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Abstract

Directed graphs and their higher-rank analogues provide an intuitive frame-
work for the analysis of a broad class of C*-algebras which we call graph algebras.
Kumjian, Pask, Raeburn and Renault built a groupoid Gg from the infinite-path
space of a locally finite directed graph FE, and used the theory of groupoid C*-
algebras to define the graph C*-algebra. Local finiteness was required so that Gg
was locally compact and r-discrete, with unit space homeomorphic to the infinite
path space of E. Similarly, the higher-rank graphs of Kumjian and Pask were ini-
tially studied with similar restrictive hypotheses in order to use groupoid based
analysis of their higher-rank C*-algebras. In particular, the topology on the path
space of a directed graph or higher-rank graph is crucial in the analysis of graph
C*-algebras.

Drinen and Tomforde defined a process called desingularisation which can be
used to extend many results about the C*-algebras of locally finite directed graphs
to those of arbitrary directed graphs. Drinen and Tomforde construct from an
arbitrary directed graph E a row-finite directed graph E with no sources such that
C*(E) embeds in C*(E) as a full corner. Subsequently, Farthing developed a partial
desingularisation for higher-rank graphs, which constructs from a row-finite higher-

rank graph A with sources a row-finite higher-rank graph A with no sources such

that C*(A) embeds in C*(A) as a full corner.

In Chapter 2, we construct a topology on the path space of an arbitrary directed
graph E and prove that it is locally compact and Hausdorff. We show that there
is a homeomorphism ¢, from a subspace of the infinite-path space of the Drinen-
Tomforde desingularisation E onto the boundary-path space OF of E. We then show
that there is a commutative C*-subalgebra Dg of C*(F) which is homeomorphic to
the continuous functions on JF. Concluding our results on directed graphs, we
show that the embedding of C*(E) in C*(E) restricts to an embedding of Dy in
Dz which implements ¢. In Chapter 3, we develop a modification of Farthing’s
desingularisation procedure for row-finite higher-rank graphs which contains cleaner
proofs of her results. We use this modification to prove analogues for higher-rank

graphs of the results from Chapter 2.



CHAPTER 1

Introduction

Cuntz and Krieger introduced and studied C*-algebras associated to finite (0, 1)-
matrices in [3]. Within a year, Enomoto and Watatani showed in [6] how to inter-
pret the Cuntz-Krieger relations and the hypotheses of Cuntz and Krieger’s main
theorems very naturally in terms of directed graphs. This opened many doors to op-
erator algebraists: graph C*-algebras have provided a rich supply of very tractable
examples. In particular, the combinatorial properties of a graph are strongly tied to
the algebraic properties of its C*-algebra. Graph C*-algebras include (up to Morita
equivalence) all AF algebras [4] and all Kirchberg algebras with free abelian K7 [30],
as well many non-simple examples of purely infinite nuclear C*-algebras. In [12],
Kumjian and Pask introduced higher-rank analogues of directed graphs and associ-
ated to them C*-algebras which broaden the class of graph C*-algebras to a class
including all tensor products of graph C*-algebras (and thus many Kirchberg alge-
bras whose K contains torsion elements [12]), as well as (up to Morita equivalence)
the irrational rotation algebras and many other examples of simple AT-algebras with
real rank zero [15]. See [19] for an excellent survey of the field.

There are several standard approaches to studying graph C*-algebras. The orig-
inal method for studying them uses groupoids in order to tap into the powerful
theory of groupoid C*-algebras [24] to study graph C*-algebras. A groupoid is an
object similar to a group but with multiplication only defined on some pairs of el-
ements. In [14], Kumjian, Pask, Raeburn and Renault built a groupoid Gg from
each directed graph F, then using Renault’s theory of groupoid C*-algebras, they
defined the graph C*-algebra to be the groupoid C*-algebra C*(Gg). By interpreting
Renault’s hypotheses in terms of the graph F from which Gg was built, Kumjian et
al. were able to link properties of E to those of C*(Gg). The analysis of [14] estab-
lishes among other things that C*(Gg) is the universal C*-algebra generated by a
collection of partial isometries satisfying relations now known as the Cuntz-Krieger
relations (see Section 2.3).

The results of [14] were proved only for graphs which are locally finite, meaning
that each vertex emits and receives only finitely many edges. This is not to be
confused with row-finiteness, which only requires each vertex to receive finitely many

edges. A significantly different way to construct a groupoid Gg from a graph F
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2 1. INTRODUCTION

was introduced by Paterson in [16]. Paterson’s construction proceeds via inverse
semigroups, and provides a framework for a groupoid-based analysis of the graph
algebras of non-row-finite directed graphs. Common to both groupoid models is that
the unit space G% of the groupoid, which must be locally compact and Hausdorff,
is a collection of paths in the graph: for a row-finite graph with no sources, G%
is the collection of right-infinite paths in F; but for more complicated graphs, the
infinite paths are replaced with boundary paths (for the definition see the prelude
to Chapter 2). Hence the path space of a graph as a topological space is of great
importance in the context of graph C*-algebras. The path spaces of graphs are the
central focus of this thesis.

Another popular method of studying graph C*-algebras is to forgo the groupoid
machinery used in earlier approaches, and analyse graph C*-algebras with “bare
hands” (for example [1, 2, 21, 22]). Such a direct analysis of graph C*-algebras
generally uses techniques similar (albeit much-refined) to those developed by Cuntz
and Krieger in [3]. Tt provides cleaner proofs, and in particular finesses some of
the technical hypothesis arising in a groupoid approach. Bates, Pask, Raeburn and
Szymanski in [2] used direct analysis to lift the no-sources limitation that had been
present in all preceding studies.

Many results for row-finite directed graphs with no sources can be extended to
arbitrary graphs via a process called desingularisation. Given an arbitrary directed
graph E, Drinen and Tomforde show in [5] how to construct a row-finite directed
graph F with no sources by adding vertices and edges to E in such a way that
the C*-algebra associated to F' contains the C*-algebra associated to E as a full
corner. The modified graph F' is now called a Drinen-Tomforde desingularisation of
E. Although Drinen and Tomforde’s process can be used to extend many results for
row-finite directed graphs to arbitrary directed graphs, there are still open problems:
for example, it is not yet known how to retrieve one of the major theorems — the
gauge invariant uniqueness theorem — for arbitrary graphs via desingularisation.
In this thesis we show how desingularisation affects the boundary path space of the
graph; or more precisely, how it does not.

In [28], Robertson and Steger introduced and analysed higher-rank analogues of
Cuntz-Krieger algebras associated to commuting families of (0, 1)-matrices. Kumjian
and Pask in [12] introduced higher-rank graphs (or k-graphs) as analogues of directed
graphs in order to study Robertson and Steger’s higher-rank Cuntz-Krieger algebras
using the techniques previously developed for directed graphs. Although the defini-
tion of a k-graph isn’t quite as straightforward as that of a directed graph, k-graphs

are a natural generalisation of directed graphs, and it is shown in [12, Example



1. INTRODUCTION 3

1.3] that 1-graphs are precisely the path-categories of directed graphs. Like graph
C*-algebras, higher-rank graph C*-algebras were first studied using groupoid tech-
niques. In [12], Kumjian and Pask defined the k-graph C*-algebra C*(A) to be the
universal C*-algebra for a set of Cuntz-Krieger relations among partial isometries
associated to paths of the k-graph A. Using direct analysis, they proved a version
of the gauge-invariant uniqueness theorem for k-graph algebras. They then con-
structed a path groupoid G, from each k-graph A, and used the gauge invariant
uniqueness theorem to prove that the groupoid C*-algebra C*(G,) is isomorphic to
C*(A). This allowed them to plug into Renault’s theory of groupoid C*-algebras to
analyse higher-rank graph C*-algebras.

In [21], Raeburn, Sims and Yeend developed a “bare-hands” analysis of k-graph
C*-algebras. They found a slightly weaker alternative to the no-sources hypothesis
from Kumjian and Pask’s theorems called local convezity (Definition 3.0.13). The
same authors later introduced finitely aligned k-graphs in [22], and gave a direct
analysis of their C*-algebras. This remains the most general class of k-graphs to
which a C*-algebra has been associated and studied in detail. Although no analogue
of a Drinen-Tomforde desingularisation is currently available for higher-rank graphs,
Farthing provided a construction in [7] analogous to that in [2] for removing the
sources in a locally convex, row-finite higher-rank graph. The statement of the
results of [7] do not contain the local convexity hypothesis, but Farthing alerted us
to an issue in the proof of [7, Theorem 2.28] (see Remark 3.4.2), which arises when
the graph is not locally convex.

Before we state the goals and results of this thesis in detail, we will review the

definitions and properties of directed graphs and their higher-rank analogues.

Directed graphs and their C*-algebras. A directed graph E consists of
countable sets £° and E'!, and maps r,s : £ — E°. We think of elements of E°
as vertices, and the elements of E' as edges. We call r, s range and source maps,
and think of them as assigning a direction to each edge. We say E is row-finite if
|r~1(v)| < oo for all v € E°. For a row-finite graph E, a Cuntz-Krieger E-family
consists of mutually orthogonal projections {p, : v € E°} and partial isometries
{s.: e € E'} such that

(CK1) s:se = ps(e) for every e € E'; and

(CK2) po = Do miun(e)u) SeSe Whenever 77 (v) # 0.
The graph algebra, C*(E) is the universal C*-algebra generated by a Cuntz-Krieger
E-family {s.,p, : v € E% e € FE'}. That is, if {t.,q, : v € E', e € E'} is a

Cuntz-Krieger E-family in a C*-algebra B, then there exists a *-homomorphism
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Tiq : C*(E) — B such that m ,(s.) = t. for every e € E' and 7, ,(p,) = ¢, for every
v e E°.

In the groupoid-based approach to analysing graph C*-algebras (for example, in
[14, 13, 16]), the groupoid used is a locally compact Hausdorff groupoid G whose
unit space contains as a dense subset the collection of infinite paths in E. The
groupoid G is also r-discrete, meaning that the set of units G° = {xmfl cx €GLis
an open subset of G.

In [14], the authors considered locally finite graphs F to ensure that G is a locally
compact r-discrete groupoid. Since G as a set is built from the infinite-path space E*°
of E, and we require that G° is homeomorphic to £, it is crucial that the infinite-
path space of E is endowed with a locally compact Hausdorff topology. In [16],
Paterson lifted the row-finiteness condition by first building an inverse semigroup
S from E, then using the universal groupoid associated to S to build the graph
C*-algebra.

In [2], Bates et al. restricted attention to row-finite directed graphs E which
may have sources. The construction in [2] adds to each source v € E° an infinite

path called a ‘head’, by which we mean a graph of the form

Adding a head to each source in a row-finite directed graph E produces a row-finite
graph E with no sources. The authors of [2] showed that C*(E) embeds in C*(E)
as a full corner. They used this embedding to deduce theorems about C*(E) from
existing theorems about C*(E).

Drinen and Tomforde took this a step further in [5] by adding more complicated
heads to infinite receivers. Under Drinen and Tomforde’s procedure, an infinite

receiver v such as

fi

'U(;.\'U/(—...

has a head added to it, and the infinite family of edges with range v is distributed
down the head:
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As in [2], the C*-algebra of the modified graph contains the C*-algebra of the origi-
nal graph as a full corner. This allows many results to be extended from C*-algebras
of row-finite graphs with no-sources to arbitrary graph C*-algebras. For example,
Drinen and Tomforde proved that C*(E) is simple if and only if every cycle in F
has an entry, E is cofinal, and every vertex in F can be reached from every infinite
receiver [5, Corollary 2.15]. They also recovered the characterisation of purely infi-
nite graph algebras of [9, Theorem 4]. They extended the characterisation of which
graph algebras are AF [5, Corollary 2.13], and showed that a simple graph algebra
is always either purely infinite or AF [5, Remark 2.16], extending the dichotomy
of [13].

Motivated by Drinen and Tomforde’s desingularisation, Raeburn showed in [19,
§5] how to identify paths in a row-finite directed graph with no sources which can
be ‘collapsed’ to a single vertex (see Section 2.2 for a precise definition). He then
defined a desingularisation of an arbitrary graph F to be any pair (F, M), where F
is a row-finite graph with no sources and M is a set of collapsible paths such that
when all the paths in M are collapsed, the resulting graph Fj; is isomorphic to E.

In this thesis, we follow Raeburn’s approach to desingularisations of graphs.

Higher-rank graphs and their C*-algebras. In [12], Kumjian and Pask
developed an analogue of directed graphs called higher-rank graphs as tool to study
the higher-rank Cuntz-Krieger algebras of Robertson and Steger [28]. Given k €
N, a graph of rank k (or k-graph) is a pair (A,d) consisting of a category A =
(Obj(A),Mor(A),r, s) together with a functor d : A — N, called the degree map,
which satisfies the factorisation property: for every A € Mor(A) and m,n € N¥ with
d()\) = m+n, there are unique elements 1, v € Mor(A) such that A = pv, d(u) =m
and d(v) = n. The degree map d is the higher-rank analogue of length. Although
k-graphs are defined in terms of categories, no serious category theory is required

to work with k-graphs. By the usual abuse of notation, we write A € A to mean
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FiGURE 1. The 2-graph €.

A € Mor(A). We call elements of Mor(A) paths and elements of Obj(A) vertices.
We identify A with Obj(A) (for a justification see Remark 3.0.7).

To visualise a k-graph we draw its 1-skeleton: a directed graph with vertices
A and edges Ule A¢. To each edge we assign a colour determined by the edge’s
degree. In this thesis we tend to use 2-graphs for examples, and we draw edges of
degree (1,0) as solid lines, and edges of degree (0, 1) as dashed lines. In the literature
these are often referred to as “blue” and “red” edges.

A particularly important class of examples of k-graphs are the k-graphs (2,
defined as follows. Fix k € N and m € (NU{co})*. Let Obj(Qxm) = {p € N* : p; <
m; for all i < k},

Mor(Qm) = {(p,q) : p.q € Obj(Q,) and p; < g; for all i < k},

r(p,q) = p, s(p,q) = q and d(p, q) = ¢ — p, with composition given by (p, q)(q,t) =
(p,t). If m = (00)*, we drop m from the subscript and just write ;. The 1-skeleton
of {25 is depicted in Figure 1. The k-graphs €2, ,,, provide an intuitive model for paths
in k-graphs: every path X\ of degree m in a k-graph A determines a degree-preserving
functor (i.e. a graph morphism) z, : Q. ,, — A by za(p,q¢) = \”, where A = N \"\”
and d(\) = p, d(\") = ¢ — p and d(\"") = m — q. A path in A is often identified
with the associated graph morphism. In keeping with this model, we write \(p, q)
to refer to the segment \” of \ of degree ¢ — p as factorized above. For example if
A is the path anmh of degree (2,2) in Figure 2, then A((0,1),(2,1)) is the path eg
of degree (2,0). Infinite paths in a k-graph are defined to be k-graph morphisms
x:Qp — A

There are two major technical issues that arise in generalising results about

directed graphs to higher-rank graphs. The first is that two paths p,v € A can be
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FIGURE 2. The 2-graph A.

subpaths of another larger path A € A (so A = pp’ = v/) with d(u) £ d(v) and
d(v) £ d(p). For example, consider the 2-graph A in Figure 2. Here, the left hand
rectangular path anm and the rectangular path b5 that makes up the bottom part
of the graph are both subpaths of the path anmh = bljf of degree (2,2). This
cannot happen in a directed graph: if two paths u,r are both initial segments of
some longer path, then either p is an initial segment of v or vice versa.

The other technical issue is also an implication of the factorisation property. If
a directed graph has a source, we can simply add an infinite path onto that source
as in [2]. In k-graphs, there are many types of sources because a vertex may receive
edges of some degrees but not of others. The 2-graph A whose skeleton appears
in Figure 2 is infinite in the horizontal direction, but not in the vertical direction.
So the vertex v is considered a source (as would any other vertex along that top
row). Once we add an infinite path to v in the vertical direction, we must add more
edges to ensure the factorisation property is satisfied. Thus the process of removing
sources in a k-graph is significantly more complicated than in a directed graph.
Farthing’s construction [7] applied to the example of Figure 3.6.5 would extend
the graph vertically, yielding a 2-graph isomorphic to the 2-graph 25 depicted in
Figure 1.

1.1. Overview of the Thesis

The overall goal of this thesis is to understand the path spaces of directed graphs
and higher-rank graphs and investigate how these path spaces interact with desin-
gularisation procedures such as those of Drinen-Tomforde and Farthing.

We begin in Chapter 2 by recalling the standard definitions and notation for
directed graphs.

In Section 2.1 we construct a topology on the path space of an arbitrary directed

graph E, and show that it is a locally compact Hausdorff topology. Although such
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results can already be found in the literature, detailed arguments are not usually
provided. Our construction follows the approach of Paterson and Welch [17], and
we fix a minor oversight in their work.

In Section 2.2, we introduce the notion of a desingularisation of a directed graph,
and we construct the homeomorphism ¢.,, which identifies a subset of the infinite-
path space of a desingularisation with the boundary-path space in the original graph.

Our results about desingularisations of directed graphs provide the foundation
for our C*-algebraic results. In Section 2.3, we recall some definitions and results
pertaining to the C*-algebras of directed graphs. First we show how the Cuntz-
Krieger relations can be written in terms of paths instead of edges. We then recall
that the C*-algebra of a graph and that of its desingularisation are Morita equivalent.
Lastly, we define the diagonal C*-subalgebra of a graph C*-algebra.

Section 2.4 contains the main results for directed graphs. First we build the
homeomorphism hg between the boundary-path space OF of an arbitrary graph E
and the spectrum of its diagonal. We then show that for a desingularisation F' of
E, the isomorphism which embeds C*(E) as a full corner in C*(F') implements the
homeomorphism ¢, constructed in Section 2.2 via the homeomorphisms hg and hg.

In Chapter 3, we turn our attention to k-graphs. We begin by recalling the
definitions and standard notation for higher-rank graphs.

In Section 3.1 we build a topology for the path space of a higher-rank graph,
and show that the path space is locally compact and Hausdorff under this topology.
As in the directed graph setting, we follow the approach of [17].

Proving one of our main results (Theorem 3.3.1) posed problems using Farthings
construction, motivating us to develop an improved version. In Section 3.2, given
a k-graph A with sources, we construct a k-graph A with no sources such that A
embeds in /~X, and we describe some examples of the process. We prove that for row-
finite k-graphs, our construction agrees with Farthing’s [7], and that for 1-graphs,
it coincides with the ‘adding a head’ construction of [2]. We also describe how our
construction relates to the sets of paths appearing in the Cuntz-Krieger relations,
and deduce that it preserves finite alignedness and row-finiteness of A.

In Section 3.3, we prove that given a row-finite k-graph A, there is a natural
homeomorphism from the boundary-path space of A onto the space of infinite paths
in A with range in the embedded copy of A. We provide examples and discussion
showing that the topological basis constructed in Section 3.1 is the one we want.

In Section 3.4 we recall the definition of the Cuntz-Krieger algebra C*(A) of a
higher-rank graph A. We show that if A is a row-finite k-graph and A is the graph
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with no sources obtained by applying the construction of Section 3.2 to A, then the
embedding of A in A induces an isomorphism 7 of C*(A) onto a full corner of C*(A).

Section 3.5 contains results about the diagonal of a k-graph algebra which are
analogous to those proved in Section 2.4 for 1-graphs. We identify the boundary-
path space of a finitely aligned higher-rank graph with the spectrum of its diagonal
C*-algebra. We then show that the isomorphism 7 of Section 3.4 restricts to an
isomorphism of diagonals which implements the homeomorphism of Section 3.3.

In Section 3.6 we investigate how the construction of a k-graph A from its k-
coloured skeleton E relates to the topologies on their path spaces. In particular,
we show that if E is row-finite, then the quotient topology on A inherited from its
skeleton is precisely the topology described in Section 3.1. We provide an example

to show that this doesn’t necessarily happen when E' is not row-finite.



CHAPTER 2

Directed Graphs

A directed graph E = (E°, E',r,s) consists of two countable sets E°, E' and
functions 7, s : E' — E. The elements of E° are called vertices and the elements of
E!' are called edges. For each edge e, we call s(e) the source of e and r(e) the range
of e; if s(e) = v and r(e) = w, we say that v emits e and that w receives e, or that
e is an edge from v to w. Since all graphs in this thesis are directed, we often just
call a directed graph F a graph.

A path of length n in a directed graph E is a sequence p = piq - - - jt, of edges in
E such that s(p;) = r(pigq1) for 1 <i <n—1.

M1 M2 o 22

This convention, where the edges in a directed graph read from right to left, is
a recent one adopted for reasons which become clear when we talk about graph
C*-algebras in §2.3. We write |u| = n for the length of u, and regard vertices
as paths of length 0; we denote by E" the set of paths of length n, and define
E* =, en E". We extend the range and source maps to E* by setting () = (1)
and s(p) = s(py) for |p| > 1, and r(v) = v = s(v) for v € E°. If p and v are
paths with s(p) = r(v), we write pv for the path gy ... pyuv1 -+ v For a set of
vertices V C E° and a set of paths FF C E*, we define VF := {u € F : r(n) € V}
and FV :={p € F : s(u) € V}. If V= {v}, then we drop the braces and write
vF to mean {v}F and Fv to mean F'{v}. We define the infinite paths E> of E
to be infinite strings gy ... g, ... such that s(u;) = r(pi41) for all ¢ > 1, we extend
the range map to E* by setting r(u) = r(uy), and for a set of vertices V C E°, we
define VE*® :={x € E>® :r(z) € V}.

If r~1(v) is finite for every v € EY, that is, every vertex in a graph FE receives at
most finitely many edges, we say that E is row-finite.

A vertex v is singular if either |r~*(v)| = oo, or [r~}(v)| = 0. The boundary
paths of E are defined by OF := E* U {a € E*: s(«a) is singular}.

11
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2.1. Topology

Our first aim is to construct a locally compact Hausdorff topology on E* U E>.

For pn € E*, we define the cylinder set of i by
Z(p)={ve E*UE®:v=mw'}.

Using Paterson and Welch’s approach in [17], we identify elements of E* with func-
tions on E*, an then use the topology of pointwise convergence. The open sets are
defined to be the inverse images of open sets in {0,1}"" = [ ,c.{0,1} (equipped
with the product topology) under the map «a : E* U E® — {0, 1}£" defined by

1 ifwe Z(y),
(2.1.1) a(w)(y) =

0 otherwise.
The basis we end up with is slightly different to that in [17, Corollary 2.4], revealing
a minor oversight of the authors.

Before stating our goal for this section, we recall the following definition. For

a set X, a family of topological spaces {Y; : i € I} and a family of functions
fi + X =Y, there is a weakest topology on X that makes all of the f; continuous
(see [18, 1.4.5]). We call it the initial topology induced by the family {f; : i € I}.
We give {0,1}F" the topology of pointwise convergence, and then the topology we
want on E* U E* is the initial topology induced by {a}.

PROPOSITION 2.1.1. Let E be a directed graph. For p € E* and a finite subset
G C s(pn)E', define Z(u\ G) == Z(1) \ Upeq Z(pe). Then the collection

{Z(u\G):p€ E*,G C s(u)E" is finite}

is a basis for the initial topology induced by {a}. Moreover, it is a locally compact
Hausdorff topology on E* U E*.

The motivation for Proposition 2.1.1 stemmed from the fact that no detailed
construction of such a topology appears to have been published, even in the row-
finite setting!. It is considered a folklore result, but a detailed proof is given on
page 14. We begin by describing the topology on F'*° when F is row-finite — in this

situation, the basis for the topology is a little simpler.

PROPOSITION 2.1.2. Let F' be a row-finite graph. Then {Z(p)NEF> :p € F*} is
a basis for the subspace topology on F*° inherited from [y F*'. Moreover, endowed

with this topology, F* is a locally compact Hausdorff space.

LAt least, I couldn’t find one. The result is stated as [14, Corollary 2.2] without proof.
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PROOF. For a finite sequence G = (g1, g2, . . ., gn) of elements of F!, define
2G) = { ()i € [[F' i fo=gnfor 1<n <N},
N

Since F! carries the discrete topology, the family
{Z(G) : G is a finite sequence in F'}

is a basis for the product topology on [y F*. Since Z(G) N F> # () if and only if
g1 gy € F* the sets {Z(u)NF>* : p € F*} form a basis for the subspace topology
on F*°. We plan to show these sets are compact. To do so, we use the following

result.

CrLAIM 2.1.2.1. For eachn € N, let F,, C F! be finite. Then the product topology

on [1,en Fn agrees with the relative topology on [], oy Fn inherited from TTy F'.

neN

PROOF. Denote by X the set ], .y Fy. Let 71 be the product topology on X,
let 75 be the relative topology on X inherited from [ F*, and let ¢ be the identity
map on X. We aim to show that ¢ : (X, 7) — (X, 72) is a homeomorphism. Since
the F), are finite, Tychonoft’s theorem implies that 7 is a compact topology. Since
F' is a Hausdorff space, and since products and subspaces of Hausdorff spaces are
also Hausdorff, 7, is a Hausdorff topology. So ¢ is a bijection from a compact space
onto a Hausdorff space, and hence it suffices to show that ¢ is continuous.

To see that ¢ is continuous, let V' = Z(G) be a basic open set in [[ F*. If
VNX =0, then ~(VNX)=10is openin (X, 7). Suppose that VN X # (). Then

o (VN X)={(f)2, € X : fi=g; fori <N}
is a basic open set in (X, 7). Uetaim
To see that F*> is locally compact we show that the basic open sets Z(u) N F>°
are compact. First, we construct a set X, for each p and show that it is compact

in [Ty F*'. We then show that Z(u) N F> is closed in X,. Fix p € F*, and for each
n € N define

{1n} for 1 <n <yl

{ec F':s(u)FrW=1p(e) £ 0} for n > |ul.
Row-finiteness of F' implies that F), is finite for each n € N. Thus [[ _yF, is
compact. By Claim 2.1.2.1, X, := [], .y F» with relative topology inherited from
[Iy F* is also compact. Since Z(u) N EF> C X, it suffices to show that Z(u) N F*>

is closed. Since F'> satisfies the first axiom of countability (i.e. every neighborhood

F, =

neN

filter has a countable basis), it suffices to work with sequences. Let (A"),en be a

sequence in Z(u) N F> converging to A € X,,; meaning that A\ — \; for all : € N.
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We show that A € Z(u) N F>°. For each j € N, we have \7 — \;, so there exists
Mj such that n > M; == A} = \;. Fix j € N. Let P; = max{M}, M;;,}. Then
n>P; = A} = )jand \},; = A;j1. This implies that s(\;) = s(A}) = r(\}, ;) =
7(Aj+1). Since this is true for all j € N, A is a path in F' and thus an element of
Z(p) N F*. Now {Z(u) N F>* : u € F*} is a compact basis for F°°; and thus F'>

is locally compact. O
To prove Proposition 2.1.1, we use the following result.

