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Abstract

A Posture detection system aims to identify and localize any specific types of pos-

tures in images and video sequences. Unlike human or pedestrian detection where only

one class of objects is required to be detected, posture detection is designed to detect

multiple classes of postures. It remains a challenging problem because human bod-

ies are complex and articulated with very diversified appearances. Posture detection

often relies on a good generalization of the variations from large quantity of training

examples that cover different situations. In this thesis, we devise a new posture detec-

tion framework that combines the histogram of gradient (HOG)-based feature with a

novel manifold-based open-set classifier designed to achieve a better generalization. In

this framework, each posture class is represented by a complex manifold that lies in

the high-dimensional visual input space. The manifold is learned using Kernel PCA.

Classification of a new observation is achieved by comparing it to each trained posture

manifold. In addition, a new greedy Kernel PCA approximation algorithm is proposed

to speed up the learning of the posture manifolds. The approximation algorithm seeks

to remove the redundant training samples in the kernel space while best retaining the

accuracy of kernel mapping, resulting in a new kernel PCA model that provides almost

v



identical learning and classification ability to the original kernel PCA with significantly

lower computational cost. Both the detection framework and approximation algorithm

were tested on 2D and 3D artificial datasets and real human and posture datasets.

The results have shown that the approximation algorithm is effective and the proposed

framework can provide accurate and efficient detection of different postures with a

relatively small training set.
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0.1. Glossary 1

0.1 Glossary

Adaboost : Adaptive boosting, a boosting algorithm for ensemble learning.

auROC : Area under Receiver’s Operating Characteristic curve, a scalar equal to the

integration of an ROC curve from 0 to 1, used to measure the performance of

classifiers.

DET : Decision Error Trade-off curve, a curve showing the missing rate versus the

false positive per window (FPPW).

DR : Detection Rate, a scalar denoting the percentage of successful detection per

window.

DT : Distance Transform, a 2D pixel map showing the distance from pixels to a given

contour.

DoG : Derivative of Gaussian.

FPPW : False Positive per Window, a scalar denoting the percentage of false detec-

tion per window.

GMM : Gaussian Mixture Model, a statistic model for probabilistic estimation of a

multivariate distribution.

HMM : Hidden Markov Model, a random process model primarily used in modeling

temporary events.

HOG : Histogram of Gradient, a visual feature mainly used in human detection and

body representation.



0.1. Glossary 2

ICA : Independent Component Analysis: a toolset consisting of several matrix de-

composition and factorization techniques that aim to isolate statistically mutually

independent bases from a set of data.

ISM : Implicit Shape Model, an object detection framework by synthesizing local

detection results through spatial voting.

Isomap : Isometric mapping, a nonlinear manifold embedding technique to recon-

struct a mapping space that preserves the graph-distance.

KPCA :Kernel Principal Component Analysis, a generalized nonlinear manifold learn-

ing framework that performs the principal component analysis in a kernelized

feature space.

KNN :K-Nearest Neighbors, a simple example-based classifier that labels each un-

known datum to the majority of its K-Nearest Neighbors.

LBP : Local Binary Pattern, a visual descriptor that is invariant to illumination.

LLE : Locally Linear Embedding: a nonlinear manifold embedding technique to recon-

struct a mapping space that minimizes the change of distances between adjacent

data.

LPP : Locally Preserving Projection, a linear dimensionality reduction technique that

aims to find a linear mapping to a lower dimension space that minimizes the same

objective function with Laplacian eigenmap.

MDS : Multidimensional Scaling, a toolset that aims to reconstruct a equivalent

dataset in an explicit Euclidean space from a similarity or dissimilarity matrix.



0.1. Glossary 3

MHI : Motion History Image, a 2D greyscale image characterising motion information

of a binary video.

MRF : Markov Random Field, a 2D statistic graphic model used to model spatially

correlated random variables.

NMF : Non-negative Matrix Factorization, a matrix decomposition and factorization

technique that aims to isolate non-negative bases from a dataset.

PCA : Principal Component Analysis.

RANSAC : Random Sample Consensus, a fast model estimation meta-algorithm.

RBF : Radial Basis Function, a bivariate function in the form of f(||x− y||2).

RMI : Recurrent Motion Image, a 2D greyscale image characterising recurrent motion

information of a binary video.

ROC : Receiver’s Operating Characteristic curve, a curve showing the detection rate

versus the false positive detection.

ROI : Region of Interest.

SIFT : Scale Invariant feature transform.

SVM : Support Vector Machine.



0.2. Notations 4

0.2 Notations

E(.) : expectation of a variable or a set of random vectors.

cov(.) : covariance matrix of a variable or a set of random vectors.

p(X) : marginal probability or likelihood of a random variavle X.

p(X|Y ) : conditional probability or likelihood of X given Y .

X : the column matrix of a training dataset.

xi : the ith vector in the training dataset.

ci : the class of the ith example.

φ(.) : the implicit non-linear mapping that maps [.] into an infinite-dimensional feature

space.

Φ : the implicit column matrix of φ(xi).

k(., .) : the positive semidefinitive bivariate kernel function that defines φ(.) by its

inner-product.

K : the inner-product matrix of φ(xi) where Kij = k(xi, xj).

H : the constant matrix for centralizing data in the feature space. H = In − 1n, In is

an n × n identity matrix and 1n denotes a n × n matrix in which each element

takes the value of 1/n.

Φ̂ : the implicit column matrix of φ(xi) centered at zero mean.

φ̂(xi) : the ith column vector of Φ̂.



0.2. Notations 5

K̂ : the inner-product matrix of Φ̂, K̂ = HKH.

λi : the ith eigenvalue.

D : the diagonal matrix with each diagonal element Dii = λi.

P : the implicit column matrix of eigenvectors of cov(Φ̂) (also known as principal

components).

A : the column matrix of eigenvectors of K̂.

z : an arbitrary datum sample in the test dataset to be classified.

c : the ground truth of z.

y(.) : the function that maps z into the subspace of principal components in the feature

space.

HA : the abbreviation for HA, it is the most important matrix in defining the KPCA

model and the projection y(.).

w(.) : polynomial part of y(.) defined by w(.) = (HA)T k(X, .), where k(X, .) =

[k(x1, .), k(x2, .) . . . k(xn, .)]
T

b : the constant part of y(.) defined by b = (HA)T K1n

U : the multidimensional scaling result of K.

X̃ : the column matrix of a subset of the training dataset selected by a kernel approx-

imation algorithm.

P̃ : shortened P for faster KPCA mapping y(.).



0.2. Notations 6

H̃A : shortened HA for faster KPCA mapping y(.).

WX̃ : the w-mapping of the subset X̃ into the KPCA mapping space (the column

space of the original principal components P ).

Q and R : QR decomposition of D
1
2
n WX̃ .

V : the set of D
1
2
n WX orthonormalized with WX̃ .



Chapter 1

Introduction

1.1 Motivation

Posture detection aims to identify and locate specific types of postures from images

or video sequences. It is one of the fundamental problems in computer vision and

is an important step in many applications like security surveillance, human-machine

interaction and semantic image/video retrieval. Unlike human detection that can be

regarded as a two-class classification problem, the posture detection is often required

to detect human body and recognize specific posture types simultaneously. The key

challenge is that human body is a highly articulated and deformable object and its

appearance can vary substantially due to various factors such as clothing, viewpoints,

illuminations and shadows. As a result, learning the discriminative appearance features

without any prior knowledge is very challenging. This thesis is concerned with the

problem of posture detection under a realistic assumption that training samples are

only available for the postures to be detected and there are no negative samples (e.g.

samples for uninterested postures and non-human scenes).

Many attempts have been made for more effective and efficient learning of the

7



1.1. Motivation 8

appearance of humans and postures. Most work mainly has focused on the following

two issues.

1. Extraction of features that can discriminate postures and a cluttered background

and are invariant to irrelevant variations.

2. Effective representation of the postures that can be obtained from a limited

number of examples.

In this thesis, we seek to find a new posture representation. Specifically, the man-

ifold representation is proposed. This representation aims to enclose the change of

appearance caused by continuous movements and, hence, the variations of postures

by smooth lower-dimensional manifolds. By using kernel principal component anal-

ysis (KPCA) as a manifold learning tool, the learning of multiple postures does not

need any negative examples. Based on the manifold representation, a new open-set

classifier has been proposed for posture detection. The classifier works by measuring

the distance between a test example and the closest manifold. Experiments on several

posture databases have verified the performance of the proposed detection method.

A major drawback of KPCA based manifold representation is that its computational

cost is proportional to the number of examples that define the manifold, and is often

impractical to be used in real-time detection. In this thesis we have proposed an

approximation of KPCA that can significantly reduce the number of required examples

while best preserving the configuration of posture manifolds. Experimental results

have shown that the proposed approximation outperforms other kernel approximation

approaches in both speed and accuracy, and is proved to be effective in constructing a

faster detector.
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1.2 Contributions

The key contributions of this thesis are:

1. A new KPCA approximation method which significantly accelerates the KPCA

calculation and therefore broadens the applications of KPCA.

2. A new posture detection method that employs KPCA for learning and identifying

posture manifolds without negative sample.

1.3 Publication List

The following publications have resulted from the work reported in this thesis:

• Peng Cheng, Wanqing Li and Philip Ogunbona, Greedy approximation of kernel

PCA by minimizing the mapping error. In Proc. of Digital Image Computing:

Techniques and Applications. pages 303–308, 2009

• Peng Cheng, Wanqing Li and Philip Ogunbona, Kernel PCA of HOG features

for posture detection. In Proc. of Image and Vision Computing New Zealand.

pages 415–420, 2009

1.4 Outline of the thesis

The rest of the thesis is organized as follows. Chapter two provides a survey of the

literature published in the recent ten years on human and posture detection. Based

on the strategies adopted, the existing methods are first categorized into Detection by
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patterns and Detection by local descriptors. They are then reviewed critically. In addi-

tion, the criteria and benchmark datasets used to measure and compare the detection

performance are described. The major challenges related to posture detection are then

analyzed.

Chapter three presents an open-set classification framework which is built upon the

manifold learning using Kernel PCA (KPCA). In particular, it introduces an improved

KPCA learning algorithm that avoids the problem of numerical instability that may

exist for high dimensional data. The open-set classification is achieved by measuring the

reconstruction error. To overcome the problem of high computational cost associated

with conventional KPCA, we propose in this chapter a new approximation algorithm

that aims to find a reduced KPCA to approximate the kernel mapping. Experimental

results are given on both real and simulated data.

Chapter four presents a new approach for detecting human postures from single

images. This approach follows the detection by pattern framework. In the training

stage, KPCA is employed to learn the manifold span of a set of examples represented

in the feature space by the histogram of gradient (HOG) feature. The HOG is able to

represent a posture effectively. In the detection stage, the open-set classifier presented

in the previous chapter is iteratively applied on the HOG of every detection window of

the image to identify and locate the postures. Experimental results are given on some

popular datasets.

Chapter five concludes the thesis. It summarizes the advantages and disadvantages

of the proposed algorithms and presents some possible future work.



Chapter 2

Literature Review

This chapter provides a survey of the literature published in the recent ten years on

human/posture detection . Specifically, we categorize the existing methods into two

approaches Detection by patterns and Detection by local descriptors, and each approach

has been comprehensively reviewed. Also, in this chapter the various criteria used

to evaluate a posture detector are presented and challenges in posture detection are

analyzed.

2.1 Overview

Vision-based human motion analysis has been an active research topic for the past

ten years in computer vision due to its scientific challenges and numerous applications

including security surveillance, human-machine interaction, unmanned systems and

information retrieval. Its ultimate objective is to develop a system that can understand

the human motion from visual information and further predict the intention of humans.

Given a video sequence, a human motion analysis system often consists of the

following four components:

11
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1. Posture detection: it aims to identify and locate specific types of postures from

images or videos; the output includes one or several labelled bounding boxes that

describe the posture classes, positions and scales of the detected postures. The

detector should ignore the presence of any postures in the scene that are not of

interest to the application.

2. Posture estimation: it aims to infer the human kinematic model from a local-

ized posture patch or silhouette, each patch or silhouette should be well-bounded

and contains only one human, the output is a 2D or 3D kinematic model.

3. Posture tracking: given a human model that is initialized with the posture con-

figuration in the first frame of a video, it tracks the movement of body and limbs

by using visual information and temporal correspondence amongst the following

frames.

4. Action/Gait analysis: given a set of identified human postures or consecutive

kinematic models that represent an action, it identifies the action or the identity

of the subject performing the action.

Since a human motion can be defined by a sequence of static postures, extraction

and analysis of postures are usually, explicitly or implicitly, the first and most important

component in such a system. Its performance is often critical to the overall performance

of the system.

Definition of posture varies according to the application context. Briefly, posture

refers to the configuration of human body, consisting of information about relative

positions and directions of limbs (the arms and legs), head and torso. This definition



2.1. Overview 13

Figure 2.1: Top view of a walking person, its shape can only be recognized if the
viewpoint is known.

is often used in posture estimation or posture tracking where the objective is to extract

and track the human kinematic model. However, it has also been shown that in both

neural perception and many practical motion analysis systems the recognition of human

motion does not require an accurate kinematic model. Instead, human motion can be

represented as a sequence of finite salient postures. Motion analysis system based on

this representation has been shown to be effective [45].

This thesis is concerned with the detection of salient postures or simply postures

which are defined by examples. This problem is different from the commonly-known

human detection problem, which has been studied extensively in previous literature.

The aim of the human detection is to detect any human body appearing in an image

regardless of its posture. In posture detection, a defined set of postures need to be

recognized and postures outside this set are not of interest. Furthermore, we assume

that only positive examples, i.e. examples of the postures of interest are available.

Compared to the detection of other types of objects, the uniqueness of posture

detection is that a posture has a very flexible visual pattern due to the articulated and

diverse nature of body appearance. Therefore, it is believed that human perception

of human body may involve empirical learning of appearance and understanding of

kinematic structure under different environment and visual context. Figure 2.1 shows
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an extreme condition, where the strange shape of human body is not familiarized by

most people (therefore empirical learning of human shape from this angle is impossible).

However it is still easy for a human to identify this shape based on the knowledge of

the kinematic structure and the aspect of the camera.

Intuitively, posture detection can be carried out using a two step framework: human

detection followed by posture estimation. However, in practice most existing human

detection algorithms are designed only for upright standing figures. If we are only in-

terested in specific postures (e.g. fouls in sporting matches or malicious acts in public

spaces), the human detection will be unlikely to yield a good result. In this case, detec-

tion of the specified postures will be more appropriate. In addition, posture estimation

often requires searching a huge feature space to find proper kinematic configurations

for all human bodies in an image and this is impractical for detection.

