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Abstract

Generalised linear models (GLMs) are a flexible class of non-linear models for non-

normally distributed response data. GLMs encompass models for discrete response

data which takes one of several values rather than being measured on a continuous

scale. Discrete response data is abundant in agricultural and biological research,

for instance, in the mortality of animals and plants (binary/binomial data) and the

scoring of disease (ordinal data).

Generalised linear mixed models (GLMMs) are an extension of GLMs which include

additional random effects in the (conditional) linear predictor. Some examples of

where GLMMs may be useful include the analysis of designed experiments, surveys,

spatial data and longitudinal or repeated measures data.

The fundamental difficulty in using GLMMs is that no closed analytical expression for

the likelihood is available. A variety of approaches have been proposed to circumvent

this difficulty, including approximate likelihood approaches, such as penalized quasi-

likelihood (PQL), numerical approaches, such as Gauss-Hermite quadrature (GHQ),

and approaches based on the use of Monte Carlo methods, such as modern Bayesian

approaches implementing Markov Chain Monte Carlo (MCMC) techniques.

Although in recent years more attention in the literature has been given to Bayesian

approaches and other approaches based on Monte Carlo techniques for GLMMs, there

is still widespread interest amongst practitioners in the use of approximate likelihood

approaches, especially with the work of Lee & Nelder (2001, 2006). The objective

of this PhD is primarily to explore the approximate likelihood approaches, as well

as comparing and contrasting them with numerical and Monte Carlo approaches.
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The most widely known approximate likelihood approach, PQL, is well-known to

give biased estimators of the GLMM parameters for binary grouped data when the

group size is small. However, the other two groups of approaches for GLMMs are

not without problems. Numerical approaches such as GHQ are only suitable for

GLMMs with nested random effects only, and often require very good starting values

to achieve convergence. Approaches based on Monte Carlo techniques can be very

computational intensive and also have convergence problems, as well as being sensitive

to the choice of priors, when used within the Bayesian paradigm. The approximate

likelihood approach of Lee and Nelder is claimed, by its proponents, to enjoy the

computational efficiency of PQL whilst not suffering from the estimation bias issues

that PQL experiences.

A background to the GLMM and inferential issues is provided in Chapter 1, with the-

oretical material and alternative approaches for modelling correlation in non-normal

data, such as the generalized estimating equation (GEE) approach. It is argued that

the GLMM is the most generally applicable model for modelling correlation and clus-

tering in non-normal data available at present. The second chapter reviews the main

estimation approaches for GLMMs, discussing in more detail the issues associated

with each of the approaches already highlighted above.

Chapters 3 and 4 focus on the two most popular approximate likelihood approaches,

PQL and the hierarchical GLM (HGLM) approach of Lee & Nelder (2001, 2006)

respectively. Simulation studies are presented in Chapter 3 for binary and sparse

Poisson data from a range of designs. These studies show that the two main factors

associated with estimation biases are the group sizes and the relative magnitude of

the variance components (as well as the sparcity of the Poisson data). These studies

also suggest that hypothesis testing for fixed effects, against the usual null hypoth-

esis of zero effect, can be reliably conducted using Wald tests using the estimated

variance-covariance matrix of the fixed effects from PQL. Finally, they also indicate

that the first order Laplace approximation may be useful for calculating approximate

likelihood ratio tests for testing variance components. Chapter 4 contains discussion
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of the HGLM approach of Lee and Nelder, which relies on either a first or second

order approximation of the likelihood. Computational issues associated with the use

of the HGLM approach are discussed in the context of a Fortran 90 implementation.

Further simulation studies show that estimation biases for HGLM approaches are

generally much smaller in magnitude than PQL, but the HGLM estimators can also

be unstable for binary models with conditional expectations near 0 or 1. Some heuris-

tic arguments for the relative performance of the HGLM approaches versus PQL are

also presented.

Estimation biases for the PQL and the HGLM approaches are compared with Bayesian

and GHQ approaches in Chapter 5 using a series of case studies. The approxi-

mate likelihood approaches performed reasonably well against Bayesian and GHQ

approaches for all case studies presented, with the exception of the Rodriguez &

Goldman (2001) datasets, with no finite maximum for the likelihood found using the

(second order) HGLM approaches. The second order HGLM approach gave similar

estimates to the Bayesian and GHQ approaches in a paired binary simulation study.

Despite greater estimation biases, the PQL estimators had lower MSE than the GHQ

estimators in a second paired binary (and Poisson) simulation study, in which the

Bayesian estimator, with default priors, suffered estimation bias as well. PQL also

performed relatively well against other approaches in a simulation study involving a

randomised complete block design (RCBD) and in a simulation study involving a spa-

tial GLMM, where PQL was compared with a much more computationally intensive

Bayesian approach. These simulations also showed that the “REML-like” correction

to the likelihood used by the HGLM and Bayesian approaches can give some positive

estimation bias.

Whilst both approximate likelihood approaches had difficulties either in terms of

estimation bias or instability, in general they perform relatively well against the other

approaches and provide a useful and efficient way of fitting a wide variety of GLMMs.

The use of a first or second order HGLM approach is generally preferable to PQL

to achieve lower estimation biases. If PQL is employed, it is suggested that the
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first order Laplace approximation be calculated for approximate testing of variance

components.
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Chapter 1

Review of basic elements of

theory

This chapter provides a review of background theory necessary for a discussion of

generalized linear mixed models (GLMMs) and approaches in following chapters.

GLMMs are a fusion of generalized linear models (GLMs) and linear mixed models

(LMMs). This chapter summarises inferential techniques for these two parent model

classes, since these inferential techniques are also the basis of some of the approaches

devised for GLMMs.

1.1 Linear and generalized linear models and classical

inferential approaches

1.1.1 Linear models

Linear models with independent normally distributed errors and common variance,

which will be referred to as “normal linear models”, have been central to applied

statistical work for several generations of applied statisticians. They encompass a wide

range of statistical models, including, for instance, Analysis of Variance (ANOVA)

models, which are particularly useful for analysing designed experiments. Recent
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advances in computational speed, as well as widespread availability of software, have

made it computationally trivial to fit a normal linear model, even for relatively large

datasets.

The normal linear model is illustrated in the analysis of data from a completely

randomised design (CRD). It is assumed that t treatments were randomised to n ex-

perimental units. In addition, a covariate is available to allow for differences between

the units prior to treatment application. The linear model for the ith experimental

unit is

yi = τ0 + τj(i) + xiτt+1 + ei, i = 1, . . . , n, (1.1)

where yi is the response, τ0 is the overall mean, τj(i) is the effect of the treatment

assigned to the ith unit, xi is the covariate value with associated regression coefficient

τt+1, and ei ∼ N(0, σ2) are random errors.

A general formulation for a normal linear model is

yi = xTi τ + ei, i = 1, . . . , n,

where xi is a vector of values of the regressor variables for the ith observation with

associated vector of coefficients τ of length p, and ei ∼ N(0, σ2) is the normally dis-

tributed error for the ith observation. This general formulation can also be expressed

in matrix/vector notation as

y = Xτ + e,

where y = (y1 . . . yn)T is a vector of responses, X is the n × p design matrix whose

ith row is xTi , and e = (e1, . . . , en)T ∼ N(0, σ2I) is a vector of independent and

identically distributed (i.i.d.) errors. To illustrate this general formulation, the above

example (1.1) will be used. Assuming that there are r = n/t replications of each

treatment and that the units are ordered by treatment, the matrix X and vector τ
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would be as follows:

X =





















1r 1r 0r . . . 0r x(1)

1r 0r 1r
...

... x(2)

...
... 0r

. . . 0r
...

1r
...

... 0r 1r x(t)





















, τ =





































τ0

τ1

τ2

...

τt

τt+1





































,

where 1r and 0r are vectors of length r consisting of 1 or 0 respectively and x(i) is the

vector of covariate values for units assigned the ith treatment. Note that the matrix

X is not full rank, since the first column is the sum of the next t columns. However,

X can easily be made full rank by dropping the first column and, correspondingly,

dropping τ0 from the vector of coefficients, for instance. In further discussion, it is

assumed that X is always full rank.

Amongst the numerous texts available on normal linear models, Draper & Smith

(1998) is considered one of the standard references.

1.1.2 Generalized linear models

Generalized linear models (GLMs) are, as the name suggests, a generalization or

extension of normal linear models. GLMs incorporate normal linear models as a

special case, but also cater for other error distributions, in particular, error distribu-

tions catering for discrete data such as the Poisson and binomial distributions. GLMs

originated from a variety of different analysis problems, including dilution assay to de-

termine infective organism concentration, probit analysis in toxicology experiments

and log-linear models for cross-tabulations of counts (McCullagh & Nelder, 1989,

chapter 1). Nelder & Wedderburn (1972) were the first to propose the generalized

linear model to encompass these different models under one unified mathematical

framework.

To illustrate the formulation of a GLM, the example (1.1) for the normal linear model
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above will be modified. It is now assumed that the responses yi follow a Poisson

distribution, and that the effects of treatments and covariates are multiplicative rather

than additive. Hence, we assume that

E(yi) = µi = exp(τ0 + τj(i) + xiτt+1), (1.2)

where µi, τ0, τt(i), xi and τt+1 are as before.

The specification of a generalized linear model is:

1. the probability distribution of the data is a member of the exponential family

of distributions, where the probability density function (PDF) can be written

in the following general form for one observation yi, i = 1, . . . , n:

f(yi; θi) = exp

(

(yiθi − b(θi))
ai(φ)

+ c(yi, φi)

)

, (1.3)

where θi and φ are often called the canonical and dispersion parameters respec-

tively, and ai, b and c are arbitrary functions.

2. the mean of the response µi = E(yi) is related to a linear function of regressor

variables in the vector xi of length p via a link function g(µi) = E(yi) = xTi τ ,

where the elements of τ are the associated regression coefficients. The linear

function ηi = xTi τ is generally referred to as the linear predictor. In the above

example (1.2), the link function is the logarithmic function.

The exponential family of distributions contains many of the well-known statisti-

cal distributions, including the normal, binomial, Poisson and gamma distributions.

Distributions in this family have a number of desirable mathematical and statistical

features, as discussed in Barndorff-Nielsen (1978); for instance, if y1, . . . , yn have PDF

f(y; θ), then the mean y is a sufficient statistic for θ.

The first two moments of the general distributional form in (1.3) are E(yi) = µi =

b′(θi) and Var(yi) = b′′(θi)ai(φ). The canonical parameter θ can be expressed as a

function of the linear predictor θ = f(η) where f(·) = b−1
d

{

g−1(·)
}

and bd = b′. A
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canonical link function g satisfies g−1 = b′, and so the canonical parameter equals

the linear predictor θ = η. Other properties of GLMs can be found in a standard

reference on GLMs, for instance, McCullagh & Nelder (1989), pp 29-32.

Let v(·) = b′′(b−1
d (·)) be the “variance function”, where bd = b′ as before. The

relation between the variance and the mean, encapsulated in the variance function

v = v(µ), uniquely identifies the exponential family distribution concerned. For

instance, v(µ) = 1, µ and µ2 are the variance functions for the normal, Poisson and

gamma distributions respectively.

The functions ai(·), i = 1, . . . , n, are most commonly of the form ai(φ) = aiφ, where ai

are known constants, and this will be assumed from now on. The dispersion parameter

φ can be either known or estimated from the data. For instance, it is equal to 1 for

the Poisson and binomial distributions, but equivalent to the residual variation σ2 for

Normal data. The constants ai are also usually equal to 1, but for binomial (grouped

binary) or other grouped data, ai = 1/mi, where mi is the binomial denominator or

group size respectively.

One of the uses of the inverse link g−1 is to map the linear predictor η = xTτ to a

valid range for the response variable. For instance, for binary data, the probit link

function Φ(µ) = η, where Φ is the cumulative density function (CDF) of a N(0, 1)

distribution, transforms the linear predictor to take values between 0 and 1, since

µ = Φ−1(η) represents the probability of a successful response. The GLM model

can also be interpreted as a model for data generated from a “latent” continuous

variable. For instance, binary data arising from a model with probit link function

can be generated by dichotomising a normally distributed variable with mean xTτ

and variance 1, according to whether it is above or below 0.

1.1.3 Maximum likelihood estimation

A statistical model can be defined by a PDF f(y;θ) for data y with fixed, but un-

known, parameters θ which delineate the model. The likelihood function is equivalent

to the PDF for fixed observed data y, that is, L(θ;y) = f(y;θ), and θ is allowed
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to vary. A log-likelihood function ℓ = logL(θ;y) is more useful in practice than

the unlogged version because of its statistical properties, and this will be referred to

subsequently as the “log-likelihood”.

Maximum likelihood (ML) estimates of the unknown parameters θ are defined as esti-

mates that maximize ℓ(θ;y) (or L(θ;y)). The score statistic and Fisher information

matrix are the vector of first derivatives of the likelihood, ∂ℓ/∂θ, and the negative

expectation of the matrix of second derivatives, I = −E(∂2ℓ/∂θ∂θT ), respectively.

Two key results for the score statistic and information matrix respectively are:

1. the expectation of the score statistic is zero (where the expectation is taken

over the distribution of y at θ):

Eθ

(

∂ℓ

∂θ

)

= 0;

2. the information is the variance of the score statistic:

−E

(

∂2ℓ

∂θ∂θT

)

= E

(

∂ℓ

∂θ

∂ℓ

∂θT

)2

= Var

(

∂ℓ

∂θ

)

.