PROPOSITION 2.1.3. The map o : E* U E* — {0,1}¥" defined in (2.1.1) is

continuous, open and injective.

ProoOF. That « is continuous is clear: the topology on E* U E* is given by the
inverse images a1 (U) of open sets U C {0,1}F". Since a(a™1(U)) = UNa(E*UE>)
is an open set, a is open.

To see that « is injective, suppose a(p) = a(v). Then a(u)(v) = a(v)(v) = 1,
and thus p € Z(v). Similarly, v € Z(u). Hence p = v. O

PROOF OF PROPOSITION 2.1.1. First we consider the topology on {0,1}¥".
Given disjoint finite subsets F, G C E*, define
{1} ifpuekF,
Ui% =910} ifpeg,
{0,1} otherwise.

Then the sets N(F,G) := HueE* UE’G, where F,G range over all finite, disjoint
pairs of subsets of E*, form a basis for the topology on {0,1}*". Proposition 2.1.3
says that o is a homeomorphism onto its range, hence the sets a~!(N(F,G)) form

a basis for a topology on E* U E*°. These sets can be described as follows.
ANEa '(N(F,G)) < a()) € N(F,G)

1 forpeF
0 forped

= a(A)(p) =

A € Z(p) for p € F,
A ¢ Z(v) forveG.

— e (ﬂ Z(u)> \ (U Z(u)> .

neF veG

—

We simplify these sets further. Fix finite F, G C E*. If o }(N(F,G)) is non empty,
then ﬂueF Z(u) # 0. This implies that for u, v € F, we have:
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o nc Z(v)if |u| > |v], or
o ve Z(p)if v > |ul
Choosing p such that |u| = max{|v| : v € F}, we have (. Z(v) = Z(u). Let
G' =GN Z(u). Then
Zw\J 2w =2\ | 20).
veG vea
Now let G” = {v : uv € G}. Then
YN, G) = Z()\ | Z(w)
veG"
For € E* and a finite subset G C s(u) E*, we define Z(u\G) = Z(1)\U, e Z2(1v).
By the above, each a }(N(F,G)) has the form Z(u\ G) for some pu € E* and finite
G C s(p)E*.

Cram 2.1.1.1. {Z(u\ G) : p € E*,G C s(p)E" is finite} and {Z(p\ G) : p €
E*, G C s(u)E* is finite} are bases for the same topology.

PRrROOF. Fix u € E*, and a finite subset G C s(u)E*. Let A € Z(u \ G). We
seek o € E* and a finite set F' C s(a)E" such that

AeZ(a\F)cC Z(p\ Q).

We consider two cases: A is finite or A is infinite. First suppose that A € E*. Set

N =max{|uv|: v € G}, a =\ - Ay, and F = (). Then Z(a\ F) = Z(«) clearly

contains A. Since |a| > |uv| for all v € G, we have Z(a) C Z(u\ G) as required.
Now suppose that A € E*. Set « = A and

F = {(uv)n+1 1 v € G satisfies |pv| > |A]}.

Then Z(a\ F) = Z(A\ F) clearly contains A. To see that Z(A\ F') C Z(u \ G),
fix 5 € Z(A\ F). Factor A = p), then we have § = A\’ = pNp € Z(u). We
now show that 3" ¢ U, Z2(v). Fix v € G. If |ur| < |A[, then |v| < |N|. Since
N & U,eq 2(v), we have 3" & .. Z2(v). If |uv| > |A|, then since 8] ¢ F, we
have (uA'3)x111 = 81 # () S0 (NB)n-jul1 7 Via-jul+1- Dciaim

So the collection
{Z(u\G) : p € E*,G C s(u)* is finite}

form a basis for our topology on E* U E*.
To see E* U E* is a locally compact Hausdorff space, we follow the strategy
of [17] to show that Z(v) is compact for each v € E°. Proposition 2.1.3 implies

that « is a homeomorphism onto its range, so it suffices to prove that a(Z(v)) is
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compact. Since {0,1}¥" is compact, we need only show that a(Z(v)) is closed. Let
{w € Z(v) : n € N} be such that a(w™) — f € {0,1}¥". We seck w € Z(v)
such that f = a(w). Let A := {u € E* : a(w™)(u) — 1}. Then for each pu,v € A
there exist N,, N, such that n > max{N,, N, } implies that w(™ € Z(u) N Z(v). In
particular, Z(u) N Z(v) # 0, and hence either v = up’ or p = vv/'; denote the longer
path by £,,. Then n > max{N,, N,} implies that w e Z(Buy), so B, € A.

Since A is countable, we can list it:

A= v

Let y! = !

Yrys - Yygn-1) =Y
that v € A if and only if w € Z(v). Firstly, for each v™ € A, we have y™ € Z(v™).
Then w € Z(y™) C Z(v™). Conversely, let w € Z(¥™). Then y™ € Z(¥™)N A
implies that for large enough n we have w™ € Z(y™) C Z(v™), so V™ € A.

We claim that a(w®™) — a(w). Fix v € E*. We will show that a(w™)(v) —
a(w)(v). If a(w)(v) =1, then w € Z(v). So v € A, and hence w™(v) — 1. Now
suppose a(w)(v) = 0. So w ¢ Z(v), and thus v ¢ A. Since a(w™) — f € {0,1}F",

and a(w™)(v) - 1, we must have a(w™)(r) — 0. So a(w™) — a(w). Hence

, and iteratively define y" := [yn-1,n. Then {y" : n € N} satisty

n=1 and hence determines a unique path w € E*U E>*. We claim

a(Z(v)) is closed, and thus compact. O

2.2. Desingularisation

In this section we discuss Drinen and Tomforde’s construction from [5] which
modifies an arbitrary directed graph F to obtain a row-finite graph F' in such a way
that C*(F) contains C*(E) as a full corner. Originally, analysis of graph algebras
was performed only for graphs with no sources and with at most finitely many edges
attached to each vertex. Bates et al. in [2] overcame the no sources restriction
by adding a ‘head’ onto each source in a graph F to form a new graph F' with
no sources, and showing that C*(F) contains C*(E) as a full corner. Recall that
the graph C*-algebra of a graph E is the universal C'*-algebra generated by partial
isometries associated to paths in the graph subject to a set of Cuntz-Krieger relations
(see page 3). For row-finite graphs, one of these relations says that for each v € E°
such that vE' # (), the associated partial isometry p, is a projection equal to the
sum ZMEUEl ses; of range projections associated to the edges incident on v. This
poses immediate problems once you allow graphs to have infinite receivers: vertices
v such that [vE'| = oco. It turns out that the right thing to do is to specify that
the range projections s.s; are all mutually orthogonal and satisfy s.s} < pr(), and
to insist that the equality p, = ZuevEl ses: holds only for vertices v such that
0 < [vE'] < co. That these modifications to the Cuntz-Krieger relations are the
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right thing to do was discovered independently using several different approaches to
graph algebras, for example [9, 16, 25, 29].

Drinen and Tomforde’s construction [5] starts with an arbitrary graph E and
adds on a head wherever there is a singular vertex. When the singular vertex is an
infinite receiver, the incoming edges are distributed along the head. The resulting
graph F'is now known as a Drinen-Tomforde desingularisation of E. Notice that at
an infinite receiver, there is a choice in the way which edges are distributed along
the appended head, and hence a Drinen-Tomforde desingularisation of E is not
unique. Motivated by [5], Raeburn developed a ‘collapsing’ construction in [19, §5].
He defined a desingularisation by identifying paths in a row-finite graph F' with no
sources which we call collapsible paths, then ‘collapsed’ these paths to yield a graph
E such that by applying Drinen and Tomforde’s construction (and making the right
choices along the way), we can recover F. The discussion [19, p44] shows that every
graph permits a Drinen-Tomforde desingularisation in the sense of Definition 2.2.7.
We are interested in how such constructions affect the path space. The following

theorem is the goal for this section.

THEOREM 2.2.1. Let E be a directed graph and F be a Drinen-Tomforde desin-
gularisation of E. Then E°F* is homeomorphic to OF.

To prove Theorem 2.2.1, we define a map ¢ (Equation (2.2.1)) on finite paths in
F with range and source in E. Using Lemma 2.2.9, we then use ¢ to define a map
Goo : E°F>® — OF as in (2.2.2), which we prove is a homeomorphism.

Let p € F* and e € E'. We say that e exzits p if there exists 7 > 1 such that
s(e) = s(u;) and e # u;; note that edges with source r(u) are not considered exits

of u. We say that e enters pu if there exists i > 1 such that r(e) = r(p;) and e # p;.

DEFINITION 2.2.2. Let F be a directed graph. We say that an infinite path
1€ F*is collapsible if

1 has no exits,

(C1)

(C2) r~1(r(u;)) is finite for every 1,

(C3) r=H(r(p) = {m},

(C4) p; # pj for all i # j, and

(C5) p has either zero or infinitely many entries.

EXAMPLES 2.2.3. In [19, p42] only (C1)—(C3) are present. Condition (C4) was
added after we realized that a cycle with no entrance could be collapsible under
the original definition, and (C5) was added to ensure that we only collapse paths

(a process described in Remark 2.2.4) which yield singular vertices - thus avoiding
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F1GURE 2. Further examples of collapsible paths.

a complication in the proof of [19, Proposition 5.2]% the key result for this theory.
These conditions are not all necessary to carry out the process of collapsing, but
they ensure the simplest formulae, and also that we collapse as few paths as possible.

For example, consider Figure 1. The only collapsible path is p4p5 . ... The paths
papth . .. are not collapsible they have an exit at r(ub), thus failing (C1). Neither are
phpiz ..., as v~ (r(ub)) is infinite, so they fail condition (C2). The path gy . .. fails
(C3), since r1(r(u3)) = {us,g}. In Figure 2, the only collapsible path is vsvy. ...
The path (119f)> = 11gfrigf ... is not collapsible as it fails (C4), and vjvs. .. is
not collapsible either as it has exactly one entry, failing (C5).

REMARK 2.2.4. As the name suggests, we will collapse these paths to form a
new graph. We then show that the boundary-path space of the new graph is home-
omorphic to a subset of that of the original graph. Suppose that p is a collapsible
path in a row-finite graph F. Define s, (1) := {s(p;) : ¢ > 1} and

F*(p) ={ve F" :|v|>1,v=jps - p,—1e for some e # pp}.

Set F) := FO\ soo(p) and F == (F'\ (r Y(seo(p)) U {p})) U{e, : v € F*(u)},
and extend the range and source maps to F, by setting r(e,) := r(v) = r(u) and
s(ey) := s(v). Then F), is the graph obtained by collapsing the path p in F'. Notice
that for a € F};, s(a) is singular if and only if s(a) = r(u).

REMARK 2.2.5. Given a collection M of collapsible paths such that no two paths
in M have any edge or vertex in common, we call the paths in M disjoint. We can

2The proof of [19, Proposition 5.2] contained an error when proving that the Cuntz-Krieger

relation holds in F), at the vertex resulting from collapsing a path p in with finitely many entries.
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FiGURE 3. The graph obtained by collapsing the path in Figure 1

(%

151 V2

F1GURE 4. The graph obtained by collapsing the path in Figure 2

carry out the process described in Remark 2.2.4 on all the paths in M simultaneously,

yielding a graph Fj; which may no longer be row-finite.

ExXAMPLES 2.2.6. Collapsing the path piypus ... in Figure 1 yields the graph in
Figure 3. Collapsing the path v3v, ... in Figure 2 yields the graph in Figure 4.

DEFINITION 2.2.7. Let E be a directed graph. A Drinen-Tomforde desingulari-
sation of E is a pair (F, M) consisting of a row-finite graph I’ with no sources, and

a collection M of disjoint collapsible paths such that Fy, = E.

ExaMPLE 2.2.8. Consider the directed graphs £ and F' in Figures 5 and 6.
The collapsible paths in F are g = pypg..., N := Xo... and v/ := v3.... Let
M = {u,N,v'}. Then M is a set of disjoint collapsible paths. We have

F* () = {mpeh} U{p . g 10> 1}

and F*(X) =0 = F*(v). We have Iy, = {v,u,w,t,z}. For clarity of notation, we
index the elements in {e, : v € F*(u)} by the edge closest to the source of the path,

S0
Fiy = {vi,v0, A ent U {egi i > 1},

Then Fy; = FE, and thus (F, M) is a Drinen-Tomforde desingularisation of E.

Suppose E is a directed graph, and (F, M) is a Drinen-Tomforde desingularisa-
tion of E. Define F*(M) := |J,,cp; F*(1). Define ¢/ : (F' N E') U F*(M) — E* by
¢/|F1F‘IE1 = idplmEl and ¢,

edges, and takes collapsible paths in F' to the associated edges in FE.

(M) © V — €,. S0 ¢’ acts as the identity on unchanged
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FIGURE 5. A directed graph F.
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FIGURE 6. A directed graph F.

If 3 € F* with r(8),s(8) € E° then 3 has the form 3 = b'b?- - - b" where each
Ve (FINEYUF*(M). Define E°F*E° := {8 € F* : r(83),s(8) € E°}. We extend
the map ¢’ above to a map ¢ on finite paths: define ¢ : ECF*E° — E* by

(2:2.1) B(0) = (BB 1) = S (b)) - (1",

We will extend this map to E°F*°, and ultimately show that it is a homeomorphism

from E°F> to OE. To do so precisely we use the following results.

LEMMA 2.2.9. Let E be a directed graph, and (F,M) be a desingularisation of
E. If \ € E°F, then either
e N=1'--1*y for some up € M andl' € (F* N EY)U F*(M), or
o \=["?.-I". .. wherel' € (F'NEY)UF*(M).

PROOF. Fix A € E°F>. We construct the [* inductively. Either \; € F' N E*,
or \; = 1 for some p € M. If \y € F' N EY, then let I = . If \; = p1q, there are
two cases to consider:

(i) A\; = p; for all 4 € N, in which case A = p; or
(ii) there exists k such that A\; = pu; for all i < k and Ay # pg, in which case

we set ' = -+ pp_1 A\p. Since paths in M have no edges in common, we
have I € F*(u).
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In case (i). A = p, in which case we are done. In case (ii), A = !\ for some X € F'*°.
Since s(I!) is an element of E°, we have r(\') € E° and we can repeat the process,
applying it to ) to get [2. Iterating will either terminate with A\ = [ ---{"y where

i € M, or continue ad infinitum, in which case A = (1. [". ... O

We now define the map ¢o, : E°F> — OE:

d(N) if A= Np for some p € M,

(222)  6uld) = |
SN gAY A=

PROPOSITION 2.2.10 (Adapted from [5, 2.6]). Let E be a directed graph, and
(F,M) be a desingularisation of E. Then ¢ and ¢o, defined as in (2.2.1) and

(2.2.2) respectively, are bijections and preserve range and source.

PROOF. Since ¢’ is a bijection, it follows that ¢ is a bijection. Similarly, since ¢’
preserves range and source, so does ¢. Since the paths in M are disjoint, it follows
that ¢ is injective. To see that ¢, is surjective, fix a € JF. Either a € E*,
or « € E* and s(«) is singular. Suppose first that o € E*. Since (F, M) is a
desingularisation of E, each «; is either an element of E' N F!, or of the form e, for
some v € F*(M). For each i, define

o ifo; € EYNEY,

9i =
v if oy = e, for some v € F*(M).

Since r(e,) = r(v) and s(e,) = s(v) for each v € F*(M), we have g* - - ¢g"--- € F™,

n

and hence ¢ (g'---g"--+) = a.

Now suppose that o € E* and s(«) is singular. Then there exists p € M
such that s(a) = r(u) in F. Since ¢ preserves r and s, we have ¢~ (a)u € F™
and (6 (o)) = 7(0) € F°. S0 goa(6™ (0)) = S0 (0) = @ Thus due is

surjective. O

We now have the tools to prove Theorem 2.2.1.

PROOF OF THEOREM 2.2.1. We will show that the map ¢, defined in (2.2.2)
is a homeomorphism. Proposition 2.2.10 says that ¢, is a bijection, so it suffices to
show that ¢, and ¢! are continuous.

To see that ¢ is continuous, fix @ € E* and a finite subset G C s(a)E*, so
Z(a\ G) N OE is a basic open set in OE. We show that ¢ (Z(a \ G) N IE) is
open. If Z(a\ G)NAIE = 0 then ¢} (Z(a\ G)NIE) = 0 is open. So suppose that
Z(a\G)NIE # 0, and fix A € ¢ H(Z(a\ G) NIE). We seek v € F* such that

ANEZ(Y)NE'F>® C ¢ M (Z(a\ G)NOE).
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We consider two cases:
(i) X is either equal to I1? -+, or A =['--- ¥y with k > |al; or
(ii) A =1ty
where p € M, and I* € (F' N E') U F*(M) for each i.
In case (i), let v = I'---91FL Clearly A € Z(y) N E°F>. Now suppose that
y € Z(y) N E'F®. We have ¢oo(A) = ¢oo(I*---1%-..) € Z(a\ G) NIE, so
@' (1Y) - ¢ (1) = a and ¢'(I*1+1) ¢ G. Hence

00(y) = Do (1Y) = P (I -+ 1°Hy') € Z(a\ G) N OE.
So Z(y)NE°F>* C ¢ H(Z(a\ G) NOE).
In case (ii), we have ¢oo(A) = ¢(I*---11°1) € Z(a\ G) NIE, so ¢(I' - --114) = a.
Since ¢ preserves r and s, we have s(a) = r(u) in F', and thus s(«) is singular in
E. Since G C s(a)E', it follows from condition (C3) that G C ¢(F*(M)). Let

N = max,ecy-1(¢) |v|. Each v € GN EY has the form i - - - puy_1e, where e # py.
Set v = ¢ Ha)uy - pun. Then A = ¢~ (a)u € Z(v) N EF>. To see that

E°F>* Cc ¢ M Z(a\G)NIE,
fix y € Z(y) N E°F>. Then

DoY) = Poo(VY') = doo (¢ (@) i1 - - - pnY') = oo (i - - - pivy).

Now either ¢’ is the rest of p, or ¥ = puny1--- punrrxey” for some e # punigi1
and y" € F>. If y' is the rest of p (so ¢ = pni1- - pnix--+) then y = X €
d:H(Z(a\G)NOE) by assumption. In the other case, we have y = puy - - - uny’ = vy’
for some v € F*(M), with |v| = N + K + 1. Then by choice of N, we have
¢'(v) =e, ¢ G. Hence

Poo(y) = a0us(y)") = aerdoo(y”) € Z(a\ G)NOE.

Soy € Z(y)NEF> C ¢ 1 (Z(a\ G) NOE).

Now, to prove ¢! is continuous, fix y € F*. Then Z(v) N E°F> is a basic open
set in EOF>. If Z(y) N E°F> = () then ¢ (Z(y) N E°F>) = () is open, so suppose
that Z(y) N E°F>® # (. Let z € ¢doo(Z(7) N EYF>). We seek a € E* and a finite
subset G C s(a)E" such that

7€ Z(a\G)NIE C ¢oo(Z(y) N E°F™).

Let A € Z(y) N E°F> be the unique element such that z = ¢ (\). Write A = 4N
where ' € F'*°. We consider two cases:
(i) x € E*>, or

(ii) « € E* and s(z) is singular.
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In case (ii), we have x = ¢ (y\') € E*°. This implies that A does not have the
form vu for v € E* and € M. That is, A does not ‘start’ with a collapsible path.
Hence by Lemma 2.2.9 we can write A = [*[%... for some I' € (E' N F') U F*(M).
Let j=min{i € N: |I'...I'| > |7|}. Set @ = ¢(I'... %) and G = ). We claim that
r € Z(a) NOE, and that Z(a) NOE C ¢oo(Z(y) N E°F>). We have

T = goo(lt. . VT ) = ¢ . D)oL ) = aguo (BT ).

Sox € Z(a)NIE. To see that Z(a) NOE C ¢oo(Z(y) N E°F>) fix y € Z(a) NOE.
So y = ay/ for some y € OF. Then

O (y) = o) (ay)
= o (o(l" ... V)y)
=1' P (Y)

=yl (y)  for somey € F*.

So ¢ 1 (y) € Z(v) N E°F> and hence y € ¢oo(Z(y) N EOF>).
In case (ii), we have A = v\ = wp for some w € F* and p € M. Let a := z.

Our choice of G depends on ||, so we argue in cases:

(1) If |] < |w|, let G = 0.
(2) If |y| > |w|, then v = wpy ... p; for some j € N; let

G = {6,, V= U1 UgVE41 € F*(IU), and k <j}
Since z € Z(a \ G) N OE by definition, we just need to show that
Z(x\ G)NIOE C ¢uo(Z(y) N E°F™).

Fixy € Z(x\ G)NOE, so y = zy for some 3y € IF. Since & = ¢oo(N) = doo(wpt) =

¢(w), we have ¢ (y) = o (2y) = wog (v).
In case (1), |y] < |w| implies that w = ' for some W’ € F*, so

o (y) = W'l (y) € Z(y) N ECF™.

Hence y € ¢oo(Z(7) N E°F>).
For case (2), observe that if ¥ € E°, then y = z € ¢o(Z(y) N E°F>) by
assumption. So suppose |y’| > 1. Then s(z) is an infinite receiver, and thus y; = e,

for some v € F*(u). Since y € Z(x \ G), ¢y} ¢ G, so v = py ...l for some
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k > j, and thus

O (1) = b (29)) = WO (Y195 - )
= wo (e )
= wrd S (Yy )
=W V1 G (Y )
= Vi1 Vi O (Yo )

is an element of Z(y)NEEF™>. So y € ¢uo(Z(7) N E°F>), and hence ¢o, : EOF> —

OF is a homeomorphism. O

2.3. Graph C*-algebras

Let E be a directed graph. Define
E=":={u e E*:|u| =n, or |u| <n and s(u)E* = 0}.

A Cuntz-Krieger E-family consists of mutually orthogonal projections {s, : v € E°}
and partial isometries {s, : u € E*} such that {s, : p € E="} have mutually
orthogonal ranges for each n € N, and such that

(CK1) sy8, = s4(u) for every p € E*;

(CK2) s,s;, < 8y for every p € E*; and

(CK3) sy = > copen Sus;, for every v € E° and n € N such that [vE<"| < co.
The C*-algebra of F is the universal C*-algebra C*(E) generated by a Cuntz-Krieger
E-family {s, : p € E*}. The existence of such a C*-algebra follows from an argu-
ment like that of [19, Proposition 1.21].

These relations are slightly different to the standard Cuntz-Krieger relations
appearing elsewhere (for example in [1, 5, 19]). In these papers, a Cuntz-Krieger
E-family is defined to be a set of mutually orthogonal projections {p, : v € E°} and
partial isometries {s. : ¢ € E'} with mutually orthogonal ranges such that

(G1) sts. = py(e for every e € E';

(G2) sesi < Py for every e € E';

(G3) Py =D com Sest for every v € E? such that 0 < [vE'| < .

When we are working with higher-rank graphs later in this thesis, there is also a set
of Cuntz-Krieger relations which, as a consequence of the structure of a higher-rank
graph, are easier to work with when stated in terms of paths. Since the majority
of this thesis deals with higher-rank graphs, we will use the relations (CK1)—(CK3)
for the sake of consistency. First we prove that our definition of a Cuntz-Krieger

FE-family is equivalent to the one that is usually stated.
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LEMMA 2.3.1. Let E be a directed graph. Let {p, : v € E°} be mutually orthogo-
nal projections, and {s. : e € E'} be partial isometries. Forv € E°, let s, = p, and
forpue E* lets, =s,, ... Sp - Lhen {s. : e € E'} have mutually orthogonal ranges
and {py, s : v € E° e € E'} satisfy (G1)~(G3) if and only if {s, : p € E="} have
mutually orthogonal ranges for eachn € N and {s,, : p € E*} satisfy (CK1)-(CK3).

PROOF. If {s, : p € E="} have mutually orthogonal ranges for each n € N
and {s, : p € E*} satisfy (CK1)-(CK3), then clearly {s. : e € E'} have mutually
orthogonal ranges and {p,, s. : v € E°,e € E'} satisfy (G1)-(G3). So suppose that
{s. : e € E'} have mutually orthogonal ranges and that {p,,s. : v € E°, e € E'}
satisfy (G1)—(G3). To see (CK1) holds, calculate

* _ * *
Susu - Suz.-.unsulsul Spa...pn

= 322..#"58(#1)3#2‘..% by (G1)

*

= Spg..in Sr(p2) Sp2..pin

— *
- Siufl-wun—l S:ul“wufnfl :

So (CK1) follows from an induction on |u|.
For (CK2), we have

* x %
S/J'S,u - S/‘Ll-~~/an715;un8,u,n5u1...,u,n_1

S Sul---ﬂnflST(Hn)S:(Ll...,un,1 by (G2)

*

= Sprepin—155(tn—1)S 1 pin 1

*

S

= Sl"l---llnfl 1o fhn—1"

So another induction on |u| gives the result.
For (CK3), fix u € E* such that [s(u)E'| < oo. If s(u)E' = 0, we have
p € BESH g0 nE* 0 ESHFY = £} Then
SuS, = Z N
vepE*NESIul+1

If s(u)E" # 0, then
susz = suss(u)sz
= 5u< SeSy )5, by (G3)
ecs(p)EL

_ *
= E SpeSpe

e€s(p) Bt

= E 5,8

veuE*NE<Inl+1
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Hence

DTS S (R S S SR
pEvEST pevEs"  pepE*NESIkl+1 veyESn+1
and an induction on n gives the result.
To see {sus; : ;€ E="} are mutually orthogonal, let pu,v € E=" such that
p # v. Since pu, v € E=", we know that neither yu # v/ nor v # up' (otherwise the
shorter path would not be an element of E<"). Then there exists j < min{|ul, |v|}
such that w; = v; for i < j and p; # vj. Since {s. : e € E'} have mutually

* _
orthogonal ranges, we have 8,50, = 0, 80

* * _ k * *
(SNS,U)(SVSV) - SMS/,LjJrl.../J/‘#lS/j/j (8;11...;13'718’/1'"'/]'71>SVJSVJ+1"'V|V\SV
_ * *
= Syt Sy Sv;Sviiaa, Sy by (CK1)

=0 ]

REMARK 2.3.2. When E° is infinite, C*(FE) does not have an identity. To see
why, let {s, : 4 € E*} be the universal Cuntz-Krieger E-family generating C*(E).
Then C*(E) = span{s,s; : u,v € E} (see [19, Proposition 1.21]). If 1 € C*(E),
then there exists a finite sum a := Y pa,,s,s; such that |1 —af| < 1/2. Fix
v € E° such that r(u) # v for any u € F. Then

122 |1 = allllso[| Z [|[(1 = a)sul| = [lso = O} = [[so]| = 1.