Despite its significance in human motion analysis, posture detection has rarely been

studied as an independent problem in previous literature. Due to this reason, this

chapter will mainly focus on the publications on human detection whilst others have

also approached posture tracking or estimation, but in general they focus primarily

on detection [86] [25] [36]. In terms of the aims, human detection may be considered

as a special case of the problem of posture detection. Theoretically, some human

detection methods may be extended for posture detection by replacing the two-class

classifier with its multi-class version even though the extension may not be effective

and efficient.

According to our taxonomy, the existing methods are categorized into two ap-

proaches:
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1. Detection by patterns: works by searching over the whole image space. At

every location, an image window at certain scale is classified into one of the

desired or learned postures or non-postures by comparing the image window to

examples in a defined set of postures. Usually the comparison is performed in a

representative or discriminative features space.

2. Detection by local descriptors: works by first detecting interest points or

regions denoting different body parts, then finding the postures by inference

from these points using the structural information of the human body.

In this chapter, over 60 publications are surveyed. These publications represent the

state-of-the-art of their respective era in achieving better performances compared to

previous systems or gaining better robustness when applied to new working conditions

and assumptions.

The remaining part of this chapter will be organized as follows: sections 2.2 and 2.4

provide the literature survey of the approaches denoted as detection by patterns and

detection by local descriptors respectively. Section 2.5 describes the commonly used

methods to evaluate performances and efficiencies of the surveyed approaches. Section

2.6 discusses potential challenges of the problem of posture detection and possible

solutions to overcome them. The last section concludes this chapter.

2.2 Detection by patterns

Given an image or a frame of a video sequence with an unknown number of postures of

interest, a typical detection by patterns framework consists of five steps: first, regions
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Figure 2.2: The framework of detection by patterns

of interest (ROIs) are extracted from the image often using simple pixel-level image

processing techniques. The ROIs indicate the areas in which postures are likely to

appear. This step is not a necessary step, but it does reduce the search space. Then,

a sliding window iteratively scans over all possible positions in the ROIs. Very often

the entire image area is scanned without a need for the first step. At each position,

an image patch is extracted. In the third step, for each patch, features are extracted.

In the forth step, each patch is classified into one of the trained postures or into an

unknown or negative class. Depending on how the image is scanned, it would result

in many overlapping bounding boxes specifying the positions of a possible posture. In

the last step, adjacent bounding boxes are merged together to form one posture as the

final decision. This framework is illustrated in Figure 2.2.
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2.2.1 Extraction of ROIs

ROI extraction aims to find the areas in which the postures of interest are likely

to appear so as to limit the search space. This process is often required to be fast

and, therefore, pixel-level information and simple image processing techniques are usu-

ally employed. For an image, this process is usually omitted since there is no robust

way to define the ROIs. For a video, motion information is often used to define the

ROIs by assuming that human body is usually moving in contrast to the static or

homogeneously moving background. The most simple method to extract the ROIs is

background subtraction when the background is static or slowly changing. It extracts

foreground regions from background by finding all pixels that are not consistent with

the background.

Background subtraction usually involves only comparison between pixels and can

be performed quickly. In the simplest form, the background can be represented as a

single image and pixels in a video frame are considered as foreground if their brightness

or color deviate significantly from the corresponding background pixels [9]. The idea

was later extended to adaptive background subtraction [70] to handle unstable and

slowly changing environment (e.g. illumination of outdoor scene may change slowly).

In this method, an adaptive background model, such as the one based on Gaussian

Mixture Models (GMM), is constructed to model the variation of each background

pixel independently, [56][4][84][85][87][86][51][39]. Shadows may be removed based on

the assumption that the shadow pixels have the same hue as the background but are

of lower brightness [86] than the non-shadow pixels in the background.

Background subtraction is fast and stable but cannot handle a moving background.
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Such a problem can be overcome by motion based segmentation, a technique that

estimates the movement of brightness pattern of pixels (including both foreground and

background pixels) between two or more consecutive frames of a video based on their

adjacency and brightness. Two typical motion segmentation techniques are used in the

surveyed works: optical flow determination and affine background estimation.

The optical flow is a 2D vector field that represents the relative movements of

brightness pattern of pixels in two consecutive frames. Optical flow provides cues to

segment and identify background regions and moving foreground objects. Determining

optical flow from the brightness patterns of various pixels is an ambiguous problem

because two different motions can lead to identical displacement of the pattern (a

phenomenon known as aperture effect). Therefore traditional optical flow algorithms

usually perform poorly on estimating the true motion of a complex articulated object,

such as humans. As a result, the assumption of ’blob flow’ is often imposed. It assumes

that the optical flow in a blob (that may correspond to a fixed body part of human body

or an entire body) can be represented by a homogeneous affine transform (consisting

of translation, scaling and rotation). This idea was adopted in [12].

The Affine background estimation [24, 81, 24] works under the assumption that

the background is homogeneously ’shifting’ (e.g. background of a video captured by

a sweeping surveillance camera or a vehicle-based camera) and can be approximated

by a static image undergoing affine transform, and usually covers a large portion of

the image. It aims to estimate the affine transform by maximizing the matching score

between 2 consecutive frames. After the estimation, a motion compensated background

subtraction can be used to find the ROIs. In [18], the affine transform is determined
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by reducing the difference of the transformed picture of previous frame and the next

frame at the four corners. In [81], the Affine transform is determined by the following

method. First, calculate the optical flow field by the diamond search flow estimation.

Then, exclude the flow field on regions where brightness is homogeneous (considering

any aperture effect, the estimation on these regions are most likely to be erroneous).

Finally, the optical flow field is approximated by a global affine transform; a random

sample consensus (RANSAC) robust estimator is applied to find the affine transform

that can best approximate the flow field. The main idea of the RANSAC is to randomly

select a subset of the image pixels to generate a model hypothesis and to check how well

this model fits to the remaining image pixels. This is done iteratively a fixed number

of times or until some accuracy condition is met.

2.2.2 Feature extraction

For a reliable detection of postures, the selection of proper visual features is critical.

The chosen features have to be sufficiently discriminative in reference to the postures

and invariant to appearance variations caused by the various factors as discussed above.

Note that the property of invariance is no less important than the discriminative prop-

erty because of the special articular nature of the human body. A very detailed feature

may have a high discriminative power but low invariance, which makes it difficult to use

since an universal classifier cannot be generalized from limited number of examples. To

deal with the problem of partial occlusions, the features should also be local-sensitive:

where a change of a section of the image only affects the features of the corresponding
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components so that the postures can still be recognized from the remaining compo-

nents. An evaluation of contemporary local-sensitive visual features can be found in

[50].

There are many types of features that have been proposed or adopted to characterize

humans. In general, they can be categorized into three classes: shape-based features,

appearance-based features and spatio-temporal joint features. Note that the use of

these features is not mutually exclusive, they can be combined together to exploit their

respective advantages (as shown in [76] and [77]).

Shape-based feature

The shape-based feature describes the shapes of ROIs. Due to their dependency on ROI

extraction their usage was limited. The extraction of the shape-based features often

relies on the extraction of ROI. However, due to their simplicity they are often used in

real-time detection from video and stereo images (recently this usage has declined).

Contour and silhouette are two basic shape-based features. The former is often

represented by a closed curve that encircles the object (usually this curve is a piecewise

linear curve or spline curve denoted by a couple of key points). The latter is often

represented by a binary map which has value 1 inside the object contour and value

0 outside the object contour [84][85][86][87]. In [10], the Hu moment descriptor of

the binary map, consisting of 14 coefficients, was used to achieve rotation and scale

invariance.

A shape histogram is another shape-based feature that describes the distribution

of silhouette or contour. It divides an image plane into several vertical/horizontal lines
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Figure 2.3: From left to right: input image, silhouette, contour, and histograms of x
and y axes[36]

or blocks and counts the number of the contour’s key points or silhouette’s pixels with

value 1 in each block or line. The shape histogram can reduce the feature dimensionality

and increase its robustness with respect to small variations of the object shape. In [56],

shape histograms in vertical and horizontal lines were used as a shape descriptor. In

[4], discrete cosine transform (DCT) coefficients of the shape histogram were used as

a shape descriptor.

Appearance-based feature

The appearance-based feature usually describes pixel-level information of an image. It

is often extracted directly from the patch without extraction of ROIs. Therefore, the

appearance-based feature is the most commonly used type of features. According to

the survey of [50], appearance-based features can be categorized into spatial-frequency

features, differential-based features and distribution-based features.

Spatial-frequency features are derived from the 2D spectrum of an image and usu-

ally constructed by correlating with different scales of spectral basis. Motivated by

their success in signal processing field, the spatial-frequency features has been ex-

tensively studied. Today the most common spatial-frequency feature is probably the
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wavelet-based features. A wavelet transform provides a multi-resolution decomposition

of the image. Lower-rank coefficients capture the large-scale brightness distribution and

higher-rank coefficients capture the local brightness variations. Wavelet features are in-

variant to scale transform but are neither locally sensitive nor invariant to illumination

changes. The Haar wavelet is the most widely used wavelet basis due to its computa-

tional efficiency. It was firstly used by Oren et al. [55] for whole body detection, then

in [52] for local body part detection. In [57] and [58], a reduced set of Haar wavelet

coefficients was manually selected that encodes the outline of the human body, which

greatly increased the detection speed at the cost of small decrease in detection rate. In

[17], Gabor wavelet coefficients were used as feature vectors. The author observed that

most of these coefficients are close to zero, and a set of ’principal’ basis coefficients can

be chosen from these coefficients by dynamically reducing the reconstruction error. In

this way a compact feature vector with enough discriminative power can be selected.

The rectangular feature is very similar to the Haar wavelet feature. It was first

proposed in Viola and Jones face detection [74], and later applied to the pedestrian

detection task [75] [47]. The feature is represented as the correlation of the image

and simple rectangular templates in different positions and sizes (see Figure 2.2.2 for

illustration); these features are then chosen by Adaboost [28] to have the maximum

discriminative ability. The rectangular feature can be calculated quickly by a few

addition and subtraction operations on the integral image that sums up the brightness

of all pixels from one corner.

A differential-based feature is computed from 2D derivatives of an image patch,
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Figure 2.4: Examples of rectangular features used in [75]

which can be obtained by convolving the image patch with a discrete differential op-

erator (e.g. a Sobel operator). The differential-based feature is designed to extract

crude shape information of objects from image (since object boundaries always feature

strong derivatives) and be invariant to brightness and illumination changes. The most

widely-used differential based feature is the edgemap, which is a binary map denoting

local maximum of the gradient intensity of the image. It is invariant to brightness

and illumination changes. However, many important information that is essential to

discriminate humans is also discarded, e.g. intensity and orientation of edges. Note

that a threshold that filters out weak edge responses is hard to specify for all situations.

Edgemap was used in [33] [29] [32] [31] [30] and [46].

The disadvantage arising from discarding edge intensity or orientation can be par-

tially compensated by attaching intensity and/or orientation information to each edge

pixel; this results in a binary edgemap in 3D or 4D space. In [21], edge orientations were

introduced into the score function of the Chamfer matching, inconsistent orientations

between the edgemap and the template are penalized. Also, features in several consec-

utive frames are matched against a temporally changing template. Both improvements

assured that fewer false positives can be achieved.

The edgelet feature aims to construct a compact differential based feature without

thresholding. In this feature the most distinctive edge pixels are learned from examples
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Figure 2.5: Generation of the edgelet feature (a) [80] and the HOG feature (b) [19]

in training stage and are fixed in detection stage. It is constructed by first generating

a set of all possible curves that lie on the image (usually some constraints on the

shapes of the curves will be imposed, e.g. only lines and arcs), pixel-level information

on each curve, including edge intensity and direction of all pixels on it, is considered

as an edgelet candidate. All candidates are fed into AdaBoost and only those with

the best discriminative ability are selected (see Figure 2.5 for illustration). Only a few

candidates that lie in the ROIs will be selected, this idea was used by others[47, 78, 79].

The third type of appearance-based features, the distribution-based features, were

proposed at an early stage [27] but were extensively studied only recently in the last

5 years. Most of the state-of-the-art detectors are based on these features and find-

ing more effective distribution-based features is dominating the research work in this

field. The distribution-based features are designed to represent the statistical prop-

erties (e.g. histogram and covariance) of pixels in small regions. Compared to other

types of features they have the following advantages. First, they are the only type of

appearance-based features that are robust to image and object deformations, and as a
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result invariance to small degree of articulation and viewpoint changes is guaranteed

(Local descriptors, or ’bag of features’ also possess the same ability, they will be dis-

cussed in the next section). Second, the impacts of noise and outlying pixels on the

statistical properties are minimized, making them invariant to image degradation and

low resolution.

The Histogram of Oriented Gradient (HOG) feature is currently the most important

distribution-based feature in human detection. It is constructed by dividing the image

into many overlapping square blocks, the size of each block and overlap between two

adjacent blocks are usually fixed (e.g. 4×4 or 8 ×8 with 50% overlap), and quantizing

the the gradient orientations of all pixels in each block into nine directions. The

HOG feature is the histograms of gradient orientations of all blocks. This feature

is first proposed by Dalal et al. and gained its popularity due to its outstanding

performance in human detection [81] [20] [82] [83] [88] [68]. In the benchmark of [50],

it attained the highest performance compared to other local features. Nevertheless, it

has a number of drawbacks. First, it has very large dimensionality, and is costly to

handle if all coefficients are used. Second, if the blocks are too small (e.g. when image

resolution is low), the histogram will become meaningless and cannot reflect the real

image structure. Third, the HOG was primarily used as a robust edge descriptor, its

discriminative power mainly comes from the blocks located on the edge of human body.

When edges are largely missing or contaminated by cluttered background, the HOG’s

performance will consequently deteriorate.

For the first problem, many efforts have been made to obtain a more compact subset

of HOG representation. In [61], the components of HOG are selected by AdaBoost,
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resulting in a classification rule that uses only a small subset of HOG (called ’shapelet’

in the literature). A similar framework was used in [16], where an improved AdaBoost

select components from an HOG-rectangular joint feature. In [6] [5] and [13] the HOG

components in vertical gradient direction was used to detect the symmetry of vertical

edges. The second problem can be avoided by using an alternative feature on small

patches. For example, in [82] the HOG was replaced by edgemap on small patches.

And in [20], the HOG was replaced by histogram of optical flow orientation.

A method of overcoming the third problem was proposed in [76], in this method,

the edge representation ability of the HOG feature was combined with the texture

representation of local binary pattern (LBP) feature. The LBP feature is another

block-histogram based feature constructed by following steps. First, the image patch

is resized and bilinear interpolation is used to convert it into a continuous 2-D function.