By the Cramer-Rao Lower Bound (CRLB) theorem, the diagonal elements of the

inverse of the Fisher information matrix are the minimum variance of each element of

θ that any estimator of θ can attain. Maximum likelihood may not necessarily provide

the best unbiased estimator, and the estimator may even be biased for small sample

sizes. However, asymptotically, maximum likelihood estimators of θ are unbiased and

have variance-covariance matrix equal to the CRLB of θ.

1.1.3.1 Methods of computing ML estimates

To obtain ML estimates of the unknown parameters θ, one can solve ∂ℓ/∂θ = 0 for θ

(assuming that ∂2ℓ/∂θ∂θT ≤ 0 for all θ). Often, however, no closed form expression

for the solution to the score function ∂ℓ/∂θ = 0 exists. Therefore, an iterative method

of solution is required, such as Fisher scoring or the EM algorithm.
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Fisher scoring and quasi-Newton techniques: Fisher scoring, also known as

the Gauss-Newton algorithm, is a variation on the Newton-Raphson iterative tech-

nique for finding the maximum or minimum of a non-linear function f(θ). Here it is

assumed that f(θ) is being maximized. Given an estimate θ̂(k−1) from the (k − 1)th

iteration, the Newton-Raphson technique calculates the estimate θ̂(k) for the kth

iteration as

θ̂(k) = θ̂(k−1) −







(

∂2f

∂θ∂θT

)−1 (
∂f

∂θ

)







θ=θ̂(k−1)

.

In Fisher scoring, the negative inverse of the Hessian, −(∂2f/∂θ∂θT )−1, is replaced

by the information matrix, I(θ) = −E(∂2f/∂θ∂θT ), since it is often easier to com-

pute. Fisher scoring is an example of a quasi-Newton method, where the Hessian is

replaced by an alternate formulation or an approximation A, therefore the step size

is −A−1(∂f/∂θ). Quasi-Newton techniques can be shown to have quadratic con-

vergence near the true solution, but can also easily “overshoot” the maximum. One

approach to correcting the latter is to reduce the step size until the function increases.

Smyth (1997) reviews quasi-Newton and other optimisation techniques with empha-

sis on statistical applications. One important implementation of Fisher scoring is the

iteratively reweighted least squares (IRLS) technique to solve GLMs (section 1.1.3.2).

The EM algorithm: The EM (expectation-maximization) algorithm (Dempster,

Laird & Rubin, 1977) obtains maximum likelihood estimates by creating auxiliary or

“missing” data. The data vector y is augmented with missing data, denoted z, so

that the “complete” likelihood is based on the joint PDF, f(y,z;θ).

Heuristically, the EM algorithm repeatedly “guesses”, and then maximizes, the com-

plete log-likelihood with respect to θ. Formally, the kth iteration of the EM algorithm

involves two steps:

1. The E Step: determine Ez|y {log f(y,z;θ)} over the conditional distribution of

z given y and current estimates θ(k−1), i.e.

ℓ
(k)
E =

∫

log f(y,z;θ)f(z|y;θ(k−1))dy.
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2. The M Step: maximize ℓ
(k)
E to give θ(k).

The EM algorithm is particularly useful for mixed models, for instance linear mixed

models (section 1.2), where the random effects constitute the missing data. It can

be shown that the EM algorithm will always converge to a maximum likelihood so-

lution (Dempster et al., 1977), but may do so very slowly (e.g. Lindstrom & Bates,

1988). Recent attempts to improve the EM algorithm include the “working parame-

ter” method (Meng & van Dyk, 1997) or the PX-EM algorithm (Liu, Rubin & Wu,

1998; Liu & Wu, 1999), which essentially apply a suitable transformation to z to im-

prove the convergence rate. Other variations include using Monte Carlo to evaluate

the E step (Wei & Tanner, 1990) and using ECM (expectation-conditional maximi-

sation) for the M step (Meng & Rubin, 1993).

1.1.3.2 Maximum likelihood estimation in linear and generalized linear

models

Maximum likelihood techniques are well-defined for normal linear and generalized

linear models. For normal linear models where yi ∼ N(xTi τ , σ
2), i = 1, . . . , n, maxi-

mizing the likelihood is equivalent to minimizing the sum of squares of the residuals

∑n
i=1(yi−xTi τ )2, with the ML estimator being τ̂ = (XTX)−1XTy if X is full rank.

It may be necessary to use unequal weights, wi, for the observations, for instance, if

there is heterogeneity in the variability of the residuals, that is, ei ∼ N(0, σ2ξi), in

which case the ML estimator is τ̂ = (XTWX)−1XTWy, where W = diag(wi) and

wi = ξ−1
i .

For generalized linear models, ∂ℓ/∂θ = 0 generally yields no closed form solution for

θ, so an iterative method of solution is required. The standard technique for solving a

GLM is called iteratively reweighted least squares (IRLS) and is derived using Fisher

scoring (section 1.1.3.1). It can be shown that the estimate of τ at the kth iteration

is

τ̂ (k) = (XTW (k−1)X)−1XTW (k−1)ψ(k),
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where W (k−1) = diag{w(k−1)
i } is a diagonal matrix of GLM weights,

w
(k−1)
i =

{

aig
′(µ

(k−1)
i )v(µ

(k−1)
i )

}−1
,

and ψ(k−1) = (ψ
(k−1)
1 . . . ψ

(k−1)
n )T is a so-called “working variable” with elements

ψ
(k)
i = η

(k−1)
i + g′(µ

(k−1)
i )(yi − µ(k−1)

i ).

The quantities η
(k−1)
i = xTi τ̂

(k−1) and µ
(k−1)
i = g−1(η

(k−1)
i ) are calculated using the

current estimates τ̂ (k−1). It is also easy to extend a GLM to allow for under- or over-

dispersion of the data yi, for distributions where φ is assumed to be 1, such as the

Poisson and binomial distributions. For these distributions, the dispersion component

φ can be estimated from the data, using either the deviance or Pearson residuals –

see, for instance, McCullagh & Nelder (1989) pp 124-127 for details. Note that, by

estimating φ, we no longer have a closed form for the distribution of the response, and

so estimation for this extended model should be considered an instance of maximum

quasi-likelihood (see section 1.1.3.4 below) rather than maximum likelihood.

1.1.3.3 Marginal, conditional, integrated and profile likelihood

Where θ = (θ1 . . . θp)
T is a vector (i.e. p > 1), the use of ML estimation may result in

biased estimators for an individual parameter θi. For instance, where Yi ∼ N(µ, σ2),

i = 1, . . . , n, the parameter vector is θ = (µ, σ2)T , and the ML estimator, σ̂2 =

∑n
i=1(yi − ȳ)2/n, is negatively biased.

A number of general strategies to provide an improved “likelihood” to overcome this

bias are described briefly below. It is assumed that θ can be split into two components,

firstly, the parameters of interest ψ, and secondly, the “nuisance” parameters λ. In

the example, it is assumed that σ is the component of interest, and µ is the nuisance

parameter.

1. Marginal likelihood: A marginal likelihood is formed from the PDF of a statistic

T (y) which depends only on the parameters of interest. For instance, if Yi ∼
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N(µ, σ2), i = 1 . . . n, the statistic

T (y) = (Y1 − Y , Y2 − Y, . . . , Yn − Y )T ∼ N
(

0, σ2 [In − Jnn/n]
)

,

has a distribution which does not depend on the nuisance parameter µ. The

n × n matrices In and Jnn here are the identity matrix and a matrix of 1s

respectively.

2. Conditional likelihood: A conditional likelihood is formed using the conditional

PDF of the data given S(y), a sufficient statistic for the nuisance parameters

λ. If yi ∼ N(µ, σ2), i = 1 . . . n, the conditional PDF of y given a sufficient

statistic for µ, µ̂ = y , is

−n− 1

2
log σ2 −

∑

i(yi − y)2

2σ2
,

which is a function of σ2 alone.

Both the formation of marginal and conditional likelihoods for inference can be

considered as specific cases of Cox’s partial likelihood approach (Cox, 1975).

3. Integrated likelihood: Motivated partly by Bayesian theory, an integrated like-

lihood can be formed by simply integrating out the nuisance parameters from

the likelihood function. A weighting function, or non-informative prior, may

need to be applied in the integrand (Berger, Liseo & Wolpert, 1999).

4. Profile likelihood: A profile likelihood for ψ is formed by substituting the

maximum likelihood estimate of λ given ψ, λ̂ψ, into the joint log-likelihood

ℓP (ψ) = ℓ(ψ, λ̂ψ). A profile likelihood is thus always trivial to obtain, provided

that there is an analytical expression for λ̂ψ. However it will be subject to

the same biases as applying maximum likelihood on the full parameter vector

θ. Corrections to the profile likelihood which attempt to ameliorate this bias

include modified profile likelihood (Barndorff-Neilsen, 1983), conditional profile

likelihood (Cox & Reid, 1987) and adjusted profile likelihood (McCullagh &
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Tibshirani, 1990).

1.1.3.4 Quasi-likelihood

The use of quasi-likelihood requires only second order distributional assumptions,

rather than a full distributional assumption for the response. Like the exponential

family of distributions (section 1.1.2), it is assumed that the variance is a function of

the mean, that is E(yi) = µi, and var(yi) = aiφv(µi), i = 1 . . . n, where, as before,

v(µi) is the variance function, φ is a known dispersion parameter and ai are known

constants.

As noted at the beginning of section 1.1.3, a log-likelihood ℓ is characterised by score

equations which have expectation zero and variance equal to the information. A

“quasi-score” function which possesses these two attributes can be formed using only

second order assumptions. Its integral is the quasi-likelihood function,

Q(µ;y, φ) =
n
∑

i=1

∫ µi

yi

(yi − t)
aiφv(t)

dt,

with associated quasi-score equations

U(τk) =
∂

∂τk
Q(µ;y, φ) =

n
∑

i=1

∂µi
∂τk

(yi − µi)
aiφv(µi)

, k = 1 . . . p. (1.4)

As the quasi-score equations are generally non-linear in τ , an iterative solution, such

as Fisher scoring (section 1.1.3.1), is required.

To illustrate the formation of a quasi-likelihood function, the second order assump-

tions for a Poisson distribution are used, where v(µ) = µ and ai = φ = 1. The

quasi-likelihood function with these second order assumptions is

Q(µ;y, φ) =
∑

i

∫ µi

yi

(yi − t)
t

dt =
∑

i

[yi {log(µi)− log(yi)} − (µi − yi)] ,
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with corresponding PDF proportional to that arising from a Poisson distribution,

eQ(µ) =
∏

i

µyii e
−µi

e−yiyyii
∝
∏

i

µyii e
−µi

yi!
.

Of all linear estimating equations of the form H [y − µ(τ )] = 0, where H is a p× n

matrix, it can be shown that the quasi-score equation (1.4), where H = DTV −1 and

D = ∂µ/∂τT and V = diag {v (µi)}, is the optimal estimating equation, in the sense

of achieving estimators with minimum variance (Godambe & Heyde, 1987).

Extended quasi-likelihood: Where φ is unknown, Nelder & Pregibon (1987) pro-

posed an extended quasi-likelihood function for estimating both τ and φ,

Q+(µ, φ;y) = Q(µ;y, φ) −
∑

i

log {2πaiφv(yi)} /2.

The use of the extended quasi-likelihood Q+ gives the same score equations for τ as

ordinary quasi-likelihood, since ∂Q+/∂µ = ∂Q/∂µ. For the Poisson example, the

extended quasi-likelihood function is

Q+(µ, φ,y) =
∑

i

[yi {log(µi)− log(yi)} − (µi − yi)]−
∑

log(2πyi)/2.

The corresponding PDF is again proportional to that arising from the Poisson distri-

bution,

eQ
+

=
∏

i

µyii e
−µi

e−yiyyii
√

2πyi
∝
∏

i

µyii e
−µi

yi!
.

As shown in this example, the extended quasi-likelihood is equal to the likelihood

of the corresponding exponential family, but with any factorial terms replaced by a

Stirling approximation,

k! ≏ (2πk)1/2kke−k.

The extended quasi-likelihood for dispersion modelling: Nelder & Pregibon

(1987) also used the extended quasi-likelihood for dispersion modelling, in two ways.

Firstly, the variance function v(µ) may involve unknown parameters ξ, such as a

12



member of the Tweedie family (Tweedie, 1984), where v(µ) = µξ. Secondly, the dis-

persion parameter φ may vary across observations so that, if φ = (φ1, . . . , φn)T , then

gφ(φi) = vTi ξ, where vi is a vector of regression variables for the ith observation and

gφ is a link function, usually either the identity or logarithmic link function. In both

cases, extended quasi-likelihood can be used to estimate the parameters ξ. In each

case, estimation would proceed by alternatively solving for τ , the regression coeffi-

cients parametrizing the mean µ, and ξ, the regression coefficients for the dispersion

parameter φ, as in, for instance, Smyth (1989).

1.2 Linear mixed models

The linear model (section 1.1.1) has one source of variation, the residual error e.