If Ais a C*-algebra without identity, it is often useful to embed it in a larger
C*-algebra with an identity like the multiplier algebra M (A) of A. We use multiplier
algebras to make sense of certain infinite sums in C*(£). An infinite sum of mutually
orthogonal projections in a C*-algebra cannot converge in norm: each difference
ij: V41 P between partial sums is also a projection and hence has norm 1. The
following lemma [19, Lemma 2.10] nevertheless allows us to safely talk about infinite
sums of vertex projections in C*(F). The proof supplied in [19] does not depend

on the row-finiteness of F, so it has been left out of the statement here.

LEMMA 2.3.3 ([19, Lemma 2.10]). Let E be a directed graph, and fix V C E°.
Then there is a projection py in M(C*(FE)) such that

sust afr(u) eV
(2.3.1) pysuss =< friw)

0f r(n) ¢ V.

We can now state the key result, which relates the C*-algebra of E to that of its

desingularisation.
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PROPOSITION 2.3.4 ([19, Proposition 5.2]). Suppose that 11 is a collapsible path
in a row-finite graph F. Define soo(u) := {s(u;) : i > 1} and

Fr(p) ={ve F":|v]|>1v=juus - p,—1je for some e # p}-

Let F) := FO\soo(p1) and F == (F'\(r " (seo (1)) {11 }))U{ey : v € F*(p)}, and ex-
tend the range and source maps to F, by r(e,) == r(v) = r(u) and s(e,) := s(v). Let
pro be the projection from Lemma 2.3.3. Let {$e;00 i€ € FLov € FO} and {t.,q, :
e € F;,v € FJ} be the generators of C*(F) and C*(F,). Then proC*(F)pro is a
full corner in C*(F), and there is an isomorphism m of C*(F,) onto proC*(F)pro
such that 7(q,) = py for v € F), w(t.) = se for e € F'\ (1™ (s00(pt)) U {p1}), and
7(te,) = s, forv e F*(u).

For a directed graph E, we call C*({s,s}, : p € E'}) C C*(E) the diagonal C*-
algebra of E' and denote it Dg, dropping the subscript when confusion is unlikely.
We denote the spectrum of a commutative C*-algebra B by A(B). Given a homo-

morphism 7 : A — B of commutative C*-algebras, we denote by 7* the induced
map from A(B) to A(A) such that 7*(f)(y) = f(7(y)) for all f € A(B) and y € A.

2.4. The Diagonal and the Spectrum

The goal for this section is the following theorem.

THEOREM 2.4.1. Let E be a directed graph and (F, M) be a Drinen-Tomforde
desingularisation of E. Let oo : ECF*>° — OF be the homeomorphism from Theorem
2.2.1, let pgo € M(C*(F)) be the projection obtained in Lemma 2.3.3, and let 7 :
C*(F,) — ppoC*(F)pgo be the isomorphism from Proposition 2.3.4. Then n(Dg) =
proDppro, and there exist homeomorphisms hg : OE — A(Dg) and h : E°F>® —
A(pgoDppgo) such that the following diagram commutes.

o0

E°F™> )

h hg

A(pgoDrpgo) = A(Dg)

We prove Theorem 2.4.1 on page 33. First, we establish some technical results.
LEMMA 2.4.2. Let E be a directed graph, and let F' C E* be finite. For i € F,
define

F._ * * *
Q= SuS,, H (81Sp = Sup'Syuu)-
' €F\{p}
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Then the qff are mutually orthogonal projections in span{s#s; : € F}, oand for

each v € F', we have

(2.4.1) Susy =D G

vv'eF

PRrOOF. We prove (2.4.1) by induction on |F|. If |F| = 1, then (2.4.1) is trivially
satisfied. Now suppose that (2.4.1) holds for all F' with |F| < n, and fix F' with
|F| =n. Let A € F be of maximal length, and define G = F'\ {\}. Then ¢ = s,s3,
and for each p € G we have

o q if A ¢ Z(p)
I .
qf(sﬂs; — 5)S3) = qu — qfs)\sj it A€ Z(u).

Fix p € G. If A ¢ Z(p), the inductive hypothesis implies that

2 F § G _ *
ql"#, = qu#/ = SMS/L'

' €F ' €G

If A € Z(u), then

Mo dhe =D (¢ —qlsasi) +ax

pp EF up' €G
= Z q - Z g5 xSy + 5x54
' €G ' €G
= SuS,, — SuS,SxS\ 1 SAS) by the inductive hypothesis
= 8.8, — SAS) T SaS) since A € Z(p)
= SuS,,

establishing (2.4.1).
That the qi are projections follows from Lemma A.0.7. That they are mutually

orthogonal follows from (2.4.1). O

REMARK 2.4.3. Let E be a directed graph, and let F' C E* be finite. For p € F,
let Fl, = {1/ € s(u)E\{s(p)}: pp' € F}. We claim that

F * *
q, = 5u< H (Ss(u) — sulsu/))su.

wery,



2.4. THE DIAGONAL AND THE SPECTRUM 29

To see this, fix v € F,,. We have

5#( H (S5 — Su’SZ'))SZ

NleFu

— Su< H (85(u) — S'U/S*/)> (8s(u) — 5,5,)8),

weFu\{v}
= 5u< H (58(u) - 5#’3*'))325u(58(u) - Sysi)s;
weFu\{v}
= (5#< H (Ss(u) — sws*,)>sz> (8483 = SuwSp)-
e\ (v}

Now an induction on |F),| gives
* * * * * _ _F
3u< H (Ss(u) — Sw'S ,))sﬂ = 8,5, H (8483 = SuwSpr) = Q-
weFy WeF,

To go further we need some more definitions. We say that u, v € E* have common
extension if either u = v/ or v = py’, and call the longer path the minimal common
extension of pand v. A set F' C E* is exhaustive if for every u € E* there exists v €
F such that p and v have common extension. We denote the set of finite exhaustive
sets by FE(F), and for a vertex v we define vFE(F) :={F € FE(E): F C vE*}.

The following lemma is stated for row-finite directed graphs as [19, Corollary
1.14(b)]. The proof is marginally different for arbitrary directed graphs, and is
supplied here.

LEMMA 2.4.4. Let E be a directed graph, and let p,v € E*. Then

sk oif p=uvv

* — : _ /

S50 = Sy if v =pp
0 otherwise.

Furthermore,

susy, if p=vv
(2.4.2) (5u87)(508,,) = Q 8,85 if v =y

0 otherwise.

PROOF. If = v/, then

*

* * * * *
SMSV - SI/I/’SV - SV’SVSV - SV/SS(I/) - Sl/’

hence

*

*\ __ * * * % * * % x *
(8153,)(805,) = 5u8,,/508,, = 5u5,,5,5,5, = 8.5,,5, = S.S,,1 = S8

I
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Similar calculations show that if v = py', then we have s7;s, = s,s and (s,5},)(s,5;) =
$,85.
Otherwise, we have py ... 1, # vy ...V, where n = min{|u|, |v|}. Without loss
of generality, suppose that |u| > |v|. Let A = py...u,, and let ¢/ be such that

= Au'. Then

* _ * * _ * * _ * * * * _
51,8y = 8,u5\8y = S1u8s(\)SASuSs(v) = S8y (5x8)3805,)8, = 0,

hence

(8u53)(sus,) = su(s,80)s, = 0. O

THEOREM 2.4.5. Let E be a directed graph. Then D = span{s,s; : u € E}, and
for each x € OF there exists a unique hg(x) € A(D) such that
1 ifze Z(p)

he(x)(sus,) = ‘
0 otherwise.

Moreover, x +— hg(z) is a homeomorphism of OE onto A(D).

Proor. We will first show that D = span{s,s;, : u € E*}. Equation (2.4.2)
implies that span{s“sz : p € E*} is closed under multiplication and thus is a
x-subalgebra of C*(E). Hence the closed span is a C*-algebra. Since D is the
smallest C*-subalgebra of C*(E) containing the generators {s,s;, : u € E*}, we
have D = span{s,s;, : p € E*}.

Fix z € OF and }_ - busus;, € span{s,s;, : p € E*}. Let n = max{p € N :
Ty...x, € F}, and define F, := {y/ € z(n)E\ {z(n)} : z(0,n)p’ € F}.

CLAIM 2.4.5.1. The projection ¢% , # 0.

PROOF. First suppose that s(x,)E* = (). Then F, = (), hence

F _ *
qxl‘..mn - S$1--~$nsx1...:ﬂn 7é 0

Now suppose that s(xz,)E* # 0. We first show that there exists v € s(z,)E*
such that for each ¢’ € F,, v and ' have no common extension. We argue in cases;
we know s(x,,) is not a source in E, so our cases are

(i) s(z) is a source in E, and |z| > n;
(ii) s(z) is an infinite receiver;

(iii) = € E*.

In case (i), let v = @41 ... 2)g. Then by choice of n, v has no common extension
with any g/ in F,. In case (ii), such a v exists since |F,| < |F| < |s(z)E*| = .
In case (iii), let & = max{|y/| : ¢/ € F,}. Then it follows from our choice of n that

V= 12Tp41...Tnek is DOt a common extension of any y’ in F.
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So we have v € s(x,)E* such that v and g/ have no common extension for all

p' € F,. Thus by Lemma 2.4.4, we have s,s;s,ss;, = 0 for all y' € F,. Applying

Lemma A.0.7 with p = s4(,.,), o = $u.5%, Q = F;, we have Hu’er (Ss(zn)
So

F o * *
q1‘1...:)§n - 8:131...1'71 H (Ss(xn) - ‘S)/J/S,LL/>S$1...$n # O
weF,

We now calculate

[

(Zb>qy

Z/EZ( )
= Iglealgc{‘ Z b, } by Lemma A.0.6
peF
vEZ (1)
> > 6] by Clhim2451
HEF
Z1...en€EZ (1)

Hence the formula

(2.4.3) hE(x)(ZbususZ) = Z b,

neF peF
z€Z(1)

determines a well-defined, norm-decreasing linear map hg(z) on span{s,s;,

—8usy) # 0.

|:|Claim

p € E}

We now show that hg(z) is a homomorphism. Since hg(z) is linear and norm-

decreasing, it suffices to calculate

1 ifae Z(u) and x € Z(a)
he(z)(su8,5a5,) = or p € Z(aw) and x € Z(u),
0 otherwise

1 ifze Z(a) C Z(n)
= orx € Z(u) C Z(w),

0 otherwise

1 ifze Z(a)nNZ(n)

0 otherwise.

= he(2)(sus,)he (@) (5ass,)-

Since h(z) is a nonzero bounded linear map on a dense subspace of D, and since

multiplication is continuous, h(x) extends uniquely to a nonzero homomorphism

h(z): D — C.
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It remains to show that hg : 0F — A(D) is a homeomorphism. The trickiest

part is to show that hg is onto.

CLAIM 2.4.5.2. The map hg is surjective.

PRrOOF. Fix ¢ € A(D). We seek = € JF such that hg(x) = ¢. We have that
¢(p) € {0,1} for any projection p € D, and that for each n € N, {s,s} : [u| = n}
are mutually orthogonal projections. It then follows that for each n there exists at
most one v € E™ such that ¢(s,ns%,) = 1. Let

S :={n € N: there exists v" € E" such that ¢(s,ns,n) = 1}.
Since ¢ is nonzero, S is nonempty. If v = pv/ and ¢(s,s%) = 1, then

L= ¢(su5,) = d(s,5,5.5,) = d(s,5,,)P(5,5),),

80 ¢(s,sy) = 1. This implies that if n € S and m < n, then m € S, and v"(0,m) =
v™. Tt follows that S is equal either to N, or to {1,..., N} for some N.

If S =N, define x € E* by z(0,n) = v" for all n. If S = {1,..., N}, define
z := v, We will show that z € OF and hg(x) = ¢. We first show that z € JF.
This is trivial if S = N, so suppose that S = {1,...,N}. We must show that
|s(x)E'| € {0,00}. To see this, we suppose that s(z)E" is finite and nonempty and
seek a contradiction. By (CK3), we have ¢(s:87) = > oc (mypm @(SzeShe), so there
exists e € s(x)E" such that ¢(szst.) =1, giving N + 1 € S, a contradiction.

Now we show that hg(z) = ¢. For each u € E* we have

P(susy) =1 <= |u| € S and vl =y
= (0, [p]) =
< hp(z)(sus;) = 1.

Since both ¢(s,s7%) and hg(x)(s,s;,) only take values in {0, 1}, it follows that hy(z) =
(b. |:IClauim

To see h is injective, suppose that hg(x) = hg(y). Then for each n € N, let
n, = min{n, |z|}. Then we have

*

he(y) (Sa:(Omz)S:p(O,nm)) = hE(x)(Sx(O,nz)S;(o,nm)) =1

Hence y(0,n A |z|) = x(0,n A |z|) for all n € N. By symmetry, we also have that
y(0,n Alyl) = 2(0,n Aly|) for all n. In particular, |z| = |y| and y(0,n) = z(0,n) for
all n < |z|. Thus z = y.

We now show that hg is continuous. Suppose that ™ — z. Since the topology
on A(D) is that of pointwise convergence, we must show that hg(z™)(a) — hg(z)(a)
for each a € D. We will first show that for each y € E*, there exists N such that
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n > N implies that hg(z")(s,s},) = he(r)(s,s;). Since 2" — =, there exists Np
such that n > Ny implies that 2™ (0, |u| A |z|) = x(0, |p| A |z|). Fix n > Ny. Suppose
that hp(z)(sus;,) = 1. Then z(0,[u]) = p. In particular, 2™(0, |u|) = 2(0, |u]) = u,
s0 hg(2")(s,s;) = 1. Now suppose that hg(z)(s,s;) = 0. Then z(0, |u| A|z]) # u,
so 2™(0, |u| A |z[) # p, and thus hg(z")(s,s;;) = 0. Since hp(z) and the hp(z™) are
linear, it follows that hp(z") converges to hp(r) for x € span{s,s;, : p € E}. We
now argue that hg us continuous on D. Fix a € D and € > 0. We seek N € N such
that n > N implies that |hg(2™)(a) —hg(x)(a)| < . Fix a sequence {a,, : n € N} C
span{s,sy, : i € E'} such that a,, — a. So there exists N such that n > Ny implies
that ||a, —a|| < &/3. Fix m € N. Since hg is continuous on span{s,sy : p € E},
there exists Ny such that n > Ny implies that |hg(z"™)(ay) — he(z)(ay)| < /3. Let
N = max{N;, N2}, and fix n > N. Then since hg(z) is norm decreasing for every

x € OF, we have

[he(a")(a) = hip()(a)] = [he(a") (@) = hp(a") (a,)
+ hip(a") (@) = hs () (a,)
+ hip(e) (@n) = hs(2)(0)
< |hp(a")(a) = hp(a")(a,)|
+he(a")(an) = he(@)(an)]
+ kg (@) @) = hipa)(a)]
< |hp(@")(a - a,)
+ - + lhs(2)(an — o)

€

< |la — an|| +
< fla - aull + 5

+la = anl]
=c.

So hg is continuous on D.

Finally, we show that hg is open. Since hg is a bijection, it suffices to show that
hy;! is continuous. Suppose that hg(z") — hg(z). We will show that 2" — z. Fix
p € E* such that x € Z(u), so hg(r)(s,s;) = 1. Since hp(z") — he(z) in A(D)
and hg(z")(sus;) € {0,1} for all n, there exists N € N such that n > N implies
that hp(2")(s,sy) = 1. So 2™ € Z(u) for n > N. Since Z(yu) are a basis for the

topology on OF, it follows that ™ — z in OF. O

We can now prove our main result for this chapter.

PrROOF OF THEOREM 2.4.1. Let E be a directed graph with Drinen-Tomforde
desingularisation (F, M). Then 7(s,) = ty-1(,) for each p € E*.
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Let ¢ : E°F*EY — E* be the bijection from Proposition 2.2.10. It follows from
Lemma 2.3.3 that there exists a projection pgo € M(C*(F')) such that
ttr if r(p) € E°
(244) pEOtNthEO = oo (HJ)
0 otherwise.
Denote by 7 the isomorphism 7 : C*(E) = pgoC*(F)pgo of Proposition 2.3.4.
We will show that m maps Dg onto pgoDppgo. Since
i} t,tr if r(p) € EY,
pEOt,utupE'O = Hou
0 otherwise.
We have 7(Dg) C proDppro. To see the reverse inclusion, fix p € F*. We must
show that pgot,tippo € 7(Dg). If r(u) ¢ E° then ppot,tipge = 0 € 7(Dg), so
suppose that r(u) € EY. If s(u) € EY, then

peotut,pEo = tut), = T(s4(u)S5() € T(Di).

Now suppose that s(u) ¢ E°, then s(uu) = s(v,) for some collapsible path v € F>
and n € N. By definition of a collapsible path, v has no exits except at r(r). Thus
p = p'vy,, where i/ = (0, || —1). Furthermore, s(p/) F*' is finite, thus (CK3) implies
that

SunSy, = Ss(u!) — Z SfS}-
fes(w )P \{vn}
Then
PEOSLS, PEO = PEOSu Sy, Sy, 81y PED
= PEOSy (Ss(#/) — Z SfS})SZ/pEo
fes()F "\ {vn}
(2.4.5) = PEOSw Sy PEo — Z PEOSWSfS S, /DO
fes()F"\{vn}

We proceed by induction on n. If n = 1, then y/ € E*, and since s(f) € E° for all
fes(u)F \ {r}, it follows that pgos,sipge € m(Dp). Suppose, as an inductive
hypothesis, that for every A € F* such that there exists a collapsible path v € F**°
with s(\) = s(vp—1), we have prosysippo € w(Dg). Since s(u) = s(v,) for some
collapsible path v, the inductive hypothesis implies that pgos, s pro € 7(Dg), and
since s(f) € E° for all f € s(i/)F*'\ {v,,}, we have

Z PEoSw S, ppo € T(Dg).
fes(w)F \{vn}
It then follows from (2.4.5) that pgos,s;pmo € 7(Dg), as required. So m(Dg) =
proDppgo.
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We now construct the homeomorphism h. Since pgo commutes with Dg, the
space pgoDpppo is an ideal of Dp. Then [23, Propositions A26(a) and A27(b)]
imply that the map k : ¢ — @[, ,Dpp,, 15 @ homeomorphism of {¢ € A(Dp) :
DlppoDrpgo 7 0} onto A(pgoDpppo). Since I has no singular vertices, OF = F>.
Let hp : F*° — A(Dpg) be the homeomorphism obtained from Theorem 2.4.5. Fix
x € E°F°. Then there exists A € F* such that hp(x)(txt}) # 0, so hp(x) € dom(k)
for all x € E°F>. We define h := k o hp|gope : E°F>® — A(pgoDpppo).

Let hg : OE — A(D) be the homeomorphism obtained from Theorem 2.4.5,
let ¢oo : E°F>* — OF be the homeomorphism from Theorem 2.2.1, and let 7* :
A(ppoDppgo) — A(Dg) be the map ¢ — ¢ o w induced by m. We show that the
diagram on page 27 commutes by showing that hg o ¢oo = 7" o h. Let x € E°F*,
and fix u € E*. Since (hg o ¢ )(2) and h(x) are homomorphisms, and since 7 is an

isomorphism, it suffices to show that

(2.4.6) (hE o ¢oo)()(sus,) = (77 0 h)(2)(5,5),)-

Since p € E*, we have to=1 (w511, € PpoDpppo. Then the right-hand side of (2.4.6)

becomes

™ (h(@))(sus,,) = (h(z) 0 m)(su5),)
= h(w)(twm)t?;—l(u))
= hp(2)|pprp(te-1Gts-1() since r(x) € E°
1 itz € Z(67 (1)
0 otherwise.
We break the left-hand side of (2.4.6) into cases:

(i) ¢oo(x) € £, or
(i) ¢poolz) € E*.
In case (i), the left-hand side of (2.4.6) becomes

1 if gue(r) € Z(p)

hir(6oa () (5,57) = |
0 otherwise.

Since

boo(7) € Z(1) <= ¢oolx) = pit/ for some p' € E*

= z=¢ () = ¢ (o (1),
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we have
1 ifze Z(p ' (n)
0 otherwise
as required.
In case (ii), ¢oo(x) = ¢(2'), where z = 2'v for some collapsible path v € M. The
left hand side of (2.4.6) then becomes

1 if o(a') € Z(p)
0 otherwise.

he(¢())(sus),) =

Since ¢ is a bijection, ' = ¢~ (u)z" < ¢(2') = pud(a”), so equation (2.4.6) is
satisfied, and thus hg o ¢ (z) = 7 o h(z). O



CHAPTER 3

Higher-Rank Graphs

Higher-rank graphs are a higher-dimensional analogue of directed graphs. They
were introduced by Kumjian and Pask in [12] as a visual model for the higher-rank
Cuntz-Krieger algebras of Robertson and Steger [28]. A higher-rank graph (or k-
graph) is a countable category A with a degree functor d satisfying the factorisation
property (Definition 3.0.6). We think of d : A — N* as a generalisation of the
notion of length. In this section we construct a locally compact Hausdorff topology
on the path space of a higher-rank graph. Since our motivation comes from higher-
rank graph C*-algebras, and since C*-algebras have only been associated to finitely
aligned (Definition 3.0.13) k-graphs to date, we consider only finitely aligned k-
graphs here.

As yet there is no analogue of Drinen and Tomforde’s desingularisation procedure
for finitely aligned higher-rank graphs. Farthing detailed a partial desingularisation
of high-rank graphs [7] which is analogous to the ‘adding a head’ construction in
[14]. However, the complexity of higher-rank graphs makes even this a compar-
atively complicated task. In this section, we develop a modification of Farthing’s
desourcification technique, and use it extend the results about directed graphs from
Chapter 2 to the higher-rank graph setting. As a side benefit, our construction seems
to have led to simplified proofs of Farthing’s results for arbitrary row-finite (Defini-
tion 3.0.13) higher-rank graphs. The difference between Farthing’s construction and
ours is that our construction is based on a set of paths JA in the higher-rank graph
which we call the boundary paths (Definition 3.0.15), whereas Farthing’s is based on
the set of paths A= (Definition 3.0.15). Various notions of boundary paths have
appeared in the literature, and as a part of our analysis, we discuss the relationship
between them.

We view N¥ as a category with Obj(N¥) = {x}, Mor(N¥) = N* and with compo-
sition defined by addition.

DEFINITION 3.0.6. Given k € N, a graph of rank k (or k-graph) is a pair (A, d)
consisting of a countable category A = (Obj(A), Mor(A), r, s) together with a functor
d: A — NF, called the degree map, which satisfies the factorisation property: for
every A € Mor(A) and m,n € N¥ with d(\) = m + n, there are unique elements
w, v € Mor(A) such that A = uv, d(u) = m and d(v) = n. Elements A\ € Mor(A) are

37
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called paths. We follow the usual abuse of notation, and write A\ € A to mean )\ €
Mor(A). For m € N* we define A™ := {\ € A : d(\) = m}. For asubset F' C A, and
V C Obj(A), we write VF :={A € F:r(A\) € V} and FV :={\ e F:s(\) € V}.
If V= {v}, we drop the braces and write vF and Fv. A morphism between two
k-graphs (A1, d;) and (Ag,ds) is a functor f : Ay — A which respects the degree

maps.

REMARK 3.0.7. Fix v € Obj(A). Since (id,)* = id,, that d is a functor forces
d(id,) = 0. Now suppose that A € vA°. Then id,;y A = A = Xidy). Since
d(A) = 0+ 0, and since d(id,(»)) = 0 = d(ids()), the factorisation property implies
that id, = id,,y = A. So vA® = {id,}, and we henceforth identify Obj(A) with A°.

We refer to elements of AV as vertices.

REMARK 3.0.8. Recall from the introduction that to visualise a k-graph we draw
its 1-skeleton: a directed graph with vertices A and edges Ule A¢. To each edge
we assign a colour determined by the edge’s degree. In this thesis we tend to use
2-graphs for examples, and we draw edges of degree (1, 0) as solid lines, and edges of
degree (0,1) as dashed lines. In the literature these are often referred to as “blue”

and “red” edges.

EXAMPLE 3.0.9. For k € N and m € (NU {oo})*, we define k-graphs (2, as
follows. Set Obj(Qy..,) = {p € N¥ : p; < m;, for all i < k},

Mor (Q.m) = {(p,q) : p,q € Obj(Q% ) and p; < ¢; for all i < k},

r(p,q) = p, s(p,q) = q and d(p, q¢) = q — p, with composition given by (p,q)(¢,t) =
(p,t). If m = (c0)*, we drop m from the subscript and write . The 1-skeleton of

()9 is depicted in Figure 1.

