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Abstract

This thesis considers the refraction and diffraction of both linear and nonlinear waves.
In the first part, a linear numerical model based on the dual reciprocity boundary
element method (DRBEM) is presented for the study of combined diffraction and
refraction of linear waves. This model is more general than that presented by Zhu
(1993a) in the sense that areas or coastlines where the water depth is zero can be
successfully dealt with. Our comparison study shows that the new model is very
accurate for the propagation of long waves such as tsunamis. Moreover, it is numeri-
cally very efficient in comparison with models based on finite elements or differences.
Using the new model, the interaction between the diffractive and refractive effects is
examined.

In the second part, a numerical model is developed by expanding the Boussinesq
equations using a perturbation method and the DRBEM. Based on the assumption
that the incident waves are harmonic, the time-dependent nonlinear Boussinesq equa-
tions are transformed into three time-independent linear equations, where no approx-
imation for the seabed slope is made. Then the first-order solution 7 is found as the
solution of the linear shallow-water equation. The first-order solution is then used
in the governing equations at second-order. By employing a transformation, all the

third-order and the fourth-order partial derivatives of 7g in the right-hand sides are
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removed, resulting in the minimization of any errors which occur in approximating
these derivatives. To validate the new model, the wave run-ups of weakly-nonlinear
waves scattered by islands are found. Thirteen cases of run-ups around a vertical
cylindrical island are considered and it is found that the nonlinear and dispersive
contributions of the new model are significant and a much better comparison with
experimental results is obtained than for the linear diffraction theory. The combined
wave diffraction and refraction by a conical island is also modelled and discussed.
Our model is found to be more accurate than other nonlinear models as the disper-
sive effects have been included, but is also more computationally efficient since there
is no time marching and the spatial dimensionality of the numerical calculation has

been reduced by one with the adoption of the DRBEM.



Acknowledgements

I would like to express sincere gratitude to Associate Professor Song-Ping Zhu and Dr.
Timothy R. Marchant, my supervisors, for leading me to the fields of dual reciprocity
boundary element methbd and ocean waves which were totally new to me a few years
ago. Without their many valuable suggestions and constant support this thesis would
never have come into existence.

Special thanks must go to Dr. Ahmed El-Feki who taught me how to write Fortran
codes when 1 started this research project. I would like to thank Dr. Anna Maria
Milan, Dr. Qiyin Wang and Mr. Weiliang Wu who gave me much help in using Latex
to prepare the thesis.

My indebtedness must be expressed to the financial support from a Australian
Government Overseas Postgraduate Research Scholarship and from a University of
Wollongong Postgraduate Award. The support from the Industry and Applied Math-
ematics Group in the School of Mathematics and Applied Statistics, University of

Wollongong is also appreciated.

vi



Symbols and abbreviations

Mo

T

)

coefficient vector

coefficients

internal angle of the boundary at point £

Euler’s constant =~ 0.57721

boundary

coastline of an island

toe of a conical island

artificial boundary

Dirac delta function

wave nonlinearity, small parameter in the perturbation solution
free surface elevation without time-dependence

free surface elevation of incident waves without time-dependence
free surface elevation of lst—order without time-dependence

free surface elevation of 2nd-order fundamental frequency without
time-dependence

free surface elevation of 2nd-order double frequency without time-dependence

vii



Cs
Cinc

Cphys

viii

free surface elevation of 1st-order scattered waves without time-dependence
free surface elevation of 2nd-order scattered waves at fundamental frequency
without time-dependence

free surface elevation of 2nd-order scattered waves at double frequency
without time-dependence

velocity potential without time-dependence

velocity potential of incident waves without time-dependence

velocity potential of scattered waves without time-dependence

= élJ,Hankel function of first kind and order zero

= (c¢® + ||x — x,{?)#/?, the family of multiquadrics

particular solution of inhomogenous Helmholtz equation

velocity potential with time-dependence

polar coordinate

wave frequency

two-dimensional domain

source point

free surface elevation with time-dependence

free surface elevation of scattered waves with time-dependence

free surface elevation of incident waves with time-dependence

physical surface elevation, real part of {

radius of shoreline circle

amplitude of incident waves


file:///Hankel

ix

radius of island toe

phase velocity of waves

phase velocity of waves in outer region {2,
group velocity of waves

group velocity of waves in outer region {2,
radial basis function, interpolation function
gravitational acceleration

water depth (varying)

shoreline water depth

constant water depth in outer regin

wave height

Hankel function of first kind and order zero
imaginary unit, subscript

Bessel function of the first kind and order n
wave number, k = 2% /L

number of collocation points in domain
wave length

number of points on T,

number of points on I';

outward normal unit vector of the inner domain £);

outward normal unit vector of the inner domain €,



T,Y, 2
X
ATPS
BEM
DRBEM
GDRBEM
MSL

MSWE

nonuniform pressure distribution applied to the free surface
pressure

directional derivatives of n along the direction n

cylindrical coordinates with origin at the centre of a cylinder
real part of a complex quantity

time

wave period

depth-averaged horizontal velocity vector

1st-order depth-averaged horizontal velocity vector
depth-averaged horizontal velocity vector of 2nd-order at fundamental
frequency

depth-averaged horizontal velocity vector of 2nd-order at double
frequency

rectangular coordinates

= (z,y)

augmented thin plate spline

boundary element method

dual reciprocity boundary element model

general dual reciprocity boundary elements model

mean surface level

the mild-slope wave equation



PDRBEM perturbation dual reciprocity boundary elements model
RBF radial basis function

TPS thin plate spline

xi



Chapter 1

Introduction

Tsunamis are long waves generated by earthquakes, the eruption of volcanoes and
any other kind of land movement on the bottom of oceans. While in the deep ocean,
these waves have an amplitude of about half a metre, however the amplitude of the
tsunami waves increase significantly when an island is approached, due to diffrac-
tion, refraction, reflection and shoaling. The recorded amplitude of the tsunamis in
Okushiri Island of Japan (Hokkaido Tsunami Survey Group 1993) is 15.25 metres
at the front side and about 10 metres at the lee side. Consequently, tsunamis often
result in extensive property damages and death. For example, from 1992 to 1994,
submarine earthquakes around the Pacific basin generated six large tsunamis: the
Nicaragua tsunami on September 2, 1992; the Flores Island tsunami on December 12,
1992; the Hokkaido Island tsunami on July 12, 1993; the East Java tsunami of June 2,
1994; the Kuril Islands tsunami of October 4, 1994; and the Mindoro Island tsunami
of November 15, 1994. They all caused extensive property damages and death of at
least 1640 people (Liu et al. 1995). The most recent tsunami attack took place on
August 17, 1998 at Papua New Guinea; more than 2,200 local residents were killed

while many houses and roads were completely destroyed (see Gonzdlez 1999).



Because of the undoubted practical importance in understanding the propagation
of tsunami waves, their run-ups on coasts, and their impact on coastal facilities, there
have been many research and modelling activities in this area. Due to the problem’s
complexity, the governing equations, which consist of the Euler water wave equations,
are simplified or approximated. Linear model equations include the Helmholtz equa-
tion, the linear shallow-water equation and the mild-slope wave equation (MSWE)
(Berkhoff 1972, 1976 and Smith & Sprinks 1975). In the nonlinear regime, the non-
linear shallow-water equation, the nonlinear MSWE (Beji & Nadaoka 1997), the Airy
equation (see Mei 1989), the conventional Boussinesq equations (Peregrine 1967) and
various improved Boussinesq equations {Madsen & S¢rensen 1992, Witting 1984 and
Nwogu 1993) are used.

Despite these simplifications, only a few analytical models have been obtained
based on some very simple linear equations. Examples include MacCamy & Fuchs’
(1954) solution of the Helmholtz equation for a cylindrical island standing in the
middle of an open ocean with constant water depth, Homma’s (1950) solution of the
linear shallow-water equation for a circular island mounted on a paraboloidal shoal,
Zhang & Zhu’s (1994b) and Zhu & Zhang’s (1995) solution of the shallow-water
equation for conical and circular islands. However, all these solution techniques,
which exploit the combination of simple boundary geometry and relatively simple
form of the governing differential equation, fail when one has to face either non-
constant water depth, any nonlinearity, or a nonsymmetric geometry. Numerical
solutions must be used to solve any nonlinear equation or the MSWE for a problem

with variable water depth and bottom topography in general.



Various numerical models therefore have been developed, which range from the nu-
merical integration (Vastano & Reid 1967 and Lautenbacher 1970), finite difference
(Liu et al. 1994, 1995), finite elements (Bettess & Zienkiewicz 1977 and Houston
1981), the orthogonal collocation (Jonsson et al. 1976), the conventional boundary
elements (Au & Brebbia 1983) to the dual reciprocity boundary elements (Zhu 1993a
and Poulin 1997). All these models, each focusing on a specific aspect of the prob-
lem, contribute to our understanding and modelling capability of this extraordinary
phenomenon.

In the linear region, the MSWE, as the starting point of many wave refraction
and diffraction models, was independently derived by Berkhoff (1972) and Smith &
Sprinks (1975). With the assumption that the bottom slope is mild and thus the
mean water depth variation is moderate, they demonstrated how a three-dimensional
problem can be well approximated by a two-dimensional one, using the perturbation
expansion. This two dimensional equation, which describes the long wave propaga-
tion, is later referred to as the mild-slope wave equation (MSWE) by many researchers
(see Jonsson & Skovgaard 1979). In Chapter 2 of this thesis, the derivation of the
MSWE by Smith & Sprinks (1975) will be briefly presented.

The MSWE has proved a useful model for a wide range of water wave problems, as
both refractive and diffractive effects have been included in this single equation. It is
also an equation that takes many others as its special cases. For instance, the MSWE
not only leads to the eikonal equation (giving the ‘rays’), but also to a ‘transport
equation’ (giving the amplitudes), see Jonsson (1979). In deep or constant depth
water, 1t reduces to the Helmholtz equation. And in a shallow water case, it reduces

to the linear shallow-water equation. According to Jonsson (1981), the MSWE is



also less restrictive hence more convenient than ray approximation and parabolic
approximation.

The limitation of the MSWE is the assumption of the ‘mild-slope’ which restricts
its application to seabed geometry of first order in bottom slope. However, Tsay &
Liu {(1983) showed that the MSWE can produce accurate results even for bottom
slope as large as one in one. Booij (1983) further revealed that Tsay & Liu’s {1983)
discovery is correct for waves propagating parallel to the contours of a sloping bed, but
for waves propagating normal to the contours of a sloping bed, the MSWE produces
accurate results provided that the slope is less than one in three.

Various extensions of the MSWE have been made in recent years. For example,
Booij (1981) tried to extend the MSWE to include the effect of a current, but his ex-
tended MSWE actually contains an error as pointed out by Kirby (1984). Employing
the Galerkin-eigenfunction method, Massel (1993) also extended the MSWE for the
case where the bottom slope is not necessarily ‘mild’. Kirby (1986), responding to the
failure of the MSWE to approximate adequately wave scattering by singly and doubly
periodic ripple beds, gave an extended MSWE. By keeping all the terms to second
order, Chamberlain & Porter (1995) produced a modified MSWE which contains the
original MSWE and Kirby’s (1986) extended version as special cases. More recently,
using some interfacial jump conditions at locations where the bed slope is discontin-
uous to ensure continuity of mass flow there, Porter & Staziker (1995) obtained an
extension of the MSWE, the application of this new version revised Booij’s (1983)
estimate of the maximum slope gradient from one in three to one in one.

Because of its advantages, the MSWE has become a popular basis for calculat-

ing surface waves on slowly varying depth. Several numerical approaches have been



developed to solve the MSWE. For example, following Chen & Mei’s (1974) work in
solving the Helmholtz equation in a constant depth region, Bettess & Zienkiewicz
(1977) and Houston {1981) developed the so-called hybrid method for the MSWE, in
which an infinite computational domain is divided into two: an outer region where
infinite elements (Bettess & Zienkiewicz 1977) or eigenfunctions {Houston 1981) can
be adopted and an inner region where finite element or difference techniques can be
used to obtain solutions. Excellent results were reported for problems concerning
wave scattering by islands as well as harbour oscillations. Most of the subsequent
work differs only on the treatment of the outer domain. Tsay & Liu (1983) also used
eigenfunctions in the outer domain to calculate wave forces and moments acting on
a floating dock. However, as the MSWE is of the elliptical type, the amount of data
and hence the size of the coefficient matrix become very large when finite element and
hybrid element methods are used, therefore the computation becomes very expensive
as shown by Houston (1981).

The boundary element method (BEM) only requires a discretization on the bound-
ary of a computational domain and it is popular to solve wave propagation problems
with constant water depth (see Hwang & Tuck 1970, Au & Brebbia 1983 and Zhu &
Moule 1994). However, when the water depth becomes a variable, the conventional
BEM seems to be powerless because that a domain integral arises and the domain
has to be discretized, which destroys the computational advantage of the conventional
BEM.

The most powerful approach to convert domain integral to boundary integral is
the so-called dual reciprocity boundary element method (DRBEM) which was first

proposed by Nardini & Brebbia (1982) and later improved by many others such as



Partridge & Brebbia (1989) and Zhang & Zhu (1994b). By expanding the right-hand
side in the governing equation as a series of interpolation functions, the particular
solution of the governing equation is approximated by a series. Then Green’s reci-
procity theorem can be used twice in the right-hand side and the domain integral is
successfully converted into a boundary integral. For the completeness of this thesis,
we shall briefly introduce the DRBEM and some related topics in Chapter 3.

