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Abstract

Directed graphs and their higher-rank analogues provide an intuitive frame-

work for the analysis of a broad class of C∗-algebras which we call graph algebras.

Kumjian, Pask, Raeburn and Renault built a groupoid GE from the infinite-path

space of a locally finite directed graph E, and used the theory of groupoid C∗-

algebras to define the graph C∗-algebra. Local finiteness was required so that GE
was locally compact and r-discrete, with unit space homeomorphic to the infinite

path space of E. Similarly, the higher-rank graphs of Kumjian and Pask were ini-

tially studied with similar restrictive hypotheses in order to use groupoid based

analysis of their higher-rank C∗-algebras. In particular, the topology on the path

space of a directed graph or higher-rank graph is crucial in the analysis of graph

C∗-algebras.

Drinen and Tomforde defined a process called desingularisation which can be

used to extend many results about the C∗-algebras of locally finite directed graphs

to those of arbitrary directed graphs. Drinen and Tomforde construct from an

arbitrary directed graph E a row-finite directed graph Ê with no sources such that

C∗(E) embeds in C∗(Ê) as a full corner. Subsequently, Farthing developed a partial

desingularisation for higher-rank graphs, which constructs from a row-finite higher-

rank graph Λ with sources a row-finite higher-rank graph Λ̃ with no sources such

that C∗(Λ) embeds in C∗(Λ̃) as a full corner.

In Chapter 2, we construct a topology on the path space of an arbitrary directed

graph E and prove that it is locally compact and Hausdorff. We show that there

is a homeomorphism φ∞ from a subspace of the infinite-path space of the Drinen-

Tomforde desingularisation Ê onto the boundary-path space ∂E of E. We then show

that there is a commutative C∗-subalgebra DE of C∗(E) which is homeomorphic to

the continuous functions on ∂E. Concluding our results on directed graphs, we

show that the embedding of C∗(E) in C∗(Ê) restricts to an embedding of DE in

DÊ which implements φ∞. In Chapter 3, we develop a modification of Farthing’s

desingularisation procedure for row-finite higher-rank graphs which contains cleaner

proofs of her results. We use this modification to prove analogues for higher-rank

graphs of the results from Chapter 2.

ix



CHAPTER 1

Introduction

Cuntz and Krieger introduced and studied C∗-algebras associated to finite (0, 1)-

matrices in [3]. Within a year, Enomoto and Watatani showed in [6] how to inter-

pret the Cuntz-Krieger relations and the hypotheses of Cuntz and Krieger’s main

theorems very naturally in terms of directed graphs. This opened many doors to op-

erator algebraists: graph C∗-algebras have provided a rich supply of very tractable

examples. In particular, the combinatorial properties of a graph are strongly tied to

the algebraic properties of its C∗-algebra. Graph C∗-algebras include (up to Morita

equivalence) all AF algebras [4] and all Kirchberg algebras with free abelian K1 [30],

as well many non-simple examples of purely infinite nuclear C∗-algebras. In [12],

Kumjian and Pask introduced higher-rank analogues of directed graphs and associ-

ated to them C∗-algebras which broaden the class of graph C∗-algebras to a class

including all tensor products of graph C∗-algebras (and thus many Kirchberg alge-

bras whose K1 contains torsion elements [12]), as well as (up to Morita equivalence)

the irrational rotation algebras and many other examples of simple AT-algebras with

real rank zero [15]. See [19] for an excellent survey of the field.

There are several standard approaches to studying graph C∗-algebras. The orig-

inal method for studying them uses groupoids in order to tap into the powerful

theory of groupoid C∗-algebras [24] to study graph C∗-algebras. A groupoid is an

object similar to a group but with multiplication only defined on some pairs of el-

ements. In [14], Kumjian, Pask, Raeburn and Renault built a groupoid GE from

each directed graph E, then using Renault’s theory of groupoid C∗-algebras, they

defined the graph C∗-algebra to be the groupoid C∗-algebra C∗(GE). By interpreting

Renault’s hypotheses in terms of the graph E from which GE was built, Kumjian et

al. were able to link properties of E to those of C∗(GE). The analysis of [14] estab-

lishes among other things that C∗(GE) is the universal C∗-algebra generated by a

collection of partial isometries satisfying relations now known as the Cuntz-Krieger

relations (see Section 2.3).

The results of [14] were proved only for graphs which are locally finite, meaning

that each vertex emits and receives only finitely many edges. This is not to be

confused with row-finiteness, which only requires each vertex to receive finitely many

edges. A significantly different way to construct a groupoid GE from a graph E

1



2 1. INTRODUCTION

was introduced by Paterson in [16]. Paterson’s construction proceeds via inverse

semigroups, and provides a framework for a groupoid-based analysis of the graph

algebras of non-row-finite directed graphs. Common to both groupoid models is that

the unit space G0
E of the groupoid, which must be locally compact and Hausdorff,

is a collection of paths in the graph: for a row-finite graph with no sources, G0
E

is the collection of right-infinite paths in E; but for more complicated graphs, the

infinite paths are replaced with boundary paths (for the definition see the prelude

to Chapter 2). Hence the path space of a graph as a topological space is of great

importance in the context of graph C∗-algebras. The path spaces of graphs are the

central focus of this thesis.

Another popular method of studying graph C∗-algebras is to forgo the groupoid

machinery used in earlier approaches, and analyse graph C∗-algebras with “bare

hands” (for example [1, 2, 21, 22]). Such a direct analysis of graph C∗-algebras

generally uses techniques similar (albeit much-refined) to those developed by Cuntz

and Krieger in [3]. It provides cleaner proofs, and in particular finesses some of

the technical hypothesis arising in a groupoid approach. Bates, Pask, Raeburn and

Szymański in [2] used direct analysis to lift the no-sources limitation that had been

present in all preceding studies.

Many results for row-finite directed graphs with no sources can be extended to

arbitrary graphs via a process called desingularisation. Given an arbitrary directed

graph E, Drinen and Tomforde show in [5] how to construct a row-finite directed

graph F with no sources by adding vertices and edges to E in such a way that

the C∗-algebra associated to F contains the C∗-algebra associated to E as a full

corner. The modified graph F is now called a Drinen-Tomforde desingularisation of

E. Although Drinen and Tomforde’s process can be used to extend many results for

row-finite directed graphs to arbitrary directed graphs, there are still open problems:

for example, it is not yet known how to retrieve one of the major theorems — the

gauge invariant uniqueness theorem — for arbitrary graphs via desingularisation.

In this thesis we show how desingularisation affects the boundary path space of the

graph; or more precisely, how it does not.

In [28], Robertson and Steger introduced and analysed higher-rank analogues of

Cuntz-Krieger algebras associated to commuting families of (0, 1)-matrices. Kumjian

and Pask in [12] introduced higher-rank graphs (or k-graphs) as analogues of directed

graphs in order to study Robertson and Steger’s higher-rank Cuntz-Krieger algebras

using the techniques previously developed for directed graphs. Although the defini-

tion of a k-graph isn’t quite as straightforward as that of a directed graph, k-graphs

are a natural generalisation of directed graphs, and it is shown in [12, Example
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1.3] that 1-graphs are precisely the path-categories of directed graphs. Like graph

C∗-algebras, higher-rank graph C∗-algebras were first studied using groupoid tech-

niques. In [12], Kumjian and Pask defined the k-graph C∗-algebra C∗(Λ) to be the

universal C∗-algebra for a set of Cuntz-Krieger relations among partial isometries

associated to paths of the k-graph Λ. Using direct analysis, they proved a version

of the gauge-invariant uniqueness theorem for k-graph algebras. They then con-

structed a path groupoid GΛ from each k-graph Λ, and used the gauge invariant

uniqueness theorem to prove that the groupoid C∗-algebra C∗(GΛ) is isomorphic to

C∗(Λ). This allowed them to plug into Renault’s theory of groupoid C∗-algebras to

analyse higher-rank graph C∗-algebras.

In [21], Raeburn, Sims and Yeend developed a “bare-hands” analysis of k-graph

C∗-algebras. They found a slightly weaker alternative to the no-sources hypothesis

from Kumjian and Pask’s theorems called local convexity (Definition 3.0.13). The

same authors later introduced finitely aligned k-graphs in [22], and gave a direct

analysis of their C∗-algebras. This remains the most general class of k-graphs to

which a C∗-algebra has been associated and studied in detail. Although no analogue

of a Drinen-Tomforde desingularisation is currently available for higher-rank graphs,

Farthing provided a construction in [7] analogous to that in [2] for removing the

sources in a locally convex, row-finite higher-rank graph. The statement of the

results of [7] do not contain the local convexity hypothesis, but Farthing alerted us

to an issue in the proof of [7, Theorem 2.28] (see Remark 3.4.2), which arises when

the graph is not locally convex.

Before we state the goals and results of this thesis in detail, we will review the

definitions and properties of directed graphs and their higher-rank analogues.

Directed graphs and their C∗-algebras. A directed graph E consists of

countable sets E0 and E1, and maps r, s : E1 → E0. We think of elements of E0

as vertices, and the elements of E1 as edges. We call r, s range and source maps,

and think of them as assigning a direction to each edge. We say E is row-finite if

|r−1(v)| < ∞ for all v ∈ E0. For a row-finite graph E, a Cuntz-Krieger E-family

consists of mutually orthogonal projections {pv : v ∈ E0} and partial isometries

{se : e ∈ E1} such that

(CK1) s∗ese = ps(e) for every e ∈ E1; and

(CK2) pv =
∑
{e∈E1:r(e)=v} ses

∗
e whenever r−1(v) 6= ∅.

The graph algebra, C∗(E) is the universal C∗-algebra generated by a Cuntz-Krieger

E-family {se, pv : v ∈ E0, e ∈ E1}. That is, if {te, qv : v ∈ E0, e ∈ E1} is a

Cuntz-Krieger E-family in a C∗-algebra B, then there exists a ∗-homomorphism
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πt,q : C∗(E)→ B such that πt,q(se) = te for every e ∈ E1 and πt,q(pv) = qv for every

v ∈ E0.

In the groupoid-based approach to analysing graph C∗-algebras (for example, in

[14, 13, 16]), the groupoid used is a locally compact Hausdorff groupoid G whose

unit space contains as a dense subset the collection of infinite paths in E. The

groupoid G is also r-discrete, meaning that the set of units G0 = {xx−1 : x ∈ G} is

an open subset of G.

In [14], the authors considered locally finite graphs E to ensure that G is a locally

compact r-discrete groupoid. Since G as a set is built from the infinite-path space E∞

of E, and we require that G0 is homeomorphic to E∞, it is crucial that the infinite-

path space of E is endowed with a locally compact Hausdorff topology. In [16],

Paterson lifted the row-finiteness condition by first building an inverse semigroup

S from E, then using the universal groupoid associated to S to build the graph

C∗-algebra.

In [2], Bates et al. restricted attention to row-finite directed graphs E which

may have sources. The construction in [2] adds to each source v ∈ E0 an infinite

path called a ‘head’, by which we mean a graph of the form

v • • . . .

Adding a head to each source in a row-finite directed graph E produces a row-finite

graph Ê with no sources. The authors of [2] showed that C∗(E) embeds in C∗(Ê)

as a full corner. They used this embedding to deduce theorems about C∗(E) from

existing theorems about C∗(Ê).

Drinen and Tomforde took this a step further in [5] by adding more complicated

heads to infinite receivers. Under Drinen and Tomforde’s procedure, an infinite

receiver v such as

v u
fi
...

. . .

has a head added to it, and the infinite family of edges with range v is distributed

down the head:
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v u
f0 . . .

f1

...

f2

...

As in [2], the C∗-algebra of the modified graph contains the C∗-algebra of the origi-

nal graph as a full corner. This allows many results to be extended from C∗-algebras

of row-finite graphs with no-sources to arbitrary graph C∗-algebras. For example,

Drinen and Tomforde proved that C∗(E) is simple if and only if every cycle in E

has an entry, E is cofinal, and every vertex in E can be reached from every infinite

receiver [5, Corollary 2.15]. They also recovered the characterisation of purely infi-

nite graph algebras of [9, Theorem 4]. They extended the characterisation of which

graph algebras are AF [5, Corollary 2.13], and showed that a simple graph algebra

is always either purely infinite or AF [5, Remark 2.16], extending the dichotomy

of [13].

Motivated by Drinen and Tomforde’s desingularisation, Raeburn showed in [19,

§5] how to identify paths in a row-finite directed graph with no sources which can

be ‘collapsed’ to a single vertex (see Section 2.2 for a precise definition). He then

defined a desingularisation of an arbitrary graph E to be any pair (F,M), where F

is a row-finite graph with no sources and M is a set of collapsible paths such that

when all the paths in M are collapsed, the resulting graph FM is isomorphic to E.

In this thesis, we follow Raeburn’s approach to desingularisations of graphs.

Higher-rank graphs and their C∗-algebras. In [12], Kumjian and Pask

developed an analogue of directed graphs called higher-rank graphs as tool to study

the higher-rank Cuntz-Krieger algebras of Robertson and Steger [28]. Given k ∈
N, a graph of rank k (or k-graph) is a pair (Λ, d) consisting of a category Λ =

(Obj(Λ),Mor(Λ), r, s) together with a functor d : Λ → Nk, called the degree map,

which satisfies the factorisation property : for every λ ∈ Mor(Λ) and m,n ∈ Nk with

d(λ) = m+n, there are unique elements µ, ν ∈ Mor(Λ) such that λ = µν, d(µ) = m

and d(ν) = n. The degree map d is the higher-rank analogue of length. Although

k-graphs are defined in terms of categories, no serious category theory is required

to work with k-graphs. By the usual abuse of notation, we write λ ∈ Λ to mean
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•

• •

•

•

•

•

•

•

Figure 1. The 2-graph Ω2.

λ ∈ Mor(Λ). We call elements of Mor(Λ) paths and elements of Obj(Λ) vertices.

We identify Λ0 with Obj(Λ) (for a justification see Remark 3.0.7).

To visualise a k-graph we draw its 1-skeleton: a directed graph with vertices

Λ0, and edges
⋃k
i=1 Λei . To each edge we assign a colour determined by the edge’s

degree. In this thesis we tend to use 2-graphs for examples, and we draw edges of

degree (1, 0) as solid lines, and edges of degree (0, 1) as dashed lines. In the literature

these are often referred to as “blue” and “red” edges.

A particularly important class of examples of k-graphs are the k-graphs Ωk,m

defined as follows. Fix k ∈ N and m ∈ (N∪{∞})k. Let Obj(Ωk,m) = {p ∈ Nk : pi ≤
mi for all i ≤ k},

Mor(Ωk,m) = {(p, q) : p, q ∈ Obj(Ωk,m) and pi ≤ qi for all i ≤ k},

r(p, q) = p, s(p, q) = q and d(p, q) = q − p, with composition given by (p, q)(q, t) =

(p, t). If m = (∞)k, we drop m from the subscript and just write Ωk. The 1-skeleton

of Ω2 is depicted in Figure 1. The k-graphs Ωk,m provide an intuitive model for paths

in k-graphs: every path λ of degree m in a k-graph Λ determines a degree-preserving

functor (i.e. a graph morphism) xλ : Ωk,m → Λ by xλ(p, q) = λ′′, where λ = λ′λ′′λ′′′

and d(λ′) = p, d(λ′′) = q − p and d(λ′′′) = m − q. A path in Λ is often identified

with the associated graph morphism. In keeping with this model, we write λ(p, q)

to refer to the segment λ′′ of λ of degree q − p as factorized above. For example if

λ is the path anmh of degree (2, 2) in Figure 2, then λ((0, 1), (2, 1)) is the path eg

of degree (2, 0). Infinite paths in a k-graph are defined to be k-graph morphisms

x : Ωk → Λ.

There are two major technical issues that arise in generalising results about

directed graphs to higher-rank graphs. The first is that two paths µ, ν ∈ Λ can be
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•

•

a

•
b

•

c

e

•

•

f

g

v
h

i

•

j

l

• m

n

Figure 2. The 2-graph Λ.

subpaths of another larger path λ ∈ Λ (so λ = µµ′ = νν ′) with d(µ) � d(ν) and

d(ν) � d(µ). For example, consider the 2-graph Λ in Figure 2. Here, the left hand

rectangular path anm and the rectangular path blj that makes up the bottom part

of the graph are both subpaths of the path anmh = bljf of degree (2, 2). This

cannot happen in a directed graph: if two paths µ, ν are both initial segments of

some longer path, then either µ is an initial segment of ν or vice versa.

The other technical issue is also an implication of the factorisation property. If

a directed graph has a source, we can simply add an infinite path onto that source

as in [2]. In k-graphs, there are many types of sources because a vertex may receive

edges of some degrees but not of others. The 2-graph Λ whose skeleton appears

in Figure 2 is infinite in the horizontal direction, but not in the vertical direction.

So the vertex v is considered a source (as would any other vertex along that top

row). Once we add an infinite path to v in the vertical direction, we must add more

edges to ensure the factorisation property is satisfied. Thus the process of removing

sources in a k-graph is significantly more complicated than in a directed graph.

Farthing’s construction [7] applied to the example of Figure 3.6.5 would extend

the graph vertically, yielding a 2-graph isomorphic to the 2-graph Ω2 depicted in

Figure 1.

1.1. Overview of the Thesis

The overall goal of this thesis is to understand the path spaces of directed graphs

and higher-rank graphs and investigate how these path spaces interact with desin-

gularisation procedures such as those of Drinen-Tomforde and Farthing.

We begin in Chapter 2 by recalling the standard definitions and notation for

directed graphs.

In Section 2.1 we construct a topology on the path space of an arbitrary directed

graph E, and show that it is a locally compact Hausdorff topology. Although such



8 1. INTRODUCTION

results can already be found in the literature, detailed arguments are not usually

provided. Our construction follows the approach of Paterson and Welch [17], and

we fix a minor oversight in their work.

In Section 2.2, we introduce the notion of a desingularisation of a directed graph,

and we construct the homeomorphism φ∞, which identifies a subset of the infinite-

path space of a desingularisation with the boundary-path space in the original graph.

Our results about desingularisations of directed graphs provide the foundation

for our C∗-algebraic results. In Section 2.3, we recall some definitions and results

pertaining to the C∗-algebras of directed graphs. First we show how the Cuntz-

Krieger relations can be written in terms of paths instead of edges. We then recall

that the C∗-algebra of a graph and that of its desingularisation are Morita equivalent.

Lastly, we define the diagonal C∗-subalgebra of a graph C∗-algebra.

Section 2.4 contains the main results for directed graphs. First we build the

homeomorphism hE between the boundary-path space ∂E of an arbitrary graph E

and the spectrum of its diagonal. We then show that for a desingularisation F of

E, the isomorphism which embeds C∗(E) as a full corner in C∗(F ) implements the

homeomorphism φ∞ constructed in Section 2.2 via the homeomorphisms hE and hF .

In Chapter 3, we turn our attention to k-graphs. We begin by recalling the

definitions and standard notation for higher-rank graphs.

In Section 3.1 we build a topology for the path space of a higher-rank graph,

and show that the path space is locally compact and Hausdorff under this topology.

As in the directed graph setting, we follow the approach of [17].

Proving one of our main results (Theorem 3.3.1) posed problems using Farthings

construction, motivating us to develop an improved version. In Section 3.2, given

a k-graph Λ with sources, we construct a k-graph Λ̃ with no sources such that Λ

embeds in Λ̃, and we describe some examples of the process. We prove that for row-

finite k-graphs, our construction agrees with Farthing’s [7], and that for 1-graphs,

it coincides with the ‘adding a head’ construction of [2]. We also describe how our

construction relates to the sets of paths appearing in the Cuntz-Krieger relations,

and deduce that it preserves finite alignedness and row-finiteness of Λ.

In Section 3.3, we prove that given a row-finite k-graph Λ, there is a natural

homeomorphism from the boundary-path space of Λ onto the space of infinite paths

in Λ̃ with range in the embedded copy of Λ. We provide examples and discussion

showing that the topological basis constructed in Section 3.1 is the one we want.

In Section 3.4 we recall the definition of the Cuntz-Krieger algebra C∗(Λ) of a

higher-rank graph Λ. We show that if Λ is a row-finite k-graph and Λ̃ is the graph
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with no sources obtained by applying the construction of Section 3.2 to Λ, then the

embedding of Λ in Λ̃ induces an isomorphism π of C∗(Λ) onto a full corner of C∗(Λ̃).

Section 3.5 contains results about the diagonal of a k-graph algebra which are

analogous to those proved in Section 2.4 for 1-graphs. We identify the boundary-

path space of a finitely aligned higher-rank graph with the spectrum of its diagonal

C∗-algebra. We then show that the isomorphism π of Section 3.4 restricts to an

isomorphism of diagonals which implements the homeomorphism of Section 3.3.

In Section 3.6 we investigate how the construction of a k-graph Λ from its k-

coloured skeleton E relates to the topologies on their path spaces. In particular,

we show that if E is row-finite, then the quotient topology on Λ inherited from its

skeleton is precisely the topology described in Section 3.1. We provide an example

to show that this doesn’t necessarily happen when E is not row-finite.



CHAPTER 2

Directed Graphs

A directed graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and

functions r, s : E1 → E0. The elements of E0 are called vertices and the elements of

E1 are called edges. For each edge e, we call s(e) the source of e and r(e) the range

of e; if s(e) = v and r(e) = w, we say that v emits e and that w receives e, or that

e is an edge from v to w. Since all graphs in this thesis are directed, we often just

call a directed graph E a graph.

A path of length n in a directed graph E is a sequence µ = µ1 · · ·µn of edges in

E such that s(µi) = r(µi+1) for 1 ≤ i ≤ n− 1.

• •
µ1

•
µ2

•. . . •
µn

This convention, where the edges in a directed graph read from right to left, is

a recent one adopted for reasons which become clear when we talk about graph

C∗-algebras in §2.3. We write |µ| = n for the length of µ, and regard vertices

as paths of length 0; we denote by En the set of paths of length n, and define

E∗ :=
⋃
n∈NE

n. We extend the range and source maps to E∗ by setting r(µ) = r(µ1)

and s(µ) = s(µ|µ|) for |µ| > 1, and r(v) = v = s(v) for v ∈ E0. If µ and ν are

paths with s(µ) = r(ν), we write µν for the path µ1 . . . µ|µ|ν1 · · · ν|ν|. For a set of

vertices V ⊂ E0 and a set of paths F ⊂ E∗, we define V F := {µ ∈ F : r(µ) ∈ V }
and FV := {µ ∈ F : s(µ) ∈ V }. If V = {v}, then we drop the braces and write

vF to mean {v}F and Fv to mean F{v}. We define the infinite paths E∞ of E

to be infinite strings µ1 . . . µn . . . such that s(µi) = r(µi+1) for all i ≥ 1, we extend

the range map to E∞ by setting r(µ) = r(µ1), and for a set of vertices V ⊂ E0, we

define V E∞ := {x ∈ E∞ : r(x) ∈ V }.
If r−1(v) is finite for every v ∈ E0, that is, every vertex in a graph E receives at

most finitely many edges, we say that E is row-finite.

A vertex v is singular if either |r−1(v)| = ∞, or |r−1(v)| = 0. The boundary

paths of E are defined by ∂E := E∞ ∪ {α ∈ E∗ : s(α) is singular}.
11
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2.1. Topology

Our first aim is to construct a locally compact Hausdorff topology on E∗ ∪E∞.

For µ ∈ E∗, we define the cylinder set of µ by

Z(µ) := {ν ∈ E∗ ∪ E∞ : ν = µν ′}.

Using Paterson and Welch’s approach in [17], we identify elements of E∗ with func-

tions on E∗, an then use the topology of pointwise convergence. The open sets are

defined to be the inverse images of open sets in {0, 1}E∗ =
∏

µ∈E∗{0, 1} (equipped

with the product topology) under the map α : E∗ ∪ E∞ → {0, 1}E∗ defined by

(2.1.1) α(w)(y) =

1 if w ∈ Z(y),

0 otherwise.

The basis we end up with is slightly different to that in [17, Corollary 2.4], revealing

a minor oversight of the authors.

Before stating our goal for this section, we recall the following definition. For

a set X, a family of topological spaces {Yi : i ∈ I} and a family of functions

fi : X → Yi, there is a weakest topology on X that makes all of the fi continuous

(see [18, 1.4.5]). We call it the initial topology induced by the family {fi : i ∈ I}.
We give {0, 1}E∗ the topology of pointwise convergence, and then the topology we

want on E∗ ∪ E∞ is the initial topology induced by {α}.

Proposition 2.1.1. Let E be a directed graph. For µ ∈ E∗ and a finite subset

G ⊂ s(µ)E1, define Z(µ \G) := Z(µ) \
⋃
e∈GZ(µe). Then the collection

{Z(µ \G) : µ ∈ E∗, G ⊂ s(µ)E1 is finite}

is a basis for the initial topology induced by {α}. Moreover, it is a locally compact

Hausdorff topology on E∗ ∪ E∞.

The motivation for Proposition 2.1.1 stemmed from the fact that no detailed

construction of such a topology appears to have been published, even in the row-

finite setting1. It is considered a folklore result, but a detailed proof is given on

page 14. We begin by describing the topology on F∞ when F is row-finite — in this

situation, the basis for the topology is a little simpler.

Proposition 2.1.2. Let F be a row-finite graph. Then {Z(µ)∩F∞ : µ ∈ F ∗} is

a basis for the subspace topology on F∞ inherited from
∏

N F
1. Moreover, endowed

with this topology, F∞ is a locally compact Hausdorff space.

1At least, I couldn’t find one. The result is stated as [14, Corollary 2.2] without proof.



2.1. TOPOLOGY 13

Proof. For a finite sequence G = (g1, g2, . . . , gN) of elements of F 1, define

Z(G) :=
{

(fm)∞m=1 ∈
∏
N

F 1 : fn = gn for 1 ≤ n ≤ N
}
.

Since F 1 carries the discrete topology, the family

{Z(G) : G is a finite sequence in F 1}

is a basis for the product topology on
∏

N F
1. Since Z(G) ∩ F∞ 6= ∅ if and only if

g1 · · · gN ∈ F ∗, the sets {Z(µ)∩F∞ : µ ∈ F ∗} form a basis for the subspace topology

on F∞. We plan to show these sets are compact. To do so, we use the following

result.

Claim 2.1.2.1. For each n ∈ N, let Fn ⊂ F 1 be finite. Then the product topology

on
∏

n∈N Fn agrees with the relative topology on
∏

n∈N Fn inherited from
∏

N F
1.

Proof. Denote by X the set
∏

n∈N Fn. Let τ1 be the product topology on X,

let τ2 be the relative topology on X inherited from
∏

N F
1, and let φ be the identity

map on X. We aim to show that φ : (X, τ1) → (X, τ2) is a homeomorphism. Since

the Fn are finite, Tychonoff’s theorem implies that τ1 is a compact topology. Since

F 1 is a Hausdorff space, and since products and subspaces of Hausdorff spaces are

also Hausdorff, τ2 is a Hausdorff topology. So φ is a bijection from a compact space

onto a Hausdorff space, and hence it suffices to show that φ is continuous.

To see that φ is continuous, let V = Z(G) be a basic open set in
∏

N F
1. If

V ∩X = ∅, then φ−1(V ∩X) = ∅ is open in (X, τ1). Suppose that V ∩X 6= ∅. Then

φ−1(V ∩X) = {(fi)∞i=1 ∈ X : fi = gi for i ≤ N}

is a basic open set in (X, τ1). �Claim

To see that F∞ is locally compact we show that the basic open sets Z(µ) ∩ F∞

are compact. First, we construct a set Xµ for each µ and show that it is compact

in
∏

N F
1. We then show that Z(µ)∩ F∞ is closed in Xµ. Fix µ ∈ F ∗, and for each

n ∈ N define

Fn :=

{µn} for 1 ≤ n ≤ |µ|

{e ∈ F 1 : s(µ)F n−|µ|−1r(e) 6= ∅} for n > |µ|.

Row-finiteness of F implies that Fn is finite for each n ∈ N. Thus
∏

n∈N Fn is

compact. By Claim 2.1.2.1, Xµ :=
∏

n∈N Fn with relative topology inherited from∏
N F

1 is also compact. Since Z(µ)∩ F∞ ⊂ Xµ, it suffices to show that Z(µ)∩ F∞

is closed. Since F∞ satisfies the first axiom of countability (i.e. every neighborhood

filter has a countable basis), it suffices to work with sequences. Let (λn)n∈N be a

sequence in Z(µ) ∩ F∞ converging to λ ∈ Xµ; meaning that λni → λi for all i ∈ N.
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We show that λ ∈ Z(µ) ∩ F∞. For each j ∈ N, we have λnj → λj, so there exists

Mj such that n ≥ Mj =⇒ λnj = λj. Fix j ∈ N. Let Pj = max{Mj,Mj+1}. Then

n ≥ Pj =⇒ λnj = λj and λnj+1 = λj+1. This implies that s(λj) = s(λnj ) = r(λnj+1) =

r(λj+1). Since this is true for all j ∈ N, λ is a path in F and thus an element of

Z(µ) ∩ F∞. Now {Z(µ) ∩ F∞ : µ ∈ F ∗} is a compact basis for F∞, and thus F∞

is locally compact. �

To prove Proposition 2.1.1, we use the following result.

Proposition 2.1.3. The map α : E∗ ∪ E∞ → {0, 1}E∗ defined in (2.1.1) is

continuous, open and injective.

Proof. That α is continuous is clear: the topology on E∗ ∪E∞ is given by the

inverse images α−1(U) of open sets U ⊂ {0, 1}E∗ . Since α(α−1(U)) = U∩α(E∗∪E∞)

is an open set, α is open.

To see that α is injective, suppose α(µ) = α(ν). Then α(µ)(ν) = α(ν)(ν) = 1,

and thus µ ∈ Z(ν). Similarly, ν ∈ Z(µ). Hence µ = ν. �

Proof of Proposition 2.1.1. First we consider the topology on {0, 1}E∗ .
Given disjoint finite subsets F,G ⊂ E∗, define

UF,G
µ =


{1} if µ ∈ F,

{0} if µ ∈ G,

{0, 1} otherwise.

Then the sets N(F,G) :=
∏

µ∈E∗ U
F,G
µ , where F,G range over all finite, disjoint

pairs of subsets of E∗, form a basis for the topology on {0, 1}E∗ . Proposition 2.1.3

says that α is a homeomorphism onto its range, hence the sets α−1(N(F,G)) form

a basis for a topology on E∗ ∪ E∞. These sets can be described as follows.

λ ∈ α−1(N(F,G)) ⇐⇒ α(λ) ∈ N(F,G)

⇐⇒ α(λ)(µ) =

1 for µ ∈ F

0 for µ ∈ G

⇐⇒

λ ∈ Z(µ) for µ ∈ F,

λ /∈ Z(ν) for ν ∈ G.

⇐⇒ λ ∈

(⋂
µ∈F

Z(µ)

)
\

(⋃
ν∈G

Z(ν)

)
.

We simplify these sets further. Fix finite F,G ⊂ E∗. If α−1(N(F,G)) is non empty,

then
⋂
µ∈F Z(µ) 6= ∅. This implies that for µ, ν ∈ F , we have:



2.1. TOPOLOGY 15

• µ ∈ Z(ν) if |µ| ≥ |ν|, or

• ν ∈ Z(µ) if |ν| > |µ|.

Choosing µ such that |µ| = max{|ν| : ν ∈ F}, we have
⋂
ν∈F Z(ν) = Z(µ). Let

G′ = G ∩ Z(µ). Then

Z(µ) \
⋃
ν∈G

Z(ν) = Z(µ) \
⋃
ν∈G′
Z(ν).

Now let G′′ = {ν : µν ∈ G}. Then

α−1(N(F,G)) = Z(µ) \
⋃
ν∈G′′
Z(µν).

For µ ∈ E∗ and a finite subset G ⊂ s(µ)E∗, we define Z(µ\G) = Z(µ)\
⋃
ν∈GZ(µν).

By the above, each α−1(N(F,G)) has the form Z(µ \G) for some µ ∈ E∗ and finite

G ⊂ s(µ)E∗.

Claim 2.1.1.1. {Z(µ \ G) : µ ∈ E∗, G ⊂ s(µ)E1 is finite} and {Z(µ \ G) : µ ∈
E∗, G ⊂ s(µ)E∗ is finite} are bases for the same topology.