REMARK 3.0.10. The graphs €, provide an intuitive model for paths. Every
path A of degree m in a k-graph A determines a k-graph morphism x : Q,,, — A.
To see this, let p,¢ € N*¥ be such that p < ¢ < m. Define z,(p,q) = \’, where
A= XNXN'XN" and d(N') = p, d(\') = ¢ — p and d(\") = m — ¢q. In this way, paths
in A are often identified with the graph morphisms xy : 4, — A. This provides
convenient notation for referring to segments of paths. For example, we refer to
the segment N’ of A (as factorized above) as A(p,q), and for n < m, we refer to
the vertex r(A(n,m)) = s(A(0,n)) as A(n). By analogy, for m € (N U {oo})* we
define A™ := {z : Qk,, — A : x is a graph morphism.}. For clarity of notation, if

m = (00)F we write A>.
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0<-—-—---- @<—----—-—- @<

@ <-—----- - @<—-—---—-—- @<

@ <c------ @€c--—---- @<
A

FicURE 1. The 2-graph 5.

Define
wa= |J A

ne(NU{oo})k
We call Wy the path space of A. We drop the subscript when confusion is unlikely.
Since finite and infinite paths are fundamentally different objects, that one can
compose finite paths with a infinite paths isn’t immediately obvious. The following

proposition shows how to do so.

For m,n € NF, we denote by m A n the coordinate-wise minimum, and by
mV n the coordinate-wise maximum. For example, (4,3,2)V (0,4,1) = (4,4,2), and
(4,3,2) A (0,4,1) = (0,3,1). With no parentheses, V and A take priority over the

group operation: a — b A ¢ means a — (b A ¢).

ProrosiTION 3.0.11. Let A be a k-graph. Suppose A € A and suppose that
x € Wy satisfies r(x) = s(\). Then there exists a unique k-graph morphism Ax :
Qkan+d@) — N such that (Ax)(0,d(N)) = X and (Az)(d(X),n + d(X)) = z(0,n) for
all n < d(zx).

PROOF. Fix p,q € N* with p < ¢ < d(\) +d(x). Since ¢,d()\) < d(\) +d(z), we
have ¢ V d(A) < d(N\) +d(z). So 0 < gV d(A) —d(\) <d(z). Since Az(0,q V d(\) —
d(M\)) € A, it can be viewed as a k-graph morphism from € gvq(\) into A. We then
define Az : Q g(n)+dz) — A by

(Az)(p, q) :== (A\z(0,q vV d(X) — d(N)) (p, q).

Clearly, Az is a k-graph morphism.



40 3. HIGHER-RANK GRAPHS

To see that (Az)(0,d(\)) = A, we calculate
(Az)(0 )V d(A) = d(X))) (0,d(\))

= (A
= (A ())( d(X))
A

To see that (Az)(d(\),n+d(N\)) = x(0,n) for all n < d(z), fix n < d(z) and calculate

(Ax)(d(N\),n + d()\))
= (Az(0, (n +d(X)) V d(A) = d(N)))(d(),n + d(N))
= (A ( n))(d(A),n +d(X))
=z(0,n).

For uniqueness, suppose that ¢ : { 4z)4da@) — A is a k-graph morphism sat-
isfying ¢(0,d(N)) = A and ¢(d(A),n + d(\)) = x(0,n) for all n < d(x). Then for
p < q<d(A)+d(z), we have

= (¢(0,¢ Vv d(X\))(p,q)

= (Ao(d(N), q V d()\)))(l% q)
= (Az(0,q vV d(\) — d(N))(p. q)
= (Az)(p,

Az)(p, q). O

DEFINITION 3.0.12. For A\, u € A, we write
A™(A, ) = {(, 8) € A x A ha = p, d(Aar) = d(N) V d(p)}

for the collection of pairs which give minimal common extensions of A and p, and

denote the set of minimal common extensions by

MCE(, 1) = {Aa : (o, 8) € A™™ (A, )} = {uB : (@, B) € A" (A, )},

DEFINITION 3.0.13. A k-graph A is row-finite if for each v € A° and m € N*,
the set vA™ is finite; A has no sources if vA™ # () for all v € A” and m € NF.

We say that A is finitely aligned if A™®(\, ) is finite (possibly empty) for all
A\ €A

As in [21, Definition 3.1], a k-graph A is locally convez if for all v € A all
i,j € {1,...k} with i # j, all A € vA% and all p € vA%, the sets s(A\)A% and
s(u)A% are non-empty. Roughly speaking, local convexity stipulates that A contains

no subgraph resembling:
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u
3
i
Ve——w

A

DEFINITION 3.0.14. Forv € A°, asubset E C vA is exhaustive if for every u € vA
there exists a A € E such that A™"(\, u) # 0 (or equivalently MCE(\, i) # 0). We
denote the set of all finite exhaustive subsets of A by FE(A), and for v € A°, we

write v FE(A) for the set {E € FE(A) : E C vA}.

DEFINITION 3.0.15. An element x € W is a boundary path if for all n € N* with
n < d(x) and for all E € x(n)FE(A) there exists m € NF such that z(n,n+m) € E.
We write OA for the set of all boundary paths, and for v € A°, write vOA for
{z € OA : r(x) = v}.

We define the set A= as follows. A k-graph morphism z : Q4,, — A is an
element of AS% if there exists n, < d(z) such that for n € N* satisfying n, < n <
d(x) and n; = d(x);, we have x(n)A% = ().

The set AS*° of Definition 3.0.15 was introduced by Raeburn, Sims and Yeend in
[22], and its elements were referred to there as “boundary paths”. These “bound-
ary paths” were used in [22] to construct a nonzero Cuntz-Krieger A-family [22,
Proposition 2.12]. Farthing, Muhly and Yeend introduced the set A of Definition
3.0.15 in [8]; in order to construct a groupoid to which Renault’s theory of groupoid
C*-algebras [24] applied, they required a path space which was locally compact and
Hausdorff in an appropriate topology, and A=*® did not suffice. The differences be-
tween A and AS™ can be easily seen if A contains any infinite receivers (e.g. any
path in a 1-graph A with source an infinite receiver is an element of A \ A=), but

can even show itself in the row-finite case if A is not locally convex.

EXAMPLE 3.0.16. Suppose A is the 2-graph with the skeleton pictured below.

[ ] [ ] [ ] o
| | | |
| | | |
| | | |
l l l l
| | | |
¥ ¥ ¥ ¥
Vo U1 U2 U3
Consider the paths v = yyvy..., and W" = vyv1 ...V qw,, n = 0,1,2,....

Observe that v ¢ AS®: for each n € N, we have d(v); = 0 = (n,0),, and
v((n,0))A®2 = v, A% £ ().
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We claim that v € dA. We have d(v) = (00,0), so to prove that v € OA
we must show that for each m € N, and each E € v((m,0))FE(A) = v, FE(A),
there exists p € N such that v((m,0),(m + p,0)) € E. Fix m € N and E €
v FE(A). Since E is exhaustive, for each n > m, there exists A" € E such that
MCE(A, Vpy . . . Vp_1wy) # (. Since each s(w,) receives no edges, each \" must be
an initial segment of v, ... v, jw,: either \" = v, ..., _1w,, or A" takes the form
Um ...V for m < p < n. Since FE is finite, it cannot contain v, ... v,_jw, for every
n > m, so it must contain v, ...y, for some p € N. So v((m,0),(m+p)) =vp...1,

belongs to F.

REMARK 3.0.17. The 2-graph of example 3.0.16 first appeared in Robertson’s
honours thesis [26] to illustrate a subtlety arising in Farthing’s procedure [7] for
removing sources in k-graphs when the k-graphs in question are not locally convex.
It was for this reason that Robertson restricted his attention to locally convex k-
graphs in the main results of [26]. As it turns out, the issue arises precisely because
Farthing’s construction notionally extends each element of AS® to an infinite path,
but not elements of OA. It was this which motivated us to develop the construction

we use in Section 3.2 where OA replaces AS*° in Farthing’s scheme.

PROPOSITION 3.0.18. Suppose A is a finitely aligned k-graph. Then A= C OA.
If A is row-finite and locally convez, then AS>® = OA.

To prove this we use the following lemma.

LEMMA 3.0.19. Let A be a row-finite, locally convex k-graph, and suppose that
v € A° satisfies vA% #£ O for some i < k. Then vA% € vFE(N).

PROOF. Since A is row-finite, vA% is finite. To see that it is exhaustive, let
p € vA. If d(p); > 0, then g = u(0,¢;) € vA% implies that A™"(u, g) # (). Suppose
d(p); = 0. Let po = py ... p1,, be a factorisation of p such that |d(p;)| = 1 for each
J < n. Since A is locally convex, r(u;)A® = vA% # () implies that s(ui)A% # (.
Then s(py)A% # () implies that s(ug)A% # (). Continuing in this way, we see that
s(u)A% = s(un)A # 0. Fix g € s(u)A%. Let f := (ug)(0,e;). Then f € vA®.
Since d(jus) = 0, we have d(ug) = d(u)Vd(f). Hence (g, (ug) es, d(1g))) € A™™ (s, f)
as required. O]

PROOF OF PROPOSITION 3.0.18. Fix £ € A=®. Then there exists n, € NF
such that n, < d(z), and whenever n € N* satisfies n, < n < d(z),

(3.0.7) n; = d(z); = x(n)A = 0.

To see x € OA, we show that for all m < d(z) and all E € x(m)FE(A), there exists
A € E such that m + d(\) < d(z) and x(m,m + d(\)) = \.
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Fix m < d(z) and E € z(m)FE(A). Define t € N* by

o d(zx); if d(x); < o0,
i = r}r\leaé( (nx vV (m+ d()\)))z if d(z); = oo.

Then z(m,t) € z(m)A, so there exists A € E such that A™"(z(m,t),\) is non-
empty. Let a, 8 € A™"(x(m,t), \). We first show that d(a) = 0. Since z € AS*® and
n, <t <d(x), we have d(x); < oo implies that z(t)A% = (). So for each i such that
d(x); < 0o, we have d(«); = 0. Now suppose that d(x); = co. Then d(z(m,t)); =
ti —m; > d(A\);. So d(z(m,t)a); = max{d(z(m,t));,d(N);} = d(x(m,t));, giving
d(a); = 0. Then we have z(m,t) = A3, so z(m,m + d(\)) = \.

Now suppose A is row-finite and locally convex. We want to show A C A=,
Fix € OA, and n € N* such that n < d(z) and n; = d(z);. It suffices to show
that z(n)A% = 0, for then n, = 0 satisfies (3.0.7). Since n; = d(z);, we have
z(n)A% ¢ x(n)FE(A). Lemma 3.0.19 then implies that z(n)A% = . O

3.1. Topology

Our first aim is to construct a locally compact Hausdorff topology on the path
space W of a finitely aligned k-graph A. As we did for directed graphs, we follow
the approach of Paterson and Welch in [17]. We show that the sets in Theorem
3.1.1 are precisely the inverse images of basic open sets in {0,1}* (equipped with

the product topology) under the map a : W — {0, 1}* defined by

1 if w = yw' for some w’ € W,
(3.11) a(w)(y) =
0  otherwise.

For € A the cylinder set of p is

Z(p) ={v e W:v(0,d(n)) = p}.

For a finite subset G C s(u)A, we define

(3.1.2) Z(p\G) = Z(w)\ | Z(w).

veG

Our goals for this section are the following two theorems.

THEOREM 3.1.1. Let A be a finitely aligned k-graph. Then the collection

{Z(u \G):peANand G C U(S(M)Aei) is ﬁm’te}

form a basis for the initial topology on W induced by {a}.
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THEOREM 3.1.2. Let A be a finitely-aligned higher-rank graph. The topology on
W generated by the basic open sets given by Theorem 3.1.1 is a locally compact
Hausdorff topology.

We first require some definitions and a lemma. Let F' be a set of paths in a k-
graph A. A path § € W is a common extension of the paths in F' if for each y € F,
we can write 3 = pf, for some 3, € W. If in addition d(8) =\ . d(p), then [ is
a minimal common extension of the paths in F. We denote the set of all minimal
common extensions of the paths in F' by MCE(F'). Since MCE({y, v}) = MCE(p, v),
this definition is consistent with Definition 3.0.12.

peF

LEMMA 3.1.3. Let F' be a finite set of paths in a k-graph A. Then

Nzw= U 20

peEF BEMCE(F)

PROOF. Let o € Usencp(ry 2(3)- Then there exists 3 € MCE(F) such that
a = fa’. So for all u € F we have a = pf,a" € Z(n). Thus a € (,cp Z(1).
Now suppose a € (. Z(1). So a € Z(u) for all p € F. This implies that « is

a common extension of paths in F. Let f =« <O, V,er d(,u)). Then § € MCE(F)
and a € Z(0). O

PROOF OF THEOREM 3.1.1. We first describe the topology on {0,1}*. Given
disjoint finite subsets I, G C A and p € A, define

{1} if p e F,
U =14{0} ifped,
{0,1} otherwise.

Then the sets

N(F,G) =[] ure

HEA

where F, G range over all finite disjoint pairs of subsets of A form a basis for the
topology on {0, 1}*.
An identical argument to that used in Proposition 2.1.3 shows that a is a homeo-

morphism onto its range, and hence the sets ™' (N(F,G)) are a basis for a topology
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on W. These sets can be described as follows.
Aea ' (N(F,GQ)) < a()) € N(F,G)
1 forpelF

= a(M)(p) =
0 forued

A € Z(p) for p e F,
A ¢ Z(v)forved.

e ECNVED

HEF veG

—

— e U 2w \(UZ@)).

HEMCE(F) veG

Since each a (N, (F,G)) = U,er @ '(N({A},G)), we only need the sets F

containing a single element. If we set G’ = G N Z(u) then
2w\ Jzw) =2\ U 20),
ve@ veG!
so the sets a ' (N({\},@)), where G C Z(u), are a basis for the same topology.
Furthermore, by appropriately adjusting G (i.e. taking G’ = {v : ur € G} then
relabeling G = G'), the basis sets Z(1) \ (U, e Z(v)) become
Zw\ | 2(w) = 2(u\ G),
veG

as defined in equation (3.1.2). To finish the proof, it suffices to show that for p € A,
a finite subset G C s(u)A and A € Z(u \ G), there exist « € A and a finite
FclU, (s(c)A“) such that

AeZ(a\F)C Z(p\G).

Let N := (V,cqd(uv)) Ad(X) and a = (0, N). To define F, we first define a set
I, associated to each v € (G, then take [’ = UVGG F,. Fix v € G. We consider the

following cases:
(1) If N > d(uv), let F, = 0.
(2) If N # d(pwv), then either
(a) MCE(a, pv) = 0, in which case let F,, = 0, or
(b) MCE(a, puv) # 0, which requires a little more work:
Since N %# d(pv), there exists j, < k such that N;, < d(uv);,. Hence each vy €
MCE(a, pv) satisfies d(7);, = (N V d(uv));, > Nj,. Define F, = {y(N,N +e¢;,) :
~v € MCE(a, pv)}. Since A is finitely aligned, F), is finite.
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We now show that A € Z(«a\ F). We have A € Z(«a) by choice of . If FF =0
we are done. If not, then fix v € G such that F, # (), and fix e € F,. We will
show that A ¢ Z(ae). We have e = y(N, N +¢;,) for some v € MCE(a, pv). Since
N;, < d(pw);, < (V,eqduw)), . we have d(\);, = N;, < (N +e¢;,);, = d(ae),,.
This implies that A ¢ Z(ae). Since this holds for all v € G and e € F,, we have
A€ Z(a\F).

We now show that Z(a\ F)) C Z(u\ G). Fix f € Z(a\ F). Since o € Z(u), we
have f € Z(u). Fix v € G. We will show that 8 ¢ Z(uv). We argue the following
cases separately:

(1) Suppose that N > d(uv). Since f € Z(a) = Z(A(0, N)) and A ¢ Z(pv), it
follows that g ¢ Z(uv).
(2) If N # d(uv), then either
(a) MCE(q, pv) = 0, in which case 3 € Z(«) implies that 5 ¢ Z(uv); or
(b) MCE(«, uv) # 0, which requires a little more work:
Suppose, for a contradiction, that § € Z(uv). Then 5 = ~f for some v €
MCE(a, uv). By our choice of F', we have S(N,N +e¢;,) # v(N,N +¢j,). So
B3(0,d(7)) # ~, a contradiction. Hence 3 ¢ Z(uv).
Since this holds for all v € G, we have 8 € Z(u\ G). O

For the proof of Theorem 3.1.2, we use the following technical results.

LEMMA 3.1.4. Let {v™} be a sequence of paths in A such that
(i) d(@" V) > d(v™) for alln € N, and
(i) v™ D (0,d(v™)) = v™ for all n € N.
Then there exists a unique w € W such that d(w) = \/, .y d™) and w (0,d(v™)) =
v for allm € N.

PROOF. Let m =\/ _,d(v™) € (NU {oo})*.

neN

CLAIM 3.1.4.1. For a € N* with a < m, there exists N, € N such that d(vN+)) >

PROOF. Let g € {1,...,k}. Since a < m, there exists ¢, € N such that d(v(*))
a,. Let N, = max{t,...,t,}. Then d(v"*V) > d(v™) implies that d(rz®))

a. Uctaim

>
>

We now define w and show that it has the required properties. For each (p,q) €
Q.m apply Claim 3.1.4.1 with a = ¢ and define w(p, q) = vV (p, q).

CLAM 3.1.4.2. w: Q. — A is a well-defined graph morphism.
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Proor. We first check that w is well defined. To do this we show that it does
not depend on the choice of NV, from Claim 3.1.4.1. Suppose that (p, q) € Mor(Q ),
and that M, N € N satisfy d(v™),d(v") > q. Without loss of generality we can
assume that M > N. Condition (ii) from the Lemma hypothesis implies that
vM(0,d(vN)) = vN. Since d(v™),d(vN) > ¢, we have vM(p,q) = vV (p,q). So w is
well-defined.

To see that w is a functor, we use that v™ is a functor: for each (p,q) €

Mor (€, ), we have

r(w(p, q)) = (" (p,q)) = v™N)(p), and

(Np)<

w(r(p,q)) = wip) = v\ (p).

Since d(v ™)), d(v™)) > p, we have v (p) = v)(p). So r(w(p, q)) = w(r(p, q)).
Similar calculations show that w respects the source, identity morphism, and com-

position maps:

(Nq)(

s(w(p,q)) = s (p,q)) = v (q) = w(q) = w(s(p.q)),

w(idy) = w(p,p) = v (p,p) = v (i) = id, v () = idug),

and

w((p,q) o (q,v)) = w(p,v)
=N (p, )

= 1v™)((p,q) o (¢,v))

(
= ™ (p, q) 0 v ™) (g, 0)
(

q
No)(p, q) o ') (g, v)

= v (p,
= w(p,q) ow(q,v).

So w is a functor.
To see w is a graph morphism, we check that it preserves the degree map. This

follows because the v(™ are graph morphisms:

d(w(p,q)) = dv™N(p,q)) = ¢ — p = d(p.q). Oiaim

Since d(w) = m = V,oyd(¥™) by definition, it remains only to show that
w(0,d(v™)) = v™ for all n, and that w is the unique morphism with these proper-
ties. To see that w (0,d(v™)) = v™ for all n € N, take a = d(v™) in Claim 3.1.4.1.
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This gives M, := Ny, ) such that d(v®)) > d(v(™). Then hypothesis (ii) of the

Lemma implies that
w (0,d(v™)) = M) (0,d(v™)) = .

To see that w is unique, suppose that w’ € A™ is such that «'(0,d(v™)) = ™
for all n € N. Fix p < m. Claim 3.1.4.1 gives N, € N such that d(v*»)) > p. Then
W'(0,p) = vN)(0,p) = w(0,p). Since this is true for all p < m = d(w) = d(w'), we

have o' = w. O

PROOF OF THEOREM 3.1.2. Fix v € A°. We follow the strategy of [17, The-
orem 2.2] to show Z(v) is compact. Proposition 2.1.3 implies that « is a home-
omorphism onto its range, so it suffices to prove that a(Z(v)) is compact. Since
{0,1}* is compact, we need only show that a(Z(v)) is closed in {0,1}*. Suppose
that (w(™),en is a sequence in Z(v) such that a(w™) — f € {0,1}*. We seek
w € Z(v) such that f = a(w).

Define A = {v € A : a(w™)(v) — 1 asn — oo}. Then A # () since v € A. Let
d(A) ==\, c,dv).

CLAIM 3.1.2.1. There exists w € vA*™@ such that:

o d(w) >d(u) for all pe A, and
e w(0,n) € A for all n € N* with n < d(A).

ProOOF. To define w we construct a sequence of paths to which we will apply
Lemma 3.1.4. We first show that for each pair u,v € A, there exists a unique path
Bup € MCE(u,v) N A. Fix p,v € A. Then a(w™)(p) — 1 and a(w™)(v) — 1. So
there exists N such that n > N implies that w™ = uy’ = vv/. So for each n > N,
there exist " € MCE(u,v) such that w™ = p"(w")’. Since MCE(u,v) is finite,
there exists M such that w™ = @M (w") for infinitely many n. Denote these n by
{ny : k € N}, and define 3,, := M. So a(w™))(8,,) = 1 for all k. Since a(w™)
converges, it follows that for large enough n we have a(w™)(8,,) = 1. So §,, € A.
For uniqueness, suppose that ¢ € MCE(u,v) N A. Then since d(¢) = d(p) V d(v)
and ¢ € A, it follows that for large n we have

Buw = w"(0,d(p) V d(v)) = ¢.

We now construct our sequence of paths. Since A is countable, we can list the
elements of A as

A={v 2 v )

Let y' := /', then iteratively define y" = fByn-1,». Then

d(y") = d(y" ') vd"™) > d(y" ),



3.2. REMOVING SOURCES 49

and y"(0,y" ') = y"~!. By Lemma 3.1.4, there exists a unique w € W satisfying
d(w) = d(A) and w(0,d(y™)) = y™ for all n.

To see that w(0,n) € A for each n € N* with n < d(A), fix such an n. Claim
3.1.4.1 implies that there exists N, € N such that d(y™) > n. Then since each

y™ € A by definition, for large enough m we have
W=y (W) = w(0,n)(y™) (W)
That is, w(0,n) € A. Uctaim

To see a(Z(v)) is closed, we show that a(w™) — a(w) as n — oco. Fix A € A.
We aim to show that a(w™)(\) — a(w)(N). Suppose that a(w)(A) = 1. Then
A =w(0,d(N\)) € A by Claim 3.1.2.1, and thus a(w™)(\) — 1 as n — oo.

Now suppose that a(w)(A) = 0. We argue that a(w™)(A) — 0 in two cases:
either d(\) < d(w), or not. Suppose that d(\) € d(w). Then by Claim 3.1.2.1,
A ¢ A. This means that a(w™)(\) - 1. Since a(w™) converges to either 0 or 1,
we must have a(w™)(\) — 0.

Suppose that d(A) < d(w). Then since w(0,d(\)) € A, there exists N such
that n > N implies that w™ = w(0,d(\))7™. Furthermore, a(w)(\) = 0 implies
that w(0,d()\)) # X. So for all n > N we have w™ # Ar™. This implies that

a(w™)(A\) - 1. Since a(w™) converges, we must have a(w™)()\) — 0. O

3.2. Removing Sources

In this section, given a finitely aligned k-graph A, we construct a k-graph A with
no sources which contains a subgraph isomorphic to A. In the sections following,
we investigate how the boundary-path space of A relates to that of A. We then
show that if A is row-finite, then C*(A) is isomorphic to a full corner of C* (K)
Our construction is modelled on Farthing’s construction in [7], and thus most of the
proofs are inspired by hers. The crucial difference is that our construction involves
extending paths in OA, whereas Farthing’s extends paths from A%, Interestingly,
although OA and A=* are potentially different when A is row-finite and not locally
convex, our construction and Farthing’s yield isomorphic k-graphs except in the
non-row-finite case (see Examples 3.2.1 and Proposition 3.2.12).

We follow Robertson and Sims’ notational refinement [27] of Farthing’s desour-
cification: we construct a new k-graph in which the original k-graph is embedded,
whereas Farthing’s construction adds bits onto the existing k-graph. This simplifies
many arguments involving A.

One of our key goals was to show that there is a homeomorphism 7 from the

space of infinite paths of A with range in the embedded copy of A to the boundary
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path space of A. Showing that this map is surjective proved difficult using Farthing’s
construction, and this was the primary motivation for developing a new one.

DEFINITION 3.2.1. Define a relation ~ on Vj := {(z;m) : € A, m € NF} by:
(x;m) = (y;p) if and only if

(V1) z(m Ad(z)) = y(p Ad(y)); and

(V2) m—mAd(z)=p—pAd(y).

DEFINITION 3.2.2. Define a relation ~ on Py := {(z;(m,n)) :x € 0A,m <n €
N} by: (23 (m,n)) ~ (y; (p, ) if and only if

(P1) z(m Ad(x),n Ad(z)) = y(p Ad(y), g Ad(y));
(P2) m —m Ad(x) =p—pAd(y); and
(P3) n—m=q—p.

REMARK 3.2.3. It is clear from their definitions that both ~ and ~ are equiva-

lence relations.

LEMMA 3.2.4. Suppose that (x;(m,n)) ~ (y;(p,q)). Then n —n Ad(x) = q—
g A d(y).

Proor. (P1) implies that n Ad(x) —m Ad(x) = qAd(y) —pAd(y). Then (P3)
implies that

n—m—(nAdx)—mndx))=p-q—(gAdly) —pnrdy)).
Reordering the terms, we have
n—nAd(x)—(m-—mAdx)) =q—qgndy) - (p-pAdy)).
It then follows from (P2) that
n—nAdx)=q—qANdy). O

Let /15,/\ := P,/ ~ and ‘A//A := Vi/ ~. The class in 1/‘7\ of (z;(m,n)) € Py is
denoted [z; (m, n)], and similarly the class in Vj of (z;m) € Vj is denoted [z;m)].

To define range and source maps, observe that if (z;(m,n)) ~ (y; (p,q)), then
(x;m) =~ (y;p) by definition, and (z;n) ~ (y;q) by Lemma 3.2.4. We define range

and source maps as follows.
DEFINITION 3.2.5. Define 7, s : ]3;\ — ?A by:

([ (m,n)]) = [#;m]  and
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We now need to define composition. For each m € N*_ we define the shift map
o™ Upsm A" — A by 0™ (A)(p, q) = A(p + m, g+ m). So o™ essentially ‘chops off’

an initial segment of degree m.