Having realized the great potential of the DRBEM, Zhu (1993a) first applied
it to wave diffraction and refraction problems. He argued that the DRBEM model
showed a great advantage in numerical efficiency over hybrid element models, in terms
of both computational time and computer memory required. For example, for the
case of Homma's island (Homma 1950) with incident wave of period T = 120 sec,
Houston (1981) had to carry out his calculation with 10,560 elements on the half of
a symmetrical domain. For a general domain without symmetry to be utilized, he
would have to use 21,120 elements which would lead to a linear system with 21,600 real
equations. However, using only 60 quadratic boundary elements {with 120 boundary
nodes) and 192 internal collocation points for all the calculations covering the full
domain, Zhu (1993a) has obtained a very accurate result comparing with the results
presented by Jonsson et al. (1976) and Houston (1981).

Recently, another DRBEM model for wave diffraction and refraction was proposed
by Poulin (1997). Following the idea of Rangogni (1988), varying water depth is ap-
proximated with a perturbed constant depth in the MSWE, thus the domain integral
which is a result of the varying depth is no longer a function of the unknown wave

potential but only a function of position and the constant depth wave potential. She



argued that this leads to significant reduction of the number of unknowns in the re-
sulting system. It is shown that the accuracy of the solution increases with increasing
wave period and with decreasing the depth ratio, as is expected for a perturbation
method. However, since the equation solved by Poulin (1997) is only an approximate
form of the MSWE, the accuracy of the solutions, as shown in the verification of the
model for Homma’s island, is satisfactory only for seabed geometry with a depth ratio
not greater than 3. For Homma’s original island with a depth ratio of 9, the accu-
racy is acceptable only for long waves. Hence, Poulin’s (1997) perturbation DRBEM
model is not as accurate as Zhu's (1993a) DRBEM model.

Unfortunately, in Zhu’s DRBEM model, there is a restriction that the water depth
is always nonzero. This assumption narrows the range of application of the DRBEM
model in comparison with its hybrid counterparts. In Chapter 4 (see also Zhu et al.
2000), as the first objective of this thesis, a general DRBEM model (GDRBEM) is
presented, which is an extension of Zhu’s DRBEM model to cases where zero-water-
depth coastlines are allowed. The generalization involves some special treatment on
the limiting values of the product of wave velocity and group velocity. To test our
new model, wave refraction and diffraction scattered by both paraboloidal island and
conical island are calculated. It is shown that the GDRBEM model is very accurate
and computationally efficient.

Although many numerical models have been developed for the problem of wave
diffraction and refraction, the range of water waves that can be treated by most of
these models is very restricted, being essentially limited to small-amplitude waves,
described by linearized shallow-water wave equations, such as the Helmholtz equation,

the linear shallow-water equation or the MSWE. Although the results of these models



based on linear governing equations may often provide some good approximation to
the wave diffraction and refraction process, in reality, the experimental results suggest
that the linearized theories give quite large errors in many practical situations. In
fact, tsunamis are dramatically nonlinear in their final run-up stage.

Based on the Boussinesq equations, a time-marching finite-difference method was
developed by Abbott et al. (1978), and further extended and tested by Abbott et
al. (1984) and Madsen & Warren (1984). Rygg (1988) proposed a line by line itera-
tive method for nonlinear Boussinesq equations. Based on Nwogu’s (1993) improved
Boussinesq equations, Wei & Kirby (1995} developed a high-order numerical model
where they used a fourth-order predictor-corrector scheme for time stepping and dis-
cretized the first-order spatial derivatives to fourth-order accuracy. Recently, based
on the nonlinear shallow-water equations, a time-marching finite-difference method
was proposed by Liu et al. (1994, 1995), who studied the run-ups of both solitary
waves and periodic waves around a conical island and compared numerical and ex-
perimental results. However, clearly, all these kinds of time-marching finite-difference
schemes require significant computational effort.

As the second object of this thesis, in Chapter 5, the linear DRBEM model
is further extended to apply to weakly-nonlinear shallow-water waves. A weakly-
nonlinear wave model, called the perturbation dual reciprocity boundary element
method (PDRBEM) wave model, will be developed to solve the Boussinesq equa-
tions for periodical incident waves. By using the perturbation method and the as-
sumption of harmonic waves, the time-dependent nonlinear Boussinesq equations are
transformed into three time-independent linear equations, which greatly improves the

computational efficiency. Moreover, the three linear equations are sequentially solved



by means of the linear GDRBEM method. In order to validate our new model, thir-
teen different cases of wave run-ups around a vertical cylinder for are calculated and
compared with experimental data, linear diffraction theoretical solutions (MacCamy
& Fuchs 1954) and the second order diffraction theoretical solutions (Kriebel 1990,
1992a). It is shown that the nonlinear and dispersive contributions of the new model
are very significant and that the new model provides a much better comparison with
experimental results than does the linear diffraction theory. And in some cases, the
PDRBEM solutions are even better than the second order diffraction theoretical so-
lutions (Kriebel 1990, 1992a). Furthermore, four cases of combined wave diffraction
and refraction by a conical island are also tested. The run-ups from the PDRBEM
are compared with experimental data, the linear theoretical solutions (Zhang & Zhu,
1994a) and numerical solutions based on the nonlinear shallow-water equation (Liu
et al. 1994). It is shown the agreement between the PDRBEM solutions and experi-

mental data is satisfactory.



Chapter 2

Basic theory

2.1 Wave shoaling, diffraction and refraction

As shown in Figure 2.1, water waves are characterized by their height, H, their length,
L and their period, T. The wave height A is the distance between the trough (lowest
part) and crest (highest part) of the wave. The wavelength L is the distance between
two consecutive wave crests (or troughs). And the wave period T is the time for
two consecutive crests to pass a point. In addition, phase velocity C of the waves is
defined as the wavelength L divided by the wave period T' since the waves have to
travel one wavelength every wave period.

During the propagation of water waves, three main phenomena, shoaling, refrac-
tion and diffraction can occur. Generally, if the ratio of water-depth to wavelength
is less than 1/20, then the waves are considered to be in shallow water. In the
deep ocean, tsunamis {earthquake-generated waves) are also considered shallow wa-
ter waves {Bascom 1964) due to their long wavelength. When waves move over shallow
water, shoaling occurs. In shoaling there is first a slight decrease in wave height (cor-
responding to a maximum in group velocity), then the wave height increases and the

wave period remains the same when the waves propagate in smaller water depth.
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h(x,y) v

Figure 2.1: Coordinate system and definitions.

Also, the waves begin to feel the bottom of the ocean, which also contributes to the
decrease of the wave speed C and wavelength L. When the wave crest becomes too
steep, it becomes unstable, curling forward and breaking. This usually happens when
the height of the wave becomes about the same order as the local water depth. That
is, a 10 ¢m high wave usually breaks in about 10 cm of water.

Wave refraction is the bending of crests of waves because of varying water depths
underneath. The part of a wave in shallow water moves slower than the part of a
wave in deeper water. So when the depth under a wave crest varies along the crest,
the crest bends and wave direction changes. An example of refraction is when waves
approach a straight shoreline at an angle. The part of the wave crest closer to shore
is in shallower water and moving slower than the part away from the shore in deeper
water. The wave crest in deeper water catches up so that the wave crest tends to
become parallel to the shore. See Fig. 27 in Bascom (1964). Wave refraction also

occurs around a circular island. A wave approaching from one direction will wrap
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around the island and the wave crest will approach the beach parallel to all tangents
of the boundary of the island. See Fig. 28 in Bascom (1964).

Diffraction usually happens when waves suddenly encounter a steep-sided obstacle
such as a breakwater or an island rising abruptly from the depth. It seems that on
the lee side of the island, the water would be perfectly calm. However this is not
true. As the waves pass the obstacle, some of their energy is propagated sidewise
as the wave crest extends itself into the so-called ‘shadow zone’ (Fig. 26, Bascom
1964). The turning of the waves into the sheltered region is due to the changes in
wave height (say along the crest) in the same wave. If the sides of the obstacle are

sloping under the water, then refraction would also be present.

2.2 Governing equations

Consider now the problem where a fixed surface-piercing island of some kind is placed
on an uneven ocean bed and periodic surface water waves are propagating with phase
velocity C toward the island, as shown in Figure 2.2-2.3. The instantaneous surface
elevation is denoted by ((z,y,t), which is measured positive upwards with zero at the
mean surface level (MSL). The water depth is denoted by h(z,y). For convenience,
the coordinate system is chosen so that the incident waves propagates in the positive
z-direction. Then, with the assumption that the fluid is incompressible and flow
is irrotational, the governing equation for the wave field ®(x, vy, 2,t) is the Laplace
equation

2 0 0
loali —

2 - = =\, /I
V2P + 0, (5235 (2.2.1)

0z2
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incident wave

SIUOJ] DABM 1UIPIOUL

Figure 2.2: Periodical waves scattered by a circular island with a paraboloidal shoal
(a = 10,000m, b = 30,000m, h, = 4,000m and h; = 444m,).

The Laplace equation is an elliptic-type differential equation and therefore to solve it

we need the following conditions on all the boundaries of the domain:

&
%— +V®-Vh =0, z = —h(z,y), (2.2.2)
Z

a¢ 8%

A ive.ve=2 - 2.2.3
0% 1 , (0%’

- - | — = = 2.2.4
s |lvere () [ +o=0 s=cEwn @29

where ¢ is the acceleration due to gravity. Other conditions satisfied by ® and ¢, such
as those to be applied on lateral boundaries or asymptotically if the fluid extends to

infinity, do not immediately concern us in this chapter and will be discussed later.



14

incident wave
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Figure 2.3: Periodical waves scattered by a conical island.

The above system of differential equations has nonlinear free surface boundary
conditions, so it is impossible to find an analytical solution. Therefore, numerical
solutions are usually resorted to. However, because the Laplace equation (2.2.1) is
three-dimensional and elliptic, the computational effort is very high. Therefore many
two-dimensional approximation versions have been developed. In linear regime, the
most powerful one is the so-called mild-slope wave equation (MSWE}), and in nonlin-

ear regime, the most popular one is the Boussinesq equations.
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2.3 The mild-slope equation

The MSWE, in which refractive and diffractive effects are combined, was originally
proposed by Eckart (1952) with a shallow-water restriction. Later, the equation was
rederived independently by Svendsen (1967) in one dimension and by Berkhoff (1972,
1976) in two dimensions without restriction on the water depth. But according to
Houston (1981}, the two-dimensional wave equation derived by Eckart (1952) does
not reduce to the linear shallow-water equations derived by Svendsen (1967) and by
Berkhoff (1972,1976). Other derivations are given by Smith and Sprinks (1975) and
by Lozano & Meyer (1976). The MSWE was also derived by Booij (1981) using Luke’s
variational principle. Here we introduce the main steps of the derivation by Smith
and Sprinks (1975).

According to Mei (1989), the assumptions that the wave slope ¢ = kA is small,
i.e., € < 1 and the separation of the harmonic time dependence e~** from ({z,y, t)

and ®(z,y, z,1), ie.,
((z,9,t) = n(z,y)e ™,  &(z,y,2,0) = ¢(z,y,2)e”™, (2.3.1)

lead the nonlinear equations {(2.2.1}-(2.2.4) to be simplified into

8% )
— + V=0, —h{z,y) <z<0, (2.3.2)
822
%— +Ve¢-Vh=0, z=-h{zvy), (2.3.3)
2
90 _W_o s=o0 (2.3.4)
8z ¢

The MSWE of Berkhoff (1972, 1976) is a depth-integrated version of the Laplace

equation (2.3.2). By assuming that the water depth variation is moderate, i.e.,
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|Vh|/(kh) < 1, the velocity potential may be written as

oa,y,2) = MY 5o ), (23.5)
where
flz,h) = Cosi‘o’;(fk: ) 2= gktanhkh, (2.3.6)
with f satisfying
% + k2 f =0, —h(z,y)<2<0, (2.3.7)
% =0, z=—h(zy), (2:3.8)
% - ‘-’:; =0, z=0, (2.3.9)

and k and h referring to their local values.

Employing the formula of integration by parts, i.e.,

82¢ 62f , a¢ af
/l:f((')z k2¢) ¢(ag_kf):|d—|:f_-_¢ }h, (2.3.10)

we have

0
/ F(R2$ + V2@)dz = [ fVh - V]| s (2.3.11)
—h
By calculating V¢ and V*¢ from (2.3.5) and inserting into (2.3.11), we have

0 .
/_h {f2V2n+2f fvn Vh+nfah£(\7’h)2 +nfa—£
af

=5l (2.3.12)

V2h + kz??fz‘ dz
= —Vh-VnfY_s — n(Vh)2f

Note that Vh/(kh) < 1, we can ignore all the terms of order (Vh)? and V2h and

A K/_i dez) Vn} + k* (/_1 dez) 7 = 0. (2.3.13)

rewrite (2.3.12) as
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That is the MSWE

V- (CC,Vn) + k*CCyn = 0, (2.3.14)
where
c = /% tanh kh, (2.3.15)
C 2kh
Cg = E (1 + m) , (2316)

are the phase velocity and the group velocity, respectively.
It is easy to see that C' = C; =~ \/gh and w? ~ k2gh in shallow water, the MSWE

(2.3.14) becomes to the linear shallow-water equation

2
V- (hVn) + —n=0. (2.3.17)
g
On the other hand, in constant-depth water or in deep water, C ~ \/g/k, C, = 3C
and w = /gk, the MSWE (2.3.14) reduces to the Helmholtz equation

Vi + k% = 0. (2.3.18)

2.4 'The Boussinesq equations

Due to strong interactions with bottom topography, waves observed in the nearshore
zone are almost always nonlinear and, as it is obvious from the frequent occurrence
of whitecapping and breaking, nonlinearity is usually quite high. Realistic modelling
of these waves must therefore account for these nonlinear interactions. Among many
weakly-nonlinear shallow-water equations, the most powerful one is the Boussinesq
equations.

