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ABSTRACT

ABSTRACT

Fringe Pattern Profilometry (FPP) based on Digital Fringe Projection (DFP) is a
promising optical noncontact three-dimension (3D) profile measurement technologies
due to its accuracy and flexibility. Popular FPP approaches retrieve the 3D profile
information using the detection of phase difference, called the Phase Difference
Estimation (PDE). Recently, a new kind of FPP approach, referred to as Spatial Shift
Estimation (SSE) is introduced, which retrieves the 3D profile information using the
detection of spatial shift instead of phase different. Compared with PDE approaches,
SSE approaches are advantageous in that the projected fringe patterns do not need to be
sinusoidal, and thus accurate reconstruction can be obtained even when nonlinear
distortions exist on the fringe patterns. However, efficient implementation of SSE

approaches is still an issue.

This thesis work aims to implement the SSE approach for 3D profile measurement
based on digital fringe projection. Firstly, a DFP system is designed and adopted in
our laboratory, which is utilized as an experiment platform for the work presented in
this thesis. SSE approaches are implemented on the system. Some problems
associated with the implementation are studied and solved, including elimination of
noise and distortion in the fringe patterns. Furthermore, an improved Inverse Function
based Shift Estimation (IFSE) method is proposed to improve the performance of SSE

approaches.

Secondly, shift unwrapping problem associated with SSE is investigated. Through
reviewing the phase unwrapping problem in PDE based FPP, we indicate that a similar
shift unwrapping problem also exists in SSE approaches. A method for solving the
problem has been proposed and the experiment results are presented to demonstrate the

effectiveness of the proposed method.



ABSTRACT

Finally, the research is carried out to improve the efficiency of SSE approaches. SSE
approaches have the advantages that the projected fringe patterns are no longer required
to be sinusoidal nor periodic. Therefore, we can choose a fringe pattern which has
strong counter-interference capability against the noise and nonlinear distortion with
simple implementation. Based on analysis of the limitations of traditional sinusoidal
fringe, we propose to use sawtooth fringe pattern. Theoretical analysis has been given
to evaluate the complexity of the proposed sawtooth fringe pattern based algorithms,
and practical experiment are performed at last to prove the efficiency of this proposed

fringe pattern.
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CHAPTER 1

Charpter 1 Introduction

In recent years, optical noncontact three-dimension (3D) profile measurement has
attracted increasing research efforts due to its distinct advantages over contact methods.
Among others, the Fringe Pattern Profilometry (FPP) based on Digital Fringe Projection
(DFP) has been proven to be one of the most promising techniques. Compared with
the other methods, it has the advantages of simple system structure and high accuracy.
Hence it provides a much more flexible and practical approach for 3D profile

measurement.

A number of FPP approaches have been introduced. The most widely used methods
are the Phase Difference Estimation (PDE). In these approaches, the deformed fringe
pattern is considered as the result of phase modulation of the original fringe pattern, and
hence detection of phase maps from original and deformed fringe patterns enables the
retrieval of the 3D shape. Although the PDE approaches have been considered as the
most popular, they suffer from a number of disadvantages. A major restriction is that
fringe patterns must be either sinusoidal or ideal periodic. However, such a
requirement is hard to meet in practice due to some factors, such as the nonlinear
distortion on inherent to digital video projections. In order to solve the problem, a new
profilometry approach is proposed. Instead of detecting the differences between the
phase maps, the technique is based on the estimation of spatial shift for corresponding
pixels on the two fringe patterns, and hence is called Spatial Shift Estimation (SSE)

profilometry approach.

This research aims to implement SSE approach. The proposed initiative is facilitated
through the design of a DFP system, development of solutions for problems existing in
SSE approach, and furthermore by the proposal of new fringe pattern projections to

improve the efficiency.
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This chapter gives the general idea and background knowledge for this thesis, which is
organized as follows. Section 1 provides the introduction for 3D profile measurement
and DFP. Section 2 presents a comprehensive literature review which introduces the
background of DFP system, and FPP approaches, including the PDE approaches and
SSE approaches.  Section 3 discusses the existing issue associated with the
implementation of SSE approaches. Section 4 points out the aim of the thesis work.
Section 5 demonstrates the contribution of research work. Section 6 gives the

structure of this thesis.

1.1 General Introduction

1.1.1 Three-Dimensional profile measurement

Non-contact technique for 3D profile measurement has attracted increasing research
efforts due to many applications, such as machine vision, animation, intelligent robot
control, virtual reality, industrial monitoring, biomedicine, dressmaking and ergonomics,
etc. Over the past few decades, numbers of optical methods for 3D profilometry have
been proposed [1]. Some significant approaches include: Photogrammetry methods
[2], such as Stereovision [3, 4], Shape from Shading [5], Shape from Texture [6] and
Shape from Focusing [7, 8]; Interferometric methods including Two or Multiple
Wavelengh [9, 10, 11, 12], Reactive Index [13, 14, 15] and Illumination
Direction/Number of sources [16, 17, 18]; Moiré methods [19, 20]; Time-of-Flight
method [21, 22]; and Structured Light methods [23] such as Code Structure Light [24],
Laser Scanning [25] and Fringe Projection approaches. Among others, structure light
methods including fringe profilometry became one of the most popular techniques,
especially since the recent progresses in DFP technology have provided the required

attributes for the development of dynamic and more robust structured light methods.
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1.1.2 Three-Dimensional profile measurement using Digital Fringe Projection

Compared with other structured light methods, Fringe Pattern Profilometry (FPP) based
on Digital Fringe Projection (DFP) is particularly attractive due to the advantages of
simple system structure and controllable fringe patterns. Figure 1.1 shows the system
structure of a DFP, consisting of a digital video projector, a CCD camera and a reference
plane. With the system, a frame of image with a particular fringe pattern is produced
by the digital projector and projected onto the reference plane, and then onto the surface
of the object when the reference plane is removed. The projected images from the
reference plane and the object surface are captured by the CCD camera, with the later
being a deformed version of the former by the variance of the height of the object
surface. As the deformed fringe pattern carries the information of surface shape, 3D
profile of the object can be retrieved from these two fringe patterns. The two most
promising FPP approaches are Phase Difference Estimation (PDE) profilometry

approach and Spatial Shift Estimation (SSE) profilometry approach.

1.2 Literature Review

1.2.1 Introduction

The literature review provides an overview of the background knowledge of the FPP
approaches, including the PDE approaches and SSE approaches. In this section, we
firstly introduce the fundamentals of FPP approaches. Then we give a review of the
existing PDE approaches, especially the FTP, PSP approaches. Finally, we introduce

the SSE approaches.

1.2.2 Fringe Projection Profilmetry based on Digital Fringe Projection

In recent years, fringe pattern profilometry (FPP) has attracted increasing research
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efforts as an enabling technology for non-contact measurement of 3D object surfaces.
Among various system implementation schemes for FPP, the one based on digital fringe
projection is particularly attractive due to the advantages of simple system structure and

controllable fringe patterns.

FPP is based on the triangulation principle described as follows. As the image
produced by the projector has a fringe structure, without loss of generality we can

assume that light intensity varies periodically along x direction, while keeping constant

along y direction, as shown in Figure 1.1. We can uses(x), d(x) and h(x) to

denote the variance of light intensity of the fringe pattern on the reference plane, object
surface, and the height distribution along x-coordinate respectively. We also assume

that the reference plane and the object surface have the same reflective characteristics.

Let us consider what happens when a beam of light is projected onto the point D on the
object. From Figure 1.1, we can see when the object is removed, the same light beam
(hence with the same intensity) should be projected onto point H on the reference

surface, which is reflected back to the camera through point C. As the triangles

E.E.H and CDH are similar, we have the following relationship:

d, D

l,  h(x,)

(1.1)

Note that x, denotes the coordination positions of point D. h(x,) denotes the

distance between points C and the reference plane, given by:

D

I
h(xg) = =5
0

(1.2)

The above relationship gives the foundation for FPP.
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Camera
E.

Projector
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Jos

Vv l—»x
. C l
Ob ﬂ:l_.— h(xp)

H | Reference
Plane

Figure 1.1 Schematic diagram of DFP system

1.2.3 Phase Difference Estimation Profilometry

A number of FPP approaches have been introduced. The most widely used approaches
are the Phase Difference Estimation (PDE) profilometry approaches. In these
approaches, the deformed fringe pattern is considered as the result of phase modulation
of the original fringe pattern, and hence detection of phase maps from original and

deformed fringe patterns enables the retrieval of the 3D shape.

In detail, these approaches utilize fringe patterns that are periodic and can be expressed

as [26, 27]:

~+00
s(x) = >_b, cos(27kf X+, )
k=0 (1.3)
and the deformed fringe pattern can also be expressed as:

d(x) = 3 b, cos(2k,X + 4, (X) +17,)
P (1.4)

In the above equations, f, is the spatial frequency of the fundamental component in
the fringe patterns, and b, is the amplitude of the k-th order harmonic component.

v, Is the initial phase of the k-th order harmonic component, and ¢, (x) denotes the
5
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phase difference between the k-th order harmonic components of these two fringe

patterns.

Equations (1.3) and (1.4) show that s(x) and d(x) are related by the phase

shiftg, (x). Let us consider the light beam projected at point D on the object and H on
the reference plane when the object is removed. The phase shift between C and D can
be determined by the spatial distance CD, and hence we have [26, 27]:

¢, (x,) = 27kf,CD =k - 27 f,CD =k - ¢h(x,) (1.5)

where ¢(x,) =27 foﬁ is the phase shift of the fundamental component.

Substituting Equation (1.5) to Equation (1.2) we have:

n(x,) = 2t (L6)

As points D and H are arbitrary, the above derivations should apply to all the points on

the projected fringe pattern.  Therefore, we have:

h(x) = % .7

Equation (1.7) shows that as long as ¢(x) can be detected, we are able to calculate the

height distribution h(x) of the object surface. This is the foundation of all PDE based

approaches.

A number of fringe pattern analysis methods have been developed, such as Fourier
Transform Profilometry (FTP) [28], Phase Shifting Profilometry (PSP), Phase
Measuring Profilometry (PMP) [29, 30, 31], Modulation Measurement Profilometry
(MMP) [32], Spatial Phase Detection (SPD) [33, 34], Phase Lock Loop (PLL)
profilometry [35], Moiré Technique (MT) [36], laser triangulation measurement [37],
colour-coded fringe projection [38, 39] and other methods [40, 41]. Among these

6
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fringe pattern analysis methods, two of the most popular and typical algorithms for

fringe pattern profilometry are FTP and PSP.

1.2.3.1 Fourier Transform Profilometry

Fourier transform profilometry (FTP) was firstly introduced by Takeda et al. [26, 27].
The concept of this approach is to analyse the fringe image by using the Fourier

transformation.

From the Equation (1.3) and (1.4), we know that the s(x) and d(x) are composed of

harmonic components. From Equation (1.7), it can be seen that the height distribution

function h(x) only associate with the fundamental component of the phase difference.

Hence the first step of FTP approach is applying a fast Fourier Transform (FFT) to the
fringe image. A filter is then used to remove all signals except for the fundamental
components in the spatial frequency domain. Finally, an inverse Fourier Transform

(IFT) is applied to this filtered baseband signal.

After IFT, we have S (x) and d~(x), the fundamental component of thes(x) and
d(x), which can be expressed as:
S(x) =b,cos( 2zf,x + ) (1.8)

d (X) = b, cos[ 2zf, X + ¢(X) + w,] (1.9)

We use §(x) and 5(x) to denote the complex signals of s(x) and ﬁ(x)
respectively. Then we can retrieve the phase difference ¢(x) by using the following
equation:

¢ (x) = unwrap (Im{In[ I5(x) . §*(x)]}) (1.10)

7
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where In(-) is the natural logarithm function, Im(-) denotes the operation to get

imaginary part of a complex number, S~*(x) is the complex conjugate of §(x).
unwrap (-) is so-called phase unwrapping operation. In conventional PDE, the

retrieved phase difference ¢(x) is restricted to principle value ranging between —rx

and . Therefore, the estimated phase is a modulo 2z distribution. However, the
true phase difference can be arbitrary. Thus a wrapping problem occurs. The phase
unwrapping operation is used to solve the wrapping problem in PDE. The details of

the phase unwrapping problem will be discussed in Chapter Three.

Accordingly, we can finally retrieve the height distribution function h(x) by

Equation (1.7). Figure 1.2 gives the flowchart of FTP.
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Image of Refterence Plane Image of Object
i i
FFT FFT
i i
Filter Filter
i i
IFT IFT

Calculate Object Phase Map

i

Phase Unwrapping

i

Calculate Height Map

Figure 1.2 Flowchart of FTP processing

1.2.3.2 Phase Shifting Profilometry

Phase shifting profilometry is firstly introduced in [33]. In this approach, multiple
frames of sinusoidal fringe patterns are projected onto the surface, and each frame
shifted by a certain amount of phase angle. At least three images are needed but four

or more are also popular for phase shifting profilometry.

The basic concept of this method is the use of triangle relationship. The first acquired

image is sampled with the fringe pattern projected at a given position. The fringe

9
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patterns are then shifted 27 /N from the previous frame of the patterns, where N is the
number of phase shifting steps. Hence the fringe patterns on the reference plane and

on the object surface can be respectively expressed as:

s, (x) = i b, cos( 2zkf x +y, +K ZNLH) (1.12)
k=0
d,(x) =3 b, cos[27rkfox+k¢(x)+wk+k2l\lin] w12
k=0
forn=0,1,2,...,N-1
Then we can calculate the phase map ¢(x) by the following:
¢(x) =unwrap (arctan D, )—unwrap (arctan S, ) (1.13)

where S, ,D, are intermediate variables, given by:

N-1
D s, (x)sin(2zn/ N)
Sy = | (1.14)
s,(x)cos(2zn/N)
L n=0 _
[ N-1 ]
> d,(x)sin(2zn/N)
i (1.15)
Y d,(x)cos(2zn/N)
L n=0 _

Therefore, the height distribution function h(x) can also be retrieved by using

Equation (1.7). Figure 1.3 shows the flowchart of PSP processing.

10
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Image 1 Image 1
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Object Reference
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Figure 1.3 Flowchart of PSP processing

Compared with FTP, PSP has higher accuracy of measurement and the ability to combat
random noise in the fringe patterns.  Since this method uses multiple frames of images
to calculate the height distribution, it can eliminate the noise by using many related
images. This approach does not require FFT and IFT but only some simple
calculations. However, the disadvantage of PSP method is also obvious. In PSP
approach, at least three images are needed to retrieve the object height information,

which takes longer time for 3D measurement.
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1.2.4 Spatial Shift Estimation Profilometry

The PDE based FFP methods suffer from some limitations. In particular, the fringe
pattern must be periodic so that the phase maps of s(x) and d(x) exist, and can be
detected. However, due to many undesired factors inherent to digital projection, such
as geometrical distortion and nonlinear intensity distortion, pure sinusoidal fringe
patterns are hard to acquire. In order to solve the problem, a profilometry approach is
proposed by Hu, et al. [42, 43], which is based on the estimation of spatial shift for
corresponding pixels on the two fringe patterns instead of detecting the differences
between the phase maps. This approach is referred to as Spatial Shift Estimation

(SSE) profilometry approach [42, 43].