PROPOSITION 3.2.6. Suppose that A is a k-graph and let [x; (m,n)| and [y; (p, q)]

be elements of Py satisfying [z;n] = [y:p]. Let z := z(0,n A d(x) Jp/\c]l(y)y. Then
(1) z € 0A;
(2) mAd(x) =mAd(z) and n ANd(z) =n ANd(z);
(3) x(m Ad(z),n ANd(x)) = z(m Ad(2),n ANd(z)) and y(p A d(y),q A d(y)) =
z(n ANd(z),(n+q—p)Nd(z)).

PROOF. Part (1): By [8, Lemma 5.13(1)] we have o?"?Wy € OA. Since [z;n] =
[y;p], (V1) says that x(n A d(z)) = y(p Ad(y)). Then [8, Lemma 5.13(2)] implies
that z = z(0,n A d(x))o? Wy € OA.

For part (2), we show that the equations hold coordinate-wise. Fix ¢ < k. We
will show that

(3.2.1) min{m;, d(z);} = min{m, d(z);} and
(3.2.2) min{ny, d(z);} = min{n;, d(z);}.

Since [x5n] = [y;p], we have n — n A d(z) = p — p A d(y). This implies that
(3.2.3) P <dy) <= n <d(z);.

We argue in cases:
(1> pi > d<y)z7 or
(i) pi < d(y):.
In case (i), equation (3.2.3) implies that n; > d(z);. Then
d(z); = min{n;, d(z);} + d(y); — min{p;, d(y):}
= d(x)i + d(y)i — d(y)s
This gives both (3.2.1) and (3.2.2).
In case (ii), equation (3.2.3) implies that n; < d(x);. This forces
d(z); = (n Ad(x)); + d(y)i — (p A d(y))i = d(y)i +ni — pi = 1 2 my,
and m; < n; < d(z);. Hence (3.2.1) and (3.2.2) are satisfied.
Part (3): Since z(0,n A d(z)) = x(0,n A d(z)), part (2) implies that

z(m Ad(z),n ANd(z)) = z(m ANd(x),n Nd(x)) = x(m Ad(z),n A d(z)),



52 3. HIGHER-RANK GRAPHS

giving the first equality. We now prove that the second equality holds. Part (2)
implies that

O'nAd(Z)Z _ O_n/\d(x)z _ O,p/\d(y)y’

so it suffices to show that
(3.2.4) (n+q—p)ANd(z) —nAd(z) =qgNd(y) —pANd(y).

Since d(z) = d(y) +n —p, we have (n+q—p) Ad(z) = ¢ Ad(y) +n — p. Furthermore,
by part (2) we have n A d(z) =n Ad(x). So the left-hand side of (3.2.4) becomes

(n+q—p)ANd(z) —nAd(z) =qgANd(y) —p+ (n —nAd(x)).
Since [z;n] = [y;p], we have n —n A d(z) = p —p A d(y), and thus
gNdly) —p+(p—prdly)) =gAdly) —pArdy),
giving (3.2.4). O
Fix [z;(m,n)],[y: (p,q)] € Py such that [z;n] = [y;p], and let z = x(0,n A
d(x))o? W)y, The purpose of the next lemma is to show that the formula
(3.2.5) [z; (m, )] o [y; (p, @) = [2; (m,n + ¢ = p)]

determines a well-defined composition.

LEMMA 3.2.7. Let [z;(m,n)],[y: (m,n)] € Py be such that [x;n] = [y;p]. Let
2= 2(0,n A d(2))o?" Wy, If (z; (m,n)) ~ (2 (m', 7)) and (y: (p.q)) ~ (/s (W', ),
then 2’ := 2'(0,n' A d(z"))o? W)y satisfies

(25 (m', 0"+ ¢ = p') ~ (2 (m,n + ¢ — p)).

PRrROOF. We must show that

(P1) 2'(m" Ad(), (0 + ¢ = p') Nd(2')) = z(m Ad(z); (m + q — p) Nd(2))

(P2) m' —m/ ANd(z) =m —m Ad(z)

P3)n'+¢ —p —m'=n+qg—p—m.

Since (z; (m,n)) ~ («'; (m',n")) and (y; (p, q)) ~ (¥'; (¢, ¢')), the relation ~ gives
us
' (m' ANd(x'),n' Nd(2")) = x(m Ad(z),n Ad(x))

y'(p' Nd(y),d NdY')) = ylp Ad(y), g Ad(y)),

(a)

m' —m/ ANd(z") =m —mAd(z)

p—p ANdy)=p—pAd(y)
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n—m'=n—m
(c)

¢ —p =q—p

Then (P3) follows from (c). For (P2), notice that by (b) we have m’—m/Ad(x") =
m —m A d(x). Then Proposition 3.2.6(2) gives (P2). It remains to show that (P1)
holds. By Proposition 3.2.6(3), we have

z(m ANd(z),(n+q—p) Nd(z))
=z(mAd(z),nNd(z)) z(n Nd(z),(n+q—p) ANd(2))
= a(m Ad(x),n Nd(x)) y(p Ad(y), g Ad(y)).

Then (P1) follows from (a), completing the proof. O
Define id : V) — Py by id [z =[5 (M, m)].
PROPOSITION 3.2.8. A := (ﬁ, E,?, s,0,id) is a category.

Proor. We must show
(i) P(idigmm) = [x;m] = $(idg,m)) for all [x;m] € VA
(il) s([z; (m,n)] o [y; (p, @)]) = s([y; (p, ¢)]) and
([z; (m,n)] o [y; (p, @)]) = 7([z; (m,n)])

for all composable pairs [x; (m,n)], [y; (p,q)] € Py
(iii) ([; (m,n)] o [y; (p, 9)]) o [w; (a,0)] = [x;(m,n)] o ([y; (p, @)] o [w; (a, b)]) for
all [z; (m, n)], [y; (p, @)), [w; (a,b)] € Py satistying [z:n] = [y;p] and [y;q] =
[w; a].
(iv) [a; (m,n)] o ids(asom,myy = [2; (m, n)] and N
1d5([zy(mn)) © (5 (M, n)] = [z5 (m, n)] for all [z; (m,n)] € Py.
Parts (i), (i) and (iv) follow directly from the definitions of 7, s, o and id,.
Part (iii), though the notation is unavoidably complicated, is a fairly straight-
forward argument. Let [x; (m,n)], [y; (p, q)], [w; (a,b)] € Py such that [z;n] = [y; p|
and [y; q] = [w;a]. Define z,,, := x(0,n A d(x))o?"¥¥y. Then

[ (m,n)] o [y; (p )] = [z2.y5 (M, 0+ p = q)].
Now define 2,y 1= 2,,(0, (n +p — @) A d(24,)) 0w, so

([z; (m,n)] o [y; (p, @)]) o [w; (a,b)] = [224; (M, + p — q)] o [w; (a,b)]
= [Zayw; (M,n+p—q+b—a)l.
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Similarly, we can define z,,, and 2z, ,, such that
[z5 (m, )] o ([y; (P, @)] © [w; (@, b)]) = [z; (m, )] © [z, (P, g + b — a)]
- [Zm,yw; (m7n+ Q+ b—a _p>]

We must show that (zgy.; (m,n+p—q¢+b—a)) ~ (Zuyw; (Mm,n+q¢+b—a—Dp)),
so we will verify that conditions (P1)—(P3) are satisfied.
We first verify that (P1) holds. Two applications of Proposition 3.2.6(3) give

Zayw(M A d(Zoyw), (M +p —q+b—a) AN d(zey))
= Zpy(MAd(254), (n+p—q) Nd(2:4))w(a Ad(w),b A d(w))
= z(mAd(zx),n ANd(x))y(p Ad(y),q A d(y))wla A d(w),bAd(w)).
Similarly, we have
Zegw (M A d(Zagw), (N + ¢ +b—a—p) Nd(zzyw))
=z(mAdx),nANdx))z(y,w)(pAd(zyw), (@ +b—a) ANd(zy.,)
= z(mAd(x),n Nd(z)y(p Ad(y),q A d(y))wla A d(w),bAd(w)).
Thus (P1) holds. To verify that (P2) holds, we apply Proposition 3.2.6(2) to obtain
m—mAd(zyyw) =m—mAd(z,,) =m—mAd).

Similarly, m —m A d(24w) = m —m A d(x) giving (P2). (P3) follows directly since
(n+p—q+b—a)—m = (n+q+b—a—p)—m. So we have (zzy; (M, n+p—q+b—a)) ~
(2z4w; (M,n + g+ b—a—p)), proving (iii). O

DEFINITION 3.2.9. Define d : A — N by d(v) = % for all v € Vj, and
d([z; (m,n)]) = n —m for all [z; (m,n)] € Py.

PROPOSITION 3.2.10. The map d defined above satisfies the factorisation prop-
erty. Hence with A asin Proposition 3.2.8, (/NX, cAl/) s a k-graph with no sources.

Proor. Fix [w;(a,b)] € Py. Let t,u € N¥ be such that b — a = t + u. Then we

have

(w; (a,a+t)]ow;(a+t,a+t+u)] =[w;(a,a+1t)]ow;(a+t,b)
= [w; (a,0)].

To see that this factorisation is unique, suppose that [z; (m,n)], [y; (p, q)] are such
that n—m = t, g—p = wand [z; (m, n)|o[y; (p, q)] = [w; (a,b)]. Then [w;a] = [z;m],
[w; b] = [y;q], and [x;n] = [y;p]. We aim to show that (w; (a,a +t)) ~ (z; (m,n)),
and that (w; (a+t,a+t+u)) ~ (y; (p,q)).

We first show that (w; (a,a +t)) ~ (z;(m,n)). So we need to verify that
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(P1) w(a A d(w), (a +t) Nd(w)) = z(m Ad(x),n Ad(x)).
(P2) a —aNdw) =m—mAd(z).
(P3) a+t—a=n—m.
Since [w;a] = [x;m], (V2) gives (P2). We chose n and m such that t = n —m, thus
(P3) holds. It remains to verify that (P1) holds. Let z := 2(0,n A d(z))o? Wy,
Then [w; (a,b)] = [2; (m,n + ¢ — p)]. By Proposition 3.2.6(3), we have
w(a A d(w),bAdw))=z(mAd(z),(n+q—p) Ad(2))
=z(mAd(z),nNd(z))z(nNd(2),(n+q—p) ANd(2))
(3.2.6) =z(m Ad(x),n Ad(z))y(p Ady),q A dy)).
Hence
(3.2.7) bAd(w) —aANdw)=nAd(x)—mAdx)+qANdy))—pAdy),
and
w(a A d(w),a Ndw)+nAdx)—mAdx)) =x(mAd),nAd)).
So it suffices to show that
(a+t)Nd(w) =aANd(w)+nAdx) —mAd(x).
Rearranging and substituting ¢ = n — m, we see that it suffices to show that
(a+n—m)ANdw)—nAd(z)=a—m.
Fix ¢ < k. We will prove that
(3.2.8) min{a; + n; — m;, d(w);} — min{n;, d(x);} = a; — m;.

We argue in two cases:
(i) n; < d(x);, or
(i) n; > d(z);.
Case (i). Equation (3.2.8) holds if and only if a; + n; — m; < d(w);. To prove this,
we suppose that a; + n; — m; > d(w); and seek a contradiction. Since m; < n;, we
have m; < d(z);. Then (P2) implies that a; < d(w);. Since b — a =t + u, we have
b>a+mn—m. Then
a; < dw); < a; +n; —m; < b;.
Since [w;b] = [y;q] and [z;n] = [y;p], it follows from (V2) that b,

pl,
i < d(y)i. So q; > d(y); and p;

IAIA

¢ < d(y); and n; < d(z); < p
(3.2.7) implies that
d(w); — a; = ny —m; +d(y)i — pi.
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Since d(y); — p; > 0, we have
d(w); = a; +n; —mi +d(y); — pi = ai +ny —my,
which contradicts that a; + n; —m; > d(w);. So a; +n; —m; < d(w);, and hence
min{a; + n; — m;, d(w);} — min{n;, d(x);} = a; +n; — m; —n; = a; — m;.

Case (ii). We suppose that a; + n; — m; < d(w);, and seek a contradiction.
Since n; > m;, we have a; < d(w);. Hence m; < d(x);. Since n; > d(z);, we have
pi > d(y);. Furthermore, p; < ¢; implies that ¢; > d(y);, so b; > d(w);. Then (3.2.7)
becomes

dw); —a; =d(z); — m; +d(y); — d(y); = d(z); — m,.
This implies that
0 <d(w); —a; — (n; —my) =d(x); — m; — (n; —m;) =d(z); —n; <0,

contradicting our supposition. So a; + n; — m; > d(w);. Hence (3.2.8) holds if
d(w); —d(z); = a; — my. If my > d(z);, then a; > d(w); and the result follows
directly from (P2). Otherwise, m; < d(x); and a; < d(w); < a; +n; —m; < b;.
Hence ¢;, p; > d(y);. Equation (3.2.7) then implies that

d(w); — a; = d(x); —mj,
(

Y

as required. Thus we have (w; (a,a +t)) ~ (x; (n,m))
Now we will show that (w;(a +t,a+t+u)) ~ (y
that
(P1) wla+tANdw),(a+t+u) Adw)) =y(lpAdy),qAdy)).
(P2) a+t—(a+t)Nd(w)=p—pAd(y).
(P3) a+t+u—(a+t)=q—p.
Equation (P3) is true by assumption. Substituting (P1) into (3.2.6), we have

:(p,q)). So we need to verify

wla Ad(w), b Ad(w)) = w(aNdw), (a+t) Adw))y(p Ady), g A d(y)).

Then (P1) follows by the factorisation property in A. It remains to verify (P2).

Since (3.2.8) holds for all i < k, we can rearrange it to obtain
a+n—m—(a+n—m)Adw)=n-—nAdx).
Since [z;n] = [y; p|, we have n —n Ad(z) =p — p Ad(y). Then
at+t—(a+t)Ndw)=a+n—m—(a+n—m)Adw)
=n—nAd)

=p—pAdy),
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as required.
This shows (/N\,(% is a k-graph. Suppose v € A®. Then v = [z;m] for some
z € ON and m € N*. Then [z;(m,m + ¢;)] € A% for all i < k. Thus A has no

sources. ]

3.2.1. Some Examples. If we allow infinite receivers, our construction yields
a different k-graph to Farthing’s construction in [7, §2]. To see how this might
happen, we work through an elementary example. Consider the 1-graph F with
vertices E° = {u,v}, and edges E* = {f; : i € N} with r(f;) = v and s(f;) = u for
all 2 € N. The graph E looks like

fi
ve . o—u

We first use Farthing’s construction to desourcify £. Using the notation estab-
lished in [27], our vertices take the form [z;m], where z € AS® = E' U {u} and
m € N. Fix a vertex [f;;p] for some p € N*. Fix i € N. Then since d(f;) = d(f;),

we have
p—pAd(fi) =p—pAd(f),
and
filp Nd(fi)) = s(fi) = s(fy) = [i(p Ad(f5)).

This implies that [f;;p] = [fi;p] for all 4,5 € N and p € N*. Similarly, [u;p — 1] =
[fj;p] for all p > 1. So any of the “new” vertices appended to E can be written
as [u;m] for some m > 1. Furthermore, any path between two of these appended
vertices has the form [u; (m,n)], and simple calculations show that for all i € N
and 1 < m < n, we have [f;;(m,n)] = [fi;(m,n)] = [u;(m — 1,n — 1)]. This
implies that the construction adds an infinite path with range u. Hence the Farthing
desourcification E below is the same as the “adding heads” construction by Bates,
et al in [2].

fi

Applying the construction detailed in this thesis, the same argument as in the
previous paragraph shows that there is a head added at the vertex u, just as in
Farthing’s construction. However, we also have to consider the vertex v € 9A\ AS>.
Fix j,n,m € N. By (V1), we have [v;m] = [f;,n] if and only if m = n = 0. For
m > 1, the vertices {[v;m] : m € N} are distinct from those defined using the f;.

Thus, in our new desourcification, we append a head to the boundary path v:
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fi

(A - U

I
It is intriguing that following Drinen and Tomforde’s desingularisation, a head is
also added at infinite receivers like this, and then the ranges of the edges f; are
distributed along this head — we cannot help but wonder whether this might suggest
an approach to a Drinen-Tomforde desingularisation for k-graphs.
Another interesting example is the graph F with E° = {v} and E' = {f; : i € N}

where s(f;) = r(f;) = v for all ¢ € N. That is, an infinite number of loops on a

single vertex v:

fi
(%

Here we have E<*® = (), so Farthing’s construction yields a l-graph £ = E.

Since v belongs to every finite exhaustive set in E, we have 0F = E*. Furthermore
[f5:p] = [fisp] = [v;p] for all i, j, p € N, and

Lf5s (p,@)] = [fis ()] = [v; (p— 1, = 1)]

for all 7,7, p,q such that 1 < p < ¢. Thus there is exactly one path between any
two of the added vertices, resulting an infinite tail coming into v, yielding the graph

illustrated below

fi

3.2.2. Row-finite 1-graphs. While one expects this style of desourcification
(both Farthing’s and the one contained in this thesis) to agree with adding heads

to a row-finite 1-graph as in [2], this appears not to have been checked anywhere.

PROPOSITION 3.2.11. Let E be a row-finite directed graph and F' be the graph
obtained by adding heads to sources, as in [2, p4]. Let A be the 1-graph associated
to E. Then A F*, where F* is a the path-category of F.

Proor. We will construct 1-graph morphisms 7 : A — F* and & FF — K,
and show that £ = n~!. We first define ' : P, — F* as follows. Fix z € OF and
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m,n € N. Then either x € E*, or z € E* and s(z) is a source in E. For x € E*,
define 7/ ((x; (m,n))) = x(m,n). For x € E*, let u, be the head added to s(z), and
define 7' ((z; (m,n))) = (zus)(m,n). We now check that 1’ respects the equivalence
relation ~ on Py. Let y € OA and p,q € N be such that (y; (p,q)) ~ (z;(m,n)).
Then

(3.2.9) m < d(z) <= p<d(y) by (P2)

(3.2.10) n<d(x) <= ¢ <d(y) by Lemma 3.2.4

We consider the following three cases:
(i) m <n < d(z);
(ii) m < d(z) <mn;
(iii) d(x) <m < n.
In case (i), (3.2.9) and (3.2.10) tell us that p < g < d(y). Then (P1) implies that
z(m,n) = y(p,q). Thus 7'((z; (m,n))) = x(m,n) = y(p,q) = 7'((y; (p,9)))-
In case (ii), condition (P1) says that x(m,d(z)) = y(p,d(y)). So s(z) = s(y),
and fi; = . Lemma 3.2.4 implies that n — d(z) = ¢ — d(y). Then
' (5 (m,n))) = (xpe)(m, n)
= z(m, d(x))p.(0,n — d(z))
=y(p,d(y))11y(0, 9 — d(y))
= (ypy) (P, )
=1'((y: (p.9)))-

In case (iii), (P1) implies that

z(mAd(z),n ANd(x)) = s(x) =y(pAd(y),qANd(y)) =ypAdy)).

Since s(x) is a source in E, so is y(p A d(y)). This implies that d(y) < p. So
s(xz) = s(y), and hence p, = 1, We then have

i (x5 (m, n))) = (wp) (m, n)
= po(m —d(z),n — d(z))
= 1y (p — d(y),q — d(y)) by (P2) and Lemma 3.2.4
= (yny) (P, 9)

=1 ((y; (p,q)))-

So 1’ respects ~. We now define 7 : A — F* by

n([x; (m,n)]) = n'((z; (m,n))).
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We check that 7 is a graph morphism. Straightforward calculations show that
the range, source and degree maps are preserved. We must work to that show
composition is preserved. Fix [z; (m,n)], [y; (p,q)] € A such that [z;n] = [y;p]. Let

z = 2(0,nAd(2))o? ¥ (y). Then n([z; (m,n)][y; (p, @)]) = n([z; (m,n+q—p)]). We
argue the following cases:

(i) z € E* and p < d(y),
(ii) z € E* and p > d(y),
(iii) = € E>.

For cases (i) and (ii), first observe that if z € E*, then s(z) = s(y) is a source.
So y € E* and hence p, = p,,. Then

n([z; (m,n+q—p)]) = (zp.)(m,n +p — q)
= (z(0,n A d(m))a”/\d(y) (y)py)(myn 4+ q — p)
(3.2.11) = (2(0,n A d(z))y(p Ad(y), d(y))py)(m,n + q — p)

Case (i). Suppose that z € E* and p < d(y). Since [x;n] = [y; p], condition (V2)
implies that n < d(x). Then (3.2.11) becomes

n([z; (m,n+q —p)))
= (x(0,n Ad(2))y(p A d(y), d(y))py) (m,n +q = p)
= (2(0,n)y(p, d(y))y) (m,n + ¢ — p)
(m,n)(y(p, d(y))11y)(0, g — p)
= x(m,n)(yuy) (P, q)
([z; (m, n)n(ly; (p, @)))-

=xr(m

=1

Case (ii). Suppose that p > d(y). Condition (V2) implies that n > d(z) and
n—d(z) = p—d(y). Then (V1) gives s(z) = s(y). Hence p, = p,, and (3.2.11)
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becomes

n([z; (m,n +q —p)])

= (z(0,n Ad(2))y(p Ad(y), d(y)) py) (m,n + q — p)
= (zptz)(m,n +q — p)
= ((wpz)(m,n)) ((zpz)(n,n + q — p))
= ((wpz) (m, )) (Ha(n —d(z),n —d(z) + g — p))
= ((zpz)(m,n)) (1y(p — d(y), p — d(y) +q — p))
= ((zp)(m,n)) ((yry) (p: 0))
= n([z; (m, n)))n(ly; (p, 9)])-

Case (iii). Suppose that z € E*. Theny € E*,sop < d(y). By (V2), n < d(z).
So z = z(0,n)o?(y), and

n([z; (m,n+q—p)]) = 2(m,n +q —p)
= x(m,n)o”(y)(0,q — p)
= x(m,n)y(p, q)
(

Son: A— Fisa graph morphism.

We now wish to construct another graph morphism ¢ : F* — A and show that
£ =n"1. Let v € F*. To define ¢ we first need some preliminary notation. & will be
defined casewise, broken up as follows:

(i) v € E*,
(ii) r(v) € E* and s(v) € F*\ E*, or

(iii) r(v),s(v) € F*\ E*.

If v € B fix a, € s(v)OE. If v has r(v) € E* and s(v) € F*\ E*, let
py = max{p € N:v(0,p) € E*}. Then v(p,) is a source in E*, and v(0,p,) € OF.
If v € F*\ E*, then v is a segment of a head u, added to a source in E*, and we
let g, be such that v = u,(q,, ¢, + d(p)).

We then define £ by

[vaw; (0,d(v))] if ve B*
§w) =4 [v(0,p,); (0,d(v))] if r(v) € E* and s(v) ¢ E*
r(); (g, g +d(v))] if r(v),s(v) € F*\ E*.

To see that ¢ is well-defined, we must show that in case (i), {(v) does not

depend on the choice of «,. Suppose that v € E* and «,,3, € 0FE. We claim
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that (vay; (0,d(v))) ~ (vB,;(0,d(v))). Indeed, equations (P2) and (P3) are trivially
satisfied, and (P1) is easy to see:

(ra,)(0,d(v)) = v =v3,(0,d(v)).

Straightforward calculations show that & preserves the range, source and degree
maps. We show that it preserves composition. Let A\, v € F* be such that s(\) =
r(v). Then

Avan; (0,d(Mw))] it \v € B
E) = L [(Ww)(0,px); (0,dMw))] if r(Wv) € E* and s(\v) € F*\ B
[P(130): (@ @ro + dOW))] i (), s(W) € F*\ E7.
If \v € E*, then \,v € E*.

EAEW) = [Avan; (0, d(A))][van; (0, d(v))]
= [(Avan)(0,d(N))o” (van,); (0, d(A) + d(v))]
= [Ava; (0,d(Av))]
=£&(\w).

If r(A\v) € E* and s(\v) € F*\ E*, we argue in two separate cases: (i) py, < d())
or (ii) px, > d(N).

If pr, < d()), then A(py,) is a source and v is a segment of the head juyp,,)
added at A(py,); namely

V= ) ([d(A) = P, d(A) = pa, + d(v)).

Then

ENEW) = [A0,px); (0, d(AN)][A(paw); (d(A) = paw, d(A) = paw + d(v))]
A0, )a A ); (0,d(X) + d(A) = pa, +d(v) — d(A) + pa)]
(Av)(0, pav); (0, d(Av))]

= £(w).
If py, > d(A), then A € E* and v(py, — d(N)) is a source. So p, = pr, — d()), and
(0, pr — d(N)) € $(A)DE. Then
§NEW) = [Av(0,pa — d(A)); (0, d(X))][¥(0, prv — d(A)); (0, d(v))]

= [(A(0, pas = d(N))(0,d(X)a’(v(0, prv — d(N))); (0,d(N) + d(v))]
(Av)(0,pa); (0, d(Av))]
=£(\v).

= |
[
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If r(A\v), s(Av) € F*\ E*, then

AV = ,u)\u((b\l/a v + d<>‘y))
= ,u)\u(Q)\u’ 5V + d<)\))/jl)\1/<Q)\1/ + d()\)a Dw + d(/\l/))

The factorisation property then implies that A = (¢, @ + d(N)) and v =
i (@ + d(A), ga + d(Ar)). So

ENEW) = [r(paw); (@, gw + d)][r(x); (ax + d(A), gr + d(Av))]
= [r(1); (@, o + d(A) + g + d(AV) — gr — d(N))]
= [r(1xw); (s @ + d(AV))]

§(Aw).

So & F* — Ais a graph morphism.
We now check that {on =15 and no{ =1p-. Fix v € F*. Then

(([va: (0, d))) ity € B
n(€@)) =  n([¥(0,pv); (0,d(v))]) if r(v) € E* and s(v) € F* \ E*
n([r(); (@, @y + d@))]) i r(v), s(v) € F*\ E*.

\
(

(raw,)(0,d(v)) if ve B
= § (0, 0,) t(0p,)(0,d(v)) if r(v) € E* and s(v) € F*\ E*
\Mu(qmquLd(V)) if r(v),s(v) € F*\ E*.