Then this function is converted into LBP map. For each pixel, the signs of its difference

with eight pixels around it are measured and quantized into 0 and 1. Together they

form a 8-bit number that denotes the corresponding pixel value of LBP map. In the

last step, the LBP map is divided many non-overlapping cells and the histograms

of pixel values in all cells are concatenated to form the feature vector. To reduce

its dimensionality and increase its robustness to cluttering background, the ’uniform

pattern’ constraint is imposed, that is, for each 8-bit pixel value of the LBP map, if

the number of its ’0-1’ transition is more than two, then this pixel will be categorized

as ’nonuniform’ and all ’nonuniform’ pixels are voted into one bin of the histogram.

According to the experiments of [76], a concatenation of HOG and LBP forms the

state-of-the-art feature for human detection that has achieved the highest detection
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rate so far on the INRIA database.

A covariance feature [71] is another differential-based feature that was initially

proposed for image matching and texture classification, but has been adopted in human

detection recently and achieved results comparable to the HOG feature [19]. The

covariance feature is a collection of 8 × 8 covariance matrices denoting statistics of

pixels in numerous subwindows. Subwindows are selected exhaustively inside the image

patch. For each subwindow, the covariance matrix is obtained from a set of vectors,

each denoting vertical and horizontal position, first and second derivatives in both

directions, and gradient intensity and orientation of each pixel. Like the rectangular

feature, extraction of the covariance feature can also be accelerated by the integral

image. The initial set of features is highly redundant, only a small number of the most

discriminative subwindows will be selected in the following logitboost-based learning

step and be used in the detection stage.

Spatio-temporal joint feature

The last type of feature, the Spatio-temporal joint feature, is a combination of appear-

ance and/or shape-based feature and motion information. The motion information can

be obtained by comparing two or more frames. For instance, the difference between

two frames can infer the movement of human body in the scene and provide cues to

identify posture patterns. In [10], the timed motion history image (tMHI) is used to

represent the blob motion in short time. It is constructed by iteratively weakening the

brightness of the previous tMHI and placing the silhouette of the newest frame over it.

Such representation allows easy extraction of motion trajectory by image gradient. In
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[39], the recurrent motion image (RMI) was used. Its pixel value denotes the changes

of intensity of brightness . This makes RMI invariant to the phase of cyclic motions.

In [25] and [20], the optical flow of the human body is used as a pixel-level feature

of the detected postures. In [75], the second frame was shifted in four directions and

compared to the previous frame. The difference between them was used as part of the

feature and to coarsely indicate the direction of movement of each pixel.

2.2.3 Classification

The classification step decides the posture class of a given test image patch based on its

feature. Based on the decision rule used a classifier can be categorized into three types:

example-based classifier which make the decision by comparing to each of the training

example, boundary-based classifer which defines the boundaries between classes and

the likelihood-based classifier which models the distribution of each class independently

and makes the decision by maximizing a likelihood criterion.

K nearest neighbor (KNN) is the most widely used example-based classifier. It

enjoys popularity because of its simplicity and the lack of necessity of training step.

In KNN the decision for an unknown posture candidate is made by threshoulding the

average distances from the feature vector of the test image to its K nearest training

samples. The distance is a measure of dissimilarities between the test image and

the training examples and can be in many forms, including Euclidean distance [9],

Mahalanobis distance [10] and the number of similar components [24].

For instance, KNN (often 1-NN) is widely used in Chamfer matching which is based

on the Chamfer distance from the contour of the training examples to the edgemap of
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the test image patch. The Chamfer distance can be efficiently calculated by applying

distance transform (DT) on the edgemap and correlating it with the contour templates.

The DT converts an edgemap into a greyscale image whose intensity of each pixel is

proportional to its distance to the nearest edge point. A major drawback of Chamfer

matching is its lack of generalization power. Each training example is indexed indepen-

dently, so a very large training dataset is often required to densely cover the possible

posture patterns which is computationally infeasible. Such an efficiency problem can

be overcome by introducing a decision tree-based dynamic search technique. In [33],

examples were indexed by a coarse-to-fine hierarchy by distance-based clustering. The

approach first search for the nearest examples in coarse scale, then successively nar-

row down the search range in finer scales for better examples. In each tier of search

only a few examples are matched, this greatly reduce the time for finding the nearest

examples. This idea was inherited in [29] and combined with a radial basis function

(RBF) classifier applied to the positive image patches as a verification step. A Boot-

strapping procedure was used in the selection of negative examples, that is, whenever

a false positive result is manually detected, it was added to the negative dataset. This

detection approach was further expanded in [32] by using alpha-beta tracking on each

detected posture blob which significantly increases the speed of the detection.

In the work of Gavrila et al. [30] they aimed to further increase the efficiency

of the approach in [33] by rejecting non-posture test images at earlier stages of the

hierarchical matching. A decision threshold was set up for each node of the coarse-to-

fine hierarchy. If the Chamfer matching on one node is negative, it is rejected by all of

its child nodes. This threshold can be obtained by collecting the statistical information
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Figure 2.6: Hierarchical structure of the decision tree used in [33] and [46]

of its sub-nodes.

In [46], the idea of hierarchical template matching in [30] was combined with a body

part detector, since the variation of torso-arm and legs are more than the variation of

head-shoulder contour, it is reasonable to first find the nearest example of head-shoulder

contour, then detect the torso and legs. The results of the template matching are fed

into a validation algorithm that employs an occlusion map derived from the vertical

positions of detected head-shoulders.

Another major drawback of Chamfer matching is that its robustness is severely

affected by a cluttered background. Densely distributed edge points generated by a

cluttered background greatly increase the possibility of close matches and may result

in many false positives. In [21], this effect was mitigated by using chamfer matching

along multiple consecutive frames, and only if the matching distance in all frames are

less than a threshold, can a positive match is detected. This strategy reduces the

possibility of false alarms, which frequently happens in edgemap-based detection from

a single frame.
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It appears that KNN is the only widely example-based classifier without a need for

a generalization from the training examples. The other 2 types of classifiers: boundary-

based classifiers and likelihood-based classifiers, require a training step which seeks to

find the patterns that characterize the training examples. Learning and classification

through patterns have many advantages, for example, the classification can be made

much faster, and the results can be less affected by bad training examples.

Support vector machine (SVM) [8] is a typical boundary-based classifier. It finds

the separating hyperplane that maximizes the margin width between two classes in

the Euclidean space. There are two major improvements on the traditional SVM:

soft margin SVM and kernel SVM. The soft margin SVM is designed to overcome

the problem caused by outliers in the training set. It sets up a ’slack’ parameter

to govern the trade-off between the misclassified examples and the boundary width,

hence, excluding the influence of the outliers. The kernel SVM aims to classify linear

inseparable data by mapping them into a higher-dimensional kernel space, where they

become linear separable and can be classified by a linear SVM. The SVM was first

used in posture detection by [55] for classification of the Haar wavelet feature, then

was further expanded in [57] and [58]. In [57], the posture detection from single frames

was temporally filtered by comparing the detected position and predicted position from

previous frames so as to reduce false positives. In [58], the idea was generalized to object

detection. In [17], the SVM was used on a reduced set of Gabor wavelet coefficients

and in [19] and [20] the SVM was applied on HOG and optical flow features.

In almost all cases a kernel SVM outperforms a linear SVM due to its ability to out-

put non-linear decision hyperplane, but a linear SVM has an advantage. The decision
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function of a linear SVM is a linear combination of components of the training feature

vectors. Therefore, if the feature is local sensitive, the linear SVM will be position-

independent. This would allow the occluded part to be automatically identified by

negative response of the SVM, this providing a new mechanism for occlusion handling.

This idea is the key contribution of the work by Wang et al. [76]. In their work, if

the decision score is ambiguous (i.e. the score falls in the SVM classification margin),

then the response of the linear SVM to each HOG-LBP block would be extracted in-

dependently. The sign of each response will form a binary pixel of a ’likelihood image’,

then a mean-shift based image clustering algorithm is applied on the ’likelihood im-

age’ resulting in potential regions with an overall negative response. The remaining

HOG-LBP blocks can be classified by a body part detector.

Adaboost [28] is another widely used boundary-based classifier for multiple classes.

Here, the test image patch is first classified by a number of simple but weak classifiers,

the results are then merged together by a combination rule learned from the training

dataset. Adaboost is essentially the optimizer of the linear combination rule, that is,

a weighted sum of all responses of the weak classifiers. Its objective is to minimize the

exponential loss of the response of the combination function to the training data. It

works by incrementally adding new classifiers to the combination function in a ’greedy’

manner: each newly added classifier is chosen and weighted to minimize the loss func-

tion of the combination function. Therefore, the Adaboost is particularly suitable for

very long features such as the rectangular feature and covariance feature.

The Adaboost was first employed in the Viola and Jones detector [73] for face

and object detection, in which weak classifiers were simply binary thresholding of one
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component of the rectangular features. This method was directly used in [43] for

face and body part detection. However, due to the complexity of the whole human

body, this method requires further improvement when employed to posture detection.

In [74] and [75], the algorithm was improved by introducing a new visual feature.

The rectangular feature was extracted from both brightness and the shifted difference

image of two frames. In [61], the rectangular feature was replaced with an HOG

feature and the chosen component of the HOG feature was called ’shapelet’. In [81],

the Adaboost algorithm was employed to select components of the HOG features and

construct a strong classifier. The classifier was first used on single frame, then the

detection results along multiple frames were verified mutually to remove false positive

and negative detection by constructing a motion estimation among the detection results

of consecutive frames.

In [47], the Viola and Jones detector was improved by using edgelet features. The

improved detector was applied for both whole body detection and body part detection.

The detector first scanned for positives using whole body detector, then for each pos-

itive region, body part detectors were used to search for three parts: head-shoulder,

torso and legs. The cues from all detectors were then combined together by weighted

sum.

In [16], the Viola and Jones detector was improved from two aspects. First, rect-

angular feature was extracted from HOG map instead of intensity. Second, a new

boosting technique called feed-forward Adaboost cascade was used instead of the tra-

ditional Adaboost in the training step. Once each new weak classifier was added to

the strong classifier, an ’ad-hoc’ classifier was constructed for misclassified examples
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by a linear SVM, This new SVM was also added to the strong classifier like other weak

classifiers. The temporarily constructed SVM represents the best linear weak classifier

available for next boosting round, thus provides a ’fail safe’ mechanism if all the weak

classifiers are not optimal.

The classifier used in [88] can be seen as a tradeoff between the speed of the Ad-

aboost [75] and accuracy of the SVM [19]. It divides the HOG feature of the patch into

subwindows of different size, and trains an Adaboost cascade of SVM classifiers on the

HOGs of subwindows. Finally the strong classifier will only use a small subset of all

HOG components, compared to the original HOG+SVM framework [19] this effectively

increases the speed of classification without a significant loss of performance.

LogitBoost [72] is similar to Adaboost, but a logistic loss function is used instead of

exponential loss function. In this framework, each covariance matrix is converted into

a point on a Riemannian manifold, and weak classifiers are linear classifiers trained

from examples’ mapping onto different tangent spaces of the Riemannian manifold.

The tangent spaces are adaptively chosen so each new tangent point will be closer to

the points that are misclassified, which means linear classifier on the new tangent space

will have the best discriminative power around these misclassified points.

In the likelihood-based classifier, a probabilistic model is often defined for each class

in the feature space so each patch of the sliding window is classified into one of the

classes which gives the highest likelihood. Compared to the boundary-based classifier,

the likelihood-based classifier can usually describe more complex probabilistic pattern

thanks to the highly developed theory of probabilistic modeling and inference. For our

multiple posture cases, it also provides superior scalability, the training of each posture
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Figure 2.7: The Graph indicating causality of a 2D markov random field

is independent so when a new posture is added to the task, only the corresponding

model needs to be retrained.

In [82], a two-layer Markov random field (MRF) was used to encode the 2D vari-

ation pattern of HOG feature, it consists of two layers: the status of nodes in the

visible layer represent the HOG vector of overlapping grids and is assumed to be gen-

erated from the nodes in the hidden layer (see Figure 2.7 for illustration), the status

of nodes in the hidden layer represents a low-resolution binary map denoting the con-

tour of the human body. By imposing the assumption that the joint probability of

the hidden layer is a Boltzmann distribution, it is possible to train the parameters of

two MRF with enough examples, encoding the probabilistic patterns of posture’s HOG

and non-posture’s HOG respectively. They can be later used for maximum-likelihood

classification for an unknown image patch. This paper also proposed the idea of us-

ing probabilistic variational analysis to accelerate this process since the training and

probabilistic analysis on a generative model with many loops is very slow.

Occlusions between postures are commonly observed in crowded scenes, and this

poses hard problems for posture detection because some postures may be significantly

occluded (up to 70%) and completely lose their structural information. In this case, it is
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possible to use the position of the occluding object (which is another posture) as a priori

information. An attempt was made in [23], where the probabilistic model was defined

for the whole scene rather than for each individual patch. In this model, each person

was represented by an ellipsoid vertically separated into 3 blobs, denoting head, torso

and leg respectively, the colors distribution of each blob was determined at initialization

by kernel density estimation. Each new model was initialized when the person made

its first appearance in the video. For a subsequent frame, a scene hypothesis consisting

of several overlapping ellipses is constructed and iteratively optimized through the EM

algorithm, by maximizing its likelihood given by the product of the likelihood of all

pixels in the ellipses. Finally the best explanatory hypothesis is obtained that gives

the position of all human in the scene.

2.2.4 Merging

The merging of multiple spatially neighboring positive responses is a simple but nec-

essary step in most detection by patterns approaches. Typically the merging can be

achieved by clustering adjacent positives in the 3D space of x-position/y-position/scale

and denoting each cluster with its local maximum. The merging step merges the spa-

tially overlapped positive responses to give the final detection results.

2.2.5 Summary

Detection by patterns is the most popular framework for the problem of posture detec-

tion (and arguably the most popular one for any object detection problem). It aims to

detect the human posture directly as an entire object, in which all types of features can
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be used. The framework is intuitive, robust, and can be easily combined with other

cues (e.g. results from an infrared camera or sound sensor). The major drawback of

this framework is that the feature selection and classification steps will be iterated for

many times at different scales and different positions. So the computational cost is

usually high, especially when it is used in detection of multiple postures.

2.3 Detection by local descriptors

Given an image with an unknown number of postures of interest presented, a typical

detection by local descriptors approach consists of the following two steps: First, local

descriptors are found and detected using a simple detector. Then, the postures are

inferred from the local descriptors. This framework is illustrated in Figure 2.8.

