is clear that
there is pseudoreplication due to the lack of interspersion of ‘treatments’ (Hurlbert
1984). E. cypellocarpa could be limited to southeast Australia by summer maximum
temperature, but it may also be due to neutral processes (Hubbell 2001), or by any
number of other spatially structured environmental factors or biological processes. A
continental-scale model produced using Maxent performs very well statistically (AUC
0f 0.992 when 70% of data used to produce model and 30% to validate), but it is
inappropriate to infer that summer maximum is important for this species because there
are other possible explanations (Faith 2003; McGill 2003; Faith et al. 2004).

This problem has recently gained attention by comparing how SDMs perform when
compared with models produced using randomised spatially structured predictors (Bahn
and McGill 2007; Currie 2007). These studies showed that almost any spatially
structured predictor has the power to explain species distributions, and this casts doubt

over many continental-scale models.
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Figure 7.1: A comparison between the distribution of Eucalyptus cypellocarpa
(black dots) and summer maximum temperature (°C) at the continental (left) and
landscape (right) scales. Continental scale data was obtained from the Global
Biodiversity Information Facility (http://data.gbif.org) and ANUCLIM (Houlder et
al. 2000). Landscape scale data was obtained from my study on the Illawarra

Escarpment (Ashcroft et al. 2008; Chapter 3).

Landscape scale models cannot solve this problem completely, but they can reduce
the effect. For example, Eucalyptus cypellocarpa still favours a limited range of
summer maximum temperatures at the landscape scale (Figure 7.1), but these are now
distributed across the whole study area and there are interspersed patches of
unfavourable temperature (treatment). This reduces pseudoreplication, and reduces the
probability that a randomised spatially structured variable would be able to explain the
distribution. This is not to say that the landscape scale will work best for all species,
however, and modellers are encouraged to select a scale that maximises interspersion

and minimises pseudoreplication.

7.4 Benefit 2: less predictor colinearity

Many climatic predictors are created using elevation sensitive interpolations (e.g.

Houlder et al. 2000), and this leads to high colinearity between different seasonal
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temperature predictors. This is a problem for model building, and can lead to the
erroneous selection of environmental factors and distorted response curves (MacNally
2002; Graham 2003; Lehmann et al. 2003; Chapter 6).

The uncertainty introduced by correlated predictors is especially undesirable in a
climate change context. For example, temperatures are typically increasing much more
in winter and spring than summer and autumn, and minimum temperatures are
increasing almost twice as much as maximum temperatures (Hughes 2000; Walther et
al. 2002; Ashcroft et al. 2009; Chapter 5). If the wrong seasonal temperature predictors
are included in models then this will dramatically over- or under-estimate the predicted
effect of climate change, and hence introduce error into the estimated extinction risk.

To mitigate the potential for the wrong predictors to be selected in SDMs,
colinearity in temperature predictors should be reduced by establishing relationships
with a variety of environmental factors—not just elevation. I did this on the Illawarra
Escarpment, and found that the correlation between summer maximum temperatures
and winter minimums temperatures was actually very low (1 = 0.07; Ashcroft et al.
2008; Chapter 3). As noted above, this was because temperatures were affected by
different factors during different seasons, and the spatial distribution of seasonal
temperatures displayed vastly different patterns (Ashcroft et al. 2008; Chapter 3). Some
seasonal temperature predictors were still highly correlated with elevation and each
other, but the methods did reduce the problem to some extent. It is especially
noteworthy that it was the extreme temperatures that had the poorest correlation with
elevation (summer maximum and winter minimum), and these are the factors that are
frequently selected in models because they are physiologically limiting for many

species (Ashcroft et al. 2008; Chapter 3).
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Using a variety of factors to explain the spatial distribution of temperature is not
necessarily a method that can only be applied at the landscape scale. Mountainous
landscapes are more likely to have complex temperature mosaics than coarse-scale
study areas (e.g. Figure 7.1), but factors other than elevation will also affect the
distribution of regional and continental temperatures. To discuss this in more detail, it is
necessary to consider the benefits and implications of standardised weather stations.

