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Abstract 

This thesis considers the refraction and diffraction of both linear and nonlinear waves. 

In the first part, a linear numerical model based on the dual reciprocity boundary 

element method (DRBEM) is presented for the study of combined diffraction and 

refraction of linear waves. This model is more general than that presented by Zhu 

(1993a) in the sense that areas or coastlines where the water depth is zero can be 

successfully dealt with. Our comparison study shows that the new model is very 

accurate for the propagation of long waves such as tsunamis. Moreover, it is numeri­

cally very efficient in comparison with models based on finite elements or differences. 

Using the new model, the interaction between the diffractive and refractive effects is 

examined. 

In the second part, a numerical model is developed by expanding the Boussinesq 

equations using a perturbation method and the DRBEM. Based on the assumption 

that the incident waves are harmonic, the time-dependent nonlinear Boussinesq equa­

tions are transformed into three time-independent linear equations, where no approx­

imation for the seabed slope is made. Then the first-order solution rjo is found as the 

solution of the linear shallow-water equation. The first-order solution is then used 

in the governing equations at second-order. By employing a transformation, all the 

third-order and the fourth-order partial derivatives of rjo in the right-hand sides are 

iv 



removed, resulting in the minimization of any errors which occur in approximating 

these derivatives. To validate the new model, the wave run-ups of weakly-nonlinear 

waves scattered by islands are found. Thirteen cases of run-ups around a vertical 

cylindrical island are considered and it is found that the nonlinear and dispersive 

contributions of the new model are significant and a much better comparison with 

experimental results is obtained than for the linear diffraction theory. The combined 

wave diffraction and refraction by a conical island is also modelled and discussed. 

Our model is found to be more accurate than other nonlinear models as the disper­

sive effects have been included, but is also more computationally efficient since there 

is no time marching and the spatial dimensionality of the numerical calculation has 

been reduced by one with the adoption of the DRBEM. 
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77o free surface elevation of Ist-order scattered waves without t ime-dependence 

rjl free surface elevation of 2nd-order scattered waves at fundamental frequency 

without t ime-dependence 

rj2 free surface elevation of 2nd-order scattered waves at double frequency 

without t ime-dependence 

0 velocity potential without t ime-dependence 

(j)^ velocity potential of incident waves without t ime-dependence 

(/>* velocity potential of scattered waves without t ime-dependence 
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Chapter 1 

Introduction 

Tsunamis are long waves generated by earthquakes, the eruption of volcanoes and 

any other kind of land movement on the bottom of oceans. While in the deep ocean, 

these waves have an amplitude of about half a metre, however the amplitude of the 

tsunami waves increase significantly when an island is approached, due to diffrac­

tion, refraction, reflection and shoaling. The recorded amplitude of the tsunamis in 

Okushiri Island of Japan (Hokkaido Tsunami Survey Group 1993) is 15.25 metres 

at the front side and about 10 metres at the lee side. Consequently, tsunamis often 

result in extensive property damages and death. For example, from 1992 to 1994, 

submarine earthquakes around the Pacific basin generated six large tsunamis: the 

Nicaragua tsunami on September 2, 1992; the Flores Island tsunami on December 12, 

1992; the Hokkaido Island tsunami on July 12, 1993; the East Java tsunami of June 2, 

1994; the Kuril Islands tsunami of October 4, 1994; and the Mindoro Island tsunami 

of November 15, 1994. They all caused extensive property damages and death of at 

least 1640 people (Liu et al. 1995). The most recent tsunami attack took place on 

August 17, 1998 at Papua New Guinea; more than 2,200 local residents were killed 

while many houses and roads were completely destroyed (see Gonzalez 1999). 



Because of the undoubted practical importance in understanding the propagation 

of tsunami waves, their run-ups on coasts, and their impact on coastal facilities, there 

have been many research and modelling activities in this area. Due to the problem's 

complexity, the governing equations, which consist of the Euler water wave equations, 

are simplified or approximated. Linear model equations include the Helmholtz equa­

tion, the linear shallow-water equation and the mild-slope wave equation (MSWE) 

(Berkhoff 1972, 1976 and Smith & Sprinks 1975). In the nonlinear regime, the non­

linear shallow-water equation, the nonlinear MSWE (Beji & Nadaoka 1997), the Airy 

equation (see Mei 1989), the conventional Boussinesq equations (Peregrine 1967) and 

various improved Boussinesq equations (Madsen & S^rensen 1992, Witting 1984 and 

Nwogu 1993) are used. 

Despite these simplifications, only a few analytical models have been obtained 

based on some very simple linear equations. Examples include MacCamy & Fuchs' 

(1954) solution of the Helmholtz equation for a cylindrical island standing in the 

middle of an open ocean with constant water depth, Homma's (1950) solution of the 

linear shallow-water equation for a circular island mounted on a paraboloidal shoal, 

Zhang & Zhu's (1994b) and Zhu & Zhang's (1995) solution of the shallow-water 

equation for conical and circular islands. However, all these solution techniques, 

which exploit the combination of simple boundary geometry and relatively simple 

form of the governing differential equation, fail when one has to face either non-

constant water depth, any nonlinearity, or a nonsymmetric geometry. Numerical 

solutions must be used to solve any nonlinear equation or the MSWE for a problem 

with variable water depth and bottom topography in general. 



Various numerical models therefore have been developed, which range from the nu­

merical integration (Vastano & Reid 1967 and Lautenbacher 1970), finite difference 

(Liu et al. 1994, 1995), finite elements (Bettess & Zienkiewicz 1977 and Houston 

1981), the orthogonal collocation (Jonsson et al. 1976), the conventional boundary 

elements (Au & Brebbia 1983) to the dual reciprocity boundary elements (Zhu 1993a 

and Poulin 1997). All these models, each focusing on a specific aspect of the prob­

lem, contribute to our understanding and modelling capability of this extraordinary 

phenomenon. 

In the linear region, the MSWE, as the starting point of many wave refraction 

and diffraction models, was independently derived by Berkhoff (1972) and Smith Sz 

Sprinks (1975). With the assumption that the bottom slope is mild and thus the 

mean water depth variation is moderate, they demonstrated how a three-dimensional 

problem can be well approximated by a two-dimensional one, using the perturbation 

expansion. This two dimensional equation, which describes the long wave propaga­

tion, is later referred to as the mild-slope wave equation (MSWE) by many researchers 

(see Jonsson & Skovgaard 1979). In Chapter 2 of this thesis, the derivation of the 

MSWE by Smith &c Sprinks (1975) will be briefly presented. 

The MSWE has proved a useful model for a wide range of water wave problems, as 

both refractive and diffractive effects have been included in this single equation. It is 

also an equation that takes many others as its special cases. For instance, the MSWE 

not only leads to the eikonal equation (giving the 'rays'), but also to a 'transport 

equation' (giving the amplitudes), see Jonsson (1979). In deep or constant depth 

water, it reduces to the Helmholtz equation. And in a shallow water case, it reduces 

to the linear shallow-water equation. According to Jonsson (1981), the MSWE is 



also less restrictive hence more convenient than ray approximation and parabolic 

approximation. 

The limitation of the MSWE is the assumption of the 'mild-slope' which restricts 

its application to seabed geometry of first order in bottom slope. However, Tsay & 

Liu (1983) showed that the MSWE can produce accurate results even for bottom 

slope as large as one in one. Booij (1983) further revealed that Tsay & Liu's (1983) 

discovery is correct for waves propagating parallel to the contours of a sloping bed, but 

for waves propagating normal to the contours of a sloping bed, the MSWE produces 

accurate results provided that the slope is less than one in three. 

Various extensions of the MSWE have been made in recent years. For example, 

Booij (1981) tried to extend the MSWE to include the effect of a current, but his ex­

tended MSWE actually contains an error as pointed out by Kirby (1984). Employing 

the Galerkin-eigenfunction method, Massel (1993) also extended the MSWE for the 

case where the bottom slope is not necessarily 'mild'. Kirby (1986), responding to the 

failure of the MSWE to approximate adequately wave scattering by singly and doubly 

periodic ripple beds, gave an extended MSWE. By keeping all the terms to second 

order, Chamberlain k Porter (1995) produced a modified MSWE which contains the 

original MSWE and Kirby's (1986) extended version as special cases. More recently, 

using some interfacial jump conditions at locations where the bed slope is discontin­

uous to ensure continuity of mass flow there. Porter & Staziker (1995) obtained an 

extension of the MSWE, the application of this new version revised Booij's (1983) 

estimate of the maximum slope gradient from one in three to one in one. 

Because of its advantages, the MSWE has become a popular basis for calculat­

ing surface waves on slowly varying depth. Several numerical approaches have been 



developed to solve the MSWE. For example, following Chen & Mei's (1974) work in 

solving the Helmholtz equation in a constant depth region, Bettess & Zienkiewicz 

(1977) and Houston (1981) developed the so-called hybrid method for the MSWE, in 

which an infinite computational domain is divided into two: an outer region where 

infinite elements (Bettess & Zienkiewicz 1977) or eigenfunctions (Houston 1981) can 

be adopted and an inner region where finite element or difference techniques can be 

used to obtain solutions. Excellent results were reported for problems concerning 

wave scattering by islands as well as harbour oscillations. Most of the subsequent 

work differs only on the treatment of the outer domain. Tsay & Liu (1983) also used 

eigenfunctions in the outer domain to calculate wave forces and moments acting on 

a floating dock. However, as the MSWE is of the elliptical type, the amount of data 

and hence the size of the coefficient matrix become very large when finite element and 

hybrid element methods are used, therefore the computation becomes very expensive 

as shown by Houston (1981). 

The boundary element method (BEM) only requires a discretization on the bound­

ary of a computational domain and it is popular to solve wave propagation problems 

with constant water depth (see Hwang k Tuck 1970, Au k, Brebbia 1983 and Zhu & 

Moule 1994). However, when the water depth becomes a variable, the conventional 

BEM seems to be powerless because that a domain integral arises and the domain 

has to be discretized, which destroys the computational advantage of the conventional 

BEM. 

The most powerful approach to convert domain integral to boundary integral is 

the so-called dual reciprocity boundary element method (DRBEM) which was first 

proposed by Nardini k Brebbia (1982) and later improved by many others such as 



Partridge k Brebbia (1989) and Zhang k Zhu (1994b). By expanding the right-hand 

side in the governing equation as a series of interpolation functions, the particular 

solution of the governing equation is approximated by a series. Then Green's reci­

procity theorem can be used twice in the right-hand side and the domain integral is 

successfully converted into a boundary integral. For the completeness of this thesis, 

we shall briefly introduce the DRBEM and some related topics in Chapter 3. 

Having realized the great potential of the DRBEM, Zhu (1993a) first applied 

it to wave diffraction and refraction problems. He argued that the DRBEM model 

showed a great advantage in numerical efficiency over hybrid element models, in terms 

of both computational time and computer memory required. For example, for the 

case of Homma's island (Homma 1950) with incident wave of period T = 120 sec, 

Houston (1981) had to carry out his calculation with 10,560 elements on the half of 

a symmetrical domain. For a general domain without symmetry to be utilized, he 

would have to use 21,120 elements which would lead to a linear system with 21,600 real 

equations. However, using only 60 quadratic boundary elements (with 120 boundary 

nodes) and 192 internal collocation points for all the calculations covering the full 

domain, Zhu (1993a) has obtained a very accurate result comparing with the results 

presented by Jonsson et al. (1976) and Houston (1981). 

Recently, another DRBEM model for wave diffraction and refraction was proposed 

by Poulin (1997). Following the idea of Rangogni (1988), varying water depth is ap­

proximated with a perturbed constant depth in the MSWE, thus the domain integral 

which is a result of the varying depth is no longer a function of the unknown wave 

potential but only a function of position and the constant depth wave potential. She 



argued that this leads to significant reduction of the number of unknowns in the re­

sulting system. It is shown that the accuracy of the solution increases with increasing 

wave period and with decreasing the depth ratio, as is expected for a perturbation 

method. However, since the equation solved by Poulin (1997) is only an approximate 

form of the MSWE, the accuracy of the solutions, as shown in the verification of the 

model for Homma's island, is satisfactory only for seabed geometry with a depth ratio 

not greater than 3. For Homma's original island with a depth ratio of 9, the accu­

racy is acceptable only for long waves. Hence, Poulin's (1997) perturbation DRBEM 

model is not as accurate as Zhu's (1993a) DRBEM model. 

Unfortunately, in Zhu's DRBEM model, there is a restriction that the water depth 

is always nonzero. This assumption narrows the range of application of the DRBEM 

model in comparison with its hybrid covmterparts. In Chapter 4 (see also Zhu et al. 

2000), as the first objective of this thesis, a general DRBEM model (GDRBEM) is 

presented, which is an extension of Zhu's DRBEM model to cases where zero-water-

depth coastlines are allowed. The generalization involves some special treatment on 

the limiting values of the product of wave velocity and group velocity. To test our 

new model, wave refraction and diffraction scattered by both paraboloidal island and 

conical island are calculated. It is shown that the GDRBEM model is very accurate 

and computationally efficient. 

Although many numerical models have been developed for the problem of wave 

diffraction and refraction, the range of water waves that can be treated by most of 

these models is very restricted, being essentially limited to small-amplitude waves, 

described by linearized shallow-water wave equations, such as the Helmholtz equation, 

the linear shallow-water equation or the MSWE. Although the results of these models 
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based on linear governing equations may often provide some good approximation to 

the wave diffraction and refraction process, in reality, the experimental results suggest 

that the linearized theories give quite large errors in many practical situations. In 

fact, tsunamis are dramatically nonlinear in their final run-up stage. 

Based on the Boussinesq equations, a time-marching finite-difference method was 

developed by Abbott et al. (1978), and further extended and tested by Abbott et 

al. (1984) and Madsen k Warren (1984). Rygg (1988) proposed a line by line itera­

tive method for nonlinear Boussinesq equations. Based on Nwogu's (1993) improved 

Boussinesq equations, Wei k Kirby (1995) developed a high-order numerical model 

where they used a fourth-order predictor-corrector scheme for time stepping and dis­

cretized the first-order spatial derivatives to fourth-order accuracy. Recently, based 

on the nonlinear shallow-water equations, a time-marching finite-difference method 

was proposed by Liu et al. (1994, 1995), who studied the run-ups of both solitary 

waves and periodic waves around a conical island and compared numerical and ex­

perimental results. However, clearly, all these kinds of time-marching finite-difference 

schemes require significant computational effort. 