Proof. Fix µ ∈ E∗, and a finite subset G ⊂ s(µ)E∗. Let λ ∈ Z(µ \ G). We

seek α ∈ E∗ and a finite set F ⊂ s(α)E1 such that

λ ∈ Z(α \ F ) ⊂ Z(µ \G).

We consider two cases: λ is finite or λ is infinite. First suppose that λ ∈ E∞. Set

N = max{|µν| : ν ∈ G}, α = λ1 · · ·λN , and F = ∅. Then Z(α \ F ) = Z(α) clearly

contains λ. Since |α| ≥ |µν| for all ν ∈ G, we have Z(α) ⊂ Z(µ \G) as required.

Now suppose that λ ∈ E∗. Set α = λ and

F = {(µν)|λ|+1 : ν ∈ G satisfies |µν| > |λ|}.

Then Z(α \ F ) = Z(λ \ F ) clearly contains λ. To see that Z(λ \ F ) ⊂ Z(µ \ G),

fix β ∈ Z(λ \ F ). Factor λ = µλ′, then we have β = λβ′ = µλ′β′ ∈ Z(µ). We

now show that λ′β′ /∈
⋃
ν∈GZ(ν). Fix ν ∈ G. If |µν| ≤ |λ|, then |ν| ≤ |λ′|. Since

λ′ /∈
⋃
ν∈GZ(ν), we have λ′β′ /∈

⋃
ν∈GZ(ν). If |µν| > |λ|, then since β′1 /∈ F , we

have (µλ′β′)|λ|+1 = β′1 6= (µν)|λ|+1. So (λ′β′)|λ|−|µ|+1 6= ν|λ|−|µ|+1. �Claim

So the collection

{Z(µ \G) : µ ∈ E∗, G ⊂ s(µ)1 is finite}

form a basis for our topology on E∗ ∪ E∞.

To see E∗ ∪ E∞ is a locally compact Hausdorff space, we follow the strategy

of [17] to show that Z(v) is compact for each v ∈ E0. Proposition 2.1.3 implies

that α is a homeomorphism onto its range, so it suffices to prove that α(Z(v)) is
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compact. Since {0, 1}E∗ is compact, we need only show that α(Z(v)) is closed. Let

{ω(n) ∈ Z(v) : n ∈ N} be such that α(ω(n)) → f ∈ {0, 1}E∗ . We seek ω ∈ Z(v)

such that f = α(ω). Let A := {µ ∈ E∗ : α(ω(n))(µ) → 1}. Then for each µ, ν ∈ A
there exist Nµ, Nν such that n ≥ max{Nµ, Nν} implies that w(n) ∈ Z(µ)∩Z(ν). In

particular, Z(µ)∩Z(ν) 6= ∅, and hence either ν = µµ′ or µ = νν ′; denote the longer

path by βµ,ν . Then n ≥ max{Nµ, Nν} implies that ω(n) ∈ Z(βµ,ν), so βµ,ν ∈ A.

Since A is countable, we can list it:

A = {ν1, ν2, . . . , νm, . . . }.

Let y1 := ν1, and iteratively define yn := βyn−1,νn . Then {yn : n ∈ N} satisfy

yn1 y
n
2 · · · yn|yn−1| = yn−1, and hence determines a unique path ω ∈ E∗∪E∞. We claim

that ν ∈ A if and only if ω ∈ Z(ν). Firstly, for each νm ∈ A, we have ym ∈ Z(νm).

Then ω ∈ Z(ym) ⊂ Z(νm). Conversely, let ω ∈ Z(νm). Then ym ∈ Z(νm) ∩ A
implies that for large enough n we have ω(n) ∈ Z(ym) ⊂ Z(νm), so νm ∈ A.

We claim that α(ω(n)) → α(ω). Fix ν ∈ E∗. We will show that α(ω(n))(ν) →
α(ω)(ν). If α(ω)(ν) = 1, then ω ∈ Z(ν). So ν ∈ A, and hence ω(n)(ν) → 1. Now

suppose α(ω)(ν) = 0. So ω /∈ Z(ν), and thus ν /∈ A. Since α(ω(n))→ f ∈ {0, 1}E∗ ,
and α(ω(n))(ν) 9 1, we must have α(ω(n))(ν) → 0. So α(ω(n)) → α(ω). Hence

α(Z(v)) is closed, and thus compact. �

2.2. Desingularisation

In this section we discuss Drinen and Tomforde’s construction from [5] which

modifies an arbitrary directed graph E to obtain a row-finite graph F in such a way

that C∗(F ) contains C∗(E) as a full corner. Originally, analysis of graph algebras

was performed only for graphs with no sources and with at most finitely many edges

attached to each vertex. Bates et al. in [2] overcame the no sources restriction

by adding a ‘head’ onto each source in a graph E to form a new graph F with

no sources, and showing that C∗(F ) contains C∗(E) as a full corner. Recall that

the graph C∗-algebra of a graph E is the universal C∗-algebra generated by partial

isometries associated to paths in the graph subject to a set of Cuntz-Krieger relations

(see page 3). For row-finite graphs, one of these relations says that for each v ∈ E0

such that vE1 6= ∅, the associated partial isometry pv is a projection equal to the

sum
∑

µ∈vE1 ses
∗
e of range projections associated to the edges incident on v. This

poses immediate problems once you allow graphs to have infinite receivers : vertices

v such that |vE1| = ∞. It turns out that the right thing to do is to specify that

the range projections ses
∗
e are all mutually orthogonal and satisfy ses

∗
e ≤ pr(e), and

to insist that the equality pv =
∑

µ∈vE1 ses
∗
e holds only for vertices v such that

0 < |vE1| < ∞. That these modifications to the Cuntz-Krieger relations are the
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right thing to do was discovered independently using several different approaches to

graph algebras, for example [9, 16, 25, 29].

Drinen and Tomforde’s construction [5] starts with an arbitrary graph E and

adds on a head wherever there is a singular vertex. When the singular vertex is an

infinite receiver, the incoming edges are distributed along the head. The resulting

graph F is now known as a Drinen-Tomforde desingularisation of E. Notice that at

an infinite receiver, there is a choice in the way which edges are distributed along

the appended head, and hence a Drinen-Tomforde desingularisation of E is not

unique. Motivated by [5], Raeburn developed a ‘collapsing’ construction in [19, §5].

He defined a desingularisation by identifying paths in a row-finite graph F with no

sources which we call collapsible paths, then ‘collapsed’ these paths to yield a graph

E such that by applying Drinen and Tomforde’s construction (and making the right

choices along the way), we can recover F . The discussion [19, p44] shows that every

graph permits a Drinen-Tomforde desingularisation in the sense of Definition 2.2.7.

We are interested in how such constructions affect the path space. The following

theorem is the goal for this section.

Theorem 2.2.1. Let E be a directed graph and F be a Drinen-Tomforde desin-

gularisation of E. Then E0F∞ is homeomorphic to ∂E.

To prove Theorem 2.2.1, we define a map φ (Equation (2.2.1)) on finite paths in

F with range and source in E. Using Lemma 2.2.9, we then use φ to define a map

φ∞ : E0F∞ → ∂E as in (2.2.2), which we prove is a homeomorphism.

Let µ ∈ F∞ and e ∈ E1. We say that e exits µ if there exists i ≥ 1 such that

s(e) = s(µi) and e 6= µi; note that edges with source r(µ) are not considered exits

of µ. We say that e enters µ if there exists i ≥ 1 such that r(e) = r(µi) and e 6= µi.

Definition 2.2.2. Let F be a directed graph. We say that an infinite path

µ ∈ F∞ is collapsible if

(C1) µ has no exits,

(C2) r−1(r(µi)) is finite for every i,

(C3) r−1(r(µ)) = {µ1},
(C4) µi 6= µj for all i 6= j, and

(C5) µ has either zero or infinitely many entries.

Examples 2.2.3. In [19, p42] only (C1)–(C3) are present. Condition (C4) was

added after we realized that a cycle with no entrance could be collapsible under

the original definition, and (C5) was added to ensure that we only collapse paths

(a process described in Remark 2.2.4) which yield singular vertices - thus avoiding
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v u
µ1

w
{µi2}i∈N

... t
µ3

z
µ4 . . .

µ5

•
f

•
g

Figure 1. Examples of collapsible paths.

v u
ν1

w
ν2

t
ν3 . . .

ν4

•
f

g

Figure 2. Further examples of collapsible paths.

a complication in the proof of [19, Proposition 5.2]2, the key result for this theory.

These conditions are not all necessary to carry out the process of collapsing, but

they ensure the simplest formulae, and also that we collapse as few paths as possible.

For example, consider Figure 1. The only collapsible path is µ4µ5 . . . . The paths

µ1µ
i
2 . . . are not collapsible they have an exit at r(µi2), thus failing (C1). Neither are

µi2µ3 . . . , as r−1(r(µi2)) is infinite, so they fail condition (C2). The path µ3µ4 . . . fails

(C3), since r−1(r(µ3)) = {µ3, g}. In Figure 2, the only collapsible path is ν3ν4 . . . .

The path (ν1gf)∞ := ν1gfν1gf . . . is not collapsible as it fails (C4), and ν1ν2 . . . is

not collapsible either as it has exactly one entry, failing (C5).

Remark 2.2.4. As the name suggests, we will collapse these paths to form a

new graph. We then show that the boundary-path space of the new graph is home-

omorphic to a subset of that of the original graph. Suppose that µ is a collapsible

path in a row-finite graph F . Define s∞(µ) := {s(µi) : i ≥ 1} and

F ∗(µ) := {ν ∈ F ∗ : | ν| > 1, ν = µ1µ2 · · ·µ| ν−1|e for some e 6= µ|ν|}.

Set F 0
µ := F 0 \ s∞(µ) and F 1

µ :=
(
F 1 \ (r−1(s∞(µ)) ∪ {µ1})

)
∪ {eν : ν ∈ F ∗(µ)},

and extend the range and source maps to F 1
µ by setting r(eν) := r(ν) = r(µ) and

s(eν) := s(ν). Then Fµ is the graph obtained by collapsing the path µ in F . Notice

that for α ∈ F ∗µ , s(α) is singular if and only if s(α) = r(µ).

Remark 2.2.5. Given a collection M of collapsible paths such that no two paths

in M have any edge or vertex in common, we call the paths in M disjoint. We can

2The proof of [19, Proposition 5.2] contained an error when proving that the Cuntz-Krieger

relation holds in Fµ at the vertex resulting from collapsing a path µ in with finitely many entries.
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v u
µ1

w
{µi2}i∈N

... t
µ3

•
f

•
g

Figure 3. The graph obtained by collapsing the path in Figure 1

v u
ν1

w
ν2

•
f

g

Figure 4. The graph obtained by collapsing the path in Figure 2

carry out the process described in Remark 2.2.4 on all the paths inM simultaneously,

yielding a graph FM which may no longer be row-finite.

Examples 2.2.6. Collapsing the path µ4µ5 . . . in Figure 1 yields the graph in

Figure 3. Collapsing the path ν3ν4 . . . in Figure 2 yields the graph in Figure 4.

Definition 2.2.7. Let E be a directed graph. A Drinen-Tomforde desingulari-

sation of E is a pair (F,M) consisting of a row-finite graph F with no sources, and

a collection M of disjoint collapsible paths such that FM ∼= E.

Example 2.2.8. Consider the directed graphs E and F in Figures 5 and 6.

The collapsible paths in F are µ := µ1µ2 . . . , λ
′ := λ2 . . . and ν ′ := ν3 . . . . Let

M = {µ, λ′, ν ′}. Then M is a set of disjoint collapsible paths. We have

F ∗(µ) = {µ1µ2h} ∪ {µ1 . . . µig
i : i ≥ 1}

and F ∗(λ′) = ∅ = F ∗(ν ′). We have F 0
M = {v, u, w, t, z}. For clarity of notation, we

index the elements in {eν : ν ∈ F ∗(µ)} by the edge closest to the source of the path,

so

F 1
M = {ν1, ν2, λ1, eh} ∪ {egi : i ≥ 1}.

Then FM ∼= E, and thus (F,M) is a Drinen-Tomforde desingularisation of E.

Suppose E is a directed graph, and (F,M) is a Drinen-Tomforde desingularisa-

tion of E. Define F ∗(M) :=
⋃
µ∈M F ∗(µ). Define φ′ : (F 1 ∩ E1) ∪ F ∗(M) → E1 by

φ′|F 1∩E1 := idF 1∩E1 and φ′|F ∗(M) : ν 7→ eν . So φ′ acts as the identity on unchanged

edges, and takes collapsible paths in F to the associated edges in E.
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v
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egi
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Figure 5. A directed graph E.
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w
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ν2 . . .
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•
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g2

...

g3

...
µ3

Figure 6. A directed graph F .

If β ∈ F ∗ with r(β), s(β) ∈ E0, then β has the form β = b1b2 · · · bn where each

bk ∈ (F 1 ∩E1)∪F ∗(M). Define E0F ∗E0 := {β ∈ F ∗ : r(β), s(β) ∈ E0}. We extend

the map φ′ above to a map φ on finite paths: define φ : E0F ∗E0 → E∗ by

(2.2.1) φ(β) := φ(b1b2 · · · bn) = φ′(b1) · · ·φ′(bn).

We will extend this map to E0F∞, and ultimately show that it is a homeomorphism

from E0F∞ to ∂E. To do so precisely we use the following results.

Lemma 2.2.9. Let E be a directed graph, and (F,M) be a desingularisation of

E. If λ ∈ E0F∞, then either

• λ = l1 · · · lkµ for some µ ∈M and li ∈ (F 1 ∩ E1) ∪ F ∗(M), or

• λ = l1l2 · · · ln . . . where li ∈ (F 1 ∩ E1) ∪ F ∗(M).

Proof. Fix λ ∈ E0F∞. We construct the li inductively. Either λ1 ∈ F 1 ∩ E1,

or λ1 = µ1 for some µ ∈M . If λ1 ∈ F 1 ∩ E1, then let l1 = λ1. If λ1 = µ1, there are

two cases to consider:

(i) λi = µi for all i ∈ N, in which case λ = µ; or

(ii) there exists k such that λi = µi for all i < k and λk 6= µk, in which case

we set l1 = µ1 · · ·µk−1λk. Since paths in M have no edges in common, we

have l1 ∈ F ∗(µ).
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In case (i). λ = µ, in which case we are done. In case (ii), λ = l1λ′ for some λ′ ∈ F∞.

Since s(l1) is an element of E0, we have r(λ′) ∈ E0 and we can repeat the process,

applying it to λ′ to get l2. Iterating will either terminate with λ = l1 · · · lnµ where

µ ∈M , or continue ad infinitum, in which case λ = l1 · · · ln · · · . �

We now define the map φ∞ : E0F∞ → ∂E:

(2.2.2) φ∞(λ) :=

φ(λ′) if λ = λ′µ for some µ ∈M,

φ′(λ1) · · ·φ′(λn) · · · if λ = l1 · · · ln · · · .

Proposition 2.2.10 (Adapted from [5, 2.6]). Let E be a directed graph, and

(F,M) be a desingularisation of E. Then φ and φ∞, defined as in (2.2.1) and

(2.2.2) respectively, are bijections and preserve range and source.

Proof. Since φ′ is a bijection, it follows that φ is a bijection. Similarly, since φ′

preserves range and source, so does φ. Since the paths in M are disjoint, it follows

that φ∞ is injective. To see that φ∞ is surjective, fix α ∈ ∂E. Either α ∈ E∞,

or α ∈ E∗ and s(α) is singular. Suppose first that α ∈ E∞. Since (F,M) is a

desingularisation of E, each αi is either an element of E1 ∩F 1, or of the form eν for

some ν ∈ F ∗(M). For each i, define

gi =

αi if αi ∈ E1 ∩ F 1,

ν if αi = eν for some ν ∈ F ∗(M).

Since r(eν) = r(ν) and s(eν) = s(ν) for each ν ∈ F ∗(M), we have g1 · · · gn · · · ∈ F∞,

and hence φ∞(g1 · · · gn · · · ) = α.

Now suppose that α ∈ E∗ and s(α) is singular. Then there exists µ ∈ M

such that s(α) = r(µ) in F . Since φ preserves r and s, we have φ−1(α)µ ∈ F∞

and r(φ−1(α)µ) = r(α) ∈ E0. So φ∞(φ−1(α)µ) = φ(φ−1(α)) = α. Thus φ∞ is

surjective. �

We now have the tools to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. We will show that the map φ∞ defined in (2.2.2)

is a homeomorphism. Proposition 2.2.10 says that φ∞ is a bijection, so it suffices to

show that φ∞ and φ−1
∞ are continuous.

To see that φ∞ is continuous, fix α ∈ E∗ and a finite subset G ⊂ s(α)E1, so

Z(α \ G) ∩ ∂E is a basic open set in ∂E. We show that φ−1
∞ (Z(α \ G) ∩ ∂E) is

open. If Z(α \G)∩ ∂E = ∅ then φ−1
∞ (Z(α \G)∩ ∂E) = ∅ is open. So suppose that

Z(α \G) ∩ ∂E 6= ∅, and fix λ ∈ φ−1
∞ (Z(α \G) ∩ ∂E). We seek γ ∈ F ∗ such that

λ ∈ Z(γ) ∩ E0F∞ ⊂ φ−1
∞ (Z(α \G) ∩ ∂E).
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We consider two cases:

(i) λ is either equal to l1l2 · · · , or λ = l1 · · · lkµ with k > |α|; or

(ii) λ = l1 · · · l|α|µ.

where µ ∈M , and li ∈ (F 1 ∩ E1) ∪ F ∗(M) for each i.

In case (i), let γ = l1 · · · l|α|+1. Clearly λ ∈ Z(γ) ∩ E0F∞. Now suppose that

y ∈ Z(γ) ∩ E0F∞. We have φ∞(λ) = φ∞(l1 · · · l|α| · · · ) ∈ Z(α \ G) ∩ ∂E, so

φ′(l1) · · ·φ′(l|α|) = α and φ′(l|α|+1) /∈ G. Hence

φ∞(y) = φ∞(γy′) = φ∞(l1 · · · l|α|+1y′) ∈ Z(α \G) ∩ ∂E.

So Z(γ) ∩ E0F∞ ⊂ φ−1
∞ (Z(α \G) ∩ ∂E).

In case (ii), we have φ∞(λ) = φ(l1 · · · l|α|) ∈ Z(α \G) ∩ ∂E, so φ(l1 · · · l|α|) = α.

Since φ preserves r and s, we have s(α) = r(µ) in F , and thus s(α) is singular in

E. Since G ⊂ s(α)E1, it follows from condition (C3) that G ⊂ φ(F ∗(M)). Let

N = maxν∈φ−1(G) |ν|. Each ν ∈ G ∩ EN has the form µ1 · · ·µN−1e, where e 6= µN .

Set γ = φ−1(α)µ1 · · ·µN . Then λ = φ−1(α)µ ∈ Z(γ) ∩ E0F∞. To see that

E0F∞ ⊂ φ−1
∞ (Z(α \G) ∩ ∂E,

fix y ∈ Z(γ) ∩ E0F∞. Then

φ∞(y) = φ∞(γy′) = φ∞(φ−1(α)µ1 · · ·µNy′) = αφ∞(µ1 · · ·µNy′).

Now either y′ is the rest of µ, or y′ = µN+1 · · ·µN+Key
′′ for some e 6= µN+K+1

and y′′ ∈ F∞. If y′ is the rest of µ (so y′ = µN+1 · · ·µN+K · · · ) then y = λ ∈
φ−1
∞ (Z(α\G)∩∂E) by assumption. In the other case, we have y = µ1 · · ·µNy′ = νy′′

for some ν ∈ F ∗(M), with |ν| = N + K + 1. Then by choice of N , we have

φ′(ν) = eν /∈ G. Hence

φ∞(y) = αφ∞(νy′′) = αeνφ∞(y′′) ∈ Z(α \G) ∩ ∂E.

So y ∈ Z(γ) ∩ E0F∞ ⊂ φ−1
∞ (Z(α \G) ∩ ∂E).

Now, to prove φ−1
∞ is continuous, fix γ ∈ F ∗. Then Z(γ)∩E0F∞ is a basic open

set in E0F∞. If Z(γ) ∩E0F∞ = ∅ then φ∞(Z(γ) ∩E0F∞) = ∅ is open, so suppose

that Z(γ) ∩ E0F∞ 6= ∅. Let x ∈ φ∞(Z(γ) ∩ E0F∞). We seek α ∈ E∗ and a finite

subset G ⊂ s(α)E1 such that

x ∈ Z(α \G) ∩ ∂E ⊂ φ∞(Z(γ) ∩ E0F∞).

Let λ ∈ Z(γ) ∩ E0F∞ be the unique element such that x = φ∞(λ). Write λ = γλ′

where λ′ ∈ F∞. We consider two cases:

(i) x ∈ E∞, or

(ii) x ∈ E∗ and s(x) is singular.
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In case (ii), we have x = φ∞(γλ′) ∈ E∞. This implies that λ does not have the

form νµ for ν ∈ E∗ and µ ∈ M . That is, λ does not ‘start’ with a collapsible path.

Hence by Lemma 2.2.9 we can write λ = l1l2 . . . for some li ∈ (E1 ∩ F 1) ∪ F ∗(M).

Let j = min{i ∈ N : |l1 . . . li| ≥ |γ|}. Set α = φ(l1 . . . lj) and G = ∅. We claim that

x ∈ Z(α) ∩ ∂E, and that Z(α) ∩ ∂E ⊂ φ∞(Z(γ) ∩ E0F∞). We have

x = φ∞(l1 . . . ljlj+1 . . . ) = φ(l1 . . . lj)φ∞(lj+1 . . . ) = αφ∞(lj+1 . . . ).

So x ∈ Z(α)∩ ∂E. To see that Z(α)∩ ∂E ⊂ φ∞(Z(γ)∩E0F∞) fix y ∈ Z(α)∩ ∂E.

So y = αy′ for some y′ ∈ ∂E. Then

φ−1
∞ (y) = φ−1

∞ (αy′)

= φ−1
∞ (φ(l1 . . . lj)y′)

= l1 . . . ljφ−1
∞ (y′)

= γγ′φ−1
∞ (y′) for some γ′ ∈ F ∗.

So φ−1
∞ (y) ∈ Z(γ) ∩ E0F∞, and hence y ∈ φ∞(Z(γ) ∩ E0F∞).

In case (ii), we have λ = γλ′ = ωµ for some ω ∈ F ∗ and µ ∈ M . Let α := x.

Our choice of G depends on |γ|, so we argue in cases:

(1) If |γ| ≤ |ω|, let G = ∅.
(2) If |γ| > |ω|, then γ = ωµ1 . . . µj for some j ∈ N; let

G = {eν : ν = µ1 . . . µkνk+1 ∈ F ∗(µ), and k < j}.

Since x ∈ Z(α \G) ∩ ∂E by definition, we just need to show that

Z(x \G) ∩ ∂E ⊂ φ∞(Z(γ) ∩ E0F∞).

Fix y ∈ Z(x \G)∩ ∂E, so y = xy′ for some y′ ∈ ∂E. Since x = φ∞(λ) = φ∞(ωµ) =

φ(ω), we have φ−1
∞ (y) = φ−1

∞ (xy′) = ωφ−1
∞ (y′).

In case (1), |γ| ≤ |ω| implies that ω = γω′ for some ω′ ∈ F ∗, so

φ−1
∞ (y) = γω′φ−1

∞ (y′) ∈ Z(γ) ∩ E0F∞.

Hence y ∈ φ∞(Z(γ) ∩ E0F∞).

For case (2), observe that if y′ ∈ E0, then y = x ∈ φ∞(Z(γ) ∩ E0F∞) by

assumption. So suppose |y′| ≥ 1. Then s(x) is an infinite receiver, and thus y′1 = eν

for some ν ∈ F ∗(µ). Since y ∈ Z(x \ G), y′1 /∈ G, so ν = µ1 . . . µkνk+1 for some
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k ≥ j, and thus

φ−1
∞ (y) = φ−1

∞ (xy′) = ωφ−1
∞ (y′1y

′
2 . . . )

= ωφ−1
∞ (eνy

′
2 . . . )

= ωνφ−1
∞ (y′2 . . . )

= ωµ1 . . . µj . . . µkνk+1φ
−1
∞ (y′2 . . . )

= γµj+1 . . . µkνk+1φ
−1
∞ (y′2 . . . )

is an element of Z(γ)∩E0F∞. So y ∈ φ∞(Z(γ)∩E0F∞), and hence φ∞ : E0F∞ →
∂E is a homeomorphism. �

2.3. Graph C∗-algebras

Let E be a directed graph. Define

E≤n := {µ ∈ E∗ : |µ| = n, or |µ| < n and s(µ)E1 = ∅}.

A Cuntz-Krieger E-family consists of mutually orthogonal projections {sv : v ∈ E0}
and partial isometries {sµ : µ ∈ E∗} such that {sµ : µ ∈ E≤n} have mutually

orthogonal ranges for each n ∈ N, and such that

(CK1) s∗µsµ = ss(µ) for every µ ∈ E∗;
(CK2) sµs

∗
µ ≤ sr(µ) for every µ ∈ E∗; and

(CK3) sv =
∑

ν∈vE≤n sνs
∗
ν for every v ∈ E0 and n ∈ N such that |vE≤n| <∞.

The C∗-algebra of E is the universal C∗-algebra C∗(E) generated by a Cuntz-Krieger

E-family {sµ : µ ∈ E∗}. The existence of such a C∗-algebra follows from an argu-

ment like that of [19, Proposition 1.21].

These relations are slightly different to the standard Cuntz-Krieger relations

appearing elsewhere (for example in [1, 5, 19]). In these papers, a Cuntz-Krieger

E-family is defined to be a set of mutually orthogonal projections {pv : v ∈ E0} and

partial isometries {se : e ∈ E1} with mutually orthogonal ranges such that

(G1) s∗ese = ps(e) for every e ∈ E1;

(G2) ses
∗
e ≤ Pr(e) for every e ∈ E1;

(G3) pv =
∑

e∈vE1 ses
∗
e for every v ∈ E0 such that 0 < |vE1| <∞.

When we are working with higher-rank graphs later in this thesis, there is also a set

of Cuntz-Krieger relations which, as a consequence of the structure of a higher-rank

graph, are easier to work with when stated in terms of paths. Since the majority

of this thesis deals with higher-rank graphs, we will use the relations (CK1)–(CK3)

for the sake of consistency. First we prove that our definition of a Cuntz-Krieger

E-family is equivalent to the one that is usually stated.



2.3. GRAPH C∗-ALGEBRAS 25

Lemma 2.3.1. Let E be a directed graph. Let {pv : v ∈ E0} be mutually orthogo-

nal projections, and {se : e ∈ E1} be partial isometries. For v ∈ E0, let sv = pv and

for µ ∈ E∗ let sµ = sµ1 . . . sµ|µ|. Then {se : e ∈ E1} have mutually orthogonal ranges

and {pv, se : v ∈ E0, e ∈ E1} satisfy (G1)–(G3) if and only if {sµ : µ ∈ E≤n} have

mutually orthogonal ranges for each n ∈ N and {sµ : µ ∈ E∗} satisfy (CK1)–(CK3).

Proof. If {sµ : µ ∈ E≤n} have mutually orthogonal ranges for each n ∈ N
and {sµ : µ ∈ E∗} satisfy (CK1)–(CK3), then clearly {se : e ∈ E1} have mutually

orthogonal ranges and {pv, se : v ∈ E0, e ∈ E1} satisfy (G1)–(G3). So suppose that

{se : e ∈ E1} have mutually orthogonal ranges and that {pv, se : v ∈ E0, e ∈ E1}
satisfy (G1)–(G3). To see (CK1) holds, calculate

s∗µsµ = s∗µ2...µn
s∗µ1

sµ1sµ2...µn

= s∗µ2...µn
ss(µ1)sµ2...µn by (G1)

= s∗µ2...µn
sr(µ2)sµ2...µn

= s∗µ1...µn−1
sµ1...µn−1 .

So (CK1) follows from an induction on |µ|.
For (CK2), we have

sµs
∗
µ = sµ1...µn−1sµns

∗
µns
∗
µ1...µn−1

≤ sµ1...µn−1sr(µn)s
∗
µ1...µn−1

by (G2)

= sµ1...µn−1ss(µn−1)s
∗
µ1...µn−1

= sµ1...µn−1s
∗
µ1...µn−1

.

So another induction on |µ| gives the result.

For (CK3), fix µ ∈ E∗ such that |s(µ)E1| < ∞. If s(µ)E1 = ∅, we have

µ ∈ E≤|µ|+1, so µE∗ ∩ E≤|µ|+1 = {µ}. Then

sµs
∗
µ =

∑
ν∈µE∗∩E≤|µ|+1

sνs
∗
ν .

If s(µ)E1 6= ∅, then

sµs
∗
µ = sµss(µ)s

∗
µ

= sµ

( ∑
e∈s(µ)E1

ses
∗
e

)
s∗µ by (G3)

=
∑

e∈s(µ)E1

sµes
∗
µe

=
∑

ν∈µE∗∩E≤|µ|+1

sνs
∗
ν .
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Hence ∑
µ∈vE≤n

sµs
∗
µ =

∑
µ∈vE≤n

( ∑
ν∈µE∗∩E≤|µ|+1

sνs
∗
ν

)
=

∑
ν∈vE≤n+1

sνs
∗
ν ,

and an induction on n gives the result.

To see {sµs∗µ : µ ∈ E≤n} are mutually orthogonal, let µ, ν ∈ E≤n such that

µ 6= ν. Since µ, ν ∈ E≤n, we know that neither µ 6= νν ′ nor ν 6= µµ′ (otherwise the

shorter path would not be an element of E≤n). Then there exists j ≤ min{|µ|, |ν|}
such that µi = νi for i < j and µj 6= νj. Since {se : e ∈ E1} have mutually

orthogonal ranges, we have s∗µjsνj = 0, so

(sµs
∗
µ)(sνs

∗
ν) = sµsµj+1...µ|µ|s

∗
µj

(s∗µ1...µj−1
sν1...νj−1

)sνjsνj+1...ν|ν|s
∗
ν

= sµsµj+1...µ|µ|s
∗
µj
sνjsνj+1...ν|ν|s

∗
ν by (CK1)

= 0 �

Remark 2.3.2. When E0 is infinite, C∗(E) does not have an identity. To see

why, let {sµ : µ ∈ E∗} be the universal Cuntz-Krieger E-family generating C∗(E).

Then C∗(E) = span{sµs∗ν : µ, ν ∈ E} (see [19, Proposition 1.21]). If 1 ∈ C∗(E),

then there exists a finite sum a :=
∑

µ,ν∈F aµ,νsµs
∗
ν such that ‖1 − a‖ < 1/2. Fix

v ∈ E0 such that r(µ) 6= v for any µ ∈ F . Then

1/2 ≥ ‖1− a‖‖sv‖ ≥ ‖(1− a)sv‖ = ‖sv − 0‖ = ‖sv‖ = 1.

If A is a C∗-algebra without identity, it is often useful to embed it in a larger

C∗-algebra with an identity like the multiplier algebra M(A) of A. We use multiplier

algebras to make sense of certain infinite sums in C∗(E). An infinite sum of mutually

orthogonal projections in a C∗-algebra cannot converge in norm: each difference∑N
n=M+1 pn between partial sums is also a projection and hence has norm 1. The

following lemma [19, Lemma 2.10] nevertheless allows us to safely talk about infinite

sums of vertex projections in C∗(E). The proof supplied in [19] does not depend

on the row-finiteness of E, so it has been left out of the statement here.

Lemma 2.3.3 ([19, Lemma 2.10]). Let E be a directed graph, and fix V ⊂ E0.

Then there is a projection pV in M(C∗(E)) such that

(2.3.1) pV sµs
∗
ν =

sµs∗µ if r(µ) ∈ V

0 if r(µ) /∈ V.

We can now state the key result, which relates the C∗-algebra of E to that of its

desingularisation.
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Proposition 2.3.4 ([19, Proposition 5.2]). Suppose that µ is a collapsible path

in a row-finite graph F . Define s∞(µ) := {s(µi) : i ≥ 1} and

F ∗(µ) := {ν ∈ F ∗ : | ν| > 1, ν = µ1µ2 · · ·µ| ν−1|e for some e 6= µ|µ|}.