Local descriptors are special features that aim to represent the image as a struc-

tural combination of visual features of a number of local interest regions. The local

descriptors are gaining popularity because according to the intuition of human percep-

tion, structural information plays a more important role than appearance information

in identifying an object holistically. For example, a human face is characterized by

two eyes, one mouth and one nose in their corresponding positions; their individual

appearances and shapes, however, are of less importance. In other words, a local de-

scriptor captures only the detailed appearance in local scale and structural information

in global scale. They have been proved to be successful in numerous computer vision

problems. They are also distinctive, robust to occlusion, and do not require segmen-

tation. Recent work has concentrated on making these descriptors invariant to image

transformations.
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Figure 2.8: Detection by local descriptors CITE

Considering the difficulty of modeling appearance variations of postures directly,

detecting rigid body parts may be easier. More importantly, the occlusion of body

parts will not cause the total loss of discriminative power of the posture feature, which

may possibly happen in the detection by patterns framework. Even when some parts

are missing, we can still utilize information from other parts to detect the partially

occluded postures.

2.3.1 Local descriptors

Similar to the feature extraction step in the detection by patterns framework, two most

important criteria for constructing useful local descriptors are being discriminative and

invariant. To maximize the discriminativeness, the local interest regions are specifically

chosen to meet two conditions: (a) they must be distinctive enough as parts of the

human body (so they can be easily identified), and (b) their position and appearance

should be more crucial to the posture configuration than the other regions. Based on

these conditions there are two ways to define the local interest regions for our purpose:

either defined manually to cover the most crucial body parts, like face, arms, hands,
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legs and feet, or learned in an unsupervised manner from the interest points (e.g. edge

points, ridge points, corners) from a sufficient number of training examples.

The first way is more demanding for the training stage, because it is hard to tell

which part of the human body is more discriminative and crucial to the a specific pos-

ture configuration. Manual marking of these regions is tedious and challenging. How-

ever, manual definition is still possible if the number of representative local regions is

small. In [52], [48], [68], [78], [79], [67] and [81], the regions are fixed rectangles denoting

bounding box of head-shoulder, torso and legs. Their size and relative positions with

regard to the posture’s bounding box were pre-determined and the variations of these

regions were learned in the same way as learning the full body. In [53], these regions

are the contours of limbs, extracted manually from the image examples. There are also

a few local descriptors that do not require a training stage, but assume homogeneity

of color or simple intensity patterns [59] [69] of the limb areas.

The second way aims to index all interest points inside the contour of postures

using body parts based codebooks without human intervention. This can be done by

a clustering algorithm. In [44], [66] and [65], the codebook is learned by applying

agglomerative clustering on all detected scale invariant derivative of Gaussian (DoG)

interest points of the training examples. In [60], the interest points are equally sampled

from the contour of the training examples and the codebook is learned by K-means

clustering on local shape context descriptors.

After learning the descriptors, the body parts can be detected by scanning the image

at different position and different scales followed by a classification step. The scanning

step searches through numerous potential interest points or regions where body parts
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may exist, and the classification step convert these points/regions into local descriptors

and classify them into different types of body parts. A typical example is given in [52],

where SVM is used for both body part detection and combination rule of the decision

of body part detectors: The response or each body part detector is regarded as a

component of a four dimensional feature vector, which can be classified by another

SVM.

The scanning can be either exhaustive in the entire image [48], [68] [78], [79] and

[80] [59] [67] or selectively guided by the ROI extraction using the techniques described

previously, for instance, background subtraction was used in [60]. Other characteris-

tics of body parts are also helpful to limit the scanning. In [44], [66] and [65], the

body parts candidates are chosen from all scale invariant DoG interest points. In [53],

the homogeneity of color and intensity inside the skin and clothes regions (e.g. face,

hand, upper torso and limbs) were used to select body parts candidates. A normal-

ized cut-based image segmentation was first performed in two scales, the segment of a

coarser scale (segmentation map) is used as candidates of half-limbs and torsos, and

the segment of a finer scale (’superpixels’) was used to extend the detection result of

half-limbs to full limbs.

To classify each scanning window into body parts, the classification techniques re-

viewed previously can be employed. For instance, example-based or template matching

was used in the part detection step of implicit shape model (ISM) [66] [65] and [44]. In

the ISM, the body parts are located by the key point selection algorithm in the SIFT

feature. The region around these points are then converted into distance transform
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(DT) map and are classified according to its correlation with various body part ex-

amples from a trained codebook (this is equivalent to chamfer matching). In [60], the

example based classifier was employed to the shape context coefficients of contours of

the body parts.

In [67], examples were clustered into nine classes. For each class a soft-margin SVM

was trained on 2×2 HOG of 13 different interest regions (in total 117 SVM are trained).

In [52], SVM is trained on haar wavelet coefficients of five interest regions. In [48], the

body part classifier is the same as [75], where AdaBoost was applied on rectangular

feature for detection of face, torso, legs and hand, and part of the detection results

were validated by color cue. In [78] [79] and [80], the body part classifier is similar

to [47], where a multi-class Adaboost was applied on the likelihood of 14-dimensional

edgelet features in different positions. In [68], the body part classifier is the same as

[88], where AdaBoost was applied on HOGs in blocks of different sizes.

The likelihood-based classification was adopted in [59], [69] and [53]. In [69], the

likelihood function consists of three terms, denoting edge response, ridge response and

optical flow consistency respectively. In [59], the likelihood was measured by the ho-

mogeneity of pixels inside and outside the region of body part. In [53], the likelihood

function consisted of four terms, denoting contour integrity, shape correspondence, in-

tensity pattern and focus cue (since the background is usually out of focus) respectively.

2.3.2 Combination of local cues

Basically there are two approaches to infer a salient posture from scattered cues of

body parts: either through reasoning or learning. It is widely known that all the body
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parts form a flexible kinematic model that follows a head-torso-upper limb-lower limb

structure: each two parts are linked by their mutual joints near their end. In addition, if

the posture can be determined then the location of each part is relatively fixed, and can

be learned from examples. And sometimes, after the salient postures have been inferred

from local cues, they should be validated by their holistic appearance to ensure they are

actual human bodies, instead of a false positive caused by combinations of irrelevant

interest points. This is important because body parts are less discriminative than

whole body, as limbs and trunk sometimes look like pillars, so they will have higher

false positive rate and must be suppressed thereafter. Obviously, the combination

through reasoning can accommodate more variations of the postures. However, since

this approach requires a 2D kinematic model to be inferred from body parts, and

it poses a few restrictions on kinematic configurations (many of which are counter-

anatomic and counter-dynamic) and increases the difficulty of combination and, hence,

the chance of false positives.

The combination through reasoning was used in [53] and [59]. In [53], a hierar-

chical combination rule was set up. The orientation of the detected torso was first

determined by detecting the most plausible head around the torso region using the

same likelihood-based detector as in limbs and torso detection. Then, adjacent candi-

dates of three half-limbs and torsos were linked together by imposing global constraints,

which limited the relative width, length, adjacency and clothes color homogeneity of

the four combined body parts. The best body configuration was thus chosen by dy-

namic programming. In [59], the links between torso and arms were constrained by
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two factors: the distance between corresponding joints of torso and arms, and the sim-

ilarity of the two symmetric body pairs. In this way, two likelihood functions were set

up to penalize its plausibility when this distance exceed a certain value and when the

divergence between the two symmetric body parts was too large. These likelihoods

were multiplied with the likelihood of individual body parts to estimate the global

plausibility of the candidates.

In the learning approach, the postures have to be learned from the training examples

instead using prior knowledge of the composition of the human body. The information

on the relative positions of the body parts plays a critical role in identifying the pos-

tures. There are two ways to use the relative position information. One is to infer the

position of body parts from posture candidates, and validate the detector’s response to

these assumed body parts, then combine them by a multivariate combination function

that gives the joint likelihood of the whole body from the detection result of body

parts. For instance, this approach was adopted in [52] and [67], where the body parts

were defined using respectively five and nine fixed subwindows of the posture’s sliding

window, and the combination function was trained by SVM and AdaBoost respectively.

A more complicated strategy was employed in [48], in which a likelihood function was

defined as the multiplication of body parts likelihood obtained in body part detection,

and a combination likelihood learned from training. The random sample consensus

(RANSAC) technique and a loose spatial constraint is used to iteratively search the

optimal combination of corresponding body parts to maximize the likelihood of the

resultant combination.

When multiple persons appear in the scene, mutual occlusions will become a serious
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problem. Even though the local descriptors based framework itself provides some

occlusion tolerance, it fails to handle situations when the occlusion is too large. In this

case one probably needs to build up the combination criterion of the whole scene instead

of an individual person. Hence, occluded body parts could not decrease the likelihood

of a candidate being covered by another person. In [68], this combination function was

defined as logical reasoning rules, consisting of a bilattice-based reasoning network that

synthesizes multiple binary event detection results (e.g. presence and absence of body

parts and occlusions). The network was defined semi-manually, in other words, some

of the ’obvious’ parameters (e.g. the influence of occlusions and relations between the

position and scale of the human body determined through camera calibration) were

manually set up while the rest of them was learned from training data. In [78], [79]

and [81], the heads were first detected. Then according to their vertical position in the

image, their distances to the camera were determined and lead to an occlusion map for

each person. Hence, cues from body parts were dynamically chosen according to this

map. If one body part was missing without occlusion, it would cause the rejection of

the whole person. To prevent false positives from the noise in the occlusion map, they

were removed in the subsequent step using a greedy algorithm.

Another way of using the relative position information is to infer the position of the

whole body from individually detected body parts regardless of their relevance. This

idea was proposed in implicit shape model (ISM) [44] [60] [66] [65]. The original ISM

was used in [44], where body part detection was accumulated through spacial voting on

the relative position of the center of mass of the human bodies from each detected body

part (this relative position from body part to body center can be learned in training).
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Figure 2.9: Comparison between the combination process of the implicit shape model
in [44],[65] and [66]

After the density of the voting result was obtained, the local maxima of the voting

density, denoting a possible center of mass of the human body, can be extracted by a

mean-shift optimization as a preliminary detection result. Then the ’sources of voting’

were validated by eliminating the voting from irrelevant regions of the detected human

body (e.g. background regions). The pruned voting was then recalculated, leading to

a new density map in which local maxima represent a more accurate detection result.

The accuracy of the detection was further increased by validating the detection result

by chamfer matching of the whole body’s edgemap. The detection was performed for

several times in different scales, allowing postures at different sizes to be detected.

In [44], the appearance and relative position of each body part is fixed, this is not

true if multiple postures or postures in different directions are being detected. Such

assumptions may cause irrelevant body parts being assembled together, leading to a

high rate of false positives. To overcome this, an improvement of ISM was proposed

in [66], in which the appearance of the body parts and combination rules for different

types of postures from different viewpoints were independently trained. In the detection

stage, the voting from detected body parts was only accumulated if they belong to the
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same posture type and viewpoint. This is equivalent to expanding the voting space from

3D (x-coordinate, y-coordinate, scale) to 4D (plus the type of the posture and viewing

aspect). However, this improvement seems to jump from one extreme to another. It

assumes that each class of body part’s appearance can only belong to one posture type

and viewpoint and disregards the fact that some body parts may look similar in two or

more posture configurations. This problem has been dealt with in [65] by introducing

cross-articulation voting in which a vote from a body part was no longer cast on one

point in the 4D space, instead, it was cast on multiple posture configurations based

on the probability of the body parts appearing in these posture configurations. An

illustration of different combinations of rules in [44][66][65] are shown in Figure 2.9.

2.3.3 Summary

Recent local descriptors based approaches has demonstrated promising results. But it is

still arguable whether local descriptors based detection would consistently outperform

the pattern based one if the same feature and classifier are used to detect body parts

and whole body respectively. The framework itself is complex, but its speed is generally

not a drawback. This may be because the patterns of local parts are not complex and

can be detected by faster features and classifiers. The framework is specifically designed

to have high robustness in partial occlusion conditions, and in fact many works have

indeed shown such an ability [66] [44] [68]. However, the relationship between different

body parts has not been fully utilized, despite the advantages and disadvantages. On

one hand, the button-up representation allows new instance of postures to be detected

even if its illumination condition, articulation and overall texture are different from
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the training examples. Therefore, a small training dataset could train a detector with

enough discriminative power and flexibility. On the other hand, discarding of global

appearance information of posture will cause a great loss of performance, and false

alarms may be generated due to the combination of irrelevant local descriptors. Though

this can be partially alleviated by applying validation using global cues, the ability of

using a very small number of training samples will be lost at the same time. Another

disadvantage of this framework is its sensitivity to image degradations (blur or noises)

because local features are usually damaged in such cases.

2.4 Performance Evaluation

This section presents the commonly used datasets and techniques to evaluate the per-

formance of a posture detection method.

2.4.1 Datasets

Many different datasets were constructed to train the detectors and test their perfor-

mances under different conditions and assumptions with various categories of postures.

These datasets were usually captured under controlled environments or modified to

mimic practical conditions, such as indoor/outdoor surveillance, the use of a hand-held

camera and lab-condition motion capture. Ground truth was also manually labelled.

Datasets are crucial for performance evaluation and comparison. Comparison between

two detectors is only meaningful if they are trained and tested on the same dataset.

It should be pointed out that most datasets were originally designed and captured
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for action recognition and human detection rather than for posture detection. How-

ever, they can be also used for posture detection if the postures are labelled properly.

Table 2.1 lists the datasets that may be used for evaluating posture detection, where

MP refers to multiple person inside one image, and O refers to the grade of occlusion

(1-no occlusion, 2-self occlusion, 3-occluded by objects, 4-occluded by other persons).
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Name data MP Classes Viewpoint Scene O. C. Used by
INRIA 902 images yes walking/standing Horizontal Outdoor 4 3 [81] [16] [19] [25] [47] [61]
MIT 924 images no walking Front/Back Outdoor 2 2 [81] [19]

USC-A 313 images yes walking/standing Front/Back Outdoor 3 2
USC-B 271 images yes pedestrian Upper Front/Back Indoor 3 2 [68] [46]
USC-C 232 images yes walking/standing Horizontal Both 3 2

PETS2001 10 videos yes pedestrian Upper Outdoor 4 2 [39]
Caviar-INRIA 28 videos yes 6 actions Upper Indoor 3 2 [46] [78] [79] [80]
Caviar-Lisbon 26 videos yes pedestrian Upper Indoor 3 2
MunichAirport 1779 frames yes pedestrian Upper Indoor 3 2 [46]

Weizmann 90 videos no 10 actions Side Outdoor 2 2
CMU Mobo 600 videos no 4 walking types 8 Surrounding Treadmill 2 2
UCF sport 197 videos no 10 sport actions Horizontal Both 2 2
MuHAVi 119 videos no 7 actions Upper Indoor 2 2

Table 2.1: The datasets that may be used for evaluating posture detection algorithms.
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2.4.2 Evaluation criteria

The performance of any posture detection algorithm should be evaluated in terms of

detection accuracy, time and space complexity, and an ability to tolerate variations in

camera and illumination conditions. In this section, we will present the commonly used

evaluation criteria including detection rate (DR), false positive per window (FPPW),

receiver operating characteristic curve (ROC), precision-recall (PR) and decision error

trade-off (DET)

The DR and FPPW are two basic benchmark criteria for a posture detector. The

DR refers to the ratio of successfully detected postures with respect to all postures

and the FPPW is the ratio of false positives to the number of iterations of a sliding

window.