As the second object of this thesis, in Chapter 5, the linear DRBEM model 

is further extended to apply to weakly-nonlinear shallow-water waves. A weakly-

nonlinear wave model, called the perturbation dual reciprocity boundary element 

method (PDRBEM) wave model, will be developed to solve the Boussinesq equa­

tions for periodical incident waves. By using the perturbation method and the as­

sumption of harmonic waves, the time-dependent nonlinear Boussinesq equations are 

transformed into three time-independent linear equations, which greatly improves the 

computational efficiency. Moreover, the three linear equations are sequentially solved 



by means of the linear GDRBEM method. In order to validate our new model, thir­

teen different cases of wave run-ups around a vertical cylinder for are calculated and 

compared with experimental data, linear diffraction theoretical solutions (MacCamy 

k Fuchs 1954) and the second order diffraction theoretical solutions (Kriebel 1990, 

1992a). It is shown that the nonlinear and dispersive contributions of the new model 

are very significant and that the new model provides a much better comparison with 

experimental results than does the linear diffraction theory. And in some cases, the 

PDRBEM solutions are even better than the second order diffraction theoretical so­

lutions (Kriebel 1990, 1992a). Furthermore, four cases of combined wave diffraction 

and refraction by a conical island are also tested. The run-ups from the PDRBEM 

are compared with experimental data, the linear theoretical solutions (Zhang k Zhu, 

1994a) and numerical solutions based on the nonlinear shallow-water equation (Liu 

et al. 1994). It is shown the agreement between the PDRBEM solutions and experi­

mental data is satisfactory. 



Chapter 2 

Basic theory 

2.1 Wave shoaling, diffraction and refraction 

As shown in Figure 2.1, water waves are characterized by their height, i / , their length, 

L and their period, T. The wave height H is the distance between the trough (lowest 

part) and crest (highest part) of the wave. The wavelength L is the distance between 

two consecutive wave crests (or troughs). And the wave period T is the time for 

two consecutive crests to pass a point. In addition, phase velocity C of the waves is 

defined as the wavelength L divided by the wave period T since the waves have to 

travel one wavelength every wave period. 

During the propagation of water waves, three main phenomena, shoaling, refrac­

tion and diffraction can occur. Generally, if the ratio of water-depth to wavelength 

is less than 1/20, then the waves are considered to be in shallow water. In the 

deep ocean, tsunamis (earthquake-generated waves) are also considered shallow wa­

ter waves (Bascom 1964) due to their long wavelength. When waves move over shallow 

water, shoaling occurs. In shoaling there is first a slight decrease in wave height (cor­

responding to a maximum in group velocity), then the wave height increases and the 

wave period remains the same when the waves propagate in smaller water depth. 

10 
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h(x,y) 

w 

0 

u 

Figure 2.1: Coordinate system and definitions. 

Also, the waves begin to feel the bottom of the ocean, which also contributes to the 

decrease of the wave speed C and wavelength L. When the wave crest becomes too 

steep, it becomes unstable, curling forward and breaking. This usually happens when 

the height of the wave becomes about the same order as the local water depth. That 

is, a 10 cm high wave usually breaks in about 10 cm of water. 

Wave refraction is the bending of crests of waves because of varying water depths 

underneath. The part of a wave in shallow water moves slower than the part of a 

wave in deeper water. So when the depth under a wave crest varies along the crest, 

the crest bends and wave direction changes. An example of refraction is when waves 

approach a straight shoreline at an angle. The part of the wave crest closer to shore 

is in shallower water and moving slower than the part away from the shore in deeper 

water. The wave crest in deeper water catches up so that the wave crest tends to 

become parallel to the shore. See Fig. 27 in Bascom (1964). Wave refraction also 

occurs around a circular island. A wave approaching from one direction will wrap 
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around the island and the wave crest will approach the beach parallel to all tangents 

of the boundary of the island. See Fig. 28 in Bascom (1964). 

Diffraxjtion usually happens when waves suddenly encounter a steep-sided obstacle 

such as a breakwater or an island rising abruptly from the depth. It seems that on 

the lee side of the island, the water would be perfectly calm. However this is not 

true. As the waves pass the obstacle, some of their energy is propagated sidewise 

as the wave crest extends itself into the so-called 'shadow zone' (Fig. 26, Bascom 

1964). The turning of the waves into the sheltered region is due to the changes in 

wave height (say along the crest) in the same wave. If the sides of the obstacle are 

sloping under the water, then refraction would also be present. 

2.2 Governing equations 

Consider now the problem where a fixed surface-piercing island of some kind is placed 

on an uneven ocean bed and periodic surface water waves are propagating with phase 

velocity C toward the island, as shown in Figure 2.2-2.3. The instantaneous surface 

elevation is denoted by C,{x^ y,t), which is measured positive upwards with zero at the 

mean surface level (MSL). The water depth is denoted by h{x,y). For convenience, 

the coordinate system is chosen so that the incident waves propagates in the positive 

x-direction. Then, with the assumption that the fluid is incompressible and flow 

is irrotational, the governing equation for the wave field ^{x,y,z,t) is the Laplace 

equation 

V ^ , + | ^ = 0 . V = ( | . ^ ) . (2.2.1) 
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incident wave 

3 
O 

o a 

o s 

Figure 2.2: Periodical waves scattered by a circular island with a paraboloidal shoal 
(a = 10,000m, b = 30,000m, ho = 4,000m and hi = 444m). 

The Laplace equation is an elliptic-type differential equation and therefore to solve it 

we need the following conditions on all the boundaries of the domain: 

— -h V $ • V/i = 0, 
oz 

d^ 
— 
dt 

-1-
1 
— 
2 

iV.p.(f + K = o, 

z = -h{x,y), 

z = C{x,y,t), 

z = C{x,y,t), 

(2.2.2) 

(2.2.3) 

(2.2.4) 

where g is the acceleration due to gravity. Other conditions satisfied by $ and C? such 

as those to be applied on lateral boundaries or asymptotically if the fluid extends to 

infinity, do not immediately concern us in this chapter and will be discussed later. 
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Figure 2.3: Periodical waves scattered by a conical island. 

The above system of differential equations has nonlinear free surface boundary 

conditions, so it is impossible to find an analytical solution. Therefore, numerical 

solutions are usually resorted to. However, because the Laplace equation (2.2.1) is 

three-dimensional and elliptic, the computational effort is very high. Therefore many 

two-dimensional approximation versions have been developed. In linear regime, the 

most powerful one is the so-called mild-slope wave equation (MSWE), and in nonlin­

ear regime, the most popular one is the Boussinesq equations. 
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2.3 The mild-slope equation 

The MSWE, in which refractive and diffractive effects are combined, was originally 

proposed by Eckart (1952) with a shallow-water restriction. Later, the equation was 

rederived independently by Svendsen (1967) in one dimension and by Berkhoff (1972, 

1976) in two dimensions without restriction on the water depth. But according to 

Houston (1981), the two-dimensional wave equation derived by Eckart (1952) does 

not reduce to the linear shallow-water equations derived by Svendsen (1967) and by 

Berkhoff (1972,1976). Other derivations are given by Smith and Sprinks (1975) and 

by Lozano k Meyer (1976). The MSWE was also derived by Booij (1981) using Luke's 

variational principle. Here we introduce the main steps of the derivation by Smith 

and Sprinks (1975). 

According to Mei (1989), the assumptions that the wave slope e = kA is small, 

i.e., € ^ 1 and the separation of the harmonic time dependence e~*'̂ * from Ci^^y^t) 

and ^{x,y,z,t), i.e., 

C(x, y, t) = 77(x, y)e-'^\ $(a:, y, z, t) = 4>{x, y, z)e-'^\ (2.3.1) 

lead the nonlinear equations (2.2.1)-(2.2.4) to be simplified into 

^ '̂  + V '0 = 0, -h{x, y)<z< 0, (2.3.2) 

dz 

dz g 

The MSWE of Berkhoff (1972, 1976) is a depth-integrated version of the Laplace 

equation (2.3.2). By assuming that the water depth variation is moderate, i.e.. 

^ + V0-V/ i = O, z = -h{x,y), (2.3.3) 

^ - ^</. = 0, ^ = 0. (2.3.4) 
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\Vh\/{kh) «C 1, the velocity potential may be written as 

0(x,,,z) = ^^2(M)/(,,ft), 

where 

with / satisfying 

f{z, h) = 
cosh k{z -^ h) 

cosh kh 
ijp' = gkt&nhkh, 

5V + k'^f = 0^ -h{x,y) <z <0, 

— = 0, z = -h{x,y), 

dz ^ -̂  ^' 
2 = 0, 

and A; and h referring to their local values. 

Employing the formula of integration by parts, i.e.. 

/:[ (d'<t> 'd^f 

^ la# - ''V - Hi^ - '̂ .̂ dz 
dz dz 

l O 

we have 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

[ /(A;V + V^0)dz--[/V/i-V0]|_,. 
J -h 

By calculating V0 and V'^ij) from (2.3.5) and inserting into (2.3.11), we have 

7/). . V7i/'2| , --ni^hS^i 
dh 

(2.3.11) 

-0 

-h dh 
fVrj + 2/̂ V77 • Vh + vf^iVhf + TifUv'h + k'rjf 

dh 

= -Vh-VvfU-v{^h)'f^U. 

dz 

(2.3.12) 

Note that Vh/{kh) -C 1, we can ignore all the terms of order (V/i)2 and V'^h and 

rewrite (2.3.12) as 

-0 

fdz 1 V77 
'-h / 

A + fcM / fdz) 77 = 0. (2.3.13) 
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That is the MSWE 

where 

V • (CCgVr)) + k'^CCgT] = 0, (2.3.14) 

C = w| tanhfc/ i , (2.3.15) 

are the phase velocity and the group velocity, respectively. 

It is easy to see that C = Cg •^ ^fgh and a;2 ŝ  k?gh in shallow water, the MSWE 

(2.3.14) becomes to the linear shallow-water equation 

V • (W77) + —77 = 0. (2.3.17) 

9 

On the other hand, in constant-depth water or in deep water, C w y/g/k., Cg — \C 

and a; w \fgk, the MSWE (2.3.14) reduces to the Helmholtz equation 

V277-f-A:277 = 0. (2.3.18) 

2.4 The Boussinesq equations 

Due to strong interactions with bottom topography, waves observed in the nearshore 

zone are almost always nonlinear and, as it is obvious from the frequent occurrence 

of whitecapping and breaking, nonlinearity is usually quite high. Realistic modelling 

of these waves must therefore account for these nonlinear interactions. Among many 

weakly-nonlinear shallow-water equations, the most powerful one is the Boussinesq 

equations. 

Originally, the Boussinesq equations are derived by Boussinesq (1872) which is 

valid for a constant water depth. Mei k LeMehaute (1966) extended it to a varying 
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water depth. Peregrine (1967) derived the equations by using perturbation method. 

Based on the assumption that the scale of the water depth is small in comparison 

with the horizontal length scale, the wave amplitude is small compared with the water 

depth, i.e., 

e = A / / i o < l , /i2 = (/i„/L)2 < 1, (2.4.1) 

and iJ? — 0(e), the Boussinesq equations of Peregrine (1967) take the following 

dimensional forms: 

u, -h ̂ VC + (u • V)u = f V[V • (hv.t)\ - f V(V • u,), ^ 

C* + V • [(/i + C)u] = 0. 

where (^(x, y, t) is the free-surface elevation and u(a;, y, t) the depth-averaged horizon­

tal velocity vector. 



Chapter 3 

The dual reciprocity boundary 
element method 

The dual reciprocity boundary element method (DRBEM) was first proposed by Nar­

dini k Brebbia (1982) and was further extended by many authors such as Nardini 

k Brebbia (1986), Partridge k Brebbia (1989) and Zhang k Zhu (1994b). A great 

advantage in using DRBEM is that the elegance of the traditional BEM, i.e., only 

boundary integrals need to be carried out, is well preserved. The fundamental math­

ematical theories of DRBEM have been explained in detail by Partridge et al. (1992). 

Only its main points are therefore outlined here. 

3.1 Conventional B E M 

Consider the general inhomogeneous Helmholtz equation 

V'^u-\-X'^u = R{x,y,u,u^,Uy) (x,y) G Q, (3.1.1) 

where Q € R** is the domain to be considered with boundary V. Here we only consider 

two dimensional case d = 2. 

19 
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Let X = {x,y). It is well-known that the fundamental solution of the Helmholtz 

equation 

V^u + ÂM =-(5(x - ^) (3.1.2) 

is the Hankel function of the first kind of zero order: 

u*{tx) = ^Hi'\Xp) 

with p= ||x — 1̂1 being the distance between a source point ^ and a field point x. 

For any fixed source point ^, multiplying both sides of equation (3.1.1) by the 

weighting function w*(^,x) and using the Green's second identity, i.e., 

/ iu*V\ - uV'u*)dn = /(l^'u* - u^)dT, (3.1.3) 
Jn JT d-a. On 

we can rewrite equation (3.1.1) as 

- f w(x)5(x - ^)dn + f {qu* - uq*) dV^ ( Ru*dn, (3.1.4) 
Jn JT Jn 

where q{(, x) = ^ ^ ^ ^ and q*{^, x) = ^'^^'"^^ with n being outward normal unit vector 

along the boundary F of the domain 17. 

For the source point ^ inside the domain fi, equation (3.1.4) now becomes 

-u iO + [ (QU* - uq*) dT= [ Rv*dVt. (3.1.5) 
JT Jn 

For the source point ^ is on the boundary F (see Figure 3.1), equation (3.1.4) can 

be easily modified as 

- M ( ^ ) -I- lim / {qv* - uq*) dT + lim / (qu* - uq*) dT 

= f Ru*dn, (3.1.6) 
Jn 
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where, as shown in Figure 3.1, Fj is the circular arc from point A to B with the 

radius p — e and the centre being located at the source point ^. The limit for the 

first integral in (3.1.6) is 

lim / {qu* - uq*) dT = {qu* - uq*) dT. 