Let F 0
µ := F 0\s∞(µ) and F 1

µ :=
(
F 1\(r−1(s∞(µ))∪{µ1})

)
∪{eν : ν ∈ F ∗(µ)}, and ex-

tend the range and source maps to F 1
µ by r(eν) := r(ν) = r(µ) and s(eν) := s(ν). Let

pF 0
µ

be the projection from Lemma 2.3.3. Let {se, pv : e ∈ F 1, v ∈ F 0} and {te, qv :

e ∈ F 1
µ , v ∈ F 0

µ} be the generators of C∗(F ) and C∗(Fµ). Then pF 0
µ
C∗(F )pF 0

µ
is a

full corner in C∗(F ), and there is an isomorphism π of C∗(Fµ) onto pF 0
µ
C∗(F )pF 0

µ

such that π(qv) = pv for v ∈ F 0
µ , π(te) = se for e ∈ F 1 \ (r−1(s∞(µ)) ∪ {µ1}), and

π(teν ) = sν for ν ∈ F ∗(µ).

For a directed graph E, we call C∗({sµs∗µ : µ ∈ E}) ⊂ C∗(E) the diagonal C∗-

algebra of E and denote it DE, dropping the subscript when confusion is unlikely.

We denote the spectrum of a commutative C∗-algebra B by ∆(B). Given a homo-

morphism π : A → B of commutative C∗-algebras, we denote by π∗ the induced

map from ∆(B) to ∆(A) such that π∗(f)(y) = f(π(y)) for all f ∈ ∆(B) and y ∈ A.

2.4. The Diagonal and the Spectrum

The goal for this section is the following theorem.

Theorem 2.4.1. Let E be a directed graph and (F,M) be a Drinen-Tomforde

desingularisation of E. Let φ∞ : E0F∞ → ∂E be the homeomorphism from Theorem

2.2.1, let pE0 ∈ M(C∗(F )) be the projection obtained in Lemma 2.3.3, and let π :

C∗(Fµ)→ pE0C∗(F )pE0 be the isomorphism from Proposition 2.3.4. Then π(DE) =

pE0DFpE0, and there exist homeomorphisms hE : ∂E → ∆(DE) and h : E0F∞ →
∆(pE0DFpE0) such that the following diagram commutes.

E0F∞

∆(pE0DFpE0)

h

∂E
φ∞

∆(DE)

hE

π∗

We prove Theorem 2.4.1 on page 33. First, we establish some technical results.

Lemma 2.4.2. Let E be a directed graph, and let F ⊂ E∗ be finite. For µ ∈ F ,

define

qFµ := sµs
∗
µ

∏
µµ′∈F\{µ}

(sµs
∗
µ − sµµ′s∗µµ′).
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Then the qFµ are mutually orthogonal projections in span{sµs∗µ : µ ∈ F}, and for

each ν ∈ F , we have

(2.4.1) sνs
∗
ν =

∑
νν′∈F

qFνν′ .

Proof. We prove (2.4.1) by induction on |F |. If |F | = 1, then (2.4.1) is trivially

satisfied. Now suppose that (2.4.1) holds for all F with |F | < n, and fix F with

|F | = n. Let λ ∈ F be of maximal length, and define G = F \{λ}. Then qFλ = sλs
∗
λ,

and for each µ ∈ G we have

qFµ =

qGµ if λ /∈ Z(µ)

qGµ (sµs
∗
µ − sλs∗λ) = qGµ − qGµ sλs∗λ if λ ∈ Z(µ).

Fix µ ∈ G. If λ /∈ Z(µ), the inductive hypothesis implies that

∑
µµ′∈F

qFµµ′ =
∑
µµ′∈G

qGµµ′ = sµs
∗
µ.

If λ ∈ Z(µ), then

∑
µµ′∈F

qFµµ′ =
∑
µµ′∈G

(qGµ − qGµ sλs∗λ) + qFλ

=
∑
µµ′∈G

qGµ −
∑
µµ′∈G

qGµ sλs
∗
λ + sλs

∗
λ

= sµs
∗
µ − sµs∗µsλs∗λ + sλs

∗
λ by the inductive hypothesis

= sµs
∗
µ − sλs∗λ + sλs

∗
λ since λ ∈ Z(µ)

= sµs
∗
µ,

establishing (2.4.1).

That the qFµ are projections follows from Lemma A.0.7. That they are mutually

orthogonal follows from (2.4.1). �

Remark 2.4.3. Let E be a directed graph, and let F ⊂ E∗ be finite. For µ ∈ F ,

let Fµ = {µ′ ∈ s(µ)E \ {s(µ)} : µµ′ ∈ F}. We claim that

qFµ = sµ

( ∏
µ′∈Fµ

(ss(µ) − sµ′s∗µ′)
)
s∗µ.
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To see this, fix ν ∈ Fµ. We have

sµ

( ∏
µ′∈Fµ

(ss(µ) − sµ′s∗µ′)
)
s∗µ

= sµ

( ∏
µ′∈Fµ\{ν}

(ss(µ) − sµ′s∗µ′)
)

(ss(µ) − sνs∗ν)s∗µ

= sµ

( ∏
µ′∈Fµ\{ν}

(ss(µ) − sµ′s∗µ′)
)
s∗µsµ(ss(µ) − sνs∗ν)s∗µ

=
(
sµ

( ∏
µ′∈Fµ\{ν}

(ss(µ) − sµ′s∗µ′)
)
s∗µ

)
(sµs

∗
µ − sµνs∗µν).

Now an induction on |Fµ| gives

sµ

( ∏
µ′∈Fµ

(ss(µ) − sµ′s∗µ′)
)
s∗µ = sµs

∗
µ

∏
µ′∈Fµ

(sµs
∗
µ − sµµ′s∗µµ′) = qFµ .

To go further we need some more definitions. We say that µ, ν ∈ E∗ have common

extension if either µ = νν ′ or ν = µµ′, and call the longer path the minimal common

extension of µ and ν. A set F ⊂ E∗ is exhaustive if for every µ ∈ E∗ there exists ν ∈
F such that µ and ν have common extension. We denote the set of finite exhaustive

sets by FE(E), and for a vertex v we define vFE(E) := {F ∈ FE(E) : F ⊂ vE∗}.
The following lemma is stated for row-finite directed graphs as [19, Corollary

1.14(b)]. The proof is marginally different for arbitrary directed graphs, and is

supplied here.

Lemma 2.4.4. Let E be a directed graph, and let µ, ν ∈ E∗. Then

s∗µsν =


s∗ν′ if µ = νν ′

sµ′ if ν = µµ′

0 otherwise.

Furthermore,

(2.4.2) (sµs
∗
µ)(sνs

∗
ν) =


sµs
∗
µ if µ = νν ′

sνs
∗
ν if ν = µµ′

0 otherwise.

Proof. If µ = νν ′, then

s∗µsν = s∗νν′sν = s∗ν′s
∗
νsν = s∗ν′ss(ν) = s∗ν′ ,

hence

(sµs
∗
µ)(sνs

∗
ν) = sµs

∗
νν′sνs

∗
ν = sµs

∗
ν′s
∗
νsνs

∗
ν = sµs

∗
ν′s
∗
ν = sµs

∗
νν′ = sµs

∗
µ.
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Similar calculations show that if ν = µµ′, then we have s∗µsν = sµ′ and (sµs
∗
µ)(sνs

∗
ν) =

sνs
∗
ν .

Otherwise, we have µ1 . . . µn 6= ν1 . . . νn where n = min{|µ|, |ν|}. Without loss

of generality, suppose that |µ| > |ν|. Let λ = µ1 . . . µn, and let µ′ be such that

µ = λµ′. Then

s∗µsν = s∗µ′s
∗
λsν = s∗µ′ss(λ)s

∗
λsνss(ν) = s∗µ′s

∗
λ(sλs

∗
λsνs

∗
ν)sν = 0,

hence

(sµs
∗
µ)(sνs

∗
ν) = sµ(s∗µsν)s

∗
ν = 0. �

Theorem 2.4.5. Let E be a directed graph. Then D = span{sµs∗µ : µ ∈ E}, and

for each x ∈ ∂E there exists a unique hE(x) ∈ ∆(D) such that

hE(x)(sµs
∗
µ) =

1 if x ∈ Z(µ)

0 otherwise.

Moreover, x 7→ hE(x) is a homeomorphism of ∂E onto ∆(D).

Proof. We will first show that D = span{sµs∗µ : µ ∈ E∗}. Equation (2.4.2)

implies that span{sµs∗µ : µ ∈ E∗} is closed under multiplication and thus is a

∗-subalgebra of C∗(E). Hence the closed span is a C∗-algebra. Since D is the

smallest C∗-subalgebra of C∗(E) containing the generators {sµs∗µ : µ ∈ E∗}, we

have D = span{sµs∗µ : µ ∈ E∗}.
Fix x ∈ ∂E and

∑
µ∈F bµsµs

∗
µ ∈ span{sµs∗µ : µ ∈ E∗}. Let n = max{p ∈ N :

x1 . . . xp ∈ F}, and define Fx := {µ′ ∈ x(n)E \ {x(n)} : x(0, n)µ′ ∈ F}.

Claim 2.4.5.1. The projection qFx1...xn
6= 0.

Proof. First suppose that s(xn)E∗ = ∅. Then Fx = ∅, hence

qFx1...xn
= sx1...xns

∗
x1...xn

6= 0.

Now suppose that s(xn)E∗ 6= ∅. We first show that there exists ν ∈ s(xn)E∗

such that for each µ′ ∈ Fx, ν and µ′ have no common extension. We argue in cases;

we know s(xn) is not a source in E, so our cases are

(i) s(x) is a source in E, and |x| > n;

(ii) s(x) is an infinite receiver;

(iii) x ∈ E∞.

In case (i), let ν = xn+1 . . . x|x|. Then by choice of n, ν has no common extension

with any µ′ in Fx. In case (ii), such a ν exists since |Fx| ≤ |F | < |s(x)E∗| = ∞.

In case (iii), let k = max{|µ′| : µ′ ∈ Fx}. Then it follows from our choice of n that

ν = xn+1 . . . xn+k is not a common extension of any µ′ in Fx.
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So we have ν ∈ s(xn)E∗ such that ν and µ′ have no common extension for all

µ′ ∈ Fx. Thus by Lemma 2.4.4, we have sνs
∗
νsµ′s

∗
µ′ = 0 for all µ′ ∈ Fx. Applying

Lemma A.0.7 with p = ss(xn), q0 = sνs
∗
ν , Q = Fx, we have

∏
µ′∈Fx(ss(xn)−sµ′s∗µ′) 6= 0.

So

qFx1...xn
= sx1...xn

∏
µ′∈Fx

(ss(xn) − sµ′s∗µ′)s∗x1...xn
6= 0. �Claim

We now calculate∥∥∥∑
ν∈F

bµsµs
∗
µ

∥∥∥ =
∥∥∥∑
ν∈F

( ∑
µ∈F

ν∈Z(µ)

bµ

)
qFν

∥∥∥
= max

ν∈F
qFν 6=0

{∣∣∣ ∑
µ∈F

ν∈Z(µ)

bµ

∣∣∣} by Lemma A.0.6

≥
∣∣∣ ∑

µ∈F
x1...xn∈Z(µ)

bµ

∣∣∣ by Claim 2.4.5.1.

Hence the formula

(2.4.3) hE(x)
(∑
µ∈F

bµsµs
∗
µ

)
=
∑
µ∈F

x∈Z(µ)

bµ

determines a well-defined, norm-decreasing linear map hE(x) on span{sµs∗µ : µ ∈ E}.
We now show that hE(x) is a homomorphism. Since hE(x) is linear and norm-

decreasing, it suffices to calculate

hE(x)(sµs
∗
µsαs

∗
α) =


1 if α ∈ Z(µ) and x ∈ Z(α)

or µ ∈ Z(α) and x ∈ Z(µ),

0 otherwise

=


1 if x ∈ Z(α) ⊂ Z(µ)

or x ∈ Z(µ) ⊂ Z(α),

0 otherwise

=

1 if x ∈ Z(α) ∩ Z(µ)

0 otherwise.

= hE(x)(sµs
∗
µ)hE(x)(sαs

∗
α).

Since h(x) is a nonzero bounded linear map on a dense subspace of D, and since

multiplication is continuous, h(x) extends uniquely to a nonzero homomorphism

h(x) : D → C.
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It remains to show that hE : ∂E → ∆(D) is a homeomorphism. The trickiest

part is to show that hE is onto.

Claim 2.4.5.2. The map hE is surjective.

Proof. Fix φ ∈ ∆(D). We seek x ∈ ∂E such that hE(x) = φ. We have that

φ(p) ∈ {0, 1} for any projection p ∈ D, and that for each n ∈ N, {sµs∗µ : |µ| = n}
are mutually orthogonal projections. It then follows that for each n there exists at

most one νn ∈ En such that φ(sνns
∗
νn) = 1. Let

S := {n ∈ N : there exists νn ∈ En such that φ(sνnsνn) = 1}.

Since φ is nonzero, S is nonempty. If ν = µν ′ and φ(sνs
∗
ν) = 1, then

1 = φ(sνs
∗
ν) = φ(sνs

∗
νsµs

∗
µ) = φ(sνs

∗
ν)φ(sµs

∗
µ),

so φ(sµs
∗
µ) = 1. This implies that if n ∈ S and m ≤ n, then m ∈ S, and νn(0,m) =

νm. It follows that S is equal either to N, or to {1, . . . , N} for some N .

If S = N, define x ∈ E∞ by x(0, n) = νn for all n. If S = {1, . . . , N}, define

x := νN . We will show that x ∈ ∂E and hE(x) = φ. We first show that x ∈ ∂E.

This is trivial if S = N, so suppose that S = {1, . . . , N}. We must show that

|s(x)E1| ∈ {0,∞}. To see this, we suppose that s(x)E1 is finite and nonempty and

seek a contradiction. By (CK3), we have φ(sxs
∗
x) =

∑
e∈s(x)E1 φ(sxes

∗
xe), so there

exists e ∈ s(x)E1 such that φ(sxes
∗
xe) = 1, giving N + 1 ∈ S, a contradiction.

Now we show that hE(x) = φ. For each µ ∈ E∗ we have

φ(sµs
∗
µ) = 1 ⇐⇒ |µ| ∈ S and ν |µ| = µ

⇐⇒ x(0, |µ|) = µ

⇐⇒ hE(x)(sµs
∗
µ) = 1.

Since both φ(sµs
∗
µ) and hE(x)(sµs

∗
µ) only take values in {0, 1}, it follows that hE(x) =

φ. �Claim

To see h is injective, suppose that hE(x) = hE(y). Then for each n ∈ N, let

nx = min{n, |x|}. Then we have

hE(y)(sx(0,nx)s
∗
x(0,nx)) = hE(x)(sx(0,nx)s

∗
x(0,nx)) = 1

Hence y(0, n ∧ |x|) = x(0, n ∧ |x|) for all n ∈ N. By symmetry, we also have that

y(0, n∧ |y|) = x(0, n∧ |y|) for all n. In particular, |x| = |y| and y(0, n) = x(0, n) for

all n ≤ |x|. Thus x = y.

We now show that hE is continuous. Suppose that xn → x. Since the topology

on ∆(D) is that of pointwise convergence, we must show that hE(xn)(a)→ hE(x)(a)

for each a ∈ D. We will first show that for each µ ∈ E∗, there exists N such that
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n ≥ N implies that hE(xn)(sµs
∗
µ) = hE(x)(sµs

∗
µ). Since xn → x, there exists N0

such that n ≥ N0 implies that xn(0, |µ| ∧ |x|) = x(0, |µ| ∧ |x|). Fix n ≥ N0. Suppose

that hE(x)(sµs
∗
µ) = 1. Then x(0, |µ|) = µ. In particular, xn(0, |µ|) = x(0, |µ|) = µ,

so hE(xn)(sµs
∗
µ) = 1. Now suppose that hE(x)(sµs

∗
µ) = 0. Then x(0, |µ| ∧ |x|) 6= µ,

so xn(0, |µ| ∧ |x|) 6= µ, and thus hE(xn)(sµs
∗
µ) = 0. Since hE(x) and the hE(xn) are

linear, it follows that hE(xn) converges to hE(x) for x ∈ span{sµs∗µ : µ ∈ E}. We

now argue that hE us continuous on D. Fix a ∈ D and ε > 0. We seek N ∈ N such

that n ≥ N implies that |hE(xn)(a)−hE(x)(a)| < ε. Fix a sequence {am : n ∈ N} ⊂
span{sµs∗µ : µ ∈ E} such that am → a. So there exists N1 such that n ≥ N0 implies

that ‖an − a‖ < ε/3. Fix m ∈ N. Since hE is continuous on span{sµs∗µ : µ ∈ E},
there exists N2 such that n ≥ N2 implies that |hE(xn)(am)−hE(x)(am)| < ε/3. Let

N = max{N1, N2}, and fix n ≥ N . Then since hE(x) is norm decreasing for every

x ∈ ∂E, we have

|hE(xn)(a)− hE(x)(a)| =
∣∣hE(xn)(a)− hE(xn)(an)

+ hE(xn)(an)− hE(x)(an)

+ hE(x)(an)− hE(x)(a)
∣∣

≤ |hE(xn)(a)− hE(xn)(an)|

+ |hE(xn)(an)− hE(x)(an)|

+ |hE(x)(an)− hE(x)(a)|

< |hE(xn)(a− an)|

+
ε

3
+ |hE(x)(an − a)|

≤ ‖a− an‖+
ε

3
+ ‖a− an‖

= ε.

So hE is continuous on D.

Finally, we show that hE is open. Since hE is a bijection, it suffices to show that

h−1
E is continuous. Suppose that hE(xn) → hE(x). We will show that xn → x. Fix

µ ∈ E∗ such that x ∈ Z(µ), so hE(x)(sµs
∗
µ) = 1. Since hE(xn) → hE(x) in ∆(D)

and hE(xn)(sµs
∗
µ) ∈ {0, 1} for all n, there exists N ∈ N such that n ≥ N implies

that hE(xn)(sµs
∗
µ) = 1. So xn ∈ Z(µ) for n ≥ N . Since Z(µ) are a basis for the

topology on ∂E, it follows that xn → x in ∂E. �

We can now prove our main result for this chapter.

Proof of Theorem 2.4.1. Let E be a directed graph with Drinen-Tomforde

desingularisation (F,M). Then π(sµ) = tφ−1(µ) for each µ ∈ E∗.
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Let φ : E0F ∗E0 → E∗ be the bijection from Proposition 2.2.10. It follows from

Lemma 2.3.3 that there exists a projection pE0 ∈M(C∗(F )) such that

(2.4.4) pE0tµt
∗
µpE0 =

tµt∗µ if r(µ) ∈ E0

0 otherwise.

Denote by π the isomorphism π : C∗(E) ∼= pE0C∗(F )pE0 of Proposition 2.3.4.

We will show that π maps DE onto pE0DFpE0 . Since

pE0tµt
∗
µpE0 =

tµt∗µ if r(µ) ∈ E0,

0 otherwise.

We have π(DE) ⊂ pE0DFpE0 . To see the reverse inclusion, fix µ ∈ F ∗. We must

show that pE0tµt
∗
µpE0 ∈ π(DE). If r(µ) /∈ E0 then pE0tµt

∗
µpE0 = 0 ∈ π(DE), so

suppose that r(µ) ∈ E0. If s(µ) ∈ E0, then

pE0tµt
∗
µpE0 = tµt

∗
µ = π(sφ(µ)s

∗
φ(µ)) ∈ π(DE).

Now suppose that s(µ) /∈ E0, then s(µ) = s(νn) for some collapsible path ν ∈ F∞

and n ∈ N. By definition of a collapsible path, ν has no exits except at r(ν). Thus

µ = µ′νn, where µ′ = µ(0, |µ|−1). Furthermore, s(µ′)F 1 is finite, thus (CK3) implies

that

sνns
∗
νn = ss(µ′) −

∑
f∈s(µ′)F 1\{νn}

sfs
∗
f .

Then

pE0sµs
∗
µpE0 = pE0sµ′sνns

∗
νns
∗
µ′pE0

= pE0sµ′
(
ss(µ′) −

∑
f∈s(µ′)F 1\{νn}

sfs
∗
f

)
s∗µ′pE0

= pE0sµ′s
∗
µ′pE0 −

∑
f∈s(µ′)F 1\{νn}

pE0sµ′sfs
∗
fs
∗
µ′pE0 .(2.4.5)

We proceed by induction on n. If n = 1, then µ′ ∈ E∗, and since s(f) ∈ E0 for all

f ∈ s(µ′)F 1 \ {ν1}, it follows that pE0sµs
∗
µpE0 ∈ π(DE). Suppose, as an inductive

hypothesis, that for every λ ∈ F ∗ such that there exists a collapsible path ν ∈ F∞

with s(λ) = s(νn−1), we have pE0sλs
∗
λpE0 ∈ π(DE). Since s(µ) = s(νn) for some

collapsible path ν, the inductive hypothesis implies that pE0sµ′s
∗
µ′pE0 ∈ π(DE), and

since s(f) ∈ E0 for all f ∈ s(µ′)F 1 \ {νn}, we have∑
f∈s(µ′)F 1\{νn}

pE0sµ′fs
∗
µ′fpE0 ∈ π(DE).

It then follows from (2.4.5) that pE0sµs
∗
µpE0 ∈ π(DE), as required. So π(DE) =

pE0DFpE0 .
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We now construct the homeomorphism h. Since pE0 commutes with DF , the

space pE0DFpE0 is an ideal of DF . Then [23, Propositions A26(a) and A27(b)]

imply that the map k : φ 7→ φ|pE0DF pE0 is a homeomorphism of {φ ∈ ∆(DF ) :

φ|pE0DF pE0 6= 0} onto ∆(pE0DFpE0). Since F has no singular vertices, ∂F = F∞.

Let hF : F∞ → ∆(DF ) be the homeomorphism obtained from Theorem 2.4.5. Fix

x ∈ E0F∞. Then there exists λ ∈ F ∗ such that hF (x)(tλt
∗
λ) 6= 0, so hF (x) ∈ dom(k)

for all x ∈ E0F∞. We define h := k ◦ hF |E0F∞ : E0F∞ → ∆(pE0DFpE0).

Let hE : ∂E → ∆(D) be the homeomorphism obtained from Theorem 2.4.5,

let φ∞ : E0F∞ → ∂E be the homeomorphism from Theorem 2.2.1, and let π∗ :

∆(pE0DFpE0) → ∆(DE) be the map φ 7→ φ ◦ π induced by π. We show that the

diagram on page 27 commutes by showing that hE ◦ φ∞ = π∗ ◦ h. Let x ∈ E0F∞,

and fix µ ∈ E∗. Since (hE ◦ φ∞)(x) and h(x) are homomorphisms, and since π is an

isomorphism, it suffices to show that

(2.4.6) (hE ◦ φ∞)(x)(sµs
∗
µ) = (π∗ ◦ h)(x)(sµs

∗
µ).

Since µ ∈ E∗, we have tφ−1(µ)t
∗
φ−1(µ) ∈ pE0DFpE0 . Then the right-hand side of (2.4.6)

becomes

π∗(h(x))(sµs
∗
µ) = (h(x) ◦ π)(sµs

∗
µ)

= h(x)(tφ−1(µ)t
∗
φ−1(µ))

= hF (x)|pDF p(tφ−1(µ)t
∗
φ−1(µ)) since r(x) ∈ E0

=

1 if x ∈ Z(φ−1(µ))

0 otherwise.

We break the left-hand side of (2.4.6) into cases:

(i) φ∞(x) ∈ E∞, or

(ii) φ∞(x) ∈ E∗.

In case (i), the left-hand side of (2.4.6) becomes

hE(φ∞(x))(sµs
∗
µ) =

1 if φ∞(x) ∈ Z(µ)

0 otherwise.

Since

φ∞(x) ∈ Z(µ) ⇐⇒ φ∞(x) = µµ′ for some µ′ ∈ E∞

⇐⇒ x = φ−1
∞ (µµ′) = φ−1(µ)φ−1

∞ (µ′),
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we have

hE(φ∞(x))(sµs
∗
µ) =

1 if x ∈ Z(φ−1(µ))

0 otherwise

as required.

In case (ii), φ∞(x) = φ(x′), where x = x′ν for some collapsible path ν ∈M . The

left hand side of (2.4.6) then becomes

hE(φ(x′))(sµs
∗
µ) =

1 if φ(x′) ∈ Z(µ)

0 otherwise.

Since φ is a bijection, x′ = φ−1(µ)x′′ ⇐⇒ φ(x′) = µφ(x′′), so equation (2.4.6) is

satisfied, and thus hE ◦ φ∞(x) = π∗ ◦ h(x). �



CHAPTER 3

Higher-Rank Graphs

Higher-rank graphs are a higher-dimensional analogue of directed graphs. They

were introduced by Kumjian and Pask in [12] as a visual model for the higher-rank

Cuntz-Krieger algebras of Robertson and Steger [28]. A higher-rank graph (or k-

graph) is a countable category Λ with a degree functor d satisfying the factorisation

property (Definition 3.0.6). We think of d : Λ → Nk as a generalisation of the

notion of length. In this section we construct a locally compact Hausdorff topology

on the path space of a higher-rank graph. Since our motivation comes from higher-

rank graph C∗-algebras, and since C∗-algebras have only been associated to finitely

aligned (Definition 3.0.13) k-graphs to date, we consider only finitely aligned k-

graphs here.

As yet there is no analogue of Drinen and Tomforde’s desingularisation procedure

for finitely aligned higher-rank graphs. Farthing detailed a partial desingularisation

of high-rank graphs [7] which is analogous to the ‘adding a head’ construction in

[14]. However, the complexity of higher-rank graphs makes even this a compar-

atively complicated task. In this section, we develop a modification of Farthing’s

desourcification technique, and use it extend the results about directed graphs from

Chapter 2 to the higher-rank graph setting. As a side benefit, our construction seems

to have led to simplified proofs of Farthing’s results for arbitrary row-finite (Defini-

tion 3.0.13) higher-rank graphs. The difference between Farthing’s construction and

ours is that our construction is based on a set of paths ∂Λ in the higher-rank graph

which we call the boundary paths (Definition 3.0.15), whereas Farthing’s is based on

the set of paths Λ≤∞ (Definition 3.0.15). Various notions of boundary paths have

appeared in the literature, and as a part of our analysis, we discuss the relationship

between them.

We view Nk as a category with Obj(Nk) = {?}, Mor(Nk) = Nk and with compo-

sition defined by addition.

Definition 3.0.6. Given k ∈ N, a graph of rank k (or k-graph) is a pair (Λ, d)

consisting of a countable category Λ = (Obj(Λ),Mor(Λ), r, s) together with a functor

d : Λ → Nk, called the degree map, which satisfies the factorisation property : for

every λ ∈ Mor(Λ) and m,n ∈ Nk with d(λ) = m + n, there are unique elements

µ, ν ∈ Mor(Λ) such that λ = µν, d(µ) = m and d(ν) = n. Elements λ ∈ Mor(Λ) are

37
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called paths. We follow the usual abuse of notation, and write λ ∈ Λ to mean λ ∈
Mor(Λ). For m ∈ Nk we define Λm := {λ ∈ Λ : d(λ) = m}. For a subset F ⊂ Λ, and

V ⊂ Obj(Λ), we write V F := {λ ∈ F : r(λ) ∈ V } and FV := {λ ∈ F : s(λ) ∈ V }.
If V = {v}, we drop the braces and write vF and Fv. A morphism between two

k-graphs (Λ1, d1) and (Λ2, d2) is a functor f : Λ1 → Λ2 which respects the degree

maps.

Remark 3.0.7. Fix v ∈ Obj(Λ). Since (idv)
2 = idv, that d is a functor forces

d(idv) = 0. Now suppose that λ ∈ vΛ0. Then idr(λ) λ = λ = λ ids(λ). Since

d(λ) = 0 + 0, and since d(idr(λ)) = 0 = d(ids(λ)), the factorisation property implies

that idv = idr(λ) = λ. So vΛ0 = {idv}, and we henceforth identify Obj(Λ) with Λ0.

We refer to elements of Λ0 as vertices.

Remark 3.0.8. Recall from the introduction that to visualise a k-graph we draw

its 1-skeleton: a directed graph with vertices Λ0 and edges
⋃k
i=1 Λei . To each edge

we assign a colour determined by the edge’s degree. In this thesis we tend to use

2-graphs for examples, and we draw edges of degree (1, 0) as solid lines, and edges of

degree (0, 1) as dashed lines. In the literature these are often referred to as “blue”

and “red” edges.

Example 3.0.9. For k ∈ N and m ∈ (N ∪ {∞})k, we define k-graphs Ωk,m as

follows. Set Obj(Ωk,m) = {p ∈ Nk : pi ≤ mi for all i ≤ k},

Mor(Ωk,m) = {(p, q) : p, q ∈ Obj(Ωk,m) and pi ≤ qi for all i ≤ k},

r(p, q) = p, s(p, q) = q and d(p, q) = q − p, with composition given by (p, q)(q, t) =

(p, t). If m = (∞)k, we drop m from the subscript and write Ωk. The 1-skeleton of

Ω2 is depicted in Figure 1.

Remark 3.0.10. The graphs Ωk,m provide an intuitive model for paths. Every

path λ of degree m in a k-graph Λ determines a k-graph morphism xλ : Ωk,m → Λ.

To see this, let p, q ∈ Nk be such that p ≤ q ≤ m. Define xλ(p, q) = λ′′, where

λ = λ′λ′′λ′′′; and d(λ′) = p, d(λ′′) = q − p and d(λ′′′) = m − q. In this way, paths

in Λ are often identified with the graph morphisms xλ : Ωk,m → Λ. This provides

convenient notation for referring to segments of paths. For example, we refer to

the segment λ′′ of λ (as factorized above) as λ(p, q), and for n ≤ m, we refer to

the vertex r(λ(n,m)) = s(λ(0, n)) as λ(n). By analogy, for m ∈ (N ∪ {∞})k we

define Λm := {x : Ωk,m → Λ : x is a graph morphism.}. For clarity of notation, if

m = (∞)k we write Λ∞.
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Figure 1. The 2-graph Ω2.

Define

WΛ :=
⋃

n∈(N∪{∞})k
Λn.

We call WΛ the path space of Λ. We drop the subscript when confusion is unlikely.

Since finite and infinite paths are fundamentally different objects, that one can

compose finite paths with a infinite paths isn’t immediately obvious. The following

proposition shows how to do so.

For m,n ∈ Nk, we denote by m ∧ n the coordinate-wise minimum, and by

m∨n the coordinate-wise maximum. For example, (4, 3, 2)∨ (0, 4, 1) = (4, 4, 2), and

(4, 3, 2) ∧ (0, 4, 1) = (0, 3, 1). With no parentheses, ∨ and ∧ take priority over the

group operation: a− b ∧ c means a− (b ∧ c).

Proposition 3.0.11. Let Λ be a k-graph. Suppose λ ∈ Λ and suppose that

x ∈ WΛ satisfies r(x) = s(λ). Then there exists a unique k-graph morphism λx :

Ωk,d(λ)+d(x) → Λ such that (λx)(0, d(λ)) = λ and (λx)(d(λ), n + d(λ)) = x(0, n) for

all n ≤ d(x).

Proof. Fix p, q ∈ Nk with p ≤ q ≤ d(λ) + d(x). Since q, d(λ) ≤ d(λ) + d(x), we

have q ∨ d(λ) ≤ d(λ) + d(x). So 0 ≤ q ∨ d(λ)− d(λ) ≤ d(x). Since λx(0, q ∨ d(λ)−
d(λ)) ∈ Λ, it can be viewed as a k-graph morphism from Ωk,q∨d(λ) into Λ. We then

define λx : Ωk,d(λ)+d(x) → Λ by

(λx)(p, q) :=
(
λx(0, q ∨ d(λ)− d(λ))

)
(p, q).

Clearly, λx is a k-graph morphism.
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To see that (λx)(0, d(λ)) = λ, we calculate

(λx)(0, d(λ)) =
(
λx(0, d(λ) ∨ d(λ)− d(λ))

)
(0, d(λ))

= (λr(x))(0, d(λ))

= λ.