Temperatures are affected by a number of factors. Standardisation of climatic
recording equipment (e.g. Stevenson screens) is performed so that the temperatures in
different locations can be easily compared and interpreted. That is, standardisation
ensures that differences are due to coarse-scale positional factors (elevation, distance to
coast, latitude) and not due to localised variations in vegetation, topography, moisture,
human structures, or micro-climatic factors.

Standardised temperature recordings are designed to be representative of the
surrounding landscape, however they are really only representative of areas that match
the standard. That is, 1.25 to 2 m above ground, no vegetation, flat topography, etc.
Therefore, standardised climate data has been referred to as the ‘human climate’, and is
a poor indicator of the ‘habitat climate’ that is of interest when studying species such as
ground dwelling animals and trees that germinate in forests (Wolfe 1945; Geiger 1971).
While it has long been known that human climate is not ideal for ecological studies,
climate surfaces based on standardised data are still commonly used, as little else is
available.

It is possible to create climate surfaces that consider variations in topography and
other factors (Lookingbill and Urban 2003; Ashcroft et al. 2008; Chapter 3), however
this cannot be done with standard weather station data. Weather station data can be used

to detect temperature trends associated with elevation, distance to coast (continentality)

172



Chapter 7: Discussion

and latitude (e.g. McVicar et al. 2007), but cannot predict the effects of vegetation,
topography, and other factors that are standardised, because there is no information on
how temperatures are affected as these factors vary. Therefore, creating surfaces that are
better approximations of habitat climate requires a purpose built network of ‘climate
stations’ with less standardisation.

Climate stations with less standardisation will be less comparable with other
locations, because differences could be due to any number of environmental differences.
It will not be possible to take any one station from a region and imply it is
representative of that region, nor compare two stations to make inferences about which
region is hotter. Recorded temperatures may change over short distances due to changes
in vegetation, moisture or topography, however this is not a problem if the data is
analysed to determine the effect of each of these factors. More weather stations are
needed so that the effect of each factor can be reliably determined, and the less
standardisation is performed, the larger the sample size will need to be.

There can actually be a certain amount of ‘error’ introduced by non-standardised
weather stations, as the temperature at any location is no longer or primary concern.
Instead, the data is used to determine how temperatures are affected as each
environmental factor varies, as this is used to estimate the temperature at each location
in the study area. For example, standardised weather stations may have a stronger trend
between temperature and elevation, and even though reducing standardisation will
weaken this trend, it will still be present (Figure 7.2). The advantage of this extra ‘noise’

is that the effect of other factors can also be determined.
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Figure 7.2: The graphs illustrate simulated results from standardised (top) and
unstandardised (bottom) weather stations. Standardised weather stations have
limited noise introduced by factors such as vegetation and topography, and show a
strong trend towards factors such as elevation. Unstandardised weather stations are
noisier, because temperatures are influenced by a variety of factors. This means that
it is more difficult to compare different locations, but it is now possible to work out

how multiple factors affect temperatures (see text for more information).

In summary, standardised weather stations give a better indication of the general
climate in a region, and are better for comparing the ‘human climate’ in different
regions. Reducing standardisation makes comparing different weather stations more
problematic, but allows scientists to determine how different factors affect the
distribution of temperatures, and produce temperature surfaces that are a better

representation of ‘habitat climate’. As the relative effect of each factor varies
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seasonally, this reduces colinearity between seasonal temperature predictors. Producing
habitat climate surfaces may have been prohibitively expensive in the past, but is now

possible due to the ready availability of cheap, automatic temperature sensors.