While the limit for the second integral can be written as 

lim / {qu* - uq*) dT = q{^) lim / u*dr - u{^) lim / q*dr. 

(3.1.7) 

(3.1.8) 

Figure 3.1: The source point ^ on boundary. 

In order to calculate the two limits in the right-hand side in equation (3.1.8), we 

expand the Hankel function up to the order (A;p)̂ , which is given by 

« - K , x ) « - ^ 7-f-ln 
kp^ 

(3.1.9) 

where 7 is the Euler's constant (7 = 0.577216...) and hence 

du* du* 1 
9*(^,x) 

dn dp 211 p' 
(3.1.10) 
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Substituting (3.1.9)-(3.1.10) into (3.1.8) which gives 

lim / {qu* -uq*)dT 

= 9(0 lim r l - ^ ( j + \n^)+^]ede-u{^)\im f ^edO 

= ^ ^ ( 0 , (3.1.11) 

where a = a{^) is the internal angle of the boundary at point ^. 

Hence for the point ^ inside the domain Q or on the boundary F, the boundary 

integral formulation can be uniformly written as 

-c^w(0 + / {qu* - uq*) dT = [ Ru*dVt, (3.1.12) 
JT Jn 

with 

\ 1, i f ^ e n . 

Equation (3.1.12) contains domain integral on the right-hand side if i? 7<̂  0. For 

some special cases such as a particular solution it. to equation (3.1.1) has been found 

(a particular solution to (3.1.1) is a solution which does not necessarily satisfy the 

given boundary conditions), the domain integral can be directly transformed into 

equivalent boundary integrals by using the Green's second identity again. Since for 

general R the particular solution it. is difficult to find, the calculation of the domain 

integral becomes unavoidable. To overcome this, Nardini k Brebbia (1982) proposed 

the powerful DRBEM, which will be briefly described in next section. 
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3.2 Domain integral 

The main idea of DRBEM is using a linear combination of a series of particular 

solutions to approximate the particular solution u to equation (3.1.1). To achieve 

this, the right-hand side function Rin (3.1.1) is expanded to a series of interpolation 

functions / ; (x) , that is, 

~ (3.2.1) 
n-\-l 

where aj are the coefficients to be determined with the collocation method by de­

manding the satisfaction of n 4- / equations 

n+« 
(3.2.2) -R(x)|x< = ^ a j / , ( x i ) , i = l,...,n + l, 

at n collocation points on the boundary F and / interior nodes within the domain Q. 

System (3.2.2) can also be expressed in matrix form; 

R{^i) 

i?(X2) 

R{^N) 

/ll /l2 • • • flN 

/2I /22 • • • f2N 

INI f. N2 I NN 

ai 

(3.2.3) 

where N = n-\-1 and 

fij = fj{-Xi), i,j = l,...,N. 

Simply, we denote the equation (3.2.3) as 

R = Fa, (3.2.4) 

and therefore, if the collocation matrix F is invertible, a can be expressed in terms 

of F~^ and R as 

a = P-^R. (3.2.5) 
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Assume that a particular solution to every equation 

V% + X% = fj, (3.2.6) 

for j = 1, ...,n-\-1 can be found. Then by using Green's second identity (3.1.3), the 

domain integral in the right-hand side of equation (3.1.12) becomes 

Ru*dQ ^ Ru*dn « y^aj I fj{y.)u*d.n 
Jn ~{ Jn 

= Y\aj I [V'^Uj + X^Uj\ u*dn 

n+/ r 

= ^(^j -c^Uj{^) + {qjU* - iijq*)dT , 
, = 1 L JT J 

(3.2.7) 

which involves boundary integrals only. Substituting (3.2.7) into (3.1.12) yields 

n+l 

c^u{C) - I {qu* - uq*) rfF = V a, c^Uj{0 - / {qjU* - Ujq*)dr 
Jr i=i L JT 

(3.2.8) 

3.3 Computing particular solutions 

In DRBEM, in order to reduce the interpolation error to a minimum, it is preferable 

that the right-hand side / of a governing equation be kept as simple as possible. At 

the same time, the simplicity of the main differential operator should be taken into 

account in order to obtain the corresponding particular solution analytically. As a 

result, most of the main differential operators used in the DRBEM were restricted in 

Laplacian operator and particular solutions related to fj being radial basis functions 

(RBFs) such as 1 -t- r^, thin plate splines (TPS) rjlogrj or multiquadrics yjr'j -I- c2 

can be obtained by repeated integration (Partridge et al. 1992 and Golberg k Chen 

1997), where Vj — ||x — Xj||. 
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However, if the main differential operator is different from Laplace operator, such 

as Helmholtz-type operators, this has proven difficult. The first significant result 

along this line was given by Zhu (1993b) where a constructive scheme of evaluat­

ing particular solutions associated with Helmholtz equation was given for fj being 

polynomial RBFs, see Appendix D. Then, analytical formulae of particular solutions 

associated with Helmholtz-type operators were given by Chen k Hashed (1998) for fj 

being thin plate splines (TPS). Recently, in order to improve the convergence rate of 

TPS, Muleshkov et al. (1999) chose fj to be the so-called higher order polyharmonic 

splines TJ logr^, k=l,2,..., and particular solutions associated with Helmholtz-type 

operators were obtained. 

Golberg (1995) gave an excellent review paper on evaluating particular solutions. 

According to Golberg (1995), if the governing operator is rotationally symmetric, then 

it is natural to use RBFs as interpolation functions so that the particular solution can 

be obtained by solving an ordinary differential equation. If the governing operator 

is not rotationally symmetric, other approaches need to be taken. For example, if 

the governing operator is a^d"^/dx"^ -[- b'^d'^/dy"^, then choose a modified RBFs with 

r'j = ^/(^^^x^)27a2 + (y^^y^)2/ft2 ^s interpolation functions so that a corresponding 

particular solution may be found. 

For a general operator where one can not find the particular solution, one may 

also look for a numerical approximation to the particular solution. For example, Alle-

sandri k Tralli (1991) proposed a bicubic spline approximation method. 
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3.4 The choice of interpolation functions 

There are no limitations to choose interpolation functions / , , j = 1,..., n-\-l provided 

that the collocation matrix F is invertible and particular solutions can be found. 

However the accuracy of the DRBEM strongly depends on the choice of interpolation 

functions. The main source of error in the DRBEM is the approximation of the 

right-hand side. Hence, the choice of interpolation functions have always been a hot 

research topics related to the DRBEM. 

Among various interpolation functions, the most popular one is the so-called 

RBFs which are functions with the form of fj{x) = f{rj). Partridge k Brebbia 

(1989) showed that satisfactory results can usually be obtained if/j(x) takes the form 

^ ^ _ o r j * . Moreover, they also pointed out that the use of s = 1 giving fj = l-\-TJ is 

generally sufficient. 

Then Duchon (1977) demonstrated that the so-called augmented thin plate splines 

(ATPS), which are a combination of the TPS and some augmented linear terms 

l , x in R 2 (1 ,X , 2: in R^), are the optimal interpolation functions in two and three 

dimensional spaces respectively in the sense that they interpolate R in R"* (d==2, 

3) with a minimized rotation-invariant seminorm. This theoretical work has been 

strongly supported by some numerical results (Golberg 1994, Bridges k Wrobel 1996 

and Zhu et al. 1998). However, despite their optimal properties, ATPS have some 

drawbacks. For example, they are only C^ in R 2 and nondifferentiable in R^ and 

their convergence rate is slow (Powell 1993). 

Some researchers such as Golberg et al. (1996) suggested that the family of 

multiquadrics ^^{TJ) = {c^ -\- r2)^/2 can overcome the above drawbacks of ATPS, 

where /3 is an odd integer and c is a shape parameter to be determined by the 
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collocation method. For Poisson equation, Golberg et al. (1996) have shown that 

considerable improvement can be obtained (up to three orders of magnitude) by using 

multiquadrics. For time-dependent nonlinear diffusion equation, Zhu k Liu (1998) 

also show the superiority of the multiquadrics to the linear RBF H - T J . However, there 

are difficult and unresolved problems concerning the choice of the shape parameter c 

which can affect the accuracy of the solution by several order of magnitude (Golberg 

et al. 1996) and analitical particular solutions are known only for Laplacian operator. 

Very recently, Muleshkov et al. (1999) demonstrated that an Tith order polyhar­

monic splines r2"logrj can achieve L2 convergence rates of 0{h^) and the related 

particular solutions can be analytically obtained. It is shown that numerical solu­

tions using the higher order polyharmonic splines are much more accurate than those 

using TPS. 

3.5 Multiple reciprocity boundary element method 

In DRBEM, there are n -t- / collocation points, including n boundary points of BEM 

method and / internal nodes. To ensure the accuracy of the DRBEM solution, some 

internal nodes are normally have to be included. Recently a new technique without 

any internal collocation point, called the Multiple Reciprocity Boundary Element 

Method (MRBEM), has been developed by Nowak k Brebbia (1989a,1989b) and 

applied it to solve Poisson equation and Helmholtz equation with the Laplacian form. 

Then, using this new technique. Neves k Brebbia (1991) solved the Navier equations 

of elasticity, Nowak k Brebbia (1992) solved the linear potential problems with body 

forces and Itagaki k Brebbia (1993) extended it to solve the modified Helmholtz 
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equations. The MRBEM consists of a repeated application of Green's second identity 

and can be thought of as an extension of the idea of the DRBEM. However, instead 

of approximating the source term by the set of radial basis functions, a sequence of 

functions related to the fundamental solution is introduced. These constitute a set of 

higher order fundamental solutions which permit the Green's second identity to be 

applied to each term of the sequence. As a result, the MRBEM leads in the limit to 

the exact boundary only formulation of the domain integrals and therefore no internal 

collocation node is needed. The related theory has been given in detail by Nowak k 

Neves (1994). 

However the governing equations which will be used in the wave models presented 

in this thesis are Helmholtz equation (rearranged from the MSWE) and the Boussi­

nesq equations, which could not be solved by adopting the MRBEM thus should not 

be used in this thesis. 

3.6 Approximation to internal partial derivatives 

The right-hand side in (3.1.1) may contain partial derivatives Ux and Uy. This is the 

case that we will study later in this thesis, see (4.2.1). Sometimes it is difficult to 

evaluate these partial derivatives at internal nodes due to the presence of domain 

integrals. In fact, by differentiating (3.1.12) with respect to ^i and ^2, we have 

However, the use of the DRBEM provides a very simple alternative to (3.6.1). 



Assume that u = (ui,U2, ...,UN)'^ has an expansion similar to (3.2.4): 
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u«F .̂ (3.6.2) 

Differentiating the above produces 

u^ F./3, (3.6.3) 

where 

F = 

U^ = 
dui du2 duN\ 
dx ' dx ''"' dx J ' 

!^(x,) ^ (x , ) ... ^ ( x . ) 

!&(x.) 

dx dx 

dfN 
dx (X2) 

Inverting (3.6.2) and substituting into (3.6.3) produces 

(3.6.4) 

(3.6.5) 

Ux ^ Fa;F ^U. (3.6.6) 

Thus, the nodal values of the partial derivative are approximated by the nodal val­

ues of the problem variable u. A similar equation can be deduced for the partial 

derivatives with respect to y. 

Care should be taken to chose the interpolation functions again. Zhang k Zhu 

(1994b) showed that the choice of linear RBF 1 + rj results in the creation of singu­

larities on all the collocation points because the diagonal elements of F-r and F^ are 

undefined. Further, Zhang k Zhu (1994b) showed that the choices of 1 +r2 -|- r | and 

1 -I- rj do not creat any singularity for the case where the right-hand side contains the 

first order partial derivatives. In this thesis, we chose 1 + r? -I- r^ as the interpolation 

functions. 



Chapter 4 

A linear wave model: GDRBEM 

Based on the DRBEM, Zhu (1993a) first proposed a DRBEM wave model to solve 

the wave diffraction and refraction problem. It is shown that the DRBEM wave 

model is as accurate as a finite-element method (Houston 1981) but it is much more 

efficient than the latter. However, in Zhu's model, there is a so-called vertical-wall 

assumption along the coastline of the island, which requires that the water depth 

is always finite along the boundary of the island. Because of this restriction, the 

wave diffraction and refraction problem related to an island with a zero-water-depth 

coastline has, so far, not been dealt with by the DRBEM model. In this chapter, a 

general DRBEM (GDRBEM) model is presented and wave run-ups around islands 

with zero and nonzero water-depth coastlines are calculated and compared with other 

numerical solutions. 

30 
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4.1 Introduction 

The mean free-surface elevation of a train of monochromatic waves propagating over 

a seabed of variable water depth ^(x) = h{x, y) can be expressed as 

oo 

V^{x,y) = ^e''='"""°"^ = A J2^ni''Jn{kor) cos nO, (4.1.1) 
Tl=0 

with A being the incident wave amplitude, uj the angular frequency, ko the wave 

number in constant-depth {kg) water and €„ the Jacobi symbol (cn = 1 for TI = 0 and 

€„ = 2 for 71 > 0). 

The waves may be diffracted and reflected by an island or a finite number of 

isolated islands. They may also be refracted because of the change of water depth as 

they approach these islands. According to the linearized mild-slope theory (Berkhoff 

1972, 1976 and Smith k Sprinks, 1975), 77(x) should satisfy the MSWE (2.3.8), i.e., 

V • {CCgVr]) + eCCgT] = 0, (4.1.2) 

together with boundary condition (Tsay k Liu 1983 and Chen k Mei 1974) along the 

coastline Vf. 

^ ^ ^ - , ^ ^ = 0 , (4.1.3) 

and the Sommerfeld radiation condition (Sommerfeld 1949) at infinity 

lim V ^ ( ^ - ikoVs) = 0, r = V'rr2 + y2, (4.1.4) 
r^oo or 

where k = k{x.) is the wave number, which is determined by the implicit dispersion 

relation 

uj"^ = gk tanh(/c/i). (4.1.5) 
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4.2 DRBEM and integral equations 

The differential system (4.1.2)-(4.1.4) is usually defined on an infinite or a semi-

infinite computational domain, with incident waves coming along the x-axis from the 

infinity. Such a computational domain is usually divided into two subdomains Qi and 

Qo with Qi denoting a finite inner region with variable water depth and QQ denoting 

an infinite outer region in which there is a constant water depth. 