Originally, the Boussinesq equations are derived by Boussinesq (1872) which is

valid for a constant water depth. Mei & LeMehaute (1966) extended it to a varying
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water depth. Peregrine (1967) derived the equations by using perturbation method.
Based on the assumption that the scale of the water depth is small in comparison
with the horizontal length scale, the wave amplitude is small compared with the water
depth, i.e.,

e=A/h, <1, pt=(h/L)? <1, (2.4.1)

and p* = O(e), the Boussinesq equations of Peregrine (1967) take the following

dimensional forms:
iy + gV¢+ (@~ V)i = V[V (hi,)] - EV(V - &), (2.42)
G+ V-[(h+()u =0

where ((z,y,t) is the free-surface elevation and a(z, vy, t) the depth-averaged horizon-

tal velocity vector.



Chapter 3

The dual reciprocity boundary
element method

The dual reciprocity boundary element method (DRBEM) was first proposed by Nar-
dini & Brebbia (1982) and was further extended by many authors such as Nardini
& Brebbia (1986), Partridge & Brebbia (1989) and Zhang & Zhu (1994b). A great
advantage in using DRBEM is that the elegance of the traditional BEM, i.e., only
boundary integrals need to be carried out, is well preserved. The fundamental math-
ematical theories of DRBEM have been explained in detail by Partridge et al. (1992).

Only its main points are therefore outlined here.

3.1 Conventional BEM
Consider the general inhomogeneous Helmholtz equation
Viu + Nu = R(z,y,u, ug, uy) (x,y) € 92, (3.1.1)

where Q0 € R? is the domain to be considered with boundary I". Here we only consider

two dimensional case d = 2.

19
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Let x = (z,y). It is well-known that the fundamental solution of the Helmholtz

equation

Viu+ 2y = —§(x — €) (3.1.2)
is the Hankel function of the first kind of zero order:
. i
w(Ex) = ZH ()

with p = ||x — || being the distance between a source point & and a field point x.
For any fixed source point £, multiplying both sides of equation (3.1.1) by the

weighting function »*(£, x) and using the Green’s second identity, i.e.,

du Ju*
*2_‘_,' 2,*492 —_—y L1
/(;(uVu uVu*)d /F(anu uan)df, (3.1.3)
we can rewrite equation (3.1.1) as
—/u(x)d(x—f)dﬂ-{—/(qu'—uq‘)dF:/Ru*dﬂ, (3.1.4)
Q r Q

where ¢(£,x) = %’i’—xl and ¢*(£,x) = m_aqrgl_x) with n being outward normal unit vector

along the boundary I" of the domain 2.

For the source point £ inside the domain 2, equation (3.1.4) now becomes

—u{€) + / (qu* — ug®)dl’ = / Ru*dS2. (3.1.5)
r Q

For the source point £ is on the boundary I' (see Figure 3.1), equation {3.1.4) can

be easily modified as

—u©+lin [ (g —ug)d 4l [ (g~ ug')ar
I—Af—£B e—0

e—0

€

= / Ru*d(, (3.1.6)
Y
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where, as shown in Figure 3.1, I'¢ is the circular arc from point A to B with the

radius p = € and the centre being located at the source point £&. The limit for the
first integral in {3.1.6) is

lim/ (qu* —ug*)dl’ = / (qu* — uq®) dl. (3.1.7)
=0 Jr_as—¢B T
While the limit for the second integral can be written as
llm/ (qu* — ug") dl’ = q(§) llm/ w'dl — u(€) lim/ g*dT. (3.1.8)
0 T. e—0 I,

BV

Figure 3.1: The soutce point £ on boundary.

In order to calculate the two limits in the right-hand side in equation (3.1.8)

expand the Hankel function up to the order (kp)?, which is given by

(€, x) =~ —51; [ﬁ/ +In (%ﬁ)} —I-i (3.1.9)

where «y is the Euler’s constant (v = 0.577216...) and hence

ou* ou* 1
¢ (6,X) = —— = =

= : (3.1.10)
on dp 2mp
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Substituting (3.1.9)-(3.1.10) into (3.1.8) which gives

lim ; (qu” — ug*)dl’

€

= ¢(&)lim a{——l? (’y—l—lnke)—l—%}edﬁ—u(f)]im a"—lede
0

e—0 2 =0 [y 27e
(8

= S-u(g), (3.1.11)

where o = a{£) is the internal angle of the boundary at point £.
Hence for the point £ inside the domain 2 or on the boundary T, the boundary

integral formulation can be uniformly written as

—ceu(§) + /1: (gu* — ug*)dl = /Y;Ru*dﬂ, (3.1.12)
with
a8 ifeeT,
Ce =
1, if&ef.

Equation (3.1.12) contains domain integral on the right-hand side if R # 0. For
some special cases such as a particular solution % to equation {3.1.1) has been found
(a particular solution to (3.1.1) is a solution which does not necessarily satisfy the
given boundary conditions), the domain integral can be directly transformed into
equivalent boundary integrals by using the Green’s second identity again. Since for
general R the particular solution @ is difficult to find, the calculation of the domain
integral becomes unavoidable. To overcome this, Nardini & Brebbia (1982) proposed

the powerful DRBEM, which will be briefly described in next section.



23

3.2 Domain integral

The main idea of DRBEM is using a linear combination of a series of particular
solutions to approximate the particular solution @ to equation (3.1.1). To achieve
this, the right-hand side function R in (3.1.1) is expanded to a series of interpolation

functions f;(x), that is,
n—+i

R~ Zajfj(x), (3.2.1)

where ¢; are the coefficients to be determined with the collocation method by de-

manding the satisfaction of n + ! equations

1i+1

RX)|x, =Y afi(xi),  i=1,..,n+] (3.2.2)
i=1

at n collocation points on the boundary I and { interior nodes within the domain §2.

System (3.2.2) can also be expressed in matrix form:

R(xl) fu fiz o hiw 2351
R(xz) _ for fao oo fan sz , (3'2.3)
i R(XN) | | fvt fve o0 faw 1L Qv ]
where N = n + [ and
fiy = f3(xs), 4“j=1,.,N.
Simply, we denote the equation (3.2.3) as
R = Fa, (3.2.4)

and therefore, if the collocation matrix F is invertible, oo can be expressed in terms
of F~! and R as
a=F'R. (3.2.5)
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Assume that a particular solution to every equation
%A -
v U; + )\QUJ' = fj, (326)

for j = 1,..,n + [ can be found. Then by using Green’s second identity (3.1.3), the
domain integral in the right-hand side of equation (3.1.12) becomes

n+i

/ RutdQ ~ Y f fi(x)utdQ
Q pane )
n+i ,
= Zaj/ [Vg'&j + )\2'&}'] uw” d$2
j=1 V%

n+!

i=1

which involves boundary integrals only. Substituting (3.2.7) into (3.1.12) yields

—cgii;(§) + [F(@j’u«* - '&jQ')dF} : (3.2.7)

n+l

ceu(€) — /r (qu* — ug*) dl' = Zaj
=1

cgtii (§) — [r(éju* — '&jq*)dl“] . (3.2.8)

3.3 Computing particular solutions

In DRBEM, in order to reduce the interpolation error to a minimum, it is preferable
that the right-hand side f of a governing equation be kept as simple as possible. At
the same time, the simplicity of the main differential operator should be taken into
account in order to obtain the corresponding particular solution analytically, As a
result, most of the main differential operators used in the DRBEM were restricted in
Laplacian operator and particular solutions related to f; being radial basis functions
(RBFs) such as 1 + 7, thin plate splines (TPS) % logr; or multiquadrics 4/r? + ¢2
can be obtained by repeated integration (Partridge et al. 1992 and Golberg & Chen

1997), where r; = ||x — x;]|.
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However, if the main differential operator is different from Laplace operator, such
as Helmholtz-type operators, this has proven difficult. The first significant result
along this line was given by Zhu (1993b) where a constructive scheme of evaluat-
ing particular solutions associated with Helmholtz equation was given for f; being
polynomial RBFs, see Appendix D. Then, analytical formulae of particular solutions
associated with Helmholtz-type operators were given by Chen & Rashed (1998) for f;
being thin plate splines (TPS). Recently, in order to improve the convergence rate of
TPS, Muleshkov et al. (1999) chose f; to be the so-called higher order polyharmonic
splines 'r?k logr;, k=1,2,..., and particular solutions associated with Helmholtz-type
operators were obtained.

Golberg (1995) gave an excellent review paper on evaluating particular solutions.
According to Golberg (1995), if the governing operator is rotationally symmetric, then
it is natural to use RBF's as interpolation functions so that the particular solution can
be obtained by solving an ordinary differential equation. If the governing operator
is not rotationally symmetric, other approaches need to be taken. For example, if

the governing operator is a28?/8z% + b23%/3y?, then choose a modified RBFs with

ri = /(x — x;)?/a? + (y — y;)?/b? as interpolation functions so that a corresponding
particular solution may be found.
For a general operator where one can not find the particular solution, one may

also look for a numerical approximation to the particular solution. For example, Alle-

sandri & Tralli (1991) proposed a bicubic spline approximation method.



26

3.4 The choice of interpolation functions

There are no limitations to choose interpolation functions f;,j = 1,...,n +{ provided
that the collocation matrix F is invertible and particular solutions can be found.
However the accuracy of the DRBEM strongly depends on the choice of interpolation
functions. The main source of error in the DRBEM is the approximation of the
right-hand side. Hence, the choice of interpolation functions have always been a hot
research topics related to the DRBEM.

Among various interpolation functions, the most popular one is the so-called
RBFs which are functions with the form of f;(x} = f(r;). Partridge & Brebbia
(1989) showed that satisfactory results can usually be obtained if f;(x) takes the form

;o r". Moreover, they also pointed out that the use of s = 1 giving f; = 1+7r; is
generally sufficient.

Then Duchon (1977) demonstrated that the so-called augmented thin plate splines
(ATPS), which are a combination of the TPS and some augmented linear terms
1,x in R? (1,x,z in R?), are the optimal interpolation functions in two and three
dimensional spaces respectively in the sense that they interpolate R in R? (d=2,
3) with a minimized rotation-invariant seminorm. This theoretical work has been
strongly supported by some numerical results (Golberg 1994, Bridges & Wrobel 1996
and Zhu et al. 1998). However, despite their optimal properties, ATPS have some
drawbacks. For example, they are only C! in R? and nondifferentiable in R? and
their convergence rate is slow (Powell 1993).

Some researchers such as Golberg et al. (1996) suggested that the family of

multiquadrics ¢g(r;) = (¢ + r2)%/2 can overcome the above drawbacks of ATPS,

where 3 is an odd integer and ¢ is a shape parameter to be determined by the
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collocation method. For Poisson equation, Golberg et al. (1996) have shown that
considerable improvement can be obtained (up to three orders of magnitude) by using
multiquadrics. For time-dependent nonlinear diffusion equation, Zhu & Liu (1998)
also show the superiority of the multiquadrics to the linear RBF 1+7;. However, there
are difficult and unresolved problems concerning the choice of the shape parameter ¢
which can affect the accuracy of the solution by several order of ma.ghitude (Golberg
et al. 1996) and analitical particular solutions are known only for Laplacian operator.

Very recently, Muleshkov et al. (1999} demonstrated that an nth order polyhar-
monic splines 7} logr; can achieve L, convergence rates of O(h") and the related
particular solutions can be analytically obtained. It is shown that numerical solu-
tions using the higher order polyharmonic splines are much more accurate than those

using TPS.

3.5 Multiple reciprocity boundary element method

In DRBEM, there are n + { collocation points, including n boundary points of BEM
method and [ internal nodes. To ensure the accuracy of the DRBEM solution, some
internal nodes are normally have to be included. Recently a new technique without
any internal collocation point, called the Multiple Reciprocity Boundary Element
Method (MRBEM), has been developed by Nowak & Brebbia (1989a,1989b) and
applied it to solve Poisson equation and Helmholtz equation with the Laplacian form.
Then, using this new technique, Neves & Brebbia (1991) solved the Navier equations
of elasticity, Nowak & Brebbia (1992) solved the linear potential problems with body

forces and Itagaki & Brebbia (1993) extended it to solve the modified Helmholtz
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equations. The MRBEM consists of a repeated application of Green’s second identity
and can be thought of as an extension of the idea of the DRBEM. However, instead
of approximating the source term by the set of radial basis functions, a sequence of
functions related to the fundamental solution is introduced. These constitute a set of
higher order fundamental solutions which permit the Green’s second identity to be
applied to each term of the sequence. As a result, the MRBEM leads in the limit to
the exact boundary only formulation of the domain integrals and therefore no internal
collocation node is needed. The related theory has been given in detail by Nowak &
Neves (1994).