1.2.4.1 Spatial Shift Estimation

The idea of SSE based approach is rather simple and straight forward. Let us
consider CD, the distance between C and D again, which is obviously a function of the

location of D (i.e. X, ,), the location of H (or C, i.e., X_) and the height of the object at

pointH h(x,). Therefore, we have the following:

dy u(x,)
l,  h(x,)

(1.16)

where u(x,)=CD = x, —x,, which is the spatial distance between x, andx. . Note
that x, and X, arethe pointson d(x) and s(x)with the same light intensity, that is
d(x;)=s(x.). As the above derivation is valid for any X, andx_., we can replace

Xy byx, yielding the following:

h(x) = (1.17)
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Note that u(x) is the spatial distance between a point x on d(x) and the
corresponding point on s(x) with the same light intensity, that is:

d(x) =s(x—u(x)) (1.18)
Equations (1.17) and (1.18) provide a straight forward way to obtain the 3D profile of
the object surface. Withd(x) and s(x) available, if we are able to calculate u(x)
to satisfy Equation (1.18), then we can utilize Equation (1.17) to yield h(x), the height

distribution of the object surface along x. By repeating the procedure for all y we are

able to obtain the 3D profile of the object surface.

The spatial shift based approach has a particular advantage. Namely, the projected
fringe patterns are no longer required to be sinusoidal nor periodic, which implies that
even there are distortions with the fringe patterns, sufficient three-dimensional
information on the object surface is contained in the variation between projected and

deformed fringe patterns. Thus the profilometry can be achieved.

1.2.4.2 Direct Shift Estimation Algorithm
As discussed above, the key to reconstruct object surface using SSE is to obtain the shift

distribution u(x) from d(x) and s(x). Based on curve-fitting technique, Hu et al.

[44] introduced a direct shift estimation method called Inverse Function based Shift

Estimation (IFSE) Method. The idea of this method is the use of inverse function.

Suppose the projected signal function r =s(x) is a monotonic function, or it is

monotonic in intervals of x, in which s(x) has a unique inverse function s™(r),
where:

s7H(r) = x (1.19)

13
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Applying this inverse function s™(r) to the deformed signal d(x), we then have:
s7H(d (X)) = sTH{S[Xx —u(X)]}= x —u(x) (1.20)
the shift distribution function u(x) can be retrieved by:
u(x) = x—s(d(x)) (1.21)
Using Equation (1.21), the shift distribution function u(x) can be easily calculated
through the fringe patterns on the reference plane and object surface. Now the key

problem is to obtain the inverse function s™(r). In order to solve this problem, Hu

introduced a method using the polynomial curve fitting. However, errors will be

consequentially introduced during the fitting. This kind of errors is defined as a curve
fitting error e, which is evaluated by the mean square error:

e =E[(y, (0 -y(x)?] (1.22)
where E(w) denotes the operation to calculate the mean value of w, y,(x) are the

values of the curve fitting results calculated by the approximate polynomial and y(x)

are the data to be fitted.

To reduce the curve fitting error, one solution is to increase the degree of polynomial for

fitting. However, the degree selected too high will result in heavy computation
complexity. So we need to set up an upper bound of the fitting error e, and then
calculate the minimum degree of polynomial which makes e, less than the bound we

have set. The procedure can be described as follows:

Step 1: Set e, which is an upper bound of curve fitting error, and k, the degree of

polynomial used for curve fitting. We initialize the starting value of k equals

to 1.

14



CHAPTER 1

Step 2:

Step 3:

Step 4:

Work out j, , which is the polynomial of degree k to approximate the inverse

function s™(r) in least squares sense. In this step, we first obtain a

symmetrical curve of s(x) in each monotonic interval by using the straight
line x=r as a symmetry axis. Actually this curve is just the inverse
function s™'(r), therefore we can calculate the curve fitting result j, by
making curve fit to the obtained symmetrical curve.

Calculating curve fitting error e, by the Equation (1.22), where Yy, (X)is
approximated by using the curve fitting result j,. If e, <e_, go to Step 4;
otherwise k =k +1 and return Step 2.

Using the curve fitting result s™(r)~ j, and the value of deformed

signal d(x) , calculate the shift distribution function u(x) by Equation (1.21).

Note it has been proven that j, which satisfies E[(j (r)-s™(r))*]<e, always

exists [45].

Figure 1.4 shows the flowchart of IFSE processing. The same as FTP and PSP, an

unwrapping operation is needed before we retrieve the height information. However,

one thing should be noticed is that different from FTP and PSP, the unwrap (:) isno

more phase unwrapping operation but a new operation which is referred as shift

unwrapping. This unwrapping is based on shift estimation, and will be detailed in

Chapter Three.
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Figure 1.4 Flowchart of IFSE processing

The IFSE Method has two advantages. Firstly, since the curve fitting method is used
to obtain the inverse function, the structure of the projected fringe pattern is no longer
required to be sinusoidal. Secondly, because this method is based on the projected
fringe patterns directly, it can be used even when the reference plane has been distorted

by unknown effects.
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1.3 Existing Issues

Let us now look at the existing research work of the area of the implementation of SSE
approach.  Through evaluating the strengths, weakness and the gaps of other

researchers’ work, the following existing issues have been noticed.

Implementation of SSE approach

According to the theory, SSE based FPP approach has been considered as a promising
approach in the area of 3D profilometry. However, few practical systems have been
demonstrated to implement this approach. Problems associated with the
implementation still exist. Therefore, in order to study the performance of SSE
approach and develop solutions of these problems, the implementation of SSE approach

based on a DFP system is needed.

Shift unwrapping in SSE approach

For PDE-based approaches, the phase difference can only be detected within the main
value range of [— 7, 7], but the true phase difference can be arbitrary, hence a wrapping
problem exists. In order to retrieve the actual surface shape of the object, phase
unwrapping must be carried out to obtain the actual phase maps. Many methods have
been proposed to solve this wrapping problem in PDE approach. In the SSE-based
approaches, spatial shift between corresponding pixels on the two fringe patterns can

also be arbitrary, but it only can be detected without ambiguity within the range of [0,
T, ], where T, is the width of the individual fringe. Obviously, shift unwrapping is
also required in order to restore the 3D shape of the object surface correctly. However,

spatial shift unwrapping for SSE-based FPP is still an outstanding issue, which

motivates the work presented in this thesis.

The efficiency of SSE approach

In most cases, the projected fringe pattern is selected to be sinusoidal. However, the

17



CHAPTER 1

usage of sinusoidal fringe pattern faces many limitations, such as the vulnerability to
geometry distortion and nonlinear intensity distortion. To solve the problems,
additional filter is needed, which increases the computation complexity. Sinusoidal
fringe pattern is also not fit for IFSE method in SSE approach for its long computation
time. Hence improvement is needed to increase efficiency. Since the SSE approach
has the advantage that projected fringe patterns are not required to be either sinusoidal
or periodic, it is important to design a fringe which has strong counter-interference

capability against the distortions and short computation time in IFSE method.

1.4 Aim of the thesis work

This thesis work aims to solve the following research issues associated with DFP

systems:

® Design a DFP system, including hardware setting and software program designing.
Then implement the SSE approach by using this system.

® Develop solutions for unwrapping problem in SSE approach: The unwrapping
problem is a major problem in the retrieving of height distribution information.
Many methods have been proposed to solve the unwrapping problem in PDE
approach. However, these approaches are not able to solve the unwrapping
problem in SSE approach.

® Increase the efficiency: The usage of sinusoidal fringe pattern in SSE approach
suffers many limitations and all those results the long time in computation. Hence
to find a solution to reduce the computation time and improve the efficiency is also

important.
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1.5 Contribution of the Thesis Work

In this thesis, we have made follow contributions:

A DFP system to implement the SSE approach

A DFP system model based on the principle of fringe pattern profilometry is proposed.
This system consists of two sub-systems: Projection and Acquisition. A software
interface is designed to control this system. Performance of SSE approach is then
evaluated by implementation using this system. Solutions of the problems associated

with implementation are also developed.

A solution to the unwrapping problem in SSE approach

The unwrapping problem is a key problem in FPP. It causes the discontinuity of the
retrieving height information. After theoretical analysis, we indicated not only in
conventional PDE approach but also in SSE approach, the unwrapping problem exists
and prevents us to retrieve the correct height information. Therefore, this problem
must be solved. Based on the theory of phase unwrapping methods, we introduce a
spatial shift unwrapping method in order to solve the unwrapping problem in SSE
approach. We also carry out experiments to test the performance. Results have been

given to evaluate the effectiveness of the proposed unwrapping technique.

Use of new fringe pattern to improve the efficiency

In traditional FPP, the sinusoidal fringe pattern is selected as the projected fringe pattern.
However, the usage of sinusoidal fringe pattern faces several limitations, such as the
vulnerability to nonlinear intensity distortion and unsuitable for IFSE method. These
limitations decrease the efficiency by introduced additional computations. In SSE
approach, the projected fringe patterns are no longer required to be sinusoidal.
Therefore, we develop a new fringe pattern, which is the sawtooth fringe. We analyse

the advantages of this sawtooth fringe through several rules and compare it with the
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sinusoidal fringe pattern in theory. Experiment is then performed. Detailed result
data is presented to prove the improvement on efficiency, which introduced by using

this new fringe pattern.

1.6 Organization of thesis

The remainder of this thesis is organized as follows: Chapter Two describes the
procedure to implement the SSE approach using a DFP system, which includes an
illustration of DFP system model and the implementation of SSE approach. Chapter
Three presents the introduction of spatial shift unwrapping problem and a solution to
address it. Chapter Four firstly discussed the disadvantages of traditional sinusoidal
fringe pattern.  Some rules of new fringe design such as simplicity, adjustable in period
and monotonic are then introduced. Based on these rules, the sawtooth fringe pattern

is chosen.
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Chapter 2 Implemention of SSE Approach

2.1 Introduction

In Chapter One, we reviewed the existing FPP approaches. We find that the study of
conventional PDE includes both theoretical research and applications. Compared with
conventional PDE, the SSE approach is a new FPP which only has been introduced
recently. The research about this method only contains theoretical studies. Hence a
detailed instruction about the implementation of SSE approach using DFP system is
required. In this chapter, the implementation of SSE approach is described, which
contains the system introduction and the procedure of implementation, including

problem encountered and the solutions.

This chapter is organized as follows: Section 2.2 presents the details of DFP system.
This section includes both hardware and software. The hardware section gives the
configuration of the system, and the software section presents the design of software
interface for generating and controlling the fringes. Section 2.3 elaborates the
implementation of SSE approach, which includes pre-processing of captured image,

IFSE and object reconstruction.  Section 2.4 provides the conclusion of this chapter.

2.2 DFP System Model

2.2.1 System Structure

The hardware of Digital Fringe Projection 3D sensing arrangement utilized for the

implementation is depicted in the schematic diagram shown in Figure 2.1.

21



CHAPTER 2
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Figure 2.1 Digital Fringe Projection arrangement

From this figure, we can see a Personal Computer (PC) is used to manage both the
projector and camera via the video and frame-grabber card respectively. This PC
controls the projector and camera simultaneously using software, and further performs
the processing of acquired data. The DFP system can be divided into two sub-systems:

Projection and Acquisition. Each of these parts will now be further discussed.

Figure 2.2 shows the photo of our experimental setups. The distance of the digital
camera to the projector and the distance between the camera lens and the reference plan
are all adjustable. Hence the filed of vision for CCD camera can also be adjusted in

order to adapt different sizes of objects.

Figure 2.2 The experimental system setup
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2.2.1.1 Projection

In the projection sub-system, a digital projector connects the computer via a Matrox
multiple head video card. We then use the standard operating system display setting to
configure the projector as an independent display device. A “Coloreal Visual”
software is accompanied with the Matrox card. This software allows precise
calibration of each display output in terms of individual colour channel Display Gamma,
Brightness and Contrast, hence to facilitate the appropriate configuration of the display

outputs.

The projector we utilized in the system is a HITACHI CP-X260 3LCD projector. The
specification for the projector is given in Table 2.1. A data sheet with details is given

in [46].

Specification HITACHI CP-X260
Technology 1.6 cm Poly-Si 3-LCD
Native Resolution 1024 x 768
Contrast Ratio 500:1
Brightness (ANSL Lumens) 2500

Table 2.1 Projector Specification

2.2.1.2 Acquisition

The acquisition sub-system should be specifically selected to accommodate for both
single and multi-channel environments. In our system, a high resolution Duncan Tech
MS3100 3-CCD camera is utilized for acquisition. This camera interfaces to the PC
via a National Instruments IMAQ-1428 frame grabber card. A dichroic prism is used
in this camera, and it contains three individual imaging channels with an independent

resolution of 1392x1039 pixels at an 8 or 10 bit precision.

A specialized DTControl software developed by Duncan Tech is accompanied with this
23



CHAPTER 2

camera. This software allows the control of various aspects of the device including:

Individual channel gain
Individual channel integration time and overall integration time

Quantization Precision ( 8 or 10 bit)

Triggering mode

The software also allows the display and record images and image data.

2.2.2 Software Interface

The software interface responsible for the integration of hardware components serves a
distinct role: the generation and control of the fringes. In our system, the software is
written in MATLAB. It produces the fringes in three individual colour channels: Red,

Green and Blue. Each channel is controlled by three parameters:

® Contrast: This parameter defines the amplitude of generated sinusoidal fringe
pattern. Usually we set 1.0 as the default value.

® Phase: This parameter controls the phase offset of generated sinusoidal fringe
pattern. The default value is set to 0.

® Frequency: This value decides the frequency of produced sinusoidal fringe pattern.

The flowchart of the fringe generate software is given in Figure 2.3. In this software,
we first generate three individual sinusoidal waveforms. The waveforms can be
considerd as the colour intensity information of projecting fringe, and three waveforms
stand for red, green and blue fringe controlled by different parameters which shown
before, respectively. Then we combine them together and transfer the colour intensity

information into a colour image.
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Figure 2.4 shows an example of a final produced colour fringe image.
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Figure 2.3 Flowchart of fringe generation

In this image,

we set all the contrast, phase and frequency of the red, green and blue fringes at the

same value. Hence a black-and-white image is produced.
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Figure 2.4 Fringe produced (Contrast = 1.0, Phase =0, Frequency = 500)
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2.3 Captured Image Processing

As discussed in Chapter One, with SSE approach, we need to acquire two images, one
on reference plane and one on object surface. In our experiment, a dome set on a flat
board is used as the object, where the maximum height is 22.8mm. The diameter of

the bottom surface of the dome is 99mm, and the thickness of the base board is 16mm.

Figure 2.5 shows the both images which on reference plane and one on object surface
respectively. These photos are captured on this system setup: The digital camera is
placed on top of the projector with a distance of 350 mm. The distance between the
camera lens and the reference plan is 1295 mm. The resolution of the CCD camera is
1392x1039 pixels, and the filed of vision for CCD camera is 250mmx187mm. Hence,

the equivalent spatial resolution is 0.1796 mm/pixel.

Figure 2.5 Captured image of reference plane (Left) and object surface (Right)

Image processing is performed to retrieve the height information. It is the main part of
the whole SSE approach implementation and concerns the utilization of IFSE in
application. The whole procedure includes pre-processing of captured image, height

information retrieving and reconstruction of object surface plane.
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2.3.1 Pre-processing of Captured Image

The first step of captured image process is retrieving the colour intensity information
from the captured image. This can be easily performed by using MATLAB.
However, the captured images suffer from distortion and noise introduced by the
equipments and environment. Thus before we perform the IFSE procedure, a
pre-processing to eliminate or reduce the distortion and noise for the captured image is

required.

The first problem is the noise. As introduced in Section 1.2.4.2, the condition to
perform IFSE requires the retrieved signal function r = s(x) to be a monotonic function,
or be monotonic in intervals of x. In theory, the fringe retrieved from image of

reference plane should be an ideal sinusoidal. It is monotonic in each half of its period.

