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Abstract

A Posture detection system aims to identify and localize any specific types of pos-

tures in images and video sequences. Unlike human or pedestrian detection where only

one class of objects is required to be detected, posture detection is designed to detect

multiple classes of postures. It remains a challenging problem because human bod-

ies are complex and articulated with very diversified appearances. Posture detection

often relies on a good generalization of the variations from large quantity of training

examples that cover different situations. In this thesis, we devise a new posture detec-

tion framework that combines the histogram of gradient (HOG)-based feature with a

novel manifold-based open-set classifier designed to achieve a better generalization. In

this framework, each posture class is represented by a complex manifold that lies in

the high-dimensional visual input space. The manifold is learned using Kernel PCA.

Classification of a new observation is achieved by comparing it to each trained posture

manifold. In addition, a new greedy Kernel PCA approximation algorithm is proposed

to speed up the learning of the posture manifolds. The approximation algorithm seeks

to remove the redundant training samples in the kernel space while best retaining the

accuracy of kernel mapping, resulting in a new kernel PCA model that provides almost

v



identical learning and classification ability to the original kernel PCA with significantly

lower computational cost. Both the detection framework and approximation algorithm

were tested on 2D and 3D artificial datasets and real human and posture datasets.

The results have shown that the approximation algorithm is effective and the proposed

framework can provide accurate and efficient detection of different postures with a

relatively small training set.
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0.1. Glossary 1

0.1 Glossary

Adaboost : Adaptive boosting, a boosting algorithm for ensemble learning.

auROC : Area under Receiver’s Operating Characteristic curve, a scalar equal to the

integration of an ROC curve from 0 to 1, used to measure the performance of

classifiers.

DET : Decision Error Trade-off curve, a curve showing the missing rate versus the

false positive per window (FPPW).

DR : Detection Rate, a scalar denoting the percentage of successful detection per

window.

DT : Distance Transform, a 2D pixel map showing the distance from pixels to a given

contour.

DoG : Derivative of Gaussian.

FPPW : False Positive per Window, a scalar denoting the percentage of false detec-

tion per window.

GMM : Gaussian Mixture Model, a statistic model for probabilistic estimation of a

multivariate distribution.

HMM : Hidden Markov Model, a random process model primarily used in modeling

temporary events.

HOG : Histogram of Gradient, a visual feature mainly used in human detection and

body representation.



0.1. Glossary 2

ICA : Independent Component Analysis: a toolset consisting of several matrix de-

composition and factorization techniques that aim to isolate statistically mutually

independent bases from a set of data.

ISM : Implicit Shape Model, an object detection framework by synthesizing local

detection results through spatial voting.

Isomap : Isometric mapping, a nonlinear manifold embedding technique to recon-

struct a mapping space that preserves the graph-distance.

KPCA :Kernel Principal Component Analysis, a generalized nonlinear manifold learn-

ing framework that performs the principal component analysis in a kernelized

feature space.

KNN :K-Nearest Neighbors, a simple example-based classifier that labels each un-

known datum to the majority of its K-Nearest Neighbors.

LBP : Local Binary Pattern, a visual descriptor that is invariant to illumination.

LLE : Locally Linear Embedding: a nonlinear manifold embedding technique to recon-

struct a mapping space that minimizes the change of distances between adjacent

data.

LPP : Locally Preserving Projection, a linear dimensionality reduction technique that

aims to find a linear mapping to a lower dimension space that minimizes the same

objective function with Laplacian eigenmap.

MDS : Multidimensional Scaling, a toolset that aims to reconstruct a equivalent

dataset in an explicit Euclidean space from a similarity or dissimilarity matrix.



0.1. Glossary 3

MHI : Motion History Image, a 2D greyscale image characterising motion information

of a binary video.

MRF : Markov Random Field, a 2D statistic graphic model used to model spatially

correlated random variables.

NMF : Non-negative Matrix Factorization, a matrix decomposition and factorization

technique that aims to isolate non-negative bases from a dataset.

PCA : Principal Component Analysis.

RANSAC : Random Sample Consensus, a fast model estimation meta-algorithm.

RBF : Radial Basis Function, a bivariate function in the form of f(||x− y||2).

RMI : Recurrent Motion Image, a 2D greyscale image characterising recurrent motion

information of a binary video.

ROC : Receiver’s Operating Characteristic curve, a curve showing the detection rate

versus the false positive detection.

ROI : Region of Interest.

SIFT : Scale Invariant feature transform.

SVM : Support Vector Machine.



0.2. Notations 4

0.2 Notations

E(.) : expectation of a variable or a set of random vectors.

cov(.) : covariance matrix of a variable or a set of random vectors.

p(X) : marginal probability or likelihood of a random variavle X.

p(X|Y ) : conditional probability or likelihood of X given Y .

X : the column matrix of a training dataset.

xi : the ith vector in the training dataset.

ci : the class of the ith example.

φ(.) : the implicit non-linear mapping that maps [.] into an infinite-dimensional feature

space.

Φ : the implicit column matrix of φ(xi).

k(., .) : the positive semidefinitive bivariate kernel function that defines φ(.) by its

inner-product.

K : the inner-product matrix of φ(xi) where Kij = k(xi, xj).

H : the constant matrix for centralizing data in the feature space. H = In − 1n, In is

an n × n identity matrix and 1n denotes a n × n matrix in which each element

takes the value of 1/n.

Φ̂ : the implicit column matrix of φ(xi) centered at zero mean.

φ̂(xi) : the ith column vector of Φ̂.



0.2. Notations 5

K̂ : the inner-product matrix of Φ̂, K̂ = HKH.

λi : the ith eigenvalue.

D : the diagonal matrix with each diagonal element Dii = λi.

P : the implicit column matrix of eigenvectors of cov(Φ̂) (also known as principal

components).

A : the column matrix of eigenvectors of K̂.

z : an arbitrary datum sample in the test dataset to be classified.

c : the ground truth of z.

y(.) : the function that maps z into the subspace of principal components in the feature

space.

HA : the abbreviation for HA, it is the most important matrix in defining the KPCA

model and the projection y(.).

w(.) : polynomial part of y(.) defined by w(.) = (HA)T k(X, .), where k(X, .) =

[k(x1, .), k(x2, .) . . . k(xn, .)]
T

b : the constant part of y(.) defined by b = (HA)T K1n

U : the multidimensional scaling result of K.

X̃ : the column matrix of a subset of the training dataset selected by a kernel approx-

imation algorithm.

P̃ : shortened P for faster KPCA mapping y(.).



0.2. Notations 6

H̃A : shortened HA for faster KPCA mapping y(.).

WX̃ : the w-mapping of the subset X̃ into the KPCA mapping space (the column

space of the original principal components P ).

Q and R : QR decomposition of D
1
2
n WX̃ .

V : the set of D
1
2
n WX orthonormalized with WX̃ .
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