However the governing equations which will be nsed in the wave models presented
in this thesis are Helmholtz equation (rearranged from the MSWE) and the Boussi-
nesq equations, which could not be solved by adopting the MRBEM thus should not

be used in this thesis.

3.6 Approximation to internal partial derivatives

The right-hand side in (3.1.1) may contain partial derivatives u, and u,. This is the
case that we will study later in this thesis, see (4.2.1). Sometimes it is difficult to
evaluate these partial derivatives at internal nodes due to the presence of domain

integrals. In fact, by differentiating (3.1.12) with respect to & and &;, we have

o [ (q%g]:—u-g-gll)dr— fo RZE4Q,

% (3.6.1)
Ju Su* . Og" du”
2 = [ (¢% - u8E) dr - [ RGEde.

However, the use of the DRBEM provides a very simple alternative to (3.6.1).
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Assume that u = (uy,us, ..., unx)” has an expansion similar to (3.2.4):

u= Fj3. (3.6.2)
Differentiating the above produces
u, = F.0, (3.6.3)
where
[ Ouy Ouy dun T
uI - (a:C 3 a'L' 3 5:6 b (364)
L) Px) .. HEx)
. Ui(xy) a(xy) ... Z(x,) (36.5
| Exv) Hxw) o HE(xw)

Inverting (3.6.2) and substituting into (3.6.3) produces
u, ~ F,F u. (3.6.6)

Thus, the nodal values of the partial derivative are approximated by the nodal val-
ues of the problem variable u. A similar equation can be deduced for the partial
derivatives with respect to y.

Care should be taken to chose the interpolation functions again. Zhang & Zhu
(1994b) showed that the choice of linear RBF 1 + r; results in the creation of singu-
larities on all the collocation points because the diagonal elements of F; and F,, are
undefined. Further, Zhang & Zhu (1994b) showed that the choices of 1 47 + 7§ and
1 —+-TJ3 do not creat any singularity for the case where the right-hand side contains the
first order partial derivatives. In this thesis, we chose 1+ 77 + r;? as the interpolation

functions.



Chapter 4
A linear wave model: GDRBEM

Based on the DRBEM, Zhu (1993a) first proposed a DRBEM wave model to solve
the wave diffraction and refraction problem. It is shown that the DRBEM wave
model is as accurate as a finite-element method (Houston 1981) but it is much more
efficient than the latter. However, in Zhu's model, there is a so-called vertical-wall
assumption along the coastline of the island, which requires that the water depth
is always finite along the boundary of the island. Because of this restriction, the
wave diffraction and refraction problem related to an island with a zero-water-depth
coastline has, so far, not been dealt with by the DRBEM model. In this chapter, a
general DRBEM (GDRBEM) model is presented and wave run-ups around islands

with zero and nonzero water-depth coastlines are calculated and compared with other

numerical solutions.

30
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4.1 Introduction

The mean free-surface elevation of a train of monochromatic waves propagating over

a seabed of variable water depth h(x) = h(z,y) can be expressed as

n(z,y) = Aet*ores = 4 Z €ni”Jp(kor) cos b, (4.1.1)

n=0
with A being the incident wave amplitude, w the angular frequency, k, the wave
number in constant-depth (h,) water and ¢, the Jacobi symbol (e, = 1 for n = 0 and
€, = 2 for n > 0).

The waves may be diffracted and reflected by an island or a finite number of
isolated islands. They may also be refracted because of the change of water depth as
they approach these islands. According to the linearized mild-slope theory (Berkhoff
1972, 1976 and Smith & Sprinks, 1975), n(x) should satisfy the MSWE (2.3.8), i.e.,

V - (CCyVn) + k*CCyn = 0, (4.1.2)

together with boundary condition (Tsay & Liu 1983 and Chen & Mei 1974) along the

coastline [';:

cc, 9 —o, (4.1.3)

Qan i

and the Sommerfeld radiation condition (Sommerfeld 1949} at infinity

lim \/F(%nr—s — tkons) = 0, r=+/1% 4+ y?, (4.1.4)

T—00

where k = k(x) is the wave number, which is determined by the implicit dispersion

relation

w® = gk tanh(kh). (4.1.5)
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4.2 DRBEM and integral equations

The differential system (4.1.2)-(4.1.4) is usually defined on an infinite or a semi-
infinite computational domain, with incident waves coming along the z-axis from the
infinity. Such a computational domain is usually divided into two subdomains €2; and
Q, with £; denoting a finite inner region with variable water depth and 2, denoting
an infinite outer region in which there is a constant water depth.

The governing differential equations in these regions are of different forms and
they will be discussed separately. For simplicity, we only discuss constant boundary
elements in this section.

In the inner region ;: Let G = CC,. Since G(x) is weakly singular with its
limit being zero (see Appendix C) as the water depth h(x) approaches zero along the
coastline, Zhu’s method (Zhu 1993a) which requires both sides of equation (4.1.2) be

divided by G(x) is no longer valid. Instead, equation (4.1.2) should be rewritten as
V(Gn) + k2(Gn) = R(x), (4.2.1)
where

R(x) = (k2 —k%)Gn+ V- (1VG)
= (k2 - F)Gn+ VG- Vn+nV°G. (4.2.2)

Let n*(€,x) = i'Hél)(kop). By using the conventional BEM as shown in section

3.1, equation (4.2.1) can be written as

G Eme) —]f B—Gnn*dFJrji _ Glng” — ')l = “j[ RprdQ,  (4.2.3)
ot

To+T; an Qi
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where g(€,%) = #2, ¢" (€, %) = 212 and

In the outer region {),: Since the water depth is assumed to be constant in this
region, it is easy to see that the scattered wave 7, should satisfy the Helmholtz
equation

Vin, + kin, = 0. (4.2.4)

Using BEM, we can rewrite equation (4.2.4) as

o a L a i a g % an*
)+ [ (G -ngh)ar+ [ (Gew-aGl )= (@29

where n’ is the outward normal unit vector of the outer domain €, and

(o) 3 if ¢ € T,

0 if&e Q, + T,

By using the Sommerfeld radiation condition at infinity, the last term in equation

(4.2.5) becomes

N on* / . Bn‘)
Y — 7 i = ikt — Al 2.

Notice that we can write the fundamental solution when r — oo as (see Watson 1962)

7 2 . n
fag D D itk ) 4.2.7
g 4 wkpe ’ ( )

on" _on” _E 2 gt (4.2.8)
on dp 4V 7kp

So the last term in equation (4.2.5) vanishes.

which gives
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The continuity of the wave potential and flux across the common boundary T,

shared by 2, and §2; demands

n=n+7n,
I
q= _(%111%+%'}n7))

be satisfied on T',. Therefore, equation (4.2.5) can be rewritten as

/ (ng* —qn*)dl’ = go)n(ﬁ) - cgo)n’(é) +/ (n'q* — ¢'n*)dl, (4.2.9)

L2}

where ¢/ = %’*’ni.
Final integral equation: For simplicity, the two integral equations (4.2.3) and

(4.2.9) can now be merged into one

6G * *
ceG(E)n(€) -/ a—nn*dP+Gi/ (ng* — qn’)dl
To+D; Y11 r;
= G (€) - Go [ (n'q" —g¢'n")dl - o0 (4.2.10)
To .

with Go = G(X)Iro, Gi = G(X)

T; and

=< 1 if£el,,

Using DRBEM, we have

44l
/ R(x)n*dQ ~ Z o, [—C?)ﬁj(f) +/ (g;n" — ;4" )dT |,
8 j=1 Fo+T;

where n and m are the number of the collocation points on the boundary T'; and

T',, and [ is the number of the collocation points inside the domain Q. Consequently
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equation (4.2.10) can be rewritten as

oG
CEG(G)H(E)—/+F e dF+G/ (ng* — qn*)dl

n+m-+!
=3 o @+ [ G- g -
=1 T.+T; J
+G, [cf ' (&) — (n’q*—q[f)’)dl“] (4.2.11)
| N

Equation (4.2.11) involves boundary integrals only and after appropriate dis-
cretization, a linear system of algebraic equations involving the unknown function
n(x) on I'; + I, can be established (see Appendix A for details). To solve equation
(4.2.11) numerically with the DRBEM, a discretization process involving dividing the
boundary curves I', and ['; into a number of small elements and replacing the un-
known function by an interpolation function, would convert equation (4.2.11) into a
system of algebraic equations. Depending of the interpolation functions one adopts to
approximate the unknown function within each boundary element, the final form of
these algebraic equations will be different. We have adopted both constant elements
and quadratic elements in the numerical examples presented in the next section. See
Appendix A for details of the final matrix equation with constant elements. In equa-
tion (4.2.11), one also needs to calculate 8G/8z, 6G /8y, G /On and V*G. Since k(x)
is implicitly defined through the dispersion relation (4.1.5), the calculation was quite
involved and tedious, particularly when the possibility of zero water depth needs to
be taken into consideration. Therefore, we have listed the results of these calculations
respectively in Appendix B for the case of nonzero water depth and in Appendix C

for the zero water depth case.
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Once n{x} is solved numerically, the total (complex) instantaneous surface eleva-
tion can be found, through the definition:

((x,t) = n(x)e™™ = [ag(x) sinwt — by(x) cos wi]

+2 [ao(x) cos wt + bo(x) sin wi] . (4.2.12)

where ag(x) and by(x) are the real and imaginary parts of n(x) respectively. Hence

the physical surface elevation is the real part of this expression, that is

Cphys(x, t) = ap(x)sinwt — by(x) coswt, (4.2.13)

and the run-up is the maximum of (. (x, £}, this is, 1/[ao(x)]2 + [bg(x)]2.

4.3 Numerical examples

As a generalization of Zhu’s DRBEM model (Zhu 1993a) for nonzero water depth, the
GDRBEM model presented in this thesis includes both nonzero and zero water depth
cases. In order to test the new model for these two different cases, in this section we
shall present the calculated results of the wave amplification (relative run-up) around
coastlines for both Homma’s (1950) paraboloidal island with a vertical wall (see Figure
2.3) and three conical islands, Hawaii, Oahu and Small, without a vertical wall (see
Figure 2.2). Although Homma’s island has been used as a test example by Zhu (1993a)
for his DRBEM model, here we will test it again considering that the GDRBEM model
is shightly different from Zhu’s model in the formulation of the integral equation
system. In addition, to investigate the change of wave amplification from nonzero

water depth to zero water depth, a new group of conical islands stemming from
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Hawaii with various water depths along the coastline is designed and test results are
compared with zero-water-depth results of Hawaii.

Figure 4.1 shows the boundary element nodes and internal collocation points used
in the present GDRBEM method. We performed our numerical calculation with both
constant and quadratic elements and found that for long waves constant elements are
sufficient. For very short waves, results obtained with quadratic elements are far bet-
ter. Thus, we shall only present those results obtained with quadratic elements here
in this section. For both types of islands, 60 quadratic elements (with 120 boundary
nodes) are always used except in one case with the period T = 60 sec for Homma’s
island. In addition, 360 internal collocation points are always evenly distributed on
six inner circles where their radius are r; = e + ¢;(b— a} with ¢; being 0.10, 0.25, 0.40,

0.55, 0.65 and 0.80 forz: =1, ..., 6.

4.3.1 Homma’s island

As shown in Figure 2.2, an idealized island of circular cylindrical shape is surrounded
by an infinite ocean of constant depth everywhere except on the paraboloidal shoal, at
the centre of which the island stands. Plane monochromatic waves are incident, and
are diffracted and refracted by the island-shoal structure. Homma (1950) presented
an analytical solution of the shallow-water equation for this problem, which has been
employed by many authors as a comparison with various numerical solutions. For
example, based on the shallow-water equation, there are Vastano and Reid’s (1967)
finite difference model, Berkhoff’s (1972) finite element model coupled with a bound-
ary integral method and Bettess & Zienkiewicz’s (1977) hybrid finite element model.

On the other hand, based on the MSWE, there are Jonsson et al’s (1976) orthogonal
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collocation model, Houston’s (1981) finite element model, Tsay & Liu’s {1983) hybrid
finite element model, Zhu’s (1993a) DRBEM model and Poulin’s (1997) perturbation
DRBEM model.

Shown in Figure 4.2 is a comparison of the wave amplification around the coastline
of the island between Homma’s {1950) analytical solution and our GDRBEM solution
for incident waves with four different periods. As we can see, there is hardly any
noticeable difference between Homma'’s analytical solution and the GDRBEM solution
for 1440 sec and 720 sec. This is because when the periods are large, the water
depth becomes relatively small in comparison with the wavelength and consequently
the MSWE can be well approximated by the shallow-water equation, which is what
Homma’s solution is based on. As the period decreases, the difference between the
two solutions gradually increases. For 410 sec. incident waves, the difference between
two solutions has reached about 4%. For period T = 240 sec, Figure 4.3 shows
the comparison among Homma’s (1950) solution, Jonsson et al.’s (1976) orthogonal-
collocation solution, Tsay & Liu’s (1983) hybrid-element solution and the present
GDRBEM solution. The comparison shows that the agreement among the GDRBEM
results, Jonsson et al.’s (1976) results and Tsay & Liu’s (1983) results is very good.
However, all these three numerical solutions exhibit considerable differences with
Homma's (1950) solution. That is because Homma’s (1950) solution is based on the
shallow-water equation and others are based on the MSWE.