DR =
number of true positive

number of real postures
(2.1)

FPPW =
number of false positive

number of iterations of sliding window
(2.2)

The receiver operating characteristic (ROC) curve is derived from the detection

rate and false positives. For any detector, the detection rate can always be adjusted by

tuning a threshold that governs the ’sensitivity’ of the classification step or combination

step as described above, that is, the tradeoff between detection rate and false alarm

rate. For example, in an SVM or boosting-based classifier the threshold is set on the

value of the decision function and in an ISM the threshold is set on the accumulated

density of the spatial voting cast. Generally the threshold is set on the point where

the detector has the highest overall rate, but in practice the importance of the two
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rates might be different. If numerous patches are generated from an image which

contains a small number of postures, then a reduction of FPPW should be emphasized

to prevent a large number of false alarms. However, if the detector is combined with a

motion-based validation step or tracking step, the FPPW will become less important

because most of the false alarms can be filtered thereafter. Therefore, the ROC curve is

usually used to give a comprehensive evaluation of the overall performance. In a ROC

curve, the x-coordinate denotes the false positive rate and the y-coordinate denotes

the detection rate. The ROC curve is an intuitive illustration on how the detector

performs at different thresholds. Another criterion derived from a ROC curve is the

area of region under the curve, which coarsely denotes the mean detection rate under

different FPPW values.

A Precision-recall (PR) curve is similar to the ROC curve but slightly different in

its definition. The PR curve is also a curve representing a detector’s performance with

respect to different threshold settings. However, the x-axis and y-axis now are used

to represent recall and precision respectively. These two measurements are defined as

follows:

recall =
number of true positive

number of real postures
(2.3)

precision =
number of true positive

number of all positive alarms
(2.4)

The PR curve indicates the performance purely based on detector’s positive re-

sponse, so it covers the situations where the ROC curve fails to give an objective
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evaluation because no sliding windows are employed. For detectors based on local de-

scriptors or detectors heavily relying on the accuracy of segmentation, the PR curve

is a better choice. The general characteristic of the PR curve is featured by an equal

error rate (EER), referring to the recall/precision rate when recall = precision.

The decision error trade-off (DET) curve is a third benchmark criterion that has a

similar functionality to the ROC curve, its only difference is that the detection rate is

replaced by the miss rate:

MR = 1− precision (2.5)

It should be noted that the benchmark criteria are usually calculated before the

merging step.

In addition, it is also important to judge whether a positive response constitutes

a successful detection. If the detection result is evaluated manually, then a single

response will be marked as successful if its position lies just in the bounding box of

a true posture. If multiple postures are defined, the class of the posture should also

be specified correctly. However, the ground truth bounding boxes of the postures are

manually labelled. A certain level of deviation from the position of labelled ground

truth should also be tolerated. On the other hand, sometimes (e.g. in object retrieval)

this level of deviation should also be measured as part of the evaluation system because

it reflects the ability of the detector to precisely identify the position of the postures.

In [44], three criteria were defined: relative distance, cover and overlap. The relative

distance is defined as the distance between the geometric center of the detected region

and its nearest ground truth in relation to the length and width of the bounding box.
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Detection Rate [10] [56] [85] [87] [86] [9] [39] [12] [33] [29]
[23] [55] [57] [58] [48] [60] [44] [68] [78] [79] [80]

ROC [46] [32] [30] [16] [20] [47] [52] [55] [57] [58]
[67] [75] [82] [48] [60] [68] [78] [80]

PR [65] [66] [44]
DET [19] [20]

complexity [23] [55] [68]

Table 2.2: Summary of the key literature

The cover and overlap measure how much of a bounding box of the ground truth is

covered by that of the positive detection and vice versa. Each positive detection is

considered to be true only when all of these values are less than a threshold.

In terms of efficiency, the commonly used measurements are the execution time of

the algorithm and the big-O notation of the algorithm. The execution time depends

on the language (e.g. C/C++ or Matlab) used to code the algorithm and machine on

which the program runs. The big-O notation indicates how the computational cost

will be increased when the problem size increases.

Table 2.2 shows evaluation criteria adopted in some key literature.

2.5 Major Challenges

This section discusses the key challenges that influence a detector’s performance, in-

cluding occlusion, articulation, clothing, illumination, image quality and cluttered

background.

2.5.1 Occlusion

Occlusion is probably the biggest challenge in the detection of any object. The occluded

part of a body can undermine the structural integrity of the human body and cause the
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total loss of its global features. Recently many approaches were proposed to overcome

this problem. In general, occlusions can be categorized into the following four cases as

shown in Figure 2.10 and different frameworks should be adopted in order to address

each case:

1. No occlusion: Every articulated part of the human body is visible and not oc-

cluded. The assumption of no occlusion can only be enforced in human-machine

interactive applications where the user of the application is facing the camera. If

multiple calibrated cameras arranged in different viewpoints are available, their

information can mutually compensate the occluded parts. Since the articulation

of the body is fully visible, it allows kinematic information to be used unambigu-

ously for detection.

2. Self-Occlusion: A part of the human body is obstructed by another part of the

same person. Common self-occlusion cases can be observed in the profiles of

a human body, where a limb can be obstructed by the torso or other limbs.

Since most of the reviewed literature learned appearance information directly

rather than kinematic information, the self-occlusion is usually relatively easy to

address.

3. Occluded by other objects: A part or all of the human body is obstructed by other

objects (e.g. when a pedestrian walks behind a tree). This condition usually ap-

pears in outdoor scenes that contain a lot of foreground obstacles. Detection

of postures occluded by objects relies on extensive exploitation of local features
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Figure 2.10: The four cases of occlusion

and tracking techniques. Local features will only change partially with the occlu-

sion but will not change completely as global features. Tracking techniques like

Kalman filters or particle filters are able to predict the continuous movement of

the human body by using motion information of adjacent frames, regardless of

whether the body is fully occluded. However tracking techniques are not within

the scope of this thesis and, hence, will not be discussed.

4. Occluded by other person: Multiple persons are in the scene and some of them

are partially occluded by other persons. In a crowded scene such occlusion is

almost inevitable. This condition, however, is easier than previous cases because

as long as the foremost posture can be detected, an occlusion model over the

whole scene can be incrementally constructed and used to predict which part of

the occluded person is missing. This technique has been explored in [23], [46],

[68], [78], [79], and [81].
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2.5.2 Articulation

Articulation refers to changes of the torso and limb’s configuration in one posture class,

caused by continuous movements of limbs, or by the differences of individuals and situa-

tions (also known as gait differences), or by continuous movements of camera’s position.

Articulation does not obviously affect detection of local descriptors, but unfortunately

the majority of the literature aims to detect the whole posture. Many distribution-

based features and likelihood-based classifiers are designed to tolerate small range of

articulation. This problem may be dealt with by a sufficient number of examples so

that the articulation can be encoded by piecewise representation of the examples.

2.5.3 Clothing

Different clothing will greatly affect both the appearance and contour of the human

postures. Unlike face detection, they should not be treated as occluding objects because

they usually cover more than 50% of the body, and their appearances contain important

structural information. Due to these reasons, clothing is always learned as part of the

posture patterns in the training stage, this further increases the difficulty of learning

because the variations of clothing are far more unpredictable than the variations of

articulation. The general conditions of clothing can be categorized into four cases as

shown in Figure 3.1:

1. Tight clothes: This only appears in lab condition and athletic scenes. Tight

clothes are easy to handle because they only merely change the contour and

brightness patterns of the torso and limbs. In particular, the tight clothes can be

in a specified color so the segmentation of human body becomes easier.
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2. Monochrome casual clothing: This is the most common condition that will be

encountered in most applications. These clothing will slightly change the color

and contour of human body but in general their variations are small, so they do

not pose a significant problem to the learning process as long as we can guarantee

the same kind of clothing appear in both the training and test dataset.

3. Clothing with complex textures and patterns: textures and patterns will provide

unexpected interest points or edges with high contrast, which will interfere with

some of the local visual features. However, compared to monochrome clothing

the global features and histogram-based features will usually not be affected

because textures and patterns do not contribute significantly to low-frequency

information.

4. Formal clothing and costumes: Formal clothing like a robe, gown or scarf and

costumes such as a big hat and unusual clothing will severely affect both the

appearance and contour of human body. Their variations are numerous but they

do not appear frequently. They are most challenging to the detectors.

2.5.4 Illumination

Environments that are either too dark or too bright will lower the contrast of images or

videos and increase the difficulty of detection. However the greatest challenge comes

from the variations of appearance caused by uneven lighting and shadows. Uneven

lighting will change the overall distribution of brightness patterns and will negatively

affect the performance of the detector if it is trained in one lighting condition and tested
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Figure 2.11: The four cases of clothing variations

on others. This problem can be partially solved by using illumination-invariant features

like homomorphic map, edgemap or HOG. Shadows cast on human body (including

self-cast shadows and shadows of other objects) will cause unexpected strong edges and

large dark regions that may interfere with the contour of human body. So far, there

is no good solution for this problem. Illumination-invariant features are not effective

in removing local strong edges, and any attempt to predict cast shadows based on

modeling of projection of light and obstruction of objects will be time consuming.

Fortunately, obvious shadows are not common in daylight or indoor scenes. Shadows

cast on the ground by the human body will also interfere with the function of some

motion-based segmentation techniques, because a person and attached shadow will be

extracted from the background as one moving object. To help overcome this, a shadow

removal step was applied in [39] and [86], where shadows were removed using their

shape and color cues.
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2.5.5 Image degradation

Image degradation refers to loss of visual information caused by low resolution, badly

calibrated camera and noise. Usually local, detailed, high frequency information will be

severely damaged, but global features are less affected. Therefore human are still able to

identify objects from a degraded image even when they are unable to clearly identify

the details. We conjecture that the detection by patterns framework has a better

performance in tolerating image degradation because it uses more global features. But

this claim has not yet been verified.

2.5.6 Cluttered background

A cluttered background may fit the learned patterns of the postures but may not

actually correspond to one of them. The false alarm rate is arguably the most important

evaluation criterion of a detector’s discriminating power and is the the main reason why

oversimplified features should not be used. For example, detection based on pattern

matching of edgemap will frequently generate false alarms in a cluttered background.

So some approaches [21] [29] [32] combine the edgemap with other cues (edge intensity,

direction, etc.) to achieve a better discriminating power.

Negative examples are sometimes required in the training stage of some classifiers

like SVM and Adaboost. They are used as posture examples to draw a line between

true postures and false alarms. Negative examples are generated by randomly cropping

landscape pictures. They must be selected from as many sources as possible and in a

large quantity because they represent the rest of the world. The number of required

negative examples varies for different features. In [19], this number is almost ten times
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the number of positive examples. A large number of negative examples will sometimes

lower the algorithm’s computational efficiency, but in many situations it improves its

performance.

2.6 Summary and Discussion

As in many other detection problems, the presented challenges are either caused by

in-class variations that are too big or cross-class variations that are too small, and

solutions to these problems rely on both statistical learning and heuristic reasoning. In

our case, the challenges of articulation and clothing are particularly important, because

they are unique in posture detection.

There are enormous possibilities of combining different features and classification

techniques to create a novel posture detector, and indeed many of these techniques

have never been used in this field. However, considering the uniqueness of the posture

detection problem, we generally do not expect it is effective to simply adopt existing

features and classification techniques. Instead, we believe that the solution should be

to design new features and classification techniques specifically to overcome these two

challenges.



Chapter 3

Kernel PCA for open-set classification

This chapter presents an open-set classification framework which is built upon manifold

learning using Kernel PCA (KPCA). In particular, it intorduces an improved KPCA

learning algorithm that avoids the problem of numerical instability that may exist

for high dimensional data. The open-set classification is achieved by measuring the

reconstruction error. To overcome the problem of high computational cost associated

with conventional KPCA, we propose in this chapter a new approximatioin algorithm

that aims to find a reduced KPCA to approximate the kernel mapping. The algorithm

works by greedily choosing a subset of the training samples that minimizes the mean

square error of the kernel mapping between the original KPCA and the reduced KPCA.

Experimental results on both real and simulated data and comparsions to existing

methods have verified the effectiveness and efficiency of the classification framework

and the approximation algorithm.

3.1 Introduction

In this thesis, we are particularly interested in the multi-class posture detection prob-

lem, that is, detecting and identifying the postures that have been learned from images

61
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or videos. This problem is different from the problem of human/pedestrian detection

in three apspects. First, unlike the human detection, the detection can no longer be

formulated as a binary classification problem, instead, it is a multi-class and open-set

classification problem in which one of the classes corresponds to unknown postures or

backgrounds. Second, we assume that a limited or small amount of training samples

are available for each known postures due to the difficulty and tediousness of acquiring

the training samples. Third, it is assumed that there is no negative training samples

representing postures that are not in the interest set or background. In human de-

tection negative examples can be easily cropped from landscape pictures containing

no human, but in our case there won’t be any negative examples for the uninterested

postures.

Under such conditions, we believe that one of the key issues is the effective learning

and representation of the posture patterns from a limited amount of training data.

A traditional classifier like SVM or Boosting is not applicable because they require

negative examples for references. On the other hand, a generative statistical model

may be used to model each class and make decision by probabilistic inferences to

achieve detection. However, statistical models often rely on certain assumptions which

may not necessarily be satisfied. For example, the implicit shape model (ISM) makes

the inference from local descriptors under the assumption that the appearance of these

descriptors is independent, and a Hidden Markov Model (HMM) is used to represent

temporal signals under the assumption of Markovian property.

A recent study on the problem of estimating three dimensional (3D) human poses

from images or image sequences has provided us with greater knowledge on posture
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representation. The essence of the pose estimation is to seek an effective representation

of the pose appearance in the images and the 3D joint configuration of the body that is

most likely to generate the appearance. An effective representation of the appearance

for a given 3D configuration would reduce the ambiguity of estimation. In [34][2], the

appearance is approximated by a cluster represented as a Gaussian mixture model

(GMM) as illustrated in Figure 3.1, and in [11][1][22], it is represented by a non-

linear smooth manifold. The intrinsic relations between the posture configuration and

the appearance are obtained through a regressor. According to the results provided

by these literatures, manifold representation usually has a better performance than

cluster representation. This can be explained by the fact that the body articulation

that causes the major in-class (within-posture) variations is concentrated on a few

joint angles and these variations can be effectively enclosed in a lower-dimensional

manifold. In contrast, the piecewise GMM cluster representation will become too

sparse and hard to be accurately estimated when the number of examples is too small

or the dimensionality of the feature space is too high (the curse of dimensionality). In

addition, the ability of a manifold representation in dealing with cluttered background

has been further demonstrated by the work [3] on estimating upper-body poses by

combining the regressor with HOG feature [19] and a non-negative matrix factorization

(NMF) based background suppression scheme.