The governing differential equations in these regions are of different forms and 

they will be discussed separately. For simplicity, we only discuss constant boundary 

elements in this section. 

In the inner region Qi: Let G = CCg. Since G{x) is weakly singular with its 

limit being zero (see Appendix C) as the water depth h{x) approaches zero along the 

coastline, Zhu's method (Zhu 1993a) which requires both sides of equation (4.1.2) be 

divided by G(x) is no longer valid. Instead, equation (4.1.2) should be rewritten as 

V'{Gv) + ki{Gr^) = R{x), (4.2.1) 

where 

i?(x) = (A;2 - A;2)G77 + V • (77VG') 

= {kl-k'')Gv + ^G-Vv + v'^^G. (4.2.2) 

Let 77*(^,x) = iH^^\kop). By using the conventional BEM as shown in section 

3.1, equation (4.2.1) can be written as 

'^G{Ov{0 - [ ^VV'dT + [ G{r)q* - qr)*)dT = - [ Rv*dn, (4.2.3) 
JTo+Ti dn Jro-^-Ti Jni 
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where g(^,x) = ^ ^ 2 ^ , q*{^,K) = ^^^^ and 

1 W _ ) 2' i f^GF^-hFi , 
ĉ  - < 

( 1, i f e e Q i . 

/TI /̂le outer region Qo'- Since the water depth is assumed to be constant in this 

region, it is easy to see that the scattered wave 77, should satisfy the Helmholtz 

equation 

V'77. + A-277, : . 0. (4.2.4) 

Using BEM, we can rewrite equation (4.2.4) as 

-c^.(.).I {^n- -nf£)^-i (^.- -̂ -'I) - = 0, (4.2.5) 
where n' is the outward normal unit vector of the outer domain Q,o and 

' ifeer„. 
^^ 

(o) _ ) 2 

0 i f^eQi -KF, . 

By using the Sommerfeld radiation condition at infinity, the last term in equation 

(4.2.5) becomes 

Notice that we can write the fundamental solution when r -> 00 as (see Watson 1962) 

4 V T^kp 

which gives 

V*^^\/^e'^'^-^^\ (4.2.7) 

dv* dr)* k 2 ,(fe._^ 
dn dp 4 V rrkp 

So the last term in equation (4.2.5) vanishes. 

(4.2.8) 
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The continuity of the wave potential and flux across the common boundary To 

shared by Clo and Q,i demands 

V = Vs + ri\ 

9 ~ ~\dn> + an')' 

be satisfied on To- Therefore, equation (4.2.5) can be rewritten as 

/ {rjq* - qvldT = c\''^rj{0 " cfv'{0 + [ {v'q* - q'v*)dT, (4.2.9) 
JTO JTO 

where q^ = ^ . 

Final integral equation: For simplicity, the two integral equations (4.2.3) and 

(4.2.9) can now be merged into one 

c^G{Om - [ ^VV*dT + Gi f {vq* - qri*)dr 
JTo+Ti ^ n JTi 

= cfCoil^O -Go I {v'q* - q'v*)dT - f Rrj*dQ 
JTO Jn, 

with Go = G(x)|r<„ Gi = G{x)\r, and 

(4.2.10) 

^^=\ 1 i f^GF^, 

1 if^GQi. 

Using DRBEM, we have 

n+m-\-l 

/ R{x)ri*dn ^ V aj -4'-^%(0 + / {qjri* - Vjq*)dr 
Jni ~[ L ./Fo+r, 

where n and m are the number of the collocation points on the boundary F^ and 

To, and I is the number of the collocation points inside the domain Q. Consequently 
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equation (4.2.10) can be rewritten as 

CiG{Om - [ ^VV*dT + Gi [ {rjq* - qrj*)dT 
JTo-VTi O^ JTi 

n-Hn+l r . 

= E «̂- H^^jiO + / im* - qjv*)dT 
i-l I JT„+Ti 

+Go 
JVo 

(4.2.11) 

Equation (4.2.11) involves boundary integrals only and after appropriate dis­

cretization, a linear system of algebraic equations involving the unknown function 

77(x) on Fj -I- To can be established (see Appendix A for details). To solve equation 

(4.2.11) numerically with the DRBEM, a discretization process involving dividing the 

boundary curves To and Ti into a number of small elements and replacing the un­

known function by an interpolation function, would convert equation (4.2.11) into a 

system of algebraic equations. Depending of the interpolation functions one adopts to 

approximate the unknown function within each boundary element, the final form of 

these algebraic equations will be different. We have adopted both constant elements 

and quadratic elements in the numerical examples presented in the next section. See 

Appendix A for details of the final matrix equation with constant elements. In equa­

tion (4.2.11), one also needs to calculate dG/dx, dG/dy, dG/dn and V'^G. Since fc(x) 

is implicitly defined through the dispersion relation (4.1.5), the calculation was quite 

involved and tedious, particularly when the possibility of zero water depth needs to 

be taken into consideration. Therefore, we have listed the results of these calculations 

respectively in Appendix B for the case of nonzero water depth and in Appendix C 

for the zero water depth case. 
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Once 77(x) is solved numerically, the total (complex) instantaneous surface eleva­

tion can be found, through the definition: 

C(x,i) = T]{x)e~'^* = [ao(x) sinwi - 60 (x) coscui] 

+i [ao{x) cosujt -t- 6o(x) sinuit]. (4.2.12) 

where ao(x) and bo{x) are the real and imaginary parts of 77(x) respectively. Hence 

the physical surface elevation is the real part of this expression, that is 

Cphys{^,t) = no{x)s\nu!t - bo{x) cos cot, (4.2.13) 

and the run-up is the maximum of Cp/iys(x,t), this is, i/[ao(x)]2 -|- [6o(x)]2. 

4.3 Numerical examples 

As a generalization of Zhu's DRBEM model (Zhu 1993a) for nonzero water depth, the 

GDRBEM model presented in this thesis includes both nonzero and zero water depth 

cases. In order to test the new model for these two different cases, in this section we 

shall present the calculated results of the wave amplification (relative run-up) around 

coastlines for both Homma's (1950) paraboloidal island with a vertical wall (see Figure 

2.3) and three conical islands, Hawaii, Oahu and Small, without a vertical wall (see 

Figure 2.2). Although Homma's island has been used as a test example by Zhu (1993a) 

for his DRBEM model, here we will test it again considering that the GDRBEM model 

is slightly different from Zhu's model in the formulation of the integral equation 

system. In addition, to investigate the change of wave amplification from nonzero 

water depth to zero water depth, a new group of conical islands stemming from 
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Hawaii with various water depths along the coastline is designed and test results are 

compared with zero-water-depth results of Hawaii. 

Figure 4.1 shows the boundary element nodes and internal collocation points used 

in the present GDRBEM method. We performed our numerical calculation with both 

constant and quadratic elements and found that for long waves constant elements are 

sufficient. For very short waves, results obtained with quadratic elements are far bet­

ter. Thus, we shall only present those results obtained with quadratic elements here 

in this section. For both types of islands, 60 quadratic elements (with 120 boundary 

nodes) are always used except in one case with the period T = 60 sec for Homma's 

island. In addition, 360 internal collocation points are always evenly distributed on 

six inner circles where their radius are r,; = a + Ci{b-a.) with Cj being 0.10, 0.25, 0.40, 

0.55, 0.65 and 0.80 for i = 1,..., 6. 

4.3.1 Homma's island 

As shown in Figure 2.2, an idealized island of circular cylindrical shape is surrounded 

by an infinite ocean of constant depth everywhere except on the paraboloidal shoal, at 

the centre of which the island stands. Plane monochromatic waves are incident, and 

are diffracted and refracted by the island-shoal structure. Homma (1950) presented 

an analytical solution of the shallow-water equation for this problem, which has been 

employed by many authors as a comparison with various numerical solutions. For 

example, based on the shallow-water equation, there are Vastano and Reid's (1967) 

finite difference model, Berkhoff's (1972) finite element model coupled with a bound­

ary integral method and Bettess k Zienkiewicz's (1977) hybrid finite element model. 

On the other hand, based on the MSWE, there are Jonsson et a/.'s (1976) orthogonal 
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collocation model, Houston's (1981) finite element model, Tsay k Liu's (1983) hybrid 

finite element model, Zhu's (1993a) DRBEM model and Poulin's (1997) perturbation 

DRBEM model. 

Shown in Figure 4.2 is a comparison of the wave amplification around the coastline 

of the island between Homma's (1950) analytical solution and our GDRBEM solution 

for incident waves with four different periods. As we can see, there is hardly any 

noticeable difference between Homma's analytical solution and the GDRBEM solution 

for 1440 sec and 720 sec. This is because when the periods are large, the water 

depth becomes relatively small in comparison with the wavelength and consequently 

the MSWE can be well approximated by the shallow-water equation, which is what 

Homma's solution is based on. As the period decreases, the difference between the 

two solutions gradually increases. For 410 sec. incident waves, the difference between 

two solutions has reached about 4%. For period T = 240 sec. Figure 4.3 shows 

the comparison among Homma's (1950) solution, Jonsson et a/.'s (1976) orthogonal-

collocation solution, Tsay k Liu's (1983) hybrid-element solution and the present 

GDRBEM solution. The comparison shows that the agreement among the GDRBEM 

results, Jonsson et o/.'s (1976) results and Tsay k Liu's (1983) results is very good. 

However, all these three numerical solutions exhibit considerable differences with 

Homma's (1950) solution. That is because Homma's (1950) solution is based on the 

shallow-water equation and others are based on the MSWE. 

Generally speaking, cases with periods of incident waves being less than 160 sec. 

are regarded as very severe tests for any numerical model since they are short waves 

with high frequency. For incident wave with period T = 120 sec, the ratio of wave­

length to water depth is approximately 11. In order to achieve necessary accuracy. 
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Houston (1981) not only had to carry out his calculation with 10,560 fine finite el­

ements on a CRAY-1 super computer, but also had to make use of the symmetry 

property of this rather particular geometry and distributed those elements only on 

half of the domain. For a general domain without symmetry to be utilized, he would 

have to use 21,120 finite elements which would lead to a linear system with 21,600 real 

equations. In this thesis, we merely used 60 quadratic boundary elements (with 120 

boundary nodes) and 360 internal collocation points for all the calculations covering 

the full domain. The total number of real equations is only 960. But as we can see in 

Figure 4.4, our GDRBEM solution agrees excellently with Jonsson et a/.'s (1976) solu­

tion. This excellent agreement among Jonsson et al.'s (1976) orthogonal collocation, 

Houston's (1981) hybrid element and our GDRBEM shows the present GDRBEM 

method is not only highly accurate but also very efficient. On the other hand, we 

can see again that Homma's (1950) solution, which is based on the shallow-water 

equation without frequency dispersion, becomes increasingly inaccurate for this short 

wave case. This reflects, as suggested by Jonsson et al. (1976), that the long-wave 

solution should not be used for incident waves of period less than 300 sec. 

Recently, Homma's island was also calculated by using the DRBEM by Poulin 

(1997). Following Rangogni's (1988) original idea, Poulin (1997) solved the MSWE 

with the following perturbation form 

V ^ o + k'jo = 0, (4.3.1) 

W + ej = 2kl4,o ( £ - l ) - V0O • ( ^ + ^ ) , (4.3.2) 

where wave potential (̂ o, phase velocity Co and group velocity Cg^o are corresponding 

to the constant water depth ho and (p is corresponding to the real water depth h. 
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Equation (4.3.2) is similar to the equation solved by Zhu (1993a), i.e., 

V20 + kldj = {kl - e)ctj -Vdj-i^ + ̂ y (4.3.3) 

but with a different right-hand side which is known after the equation (4.3.1) is solved 

for constant water depth. Poulin thoroughly verified the perturbation method with 

various geometries in Homma's island. As a product of the depth approximation 

made in the perturbation method, the accuracy of the results strongly depends on 

both depth ratio hi/ho and wave period T. It is shown that the accuracy of the 

perturbation method is overall satisfactory only for depth ratio not greater than 3 

(see Figure 9.1-9.18, Poulin 1997). For Homma's original island with depth ratio 

being 9, which is the case tested here and in Zhu's (1993a) model, the accuracy of 

the perturbation solutions is acceptable only for relatively long waves with T = 1440 

sec and T = 720 sec. Comparatively, the accuracy of Zhu's DRBEM model and the 

present generalization version is excellent for all the wave periods. 

Furthermore, although there is no other known solution to compare with, the 

wave amplifications around the coastline of the island for two very short incident 

waves with their periods only being 90 sec and 60 sec were also calculated using the 

present GDRBEM method. Considering the higher frequency of the incident wave 

with T = 60 sec, we doubled the number of quadratic elements on the boundary while 

keeping the number of internal collocation nodes unchanged. Wave amplification 

factors for these two periods are graphed in Figure 4.5. This shows that the wave 

amplification factor, where the wave train is directly incident on the island {9 = 180"), 

varies dramatically for T = 90 sec and 60 sec, between 3.5 and 0.97, respectively. We 

note that for T=120, a perfect comparison is obtained with Houston's (1981) solution 

and Jonsson et a/.'s (1976) solution and the amplification factor is 2, the theoretical 
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short wave limit. This implies that the results for T = 90 sec and 60 sec are inaccurate, 

as our model is only valid for long waves. 

As one can see in Figure 4.5, when the wavelength of the incident waves is very 

short, say for the case of T = 60 sec, the calculated results show that wave amplifi­

cation factor never exceeds 2. Near the front side, the amplification is even less than 

1. On one hand, it is well-known that the wave amplification should be theoretically 

approaching 2 in the front side for pure reflection when the period T reached the 

limit 0. If this theoretical limit result is really true even for the case T = 60 sec, it 

means that the case of T = 60 sec is out of the validity of our model as the waves 

are too short to be modelled by our GDRBEM and too much error might have been 

produced. However, on the other hand, we can still argue that the period of 60 sec is 

still far from the limit 0 and the corresponding wave amplification may not have to 

achieve the amplification limit of pure reflection so early. Considering that this case 

have not been calculated by any other wave model and there is no known result to 

compare with, we leave it open and at this stage we assume that our numerical result 

is correct. Then it shows that when short waves being diffracted by an island whose 

diameter is of the same order as the wavelength, the diffraction becomes very much 

a "localized" effect; short waves are not amplified as much as long incident waves. 