Generally speaking, cases with periods of incident waves being less than 160 sec.
are regarded as very severe tests for any numerical model since they are short waves
with high frequency. For incident wave with period T = 120 sec, the ratio of wave-

length to water depth is approximately 11. In order to achieve necessary accuracy,
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Houston (1981) not only had to carry out his calculation with 10,560 fine finite el-
ements on a CRAY-1 super computer, but also had to make use of the symmetry
property of this rather particular geometry and distributed those elements only on
half of the domain. For a general domain without symmetry to be utilized, he would
have to use 21,120 finite elements which would lead to a linear system with 21,600 real
equations. In this thesis, we merely used 60 quadratic boundary elements (with 120
boundary nodes) and 360 internal collocation points for all the calculations covering
the full domain. The total number of real equations is only 960. But as we can see in
Figure 4.4, our GDRBEM solution agrees excellently with Jonsson et al.’s (1976) solu-
tion. This excellent agreement among Jonsson et al.’s (1976) orthogonal collocation,
Houston’s (1981) hybrid element and our GDRBEM shows the present GDRBEM
method is not only highly accurate but also very efficient. On the other hand, we
can see again that Homma’s (1950) solution, which is based on the shallow-water
equation without frequency dispersion, becomes increasingly inaccurate for this short
wave case. This reflects, as suggested by Jonsson et al. (1976), that the long-wave
solution should not be used for incident waves of period less than 300 sec.

Recently, Homma’s island was also calculated by using the DRBEM by Poulin
(1997). Following Rangogni's (1988) original idea, Poulin (1997) solved the MSWE

with the following perturbation form

V2o + k2o =0, (4.3.1)
C ve, VC

2 2, _ 3.2 _1) = . g 3.2

V2 + k2p = 2k%¢, (Co 1) Vo (Cg,o + ) (4.3.2)

where wave potential ¢,, phase velocity C, and group velocity (|, , are corresponding

to the constant water depth h, and ¢ is corresponding to the real water depth h.
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Equation (4.3.2) is similar to the equation solved by Zhu (1993a), i.e.,

(4.3.3)

Vi +kip = (k; — K)o~ V- (VCQ 4 E) ,

C, C
but with a different right-hand side which is known after the equation (4.3.1) is solved
for constant water depth. Poulin thoroughly verified the perturbation method with
various geometries in Homma’s island. As a product of the depth approximation
made in the perturbation method, the accuracy of the results strongly depends on
both depth ratio h;/h, and wave period T. It is shown that the accuracy of the
perturbation method is overall satisfactory only for depth ratio not greater than 3
(see Figure 9.1-9.18, Poulin 1997). For Homma’s original island with depth ratio
being 9, which is the case tested here and in Zhu’s (1993a) model, the accuracy of
the perturbation solutions is acceptable only for relatively long waves with 7' = 1440
sec and T = 720 sec. Comparatively, the accuracy of Zhu’s DRBEM model and the
present generalization version is excellent for all the wave periods.

Furthermore, although there is no other known solution to compare with, the
wave amplifications around the coastline of the island for two very short incident
waves with their periods only being 90 sec and 60 sec were also calculated using the
present GDRBEM method. Considering the higher frequency of the incident wave
with T' = 60 sec, we doubled the number of quadratic elements on the boundary while
keeping the number of internal collocation nodes unchanged. Wave amplification
factors for these two periods are graphed in Figure 4.5. This shows that the wave
amplification factor, where the wave train is directly incident on the island (8 = 180°),
varies dramatically for T' = 90 sec and 60 sec, between 3.5 and 0.97, respectively. We
note that for T=120, a perfect comparison is obtained with Houston’s (1981) solution

and Jonsson et al’s (1976) solution and the amplification factor is 2, the theoretical
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short wave limit. This implies that the results for T = 90 sec and 60 sec are inaccurate,
as our rmodel is only valid for long waves.

As one can see in Figure 4.5, when the wavelength of the incident waves is very
short, say for the case of T = 60 sec, the calculated results show that wave amplifi-
cation factor never exceeds 2. Near the front side, the amplification is even less than
1. On one hand, it is well-known that the wave amplification should be theoretically
approaching 2 in the front side for pure reflection when the period T reached the
limit 0. If this theoretical limit result is really true even for the case T = 60 sec, it
means that the case of T = 60 sec is out of the validity of our model as the waves
are t0o short to be modelled by our GDRBEM and too much error might have been
produced. However, on the other hand, we can still argue that the period of 60 sec is
still far from the limit 0 and the corresponding wave amplification may not have to
achieve the amplification limit of pure reflection so early. Considering that this case
have not been calculated by any other wave model and there is no known result to
compare with, we leave it open and at this stage we assume that our numerical result
is correct. Then it shows that when short waves being diffracted by an island whose
diameter is of the same order as the wavelength, the diffraction becomes very much
a “localized” effect; short waves are not amplified as much as long incident waves.
Furthermore, we should notice that the maximum amplification now has shifted from
the front side of the island (the side that faces the incident waves) to the half way
between the front and lee side of the island. This information is useful in predicting

the location of the “worse hit” of a tsunami wave on an island.
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4.3.2 Conical islands

Conical islands were first studied by Lautenbacher (1970). In his paper, three indi-
vidual Hawaiian islands (Hawaii, Oahu and Small) were assumed to be conical (see
Figure 2.3) and are separately attacked by three different monochromatic, plane in-
cident waves. The geometrical parameters of the three islands and the parameters
of incident waves are tabulated in Table 4.1. Lautenbacher transformed the linear
long-wave equation into an integral equation and then solved it numerically. Smith
& Sprinks (1975) also used the same example to demonstrate the MSWE but only
presented the results for the shallow-water equation. Using a hybrid finite element
method, Tsay & Liu (1983) solved the MSWE for conical islands but only presented
two numerical solutions for Hawaii. Recently, an analytical solution of the shallow-
water equation for axisymmetrical conical island was worked out by Zhang & Zhu

(1994a).

Table 4.1 Parameters for Hawaiian islands and incident waves.

Islands | &(m) |&:a | hy(m) L:b L:h, T'{min)

Hawaii | 115781 [ 1.67 | 5487 | 2 4 |8 42.2 1 84.4 [ 169 | 17 | 34 | 69

Oahu | 92625 | 4.00 | 4573 | 2 4 |8 40.5 | 81.0 | 162 | 14 | 28 | 57

|
Small | 46313 | 4.65 | 5487 | 1.57 | 6.7 | 15.7 | 13.3 | 56.6 | 133 | 5 | 22 | 50

In this thesis, using the present GDRBEM method, both the MSWE and the
shallow-water equation are solved for three Hawaiian islands and various incident
waves. In Figure 4.6-4.8, wave amplification distributions along coastlines of three
islands are plotted. In Figure 4.6, an excellent agreement among our two numerical

solutions and Zhang & Zhu's (1994a) analytical solution is obtained for all three
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incident waves with their wavelengths being 2b, 4b and 8b, respectively. In Figure
4.7-4.8, excellent agreement among our two numerical solutions and Zhang & Zhu’s
(1994a) analytical solution is obtained for longer wave length cases, i.e., L = 4b and
L = 8b for Oahu and L = 6.7b and L = 15.7b for Small.

As pointed out by Jonsson ef al. (1976), the usually accepted shallow-water limit
in terms of wavelength to water-depth ratio is 20. In the case of Small, this gives a
limiting period of 410 sec or about 7 min. In the case of L = 1.57b for Small, the ratio
of the wavelength to the water depth is 13.3 (see Table 4.1) and the period is 5 min;
the incident wave is very short already. Therefore significant discrepancy between the
solution with frequency dispersion and that without frequency dispersion shown in
Figure 4.8 can be well explained. In the case of Oahu, the ratio of the wavelength to
the water depth when L = 2b is about 40.5, which is larger than 20, and this explains
why the circles fall right on the solid line in Figure 4.7.

On the other hand, some differences between the dotted line and circles, i.e., be-
tween Zhang & Zhu’s (1994a) analytical solution and the present GDRBEM solution
without frequency dispersion, can be noticed in the cases of L = 25 for Oahu (see
Figure 4.7) and L = 1.57b for Small (see Figure 4.8). Such differences can not be
explained by the ratio of the wavelength to water depth. We then investigated the
convergence of the numerical solutions in terms of the number of internal nodes as
well as the number of boundary elements. Shown in Figure 4.9-4.10 are convergence
test results for the Oahu Island. For quadratic elements, when the number of elements
is increased from 60 to 90, some improvement is indeed observed as shown in Figure
4.9. However, when we further increased the number of boundary elements and/or

the number of internal nodes to 120 and 540 respectively, accuracy started to worsen
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off again as shown by the dash-dotted line in Figure 4.9, this is probably because the
accumulation of round-off errors start to increase dramatically when the number of
internal collocation points and boundary elements increases to a level that the accu-
racy of the machine is reached or the collocation matrix ¥ in (3.2.4) is singular or
ill-conditioned. A similar behaviour has been observed for constant elements as well
as shown in Figure 4.10. Therefore, we had to conclude that the numerical solutions
did converge for the case of the Oahu Island. For the Small Island, our convergence
test results lead to the same conclusion.

Then the only plausible explanation of this discrepancy may be made when we
notice the fact that one of the integral equations in equation (4.2.11) becomes a
Fredholm integral equation of the first kind when the water depth becomes zero
uniformly on the coastlines for the cases presented in Figure 4.6-4.8. As pointed out
by Golberg (1978) and Power & Wrobel (1995) (also see Poulin 1997), in contrast
to the integral equation of the second kind, the troublesome feature of dealing with
integral equation of the first kind is that the problem is ill-posed, which means that
there is a lower bound for the size of boundary discretization. However, with the
same first-kind integral equation for the case of Hawaii, the problem doesn’t seem to
appear at all. Therefore, the intrinsic reason for such discrepancies in the cases of
Oahu and Small deserves a further investigation, which is currently undertaken and
the results will be reported upon its completion.

It is quite interesting to notice that for the case of Small, the solution from the
MSWE with the frequency dispersion exhibits the wave amplitude in the lee of the
island exceeding that in the front of the island. Although this rather unusual phe-

nomenon has been already observed by Jonsson et al. (1976) and by Houston (1981)
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for nonzero water depth, it has never been mentioned before for zero-water-depth
case.

Finally, to investigate the change of the wave amplification from nonzero-depth
water to zero-depth water around coastlines, we designed a new island stemming from
Hawaii with a circular cylindrical shape situated on a conical shoal as shown in Figure
4.11. Clearly, when h; = h,, this new island is actually a circular cylinder, which is
the case to which MacCamy & Fuchs’ (1954) analytical solution is applicable. On
the other hand, when h; = 0, this is the case with zero water depth on the coastline
and Zhang & Zhu’s (1994a) analytical solution becomes applicable if we keep the
water depth shallow enough. The relative run-ups are calculated using the present
GDRBEM method for the water depth h; along the coastline being 0, 0.01h,, 0.02h,,
0.05h,, 0.1h,, 0.2h,, 0.3h,, 0.5h, and h,. The solutions for L = 2b in all these
cases are presented in Figure 4.12 together with Zhang & Zhu’s (1994a) analytical
solution based on the shallow-water equation for the case of h; = 0 and MacCamy
& Fuchs’ (1954) analytical solution based on the Helmholtz equation for the case
of h; = h,. It can be seen that all the numerical solutions with different h; values
are nicely bounded between the two analytical solutions with the numerical solution
agreeing perfectly with that of MacCamy and Fuchs’ analytical solution at one end
and agreeing well again with that of Zhang and Zhu's analytical solution at the other.
Most significantly, what is exhibited in Figure 4.12 is the interaction between the
diffraction and refraction effects. When the total water depth as well as the incident
wavelength are held constant, the diffraction effects are significantly enhanced as the
slope of the shoal is increased. As one can clearly see from Figure 4.12, when there

is no shoal (h; = h,), there is no refraction and the maximum wave amplification is
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only about 2. The maximum wave amplification increases as the bottom slope does,
because of the 'convergence of rays’ at the island front. As h; decreases from h, to
zero, i.e., as the slope of the bottom shoal increases, not only does the maximum wave
amplification increase, but also the variation of wave amplification along the coastline
is significantly enhanced. Finally when h; = 0, the maximum wave amplification
reaches more than 5; the wave amplitude at the front side of an island will suffer the
worst effects of a tsunami wave. Results shown in Figure 4.12 have also verified that
our model correctly takes the zero-water solution as the limit of the nonzero water

depth solution.
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Figure 4.1: Nodes of quadratic boundary elements and internal collocation points
used in the GDRBEM.
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Figure 4.9: Comparison among Zhang & Zhu’s (1994a) analytical solution and various
GDRBEM solutions based on the shallow-water equation in the case of L = 2b for

the island Oahu: constant elements;



56

11 T
------- *i-- quadratlc (m n—60 I= 360) ‘
10— .._..’_. __________ ____....,..,. oy
----- -- quadranc (m n= 90 l 360) . :
T NS S —— S .{ S 5
DR = quadrauc (m n= 120 1= 540) ol
S B e i S =
g Zhang & Zhu (19943)
b= . n
=y
E n
L
[ =
x
g n
=
E
é .
p>
0 i ; i i : i i i
0 20 40 60 $0 100 120 140 160 180

Coast position (measured in degrees around island cenire)

Figure 4.10: Comparison among Zhang & Zhu's (1994a) analytical solution and var-
ious GDRBEM solutions based on the shallow-water equation in the case of L = 2b
for the island Oahu: quadratic elements.



o7

incident wave

incident wave fronts

Figure 4.11: This is the Hawaii island with a cylinderical top.



o8

Maximum wave amplification

H H H 0
]
0 20 40 60 80 100 120 140 160 180

Coast position (measured in degrees around island centre)

Figure 4.12: Comparison among zero-water solutions and various nonzero-water so-
lutions, including two analytical solutions from Zhang & Zhu (1994a) and from Mac-
Camy & Fuchs (1954) for two limiting cases.