Motivated by the success of manifold learning in posture estimation we adopt the

idea and extend it to solve the proposed posture detection problem. Specifically, we

adopt kernel PCA as the manifold learning tool as analysed in the next section.
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Figure 3.1: Manifold representation (red solid curve) versus cluster representation
(green ellipses) of a scattering dataset, this picture illustrates the simplicity and fi-
delity of the manifold representation comparing to its opponent.

3.2 Overview of manifold learning

Manifold learning (also known as manifold embedding or dimensionality reduction)

refers to the problem of finding a lower-dimensional submanifold of a data space, which

can best enclose a set of given data. High-dimensional data are not convenient for

either visualization or processing (due to the curse of dimensionality). If they can

be approximated by new data that lies on the embedded submanifold, they can be

represented by shorter vectors. In adidtion, manifold learning can also reveal the

latent statistical structure that is hiden beneath the high-dimensionality of the data.

The manifold span that encloses the data variation can be seen as a generalization

of the examples. Unlike a generative model, this generalization relies on no specific

assumption.

A numerical solution to the manifold learning problem relies on how we limit the

smoothness of the manifold. If the manifold is close to linear (a hyperplane), then

finding its tangent directions that may indicate the major variations is equivalent to
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a matrix factorization process, and many tools like PCA, LPP, ICA and NMF can

be used. These tools, however, can only be applied when the variations are small,

otherwise the linearity assumption cannot be fulfilled. An alternative way to overcome

this problem is to adopt a piecewise manifold learning, i.e. approximating the manifold

by mixtures of numerous small linear pieces. For example, in [2] and [34] a Gaussian

mixture model (GMM) is learned from examples as a representation of the manifold.

In [38] examples are unsupervisedly clustered into small groups and each of them is

learned by a local PCA. There are two problems in these approaches. First the piecewise

representation is not very accurate. Second, it is too complex and requires too many

parameters and iterative steps to tune its performance. Another type of manifold

learning technique relies on explicit parameterization of the manifold. For example,

principal curves [15] aim to iteratively update a curve so it passes through the middle

of nearby examples. A nonlinear autoencoder [40] creates a multi-layer neural network

to approximate a nonlinear mapping from a high-dimension space to a low-dimensional

space and optimizes its parameters by reducing the reconstruction error of the training

set. Again these techniques involve time-consuming iterative optimization. Due to

these concerns we chose Kernel PCA as the manifold learning tool.

3.3 Kernel PCA

The kernel PCA is a manifold learning technique proposed first in 1998 and has quickly

become one of the most popular tools. Kernel PCA (KPCA) is a non-linear dimen-

sionality reduction technique that can be regarded as a kernel expansion of the con-

ventional linear PCA [49]. Let X = {x1, x2...xn} be a set of n samples, each sample
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xi, i = 1, 2, · · · , n being a D dimensional feature vector. KPCA maps the samples into

a kernel feature space using the mapping φ(x) and then performs PCA in the feature

space. It is based on the fact that a vector mapping φ(x) can always be found if its

inner-product kernel k(x, y) =< φ(x), φ(y) > is defined and positive semi-definitive

[62]. Given the n samples, a kernel PCA model can be trained in two steps [63]:

1. Define the kernel k(x, y), commonly used types of kernel include:

(a) linear kernel: k(x, y) =< x, y > (KPCA that uses a linear kernel is equiva-

lent to PCA)

(b) Gaussian kernel: k(x, y) = e
||x−y||2

τ , τ ∈ R+ (the most commonly used kernel)

(c) polynomial kernel: k(x, y) = (1+ < x, y >)p, p > 1

(d) Three other manifold learning tools: Isomap, Laplacian Eigenmaps and

Locally Linear Embedding has been proved to yield the same result to KPCA

with a graph-based kernel [35].

2. Calculate the kernel matrix

K = [Kij], Kij = k(xi, xj)

and centered kernel matrix

K̂ = HKH

where H = In − 1n, In is an n×n identity matrix and 1n denotes a n×n matrix

in which each element takes the value 1/n.

3. Compute d largest eigenvalues λ1...λd and the corresponding eigenvectors

A = [a1, · · · , ad]
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of K̂. where ai, i = 1, 2, · · · , d are all n dimensional column vectors and scaled

such that |ai| = 1
λi

.

Given a new sample z, its mapping onto the PCA subspace can be calculated by:

y(z) = P T φ̂(z) (3.1)

= P T (φ(z)− ΦX1n,1)

P = ΦXHA (3.2)

where P is the column matrix of the first d principal components, ΦX is the column

matrix of φ(xi), 1n,1 is a column vector with each elements being 1/n and φ̂(z) =

φ(z)− ΦX1(n,1) is the centered φ(z).

Equation 3.2 can be rewritten as

y(z) = w(z)− b (3.3)

w(z) = (HA)T (k(x1, z), · · · , k(xn, z))T (3.4)

= (HA)T k(X, z)

b = (HA)T K1n (3.5)

where HA = HA and both w(z) and b are d-dimensional vectors representing the

projection of φ(z) onto the principal components and the mean of φ(x) over the n

samples.

Note that in cases where d is close or equal to n, K̂ is often not a full rank matrix,

thus some λi could be very small or equal to zero. Consequently, scaling of the ai can

lead to infinite |ai| and numerical instability would occur in the training. To avoid this,

we first reconstruct the feature vectors in an n-dimensional interim space by employing
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a multidimensional scaling (MDS) technique [41], in which the relative distances and

inner-products between vectors are preserved. Then, PCA is performed in the interim

space. Details of the algorithm are given below:

1. Obtain the kernel matrix K of the dataset X = x1, x2, · · · , xn.

2. Find the n-dimensional representation UX = (u(x1)u(x2)...u(xn))T such that <

u(xi), u(xj) >= k(xi, xj),

UX = Ď
1
2 B̌T

where Ď and B̌ are the diagonal matrix of the eigenvalues and column matrix of

eigenvectors of K respectively. Notice that K is not the centered K̂.

3. Perform PCA on UX , and obtain the projections of UX on all the principal com-

ponents, the result is WX .

4. Calculate HA by solving

w(z) = (HA)T ΦT
Xφ(z) = (HA)T W T

Xw(z),

The result is HA = W+
X , where + denotes Moore-Penrose pseudoinverse.

5. calculate b by b = (HA)T K1n.

Although the algorithm requires twice eigen-decomposition, it avoids numerical insta-

bility when d is high.
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3.4 Open-set Classification based on Reconstruc-

tion Error

Open-set classification aims to classify an unknown observation into N+1 classes where

the training samples are only available for N classes, the extra one class is dedicated

for outlier or unknown observations that do not belong to any of the learned classes.

This problem is meaningful not only for our posture detection, but also for many other

applications when negative examples cannot be acquired.

The most simple case of open-set classification is the 2-class case (N = 1) which

has been studied in previous literature. Due to the success of SVM as a traditional

classifier where every class has training examples, attempts have been made to apply its

principle to the open-set classification and the result is one-class SVM [64]. However,

it is argued that the one-class SVM gives a larger decision boundary than necessary

due to the fact that it has no tolerance to outliers or noisy examples.

A recent work in [37] has shown the potential of manifold representation in open-

set classification. In this thesis, classification is achieved by simply measuring the

reconstruction error of the observation z, which is the Euclidean distance between φ(z)

and its projection φ(z′) onto the linear subspace of the principal components in the

feature space. Let c be the manifold of the class with training samples, the classification

of z can be defined as

cz =


c, r(z|c) ≤ dT ;

unknown, r(z|c) > dT .

(3.6)

where r(z|c) = ||φ(z)−PdP
T
d φ(z)|| is the reconstruction error of z when projecting
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onto the class manifold c, dT is a threshold, Pd is the column matrix of the first d

principal components in the feature space. Here r(z|c) can be further simplified as:

r(z|c) =
√
||[y(z)d+1, y(z)d+2, . . . , y(z)n]||2 + k(z, z)2 − ||w(z)||2 (3.7)

where y(z)d+1, . . . , y(z)n is the projection of y(z) onto all non-principal components,

and k(z, z)2−||w(z)||2 is the squared distance from the infinite-dimensional φ(z) to its

projection onto the n-d mapping space.

Though initially designed for two-class cases, this approach can be easily extended

to multi-class cases:

cz =


arg min∀i r(z|ci), min∀ir(z|ci) ≤ dT ;

unknown, min∀ir(z|ci) > dT .

(3.8)

where ci, i = 1, 2, · · · , N are the N class manifolds.

3.5 Greedy Approximation by Minimizing the Map-

ping Error

A major drawback in applying KPCA is the requirement to keep both HA and all

of the n training samples in X, and the time required to calculate k(X, z) for any

given new sample z . When n is very large, KPCA often becomes impractical to use.

This problem becomes even worse in posture detection, where a trained KPCA model

is going to be used on numerous patches of sliding window. One way to solve the

problem is to find a reduced KPCA model, given by X̃ and H̃A, such that the mapping
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of a new observation, z in the reduced KPCA model is sufficiently close to the mapping

of the sample in the original KPCA space, given by X and HA, that is, to minimize

the mean squared error of the mapping:

ε = E(||ỹ(z)− y(z)||2) (3.9)

where ỹ(z) is the mapping function of the reduced KPCA model:

ỹ(z) = P̃ T φ̂(z) (3.10)

P follows the definition of Equation 3.3 and P̃ = ΦX̃H̃A, where H̃A and X̃ are a

m × d matrix and a column matrix of m examples that are used to approximate HA

and X respectively, m is a predefined scalar and m << n.

3.5.1 The existant methods

The minimization of Equation 3.9 can be regarded as an optimization problem, in

which the difference between the reduced model and the original model is minimized.

A solution to linear and polynomial kernels was first proposed in the context of kernel

SVM [14] and subsequently extended to kernel PCA [63]. Two generalised solutions

were subsequently developed for non-polynomial kernels by Scholkopf et. al.[62] and

Franc [26]. These works represent the state-of-the-art of the kernel approximation and

are widely adopted in applications involving large dataset.

Since Equation 3.9 is the expectation of an yet undetermined function, Both existant

methods proposed in [62] and [26] replace it with an equivalent objective function. In
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[62], the new objective function is:

ε = ||P − P̃ ||2 (3.11)

which is to approximate principal components in the feature space with the approxi-

mated principal components P̃ . In [26], the new objective function is slightly different:

ε = ||ΦT
XΦX − ΦT

X̃
ΦX̃ ||

2 (3.12)

which is to approximate the mapping of X on the linear subspace of X̃. The purpose

of this objective is to reduce the size of X prior to KPCA training so both training

and mapping of the model can be accelerated.

Despite on being significantly simplified, both Equation 3.11 and 3.12 are ill-posed

optimization problem and an analytical solution would be intractable. As a result,

greedy solvers are used, which optimizing Equation 3.9 by incrementally adding new x̃

into X and expanding its linear span. In [62], the new x̃ is the pre-image of the mean

vector of columns of the P − P̃ , denoting the projections of principal components on

the null space of φX̃ . After the x̃ is determined, the entire coefficients matrix H̃A is

recalculated to yield the minimum ||P − P̃ ||2. In [26], the new x̃ is chosen from the

training set X that maximally decreases the approximation error of Equation 3.12.

This is achieved by Gram-Schmidt orthogonalization of all columns of X with [X̃, x̃]

and choose x̃ such that the mean length of the column vectors of the orthogonalized

X is as small as possible.

However, in [62], the greedy selection of the examples is not optimal since the

examples are incrementally selected to expand the linear span of the kernel space

without considering the correlation between a newly selected example and the previous



3.5. Greedy Approximation by Minimizing the Mapping Error 73

examples in the kernel feature space. Although this problem is addressed in [26], it uses

a different objective function that pursues the training speed at a cost of significant drop

in the accuracy of approximation. Both methods do not guarantee that the mapping

error is minimized. Additionally, both methods define their objective functions in the

implicitly-defined kernel feature space which unnecessarily increases the computational

cost.

3.5.2 The proposed method

In this chapter, we propose a new solution to the problem of Equation 3.9 that keeps a

balanced trade-off between accuracy and efficiency. The objective function is designed

to best reflect the purpose of the KPCA and the proposed algorithm performs the

minimization in the mapping space instead of the kernel feature space so as to ensure

that the reduced KPCA is an optimal approximation of the original KPCA.

Equation 3.9 can be written as:

ε = E(||(P̃ − P )T φ̂(z)||2) (3.13)

= E(tr((P̃ − P )T φ̂(z)φ̂(z)T (P̃ − P )))

= tr((P̃ − P )T E(φ̂(z)φ̂(z)T )(P̃ − P ))

where tr denotes the trace of matrix. If the factor of φ̂(z) is ignored, then minimizing

Equation(3.9) is equivalent to minimizing ||P − P̃ || [62]. Note that E(φ̂(z)φ̂(z)T ) is the

covariance of the sample population in the kernel feature space which can be estimated

from the training samples.
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E(φ̂(z)φ̂(z)T ) ≈ cov(φ̂(x)) (3.14)

where cov(φ̂(x)) is the covariance matrix of φ̂(x) in the feature space, also considering:

P T
n cov(φ̂(x))Pn = Dn (3.15)

where Dn is an n×n diagonal matrix of all n eigenvalues λ1, . . . , λn of K̂, and Pn is the

column matrix of all n principal components. Equation 3.13 can be more effectively

written as:

ε = tr((P̃ − P )T PnDnP
T
n (P̃ − P )) (3.16)

= tr((P̃ T Pn − Id,n)Dn(P̃ T Pn − Id,n)T )

= ||(P̃ T PnD
1
2
n −D

1
2
d,n)||2

= ||(H̃A
T
Φ̂T

X̃
PnD

1
2
n −D

1
2
d,n)||2

= ||(D
1
2
n [w(x̃1)| . . . |w(x̃m)]H̃A −D

1
2
d,n)T ||2

= ||(D
1
2
n WX̃H̃A −D

1
2
d,n)||2

where Id,n is the first d rows of In,n, D
1
2
n is the n× n diagonal matrix of

√
λ1, . . . ,

√
λn

and D
1
2
d,n is the first d rows of D

1
2
n . Unlike [26] and [62] which define the objective

function in kernel feature space, our objective function Equation 3.16 is defined in the

KPCA mapping space which provides significant computational advantages.