7.5 Benefit 3: identification of refugia from climate change

Current climate change models may dramatically overestimate extinction risk because
they are at too coarse a scale to identify refugia where species can persist despite
apparently unfavourable regional conditions (Thuiller et al. 2005; Ancides and Peterson
2006; Pearson 2006; Botkin et al. 2007). This is classically illustrated by the long-term
survival of the Wollemi Pine (Wollemia nobilis), an ancient species that has been able to
survive in deep rainforest gorges 150 km northwest of Sydney, presumably because the
topography offers shelter from regular bushfires and harsh climates (Offord et al. 1999).
My work on the [llawarra Escarpment identified that rainforests were also confined
to sheltered refugia within the landscape. Moist rainforests only occur where summer
maximum temperatures are less than 20-20.5 °C (Figure 7.3; Ashcroft et al. 2008;
Chapter 3), and these locations have not warmed by as much as the more exposed
locations (Ashcroft et al. 2009; Chapter 5). Crucially, the identification of these refugia
relied heavily on factors other than elevation, as their locations were predominately
determined by shelter from the hot, dry northwesterly winds that are associated with
extremely hot temperatures and bushfire hazards. It is not surprising, therefore, that
landscape scale studies that rely on elevation to produce temperature surfaces cannot

identify refugia (Trivedi et al. 2008).
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Figure 7.3: The locations where summer maximum temperatures are less than
20.5 °C are shown in red, while the locations of moist rainforest communities are
shown as black polygons. Temperature data is from Ashcroft et al. (2008; Chapter
3), while vegetation data is from NPWS (2002).

Temperature surfaces based only on elevation predict that temperatures in the deep
rainforest gorges are warmer than the surrounding area, because they are at lower

elevation. They do not identify any difference between the gorges and locations at
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similar elevations in more exposed positions. The data I gathered clearly illustrated that
the rainforest gullies were cooler than the surrounding areas, and were very different
from exposed locations at similar elevations.

The identification of these rainforest refugia offers an alternative to the simplified
generalisation that species will shift poleward and upward in response to climate change
(Hughes 2000). Moist rainforest communities are already restricted to small patches
where the summer maximum temperature is lower than the surrounding region (Figure
7.3), and models suggest they cannot move in any direction in response to climate
change. As temperatures warm, these rainforest patches will only be able to contract.
Fortunately, however, summer maximum temperatures have not increased as much as
other seasonal temperatures (Hughes 2000; Walther et al. 2002; Ashcroft et al. 2009;
Chapter 5), and temperatures would have to increase substantially more to cause a
complete loss of all favourable rainforest habitat.

Many other species on the Illawarra Escarpment are best modelled using winter
minimum temperatures, which are predominately determined by distance to the coast
(Ashcroft et al. 2008; Chapters 3 and 6). Similarly to above, these species would not be
expected to move upward or poleward either. Upward shifts are generally unlikely,
because the species that currently occupy the nutrient-rich soils on the escarpment
slopes are unlikely to survive on the nutrient-poor Hawkesbury sandstone that is found
at higher elevations. Southward shifts are possible, but winter minimum temperatures
decrease more rapidly towards inland areas, and therefore it is probably easier to move
inland than southward. The eucalypts that are currently only found in the cooler areas of
the Escarpment, such as Eucalyptus cypellocarpa, E. smithii, and E. piperita, are three
examples of species which may struggle to persist at the easternmost limits of their

distributions.
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Landscape scale climate change predictions are important for conservation
planning, as this is the scale at which management decisions are often made
(Lookingbill and Urban 2003). It is problematic to associate landscape scale species
distributions with continental scale climate predictors, and there is a need to ensure that
both climatic data and biotic data are at the same scale (Walther et al. 2005). The fact
that coarse scale generalisations of poleward and upward shifts to climate change did
not hold on the Illawarra Escarpment illustrates the difference that landscape scale

studies can make.

7.6 Benefit 4: matching scale and process

Species respond to different environmental conditions at different spatial scales, so it is
impossible to determine an optimal scale at which modelling should be performed (Graf
et al. 2005). Multi-scale studies often identify different environmental factors as being
important at different spatial scales (e.g. Lindenmayer 2000; Lindenmayer et al. 2000;
del Barrio et al. 2006), and this has lead to some general rules of thumb. For example, it
has been suggested that climate may be the dominant factor in continental scale models,
while land-use, soil variables and biotic interactions become more important at finer
scales (Pearson and Dawson 2003). These rules of thumb require further examination to
determine whether they truly reflect the scale at which these processes operate, or
whether they reflect the scale at which the predictors are most accurately recorded. For
example, my results provide strong evidence that climate is important in fine scale
models (Ashcroft et al. 2008; Chapter 3), and it would be premature to discount this
using fine-scale climate surfaces based on elevation or simple downscaling methods.
Similarly, the importance of soil variables at coarse scales may be improved if better

soil maps were made available at that scale.
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Landscape scale models have an advantage in that they can model processes that
cannot be detected using coarse-grained analysis. For example, it is more robust to
study plant competition at high spatial resolution models, where it is known that species
coexist in small areas (Leathwick and Austin 2001; Austin 2007). It is more problematic
to infer species are interacting in coarse-scale models, as species that coexist within
large grains (up to 50 km by 50 km) may actually be geographically separate or in
different habitats.