To see that (λx)(d(λ), n+d(λ)) = x(0, n) for all n ≤ d(x), fix n ≤ d(x) and calculate

(λx)(d(λ),n+ d(λ))

=
(
λx(0, (n+ d(λ)) ∨ d(λ)− d(λ))

)
(d(λ), n+ d(λ))

= (λx(0, n))(d(λ), n+ d(λ))

= x(0, n).

For uniqueness, suppose that φ : Ωk,d(λ)+d(x) → Λ is a k-graph morphism sat-

isfying φ(0, d(λ)) = λ and φ(d(λ), n + d(λ)) = x(0, n) for all n ≤ d(x). Then for

p ≤ q ≤ d(λ) + d(x), we have

φ(p, q) =
(
φ(0, q ∨ d(λ))

)
(p, q)

=
(
λφ(d(λ), q ∨ d(λ))

)
(p, q)

=
(
λx(0, q ∨ d(λ)− d(λ))

)
(p, q)

= (λx)(p, q). �

Definition 3.0.12. For λ, µ ∈ Λ, we write

Λmin(λ, µ) := {(α, β) ∈ Λ× Λ : λα = µβ, d(λα) = d(λ) ∨ d(µ)}

for the collection of pairs which give minimal common extensions of λ and µ, and

denote the set of minimal common extensions by

MCE(λ, µ) := {λα : (α, β) ∈ Λmin(λ, µ)} = {µβ : (α, β) ∈ Λmin(λ, µ)}.

Definition 3.0.13. A k-graph Λ is row-finite if for each v ∈ Λ0 and m ∈ Nk,
the set vΛm is finite; Λ has no sources if vΛm 6= ∅ for all v ∈ Λ0 and m ∈ Nk.

We say that Λ is finitely aligned if Λmin(λ, µ) is finite (possibly empty) for all

λ, µ ∈ Λ.

As in [21, Definition 3.1], a k-graph Λ is locally convex if for all v ∈ Λ0, all

i, j ∈ {1, . . . k} with i 6= j, all λ ∈ vΛei and all µ ∈ vΛej , the sets s(λ)Λej and

s(µ)Λei are non-empty. Roughly speaking, local convexity stipulates that Λ contains

no subgraph resembling:
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u

v

µ

w
λ

Definition 3.0.14. For v ∈ Λ0, a subset E ⊂ vΛ is exhaustive if for every µ ∈ vΛ

there exists a λ ∈ E such that Λmin(λ, µ) 6= ∅ (or equivalently MCE(λ, µ) 6= ∅). We

denote the set of all finite exhaustive subsets of Λ by FE(Λ), and for v ∈ Λ0, we

write vFE(Λ) for the set {E ∈ FE(Λ) : E ⊂ vΛ}.

Definition 3.0.15. An element x ∈ W is a boundary path if for all n ∈ Nk with

n ≤ d(x) and for all E ∈ x(n)FE(Λ) there exists m ∈ Nk such that x(n, n+m) ∈ E.

We write ∂Λ for the set of all boundary paths, and for v ∈ Λ0, write v∂Λ for

{x ∈ ∂Λ : r(x) = v}.
We define the set Λ≤∞ as follows. A k-graph morphism x : Ωk,m → Λ is an

element of Λ≤∞ if there exists nx ≤ d(x) such that for n ∈ Nk satisfying nx ≤ n ≤
d(x) and ni = d(x)i, we have x(n)Λei = ∅.

The set Λ≤∞ of Definition 3.0.15 was introduced by Raeburn, Sims and Yeend in

[22], and its elements were referred to there as “boundary paths”. These “bound-

ary paths” were used in [22] to construct a nonzero Cuntz-Krieger Λ-family [22,

Proposition 2.12]. Farthing, Muhly and Yeend introduced the set ∂Λ of Definition

3.0.15 in [8]; in order to construct a groupoid to which Renault’s theory of groupoid

C∗-algebras [24] applied, they required a path space which was locally compact and

Hausdorff in an appropriate topology, and Λ≤∞ did not suffice. The differences be-

tween ∂Λ and Λ≤∞ can be easily seen if Λ contains any infinite receivers (e.g. any

path in a 1-graph Λ with source an infinite receiver is an element of ∂Λ \Λ≤∞), but

can even show itself in the row-finite case if Λ is not locally convex.

Example 3.0.16. Suppose Λ is the 2-graph with the skeleton pictured below.
•

v0

•

•

v1

•

•

v2

•

•

v3

•

ν0

ω0

ν1

ω1

ν2

ω2

. . .

. . .
ω3

Consider the paths ν = ν0ν1 . . . , and ωn = ν0ν1 . . . νn−1ωn, n = 0, 1, 2, . . . .

Observe that ν /∈ Λ≤∞: for each n ∈ N, we have d(ν)2 = 0 = (n, 0)2, and

ν((n, 0))Λe2 = vnΛe2 6= ∅.
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We claim that ν ∈ ∂Λ. We have d(ν) = (∞, 0), so to prove that ν ∈ ∂Λ

we must show that for each m ∈ N, and each E ∈ ν((m, 0))FE(Λ) = vmFE(Λ),

there exists p ∈ N such that ν((m, 0), (m + p, 0)) ∈ E. Fix m ∈ N and E ∈
vmFE(Λ). Since E is exhaustive, for each n ≥ m, there exists λn ∈ E such that

MCE(λn, νm . . . νn−1ωn) 6= ∅. Since each s(ωn) receives no edges, each λn must be

an initial segment of νm . . . νn−1ωn: either λn = νm . . . νn−1ωn, or λn takes the form

νm . . . νp for m ≤ p < n. Since E is finite, it cannot contain νm . . . νn−1ωn for every

n ≥ m, so it must contain νm . . . νp for some p ∈ N. So ν((m, 0), (m+p)) = νm . . . νp

belongs to E.

Remark 3.0.17. The 2-graph of example 3.0.16 first appeared in Robertson’s

honours thesis [26] to illustrate a subtlety arising in Farthing’s procedure [7] for

removing sources in k-graphs when the k-graphs in question are not locally convex.

It was for this reason that Robertson restricted his attention to locally convex k-

graphs in the main results of [26]. As it turns out, the issue arises precisely because

Farthing’s construction notionally extends each element of Λ≤∞ to an infinite path,

but not elements of ∂Λ. It was this which motivated us to develop the construction

we use in Section 3.2 where ∂Λ replaces Λ≤∞ in Farthing’s scheme.

Proposition 3.0.18. Suppose Λ is a finitely aligned k-graph. Then Λ≤∞ ⊂ ∂Λ.

If Λ is row-finite and locally convex, then Λ≤∞ = ∂Λ.

To prove this we use the following lemma.

Lemma 3.0.19. Let Λ be a row-finite, locally convex k-graph, and suppose that

v ∈ Λ0 satisfies vΛei 6= ∅ for some i ≤ k. Then vΛei ∈ vFE(Λ).

Proof. Since Λ is row-finite, vΛei is finite. To see that it is exhaustive, let

µ ∈ vΛ. If d(µ)i > 0, then g = µ(0, ei) ∈ vΛei implies that Λmin(µ, g) 6= ∅. Suppose

d(µ)i = 0. Let µ = µ1 . . . µn be a factorisation of µ such that |d(µj)| = 1 for each

j ≤ n. Since Λ is locally convex, r(µ1)Λei = vΛei 6= ∅ implies that s(µ1)Λei 6= ∅.
Then s(µ1)Λei 6= ∅ implies that s(µ2)Λei 6= ∅. Continuing in this way, we see that

s(µ)Λei = s(µn)Λei 6= ∅. Fix g ∈ s(µ)Λei . Let f := (µg)(0, ei). Then f ∈ vΛei .

Since d(µi) = 0, we have d(µg) = d(µ)∨d(f). Hence (g, (µg)(ei, d(µg))) ∈ Λmin(µ, f)

as required. �

Proof of Proposition 3.0.18. Fix x ∈ Λ≤∞. Then there exists nx ∈ Nk

such that nx ≤ d(x), and whenever n ∈ Nk satisfies nx ≤ n ≤ d(x),

(3.0.7) ni = d(x)i =⇒ x(n)Λei = ∅.

To see x ∈ ∂Λ, we show that for all m ≤ d(x) and all E ∈ x(m)FE(Λ), there exists

λ ∈ E such that m+ d(λ) ≤ d(x) and x(m,m+ d(λ)) = λ.
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Fix m ≤ d(x) and E ∈ x(m)FE(Λ). Define t ∈ Nk by

ti :=

d(x)i if d(x)i <∞,

max
λ∈E

(
nx ∨ (m+ d(λ))

)
i

if d(x)i =∞.

Then x(m, t) ∈ x(m)Λ, so there exists λ ∈ E such that Λmin(x(m, t), λ) is non-

empty. Let α, β ∈ Λmin(x(m, t), λ). We first show that d(α) = 0. Since x ∈ Λ≤∞ and

nx ≤ t ≤ d(x), we have d(x)i <∞ implies that x(t)Λei = ∅. So for each i such that

d(x)i < ∞, we have d(α)i = 0. Now suppose that d(x)i = ∞. Then d(x(m, t))i =

ti − mi ≥ d(λ)i. So d(x(m, t)α)i = max{d(x(m, t))i, d(λ)i} = d(x(m, t))i, giving

d(α)i = 0. Then we have x(m, t) = λβ, so x(m,m+ d(λ)) = λ.

Now suppose Λ is row-finite and locally convex. We want to show ∂Λ ⊂ Λ≤∞.

Fix x ∈ ∂Λ, and n ∈ Nk such that n ≤ d(x) and ni = d(x)i. It suffices to show

that x(n)Λei = ∅, for then nx = 0 satisfies (3.0.7). Since ni = d(x)i, we have

x(n)Λei /∈ x(n)FE(Λ). Lemma 3.0.19 then implies that x(n)Λei = ∅. �

3.1. Topology

Our first aim is to construct a locally compact Hausdorff topology on the path

space W of a finitely aligned k-graph Λ. As we did for directed graphs, we follow

the approach of Paterson and Welch in [17]. We show that the sets in Theorem

3.1.1 are precisely the inverse images of basic open sets in {0, 1}Λ (equipped with

the product topology) under the map α : W → {0, 1}Λ defined by

(3.1.1) α(w)(y) =

1 if w = yw′ for some w′ ∈ W,

0 otherwise.

For µ ∈ Λ the cylinder set of µ is

Z(µ) := {ν ∈ W : ν(0, d(µ)) = µ}.

For a finite subset G ⊂ s(µ)Λ, we define

(3.1.2) Z(µ \G) := Z(µ) \
⋃
ν∈G

Z(µν).

Our goals for this section are the following two theorems.

Theorem 3.1.1. Let Λ be a finitely aligned k-graph. Then the collection{
Z(µ \G) : µ ∈ Λ and G ⊂

k⋃
i=1

(s(µ)Λei) is finite
}

form a basis for the initial topology on W induced by {α}.
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Theorem 3.1.2. Let Λ be a finitely-aligned higher-rank graph. The topology on

W generated by the basic open sets given by Theorem 3.1.1 is a locally compact

Hausdorff topology.

We first require some definitions and a lemma. Let F be a set of paths in a k-

graph Λ. A path β ∈ W is a common extension of the paths in F if for each µ ∈ F ,

we can write β = µβµ for some βµ ∈ W . If in addition d(β) =
∨
µ∈F d(µ), then β is

a minimal common extension of the paths in F . We denote the set of all minimal

common extensions of the paths in F by MCE(F ). Since MCE({µ, ν}) = MCE(µ, ν),

this definition is consistent with Definition 3.0.12.

Lemma 3.1.3. Let F be a finite set of paths in a k-graph Λ. Then

⋂
µ∈F

Z(µ) =
⋃

β∈MCE(F )

Z(β).

Proof. Let α ∈
⋃
β∈MCE(F )Z(β). Then there exists β ∈ MCE(F ) such that

α = βα′. So for all µ ∈ F we have α = µβµα
′ ∈ Z(µ). Thus α ∈

⋂
µ∈F Z(µ).

Now suppose α ∈
⋂
µ∈F Z(µ). So α ∈ Z(µ) for all µ ∈ F . This implies that α is

a common extension of paths in F . Let β = α
(

0,
∨
µ∈F d(µ)

)
. Then β ∈ MCE(F )

and α ∈ Z(β). �

Proof of Theorem 3.1.1. We first describe the topology on {0, 1}Λ. Given

disjoint finite subsets F,G ⊂ Λ and µ ∈ Λ, define

UF,G
µ =


{1} if µ ∈ F,

{0} if µ ∈ G,

{0, 1} otherwise.

Then the sets

N(F,G) :=
∏
µ∈Λ

UF,G
µ

where F,G range over all finite disjoint pairs of subsets of Λ form a basis for the

topology on {0, 1}Λ.

An identical argument to that used in Proposition 2.1.3 shows that α is a homeo-

morphism onto its range, and hence the sets α−1(N(F,G)) are a basis for a topology
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on W . These sets can be described as follows.

λ ∈ α−1(N(F,G)) ⇐⇒ α(λ) ∈ N(F,G)

⇐⇒ α(λ)(µ) =

1 for µ ∈ F

0 for µ ∈ G

⇐⇒

λ ∈ Z(µ) for µ ∈ F,

λ /∈ Z(ν) for ν ∈ G.

⇐⇒ λ ∈

(⋂
µ∈F

Z(µ)

)
\

(⋃
ν∈G

Z(ν)

)

⇐⇒ λ ∈

 ⋃
µ∈MCE(F )

Z(µ)

 \(⋃
ν∈G

Z(ν)

)
.

Since each α−1(N, (F,G)) =
⋃
λ∈F α

−1(N({λ}, G)), we only need the sets F

containing a single element. If we set G′ = G ∩ Z(µ) then

Z(µ) \
⋃
ν∈G

Z(ν) = Z(µ) \
⋃
ν∈G′
Z(ν),

so the sets α−1(N({λ}, G)), where G ⊂ Z(µ), are a basis for the same topology.

Furthermore, by appropriately adjusting G (i.e. taking G′ = {ν : µν ∈ G} then

relabeling G = G′), the basis sets Z(µ) \
(⋃

ν∈GZ(ν)
)

become

Z(µ) \
⋃
ν∈G

Z(µν) = Z(µ \G),

as defined in equation (3.1.2). To finish the proof, it suffices to show that for µ ∈ Λ,

a finite subset G ⊂ s(µ)Λ and λ ∈ Z(µ \ G), there exist α ∈ Λ and a finite

F ⊂
⋃k
i=1

(
s(α)Λei

)
such that

λ ∈ Z(α \ F ) ⊂ Z(µ \G).

Let N :=
(∨

ν∈G d(µν)
)
∧ d(λ) and α = λ(0, N). To define F , we first define a set

Fν associated to each ν ∈ G, then take F =
⋃
ν∈G Fν . Fix ν ∈ G. We consider the

following cases:

(1) If N ≥ d(µν), let Fν = ∅.
(2) If N � d(µν), then either

(a) MCE(α, µν) = ∅, in which case let Fν = ∅, or

(b) MCE(α, µν) 6= ∅, which requires a little more work:

Since N � d(µν), there exists jν ≤ k such that Njν < d(µν)jν . Hence each γ ∈
MCE(α, µν) satisfies d(γ)jν = (N ∨ d(µν))jν > Njν . Define Fν = {γ(N,N + ejν ) :

γ ∈ MCE(α, µν)}. Since Λ is finitely aligned, Fν is finite.
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We now show that λ ∈ Z(α \ F ). We have λ ∈ Z(α) by choice of α. If F = ∅
we are done. If not, then fix ν ∈ G such that Fν 6= ∅, and fix e ∈ Fν . We will

show that λ /∈ Z(αe). We have e = γ(N,N + ejν ) for some γ ∈ MCE(α, µν). Since

Njν < d(µν)jν ≤
(∨

ν∈G d(µν)
)
jν

, we have d(λ)jν = Njν < (N + ejν )jν = d(αe)jν .

This implies that λ /∈ Z(αe). Since this holds for all ν ∈ G and e ∈ Fν , we have

λ ∈ Z(α \ F ).

We now show that Z(α \F ) ⊂ Z(µ \G). Fix β ∈ Z(α \F ). Since α ∈ Z(µ), we

have β ∈ Z(µ). Fix ν ∈ G. We will show that β /∈ Z(µν). We argue the following

cases separately:

(1) Suppose that N ≥ d(µν). Since β ∈ Z(α) = Z(λ(0, N)) and λ /∈ Z(µν), it

follows that β /∈ Z(µν).

(2) If N � d(µν), then either

(a) MCE(α, µν) = ∅, in which case β ∈ Z(α) implies that β /∈ Z(µν); or

(b) MCE(α, µν) 6= ∅, which requires a little more work:

Suppose, for a contradiction, that β ∈ Z(µν). Then β = γβ′ for some γ ∈
MCE(α, µν). By our choice of F , we have β(N,N + ejν ) 6= γ(N,N + ejν ). So

β(0, d(γ)) 6= γ, a contradiction. Hence β /∈ Z(µν).

Since this holds for all ν ∈ G, we have β ∈ Z(µ \G). �

For the proof of Theorem 3.1.2, we use the following technical results.

Lemma 3.1.4. Let {ν(n)} be a sequence of paths in Λ such that

(i) d(ν(n+1)) ≥ d(ν(n)) for all n ∈ N, and

(ii) ν(n+1)
(
0, d(ν(n))

)
= ν(n) for all n ∈ N.

Then there exists a unique ω ∈ W such that d(ω) =
∨
n∈N d(ν(n)) and ω

(
0, d(ν(n))

)
=

ν(n) for all n ∈ N.

Proof. Let m =
∨
n∈N d(ν(n)) ∈ (N ∪ {∞})k.

Claim 3.1.4.1. For a ∈ Nk with a ≤ m, there exists Na ∈ N such that d(ν(Na)) ≥
a.

Proof. Let q ∈ {1, . . . , k}. Since a ≤ m, there exists tq ∈ N such that d(ν(tq)) ≥
aq. Let Na = max{t1, . . . , tq}. Then d(ν(n+1)) ≥ d(ν(n)) implies that d(ν(Na)) ≥
a. �Claim

We now define ω and show that it has the required properties. For each (p, q) ∈
Ωk,m apply Claim 3.1.4.1 with a = q and define ω(p, q) = ν(Nq)(p, q).

Claim 3.1.4.2. ω : Ωk,m → Λ is a well-defined graph morphism.
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Proof. We first check that ω is well defined. To do this we show that it does

not depend on the choice of Nq from Claim 3.1.4.1. Suppose that (p, q) ∈ Mor(Ωk,m),

and that M,N ∈ N satisfy d(νM), d(νN) ≥ q. Without loss of generality we can

assume that M ≥ N . Condition (ii) from the Lemma hypothesis implies that

νM(0, d(νN)) = νN . Since d(νM), d(νN) ≥ q, we have νM(p, q) = νN(p, q). So ω is

well-defined.

To see that ω is a functor, we use that ν(n) is a functor: for each (p, q) ∈
Mor(Ωk,m), we have

r(ω(p, q)) = r(ν(Nq)(p, q)) = ν(Nq)(p), and

ω(r(p, q)) = ω(p) = ν(Np)(p).

Since d(ν(Nq)), d(ν(Np)) ≥ p, we have ν(Nq)(p) = ν(Np)(p). So r(ω(p, q)) = ω(r(p, q)).

Similar calculations show that ω respects the source, identity morphism, and com-

position maps:

s(ω(p, q)) = s(ν(Nq)(p, q)) = ν(Nq)(q) = ω(q) = ω(s(p, q)),

ω(idp) = ω(p, p) = ν(Np)(p, p) = ν(Np)(idp) = idν(Np)(p) = idω(p),

and

ω ((p, q) ◦ (q, v)) = ω(p, v)

= ν(Nv)(p, v)

= ν(Nv)((p, q) ◦ (q, v))

= ν(Nv)(p, q) ◦ ν(Nv)(q, v)

= ν(Nq)(p, q) ◦ ν(Nv)(q, v)

= ω(p, q) ◦ ω(q, v).

So ω is a functor.

To see ω is a graph morphism, we check that it preserves the degree map. This

follows because the ν(n) are graph morphisms:

d(ω(p, q)) = d(ν(Nq)(p, q)) = q − p = d(p, q). �Claim

Since d(ω) = m =
∨
n∈N d(ν(n)) by definition, it remains only to show that

ω(0, d(ν(n))) = ν(n) for all n, and that ω is the unique morphism with these proper-

ties. To see that ω
(
0, d(ν(n))

)
= ν(n) for all n ∈ N, take a = d(ν(n)) in Claim 3.1.4.1.
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This gives Mn := Nd(ν(n)) such that d(ν(Mn)) ≥ d(ν(n)). Then hypothesis (ii) of the

Lemma implies that

ω
(
0, d(ν(n))

)
= ν(Mn)

(
0, d(ν(n))

)
= ν(n).

To see that ω is unique, suppose that ω′ ∈ Λm is such that ω′(0, d(ν(n))) = ν(n)

for all n ∈ N. Fix p ≤ m. Claim 3.1.4.1 gives Np ∈ N such that d(ν(Np)) ≥ p. Then

ω′(0, p) = ν(Np)(0, p) = ω(0, p). Since this is true for all p ≤ m = d(ω) = d(ω′), we

have ω′ = ω. �

Proof of Theorem 3.1.2. Fix v ∈ Λ0. We follow the strategy of [17, The-

orem 2.2] to show Z(v) is compact. Proposition 2.1.3 implies that α is a home-

omorphism onto its range, so it suffices to prove that α(Z(v)) is compact. Since

{0, 1}Λ is compact, we need only show that α(Z(v)) is closed in {0, 1}Λ. Suppose

that (ω(n))n∈N is a sequence in Z(v) such that α(ω(n)) → f ∈ {0, 1}Λ. We seek

ω ∈ Z(v) such that f = α(ω).

Define A = {ν ∈ Λ : α(ω(n))(ν) → 1 as n → ∞}. Then A 6= ∅ since v ∈ A. Let

d(A) :=
∨
ν∈A d(ν).

Claim 3.1.2.1. There exists ω ∈ vΛd(A) such that:

• d(ω) ≥ d(µ) for all µ ∈ A, and

• ω(0, n) ∈ A for all n ∈ Nk with n ≤ d(A).

Proof. To define ω we construct a sequence of paths to which we will apply

Lemma 3.1.4. We first show that for each pair µ, ν ∈ A, there exists a unique path

βµ,ν ∈ MCE(µ, ν) ∩ A. Fix µ, ν ∈ A. Then α(ωn)(µ) → 1 and α(ωn)(ν) → 1. So

there exists N such that n ≥ N implies that ωn = µµ′ = νν ′. So for each n ≥ N ,

there exist βn ∈ MCE(µ, ν) such that ωn = βn(ωn)′. Since MCE(µ, ν) is finite,

there exists M such that ωn = βM(ωn)′ for infinitely many n. Denote these n by

{nk : k ∈ N}, and define βµ,ν := βM . So α(ω(nk))(βµ,ν) = 1 for all k. Since α(ωn)

converges, it follows that for large enough n we have α(ωn)(βµ,ν) = 1. So βµ,ν ∈ A.

For uniqueness, suppose that φ ∈ MCE(µ, ν) ∩ A. Then since d(φ) = d(µ) ∨ d(ν)

and φ ∈ A, it follows that for large n we have

βµ,ν = ωn(0, d(µ) ∨ d(ν)) = φ.

We now construct our sequence of paths. Since A is countable, we can list the

elements of A as

A = {ν1, ν2, . . . , νm, . . . }.

Let y1 := ν1, then iteratively define yn = βyn−1,νn . Then

d(yn) = d(yn−1) ∨ d(νn) ≥ d(yn−1),
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and yn(0, yn−1) = yn−1. By Lemma 3.1.4, there exists a unique ω ∈ W satisfying

d(ω) = d(A) and ω(0, d(yn)) = yn for all n.

To see that ω(0, n) ∈ A for each n ∈ Nk with n ≤ d(A), fix such an n. Claim

3.1.4.1 implies that there exists Nn ∈ N such that d(yNn) ≥ n. Then since each

ym ∈ A by definition, for large enough m we have

ωm = yNn(ωm)′ = ω(0, n)(yNn)′(ωm)′.

That is, ω(0, n) ∈ A. �Claim

To see α(Z(v)) is closed, we show that α(ω(n)) → α(ω) as n → ∞. Fix λ ∈ Λ.

We aim to show that α(ω(n))(λ) → α(ω)(λ). Suppose that α(ω)(λ) = 1. Then

λ = ω(0, d(λ)) ∈ A by Claim 3.1.2.1, and thus α(ω(n))(λ)→ 1 as n→∞.

Now suppose that α(ω)(λ) = 0. We argue that α(ω(n))(λ) → 0 in two cases:

either d(λ) ≤ d(ω), or not. Suppose that d(λ) � d(ω). Then by Claim 3.1.2.1,

λ /∈ A. This means that α(ω(n))(λ) 9 1. Since α(ω(n)) converges to either 0 or 1,

we must have α(ω(n))(λ)→ 0.

Suppose that d(λ) ≤ d(ω). Then since ω(0, d(λ)) ∈ A, there exists N such

that n ≥ N implies that ω(n) = ω(0, d(λ))τ (n). Furthermore, α(ω)(λ) = 0 implies

that ω(0, d(λ)) 6= λ. So for all n ≥ N we have ω(n) 6= λτ (n). This implies that

α(ω(n))(λ) 9 1. Since α(ω(n)) converges, we must have α(ω(n))(λ)→ 0. �

3.2. Removing Sources

In this section, given a finitely aligned k-graph Λ, we construct a k-graph Λ̃ with

no sources which contains a subgraph isomorphic to Λ. In the sections following,

we investigate how the boundary-path space of Λ relates to that of Λ̃. We then

show that if Λ is row-finite, then C∗(Λ) is isomorphic to a full corner of C∗(Λ̃).

Our construction is modelled on Farthing’s construction in [7], and thus most of the

proofs are inspired by hers. The crucial difference is that our construction involves

extending paths in ∂Λ, whereas Farthing’s extends paths from Λ≤∞. Interestingly,

although ∂Λ and Λ≤∞ are potentially different when Λ is row-finite and not locally

convex, our construction and Farthing’s yield isomorphic k-graphs except in the

non-row-finite case (see Examples 3.2.1 and Proposition 3.2.12).

We follow Robertson and Sims’ notational refinement [27] of Farthing’s desour-

cification: we construct a new k-graph in which the original k-graph is embedded,

whereas Farthing’s construction adds bits onto the existing k-graph. This simplifies

many arguments involving Λ̃.

One of our key goals was to show that there is a homeomorphism π from the

space of infinite paths of Λ̃ with range in the embedded copy of Λ to the boundary
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path space of Λ. Showing that this map is surjective proved difficult using Farthing’s

construction, and this was the primary motivation for developing a new one.

Definition 3.2.1. Define a relation ≈ on VΛ := {(x;m) : x ∈ ∂Λ,m ∈ Nk} by:

(x;m) ≈ (y; p) if and only if

(V1) x(m ∧ d(x)) = y(p ∧ d(y)); and

(V2) m−m ∧ d(x) = p− p ∧ d(y).

Definition 3.2.2. Define a relation ∼ on PΛ := {(x; (m,n)) : x ∈ ∂Λ,m ≤ n ∈
Nk} by: (x; (m,n)) ∼ (y; (p, q)) if and only if

(P1) x(m ∧ d(x), n ∧ d(x)) = y(p ∧ d(y), q ∧ d(y));

(P2) m−m ∧ d(x) = p− p ∧ d(y); and

(P3) n−m = q − p.

Remark 3.2.3. It is clear from their definitions that both ≈ and ∼ are equiva-

lence relations.

Lemma 3.2.4. Suppose that (x; (m,n)) ∼ (y; (p, q)). Then n − n ∧ d(x) = q −
q ∧ d(y).

Proof. (P1) implies that n∧ d(x)−m∧ d(x) = q ∧ d(y)− p∧ d(y). Then (P3)

implies that

n−m− (n ∧ d(x)−m ∧ d(x)) = p− q − (q ∧ d(y)− p ∧ d(y)).

Reordering the terms, we have

n− n ∧ d(x)− (m−m ∧ d(x)) = q − q ∧ d(y)− (p− p ∧ d(y)).

It then follows from (P2) that

n− n ∧ d(x) = q − q ∧ d(y). �

Let P̃Λ := PΛ/ ∼ and ṼΛ := VΛ/ ≈. The class in P̃Λ of (x; (m,n)) ∈ PΛ is

denoted [x; (m,n)], and similarly the class in ṼΛ of (x;m) ∈ VΛ is denoted [x;m].

To define range and source maps, observe that if (x; (m,n)) ∼ (y; (p, q)), then

(x;m) ≈ (y; p) by definition, and (x;n) ≈ (y; q) by Lemma 3.2.4. We define range

and source maps as follows.

Definition 3.2.5. Define r̃, s̃ : P̃Λ → ṼΛ by:

r̃([x; (m,n)]) = [x;m] and

s̃([x; (m,n)]) = [x, n].
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We now need to define composition. For each m ∈ Nk, we define the shift map

σm :
⋃
n≥m Λn → Λ by σm(λ)(p, q) = λ(p+m, q +m). So σm essentially ‘chops off’

an initial segment of degree m.

Proposition 3.2.6. Suppose that Λ is a k-graph and let [x; (m,n)] and [y; (p, q)]

be elements of P̃Λ satisfying [x;n] = [y; p]. Let z := x(0, n ∧ d(x))σp∧d(y)y. Then

(1) z ∈ ∂Λ;

(2) m ∧ d(x) = m ∧ d(z) and n ∧ d(x) = n ∧ d(z);

(3) x(m ∧ d(x), n ∧ d(x)) = z(m ∧ d(z), n ∧ d(z)) and y(p ∧ d(y), q ∧ d(y)) =

z(n ∧ d(z), (n+ q − p) ∧ d(z)).

Proof. Part (1): By [8, Lemma 5.13(1)] we have σp∧d(y)y ∈ ∂Λ. Since [x;n] =

[y; p], (V1) says that x(n ∧ d(x)) = y(p ∧ d(y)). Then [8, Lemma 5.13(2)] implies

that z = x(0, n ∧ d(x))σp∧d(y)y ∈ ∂Λ.

For part (2), we show that the equations hold coordinate-wise. Fix i ≤ k. We

will show that

min{mi, d(x)i} = min{mi, d(z)i} and(3.2.1)

min{ni, d(x)i} = min{ni, d(z)i}.(3.2.2)

Since [x;n] = [y; p], we have n− n ∧ d(x) = p− p ∧ d(y). This implies that

(3.2.3) pi ≤ d(y)i ⇐⇒ ni ≤ d(x)i.

We argue in cases:

(i) pi > d(y)i, or

(ii) pi ≤ d(y)i.

In case (i), equation (3.2.3) implies that ni > d(x)i. Then

d(z)i = min{ni, d(x)i}+ d(y)i −min{pi, d(y)i}

= d(x)i + d(y)i − d(y)i

= d(x)i.

This gives both (3.2.1) and (3.2.2).

In case (ii), equation (3.2.3) implies that ni ≤ d(x)i. This forces

d(z)i = (n ∧ d(x))i + d(y)i − (p ∧ d(y))i = d(y)i + ni − pi ≥ ni ≥ mi,

and mi ≤ ni ≤ d(x)i. Hence (3.2.1) and (3.2.2) are satisfied.

Part (3): Since z(0, n ∧ d(x)) = x(0, n ∧ d(x)), part (2) implies that

z(m ∧ d(z), n ∧ d(z)) = z(m ∧ d(x), n ∧ d(x)) = x(m ∧ d(x), n ∧ d(x)),
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giving the first equality. We now prove that the second equality holds. Part (2)

implies that

σn∧d(z)z = σn∧d(x)z = σp∧d(y)y,

so it suffices to show that

(3.2.4) (n+ q − p) ∧ d(z)− n ∧ d(z) = q ∧ d(y)− p ∧ d(y).

Since d(z) = d(y)+n−p, we have (n+q−p)∧d(z) = q∧d(y)+n−p. Furthermore,

by part (2) we have n ∧ d(z) = n ∧ d(x). So the left-hand side of (3.2.4) becomes

(n+ q − p) ∧ d(z)− n ∧ d(z) = q ∧ d(y)− p+ (n− n ∧ d(x)).