Furthermore, we should notice that the maximum amplification now has shifted from 

the front side of the island (the side that faces the incident waves) to the half way 

between the front and lee side of the island. This information is useful in predicting 

the location of the "worse hit" of a tsunami wave on an island. 
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4.3.2 Conical islands 

Conical islands were first studied by Lautenbacher (1970). In his paper, three indi­

vidual Hawaiian islands (Hawaii, Oahu and Small) were assumed to be conical (see 

Figure 2.3) and are separately attacked by three different monochromatic, plane in­

cident waves. The geometrical parameters of the three islands and the parameters 

of incident waves are tabulated in Table 4.1. Lautenbacher transformed the linear 

long-wave equation into an integral equation and then solved it numerically. Smith 

k Sprinks (1975) also used the same example to demonstrate the MSWE but only 

presented the results for the shallow-water equation. Using a hybrid finite element 

method, Tsay k Liu (1983) solved the MSWE for conical islands but only presented 

two numerical solutions for Hawaii. Recently, an analytical solution of the shallow-

water equation for axisymmetrical conical island was worked out by Zhang k Zhu 

(1994a). 

Table 4.1 Parameters for Hawaiian islands and incident waves. 

Islands 

Hawaii 

Oahu 

Small 

b{m) 

115781 

92625 

46313 

b : a 

1.67 

4.00 

4.65 

ho{m) 

5487 

4573 

5487 

L:b 

2 

2 

1.57 

4 

4 

6.7 

8 

8 

15.7 

L : ho 

42.2 

40.5 

13.3 

84.4 

81.0 

56.6 

169 

162 

133 

T{min) 

17 

14 

5 

34 

28 

22 

69 

57 

50 

In this thesis, using the present GDRBEM method, both the MSWE and the 

shallow-water equation are solved for three Hawaiian islands and various incident 

waves. In Figure 4.6-4.8, wave amplification distributions along coastlines of three 

islands are plotted. In Figure 4.6, an excellent agreement among our two numerical 

solutions and Zhang k Zhu's (1994a) analytical solution is obtained for all three 
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incident waves with their wavelengths being 26, 46 and 86, respectively. In Figure 

4.7-4.8, excellent agreement among our two numerical solutions and Zhang k Zhu's 

(1994a) analytical solution is obtained for longer wave length cases, i.e., L = 46 and 

L = 8b for Oahu and L = 6.76 and L = 15.76 for Small. 

As pointed out by Jonsson et al. (1976), the usually accepted shallow-water limit 

in terms of wavelength to water-depth ratio is 20. In the case of Small, this gives a 

limiting period of 410 sec or about 7 min. In the case of L = 1.576 for Small, the ratio 

of the wavelength to the water depth is 13.3 (see Table 4.1) and the period is 5 min; 

the incident wave is very short already. Therefore significant discrepancy between the 

solution with frequency dispersion and that without frequency dispersion shown in 

Figure 4.8 can be well explained. In the case of Oahu, the ratio of the wavelength to 

the water depth when L = 26 is about 40.5, which is larger than 20, and this explains 

why the circles fall right on the solid line in Figure 4.7. 

On the other hand, some differences between the dotted line and circles, i.e., be­

tween Zhang k Zhu's (1994a) analytical solution and the present GDRBEM solution 

without frequency dispersion, can be noticed in the cases of L = 26 for Oahu (see 

Figure 4.7) and L = 1.576 for Small (see Figure 4.8). Such differences can not be 

explained by the ratio of the wavelength to water depth. We then investigated the 

convergence of the numerical solutions in terms of the number of internal nodes as 

well as the number of boundary elements. Shown in Figure 4.9-4.10 are convergence 

test results for the Oahu Island. For quadratic elements, when the number of elements 

is increased from 60 to 90, some improvement is indeed observed as shown in Figure 

4.9. However, when we further increased the number of boundary elements and/or 

the number of internal nodes to 120 and 540 respectively, accuracy started to worsen 
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off again as shown by the dash-dotted line in Figure 4.9, this is probably because the 

accumulation of round-off errors start to increase dramatically when the number of 

internal collocation points and boundary elements increases to a level that the accu­

racy of the machine is reached or the collocation matrix F in (3.2.4) is singular or 

ill-conditioned. A similar behaviour has been observed for constant elements as well 

as shown in Figure 4.10. Therefore, we had to conclude that the numerical solutions 

did converge for the case of the Oahu Island. For the Small Island, our convergence 

test results lead to the same conclusion. 

Then the only plausible explanation of this discrepancy may be made when we 

notice the fact that one of the integral equations in equation (4.2.11) becomes a 

Fredholm integral equation of the first kind when the water depth becomes zero 

uniformly on the coastlines for the cases presented in Figure 4.6-4.8. As pointed out 

by Golberg (1978) and Power k Wrobel (1995) (also see Poulin 1997), in contrast 

to the integral equation of the second kind, the troublesome feature of dealing with 

integral equation of the first kind is that the problem is ill-posed, which means that 

there is a lower bound for the size of boundary discretization. However, with the 

same first-kind integral equation for the case of Hawaii, the problem doesn't seem to 

appear at all. Therefore, the intrinsic reason for such discrepancies in the cases of 

Oahu and Small deserves a further investigation, which is currently undertaken and 

the results will be reported upon its completion. 

It is quite interesting to notice that for the case of Small, the solution from the 

MSWE with the frequency dispersion exhibits the wave amplitude in the lee of the 

island exceeding that in the front of the island. Although this rather unusual phe­

nomenon has been already observed by Jonsson et al. (1976) and by Houston (1981) 
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for nonzero water depth, it has never been mentioned before for zero-water-depth 

case. 

Finally, to investigate the change of the wave amplification from nonzero-depth 

water to zero-depth water around coastlines, we designed a new island stemming from 

Hawaii with a circular cylindrical shape situated on a conical shoal as shown in Figure 

4.11. Clearly, when hi = ho, this new island is actually a circular cylinder, which is 

the case to which MacCamy k Fuchs' (1954) analytical solution is applicable. On 

the other hand, when hi — 0, this is the case with zero water depth on the coastline 

and Zhang k Zhu's (1994a) analytical solution becomes applicable if we keep the 

water depth shallow enough. The relative run-ups are calculated using the present 

GDRBEM method for the water depth hi along the coastline being 0, O.Ol/io, 0.02/io, 

0.05/io, O.l/io, O.2/I0, 0.3/io, O.5/10 and ho- The solutions for L = 26 in all these 

cases are presented in Figure 4.12 together with Zhang k Zhu's (1994a) analytical 

solution based on the shallow-water equation for the case of /ij = 0 and MacCamy 

k Fuchs' (1954) analytical solution based on the Helmholtz equation for the case 

of hi — hg. It can be seen that all the numerical solutions with different hi values 

are nicely bounded between the two analytical solutions with the numerical solution 

agreeing perfectly with that of MacCamy and Fuchs' analytical solution at one end 

and agreeing well again with that of Zhang and Zhu's analytical solution at the other. 

Most significantly, what is exhibited in Figure 4.12 is the interaction between the 

diffraction and refraction effects. When the total water depth as well as the incident 

wavelength are held constant, the diffraction effects are significantly enhanced as the 

slope of the shoal is increased. As one can clearly see from Figure 4.12, when there 

is no shoal {hi = h„), there is no refraction and the maximum wave amplification is 
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only about 2. The maximum wave amplification increases as the bottom slope does, 

because of the 'convergence of rays' at the island front. As /i, decreases from kg to 

zero, i.e., as the slope of the bottom shoal increases, not only does the maximum wave 

amplification increase, but also the variation of wave amplification along the coastline 

is significantly enhanced. Finally when hi = 0, the maximum wave amplification 

reaches more than 5; the wave amplitude at the front side of an island will suffer the 

worst effects of a tsunami wave. Results shown in Figure 4.12 have also verified that 

our model correctly takes the zero-water solution as the limit of the nonzero water 

depth solution. 
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r=b 

Figure 4.1: Nodes of quadratic boundary elements and internal collocation points 
used in the GDRBEM. 
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Coast position (measured in degrees around island centre) 

Figure 4.2: Comparison between Homma's solution and the GDRBEM solution for 
four periods: T = 1440 sec, 720 sec, 480 sec and 410 sec. 
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Coast position (measured in degrees around island centre) 

Figure 4.3: Comparison among various solutions for the period T — 240 sec. 
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Coast position (measured in degrees around island centre) 

Figure 4.4: Comparison among various solutions for the period T — 120 sec. 
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Coast position (measured in degrees around island centre) 

Figure 4.5: Two GDRBEM solutions (interpolation curves) for very short waves. 
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Coast position (measured in degrees around island centre) 

Figure 4.6: Comparison among Zhang k Zhu's (1994a) analytical solution (dotted 
line), the GDRBEM solution based on the MSWE (solid line) and the GDRBEM 
solution based on the shallow-water equation (circles): Hawaii (b/a=1.67). 
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Coast position (measured in degrees around island centre) 

Figure 4.7: Comparison among Zhang k Zhu's (1994a) analytical solution (dotted 
line), the GDRBEM solution based on the MSWE (solid line) and the GDRBEM 
solution based on the shallow-water equation (circles): Oahu (b/a=4). 
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Coast position (measured in degrees around island centre) 

Figure 4.8: Comparison among Zhang k Zhu's (1994a) analytical solution (dotted 
line), the GDRBEM solution based on the MSWE (solid line) and the GDRBEM 
solution based on the shallow-water equation (circles): Small (b/a=4.65). 
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Coast posiUon (measured in degrees around island centre) 

Figure 4.9: Comparison among Zhang k Zhu's (1994a) analytical solution and various 
GDRBEM solutions based on the shallow-water equation in the case of L = 26 for 
the island Oahu: constant elements; 
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Coast posiUon (measured in degrees around island centre) 

Figure 4.10: Comparison among Zhang k Zhu's (1994a) analytical solution and var­
ious GDRBEM solutions based on the shallow-water equation in the case of L = 26 
for the island Oahu: quadratic elements. 
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Figure 4.11: This is the Hawaii island with a cylinderical top. 
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Coast position (measured in degrees around island centre) 

Figure 4.12: Comparison among zero-water solutions and various nonzero-water so­
lutions, including two analytical solutions from Zhang k Zhu (1994a) and from Mac­
Camy k Fuchs (1954) for two limiting cases. 



Chapte r 5 

A weakly nonlinear wave model: 
PDRBEM 

In this chapter, the linear GDRBEM wave model is extended to a weakly-nonlinear 

wave model, called perturbation dual reciprocity boundary element model (PDRBEM). 

By using the perturbation method, the time-dependent nonlinear Boussinesq equa­

tions are transformed into three time-independent linear equations in section 5.1, 

where no approximation for the seabed slope V/i is used. The three linear equa­

tions are then solved sequentially by means of the linear GDRBEM described in 

section 5.2. In section 5.3, we show that the formula for calculating the run-ups of 

weakly-nonlinear waves is different from that for linear waves. In order to verify our 

weakly-nonlinear PDRBEM model, thirteen cases of wave run-ups around a vertical 

cylinder are tested in section 5.4 and four cases of wave run-ups around a conical 

island are tested in section 5.5. 

5.1 Governing equations 

As illustrated in Figure 2.2-2.3, we consider the weakly nonlinear refraction and 

diffraction of a plane monochromatic incident wave by an island standing on a seabed 

59 
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of otherwise constant water depth, ho. Cartesian coordinates with the (x, y)-plane 

in the quiescent free surface and z positive upward are chosen. Since the monochro­

matic incident waves in the deep ocean can be generally regarded as linear waves, the 

corresponding potential can be expressed as 

Cinc{x, y, t) = v'{x, y)e--* = Ae'^'o'^^^^'-^'^-^'l 
oo 

= Aj2^''''Mkor)cosn{9-9^)e-'''\ (5.1.1) 
71=0 

with A being the incident wave amplitude, co the angular frequency, ko the wave 

number in constant-depth {ho) water, 9^ the angle of incidence with respect to the 

X axis, and £„ the Jocobi symbol (£„ = 1 for n=0 and e„ = 2 for n^O). The waves 

may be diffracted and reflected by the island and may also be refracted because of 

the change of water depth as they approach the island. 

Let C,{x,y,t) be the water surface elevation and u(x,y,t) = {u,v) the depth-

averaged horizontal velocity vector. The following dimensionless quantities 

{x',y') = \{x,y), C' = ^ , t ' ^ ^ t , 

h' = A , u' = -%=u, v' = - ^ v , uj' = - ^ c , (5.1.2) 
ho Ayjgho Ayjgho v9ho 

are introduced with L being the wave length. For convenience the primes will be 

dropped from here now. If the scale of the water depth is small in comparison with 

the horizontal length scale and the wave amplitude is small compared with the water 

depth, i.e. 

;,2 = ^ho/L)^ < 1, e = A/ho < 1, (5.1.3) 

u and C may satisfy the so-called Boussinesq equations in dimensionless variables 
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(Peregrine 1967) 

u, -h VC = -e (u • V)u + / i2 |v[V • {hnt)] - / i^f V(V • u,), 
(5.1.4) 

G + V-(/iu) = -eV-(Cu), 

where two small parameters, e and p^, are assumed to be of the same order. 

If we assume that u and C are harmonic, they can be written as the following 

perturbation series 
u = ViQ{x,y)e-^'^'- + p?xi^{x,y)e-^'^'-^e\i2{x,y)e-''^\ 

(5.1.5) 

C = 77o(a:, y)e-''^* + p'r]x{x, y)e- '̂̂ * + €772(0;, y)e-'2-'*. 