However, in practice, with the effect of noise, the monotonic cannot be achieved.

Figure 2.6 shows the acquired fringe data from reference plane. For illustration, we
select one line from each captured images, where yl= 750, which is the middle of the
dome object. From this figure, we can see the retrieved signal in each half of its period

is not monotonic due to noise.
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Figure 2.6 Acquired fringe data from reference plane
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Besides the noise, there is another problem we need to solve.

acquired fringe data from the reference plane and the object.

Figure 2.7 shows the

Compare with the

reference fringe in this figure, it is easy to find the height of the object fringe is

distorted.

s,y 1)

1 1 1 1 1 1 1 1
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100 200 300 400 500 |=1n]u] Foa 8500 Q00

Figure 2.7 Acquired fringe data from captured image
After analysis, we find this distortion is caused by the shape of the object. From
Chapter One, we know the fringes are projected onto the reference plane and object
surface from a certain angle relative to the imaging optical axis. From Figure 2.8, it is
easy to see, for the reference plane, the projection angles of each parallel ray are the
same, hence reference plane have an equal intensity distribution when viewed from the
camera. However, for object surface, the projection angles are different due to the
shape of object. Therefore, the intensity distribution of object surface is unequal when
viewed from the camera. This unequal intensity distribution causes the height

distortion of object fringe.

28



CHAPTER 2

Object

Reference
Plane

Projected
Fringe x///

Figure 2.8 Projected fringes on object surface

In IFSE, we obtained the inverse function s™(r) from the projected signal s(x) and
applied it to the deformed signal d(x), hence the shift distribution function u(x) can
be retrieved using equation u(x) =x—s™(d(x)). However, this equation can be used
only when s(x) and d(x) have the same height range. As the distortion changed

the height range of the deformed signal d(x), the IFSE cannot be performed until we

eliminate the influence of distortion.

Thus in this part, we first design a filter to reduce the noise interference, and then

propose a method to solve the distortion problem.

2.3.1.1 Filter Design

To eliminate the noise and distortion, we need to use a filter. From Figure 2.6, we find
the noise is like a kind of high frequency signal. Hence a low-pass filter can be used to
attenuate these high-frequency signals. The cutoff frequency should be precisely
selected. Cutoff frequency too low will attenuate the fringe signal, cutoff frequency

too high will result in the residua of noise.

According to Figure 2.7, it is obvious that the frequency of deformed signal d(x) is
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different from the frequency of the project signal s(x) due to the height information of

object surface. The frequency of d(x) is higher than s(x) when the slope of object

is negative. Hence the cutoff frequency should be defined based on the frequency of
deformed signal in order to prevent the lost of height information. Figure 2.9 presents
the frequency spectrum of the deformed signal d(x), where x label stands for the

normalized coefficient with 1.0 corresponding to the half of sample rate, and y label is

the normalized frequency response.
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Figure 2.9 Frequency spectrum of deformed signal

It can be seen from this figure, when x> 0.05, the frequency response of deformed
signal falls below 0.1 and keeps decreasing. It can be considered as the component of

high frequency noise signal, to attenuate it, the cutoff frequency should be selected near

0.05x (SampleRate/2).

In our experiment, a Finite Impulse Response (FIR) digital filter is used. Figure 2.10

shows the spectrum of the filter. After calculation and experiment, we finally set the
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frequency breakpoints of this filter to 0.15x (SampleRate/2). Then according to
Figure 2.10, the cutoff frequency, which is the point where the frequency response at
v1/2 ,is about 0.04688 x (SampleRate/?2).
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Figure 2.10 Frequency spectrum of designed filter

Figure 2.11 shows the fringe data after filter, and we can see the high frequency noise is

removed successfully.
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Figure 2.11 Acquired fringe data after filter
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2.3.1.2 Normalization of Fringe
The distortion of deformed signal d(x) is another problem we should solve. As

mentioned before, this problem is introduced by the shape of object.  After the analysis,
we notice that the intensity distortion does no effect on the shift information, thus we

only need to normalize the distortion in intensity to make the IFSE available for use.

The procedure of fringe normalization is very simple. First, we divide the projected

signal s(x) and deformed signal d(x) into several monotonic intervals. Just like
shown in Figure 2.12, we separate the s(x) into the monotonic intervals:s,, s,, s,...

and d(x) turnsinto d,, d,, d, andsoon.

s(x.¥1)

=1 s2 s3 =4 s5 =0 =T
diz,w1)

dl a2 a3 d4 das a6 a7

Figure 2.12 Fringe divided into monotonic intervals

Then we can perform the normalization processing on each monotonic interval by the

following steps (suppose the intervals we selected are s, and d,):

Step 1: Calculate the middle value of the selected monotonic interval in projected

signal s(x) and matched monotonic interval in deform signal d(x) using

these two equations:
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5 = CE 2.1)

dlmax + dlmin
5 (2.2)

mid __
dl -

max . . .
where S, and d™ are the maximum value in intervals s, and d,
. min min -
respectively,and S; " and d1 are the minimum value.

Step2: Work out S; and d;, which are the height range of intervals s, and d,, by

using these equations:

st =5 5" 29
d1r — dlmax _ dlmin (2-4)

Step 3: Normalize the height of d, use the follow equation:
Sr
fix _ mid 1 mid
dl - [(dl o d1 ) * (F)] +35 (2.5)
1
where dlﬁx is the normalized deformed fringe data.

The deformed fringe will be normalized after we perform these steps on each intervals

of d(x). Figure 2.13 shows the normalized fringe data.
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Figure 2.13 Normalized fringe data

2.3.2 Improved IFSE

As mentioned before, in SSE, we use the IFSE method to obtain the height information
from the estimation of spatial shift. After the pre-processing on the acquired fringe
data, all conditions for performing IFSE are satisfied. The whole procedure of IFSE is
based on the theory introduced in Chapter One. However, during the implementation,

problems still exist.

As described in Section 1.2.4.2, the first step of IFSE method is setting an upper bound

of curve fitting error e, , then repeat the curving fitting step until the curve fitting error
e, is smaller or equal to the bound. Then how to select the value of e  becomes a

problem. In our implementation, we find if we set this bound in a small value, it will
consume too much time on calculation. However, when we increase the value, the
time spend on calculating is reduced but the curve fitting error is increased. So we

have to find a new solution.

One suggested solution is increasing the initial degree of polynomial used for curve

fitting. As we know the reference fringe pattern is sinusoidal, it is a periodic pattern.
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Hence the curve fitting polynomial for each monotonic interval should be the same in
theory. However, in practice, there will be a slightly difference between each interval
due to the noise and distortion. Thus we need to do the curve fitting for each interval,
but degree of curve fitting polynomial can be considered varying at a small range.
Then we can set the starting value of k near this range or just gives a fixed value of k
which selected from the range. This method will reduce the computation time because
we only need to calculate the range of k for one or two times instead of calculate it on

every interval. Figure 2.14 shows the flow chart of this improved IFSE method.
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Figure 2.14 Flowchart of improved IFSE processing

Compared with the Figure 1.4 given in Chapter One, Figure 2.14 has two changes.

First, before we perform the IFSE processing, two pre-processing parts are added.

Second, the initial value of k is not limited to be 1, higher initial value can be used to
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reduce the computation time. As shown in the flow chart, after unwrapping, we can

retrieve the height distribution of the object.

2.3.3 Reconstruction of Object Surface

The final step of the implementation is the reconstruction of object surface. Using the
improved IFSE method given before, we can retrieve the height distribution. We use
Matlab to perform the reconstruct the 3D model of object surface. Figure 2.15 shows

the final reconstructed object surface.

il

gn o

0 o

Figure 2.15 3D Reconstruct results

From Figure 2.15, we can see that dome surface is perfectly reconstructed and the result
is satisfying. Thus we can say the implementation of SSE approach is successfully

performed.

2.4 Conclusion

This chapter presented the implementation of SSE approach. First a DFP system is set
up. Detailed information about this system is given, which includes the introduction of
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system structure and software interface. Then the whole procedure of implementation
is introduced. We emphasize the problems encountered in practice and propose the
solutions, including pre-processing and improved IFSE method. At last, the result is

shown to prove the contribution of our implementation.
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Charpter 3 Shift Unwrapping in SSE Approach

3.1 Introduction

Both in PDE and SSE, the wrapping problem exists and becomes a major problem in

the retrieving the height distribution information of object surfaces. For PDE-based

approaches, the phases are limited within the main range from[—z,z]. In order to

restore the actual shape of the object, phase unwrapping must be carried. In SSE

approach, since most of the projected fringe patterns are also periodic, the shift can only

be detected without ambiguity with the range of [0,T,], where T, is the width of the

individual fringe. This will also result in discontinuity. Many methods have been
proposed to solve the unwrapping problem in PDE approach. However, these
approaches are not able to solve the unwrapping problem in SSE approach. Hence a

solution to address the unwrapping problem existing in SSE approach is necessary.

This chapter is organized as follows: Section 3.2 presents a detail introduction of the
wrapping problem, including the wrapping problem in conventional PDE and SSE
approach. Section 3.3 discusses the solution of the wrapping problem, which is
unwrapping. This section includes a review of the phase unwrapping problem, and
based on which, a new theory of spatial shift unwrapping is given. Section 3.4
performs the experiment and uses the results to confirm the performance of the new

spatial shift unwrapping theory. Section 3.5 provides the conclusion of this chapter.

3.2 The Wrapping Problem

As mentioned before, in conventional PDE approach, the phase shift information
contains the height distribution of object surface. However, as we know the phase

function is a periodic function with the period of 27z , the phase shift information
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retrieved in most PDE based approaches can only be identified within the range

of [-z,7]. Those phase shift which is bigger than 7 or smaller than — 7 all

wrapped into this range, thus the wrapping problem occurs. The same thing also

happens in SSE approach, as the projected fringe we used is a fringe structure with a

periodic fringe of widthT,, the spatial shift information retrieved will only be detected

within the main value of [0,T,]. Hence this can also be considered as a wrapping

problem.

3.2.1 Wrapping Problem in Conventional PDE approach

From Equation (1.7) we have

P(x) = Zﬁw (3.1)

where T, =1/ f;is the width of an individual fringe. Obviously, #(x) can take any
value, depending on h(x), d,, I, and T,. However, with most PDE based

approaches, ¢(x) can only be identified within the range of[-xz,7]. In other words,
the phase is wrapped into the main value range. In the following such a wrapped
phase is denoted asg¢,(x). Figure 3.1 shows an example which demonstrates the

difference between ¢(x) and ¢,(x). Assuming we have an object with its height

distribution given in Figure 3.1 (a), the phase map ¢#(x) should be the one shown in

Figure 3.1 (b) based on Equation (3.1). However, most PDE based approaches are

only able to yield a ¢, (x) shown in Figure 3.1 (c). If such a wrapped ¢, (x) is used

in Equation (1.7), we will obtain a height distribution in Figure 3.1 (d), which obviously

suffers from significant errors. Consequently, in order to correcth(x), we must

employ ¢(x) instead of ¢, (x) . Thus a phase unwrapping operation is needed.
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Figure 3.1 Original and wrapped phase maps

3.2.2 Wrapping Problem in SSE approach

The wrapping problem also exists in SSE approaches. From Equation (1.17) we have:

u(x) = m (3.2)

I0
Depending onh(x), d,andl,, the shift function u(x) may take any value as well.
However, whens(x) has a fringe structure with a periodic fringe of widthT,, u(x)
can only be detected within the main value of [0,T,]. In other words, u(x) is

wrapped into[0, T,], which is denoted as u,,(x) and given as follows:

u, (x) =u(x) —kT,, where k= Integer[@} (3.3)

0

In order to demonstrate the relationship, we utilize the same example in Figure 3.1.
With h(x) shown in Figure 3.2 (a), we should have u(x) in Figure 3.2 (b).
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However, what we have is u,(x)as shown by Figure 3.2 (c). Use of u,(x) in
Equation (1.17) will result in significant error in h(x), as shown by Figure 3.2 (d).

Therefore, we must work out a way to restore u(x). The process is referred to as

spatial shift unwrapping.
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Figure 3.2 Original and wrapped shift maps

3.3 The Unwrapping

As presented before, the wrapping problem exists in both conventional PDE and SSE.
Since it make the height distribution information suffer from the great distortion, it
becomes a main obstacle in our 3D profilometry. To solve the wrapping problem, we

need unwrapping. The unwrapping is a processing which tried to restore the original
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phase or spatial shift maps before wrapped. Since the conventional PDE has attracted
most of the research interests, the solutions for the wrapping problem in the phase shift
based approaches have also been given. These solutions are referred to the phase

unwrapping approaches [47][48].

In SSE-based FPP, the similar ‘spatial shift unwrapping’ is also required in order to
restore the 3D shape of the object surface correctly. However, this spatial shift
unwrapping for SSE-based FPP is still an outstanding issue. In this part, we first
review the phase unwrapping problem in PDE based approaches, based on which we

present a method for solving the spatial shift unwrapping problem.

3.3.1 Phase Unwrapping, a Review

Phase unwrapping refers to the process of restoring #(x) from ¢,(x). As can be
seen by Figure 3.1, the phase is wrapped in the following way. When ¢(x) increases
and reaches points = ,37,5z, ...(i.e., odd number multiples of =), ¢,(x) drops
from 7 to —x. Similarly, when ¢(x) varies decreasingly and reaches the same

points, ¢,(x) jumps from —z to z~. The phase unwrapping should reverse the

process. In other words, when we observe a phase drop from = to—-z, we should

add 2z to the unwrapped ¢(x), and when we notice a phase jump from -z to =,

we should add -2 .

Generally, most existing phase unwrapping approaches starts from determine the
differences of the neighbouring value. If a value suffers wrapped, the absolute value
of the difference should more than =~ and can be determined as a breach of the
continuity of the original phase map. Then this value is recorded as a discrete point.

The compensation of 27 is performed based on these discrete points to reconstruct the
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unwrapped phase maps. One thing we should notice is that these methods are based
on the hypothesis that the differences of neighbouring value in original phase map are

less than .

3.3.2 Spatial Shift Unwrapping in SSE based FTP

In order to work out how to unwrap the spatial shift, we can see how u(x) is wrapped

into u,(x). From Figure 3.2 (b) and (c), we observed the following:

e When u(x) varies increasingly and reaches points T,,2T,,3T,, ... (that is, integer

multiples of T;), u,(x) exhibits a drop of T, with its value dropping from T,

to 0.

e When u(x) varies decreasingly and reaches the same points, that is, the integer

multiples of T,, u,(x)will jumpfromOto T,.