Since [x;n] = [y; p], we have n− n ∧ d(x) = p− p ∧ d(y), and thus

q ∧ d(y)− p+ (p− p ∧ d(y)) = q ∧ d(y)− p ∧ d(y),

giving (3.2.4). �

Fix [x; (m,n)], [y; (p, q)] ∈ P̃Λ such that [x;n] = [y; p], and let z = x(0, n ∧
d(x))σp∧d(y)y. The purpose of the next lemma is to show that the formula

(3.2.5) [x; (m,n)] ◦ [y; (p, q)] = [z; (m,n+ q − p)]

determines a well-defined composition.

Lemma 3.2.7. Let [x; (m,n)], [y; (m,n)] ∈ P̃Λ be such that [x;n] = [y; p]. Let

z = x(0, n∧ d(x))σp∧d(y)y. If (x; (m,n)) ∼ (x′; (m′, n′)) and (y; (p, q)) ∼ (y′; (p′, q′)),

then z′ := x′(0, n′ ∧ d(x′))σp
′∧d(y′)y′ satisfies

(z′; (m′, n′ + q′ − p′) ∼ (z; (m,n+ q − p)).

Proof. We must show that

(P1) z′(m′ ∧ d(z′), (n′ + q′ − p′) ∧ d(z′)) = z(m ∧ d(z); (m+ q − p) ∧ d(z))

(P2) m′ −m′ ∧ d(z) = m−m ∧ d(z)

(P3) n′ + q′ − p′ −m′ = n+ q − p−m.

Since (x; (m,n)) ∼ (x′; (m′, n′)) and (y; (p, q)) ∼ (y′; (p′, q′)), the relation ∼ gives

us

(a)
x′(m′ ∧ d(x′), n′ ∧ d(x′)) = x(m ∧ d(x), n ∧ d(x))

y′(p′ ∧ d(y′), q′ ∧ d(y′)) = y(p ∧ d(y), q ∧ d(y)),

(b)
m′ −m′ ∧ d(x′) = m−m ∧ d(x)

p′ − p′ ∧ d(y′) = p− p ∧ d(y)
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(c)
n′ −m′ = n−m

q′ − p′ = q − p.

Then (P3) follows from (c). For (P2), notice that by (b) we have m′−m′∧d(x′) =

m−m ∧ d(x). Then Proposition 3.2.6(2) gives (P2). It remains to show that (P1)

holds. By Proposition 3.2.6(3), we have

z(m ∧ d(z),(n+ q − p) ∧ d(z))

= z(m ∧ d(z), n ∧ d(z)) z(n ∧ d(z), (n+ q − p) ∧ d(z))

= x(m ∧ d(x), n ∧ d(x)) y(p ∧ d(y), q ∧ d(y)).

Then (P1) follows from (a), completing the proof. �

Define id : ṼΛ → P̃Λ by id[x;m] = [x; (m,m)].

Proposition 3.2.8. Λ̃ := (ṼΛ, P̃Λ, r̃, s̃, ◦, id) is a category.

Proof. We must show

(i) r̃(id[x;m]) = [x;m] = s̃(id[x;m]) for all [x;m] ∈ ṼΛ.

(ii) s̃([x; (m,n)] ◦ [y; (p, q)]) = s̃([y; (p, q)]) and

r̃([x; (m,n)] ◦ [y; (p, q)]) = r̃([x; (m,n)])

for all composable pairs [x; (m,n)], [y; (p, q)] ∈ P̃Λ

(iii) ([x; (m,n)] ◦ [y; (p, q)]) ◦ [w; (a, b)] = [x; (m,n)] ◦ ([y; (p, q)] ◦ [w; (a, b)]) for

all [x; (m,n)], [y; (p, q)], [w; (a, b)] ∈ P̃Λ satisfying [x;n] = [y; p] and [y; q] =

[w; a].

(iv) [x; (m,n)] ◦ ids̃([x;(m,n)]) = [x; (m,n)] and

idr̃([x;(m,n)]) ◦ [x; (m,n)] = [x; (m,n)] for all [x; (m,n)] ∈ P̃Λ.

Parts (i), (ii) and (iv) follow directly from the definitions of r̃, s̃, ◦ and id[x;m].

Part (iii), though the notation is unavoidably complicated, is a fairly straight-

forward argument. Let [x; (m,n)], [y; (p, q)], [w; (a, b)] ∈ P̃Λ such that [x;n] = [y; p]

and [y; q] = [w; a]. Define zx,y := x(0, n ∧ d(x))σp∧d(y)y. Then

[x; (m,n)] ◦ [y; (p, q)] = [zx,y; (m,n+ p− q)].

Now define zxy,w := zx,y(0, (n+ p− q) ∧ d(zx,y))σ
a∧d(w)w, so

([x; (m,n)] ◦ [y; (p, q)]) ◦ [w; (a, b)] = [zx,y; (m,n+ p− q)] ◦ [w; (a, b)]

= [zxy,w; (m,n+ p− q + b− a)].



54 3. HIGHER-RANK GRAPHS

Similarly, we can define zy,w and zx,yw such that

[x; (m,n)] ◦ ([y; (p, q)] ◦ [w; (a, b)]) = [x; (m,n)] ◦ [zy,w; (p, q + b− a)]

= [zx,yw; (m,n+ q + b− a− p)].

We must show that (zxy,w; (m,n+ p− q + b− a)) ∼ (zx,yw; (m,n+ q + b− a− p)),
so we will verify that conditions (P1)–(P3) are satisfied.

We first verify that (P1) holds. Two applications of Proposition 3.2.6(3) give

zxy,w(m ∧ d(zxy,w), (n+ p− q + b− a) ∧ d(zxy,w))

= zx,y(m ∧ d(zx,y), (n+ p− q) ∧ d(zx,y))w(a ∧ d(w), b ∧ d(w))

= x(m ∧ d(x), n ∧ d(x))y(p ∧ d(y), q ∧ d(y))w(a ∧ d(w), b ∧ d(w)).

Similarly, we have

zx,yw(m ∧ d(zx,yw), (n+ q + b− a− p) ∧ d(zx,yw))

= x(m ∧ d(x), n ∧ d(x))z(y, w)(p ∧ d(zy,w), (q + b− a) ∧ d(zy,w)

= x(m ∧ d(x), n ∧ d(x)y(p ∧ d(y), q ∧ d(y))w(a ∧ d(w), b ∧ d(w)).

Thus (P1) holds. To verify that (P2) holds, we apply Proposition 3.2.6(2) to obtain

m−m ∧ d(zxy,w) = m−m ∧ d(zx,y) = m−m ∧ d(x).

Similarly, m−m∧ d(zx,yw) = m−m∧ d(x) giving (P2). (P3) follows directly since

(n+p−q+b−a)−m = (n+q+b−a−p)−m. So we have (zxy,w; (m,n+p−q+b−a)) ∼
(zx,yw; (m,n+ q + b− a− p)), proving (iii). �

Definition 3.2.9. Define d̃ : Λ̃ → Nk by d̃(v) = ? for all v ∈ ṼΛ, and

d̃([x; (m,n)]) = n−m for all [x; (m,n)] ∈ P̃Λ.

Proposition 3.2.10. The map d̃ defined above satisfies the factorisation prop-

erty. Hence with Λ̃ as in Proposition 3.2.8, (Λ̃, d̃) is a k-graph with no sources.

Proof. Fix [w; (a, b)] ∈ P̃Λ. Let t, u ∈ Nk be such that b− a = t+ u. Then we

have

[w; (a, a+ t)] ◦ [w; (a+ t, a+ t+ u)] = [w; (a, a+ t)] ◦ [w; (a+ t, b)]

= [w; (a, b)].

To see that this factorisation is unique, suppose that [x; (m,n)], [y; (p, q)] are such

that n−m = t, q−p = u and [x; (m,n)]◦ [y; (p, q)] = [w; (a, b)]. Then [w; a] = [x;m],

[w; b] = [y; q], and [x;n] = [y; p]. We aim to show that (w; (a, a + t)) ∼ (x; (m,n)),

and that (w; (a+ t, a+ t+ u)) ∼ (y; (p, q)).

We first show that (w; (a, a+ t)) ∼ (x; (m,n)). So we need to verify that
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(P1) w(a ∧ d(ω), (a+ t) ∧ d(w)) = x(m ∧ d(x), n ∧ d(x)).

(P2) a− a ∧ d(w) = m−m ∧ d(x).

(P3) a+ t− a = n−m.

Since [w; a] = [x;m], (V2) gives (P2). We chose n and m such that t = n−m, thus

(P3) holds. It remains to verify that (P1) holds. Let z := x(0, n ∧ d(x))σp∧d(y)y.

Then [w; (a, b)] = [z; (m,n+ q − p)]. By Proposition 3.2.6(3), we have

w(a ∧ d(w), b ∧ d(w)) = z(m ∧ d(z), (n+ q − p) ∧ d(z))

= z(m ∧ d(z), n ∧ d(z))z(n ∧ d(z), (n+ q − p) ∧ d(z))

= x(m ∧ d(x), n ∧ d(x))y(p ∧ d(y), q ∧ d(y)).(3.2.6)

Hence

(3.2.7) b ∧ d(w)− a ∧ d(w) = n ∧ d(x)−m ∧ d(x) + q ∧ d(y))− p ∧ d(y),

and

w(a ∧ d(w), a ∧ d(w) + n ∧ d(x)−m ∧ d(x)) = x(m ∧ d(x), n ∧ d(x)).

So it suffices to show that

(a+ t) ∧ d(w) = a ∧ d(w) + n ∧ d(x)−m ∧ d(x).

Rearranging and substituting t = n−m, we see that it suffices to show that

(a+ n−m) ∧ d(w)− n ∧ d(x) = a−m.

Fix i ≤ k. We will prove that

(3.2.8) min{ai + ni −mi, d(w)i} −min{ni, d(x)i} = ai −mi.

We argue in two cases:

(i) ni ≤ d(x)i, or

(ii) ni > d(x)i.

Case (i). Equation (3.2.8) holds if and only if ai + ni −mi ≤ d(w)i. To prove this,

we suppose that ai + ni −mi > d(w)i and seek a contradiction. Since mi ≤ ni, we

have mi ≤ d(x)i. Then (P2) implies that ai ≤ d(w)i. Since b − a = t + u, we have

b ≥ a+ n−m. Then

ai ≤ d(w)i < ai + ni −mi ≤ bi.

Since [w; b] = [y; q] and [x;n] = [y; p], it follows from (V2) that bi ≤ d(w)i ⇐⇒
qi ≤ d(y)i and ni ≤ d(x)i ⇐⇒ pi ≤ d(y)i. So qi > d(y)i and pi ≤ d(y)i. Now

(3.2.7) implies that

d(w)i − ai = ni −mi + d(y)i − pi.
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Since d(y)i − pi ≥ 0, we have

d(w)i = ai + ni −mi + d(y)i − pi ≥ ai + ni −mi,

which contradicts that ai + ni −mi > d(w)i. So ai + ni −mi ≤ d(w)i, and hence

min{ai + ni −mi, d(w)i} −min{ni, d(x)i} = ai + ni −mi − ni = ai −mi.

Case (ii). We suppose that ai + ni − mi ≤ d(w)i, and seek a contradiction.

Since ni ≥ mi, we have ai ≤ d(w)i. Hence mi ≤ d(x)i. Since ni > d(x)i, we have

pi > d(y)i. Furthermore, pi ≤ qi implies that qi > d(y)i, so bi > d(w)i. Then (3.2.7)

becomes

d(w)i − ai = d(x)i −mi + d(y)i − d(y)i = d(x)i −mi.

This implies that

0 ≤ d(w)i − ai − (ni −mi) = d(x)i −mi − (ni −mi) = d(x)i − ni < 0,

contradicting our supposition. So ai + ni − mi > d(w)i. Hence (3.2.8) holds if

d(w)i − d(x)i = ai − mi. If mi > d(x)i, then ai > d(w)i and the result follows

directly from (P2). Otherwise, mi ≤ d(x)i and ai ≤ d(w)i < ai + ni − mi ≤ bi.

Hence qi, pi ≥ d(y)i. Equation (3.2.7) then implies that

d(w)i − ai = d(x)i −mi,

as required. Thus we have (w; (a, a+ t)) ∼ (x; (n,m)).

Now we will show that (w; (a + t, a + t + u)) ∼ (y; (p, q)). So we need to verify

that

(P1) w(a+ t ∧ d(ω), (a+ t+ u) ∧ d(w)) = y(p ∧ d(y), q ∧ d(y)).

(P2) a+ t− (a+ t) ∧ d(w) = p− p ∧ d(y).

(P3) a+ t+ u− (a+ t) = q − p.

Equation (P3) is true by assumption. Substituting (P1) into (3.2.6), we have

w(a ∧ d(w), b ∧ d(w)) = w(a ∧ d(ω), (a+ t) ∧ d(w))y(p ∧ d(y), q ∧ d(y)).

Then (P1) follows by the factorisation property in Λ. It remains to verify (P2).

Since (3.2.8) holds for all i ≤ k, we can rearrange it to obtain

a+ n−m− (a+ n−m) ∧ d(w) = n− n ∧ d(x).

Since [x;n] = [y; p], we have n− n ∧ d(x) = p− p ∧ d(y). Then

a+ t− (a+ t) ∧ d(w) = a+ n−m− (a+ n−m) ∧ d(w)

= n− n ∧ d(x)

= p− p ∧ d(y),
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as required.

This shows (Λ̃, d̃) is a k-graph. Suppose v ∈ Λ̃0. Then v = [x;m] for some

x ∈ ∂Λ and m ∈ Nk. Then [x; (m,m + ei)] ∈ Λ̃ei for all i ≤ k. Thus Λ̃ has no

sources. �

3.2.1. Some Examples. If we allow infinite receivers, our construction yields

a different k-graph to Farthing’s construction in [7, §2]. To see how this might

happen, we work through an elementary example. Consider the 1-graph E with

vertices E0 = {u, v}, and edges E1 = {fi : i ∈ N} with r(fi) = v and s(fi) = u for

all i ∈ N. The graph E looks like

v u

fi
...

We first use Farthing’s construction to desourcify E. Using the notation estab-

lished in [27], our vertices take the form [x;m], where x ∈ Λ≤∞ = E1 ∪ {u} and

m ∈ N. Fix a vertex [fj; p] for some p ∈ Nk. Fix i ∈ N. Then since d(fj) = d(fi),

we have

p− p ∧ d(fi) = p− p ∧ d(fj),

and

fi(p ∧ d(fi)) = s(fi) = s(fj) = fj(p ∧ d(fj)).

This implies that [fj; p] = [fi; p] for all i, j ∈ N and p ∈ Nk. Similarly, [u; p − 1] =

[fj; p] for all p > 1. So any of the “new” vertices appended to E can be written

as [u;m] for some m ≥ 1. Furthermore, any path between two of these appended

vertices has the form [u; (m,n)], and simple calculations show that for all i ∈ N
and 1 ≤ m ≤ n, we have [fj; (m,n)] = [fi; (m,n)] = [u; (m − 1, n − 1)]. This

implies that the construction adds an infinite path with range u. Hence the Farthing

desourcification E below is the same as the “adding heads” construction by Bates,

et al in [2].

v u
fi
...

. . .

Applying the construction detailed in this thesis, the same argument as in the

previous paragraph shows that there is a head added at the vertex u, just as in

Farthing’s construction. However, we also have to consider the vertex v ∈ ∂Λ\Λ≤∞.

Fix j, n,m ∈ N. By (V1), we have [v;m] = [fj, n] if and only if m = n = 0. For

m ≥ 1, the vertices {[v;m] : m ∈ N} are distinct from those defined using the fi.

Thus, in our new desourcification, we append a head to the boundary path v:
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v u
fi
...

. . .

It is intriguing that following Drinen and Tomforde’s desingularisation, a head is

also added at infinite receivers like this, and then the ranges of the edges fi are

distributed along this head — we cannot help but wonder whether this might suggest

an approach to a Drinen-Tomforde desingularisation for k-graphs.

Another interesting example is the graph E with E0 = {v} and E1 = {fi : i ∈ N}
where s(fi) = r(fi) = v for all i ∈ N. That is, an infinite number of loops on a

single vertex v:

v

fi

...

Here we have E≤∞ = ∅, so Farthing’s construction yields a 1-graph E ∼= E.

Since v belongs to every finite exhaustive set in E, we have ∂E = E∗. Furthermore

[fj; p] = [fi; p] = [v; p] for all i, j, p ∈ N, and

[fj; (p, q)] = [fi; (p, q)] = [v; (p− 1, q − 1)]

for all i, j, p, q such that 1 < p ≤ q. Thus there is exactly one path between any

two of the added vertices, resulting an infinite tail coming into v, yielding the graph

illustrated below

v

fi

...

3.2.2. Row-finite 1-graphs. While one expects this style of desourcification

(both Farthing’s and the one contained in this thesis) to agree with adding heads

to a row-finite 1-graph as in [2], this appears not to have been checked anywhere.

Proposition 3.2.11. Let E be a row-finite directed graph and F be the graph

obtained by adding heads to sources, as in [2, p4]. Let Λ be the 1-graph associated

to E. Then Λ̃ ∼= F ∗, where F ∗ is a the path-category of F .

Proof. We will construct 1-graph morphisms η : Λ̃ → F ∗ and ξ : F ∗ → Λ̃,

and show that ξ = η−1. We first define η′ : PΛ → F ∗ as follows. Fix x ∈ ∂E and
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m,n ∈ N. Then either x ∈ E∞, or x ∈ E∗ and s(x) is a source in E. For x ∈ E∞,

define η′((x; (m,n))) = x(m,n). For x ∈ E∗, let µx be the head added to s(x), and

define η′((x; (m,n))) = (xµx)(m,n). We now check that η′ respects the equivalence

relation ∼ on PΛ. Let y ∈ ∂Λ and p, q ∈ N be such that (y; (p, q)) ∼ (x; (m,n)).

Then

m ≤ d(x) ⇐⇒ p ≤ d(y) by (P2)(3.2.9)

n ≤ d(x) ⇐⇒ q ≤ d(y) by Lemma 3.2.4(3.2.10)

We consider the following three cases:

(i) m ≤ n ≤ d(x);

(ii) m ≤ d(x) ≤ n;

(iii) d(x) ≤ m ≤ n.

In case (i), (3.2.9) and (3.2.10) tell us that p ≤ q ≤ d(y). Then (P1) implies that

x(m,n) = y(p, q). Thus η′((x; (m,n))) = x(m,n) = y(p, q) = η′((y; (p, q))).

In case (ii), condition (P1) says that x(m, d(x)) = y(p, d(y)). So s(x) = s(y),

and µx = µy. Lemma 3.2.4 implies that n− d(x) = q − d(y). Then

η′((x; (m,n))) = (xµx)(m,n)

= x(m, d(x))µx(0, n− d(x))

= y(p, d(y))µy(0, q − d(y))

= (yµy)(p, q)

= η′((y; (p, q))).

In case (iii), (P1) implies that

x(m ∧ d(x), n ∧ d(x)) = s(x) = y(p ∧ d(y), q ∧ d(y)) = y(p ∧ d(y)).

Since s(x) is a source in E, so is y(p ∧ d(y)). This implies that d(y) ≤ p. So

s(x) = s(y), and hence µx = µy. We then have

η′((x; (m,n))) = (xµx)(m,n)

= µx(m− d(x), n− d(x))

= µy(p− d(y), q − d(y)) by (P2) and Lemma 3.2.4

= (yµy)(p, q)

= η′((y; (p, q))).

So η′ respects ∼. We now define η : Λ̃→ F ∗ by

η([x; (m,n)]) = η′((x; (m,n))).
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We check that η is a graph morphism. Straightforward calculations show that

the range, source and degree maps are preserved. We must work to that show

composition is preserved. Fix [x; (m,n)], [y; (p, q)] ∈ Λ̃ such that [x;n] = [y; p]. Let

z = x(0, n∧d(x))σp∧d(y)(y). Then η([x; (m,n)][y; (p, q)]) = η([z; (m,n+ q−p)]). We

argue the following cases:

(i) z ∈ E∗ and p ≤ d(y),

(ii) z ∈ E∗ and p > d(y),

(iii) z ∈ E∞.

For cases (i) and (ii), first observe that if z ∈ E∗, then s(z) = s(y) is a source.

So y ∈ E∗ and hence µz = µy. Then

η([z; (m,n+ q−p)]) = (zµz)(m,n+ p− q)

= (x(0, n ∧ d(x))σp∧d(y)(y)µy)(m,n+ q − p)

= (x(0, n ∧ d(x))y(p ∧ d(y), d(y))µy)(m,n+ q − p)(3.2.11)

Case (i). Suppose that z ∈ E∗ and p ≤ d(y). Since [x;n] = [y; p], condition (V2)

implies that n ≤ d(x). Then (3.2.11) becomes

η([z; (m,n+ q − p)])

=
(
x(0, n ∧ d(x))y(p ∧ d(y), d(y))µy

)
(m,n+ q − p)

=
(
x(0, n)y(p, d(y))µy

)
(m,n+ q − p)

= x(m,n)(y(p, d(y))µy)(0, q − p)

= x(m,n)(yµy)(p, q)

= η([x; (m,n)])η([y; (p, q)]).

Case (ii). Suppose that p > d(y). Condition (V2) implies that n > d(x) and

n − d(x) = p − d(y). Then (V1) gives s(x) = s(y). Hence µy = µx, and (3.2.11)
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becomes

η([z; (m,n+ q − p)])

= (x(0, n ∧ d(x))y(p ∧ d(y), d(y))µy)(m,n+ q − p)

= (xµx)(m,n+ q − p)

=
(
(xµx)(m,n)

)(
(xµx)(n, n+ q − p)

)
=
(
(xµx)(m,n)

)(
µx(n− d(x), n− d(x) + q − p)

)
=
(
(xµx)(m,n)

)(
µy(p− d(y), p− d(y) + q − p)

)
=
(
(xµx)(m,n)

)(
(yµy)(p, q)

)
= η([x; (m,n)])η([y; (p, q)]).

Case (iii). Suppose that z ∈ E∞. Then y ∈ E∞, so p ≤ d(y). By (V2), n ≤ d(x).

So z = x(0, n)σp(y), and

η([z; (m,n+ q − p)]) = z(m,n+ q − p)

= x(m,n)σp(y)(0, q − p)

= x(m,n)y(p, q)

= η([x; (m,n)])η([y; (p, q)]).

So η : λ̃→ F is a graph morphism.

We now wish to construct another graph morphism ξ : F ∗ → Λ̃ and show that

ξ = η−1. Let ν ∈ F ∗. To define ξ we first need some preliminary notation. ξ will be

defined casewise, broken up as follows:

(i) ν ∈ E∗,
(ii) r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗, or

(iii) r(ν), s(ν) ∈ F ∗ \ E∗.

If ν ∈ E∗, fix αν ∈ s(ν)∂E. If ν has r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗, let

pν = max{p ∈ N : ν(0, p) ∈ E∗}. Then ν(pν) is a source in E∗, and ν(0, pν) ∈ ∂E.

If ν ∈ F ∗ \ E∗, then ν is a segment of a head µν added to a source in E∗, and we

let qν be such that ν = µν(qν , qν + d(µ)).

We then define ξ by

ξ(ν) =


[ναν ; (0, d(ν))] if ν ∈ E∗

[ν(0, pν); (0, d(ν))] if r(ν) ∈ E∗ and s(ν) /∈ E∗

[r(µν); (qν , qν + d(ν))] if r(ν), s(ν) ∈ F ∗ \ E∗.

To see that ξ is well-defined, we must show that in case (i), ξ(ν) does not

depend on the choice of αν . Suppose that ν ∈ E∗ and αν , βν ∈ ∂E. We claim
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that (ναν ; (0, d(ν))) ∼ (νβν ; (0, d(ν))). Indeed, equations (P2) and (P3) are trivially

satisfied, and (P1) is easy to see:

(ναν)(0, d(ν)) = ν = νβν(0, d(ν)).

Straightforward calculations show that ξ preserves the range, source and degree

maps. We show that it preserves composition. Let λ, ν ∈ F ∗ be such that s(λ) =

r(ν). Then

ξ(λν) =


[λναλν ; (0, d(λν))] if λν ∈ E∗

[(λν)(0, pλν); (0, d(λν))] if r(λν) ∈ E∗ and s(λν) ∈ F ∗ \ E∗

[r(µλν); (qλν , qλν + d(λν))] if r(λν), s(λν) ∈ F ∗ \ E∗.

If λν ∈ E∗, then λ, ν ∈ E∗.

ξ(λ)ξ(ν) = [λναλν ; (0, d(λ))][ναλν ; (0, d(ν))]

= [(λναλν)(0, d(λ))σ0(ναλν); (0, d(λ) + d(ν))]

= [λναλν ; (0, d(λν))]

= ξ(λν).

If r(λν) ∈ E∗ and s(λν) ∈ F ∗ \ E∗, we argue in two separate cases: (i) pλν ≤ d(λ)

or (ii) pλν > d(λ).

If pλν ≤ d(λ), then λ(pλν) is a source and ν is a segment of the head µλ(pλν)

added at λ(pλν); namely

ν = µλ(pλν)(d(λ)− pλν , d(λ)− pλν + d(ν)).

Then

ξ(λ)ξ(ν) = [λ(0, pλν); (0, d(λ))][λ(pλν); (d(λ)− pλν , d(λ)− pλν + d(ν))]

= [λ(0, pλν)σ
0λ(pλν); (0, d(λ) + d(λ)− pλν + d(ν)− d(λ) + pλν)]

= [(λν)(0, pλν); (0, d(λν))]

= ξ(λν).

If pλν > d(λ), then λ ∈ E∗ and ν(pλν − d(λ)) is a source. So pν = pλν − d(λ), and

ν(0, pλν − d(λ)) ∈ s(λ)∂E. Then

ξ(λ)ξ(ν) = [λν(0, pλν − d(λ)); (0, d(λ))][ν(0, pλν − d(λ)); (0, d(ν))]

= [(λν(0, pλν − d(λ)))(0, d(λ))σ0(ν(0, pλν − d(λ))); (0, d(λ) + d(ν))]

= [(λν)(0, pλν); (0, d(λν))]

= ξ(λν).
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If r(λν), s(λν) ∈ F ∗ \ E∗, then

λν = µλν(qλν , qλν + d(λν))

= µλν(qλν , qλν + d(λ))µλν(qλν + d(λ), qλν + d(λν)).

The factorisation property then implies that λ = µλν(qλν , qλν + d(λ)) and ν =

µλν(qλν + d(λ), qλν + d(λν)). So

ξ(λ)ξ(ν) = [r(µλν); (qλν , qλν + d(λ))][r(µλν); (qλν + d(λ), qλν + d(λν))]

= [r(µλν); (qλν , qλν + d(λ) + qλν + d(λν)− qλν − d(λ))]

= [r(µλν); (qλν , qλν + d(λν))]

= ξ(λν).

So ξ : F ∗ → Λ̃ is a graph morphism.

We now check that ξ ◦ η = 1Λ̃ and η ◦ ξ = 1F ∗ . Fix ν ∈ F ∗. Then

η(ξ(ν)) =


η([ναν ; (0, d(ν))]) if ν ∈ E∗

η([ν(0, pν); (0, d(ν))]) if r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗

η([r(µν); (qν , qν + d(ν))]) if r(ν), s(ν) ∈ F ∗ \ E∗.

=


(ναν)(0, d(ν)) if ν ∈ E∗

ν(0, pν)µν(0,pν)(0, d(ν)) if r(ν) ∈ E∗ and s(ν) ∈ F ∗ \ E∗

µν(qν , qν + d(ν)) if r(ν), s(ν) ∈ F ∗ \ E∗.

= ν.

Now fix [x; (m,n)] ∈ Λ̃. We argue that ξ ◦ η([x; (m,n)]) = [x; (m,n)] in cases:

(i) x ∈ E∞, and (ii) x ∈ E∗. In case (i), we have x(m,n) ∈ E∗ and

ξ(η([x; (m,n)])) = ξ(x(m,n)) = [x(m,n)σn(x); (0, n−m)] = [x; (m,n)].

For case (ii), let µx be the head at s(x). Then we have

ξ(η([x; (m,n)])) = ξ((xµx)(m,n)).

We argue that ξ((xµx)(m,n)) = [x; (m,n)] separately for each of the three cases in

the definition of ξ: first suppose that (xµx)(m,n) ∈ E∗. Then

ξ((xµx)(m,n)) = ξ(x(m,n)) = [x(m,n)σn(x); (0, n−m)] = [x; (m,n)].
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Now suppose that r((xµx)(m,n)) ∈ E∗ and s((xµx)(m,n)) ∈ F ∗ \ E∗. Let px =

max{p ∈ N : (xµx)(m, p) ∈ E∗}. Then xµx(0, px) = x, and

ξ((xµx)(m,n)) = [(xµx)(m, px); (0, n−m)]

= [(xµx)(0, px); (m,n)]

= [x;m,n].

Lastly, if (xµx)(m), (xµx)(n) ∈ F ∗ \ E∗, then (xµx)(m,n) = µx(m− d(x), n− d(x))

and

ξ((xµx)(m,n)) = [r(µx); (m− d(x), n− d(x))] = [x; (m,n)].

So ξ = η−1, and η : Λ̃→ F ∗ is a graph isomorphism. �

When Λ is row-finite and locally convex, Proposition 3.0.18 implies that Λ≤∞ =

∂Λ. In this case our construction is essentially the same as that of Farthing [7, §2],

with notation adopted as in [27]. If Λ is row-finite but not locally convex, then

Λ≤∞ ⊂ ∂Λ (Example 3.0.16 shows this may be a strict containment). Thus it is

reasonable to suspect that our construction would result in a larger path space than

Farthing’s. Interestingly, this is not the case.

Proposition 3.2.12. Let Λ be a row-finite k-graph. Suppose that x ∈ ∂Λ \Λ≤∞

and m ≤ n ∈ Nk. Then there exists y ∈ Λ≤∞ such that (x; (m,n)) ∼ (y; (m,n)).

Proof. Since x /∈ Λ≤∞, there exists q ≥ n∧ d(x) and i ≤ k such that q ≤ d(x),

qi = d(x)i, and x(q)Λei 6= ∅. Let

J := {i ≤ k : qi = d(x)i and x(q)Λei 6= ∅}.

Since x ∈ ∂Λ, for each E ∈ x(q)FE(Λ) there exists t ∈ Nk such that x(q, q+ t) ∈ E.

Since qi = d(x)i for all i ∈ J , the set
⋃
i∈J x(q)Λei contains no such segments

of x, and thus cannot be finite exhaustive. Since Λ is row-finite,
⋃
i∈J x(q)Λei is

finite, so
⋃
i∈J x(q)Λei is not exhaustive. Thus there exists µ ∈ x(q)Λ such that

MCE(µ, ν) = ∅ for all ν ∈
⋃
i∈J x(q)Λei . By [22, Lemma 2.11], s(µ)Λ≤∞ 6= ∅. Let

z ∈ s(µ)Λ≤∞, and define y := x(0, q)µz. Then y ∈ Λ≤∞ by [22, Lemma 2.10].

Now we show that (x; (m,n)) ∼ (y; (m,n)). Condition (P3) is trivially satisfied.

To see that (P1) and (P2) hold, we show that n ∧ d(x) = n ∧ d(y). Firstly, let

i ∈ J . If d(µz)i 6= 0, then (µz)(0, d(µ) + ei) ∈ MCE(µ, ν) for ν = (µz)(0, ei) ∈
r(µ)Λei = x(q)Λei , a contradiction. So d(µz)i = 0 for each i ∈ J . This implies that

d(y)i = d(x)i for all i ∈ J . Now suppose that i /∈ J . Then either x(q)Λei = ∅ or

qi < d(x)i. If x(q)Λei = ∅ then d(y)i = d(x)i. So suppose that qi < d(x)i. Since

n ∧ d(x) ≤ q, it follows that ni < d(x)i and ni ≤ qi. Then since q ≤ d(y) we have

ni ≤ d(y)i, hence (n ∧ d(x))i = ni = (n ∧ d(y))i.
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So we have that for each i ≤ k, either d(y)i = d(x)i, or (n ∧ d(x))i = ni =

(n ∧ d(y))i. Hence m ≤ n implies that m ∧ d(x) = m ∧ d(y), whence it follows that

(P2) holds. Furthermore, since y(0, q) = x(0, q) and n ∧ d(x) ≤ q, we have

x(m ∧ d(x), n ∧ d(x)) = y(m ∧ d(y), n ∧ d(y)),

verifying (P1). �

We wish to be able to identify Λ with a subgraph of Λ̃. The following results

allow us to do so.