Then by substituting (5.1.5) into (5.1.4) and sorting out terms of the same order, the 

following three groups of equations are obtained 
-ztjuo + V770 = 0, 

(5.1.6) 
-7;a;77o + V • (/IUQ) = 0, 

- iwui \- V% = -7;a;f V[V • {huo)] + iujfV{V • uo), 
(5.1.7) 

—iujr)i -\- V • (/lUi) = 0, 

-i2a;u2 + V772 = -(uo • V)uo, 
(5.1.8) 

-z2a;772 + V • {hu2) = - V • (770U0), 

after 0{t^,pi^,epL^) terms are ignored. From (5.1.5), the scattered wave field is given 

by 
C*(^, y. t) = 77̂ (x, y)e- '- ' + p'vl{x, y)e—* + €77̂ (x, y)e-^''^\ (5.1.9) 

with 

And the reflecting boundary condition along F̂  is 

/?,u-n = 0, (5.1.10) 
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which is equivalent to 

hui-n = 0, i = 0,1,2. (5.1.11) 

We now simplify the equations (5.1.6)-(5.1.8). Firstly, eliminating UQ in (5.1.6), 

we get the first-order governing equation 

V • (W770)-(-u;% = 0, (5.1.12) 

which is the well-known linear long-wave equation. The corresponding boundary 

condition (5.1.11) along the coastline F,; is equivalent to 

h ^ = 0. (5.1.13) 
an 

In addition, a far-field radiation condition must be specified to ensure that the first-

order scattered waves 770(2:, y) behaves as outgoing waves propagating away from the 

island. Sommerfeld (1949) gave the radiation condition as 

Vim ^/P{^ - icuT]') = 0, r=^yx^-\- y^. (5.1.14) 
r-^oo or 

Secondly, eliminating iii in (5.1.7), we have 

V • {hVrji) +u}'^rji 

^ i^S7 . [ - y V(V • (/luo)) + y V(V • Uo)] 

= iujV - [-—V(ia;77o) + —V(—V2770)] 

= ^ (2 / iV/ i • V770 + h^V\) + hsh'Vh . V(V277o) + h'V\V%)] 
2 o 

= ^ [ 2 W / i • V770 + h{-Vh • V770 - u'^rio)] + h^h'^Vh • V{V^T]O) + h^'^^V'^Vo)] 

•4 ';2 h'^ h^ 
2 ...,„ , -hVh • V770 + -Vh • V(V^77o) + J = -^ / i r7o + ^W^-V77o-h^V/i -V(V277o) + ^ V 2 ( V % ) . (5.1.15) 
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This gives the second-order equation for 771, which describes the dispersive effects, as 

V-{hVv^)+uj\ = -^%-^^V/ i .V77o+yV/i .V(V277o)+yV2(V277o) . (5.1.16) 

Note that 

h-^ = M^Ui - y V(V • (/lUo))-I-y V(V • Uo)] • n 

7^2 7^3 I 
= iuj[hui - —V{iuJT]o) -\- —V(—V^77o)] • n 

Z O lUJ 

h"^ h^ 1 
= iu}[hui - —iujVr]o + ——V(V^77o)] • n. 

The boundary condition (5.1.11) along the coastline F, is equivalent to 

As to the far-field radiation condition for the scattered wave 771, the Sommerfeld 

radiation condition can also be applied. But, since (5.1.16) is an inhomogeneous 

equation in an infinite region, we have to deal with a domain integral defined on the 

whole infinite region if the Sommerfeld radiation condition is applied to. In order 

to solve equation (5.1.16) numerically in a finite computational domain, an artificial 

boundary B must be set up and some sort of non-reflecting boundary condition along 

B need to be imposed. Since the 1970s, there have been many different non-reflecting 

boundary conditions proposed. A good review article was written by Givoli (1991) on 

these conditions. As the Boussinesq equations are weakly nonlinear long-wave equa­

tions with a small dispersive effect, we can choose a non-reflecting boundary condition 

for non-dispersive waves, such as those proposed by Engquist k Majda (1977) and 

Halpern k Trefethen (1988). In this thesis, we choose the artificial boundary B to 
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be a circle and therefore use the following non-reflecting boundary conditions in the 

polar coordinate system which was derived by Engquist k Majda (1977) 

where R is the radius of the circle B and C is the phase velocity. In our case, this is 

simplified to 

Finally, eliminating U2 in equation (5.1.8), we have 

V • {hVr)2) + 4a;̂ 772 

= -2iujV • (770U0) - V • (/i(uo • V)uo) 

1 1 
= - 2 V • (770V770) + —V/i • (V770 • V)V77o -I- - r / iV • (V770 • V)V77o 

= -2V770 • V770 - 277oV̂ 77o + ^ V / i • V(V77o • V770) + ^^^'^('^Vo • V770). 

Hence the second-order governing equation for the term 772 which describes the non­

linear effects, is 

V • (/iV772) + 4uj% = -2V770 • V770 - 2770V2770 -\- ^ V / i • V(V77o • V770) 

+7hhV\Vrjo • V770). (5.1.20) 
2a; ̂  

As the boundary condition (5.1.10) along the coastline Fj, we have 

/iU2-n = 0, (5.1.21) 

that is, 

/1V772 • n = 2iu)hVi2 • n - /iV(-Uo • Uo) • n 

hV{VT]Q • V770) • n. 
2a;2 
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which gives 

.e^^^sjy,^^ (--) 

In addition, as to the far-field radiation condition for scattered wave 772, the Sommer­

feld radiation condition cannot be applied. A suitable far-field radiation condition for 

second-order scattered waves 772 at the second-harmonic has not been established. See 

Rahman k Heaps (1983) and Kriebel (1990) for the discussion on this issue. Similar 

to 771, the corresponding non-reflecting condition for 772 along B becomes 

dr]2 ( 1 

5n I 2R 
+ 72a; 772. (5.1.23) 

It is worth indicating that, both the equations (5.1.16) and (5.1.20) for 771 and 

772 are inhomogeneous equations with their right-hand sides containing some partial 

derivatives of 770 up to the fourth-order. All these derivatives will be approximated 

by using the first-order numerical solution 770 and therefore large errors may result 

in representing these higher-order derivatives. Generally, the higher the order of the 

derivative is, the larger the error of the approximation is. In order to minimize these 

errors, we need to further simplify (5.1.16) and (5.1.20). Introducing the transforma­

tion 

771 = r7i - I-V2770, (5.1.24) 
o 
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we have from the governing equation (5.1.16) 

V • {hVrii) + uj% 

4 2 2 Uz 1 

= - Y ^ % + y ^V/i • V77o - ^ V'770 - - V • {h'^VhV^vo) 

^ 4 ^ 2 ^2u 1 

= - Y^77o + y / i V / i • V770 -\- - g - ( V 6 • V770 + a;277o) + - V • [hVh{Vh • V770 -h a;277o)] 

oj'^h 
•Vo + 

2ufh 2„ > Vh • V770 + - V • {hVh){Vh • V770 + a;̂ 77o) + - V / i • V(V/i • V770 + a;̂ 77o; 

a; ___ [̂ 2̂  _ y . (^y^)] ̂ ^ _̂  a;2/i + ^ V • {hVh) V/i • V770 -I- -Vh • V(V/i • V770), 

Hence, the second-order governing equation (5.1.16) is transformed into 

CJ 
V • {hVrii) -h a;277i = - — [co'^h - V • {hVh)] 770 + 

o 

+^V/ i -V(V/ i -V77o) , 

a;2/i + i v • ( W / i ) V/i • V770 

(5.1.25) 

which contains derivatives up to second-order only. The corresponding boundary 

conditions along Ti and the non-reflecting boundary conditions along B now become 

5771 h dh 
h = - ^ - (V / i -V77o + a ; % ) , 

dn 3dn 
(5.1.26) 

and 

with 

fi{h,Vo) 

dn 2R 
+ iuj 771 + /i(/i,77o). 

l{jR- '") (V/?-V77o-^a;%) + 
a;2/l977o 

6 dn 
-\-

/i a(V/i • V770) Idh.^^ _ , 2 ^ 

+ 6 an ^6a^^^^-^^"^"^")-

(5.1.27) 

(5.1.28) 

Similarly, let 

r)2 = m 2a;2 
V770 • V770, (5.1.29) 
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and the governing equation (5.1.20) for the second-harmonic now becomes 

V • (W772) + 4u}% = -4V770 • V770 - 2r}oV\. (5.1.30) 

The corresponding boundary conditions along Fj and and the non-reflecting boundary 

conditions along B, i.e., (5.1.22) and (5.1.23), respectively become 

h^=0, (5.1.31) 
dn 

and 

^"^ ^ - ^ + i'^^)v2 + f2{vo). (5.1.32) 
dn \ 2R 

with 

hM = 5 ^ ( " i ^ + ' 2 - ) "̂70 • V,„ - ^ £ ( V % • V ^ ) . (5.1.33) 

These three sets of linear differential systems are now solved with the DRBEM. 

5.2 Formation of integral equations 

To solve (5.1.12), (5.1.25) and (5.1.30) together with their boundary conditions effi­

ciently, we cast them into boundary integral equations. In this section, the integral 

equations corresponding to (5.1.12), (5.1.25) and (5.1.30) are given. 

The first-order solution. Let 

V*{^,^)='-Hi'\u;p). 
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Similar to (4.2.11), the first-order equation (5.1.12) can be transformed into the fol­

lowing integral equation 

c^hrjo - / —77o77*dr + hi r)Qq*dT 

= hocfr)' -ho ( {v'q* - q'r,*)dT -\-
JTO 

j=l L JTo-^-Ti 
(5.2.1) 

The second-order fundamental frequency solution. The equation (5.1.25) for the 

nonlinear contribution at the fundamental frequency is 

V\hfji) + u;\hrii) ^ Ri{x,y), (5.2.2) 

where 

Ri{x,y) = UJ 2(/i - 1)^1 + V/i • V^i + 77iV /̂i - ^ [u^h - V • {hVh)] 770 -\-

+ uj''h-hlv-{hVh) 
h 

Vh • V770 + -Vh • V(V/i • V770). 
o 

Let QB be the domain between F̂  and B. Then using DRBEM, equation (5.2.2) can 

be transformed into the following integral equation 

cf^hfji / 
JTi+B 

dh, ^ , 
—77177 -hT]iq '^^ + f^{jR- ''') î̂ *̂ r 

- / ^ |^(V/i-V77o + a;%)77*dr-H [ hfi{h,r]o)v*dT 
JTi 3 dn JB 

n+m-\-l 

= E a 
(1) 

j = i 

S^) 
JTi+B 

(5.2.3) 

where 
«(0 

27r 

1 

\{^eTi + B, 

if^efifi. 
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The second-order solution for the second-harmonic. The governing equation (5.1.30) 

for the second-harmonic can be rewritten as 

V''{hfJ2) + 4uj^{hTk) = R2{x, y), (5.2.4) 

where 

^2(2:, y) = 4a;^(/i - 1)772 -h V/i • V772 + T]2V'^h - AVrjo • V770 - 2r]oV%. 

Let 

ri*2{^,x) = ^H^;\2u;p). 

Using DRBEM, we can transform equation (5.2.4) into 

cf^hrJ2 - J 11^^2772 - hfJ2q*2 ^ r + /" /i f ^ - i2uA fJ2V2dT - J hf2{vo)V2dT 

n-tm-tl r „ 

= E "f Ut^f - / i'fni - f̂ 9;)dr 
n-^-m-tl 

' (5.2.5) 
j=X «- - T i + S 

where q^ = ^ ^ . 

Equations (5.2.1)-(5.2.5) involve boundary integrals only, after appropriate dis­

cretization and approximation to all derivatives of 770, ^1 and 772, a linear system of 

algebraic equations involving the unknown function 770 on F̂  -h FQ -I- Qi or 771 and 772 

on FJ -I- B-\-QB can be established. The details of such a system is similar to those in 

Appendix A. 

5.3 Run-ups of nonlinear waves 

After 770, 771 and 772 are solved numerically, the next step is to calculate the maximum 

wave run-up. For the linear case, we have obtained in Section 4.4 that 

va^x(^^hys{x,y,t) = max[C(a:,y,t)|. (5.3.1) 
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For weakly nonUnear waves, according to expression (5.1.5), the total (complex) in­

stantaneous surface elevation is 

C(a:,y,t) = r,o{x,y)e-''''-h ii%{x,y)e-''''-^ er)2{x,y)e-'^' 

= {aQi{x, y) -\- z6oi(x, y))e~"^* 4- {a2{x, y) -\- ib2{x, y))e~*^* 

= (ttoi cos cot -\- 6oi sin cot) -I- i(6oi cos cot — aoi sin cot) -\-

-\-{a2 cos 2a;t -(- 62 sin 2cot) -I- 7(62 cos 2a;t — a2 sin 2a;t). 

And the physical surface elevation is the real part of this expression, that is, 

Cphys{x,y,t) = aoi COS ojt-\-box sin cot-\-a2 COS 2ujt-\-b2 sin 2ujt 

where 

and 

= y^agi + 6̂ 1 sin(a;t + ^1) + y/aj + H sm{2cot + ^2), (5.3.2) 

91 = < 

92= < 

t^n-' Z^ 
f + tan-^S, 

2 ' 

w 
2 ' 

tan-^ g , 

f + tan-i g^ 

TT 

2 ' 

TT 

2 ' 

if 601 > 0, 

if 601 < 0, 

if 601 = 0, aoi > 0, 

if 601 = 0, aoi < 0, 

if 62 > 0, 

if 62 < 0, 

if 62 = 0, a2 > 0, 

if 62 = 0, a2 < 0. 
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Also in contrast to the linear case, the relationship (5.3.1) does not hold for the 

nonlinear case. In fact, since 

\v{x,y,t)\'^ = (ttoi cosa;t-I-601 sina;t-I-a2 cos 2a;< 4-62 sin2a;t)^ + 

+(601 cos cot — aoi sin cot -f- (62 cos 2ujt — a2 sin 2a;t)^ 

= < + &Si+a2 + 62 + 

H-2(aoi cos cot -\- 601 sin cot) {02 cos 2uot -\- 62 sin 2a;t) -I-

+2(601 cos a;/: - 0,01 sin cot){b2 cos 2a;/ — 02 sin 2a;/) 

= aSi + ̂ 01 + 0'2 + ̂ 2 + 

+2(aoia2 -t- 60162) cosut + 2(aoi62 - 6oia2) sina;t, (5.3.3) 

we have 

max|77(a;,y,t)|2 = aji + 601-I-a2-I-6^ + 

+2^/(aola2 -I- 60162)2 -I- (00162 - 60102)2 

= [y/< + bl + yjal + 62^ . (5.3.4) 

Hence 

max|C(x,y,t)| = sf^^+l^i + \[^^2. (5.3.5) 

which is not the same as (5.3.2). Thus, to obtain run-ups of the nonlinear waves in 

this thesis, we need to calculate the maximum value 

max 
f 

( V«oi + 0̂1 sin(a;/ + (9i) -f- Jal + 6|sin(2a;i + ^2) 

Note that, the periods of sin (a;/-I-^1) and sin(2a;t-l-^2) are ^ and ^, respectively, the 

period of Cphys{x,y,t) is ̂  and the maximum value of Cphys{x,y,t) must appear in 

the interval [0, ^ ] . Numerically, we can easily find out the maximum value in [0, ^ ] . 
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5.4 Numerical examples 

To test the PDRBEM model, we calculated wave amplification around coastlines for 

both a vertical cylinder and a circular conical island and compared our results with 

experimental data, linear theoretical solutions and other numerical solutions. For 

simplicity, the incident angle 9^ of the incident waves is taken to be 0" and all the 

variables are now referred back to dimensional quantities. 