Now fix [z; (m,n)] € A. We argue that & o n([z; (m,n)]) = [z; (m,n)] in cases:
(i) x € B>, and (ii) x € E*. In case (i), we have z(m,n) € E* and

(n([z; (m,n)])) = &(x(m, n)) = [x(m,n)o" (x); (0,n —m)] = [x; (m,n)].
For case (ii), let p, be the head at s(x). Then we have

En([z; (m, n)])) = &((zpa) (m, n)).

We argue that £((zp,)(m,n)) = [x; (m,n)] separately for each of the three cases in
the definition of &: first suppose that (zu,)(m,n) € E*. Then

§((wp)(m, n)) = E(x(m, n)) = [x(m, n)a" (2); (0,n —m)] = [z; (m,n)].
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Now suppose that r((zp,)(m,n)) € E* and s((xp,)(m,n)) € F*\ E*. Let p, =
max{p € N : (zu,)(m,p) € E*}. Then zu,(0,p,) = z, and

§((wpa)(m, n)) = [(@pa) (m, pa); (0, —m)]
= [(2412)(0, p2); (m, n)]

= [z;m, n].

Lastly, if (zp.)(m), (xpg)(n) € F*\ E*, then (zp,)(m,n) = p(m — d(z),n — d(z))
and

§((zpa)(m,n)) = [r(pz); (m — d(z),n — d(z))] = [z; (m,n)].
Soé=mn"t and n: A= Frisa graph isomorphism. 0

When A is row-finite and locally convex, Proposition 3.0.18 implies that AS® =
OA. In this case our construction is essentially the same as that of Farthing [7, §2],
with notation adopted as in [27]. If A is row-finite but not locally convex, then
A= C OA (Example 3.0.16 shows this may be a strict containment). Thus it is
reasonable to suspect that our construction would result in a larger path space than

Farthing’s. Interestingly, this is not the case.

PROPOSITION 3.2.12. Let A be a row-finite k-graph. Suppose that x € N\ A=
and m < n € N*. Then there exists y € AS*° such that (x; (m,n)) ~ (y; (m,n)).

PROOF. Since x ¢ AS*, there exists ¢ > n Ad(z) and 7 < k such that ¢ < d(z),
¢ = d(z);, and z(q)A% # (. Let

J:={i<k:q =d(x); and z(q)A“ # 0}.

Since z € JA, for each E € x(q)FE(A) there exists t € N* such that z(q,q+1t) € E.
Since ¢; = d(x); for all i € J, the set |J,.; #(¢)A* contains no such segments
of z, and thus cannot be finite exhaustive. Since A is row-finite, |J,., z(q)A% is
finite, so (J;c; #(¢)A® is not exhaustive. Thus there exists 4 € x(q)A such that
MCE(p,v) = 0 for all v € |J,.; x(¢)A%. By [22, Lemma 2.11], s(p)A=> # (. Let
z € s(u)A=>, and define y := (0, ¢)uz. Then y € AS> by [22, Lemma 2.10].

Now we show that (z; (m,n)) ~ (y; (m,n)). Condition (P3) is trivially satisfied.
To see that (P1) and (P2) hold, we show that n A d(z) = n A d(y). Firstly, let
i e J. If d(uz); # 0, then (uz)(0,d(u) + e;) € MCE(u,v) for v = (uz)(0,¢;) €
r(p)A% = x(q)A%, a contradiction. So d(uz); = 0 for each ¢ € J. This implies that
d(y); = d(x); for all i € J. Now suppose that i ¢ J. Then either z(¢)A% = () or
¢ < d(x);. If 2(q)A% = 0 then d(y); = d(x);. So suppose that ¢; < d(z);. Since
nAd(x) < g, it follows that n; < d(x); and n; < ¢;. Then since ¢ < d(y) we have
n; < d(y);, hence (n Ad(z)); =n; = (n Ad(y));.
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So we have that for each i < k, either d(y); = d(x);, or (n ANd(z)); = n; =
(n Ad(y));. Hence m < n implies that m A d(x) = m A d(y), whence it follows that
(P2) holds. Furthermore, since y(0,q) = x(0,q) and n A d(z) < ¢, we have

w(m Ad(x),n Ad(x)) = y(m Nd(y),n Nd(y)),
verifying (P1). O

We wish to be able to identify A with a subgraph of A. The following results

allow us to do so.

PrRoPOSITION 3.2.13. Suppose that A is a k-graph, and that X\ € A. Then
S(NON # 0. If x,y € s(N)OA, then Az, Ay € IN and (Ax; (0,d(N))) ~ (Ay; (0,d(N))).
Moreover, there is an injective k-graph morphism v : A — A such that for A e A

t(A) = [Az; (0,d(N))] for any x € s(X)OA.

PROOF. By [8, Lemma 5.15], we have vOA # () for all v € A°. In particular,
we have s(A\)OA # 0. Let z,y € s(\)OA. Then [8, Lemma 5.13(ii)] says that
Az, Ay € OA. To show that (Az; (0,d()N))) ~ (Ay; (0,d(N))), equations (P1)—(P3) are
easily verified:

(P1) (Az)(0 Ad(Ax),d(N) Ad(Az)) = (Az)(0,d(N)) = A,

and similarly (Ay)(0 A d(Ay), d(A) Ad(\y)) = M.

(P2) 0—0AdAz) =0=0—-0Ad(\y), and

(P3) d(A\) —0=d(\) =d(\) —0.

We now show that ¢ is an functor. We first show that it preserves range and
source. Since Az € JA, we have

t(s(A) = [s(A)z; 0] = [Az;d(A)] = s([Az; (0,d(A))]) = s(+(})), and

u(r(A) = [r(M)Az; 0] = [Az; 0] = r([Az; (0,d(A))]) = r(u(A)).
To see that ¢ respects composition, suppose that p € A, and that A € s(u)A. Fix
z € s(p)OA and y € s(A)OA. Define

2= (p)(0,d(1)) o™ (ny).
So
L(p)e(A) = [ (0, d(p))][Ays (0, d(N)] = [25 (0, d(p) + d(N))]-
Then z = (u)(0, d(1))\y = phy. Hence
[2: (0, d(p) + d(N)] = [pAy; (0, d(pA))] = o(pd).

To see that ¢ is a k-graph morphism, we must show that it preserves degree:

d(t(e)) = d([p; (0,d(p))]) = d(p).
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Finally, we show that ¢ is injective. Suppose that A, u € A, and that ¢(A) = ().
Then [Az;(0,d(N\))] = [pz;(0,d(u))], and (P1) implies that A = Az(0,d(\)) =
p(0,d(p)) = p. O

We want to extend ¢ to an injection of W} into W5. The next proposition shows

that any injective k-graph morphism defined on A can be extended to Wj.

ProproSITION 3.2.14. Let A, T be k-graphs and ¢ : A — T" be a k-graph mor-
phism. Let x € Wi \ A, then ¢(x) : Qy gy — Wr defined by é(x)(p,q) = é(x(p, q))
belongs to Wr.

PROOF. We need to show that ¢(z) respects the range, source, composition and
degree of elements in €, 4,). Fix p,q € N* such that p < ¢ < d(x). Then

s(0(2)(p, ) = s(¢(x(p, 9)))

s(z(p,q))) since @ is a k-graph morphism
z(q))
x)

)

X

q)

(
(s(p,q))-

Similarly, ¢(z) preserves the range of (p, q). For composition, we calculate

o(x)(p, q)o(x)(q,m) = ¢

(
(
(
(

((
= ¢(z(p, ¢)x(q, m))
= ¢(z(p, m))
= ¢(z)(p, m)
= ¢(z)((p, q)(q,m))

Lastly, we verify that ¢(z) preserves degree. This again follows from ¢ being a
k-graph morphism:

d(o(z)(p, q)) = d(é(z(p,q))) = d((p, q))- O

In particular, we can extend ¢ to paths with non-finite degree. The next result
says that composition works as expected for non-finite paths. It is a ‘folklore’ result,

and we provide details for completeness.

ProrPoOsITION 3.2.15. Let A,T" be k-graphs and ¢ : A — ' be a k-graph mor-
phism. Let A\ € A, x € s(\)Wx, and suppose that n € N* satisfies n < d(x).
Then

(1) o(N)o(x) = d(Ax); and
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(2) 0"(¢(x)) = ¢(0"(x)).
PROOF. For part (1), fix p, ¢ € N* with p < ¢ < d(\z). We need to show that
(@(N)o(2))(p,a) = d(Az)(p, q)-
Since ¢ is a k-graph morphism, we have
(6(N)o(2))(p,q) = (6(N)d(2)(0,q V d(N) — d(N))) (p, q)
= (6N (2(0,q Vv d(N) —d(N)))) (P, q)
((A (0,q Vd(A) —d(N))(p,9)
o((Az)(p,q))
o(Az)(p, q).
For part (2), fix n € N¥ such that n < d(x). Let p,q € N¥ such that p < ¢ <
d(x) — n, then
o"(¢(x))(p. q) = ¢(x)(p+n,q+n)
= ¢(z(p+n,q+mn))
= ¢(c"(z)(p, q))
= ¢(0"(2))(p, q)- .

REMARK 3.2.16. As one would expect, the extension of an injective k-graph
morphism to W), is also injective. In particular, the map ¢ : A — A has an injective
extension ¢ : W) — W5. To see this, suppose that ¢ : A — I'is an injective k-graph
morphism, and fix x,y € Wj. Then

o(z) = d(y) == o(x)(p,q) = o(y)(p,q)  forall p,q < d(x)
= o(z(p,q) = o(y(p, )
= z(p,q) = y(p,q)
== r=y.

To prove a few more consistency results about A we need to be able to ‘project’
paths from A onto the embedding ¢(A) of A. For y € OA define

(3.2.12) m(ly; (m,n)]) = [y; (m A d(y), n A d(y))].

The next result is asserted in [27]. The proof is from Robertson’s honours thesis
[26], but is unpublished.

PROPOSITION 3.2.17. Let A be a k-graph. Then m : A — 1(A) defined in (3.2.12)
is a surjective functor, and is a projection in the sense that w(w([y;(m,n)])) =

7([y; (m,n)]) for all [y; (m,n)] € A. In particular, |,y = id,).
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PROOF. To see that 7 is a functor, we must show that it preserves range, source,
composition and the identity. Fix [x; (m,n)], [y; (p,q)] € A and suppose that [z;n] =
[y; p]. We first check that 7 preserves the source map:

r(m([z; (m,n)))) = r([z;m A d(z),n A d(w)])
= [z;m A d(x)]
= m([z;m])

= m(r([z; (m,n)])).
A similar argument shows that 7 preserves range. To see that 7 preserves com-
position, let z = x(0,n A d(z))o? ¥ (y). Since m < n and p < ¢, we have
mAd(z) <nAd(z) and n Ad(z) < (n+q—p) ANd(z). Hence
([z; (mn)] o [y; (p, q)])

= 7([z;m,n+ q - p)

= [z (m Ad(2), (n 4+ q —p) Ad(2))]

= [z (m Ad(z),n Ad(z))] o [z; (n Ad(z), (n + g — p) Ad(2))].

By Proposition 3.2.6(3), this is equal to
(5 (m A d(z),n A d(x)] o ly; (p A d(y), g Ad(y))]
= 7([z; (m, n)]) o 7([y; (p, @)])-
Lastly, since m > m A d(xz) and n > n A d(x), we have
m(w([z; (m,n)])) = 7([x; (m A d(z),n A d(z))])
= [z; (m Ad(z),n Ad(z))]
= 7([z; (m, n)]). B
The following lemmas are used to prove that A s finitely aligned whenever A is.

LEMMA 3.2.18. Let A be a k-graph. Suppose that A\, u € A satisfy X € Z(u),
and that i < k satisfies d(w(\)); > d(mw(p));. Then w(\) € Z(m(w)), and d(u); =

d(m(1))i-
PROOF. Suppose that A = [x; (m,m + d()\))]. Then p = [z; (m, m + d(p))], so

m(A) = [z (m A d(x),

—~

m + d(\) A d(z))], and
7(1) = a3 (m A d(), (m + d()) A d(2))]
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Since d(m(\)); > d(m(p));, we have

It then follows that m; < d(z);. If m; +d(\); < d(z);, then d(u) < d(\) implies that
m; + d(p); < d(x);. If m; +d(N\) > d(x;), then d(z); > min{m; + d(u);,d(x);}. So
d(z); > m; + d(p);, and
d(m(p)); = min{m; + d(p);, d(x);} — min{m;, d(z);}
=m; +d(p); —m;

= d(u);,

as required. O

LEMMA 3.2.19. Let A be a k-graph. Let p,v € A. Then
#(MCE(s, v)) © MCE(r (1), (1)),

PRrOOF. Suppose that A € MCE(u,v). Then A € Z(u) N Z(v) and d(\) =
d(p) Vd(v). By Lemma 3.2.18 we have 7(\) € Z(n(p)) N Z(7(v)), hence d(w(X)) >
d(m(p)) V d(z(v)).

It remains to prove that d(m()\)) = d(w(u)) V d(w(v)). Suppose, for a contra-
diction, that there is some i < k such that d(7w())); > max{d(m(u));, d(7w(v));}.
Then d(m())); > d(m(p)); and d(w(X)); > d(w(v));. Then by Lemma 3.2.18, we have
d(m(p)); = d(p); and d(m(v)); = d(v);. It then follows that

d(A); = d(m(N)); > max{d(n);, d(v)i},
contradicting that d(\) = d(u) Vv d(v). O

LEMMA 3.2.20. Let A be a k-graph, and let pi, A € t(A°)A be such that d(\) = d(u)
and w(A) = 7w(u). Then A = p.

PROOF. Since y, A € t(A”)A and d(\) = d(n), we can write A = [z; (0,n)] and
p = [y;(0,n)] for some z,y € OA and n € N¥. We will show that (z;(0,n)) ~
(y; (0,m)). Conditions (P2) and (P3) is trivially satisfied. Then

[2;(0,n A d(2))] = [2; (0 A d(z),n A d(x))]
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So (z; (0,nAd(z))) ~ (y; (0,nAd(y))). Hence x(0,nAd(z)) = y(0,nAd(y)), verifying
(P1). O

REMARK 3.2.21. Let A be a k-graph. Suppose [z;m] € A°, then [z;(0,m)] €
L(A)A[z; m]. In particular, o(A)°Av # 0 for all v € A°.

THEOREM 3.2.22. Let A be a finitely aligned k-graph. Then the extension A s

finitely aligned. Furthermore, if A is row-finite, then so is A.

PROOF. Fix p,v € A, and let a € o(A)°Ar(p). It’s casy to see that A €
MCE(y, v) if and only if aA € MCE(au, av). So | MCE(u,v)| = | MCE(apu, av)|.
Since A is finitely aligned, | MCE(m(apu), m(av))| is finite, so it suffices to show that

| MCE(ags, av)] = | MOE(r(ap), 7(a2).

It follows from Lemma 3.2.19 that

| MCE(ags, o) > | MCE(r(ags), m(av))|
Suppose A, 3 are distinct elements of MCE(au,av). Then d(\) = d(f5). Since
r(aw),r(av) € t(A)?, Lemma 3.2.20 implies that 7(\) # 7(3). So | MCE(au, av)| =
| MCE(r(ap), 7(a1))]. ~

To show that if A is row-finite, then A is row-finite, we prove the contrapositive.
Suppose A is not row-finite. Let [x; m]KO and i < k be such that |[z; m]/~\6i
Then for each [y; (n,n+ €;)] € [z;m]A% we have [y;n] = [z;m], so [z: (m, m+ ¢;)] #
ly; (n,n + ¢;)] only if (P1) fails. That is,

= OQ.

(3.2.13) z(m Ad(x),(m+e) ANd(z)) #ynAdy), (n+e) Ad(y)).

= 00, there are infinitely many [y; (n,n + ¢;)] € [x; m]Kei satisfying
(3.2.13). Hence |z(m A d(x))A%| = co. O

Since |[z; m]A®

REMARK 3.2.23. Suppose that A is a finitely-aligned k-graph, that x € JA and
that £ C x(0)A. Since ¢ : A — «(A) is a bijective k-graph morphism, we have
E € z(0)FE(A) if and only if «(F) € [x;0]FE(L(A)).

The following results show how sets of minimal common extensions and finite

exhaustive sets in a k-graph A relate to those in A.

PROPOSITION 3.2.24. Suppose that A is a finitely-aligned k-graph, and that v €

t(N)°. Then E € vFE(L(N)) implies that E € vFE(A).

PROOF. Since v € t(A)°, we have v = [z;0] for some z € JA. Remark 3.2.23
implies that :=}(E) € 2(0)FE(A). Then A = [y; (0, p)] for some y € OA and p € N,
and there exists ¢t < d(y) such that y(0,t) € .7*(F). Hence ¢(y(0,t)) = [y; (0,¢)] € E.

Then trivially [y; 0(¢t V p)] € MCE([y; (0,p)], [y; (0,%)]). So E € vFE(A). O



3.3. TOPOLOGY OF PATH SPACES UNDER DESOURCIFICATION 71

LEMMA 3.2.25. Let A be a finitely-aligned k-graph and p,v € o(A). Then
MCE, (1, v) = MCEg (1, v).

PROOF. Since ¢(A) C A, we have MCE,a)(, v) € MCE5(u,v). Suppose that
A € MCEj(p,v). It suffices to show that A € «(A). Write p = [2;(0,n)],v =
[y;(0,9)] and A = [z;(0,n V ¢)]. We must show that d(z) > nV ¢. Since A\ €
Z(u) N Z(v), we have [z;(0,n)] = [2;(0,n)] and [z;(0,q)] = [y; (0, q)]. This implies
that d(z) > n and d(z) > ¢. Sod(z) >nVgq,so A= [z;(0,nV q)] € L(A). O

REMARK 3.2.26. Since there is a bijection between A™™(u,v) and MCE(u, v)
which maps (o, 3) to pa = v3, and since ¢ is a k-graph morphism, Lemma 3.2.25
implies that A™®(z, 1) = o(A)™0(y, v) for all p, v € o(A).

3.3. Topology of Path Spaces under Desourcification

Recall from Theorem 3.1.1 that for a finitely-aligned k-graph A, a basis for the
topology on W), is given by the sets

Z(\G) = Z(w\ | Z(w),

veg

where € A and G U, A%

We aim to extend the projection 7 defined in (3.2.12) on page 67 to the set of
infinite paths in A, and prove that its restriction to L(A)0/~\°° is a homeomorphism
onto t(dA). For z € t(A°)A>, let

pe = \/{p € N*: 2(0,p) € (M)},

and define 7(z) to be the composition of  with the inclusion of €y, in €y 4(,). Then

7(x) is a k-graph morphism. Our goal for this section is the following theorem.

THEOREM 3.3.1. Let A be a row-finite k-graph. Then 7 : ((A9)A>® — 1(OA) is a

homeomorphism.
We first show that 7 has range in ¢(A).

PROPOSITION 3.3.2. Let A be a finitely-aligned k-graph. Let x € KOO, and let p,
and 7(z) be as above. Suppose that {y, : n € NF} C OA satisfy [y,; (0,n)] = (0, n).
Then

(i) ,}5{# L(yn) = m(x) in W5; and
(ii) There exists y € ON such that w(z) = (y), and for m,n € N* with m <

n < p, we have w(x)(m,n) = t(y(m,n)).
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PROOF. For part (i), fix a basic open set Z(p \ G) C W5 containing 7(z). Let
N =V, cqd(pv). We will show that n > N implies that «(y,) € Z(p\ G). Fix
n > N. We first show that «(y,) € Z(u). Since w(z) € Z(u), we have d(u) <
d(m(z)) = p., and hence

p=m(x)(0,d(p)) = 2(0,d(n)) € t(A).

Since n > d(u), we have

[yn; (0, d(1))] = [yn; (0,7)](0, d(p))
= ((0,7))(0,d(1))
= 2(0,d(p))

Let @« = ¢t }(p). Then p = [az;(0,d(p))] for any 2 € s(a)AS>®. This implies that
[yn; (0, d(1))] = [z (0, d(p))]. Then (P1) gives

Uyn (0, d(p) N d(yn))) = e((@2)(0,d(p))) = v(a) = p.

We now show that ¢(y,) ¢ U,cq Z(nv). Fix v € G. If d(y,) # d(uv), then
trivially we have ¢(y,) ¢ Z(uv). Suppose that d(y,) > d(uv). Since n > N > d(uv)
by definition,

(0, d(pw)) = (2(0,1))(0, d(pv))

n)](0, d(uv))
= t(ya (0, d(pv)
= 1(yn)(0, d(pv

= [ynv (O
0 )

) € L(A).

So t(yn)(0,d(pr)) = z(0,d(uv)) = w(x)(0,d(uv)) # pv, as required.

For part (ii), we construct y € Wy such that m(x) = ¢(y) and prove that y € OA.
For m,n € N¥ with m < n < p,, we have 7(x)(m,n) € «(A), and thus the range
of m(z) is a subset of «(A). Since ¢ is injective, we can define y : Q,. — A by
(y(m, n)) = 7(@)(m,n). So i(y) = (z).

We now show that y € OA. To do this, fix m € N* such that m < d(y) and fix
E € y(m)FE(A). Weseek t € N* such that y(m, m-+t) € E. Let p := m+\V 5 d(p).
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Then
[yp; (0,m)] = [y: (0,p)](0,m) since m < p
= 2(0,p)(0,m)
= z(0,m)
= m(x)(0,m) since m < p,
= 1(y(0,m)) by definition of y
= [y(0,m)y’; (0, m)] for some y' € y(m)OA.

Then (P1) implies that

Yp(0,m A d(yy,)) = (y(0,m)y")(0,m A d(y(0,m)y")) = y(0,m).

In particular, this implies that y,(m) = y(m). Since y, € OA, there exists t € NF
such that y,(m,m +1t) € E. So m+t < p, and we have

Uyp(m, m + 1)) = [yp; (0,p)](m, m +t) = (0, p)(m, m +t) = x(m,m +1).
So z(m,m +t) € «(A), giving
yp(m,m+1t)) =z(m,m+1t)=mn(x)(m,m+1t)=1ly(m,m+1)).
Finally, injectivity of + gives
y(m,m+1t) =y,(m,m+t) € E,
as required. O

We must check that our definition of 7 on A is compatible with (3.2.12) when
we regard finite paths as k-graph morphisms. To do so, we use a few lemmas. The

following lemma is also crucial in showing that 7 is injective on ¢(A®)A%.

LEMMA 3.3.3. Let A be a finitely-aligned k-graph. Let x € A and r(z) € t(AY).
Suppose that w € OA satisfies m(x) = t(w). Then x(0,n) = [w; (0,n)] for alln € N

PROOF. Fix n € N*¥. Let 2z € A be such that z(0,n) = [2;(0,n)]. We aim to
show that (z;(0,n)) ~ (w;(0,n)). That (P2) and (P3) hold follows immediately

from their definitions. It remains to verify condition (P1):

(3.3.1) 2(0,n Ad(z)) = w(0,n A d(w)).
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Since 7(x) = «(w) we have d(w) = p,. Thus
[w; (0,7 A ps)] = t(w(0,n A py))
=m(z)(0,n A p)
=z(0,n A py)
= [z (0,n A pa)].
So (w; (0,n A psz)) ~ (2;(0,n A pg)). Then (P1) implies that
w(0, (n Apz) Ad(w)) = 2(0, (n A ps) Ad(2)).
Since d(w) = p,, we have
(3.3.2) w(0,n A pz) =2z(0,n A pg).
So d(z) > n A p,, hence n A d(z) > n A p,. Furthermore,
z(0,n Ad(2)) = [z;(0,n ANd(2))] = t(2(0,n Ad(2)) € t(A).
This implies that p, > nAd(z), hence n Ap, > nAd(z). SonAd(z) =nAp,. Since
d(w) = p,, equation (3.3.2) becomes (3.3.1) and we are done. O

LEMMA 3.3.4. Let A be a finitely-aligned k-graph. Suppose that y € OA and
m,n € N¥ satisfy m < n < d(y). Then
ly; (m,n)] = «(y(m,n)).

PROOF. We first show that (y; (m,n)) ~ (6" (y);(0,n —m)). That conditions
(P1)—(P3) hold follows easily: since m,n < d(y), we have

(P1) m <n <d(y) implies n — m < d(y) —m = d(c™(y)), so we have
y(m A d(y),n Ad(y)) = y(m,n)
= 0"(y)(0,n —m)
=" ()0 Ad(a"(y)), (n —m) Nd(a™(y)));
(P2 m—mAdly)y=m—m=0=0—-0Ad(c™(y));
(P3) n—m = (n—m)—0.
Then

ly; (m,n)] = [0"(y); (0,n = m)] = (a™ (y)(0,n —m)) = «(y(m, n)). B

We can now show that our definitions of 7 for finite and infinite paths are

compatible:

PROPOSITION 3.3.5. Let A be a finitely-aligned k-graph. Suppose that x € KOO,
and m < n € N*. Then w(x(m,n)) = w(z)(m A pzyn A ps).
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PRrooF. Fix y € 0A such that m(z) = ¢(y). Then

m(x(m,n)) = w(ly; (m,n)] by Lemma 3.3.3
= [y; (m A peyn A ps)] since d(y) = ps
= 1(y(m A pg,n A ps)) by Lemma 3.3.4
=m(x)(m A pg,n A p;) by Proposition 3.3.2(ii).
as required. l

We can now show that 7 restricts to a homeomorphism of L(A)0/~\°° onto t(OA).
We first show that it is a bijection, then show it is continuous. Openness is the

trickiest part, and the proof of it completes this section.

PROPOSITION 3.3.6. Let A be a finitely-aligned k-graph. Then the map 7 :
L(AYA™ — L(DA) is a bijection.

PROOF. We first show that 7 is injective. Fix z,y € t(A?)A* such that 7(z) =
7(y), and w € JA such that 7(z) = 7(y) = t(w). Then Lemma 3.3.3 implies that

l‘((), n) = [w; (0771)] = y(07n)

for every n € N*. This implies that z = y, and so 7 is injective.