Spatial shift unwrapping should reverse process from u,(x) to u(x). In other
words, when we observe a drop from T, to 0, we should add T, to the wrapped
result, and when we notice a jump from 0 to T,, we should add —T,. Assuming that
the object has a continuous surface, and u,(x) is acquired in discrete form, that is,

u,(x,) (i=0,2,3,...,N ), spatial shift unwrapping should be carried out by the
following procedure:

Step 1: Initializationu(x,) =u,,(X,) +KkT,, where T, is determined by the height of

the object at x,. Becauseu,(x) <<T,, from Equations (12) and (13) we

have u(xo)zw and k:Intege{@}

0 0
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Step 2:  Starting from u,(x,) andfor u,(x;),wherei=0,2,3,...,N;

If u(x;) increases followed by adrop of T, thatis, u,(x;)-u,(X._)=-T,,
we should increase k by 1, thatis, k=k+1;

else if wu(x) decreases followed by a jump of T, , that is
u,(x)—-u,(x,_,)=T,, then decrease k by 1, that is, k =k —1;

otherwise, keep k unchanged, thatis, k =k

Compute the unwrapped shift by u(x) =u,, (x) + KT,

The above procedure is straight forward, but a number of issues must be resolved for its

implementation in practice. Firstly, we should determine if u,(X;) increases or

decreases. Secondly we should be able to detect the sharp drop and jump. In ideal

cases when surface is continuous, s(x.) and d(x;) are free of noise, these can be
carried easily. However, in practice both s(x;) and d(x)) may contain noise,
resulting in u,(X;) corrupted by noise and disturbance. In order to eliminate the
influence of noise and disturbance, we should make sure that u,(x;) is as smooth as

possible with respecttox..  To this end we propose the following:

e Pre-processing of s(x;) and d(x;) by means of a digital filter in order to remove

the noise and to smooth the waveform of s(x) andd(x). The challenges

associated with pre-processing is to eliminate the unwanted noise and disturbance

while keeping the original waveform of s(x.) andd(x;). Parameters of these

filters should be selected with care.

e In order to determine the slop of u,(x;), we firstly evaluate the difference of
u,(x;) over successive samples by Au,(x;)=u,(x)—-u,(x_,), and then take the
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sign of the variance by ¢, = sign{AuW(xi)} (where o, equalsto 1, 0 and -1 for

Au,(x)>0, Au,(x;)=0 and Au,(x,) <0 respectively ). We carry out the

following:

i-1
If L Z 0,>0,then u,(x;) increases, or

j=i-M

i-1
iF L > 6,<0,then u,(x) decreases.

j=i-M
In practice, a sharp jump or drop may transverse a few data samples onu,(X;) .

Assuming that the jump or drop occurs within L samples, we should use the following

to detect the drop:

If u,(x;)-u,(x_)>T,,then u,(X;) jumps,or
If u,(x;)-u,(x_)<-T,,then u,(x;) drops
where T, is the threshold which should be chosen based on the quality of u,(x;).

With the pre-processing of s(x;) and d(x), u,(X;) issmooth enough and hence we

choose T, :T%.

3.4 Experiments and Results

In order to test the performance of the approach proposed in Section 3.3.2, experiments
are carried out in our laboratory. The experimental setup is the same as the last

chapter.

After pre-processing and IFSE operation, we obtain the wrapped u,(x,y,) in Figure
3.3 (a). With the proposed unwrapping approach we recovered u(x,y,) in Figure 3.3

(b), with which we obtain the height distribution h(x,y,) in Figure 3.3 (c). From
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Figure 3.3 (c), the max height of h(X, y,) is 23.08mm and hence the error rate is 1.228%.

Therefore we can say that shape of the object can be successfully retrieved with the

proposed approach.
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Figure 3.3 Spatial shift unwrapping and high distribution estimation.

3.5 Conclusion

In this chapter, we study the wrapping problem in FPP. Based on the phase wrapping
problem in conventional PDE, we indicate the spatial shift wrapping problem associated
with SSE-based FPP. The problem arises as the result of fringe reuse (that is, fringes
periodic light intensity variance), and the spatial shift can only be identified without
ambiguity with the range of a fringe width. We present a technique to carry out spatial

shift unwrapping to remedy the problem which referred the phase unwrapping method
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in conventional PDE-based FPP. In order to test the performance, we also carry out
experiments on an object with simple hemisphere surface shape. The results have

shown the effectiveness of the proposed unwrapping technique.
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Charpter 4 Improvement of SSE

4.1 Introduction

In conventional PDE, the projected fringe pattern is required to be sinusoidal because

they need to retrieve the height distribution from the phase map of the projected and

deformed fringes. That means the phase maps of s(x) and d(x) must exist and can

be detected. However, using of sinusoidal pattern faces these limitations: One thing is
the pure sinusoidal fringe patterns cannot be obtained in practice due to many undesired
factors inherent to digital projection. Another thing is even the pure sinusoidal fringe
patterns can be produced, they are also vulnerable to geometry distortion and nonlinear
intensity distortion. Since SSE approach retrieves the height distribution by estimating
the spatial shift directly, it has the advantage that the projected fringe patterns are not
required to be either sinusoidal or periodic. Thus we can design a fringe which has
strong counter-interference capability against the noise and nonlinear distortion to

improve our works.

This chapter is organized as follows: Section 4.2 discusses the limitations of traditional
sinusoidal fringe. Section 4.3 presents the improvement of traditional SSE, including
designs the rules of fringe selection and introduces a sawtooth fringe pattern instead of
sinusoidal based on theoretic analysis. Section 4.4 carries out the experiment and uses
the results to illustrate the advantage of the new sawtooth fringe patterns. Section 4.5

provides the conclusion of this chapter.

4.2 The Limitation of Traditional Sinusoidal Fringe

As mentioned before, the conventional PDE uses the detection of phase shift from
original and deformed fringe patterns enables the retrieval of the 3D shape. Hence the

projected fringes are limited to be sinusoidal. However, in practice, problems occur
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when we use the sinusoidal fringe pattern as projected fringe, which severely impacted

the accuracy of measurement.

The sinusoidal fringe pattern is also unsuitable for IFSE method in SSE approach. As
shown in Chapter Two, the inverse function of sinusoidal requires a very high degree of
curve fitting polynomial, which greatly increases the time of computation. Even
though the curve fitting error still exists and affects the accuracy of measurement.
Increasing the degree of curve fitting polynomial may reduce the curve fitting error,

however, it cannot completely eliminate due to the characteristic of sinusoidal function.

In this section, we first discuss the disadvantages of using sinusoidal fringe pattern.

4.2.1 Disadvantage of sinusoidal fringe

According to the theoretical analyse in Chapter One, the conventional PDE approaches,
like FTP and PSP, can retrieve the phase shift information precisely if the projected
fringe pattern is pure sinusoidal. However, in most practice case, it is very hard to

realize due to the undesired factors inherent to digital projection.

4.2.1.1 Finite Projection and Screen Door Effect

One factor is called finite projection. As we know, the projected fringe pattern is a
digital signal, the intensity distribution is defined by pixels, and each pixel is confined
to a finite set of intensity values. Hence the spatial resolution of the digital projector is
limited to the spatial size of a projected pixel. This characteristic of digital projector is
then referred to as finite projection, or pixelisation. The finite spatial resolution issue

was referred by Coggrave and Huntley in [49].

This finite projection characteristic of projected signal introduces another problem: due

to the physical limitations of digital projector, tiny discontinuities exist between the
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pixels, which will make the intensity distribution look discrete. This phenomenon is

referred as the “Screen Door Effect” (SDE).

Figure 4.1 Screen Door Effect

Figure 4.1 shows the “Screen Door Effect”. From this figure, the discontinuity of
intensity distribution can be seen clearly. This SDE characteristic ultimately
influences the quality of projected and captured fringe pattern. The pure sinusoidal
fringe pattern is impossible to produce due to the discontinuity of projected signal. As
the intensity of captured images becomes discrete, it is hard for us to detect the precise
phase shift information. Because these discontinuities cannot offer any information
about object surface, errors will occur during the retrieving of height information.

Thus the accuracy of measurement will be severely affected.

Since this SDE characteristic is introduced by the physical limitation of digital project,
we can alleviate it by utilizing a high resolution projection source if we want to improve
the accuracy. However, high resolution demands high accuracy of the projector,
which will increase the cost of equipment, it is unsuitable for application. Thus we
should find another way to solve this problem. Introducing a new fringe pattern which

suffers less effect of SDE should be a solution.
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4.2.1.2 Gamma Distortion

Despite the influence of SDE characteristic, there has another systematic limitation
existing in the DFP system which imposed on the projected fringe. This limitation is
called non-linear camera / projection luminous response, which can also be referred as
Gamma distortion [50, 51]. This distortion is introduced by visual display systems in
order to enhance human perception of the sensation of lightness. However, it

compromises the geometrical structure of the projected signal.

The gamma distortion can be considered as a power function of intensity. In general,

it can be modelled in Equation 4.1 [50, 51]:
w(x,y) =u(x,y)" (4.1)
for ue[01]]
where u(x,y) is the image intensity function delivered to projector, w(x,y) is the
actual output image intensity distribution and p is typically a fractional value

1< y <3 specific to the display system.

Then we suppose the image intensity function which delivered to projector is a pure

sinusoidal intensity distribution, which means
u(x,y)=a+bcos(2zf,x) (4.2)
where a and b are the constants referring to the projected fringe offset and contrast

respectively, and f, is the spatial carrier frequency of the projected fringe.

Substituting Equation (4.2) to Equation (4.1), we have:

w(x,y) =[a + bcos( 2zf,x)]” (4.3)
As we know y is a fractional value, we can represent Equation (4.3) in Fourier Series
like:

52



CHAPTER 4

W(X,y)=c, +c,cos( 2xf,x) + i C,, cos( m[2xf,x]) (4.4)

m=2
where m is the order of harmonic components and c, is the corresponding

amplitudes, and
2 T
c, = T—J'O w(x, y) cos( m[2zf,x])dx (4.5)

where T is the spatial period of the fringe image.

According to Equation (4.3) and (4.4), we can see the projected pure sinusoidal fringe is
geometrical distorted and higher harmonic components are introduced due to the

gamma distortion.

From Equation (1.7), we can find the height distribution h(x) only associate with

#(x), which is the phase shift of the fundamental component. Hence those higher

harmonic components must be eliminated if we want to retrieve the accuracy height
distribution. That is why we said pure sinusoidal is better. However, because of the
gamma distortion, the higher harmonic components always exist and severely impact

the accuracy of measurement.

To solve the problem, one possible way is to use filters to eliminate the higher harmonic
components and pick up the fundamental component of fringe pattern. However, in
practical case, it is difficult to design an ideal filter which can completely eliminate the
higher harmonic components and make the filtered fringe pure sinusoidal. Moreover,
if the deformed fringe pattern has an overlapped spectrum, the bandpass filtering will
also be unusable. Therefore, errors will arise if we use sinusoidal fringe pattern as

projected fringe pattern.

53



CHAPTER 4

4.2.1.3 Influence of Environment

Besides the undesired factors inherent to digital projection system, the projection
environment also influences the quality of projected signal. In this part, we discuss the

influence introduced by environment.

In Chapter Two, we have already mentioned the influences of environment on the
projected fringe. The first thing is the interference introduced from the light source
which did not belong to the projector but from the environment. This interference can

be reduced by carrying out the experiment in a dim environment.

However, the distortion which introduced by the projection angle should become a key
problem for sinusoidal fringe pattern. Although we solved the intensity distortion in
Section 2.3.1.2, there is another distortion exist, which is the length change in each

period of the sinusoidal fringe.

L L L 1 L 1 L
] 100 200 =00 00 S00 =00 oo

Figure 4.2 Acquired fringe data from captured image of reference plane

Figure 4.2 shows the retrieved intensity data from the captured image of reference plane.

From this figure, we can easily see the decrease in length of each period of the

sinusoidal fringe.

Like the intensity distortion, this length distortion is also introduced by the projection
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angle. We suppose that the projector is adequately focused over the range of interest.
The angle subtend by each period is the same, which is assumed as «. Then the

projected length of each period on reference plane is then shown in Figure 4.3.

According to the triangle principle, obviously we will have T, >T, >T,.

Reference
Plane

[

o

n

Projector

Figure 4.3 Length change introduced by projection angle

From Figure 4.2, we can see the period distortion caused by projection angle severely
damage the geometric structure of captured sinusoidal fringe pattern. This influence

will impact the accuracy of 3D surface measurement, especially for conventional PDE.

The change of the period means the variety of the frequency f,. Hence errors will

arise in the retrieving of height distributionh(x) if we apply the frequency of projected

fringe pattern on the captured fringe pattern directly.

Since this period distortion is introduced by the projection angle, it cannot be avoided
unless we change the basic principle of DFP system. The only way to solve this

problem is to use the triangle principle to do compensation. However it will greatly
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increase the total computation time if we want the result precisely.

In conclusion, the captured fringe pattern suffers many unavoidable distortions
introduced by the limitation of digital projection system and the environment. The
sinusoidal fringe pattern is vulnerable to these factors. Hence the inevitable  errors
caused by the selection of sinusoidal fringe will become an obstacle for us to pursue the

high accuracy of measurement.

4.2.2 Limitation in IFSE

Since the conventional PDE retrieves the height distribution of object surface by using

the phase shift ¢(x), it is vulnerable to the geometric change brought by these

distortions, such as gamma distortion and period distortion. Fortunately, as the SSE
approach use the spatial shift distribution u(x) to retrieve height distribution, it has a
strong counter-interference capability against geometric distortion. However, the

selection of sinusoidal fringe as projected fringe pattern in SSE approach faces other

limitations which also block us to regain the measurement results precisely.

As mentioned before, the IFSE method use the inverse function of projected signal to

obtain the spatial shift distribution u(x), then retrieve the height information of object

surface by using Equation (1.17). Hence the first step for IFSE processing is to find

the inverse function of projected fringe s(x). Because the sinusoidal function is not a

monotonic function, it needs to be divided into several monotonic intervals. Then

inverse functions are found for each interval. As the sinusoidal fringe pattern is used
as projected fringe s(x), the inverse function s™(r) for each interval should be

supposed to an arc sinusoidal function, like arcsine or arccosine. However, we cannot
use the mathematical arcsine or arccosine function as the inverse function directly,

because they are not mapping to the sine or cosine function one-by-one. For example,
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. ( 1 . (57 1 . . ) .
we have both SIN| — | = E and SIN| — | = E , but in arcsine function, it

S5z

6

(1 T : : : :

only has arcsin > = E . Same thing happens in arccosine function. Both
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Ccos ( d ) d cos
- | an
3

T 5x
only have the result of ? but not ?

1 1
j equaIsE, however, the function arccos (Ej can

Thus we should find another function which is mapping to the projected signal function
one-by-one by using the polynomial. In theory, the arc sinusoidal function can be

transformed into polynomial, however, problems occurs in practice:
: 1yz* (1-3)z° (1.3.5)z7'
arcsin z=z+4+| —|—+|—|—+ -+
2) 3 2-4)5 2.4.6) 7

0 (2n)| Z2n+1
=Z(22n(n!)zj(2n+l); z|<1 (4.6)

n=0

T .
arccos z = E— arcsin z

T 1)z°? 1-3)2° 1-3-5)z’
=——|Z+|=|—+| —|—+ —+ ..
2 2) 3 2.4)5 2.4-6) 7

_l_ © (2n)| Z2n+1 .
=7 Z:[22"(n!)2j(2n+1)’ 2] <1 (47)

n=0

Equation (4.6) and (4.7) shows the polynomial transform of the arcsine and arccosine
function. From these functions, it can be seen the polynomials are infinite series,
which means the degrees of polynomial should be infinite. However, in practical case,
the degree of polynomial used for curve fitting is limited. As it was discussed in

Chapter Two, the higher degree of polynomial uses in curve fitting, the longer

57



CHAPTER 4

computation time takes. Too much time on computation is unbearable in real-time
application. Errors also exist since limited degrees of polynomial cannot perfectly
fitting the arc sinusoidal function, which block us to perform the high accuracy

measurement.

Moreover, Equation (4.6) and (4.7) is based on the ideal condition. Due to the gamma
distortion and other kinds of interference, the polynomial used for curve-fitting should

be more complex than these equations. Thereby the system load is further increased.

Thus in consideration of improving the SSE, the selection of sinusoidal fringe pattern as

projected fringe pattern is not properly due to these limitations in IFSE method.