Finding all vectors in H̃A and X̃ simultaneously according to Equation 3.16 is

not trivial. We propose a greedy algorithm that selects x̃ one-by-one by iteratively

executing the following two steps [62] [26]:
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1. select one sample x̃ from X such that ε(X̃ ∪ x̃) is minimized

2. add the sample x into X̃, X̃ = X̃ ∪ x̃

To simplify the first step, assuming D
1
2
n WX̃ can be QR decomposed into a column

matrix of orthogonalized vector Q and a right triangular square matrix R: D
1
2
n WX̃ =

QR, ε then becomes:

ε = ||(QRH̃A − (D
1
2
d,n)T )||2 (3.17)

This is a typical quadratic programming problem, the solution of H̃A for a given Q

is:

H̃A = (QR)+(D
1
2
d,n)T (3.18)

= R−1QT (D
1
2
d,n)T

Hence Equation 3.17 becomes:

ε = ||((QQT − I)(D
1
2
d,n)T )||2 (3.19)

=
d∑

i=1

||QQT vi − vi||2

=
d∑

i=1

(||vi||2 + ||QQT vi||2 − 2vT
i QQT vi)

=
d∑

i=1

(λi − ||QT vi||2)

where vi is the ith column of (D
1
2
d,n)T . So minimizing ε is equivalent to maximizing:
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ζ = ||(QT (D
1
2
d,n)T )||2 (3.20)

This optimization term is easy to calculate, and most importantly, when a new x̃

is added to X̃, matrix Q would change little because the new Q can be easily obtained

by Q = [Q|q], where q is the φ(x̃) being Gram-Schmidt orthogonalized with the rest

of the column vectors of Q. Therefore, the increase of Equation 3.20 for each new x̃

being added to X̃ can be expressed as:

∆ζ = ||([Q|q]T (D
1
2
d,n)T ||2 − ||QT (D

1
2
d,n)T ||2 (3.21)

= ||qT (D
1
2
d,n)T ||2

Iterative maximization of this term forms the main idea of the proposed greedy

approximation algorithm. Although it is possible to find the new x̃ in the entire input

space by gradient descent optimization, such optimization will be slow and unstable

because Equation 3.21 may have many local maxima with respect to x̃. Nevertheless,

finding X̃ from X can be considered as a problem of sampling points from the clusters

defined by X [62]. Therefore, minimizing Equation 3.17 becomes a finite-state searching

problem and we propose the following algorithm:

1. Given a dataset X in the input space and a kernel function k(., .), obtain the image

of X in the KPCA mapping space, denoted by WX . Initialize the orthonormalized

candidate set V = D
1
2
n WX .(Complexity: O(n2))

2. Calculate the inner-product matrix N = V T D
1
2
d,n, find one of its rows with the

largest norm. (Complexity: O(2nd))
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3. Add the ith column vector of V to the reduced set X̃ = X̃∪vi. vi can be removed

from V .

4. Update V by orthonormalizing its column vectors V : V = V − viv
T
i V . (Com-

plexity: O(n2))

5. Repeat step 3 to 5 until m examples are chosen or the mapping error is lower

than a threshold. (Complexity: O(n2) + O(2nd) + O(n2) = O(m(2n2 + 2nd)))

6. Obtain H̃A by H̃A = (D
1
2
n WX̃)+.

The complexity of the proposed algorithm is on the order of O(m(2n2 +2nd)). This

is slightly faster than the algorithm proposed in [26], whose complexity is O(mpn2) (p

is the search depth that usually equals to a quarter of n).

3.6 Performance Evaluation

3.6.1 Mapping and Reconstruction

Six real datasets from the intelligent data analysis (IDA) benchmark repository [54]

were used to evaluate the performance of the proposed algorithm. These datasets are

banana, breast cancer, diabetes, flare, german and heart. Samples in each dataset have

been manually labeled into two classes. Since each dataset contains large number of

samples, we randomly chose a subset of the samples in each experiment due to the

limitation of the available computing resources. The numbers of samples chosen are

same as the ones used in [26]. Table. 3.1 lists the numbers of samples used in the

experiments and the dimensions of the six datasets.
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Name Dimension No. of samples
Banana 2 400

Breast Cancer 9 200
Diabetes 8 468

Flare 9 666
German 20 700
Heart 13 170

Table 3.1: Number of samples chosen and dimensions of the six test datasets

KPCA is primarily used as an effective tool for manifold learning or data compres-

sion. In manifold learning, the KPCA aims to compute the projection of an unknown

sample into the kernel mapping space so its distance to the manifold can be determined.

In data compression, the unknown sample is reconstructed from a compact set of vec-

tors defining the kernel mapping space. Due to these reasons, the following two sets of

experiments were designed to evaluate the proposed algorithm by measuring the map-

ping and reconstruction errors between the reduced KPCA and original KPCA. The

reconstruction error is calculated between the original example and the reconstructed

one from the mapping of the example in the kernel feature space. Gaussian kernels

were adopted in all the experiments. The results were compared to those obtained by

the Franc’s method [26]. Notice that since the proposed Greedy approximation only

uses WX and is kernel-independent the results presented in this chapter can potentially

be extended to arbitrary kernels and even graph-based ones.

Figures 3.2 and 3.3 show the mean squared mapping and reconstruction errors ver-

sus the number of samples in the reduced set. The errors were averaged over 20 runs;

in each run, the number of samples specified in Table. 3.1 were randomly selected from

the original datasets. Since in Franc’s method the maximum number of principal com-

ponents are reduced to m, the mapping and reconstruction errors were calculated using
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the first m principal components. In other words, when m = 1, the errors were calcu-

lated using the first principal component. The mapping errors of the reduced KPCA

obtained by the proposed method produced substantially lower mapping errors in all

cases than Franc’s method. This indicates that the proposed method is particularly

useful for the cases when KPCA is used as a manifold learning tool.

In terms of the reconstruction error, the proposed method performed comparable

to Franc’s method. Since the kernel reconstruction is a reverse mapping from the

kernel feature space to the input space and all principal components are used, the

reconstruction result is solely dependent on the configuration of the kernel feature

space but not relevant to the direction of the principal components. Therefore we

can conclude that the proposed method has comparable capability of approximating

the kernel feature space as Franc’s method. However, the directions of the principal

components of the reduced set obtained by Franc’s method are not necessarily aligned

with the direction of the original KPCA.

3.6.2 Open-set Classification

In the first experiment, we compared the performance between the classifiers derived

from the original KPCA and the reduced KPCA. The dataset used in this experiment

consists of six synthesized objects in 2D and 3D space. Table 3.2 lists its specifications.

The low-dimentionality of the six objects allows us to visualize the decision manifolds

of the classifiers. Figure 3.4 shows the decision manifolds trained for the six objects

using the original KPCA and reduced KPCA obtained by the proposed approximation

method and Franc’s method [26] at given m as listed in the Table 3.2. For the reduced
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(a) banana (n=400) (b) breast cancer (n=200) (c) diabetis (n=468)

(d) flare (n=666) (e) German (n=700) (f) heart (n=170)

Figure 3.2: Mapping errors (y axis) w.r.t. m (x axis), the results obtained by Franc’s
algorithm and the proposed algorithm are represented by red and blue curves respec-
tively

(a) banana (n=400) (b) breast cancer (n=200) (c) diabetis (n=468)

(d) flare (n=666) (e) German (n=700) (f) heart (n=170)

Figure 3.3: Reconstruction errors (y axis) w.r.t. m (x axis), the results obtained by
Franc’s algorithm and the proposed algorithm are represented by red and blue curves
respectively



3.6. Performance Evaluation 81

Name Dimensionality No. of Examples d m
Square 2 200 8 18
8-Shape 2 400 8 18
Spiral 2 500 8 45

3D 8-Shape 3 400 8 18
3D Helix 3 300 8 45

3D Swiss Roll 3 1100 8 60

Table 3.2: Specification of 6 datasets and corresponding parameters for the reduced
KPCA

KPCA, d was chosen to be 8. Decision threshold of each classifier is tuned to have 5%

missing rate on training data.

It can be seen that while the original KPCA successfully obtained smooth and

tight decision manifolds that enclose the data of only the same class, the proposed ap-

proximation achieved almost identical results with significantly higher computational

efficiency. On the other hand, Franc’s method did not provide the results as we ex-

pected, its decision surface was generally deformed and even broken into pieces when

applied to the Spiral and Helix objects. The experimental results partially verified the

correctness of our motivation, that is, by combining the manifold learning with the

proposed approximation algorithm, it is feasible to create an open-set classifier that is

both effective and efficient.

In the second experiment, we evaluated the detection rate of the open-set classifier

based on the reduced KPCA using the proposed approximation method. We used the

1000 examples of ’0’ from the USPS handwriting digit database for training and 10001

examples of all classes from the rest of the dataset for testing. The performance of

the classifier using the proposed approximated KPCA model was compared with the

original KPCA model and Franc’s greedy KPCA model. We set the parameters σ = 4

and d = 20, according to experimental setup of [37]. The areas under ROC curves of
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(b1) (c1) (d1)

(b2) (c2) (d2)

(b3) (c3) (d3)

(a4) (b4) (c4) (d4)

(a5) (b5) (c5) (d5)

(a6) (b6) (c6) (d6)

Figure 3.4: Decision manifolds of the open-set classifiers trained for the six synthesized
objects. Column (a) shows training data in 3D data space, for 2D data this column
is missing because the data are illustrated in other columns. Column (b), (c)and (d)
show the classification boundaries obtained by the original KPCA, the proposed KPCA
approximation method and the Franc’s approximation method respectively.
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these three open-set classifiers with respect to m, the number of selected samples in

the reduced KPCA, are shown in Figure 3.5. Since in Franc’s method the maximum

number of principal components has to be under m, we omitted all cases when m < d

in this experiment.

It has been demonstrated that the proposed method achieved a much higher area

under ROC curve than Franc’s method for most m. Both curves converge to the area

under ROC curve of the original KPCA based classifier, and the proposed method

converges much faster.

Further experiments have shown that the proposed method is not sensitive to the

number of principal components d. But when the kernel width σ becomes very small,

all examples will become almost orthogonal to each other and the difficulty of being

approximated by a lower-dimensional space will be increased. In this case, performance

of both approximations deteriorates and becomes close to each other. Figure 3.5 (a) and

(b) illustrate the case of small σ, (σ = 1.2). As seen, the convergence becomes much

slower and the rate of both approximations are very close. Practically, σ should be

relatively large since small σ will lead to overfitting and also decrease the performance

of the original classifier as well.

3.7 Discussion

The main contribution of this chapter is the greedy approximation algorithm, which

substantially increases the efficiency of the kernel PCA mapping with very small map-

ping error (compared to previous methods). Further improvement of the proposed

method is possible. KPCA mapping and reconstruction have so far been implemented
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(a) σ = 1.2, d = 20 (b) σ = 1.2, d = 30 σ = 1.2, d = 50

(c) σ = 4, d = 20 (d) σ = 4, d = 30 σ = 4, d = 50

(a) σ = 10, d = 20 (b) σ = 10, d = 30 σ = 10, d = 50

(c) σ = 100, d = 20 (d) σ = 100, d = 30 σ = 100, d = 50

Figure 3.5: The areas under ROC curves (AUC) of the three open-set classifiers w.r.t.
m (horizontal axis): Red-Original KPCA, Green-Proposed approximation method,
Blue-Franc’s method
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by comparing the new sample with a fixed set of chosen examples. However, intuition

suggests that the examples that are close to the new sample will be more important,

which could be adaptively selected after comparing the new sample with very few num-

ber of examples. Incorporation of this may probably lead to a new fast mapping and

reconstruction algorithm that follows a coarse-to-fine heuristics.



Chapter 4

Posture Detection by Kernel PCA

In this chapter, we propose a new approach for detecting human postures from single

images. This approach follows the detection by pattern framework. In the training

stage, KPCA is employed to learn the manifold span of a set of HOG-represented

examples that can effectively represent a posture. In the detection stage, the open-

set classifier presented in the previous chapter was iteratively applied on the HOG of

every detection window of the image to identify and locate the postures. Experimental

results have shown that the proposed method can achieve promising detection rates

with a relatively small amount of positive only training data.

4.1 System Description

The proposed posture detection system adopts the HOG as the features and consists

of two phases: training and detection. In the training phase, the manifold is learned

through KPCA for each posture to be detected from its training samples. In the

detection phase, HOG features are extracted from the test image and projected to the

manifold of every learned posture. The reconstruction error between the original HOG

features and the preimage of the HOG features of the test image in the KPCA space

86
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Figure 4.1: Schematic of the proposed posture detection system

is used to determine whether the test image contains a human in a specific posture.

Details of the proposed method is presented in subsequent sections of this chapter.

4.2 Extraction of HOG

We construct the HOG feature [19] by dividing the image into multiple overlapping

blocks of the same size and quantizing the gradient direction of all pixels into 9 di-

rections. For each block, the histogram is formed such that the occurrence of each

direction represents the total gradient magnitude of the gradient along the direction

and the histogram reflects the weighted gradient distribution within each block. The

HOG of each block is then normalized so the sum of the HOG elements is unity, and

the HOG of the entire image is formed by concatenating the block HOGs. If the gra-

dient magnitudes of all pixels in one block are zero, the corresponding block HOG

will be normalized to uniformly distributed (each of its elements are set to 1/9). In
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our approach, each block is an 8 × 8 image patch that has 50% overlapping with its

neighbors; in total 31×15 blocks are used to cover a 128×64 image window. The HOG

for the image window is a 31× 15× 9-dimensional vector, and the sum of all elements

in one HOG is 31 × 15. Finally, the square root of all components of the HOG are

determined, this is to allow Bhattacharyya distance between two HOGs to be quickly

evaluated. We will explain the reason of doing so later.

According to the report [50], HOG outperforms other local descriptors in locality

and invariance characteristics. The HOG has also been proved effective in many previ-

ous works [20] [82] [3]. Its dimensionality increases linearly with the resolution of the

image. Though several other features such as covariance features [72] could achieve

similar performance, their dimensionality increases exponentially with the image reso-

lution and, hence, they are not suitable for kernel based methods, especially when the

amount of training data is small.

4.3 Training

A non-linear manifold is able to capture variation that can occur within a class and in

our case the postures of interest. Thus we employ the KPCA described in the previous

chapter to learn the manifold span of each of the types of postures.