However, many data analysis problems required models with more than one source

of variation. In the analysis of designed experiments, factors can be randomised at

different levels of aggregation or strata, owing to physical or logistical constraints, such

as in a split plot design. In survey data, there are often clustering effects in the data

where individual observations can not be assumed to be independent, for instance,

in a household survey where people within the same household are more likely to

provide similar responses. For some types of data, standard ANOVA techniques may

be applied for each stratum in turn. However, for many types of data, such as where

there are missing values, more advanced approaches are required. The use of a linear

mixed model (LMM) is one such approach, and this is introduced along with classical

likelihood techniques.

1.2.1 Specification

To illustrate a simple LMM, the example used for the normal linear model of section

1.1.1 is extended so that the experimental units are assumed to be in r blocks, with

each block comprising t = n/r experimental units. It is assumed that the treatments

have been randomised to experimental units according to a randomised complete
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block design (RCBD), so that each treatment appears once in each block. The linear

mixed model is

yi = τ0 + τj(i) + uk(i) + xiτ(t+1) + ei,

where uk(i) is the effect of the block in which the ith experimental unit resides. The

block effects are assumed to be normally distributed, uk ∼ N(0, σ2
b ), k = 1 . . . r,

to allow for the randomisation of the design, as outlined in Nelder (1965a,b). The

parameters τ0 and τj(i), and random errors ei ∼ N(0, σ2), are as for the normal linear

model.

The general formulation of the LMM for data y = (y1, . . . , yn)T is

y = Xτ +Zu+ e,

where X and Z are the design matrices for the fixed and random components and are

of dimension n×p and n×b respectively, with associated vectors of coefficients τ and

u respectively, where u ∼ N
(

0,σ2G(γ)
)

and e ∼ N
(

0,σ2R(φ)
)

, and γ and φ are

vectors of variance parameters of length q and s respectively. Let κ = (σ2,γT ,φT )T .

The LMM can be defined in two stages:

• conditional on the random effects u, the data y is normally distributed with

mean Xτ +Zu and variance σ2R(φ);

• it is further assumed that u is normally distributed with mean 0 and covariance

matrix σ2G, where G is parametrized by variance parameters γ.

For the example above, assume that the units are ordered by block within treatment.

Then X and τ are as given in section 1.1.1. The matrix Z and vector u are

Z =





















It

It
...

It





















and u =





















u1

u2

...

ur





















,
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where It is the t× t identity matrix.

1.2.2 Estimation and Prediction

1.2.2.1 ML and Residual ML (REML) for LMMs

In order to make formal inference for the linear mixed model of section 1.2, the like-

lihood needs to be evaluated. The LMM specification involves two distributions, the

distribution of the data given the random effects, y|u ∼ N
(

Xτ +Zu, σ2R(φ)
)

, and

the distribution of the random effects, u ∼ N
(

0, σ2G(γ)
)

. Denote their correspond-

ing PDFs fY |U and fU respectively. The joint PDF of the data and random effects

is simply fY,U = fY |UfU . However, fY,U is not a likelihood, since it involves the

unknown random effects u. The random effects need to be integrated out, to give the

marginal, or unconditional, PDF fY of the data y:

fY =

∫

fY |UfUdu

=

∫ {

(2π)−n/2
∣

∣

∣σ2R
∣

∣

∣

−1/2
exp

[

− 1

2σ2
(y −Xτ −Zu)TR−1(y −Xτ −Zu)

]

∣

∣

∣σ2G
∣

∣

∣

−1/2 exp

[

− 1

2σ2
uTG−1u

]}

du

= (2π)−n/2|V |−1/2 exp

[

−1

2
(y −Xτ )TV −1(y −Xτ )

]

, (1.5)

where var(y) = V = σ2
(

R+ZGZT
)

is the marginal variance of y. Alternatively,

since the model is linear, the marginal expectation and variance can be easily deter-

mined without integration, viz.

E(y) = E {E(y|u)} = E {Xτ +Zu} = Xτ

var(y) = var {E(y|u)} + E {Var(y|u)} = σ2ZGZT + σ2R.

Using standard statistical theory concerning mixtures of normal distributions, it is

also clear that the marginal distribution should be a normal distribution. Note also

that a linear mixed model can be specified using a marginal formulation as y = Xτ+e

where e ∼ N (0, V (κ)). This marginal formulation is widely used in many references
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on LMMs.

The log-likelihood is simply ℓ(τ ,κ;y) = log fY . Assuming that X is full rank, the

ML estimator for τ , given κ, is

τ̂ML = (XTV −1X)−1XTV −1y,

with estimated variance (XTV −1X)−1. The ML estimator for a variance parameter

κi, κ̂i,ML, is well-known to be downwardly biased, that is E(κ̂i,ML) < κi, since it

ignores the loss of degrees of freedom in estimating τ . This is an example of the

failure of ML estimation in the presence of nuisance effects (section 1.1.3.3). REML

(restricted maximum likelihood), first proposed by Patterson & Thompson (1971), is

a likelihood for estimating the variance components κ, formed from the probability

distribution of the tranformed data, T (y) = LTy, where L is a matrix such that

LTX = 0. REML can be considered as an example of a marginal likelihood, in the

sense of section 1.1.3.3, since the distribution of T (y) is a function of κ alone, and

does not involve τ . The REML score equations for the variance components are

∂ℓ/∂σ2 = ∂ℓ/∂κ1 = −1

2
((n − p)/σ2 − yTPy/σ4) = 0,

∂ℓ/∂κi = −1

2
[tr(PVi)− yTPViPy/σ2] = 0, i > 1

where P = V −1− V −1X(XTV −1X)−1XTV −1, and Vi = ∂V /∂κi. The ML score

equations are similar, but with P replaced by V −1. Note that, except for ∂ℓ/∂σ2 = 0,

these equations are non-linear for κi. In general, no closed form solution for κ exists,

and therefore an iterative solution is required.

Note that, in parallel to the development of LMM theory, the iterative generalized

least squares (IGLS) (Goldstein, 1986) has been developed for so-called “multilevel

models”. The multilevel model formulation can be shown to be equivalent to the LMM

formulation above. The restricted IGLS algorithm (RIGLS) of Goldstein (1989) has

been shown to be equivalent to solving a REML likelihood for the variance parameters.
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1.2.2.2 Best Linear Unbiased Predictors (BLUPs)

Estimation of the random effects u is referred to as “prediction”, since u is a vector

of random variables. It is assumed that REML estimation is used for the variance

parameters, and that y2 = LTy where L is defined so that LTX = 0. The best linear

unbiased predictor (BLUP) of u is the mean of the posterior distribution of u given y2,

ũ = E(u|y2), where “best” is defined in the sense of being the predictor with lowest

mean squared error. Note that this results holds for a more general mixed model than

the normal linear mixed model. (In the case of ML estimation, ũ = E(u|y) instead.)

The BLUP is unbiased in the sense that E(ũ) = E(u) = 0, but not in the usual

sense, since E(ũ) 6= u. Note that the expression for the BLUP implies a regression

of the random effects u upon y2 (or y in the case of ML estimation).

For the normal linear mixed model, and for given κ, the BLUP is

ũ = E(u|y) =
(

ZTR−1Z +G−1
)−1

ZTR−1(y −Xτ̂ML),

where τ̂ML was defined in the previous section. Henderson, Kempthorne, Searle &

Von Krisig (1959) showed that differentiating the joint “log-likelihood” log fY,U with

respect to τ and u leads to the mixed model equations,







XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1













τ

u






=







XTR−1y

ZTR−1y






, (1.6)

whose solution is (τ̂TML, ũ
T )T , thus avoiding the need to invert the large matrix V .

Harville (1977) showed that the solutions to the mixed model equations can also be

used to provide ML or REML estimates of κ, and suggested an iterative solution

for the mixed model which alternates between solving for κ and solving for τ and

u. Fisher scoring is preferable to Harville’s method for maximising the (REML)

log-likelihood with respect to the variance parameters κ, since Harville’s method is

essentially an application of the EM algorithm, which is known to have slow con-

vergence properties (section 1.1.3.1). More recently, Gilmour, Thompson & Cullis
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(1995) proposed the “average information” REML algorithm (AI-Reml), which fur-

ther improves the calculation of the information matrices involved in Fisher scoring

by avoiding the evaluation of traces of large matrices.

1.2.3 Usefulness of the linear mixed model

As well as being useful for models where there are multiple sources of variation, the

LMM has proved useful in other ways. It is sometimes desirable to fit some effects

as random rather than fixed, such as in early generational plant variety trials with

little replication, where variety effects are often fitted as random. The reason for

doing so is to maximise the correlation between the estimated or predicted variety

means and their true values, since the objective of early generational variety trials

is varietal selection (Gilmour et al., 1997). Random effect modelling is also useful

for small area estimation to improve robustness (Ghosh & Rao, 1994). Linear mixed

models specified with general covariance structures also allow the fitting of spatial

and/or temporal correlation patterns. Finally, the linear mixed model also provides a

way of fitting cubic smoothing splines, where the smoothing parameter is “automati-

cally” determined by the variance component estimates (Verbyla, Cullis, Kenward &

Welham, 1999).

1.3 Further issues

1.3.1 Bayesian estimation

In this section, Bayesian inference is discussed with reference to the linear mixed

model of section 1.2.

In order to implement a Bayesian approach, prior distributions are required for all

parameters in the model, since, under the Bayesian paradigm, all parameters are

treated as random variables rather than fixed unknowns. For the random effects

u, the distributional assumption u ∼ N
(

0, σ2G(γ)
)

provides an informative prior

distribution for u. For the fixed effects τ , an uninformative prior is normally used,
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such as τ ∼ N
(

τ0, σ
2
τI
)

, where τ0 = 0 and σ2
τ is suitably large. It should be noted

here that there is less distinction between fixed and random effects under a Bayesian

framework,. The hyper-parameters of the model are those that delineate these two

prior distributions, and comprise the variance parameters κ, as well as τ0 and σ2
τ ,

the prior mean and variance of τ . Hyper-parameters may either take pre-specified

values, or alternatively, be assigned a prior distribution which is delineated by further

hyper-parameters.

Inference for one or more parameters in the model, say ψ, is based on calculating its

posterior PDF given the data y,

f(ψ|y) =
f(ψ,y)

f(y)
=

∫

f(y|ψ,λ)f(ψ,λ)dλ
∫

f(y|ψ,λ)f(ψ,λ)dλdψ
, (1.7)

where λ represents the remaining parameters in the model.

To compare classical likelihood and Bayesian inference in linear mixed models, it is

useful to consider estimation of the variance components, κ. It can be shown that ML

estimation of the variance components corresponds to using a Bayesian framework

with a point-mass prior for τ at τ0 where σ2
τ = 0. Restricted maximum likelihood

corresponds to using a Bayesian framework with a uniform prior for τ over (−∞,∞).

See Searle, Casella & McCulloch (1992, Chapter 9) for more discussion.

1.3.1.1 Empirical Bayes estimation

Empirical Bayes estimation, in the context of a mixed linear model, refers to Bayesian

estimation of τ and u after calculation of a ML (or REML) estimate of the hyper-

parameters κ, and is very similar to BLUP estimation (section 1.2.2.2). See Searle

et al. (1992, Chapter 9) for more detail.

1.3.1.2 Need for Monte Carlo approaches

The integrals required to evaluate the posterior PDF in (1.7) may not be analytically

tractable. Markov Chain Monte Carlo (MCMC) techniques are Monte Carlo sam-
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pling techniques which provide an indirect means of obtaining this posterior PDF.

The Gibbs sampler is the most widely used MCMC technique. At each iteration of

the Gibbs sampler, a simulated value of each parameter is drawn from its conditional

PDF given the data and all the other parameters in the model. In the case of a lin-

ear mixed model, one may simulate, for the kth sample, from f(u|y, τ (k−1),κ(k−1)),

f(τ |y,u(k),κ(k−1)) and f(κ|y,u(k), τ (k)) in turn. It can be shown that the condi-

tional PDFs converge to the required posterior PDFs (e.g. Gelfand & Smith, 1990).

The conditional PDFs required for implementing the Gibbs sampler can be determined

readily from the full joint PDF. In the case of just two parameter vectors ψ and λ, the

required conditional PDF for sampling ψ is f(ψ|λ,y) = f(ψ,λ,y)/f(λ,y). There-

fore, the conditional distribution for sampling ψ can usually be inferred solely from

the numerator of this expression f(ψ,λ,y), since the denominator is independent of

ψ, and thus can be regarded as a nuisance scaling factor.

Both the number of samples drawn during the initial “burn-in” period and drawn

after burn-in, the latter which is also often called the length of the chain, need to

be sufficiently large, to ensure that the conditional PDF has converged to a stable

distribution. Both graphical and numerical approaches have been proposed to test for

convergence of the chain, as reviewed in Mengersen, Robert & Guihenneuc-Jouyaux

(1998), for instance.

One of the widely-touted advantages of using a Bayesian approach for linear mixed

models, and mixed models in general, is that it allows for the fact that the variance

parameters κ have also been estimated from the same data when making inference

for the fixed and random effects τ and u. For instance, in the classical approach,

τ is estimated with the assumption that κ is known, τ̂ =
(

X ′V −1X
)−1

X ′V −1y,

and so var(τ̂ ) =
(

X ′V −1X
)−1

. In practice, however, κ is also estimated from

the data, and τ is estimated by substituting κ̂ in place of κ. If V̂ = V (κ̂) then

τ̂ =
(

X ′V̂ −1X
)−1

X ′V̂ −1y with estimated variance
(

X ′V̂ −1X
)−1

. This estimated
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variance is too small, since the true variance of τ̂ is

var(τ̂ ) = E [var(τ̂ |κ̂)]+var [E(τ̂ |κ̂)] ≈
(

X ′V̂ −1X
)−1

+var [E(τ̂ |κ̂)] ≥
(

X ′V̂ −1X
)−1

.