Chapter 5

A weakly nonlinear wave model:

PDRBEM

In this chapter, the linear GDRBEM wave model is extended to a weakly-nonlinear
wave model, called perturbation dual reciprocity boundary element model (PDRBEM).
By using the perturbation method, the time-dependent nonlinear Boussinesq equa-
tions are transformed into three time-independent linear equations in section 5.1,
where no approximation for the seabed slope VA is used. The three linear equa-
tions are then solved sequentially by means of the linear GDRBEM described in
section 5.2. In section 5.3, we show that the formula for calculating the run-ups of
weakly-nonlinear waves is different from that for linear waves. In order to verify our
weakly-nonlinear PDRBEM model, thirteen cases of wave run-ups around a vertical
cylinder are tested in section 5.4 and four cases of wave run-ups around a conical

island are tested in section 5.5.

5.1 Governing equations

As illustrated in Figure 2.2-2.3, we consider the weakly nonlinear refraction and

diffraction of a plane monochromatic incident wave by an island standing on a seabed
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of otherwise constant water depth, h,. Cartesian coordinates with the (z,y)-plane
in the quiescent free surface and z positive upward are chosen. Since the monochro-
matic incident waves in the deep ocean can be generally regarded as linear waves, the

corresponding potential can be expressed as

Gne(2,3,1) = 7' (z,y)e™ = Aeflbremto=0hy-ut)

= A Zevﬁ”.]n(ko'r) cosn(f — 87 )e ™, (5.1.1)
n=>0

with A being the incident wave amplitude, w the angular frequency, k, the wave
number in constant-depth (h,) water, 8’ the angle of incidence with respect to the
x axis, and €, the Jocobi symbol (¢, = 1 for n=0 and ¢, = 2 for n;0). The waves
may be diffracted and reflected by the island and may also be refracted because of
the change of water depth as they approach the island.

Let ((z,y,t) be the water surface elevation and u(z,y,t) = (u,v) the depth-

averaged horizontal velocity vector. The following dimensionless quantities

1 S gho
(J‘J’ y’) = E(:E:y)’ C - 21 t’ = I t,
h h h L
hl - = IF — o , L— ¢ ) = ' 512
AV A R

are introduced with L being the wave length. For convenience the primes will be
dropped from here now. If the scale of the water depth is small in comparison with
the horizontal length scale and the wave amplitude is small compared with the water
depth, i.e.

p? = (ho/L)? < 1, e=Alh, €1, (5.1.3)

@ and ¢ may satisfy the so-called Boussinesq equations in dimensionless variables
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(Peregrine 1967)

U, + V¢ = —e(- V)a+ p2iV[V- (hi,)] - p?2 V(Y - 4),
G+ V- (ha) = —eV - (CT),

(5.1.4)

where two small parameters, € and p?, are assumed to be of the same order.
If we assume that @ and ¢ are harmonic, they can be written as the following
perturbation series

0 = To(z,y)e™™ + p2 Uiz, y)e™™" + ela(z, y)e ™™,

_ 7 _ (5.1.5)
¢ =mo(z,y)e™™" + p'm(z,y)e™" + em(z, y)e ™",
Then by substituting (5.1.5) into (5.1.4) and sorting out terms of the same order, the

following three groups of equations are obtained

—1wlg + V'I]‘o = 0,

(5.1.6)
—iwny + V « (hlp) = 0,
—iwly + V= ~iw§ V[V - (hig)] + w5 V(V - Go), (5.1.7)
—iwm + v * (hﬁl) = 0’
2 + T = — (G V),
2T + V7 = —(T - V)Tp (5.1.8)

—i2wmy + V - (hliy) = =V - (mollg),
after O(e2, u1) eu?) terms are ignored. From (5.1.5), the scattered wave field is given
by
—iwt —~twt + eng(:c,y)e":g“’t, (5‘1‘9)

¢z, y,t) = iz, y)e ™" + uPni(z, y)e

with
w=mn-7v, m=m, THh=7

And the reflecting boundary condition along I'; is

hii-n =0, (5.1.10)
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which is equivalent to
hi; - n =0, 1=10,1,2. (5.1.11)

We now simplify the equations (5.1.6)-(5.1.8). Firstly, eliminating G, in (5.1.6),

we get the first-order governing equation
V- (AVn) + wine = 0, (5.1.12)

which is the well-known linear long-wave equation. The corresponding boundary

condition (5.1.11) along the coastline T; is equivalent to

I _
han = 0. (5.1.13)

In addition, a far-field radiation condition must be specified to ensure that the first-
order scattered waves 73(x, y) behaves as outgoing waves propagating away from the

island. Sommerfeld (1949) gave the radiation condition as

— wmy) = 0, T =22 4+ y2. (5.1.14)

lim \/F(azo

oo ¥ N G,

Secondly, eliminating @; in (5.1.7), we have

V- (hVm) +w’n

h? h3
= WV [~ V(Y (ki) + o V(V - o)
h? R 1

= wV- [—?V(iwno) + FV(EVZWO)]
2 1
%(zm Vo + h*V7n0) + S8RV - V (V1) + h3V2(V2n,)]

2 1
= %[Qth - o + h(=Vh- Ve —w?ng)] + E[3h2\7h - V(V2n0) + RPV(VPng)]

w? 2 3

1 h
= —%hno + 5-hVh - Vi + %—Vh - V(V2n0) + Fv?(V?fno). (5.1.15)
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This gives the second-order equation for n,, which describes the dispersive effects, as

wih w?h h? h?
V-(hVm)+w?m = 5 Tt Vh-VnoJr7Vh-V(V2n0)+FV2(V2Uo)- (5.1.16)
Note that
on . h? ) h?
ha—nl- = wlhid; — 7V(V - (hilg)) + FV(V -0g)] - m

) ~ R _ h3 1

= iwlhl, - 7V(WT?O) + ‘G‘V(avzﬂo)] -n

2 3

o : 1

= wlhl, — ?'Lang + KEV(VQ%)] ‘1,

The boundary condition (5.1.11) along the coastline T'; is equivalent to

,Om b (V)

e (5.1.17)

As to the far-field radiation condition for the scattered wave 7, the Sommerfeld
radiation condition can also be applied. But, since (5.1.16) is an inhomogeneous
equation in an infinite region, we have to deal with a domain integral defined on the
whole infinite region if the Sommerfeld radiation condition is applied to. In order
to solve equation (5.1.16) numerically in a finite computational domain, an artificial
boundary B must be set up and some sort of non-reflecting boundary condition along
B need to be imposed. Since the 1970s, there have been many different non-reflecting
boundary conditions proposed. A good review article was written by Givoli (1991) on
these conditions. As the Boussinesq equations are weakly nonlinear long-wave equa-
tions with a small dispersive effect, we can choose a non-reflecting boundary condition
for non-dispersive waves, such as those proposed by Engquist & Majda (1977) and

Halpern & Trefethen (1988). In this thesis, we choose the artificial boundary B to
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be a circle and therefore use the following non-reflecting boundary conditions in the

polar coordinate system which was derived by Engquist & Majda (1977)

o o 1.
o + En + ﬁg =0, (5.1.18)

where R is the radius of the circle B and C is the phase velocity. In our case, this is

simplified to

om _ (_L N z-w) . (5.1.19)

Finally, eliminating G, in equation (5.1.8), we have
V - (hVm) + 4w’n,
= —2wV - (nollp) — V - (Ao - V)1y)
= —2V-(nVny) + %Vh- (Vg - V)V + ngh,v (Vg - V)Vno
= —2m - Vo~ 20V + 55 V- V(Y- ) + 5 h V(Yo Vi),
Hence the second-order governing equation for the term 7, which describes the non-

linear effects, is
1
V- (W'na) + 4&)27?2 = —2Vny-Vn — QWOVQHO + Q—wQVh -V (Vnp - Vo)
1
+—hV*(Vno - Vo). (5.1.20)
2w
As the boundary condition (5.1.10) along the coastline I';, we have
that is,
R 1 _
hVny-n = 2iwhiy-n—hV(-Gp- ) n

2
1
= ﬁh,V(Vno - V1) - 1,
w
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which gives
O, __h (Vg - V)
on  2w? on

h . (5.1.22)

In addition, as to the far-field radiation condition for scattered wave n,, the Sommer-
feld radiation condition cannot be applied. A suitable far-field radiation condition for
second-order scattered waves 7, at the second-harmonic has not been established. See
Rahman & Heaps (1983) and Kriebel (1990) for the discussion on this issue. Similar

to 7:, the corresponding non-reflecting condition for 7, along B becomes

om _ (_i + iQw) . (5.1.23)

It is worth indicating that, both the equations (5.1.16) and (5.1.20) for n, and
72 are inhomogeneous equations with their right-hand sides containing some partial
derivatives of 79 up to the fourth-order. All these derivatives will be approximated
by using the first-order numerical solution 7, and therefore large errors may result
in representing these higher-order derivatives. Generally, the higher the order of the
derivative is, the larger the error of the approximation is. In order to minimize these
errors, we need to further simplify (5.1.16) and (5.1.20). Introducing the transforma-
tion

h‘z
=m = 2V, (5.1.24)
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we have from the governing equation (5.1.16)

V. (hVﬁl) + w2ﬁ1

4 2 2h2 1
= —%hﬂo + %Wh Vi = 5=V = 2V - (R*VhV )
4 2 2p 1
— —%—hno + %wn Vo + ‘”T(Vh Vo + wno) + 5V - [AWR(Th - V1o + )]
wih 2w?h 1

:_3770

3
w? o, ) 1 h
= -3 [w?h -V - (RVR)] 1o + |w h+§v-(hw)} Vh-Vno+§Vh-V(Vh-Vno),

Vh-Vm+ V- (th)(Vh-Vno+w2no)+th-V(Vh-Vn0+w2770)

Hence, the second-order governing equation (5.1.16) is transformed into

2
1
V. (hV#H) + Wi = _% [w?h =V - (RVR)] o + leh +3V- (RVR)| Vh- Vg
h
+3Vh- V(Vh- V), (5.1.25)

which contains derivatives up to second-order only. The corresponding boundary

conditions along I'; and the non-reflecting boundary conditions along B now become

oi  hoh

an . 2 m 5.1.26
han 3 an(Vh Ve + w?no), ( )
and
an 1
FE = (‘ﬁ*’ tw) + fi(h, o), (5.1.27)
with
h {1 w2k Hmp
fith,mo) = 5 \2r ~ tw) (Vh - V1o + w? To) + 6 On +
hd(Vh-Vny) 10k
—— h-Vn + 5.1.28
+ 6 on +63 (V Tho w’?o) ( )
Similarly, let
. 1
T =" — 55V VY, (5.1.29)

2w?
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and the governing equation (5.1.20) for the second-harmonic now becomes
V - (hV1h) + 4w, = —4Vng - Vg — 219 V21. (5.1.30)

The corresponding boundary conditions along T'; and and the non-reflecting boundary

conditions along B, i.e., (5.1.22) and (5.1.23), respectively become

Ony
hEH =0, (5.1.31)
and
1547 1 . -
8_71]12 = (_ﬁ + z?w) e + fa(me), (5.1.32)
with

1 1 . 1 d
fo(mo) = 252 (—51—% + &w) Vo Vg — ﬁa_n(vm’ V). (5.1.33)

These three sets of linear differential systems are now solved with the DRBEM.

5.2 Formation of integral equations

To solve (5.1.12), (5.1.25) and (5.1.30) together with their boundary conditions effi-
ciently, we cast them into boundary integral equations. In this section, the integral
equations corresponding to (5.1.12), (5.1.25) and (5.1.30) are given.

The first-order solution. Let

7 (€%) = S Hy (wp)
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Similar to (4.2.11), the first-order equation (5.1.12) can be transformed into the fol-
lowing integral equation
ah * *
cehmo — 3507 dl' + h; [ mog'dl’
r,+r; 00 r;

= hoe”n" — by / (n'¢" — ¢'n")dl +
|
n+m-+i
+ Z P {cg 7’ / (@ - nj(o)q*)df]- (5.2.1)
F0+Pf

The second-order fundemental frequency solution. The equation (5.1.25) for the

nonlinear contribution at the fundamental frequency is
VA (hin) + w* (hin) = Ri(z,y), (5.2.2)

where

2

Ri(z,y) = wh—1)A+ Vh Vi +3V?h- % [w?h — V - (RVR)] mo +

h
+ luﬂh, + —;-v : (th)] Vh- Vi + 5 Vh-V(Vh V).