To see that 7 is onto ¢(OA), let w € A and define z : Q) — A by z(p,q) =
[w; (p,q)]. Then p, = d(w), and r(z) = z(0,0) = [w; (0,0)] = ¢(w(0,0)) € t(A). To
see that 7(x) = 1(w), fix m,n € N¥ with m <n < p, = d(w). Then

7(x)(m,n) = x(m,n) by Proposition 3.3.5
= [w; (m,n)] by Lemma 3.3.3
= 1(w(m,n)) by Lemma 3.3.4
= (w)(m,n) by Proposition 3.2.14.
Thus 7(z) = t(w), and 7 is onto. O

PROPOSITION 3.3.7. Let A be a finitely-aligned k-graph. Then m : L(AO)/N\OO —

L(ON) is continuous.

PROOF. Fix a basic open set Z(pu\ G) € Wi. If Z(p\ G) N (OA) = 0, then
7 HZ(u\ G)N(ON)) = 0 is open. Suppose that Z(u\ G) N(OA) # 0, and fix
y € Z(pn\ G)Nu(OA). Let F =G Nu(A). We will show that

(3.3.3) 7 Hy) € Z(u\ F)N (KOO Nrt(u(A)) C 7 H(Z(r\ G) NL(OA)).
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Let x = m!(y). We first show that z € Z(u). Since 7(x) =y € Z(u) N (ON), we
have d(p) < p, = m(x). This implies that

2(0,d(p)) = m(2)(0,d(p)) = y(0,d(p)) = p.

Now we will show that = ¢ Jgep Z(13). Fix 3 € F. Suppose that d(uf) £ d(y) =
pz. Then by definition of p,, we have x(0,d(uf3)) ¢ ¢(A). Since uf € «(A), we must
have x(0,d(puf3)) # pB. Now suppose that d(uf) < d(y) = p., then

2(0,d(pp)) = m(x)(0,d(uf)) = y(0,d(ud)) # s

as required. So 7 Hy) =x € Z(u\ F).
We now show that

Z(u\ F)Nu(A)°A® C 7Y Z(u\ G) N u(BA)).

Let z € Z(u\ F) N u(A)°A>®. Since z € dom(7), we just have to show that m(z) €
Z(p\ G). Recall that y € Z(u) Ne(OA). This implies that p € (A), so 2(0,d(u)) =
p € t(A), and thus 7(2)(0,d(p)) = 2(0,d(p)) = p. So 7(2) € Z(p).

Now we show that 7(z) ¢ U, Z(pwv). Fix v € G. If d(puv) £ d(n(2)), then
trivially 7(z) ¢ Z(uv). So suppose that d(uv) < d(w(z)) = p.. If v ¢ «(A), then
since range(m(z)) C «(A), we have 7(2)(0,d(uv)) # pv. So suppose that v € o(A).
Then v € F and since z € Z(u \ F), we have

m(2)(0, d(pr)) = 2(0, d(uv)) # pv.

Som(z) € Z(u\G), and thus z € 7~ 1(Z(u\ G) Ne(IA)). So (3.3.3) holds, and hence

7 1s continuous. O

To show that 7 is open, and hence a homeomorphism, we use the following

results.

LEMMA 3.3.8. Let A be a finitely-aligned k-graph. Let u € L(AO)K and let G be
a finite subset of s(p)A. Then

(Z(1\ G) N (A”)A®) C Z(x(u) \ 7(G)) N o(OA).

PROOF. Suppose that m(y) € 7(Z(u \ G) N (A°)A®). Trivially m(y) € 1(OA).
We will show that 7(y) € Z(7(p) \7(G)). First we show that 7(y) € Z(n(n)). Since
y(0,d(p)) = i, we have

() = m(y(0,d(p))) = 7(y)(0,d(1) A py).

So w(y) € Z(n(p)). Furthermore, d(m(p)) = d(p) A py.
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Fix v € G. We will show that 7(y) ¢ Z(m(uvr)). Since y € Z(u \ G, we
have y(0,d(uv)) # pv. Since d(y(0,d(uv))) = d(uv) and r(y) = r(uv) € o(A),
Lemma 3.2.20 implies that

m(pw) # m(y(0,d(uv))) = m(y)(0, d(uv) A py). O

The following discussion and example arose in preliminary work on a proof that
7 is open when A is row-finite and locally convex. Though we have now found a
proof that works for row-finite k-graphs in general, we have retained this example
since it helps illustrate some of the issues surrounding the map .

Recall that, for a finitely aligned k-graph, the sets Z(u \ G) ranging over u € A
and finite G C Ule A% form a basis for a locally compact Hausdorff topology
on Wy, hereafter referred to as 1. The collection {Z(u) : u € A} of cylinder
sets also form a basis for a topology: they cover Wy, and if z € Z(\) N Z(v),
then z € Z(z(0,d(\) vV d(v))) C Z(A) N Z(v). This topology, denoted 7, is not
necessarily Hausdorff: we cannot separate any edge from its range: if r(f) € Z(u)
then p = r(f), and thus f € Z(u).

It may seem reasonable to expect that {Z(u) NOA : p € A} is a basis for the
restriction of 7 to OA. However, this is not so. To see why, consider the following

2-graph

€0 €1 €2 €q.---

AN

Let x = z1xox3 ... and let y be the boundary path beginning with eq. So z,y € OA.
Let p be such that z € Z(u). Then p = x;...x, for some n € N, so y € Z(u)

also. So the topology 7 is not Hausdorff even when restricted to dA. Endowed

. . .
I I I

I I I

I I I

I I I

I I I

I I I

v v v

. . .

with 75, it is easy to see how to separate these two points: y € Z(eg) N OA and
x € Z(r(x)\ {eo}) NOA, and these two sets are disjoint.

If we restrict ourselves to locally convex k-graphs, 71 and 75 do restrict to the
same topology on JA: certainly, for each p € A, we can realise a cylinder set Z(u)

as a set of the form Z(u\ G) by taking G = 0. Now suppose that x € Z(u\ G)NOA.
We claim that

vy = (0, ( \/ d(pa)) Ad(z))
aeG
satisfies

r € Z(v,) NOAN C Z(p\ G) NOA.
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By definition of v,, we have z € Z(v,) NOA. The containment requires a little more
work. Let y € Z(v,) N OA. Then since x € Z(u) and d(p) < d(v;), we have

y(0,d(p)) = v2(0,d(p))) = x(0,d(p)) = p-

Soy € Z(u). Fix a € G. We will show that y ¢ Z(u«a). If d(y) ? d(ua), then
trivially y ¢ Z(pa). Suppose that d(y) > d(pa). We claim that d(z) > d(u«)
also: suppose, for a contradiction, that d(xz) # d(pa). Then there exists ¢ < k
such that d(z); < d(pa);. Then d(z); = d(v,);. Since x € OA, we must have
z(d(vy))A% ¢ x(d(v,))FE(A). Since A is locally convex, Lemma 3.0.19 implies that

y(d(v2)) A = x(d(v)) A% = 0.
So d(y); = d(v,); = d(x); < d(pa);, a contradiction. Hence d(x) > d(pa). This
implies that d(v,) > d(ua). So y(0,d(ua)) = v.(0,d(pa)) = (0, d(pa)) # pa.
Although 7r|L( A0yAs 18 in fact open for all row-finite k-graphs (Proposition 3.3.10),

it behaves particularly well with respect to cylinder sets for locally convex k-graphs:

PROPOSITION 3.3.9. Suppose that A is a row-finite, locally convex k-graph, and
let 1 € L(A)A. Then

(2 (1) N u(A)A®) = Z(m(p)) N L(OA).
In particular, ™ is open.

PROOF. Lemma 3.3.8 implies that 7(Z () Ne(A°)A®) € Z(m(1)) Nu(dA), so we
need only show the opposite containment. Suppose that x € Z(m(u)) Ne(OA). By
Proposition 3.3.6, there exists a unique element y € ¢(A)°? such that 7(y) = z. Then
y € (AY)A®. We claim that y € Z(u). Write u = [2;(0,d(u))] and 7(y) = ¢(w)
for some z,w € OA. Then w(u) = [2;(0,d(u) Ad(z))] and y(0,d(n)) = [w; (0,d(w))].
We claim that (z;(0,d(u))) ~ (w; (0,d(w))). We must verify conditions (P1)—(P3).
That (P2) and (P3) hold follows immediately from their definition. To show that
(P1) is satisfied, we must show that z(0,d(u) A d(z)) = w(0,d(u) A d(w)). Since
(y) =z € Z(u), we have y € Z(m(p)). Then

[w; (0, d(m(w)))] = y(0,d(7(n))) = m(p) = [2;(0,d(p) A d(2))].
Since d(w) = d(z) > d(r (), equation (P1) from the equivalence (w; (0, d(r(1)))) ~
(2;(0,d(p) A d(2))) implies that
w(0,d(m(p))) = w(0,d(w(p)) A d(w)) = (0, d() A d(2)).
Furthermore, this yields d(m (1)) = (1) Ad(z). We will show d(u) Ad(w) = d(n(1)).

Fix i < k. We argue the following cases separately:

(1) d(m(p))i < d(p)i, and
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(2) d(r(p)): = d(p)-

Case (1): we have min{d(u);, d(z);} = d(w(p)); < d(u);. So d(2); < d(p);, and thus
d(m(p)); = d(2);. Since z € JA, this implies that z(d(m(u)))A% ¢ z(d(mw(u)))FE(A).
Then by Lemma 3.0.19, we have z(d(m(u)))A% = (). Furthermore, z(0,d(7(p))) =
w(0,d(m(p))) implies that w(d(m(u)))A% = 0. So d(w); = d(n(p));. Then d(u); >
d(w)i, hence (d(p) A d(w)); = d(w); = d(m(p))s-

Case (2): we have d(w) = d(z) > d(n(p)), so d(m(p)); = d(p); implies that
d(w); = d(p)i- Hence (d(p) A d(w))i = d(p)i = d(m ()i So d(p) A d(w) = d(m(p)).

Now we have
w(0, d(p) A d(w)) = w(0,d(m(p))) = (0, d(u) A d(z)),
verifying equation (P1). O
We now prove that W\L( A0YRe 1S open for all row-finite k-graphs. Note, however,

that in this generality it does not carry basic open sets to basic open sets as it does

under the additional hypothesis of local convexity.

PROPOSITION 3.3.10. Let A be a row-finite k-graph. Then m : 1(A°)A> — 1(9A)
1S open.
PROOF. Fix 7(y) € m(Z(1\ G) N (A°)A>), and let w € OA be such that
m(y) = t(w). Let A =y(0,V, e d(pv)), and define
F = {s(m(N)e(A%) = d(N); > d(m(y))i}-
We claim that
m(y) € Z(m(A\) \ F) N 1(0A) € 7(Z(n\ G) N t(A°)A®)).

First we will show that 7(y) € Z(w(\)). By Lemma 3.3.3, we can write A =
[w; (0,d(N))], then 7(A) = [w; (0,d(N) A d(w))]. Since d(w) = d(n(y)) = p,, we have

Now we show that m(y) & Uscp Z2(m(A)f). Fix f € F; say d(f) = e;. Then
d(m(y)); < d(X); by definition of F. Since d(m(y)) = d(w) we have d(w); < d(M);,
and thus

d(m(A)); = min{d(A);, d(w);} = d(w); = d(7(y)):-
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So d((y)) # d(rm , and hence 7(y) ¢ Z(n(\)f). So 7(y) € Z(n(A)\ F)Ne(OA)
as requlred.

Now we will show that Z(x(A)\ F)Ne(OA) C 7(Z(1\ G)Nu(A°)A®)). Let w(3) €
Z(r(A)\ F) Ne(0A). We aim to show that § € Z(u\ G). Since Z(\) C Z(p\ G),
it suffices to show that g € Z(\).

We first show that 5 € Z(7(\)\ F). We have g € Z(n(8)) C Z(7()\)). We need
to show that 8 ¢ U Z(m(A)f). Fix f € F. Since m(A)f € ¢(A), we have

a€ Z(n(N)f) = w(a) € Z(x(N\)f).

Since w(3) ¢ Z(w(\)f), we have 8 ¢ Z(mw(\)f). This is true for all f € F, and thus
Be 2\ F).

If d(A\) = d(w(\)) then w(A) = X and the preceding paragraph implies that
8 € Z(N). So suppose that d(\) > d(mw(\)), and let 7 = B(d(w(N)),d(N)). We know
that 5(0,d(mw(X))) = A(0,d(m(N))) = w(N), so we aim to use Lemma 3.2.20 to show
that 7 = A(d(mw(N)),d(N)). Fix @ < k such that d(\); > d(7()));, or equivalently
that d(7); > 0. Then d(7()\)) = d(\) A d(w) implies that d()\); > d(w); = d(7(y)):.
Furthermore, § € Z(m(\) \ F) implies that 7(0,¢;) ¢ F. In particular, 7(0,¢;) ¢
t(A). We claim that d(w(7)) = 0. Suppose, for a contradiction, that d(w(7)); > 0
for some 57 < k. Then

m(7)(0,¢5) = 7(0,¢5) & t(A).

But (1) € «(A) by definition of 7. So we must have d(7(7)) = 0. This implies that

Now Lemma 3.2.20 implies that 7 = A(d(w(X)),d())). Then
(0, A) = 80, d(x(N)7 = (M) Ad(x(A)), d(A)) = A. 0

ExaMPLE 3.3.11. We can see that 7 is not open for non-row-finite graphs by
considering an earlier 1-graph example from subsection 3.2.1. Consider the graph
E with E° = {v} and E' = {f; : i € N} where s(f;) =r(f;) = v for all i € N. That

is, an infinite number of loops on a single vertex v:

&

v

Setting Mor(A) = E*, Obj(A) = E° and d(\) = |A| yields a 1-graph A. We can
apply the construction §3.2 to A to yield the 1-graph A with the following skeleton.
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&

U ......
H1 M2

Then Z(p1) N e(A)°A® = {ips - -+ } is open in A, and 7(Z (1) N o(A)°A®) = {v}.
Since OA = A, any basic open set in OA containing v is of the form Z(v\ G) for some
finite G C A!. Since A is infinite, there is no finite G C A' such that Z(v\G) C {v}.

Hence {v} is not open in A, and 7 is not an open map.

ProoOF OF THEOREM 3.3.1. Propositions 3.3.6, 3.3.7 and 3.3.10 say precisely

that 7 is a bijection, is continuous, and is open. 0

3.4. High-Rank Graph C*-algebras

DEFINITION 3.4.1. Let A be a finitely aligned k-graph. As is standard in the
literature (for example [8, 22]), a Cuntz-Krieger A-family in a C*-algebra B is a

collection {t, : A € A} of partial isometries satisfying

(CK1) {s,:v € A%} is a set of mutually orthogonal projections;
( ) SuSy = 8, whenever s(p) = r(v);

(CK3) 8350 = D (0 )eamin(un) Sas5 for all p,v € A; and

(CK4) [1,cp(sw — sus;,) = 0 for every v € A® and E € vFE(A).

The C*-algebra C*(A) of a k-graph A is the C*-algebra generated by a Cuntz-
Krieger A-family {s, : A € A}, which is universal in the sense that if {t, : A € A} is
a Cuntz-Krieger A family in a C*-algebra B, then there exists a C*-homomorphism
7 : C*(A) — B such that 7(sy)) = t, for all A € A.

REMARK 3.4.2. The following Theorem is stated as [7, Theorem 2.28]. Farthing
alerted us to an issue in the proof of the theorem. It contains a claim which is
proved in cases, and in the proof of Case 1 of the claim (on page 189), there is an
error when iy is such that m;, = d(z);, + 1. Then a;, = d(z),,, and [7, Equation

(2.13)] gives t;, < d(2);,; not t;, > d(2);, as stated.

THEOREM 3.4.3. Let A be a row-finite k-graph. Let C*(A) and C*(A) be gen-
erated by the CuntzKrieger families {sy : A € A} and {ty : A € A}. Then the

SUM D,y Lo converges strictly to a full projection p € M(C*(A)), pC*(A)p =

C*({tuny - A € A}), and s +— 1,5 determines an isomorphism ¢ : C*(A) = pC*(A)p.

Before proving Theorem 3.4.3, we need the following results.
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PROPOSITION 3.4.4. Let A be a finitely aligned k-graph. If {t\ : X\ € K} is a
Cuntz-Krieger A-family, then {t, : A € «(\)} is a Cuntz-Krieger o(\)-family.

ProOF. Conditions (CK1) and (CK2) hold because {t, : A € A} is a Cuntz-
Krieger A-family. Conditions (CK3) and (CK4) follow from Remark 3.2.26 and

Proposition 3.2.24 and the corresponding relations in C*(A). O

REMARK 3.4.5. Let C*(A) and C*(¢(A)) be generated by the Cuntz-Krieger
families {sy : A € A} and {ty, : A € «(A)} respectively. Since ¢ is a k-graph
isomorphism from A onto ¢(A), it follows that {¢,() : A € A} is a Cuntz-Krieger A-
family in C*(¢(A)). Hence the universal property of C*(A) gives a C*-homomorphism
C*(A) — C*(¢(A)) such that s,(n) — ¢y for each A € A. Similarly, there exists a
C*-homomorphism C*(¢(A)) — C*(A) such that ty +— s,-1(5) for each A € ((A).
Hence C*(A) = C*(«(A)).

Let A be a finitely aligned k-graph. Following [22, §3], we denote by 7 the gauge
action vy : T — Aut(C*(A)), which is a strongly continuous action determined by

7.(s5y) = 2% My where 2™ = 2" ... zp* e T.

PROPOSITION 3.4.6. Let A be a finitely aligned k-graph, and let {t\ : X € K}
be the universal Cuntz-Krieger A-family which generates C*(A). Then C*(A) is
isomorphic to the subalgebra of C* (K) generated by {t) : A € t(A)}.

PRrROOF. Remark 3.4.5 tells us that C*(A) = C*(4(A)), so it suffices to prove that

C*(¢(A)) is isomorphic the subalgebra of C*(A) generated by {t) : A € «(A)}.
Let {s) : A € t(A)} be the universal Cuntz-Krieger ¢(A)-family which generates

C*(t(A)). Let A be the subalgebra of C*(A) generated by {t) : A € «(A)}. By
Proposition 3.4.4, {t) : A € «(A)} is a Cuntz-Krieger ¢(A)-family and the universal
property of C*(1(A)) gives a s-homomorphism 7 : C*(:(A)) — C*(A) such that
m(sy) = ty for all A € «(A). Since m maps the generators of C*(¢(A)) onto the
generators of A, we have m(C*(c(A))) = A. It follows from [22, Proposition 2.12]
that ¢, # 0 for all v € A°. It then follows that 7(s,) =, # 0 for all v € ¢(A)°.

We now show that 7 is injective. Let 6 : TF — Aut(C*(A)) and v : TF —

Aut(C*(¢(A))) denote the gauge actions on C*(A) and C*(¢(A)) respectively. For
all z € T and X € ¢(A) we have

(0: 0m)(sx) = 0.(Ly)
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So f,om = mon, for all z € T*. Hence, by [22, Theorem 4.2], 7 is injective, and
thus we have m(C*(¢(A))) = A, as required. O

LEMMA 3.4.7. Let A be a finitely-aligned k-graph. Let A € /NX, and let N =
A(d(m(N)),d(N)) so that A = w(A)N. Suppose that © € OA satisfies v(r(zx)) = r(N)
and d(x) ANd(N') =0. Then X = [x;(0,d(\N))].

PrOOF. Write A = [y; (0,d(N))], then X = [y; (d(A\) Ad(y),d()\))]. We must show
that (y; (d(A) A d(y),d(N)) ~ (x;(0,d(N)). That conditions (P2) and (P3) hold
follows immediately from their definitions. It remains to show that (P1) is satisfied.
That is, that y(d(A\) Ad(y), d(A\) Ad(y)) = z(0,d(N) Ad(zx)). Since d(x) Ad(N) = 0,
it suffices to show that y(d(A\) A d(y)) = z(0). We have

r(X) = [y;d(N) Ad(y)] = Wy (d(X) Ad(y)))-

Injectivity of ¢ then gives y(d(X) A d(y)) = x(0). O

~
~—~
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—
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~—
~—
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~
—~
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—
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~—
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LEMMA 3.48. Let A € A. Let N = Ad(n(\)),d()\) so that X = w(A\)N, and
define

Gy = U{a € s(m(\)e(A)% : MCE(a, X') = 0}.

Then Gy U {XN'} € s(m(N))FE(A).

PROOF. Fix p € s(w()))A, and suppose that MCE(y, a) = () for all a € G,. We
will show that MCE(u, X) # 0. Fix v € s(u)A%)VdN)=dw)  Then d(uw) > d(X). Tt
suffices to show that MCE(uv, ') # (0. Write uv = [z; (0, d(uv))].

We first show that d(XN)Ad(m(ur)) = 0. We suppose that d(A)Ad(m(pv)) > 0 and
seek a contradiction. Since d(7(uv)) = d(uv)Ad(z), we have d(N)Ad(uv)Ad(z) > 0.
So there exists ¢ < k such that d(\);,d(uv);, and d(z); are all greater than zero.
Then

(1) (0, €1) = [2; (0, &)] = 1(2)(0, €5) = ¢(2(0, €)) € ¢(A).
Since 7|,y = idya) and w(X') = s(7(N)) # N, we have X' ¢ ((A). This implies
(uv)(0,e;) # N(0,e;). So MCE((ur)(0,¢e;), ') = 0, and thus (ur)(0,e;) € Gy. But
MCE(uv(0, €;), uv) # (), which implies that MCE(p, ur(0, €;)) # 0. This contradicts
our supposition that MCE(u, a) = 0 for all & € G. So d(N) Ad(mw(uv)) = 0.
Since we chose v such that d(ur) > d()\'), we have

d(z) Nd(N) =d(2) ANd(uv) Ad(N) = d(m(uv)) Ad(X) =0

Since r(\') = r(uv) = (r(z)), Lemma 3.4.7 implies that A" = [z; (0, \')]. Thus
pv = [2; (0, )] € MCE(uv, X). O
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PROOF OF THEOREM 3.4.3. Let A := C*({ty : A € ¢«(A)}). Then A = C*(A)
by Proposition 3.4.6. We will show that A is a full corner of C’*(/N\)

Following the argument for [19, Lemma 2.10], the sum _ ., oty converges

’UGL

strictly in M (C* (K)) to a projection p satisfying
tath i T(N), () € L(A)Y

(3.4.1) piat,p = '
0 otherwise.

We first show that p is a full projection in M (C*(K)), suppose that J is an ideal
in C*(A) such that pC*(A)p C J. Let v € A°, and a € w(v)Av. Then t, = tr(a)ta-
Since r(a) = w(v) € ¢(A), we have t,() € pC*(A)p C J. So to € J, and hence
ty =tit, € J. So for any X € A, we have ty = t,otx € J. So {ty: A € A} C J, and
thus J = C*(A).

We now show that A = pC*(A)p. It follows from (3.4.1) that A C pC*(A)p.
Now suppose that A\, u € L(A)OK. We will show that ptit;p € A. In order to show
this, we first show that

(3.4.2) A(d(m(A)), d(N)) = p(d(m(p)), d(p)).
Let 2,y € OA such that A = [z; (0,d(\))] and g = [y; (0, d(x))]. Let
A= A(d(7 (X)), d(N)) and p' = p(d(m(p)), d(p)),
so A =m(A)N and p = 7(p)’. We have
N = [z; (d(\) Ad(x),d())]  and
= [y; (d(p) A d(y), d(p)]-
We claim X' = g/, Condition (P2) is trivially satisfied. Since [z;d(\)] = 5(\) =
5(p) = [y;d(p)], (V1) and (V2) imply that
z(d(X) Ad(z)) = y(d(p) Ad(y)) and
d(A) —d(A) ANd(x) = d(p) — d(p) A d(z),

which are precisely equations (P1) and (P3). Hence X = /.

CLam 3.4.8.1. Let Gy = Ul {a € s(m(\)e(A)% : MCE(a, ) = 0}. Then
tuty = [ (tseo — tats)
aeG)y
PROOF. Lemma 3.4.8 implies that G,U{ '} is finite exhaustive, so (CK4) implies
that

I (o —tsts) =0.

BeG\U{N}
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Furthermore,
II (oo —tats) = ( I (tsmon - tat2)>(ts(w<x>> —tvty)
/BEGAU{A,} aeG)y
= ( TT (oo — tat)) = (83 TT (toimiry — tati))-
aeG)y aeG)
Fix a € G). By [22, Lemma 2.7(i)],
vty (taeoy — tal) = It — > 1]
YEMCE(X )
- t>\/t§\l.
S0
0= H (ts(w()\)) — ngtz) = H (Zfs(ﬁo\)) — tatZ) — t)\/ti/,
BEGA\U{N} aEG)y
as required. Uctaim

Now we put the pieces together:

piat,p = tat,

= tﬂ(/\)t)\/t;/t;(#) by (342)
=1x(\ H (ts(w()\)) — tatj;)tj;(#) by Claim 3.4.8.1.
aeG)y

which belongs to A since m(A), m(u), € ¢(A) for all @ € Gy. So A =pC*(A)p. O

3.5. The Diagonal and the Spectrum

For k-graph A, we call C*{s,s; : p € A} C C*(A) the diagonal C*-algebra of A
and denote it Dy, dropping the subscript when confusion is unlikely.

THEOREM 3.5.1. Let A be a row-finite higher-rank graph. Let p € M(C*(A))
and < : C*(A) — pC*(N)p be from Theorem 3.4.3. Then the restriction <|p, =: p is
an isomorphism of Dy onto pDxp. Let m : L(A)O/~\°° — 1(OA) be the homeomorphism
from Theorem 8.3.1, then there exist homeomorphisms hy : ON — A(Dy) and
n: L(A)OKOO — A(pDzp) such that the following diagram commutes.

