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Abstract

Clean, sustainable and cost-efficient fuel alternatives are expected to
replace conventional fossil fuel combustion systems as environmental
and economic pressures rise. Alternative fuel candidates include
synthetic gas, purified natural gas and hydrogen gas. The realization of
an alternative fuel-based economy hinges on the efficient separation and
storage of gases, for applications such as pollutant capture, synthetic
fuel production, fuel purification and fuel storage. Membranes and
adsorbents are materials characterized by an internal network of
angstrom and nano-sized pores which are designed to separate and store
gases, respectively. This thesis is concerned with the development of
simple mathematical models to explain and predict gas transport and
adsorption properties within advanced materials. Such models will guide
the tailoring of porosity to optimize the desired properties. This thesis

makes contributions to the following three areas:

e Gas separation Firstly, a new model that determines the transport
properties of a gas within individual pores is presented. The model
considers the interactions of the gas with the surface of the pore to
characterize the various transport regimes within pores of different
size, shape and composition. This is an entirely new approach to
understanding and interpreting the various diffusion regimes known
to occur within gas separation membranes. The new model can be
used to determine the optimal pore characteristics that maximize the
separation of gas mixtures. Secondly, a new empirical relationship
between gas diffusion and the membrane free volume is introduced
which is found to accurately describe known diffusion behaviour for a
range of polymer membranes. This leads to a new method for
determining the amount of free volume necessary to achieve a desired

gas diffusion rate.
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e Gas storage Based upon fundamental thermodynamic principles, a
new model for gas storage within adsorbents is presented. The model
incorporates the interactions between the gas and the internal surface
area of the adsorbent, and proves to be an accurate and fast method
for predicting storage performance within adsorbents of varying
porosities. This novel approach can be used to determine the pore
characteristics necessary to store the maximum amount of gas under

the required operating conditions.

e Physical aging A new physical aging model based on the mechanism
of vacancy diffusion is derived that accurately matches existing aging
data. Using this model and the existing theory the mechanisms of
physical aging are examined, particularly for thin polymer films.
Specifically, the new approach provides new insights into the
physical aging mechanisms responsible for polymer densification and

can be used as a tool to predict the polymer’s performance over time.

Finally, the new mathematical models that are presented here provide
considerable insight into complex physical processes, and will serve to
accelerate the development of alternative energy technologies by

providing simple guidelines for material design.
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