Proposition 3.2.13. Suppose that Λ is a k-graph, and that λ ∈ Λ. Then

s(λ)∂Λ 6= ∅. If x, y ∈ s(λ)∂Λ, then λx, λy ∈ ∂Λ and (λx; (0, d(λ))) ∼ (λy; (0, d(λ))).

Moreover, there is an injective k-graph morphism ι : Λ→ Λ̃ such that for λ ∈ Λ

ι(λ) = [λx; (0, d(λ))] for any x ∈ s(λ)∂Λ.

Proof. By [8, Lemma 5.15], we have v∂Λ 6= ∅ for all v ∈ Λ0. In particular,

we have s(λ)∂Λ 6= ∅. Let x, y ∈ s(λ)∂Λ. Then [8, Lemma 5.13(ii)] says that

λx, λy ∈ ∂Λ. To show that (λx; (0, d(λ))) ∼ (λy; (0, d(λ))), equations (P1)–(P3) are

easily verified:

(P1) (λx)
(
0 ∧ d(λx), d(λ) ∧ d(λx)

)
= (λx)

(
0, d(λ)

)
= λ,

and similarly (λy)
(
0 ∧ d(λy), d(λ) ∧ d(λy)

)
= λ.

(P2) 0− 0 ∧ d(λx) = 0 = 0− 0 ∧ d(λy), and

(P3) d(λ)− 0 = d(λ) = d(λ)− 0.

We now show that ι is an functor. We first show that it preserves range and

source. Since λx ∈ ∂Λ, we have

ι(s(λ)) = [s(λ)x; 0] = [λx; d(λ)] = s([λx; (0, d(λ))]) = s(ι(λ)), and

ι(r(λ)) = [r(λ)λx; 0] = [λx; 0] = r([λx; (0, d(λ))]) = r(ι(λ)).

To see that ι respects composition, suppose that µ ∈ Λ, and that λ ∈ s(µ)Λ. Fix

x ∈ s(µ)∂Λ and y ∈ s(λ)∂Λ. Define

z = (µx)(0, d(µ))σ0∧d(λy)(λy).

So

ι(µ)ι(λ) = [µx; (0, d(µ))][λy; (0, d(λ))] = [z; (0, d(µ) + d(λ))].

Then z = (µx)(0, d(µ))λy = µλy. Hence

[z; (0, d(µ) + d(λ))] = [µλy; (0, d(µλ))] = ι(µλ).

To see that ι is a k-graph morphism, we must show that it preserves degree:

d(ι(µ)) = d([µx; (0, d(µ))]) = d(µ).
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Finally, we show that ι is injective. Suppose that λ, µ ∈ Λ, and that ι(λ) = ι(µ).

Then [λx; (0, d(λ))] = [µx; (0, d(µ))], and (P1) implies that λ = λx(0, d(λ)) =

µx(0, d(µ)) = µ. �

We want to extend ι to an injection of WΛ into WΛ̃. The next proposition shows

that any injective k-graph morphism defined on Λ can be extended to WΛ.

Proposition 3.2.14. Let Λ,Γ be k-graphs and φ : Λ → Γ be a k-graph mor-

phism. Let x ∈ WΛ \ Λ, then φ(x) : Ωk,d(x) → WΓ defined by φ(x)(p, q) = φ(x(p, q))

belongs to WΓ.

Proof. We need to show that φ(x) respects the range, source, composition and

degree of elements in Ωk,d(x). Fix p, q ∈ Nk such that p ≤ q ≤ d(x). Then

s(φ(x)(p, q)) = s(φ(x(p, q)))

= φ(s(x(p, q))) since φ is a k-graph morphism

= φ(x(q))

= φ(x)(q)

= φ(x)(s(p, q)).

Similarly, φ(x) preserves the range of (p, q). For composition, we calculate

φ(x)(p, q)φ(x)(q,m) = φ(x(p, q))φ(x(q,m))

= φ(x(p, q)x(q,m))

= φ(x(p,m))

= φ(x)(p,m)

= φ(x)((p, q)(q,m)).

Lastly, we verify that φ(x) preserves degree. This again follows from φ being a

k-graph morphism:

d(φ(x)(p, q)) = d(φ(x(p, q))) = d((p, q)). �

In particular, we can extend ι to paths with non-finite degree. The next result

says that composition works as expected for non-finite paths. It is a ‘folklore’ result,

and we provide details for completeness.

Proposition 3.2.15. Let Λ,Γ be k-graphs and φ : Λ → Γ be a k-graph mor-

phism. Let λ ∈ Λ, x ∈ s(λ)WΛ, and suppose that n ∈ Nk satisfies n ≤ d(x).

Then

(1) φ(λ)φ(x) = φ(λx); and
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(2) σn(φ(x)) = φ(σn(x)).

Proof. For part (1), fix p, q ∈ Nk with p ≤ q ≤ d(λx). We need to show that

(φ(λ)φ(x))(p, q) = φ(λx)(p, q).

Since φ is a k-graph morphism, we have

(φ(λ)φ(x))(p, q) =
(
φ(λ)φ(x)(0, q ∨ d(λ)− d(λ))

)
(p, q)

=
(
φ(λ)φ(x(0, q ∨ d(λ)− d(λ)))

)
(p, q)

= φ
((
λx(0, q ∨ d(λ)− d(λ))

)
(p, q)

)
= φ((λx)(p, q))

= φ(λx)(p, q).

For part (2), fix n ∈ Nk such that n ≤ d(x). Let p, q ∈ Nk such that p ≤ q ≤
d(x)− n, then

σn(φ(x))(p, q) = φ(x)(p+ n, q + n)

= φ(x(p+ n, q + n))

= φ(σn(x)(p, q))

= φ(σn(x))(p, q). �

Remark 3.2.16. As one would expect, the extension of an injective k-graph

morphism to WΛ is also injective. In particular, the map ι : Λ→ Λ̃ has an injective

extension ι : WΛ → WΛ̃. To see this, suppose that φ : Λ→ Γ is an injective k-graph

morphism, and fix x, y ∈ WΛ. Then

φ(x) = φ(y) ⇐⇒ φ(x)(p, q) = φ(y)(p, q) for all p, q ≤ d(x)

⇐⇒ φ(x(p, q)) = φ(y(p, q))

⇐⇒ x(p, q) = y(p, q)

⇐⇒ x = y.

To prove a few more consistency results about Λ̃ we need to be able to ‘project’

paths from Λ̃ onto the embedding ι(Λ) of Λ. For y ∈ ∂Λ define

(3.2.12) π([y; (m,n)]) = [y; (m ∧ d(y), n ∧ d(y))].

The next result is asserted in [27]. The proof is from Robertson’s honours thesis

[26], but is unpublished.

Proposition 3.2.17. Let Λ be a k-graph. Then π : Λ̃→ ι(Λ) defined in (3.2.12)

is a surjective functor, and is a projection in the sense that π(π([y; (m,n)])) =

π([y; (m,n)]) for all [y; (m,n)] ∈ Λ̃. In particular, π|ι(Λ) = idι(Λ).
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Proof. To see that π is a functor, we must show that it preserves range, source,

composition and the identity. Fix [x; (m,n)], [y; (p, q)] ∈ Λ̃ and suppose that [x;n] =

[y; p]. We first check that π preserves the source map:

r(π([x; (m,n)])) = r([x;m ∧ d(x), n ∧ d(x)])

= [x;m ∧ d(x)]

= π([x;m])

= π(r([x; (m,n)])).

A similar argument shows that π preserves range. To see that π preserves com-

position, let z := x(0, n ∧ d(x))σp∧d(y)(y). Since m ≤ n and p ≤ q, we have

m ∧ d(z) ≤ n ∧ d(z) and n ∧ d(z) ≤ (n+ q − p) ∧ d(z). Hence

π([x; (m,n)] ◦ [y; (p, q)])

= π([z;m,n+ q − p])

= [z; (m ∧ d(z), (n+ q − p) ∧ d(z))]

= [z; (m ∧ d(z), n ∧ d(z))] ◦ [z; (n ∧ d(z), (n+ q − p) ∧ d(z))].

By Proposition 3.2.6(3), this is equal to

[x; (m ∧ d(x), n ∧ d(x))] ◦ [y; (p ∧ d(y), q ∧ d(y))]

= π([x; (m,n)]) ◦ π([y; (p, q)]).

Lastly, since m ≥ m ∧ d(x) and n ≥ n ∧ d(x), we have

π(π([x; (m,n)])) = π([x; (m ∧ d(x), n ∧ d(x))])

= [x; (m ∧ d(x), n ∧ d(x))]

= π([x; (m,n)]). �

The following lemmas are used to prove that Λ̃ is finitely aligned whenever Λ is.

Lemma 3.2.18. Let Λ be a k-graph. Suppose that λ, µ ∈ Λ̃ satisfy λ ∈ Z(µ),

and that i ≤ k satisfies d(π(λ))i > d(π(µ))i. Then π(λ) ∈ Z(π(µ)), and d(µ)i =

d(π(µ))i.

Proof. Suppose that λ = [x; (m,m+ d(λ))]. Then µ = [x; (m,m+ d(µ))], so

π(λ) = [x; (m ∧ d(x), (m+ d(λ)) ∧ d(x))], and

π(µ) = [x; (m ∧ d(x), (m+ d(µ)) ∧ d(x))].
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Since d(π(λ))i > d(π(µ))i, we have

min{mi + d(λ)i, d(x)i} > min{mi + d(µ)i, d(x)i}.

It then follows that mi ≤ d(x)i. If mi+d(λ)i ≤ d(x)i, then d(µ) ≤ d(λ) implies that

mi + d(µ)i ≤ d(x)i. If mi + d(λ) > d(xi), then d(x)i > min{mi + d(µ)i, d(x)i}. So

d(x)i > mi + d(µ)i, and

d(π(µ))i = min{mi + d(µ)i, d(x)i} −min{mi, d(x)i}

= mi + d(µ)i −mi

= d(µ)i,

as required. �

Lemma 3.2.19. Let Λ be a k-graph. Let µ, ν ∈ Λ̃. Then

π(MCE(µ, ν)) ⊂ MCE(π(µ), π(ν)).

Proof. Suppose that λ ∈ MCE(µ, ν). Then λ ∈ Z(µ) ∩ Z(ν) and d(λ) =

d(µ)∨ d(ν). By Lemma 3.2.18 we have π(λ) ∈ Z(π(µ))∩Z(π(ν)), hence d(π(λ)) ≥
d(π(µ)) ∨ d(π(ν)).

It remains to prove that d(π(λ)) = d(π(µ)) ∨ d(π(ν)). Suppose, for a contra-

diction, that there is some i ≤ k such that d(π(λ))i > max{d(π(µ))i, d(π(ν))i}.
Then d(π(λ))i > d(π(µ))i and d(π(λ))i > d(π(ν))i. Then by Lemma 3.2.18, we have

d(π(µ))i = d(µ)i and d(π(ν))i = d(ν)i. It then follows that

d(λ)i ≥ d(π(λ))i > max{d(µ)i, d(ν)i},

contradicting that d(λ) = d(µ) ∨ d(ν). �

Lemma 3.2.20. Let Λ be a k-graph, and let µ, λ ∈ ι(Λ0)Λ̃ be such that d(λ) = d(µ)

and π(λ) = π(µ). Then λ = µ.

Proof. Since µ, λ ∈ ι(Λ0)Λ̃ and d(λ) = d(µ), we can write λ = [x; (0, n)] and

µ = [y; (0, n)] for some x, y ∈ ∂Λ and n ∈ Nk. We will show that (x; (0, n)) ∼
(y; (0, n)). Conditions (P2) and (P3) is trivially satisfied. Then

[x; (0, n ∧ d(x))] = [x; (0 ∧ d(x), n ∧ d(x))]

= π(λ)

= π(µ)

= [y; (0 ∧ d(y), n ∧ d(y))]

= [y; (0, n ∧ d(y))].
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So (x; (0, n∧d(x))) ∼ (y; (0, n∧d(y))). Hence x(0, n∧d(x)) = y(0, n∧d(y)), verifying

(P1). �

Remark 3.2.21. Let Λ be a k-graph. Suppose [x;m] ∈ Λ̃0, then [x; (0,m)] ∈
ι(Λ)0Λ̃[x;m]. In particular, ι(Λ)0Λ̃v 6= ∅ for all v ∈ Λ̃0.

Theorem 3.2.22. Let Λ be a finitely aligned k-graph. Then the extension Λ̃ is

finitely aligned. Furthermore, if Λ is row-finite, then so is Λ̃.

Proof. Fix µ, ν ∈ Λ̃, and let α ∈ ι(Λ)0Λ̃r(µ). It’s easy to see that λ ∈
MCE(µ, ν) if and only if αλ ∈ MCE(αµ, αν). So |MCE(µ, ν)| = |MCE(αµ, αν)|.
Since Λ is finitely aligned, |MCE(π(αµ), π(αν))| is finite, so it suffices to show that

|MCE(αµ, αν)| = |MCE(π(αµ), π(αν))|.

It follows from Lemma 3.2.19 that

|MCE(αµ, αν)| ≥ |MCE(π(αµ), π(αν))|.

Suppose λ, β are distinct elements of MCE(αµ, αν). Then d(λ) = d(β). Since

r(αµ), r(αν) ∈ ι(Λ)0, Lemma 3.2.20 implies that π(λ) 6= π(β). So |MCE(αµ, αν)| =
|MCE(π(αµ), π(αν))|.

To show that if Λ is row-finite, then Λ̃ is row-finite, we prove the contrapositive.

Suppose Λ̃ is not row-finite. Let [x;m]Λ̃0 and i ≤ k be such that |[x;m]Λ̃ei | = ∞.

Then for each [y; (n, n+ ei)] ∈ [x;m]Λ̃ei we have [y;n] = [x;m], so [x; (m,m+ ei)] 6=
[y; (n, n+ ei)] only if (P1) fails. That is,

(3.2.13) x(m ∧ d(x), (m+ ei) ∧ d(x)) 6= y(n ∧ d(y), (n+ ei) ∧ d(y)).

Since |[x;m]Λ̃ei | =∞, there are infinitely many [y; (n, n+ ei)] ∈ [x;m]Λ̃ei satisfying

(3.2.13). Hence |x(m ∧ d(x))Λei | =∞. �

Remark 3.2.23. Suppose that Λ is a finitely-aligned k-graph, that x ∈ ∂Λ and

that E ⊂ x(0)Λ. Since ι : Λ → ι(Λ) is a bijective k-graph morphism, we have

E ∈ x(0)FE(Λ) if and only if ι(E) ∈ [x; 0]FE(ι(Λ)).

The following results show how sets of minimal common extensions and finite

exhaustive sets in a k-graph Λ relate to those in Λ̃.

Proposition 3.2.24. Suppose that Λ is a finitely-aligned k-graph, and that v ∈
ι(Λ)0. Then E ∈ vFE(ι(Λ)) implies that E ∈ vFE(Λ̃).

Proof. Since v ∈ ι(Λ)0, we have v = [x; 0] for some x ∈ ∂Λ. Remark 3.2.23

implies that ι−1(E) ∈ x(0)FE(Λ). Then λ = [y; (0, p)] for some y ∈ ∂Λ and p ∈ Nk,
and there exists t ≤ d(y) such that y(0, t) ∈ ι−1(E). Hence ι(y(0, t)) = [y; (0, t)] ∈ E.

Then trivially [y; 0(t ∨ p)] ∈ MCE([y; (0, p)], [y; (0, t)]). So E ∈ vFE(Λ̃). �
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Lemma 3.2.25. Let Λ be a finitely-aligned k-graph and µ, ν ∈ ι(Λ). Then

MCEι(Λ)(µ, ν) = MCEΛ̃(µ, ν).

Proof. Since ι(Λ) ⊂ Λ̃, we have MCEι(Λ)(µ, ν) ⊂ MCEΛ̃(µ, ν). Suppose that

λ ∈ MCEΛ̃(µ, ν). It suffices to show that λ ∈ ι(Λ). Write µ = [x; (0, n)], ν =

[y; (0, q)] and λ = [z; (0, n ∨ q)]. We must show that d(z) ≥ n ∨ q. Since λ ∈
Z(µ) ∩ Z(ν), we have [z; (0, n)] = [x; (0, n)] and [z; (0, q)] = [y; (0, q)]. This implies

that d(z) ≥ n and d(z) ≥ q. So d(z) ≥ n ∨ q, so λ = [z; (0, n ∨ q)] ∈ ι(Λ). �

Remark 3.2.26. Since there is a bijection between Λmin(µ, ν) and MCE(µ, ν)

which maps (α, β) to µα = νβ, and since ι is a k-graph morphism, Lemma 3.2.25

implies that Λ̃min(µ, ν) = ι(Λ)min(µ, ν) for all µ, ν ∈ ι(Λ).

3.3. Topology of Path Spaces under Desourcification

Recall from Theorem 3.1.1 that for a finitely-aligned k-graph Λ, a basis for the

topology on WΛ is given by the sets

Z(µ \G) := Z(µ) \
⋃
ν∈g

Z(µν),

where µ ∈ Λ and G ⊂
⋃k
i=1 Λei .

We aim to extend the projection π defined in (3.2.12) on page 67 to the set of

infinite paths in Λ̃, and prove that its restriction to ι(Λ)0Λ̃∞ is a homeomorphism

onto ι(∂Λ). For x ∈ ι(Λ0)Λ̃∞, let

px =
∨
{p ∈ Nk : x(0, p) ∈ ι(Λ)},

and define π(x) to be the composition of x with the inclusion of Ωk,px in Ωk,d(x). Then

π(x) is a k-graph morphism. Our goal for this section is the following theorem.

Theorem 3.3.1. Let Λ be a row-finite k-graph. Then π : ι(Λ0)Λ̃∞ → ι(∂Λ) is a

homeomorphism.

We first show that π has range in ι(Λ).

Proposition 3.3.2. Let Λ be a finitely-aligned k-graph. Let x ∈ Λ̃∞, and let px

and π(x) be as above. Suppose that {yn : n ∈ Nk} ⊂ ∂Λ satisfy [yn; (0, n)] = x(0, n).

Then

(i) lim
n∈Nk

ι(yn) = π(x) in WΛ̃; and

(ii) There exists y ∈ ∂Λ such that π(x) = ι(y), and for m,n ∈ Nk with m ≤
n ≤ px we have π(x)(m,n) = ι(y(m,n)).
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Proof. For part (i), fix a basic open set Z(µ \ G) ⊂ WΛ̃ containing π(x). Let

N =
∨
ν∈G d(µν). We will show that n ≥ N implies that ι(yn) ∈ Z(µ \ G). Fix

n ≥ N . We first show that ι(yn) ∈ Z(µ). Since π(x) ∈ Z(µ), we have d(µ) ≤
d(π(x)) = px, and hence

µ = π(x)(0, d(µ)) = x(0, d(µ)) ∈ ι(Λ).

Since n ≥ d(µ), we have

[yn; (0, d(µ))] = [yn; (0, n)](0, d(µ))

= (x(0, n))(0, d(µ))

= x(0, d(µ))

= µ.

Let α = ι−1(µ). Then µ = [αz; (0, d(µ))] for any z ∈ s(α)Λ≤∞. This implies that

[yn; (0, d(µ))] = [αz; (0, d(µ))]. Then (P1) gives

ι(yn(0, d(µ) ∧ d(yn))) = ι((αz)(0, d(µ))) = ι(α) = µ.

We now show that ι(yn) /∈
⋃
ν∈GZ(µν). Fix ν ∈ G. If d(yn) � d(µν), then

trivially we have ι(yn) /∈ Z(µν). Suppose that d(yn) ≥ d(µν). Since n ≥ N ≥ d(µν)

by definition,

x(0, d(µν)) = (x(0, n))(0, d(µν))

= [yn; (0, n)](0, d(µν))

= ι(yn(0, d(µν)))

= ι(yn)(0, d(µν)) ∈ ι(Λ).

So ι(yn)(0, d(µν)) = x(0, d(µν)) = π(x)(0, d(µν)) 6= µν, as required.

For part (ii), we construct y ∈ WΛ such that π(x) = ι(y) and prove that y ∈ ∂Λ.

For m,n ∈ Nk with m ≤ n ≤ px, we have π(x)(m,n) ∈ ι(Λ), and thus the range

of π(x) is a subset of ι(Λ). Since ι is injective, we can define y : Ωk,px → Λ by

ι(y(m,n)) = π(x)(m,n). So ι(y) = π(x).

We now show that y ∈ ∂Λ. To do this, fix m ∈ Nk such that m ≤ d(y) and fix

E ∈ y(m)FE(Λ). We seek t ∈ Nk such that y(m,m+t) ∈ E. Let p := m+
∨
µ∈E d(µ).
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Then

[yp; (0,m)] = [yp; (0, p)](0,m) since m ≤ p

= x(0, p)(0,m)

= x(0,m)

= π(x)(0,m) since m ≤ px

= ι(y(0,m)) by definition of y

= [y(0,m)y′; (0,m)] for some y′ ∈ y(m)∂Λ.

Then (P1) implies that

yp(0,m ∧ d(yp)) = (y(0,m)y′)(0,m ∧ d(y(0,m)y′)) = y(0,m).

In particular, this implies that yp(m) = y(m). Since yp ∈ ∂Λ, there exists t ∈ Nk

such that yp(m,m+ t) ∈ E. So m+ t ≤ p, and we have

ι(yp(m,m+ t)) = [yp; (0, p)](m,m+ t) = x(0, p)(m,m+ t) = x(m,m+ t).

So x(m,m+ t) ∈ ι(Λ), giving

ι(yp(m,m+ t)) = x(m,m+ t) = π(x)(m,m+ t) = ι(y(m,m+ t)).

Finally, injectivity of ι gives

y(m,m+ t) = yp(m,m+ t) ∈ E,

as required. �

We must check that our definition of π on Λ̃∞ is compatible with (3.2.12) when

we regard finite paths as k-graph morphisms. To do so, we use a few lemmas. The

following lemma is also crucial in showing that π is injective on ι(Λ0)Λ̃∞.

Lemma 3.3.3. Let Λ be a finitely-aligned k-graph. Let x ∈ Λ̃∞ and r(x) ∈ ι(Λ0).

Suppose that w ∈ ∂Λ satisfies π(x) = ι(w). Then x(0, n) = [w; (0, n)] for all n ∈ Nk.

Proof. Fix n ∈ Nk. Let z ∈ ∂Λ be such that x(0, n) = [z; (0, n)]. We aim to

show that (z; (0, n)) ∼ (w; (0, n)). That (P2) and (P3) hold follows immediately

from their definitions. It remains to verify condition (P1):

(3.3.1) z(0, n ∧ d(z)) = w(0, n ∧ d(ω)).
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Since π(x) = ι(w) we have d(w) = px. Thus

[w; (0, n ∧ px)] = ι(w(0, n ∧ px))

= π(x)(0, n ∧ px)

= x(0, n ∧ px)

= [z; (0, n ∧ px)].

So (w; (0, n ∧ px)) ∼ (z; (0, n ∧ px)). Then (P1) implies that

w(0, (n ∧ px) ∧ d(w)) = z(0, (n ∧ px) ∧ d(z)).

Since d(w) = px, we have

(3.3.2) w(0, n ∧ px) = z(0, n ∧ px).

So d(z) ≥ n ∧ px, hence n ∧ d(z) ≥ n ∧ px. Furthermore,

x(0, n ∧ d(z)) = [z; (0, n ∧ d(z))] = ι(z(0, n ∧ d(z)) ∈ ι(Λ).

This implies that px ≥ n∧d(z), hence n∧px ≥ n∧d(z). So n∧d(z) = n∧px. Since

d(w) = px, equation (3.3.2) becomes (3.3.1) and we are done. �

Lemma 3.3.4. Let Λ be a finitely-aligned k-graph. Suppose that y ∈ ∂Λ and

m,n ∈ Nk satisfy m ≤ n ≤ d(y). Then

[y; (m,n)] = ι(y(m,n)).

Proof. We first show that (y; (m,n)) ∼ (σm(y); (0, n − m)). That conditions

(P1)–(P3) hold follows easily: since m,n ≤ d(y), we have

(P1) m ≤ n ≤ d(y) implies n−m ≤ d(y)−m = d(σm(y)), so we have

y(m ∧ d(y), n ∧ d(y)) = y(m,n)

= σm(y)(0, n−m)

= σm(y)(0 ∧ d(σm(y)), (n−m) ∧ d(σm(y)));

(P2) m−m ∧ d(y) = m−m = 0 = 0− 0 ∧ d(σm(y));

(P3) n−m = (n−m)− 0.

Then

[y; (m,n)] = [σm(y); (0, n−m)] = ι(σm(y)(0, n−m)) = ι(y(m,n)). �

We can now show that our definitions of π for finite and infinite paths are

compatible:

Proposition 3.3.5. Let Λ be a finitely-aligned k-graph. Suppose that x ∈ Λ̃∞,

and m ≤ n ∈ Nk. Then π(x(m,n)) = π(x)(m ∧ px, n ∧ px).
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Proof. Fix y ∈ ∂Λ such that π(x) = ι(y). Then

π(x(m,n)) = π([y; (m,n)] by Lemma 3.3.3

= [y; (m ∧ px, n ∧ px)] since d(y) = px

= ι(y(m ∧ px, n ∧ px)) by Lemma 3.3.4

= π(x)(m ∧ px, n ∧ px) by Proposition 3.3.2(ii).

as required. �

We can now show that π restricts to a homeomorphism of ι(Λ)0Λ̃∞ onto ι(∂Λ).

We first show that it is a bijection, then show it is continuous. Openness is the

trickiest part, and the proof of it completes this section.

Proposition 3.3.6. Let Λ be a finitely-aligned k-graph. Then the map π :

ι(Λ0)Λ̃∞ → ι(∂Λ) is a bijection.

Proof. We first show that π is injective. Fix x, y ∈ ι(Λ0)Λ̃∞ such that π(x) =

π(y), and w ∈ ∂Λ such that π(x) = π(y) = ι(w). Then Lemma 3.3.3 implies that

x(0, n) = [w; (0, n)] = y(0, n)

for every n ∈ Nk. This implies that x = y, and so π is injective.

To see that π is onto ι(∂Λ), let w ∈ ∂Λ and define x : Ωk → Λ̃ by x(p, q) =

[w; (p, q)]. Then px = d(w), and r(x) = x(0, 0) = [w; (0, 0)] = ι(w(0, 0)) ∈ ι(Λ). To

see that π(x) = ι(w), fix m,n ∈ Nk with m ≤ n ≤ px = d(w). Then

π(x)(m,n) = x(m,n) by Proposition 3.3.5

= [w; (m,n)] by Lemma 3.3.3

= ι(w(m,n)) by Lemma 3.3.4

= ι(w)(m,n) by Proposition 3.2.14.

Thus π(x) = ι(w), and π is onto. �

Proposition 3.3.7. Let Λ be a finitely-aligned k-graph. Then π : ι(Λ0)Λ̃∞ →
ι(∂Λ) is continuous.

Proof. Fix a basic open set Z(µ \ G) ⊂ WΛ̃. If Z(µ \ G) ∩ ι(∂Λ) = ∅, then

π−1(Z(µ \ G) ∩ ι(∂Λ)) = ∅ is open. Suppose that Z(µ \ G) ∩ ι(∂Λ) 6= ∅, and fix

y ∈ Z(µ \G) ∩ ι(∂Λ). Let F = G ∩ ι(Λ). We will show that

(3.3.3) π−1(y) ∈ Z(µ \ F ) ∩
(
Λ̃∞ ∩ r−1(ι(Λ))

)
⊂ π−1(Z(µ \G) ∩ ι(∂Λ)).



76 3. HIGHER-RANK GRAPHS

Let x = π−1(y). We first show that x ∈ Z(µ). Since π(x) = y ∈ Z(µ) ∩ ι(∂Λ), we

have d(µ) ≤ px = π(x). This implies that

x(0, d(µ)) = π(x)(0, d(µ)) = y(0, d(µ)) = µ.

Now we will show that x /∈
⋃
β∈F Z(µβ). Fix β ∈ F . Suppose that d(µβ) � d(y) =

px. Then by definition of px, we have x(0, d(µβ)) /∈ ι(Λ). Since µβ ∈ ι(Λ), we must

have x(0, d(µβ)) 6= µβ. Now suppose that d(µβ) ≤ d(y) = px, then

x(0, d(µβ)) = π(x)(0, d(µβ)) = y(0, d(µβ)) 6= µβ

as required. So π−1(y) = x ∈ Z(µ \ F ).

We now show that

Z(µ \ F ) ∩ ι(Λ)0Λ̃∞ ⊂ π−1(Z(µ \G) ∩ ι(∂Λ)).

Let z ∈ Z(µ \ F ) ∩ ι(Λ)0Λ̃∞. Since z ∈ dom(π), we just have to show that π(z) ∈
Z(µ \G). Recall that y ∈ Z(µ)∩ ι(∂Λ). This implies that µ ∈ ι(Λ), so z(0, d(µ)) =

µ ∈ ι(Λ), and thus π(z)(0, d(µ)) = z(0, d(µ)) = µ. So π(z) ∈ Z(µ).

Now we show that π(z) /∈
⋃
ν∈GZ(µν). Fix ν ∈ G. If d(µν) � d(π(z)), then

trivially π(z) /∈ Z(µν). So suppose that d(µν) ≤ d(π(z)) = pz. If ν /∈ ι(Λ), then

since range(π(z)) ⊂ ι(Λ), we have π(z)(0, d(µν)) 6= µν. So suppose that ν ∈ ι(Λ).

Then ν ∈ F and since z ∈ Z(µ \ F ), we have

π(z)(0, d(µν)) = z(0, d(µν)) 6= µν.

So π(z) ∈ Z(µ\G), and thus z ∈ π−1(Z(µ\G)∩ ι(∂Λ)). So (3.3.3) holds, and hence

π is continuous. �

To show that π is open, and hence a homeomorphism, we use the following

results.

Lemma 3.3.8. Let Λ be a finitely-aligned k-graph. Let µ ∈ ι(Λ0)Λ̃ and let G be

a finite subset of s(µ)Λ̃. Then

π(Z(µ \G) ∩ ι(Λ0)Λ̃∞) ⊂ Z(π(µ) \ π(G)) ∩ ι(∂Λ).

Proof. Suppose that π(y) ∈ π(Z(µ \ G) ∩ ι(Λ0)Λ̃∞). Trivially π(y) ∈ ι(∂Λ).

We will show that π(y) ∈ Z(π(µ)\π(G)). First we show that π(y) ∈ Z(π(µ)). Since

y(0, d(µ)) = µ, we have

π(µ) = π(y(0, d(µ))) = π(y)(0, d(µ) ∧ py).

So π(y) ∈ Z(π(µ)). Furthermore, d(π(µ)) = d(µ) ∧ py.
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Fix ν ∈ G. We will show that π(y) /∈ Z(π(µν)). Since y ∈ Z(µ \ G, we

have y(0, d(µν)) 6= µν. Since d(y(0, d(µν))) = d(µν) and r(y) = r(µν) ∈ ι(Λ0),

Lemma 3.2.20 implies that

π(µν) 6= π(y(0, d(µν))) = π(y)(0, d(µν) ∧ py). �

The following discussion and example arose in preliminary work on a proof that

π is open when Λ is row-finite and locally convex. Though we have now found a

proof that works for row-finite k-graphs in general, we have retained this example

since it helps illustrate some of the issues surrounding the map π.