Therefore, standard errors and confidence intervals for τ under the classical approach

(and, using a similar argument, for u as well) can be too narrow. (Kenward &

Roger (1997), for instance, describe adjustments in the classical approach to allow

satisfactory inference concerning the fixed effects.)

1.3.2 Integral approximations

Integral approximations are useful for statistical inference when the integrals are an-

alytically intractable. Two widely used integral approximations are outlined in this

section, the Laplace approximation and Gauss-Hermite quadrature. Both are partic-

ularly useful for GLMMs to evaluate the likelihood (section 1.4.1). The objective is

to obtain an analytical approximation for the integral, rather than just a number,

which can then be differentiated in order to apply classical likelihood techniques.

1.3.2.1 The Laplace approximation

This subsection outlines the “first order” Laplace approximation, which is often syn-

onymous with “Laplace approximation”. A univariate integral

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
eg(x)dx

can be approximated using a second order Taylor series expansion of the log-integrand

g(x) = log f(x) around its mode x̂,

∫ ∞

−∞
eg(x)dx ≈

∫ ∞

−∞
exp

{

g(x̂) + g′(x̂)(x− x̂) + g′′(x̂)(x− x̂)2/2
}

dx

= eg(x̂)
∫ ∞

−∞
eg
′′(x̂)(x−x̂)2/2dx = eg(x̂)

√

2π

−g′′(x̂)
,
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noting that g′(x̂) = 0 since x̂ is the mode. The resultant integrand is a Gaussian

distribution with mean x̂ and variance −1/g′′(x̂). The extension to multivariate

integrals is straightforward, giving

∫ ∞

−∞
eg(x)d(x) = eg(x̂)(2π)p/2

∣

∣−g′′(x̂)
∣

∣

−1/2
,

where p is the dimension of the vector x, and g′′(x̂) = ∂2g/
(

∂x∂xT
)

. Heuristically,

the first order Laplace approximation involves replacing the integrand with a scaled

normal distribution of the same mode and curvature at the mode, as shown in Figure

1.1.

Note that this approximation is generally referred to as a first order Laplace approxi-

mation, despite involving a second order Taylor series expansion to approximate g(x).

The reason why it is referred to as a “first order” approximation is that the error of

the approximation is O(n−1) when g(x) is the sum of n identical and independent

components, such as in many simple statistical applications. (Some researchers, such

as Raudenbush, Yang & Yosef (2000), still refer to the approximation according to

the order of the Taylor series terms used.)

x̂

Figure 1.1: A heuristic explanation of the first order Laplace approximation. The
integrand f(x), displayed as a solid line, is approximated by a scaled normal dis-
tribution with the same mode, x̂, and the same curvature at x̂, shown as a dashed
line.

1.3.2.2 Gauss-Hermite quadrature

Gauss-Hermite quadrature (GHQ) is a numerical integration technique where an in-

tegral is approximated as a weighted sum of integrand calculations, similar to the
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more familiar Simpson and trapezoidal rules of integration. An m-point GHQ ap-

proximation for a univariate integral is

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
g(x) exp(−x2)dx ≃

m
∑

i=1

wig(xi),

where g(x) = f(x) exp(x2). The nodes xi are the roots of the mth order Hermite

polynomial, and the wi are corresponding weights, which can be found in standard

references such as Abramowitz & Stegun (1972) (p 890), or can be calculated in sta-

tistical or mathematical software packages. For instance, in the R statistical package

(R Development Core Team, 2008), the weights and nodes can be obtained using the

gausquad function from the statmod package.

One major disadvantage of GHQ is that the nodes xi are distributed around 0, and not

around the mode of f(x), where most of the integral is concentrated. Adaptive GHQ

(section 2.2) reparametrizes the integral so that the quadrature points are distributed

around the mode of the integral. Adaptive GHQ is also a generalisation of the first

order Laplace approximation, since one point adaptive GHQ corresponds to a first

order Laplace approximation.

1.4 The generalized linear mixed model

1.4.1 Specification

As noted in section 1.2, linear mixed models present a useful extension to normal

linear models for data where observations are non-independent, due to grouping or

other sources of correlation. However, there is also a need to cater for additional

sources of variation when the data are not normally distributed. A natural extension

which combines the generalized linear model (GLM) and the linear mixed model

(LMM) is the generalized linear mixed model (GLMM).

To continue the example used in section 1.2, assume that t treatments have been

randomised to r = n/t blocks according to an RCBD and that xi is a covariate.
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As in the example in section 1.1.2, assume that yi represents count data to which a

Poisson distribution applies, and that the treatment, covariate and block effects are

multiplicative. A generalized linear mixed model for this data can be written

E(yi) = µi = exp(τ0 + τj(i) + uk(i) + xiτt+1),

where τ0 is the grand mean on the log scale, τj(i) and uk(i) are the multiplicative effects

of the treatment and block for the ith experimental unit, and τt+1 is the coefficient

corresponding to the covariate xi. The block effects are assumed to be normally

distributed, uk ∼ N(0, σ2), k = 1 . . . r.

A GLMM can be specified as follows. As before, let yi represent the ith observation,

i = 1 . . . n, and vectors xi and zi, of length p and b respectively, represent covariates

in the model corresponding to fixed and random coefficients τ and u respectively. As

with a linear mixed model, a GLMM can be specified in two stages:

• Conditional on the random effects u, the model for y = (y1 . . . yn)T corresponds

to a generalized linear model.

The distribution of yi given u can be from either an exponential family or

indirectly specified via a quasi-likelihood function. The first and second or-

der moments of yi, conditional on the random effects, are µui = E(yi|u) and

var(yi|u), where the “u” superscript indicates “conditional on u” and

g(µui ) = xTi τ + zTi u, (1.8)

var(yi|u) = aiφv(µui ),

where v(·) is a known function and φ and ai represent known constants. The

function g(·) is the link function, as for a GLM. The corresponding PDF is

denoted fY |U .

• The random effects u = (u1, . . . , ub)
T have a multivariate normal distribution

with mean 0 and covariance matrix G = G(γ), where the vector γ contains
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the variance components and is of length q. The corresponding PDF is denoted

fU .

1.4.2 The problem of likelihood inference for GLMMs

As for linear mixed models in section 1.2.2.1, a likelihood for the data is formed by

integrating out the random effects u from the joint distribution of y and u. The

log-likelihood is

ℓ(τ ,γ;y) = log

(∫

fY |UfUdu

)

∝ log

(

|G|−1/2
∫

exp

[

− 1

2φ

n
∑

i=1

di(yi;µ
u
i )− 1

2
uTG−1u

]

du

)

, (1.9)

where di(yi;µ
u
i ) is the contribution to the deviance measure of fit from the ith obser-

vation. For a distribution from an exponential family, the function di(y;µ) is

di(y;µ) =
(yθ − b(θ))

ai
+ c(y, φ),

whereas for the more general case of quasi-likelihood,

di(y;µ) = −2

∫ µ

y

y − u
aiv(u)

du.

The problem with the expression for the likelihood in (1.9) is that it is generally not

analytically tractable, and so the likelihood cannot be expressed in closed form. This

creates a severe impediment for classical likelihood inference. This has motivated the

application of approximate approaches based on the use of the Laplace approximation

(section 1.3.2.1), such as penalized quasi-likelihood and Hierarchical GLM approaches,

as well as other approaches, such as the use of Gauss-Hermite quadrature (section

1.3.2.2) and Bayesian methods implemented using MCMC approaches (section 1.3.1).

These methods will be explored in the following chapters.
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1.4.3 Alternatives to GLMMs

GLMMs are by no means the only approach to modelling correlation for non-normal

data arising from a generalized linear model. The problem with obtaining an expres-

sion for the GLMM likelihood (section 1.4.2) motivates consideration of other alter-

native models. Two prominent alternatives will be discussed here, marginal models

and the use of non-normal random effects.

1.4.3.1 Marginal models

A marginal model models the (unconditional) mean, µi = E(yi), of the data as a

function of the covariates xi corresponding to fixed effects alone, that is,

g(µi) = xTi τ
∗, (1.10)

where τ ∗ are the corresponding marginal fixed coefficients and g(·) is a link func-

tion, as before. This “marginal” model (1.10) for the unconditional mean µi can be

contrasted with the GLMM, where the “conditional” model (1.8) for the conditional

mean µui is a function of both the covariates corresponding to fixed and random ef-

fects, xi and zi, respectively. To account for correlation or clustering in the data, the

marginal model assumes that the covariance of the data is unrestricted in form, that is

cov(y) = V where V is an arbitrary n×n matrix, whereas for a GLM the covariance

matrix is restricted to be diagonal, corresponding to independent responses. A struc-

tured form of V is also possible, for instance, one that is based on a corresponding

GLMM.

For an LMM, which, as noted above, is a special case of a GLMM, the marginal

specification is equivalent to the conditional specification. That is, a conditional

specification of an LMM is

y = Xτ +Zu+ e, u ∼ N(0, σ2G), e ∼ N(0, σ2R),
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with an equivalent marginal specification given by

y = Xτ ∗ + e, e ∼ N(0,V ),

where V = σ2R+σ2ZGZT . Here τ ∗ = τ , but this is not true for other GLMMs. For

GLMMs in general, the marginal coefficients τ ∗ reflect the observable attributes of the

data, such as the “raw” means or averages. For this reason, proponents of the marginal

approach argue that the marginal coefficients τ ∗ are more readily interpretable than

the conditional coefficients τ (e.g. Carlin, Wolfe, Brown & Gelman, 2001).

Liang & Zeger (1986) outline the Generalized Estimating Equations (GEE) method

for solving the marginal model, which Zeger, Liang & Albert (1988) also call the

“population averaged” model. The main focus of the GEE approach is to estimate

the regression parameters τ ∗ — the covariances between observations are considered

nuisance parameters. Proponents of the marginal approach also argue that the GEE

approach for estimating the marginal model is more robust to misspecification of the

covariance structure than using a GLMM (e.g. Neuhaus, Hauck & Kalbfleish, 1992).

The primary problem with the marginal model is that it does not have a direct

probabilistic interpretation like the conditional GLMM model. Lindsey & Lambert

(1998) argue that marginal models can give highly misleading answers when the aim of

the analysis is to establish causal relations, due to problems akin to Simpson’s paradox

or the ecological fallacy, and this argument is further reinforced in Lee & Nelder

(2004). If the sample is not representative or random, the marginal quantities may not

be generalizable, as pointed out in McCulloch & Searle (2001). Nevertheless, others

such as Carlin et al. (2001) still prefer the marginal specification, arguing that the

inherent distributional assumptions of the conditional GLMM may not be credible.

For the purposes of agricultural and biological research, however, the conditional

GLMM model is arguably more preferable, since it is easier to choose structured

covariance matrices to match the design of the data. Note that these structured

covariance matrices are obviously on the link scale, rather than on the original scale

of the data.
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Some GLMM proponents have extended the GLMM to incorporate a marginal com-

ponent. That is, the model for the conditional mean is as specified in section 1.4.1,

but, in addition, the conditional variance is no longer assumed to be diagonal, so

that var(y|u) = V = V
1/2
µ RφV

1/2
µ , say, where Vµ = diag {a1v(µ1), . . . , anv(µn)} and

Rφ is a function of variance parameters φ alone (e.g. Wolfinger & O’Connell, 1993).

Along similar lines, Candy (1997) proposes the additive GLMM (AGLMM), where

the random effects u are fitted on the scale of the response, rather than within the

linear predictor, so that the conditional mean is defined as

µui = h(xTi τ ) + zTi u,

where h = g−1 is the inverse link function. In this model, the marginal mean is just

µi = h(xTi τ ).

1.4.3.2 Non-normal random effects

Some researchers have questioned the assumption of normality for the random effects

in the GLMM specification.

One alternative to the normality assumption is to allow the random effects to arise

from any distribution in the exponential or quasi-likelihood families. Hierarchical

GLMs (Lee & Nelder, 1996, 2001, 2006) are an extension of GLMMs which do this.

In particular, a conjugate distribution could be employed. For instance, in the case

of binomial and Poisson distributed data, the conjugate distributions for the ran-

dom effects are the beta and gamma distributions respectively. The advantage of a

conjugate distribution is that the integral required to evaluate the likelihood (equa-

tion 1.9) is analytically tractable. Another alternative is to make no distributional

assumptions whatever, as in the non-parametric approach of Aitkin (1999).

The advantage of normally distributed random effects is that a fuller range of mul-

tivariate random effects models can be examined, such as those involving temporal

or spatial correlation. The merits of using non-normally distributed over normally
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distributed random effects have still not been fully assessed, and are outside the scope

of this thesis. For many real-life datasets, where many random terms may be required

but the main inferential focus concerns the fixed effects, the assumption of normality

appears to be a reasonable one.