Table 5.1. Parameters in Kriebel's (1990, 1992a) experiments. 

cases 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

ko 

1.668 

1.895 

2.302 

koC 

0.271 

0.308 

0.374 

1^0 ̂ 0 

0.750 

0.853 

1.036 

L/ho 

8.378 

7.366 

6.065 

f^' 

0.0143 

0.0184 

0.0272 

e 

0.0880 

0.1187 

0.1433 

0.0498 

0.0803 

0.1067 

0.1465 

0.1735 

0.0589 

0.0989 

0.1380 

0.1858 

0.1940 

koH 

0.132 

0.178 

0.215 

0.085 

0.137 

0.182 

0.250 

0.296 

0.122 

0.205 

0.286 

0.385 

0.402 
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5.4.1 DifFraction around a vertical cylinder 

For wave diffraction on a vertical cylinder, there have been many experiments con­

ducted for various cylinders and incident waves. However most of them only concerned 

wave forces rather than wave run-ups. Data from wave run-up experiments are some­

what limited, only found in Laird (1955), Nagai (1973), Chakrabarti k Tam (1975) 

and Raman k Venkatanarsaiah (1976). The cylinders studied in these literature are 

usually small and the waves are usually linear waves with very small amplitudes 

anyway. 

Recently, Kriebel (1990, 1992a) developed a nonlinear diffraction theory for wave-

structure interaction to the second order where a set of experimental data of nonlinear 

wave run-ups was presented and compared with his second-order diffraction theoret­

ical solutions. According to Kriebel (1990, 1992a), a total of 22 experiments were 

carried out in a wave basin at the University of Florida Coastal and Oceanographic 

Engineering Laboratory, in which wave run-up was measured for steep regular waves 

passing a fixed vertical cylinder with a radius, a, of 16.25 cm in a water depth, ho, 

of 45 cm. The water depth ranged from nearly-deep water with L/ho = 2.478 to 

nearly shallow water with L/ho = 8.378. And koH values ranged from 0.085 to 0.806. 

Since the governing equations used in this thesis are the Boussinesq equations which 

are based on the assumption of shallow water depth and the requirement that the 

nonlinearity e = koA be small, only cases 1 to 13 shall be examined as the water 

depth ranged from shallow water with L/ho = 8.378 to near shallow water with 

L/ho = 6.065 and the nonlinearity e ranged from 0.0498 to 0.1940, see Table 5.1. 

As the cylinder can be regarded as a special conical island, the toe To of the 

cylinder and the coastline F, are coincident. In our calculation, the artificial boundary 
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B is taken to be a circle of radius R = 8a. For all the 13 cases, 16 quadratic elements 

(with 32 boundary nodes) are used in each of the two boundary circles Ti and B and 

72 internal collocation points are evenly distributed on six inner circles, the radius 

of which are rj = a-\- Cj{R - a) with Cj being 0.10, 0.26, 0.42, 0.58, 0.70 and 0.86 

for j = 1, ...,6 respectively. The results of the wave run-ups by experiments (Kriebel 

1992a), the linear diffraction theory (MacCamy k Fuchs 1954), Kriebel's second-order 

diffraction theory (Kriebel 1990, 1992a) and the present PDRBEM numerical model 

are presented in Figure 5.1 to Figure 5.13. 

First of all, as expected, the first-order solutions, r)o{x,y), of the PDRBEM for 

all 13 cases agree with the linear diffraction theoretical solutions (MacCamy k Fuchs 

1954) very well. For clarity, all these first-order solutions are not graphed in these 

figures. 

Secondly, as shown in Figure 5.1 to Figure 5.13, the dispersive and nonlinear 

contribution from the PDRBEM model are significant. It can be seen that, at the 

front side {9 = 180°) of the cylinder, the linear diffraction theory badly underestimates 

the maximum wave run-ups in all cases with measured run-ups exceeding the linear 

theory by 13-78% and by 46% on average. In contrast, measured run-ups exceed the 

PDRBEM solution by up to 16% but by only 7% on average. Furthermore, the run-up 

distributions around the circumference are also poorly predicted by linear diffraction 

theory whereas the agreements between the measured run-ups and the PDRBEM 

run-ups are excellent in all thirteen cases. Especially, for cases 2-5 and 9-13, the 

measured run-up profile is almost exactly replicated over all angular positions by the 

current PDRBEM model. 

Finally, we notice that the present PDRBEM solutions, in some cases, show an 
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improvement over Kriebel's (1990,1992a) second-order diffraction theory. Kriebel's 

second-order model consistently underestimated the run-ups for cases 8, 10, 11, 12 

and 13 with steep waves whereas our model gives a good prediction. It is believe that 

this is due to different radiation boundary conditions in Kriebel's and our model. 

Hence, at large nonlinearities, our model performs better. 

In addition, as shown in Table 5.1, all 13 cases correspond to three different 

wavenumbers. The corresponding linear (MacCamy k Fuchs 1954) and weakly-

nonlinear solutions of the wave run-ups for these four wavenumbers are separately 

graphed in Figure 5.14 to Figure 5.16. In each group, although the amplitudes of all 

the cases are different, the linear solutions are the same since they correspond to the 

same wavenumber. However, as we can see from the weakly-nonlinear solutions in 

all the three graphs, as the amplitude of the incident waves increases, the maximum 

wave run-up increases. 

5.4.2 Combined refraction and diffraction on a conical island 

We now apply the PDRBEM model to the combined wave refraction and diffraction 

on a conical island. Up to now, only two published experimental data on run-up of 

periodic waves around conical islands are reported by Provis (1975) and Liu et al. 

(1994). Provis' experiments were conducted in a small basin (5.55 m wide and 5.80 

m long). The base diameter of the island was 3 m and the slope was 1:10. The water 

depth in the constant-depth region in the experiments was 0.15 m. Provis reported 

large discrepancies between his experimental data and theoretical results predicted 

by Smith k Sprinks (1975). Sprinks k Smith (1983) pointed out later that because 

of the relatively small size of the wave basin and the shallow-water depth, the viscous 
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dampping and standing waves between the wave generator and the island contami­

nated the experimental results. In addition, in order to reduce the nonlinear effect, 

the wave amplitudes were kept as small as possible, the incident wave typically hav­

ing a amplitude of 0.00005 m. Provis' experments are inappropriate for testing our 

PDRBEM model. 

Table 5.2. The parameters in the experiments used by Liu et al. (1994). 

cases a b ho A T e li^ 

1 0.468 m 1.65 m 0.2955 m 0.00250 m 4.5 sec 0.00846 0.00149 

2 0.468 m 1.65 m 0.2955 m 0.00085 m 2.5 sec 0.00288 0.00483 

3 0.878 m 1.65 m 0.1930 m 0.00285 m 3.0 sec 0.01477 0.00219 

4 0.862 m 1.65 m 0.1970 m 0.00235 m 2.5 sec 0.01193 0.00322 

We chose the experiments reported by Liu et al. (1994) as numerical examples to 

test our PDRBEM model. The experiments were performed at the National Defence 

Academy (NDA), Japan. They were carried out in a small basin with 7 m width 

and 11 m length. The base diameter of the island was 3.3 m and the slope was 1:4. 

The water depth in the constant-depth region in the experiments was 0.1930 m to 

0.2955 m. These conditions together with the parameters of the incident waves are 

tabulated in Table 5.2. 

In our numerical computation, for all these four cases the artificial boundary B 

is taken to be the toe, Tg, of the island. In addition, 20 quadratic elements (with 

40 boundary nodes) are used in each of the two boundary circles F̂  and To and 

72 internal collocation points are evenly distributed on six inner circles where their 
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radius are r̂  = a -I- Cj(6 - a) with Cj being 0.10, 0.26, 0.42, 0.58, 0.70 and 0.86 for 

j = 1, ...,6, respectively. 

In Figure 5.17-5.20, the maximum run-ups are shown for experimental data, linear 

theory (Zhang k Zhu 1994a) based on the linear shallow-water equation, the time-

marching finite difference scheme for the nonlinear shallow-water equations (Liu et 

al. 1994) and the present PDRBEM based on the Boussinesq equations. As we can 

see from Table 5.2, the nonlinearity is weakest in cases 1 and 2 while the dispersive 

effects are weakest in cases 1 and 3. For cases 1 and 3 all the different theories lie 

close together. For case 1 there is an excellent comparison with experimental results 

while for case 3 there is some variation between the experimental results and theory 

near the 120° region. 

In cases 2 and 4, for which dispersion is important, Liu et al. (1994) results diverge 

significantly from the other results. This is due to the fact no dispersive terms are 

present in the nonlinear shallow-water equations. The present PDRBEM method 

does extremely well in case 2 while there is some divergence between all the theories 

and the experimental results near 9 = 0° for case 4. 

Significant unexplained differences between the PDRBEM solutions and experi­

mental data are observed in both cases 3 and 4. These are the cases in which the 

nonlinear effects are largest so perhaps neglected higher-order nonlinear terms are the 

cause of these variations. 
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Coast position (measured in degrees around island centre) 

Figure 5.1: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 1 of cylinderical island. 
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Figure 5.2: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 2 of cylinderical island. 
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Figure 5.3: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 3 of cylinderical island. 
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Figure 5.4: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 4 of cylinderical island. 
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Figure 5.5: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 5 of cylinderical island. 
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Figure 5.6: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 6 of cylinderical island. 
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Figure 5.7: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 7 of cylinderical island. 
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Figure 5.8: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 8 of cylinderical island. 
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Figure 5.9: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 9 of cylinderical island. 
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Figure 5.10: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 10 of cylinderical island. 
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Figure 5.11: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 11 of cylinderical island. 
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Figure 5.12: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 12 of cylinderical island. 
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Figure 5.13: Comparison among the experimental data (Kriebel 1990 and 1992a), 
linear run-ups, the second order diffraction run-ups and the present weakly-nonlinear 
run-ups for case 13 of cylinderical island. 
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Figure 5.14: Comparison between the linear diffraction run-ups and the present 
weakly-nonlinear run-ups for cases 1-3 of cylinderical island. 
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Figure 5.15: Comparison between the linear diffraction run-ups and the present 
weakly-nonlinear run-ups for cases 4-8 of cylinderical island. 
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Figure 5.16: Comparison between the linear diffraction run-ups and the present 
weakly-nonlinear run-ups for cases 9-13 of cylinderical island. 
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Figure 5.17: Comparison among the experimental data, the linear analytical run-ups 
(Zhang k Zhu 1994a), the nonlinear shallow-water run-ups (Liu et al. 1994) and the 
PDRBEM run-ups for case 1 of conical island. 
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Figure 5.18: Comparison among the experimental data, the linear analytical run-ups 
(Zhang k Zhu 1994a), the nonlinear shallow-water run-ups (Liu et al. 1994) and the 
PDRBEM run-ups for case 2 of conical island. 
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Figure 5.19: Comparison among the experimental data, the linear analytical run-ups 
(Zhang k Zhu 1994a), the nonlinear shallow-water run-ups (Liu et al. 1994) and the 
PDRBEM run-ups for case 3 of conical island. 
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Figure 5.20: Comparison among the experimental data, the linear analytical run-ups 
(Zhang k Zhu 1994a), the nonlinear shallow-water run-ups (Liu et al. 1994) and the 
PDRBEM run-ups for case 4 of conical island. 



Chapter 6 

Conclusions 

Firstly, a general numerical model for wave refraction and diffraction problems, based 

on the MSWE, has been presented in Chapter 4. The model is an extension to 

that in Zhu (1993a) with the assumption that the water depth must be nonzero 

everywhere within the computational domain being completely removed. Numerical 

results of the run-ups for both Homma's paraboloidal island and three Hawaiian 

islands have been calculated and compared with previous analytical solutions and 

numerical solutions. The comparison shows the GDRBEM model is very accurate 

for long waves (tsunami waves). It is numerically very efficient in comparison with 

models based on finite elements too. Using the new model, we were able to examine 

the interaction between the diffraction and refraction effects. It is shown that the 

diffraction effect is significantly enhanced when there is a combined diffraction and 

refraction than when there is just diffraction alone. 

Then, in Chapter 5 of this thesis, a new numerical model, called the PDRBEM, is 

also presented for wave diffraction and refraction governed by the Boussinesq equa­

tions. To validate this new model, wave diffraction by a vertical cyUnder has been 

calculated and the maximum wave runups around the cylinder have been compared 
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with experimental results and linear solutions. It is shown that, for water depth rang­

ing from shallow water to near-deep water, the nonlinear effect of the new model for 

steep waves with the steepness {kgH) ranging from 0.2 to 0.53 is significant. Then, 

the model is applied to the combined wave diffraction and refraction by a conical is­

land. The nonlinear and linear wave runups around the conical island are calculated 

and commented upon. 