Recall that, for a finitely aligned k-graph, the sets Z(µ \G) ranging over µ ∈ Λ

and finite G ⊂
⋃k
i=1 Λei form a basis for a locally compact Hausdorff topology

on WΛ, hereafter referred to as τ1. The collection {Z(µ) : µ ∈ Λ} of cylinder

sets also form a basis for a topology: they cover WΛ, and if x ∈ Z(λ) ∩ Z(ν),

then x ∈ Z(x(0, d(λ) ∨ d(ν))) ⊂ Z(λ) ∩ Z(ν). This topology, denoted τ2, is not

necessarily Hausdorff: we cannot separate any edge from its range: if r(f) ∈ Z(µ)

then µ = r(f), and thus f ∈ Z(µ).

It may seem reasonable to expect that {Z(µ) ∩ ∂Λ : µ ∈ Λ} is a basis for the

restriction of τ1 to ∂Λ. However, this is not so. To see why, consider the following

2-graph
•

•

•

•

•

•

•

•

•

•

•

•

x1

e0

x2

e1

x3

e2 e4 . . .

. . .

Let x = x1x2x3 . . . and let y be the boundary path beginning with e0. So x, y ∈ ∂Λ.

Let µ be such that x ∈ Z(µ). Then µ = x1 . . . xn for some n ∈ N, so y ∈ Z(µ)

also. So the topology τ1 is not Hausdorff even when restricted to ∂Λ. Endowed

with τ2, it is easy to see how to separate these two points: y ∈ Z(e0) ∩ ∂Λ and

x ∈ Z(r(x) \ {e0}) ∩ ∂Λ, and these two sets are disjoint.

If we restrict ourselves to locally convex k-graphs, τ1 and τ2 do restrict to the

same topology on ∂Λ: certainly, for each µ ∈ Λ, we can realise a cylinder set Z(µ)

as a set of the form Z(µ\G) by taking G = ∅. Now suppose that x ∈ Z(µ\G)∩∂Λ.

We claim that

νx := x(0,
( ∨
α∈G

d(µα)
)
∧ d(x))

satisfies

x ∈ Z(νx) ∩ ∂Λ ⊂ Z(µ \G) ∩ ∂Λ.



78 3. HIGHER-RANK GRAPHS

By definition of νx, we have x ∈ Z(νx)∩∂Λ. The containment requires a little more

work. Let y ∈ Z(νx) ∩ ∂Λ. Then since x ∈ Z(µ) and d(µ) ≤ d(νx), we have

y(0, d(µ)) = νx(0, d(µ))) = x(0, d(µ)) = µ.

So y ∈ Z(µ). Fix α ∈ G. We will show that y /∈ Z(µα). If d(y) � d(µα), then

trivially y /∈ Z(µα). Suppose that d(y) ≥ d(µα). We claim that d(x) ≥ d(µα)

also: suppose, for a contradiction, that d(x) � d(µα). Then there exists i ≤ k

such that d(x)i < d(µα)i. Then d(x)i = d(νx)i. Since x ∈ ∂Λ, we must have

x(d(νx))Λ
ei /∈ x(d(νx))FE(Λ). Since Λ is locally convex, Lemma 3.0.19 implies that

y(d(νx))Λ
ei = x(d(νx))Λ

ei = ∅.

So d(y)i = d(νx)i = d(x)i < d(µα)i, a contradiction. Hence d(x) ≥ d(µα). This

implies that d(νx) ≥ d(µα). So y(0, d(µα)) = vx(0, d(µα)) = x(0, d(µα)) 6= µα.

Although π|ι(Λ0)Λ̃∞ is in fact open for all row-finite k-graphs (Proposition 3.3.10),

it behaves particularly well with respect to cylinder sets for locally convex k-graphs:

Proposition 3.3.9. Suppose that Λ is a row-finite, locally convex k-graph, and

let µ ∈ ι(Λ0)Λ̃. Then

π(Z(µ) ∩ ι(Λ0)Λ̃∞) = Z(π(µ)) ∩ ι(∂Λ).

In particular, π is open.

Proof. Lemma 3.3.8 implies that π(Z(µ)∩ ι(Λ0)Λ̃∞) ⊂ Z(π(µ))∩ ι(∂Λ), so we

need only show the opposite containment. Suppose that x ∈ Z(π(µ)) ∩ ι(∂Λ). By

Proposition 3.3.6, there exists a unique element y ∈ ι(Λ)0 such that π(y) = x. Then

y ∈ ι(Λ0)Λ̃∞. We claim that y ∈ Z(µ). Write µ = [z; (0, d(µ))] and π(y) = ι(w)

for some z, w ∈ ∂Λ. Then π(µ) = [z; (0, d(µ) ∧ d(z))] and y(0, d(µ)) = [w; (0, d(µ))].

We claim that (z; (0, d(µ))) ∼ (w; (0, d(µ))). We must verify conditions (P1)–(P3).

That (P2) and (P3) hold follows immediately from their definition. To show that

(P1) is satisfied, we must show that z(0, d(µ) ∧ d(z)) = w(0, d(µ) ∧ d(w)). Since

π(y) = x ∈ Z(µ), we have y ∈ Z(π(µ)). Then

[w; (0, d(π(µ)))] = y(0, d(π(µ))) = π(µ) = [z; (0, d(µ) ∧ d(z))].

Since d(w) = d(x) ≥ d(π(µ)), equation (P1) from the equivalence (w; (0, d(π(µ)))) ∼
(z; (0, d(µ) ∧ d(z))) implies that

w(0, d(π(µ))) = w(0, d(π(µ)) ∧ d(w)) = z(0, d(µ) ∧ d(z)).

Furthermore, this yields d(π(µ)) = d(µ)∧d(z). We will show d(µ)∧d(w) = d(π(µ)).

Fix i ≤ k. We argue the following cases separately:

(1) d(π(µ))i < d(µ)i, and
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(2) d(π(µ))i = d(µ)i.

Case (1): we have min{d(µ)i, d(z)i} = d(π(µ))i < d(µ)i. So d(z)i < d(µ)i, and thus

d(π(µ))i = d(z)i. Since z ∈ ∂Λ, this implies that z(d(π(µ)))Λei /∈ z(d(π(µ)))FE(Λ).

Then by Lemma 3.0.19, we have z(d(π(µ)))Λei = ∅. Furthermore, z(0, d(π(µ))) =

w(0, d(π(µ))) implies that w(d(π(µ)))Λei = ∅. So d(w)i = d(π(µ))i. Then d(µ)i >

d(w)i, hence (d(µ) ∧ d(w))i = d(w)i = d(π(µ))i.

Case (2): we have d(w) = d(x) ≥ d(π(µ)), so d(π(µ))i = d(µ)i implies that

d(w)i ≥ d(µ)i. Hence (d(µ) ∧ d(w))i = d(µ)i = d(π(µ))i. So d(µ) ∧ d(w) = d(π(µ)).

Now we have

w(0, d(µ) ∧ d(w)) = w(0, d(π(µ))) = z(0, d(µ) ∧ d(z)),

verifying equation (P1). �

We now prove that π|ι(Λ0)Λ̃∞ is open for all row-finite k-graphs. Note, however,

that in this generality it does not carry basic open sets to basic open sets as it does

under the additional hypothesis of local convexity.

Proposition 3.3.10. Let Λ be a row-finite k-graph. Then π : ι(Λ0)Λ̃∞ → ι(∂Λ)

is open.

Proof. Fix π(y) ∈ π(Z(µ \ G) ∩ ι(Λ0)Λ̃∞), and let ω ∈ ∂Λ be such that

π(y) = ι(ω). Let λ = y(0,
∨
ν∈G d(µν)), and define

F :=
⋃
{s(π(λ))ι(Λei) : d(λ)i > d(π(y))i}.

We claim that

π(y) ∈ Z(π(λ) \ F ) ∩ ι(∂Λ) ⊂ π(Z(µ \G) ∩ ι(Λ0)Λ̃∞)).

First we will show that π(y) ∈ Z(π(λ)). By Lemma 3.3.3, we can write λ =

[ω; (0, d(λ))], then π(λ) = [ω; (0, d(λ) ∧ d(ω))]. Since d(ω) = d(π(y)) = py, we have

π(y)(0, d(π(λ))) = π(y)(0, d(λ) ∧ d(ω))

= π(y)(0, d(λ) ∧ py)

= π(y(0, d(λ))) by Proposition 3.3.5

= π(λ).

Now we show that π(y) /∈
⋃
f∈F Z(π(λ)f). Fix f ∈ F ; say d(f) = ei. Then

d(π(y))i < d(λ)i by definition of F . Since d(π(y)) = d(ω) we have d(ω)i < d(λ)i,

and thus

d(π(λ))i = min{d(λ)i, d(ω)i} = d(ω)i = d(π(y))i.
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So d(π(y)) � d(π(λ)f), and hence π(y) /∈ Z(π(λ)f). So π(y) ∈ Z(π(λ) \F )∩ ι(∂Λ)

as required.

Now we will show that Z(π(λ)\F )∩ι(∂Λ) ⊂ π(Z(µ\G)∩ι(Λ0)Λ̃∞)). Let π(β) ∈
Z(π(λ) \ F ) ∩ ι(∂Λ). We aim to show that β ∈ Z(µ \ G). Since Z(λ) ⊂ Z(µ \ G),

it suffices to show that β ∈ Z(λ).

We first show that β ∈ Z(π(λ) \F ). We have β ∈ Z(π(β)) ⊂ Z(π(λ)). We need

to show that β /∈
⋃
f∈F Z(π(λ)f). Fix f ∈ F . Since π(λ)f ∈ ι(Λ), we have

α ∈ Z(π(λ)f) =⇒ π(α) ∈ Z(π(λ)f).

Since π(β) /∈ Z(π(λ)f), we have β /∈ Z(π(λ)f). This is true for all f ∈ F , and thus

β ∈ Z(π(λ) \ F ).

If d(λ) = d(π(λ)) then π(λ) = λ and the preceding paragraph implies that

β ∈ Z(λ). So suppose that d(λ) > d(π(λ)), and let τ = β(d(π(λ)), d(λ)). We know

that β(0, d(π(λ))) = λ(0, d(π(λ))) = π(λ), so we aim to use Lemma 3.2.20 to show

that τ = λ(d(π(λ)), d(λ)). Fix i ≤ k such that d(λ)i > d(π(λ))i, or equivalently

that d(τ)i > 0. Then d(π(λ)) = d(λ) ∧ d(ω) implies that d(λ)i > d(ω)i = d(π(y))i.

Furthermore, β ∈ Z(π(λ) \ F ) implies that τ(0, ei) /∈ F . In particular, τ(0, ei) /∈
ι(Λ). We claim that d(π(τ)) = 0. Suppose, for a contradiction, that d(π(τ))j > 0

for some j ≤ k. Then

π(τ)(0, ej) = τ(0, ej) /∈ ι(Λ).

But π(τ) ∈ ι(Λ) by definition of π. So we must have d(π(τ)) = 0. This implies that

π(τ) = r(τ) = s(π(λ)) = r(λ(d(π(λ)), d(λ))) = π(λ(d(π(λ)), d(λ))).

Now Lemma 3.2.20 implies that τ = λ(d(π(λ)), d(λ)). Then

β(0, λ) = β(0, d(π(λ)))τ = π(λ)λ(d(π(λ)), d(λ)) = λ. �

Example 3.3.11. We can see that π is not open for non-row-finite graphs by

considering an earlier 1-graph example from subsection 3.2.1. Consider the graph

E with E0 = {v} and E1 = {fi : i ∈ N} where s(fi) = r(fi) = v for all i ∈ N. That

is, an infinite number of loops on a single vertex v:

v

fi

...

Setting Mor(Λ) = E∗, Obj(Λ) = E0 and d(λ) = |λ| yields a 1-graph Λ. We can

apply the construction §3.2 to Λ to yield the 1-graph Λ̃ with the following skeleton.
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v

fi

...

µ1 µ2

Then Z(µ1) ∩ ι(Λ)0Λ̃∞ = {µ1µ2 · · · } is open in Λ̃, and π(Z(µ1) ∩ ι(Λ)0Λ̃∞) = {v}.
Since ∂Λ = Λ, any basic open set in ∂Λ containing v is of the form Z(v\G) for some

finite G ⊂ Λ1. Since Λ1 is infinite, there is no finite G ⊂ Λ1 such that Z(v\G) ⊂ {v}.
Hence {v} is not open in Λ, and π is not an open map.

Proof of Theorem 3.3.1. Propositions 3.3.6, 3.3.7 and 3.3.10 say precisely

that π is a bijection, is continuous, and is open. �

3.4. High-Rank Graph C∗-algebras

Definition 3.4.1. Let Λ be a finitely aligned k-graph. As is standard in the

literature (for example [8, 22]), a Cuntz-Krieger Λ-family in a C∗-algebra B is a

collection {tλ : λ ∈ Λ} of partial isometries satisfying

(CK1) {sv : v ∈ Λ0} is a set of mutually orthogonal projections;

(CK2) sµsν = sµν whenever s(µ) = r(ν);

(CK3) s∗µsν =
∑

(α,β)∈Λmin(µ,ν) sαs
∗
β for all µ, ν ∈ Λ; and

(CK4)
∏

µ∈E(sv − sµs∗µ) = 0 for every v ∈ Λ0 and E ∈ vFE(Λ).

The C∗-algebra C∗(Λ) of a k-graph Λ is the C∗-algebra generated by a Cuntz-

Krieger Λ-family {sλ : λ ∈ Λ}, which is universal in the sense that if {tλ : λ ∈ Λ} is

a Cuntz-Krieger Λ family in a C∗-algebra B, then there exists a C∗-homomorphism

π : C∗(Λ)→ B such that π(sλ) = tλ for all λ ∈ Λ.

Remark 3.4.2. The following Theorem is stated as [7, Theorem 2.28]. Farthing

alerted us to an issue in the proof of the theorem. It contains a claim which is

proved in cases, and in the proof of Case 1 of the claim (on page 189), there is an

error when i0 is such that mi0 = d(x)i0 + 1. Then ai0 = d(x)i0 , and [7, Equation

(2.13)] gives ti0 ≤ d(z)i0 ; not ti0 ≥ d(z)i0 as stated.

Theorem 3.4.3. Let Λ be a row-finite k-graph. Let C∗(Λ) and C∗(Λ̃) be gen-

erated by the Cuntz-Krieger families {sλ : λ ∈ Λ} and {tλ : λ ∈ Λ̃}. Then the

sum
∑

v∈ι(Λ)0 tv converges strictly to a full projection p ∈ M(C∗(Λ̃)), pC∗(Λ̃)p =

C∗({tι(λ) : λ ∈ Λ}), and sλ 7→ tι(λ) determines an isomorphism ς : C∗(Λ) ∼= pC∗(Λ̃)p.

Before proving Theorem 3.4.3, we need the following results.
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Proposition 3.4.4. Let Λ be a finitely aligned k-graph. If {tλ : λ ∈ Λ̃} is a

Cuntz-Krieger Λ̃-family, then {tλ : λ ∈ ι(Λ)} is a Cuntz-Krieger ι(Λ)-family.

Proof. Conditions (CK1) and (CK2) hold because {tλ : λ ∈ Λ̃} is a Cuntz-

Krieger Λ̃-family. Conditions (CK3) and (CK4) follow from Remark 3.2.26 and

Proposition 3.2.24 and the corresponding relations in C∗(Λ̃). �

Remark 3.4.5. Let C∗(Λ) and C∗(ι(Λ)) be generated by the Cuntz-Krieger

families {sλ : λ ∈ Λ} and {tλ : λ ∈ ι(Λ)} respectively. Since ι is a k-graph

isomorphism from Λ onto ι(Λ), it follows that {tι(λ) : λ ∈ Λ} is a Cuntz-Krieger Λ-

family in C∗(ι(Λ)). Hence the universal property of C∗(Λ) gives a C∗-homomorphism

C∗(Λ) → C∗(ι(Λ)) such that sι(λ) 7→ tλ for each λ ∈ Λ. Similarly, there exists a

C∗-homomorphism C∗(ι(Λ)) → C∗(Λ) such that tλ 7→ sι−1(λ) for each λ ∈ ι(Λ).

Hence C∗(Λ) ∼= C∗(ι(Λ)).

Let Λ be a finitely aligned k-graph. Following [22, §3], we denote by γ the gauge

action γ : Tk → Aut(C∗(Λ)), which is a strongly continuous action determined by

γz(sλ) = zd(λ)sλ where zm = zm1
1 . . . zmkk ∈ T.

Proposition 3.4.6. Let Λ be a finitely aligned k-graph, and let {tλ : λ ∈ Λ̃}
be the universal Cuntz-Krieger Λ̃-family which generates C∗(Λ̃). Then C∗(Λ) is

isomorphic to the subalgebra of C∗(Λ̃) generated by {tλ : λ ∈ ι(Λ)}.

Proof. Remark 3.4.5 tells us that C∗(Λ) ∼= C∗(ι(Λ)), so it suffices to prove that

C∗(ι(Λ)) is isomorphic the subalgebra of C∗(Λ̃) generated by {tλ : λ ∈ ι(Λ)}.
Let {sλ : λ ∈ ι(Λ)} be the universal Cuntz-Krieger ι(Λ)-family which generates

C∗(ι(Λ)). Let A be the subalgebra of C∗(Λ̃) generated by {tλ : λ ∈ ι(Λ)}. By

Proposition 3.4.4, {tλ : λ ∈ ι(Λ)} is a Cuntz-Krieger ι(Λ)-family and the universal

property of C∗(ι(Λ)) gives a ∗-homomorphism π : C∗(ι(Λ)) → C∗(Λ̃) such that

π(sλ) = tλ for all λ ∈ ι(Λ). Since π maps the generators of C∗(ι(Λ)) onto the

generators of A, we have π(C∗(ι(Λ))) = A. It follows from [22, Proposition 2.12]

that tv 6= 0 for all v ∈ Λ̃0. It then follows that π(sv) = tv 6= 0 for all v ∈ ι(Λ)0.

We now show that π is injective. Let θ : Tk → Aut(C∗(Λ̃)) and γ : Tk →
Aut(C∗(ι(Λ))) denote the gauge actions on C∗(Λ̃) and C∗(ι(Λ)) respectively. For

all z ∈ Tk and λ ∈ ι(Λ) we have

(θz ◦ π)(sλ) = θz(tλ)

= zd(λ)tλ

= π(zd(λ)sλ)

= (π ◦ γz)(sλ).
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So θz ◦ π = π ◦ γz for all z ∈ Tk. Hence, by [22, Theorem 4.2], π is injective, and

thus we have π(C∗(ι(Λ))) ∼= A, as required. �

Lemma 3.4.7. Let Λ be a finitely-aligned k-graph. Let λ ∈ Λ̃, and let λ′ =

λ(d(π(λ)), d(λ)) so that λ = π(λ)λ′. Suppose that x ∈ ∂Λ satisfies ι(r(x)) = r(λ′)

and d(x) ∧ d(λ′) = 0. Then λ′ = [x; (0, d(λ′))].

Proof. Write λ = [y; (0, d(λ))], then λ′ = [y; (d(λ)∧d(y), d(λ))]. We must show

that (y; (d(λ) ∧ d(y), d(λ)) ∼ (x; (0, d(λ′)). That conditions (P2) and (P3) hold

follows immediately from their definitions. It remains to show that (P1) is satisfied.

That is, that y(d(λ)∧ d(y), d(λ)∧ d(y)) = x(0, d(λ′)∧ d(x)). Since d(x)∧ d(λ′) = 0,

it suffices to show that y(d(λ) ∧ d(y)) = x(0). We have

ι(x(0)) = ι(r(x)) = r(λ′) = [y; d(λ) ∧ d(y)] = ι(y(d(λ) ∧ d(y))).

Injectivity of ι then gives y(d(λ) ∧ d(y)) = x(0). �

Lemma 3.4.8. Let λ ∈ Λ̃. Let λ′ = λ(d(π(λ)), d(λ)) so that λ = π(λ)λ′, and

define

Gλ :=
k⋃
i=1

{α ∈ s(π(λ))ι(Λ)ei : MCE(α, λ′) = ∅}.

Then Gλ ∪ {λ′} ∈ s(π(λ))FE(Λ̃).

Proof. Fix µ ∈ s(π(λ))Λ̃, and suppose that MCE(µ, α) = ∅ for all α ∈ Gλ. We

will show that MCE(µ, λ′) 6= ∅. Fix ν ∈ s(µ)Λ̃d(µ)∨d(λ′)−d(µ). Then d(µν) ≥ d(λ′). It

suffices to show that MCE(µν, λ′) 6= ∅. Write µν = [z; (0, d(µν))].

We first show that d(λ′)∧d(π(µν)) = 0. We suppose that d(λ′)∧d(π(µν)) > 0 and

seek a contradiction. Since d(π(µν)) = d(µν)∧d(z), we have d(λ′)∧d(µν)∧d(z) > 0.

So there exists i ≤ k such that d(λ′)i, d(µν)i, and d(z)i are all greater than zero.

Then

(µν)(0, ei) = [z; (0, ei)] = ι(z)(0, ei) = ι(z(0, ei)) ∈ ι(Λ).

Since π|ι(Λ) = idι(Λ) and π(λ′) = s(π(λ)) 6= λ′, we have λ′ /∈ ι(Λ). This implies

(µν)(0, ei) 6= λ′(0, ei). So MCE((µν)(0, ei), λ
′) = ∅, and thus (µν)(0, ei) ∈ Gλ. But

MCE(µν(0, ei), µν) 6= ∅, which implies that MCE(µ, µν(0, ei)) 6= ∅. This contradicts

our supposition that MCE(µ, α) = ∅ for all α ∈ Gλ. So d(λ′) ∧ d(π(µν)) = 0.

Since we chose ν such that d(µν) ≥ d(λ′), we have

d(z) ∧ d(λ′) = d(z) ∧ d(µν) ∧ d(λ′) = d(π(µν)) ∧ d(λ′) = 0

Since r(λ′) = r(µν) = ι(r(z)), Lemma 3.4.7 implies that λ′ = [z; (0, λ′)]. Thus

µν = [z; (0, µν)] ∈ MCE(µν, λ′). �



84 3. HIGHER-RANK GRAPHS

Proof of Theorem 3.4.3. Let A := C∗({tλ : λ ∈ ι(Λ)}). Then A ∼= C∗(Λ)

by Proposition 3.4.6. We will show that A is a full corner of C∗(Λ̃).

Following the argument for [19, Lemma 2.10], the sum
∑

v∈ι(Λ)0 tv converges

strictly in M(C∗(Λ̃)) to a projection p satisfying

(3.4.1) ptλt
∗
µp =

tλt∗µ if r̃(λ), r̃(µ) ∈ ι(Λ)0;

0 otherwise.

We first show that p is a full projection in M(C∗(Λ̃)), suppose that J is an ideal

in C∗(Λ̃) such that pC∗(Λ̃)p ⊂ J . Let v ∈ Λ̃0, and α ∈ π(v)Λ̃v. Then tα = tr(α)tα.

Since r(α) = π(v) ∈ ι(Λ), we have tr(α) ∈ pC∗(Λ̃)p ⊂ J . So tα ∈ J , and hence

tv = t∗αtα ∈ J . So for any λ ∈ Λ̃, we have tλ = tr(λ)tλ ∈ J . So {tλ : λ ∈ Λ̃} ⊂ J , and

thus J = C∗(Λ̃).

We now show that A = pC∗(Λ̃)p. It follows from (3.4.1) that A ⊂ pC∗(Λ̃)p.

Now suppose that λ, µ ∈ ι(Λ)0Λ̃. We will show that ptλt
∗
µp ∈ A. In order to show

this, we first show that

(3.4.2) λ(d(π(λ)), d(λ)) = µ(d(π(µ)), d(µ)).

Let x, y ∈ ∂Λ such that λ = [x; (0, d(λ))] and µ = [y; (0, d(µ))]. Let

λ′ = λ(d(π(λ)), d(λ)) and µ′ = µ(d(π(µ)), d(µ)),

so λ = π(λ)λ′ and µ = π(µ)µ′. We have

λ′ = [x; (d(λ) ∧ d(x), d(λ)] and

µ′ = [y; (d(µ) ∧ d(y), d(µ))].

We claim λ′ = µ′. Condition (P2) is trivially satisfied. Since [x; d(λ)] = s̃(λ) =

s̃(µ) = [y; d(µ)], (V1) and (V2) imply that

x(d(λ) ∧ d(x)) = y(d(µ) ∧ d(y)) and

d(λ)− d(λ) ∧ d(x) = d(µ)− d(µ) ∧ d(x),

which are precisely equations (P1) and (P3). Hence λ′ = µ′.

Claim 3.4.8.1. Let Gλ :=
⋃k
i=1{α ∈ s(π(λ))ι(Λ)ei : MCE(α, λ′) = ∅}. Then

tλ′t
∗
λ′ =

∏
α∈Gλ

(
ts(π(λ)) − tαt∗α

)
Proof. Lemma 3.4.8 implies thatGλ∪{λ′} is finite exhaustive, so (CK4) implies

that ∏
β∈Gλ∪{λ′}

(
ts(π(λ)) − tβt∗β

)
= 0.
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Furthermore,∏
β∈Gλ∪{λ′}

(
ts(π(λ)) − tβt∗β

)
=
( ∏
α∈Gλ

(
ts(π(λ)) − tαt∗α

))
(ts(π(λ)) − tλ′t∗λ′)

=
( ∏
α∈Gλ

(ts(π(λ)) − tαt∗α)
)
−
(
tλ′t
∗
λ′

∏
α∈Gλ

(ts(π(λ)) − tαt∗α)
)
.

Fix α ∈ Gλ. By [22, Lemma 2.7(i)],

tλ′t
∗
λ′(ts(π(λ)) − tαt∗α) = tλ′t

∗
λ′ −

∑
γ∈MCE(λ′,α)

tγt
∗
γ

= tλ′t
∗
λ′ .

So

0 =
∏

β∈Gλ∪{λ′}

(
ts(π(λ)) − tβt∗β

)
=
∏
α∈Gλ

(
ts(π(λ)) − tαt∗α

)
− tλ′t∗λ′ ,

as required. �Claim

Now we put the pieces together:

ptλt
∗
µp = tλt

∗
µ

= tπ(λ)tλ′t
∗
λ′t
∗
π(µ) by (3.4.2)

= tπ(λ)

∏
α∈Gλ

(
ts(π(λ)) − tαt∗α

)
t∗π(µ) by Claim 3.4.8.1.

which belongs to A since π(λ), π(µ), α ∈ ι(Λ) for all α ∈ Gλ. So A = pC∗(Λ̃)p. �

3.5. The Diagonal and the Spectrum

For k-graph Λ, we call C∗{sµs∗µ : µ ∈ Λ} ⊂ C∗(Λ) the diagonal C∗-algebra of Λ

and denote it DΛ, dropping the subscript when confusion is unlikely.

Theorem 3.5.1. Let Λ be a row-finite higher-rank graph. Let p ∈ M(C∗(Λ̃))

and ς : C∗(Λ)→ pC∗(Λ̃)p be from Theorem 3.4.3. Then the restriction ς|DΛ
=: ρ is

an isomorphism of DΛ onto pDΛ̃p. Let π : ι(Λ)0Λ̃∞ → ι(∂Λ) be the homeomorphism

from Theorem 3.3.1, then there exist homeomorphisms hΛ : ∂Λ → ∆(DΛ) and

η : ι(Λ)0Λ̃∞ → ∆(pDΛ̃p) such that the following diagram commutes.

ι(Λ)0Λ̃∞

∆(pDΛ̃p)

η

ι(∂Λ)
π

∆(DΛ)

hΛ ◦ ι−1

ρ∗



86 3. HIGHER-RANK GRAPHS

To prove this, we use several technical results. As in [20], for a finite subset

F ⊂ Λ, define ∨F :=
⋃
G⊂F MCE(G) =

⋃
G⊂F

{
λ ∈

⋂
µ∈G µΛ : d(λ) =

∨
µ∈G d(µ)

}
.

Lemma 3.5.2. Let Λ be a finitely aligned k-graph and let F be a finite subset of

Λ. Suppose that r(λ) ∈ F for each λ ∈ F . For µ ∈ F , define

q∨Fµ := sµs
∗
µ

∏
µµ′∈∨F\{µ}

(sµs
∗
µ − sµµ′s∗µµ′).

Then the q∨Fµ are mutually orthogonal projections in span{sµs∗µ : µ ∈ ∨F}, and for

each ν ∈ ∨F

(3.5.1) sνs
∗
ν =

∑
νν′∈∨F

q∨Fνν′

Proof. Since

sµs
∗
µ

∏
µµ′∈∨F\{µ}

(sµs
∗
µ − sµµ′s∗µµ′) = sµs

∗
µ

∏
µµ′∈∨F,d(µ′)6=0

(sr(µ) − sµµ′s∗µµ′),

[20, Proposition 8.6] says precisely that the q∨Fµ are mutually orthogonal projections.

That

sνs
∗
ν =

∑
νν′∈∨F

q∨Fνν′

is established in the proof of [20, Proposition 8.6] on page 421. �

Remark 3.5.3. Replacing F with ∨F in Remark 2.4.3, the same argument gives

q∨Fµ = sµ

( ∏
µ′∈s(µ)Λ\{s(µ)}

µµ′∈∨F

(ss(µ) − sµ′s∗µ′)
)
s∗µ.

Proposition 3.5.4. Let Λ be a finitely aligned k-graph. Then D = span{sµs∗µ :

µ ∈ Λ}, and for each x ∈ ∂Λ there exists a unique h(x) ∈ ∆(D) such that

h(x)(sµs
∗
µ) =

1 if x = µµ′

0 otherwise.

Moreover, x 7→ h(x) is a homeomorphism h : ∂Λ→ ∆(D).

Proof. We will first show that D = span{sµs∗µ : µ ∈ Λ}. Let µ, ν ∈ Λ. Then

by multiplying s∗µsν on the left by sµ and on the right by s∗ν , it follows from (CK3)

that

(sµs
∗
µ)(sνs

∗
ν) =

∑
λ∈MCE(µ,ν)

sλs
∗
λ.

So span{sµs∗µ : µ ∈ Λ} is closed under multiplication and is thus is a ∗-subalgebra of

C∗(Λ). Hence the closed span is a C∗-algebra. Since D is the smallest C∗-subalgebra

of C∗(Λ) containing the generators {sµs∗µ}, we have D = span{sµs∗µ : µ ∈ Λ}.
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Fix x ∈ ∂Λ and
∑

µ∈F bµsµs
∗
µ ∈ span{sµs∗µ : µ ∈ Λ}. By setting extra coefficients

to zero we can assume that each path in F has its range in F , and write∑
µ∈F

bµsµs
∗
µ =

∑
µ∈∨F

bµsµs
∗
µ.

Let n =
∨
{p ∈ Nk : x(0, p) ∈ ∨F}. Since ∨F is a finite set of finite paths, n is finite.

Since ∨F is closed under minimal common extensions, x(0, n) ∈ ∨F . Furthermore,

since x ∈ ∂Λ, we have

Fx := {µ′ ∈ x(n)Λ \ {x(n)} : x(0, n)µ′ ∈ ∨F} /∈ x(n)FE(Λ).

So there exists ν ∈ x(n)Λ such that for each µ′ ∈ Fx, MCE(ν, µ′) = ∅. Then

sνs
∗
νsµ′s

∗
µ′ = 0 for all µ′ ∈ Fx. Applying Lemma A.0.7 with p = sx(n), q0 = sνs

∗
ν and

Q = {sµ′s∗µ′ : µ′ ∈ Fx}, we have
∏

µ′∈Fx(sx(n) − sµ′s∗µ′) 6= 0. So

qFx(0,n) = sx(0,n)

∏
µ′∈Fx

(sx(n) − sµ′s∗µ′)s∗x(0,n) 6= 0.

Then by Lemma A.0.6 we have∥∥∥ ∑
ν∈∨F

bµsµs
∗
µ

∥∥∥ =
∥∥∥ ∑
ν∈∨F

( ∑
µ∈∨F
ν∈Z(µ)

bµ

)
q∨Fν

∥∥∥ by Lemma 3.5.1

= max
{ν∈∨F :q∨Fν 6=0}

∣∣∣ ∑
µ∈∨F
ν∈Z(µ)

bµ

∣∣∣ by Lemma A.0.6

≥
∣∣∣ ∑

µ∈∨F
x(0,n)∈Z(µ)

bµ

∣∣∣ since q∨Fx(0,n) 6= 0

=
∣∣∣ ∑

µ∈F
x(0,n)∈Z(µ)

bµ

∣∣∣ since bµ = 0 for µ ∈ ∨F \ F .