4.3 The Improvement of SSE

In SSE approach, since the height distribution is retrieved from the spatial shift

distribution u(x) directly, the projected fringe is not required to have any particular

structures.  Since there has so many disadvantages of using sinusoidal fringe pattern as
projected fringe pattern we discussed in last part, it should be a good choice for us to

design a new kind of fringe pattern as projected fringe pattern.

In this part, we discuss the improvement of SSE by designing a different fringe as
projected fringe pattern instead of the traditional sinusoidal fringe. First the rules of
the fringe designing are given. Based on these rules, a sawtooth fringe pattern is
introduced. Then theoretical analysis is followed to give a detail illustration about the

applicability of this fringe pattern.
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4.3.1 Rules of Fringe Design

From Chapter One, we know the SSE approach has many advantages in comparison to
the conventional PDE approach. One of these advantages is it does not depend on the
structure of the projected fringe pattern. Thus the tradition sinusoidal fringe can be
replaced by some other kind of fringe in theory. However, it does not mean any fringe
pattern can be used in SSE. Some fringes may be worse than sinusoidal. Hence we
need to set some rules in order to find a proper fringe which can overcome the

disadvantages in sinusoidal fringe.

® Simplicity
The first rule for fringe design is the designed fringe should be simple and concise in

function.

As discussed in last part, the projected fringe suffers geometrical and non-linear
distortion which mainly caused by Screen Door Effect and gamma distortion. Under
the influence of SDE, the intensity distribution becomes discrete, and the discontinuities
cannot offer any information. Since this influence is unavoidable, what we can do is
try to alleviate its influence. Then we find fringes with simple function suffer less
effect than the complex ones. This is because the structure of simple function is also
very concise, thus it can be easily restored once damaged by SDE. Most information

which lost on the discontinuities can also be retrieved.

Simple functions also show its strong counter-interference capability against gamma

distortion. As we know the gamma distortion can be modelled as Equation (4.1).

Then if we use a linear function as the projected fringe function u(x,y), after gamma
distortion, the actual output function w(x,y) will be three-degree at max because y

is typically a fractional value 1<y <3. Hence in IFSE, a three-degree polynomial is

enough to curve fitting the inverse function perfectly. The computation time will be
59



CHAPTER 4

greatly reduced.

On the other side, high-degree function means more complexity in computation, which
will increase the system load and computation time. This also not fit for the real-time

application.

® Adjustable in period

Although spatial shift based approach allows the projected fringe patterns can be neither
sinusoidal nor periodic. However, non-periodic fringe patterns require to design every
time for difference objects. Therefore, we still select the periodic fringe pattern as the

projected fringe pattern.

In Chapter Three, the unwrapping problem in SSE approach is studied. At last of that

chapter, we referred a special condition in practice where a sharp jump or drop may
transverse a few data samples on u,(X;). The solution of this problem is based on the
assumption where u,(x;) issmooth enough. However, in application, u,(x;) is not

always smooth if the object has sharp change. To keep this solution working, what we

should do is to increase the fringe period T,. Hence the threshold T, to fit the sharp

change of object surface is increased.

On the other side, large value of the fringe period T, will cause the impairment of the

accuracy in our measurement. Thus a fringe designed with an adjustable period should

be most suitable.

® Monotonic

This rule is in consideration of IFSE method. As mentioned before, the condition to

perform IFSE requires the retrieved signal function r = s(x) is a monotonic function, or

it is monotonic in intervals of x. For sinusoidal function, we have to divide it into two
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monotonic intervals to ensure the processing of IFSE, which introduced additional job.
However, if we use a function which monotonic in each period, this additional job can

be avoided.

In conclusion, the design of new fringe should follow these three rules: Simplicity in

function, adjustable in period and monotonic.

4.3.2 The Selection of Sawtooth

Based on the rules we indicated, a new kind of fringe pattern which satisfied all the
rules is introduced in this part. This fringe is sawtooth fringe. We will first give an
introduction of this fringe pattern, and then discuss the advantages on the selection of

sawtooth fringe in theory.

4.3.2.1 Introduction of sawtooth fringe

The characteristic of a sawtooth wave is its structure ramps upward and then sharply
drops or ramps downward and then sharply rises. The traditional sawtooth function is

a piecewise linear function which defined as:
s(x) = x = floor (x) ; x>0 4.7)
where the floor (-) is a function which maps a real number to the next smallest or

next largest integer.

Equation (4.7) presents a typical sawtooth function in the range of [0,1], and with

period 1. According to the rules given in last part, the designed function should have

an adjust period T, , then we modify this function:

s(x) = a- (Ti- floor (Ti)) : x>0  (48)
0

0
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where a is the contrast of the projected fringe, which usually in the range of [0,1].

T, s the period of fringe.

Hence we can generate the sawtooth waveforms by using the Equation (4.8), and Figure
4.4 shows the generated sawtooth fringe pattern with contrast a = 1.0 and period T, =

25.

' ' ' ' ' ' L
<0 =0 =0 100 120 140 150 120 200

Figure 4.4 Sawtooth waveforms

Then we convert the function of colour intensity into the image using the same system

which introduced in chapter two:
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Figure 4.5 Sawtooth fringe produced

Figure 4.5 shows the projected image with sawtooth fringe pattern. The parameters of
the red, green and blue fringes are all set at same value. Therefore it is a
black-and-white image. It can be seen from this figure, the intensity ramps upward

and then sharply drops when it reaches the max of luminance.

4.3.2.2 Advantage of sawtooth fringe

The design of this sawtooth fringe completely satisfies the rules given before: simplicity,

adjustable in period and monotonic.

From Equation (4.8), it can be seen the sawtooth function we designed is a one-degree
piecewise linear function. Hence both in function and structure, it satisfies the

simplicity.

Because we modified Equation (4.7) into Equation (4.8), the period of fringe can be
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controlled by adjusting the period value T,. Thus the fringe function we designed

can fulfil this rule of adjustable in period.

From Figure 4.4, it is easy to see the structure of this sawtooth function is monotonic

increasing in each period.

Since the design completely follows these rules, the sawtooth fringe shows its great

advantages in comparison to sinusoidal fringe:

The first advantage is reduced system load. As the designed function is a piecewise

linear function, the inverse function is easier to calculate in IFSE.

The second advantage is this sawtooth fringe has strong counter-interference capability
against geometrical and non-linear distortion, especially in solving the SDE and gamma

distortion problems:

As we know the original sawtooth function is a linear function, the missing information
in discontinuities brought by the SDE characteristic can be retrieved from its

neighbouring values by using the linear relationship.

For gamma distortion, according to the Equation (4.7), the distorted fringe function will

have no more than three degrees since y is typically a fractional value 1<y <3.

Thus the inverse function of the distorted fringe will also have no more than 3 degrees.
Compare with sinusoidal fringe have to use at least 10 degrees to receive an acceptable

result, sawtooth fringe still shows it great advantage in saving the computation time.

In conclusion, the sawtooth fringe we designed shows its advantages against traditional
sinusoidal in sparing system load and counter-distortion capability, especially in facing

the SDE and gamma distortion problem.
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4.4 Experiments and Results

In order to test the performance of the sawtooth fringe pattern introduced in Section 4.3,
experiments were carried out in the laboratory. The experimental system is same to
Chapter Two. Figure 4.6 shows the captured two images, one on reference plane and

one on object surface.

Figure 4.6 Captured sawtooth image of reference plane (Left) and object surface (Right)
The colour intensity information for these two images is retrieved. The acquired

sawtooth fringe data from reference plane and the object plane can be seen in Figure

4.7.
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Figure 4.7 Acquired sawtooth fringe data from captured image (y1=750)

From Figure 4.7, we can see the structure of captured sawtooth fringe is mainly
distorted due to non-linear distortion, especially the gamma distortion and height
distortion in deformed fringe. Hence we still need to perform the pre-processing

before using IFSE method.

As mentioned in chapter two, the captured sinusoidal fringe pattern first needs go
through a filter to solve the non-linear distortion. However, the using of filter will
bring in the distortion of deformed fringe pattern hence causes the height information
lost. Since the sawtooth fringe patterns have strong counter-interference capability

against non-linear distortion, there is no need for using the filter.

From Figure 4.7, we can find the deformed sawtooth fringe pattern suffers evident
distortion in height as same as sinusoidal fringe. This is also caused by the unequal
intensity distribution due to the shape of object surface. Therefore, same fringe
normalization processing which referred in Section 2.3.1.2 can be used to solve the
intensity distortion problem. After the pre-processing, the normalized sawtooth fringe

data is shown in Figure 4.8.
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Figure 4.8 Normalized sawtooth fringe data

After pre-processing, the next step is the IFSE processing. Then we find a new

problem occurred in the real practice.

As mentioned before, the sawtooth fringe

pattern we select should be monotonic increasing in each of its period. However, as

shown in Figure 4.8, the structure of the fringe is distorted. At the end of each period,

the fringe structure which supposes to be a sharp drop is distorted into a downward

slope.

Figure 4.9 Test image with white and black
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We projected a test image which shown in Figure 4.9 to analyse this distortion. In this
image, we only use two colours: the white and black, which stand the maximum and
minimum of the intensity. Hence the curve of the intensity data for this image should

be shown like Figure 4.10, which only has a sharp drop in the middle of the curve.

1.8

I I I I I I
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Figure 4.10 Intensity data of test image in theory

However, after projection, the intensity data we retrieved from the test image in Figure

4.9 has been distorted. The retrieved intensity data curve is shown in Figure 4.11.

o.F

0.6 —

1 1
o 20 40 =0 a0 100 120 140

Figure 4.11 Intensity data retrieved from projected test image

From Figure 4.10, we find it is same to Figure 4.8, the curve structures which is
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supposed to be a sharp drop are distorted into a downward slope. After looking into
this kind of distortion, we find each decreasing interval generated has the same length
alone x direction. Hence we infer that this distortion is introduced by another system
limitation of digital projector, where the light intensity produced by the digital projector

cannot adapt to the sharp change.

To solve this problem, one solution is increasing the sawtooth fringe period value T, .

As we know the distortion only affects fixed length alone x direction in each period, we
can reduce the influence of this distortion by increasing the period. If the length of
each period is long enough, the ratio of distorted part could be very small and can be

able to ignore.

Another solution is performing the IFSE processing on the decreasing interval.  This is
much like what we do in sinusoidal fringe, where different inverse functions are used on
the increasing and decreasing intervals respectively. As the length of the distorted
interval is fixed, it is easy for us to separate the increasing and decreasing interval.
Although an additional inverse function is needed for the decreasing interval, the
computation time will not increase too much since the max degree of the inverse

function will not exceed three.

After IFSE processing and spatial shift unwrapping, the final result of u(x,y,) and the
height distribution h(Xx,y,) is obtained in Figure 4.12. From this figure, the max

height of h(x,y,) is also 23.08 mm and the error rate is 1.228%.
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Figure 4.12 Retrieved spatial shift and high distribution result

Then we find the selection of sawtooth fringe pattern as projected pattern achieves the
same accuracy as sinusoidal fringe pattern. However, compare with the sawtooth
fringe, using traditional sinusoidal requires more additional computation time. Firstly,
the captured sinusoidal fringe pattern needs to go through a filter to fix the non-linear
distortion, which will cost too much time on the filter design and computation, and the
filter itself will bring distortion to the deformed fringe pattern hence affect the

measurement accuracy.

Secondly, the selection of sinusoidal fringe pattern needs a 10-degree inverse function
in IFSE processing to reach such measurement accuracy. However, if we select
sawtooth fringe, only 3-degree is enough. As we know, the inverse function is
approximated in least squares sense. In the method of least squares, if we want to
calculate the curve fitting polynomial with degree k, the following equation will be

used:
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where N is the number of given data, W, is the weight of given data (X;, Y;) , in this

condition we have w; =1, and a,,a,,---,a, is the coefficients of fitting

polynomial in ascending powers.

Hence if we calculate a,,a,,---,a, , which is the solution of Equation (4.9), we can

have the curve fitting polynomial ¢ (X) :

p(x)=a, +ax+---ax"

: (4.10)
From Equation (4.9), it is easy to find the computation times is in proportion to
(k +1)®. Therefore, The ratio of time which spend on calculating the inverse
function for sinusoidal function and inverse function for sawtooth function is
(10 +1)® : (3+1)%, thatis 121 : 16. Obviously, the computation time is greatly

shortened, and the efficiency is significantly improved.

4.5 Conclusion

In this chapter, we discussed the efficiency improvement for the implementation of SSE
approach. In most of the conventional PDE and SSE approaches, the projected fringe
pattern is selected to be sinusoidal. However, the selection of sinusoidal fringe pattern

faces many problems: The sinusoidal waveform is vulnerable to geometry distortion and
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nonlinear intensity distortion, and it also not suitable for IFSE method in SSE approach.
All these problems result in additional computation. Since SSE approach allows us to
use another kind of fringe pattern instead of sinusoidal, we can improve the efficiency
by design a new fringe pattern according to some rules. After selection, we find the
sawtooth fringe pattern is very suitable for our designing rules in theoretical analyse.
The advantage of this selection is then proven after we perform the practical

experiment.
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Charpter 5 Conclusions and Future Work

5.1 Conclusions

The main aim of this thesis is to implement the spatial shift estimation approach for 3D
profile measurement base on digital fringe projection. The research work includes
reviewing the existing theories, performing the implementation based on these theories,
and solving the problems encountered in practical experiment. In particular three

issues are considered in this thesis.

The first issue demonstrated in Chapter 2 provides details of implementation of SSE
approach for 3D profile measurement base on digital fringe projection. \We present a
DFP system model based on the principle of FPP. Using such a system, the
implementation of SSE approach based on the SSE and IFSE theory is performed.
However, problems which did not be mentioned in reference have occurred during the
implementation.  Solutions then have been developed to the corresponding problems,
such as using a filter and fringe normalization processing. We also introduce an
improved IFSE method to reduce the computation time. Finally, the 3D model of

object surface is reconstructed to show the performance of this implementation.

The second aspect considered in this thesis is to solve the shift unwrapping problem.
As demonstrated in Chapter 3, we present a review of the phase unwrapping problem in
conventional PDE based Fringe Pattern Profilometry, based on which we indicate that a
similar unwrapping problem exists in SSE approach, which is the spatial shift
unwrapping problem. A description of a method for solving this problem using graphs
and mathematical expressions is then proposed. Finally, experiment is carried out, and
results are given to show the effectiveness of the proposed spatial shift unwrapping

technique.
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The last issue of this thesis is the improvement of efficiency in SSE approach. In
Chapter 4, we analyse the limitations of using traditional sinusoidal fringe pattern as the
projected fringe pattern, which includes vulnerability to geometry distortion and
nonlinear intensity distortion, such as screen door effect, gamma distortion and
influence of environment and high computational complexity in IFSE method. To
improve the efficiency, these limitations must be overcome. Since the SSE approach
does not depend on the structure of the projected fringe pattern, we propose an
improved SSE approach by using sawtooth fringe patterns instead of sinusoidal. The
performance of sawtooth fringe pattern is then demonstrated through the analysis and

experiments.

5.2 Suggestions for Future Research Work

Although we successfully implement the spatial shift detection approach for 3D profile
measurement base on digital fringe projection, some issues still exist and require further

attention in our future research work.

The most important yet challenging issue in our future work is the application of 3D
profile measurement for those objects with complex surface. In our implementation, a
dome set on a flat board is used as the object. This is a simple object with continuous
surface. However, our final goal is the application of 3D profile measurement for any
kinds of objects. Hence implementation of SSE approach on complex objects is
required. This is a challenging issue since different objects may induce new problems

in implementation.  Further works are needed to solve these problems.