The training of the classifier requires a set of training images for each class of pos-

tures. We assume each training example should only contain one posture without any

background. Therefore, the background of all training images are first removed. Since

a small number of training examples for each posture class is assumed and no nega-

tive examples are available, the influence of the background cannot be automatically
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’weighted down’ by finding the weak covariance of features between background and

the classes as pointed out in [19] and [75]. In addition, all training samples are resized

to the same resolution. In this thesis, 128× 64 pixels was adopted.

The training of the class manifold for each posture class is independent. Hence, if

a new posture class is defined and added to an existing detection system, we only need

to train the manifold for this new class. Given a set of HOGs X = {x1...xn} extracted

from the n training samples for a specific class, where xi is the HOG for the i′th

sample, the class manifold, denoted by matrix HA and vector b, can be learned from X

by using the kernel PCA-based learning approach proposed in the last chapter. Three

parameters are required to be determined, the fist parameter is the kernel function

k. According to the experiments of [38], the RBF kernel achieved the best result in

open-set classification:

k(x, y) =< φ(x), φ(y) >= e−
||x1−X2||

2

2σ2

The second parameter is the number of principal components d; it can be deter-

mined such that the mean reconstruction error of all training samples is less than a

specific threshold. The last parameter is the number of reduced examples m for kernel

PCA approximation, as a tradeoff between speed and performance this parameter is

determined according to the requirement of the system.

4.4 Detection

The detection of trained postures is formulated as a problem of open-set classification

which classifies a test image window into one type of the trained postures or as negative
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(background/unknown posture). Let z be the test image and p(ci|z) be the probability

of posture ci given z. Here, z is considered containing posture ck, if


k = arg max∀i p(ci|z)

p(ck|z) > th

(4.1)

where th is a threshold, and p(ci|z) is the decision function of the classifier. Using

Bayesian rule it becomes:

p(ci|z) ∝ p(z|ci)

p(z)
(4.2)

where p(z|ci) is the conditional probability of z given posture ci and p(z) is the prior

probability of z. As each ci is represented by a manifold in the HOG space, the closest

HOG to z that lies in the manifold span of ci can be readily expressed as the KPCA

reconstruction result of z [49] [42], which is the reverse mapping from φP (z) in the

feature subspace to the original HOG space:

r(z) = φ−1(φP (z)) (4.3)

where φP (z) is the projection of φ(z) onto the first d principal components. The

obtained r(z) can be regarded as a HOG of reference that illustrates ’what z should

look like when z is assumed to be in the class of ci. Meanwhile, since the HOG is

a histogram-based feature, we can assume that the conditional probability p(z|ci) is

proportional to the exponential of Bhattacharyya distance between the histogram of z

and r(z). Thus we can write:

p(z|ci) = eα1DB(z,r(z)) (4.4)
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where DB is the Bhattacharyya distance and α1 is a constant. The KPCA reconstruc-

tion is a recursive and slow optimization process, however, referring back to the fact

that each component of z is actually the square root of the original HOG component,

DB(z, r(z)) becomes:

DB(z, r(z)) = 〈z, r(z)〉 (4.5)

=
1

2
(|z|2 + |r(z)|2 − |z − r(z)|2)

Also since both |z| and |r(z)| are constant, and |z − r(z)|2 can be calculated from

the kernel function (in our case only the Gaussian RBF kernel is used), the distance

becomes:

DB(z, r(z)) = α2 +
1

2
ln(2σ2〈φ(z), φP (z)〉) (4.6)

where α2 = 15 × 31 and σ is the width of the kernel k(., .). This distance function

is similar to the decision function of the novelty detector proposed by Hoffmann [37].

But the difference is that our distance function measures the reconstruction error in the

HOG space while Hoffmann’s function measures it in the feature space. Furthermore,

since φP (x) is in the principal component subspace, 〈φ(z), φP (z)〉 can be replaced by

〈(yn(z) + bn), (y(z) + bn)〉, where y(z) is the mapping of z onto the KPCA subspace,

and yn(z) and bn are the mapping result y(z) and centering offset b respectively when

all n eigenvectors of K̂ are used as principal components.

The p(z|ci) can be a good decision function in many open-set classification prob-

lems. But, in our case, p(z|ci) alone cannot provide enough discriminative power. This
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is because each block of the HOG is a 9-bin histogram vector, and the intrinsic dis-

tribution of the binned gradient direction can be regarded as a uniform categorical

distribution in most cases. The prior distribution of each block HOG is actually a

multinomial distribution and will peak when its components are equal to the mean

vector. Therefore, p(z) in Equation 4.2 will not be a constant and must be taken into

account. As the multinomial distribution is hard to calculate, again we approximate

p(z) by the exponential of the Bhattacharyya distance between the HOG of the image

and the mean HOG vector:

p(z) = eα1DB(z,( 1
3
)15×31×9) (4.7)

= eα1(α2− 1
2
|z−( 1

3
)15×31×9|2) (4.8)

Where (1
3
)15×31×9 denotes the mean HOG vector with each element being 1/3. Com-

bining Equation(4.2), Equation(4.4), Equation(4.6) and Equation(4.7) together we will

have:

p(ci|z) ∝ e
α1
2

[ln(2σ2〈φ(z),PP T φ(z)〉)+|z−( 1
3
)15×31×9|2] (4.9)

Substitute p(ci|z) with Equation(4.9) the decision function Equation(4.1) will be-

come:


k = arg max∀i ln(〈φ(z), φP (z)〉) + |z − (1

3
)15×31×9|2

ln(〈φ(z), φP (z)〉) + |z − (1
3
)15×31×9|2 > 2

α1
ln(th)

(4.10)

Note that parameter α1 governs the tradeoff between false positives and false neg-

atives and can be tuned to attain the best detection result.
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4.5 Experimental Results

4.5.1 Detection of humans

In our first experiment we tested our approach on a human detection task, though

this approach was not initially designed for this task, we used the INRIA database

for training and testing. 489 images and their mirror images from the INRIA positive

training dataset were used for training; their background were manually removed. The

removal of background is crucial to the performance of the classifier since there were no

negative examples. If the background is included in the positive examples the learning

approach will be unable to automatically ’weight down’ the background regions as in

SVM, and HOG components from these regions will be learned as part of the posture

manifold. Such effect can only be avoided if the examples densely cover every pos-

sible HOG pattern of the background, but this is against our assumption of a small

amount of training data and is often impractical. On the other hand, if the background

regions are removed, the corresponding HOG components will become uniformly dis-

tributed, which coincides with our assumption that the binned HOG of one block in

the background region should follow the uniform categorical distribution. According

to our experiments, the detection results would not make sense if the background of

the examples were not removed.

In test stage, the INRIA positive test dataset consisting of 589 human images is used

as positive test samples and 9060 images randomly cropped from the INRIA negative

test dataset (mainly consisting of landscape images) are used as negative test samples.

Background in test images are not removed. The result is compared to Dalal’s work
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Figure 4.2: The ROC curves of the proposed detector and Dalal’s detector [19] on
human detection task with different kernel width w

[19] that uses a linear SVM for classification. The ROC curves of the linear SVM-based

detector and the proposed detector are shown in Figure 4.2.

The performance is worse than the SVM-based detector if under the condition that

no negative samples were used. Since in human detection or pedestrian detection, the

variations of HOGs of human bodies are usually not continuous or not smooth, in which

case the manifold representation is not particularly suitable. Even if it can be enclosed

in a lower-dimensional manifold, its dimensionality will still be too high and cannot

be easily estimated from a relatively small training set. Hence it is more important

to find discriminative features rather than representative features. Introducing a new

negative class (’Non-human’ class) denoted by an extra KPCA model learned from

the negative training dataset will lead to a close-set classifier, of which performance is

almost identical to the detector using linear SVM (the ROC curves of both classifiers

are shown in figure 4.3). As stated before, this experiment was not used to show the

performance of our method as it is not designed for the human detection task, but the

capability of the proposed method capturing the representative features.
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Figure 4.3: ROC curves of the proposed detector in human detection task with different
kernel width w when negative examples are introduced, the result is compared to Dalal’s
detector.

Figure 4.4: Typical images for the 12 postures from the Weizmann action dataset [7]

4.5.2 Detection of postures

In the following experiments, the proposed approach was tested in multi-posture cases

where training and test samples were extracted from the Weizmann action dataset [7].

The dataset contains 93 low resolution video (188×144, 25 fps) sequences for 10 actions.

Nine subjects played each action once. Over 2000 images were manually cropped and

divided into 12 postures to form the posture corpus. Figure 4.4 shows typical images for

the 12 postures. The corpus was randomly divided into training and testing sets at a

ratio of 7:3, and the same negative test dataset used in previous experiment were used.

On average, there are 150 training samples for each posture. A number of experiments

were conducted to evaluate the performance of the proposed method.
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(a)
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 NG

P1 22 0 0 0 0 0 0 0 0 0 0 0 0
P2 1 66 0 0 0 0 2 0 0 0 0 0 1
P3 0 0 19 0 0 0 0 0 0 0 0 0 5
P4 0 0 0 23 0 0 0 0 0 0 0 0 6
P5 0 0 0 0 41 0 0 0 0 0 0 0 0
P6 0 0 0 0 0 22 0 0 0 0 0 0 3
P7 0 0 3 0 0 0 66 0 0 0 0 0 1
P8 0 0 0 0 0 0 0 16 0 0 0 0 12
P9 0 0 0 0 0 0 0 0 27 0 3 0 2
P10 0 0 7 0 0 0 0 3 0 40 0 0 3
P11 0 0 0 0 0 0 0 0 2 0 47 0 9
P12 0 0 0 0 0 0 0 0 0 0 0 26 10
NG 38 38 55 1 1 16 24 0 0 0 0 0 8887

(b)

Figure 4.5: (a) ROC curve of the proposed detector on Weizmann action database with
different kernel width w (b) The confusion matrix of the proposed detector. P1-P12
represents the 12 postures and NG represents the negative samples

This experiment aims to find the posture detection rate of the proposed KPCA-

based detector. Each test image is classified into 13 classes: 12 trained postures and 1

background including unknown postures. The experiment was carried out for several

times, each time with a different RBF kernel width σ, The ROC curves of the detector

and corresponding confusion matrix at the best detection/false alarm ratio are shown

in Figure 4.5 (a) and (b) respectively. This result starts to show the potential of the

proposed detector. It is able to achieve 94% detection rate at 0.05 false positive rate.

We believe it can be further improved if higher resolution training samples were used.
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Figure 4.6: ROC curve of the proposed detector on Weizmann action database with
different size of the reduced set m in KPCA approximation

4.5.3 Posture detection with KPCA approximation

The third experiment aims to test the accuracy of the proposed KPCA approximation

algorithm and how it will affect the performance of the detector. The experiment was

carried out for several times, each time with a different number of selected examples

m. The ROC curves of the detector using a reduced model is compared to that of

the detector using original and full KPCA model. These ROC curves are shown in

Figure 4.6. As expected, if m, the number of selected examples for the approximated

KPCA model increases, the performance increases. When m is 90, the performance of

the approximated KPCA model is almost as good as the original full model trained

with all examples.

4.5.4 Detection of posture in videos

In the last experiment, we employed the detector trained from the Weizmann’s dataset

to detect the postures of interest from MPEG-7 ETRI video sequences and videos in the

INRIA human dataset. The detection was conducted frame-by-frame using a sliding
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Figure 4.7: Some detection results on the images from ETRI and INRIA videos

window. Each window image is classified into either one of the trained postures or non-

posture. Figure 4.7 shows several results where the bounding boxes indicate detected

postures related to walking, running and standing. In the last image, the standing

posture of the central person was missed. This is because the training samples for the

standing posture were all from side viewpoint rather than a frontal view.

4.6 Discussion

The contribution of the chapter is a new method for detecting postures from single

images using KPCA based manifold learning. The performance is quite promising

considering only 90 training samples per posture was used without involving any neg-

ative samples. Due to lack of literature for similar problems, the performance of the

proposed system was not compared with others. Further experiments are required to

explore the potential of the method to deal with multiple viewpoints and occlusion.



Chapter 5

Conclusion

5.1 Summary

Posture detection is usually a crucial step in human motion analysis. Despite its

significance, it has not been extensively studied. Most literature has basically focused

on human/pedestrian detection with assumption of upright standing/walking humans

and has also formulated the problem as a two-class classification problem. While

human/pedestrian detection is useful in many applications like video surveillance, there

are also many applications that require the identification of specific postures. In this

thesis, we have studied the problem of posture detection.

Compared to detection of humans and faces, the key challenge of posture detection

is the complex in-class variations of the body appearance, particularly those caused by

body articulation and changes of viewpoints. Previous research has shown that as a

posture undergoes variations due to articulation, their appearance changes smoothly

and traces out a smooth manifold. As long as this smoothness assumption holds, we are

able to obtain the manifold with enough accuracy from a small number of examples.

This representative manifold interpolates and generalizes the limited examples and
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creates a pattern for identifying the posture.

In this thesis, we adopted HOG as features to describe the postures and employed

KPCA, a non-linear manifold learning technique, to learn the posture manifolds and

developed an open-set classifier for posture detection that can be trained only using

positve examples. With the support of the proposed KPCA approximation, the system

is compact, fast, and requires much smaller memory space for storing training dataset

in the classification stage than the standard KPCA. The experiments on both synthetic

and real datasets have verified that the proposed KPCA approximation and posture

detection methods are effective.

5.2 Future Work

In the manifold representation, selection of the features is important. Though HOG

has behaved well in our system, it may be too detailed in representing appearance and

contains little global structural information. According to [3], a manifold representa-

tion will have poor performance for a ’bag of features’ consisting of local descriptors

extracted from interesting points, because the variations of the ’bag of features’ may

not be smooth and can not be traced out as a manifold. Thus the SIFT-like fea-

tures will not be applicable in the proposed framework. A possible improvement is to

construct a local descriptor that contains enough structural information.

The computational efficiency of the system is another possible direction where im-

provement can be made. In the proposed system we have significantly increased the
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efficiency by using the reduced-set approximation algorithm compared with the stan-

dard kernel PCA and reconstruction. However, it still needs to be improved for real-

time application. Potential improvements are possibly made in three aspects. First,

reconstruction in kernel PCA is much slower than mapping. But in our framework the

reconstruction error has to be measured in the input space. If these measurements can

be done in the feature space or KPCA subspace, then the reconstruction can be avoided

and the computation will be substantially lowered. Second, the proposed kernel PCA

approximation algorithm can be improved as discussed in Section 3.7, resulting in a

tree-based, less compact but more efficient manifold representation. This would accel-

erate the mapping process in the same way as a decision tree accelerates the template

matching process. Third, in this thesis, the exhaustive search strategy was used in

detecting the postures in an image. Here, a sliding window has to iterate through

different positions and at various scales which generates large number of patches that

require to be classified. This process may be accelerated by using heuristic search

strategy.
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