Hence the formula

(3.5.2) h(x)
(∑
µ∈F

bµsµs
∗
µ

)
=
∑
µ∈F

x∈Z(µ)

bµ,

determines a norm-decreasing linear map on span{sµs∗µ : µ ∈ Λ}.
We now show h(x) is a homomorphism. Since h(x) is continuous and linear, it

suffices to show that

(3.5.3) h(x)(sµs
∗
µsαs

∗
α) = h(x)(sµs

∗
µ) h(x)(sαs

∗
α).

Calculating the right hand side of (3.5.3) yields

h(x)(sµs
∗
µ) h(x)(sαs

∗
α) =

1 if x ∈ Z(µ) ∩ Z(α)

0 otherwise.
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Calculating the left hand side of (3.5.3) gives

h(x)(sµs
∗
µsαs

∗
α) = h(x)

( ∑
λ∈MCE(µ,α)

sλs
∗
λ

)
.

Since d(λ) = d(µ) ∨ d(α) for all λ ∈ MCE(µ, α), there exists at most one λ ∈
MCE(µ, α) such that x ∈ Z(λ). Such a λ exists if and only if x ∈ Z(µ) ∩ Z(α), so

we have

h(x)(sµs
∗
µsαs

∗
α) =

1 if x ∈ Z(α) ∩ Z(µ)

0 otherwise.

Thus we have established (3.5.3), and hence h(x) is a homomorphism. Since h(x) is

a nonzero bounded linear map on a dense subspace of D, and since multiplication

is continuous, h(x) extends uniquely to a nonzero homomorphism h(x) : D → C.

We claim the map h : ∂Λ→ ∆(D) is a homeomorphism. The trickiest part is to

show h is onto:

Claim 3.5.4.1. The map h is surjective.

Proof. Fix φ ∈ ∆(D). We seek x ∈ ∂Λ such that h(x) = φ.

We know φ(p) ∈ {0, 1} for any projection p ∈ D, and that for each n ∈ Nk,
{sµs∗µ : d(µ) = n} are mutually orthogonal projections. It follows that for each

n ∈ Nk there exists at most one νn ∈ Λn such that φ(sνns
∗
νn) = 1.

Let S denote the set of n for which such νn exist. If ν = µν ′ and φ(sνs
∗
ν) = 1,

then

1 = φ(sνs
∗
ν) = φ(sνs

∗
νsµs

∗
µ) = φ(sνs

∗
ν)φ(sµs

∗
µ) = φ(sµs

∗
µ).

This implies that if n ∈ S and m ≤ n, then m ∈ S and νm = νn(0,m). Set

N := ∨S, and define x : Ωk,N → Λ by x(p, q) = νq(p, q). Then x is a k-graph

morphism because each νq is.

We now show x ∈ ∂Λ. Fix n ∈ Nk such that n ≤ d(x), and E ∈ x(n)FE(Λ). We

seek m ∈ Nk such that x(n, n + m) ∈ E. Since E is finite exhaustive, (CK4) says

that ∏
λ∈E

(sx(n) − sλs∗λ) = 0.

Multiplying on the left by sx(0,n) and on the right by s∗x(0,n) yields∏
λ∈E

(sx(0,n)s
∗
x(0,n) − sx(0,n)λs

∗
x(0,n)λ) = 0.

Since φ is a homomorphism, this implies that∏
λ∈E

(φ(sx(0,n)s
∗
x(0,n))− φ(sx(0,n)λs

∗
x(0,n)λ)) = 0.
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So there exists λ ∈ E such that

0 = φ(sx(0,n)s
∗
x(0,n))− φ(sx(0,n)λs

∗
x(0,n)λ)

= φ(sνns
∗
νn)− φ(sx(0,n)λs

∗
x(0,n)λ)

= 1− φ(sx(0,n)λs
∗
x(0,n)λ)

Hence φ(sx(0,n)λs
∗
x(0,n)λ) = 1, giving x(0, n)λ = νn+d(λ) = x(0, n + d(λ)). Hence

x ∈ ∂Λ.

Now we must show that h(x) = φ. For each µ ∈ Λ we have

φ(sµs
∗
µ) = 1 ⇐⇒ d(µ) ∈ S and νd(µ) = µ

⇐⇒ x(0, d(µ)) = µ

⇐⇒ h(x)(sµs
∗
µ) = 1.

Since both φ(sµs
∗
µ) and h(x)(sµs

∗
µ) only take values in {0, 1}, it follows that h(x) =

φ. �Claim

To see that h is injective, suppose that h(x) = h(y). Then for each n ∈ Nk, we

have

h(y)(sx(0,n∧d(x))s
∗
x(0,n∧d(x))) = h(x)(sx(0,n∧d(x))s

∗
x(0,n∧d(x))) = 1.

Hence y(0, n ∧ d(x)) = x(0, n ∧ d(x)). By symmetry, we also have y(0, n ∧ d(y)) =

x(0, n ∧ d(y)) for all n. In particular, d(x) = d(y) and y(0, n) = x(0, n) for all

n ≤ d(x). Thus x = y.

We now show that h is continuous. Suppose xn → x. We must show that

h(xn)(a) → h(x)(a) for each a ∈ D. We will first show that for each µ ∈ Λ, there

exists N such that n ≥ N implies that h(xn)(sµs
∗
µ) = h(x)(sµs

∗
µ). Since xn → x,

there exists N0 such that n ≥ N0 implies that xn(0, d(µ)∧ d(x)) = x(0, d(µ)∧ d(x)).

Fix n ≥ N0. Suppose that h(x)(sµs
∗
µ) = 1. Then x(0, d(µ)) = µ. In particular,

xn(0, d(µ)) = x(0, d(µ)) = µ, so h(xn)(sµs
∗
µ) = 1. Now suppose that h(x)(sµs

∗
µ) = 0.

Then x(0, d(µ) ∧ d(x)) 6= µ, so xn(0, d(µ) ∧ d(x)) 6= µ, and thus h(xn)(sµs
∗
µ) = 0.

Since h(x) and the h(xn) are linear, h(xn) converges to h(x) in span{sµs∗µ : µ ∈ E}.
An ε/3 argument similar to that on page 33 shows that h is continuous on D.

Finally, we show that h is open. Since h is a bijection, it suffices to show that

h−1 is continuous. Suppose that h(xn) → h(x). We will show xn → x. Fix a basic

open set Z(µ) containing x, so h(x)(sµs
∗
µ) = 1. We seek N ∈ Nk such that n ≥ N

implies that xn ∈ Z(µ). Since h(xn) → h(x) in ∆(D) and h(xn)(sµs
∗
µ) ∈ {0, 1} for

all n, there exists N ∈ Nk such that n ≥ N implies h(xn)(sµs
∗
µ) = 1. So xn ∈ Z(µ)

as required. �

We can now prove our main result.
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Proof of Theorem 3.5.1. Let Λ be a row-finite k-graph, and Λ̃ be the des-

ourcification described in Proposition 3.2.10. Let {sλ : λ ∈ Λ} and {tλ : λ ∈ Λ̃} be

universal Cuntz-Krieger families in C∗(Λ) and C∗(Λ̃). Let A be the C∗-subalgebra

of C∗(Λ̃) generated by {tλ : λ ∈ ι(Λ)}, and define the diagonal subalgebra of A by

DA := span{tλt∗λ : λ ∈ ι(Λ)}. Replacing tλt
∗
µ with tλt

∗
λ in the proof Theorem 3.4.3

yields DA
∼= pDΛ̃p. Since A ∼= C∗(Λ), it follows that DA

∼= DΛ. Thus DΛ
∼= pDΛ̃p

as required.

We now construct η and show that it is a homeomorphism. That p commutes

with DΛ̃ implies that pDΛ̃p is an ideal in DΛ̃. Then [23, Propositions A26(a) and

A27(b)] imply that map k : φ 7→ φ|pD
Λ̃
p is a homeomorphism of {φ ∈ ∆(DΛ̃) :

φ|pD
Λ̃
p 6= 0} onto ∆(pDΛ̃p). Since Λ̃ is row finite with no sources, ∂Λ̃ = Λ̃∞. Let

hΛ̃ : Λ̃∞ → ∆(DΛ̃) be the homeomorphism obtained from Proposition 3.5.4. Fix

x ∈ ι(Λ)0Λ̃∞. Then there exists λ ∈ Λ̃ such that hΛ̃(x)|pD
Λ̃
p(tλt

∗
λ) 6= 0, so hΛ̃(x) ∈

dom(k) for all x ∈ ι(Λ)0Λ̃∞. We define η := k ◦ hΛ̃|ι(Λ)0Λ̃∞ : ι(Λ)0Λ̃∞ → ∆(pDΛ̃p).

Let π : ι(Λ)0Λ̃∞ → ι(∂Λ) be the homeomorphism from Theorem 3.3.1, and let

ρ be the isomorphism which maps DΛ onto pDΛ̃p. Let ρ∗ : ∆(pDΛ̃p) → ∆(DΛ) be

the ∗-homomorphism given by ρ∗(φ) = φ ◦ ρ.

We now show that diagram on page 85 commutes. Since (hΛ◦ι−1◦π)(x) and η(x)

are homomorphisms, and since ρ is an isomorphism, it suffices to fix x ∈ ι(Λ)0Λ̃∞

and µ ∈ Λ and show that

(3.5.4) (hΛ ◦ ι−1 ◦ π)(x)(sµs
∗
µ) = (ρ∗ ◦ η)(x)(sµs

∗
µ).

Let ω ∈ ∂Λ be the element such that π(x) = ι(ω). Then the left-hand side of (3.5.4)

becomes

(hΛ ◦ ι−1 ◦ π)(x)(sµs
∗
µ) = hΛ(w)(sµs

∗
µ) =

1 if ω ∈ Z(µ)

0 otherwise.

The right-hand side of (3.5.4) simplifies to

(ρ∗ ◦ η)(x)(sµs
∗
µ) = η(x)(ρ(sµs

∗
µ))

= hΛ̃(x)(tι(µ)t
∗
ι(µ)) since r(x) ∈ ι(Λ)0

=

1 if x ∈ Z(ι(µ))

0 otherwise.

We claim that x ∈ Z(ι(µ)) if and only if ω ∈ Z(µ). Suppose that x ∈ Z(ι(µ)).

Since µ ∈ Λ and π(x) = ι(ω), we have π(x(0, d(µ))) = π(ι(µ)) = ι(µ). So
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d(π(x(0, d(µ)))) = d(µ), and thus d(x) ∧ d(w) ≥ d(µ). So d(ω) ≥ d(µ). Then

x ∈ Z(ι(µ)) ⇐⇒ x(0, d(µ)) = ι(µ) since ι preserves degree

⇐⇒ [ω; (0, d(µ))] = ι(µ) by Lemma 3.3.3

⇐⇒ ι(ω(0, d(µ))) = ι(µ) by Lemma 3.3.4

⇐⇒ ω(0, d(µ)) = µ since ι is a injective

⇐⇒ ω ∈ Z(µ).

So equation (3.5.4) holds, and we are done. �

3.6. From k-Coloured to Rank-k

In [11] Hazlewood introduced the notion of a k-coloured graph as a formal re-

alisation of the 1-skeleton of a k-graph (see Remark 3.0.8 and Theorem 3.6.1). He

showed how to build a k-graph from a k-coloured graph together with a set of fac-

torisation rules for bi-coloured paths, providing a very elegant and concrete proof

of a folklore result first asserted in [10]. In this section we show how to think of the

path-space of the k-graph as a quotient of the path-space of the k-coloured graph,

and investigate how the topologies on the two are related. For row-finite k-graphs,

it turns out that the topology on the k-graph is precisely the quotient topology

inherited from its k-coloured skeleton. However, we show in Example 3.6.5 that for

non-row-finite k-graphs, the quotient map from the path space of the k-coloured

graph to the path space of the k-graph need not even be continuous.

Let F+
k denote the free semigroup with k generators {c1, . . . , ck}. A k-coloured

graph is a directed graph E together with a map c : E1 → {c1, . . . , ck}. The map

c extends to a functor c : E∗ → F+
k . Write πk for the quotient map πk : F+

k → Nk

determined by πk(ci) = ei. Then the degree of a path x ∈ E∗ is d(x) := πk(c(x)).

So for example a c1c2c2-coloured path in a 3-coloured graph has degree (1, 0, 0) +

(0, 1, 0) + (0, 1, 0) = (1, 2, 0); and a c2c2c1-coloured path has a different colouring

but the same degree.

A coloured-graph morphism is a graph morphism ψ between k-coloured graphs

which preserves colour. That is, c(ψ(x)) = c(x) for every x ∈ E∗.
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For m ∈ (N ∪ {∞})k, we define a coloured graph Ek,m by

E0
k,m = {n ∈ Nk : 0 ≤ n ≤ m},

E1
k,m = {n+ vi : n ∈ E0

k,m, i ∈ {1, . . . , k}, n+ ei ∈ E0
k,m},

r(n+ vi) = n

s(n+ vi) = n+ ei

c(n+ vi) = ci.

For e ∈ E1 with c(e) = cj, it is unambiguous and often useful to write vc(e) := vj.

For a coloured graph morphism λ : Ek,m → E we say λ has degree m, and define

r(λ) := λ(0) and s(λ) := λ(m).

The following definitions, up to the statement of Theorem 3.6.1, are as given

by Hazlewood in [11]. Given a k-coloured graph E and distinct i, j ∈ {1, . . . , k},
a {i, j}-square in E is a coloured-graph morphism λ : Ek,ei+ej → E. When i, j are

not important we simply call λ a square in E. If λ : Ek,m → E is a coloured graph

morphism and ψ is a square in E, then ψ occurs in λ if there exists n ∈ Nk such

that ψ(x) = λ(x+ n) for all x ∈ Ek,ei+ej .
Let E be a k-coloured graph. A complete collection of squares is a collection C

of squares in E such that for each x ∈ E∗ with c(x) = cicj, there exists a unique

µ ∈ C such that x = µ(vi)µ(ei + vj). We write µ(vi)µ(ei + vj) ∼C µ(vj)µ(ej + vi), so

for each cicj-coloured path x ∈ E∗, there is a unique cjci-coloured path y such that

x ∼C y. If there is only one complete collection of squares around we will simply

write x ∼ y. A coloured-graph morphism λ is C-compatible if every square occurring

in λ belongs to C.
For p, q,m ∈ Nk with p ≤ q ≤ m, define Ek,[p,q] to be the subgraph of Ek,m such

that

E0
k,[p,q] = {n ∈ Nk : p ≤ n ≤ q},

E1
k,[p,q] = {x ∈ E1

k,m : s(x), r(x) ∈ E0
k,[p,q]}.

Given a coloured-graph morphism λ : Ek,m → E and p, q ∈ Nk such that p ≤
q ≤ m, define

(
λ|∗Ek,[p,q]

)
: Ek,q−p → E to be the coloured-graph morphism such that

(3.6.1) λ|∗Ek,[p,q](a) = λ(p+ a)

for every a ∈ Ek,q−p. We put the ∗ there to indicate that this is not normal restriction,

and includes a translation. This notation is useful for factorising graph morphisms.

In particular it is convenient for picking out squares embedded in λ.

We say a complete collection of squares C in a k-coloured graph E is associative

if for every path fgh in E such that f, g, h are edges of distinct colour, the edges



3.6. FROM k-COLOURED TO RANK-k 93

• •
h2=h2

•

f

•
h1

f1

•

g1

•
h1

g2=g2

•

g

f1

•

g1

f2=f2

h

Figure 2. Associativity in a 3-graph.

f1, f2, g1, g2, h1, h2 determined by

gh ∼ h1g1, fh1 ∼ h2f1, and f1g1 ∼ g2f2

and the edges f 1, f 2, g1, g2, h1, h2 determined by

fg ∼ g1f 1, f 1h ∼ h1f 2, and g1h1 ∼ h2g2

satisfy f 2 = f2, g
2 = g2 and h2 = h2. This is pictured in Figure 2.

Let E be a k-coloured graph, and m ∈ Nk \ {0}. For a path x ∈ E|m|, and a

coloured-graph morphism λ with domain Ek,m, we say that x traverses λ if d(x) =

d(λ) and λ(d(x1 . . . xl−1) + vc(xl)) = xl for all 0 < l ≤ |m|. If m = 0 and x ∈ E|m| =

E0, and if λ is a colored-graph morphism with domain Ek,0 = {0}, then we say that

x traverses λ if x = λ(0).

Theorem 3.6.1 (From [11, Theorem 4.11]). Suppose that E is a k-coloured

graph, and that C is a complete collection of squares in E satisfying the associa-

tivity condition. Define Λ0 = E0 and define Λ∗ to be the set of all C-compatible

coloured-graph morphisms λ : Ek,m → E. Then Λ = (Λ0,Λ∗) is the unique (up to

isomorphism) k-graph with 1-skeleton E.

We extend the notion of traversing a coloured-graph morphism to infinite paths:

let x ∈ E∞ and λ : Ek,p → E be a coloured-graph morphism of non-finite degree

(so p ∈ (N ∪ {∞})k \ Nk). Then we say that x traverses λ if x1 . . . xn traverses

λ|Ek,d(x1...xn)
for every n ∈ N.

Proposition 3.6.2. Suppose that E is a k-colored graph, and that C is a com-

plete collection of squares in E satisfying the associativity condition. Then for every

path x ∈ E∗ ∪ E∞ there exists a unique C-compatible coloured graph morphism

λx : Ek,d(x) → E

that is traversed by x.
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Proof. If x ∈ E∗ then [11, Proposition 4.7] gives the result. Fix x ∈ E∞. By

[11, Proposition 4.7], for each n there exists a unique C-compatible colored-graph

morphism λ
(n)
x traversed by xn. Regarding the λ

(n)
x as paths in the k-graph obtained

from Theorem 3.6.1, we apply Lemma 3.1.4 to the sequence {λ(n)
x } to obtain a unique

λx ∈ W such that d(λx) = d(x) and λx(0, d(xn)) = λ
(n)
x .

To see that λx is C-compatible, suppose that ψ is a square embedded in λx.

Then exists N ∈ Nk such that ψ(y) = λx(y + N) for all y ∈ dom(ψ). Applying

Claim 3.1.4.1 gives M = NN+d(ψ) such that d(λ
(M)
x ) ≥ N + d(ψ). This implies that

λ(M)
x (y +N) = λx(y +N) = ψ(y)

for all y ∈ dom(ψ). So ψ occurs in λ
(M)
x . Since λ

(M)
x is C-compatible, ψ is a square

in C, so λx is C-compatible. �

Remark 3.6.3. Suppose that E is a k-coloured directed graph, that C is a

complete associative collection of squares in E, and that Λ is the k-graph with

skeleton E and squares C obtained from Theorem 3.6.1. Let q : E∗ ∪ E∞ → W

be the map which takes x to the unique C-compatible coloured-graph morphism λx

traversed by x.

If Λ is a row-finite, we claim that the collection {Z(µ) : µ ∈ Λ} ∪ {{µ} : µ ∈ Λ}
is a basis for the topology on Λ. Denote by τ ′ the topology generated by {Z(µ) :

µ ∈ Λ} ∪ {{µ} : µ ∈ Λ}, and our usual topology by τ . To see τ = τ ′ we show their

open sets coincide. Let Z(µ \G) be a basic open set in τ , and ν ∈ Z(µ \G). Then

{ν} ⊂ Z(µ \G), so Z(µ \G) is open in τ ′, and τ ⊂ τ ′. On the other hand, let B be

a basic open set of τ ′, and ν ∈ B. Since Λ is row-finite, G :=
⋃k
i=1 s(ν)Λei is finite.

Then Z(ν \G) = {ν} ⊂ B, so B is open in τ , hence τ ′ ⊂ τ .

Proposition 3.6.4. Let E be a row-finite, k-coloured graph, and let C be a

complete associative collection of squares in E, let Λ be the k-graph with skeleton E

and squares C obtained from Theorem 3.6.1. Then U is open in W if and only if

q−1(U) is open in E∗ ∪ E∞.

Proof. First suppose that U is open in W , and fix x ∈ q−1(U). We seek a basic

open set Bx in E∗ ∪E∞ such that x ∈ Bx ⊂ q−1(U). If x ∈ E∗, then Bx = {x} does

the trick. Now suppose that x ∈ E∞. Since x ∈ E∞ ∩ q−1(U), we have q(x) ∈ U .

Since U is open, there exists µ ∈ Λ such that q(x) ∈ Z(µ) ⊂ U . In particular,

d(x) > d(µ) ∈ Nk, and hence d(x1 . . . xn) > d(µ) for some n ∈ N. We then have

q(x1 . . . xn) ∈ Z(µ). Let yx = x1 . . . xn. Then x ∈ Z(yx). To see Z(yx) ⊂ q−1(U),

fix y ∈ Z(yx); say y = yxy
′. Then q(y) = q(x1 . . . xny

′) ∈ Z(µ) ⊂ U , so y ∈ q−1(U)

as required.
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p

w

v

f

q

g

βi
...

αi

...

Figure 3. A picture of E

For the reverse implication, suppose that q−1(U) is open in E∗ ∪ E∞, and fix

λ ∈ U . We seek a basic open set Bλ such that λ ∈ Bλ ⊂ U . If λ ∈ Λ, then Bλ = {λ}
suffices. Suppose that λ ∈ W \ Λ, so |d(λ)| = ∞. Fix x ∈ E∞ which traverses λ.

Then x ∈ q−1(U), which is open, so there exists a basic open set Bx ∈ E∗ ∪ E∞

such that x ∈ Bx ⊂ q−1(U). Since |d(λ)| = |x| =∞, Bx is not equal to {λ} for any

λ ∈ E∗, and hence Bx = Z(yx) for some yx ∈ E∗. Then

λ = q(x) = q(yxx
′) = q(yx)q(x

′) ∈ Z(q(yx)).

To see Z(q(yx)) ⊂ U , let µ ∈ Z(q(yx)). Write µ = q(yx)µ
′, and let xµ′ be a path in E?

which traverses µ′. Then yxxµ′ ∈ Z(yx) ⊂ q−1(U), which implies µ = q(yxxµ′) ∈ U ,

as required. �

Proposition 3.6.4 says that when E is row-finite, the topology on W is precisely

the quotient topology inherited from E∗∪E∞ under q. In particular, q is continuous.

This is not true in general.

Example 3.6.5. Let E be the 2-colored graph of Figure 3; so

E0 = {v, w, p, q}, E1 = {f, g} ∪
(⋃
i∈N

{αi, βi}
)

r(f) = r(αi) = v, s(f) = r(βi) = w

r(g) = s(αi) = p, s(g) = s(βi) = q

c(αi) = c(βi) = c1, c(f) = c(g) = c2.

We call c1 blue and c2 red. Since not everyone can easily print in colour, we

draw them as solid and dashed lines respectively.



96 3. HIGHER-RANK GRAPHS

Let C be the collection of graph morphisms λi : E2,(1,1) → E such that

λi((0, 0)) = v, λi((0, 1)) = w

λi((1, 0)) = p, λi((1, 1)) = q

λi((0, 0) + v1) = αi, λi((0, 0) + v2) = f

λi((1, 0) + v2) = g, λi((0, 1) + v1) = βi.

So each λi is a square, and C is a complete collection of squares, and αig ∼C fβi
for all i. Since E has only 2 colours, C is automatically associative.

The 2-graph Λ determined by (E, C) has, by definition, skeleton E with factori-

sations αig = fβi for each i ∈ N. Moreover, by definition, Λ(1,1) = {λi : i ∈ N} and

q(αig) = λi = q(fβi).

To see that q is not continuous, we show that {αig}i∈N converges to v in E, but

{λi} converges to f 6= q(v) in Λ.

To see that αig → v in E, fix a basic open subset Z(y \ F ) ⊂ E containing v.

Then y = v, and since F is finite, only finitely many of the αi may be in F . So there

exists N0 ∈ N such that n ≥ N0 =⇒ αn /∈ F . Then

n ≥ N0 =⇒ αng ∈ Z(v \ F ).

So αig → v as i→∞.

To see that λi → f in Λ, fix a basic open subset Z(µ \G) ⊂ Λ containing f . We

consider 2 cases:

(i) µ = f , or

(ii) µ = v.

For case (i), suppose that µ = f . Then G is a finite collection of q(βi). Let

N1 = max{i : q(βi) ∈ G}. Then

n ≥ N1 =⇒ λn = q(fβn) ∈ Z(f \G).

For case (ii), suppose that y = v. Then since f /∈ G, G is a finite collection of

q(αi). Let N2 = max{i : q(αi) ∈ G}. Then

n ≥ N2 =⇒ λn = q(αng) ∈ Z(v \G).

So for any neighbourhood U of f in Λ, the λi eventually belong to U . Hence

q(αig)→ f 6= v as i→∞. Hence q(limαig) = q(v) 6= q(f) = limλi = lim q(αig), so

q is not continuous.



APPENDIX A

C∗-algebras

Here we provide a brief recap of some general C∗-algebraic results we apply in

both the directed and k-graph settings.

Given a C∗-algebra A, the multiplier algebra M(A) consists of pairs (L,R) of

maps from A to itself such that aL(b) = R(a)b. This is a C∗-algebra with ‖(L,R)‖ =

‖L‖ = ‖R‖, (L1, R1)(L2, R2) = (L1 ◦ L2, R2 ◦ R1) and (L,R)∗ = (R#, L#), where

R#(a) = R(a∗)∗. The multiplier algebra M(A) is the largest unital C∗-algebra which

contains A as an essential ideal, and is unique up to isomorphism. If p is a projection

in M(A), then the C∗-subalgebra B = pAp of A is called a corner of A. If B is not

contained in any proper two-sided ideal in A, we call B a full corner.

Lemma A.0.6. If P and Q are non-zero mutually orthogonal projections on a

Hilbert space H and λ, µ ∈ C, then ‖λP + µQ‖ = max{|λ|, |µ|}.

Proof. Recall that for any orthogonal projection S on H we have ‖P‖ =

‖P 2‖ = ‖P ∗P‖ = ‖P‖2, and thus ‖P‖ ∈ {0, 1}. Furthermore, that P and Q

are mutually orthogonal implies that P +Q is a projection. Hence

‖(λP + µQ)h‖2 = ‖λPh+ µQh‖2

= |λ|2‖Ph‖2 + |µ|2‖Qh‖2 by Pythagoras’ Theorem

≤ max{|λ|2, |µ|2}(‖Ph‖2 + ‖Qh‖2)

= max{|λ|2, |µ|2}(‖Ph+Qh‖2)

= max{|λ|2, |µ|2}(‖(P +Q)h‖2)

≤ max{|λ|2, |µ|2}(‖P +Q‖2‖h‖2)

≤ max{|λ|2, |µ|2}‖h‖2

So ‖λP + µQ‖ ≤ max{|λ|, |µ|}. For h ∈ PH, we have ‖(λP + µQ)h‖ = ‖λPh‖ =

|λ|‖h‖. Similarly, h ∈ QH gives ‖(λP+µQ)h‖ = ‖µQh‖ = |µ|‖h‖. So ‖λP+µQ‖ ≥
|λ| and ‖λP + µQ‖ ≥ |µ|. Thus ‖λP + µQ‖ = max{|λ|, |µ|}. �

Lemma A.0.7. Let A be a C∗-algebra, let p be a projection in A, let Q be a

finite set of commuting subprojections of p and let q0 be a nonzero subprojection

of p. Then
∏

q∈Q(p − q) is a projection. If q0 is orthogonal to each q ∈ Q, then

q0

∏
q∈Q(p− q) = q0, so in particular,

∏
q∈Q(p− q) 6= 0.

97
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Proof. Since (p−q)∗ = p∗−q∗ = p−q for each q ∈ Q, and since the projections

in Q commute, the (p− q) commute, so(∏
q∈Q

(p− q)
)∗

=
∏
q∈Q

(p− q)∗ =
∏
q∈Q

(p− q).

Since (p− q)2 = p2 − 2pq + q2 = p− 2q + q = p− q, we have(∏
q∈Q

(p− q)
)2

=
∏
q∈Q

(p− q)2 =
∏
q∈Q

(p− q).

So
∏

q∈Q(p− q) is a projection.

Suppose q0 is orthogonal to each q ∈ Q. Then for each q ∈ Q, we have

q0(p− q) = q0p− q0q = q0 − 0 = q0,

so

q0

(∏
q∈Q

(p− q)
)

= q0(p− q′)
( ∏
q∈Q\{q′}

(p− q)
)

= q0

( ∏
q∈Q\{q′}

(p− q)
)
.

Now an induction on |Q| shows that q0

∏
q∈Q(p − q) = q0. Since q0 6= 0, then

q0

∏
q∈Q(p− q) 6= 0, so

∏
q∈Q(p− q) 6= 0. �



Bibliography

[1] T. Bates, J. H. Hong, I. Raeburn, and W. Szymański, The ideal structure of the C∗-algebras
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[2] T. Bates, D. Pask, I. Raeburn, and W. Szymański, The C∗-algebras of row-finite graphs, New

York J. Math. 6 (2000), 307–324.

[3] J. Cuntz and W. Krieger, A class of C∗-algebras and topological Markov chains, Invent. Math.

56 (1980), 251–268.

[4] D. Drinen, Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc. 128 (2000), 1991–

2000.

[5] D. Drinen and M. Tomforde, The C∗-algebras of arbitrary graphs, Rocky Mountain J. Math.

35 (2005), 105–135.

[6] M. Enomoto and Y. Watatani, A graph theory for C∗-algebras, Math. Japon. 25 (1980),

435–442.

[7] C. Farthing, Removing sources from higher-rank graphs, J. Operator Theory 60 (2008), 165–

198.

[8] C. Farthing, P. S. Muhly, and T. Yeend, Higher-rank graph C∗-algebras: an inverse semigroup

and groupoid approach, Semigroup Forum 71 (2005), 159–187.

[9] N. J. Fowler, M. Laca, and I. Raeburn, The C∗-algebras of infinite graphs, Proc. Amer. Math.

Soc. 128 (2000), 2319–2327.

[10] N. J. Fowler and A. Sims, Product systems over right-angled Artin semigroups, Trans. Amer.

Math. Soc. 354 (2002), 1487–1509.

[11] R. Hazlewood, Constructing k-graphs from k-coloured graphs, Honours thesis, University of

Wollongong, 2007.

[12] A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J. Math. 6 (2000), 1–20.

[13] A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J.

Math. 184 (1998), 161–174.

[14] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz-Krieger

algebras, J. Funct. Anal. 144 (1997), 505–541.

[15] D. Pask, I. Raeburn, M. Rørdam, and A. Sims, Rank-two graphs whose C∗-algebras are direct

limits of circle algebras, J. Funct. Anal. 239 (2006), 137–178.

[16] A. L. T. Paterson, Graph inverse semigroups, groupoids and their C∗-algebras, J. Operator

Theory 48 (2002), 645–662.

[17] A. L. T. Paterson and A. E. Welch, Tychonoff’s theorem for locally compact spaces and an

elementary approach to the topology of path spaces, Proc. Amer. Math. Soc. 133 (2005), 2761–

2770.

[18] G. K. Pedersen, Analysis now, Springer-Verlag, New York, 1989, xiv+277.

99



100 BIBLIOGRAPHY

[19] I. Raeburn, Graph algebras, Published for the Conference Board of the Mathematical Sciences,

Washington, DC, 2005, vi+113.

[20] I. Raeburn and A. Sims, Product systems of graphs and the Toeplitz algebras of higher-rank

graphs, J. Operator Theory 53 (2005), 399–429.

[21] I. Raeburn, A. Sims, and T. Yeend, Higher-rank graphs and their C∗-algebras, Proc. Edinb.

Math. Soc. (2) 46 (2003), 99–115.

[22] I. Raeburn, A. Sims, and T. Yeend, The C∗-algebras of finitely aligned higher-rank graphs, J.

Funct. Anal. 213 (2004), 206–240.

[23] I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C∗-algebras, Amer-

ican Mathematical Society, Providence, RI, 1998, xiv+327.

[24] J. Renault, A groupoid approach to C∗-algebras, Springer, Berlin, 1980, ii+160.

[25] J. Renault, Cuntz-like algebras, Operator theoretical methods (Timişoara, 1998), Theta
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