In Chapter 3, we presented a spatial shift unwrapping method. This method is based
on the continuity of object surface. However, in practical application, objects with
ideal continuous surface do not always exist. Since our shift unwrapping method

cannot apply to those objects with discrete surface, to develop an improved shift
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unwrapping method that can be used in this condition is also an important issue.

As demonstrated in Chapter 4, the sawtooth fringe pattern is introduced to overcome the
limitations of traditional sinusoidal fringe pattern. Compared with sinusoidal fringe,
the sawtooth fringe shows its strong counter-interference capability against the
geometry and nonlinear distortion and improves the efficiency. Hence as a promising
new developed method, further research attention on this kind of new fringe pattern

should be considered in future work.

Another issue in highlight is the usage of colour fringe. The colour fringe projection is
a significant promising technique in Fringe Pattern Profilometry. Compared with the
black-and-white image we used in implementation, the coloured image contains more
object height information and thereby greatly increasing data acquisition speed. As the
fringe projection system we designed support colour fringe projection, effectively
utilize the colour in Fringe Pattern Profilometry is also an attractive but challenging

issue.

Finally, our experiment system should also be improved, thereby reduce the influence of

environment hence to retrieve more accurate results.
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APPENDIX-Program Codes

1. Sinusoidal Fringe Pattern Generate Program (FringeSin.m):

clear

0 —---mmmmmmmmen Red Fringe

RC =1, % Red Contrast (Between 0 - 1)
RF =500; % Red Frequency

RP=0; % Red Phase (Only can be 0, 1, 2)
t = 500;

x =1t

T=1;

Red = 0.5 + 0.5*RC*cos(2*pi*(RF/10000)*x + RP*(1/3));

RFringe = zeros(t,t);

for n=1:t
RFringe(n,:) = Red;
end
% ---m-mmmmmmee- Green Fringe
GC=1; % Green Contrast (Between 0 - 1)

GF =500; % Green Frequency
GP=0; % Green Phase (Only can be 0, 1, 2)

x =1
Green = 0.5 + 0.5*GC*cos(2*pi*(GF/10000)*x + GP*(1/3));

GFringe = zeros(t,t);

for n=1:t
GFringe(n,:) = Green;
end
% —---mmmmmmmmmmeen Blue Fringe
BC=1, % Blue Contrast (Between 0 - 1)
BF =500; % Blue Frequency
BP =0; % Blue Phase (Only can be 0, 1, 2)
t =500;
X =1:;

Blue = 0.5 + 0.5*BC*cos(2*pi*(BF/10000)*x + BP*(L/3));
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BFringe = zeros(t,t);

for n=1:t
BFringe(n,:) = Blue;
end
% ---mmmmmmm e Generate Colour Fringe

FRINGE(:,:,1) = RFringe;
FRINGE(:,:,2) = GFringe;
FRINGE(:,:,3) = BFringe;

% ---------m oo Generate Colour Image
imshow(FRINGE)

2. Implementation of SSE using Sinusoidal Pattern (SinlFSE.m):

clear

0 -mmmmmmemememnaan Reading Image Data
[imgl] = imread('Sinlmage.bmp");
[img2] = imread('SinRef.bmp");

% ----mmmmmmmm e Filter Design

b=fir2(128,[0.0 0.15 0.85 1.0],[1,0,0,0]);

ff=fft(b);

ff=abs(ff);

% ----mmmmmmm e Pre-processing

yl =750; % Select y1 = 750

RRfringes = double(img2(:,y1,1))/255; % Reading Reference Red fringe
Rfringes = double(img1(:,y1,1))/255; % Reading Object Red fringe

RRfringe = filter(b,1,RRfringes); % Filters Reference Fringe Data
Rfringe = filter(b,1,Rfringes); % Filters Object Fringe Data

RRfringe = RRfringe([121:982]);
Rfringe = Rfringe([144:1005]);

% Finding Monotonic Intervals for Reference Fringe

RRCounter = 1;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end
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while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx1 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx2 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx3 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx4 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx5 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

RRx6 = RRCounter;
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while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx7 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx8 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx9 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx10 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx11 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;
end
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while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx12 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx13 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx14 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx15 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx16 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

RRx17 = RRCounter;
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RRx18 = length(RRfringe);

RRf1 = RRfringe([1:RRx1]);

RRf2 = RRfringe([RRx1+1:RRx2]);
RRf3 = RRfringe([RRx2+1:RRx3]);
RRf4 = RRfringe([RRx3+1:RRx4]);
RRf5 = RRfringe([RRx4+1:RRx5]);
RRf6 = RRfringe([RRx5+1:RRx6]);
RRf7 = RRfringe([RRx6+1:RRx7]);
RRf8 = RRfringe([RRx7+1:RRx8]);
RRf9 = RRfringe([RRx8+1:RRx9]);
RRf10 = RRfringe([RRx9+1:RRx10]);
RRf11 = RRfringe([RRx10+1:RRx11]);
RRf12 = RRfringe([RRx11+1:RRx12]);
RRf13 = RRfringe([RRx12+1:RRx13]);
RRf14 = RRfringe([RRx13+1:RRx14]);
RRf15 = RRfringe([RRx14+1:RRx15]);
RRf16 = RRfringe([RRx15+1:RRx16]);
RRf17 = RRfringe([RRx16+1:RRx17]);
RRf18 = RRfringe([RRx17+1:RRx18]);

RRfs1 = RRfringe([2:RRx1-1]);

RRfs2 = RRfringe([RRx1+2:RRx2-1]);
RRfs3 = RRfringe([RRx2+2:RRx3-1]);
RRfs4 = RRfringe([RRx3+2:RRx4-1]);
RRfs5 = RRfringe([RRx4+2:RRx5-1]);
RRfs6 = RRfringe([RRx5+2:RRx6-1]);
RRfs7 = RRfringe([RRx6+2:RRx7-1]);
RRfs8 = RRfringe([RRx7+2:RRx8-1]);
RRfs9 = RRfringe([RRx8+2:RRx9-1]);
RRfs10 = RRfringe([RRx9+2:RRx10-1));
RRfs11 = RRfringe([RRx10+2:RRx11-1]);
RRfs12 = RRfringe([RRx11+2:RRx12-1]);
RRfs13 = RRfringe([RRx12+2:RRx13-1]);
RRfs14 = RRfringe([RRx13+2:RRx14-1]);
RRfs15 = RRfringe([RRx14+2:RRx15-1]);
RRfs16 = RRfringe([RRx15+2:RRx16-1]);
RRfs17 = RRfringe([RRx16+2:RRx17-1]);
RRfs18 = RRfringe([RRx17+2:RRx18-1]);

% Finding Monotonic Intervals for Object Fringe
RCounter = 1,
while Rfringe(RCounter + 1) > Rfringe(RCounter);
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RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx1 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx2 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx3 = RCounter,;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx4 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx5 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1,

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1,
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end
Rx6 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx7 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx8 = RCounter,;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx9 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx10 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx11 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
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RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx12 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx13 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx14 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx15 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx16 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1,

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1,
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end
Rx17 = RCounter;
Rx18 = length(Rfringe);

Rf1 = Rfringe([1:Rx1]);

Rf2 = Rfringe([Rx1+1:Rx2]);
Rf3 = Rfringe([Rx2+1:Rx3]);
Rf4 = Rfringe([Rx3+1:Rx4]);
Rf5 = Rfringe([Rx4+1:Rx5]);
Rf6 = Rfringe([Rx5+1:Rx6]);
Rf7 = Rfringe([Rx6+1:Rx7]);
Rf8 = Rfringe([Rx7+1:Rx8]);
Rf9 = Rfringe([Rx8+1:Rx9]);
Rf10 = Rfringe([Rx9+1:Rx10]);
Rf11 = Rfringe([Rx10+1:Rx11]);
Rf12 = Rfringe([Rx11+1:Rx12]);
Rf13 = Rfringe([Rx12+1:Rx13]);
Rf14 = Rfringe([Rx13+1:Rx14]);
Rf15 = Rfringe([Rx14+1:Rx15]);
Rf16 = Rfringe([Rx15+1:Rx16]);
Rf17 = Rfringe([Rx16+1:Rx17]);
Rf18 = Rfringe([Rx17+1:Rx18]);

% ----- Normalization of Fringe and IFSE Processing(including Shift Unwrapping) --------
k =10; % Set initial degree of polynomial

% Section 1
x = L:length(RRfs1);

% Normalization of Fringe

RefH = (max(RRf1) - min(RRf1));

ObjH = (max(Rf1) - min(Rf1));

Hadj = RefH / ObjH ;

Objmid = (max(Rf1) + min(Rf1))/2;
Refmid = (max(RRf1) + min(RRf1))/2;
Rf1 = ((Rf1 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping

j = polyfit(RRfs1,x',k);
Rfx1 = polyval(j,Rf1);

% Section 2
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x = L:length(RRfs2);

% Normalization of Fringe

RefH = (max(RRf2) - min(RRf2));

ObjH = (max(Rf2) - min(Rf2));

Hadj = RefH / ObjH ;

Objmid = (max(Rf2) + min(Rf2))/2;
Refmid = (max(RRf2) + min(RRf2))/2;
Rf2 = ((Rf2 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs2,x'K);
Rfx2 = polyval(j,Rf2) + RRx1;

% Section 3
x = 1:length(RRfs3);

% Normalization of Fringe

RefH = (max(RRf3) - min(RRf3));

ObjH = (max(Rf3) - min(Rf3));

Hadj = RefH / ObjH ;

Objmid = (max(Rf3) + min(Rf3))/2;
Refmid = (max(RRf3) + min(RRf3))/2;
Rf3 = ((Rf3 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs3,x',K);
Rfx3 = polyval(j,Rf3) + RRx2;

% Section 4
x = L:length(RRfs4);

% Normalization of Fringe

RefH = (max(RRf4) - min(RRf4));

ObjH = (max(Rf4) - min(Rf4));

Hadj = RefH / ObjH ;

Objmid = (max(Rf4) + min(Rf4))/2;
Refmid = (max(RRf4) + min(RRf4))/2;
Rf4 = ((Rf4 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs4,x' k);
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Rfx4 = polyval(j,Rf4) + RRx3;

% Section 5
x = 1:length(RRfsb);

% Normalization of Fringe

RefH = (max(RRf5) - min(RRf5));

ObjH = (max(Rf5) - min(Rf5));

Hadj = RefH / ObjH ;

Objmid = (max(Rf5) + min(Rf5))/2;
Refmid = (max(RRf5) + min(RRf5))/2;
Rf5 = ((Rf5 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs5,x',K);
Rfx5 = polyval(j,Rf5) + RRx4;

% Section 6
x = L:length(RRfs6);

% Normalization of Fringe

RefH = (max(RRf6) - min(RRf6));

ObjH = (max(Rf6) - min(Rf6));

Hadj = RefH / ObjH ;

Objmid = (max(Rf6) + min(Rf6))/2;
Refmid = (max(RRf6) + min(RRf6))/2;
Rf6 = ((Rf6 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs6,x',K);
Rfx6 = polyval(j,Rf6) + RRX5;

% Section 7
x = L:length(RRfs7);

% Normalization of Fringe

RefH = (max(RRf7) - min(RRf7));
ObjH = (max(Rf7) - min(Rf7));

Hadj = RefH / ObjH ;

Objmid = (max(Rf7) + min(Rf7))/2;
Refmid = (max(RRf7) + min(RRf7))/2;
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Rf7 = ((Rf7 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs7,x',k);
Rfx7 = polyval(j,Rf7) + RRx6;

% Section 8
x = 1:length(RRfs8);

% Normalization of Fringe

RefH = (max(RRf8) - min(RRf8));

ObjH = (max(Rf8) - min(Rf8));

Hadj = RefH / ObjH ;

Objmid = (max(Rf8) + min(Rf8))/2;
Refmid = (max(RRf8) + min(RRf8))/2;
Rf8 = ((Rf8 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs8,x',K);
Rfx8 = polyval(j,Rf8) + RRx7;

% Section 9
x = L:length(RRfs9);

% Normalization of Fringe

RefH = (max(RRf9) - min(RRf9));

ObjH = (max(Rf9) - min(Rf9));

Hadj = RefH / ObjH ;

Objmid = (max(Rf9) + min(Rf9))/2;
Refmid = (max(RRf9) + min(RRf9))/2;
Rf9 = ((Rf9 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs9,x' K);
Rfx9 = polyval(j,Rf9) + RRx8;

% Section 10

x = L:length(RRfs10);

% Normalization of Fringe
RefH = (max(RRf10) - min(RRf10));
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ObjH = (max(Rf10) - min(Rf10));

Hadj = RefH / ObjH ;

Objmid = (max(Rf10) + min(Rf10))/2;
Refmid = (max(RRf10) + min(RRf10))/2;
Rf10 = ((Rf10 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs10,x',k);
Rfx10 = polyval(j,Rf10) + RRx9;

% Section 11
x = L:length(RRfs11);

% Normalization of Fringe

RefH = (max(RRf11) - min(RRf11));

ObjH = (max(Rf11) - min(Rf11));

Hadj = RefH / ObjH ;

Objmid = (max(Rf11) + min(Rf11))/2;
Refmid = (max(RRf11) + min(RRf11))/2;
Rf11 = ((Rf11 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs11,x',k);
Rfx11 = polyval(j,Rf11) + RRx10;

% Section 12
x = L:length(RRfs12);

% Normalization of Fringe

RefH = (max(RRf12) - min(RRf12));

ObjH = (max(Rf12) - min(Rf12));

Hadj = RefH / ObjH ;

Objmid = (max(Rf12) + min(Rf12))/2;
Refmid = (max(RRf12) + min(RRf12))/2;
Rf12 = ((Rf12 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping

j = polyfit(RRfs12,x'k);
Rfx12 = polyval(j,Rf12) + RRx11;

% Section 13
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x = L:length(RRfs13);

% Normalization of Fringe

RefH = (max(RRf13) - min(RRf13));

ObjH = (max(Rf13) - min(Rf13));

Hadj = RefH / ObjH ;

Objmid = (max(Rf13) + min(Rf13))/2;
Refmid = (max(RRf13) + min(RRf13))/2;
Rf13 = ((Rf13 - Objmid) * Hadj) + Refmid,;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs13,x',k);
Rfx13 = polyval(j,Rf13) + RRx12;

% Section 14
x = 1:length(RRfs14);

% Normalization of Fringe

RefH = (max(RRf14) - min(RRf14));

ObjH = (max(Rf14) - min(Rf14));

Hadj = RefH / ObjH ;

Objmid = (max(Rf14) + min(Rf14))/2;
Refmid = (max(RRf14) + min(RRf14))/2;
Rf14 = ((Rf14 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs14,x',k);
Rfx14 = polyval(j,Rf14) + RRx13;

% Section 15
x = L:length(RRfs15);

% Normalization of Fringe

RefH = (max(RRf15) - min(RRf15));

ObjH = (max(Rf15) - min(Rf15));

Hadj = RefH / ObjH ;

Objmid = (max(Rf15) + min(Rf15))/2;
Refmid = (max(RRf15) + min(RRf15))/2;
Rf15 = ((Rf15 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs15,x'k);
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Rfx15 = polyval(j,Rf15) + RRx14;

% Section 16
X = 1:length(RRfs16);

% Normalization of Fringe

RefH = (max(RRf16) - min(RRf16));

ObjH = (max(Rf16) - min(Rf16));

Hadj = RefH / ObjH ;

Objmid = (max(Rf16) + min(Rf16))/2;
Refmid = (max(RRf16) + min(RRf16))/2;
Rf16 = ((Rf16 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs16,x',k);
Rfx16 = polyval(j,Rf16) + RRx15;