Similarly, it has been shown that species respond to conditions in the surrounding
areas. Contextual indices, such as the amount of rainforest within 500 m, have been
used to model mobile fauna species (Ferrier et al. 2002; Wintle et al. 2005) as well as
sessile flora (Chapter 4). Contextual indices offer a means to capture the home range of
organisms, as well as source-sink, mass effects and fragmentation effects (Chapter 4).
These processes cannot be studied if the grain-size is larger than the distance over which
neighbouring locations have an effect.

Another advantage of landscape scale models is that the temperature of each grain
is more likely to represent the temperature that the species’ actually experiences. There
can be up to 33.8 °C variation in temperature within one 50 km by 50 km grain (mean
1.8 °C; Hijmans et al. 2005), and each grain usually contains the average for that area. A
species that can only tolerate summer maximum temperatures of 20-25 °C may be
found in locations with temperatures well outside this range in coarse-scale models. The
optimal scale for models depends on their purpose (Austin 2007), and landscape scale
models are better suited to studying the species responses curves along environmental

gradients (Lookingbill and Urban 2005).
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7.7 Conclusions

There is no one correct scale to model species distributions, and landscape scale models
have unique challenges and benefits. Landscape scale models require biotic and
environmental data that is of higher accuracy, and will not be widely applicable unless
they are produced in a landscape that has a broad range of environmental conditions.
The benefits of landscape scale models include a reduction in pseudoreplication and
predictor colinearity, improved ability to detect refugia from climate change, and the
ability to detect processes that are obscured in coarser-scale models.

The underlying theme that is common across a number of these challenges and
benefits is predictor accuracy. Error in environmental predictors is usually ignored in
SDMs (Austin 2007), but can have a large impact on the results (Van Niel et al. 2004;
Van Niel and Austin 2007). More attention needs to be paid to predictor accuracy
(Dormann et al. 2008), and should be considered before predictors are selected in
species distribution models (Van Niel and Austin 2007).

Environmental predictor data is not scale independent, and this hinders the
development of SDMs that may otherwise be scale independent (Pearson et al. 2002).
However, there are opportunities to better link landscape scale models with coarser
scale models. One opportunity is to take advantage of fine-scale environmental data,
even when biotic data is inaccurate and can only be used at a coarse-scale. Luoto and
Heikkinen (2008) did this by incorporating the within-cell difference in elevation as a
surrogate for the within-cell variability in climate noted earlier (Hijmans et al. 2005).
Another option is to replace coarse-scale climate predictors with predictors based on
contextual indices. For example, suppose a landscape scale models finds that a species
favours locations where a large proportion of the surrounding landscape has a summer

maximum temperature between 20 and 25 °C. Instead of producing a coarse-grained
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model based directly on summer maximum temperature, fine-grained temperature data
could be used to estimate the proportion of each coarse-grained cell that is within this
temperature range. Effectively, the coarse-scale model would then be based on the
amount of favourable habitat within each cell instead of the average conditions, and
there would be stronger links between fine and coarse scale models.

The other advantages of landscape scale models could also be incorporated into
coarse scale models. If landscape scale models have less pseudoreplication and
predictor colinearity, then they could be useful to select which predictors should be
included in coarse scale models. If the locations of refugia are easier to identify with
fine-scale models, then it may be possible to include these locations as predictors in
coarse-scale models. Environmental planning and management will undoubtedly benefit
if models at different scales are linked to obtain a more complete understanding of
species ecology. Landscape scale models are undoubtedly useful for environmental

planning and management, but they are not the complete solution.
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