The PDRBEM model is useful for a number of reasons. Firstly it is more accurate 

than linear models when the wave steepness is large enough for nonlinear effects to 

be important. Moreover, since frequency decomposition has been used and the time-

dependent governing equations have been transformed into three time-independent 

linear equations, our model does not require time-marching. Also, the dimensionality 

in our model has been reduced by one because of the application of DRBEM. Hence 

our model is much more computationally efficient than other numerical schemes which 

include nonlinear effects. 



Appendix A 

Numerical discretization 

Equation (4.2.11) can be discretized by dividing the boundary curves, F,, and F, into 

a finite number of small sections, on each of which, the unknown function is replaced 

by an interpolation function, resulting the integration on each of these "elements" 

being carried out either analytically or numerically. Constant elements are the sim­

plest interpolation when the unknown function is assumed to be constant across each 

element. 

If the constant boundary elements are used, the discretized form of equation 

(4.2.11) is then 

,dG 

k=l 1 

n + m n+m 

k=l k=l 

n-\-m n+T7i 

-G„ 

where 

g^k 
Jck 

k=n-\-l 

x)dT, 

Jt=n+1 

(A.0.1) 

h ̂ k = [ q*{^,x)dT. 
Jek 

(A.0.2) 

After placing the source point ^ in equation (A.0.1) at all n + m-I-/ collocation points 
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Xj, one obtains a linear system of order n-\-m-^l as 

[C - {Gi -h G„)G„]U + C?,(H,U - G,Q) 

= [ (CW+Hi + H o ) U - ( G i - h G o ) Q ] F - ^ R - h 

+ GoKC^") - H„)U(^) -H G„Q(')], (A.0.3) 

where 

C 

G„ 

u 

Q 

= diag{0.bG\y,,,...,0.5G\^^, G]^^^,, ...,G\^^^), 

= (iia5(0,...,0,0.5,..., 0.5,0^_^^, 

n m / 

= dm^^fO.S,..., 0.5,0.5, ...,0.5,1,...,!), 

( ^ | x i , • • . ) ^ | x „ m J ) 

(q|x,,.--,glx^,p,...,(y , 

(r7(^)|x„-.,r7(^^' 

/ 

iXnml) ' 

= (g('^lxn->g^'^lx^vO'-'0)''' 

u = 

7711 . . . rjXnwX 

Vjimll Vnml nml 
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Q = 

qn • • • qinml 

9nml . . . qnrnnml 

0 ... 0 

0 0 
nmlxnml 

with nm = n-'rm, nml = n -f m -(- ?, and j)ij and qij being the values of TJJ and qj on 

point Xj, respectively, and 

H, = 

Ho = 

G, 

G, = 

/ i l l ••• hm 0 . . . 0 0 . . . 0 

Kmll • • • Kmln 0 . . . 0 0 . . . 0 

0 . . . 0 hxn+i . . . /iiara 0 . . . 0 

0 . . . 0 hjimln+X • • • hnml nm 0 . . . 0 

511 . . . gm 0 . . . 0 0 . . . 0 

gnmll . . . 9nmln 0 . . . 0 0 . . . 0 

0 . . . 0 Qm+l . . . ^inru 0 . . . 0 

0 . . . 0 gnmln-^\ • • • gnmlnm 0 . . . 0 

nmlxTiTnl 

J nmixnmf 

nmlxnml 

nml X nml 

Furthermore, according to Partridge & Brebbia (1989), we can express R as 

R = [K^G + V'G + {G,F, + GyFy)F-'] U (A.0.4) 
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with 

F . = 

F = 

^ 1 
dx •''̂  nmlxnml 

nmlxnml 

G = diag{G\^„...,G\^^), 

^ ,. .dG. dG. , 

_ ,. .dG. dG. , 

Gj, = dtag{—\^„...,-^\^^), 

V^G = d.rag{W'G\^„...,V'G\^^), 

K = di,ag{k^ — k \^^,...,k^ — k | x„ ,0^ .^^ , «;„ — A; |xnm+n •••' kg — k |xn^J. 
m 

So finally, equation (A.0.3) becomes 

[C - {Gi + G„)G„ -h G,H.- - S]U - GjG.Q = ^^[(C^''' - H„)U(^) + G „ Q ( ' ) ] (A.0.5) 

with 

S = [(CW + H,: 4- H„)U - (G^ + G „ ) Q ] F " ^ [ K ^ G + V^G + ( G , F , + GyFy) F"^] . 

By denoting 

T = C - ( G i + Go)G„ + G i H j - S , W = - G . G . , P = Go(C(' ')-H„), Y = GoGg, 
equation (A.0.5) can be rewritten into a real linear system 

/ 

\ 

T, 

T. Tr , 

^ ReV 

^ ImV ^ 

+ 

V 

^r - W , 
\ 

/ ^ ^ \ / r,_xxm \ / w w \ / " ^^n \ 
P r - P i 

\ 
P P J 

i?eU(^^ 

/mU(^) 

VV̂^ V^r 

V , - V i 

/2eQ \ 

-I-

/ 
V, V, 

JmQ 

V JmQ(^) 
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with 

T = Tr-^iTi, W = Wr + lWi, 

If other type of boundary elements are used, the corresponding discretized forms of 

equation (4.2.11) will be slightly different. 



Appendix B 

G{x, y) and its derivatives for 
nonzero water depth 

Since 

G{x, y) = ^ tanh kh (l + .'^^t L^ ( B . 0 . 1 ) 

^ ' 2k \ s\nh2khj ^ ' 
is an implicit function with k{x,y) being implicitly defined by the dispersion relation: 

gk tanh A;/?, = a;^ (B.0.2) 

the calculation of the partial derivatives Gx, Gy, Gn and V^G is now quite involved. 

For simplicity, let L{x,y) = k{x,y)h{x,y). Using the dispersion relation, i.e.. 

00 

L tanh L = 
2/1 

g 

or 
a;2 

g • tanhL' 
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we have the following fundamental relationships: 

tanh L-VL/ cosh^ L 
gkJ^ 

goo^ - huo*-h hg^k^^'' 

= Cih^, (B.0.3) 

_ u ^ ^ l / t a n h ^ L 
kx — 7 TTl^ Lx 

g tanh L 

- y 9^\rh 
g a;2 

= CiCih^, (B.0.4) 

, _ ^ , gu}^kx{goo'^ — huo* + hg'^k'^) - gkuP{-tj0^hx + g'^k'^hx 4- 2g'^khkx) 

Lxx - ^ihxx+ (J^737^;7T7^7^^j^ 
^ , , guj^CxC2-Cx{-uo'-^g'k' + 2g^khCxC2),, ,2 

- ^'^^^^ gu^ - huj* + hg^k^ ^^^^ 
^ , , gkco''CxC2-Cxk{-gu^C2-^2g^khCxC2),^ ,2 

- Oxti,x+ k{gco^ - hu* + hg-'k^) ^'^ 

= Ci/lxx + Cf • '^C2j^^gj\^, ^^^,^2) (^-) ' 

= Cl/l , . + C^C3(/l.)^ (B.0.5) 

A:.. = CxC2h,x + C!C2C,{hx)' + Cx^^^h 
CO' 

X 

= CxC2hxx + ClC2{C^ - ^ ) ( / ? . , . ) ' 
CO' 

= CxC2hxx + C,{hx)\ {B.0.6) 

where 

fffca;^ r ' - — - — 
guo-^-hu^ + hg'^k''' ^~ g co"" 
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Cs — 2Co 
guP — huo^ 

• k{guj'^ - huj* + hg-^k-^y 

So, from (B.0.3) to (B.0.6), we have 

,2 / 

C, = ClC2{C, - ^ ) 
uo^ 

G, = ^i - "' + f i - 4 

g_ 
2 

ygk'^h 

Ti + 2 

)1-(W( 1 - ^ 1 1 1 

= ^(2T2 - C^T,h)h, 

UO 

g^k^^ 

(B.0.7) 

with 

Similarly, we also have 

Ti 
UJ UJ 

gk'^h g'^k'^ 

( 1 - — ) ( 1 -

+ 1, 

g'^k'^ 

Gy = ^{2T2-C2Txh)hy, 
2k 

Gn = ^{2T2-C2Txh)hn. 
Ik 

(B.0.8) 

(B.0.9) 

Next, we have 

where 

V̂ G = f { ̂iTi - ^k.xS2 + 53T2 + '^LxS, I , 
k 

S2 
dTi 

dx ' 

dx 
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By simple differentiation, we obtain 

.1 
^l — ~[Tkxhx — T^kj. -\- -rkxx], 

'k ^ ^ fc2 
a;2 2a;2 1 1 

03 = 2[--Lxx ~ T^Lxkx), 

/l2' 

S4 = —{ 
u:\ UJ* 2u* uj'^h 

-\)hx + -^A\ )k. 
g g^k'^ g^k^ • g 

Note that in (B.0.1), there is a symmetry in x, y as far as derivatives are concerned, 

so formulae for Gy and Gyy are similar. The Laplacian of G{x, y) takes the form 

VG = ^ [f-
+ 

+ 

CO 

ghk* 

2uj^ ( o;̂  

27: _ Z^v'^fc -h 
k 

2T2 ^ Auj* (^ 

T\h_uj^ (2uj^ _ j . 

A:2 ~ gk*\ q ~ h 

uj'^h' 

A:2 g-^k 2i.4 

g 

VL-Vk 

IVfcl 

Ti 
, , V.2, . - iJVL.v/ . - -v . .v/ . 1 

Noticing tha t 

V ' L = CfCalV/il ' + CiV' / i , 

Vk = C4|V/?,|2 + CiC2V2/i, 

|Vfc|2 = ClCl\Vh\\ 

VL-Vk = CfC2|V/^|^ 

V L - V / i = Cl|V/^|^ 

Vfc-V/i = ClC2|V/^|^ 

we have 

V 2 G = | ( C 5 V ' / l - h C 6 | V / l | ' ) (B.0.10) 



with 

109 

C5 ^{2T2-C2Txh), 

k 
cfc,-fc,..^(^-:)c. 

—~GiC2 -I- -;-^C^C2 Ti-

2_ 
+ i-2G'xC2 

uo 

2ghk^ 
- T 2 4 -

2a;2 

gk^ \ g 
2uj* 

uP_(\ 
gk-'K h 

uj'h 

g^k^ 



Appendix C 

G{x^ y) and its derivatives for zero 
water dep th 

Unlike all the derivatives worked out in Appendix B, which are relatively straight­

forward although the derivation was quite involved and tedious, care must be taken 

when the water depth becomes zero as some limiting processes must be taken and 

they can be quite subtle. 

On Ti, since h{x,y) = 0, G{x,y) is singular. So we need to derive the asymptotic 

formulae for G and its partial derivatives and directional derivative along Fj. 

Firstly, after a great deal of mathematical manipulations, we can obtain these 

limits as 

l imG = 0, ]\mk^G = uj'^, 

1 a;2 
lim T = 0) lim fcL = — , 
h^o k h^o g 
lim -rLx = -hx, lim --Ly = -hy, 
/i-̂ O k 2 h-*0 K I 
,• ^ ; ^u r ^i ^h lim -A;̂ ; = - 7 : % , ^"iT'^i ' == ~ 9 " i " h-¥Q k 2 h-^o k I 
, 1 _ 5 . 2 1- ^ r ff ;,2 
hm -TTLXX = — T ~ ^ " T 5 hm -r^Lyy — —-r~2'^y^ 

,• 1 , ^9\2 y l ^ ^9\2 
lim -rrkxx = T-1K1 "rn -rrkyy = -T^n, • 
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As a consequence, we have 

Then we can find 

\imGx= ghx\Ti, \\mGy = ghylr,, 
/i—vO n—^O 

4LL;2 

Jim G„ = ghnki, lim V'G = {gVh - -:r-|V/ip)|r,. 
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limTi = 2, limT2 = l (C.0.1) 

(7 1 
lim -7^ = - , lim C2/1 = - 1 (C.0.2) 

lim C5 = 2, lim Cg = - ^ . (C.0.3) 
/i-*o /i-^o 35 



Appendix D 

Particular solutions used in 
DRBEM 

Consider the following Helmholtz equation 

V \ , -\- k \ = f{x, y, t, u, Ux, Uy), (x,y) € Q. (D.0.1) 

If DRBEM is used to solve (D.0.1) with the right-hand side approximated by a series 

of RBFs with the form 

f = j^a,ri, (D.0.2) 

then a particular solution of the equation 

^ ^ i ^ + eu^ = W (D.0.3) 
dr2 r dr 

is needed for j = 0,1, . . . , s, where r is the distance between a source point x and a 

field point ^ in DRBEM. 

It is easy to see that uo(r) = l/k\ Uj > 1, according to Zhu (1993b), Uj is given 

uJr) = --Jo{kr) r t^+'Yo{kt)dt + ^Yo{kr) f t^+'Jo{kt)dt, (D.0.4) 
2 7o 2 Jo 
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where Jo{kr) and Fo(fcr) are the Bessel functions of the first and second kinds of 

zeroth order, respectively. The first integral in (D.0.4) can be evaluated by using a 

recursion formula 

' j+ i {Yo{kr)) = r 
Jo 

t^-^^Yo{kt)dt = 
rJ 

rYx{kr) + JYo{kr) 

where 

and 

/i(yo(A:r)) = -yi(A:r), 

-i-^Ij_,{Yo{kr)), (D.0.5) 

(D.0.6) 

h{yo{kr)) = r [Yo{kr) + | [Ho{kr)Yx{kr) - ^i(A:r)yo(A:r)] } , (D.0.7) 

with HQ and Hi being the Struve's functions (Abramowitz k Stegun, 1965) of zeroth 

and first order, respectively. The evaluation of the second integral Ij^i{Jo{kr)) in 

(D.0.4) is similar. 

Further, by differentiating Uj{r) with respect to the boundary normal n, we have 

duj{r) _ duj{r) dr 
dn dr dn' 

(D.0.8) 

where 

duo{r) 

dr 
duj (r) 

dr 

= 0, (D.0.9) 

^kJx{k.r)Ij+x{Yo{kr)) - ^kYx{kr)Ij.,x{Jo{kr)). (D.0.10) 
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