1.5 Objectives of this research

Classical statistical analysis of the GLMM has been hindered by the intractability of

the likelihood expression. However, GLMMs present a general modelling approach

for correlated non-normal data which cannot be accommodated by other approaches,

such as marginal models or by using non-normal random effects. In particular, as

indicated above, GLMMs may be more suitable for agricultural and biological data

than marginal models, because of the explicit fitting of random terms to account for

design strata and other known sources of variation. Therefore, methods to fit GLMMs

which work around the intractability of the GLMM likelihood are still worthy of

attention.

In this thesis, GLMM approaches are divided into two groups:

• Approximate likelihood approaches: These include penalized quasi-likelihood

(PQL) and the methodology proposed by Lee and Nelder for Hierarchical GLMs

(HGLMs, which are a broader class of models than GLMMs). Many approxi-

mate methods, including these two, are based on the Laplace approximation.

• Other approaches: This group includes numerical approaches, such as the use of

Gauss-Hermite quadrature (GHQ), and stochastic approaches, such as Bayesian

approaches implementing Markov Chain Monte Carlo (MCMC) techniques.

This research primarily focuses on the first group, the approximate likelihood ap-

proaches. As will be seen in Chapters 3 and 4, approximate likelihood approaches

can suffer estimation bias problems with some GLMMs. However, the other ap-

proaches can suffer from either excessive computational requirements and/or lack of

generalizability.
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The rest of this thesis is arranged as follows. The second chapter reviews the major

approaches for GLMMs. The third and fourth chapters examines two approximate

likelihood approaches, penalized quasi-likelihood (PQL) and the HGLM methodology

of Lee & Nelder (2001) respectively. The fifth chapter compares the performance of

these two approximate likelihood approaches with the most prominent alternative

approaches, GHQ and Bayesian approaches using MCMC techniques.
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Chapter 2

Review of approaches to

estimation for GLMMs

This chapter reviews the range of approaches to estimation available for generalized

linear mixed models (GLMMs), including the approximate likelihood approaches and

the other approaches as noted at the end of chapter 1. It also discusses some of the

relative merits and disadvantages of each approach raised in the literature.

2.1 Approximate approaches (Laplace based)

This section outlines two approximate approaches for maximum likelihood estimation

based on the Laplace approximation, penalized quasi-likelihood (PQL) and the hier-

archical GLM approach of Lee & Nelder (2001). More detail on the latter is reserved

for chapters 3 and 4. The GLMM specification is as in section 1.4.1, and is repeated

here for convenience.

Let the data be denoted yi, i = 1 . . . n and let vectors xi and zi represent covariates

in the model corresponding to fixed and random coefficients τ and u of length p and

b respectively. A GLMM is defined by two properties:

• The probability density function (PDF) fY |U of the data yi, i = 1, . . . , n, con-

ditional on the random effects, corresponds to that of a distribution from an
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exponential family or a quasi-likelihood distribution. The first two conditional

moments are defined as µui = E(yi|u) and var(yi|u), where

g(µui ) = xTi τ + zTi u

and

var(yi|u) = aiφv(µui ).

The function v(·) is assumed known, and φ and ai represent known constants.

The function g(·) is the link function as for a GLM.

• The random effects u = (u1, . . . , ub)
T have a multivariate normal PDF fU with

mean 0 and covariance matrix G = G(γ), where the elements of γ are called

the variance components of length q.

In addition to this, let X denote the n× p fixed design matrix with ith row xTi , and

similarly let Z denote the n× b random design matrix with ith row zTi .

2.1.1 Penalized quasi-likelihood

Penalized quasi-likelihood (PQL) is an iterative approach for solving a GLMM which

is similar to the IRLS approach for solving a GLM (section 1.1.3.2). PQL can easily

be implemented with repeated calls to a linear mixed model (LMM) package. At the

kth iteration, the working variate ψ(k) = (ψ
(k)
1 , . . . , ψ

(k)
n ) is generated, with elements

ψ
(k)
i = g

(

µ
u,(k−1)
i

)

+
(

yi − µu,(k−1)
i

)

g′
(

µ
u,(k−1)
i

)

,

where µ
u,(k−1)
i is the conditional mean of yi given estimates τ̂ (k−1) and ũ(k−1) from

the (k − 1)th iteration. A weighted LMM is fitted to this working variable,

ψ
(k)
i = xTi τ + zTi u+ e∗i , (2.1)
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with weights w
(k−1)
i =

{

φaiv(µ
u,(k−1)
i )[g′(µ

u,(k−1)
i )]2

}−1
, implying that the errors e∗i

are independent with known variance, var(e∗i ) =
(

w
(k)
i

)−1
. The fitting of this LMM

generates updated estimates τ̂ (k) and ũ(k), which are used to calculate the working

variate ψ(k+1) =
(

ψ
(k+1)
1 , . . . ψ

(k+1)
n

)T
for the (k + 1)th iteration. These two steps,

the formation of the working variable and the fitting of a LMM, are repeated until

convergence of the parameter estimates, or the deviance, is obtained. An analogous

technique has been developed for normal non-linear mixed models (Lindstrom &

Bates, 1990). As for a LMM, initial values for τ and u can both be set to 0, and the

initial values of the variance parameters γ can either be set to a small positive value

(e.g. 0.1) or user-specified. It should be noted that the initial values of the conditional

means µi are also required, but can be set in a similar fashion as for a GLM, using

the data yi or some minor modification of it – for instance, see McCullagh & Nelder

(1989, p. 41).

The simplest derivation for the PQL technique is based on a first order Taylor se-

ries approximation (Goldstein, 1991, 1995; Goldstein & Rasbash, 1996; Wolfinger &

O’Connell, 1993). If the GLMM is approximated as

yi ≈ µui + ei = h (ηi) + ei, ei ∼ N (0, φaiv(µi))

where h = g−1 is the inverse link function, then an expansion around the current

value of the linear predictor, η
(k−1)
i = xTi τ

(k−1) + zTi u
(k−1), gives

yi ≈ h
(

η
(k−1)
i

)

+ h′
(

η
(k−1)
i

) (

xTi τ + zTi u− η
(k−1)
i

)

+ ei. (2.2)

Re-arranging this expression gives (2.1).

The standard implementation of PQL outlined above assumes that the dispersion

parameter φ is equal to 1. However, φ can also be estimated from the data, as for the

analysis of a GLM, to allow for under- or over-dispersion of the data not explained

by the random effects ui. Some implementations of PQL, such as that available

in the lmer function of the lme4 R package (Bates & Sarkar, 2006) and the SAS
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glimmix macro (Wolfinger & O’Connell, 1993), estimate the dispersion component φ

by default.

2.1.1.1 Theoretical development of PQL

Joint maximisation: Early proponents for PQL, previously referred to as “joint

maximisation” (Harville & Mee, 1984), argued that estimates of τ and u, given

variance parameters γ, can be determined by maximising the joint likelihood ℓJ =

log fY,U . A Bayesian justification of this assertion is as follows. The best unbiased

predictor of u is the posterior mean

E(u|y) =

∫

ufU |Y (u|y)du ∝
∫

ufY,Udu.

If fU |Y is approximately normal, E(u|y) can be approximated by the mode of fY,U ,

or, equivalently, of ℓJ . Similarly, E(τ |y) can be approximated with the mode of

fY,U , or of ℓJ , if a flat prior for τ is used. These estimates of τ and u were termed

maximum a posteriori (MAP) estimates (Laird, 1978; Stiratelli, Laird & Ware, 1984;

Harville & Mee, 1984; Schall, 1991).

It can readily be shown that maximising ℓJ with respect to τ and u yields the

updating equations for τ and u in the linear mixed model (2.1) above. Now, ignoring

terms not involving τ or u,

ℓJ ∝ −
1

2

n
∑

i=1

di(yi;µ
u
i )− 1

2
uTG−1u,

where

di(y;µ) = −2

∫ µ

y

y − u
v(u)

du,

assuming that ai = 1 and φ = 1 for simplicity. Differentiation with respect to τ and
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u yields







∂ℓJ/∂τ

∂ℓJ/∂u






=







XTWD(y − µu)

ZTWD(y − µu)−G−1u






,

E







∂2ℓJ/
(

∂τ∂τT
)

∂2lJ/
(

∂τ∂uT
)

∂2ℓJ/
(

∂u∂τT
)

∂2ℓJ/
(

∂u∂uT
)






=







−XTWX −XTWZ

−ZTWX −ZTWZ −G−1






,

whereW = diag{v(µui )[g′(µui )]2}−1 contains the GLM weights, andD = diag{∂ηui /∂µui }.

If the current estimates are denoted τ̂ (k−1) and ũ(k−1), then re-arrangement of the

Fisher scoring equations gives







XTW (k−1)X XTW (k−1)Z

ZTW (k−1)X ZTW (k−1)Z +G−1













τ − τ̂ (k−1)

u− ũ(k−1)






=







XTW (k−1)D(k−1)(y − µ(k−1))

ZTW (k−1)D(k−1)(y − µ(k−1))−G−1ũ(k−1)






,

where the (k− 1) superscript indicates evaluation at τ̂ (k−1) and ũ(k−1). Substituting

ψ(k) = Xτ̂ (k−1) +Zũ(k−1) +D(k−1)(y − µ̂(k−1))

gives







XTW (k−1)X XTW (k−1)Z

ZTW (k−1)X ZTW (k−1)Z +G−1













τ̂

ũ






=







XTW (k−1)ψ(k)

ZTW (k−1)ψ(k)






, (2.3)

which are the mixed model equations (1.6) for the linear mixed model in (2.1).

Breslow and Clayton (1993) As noted previously, Breslow & Clayton (1993)

first coined the term “penalized quasi-likelihood” (PQL), by which the approach is

best-known today. The term “penalized quasi-likelihood” reflects the use of a quasi-

likelihood distributional assumption for the “conditional” likelihood ℓc = log fY |U , but

with “penalized” estimates of u through the addition of log fU in the joint likelihood
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ℓJ .

Breslow & Clayton (1993) applied the first order Laplace approximation (section

1.3.2.1) to the integral expression for the log-likelihood (equation 1.9), written as

ℓ(τ ,γ;y) = log

∫

eh(u)du,

where h(u) = log fY,U . This gives

ℓ(τ ,γ;y) ≈ h(ũτ,γ)− 1

2
log | −h′′(ũτ,γ) |

≈ − 1

2φ

n
∑

i=1

di(yi, µ̃
u
i )− 1

2
log |G| − 1

2
ũTτ,γG

−1ũτ,γ

−1

2
log

∣

∣

∣ZTW̃Z +G−1
∣

∣

∣ , (2.4)

where h′′(u) is the second derivative with respect to u, ũτ,γ is the mode of h(u)

and W = diag(wi, . . . , wn), where wi =
{

φaiv(µui )[g′(µui )]2
}−1

. The use of the tilde

notation in µ̃ui and W̃ indicates evaluation at ũτ,γ . A term in h′′(u),

−
n
∑

i=1

(yi − µui )zi
∂

∂u

[

1

φaiv(µui )g′(µui )

]

,

is ignored here as it is equal to zero for canonical links and has zero expectation for

non-canonical links.

As noted in the previous section, the PQL estimating equations for τ and u are based

on maximising ℓJ = log fY,U . To justify the use of ℓJ for estimating τ and u, Breslow

& Clayton (1993) argued that the last term in (2.4) can be ignored, since the GLM

weights wi should vary little with τ and u, and so ℓ(τ ,γ;y) ≈ h(ũτ,γ).

To determine estimating equations for the variance parameters in γ, they replaced the

deviance
∑

i di(yi, µ
u
i ) with the Pearson chi-squared statistic,

∑

i(yi − µui )2/aiv(µui ),

in (2.4). This yields, after simplication, a profile likelihood of γ which corresponds

to the profile log-likelihood for γ in the linear mixed model (2.1),

ℓ (τ̂γ ,γ;y) = −1

2
log

∣

∣

∣Ṽ
∣

∣

∣− 1

2
(ψ̃ −Xτ̂γ)T Ṽ −1(ψ̃ −Xτ̂γ), (2.5)
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where V = W−1 + ZGZT , τγ solves ∂h(ũτ,γ)/∂τ = 0, and the tilde notation

indicates evaluation at τ̂γ and ũτ,γ . The working variate ψ̃ consists of elements ψ̃
(k)
i =

g (µ̃ui ) + (yi − µ̃ui ) g′ (µ̃ui ), as before. A “REML” type correction, −1
2 log

∣

∣

∣XTV −1X
∣

∣

∣,

can then be added to this log-likelihood. Most implementations of PQL use this

approximate REML correction.

Other justifications and comments There are numerous alternative arguments

to Breslow & Clayton (1993) for PQL. McGilchrist (1994) advocated PQL by arguing

that the conditional likelihood, ℓC = log fY |U , should have a well defined maximum,

and hence can be approximated as a normal likelihood. Schall (1991) also endorsed

the PQL approach, and so the approach is also sometimes called “Schall’s approach”

instead of PQL. Both Schall (1991) and McGilchrist (1994) argued that PQL is robust

to the mis-specification of the distribution of the random effects, and can be applied

even when the normality assumption is invalid. Engel & Keen (1994) called the

approach “IRREML” (iterative reweighted REML), which corresponded to a Genstat

macro of the same name. Wolfinger & O’Connell (1993) preferred “pseudo-likelihood”

(PL), or “restricted pseudo-likelihood” (REPL) when the “REML” type adjustment is

applied. “Pseudo-likelihood”, in the sense of Carroll & Ruppert (1988), may be more

appropriate than “penalized quasi-likelihood”, since it reflects the implicit normality

assumption on the working variate ψ. The Wolfinger & O’Connell (1993) paper is

associated with a SAS macro glimmix, which is one of the most widely used PQL

implementations.