% Section 17
x = L:length(RRfs17);

% Normalization of Fringe

RefH = (max(RRf17) - min(RRf17));

ObjH = (max(Rf17) - min(Rf17));

Hadj = RefH / ObjH ;

Objmid = (max(Rf17) + min(Rf17))/2;
Refmid = (max(RRf17) + min(RRf17))/2;
Rf17 = ((Rf17 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs17,x',k);
Rfx17 = polyval(j,Rf17) + RRx16;

% Section 18
x = L:length(RRfs18);

% Normalization of Fringe

RefH = (max(RRf18) - min(RRf18));
ObjH = (max(Rf18) - min(Rf18));

Hadj = RefH / ObjH ;

Objmid = (max(Rf18) + min(Rf18))/2;
Refmid = (max(RRf18) + min(RRf18))/2;
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Rf18 = ((Rf18 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs18,x',k);
Rfx18 = polyval(j,Rf18) + RRx17,;

% Retrieve u(x)

Rfx = [Rfx1',Rfx2' Rfx3',Rfx4' Rfx5'Rfx6' Rfx7' Rfx8' Rfx9',Rfx10',Rfx11',Rfx12' Rfx13',Rfx14',
Rfx15' Rfx16',Rfx17' Rfx187";

X =1:862;

U =x" - Rfx;

% Calculate Height Distribution
10 = 1295;

d0 = 350;

h = (U*10)/d0*0.1796;

% Plot Unwrapped u(x) and Height Distribution
subplot(2,1,1);plot(U,'k’);title("'Unwrapped u(x)");
subplot(2,1,2);plot(h,'k");title(h(x)");

3. Implementation of SSE wusing Sinusoidal Pattern with Object Surface

Reconstruction (SinlFSEReconstruct.m):
clear
0 -mmmmmmemememnaan Reading Image Data

[imgl] = imread('Sinlmage.bmp");
[img2] = imread('SinRef.bmp");

% ----mmmmmmmm e Filter Design
b=fir2(128,[0.0 0.15 0.85 1.0],[1,0,0,0]);
ff=fft(b);

ff=abs(ff);

% ----mmmmmmm e Pre-processing

for y = 4:20:900;

RRfringes = double(img2(:,y+300,1))/255; % Reading Reference Red fringe
Rfringes = double(img1(:,y+300,1))/255; % Reading Object Red fringe
RRfringe = filter(b,1,RRfringes); % Filters Reference Fringe Data
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Rfringe = filter(b,1,Rfringes); % Filters Object Fringe Data

RRfringe = RRfringe([121:982]);
Rfringe = Rfringe([144:1005]);

% Finding Monotonic Intervals for Reference Fringe

RRCounter = 1;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx1 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx2 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx3 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx4 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;
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end
RRx5 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx6 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx7 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx8 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx9 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

RRx10 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
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RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx11 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx12 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx13 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx14 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx15 = RRCounter;

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1;

end

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1;
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end
RRx16 = RRCounter;

while RRfringe(RRCounter + 1) > RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

while RRfringe(RRCounter + 1) < RRfringe(RRCounter);
RRCounter = RRCounter + 1,

end

RRx17 = RRCounter;

RRx18 = length(RRfringe);

RRf1 = RRfringe([1:RRx1]);

RRf2 = RRfringe([RRx1+1:RRx2]);
RRf3 = RRfringe([RRx2+1:RRx3]);
RRf4 = RRfringe([RRx3+1:RRx4]);
RRf5 = RRfringe([RRx4+1:RRx5]);
RRf6 = RRfringe([RRx5+1:RRx6]);
RRf7 = RRfringe([RRx6+1:RRx7]);
RRf8 = RRfringe([RRx7+1:RRx8]);
RRf9 = RRfringe([RRx8+1:RRx9]);
RRf10 = RRfringe([RRx9+1:RRx10]);
RRf11 = RRfringe([RRx10+1:RRx11]);
RRf12 = RRfringe(|[RRx11+1:RRx12]);
RRf13 = RRfringe([RRx12+1:RRx13]);
RRf14 = RRfringe([RRx13+1:RRx14]);
RRf15 = RRfringe([RRx14+1:RRx15]);
RRf16 = RRfringe(|[RRx15+1:RRx16]);
RRf17 = RRfringe([RRx16+1:RRx17]);
RRf18 = RRfringe([RRx17+1:RRx18]);

RRfs1 = RRfringe([2:RRx1-1]);

RRfs2 = RRfringe([RRx1+2:RRx2-1]);
RRfs3 = RRfringe([RRx2+2:RRx3-1]);
RRfs4 = RRfringe([RRx3+2:RRx4-1]);
RRfs5 = RRfringe([RRx4+2:RRx5-1]);
RRfs6 = RRfringe([RRx5+2:RRx6-1]);
RRfs7 = RRfringe([RRx6+2:RRx7-1]);
RRfs8 = RRfringe([RRx7+2:RRx8-1]);
RRfs9 = RRfringe([RRx8+2:RRx9-1]);
RRfs10 = RRfringe([RRx9+2:RRx10-1));
RRfs11 = RRfringe([RRx10+2:RRx11-1]);
RRfs12 = RRfringe([RRx11+2:RRx12-1]);
RRfs13 = RRfringe([RRx12+2:RRx13-1]);
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RRfs14 = RRfringe([RRx13+2:RRx14-1]);
RRfs15 = RRfringe([RRx14+2:RRx15-1]);
RRfs16 = RRfringe([RRx15+2:RRx16-1]);
RRfs17 = RRfringe([RRx16+2:RRx17-1]);
RRfs18 = RRfringe([RRx17+2:RRx18-1]);

% Finding Monotonic Intervals for Object Fringe

RCounter = 1;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx1 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx2 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx3 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx4 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1,
end
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while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx5 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx6 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx7 = RCounter,;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx8 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx9 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx10 = RCounter;
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while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx11 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx12 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx13 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx14 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx15 = RCounter;

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1,
end
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while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx16 = RCounter;

while Rfringe(RCounter + 1) > Rfringe(RCounter);
RCounter = RCounter + 1;

end

while Rfringe(RCounter + 1) < Rfringe(RCounter);
RCounter = RCounter + 1;

end

Rx17 = RCounter;

Rx18 = length(Rfringe);

Rf1 = Rfringe([1:Rx1]);

Rf2 = Rfringe([Rx1+1:Rx2]);
Rf3 = Rfringe([Rx2+1:Rx3]);
Rf4 = Rfringe([Rx3+1:Rx4]);
Rf5 = Rfringe([Rx4+1:Rx5]);
Rf6 = Rfringe([Rx5+1:Rx6]);
Rf7 = Rfringe([Rx6+1:Rx7]);
Rf8 = Rfringe([Rx7+1:Rx8]);
Rf9 = Rfringe([Rx8+1:Rx9]);
Rf10 = Rfringe([Rx9+1:Rx10]);
Rf11 = Rfringe([Rx10+1:Rx11]);
Rf12 = Rfringe(JRx11+1:Rx12]);
Rf13 = Rfringe([Rx12+1:Rx13]);
Rf14 = Rfringe([Rx13+1:Rx14]);
Rf15 = Rfringe([Rx14+1:Rx15]);
Rf16 = Rfringe([Rx15+1:Rx16]);
Rf17 = Rfringe([Rx16+1:Rx17]);
Rf18 = Rfringe([Rx17+1:Rx18]);

% ----- Normalization of Fringe and IFSE Processing(including Shift Unwrapping) --------
k =10; % Set initial degree of polynomial

% Section 1
x = L:length(RRfs1);

% Normalization of Fringe

RefH = (max(RRf1) - min(RRf1));
ObjH = (max(Rf1) - min(Rf1));
Hadj = RefH / ObjH ;
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Objmid = (max(Rf1) + min(Rf1))/2;
Refmid = (max(RRf1) + min(RRf1))/2;
Rf1 = ((Rf1 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs1,x'K);
Rfx1 = polyval(j,Rf1);

% Section 2
x = 1:length(RRfs2);

% Normalization of Fringe

RefH = (max(RRf2) - min(RRf2));

ObjH = (max(Rf2) - min(Rf2));

Hadj = RefH / ObjH ;

Objmid = (max(Rf2) + min(Rf2))/2;
Refmid = (max(RRf2) + min(RRf2))/2;
Rf2 = ((Rf2 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs2,x'K);
Rfx2 = polyval(j,Rf2) + RRx1,;

% Section 3
x = L:length(RRfs3);

% Normalization of Fringe

RefH = (max(RRf3) - min(RRf3));

ObjH = (max(Rf3) - min(Rf3));

Hadj = RefH / ObjH ;

Objmid = (max(Rf3) + min(Rf3))/2;
Refmid = (max(RRf3) + min(RRf3))/2;
Rf3 = ((Rf3 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs3,x' k);
Rfx3 = polyval(j,Rf3) + RRx2;

% Section 4
x = L:length(RRfs4);
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% Normalization of Fringe

RefH = (max(RRf4) - min(RRf4));

ObjH = (max(Rf4) - min(Rf4));

Hadj = RefH / ObjH ;

Objmid = (max(Rf4) + min(Rf4))/2;
Refmid = (max(RRf4) + min(RRf4))/2;
Rf4 = ((Rf4 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs4,x'K);
Rfx4 = polyval(j,Rf4) + RRx3;

% Section 5
x = L:length(RRfs5);

% Normalization of Fringe

RefH = (max(RRf5) - min(RRf5));

ObjH = (max(Rf5) - min(Rf5));

Hadj = RefH / ObjH ;

Objmid = (max(Rf5) + min(Rf5))/2;
Refmid = (max(RRf5) + min(RRf5))/2;
Rf5 = ((Rf5 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs5,x',K);
Rfx5 = polyval(j,Rf5) + RRx4;

% Section 6
x = L:length(RRfs6);

% Normalization of Fringe

RefH = (max(RRf6) - min(RRf6));

ObjH = (max(Rf6) - min(Rf6));

Hadj = RefH / ObjH ;

Objmid = (max(Rf6) + min(Rf6))/2;
Refmid = (max(RRf6) + min(RRf6))/2;
Rf6 = ((Rf6 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs6,x' k);
Rfx6 = polyval(j,Rf6) + RRX5;
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% Section 7
x = L:length(RRfs7);

% Normalization of Fringe

RefH = (max(RRf7) - min(RRf7));

ObjH = (max(Rf7) - min(Rf7));

Hadj = RefH / ObjH ;

Objmid = (max(Rf7) + min(Rf7))/2;
Refmid = (max(RRf7) + min(RRf7))/2;
Rf7 = ((Rf7 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs7,x'K);
Rfx7 = polyval(j,Rf7) + RRx6;

% Section 8
x = L:length(RRfs8);

% Normalization of Fringe

RefH = (max(RRf8) - min(RRf8));

ObjH = (max(Rf8) - min(Rf8));

Hadj = RefH / ObjH ;

Objmid = (max(Rf8) + min(Rf8))/2;
Refmid = (max(RRf8) + min(RRf8))/2;
Rf8 = ((Rf8 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs8,x'K);
Rfx8 = polyval(j,Rf8) + RRx7;

% Section 9
x = L:length(RRfs9);

% Normalization of Fringe

RefH = (max(RRf9) - min(RRf9));

ObjH = (max(Rf9) - min(Rf9));

Hadj = RefH / ObjH ;

Objmid = (max(Rf9) + min(Rf9))/2;
Refmid = (max(RRf9) + min(RRf9))/2;
Rf9 = ((Rf9 - Objmid) * Hadj) + Refmid;
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% IFSE processing with Shift Unwrapping
j = polyfit(RRfs9,x' k);
Rfx9 = polyval(j,Rf9) + RRx8;

% Section 10
x = 1:length(RRfs10);

% Normalization of Fringe

RefH = (max(RRf10) - min(RRf10));

ObjH = (max(Rf10) - min(Rf10));

Hadj = RefH / ObjH ;

Objmid = (max(Rf10) + min(Rf10))/2;
Refmid = (max(RRf10) + min(RRf10))/2;
Rf10 = ((Rf10 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs10,x',k);
Rfx10 = polyval(j,Rf10) + RRx9;

% Section 11
x = L:length(RRfs11);

% Normalization of Fringe

RefH = (max(RRf11) - min(RRf11));

ObjH = (max(Rf11) - min(Rf11));

Hadj = RefH / ObjH ;

Objmid = (max(Rf11) + min(Rf11))/2;
Refmid = (max(RRf11) + min(RRf11))/2;
Rf11 = ((Rf11 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs11,x',k);
Rfx11 = polyval(j,Rf11) + RRx10;

% Section 12
x = L:length(RRfs12);

% Normalization of Fringe

RefH = (max(RRf12) - min(RRf12));
ObjH = (max(Rf12) - min(Rf12));
Hadj = RefH / ObjH ;
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Objmid = (max(Rf12) + min(Rf12))/2;
Refmid = (max(RRf12) + min(RRf12))/2;
Rf12 = ((Rf12 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs12,x',k);
Rfx12 = polyval(j,Rf12) + RRx11;

% Section 13
x = L:length(RRfs13);

% Normalization of Fringe

RefH = (max(RRf13) - min(RRf13));

ObjH = (max(Rf13) - min(Rf13));

Hadj = RefH / ObjH ;

Objmid = (max(Rf13) + min(Rf13))/2;
Refmid = (max(RRf13) + min(RRf13))/2;
Rf13 = ((Rf13 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs13,x',k);
Rfx13 = polyval(j,Rf13) + RRx12;

% Section 14
x = L:length(RRfs14);

% Normalization of Fringe

RefH = (max(RRf14) - min(RRf14));

ObjH = (max(Rf14) - min(Rf14));

Hadj = RefH / ObjH ;

Objmid = (max(Rf14) + min(Rf14))/2;
Refmid = (max(RRf14) + min(RRf14))/2;
Rf14 = ((Rf14 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs14,x' k);
Rfx14 = polyval(j,Rf14) + RRx13;

% Section 15
x = L:length(RRfs15);
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% Normalization of Fringe

RefH = (max(RRf15) - min(RRf15));

ObjH = (max(Rf15) - min(Rf15));

Hadj = RefH / ObjH ;

Objmid = (max(Rf15) + min(Rf15))/2;
Refmid = (max(RRf15) + min(RRf15))/2;
Rf15 = ((Rf15 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs15,x',k);
Rfx15 = polyval(j,Rf15) + RRx14;

% Section 16
x = L:length(RRfs16);

% Normalization of Fringe

RefH = (max(RRf16) - min(RRf16));

ObjH = (max(Rf16) - min(Rf16));

Hadj = RefH / ObjH ;

Objmid = (max(Rf16) + min(Rf16))/2;
Refmid = (max(RRf16) + min(RRf16))/2;
Rf16 = ((Rf16 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs16,x',k);
Rfx16 = polyval(j,Rf16) + RRx15;

% Section 17
x = L:length(RRfs17);

% Normalization of Fringe

RefH = (max(RRf17) - min(RRf17));

ObjH = (max(Rf17) - min(Rf17));

Hadj = RefH / ObjH ;

Objmid = (max(Rf17) + min(Rf17))/2;
Refmid = (max(RRf17) + min(RRf17))/2;
Rf17 = ((Rf17 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs17,x'k);
Rfx17 = polyval(j,Rf17) + RRx16;
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% Section 18
x = L:length(RRfs18);

% Normalization of Fringe

RefH = (max(RRf18) - min(RRf18));

ObjH = (max(Rf18) - min(Rf18));

Hadj = RefH / ObjH ;