7

L(A)OA> L(OA)
nk hpott
A(ij\p) . A(Dy)
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To prove this, we use several technical results. As in [20], for a finite subset
F C A, define VF := Jge p MCE(G) = Ugep {A € Nyeg i - d(X) =V ieq d(p) }-

LEMMA 3.5.2. Let A be a finitely aligned k-graph and let F be a finite subset of
A. Suppose that r(\) € F for each A € F. For u € F, define

VF . * * *
Q. = Susy, H (8183 = Sup Sy )-
' €VE\{u}

Then the qZF are mutually orthogonal projections in span{sus; : € VE}, and for
each v € VF

(3.5.1) S,85 = Z a5

vv'eVF
PROOF. Since
* * * _ * _ *
SuS), H (8uSp = Sup' Syur) = SuS), H (Sr(u) = S’ Sppr)s
pr' EVI\{} pe' EVEF,d(p')#0

20, Proposition 8.6] says precisely that the ¢’ are mutually orthogonal projections.
o

That
sy = Y G
vv'evF
is established in the proof of [20, Proposition 8.6] on page 421. 0]

REMARK 3.5.3. Replacing F' with VF'in Remark 2.4.3, the same argument gives

0 =5 TL (e —swsin))sie

p€s(u)A\{s(r)}
up' EVE

PROPOSITION 3.5.4. Let A be a finitely aligned k-graph. Then D = spﬁ{s#sz :
€ A}, and for each x € OA there exists a unique h(x) € A(D) such that
L ifw=pp

h(z)(sus;,) = _
0 otherwise.

Moreover, x — h(x) is a homeomorphism h : OA — A(D).

PrROOF. We will first show that D = span{s,s; : p € A}. Let p,v € A. Then
by multiplying s} s, on the left by s, and on the right by s;, it follows from (CK3)
that

() (sst) = 3 sasi
AEMCE(p1,v)
So span{s,s’ : u € A} is closed under multiplication and is thus is a *-subalgebra of
C*(A). Hence the closed span is a C*-algebra. Since D is the smallest C*-subalgebra
of C*(A) containing the generators {s,sy}, we have D = span{s,s;, : p € A}.
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Fix x € OA and ) uer usus, € span{su : i € A}. By setting extra coefficients

to zero we can assume that each path in F' has its range in F, and write
* *
E busus, = g busus),
uEF pEVE

Let n = \/{p € N*: 2(0,p) € VF}. Since VF is a finite set of finite paths, n is finite.
Since VF is closed under minimal common extensions, z(0,n) € VF. Furthermore,

since x € 0\, we have

F,={y € x(n)A\{z(n)} : z(0,n)y’ € VF} ¢ x(n)FE(N).
So there exists v € x(n)A such that for each ' € F,, MCE(v,u/) = (. Then
susy sy =0 for all p' € F,. Applying Lemma A.0.7 with p = s;(n), o = 5,5, and
Q= {sws; : p' € Fy}, we have [] ,cp. (Sen) — sws)y) # 0. So
qf(oyn) = Su(0.n) H (Sa(n) — SH'SZ’>S;(O,n) # 0.

MIEF‘w
Then by Lemma A.0.6 we have

|5 o= 5 (5w

VEVF HEVEF
VGZ(M)

’ by Lemma 3.5.1

= max

by Lemma A.0.6
{vevF:qyF+£0}

HEVEF
vEZ (1)

since ¢,/(g,) 7# 0

since b, = 0 for p € VF \ F.

Hence the formula

(3.5.2) h(x)(Zbusus;) = Z b,

peF peF
z€Z (1)

determines a norm-decreasing linear map on span{s,s’, : u € A}.
We now show h(z) is a homomorphism. Since h(x) is continuous and linear, it

suffices to show that

(3.5.3) P (505 5055) = h()(505%) B(z)(505)-
Calculating the right hand side of (3.5.3) yields

1 ifzeeZ Z(lo
h(w)(s,5%) h(z)(sash) = < .(/L)ﬂ (@)
0 otherwise.
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Calculating the left hand side of (3.5.3) gives

h(@) (5,57, 505%) = h(x)( 3 w;).
AEMCE(p,0x)

Since d(A) = d(u) V d(a) for all A € MCE(u,«), there exists at most one \ €
MCE(u, ) such that z € Z(\). Such a A exists if and only if z € Z(u) N Z(«), so
we have

1 ifzeZ(a)N Z(p)

h(@)(s8,5a50) =

0 otherwise.
Thus we have established (3.5.3), and hence h(z) is a homomorphism. Since h(x) is
a nonzero bounded linear map on a dense subspace of D, and since multiplication
is continuous, h(x) extends uniquely to a nonzero homomorphism h(x) : D — C.

We claim the map h : OA — A(D) is a homeomorphism. The trickiest part is to

show h is onto:

CrAam 3.5.4.1. The map h is surjective.

PROOF. Fix ¢ € A(D). We seek x € OA such that h(x) = ¢.

We know ¢(p) € {0,1} for any projection p € D, and that for each n € N¥,
{sus;, + d(p) = n} are mutually orthogonal projections. It follows that for each
n € N¥ there exists at most one v™ € A" such that ¢(s,ns%.) = 1.

Let S denote the set of n for which such v™ exist. If v = puv/ and ¢(s,s}) = 1,
then

1= ¢(s,s,) = ¢(5vszsu52) = 925(51/5;)925(5#5;) = 925(5#5;)-
This implies that if n € S and m < n, then m € S and v = v"(0,m). Set
N := VS, and define z : Qy — A by z(p,q) = v(p,q). Then x is a k-graph
morphism because each 14 is.
We now show z € OA. Fix n € NF such that n < d(z), and E € z(n)FE(A). We
seek m € N¥ such that z(n,n +m) € E. Since FE is finite exhaustive, (CK4) says
that

H(SZ(") —sy8y) = 0.

\eE
Multiplying on the left by s, ) and on the right by Sy (0n) yields

H(Sx(ovn)SZ(O,n) - SI(Om))\S;(O,n))\) =0.
AEE
Since ¢ is a homomorphism, this implies that

H(¢(Sz(07n)5;(0,n)) - ¢(5z(0,n)/\5;(0,n)A)) = 0.

AEE
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So there exists A € E such that

0= QS(Sx(O,n)S;(O,n)) - QS(Sx(O,n))\S;(O,n)A)
= A(s8un8yn) — A(52(0.m)AS2(0.))
=1 — (82(0.m)28%(0.n)2)

Hence ¢(su0m)285002) = 1, giving z(0,n)A = N = 2(0,n + d(\)). Hence
x € OA.
Now we must show that h(z) = ¢. For each p € A we have

P(sus,) =1 <= d(p) € S and v =
= 2(0,d()) =
< h(x)(sus,) = 1.

Since both ¢(s,s},) and h(z)(s,s;,) only take values in {0, 1}, it follows that h(z) =
¢' |:|Claim

To see that h is injective, suppose that h(x) = h(y). Then for each n € N¥, we

have

h(y)(Sx(o,nAd(x))S:;(o,nAd( ) = h(z)(s, OnAd(a:))S:c(o nAd(z ))) =1
Hence y(0,n A d(z)) = 2(0,n A d(z)). By symmetry, we also have y(0,n A d(y)) =
z(0,n A d(y)) for all n. In particular, d(z) = d(y) and y(0,n) = z(0,n) for all
n < d(z). Thus z = y.

We now show that h is continuous. Suppose z" — x. We must show that
h(z™)(a) — h(x)(a) for each a € D. We will first show that for each u € A, there
exists N such that n > N implies that h(z")(s.sy) = h(z)(sus},). Since 2" — uz,
there exists Ny such that n > Ny implies that 2" (0, d(u) Ad(z)) = z(0,d(p) Ad(x)).
Fix n > Np. Suppose that h(z)(s,s;,) = 1. Then x(0,d(;)) = p. In particular,
2™(0,d(p)) = x(0,d(p)) = p, so h(z")(s,s;,) = 1. Now suppose that h(z)(s,s},) = 0.
Then z(0,d(p) A d(x)) # p, so 2"(0,d(p) A d(x)) # p, and thus h(z")(s,s;) = 0.
Since h(x) and the h(z") are linear, h(z") converges to h(x) in span{s,s} : p € E}.
An ¢/3 argument similar to that on page 33 shows that h is continuous on D.

Finally, we show that h is open. Since h is a bijection, it suffices to show that
h~! is continuous. Suppose that h(z™) — h(x). We will show 2" — z. Fix a basic
open set Z(u) containing , so h(x)(s,s}) = 1. We seek N € N¥ such that n > N
implies that 2™ € Z(u). Since h(z") — h(z) in A(D) and h(z")(s,s},) € {0,1} for
all n, there exists N € N* such that n > N implies h(z")(s,s%) = 1. So 2" € Z(u)

as required. 0

We can now prove our main result.
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PROOF OF THEOREM 3.5.1. Let A be a row-finite k-graph, and A be the des-
ourcification described in Proposition 3.2.10. Let {sy : A € A} and {t, : A € A} be
universal Cuntz-Krieger families in C*(A) and C*(A). Let A be the C*-subalgebra
of C’*(/~\) generated by {t) : A € ((A)}, and define the diagonal subalgebra of A by
D, = span{tity : A € ((A)}. Replacing £t} with ¢\t in the proof Theorem 3.4.3
ylelds Ds = pD;p. Since A = C*(A), it follows that Dy = Dy. Thus Dy = pDip
as required.

We now construct n and show that it is a homeomorphism. That p commutes
with Dj implies that pD;p is an ideal in D;. Then [23, Propositions A26(a) and
A27(b)] imply that map k : ¢ — ¢[,p,, is a homeomorphism of {¢ € A(Dg) :
¢lpp.p # 0} onto A(pDgp). Since A is row finite with no sources, OA = A*®. Let
hz : A — A(D3) be the homeomorphism obtained from Proposition 3.5.4. Fix
z € t(A)°A®. Then there exists A € A such that hi(z)|pp;p(taty) # 0, so hi(z) €
dom(k) for all x € ¢(A)°A*. We define n :=k o hz|,y o0 : L(A)°A™ — A(pDzp).

Let 7 : t(A)°A®® — 1(OA) be the homeomorphism from Theorem 3.3.1, and let
p be the isomorphism which maps D, onto pD;p. Let p* : A(pDjp) — A(Dy) be
the *-homomorphism given by p*(¢) = ¢ o p.

We now show that diagram on page 85 commutes. Since (hyot™tor)(z) and n(z)
are homomorphisms, and since p is an isomorphism, it suffices to fix z € L(A)OKO"

and p € A and show that

(3.5.4) (hao ™ om)(@)(susy) = (0" 0 m)(x)(su5),).

Let w € OA be the element such that 7(z) = ¢(w). Then the left-hand side of (3.5.4)

becomes

if w
(hs o 7 0 m)(x)(s485) = ha(ussp) = o € Z0)
0 otherwise.

The right-hand side of (3.5.4) simplifies to

(" on)()(sus,) = n(x )(( ))

hi () (tymt since r(x) € ¢(A)°

if v € Z(u(p))

0 otherwise.

We claim that z € Z(:(p)) if and only if w € Z(p). Suppose that z € Z(e(p)).
Since € A and 7(z) = (w), we have w(z(0,d(n))) = w(e(n)) = (). So
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d(m(x(0,d(p)))) = d(p), and thus d(x) A d(w) > d(p). So d(w) > d(p). Then

r € Z(u(pn) <= z(0,d(p)) = t(u) since ¢ preserves degree
< [w;(0,d(p))] = e(p) by Lemma 3.3.3
— (w(0,d(p))) = t(p) by Lemma 3.3.4
< w(0,d(p)) =p  since ¢ is a injective
= we Z(p).
So equation (3.5.4) holds, and we are done. O

3.6. From k-Coloured to Rank-k

In [11] Hazlewood introduced the notion of a k-coloured graph as a formal re-
alisation of the 1-skeleton of a k-graph (see Remark 3.0.8 and Theorem 3.6.1). He
showed how to build a k-graph from a k-coloured graph together with a set of fac-
torisation rules for bi-coloured paths, providing a very elegant and concrete proof
of a folklore result first asserted in [10]. In this section we show how to think of the
path-space of the k-graph as a quotient of the path-space of the k-coloured graph,
and investigate how the topologies on the two are related. For row-finite k-graphs,
it turns out that the topology on the k-graph is precisely the quotient topology
inherited from its k-coloured skeleton. However, we show in Example 3.6.5 that for
non-row-finite k-graphs, the quotient map from the path space of the k-coloured
graph to the path space of the k-graph need not even be continuous.

Let F} denote the free semigroup with k generators {cy,...,cx}. A k-coloured
graph is a directed graph E together with a map ¢ : E' — {c;,...,c}. The map
¢ extends to a functor ¢ : E* — F}. Write m; for the quotient map 7, : F} — NF
determined by 7 (¢;) = e;. Then the degree of a path x € E* is d(x) := m(c(x)).
So for example a c¢jcaco-coloured path in a 3-coloured graph has degree (1,0,0) +
(0,1,0) + (0,1,0) = (1,2,0); and a cacyci-coloured path has a different colouring
but the same degree.

A coloured-graph morphism is a graph morphism 1 between k-coloured graphs

which preserves colour. That is, c(¢(z)) = ¢(x) for every x € E*.
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For m € (NU {o0})*, we define a coloured graph Ej ,,, by
E},={neN:0<n<m}

Epm={n+vi:nekE] ic{l,... k},n+e€E,},

r(n+v;)=n
s(n4+v)=n+e
c(n+v;) = ¢
For e € E' with c(e) = ¢;, it is unambiguous and often useful to write v = v;.

For a coloured graph morphism A : Ej,, — E we say A has degree m, and define
r(A) := A(0) and s(A) := A(m).

The following definitions, up to the statement of Theorem 3.6.1, are as given
by Hazlewood in [11]. Given a k-coloured graph E and distinct 4,5 € {1,...,k},
a {7,j}-square in E is a coloured-graph morphism A : E e, 1, — £. When 4, j are
not important we simply call A a square in E. If A : Ej ,,, — E is a coloured graph
morphism and 1 is a square in E, then v occurs in X if there exists n € N* such
that ¢ (x) = Mz +n) for all 2 € B, ;-

Let E be a k-coloured graph. A complete collection of squares is a collection C
of squares in E such that for each x € E* with ¢(x) = ¢;c;, there exists a unique
p € C such that © = p(v;)p(e; +v5). We write p(v;)p(e; +vj) ~c p(vj)p(e; + v;), so
for each ¢;cj-coloured path x € E*, there is a unique c;c;-coloured path y such that
x ~¢ y. If there is only one complete collection of squares around we will simply
write x ~ y. A coloured-graph morphism \ is C-compatible if every square occurring
in A belongs to C.

For p,q,m € N* with p < ¢ < m, define E}p.q to be the subgraph of Ej ,, such
that

E)pg ={neN':p<n<gq}
E,i[p’q] ={z € E,im s(z),r(z) € E,Sy[m]}.

Given a coloured-graph morphism \ : Ey,, — F and p,q € N¥ such that p <
q < m, define </\|*Ek,[p,q]> : By q—p — E to be the coloured-graph morphism such that

(3.6.1) Ak, 1. (@) = Alp +a)

for every a € Ej ,—,. We put the * there to indicate that this is not normal restriction,
and includes a translation. This notation is useful for factorising graph morphisms.
In particular it is convenient for picking out squares embedded in \.

We say a complete collection of squares C in a k-coloured graph F is associative

if for every path fgh in E such that f, g, h are edges of distinct colour, the edges
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FIGURE 2. Associativity in a 3-graph.

f1, f2, 91, g2, h1, ho determined by

gh ~ higs, fhi~hafi, and  figi ~ g2f2
and the edges f!, f2, g, ¢% h', h? determined by

fg~g'f',  flh~h'f? and g'h' ~h’g
satisfy f2 = fs, g> = g» and h? = hy. This is pictured in Figure 2.

Let E be a k-coloured graph, and m € N*\ {0}. For a path € E™ and a
coloured-graph morphism A with domain Ej, ,,, we say that = traverses X if d(x) =
d(N) and A(d(x1 ... 211) + Veey)) = @ for all 0 <1 < |m|. If m =0 and x € E™ =
E° and if X is a colored-graph morphism with domain Ejo = {0}, then we say that

x traverses A if x = A(0).

THEOREM 3.6.1 (From [11, Theorem 4.11]). Suppose that E is a k-coloured
graph, and that C is a complete collection of squares in E satisfying the associa-
tivity condition. Define A° = E° and define A* to be the set of all C-compatible
coloured-graph morphisms \ : Ey,, — E. Then A = (A, A*) is the unique (up to
isomorphism) k-graph with 1-skeleton E.

We extend the notion of traversing a coloured-graph morphism to infinite paths:
let z € £ and A : By, — E be a coloured-graph morphism of non-finite degree
(so p € (NU {o0})* \ N¥). Then we say that = traverses \ if z; ..., traverses

Al By ey oy for every n € N.

PROPOSITION 3.6.2. Suppose that E is a k-colored graph, and that C is a com-
plete collection of squares in E satisfying the associativity condition. Then for every

path x € E* U E* there exists a unique C-compatible coloured graph morphism
/\x . Ek,d(x) — F

that is traversed by x.
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PRrOOF. If # € E* then [11, Proposition 4.7] gives the result. Fix 2 € E>. By
[11, Proposition 4.7], for each n there exists a unique C-compatible colored-graph
morphism A traversed by 2. Regarding the A as paths in the k-graph obtained
from Theorem 3.6.1, we apply Lemma 3.1.4 to the sequence {/\én)} to obtain a unique
As € W such that d(\,) = d(z) and A\,(0,d(z")) = A",

To see that A\, is C-compatible, suppose that ¢ is a square embedded in A,.
Then exists N € N¥ such that ¥(y) = \.(y + N) for all y € dom(y)). Applying
Claim 3.1.4.1 gives M = Ny q() such that dAY) > N 4 d(y). This implies that

AM(y+ N) = Xo(y+ N) =1(y)

for all y € dom(v)). So 9 occurs in AM - Since MM s C-compatible, 1) is a square

in C, so A, is C-compatible. O

REMARK 3.6.3. Suppose that F is a k-coloured directed graph, that C is a
complete associative collection of squares in E, and that A is the k-graph with
skeleton E and squares C obtained from Theorem 3.6.1. Let ¢ : E* U E* — W
be the map which takes x to the unique C-compatible coloured-graph morphism A,
traversed by x.

If A is a row-finite, we claim that the collection {Z(u) : p € A} U{{u}: n € A}
is a basis for the topology on A. Denote by 7’ the topology generated by {Z(u) :
pe AU {{u}: p € A}, and our usual topology by 7. To see 7 = 7’ we show their
open sets coincide. Let Z(u \ G) be a basic open set in 7, and v € Z(pu \ G). Then
{v} C Z(u\G),so Z(p\ G) is open in 7/, and 7 C 7’. On the other hand, let B be
a basic open set of 7, and v € B. Since A is row-finite, G := Ji_, s(v)A% is finite.
Then Z(v\ G) = {v} C B, so B is open in 7, hence 7/ C 7.

PROPOSITION 3.6.4. Let E be a row-finite, k-coloured graph, and let C be a
complete associative collection of squares in E, let A be the k-graph with skeleton E
and squares C obtained from Theorem 3.6.1. Then U is open in W if and only if
q Y(U) is open in E* U E*.

PROOF. First suppose that U is open in W, and fix z € ¢~'(U). We seek a basic
open set B, in E*U E> such that z € B, C ¢ }(U). If x € E*, then B, = {z} does
the trick. Now suppose that x € E*. Since x € E* N ¢ }(U), we have q(z) € U.
Since U is open, there exists u € A such that ¢(z) € Z(u) C U. In particular,
d(z) > d(p) € N¥, and hence d(z;...2,) > d(u) for some n € N. We then have
q(xy...x,) € Z(p). Let y, = x1...7,. Then € Z(y,). To see Z(y,) C ¢ }(U),
fix y € Z(y.); say y = y2y'- Then q(y) = q(x1...20y") € Z(p) CU,s0y € ¢'(U)
as required.
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FIGURE 3. A picture of E

For the reverse implication, suppose that ¢~!'(U) is open in E* U E*®, and fix
A € U. We seek a basic open set B such that A € By C U. If A € A, then By = {\}
suffices. Suppose that A € W\ A, so |d(\)| = oo. Fix z € E* which traverses \.
Then z € ¢~'(U), which is open, so there exists a basic open set B, € E* U E>
such that z € B, C ¢~ '(U). Since |d()\)| = |z| = oo, B, is not equal to {\} for any
A € E*, and hence B, = Z(y,) for some y, € E*. Then

A= q(z) = q(ye2") = q(ya)a(2") € Z(q(ya))-

To see Z(q(y,)) C U,let p € Z(q(y,)). Write u = q(y,)i’, and let z,» be a path in E*
which traverses p/. Then y,z, € Z(y,) C ¢~ *(U), which implies u = ¢(y,x) € U,

as required. 0

Proposition 3.6.4 says that when E is row-finite, the topology on W is precisely
the quotient topology inherited from E*UFE* under q. In particular, ¢ is continuous.

This is not true in general.

EXAMPLE 3.6.5. Let E be the 2-colored graph of Figure 3; so

B fupa B ={fghu(Ufens)

1€EN
r(f) =r(@)=v,  s(f)=r(f) =w
Bi) =q
() =c(Bi) =i, olf) = clg) = ca.

[\

We call ¢; blue and ¢, red. Since not everyone can easily print in colour, we

draw them as solid and dashed lines respectively.
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Let C be the collection of graph morphisms A; : 5 ;1) — E such that

Ai((0,0)) = v, Xi((0,1)) =w
Ai((L,0) =p,  A((L,1) =¢
Xi((0,0) +v1) = a, Xi((0,0) +vg) = f
Ai((L,0) +v2) =g,  N((0,1) +v1) =5

So each ); is a square, and C is a complete collection of squares, and a;g ~¢ f3;
for all i. Since E has only 2 colours, C is automatically associative.

The 2-graph A determined by (E,C) has, by definition, skeleton E with factori-
sations a;g = f/3; for each i € N. Moreover, by definition, A®Y = {); : i € N} and
q(aig) = Ni = q(fBi).

To see that ¢ is not continuous, we show that {c;g};en converges to v in F, but
{A\i} converges to f # q(v) in A.

To see that a;g — v in E, fix a basic open subset Z(y \ F') C E containing v.
Then y = v, and since F' is finite, only finitely many of the a; may be in F'. So there
exists Ny € N such that n > Ny = «,, ¢ F. Then

n>Ny = a,g€ Zv\F).

So a;g — v as i — 0.
To see that \; — f in A, fix a basic open subset Z(p\ G) C A containing f. We

consider 2 cases:
(i) p=f, or
(il)) p=w.
For case (i), suppose that © = f. Then G is a finite collection of ¢(/3;). Let
Ny = max{i : ¢(3;) € G}. Then
n> N, = A= a(fB) € Z(£\C).

For case (ii), suppose that y = v. Then since f ¢ G, G is a finite collection of
q(;). Let Ny = max{i : q(o;) € G}. Then
n>Ny, = A\, =qlang) € Z(v\ G).
So for any neighbourhood U of f in A, the \; eventually belong to U. Hence

q(a;g) — f # v asi— oo. Hence g(lim a;9) = q(v) # q(f) = lim A\; = lim ¢(a;g), so
g 1s not continuous.



APPENDIX A

(C*-algebras

Here we provide a brief recap of some general C*-algebraic results we apply in
both the directed and k-graph settings.

Given a C*-algebra A, the multiplier algebra M(A) consists of pairs (L, R) of
maps from A to itself such that aL(b) = R(a)b. This is a C*-algebra with ||(L, R)|| =
IL|| = ||R||, (L1, R1)(Lo, Ry) = (Ly o Ly, Ry o Ry) and (L, R)* = (R¥,L*), where
R#(a) = R(a*)*. The multiplier algebra M (A) is the largest unital C*-algebra which
contains A as an essential ideal, and is unique up to isomorphism. If p is a projection
in M(A), then the C*-subalgebra B = pAp of A is called a corner of A. If B is not

contained in any proper two-sided ideal in A, we call B a full corner.

LEMMA A.0.6. If P and @ are non-zero mutually orthogonal projections on a
Hilbert space H and A\, € C, then ||AP + pQ|| = max{|A[, |u|}.

PROOF. Recall that for any orthogonal projection S on H we have ||P| =
|P?|| = ||P*P|| = ||P||? and thus ||P| € {0,1}. Furthermore, that P and Q
are mutually orthogonal implies that P + () is a projection. Hence

IAP + @) ||* = [APh + nQh|*

= [AP[|[PA|]* + || QR[> by Pythagoras” Theorem
< max{[A]%, [u[*}(| PAI* + |QR]?)
= max{[A]%, [u[*}(| Ph + Qh|[*)
= max{|A]”, [u[*}([[(P + Q)A*)
< max{[A]%, [u*}(I1P + QI*[I]*)
< max{|A]%, |[u[*}]A]”

So ||AP + uQ|| < max{|A|,|p|}. For h € PH, we have |[(AP 4+ pQ)h| = [[A\Ph| =

[AllIA]]. Similarly, h € QH gives [[(AP+u@)h|| = [|p@hl| = |pl[R]]. So [[AP+pQ| =
(Al and [[AP + pQl| = |p]. Thus AP + p@Q|| = max{|A], |pl}. O

LEMMA A.0.7. Let A be a C*-algebra, let p be a projection in A, let Q) be a
finite set of commuting subprojections of p and let qy be a nonzero subprojection
of p. Then quQ(p — q) is a projection. If qy is orthogonal to each q € Q, then

qo quQ(P —q) = qo, So in particular, quQ(p —q) #0.
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PROOF. Since (p—q)* = p*—¢* = p—q for each ¢ € @), and since the projections

in () commute, the (p — ¢) commute, so
(IIe-o) =TIe-a =TIe-a
qeQ q€Q q€Q
Since (p — q)* =p* = 2pg + ¢ = p — 2¢ + ¢ = p — ¢, we have
2
( [Te- Q)) =[Ie-0*=1]- o
qeQ q€Q q€Q
So [[,cq(P — ¢) is a projection.
Suppose qq is orthogonal to each g € ). Then for each ¢ € ), we have
q(P —q) = qop — g = g0 — 0 = qo,
SO

%(H(p—Q)):qo(p—q’)( I1 (p—Q)>=qO( 11 (p—Q)>-

qeQ qeQ\{¢'} 9€Q\{¢'}

Now an induction on |Q| shows that ¢o[[,co(p — ¢) = qo. Since ¢o # 0, then

qo0 quQ(p - Q) 7é 07 S0 HqEQ(p — C]) 7& 0.

0
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