Others have been less forthcoming about the benefits of PQL. McCulloch & Searle

(2001) (page 233) argued that, for the working variate

ψi = xTi τ + zTi u+ g′(µui )(yi − µui ),

the PQL approach assumes that

V ar(ψi) = zTi Gzi + g′(µui )2V (µui ),
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but this assumption ignores the fact that µui is a function of the random effects u,

not a constant. Engel & Keen (1994) suggested a modification to PQL to allow for

the dependence of the GLM weights, wi = {aiv(µui )g′(µui )2}−1, on the estimates of

the random effects ũτ,γ . They suggested using the expected weights E(w−1
i ), instead

of w−1
i , where the expectation was calculated over the distribution of u using a

bootstrap technique. However, simulation studies in Engel & Buist (1998) showed

that this technique did not perform as well as anticipated in practice.

2.1.1.2 Estimating (and correcting) the bias

The penalized quasi-likelihood technique can suffer from large estimation biases for

certain GLMMs, in particular for binary data with small cluster sizes, or more gen-

erally, where the number of observations per random effect is small. This has been

documented in numerous studies, notably Rodriguez & Goldman (2001). This has

motivated the exploration techniques to correct this bias, such as CPQL, PQL2 and

the iterated bootstrap correction.

Corrected PQL – CPQL: Breslow & Lin (1995) and Lin & Breslow (1996)

derived approximate expressions for the PQL biases by using a Taylor series approx-

imation of the likelihood around γ = 0. They consequently provided corrections to

the estimates of τ and γ in turn.. For simplicity, these correction are shown here in

the case of a GLMM with one variance component, as in Breslow & Lin (1995). Let

the data be yij, i = 1, . . . ,m, j = 1, . . . , ni where
∑

i ni = n. The model for the condi-

tional mean µuij = E(yij |ui) is assumed to be g(µuij) = xTijτ +ui, where ui ∼ N(0, γ1)

and var(yij|ui) = aijφv(µuij). The corrections for τ and γ are as follows.

1. A correction to τ : They provided a correction for the estimation of τ using ℓJ

rather than the true likelihood ℓ,

τ̂CP = τ̂P −
γ1

2
(XTW 0X)−1XT t0,
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where τ̂P is the PQL estimate, µ0
ij = g−1(xTij τ̂P ), W 0 = diag

{

aijv
(

µ0
ij

)

/φ
}

,

and t(0) is an n×1 vector with elements aijv
′(µoij)v(µoij)/φ. (The “0” superscript

indicates evaluation at τ = τ̂P and ui = 0, i = 1, . . . ,m.) It can be seen that

the magnitude of the correction term is proportional to the size of the variance

component γ1. This correction is based on a “first order” Taylor series around

γ1 = 0, but Lin & Breslow (1996) also provided a correction based on a second

order Taylor series.

2. A correction to γ: Breslow & Lin provided a correction for estimating γ, to

account for the usage of the approximate profile likelihood (2.5) rather than the

true likelihood ℓ,

γ̂1,CP =
D

B − C γ̂1,P ,

where γ̂1,P is the PQL estimate and the quantities B, C and D are given in

Breslow & Lin (1995), page 88.

Lin and Breslow made some suggestions on how to implement these two adjust-

ments in practice. They suggested first applying the correction for γ, followed by

re-estimation of τ , and then finally applying a correction for τ . For data where the

estimated variance components using PQL are greater than 1, they recommended

ignoring the correction for τ .

Given that their derivation used an approximation around γ = 0, their bias cor-

rection factors are limited in applicability to cases where the (estimated) variance

components are relatively small. For binary data, for instance, Lin & Breslow (1996)

suggested that their correction factors work satisfactorily when the estimated vari-

ance components are less than 1. In addition, Lin and Breslow noted (section 5.2 of

Lin & Breslow, 1996) that their derivation holds only when the random effects de-

sign matrix Z is highly sparse. This requirement implies that, for grouped data, for

instance, the number of groups should increase with the sample size or, equivalently,

that the group size remains small and constant. As noted earlier, PQL is expected

to incur large estimation biases for such cases.
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We are not aware of any statistical software available which applies this correction

technique – it is left to the practitioner to write the necessary code to apply these

correction factors for themselves.

PQL2: Goldstein & Rasbash (1996) proposed a “second order” approximation,

PQL2. This is an extension to the Taylor series derivation of PQL in (2.2), but

using a second order Taylor series expansion. As for the previous PQL derivation, let

η
(k−1)
i = xTi τ̂

(k−1) +zTi ũ
(k−1), where τ̂ (k−1) and ũ(k−1) are the current estimates and

h = g−1 is the inverse link function. A second order expansion around ηi = η
(k−1)
i

gives

yi ≈ h
(

η
(k−1)
i

)

+ h′
(

η
(k−1)
i

) (

ηi − η(k−1)
i

)

+
1

2
h′′
(

η
(k−1)
i

) (

ηi − η(k−1)
i

)2
+ ei,

which, after ignoring second order terms involving τ , becomes

yi ≈ h
(

η
(k−1)
i

)

+ h′
(

η
(k−1)
i

)

xTi

(

τ − τ (k−1)
)

+ h′
(

η
(k−1)
i

)

zTi

(

u− u(k−1)
)

+
1

2
h′′
(

η
(k−1)
i

)

zTi

(

u− u(k−1)
) (

u− u(k−1)
)T
zi + ei.

This expression is further simplified by replacing the last term by its expectation,

and so a modified “working” variable can be formed:

ψ
(k)
i =

(

xTi τ
(k−1) + zTi u

(k−1)
)

+ g′
(

µ
u,(k−1)
i

)(

yi − µu,(k−1)
i

)

−1

2
g′
(

µ
u,(k−1)
i

)

h′′
(

η
(k−1)
i

)

zTi Var
(

u− u(k−1)
)

zi.

As with PQL, a linear mixed model (2.1) can then be fitted to this modified “working”

variable, ψ(k) = (ψ
(k)
1 , . . . , ψ

(k)
n )T , to generate new estimates τ̂ (k) and ũ(k). The same

iterative procedure is used as in PQL – the only difference to PQL is in the formation

of the working variable, as above.

PQL2 has been implemented in the MLwiN statistical package (Goldstein et al.,

1998).
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The iterated bootstrap method (Kuk, 1995): Kuk (1995) proposed a com-

putationally intensive simulation approach to correct the bias. This approach is a

general statistical approach for correcting estimation bias, not just for PQL.

Let ϕ = (τT ,γT )T . Using the PQL estimate denoted ϕ̂(0), a set of simulated datasets

are generated from the model fY
(

y; ϕ̂(0)
)

. PQL is then applied to each simulated

dataset, with the average PQL estimate denoted ϕ̃(0) and estimated bias b(0) =

ϕ̃(0) − ϕ̂(0), giving a revised estimate ϕ̂(1) = ϕ̂(0) − b(0). A further set of datasets

are generated from fY (y; ψ̂(1)), and PQL is applied to each of these, with average

PQL estimate ϕ̃(1) and revised bias b(1) = ϕ̃(1) − ϕ̂(1), giving a new revised estimate

ϕ̂(2) = ϕ̂(0) − b(1). This process is repeated until the estimated bias converges, that

is, b(k) = b(k−1) at a given iteration k (within a suitable tolerance). Equivalently,

the process is repeated until the average PQL estimate at a given iteration k, ϕ̃(k),

is equal to the original PQL estimate, ϕ̂(0) (again, within a suitable tolerance).

Kuk (1995) showed that, provided convergence is achieved, this method will yield

consistent estimates. However, the computational burden of this approach can ob-

viously be enormous, as noted by Rodriguez & Goldman (2001). Goldstein (1996)

discussed the calculation of standard errors and hypotheses tests using this technique,

which has been implemented in the MLwiN package (Goldstein et al., 1998).

2.1.2 Hierarchical GLM approach of Lee and Nelder

“Hierarchical GLMs” (HGLMs) of Lee & Nelder (1996, 2001) encompass GLMMs as a

special case. As already noted in section 1.4.2, HGLMs generalize GLMMs to include

models with non-normal random effects. In addition, HGLMs encompass flexible

modelling of the dispersion φ as well as the mean µui . This allows for systematic

changes in the variability of the response not accounted for by the quasi-likelihood

distribution or by the inclusion of random effects into the model. An even broader

model class called “Double hierarchical GLMs” (DHGLMs) has been developed and

is discussed in Lee & Nelder (2006), as well as in their recent book, Lee, Nelder &

Pawitan (2006). Hierarchical GLMs are also illustrated in several papers dealing with
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simulated or real datasets (e.g. Yun & Lee, 2004; Noh, Yip, Lee & Pawitan, 2006;

Lee & Nelder, 2003, 2005; Lee, Yun & Lee, 2003; Noh & Lee, 2007) and have been

implemented in the software package GenStat, as described in Payne et al. (2006).

It should be noted here that the use of the qualifier “hierarchical” by Lee & Nelder has

caused some confusion. In Bayesian inference, the term “hierarchical models” defines

an even broader class of models, for instance, as used in the paper by Hobert (2000).

HGLMs, in the more restrictive Lee & Nelder sense, have some appeal to statisti-

cians who are not inclined towards Bayesian modelling, and in particular amongst

statisticians in agricultural or biological applications.

Lee & Nelder (2001) also outlined a systematic approach to the analysis of HGLMs.

In this section, the discussion of this approach is restricted to its application for

GLMMs.

2.1.2.1 The h-likelihood and profile likelihoods for τ and γ

In the HGLM approach, the joint likelihood ℓJ is denoted as the “hierarchical like-

lihood” or h-likelihood, h. The use of the term “likelihood” here has resulted in

confusion and criticism from some statisticians, such as Lindsey (2004) and Kuk &

Cheng (1999) (with the latter paper rebutted in Lee & Nelder, 2005), who are quick

to point out that h = ℓJ is not a likelihood in the standard sense.

Similar to the Breslow & Clayton (1993) derivation of PQL, the Lee & Nelder ap-

proach is based on the use of a Laplace approximation. To approximate the likelihood

ℓ, they suggested a (first order) Laplace approximation (section 1.3.2.1)

ℓ ≈ pu(h) =

(

h− 1

2
log

∣

∣

∣

∣

∣

− 1

2π

∂2h

∂u∂uT

∣

∣

∣

∣

∣

)

ũτ,γ

(2.6)

≈
(

h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣+
b

2
log 2π

)

ũτ,γ

,

where W is, as before, a diagonal matrix of GLM weights, and ũτ,γ is the mode of

h for given τ and γ, and b is the length of u. Note that an approximation sign is

used in the second line of (2.6), since ∂2h/∂u∂uT = ZTWZ +G−1 +R, where R
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is a remainder term which is 0 for canonical links and has expectation 0 for non-

canonical links. In keeping with Lee & Nelder’s notation, the use of pu(h) reflects a

transformation pu(·) of h where the random effects u are effectively “integrated” out

of the h-likelihood.

Lee & Nelder suggested the use of pu(h) for inference concerning τ . However, for

inference concerning γ, they suggested a further approximation which “conditions”

out τ from the estimated likelihood pu(h), in the sense of an adjusted Cox-Reid profile

likelihood (Cox & Reid, 1987). The form of this approximation is the same as that

used to “integrate out” u to form pu(h). Let β = (τT ,uT )T . The likelihood for

inference concerning γ is thus

pτ (pu(h)) =

(

pu(h)− 1

2
log

∣

∣

∣

∣

∣

− 1

2π

∂2pu(h)

∂τ∂τT

∣

∣

∣

∣

∣

)

τ̂γ

.

where τ̂γ satisfies ∂pu(h)/∂τ = 0. However, this expression could be tedious to com-

pute. Instead, Lee & Nelder (2001) argued for a further approximation on pτ (pu(h)):

pτ (pu(h)) ≈ pβ(h)

=

(

h− 1

2
log

∣

∣

∣

∣

∣

− 1

2π

∂2h

∂β∂βT

∣

∣

∣

∣

∣

)

β̂γ

(2.7)

≈
(

h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣− 1

2
log

∣

∣

∣XTV −1X
∣

∣

∣+
p+ b

2
log 2π

)

β̂γ

where V = ZGZT +W−1 and β̂γ = (τ̂Tγ , ũ
T
τ,γ)T . For a normal linear mixed model,

both these expressions correspond to the REML likelihood (section 1.2.2.1). For this

reason, Lee & Nelder (2003) described their approach as an extension of REML to

non-normal models.

For models where there are few observations per random effect, such as grouped

binary data with small group sizes, Lee & Nelder suggested the use of a second order

Laplace approximation to obtain a better approximation to the true likelihood ℓ.

Therefore, they calculated

psu(h) = pu(h) − F/24,
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where −F/24 represents the difference between a first and second order Laplace ap-

proximation. This term is mathematically complex, involving third order and fourth

order derivatives of h with respect to the vector u, and so its definition will be deferred

until Chapter 4. This term is similarly included to form a “second order” likelihood

for γ,

psβ(h) = pβ(h) − F/24.