Objmid = (max(Rf18) + min(Rf18))/2;
Refmid = (max(RRf18) + min(RRf18))/2;
Rf18 = ((Rf18 - Objmid) * Hadj) + Refmid,

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs18,x',k);
Rfx18 = polyval(j,Rf18) + RRx17,;

% Retrieve u(x)

Rfx = [Rfx1',Rfx2',Rfx3'Rfx4',Rfx5' Rfx6',Rfx7'Rfx8" Rfx9',Rfx10',Rfx11',Rfx12'Rfx13'Rfx 14,
Rfx15',Rfx16',Rfx17',Rfx187'";

x = 1:862;

U =X - Rfx;

Obj(.y) = U;

end

% Reconstruct Object Surface

C =[0,900,0,900,0,80];
mesh(Obj),axis(C);colormap(gray);shading interp;
material shiny;

4. Sawtooth Fringe Pattern Generate Program (FringeSaw.m):

clear

% ---mmmmmmm e Red Fringe
RC=1; % Red Contrast (Between 0 - 1)
RT = 25; % Red Period

t =500;

x =1

T=1;

Red = RC*(X/RT - floor(x/RT));

RFringe = zeros(t,t);
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for n=1:t
RFringe(n,:) = Red,;
end
% --------m - Green Fringe
GC=1; % Green Contrast (Between 0 - 1)
GT = 25; % Green Period
t = 500;
x =1

Green = GC*(X/GT - floor(x/GT));

GFringe = zeros(t,t);

for n=1:t
GFringe(n,:) = Green;
end
% —---mmmmmmmemn Blue Fringe
BC=1, % Blue Contrast (Between 0 - 1)
BT = 25; % Blue Period
t = 500;
x=1t;

Blue = BC*(x/BT - floor(x/BT));

BFringe = zeros(t,t);

for n=1:t
BFringe(n,:) = Blue;
end
% ---m-mmmmmee- Generate Colour Fringe

FRINGE(:,:,1) = RFringe;
FRINGE(:,:,2) = GFringe;
FRINGE(:,:,3) = BFringe;

% ------mmmm oo Generate Colour Image
imshow(FRINGE)

5. Implementation of SSE using Sawtooth Pattern (SawlFSE.m):

clear

0 -mmmmmmemememnaan Reading Image Data
[img1l] = imread('SawObj.bmp’);
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[img2] = imread('SawRef.bmp");

U —mmmmmmmmmmmmmam Pre-processing
y1 =750; % Select y1 =750
RRfringes = smooth(double(img2(:,y1,1))/255); % Reference Red fringe
Rfringes = smooth(double(imgl(:,y1,1))/255); % Red fringe

RRfringe = smooth(RRfringes([234:1008]));

Rfringe = smooth(Rfringes([262:1036]));

% Finding Monotonic Intervals for Reference Fringe

fix = 0.001;

RRCounter = 1;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1;

end

RRx1 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx2 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1,

end

RRx3 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx4 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1,

end

RRx5 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1;

end

RRx6 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1;
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end
RRx7 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx8 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1,

end

RRx9 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx10 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1,

end

RRx11 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx12 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1,

end

RRx13 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) < + fix;
RRCounter = RRCounter + 1,

end

RRx14 = RRCounter;

while RRfringe(RRCounter + 1) - RRfringe(RRCounter) > - fix;
RRCounter = RRCounter + 1;

end

RRx15 = RRCounter,;

RRx16 = length(RRfringe);
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RRf1 = RRfringe([1:RRx1]);

RRf2 = RRfringe(|[RRx1+1:RRx2]);
RRf3 = RRfringe([RRx2+1:RRx3]);
RRf4 = RRfringe([RRx3+1:RRx4]);
RRf5 = RRfringe([RRx4+1:RRx5]);
RRf6 = RRfringe([RRx5+1:RRx6]);
RRf7 = RRfringe([RRx6+1:RRx7]);
RRf8 = RRfringe([RRx7+1:RRx8]);
RRf9 = RRfringe([RRx8+1:RRx9]);
RRf10 = RRfringe([RRx9+1:RRx10]);
RRf11 = RRfringe([RRx10+1:RRx11]);
RRf12 = RRfringe([RRx11+1:RRx12]);
RRf13 = RRfringe([RRx12+1:RRx13]);
RRf14 = RRfringe([RRx13+1:RRx14]);
RRf15 = RRfringe([RRx14+1:RRx15]);
RRf16 = RRfringe([RRx15+1:RRx16]);

RRfs1 = RRfringe([2:RRx1-1]);

RRfs2 = RRfringe([RRx1+2:RRx2-1]);
RRfs3 = RRfringe([RRx2+2:RRx3-1]);
RRfs4 = RRfringe([RRx3+2:RRx4-1]);
RRfs5 = RRfringe([RRx4+2:RRx5-1]);
RRfs6 = RRfringe([RRx5+2:RRx6-1]);
RRfs7 = RRfringe([RRx6+2:RRx7-1]);
RRfs8 = RRfringe([RRx7+2:RRx8-1]);
RRfs9 = RRfringe([RRx8+2:RRx9-1]);
RRfs10 = RRfringe([RRx9+2:RRx10-1));
RRfs11 = RRfringe([RRx10+2:RRx11-1]);
RRfs12 = RRfringe([RRx11+2:RRx12-1]);
RRfs13 = RRfringe([RRx12+2:RRx13-1]);
RRfs14 = RRfringe([RRx13+2:RRx14-1]);
RRfs15 = RRfringe([RRx14+2:RRx15-1]);
RRfs16 = RRfringe([RRx15+2:RRx16-1]);

% Finding Monotonic Intervals for Object Fringe

RCounter = 1,

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1,

end

Rx1 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1,
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end
Rx2 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1;

end

Rx3 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1,

end

Rx4 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1,

end

Rx5 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1;

end

Rx6 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1;

end

Rx7 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1;

end

Rx8 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1;

end

Rx9 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1;

end

Rx10 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
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RCounter = RCounter + 1;
end
Rx11 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1,

end

Rx12 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1;

end

Rx13 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) < + fix;
RCounter = RCounter + 1,

end

Rx14 = RCounter;

while Rfringe(RCounter + 1) - Rfringe(RCounter) > - fix;
RCounter = RCounter + 1;

end

Rx15 = RCounter;

Rx16 = length(Rfringe);

Rf1 = Rfringe([1:Rx1]);

Rf2 = Rfringe([Rx1+1:Rx2]);
Rf3 = Rfringe([Rx2+1:Rx3]);
Rf4 = Rfringe([Rx3+1:Rx4]);
Rf5 = Rfringe([Rx4+1:Rx5]);
Rf6 = Rfringe([Rx5+1:Rx6]);
Rf7 = Rfringe([Rx6+1:Rx7]);
Rf8 = Rfringe([Rx7+1:Rx8]);
Rf9 = Rfringe([Rx8+1:Rx9]);
Rf10 = Rfringe([Rx9+1:Rx10]);
Rf11 = Rfringe([Rx10+1:Rx11]);
Rf12 = Rfringe(JRx11+1:Rx12]);
Rf13 = Rfringe([Rx12+1:Rx13]);
Rf14 = Rfringe([Rx13+1:Rx14]);
Rf15 = Rfringe([Rx14+1:Rx15]);
Rf16 = Rfringe([Rx15+1:Rx16]);
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% ----- Normalization of Fringe and IFSE Processing(including Shift Unwrapping)
k=3; % Set initial degree of polynomial

% Section 1
x = 1:length(RRfs1);

% Normalization of Fringe

RefH = (max(RRf1) - min(RRf1));

ObjH = (max(Rf1) - min(Rf1));

Hadj = RefH / ObjH ;

Objmid = (max(Rf1) + min(Rf1))/2;
Refmid = (max(RRf1) + min(RRf1))/2;
Rf1 = ((Rf1 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs1,x'K);
Rfx1 = polyval(j,Rf1);

% Section 2
x = L:length(RRfs2);

% Normalization of Fringe

RefH = (max(RRf2) - min(RRf2));

ObjH = (max(Rf2) - min(Rf2));

Hadj = RefH / ObjH ;

Objmid = (max(Rf2) + min(Rf2))/2;
Refmid = (max(RRf2) + min(RRf2))/2;
Rf2 = ((Rf2 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs2,x'K);
Rfx2 = polyval(j,Rf2) + RRx1,;

% Section 3
x = L:length(RRfs3);

% Normalization of Fringe

RefH = (max(RRf3) - min(RRf3));

ObjH = (max(Rf3) - min(Rf3));

Hadj = RefH / ObjH ;

Objmid = (max(Rf3) + min(Rf3))/2;
Refmid = (max(RRf3) + min(RRf3))/2;
Rf3 = ((Rf3 - Objmid) * Hadj) + Refmid;
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% IFSE processing with Shift Unwrapping
j = polyfit(RRfs3,x'k);
Rfx3 = polyval(j,Rf3) + RRx2;

% Section 4
x = L:length(RRfs4);

% Normalization of Fringe

RefH = (max(RRf4) - min(RRf4));

ObjH = (max(Rf4) - min(Rf4));

Hadj = RefH / ObjH ;

Objmid = (max(Rf4) + min(Rf4))/2;
Refmid = (max(RRf4) + min(RRf4))/2;
Rf4 = ((Rf4 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
] = polyfit(RRfs4,x',k);
Rfx4 = polyval(j,Rf4) + RRx3;

% Section 5
x = L:length(RRfs5);

% Normalization of Fringe

RefH = (max(RRf5) - min(RRf5));

ObjH = (max(Rf5) - min(Rf5));

Hadj = RefH / ObjH ;

Objmid = (max(Rf5) + min(Rf5))/2;
Refmid = (max(RRf5) + min(RRf5))/2;
Rf5 = ((Rf5 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs5,x',K);
Rfx5 = polyval(j,Rf5) + RRx4;

% Section 6
x = L:length(RRfs6);

% Normalization of Fringe

RefH = (max(RRf6) - min(RRf6));

ObjH = (max(Rf6) - min(Rf6));

Hadj = RefH / ObjH ;

Objmid = (max(Rf6) + min(Rf6))/2;
Refmid = (max(RRf6) + min(RRf6))/2;
Rf6 = ((Rf6 - Objmid) * Hadj) + Refmid;
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% IFSE processing with Shift Unwrapping
j = polyfit(RRfs6,x',k);
Rfx6 = polyval(j,Rf6) + RRX5;

% Section 7
x = L:length(RRfs7);

% Normalization of Fringe

RefH = (max(RRf7) - min(RRf7));

ObjH = (max(Rf7) - min(Rf7));

Hadj = RefH / ObjH ;

Objmid = (max(Rf7) + min(Rf7))/2;
Refmid = (max(RRf7) + min(RRf7))/2;
Rf7 = ((Rf7 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs7,x',K);
Rfx7 = polyval(j,Rf7) + RRx6;

% Section 8
x = L:length(RRfs8);

% Normalization of Fringe

RefH = (max(RRf8) - min(RRf8));

ObjH = (max(Rf8) - min(Rf8));

Hadj = RefH / ObjH ;

Objmid = (max(Rf8) + min(Rf8))/2;
Refmid = (max(RRf8) + min(RRf8))/2;
Rf8 = ((Rf8 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs8,x'K);
Rfx8 = polyval(j,Rf8) + RRx7;

% Section 9
x = L:length(RRfs9);

% Normalization of Fringe

RefH = (max(RRf9) - min(RRf9));
ObjH = (max(Rf9) - min(Rf9));

Hadj = RefH / ObjH ;

Objmid = (max(Rf9) + min(Rf9))/2;
Refmid = (max(RRf9) + min(RRf9))/2;
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Rf9 = ((Rf9 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs9,x'K);
Rfx9 = polyval(j,Rf9) + RRx8;

% Section 10
x = 1:length(RRfs10);

% Normalization of Fringe

RefH = (max(RRf10) - min(RRf10));

ObjH = (max(Rf10) - min(Rf10));

Hadj = RefH / ObjH ;

Objmid = (max(Rf10) + min(Rf10))/2;
Refmid = (max(RRf10) + min(RRf10))/2;
Rf10 = ((Rf10 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs10,x',k);
Rfx10 = polyval(j,Rf10) + RRx9;

% Section 11
x = L:length(RRfs11);

% Normalization of Fringe

RefH = (max(RRf11) - min(RRf11));

ObjH = (max(Rf11) - min(Rf11));

Hadj = RefH / ObjH ;

Objmid = (max(Rf11) + min(Rf11))/2;
Refmid = (max(RRf11) + min(RRf11))/2;
Rf11 = ((Rf11 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs11,x',k);
Rfx11 = polyval(j,Rf11) + RRx10;

% Section 12
x = L:length(RRfs12);

% Normalization of Fringe

RefH = (max(RRf12) - min(RRf12));
ObjH = (max(Rf12) - min(Rf12));
Hadj = RefH / ObjH ;

Objmid = (max(Rf12) + min(Rf12))/2;
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Refmid = (max(RRf12) + min(RRf12))/2;
Rf12 = ((Rf12 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs12,x',k);
Rfx12 = polyval(j,Rf12) + RRx11;

% Section 13
x = 1:length(RRfs13);

% Normalization of Fringe

RefH = (max(RRf13) - min(RRf13));

ObjH = (max(Rf13) - min(Rf13));

Hadj = RefH / ObjH ;

Objmid = (max(Rf13) + min(Rf13))/2;
Refmid = (max(RRf13) + min(RRf13))/2;
Rf13 = ((Rf13 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs13,x',k);
Rfx13 = polyval(j,Rf13) + RRx12;

% Section 14
x = L:length(RRfs14);

% Normalization of Fringe

RefH = (max(RRf14) - min(RRf14));

ObjH = (max(Rf14) - min(Rf14));

Hadj = RefH / ObjH ;

Objmid = (max(Rf14) + min(Rf14))/2;
Refmid = (max(RRf14) + min(RRf14))/2;
Rf14 = ((Rf14 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs14,x',k);
Rfx14 = polyval(j,Rf14) + RRx13;

% Section 15
x = L:length(RRfs15);

% Normalization of Fringe

RefH = (max(RRf15) - min(RRf15));
ObjH = (max(Rf15) - min(Rf15));
Hadj = RefH / ObjH ;
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Objmid = (max(Rf15) + min(Rf15))/2;
Refmid = (max(RRf15) + min(RRf15))/2;
Rf15 = ((Rf15 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs15,x',k);
Rfx15 = polyval(j,Rf15) + RRx14;

% Section 16
x = L:length(RRfs16);

% Normalization of Fringe

RefH = (max(RRf16) - min(RRf16));

ObjH = (max(Rf16) - min(Rf16));

Hadj = RefH / ObjH ;

Objmid = (max(Rf16) + min(Rf16))/2;
Refmid = (max(RRf16) + min(RRf16))/2;
Rf16 = ((Rf16 - Objmid) * Hadj) + Refmid;

% IFSE processing with Shift Unwrapping
j = polyfit(RRfs16,x',k);
Rfx16 = polyval(j,Rf16) + RRx15;

% Retrieve u(x)

Rfx =
[Rfx1',Rfx2',Rfx3',Rfx4', Rfx5',Rfx6', Rfx7', Rfx8',Rfx9', Rfx10',Rfx11' Rfx12' Rfx13' Rfx14',Rfx15',R
x167;

X = 1:775;

U =X - Rfx;

% Calculate Height Distribution
10 = 1295;

d0 = 350;

h = (U*10)/d0*0.1796;

% Plot Unwrapped u(x) and Height Distribution
V =[0,900,-10,20];
subplot(2,1,1);plot(U,'k);title("'Unwrapped u(x)");
subplot(2,1,2);plot(h,'k");title('h(x)");
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