Let 25 be the domain between I'; and B. Then using DRBEM, equation (5.2.2) can

be transformed into the following integral equation

B oh ' 1 -
( ) n — ——- * — A * — * —
Ce hm /1" . [6n nn hnq } dl +/ h (2R zw) mn dl

h Oh *
_/ 35 (Vh Vot 200’ dT+/hf1(h,no)n dl
B
n+m+! (1) (1)
. o [ (B)T?J() / (@Mt - *)dl"} (5.2.3)
=1 I';+8
where

® 12(51 if ¢ el + B,
C£ -

1 if £ € 2g.
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The second-order solution for the second-harmonic. The governing equation (5.1.30)

for the second-harmonic can be rewritten as
V2(hii2) + dw?(hip) = Ra(z,y), (5-2.4)
where
Ro(z,y) = 4w(h— 1) + Vh- Vil + 5 V2h — 4Vng - Vigg — 279V 2np.

Let
m(€,%) = ZHé”(Spr)-

Using DRBEM, we can transform equation (5.2.4) into

3 oh . _ 1 ) - .
ch)hnz —/ [—772772 - hm%} dl + / h (— - ’5260) M2 dl — / h fa(mo)m2dl
r;+8 an B QR B
n+m-i l

-

i=1

B) . A2) e a(2) e
C§ 77 —/ (655 ~ nﬁz)qz)dl“] , (5.2.5)
r'i+8

where ¢; = %a(f.i)'

Equations (5.2.1)-(5.2.5) involve boundary integrals only, after appropriate dis-
cretization and approximation to all derivatives of ny, 7; and 79, a linear system of
algebraic equations involving the unknown function ny on ['; + ', + §2; or 7, and 7},

on ['; + B+{ls can be established. The details of such a system is similar to those in

Appendix A.

5.3 Run-ups of nonlinear waves

After iy, n, and 7, are solved numerically, the next step is to calculate the maximum

wave run-up. For the linear case, we have obtained in Section 4.4 that

max Conys (T, ¥, £) = max |((z, y, |- (5.3.1)
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For weakly nonlinear waves, according to expression (5.1.5), the total (complex) in-
stantaneous surface elevation is

—iwt 12wt

C(x,y,t) = molz,y)e ™ + WPni(z, y)e ™ + ema(z, y)e”

= (an(z,y) +ibon(z, y))e ™" + (az(z, y) + iha(z, y))e >
= (ap) coswt + by, sinwt) + i(bey coswt — ag sinwt) +

+(aq cos 2wt + by sin 2wt) + i(by cos 2wt — a, sin 2wt).
And the physical surface elevation is the real part of this expression, that is,

Conys{Z, Y, 1) = ag1coswt + by sinwt + a cos 2wt + by sin 2wt

= y/ad, + b sin(wt+ 6) + /a2 + blsin(2wt +6,), (5.3.2)

where .
tan~! %gll, if by, > 0,
-1la :
6 = 5 +tan Fgll, if gy < 0,
z if bp1 = 0, ag > 0,
—%, if b01 = O, ag, < O,
and .
tan! %f, if by > 0,
I 4 tan~l o2 if b, <0,
92 = ¥ 2 be
%, ifb, =0, a >0,
-3, if b, =0, a; <Q.
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Also in contrast to the linear case, the relationship (5.3.1) does not hold for the

nonlinear case. In fact, since

In(z,9,8)|*> = (ap1 coswt + by sinwt + ay cos 2wt + by sin 2wt)? +
+{bo1 cos wt — agy sinwt + (b2 cos 2wt — as sin 2wt)?
= aj +b +al+bi+
+2(ag; coswt + by sinwt)(ay cos 2wt + by sin 2wt) +
+2(bo1 coswt — apy sinwt)(by cos 2wt — ay sin 2wt)
= ap; + b3 +a2+b+

+2(ap1as + bo1b) coswt + 2(agi1by — byraz) sin wt, (5.3.3)

we have
max (e, OF =+ B+l 46
+2+v/(agray + borba)? + (agiby — bpras)?
2
= (\/agl + b3, +¢/al + bg) : (5.3.4)
Hence
max IC(z,y,t)| = \/a.%l + b3, + /a2 + b2, (5.3.5)

which is not the same as (5.3.2). Thus, to obtain run-ups of the nonlinear waves in

this thesis, we need to calculate the maximum value

max (\/agl + b2, sin(wt + 0,) + /a2 + b2 sin(2wi + 92)) :

Note that, the periods of sin(wt+#,) and sin(2wt +6,) are 2 and I, respectively, the
period of (ppys(z,y, t) is 35 and the maximum value of (,pys(2,y, ) must appear in

the interval [0, 22]. Numerically, we can easily find out the maximum value in [0, Z].
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5.4 Numerical examples

To test the PDRBEM model, we calculated wave amplification around coastlines for
both a vertical cylinder and a circular conical island and compared our results with
experimental data, linear theoretical solutions and other numerical solutions. For
simplicity, the incident angle #’ of the incident waves is taken to be 0° and all the

variables are now referred back to dimensional quantities.

Table 5.1. Parameters in Kriebel’s (1990, 1992a) experiments.

cases ko koo  koho L/h, ut € ko H

1 1.668 0.271 0.750 8378 0.0143 0.0880 0.132
2 0.1187 0.178
3 - 0.1433 0.215
4 1.895 0.308 0.853 7.366 0.0184 0.0498 0.085
5 0.0803 0.137
6 0.1067 0.182
7 0.1465 0.250
g 0.1735 0.296
9 2.302 0.374 1.036 6.065 0.0272 0.0589 0.122
10 0.0989 0.205
11 0.1380 0.286
12 0.1858 0.385

13 0.1940 0.402
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5.4.1 Diffraction around a vertical cylinder

For wave diffraction on a vertical cylinder, there have been many experiments con-
ducted for various cylinders and incident waves. However most of them only concerned
wave forces rather than wave run-ups. Data from wave run-up experiments are some-
what limited, only found in Laird (1955), Nagai {1973), Chakrabarti & Tam (1975)
and Raman & Venkatanarsaiah (1976). The cylinders studied in these literature are
usually small and the waves are usually linear waves with very small amplitudes
anyway.

Recently, Kriebel (1990, 1992a) developed a nonlinear diffraction theory for wave-
structure interaction to the second order where a set of experimental data of nonlinear
wave run-ups was presented and compared with his second-order diffraction theoret-
ical solutions. According to Kriebel (1990, 1992a), a total of 22 experiments were
carried out in a wave basin at the University of Florida Coastal and Oceanographic
Engineering Laboratory, in which wave run-up was measured for steep regular waves
passing a fixed vertical cylinder with a radius, a, of 16.25 cm in a water depth, A,
of 45 cm. The water depth ranged from nearly-deep water with L/h, = 2.478 to
nearly shallow water with L/h, = 8.378. And k,H values ranged from 0.085 to 0.806.
Since the governing equations used in this thesis are the Boussinesq equations which
are based on the assumption of shallow water depth and the requirement that the
nonlinearity ¢ = k,A be small, only cases 1 to 13 shall be examined as the water
depth ranged from shallow water with L/h, = 8.378 to near shallow water with
L/h, = 6.065 and the nonlinearity ¢ ranged from 0.0498 to 0.1940, see Table 5.1.

As the cylinder can be regarded as a special conical island, the toe T', of the

cylinder and the coastline T; are coincident. In our calculation, the artificial boundary
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B is taken to be a circle of radius R = 8a. For all the 13 cases, 16 quadratic elements
(with 32 boundary nodes) are used in each of the two boundary circles T'; and B and
72 internal collocation points are evenly distributed on six inner circles, the radius
of which are r; = a + ¢;(R — a) with ¢; being 0.10, 0.26, 0.42, 0.58, 0.70 and 0.86
for 7 =1, ...,6 respectively. The results of the wave run-ups by experiments (Kriebel
1992a), the linear diffraction theory (MacCamy & Fuchs 1954), Kriebel’s second-order
diffraction theory (Kriebel 1990, 1992a) and the present PDRBEM numerical model
are presented in Figure 5.1 to Figure 5.13.

First of all, as expected, the first-order solutions, ny(z,y), of the PDRBEM for
all 13 cases agree with the linear diffraction theoretical solutions (MacCamy & Fuchs
1954) very well. For clarity, all these first-order solutions are not graphed in these
figures.

Secondly, as shown in Figure 5.1 to Figure 5.13, the dispersive and nonlinear
contribution from the PDRBEM model are significant. It can be seen that, at the
front side (6 = 180°) of the cylinder, the linear diffraction theory badly underestimates
the maximum wave run-ups in all cases with measured run-ups exceeding the linear
theory by 13-78% and by 46% on average. In contrast, measured run-ups exceed the
PDRBEM solution by up to 16% but by only 7% on average. Furthermore, the run-up
distributions around the circumference are also poorly predicted by linear diffraction
theory whereas the agreements between the measured run-ups and the PDRBEM
run-ups are excellent in all thirteen cases. Especially, for cases 2-5 and 9-13, the
measured run-up profile is almost exactly replicated over all angular positions by the
current PDRBEM model.

Finally, we notice that the present PDRBEM solutions, in some cases, show an
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improvement over Kriebel's (1990,1992a) second-order diffraction theory. Kriebel’s
second-order model consistently underestimated the run-ups for cases 8, 10, 11, 12
and 13 with steep waves whereas our model gives a good prediction. It is believe that
this is due to different radiation boundary conditions in Kriebel's and our model.
Hence, at large nonlinearities, our model performs better.

In addition, as shown in Table 5.1, all 13 cases correspond to three different
wavenumbers. The corresponding linear (MacCamy & Fuchs 1954) and weakly-
nonlinear solutions of the wave run-ups for these four wavenumbers are separately
graphed in Figure 5.14 to Figure 5.16. In each group, although the amplitudes of all
the cases are different, the linear solutions are the same since they correspond to the
same wavenumber. However, as we can see from the weakly-nonlinear solutions in
all the three graphs, as the amplitude of the incident waves increases, the maximum

wave run-up increases.

5.4.2 Combined refraction and diffraction on a conical island

We now apply the PDRBEM model to the combined wave refraction and diffraction
on a conical island. Up to now, only two published experimental data on run-up of
periodic waves around conical islands are reported by Provis (1975) and Liu el al
(1994). Provis’ experiments were conducted in a small basin (5.55 m wide and 5.80
m long). The base diameter of the island was 3 m and the slope was 1:10. The water
depth in the constant-depth region in the experiments was 0.15 m. Provis reported
large discrepancies between his experimental data and theoretical results predicted
by Smith & Sprinks (1975). Sprinks & Smith (1983) pointed out later that because

of the relatively small size of the wave basin and the shallow-water depth, the viscous
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dampping and standing waves between the wave generator and the island contami-
nated the experimental results. In addition, in order to reduce the nonlinear effect,
the wave amplitudes were kept as small as possible, the incident wave typically hav-

ing a amplitude of 0.00005 m. Provis' experments are inappropriate for testing our

PDRBEM model.

Table 5.2. The parameters in the experiments used by Liu et al. (1994).

cases a b heo A T € 2

1 0.468m 1.65m 0.2950m 0.00250 m 4.5 sec 0.00846 0.00149
2 0.468m 1.65m 0.2955m 0.00085 m 2.5sec 0.00288 0.00483
3 0878 m 1.65m 0.1930 m 0.00285 m 3.0sec 0.01477 0.00219
4 0.862m 165 m 0.1970m 0.00235m 2.5sec 0.01193 0.00322

We chose the experiments reported by Liu et al. (1994) as numerical examples to
test our PDRBEM model. The experiments were performed at the National Defence
Academy (NDA), Japan. They were carried out in a small basin with 7 m width
and 11 m length. The base diameter of the island was 3.3 m and the slope was 1:4.
The water depth in the constant-depth region in the experiments was 0.1930 m to
0.2955 m. These conditions together with the parameters of the incident waves are
tabulated in Table 5.2.

In our numerical computation, for all these four cases the artificial boundary B
is taken to be the toe, T',, of the island. In addition, 20 quadratic elements {with
40 boundary nodes) are used in each of the two boundary circles I'; and T, and

72 internal collocation points are evenly distributed on six inner circles where their
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radius are r; = a + ¢;(b — a) with ¢; being 0.10, 0.26, 0.42, 0.58, 0.70 and 0.86 for
Jj=1,...,6, respectively.

In Figuré 0.17-5.20, the maximum run-ups are shown for experimental data, linear
theory (Zhang & Zhu 1994a) based on the linear shallow-water equation, the time-
marching finite difference scheme for the nonlinear shallow-water equations (Liu et
al. 1994) and the present PDRBEM based on the Boussinesq equations. As we can
see from Table 5.2, the nonlinearity is weakest in cases 1 and 2 while the dispersive
effects are weakest in cases 1 and 3. For cases 1 and 3 all the different theories lie
close together. For case 1 there is an excellent comparison with experimental results
while for case 3 there is some variation between the experimental results and theory
near the 120° region.

In cases 2 and 4, for which dispersion is important, Liu et al. (1994) results diverge
significantly from the other results. This is due to the fact no dispersive terms are
present in the nonlinear shallow-water equations. The present PDRBEM method
does extremely well in case 2 while there is some divergence between all the theories
and the experimental results near 8 = 0° for case 4.