Raudenbush et al. (2000) and Shun (1997) also examined the application of second

order Laplace approximations for GLMMs, but only for a two level (one-way classi-

fication) and simple crossed model respectively.

2.1.2.2 Levels of approximation

Lee & Nelder’s approach allows for inferences with several different levels of approx-

imation.

Here the approach will be denoted as HG(m,d), where m and d each take values

0, 1 or 2 to indicate the level of approximation used for making inference about τ

and γ respectively. (As in Lee & Nelder’s papers, “m” and “d” represent “mean”

and “dispersion” parameters respectively.). The likelihood used for inference about

τ and γ for each of the methods are as in the following table. Here, only the cases

where m ≤ d are shown, since it is deemed more important to use higher order

approximations for γ than it is for τ to correct the biases.

Approximation Likelihood for τ Likelihood for γ

HG(0,0) h PQL likelihood

HG(0,1) h pβ(h)

HG(0,2) h psβ(h)

HG(1,1) pu(h) pβ(h)

HG(1,2) pu(h) psβ(h)

HG(2,2) psu(h) psβ(h)
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Noh & Lee (2007) showed the details of the implementation of each of these levels of

approximation, including score and iterative updating equations. Their derivations

showed that these approximations can be implemented in a similar way to PQL, with

alternate estimation of τ and u and γ.

As yet, the methodology outlined above by Lee & Nelder has received little critical

assessment in the statistical community, partly perhaps because of confusion of their

methodology with PQL, the emphasis on Bayesian and Monte Carlo approaches in

the current literature, and because of the authors’ perceived anti-Bayesian biases.

2.2 Numerical methods – Gauss-Hermite quadrature

As in section 1.3.2.2, an m-point Gauss-Hermite quadrature (GHQ) approximation

to an integral of f(x) = g(x) exp(−x2) is

∫ ∞

−∞
g(x) exp(−x2)dx ≃

m
∑

i=1

wig(ξi),

where the “nodes” ξi are the roots of the mth order Hermite polynomial with cor-

responding weights wi, both of which are available from standard references (e.g.

Abramowitz & Stegun, 1972, p 890). GHQ can be applied to multivariate integrals

by applying it to each univariate integral in turn (Pan & Thompson, 2003, p 62),

∫

f(x)dx =

∫

. . .

∫

f(x1, . . . , xq)dx1 . . . dxq

=

∫

. . .

∫

g(x1, . . . , xq)e
−xTxdx1 . . . dxq

≃
m1
∑

i1=1

w
(1)
i1

m2
∑

i2=1

w
(2)
i2
. . .

mq
∑

iq=1

w
(q)
iq
g(ξ

(1)
i1
, ξ

(2)
i2
, . . . , ξ

(q)
iq

),

where ξ
(j)
ij

and w
(j)
ij

(i = 1 . . . mj) are the nodes and weights for mj-point GHQ at

the jth coordinate of x, j = 1, . . . , q. However, this expression requires evaluation of

g(x1, x2, . . . , xq) at m1m2 . . .mq nodes, and so can be very computationally intensive.

45



2.2.1 Quadrature for nested random effects models

For a general GLMM, the expression for the log-likelihood,

ℓ = log

∫

fY,U(y,u)du,

is a multivariate integral. If u is of length q, application of an m-point GHQ ap-

proximation for each univariate integral would require mq evaluations of fY,U(y,u).

For GLMMs involving only nested random effects, the hierarchical structure can be

utilised to dramatically reduce the number of function evaluations required.

To illustrate the use of quadrature for nested random effects models, a two-way nested

classification model will be used. The conditional mean µuijk = E(yijk|u1i, u2ij) for

the kth sub-unit within the jth unit within the ith cluster satisfies

g(µuijk) = τ0 + u1i + u2ij, i = 1 . . . bg, j = 1 . . .mg, k = 1 . . . ms,

where u1i ∼ N(0, γ1) and u2ij ∼ N(0, γ2).

Let the random effect vectors be represented as u1 = (u11, . . . , u1bg )
T and u2 =

(u211, . . . , u21mg , . . . , u2bg1, . . . , u2bgmg)
T , with corresponding PDFs fU1(u1) =

∏

i fu1(u1i)

and fU2(u2) =
∏

i

∏

j fu2(u2ij), where fu1 and fu2 are normal PDFs. Let the condi-

tional PDF of the data y given random effect vectors u1 and u2 be given by

fY |U1,U2
(y|u1,u2) =

∏

i

∏

j

∏

k

fy|u1,u2
(yijk|u1i, u2ij).

The expression for the likelihood can be represented as a product of univariate inte-

grals (over u2ij) nested within another univariate integral (over u1i), that is,

∫

. . .

∫

fY |U1,U2
(y|u1,u2)fU1(u1)fU2(u2)du1du2

=
∏

i

∫

u1i





∏

j

∫

u2ij

{

∏

k

f(yijk|u1i, u2ij)

}

fu2(u2ij)du2ij



 fu1(u1i)du1i.

If GHQ is applied to each univariate integral, this becomes, after multiplying and
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dividing each integral by exp(−u2
1i) or exp(−u2

2ij),

≃
∏

i

m
∑

l1=1

wl1,m exp(ξ2
l1,m)fu1(ξl1,m)





∏

j

m
∑

l2=1

wl2,m exp(ξ2
l2,m)

{

∏

k

fy|u1,u2
(yijk|ξl1,m, ξl2,m)

}

fu2(ξl2,m)



 ,

where m point GHQ is used throughout, and wl,m and ξl,m are the lth weight and

lth node for m-point quadrature. The utilisation of the nested structure has reduced

the number of function evaluations from O
(

mU+UV
)

to just O
(

m+m2
)

.

Note that an alternative way to apply GHQ above is to perform a change of variable

in each integral. For instance, for the “inner” integral with respect to u2ij,

∫

vij

{

∏

k

f(yijk|u1i, u2ij)

}

f(u2ij)du2ij

=

∫

{

∏

k

f(yijk|u1i, u2ij)

}

1√
2πγ2

exp
(

−u2
2ij/2γ2

)

du2ij

=

∫

{

∏

k

f(yijk|u1i,
√

2γ2v2ij)

}

1√
π

exp
(

−v2
2ij

)

dv2ij

=
m
∑

l2=1

wl2,m√
π

{

∏

k

f(yijk|u1i,
√

2γ2ξl2,m)

}

,

where the change of integration variable, v2ij = u2ij/
√

2γ2, has been applied. A

similar change of variable can be applied to the outer integral with respect to u1i,

i.e. v1i = u1i/
√

2γ1. The change of variable may be preferable in general, since the

points where fy|u1,u2
are evaluated, with respect to u2ij, are chosen according to the

magnitude of the variance γ1. That is, these points are at
√

2γ2ξl2,m, rather than at

ξl2,m.

When the random effects are not independent, such as when spatial or temporal

correlation is modelled, a re-parametrization of the random effects can be applied.

Let G = LLT be the Cholesky decomposition of var(u) = G, where L is lower

triangular. The use of a re-parametrization, u = LTv, gives a new linear predictor

g(µui ) = xTi τ + z∗Ti v, where z∗i = Lzi. The re-parametrized random effects, v ∼
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N(0, I), are uncorrelated, and so standard GHQ can be applied for each univariate

integral in turn.

2.2.1.1 Quadrature for crossed effects

For crossed random effects, GHQ is less useful, since it is not possible to simplify

the multivariate integral required to evaluate the likelihood. Therefore, GHQ is not

feasible for most models with crossed random effects. Consider the two-way crossed

model for data yij , i = 1, . . . , b1, j = 1, . . . , b2, where the model for the conditional

mean µuij = E(yij |u1i, u2j) is

g(µuij) = τ0 + u1i + u2j ,

where u1i ∼ N(0, γ1) and u2j ∼ N(0, γ2). Let u1 = (u11, . . . , u1b1) and u2 =

(u21, . . . , u2b2) be the vectors of random effects with densities fU1(u1) =
∏

i fu1(u1i)

and fU2(u2) =
∏

j fu2(u2j). Let fY |U1,U2
(y|u1,u2) =

∏

i

∏

j fy|u1,u2
(yij |u1i, u2j) be

the conditional PDF of the data y given the random effects vectors u1 and u2.. In

contrast to the nested model, the expression for the likelihood,

∫

. . .

∫

fY |U1,U2
(y|u1,u2)fU1(u1)fU2(u2)du1du2

=

∫

. . .

∫





∏

i

∏

j

fy|u1,u2
(yij|u1i, u2j)





(

∏

i

fu1(u1i)

)





∏

j

fu2(u2j)



 du1du2,

cannot be simplified any further.

2.2.2 Adaptive Gauss-Hermite quadrature

Naylor & Smith (1982) and Liu & Pierce (1994) suggested an improvement to stan-

dard GHQ. The idea is simply to re-parametrize the integral before applying GHQ,

in such a way that the nodes are centred around the mean or mode of the integrand,

rather than around zero.

For simplicity, the technique is described for a univariate integral
∫∞
−∞ f(x)dx. Let
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µ̂ be the mode of f(x) or the mean of a variable with probability density function

(PDF) proportional to f(x), and let σ̂2 represent either the estimated curvature of

f(x) at µ̂,

σ̂2 =
(

−∂2 log f(x)/∂x2
)−1

∣

∣

∣

∣

x=µ̂
,

or the variance of a variable with PDF proportional to f(x). Let the integral be

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞

f(x)

φ(x; µ̂,σ̂2)
φ(x; µ̂,σ̂2)dx =

∫ ∞

−∞
h(x)

1√
2πσ̂

e−(x−µ̂)2/2σ̂2
dx,

where h(x) = f(x)/φ(x; µ̂,σ̂) and φ(x;µ, σ2) is a normal PDF with parameters µ and

σ2. If a re-parametrization of the integration variable t = (x− µ̂)/
(√

2σ̂
)

is applied,

then this expression becomes

... =

∫ ∞

−∞
h(
√

2σ̂t+ µ̂)
1√
2πσ̂

e−t
2√

2σ̂dt

=

∫ ∞

−∞
h
(√

2σ̂t+ µ̂
) 1√

π
e−t

2
dt,

and, with the application of GHQ, this becomes

. . . ≃
m
∑

l=1

wl,m√
π
h
(

µ̂+
√

2σ̂ξl,m
)

=
√

2σ̂
m
∑

l=1

w∗l,mf
(

µ̂+
√

2σ̂ξl,m
)

,

where w∗i,m = wi,m exp(ξ2
i,m), and wl,m and ξl,m are the lth weights and lth node re-

spectively for m point GHQ. Lesaffre & Spiessens (2001) demonstrated the deficiency

of standard GHQ, and the superiority of adaptive GHQ, for one particular dataset

with large variance components. They showed that standard GHQ was numerically

unstable in this case, unless a very large number of quadrature points was used.

2.2.2.1 Adaptive GHQ for nested random effects models

To illustrate the application of adaptive GHQ for nested GLMMs, a one way classifi-

cation model will be used. Let data yij, i = 1, . . . , bg, j = 1, . . . ,mg, have conditional
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mean µuij = E(yij |ui), where

g(µuij) = τ0 + ui,

and ui ∼ N(0, σ2
u). Let fY |U (y|u) =

∏

i

∏

j fy|u(yij|ui) be the conditional PDF of the

data given the random effects, and fU (u) =
∏

i fu(ui) be the PDF of the random

effects. The likelihood is

∫

. . .

∫

fY |U (y|u)fU (u)du

=

∫

. . .

∫





∏

i

∏

j

fy|u(yij |ui)




(

∏

i

fu(ui)

)

du

=
∏

i

∫

(

∏

j fy|u(yij|ui)
)

fu(ui)

φ(ui; ũi, σ̂
2
i )

1√
2πσ̂

e−(ui−ũi)2/2σ̂2
i dui,

where µ̂i and σ̂2
i are the estimated mode and dispersion of

{

∏

fy|u(yij |ui)
}

fu(ui), and

φ(x;µ, σ2) is the normal PDF with mean µ and variance σ2. Using a transformation

ti = (ui − µ̂i)/
√

2σ̂i, and applying GHQ to the resultant integral, gives

. . . =
∏

i

∫

et
2
i

√
2σ̂i





∏

j

fy|u(yij |
√

2σ̂iti + µ̂i)



 fu(
√

2σ̂iti + ûi)e
−t2i /2dti

≃
∏

i

S
∑

s=1

ws,me
ξ2
s
√

2σ̂i





∏

j

fy|u(yij|
√

2σ̂iξs,m + µ̂i)



 fu(
√

2σ̂iξs,m + ûi),

where, as before, ws,m and ξs,m represent the weights and nodes for m-point GHQ.

2.2.3 Implementation of Gauss-Hermite quadrature for GLMMs

Most GHQ software currently implements standard GHQ. These include the older

packages Mixor (Hedeker & Gibbons, 1996) and Egret (Statistics and Epidemiology

Research Corporation, 1993), as well as newer packages such as AML (Lillard & Panis,

2003). Some more recent GHQ software, however, implements adaptive GHQ, such

as the SAS NLMIXED procedure (Wolfinger, 1999), the R function lmer from the lme4

package (Bates & Sarkar, 2006), and the Stata GLLAMM procedure (Rabe-Hesketh

et al., 2001). However, the NLMIXED and lmer implementations are limited to GLMMs
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with one random classification only, although the GLLAMM package can fit nested two

way classifications as well.