Significant unexplained differences between the PDRBEM solutions and experi-
mental data are observed in both cases 3 and 4. These are the cases in which the
nonlinear effects are largest so perhaps neglected higher-order nonlinear terms are the

cause of these variations.
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Figure 5.1: Comparison among the experimental data (Kriebel 1990 and 1992a),
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear
run-ups for case 1 of cylinderical island.
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linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear
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Chapter 6

Conclusions

Firstly, a general numerical model for wave refraction and diffraction problems, based
on the MSWE, has been presented in Chapter 4. The model is an extension to
that in Zhu (1993a) with the assumption that the water depth must be nonzero
everywhere within the computational domain being completely removed. Numerical
results of the run-ups for both Homma’s paraboloidal island and three Hawaiian
islands have been calculated and compared with previous analytical solutions and
numerical solutions. The comparison shows the GDRBEM model is very accurate
for long waves (tsunami waves). It is numerically very efficient in comparison with
models based on finite elements too. Using the new model, we were able to examine
the interaction between the diffraction and refraction effects. It is shown that the
diffraction effect is significantly enhanced when there is a combined diffraction and
refraction than when there is just diffraction alone.

Then, in Chapter 5 of this thesis, a new numerical model, called the PDRBEM, is
also presented for wave diffraction and refraction governed by the Boussinesq equa-
tions. To validate this new model, wave diffraction by a vertical cylinder has been

calculated and the maximum wave runups around the cylinder have been compared
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with experimental results and linear solutions. It is shown that, for water depth rang-
ing from shallow water to near-deep water, the nonlinear effect of the new model for
steep waves with the steepness (k,H) ranging from 0.2 to 0.53 is significant. Then,
the model is applied to the combined wave diffraction and refraction by a conical is-
land. The nonlinear and linear wave runups around the conical island are calculated
and commented upon.

The PDRBEM model is useful for a number of reasons. Firstly it is more accurate
than linear models when the wave steepness is large enough for nonlinear effects to
be important. Moreover, since frequency decomposition has been used and the time-
dependent governing equations have been transformed into three time-independent
linear equations, our model does not require time-marching. Also, the dimensionality
in our model has been reduced by one because of the application of DRBEM. Hence
our model is much more computationally efficient than other numerical schemes which

include nonlinear effects.



Appendix A

Numerical discretization

Equation (4.2.11) can be discretized by dividing the boundary curves, T, and T'; into
a finite number of small sections, on each of which, the unknown function is replaced
by an interpolation function, resulting the integration on each of these “elements”
being carried out either analytically or numerically. Constant elements are the sim-
plest interpolation when the unknown function is assumed to be constant across each
element.

If the constant boundary elements are used, the discretized form of equation

(4.2.11) is then

n+m Tl ke
oG
ceG(E)m(§) — Z(a_nn”xkgfk +G; mekh{k -G Z(ﬂxkgfk
k=1 1 1
n+m+! _ n+m n+m
= ) o {C?)ﬁj(ﬂ + ) sl hes — > éj'xkg&] =
=1 k=1 k=1
n—+m n+m
” |: te) (I) 5) + Z Ui )|th§k - Z q( )|ng§k:| y (AO]-)
k=n+1 k=n+1
where
s = [ e, o= [ dlxar (A02)

After placing the source point £ in equation (A.0.1) at all n+m+1{ collocation points
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X;, one obtains a linear system of order n + m +{ as

[C = (G + G,)G,|U + Gi(H;U — G;Q)
= [(CY+ Hi+ H)U - (G, + Go)Q| F 'R +

+ G (C? —H,)UY + G, Q" (A.0.3)
where

C = diag(0.5G|y,, ..., 0.5G

Xp Gixn+1: ey G"‘m )!

. oG oG
Gn = d?.(lg(—a;‘x],...,galxm,o,...,(]),
{
c® = diag(0,...,0,0.5,...,0.5,0, ...,0),
' g(\.\,—/\_w_/\!,_)
n m
CY = diag(05,..,0.5,0.5,..,05,1,..., 1),
n m 1
U = (M Tegm) >
Q = ((AXU“')(”XmaO!"~70)T1
{
ud = (T]U)lx ot ;)T
17 3 me ¥

Q(;) _ ((](”|x],-.-,(}“)|xm10"“’0)T’

{

' ]

ﬁ‘n ces Tharm!




¢11 Glami
Gnm1 Inm nmi
0 0
0 0

nmixnml
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with pm = n + m, nml = n + m +{, and 7,; and §;; being the values of 7; and ¢; on

point x;, respectively, and

Furthermore, according to Partridge & Brebbia (1989}, we can express R as

M

Onmil

0

hi, O 0
hnmln 0 0
Ains1 hlﬂm
0 hpmind1 -+ Paminm
Jin 0 ... 0 0
Gpin 0 ... 0 0
Jin+1 J1am
0 gnmin+1 Inml nm

0
0
0
0
0
0
0
0

0

R = [K’G + VG + (G, F; + G,F)F'| U

amixnml

nmld

xnmd

(A.0.4)
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with
F, — {%] |
Oz amixnpmi
af;
F‘U = {#IX.] )
Y Jamixnmi
G = diag(Glxxa“-aGlxm):
oG oG
G:l: = ] A X1y ety e x
diag (5 |y - 5 bxams)
aG oG
G, = diag(—|x,,..., —
v d"ag( ay |X17 4 ay |xw)a
VG = diag(VGlx,, .., V:Glxy,),
2 g 2 2 2 2
K* = diag(k2 — F?lxys o k2 = K2, 0,000 0,62 — K25 vys oo K2 — K2 ).

T

So finally, equation (A.0.3) becomes

[C = (Gi+ Go)Gn + G:H; — S|U - G:G,Q = G [(CY — H,)UY + G,QY] (A.0.5)
with
S — [(c@ +H, +H,)U - (G, + GO)Q] F~' [K®G + V’G + (G, F, + G,F,)F].
By denoting
T=C—(Gi+Go)Gr+GH; -8, W=-G,G;, P=G,(C-H,), V=0G,G,,

equation (A.0.5) can be rewritten into a real linear system

( T, —T,-\ [ ReU W, -W, ReQ
+
\T: T, )\ ImU W, W, ImQ
( P, —P,-\ [ Reu® VvV, -V, ReQ(D
= +

P, P, Imu® VvV, V, ImQ)
\ J \
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with

T:Tf'{"iTi, W:Wr-}_iwﬁ

P'—_Pr-’r‘ip,', VZV,.-’er,

If other type of boundary elements are used, the corresponding discretized forms of

equation (4.2.11) will be slightly different.



Appendix B

G(z,y) and its derivatives for
nonzero water depth

Since

g 2kh
(z,y) ol ( +sinh2kh) (B0

is an implicit function with k(z, y) being implicitly defined by the dispersion relation:
gk tanh kh = w? (B.0.2)

the calculation of the partial derivatives G, Gy, G, and V2G is now quite involved.

For simplicity, let L(z,y) = k(x,y)h(x,y}. Using the dispersion relation, l.e.,

2
L tanhL:w—h
g

or
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we have the following fundamental relationships:

L,

where

w'/g .
tanh L + L/cosh? L °
gkw?
gw? — hw! + hg?k? ™
Clhza (B03)

w? —1/tanh’ L
¢ tanh®’[
w

|

I

C1Cohy, (B.0.4)

gwlkz(gw? — hw* + hg?k?) — gkw?(—w'he + ¢°k*h, + 2¢9°khk;)
(gw? — hw' + hg?k?)?

gw?C\Cy — C1(—w* + g%k? + 29%khC1Cy) (ho)?

gw? — hw! + hg?k? ’
gkw?C1Cy — Cik(—gw?Co + 2¢%khC,C5)

k(gw? — hw* + hg?k?)
gw? — hw? (ha)?

k(gw? — hw + hg?k?)* ™
Crhay + C2C3(h)?, (B.0.5)

Cihys + hs

Crhge +

Clh:::c + (h’I)Q

Crhay + C? - 2C,

—2¢gkk,
w2

)(h':r)2
C1Cohes + Calhe)?, (B.0.6)

CiCohgy + C2CoC3(he)* + Cy hy
2gk

w?

C1Cohyy + CECH(Cy —

ghkw? _ Wt gk
gw? — hwt + hg%k?’ g w

01:



C3 =2C,

gw?® — hw?

k(gw? —
(B.0.6), we have

So, from (B.0.3) to

g h w? 1 wrh
g, = 21(_-2 _ 1 _wh _
H{(3) [ ()] 2 () (7)€
1
£ )resie)
C1
- QT (2T, — CaTih)h,
with
2 4
oo W |
gk?h  g%k?
w?h w?
T, = (1—7)(1—!]%2)
Similarly, we also have
C
G, = 2% - GTibh,
n = %%(QTQ—C‘ZTIh)hn

Next, we have

2 — —
hu + hg?k?)’ Co=CCalCy = 7).

h 2
VQG = % {SITI — FkISQ <+ S;;TQ <+ ‘J;Lmsti} H

where

g h ol

= —(—=k:), S = ——,
Si ax( kL ) 2 a%ir
o0 1 _ Jiy

S3 = 2&(};%), Sy = o
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By simple differentiation, we obtain

S, = —[;C—kzhz — %ki + -]kzku],

Sy = ;‘,:—3[(2%)2 = %)kz - %Lz],

S5 = 27 Lex — 7y Laks),

Si = %2( “’k 1he %‘%(1 “’Tfh)kx

Note that in (B.0.1), there is a symmetry in x, y as far as derivatives are concerned,

so formulae for G, and G, are similar. The Laplacian of G(z,y) takes the form

or 92Ty, Tihoy,  [Tih W (2w° 1 )

w? 2T,  4w? w?h
— 1] — — VL -Vk
* [9hk4 2 g%k ( g )}

2wt [ wt T, }
—_— —1|VL.- VA - —VEk-Vh;.
Tk (92k2 ) k

Noticing that

VL
vk
[VE[?
VL -Vk
VL. Vh

Vk-Vh

we have

VG = %(cs,v?h + Cs|Vh[?)

C?C4|Vh|? 4+ C,V?h,
CiVh|? + C1Co V2,
CYC3I VAL,
C2C,|Vh|*,

C1|Vhi%,

C\C,|VR|?,

(B.0.10)
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Appendix C

G(x,y) and its derivatives for zero
water depth

Unlike all the derivatives worked out in Appendix B, which are relatively straight-
forward although the derivation was quite involved and tedious, care must be taken
when the water depth becomes zero as some limiting processes must be taken and

they can be quite subtle.

On Ty, since h(z,y) = 0, G(z,y) is singular. So we need to derive the asymptotic
formulae for G and its partial derivatives and directional derivative along I';.

Firstly, after a great deal of mathematical manipulations, we can obtain these

limits as
limG =0, lim k°G = w?,
h—0 h—0
2
lim = = 0, lim kL = <,
h—0 k h—0 g
1 1 1 1
1 —_ = - 1 —L == —h y
fim 2L = 5he, jm gl =3
h 1 h 1
Mk = —= lim =k, = —=h,,
him 2ks = —5ha hok YT 2
1 g . .1 g ;2
L= —L,, = ——h?
fmgle = gl Ml T T
. 1 392 2 - 1 _ 392 2
fim T5 ke = g5l Nm s = g
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As a consequence, we have

N N 01
A (&0
Cy 1
im— = = i =-1 C.0.2
ME Ty e (©02)
lim Cs = 2 lim Gy = — 2 (C.0.3)
oo 8T O A 3g o
Then we can find
M3 O = ghelr, 1 G = Pl
2 2 4us? 2
i = i - -2y y
lim Gy = ghalr,, im VG = (gV7h — —[Vh{")Ir,




Appendix D

Particular solutions used in

DRBEM

Consider the following Helmholtz equation
Vi + k*u = f(z,y,t,0, Uz, 1), (x,y) € Q. (D.0.1)

If DRBEM is used to solve (D.0.1) with the right-hand side approximated by a series
of RBF's with the form

[ = Zajrj, (D.0.2)
=0
then a particular solution of the equation
d*a; 1di; - ,
9r? Py + kS, =17 (D.0.3)

is needed for j = 0,1, ..., s, where 7 is the distance between a source point x and a

field point & in DRBEM.
It is easy to see that dg(r) = 1/k% If j > 1, according to Zhu (1993b), @; is given
by

i;(r) = —%Jo(k'r)/ tj“%(kt)dtJrng(kr)/; $3+1 7o (k) dt, (D.0.4)
0
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where Jo(kr) and Yy(kr) are the Bessel functions of the first and second kinds of

zeroth order, respectively. The first integral in (D.0.4) can be evaluated by using a

recursion formula

I (Yo(kr)) = [0 Yk = itk + La(n| -5 ake), (0.05)
where
I (Yo(kr)) = ZYi(kr), (D.0.6)
and
To(Yolkr)) =7 {Yo(kr) + % [ﬁo(kr)Yl(kr) - I;n(kr)yo(kr)] b (D.0.7)

with Hy and H,; being the Struve’s functions (Abramowitz & Stegun, 1965} of zeroth
and first order, respectively. The evaluation of the second integral I;,,(Jy(kr)) in
(D.0.4) is similar.

Further, by differentiating 4;(r) with respect to the boundary normal n, we have

ou;(r)  du;(r) or

= - D.0.
on Oor dn’ (D-08)
where
Qito(r) _ o, (D.0.9)
or
91,(r)

S = DR (kD) (Valkr) = SRV (kr) L (k). (D0.10)
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