Maximisation of the GHQ-derived likelihood with respect to the parameters τ and κ

can be achieved using derivative-free optimisation, as in lmer, or by using Newton-

Raphson or quasi-Newton approaches, which requires analytical expressions for the

score equations and information matrices. Such analytical expressions can also be

derived using GHQ in the same way as the analytical approximation for the likelihood

is derived. However, Lesaffre & Spiessens (2001) indicated that using standard GHQ

to evaluate the score equations, which involves the approximation of one integral over

the approximation of another integral, can lead to severe estimation biases.

Adaptive GHQ also incurs an additional complication over standard GHQ in the esti-

mation of the mode and curvature of the integrand with respect to each random effect

ui. In GLLAMM, as described in Rabe-Hesketh et al. (2002), the mean and standard

deviation are re-calculated after each iteration of the Newton-Raphson technique, and

these calculations in turn requires an iterative technique. Pan & Thompson (2000)

described a modification to adaptive GHQ where a further approximation is applied,

resulting in score equations of a similar form to the score equations used in PQL, and

so denote their technique “GH-PQL”. Finally, Clarkson & Zhan (2002) described the

application of “spherical-radial quadrature” (Monahan & Genz, 1997) to GLMMs.

This is a variant on adaptive GHQ, where the multivariate integral for the likelihood

is re-expressed as

ℓ = log

∫

fY,U(y,u)du = log

∫ ∞

r=0

(

∫

A(v)
fY,V (y, rv)dv

)

dr,

and where rv = B−1(u − ũ) is a centered version of u, with ũ being the mode of

log fY,U and B = ∂2 log fY,U/
{

∂u∂uT
}

is the Hessian. The domain of integration

for v, A(v), is the unit sphere in q dimensions, and is approximated by taking sym-

metrically spaced points over the unit sphere. GHQ is applied to the outer integral

with respect to the “radius” r.
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Usefulness of standard GHQ in calculating (marginal) probabilities As

above, GHQ is useful for numerically evaluating the GLMM likelihood, and so fa-

cilitating the calculation of (approximate) maximum likelihood estimates. Standard

GHQ is also useful for GLMMs for calculating marginal probabilities of events for

fixed, or known, values of γ and τ . For instance, consider the simple one-way classi-

fication model for discrete data yij, i = 1, . . . , bg, j = 1, . . . ,mg, where the model for

µuij = E(yij |ui) is given by

g(µuij) = τ0 + τ1xij + ui,

where ui ∼ N(0, γ1). Let yi = (yi1, . . . , yimg)
T . The marginal probability P (yi = c)

for some c is given by

P (yi = c) =

∫

P (yi = c|ui)fu(ui)dui

where fu(ui) is a normal PDF with mean 0 and variance γ1. Like the expression

for the GLMM likelihood (1.9), this is an intractable integral. However, it can be

calculated using GHQ as

P (yi = c) =

∫

exp(u2
i )P (yi = c|ui)fu(ui) exp(−u2

i )dui

=
m
∑

t=1

wt exp(ξt)P (yi = c|ξt)fu(ξt)

or, using a change of variables approach, where vi = ui/
√

2γi,

P (yi = c) =

∫

P (yi = c|ui)
1√

2πγ1
exp(−u2

i /2γi)dui

=

∫

P (yi = c|
√

2γ1vi)
1√
π

exp(−v2
i )dvi

=
m
∑

t=1

wt√
π
P (yi = c|

√

2γ1ξt).
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2.3 Stochastic methods (including full Bayesian MCMC)

2.3.1 Monte Carlo methods

In this subsection, the use of Monte Carlo methods to evaluate the integral expression

for the GLMM likelihood are reviewed.

2.3.1.1 Sampling techniques

The use of Monte Carlo methods requires the ability to draw random samples from

any distribution with a given PDF f(x). Specific techniques are available for some

standard PDFs, such as the normal PDF. Alternatively, if the inverse CDF F−1(c)

is available, where F (y) =
∫ y
−∞ f(x)dx, the “inversion technique” can be used, where

the sampled values are F−1(y) for y ∼ Uniform(0, 1).

In other cases, it may not be possible to sample from f(x) directly, but from another

similar PDF g(x), denoted the “proposal density function”. For instance, if f(x) is a

unimodal pdf, a possible choice for g(x) may be a normal PDF with the same mode

as f(x), and the same curvature (second derivative) at the mode as f(x). A number

of sampling methods are available when a similar PDF g(x) is available. Importance

sampling samples from g(x) and weights the sampled values x(i) by f(x(i))/g(x(i)).

For instance, the mean of f(x) can be estimated as
(

∑

i x
(i)f(x(i))/g(x(i))

)

/N if

x(i) ∼ g(x(i)). The adequacy of importance sampling depends on how close g(x) is to

f(x). Rejection sampling involves application of a scaling factor c so that cg(x) > f(x)

for all x. For generating the ith sample x(i), a test sample x∗ is drawn from g(x)

and a second sample y∗ is drawn from Uniform [0, cg (x∗)]. If y∗ ≤ f (x∗), then x∗

is “accepted” and x(i) = x∗, otherwise it is rejected and a new x∗ is sampled until

acceptance. A modified version of rejection sampling called derivative-free adaptive

rejection sampling or ARS (Gilks & Wild, 1992; Gilks, 1992) is used in the popular

Gibbs sampling package BUGS (Spiegelhalter, Thomas, Best & Gilks, 1995). ARS

caters for the lack of an obvious choice for g(x) by building g(x) using the tangents

of f(x) at the sampled points.
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More information on importance and rejection sampling can be found in many stan-

dard texts, for instance, in MacKay (1998).

2.3.1.2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a branch of Monte Carlo methods where

sampling is performed from a transition PDF T (x∗|x) whose stationary PDF is f(x).

At the ith iteration, the Metropolis-Hastings (MH) algorithm (Hastings, 1970) gen-

erates a new candidate sample x∗ from T (x∗|x(i−1)), where x(i−1) is the result of the

previous iteration, and accepts it with probability

PA = min

(

1,
f(x∗)T (x(i−1)|x∗)

f(x(i−1))T (x∗|x(i−1))

)

.

If the candidate sample is accepted, then x(i) = x∗, else x(i) = x(i−1). A special case

of the MH algorithm is the Metropolis algorithm where T (x|x∗) = T (x∗|x) so that

PA = min
(

1, f(x∗)/f(x(i−1))
)

. Another special case is the Gibbs sampler (section

1.3.1.2), where x = (x1, . . . , xn)T is multivariate and the MH algorithm is performed

on each component xj in turn. That is, if x−j = (x1, . . . , xj−1, xj+1, . . . , xn)T , then

T (xj |x−j) = f(xj|x−j), and so the probability of acceptance PA is always equal to

1. In contrast to importance and rejection sampling where statistically independent

samples are generated at each iteration, MCMC approaches generate serially depen-

dent samples.

2.3.1.3 Monte Carlo approaches for GLMMs

Monte Carlo EM (MCEM) Monte Carlo implementations of the EM algorithm

for GLMMs were described in Wei & Tanner (1990), McCulloch (1997), Booth &

Hobert (1999) and Chen (2006), amongst others. In all these papers, Monte Carlo

methods are used to approximate the intractable E-step of the EM algorithm as

follows

E {log fY,U(y,u)|y} =
1

m

m
∑

i=1

log fY,U
(

y,u(i)
)

, (2.8)
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where the u(i) are sampled from the posterior PDF fU |Y (u|y; τ0,κ0), and τ0 and κ0

are the current estimates. McCulloch (1997) used a dependent Metropolis-Hasting

algorithm for sampling u(i), with proposal density fU , whereas Booth & Hobert

(1999) proposed independent sampling, such as importance or rejection sampling.

Chen (2006) suggested sampling from the distribution of the standardised random

effects, u∗ = G−1/2u ∼ N(0, I). This standardised distribution is independent of

the variance parameters κ, and so removes the need to generate new samples u(i) at

each E-step. By removing the need for re-sampling, it also makes it easier to assess

convergence, a stumbling block in the implementation of Monte Carlo algorithms.

The simulated likelihood in (2.8) can be maximised readily with respect to the fixed

effects τ , using an IRLS approach; with respect to the variance parameters κ, it can

be maximised directly without iteration.

Other Monte Carlo approaches for GLMMs McCulloch (1997) also suggested

a Monte Carlo version of the Newton-Raphson equations for estimating the fixed

effects τ . McCulloch (1997) and Ng, Carpenter, Goldstein & Rasbash (2006) explored

the use of simulated maximum likelihood (SML), where the marginal likelihood is

approximated using importance sampling,

log

∫

fY,Udu ≃ log

(

1

N

N
∑

i=1

fy|u(y|u(i))fU(u(i))

hu(u(i))

)

, (2.9)

and u(i) is sampled from a proposal PDF hu. McCulloch (1997) demonstrated,

through simulation, that SML works poorly unless the initial values are close to the

optimal values, and suggested the preliminary use of MCEM (or MCNR) to achieve

good starting values. Ng et al. (2006) alternatively recommended the preliminary

use of approximate likelihood approaches such as PQL2 (section 2.1.1.2) to obtain

reasonable starting values.

Delyon, Lavielle & Moulines (1999) outlined “Stochastic Approximate EM” (SAEM)

where, at each E-step, a new function to be maximised is formed by accumulating the

results from previous E-steps. If Q(τ ,κ; τ (k−1),κ(k−1)) =
∑m
i=1 log fY,U(y,u(i))/m is
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the expectation produced at the kth step where u(i) ∼ fU |Y (u|y; τ (k−1),κ(k−1)), then

the new function to be maximised is

P (k)(τ ,κ) = (1− αk)P (k−1)(τ ,κ) + αkQ(τ ,κ; τ (k−1),κ(k−1)), k > 1,

where 0 ≤ αk ≤ 1,
∑

k αk = ∞ and
∑

k α
2
k < ∞ and P (1)(τ ,κ) = Q(τ ,κ; τ (0),κ(0))

where τ (0) and κ(0) are the initial values of τ and κ.

A variant on simulated maximum likelihood above, often called Quasi-Monte Carlo

(QMC), is to select the points u(i) deterministically rather than stochastically (e.g.

Pan & Thompson, 2000; Kuk, 1999), which can both reduce the computational load

and improve the convergence rate.

2.3.2 Full Bayesian approaches

In this sub-section, the implementation of full Bayesian approaches with the aid of

Markov Chain Monte Carlo sampling is described.

2.3.2.1 Further sampling methods and issues

Following on from section 1.3.1, this section discusses sampling methods and issues for

applying Bayesian approaches with MCMC, but not limited specifically to GLMMs.

Research into improving MCMC sampling approaches is currently very active, and a

few important developments of particular relevance to Bayesian inference are listed

here. The use of hierarchical centering has been advocated to reduce correlations

between successive samples and improve mixing (Gelfand, Sahu & Carlin, 1995), but

may not always lead to improvements (Papaspiliopoulos, Roberts & Skold, 2003). The

basic idea of hierarchical centering, when applied to GLMMs, is to sample from the

posterior PDFs of re-parametrized random effects, u∗ = (Z
′
Z)−1Z

′
Xτ +u, instead

of those from u. Damien, Wakefield & Walker (1999), and Albert & Chib (1993)

for probit GLMs, suggest the use of auxiliary variables to simplify the conditional

densities required in a Gibbs sampler. This is the Monte Carlo analogue of the EM
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algorithm (section 1.1.3.1). Blocking is a technique to improve the convergence rate of

the Gibbs sampler by sampling from the conditional density of a group of parameters,

rather than sampling from the conditional densities of each individual parameter in

turn. Chib & Carlin (1999) indicated that, compared with standard Gibbs sampling,

Gibbs sampling with blocking is more difficult to code, but should converge faster.

Slice sampling (Neal, 2003) is a relatively new technique similar to rejection sampling

which also appears particularly promising, as reviewed in Zhao, Staudenmayer, Coull

& Wand (2003).

The choice of prior density can be a major stumbling block in implementing a Bayesian

approach. Hobert & Casella (1996) cautioned against indiscriminate use of “flat”

(supposed uninformative) priors in mixed models, which can result in an improper

posterior density and hence give meaningless results. Kass & Wasserman (1996)

discussed the choice of “uninformative” priors which lead to proper posterior densities.

More recently, Gelman (2005) discussed the difficulties in choosing an uninformative

prior for the variance parameters.

2.3.2.2 Bayesian techniques specifically for GLMMs

The use of a full Bayesian approach for GLMMs was first put forward by Zeger &

Karim (1991), soon after the seminal paper by Gelfand & Smith (1990) which first ad-

vocated the Gibbs sampling technique. Clayton (1996) also advocated a full Bayesian

approach for GLMMs using Gibbs sampling, arguing that the conditional distribu-

tions are log-concave and quite amenable to adaptive rejection sampling (section

2.3.2.1).

Zhao et al. (2003) reviewed the use of Bayesian MCMC approaches for a broad range

of GLMMs, including those where cubic smoothing splines were fitted as random

terms in the model (e.g. Verbyla et al., 1999), as well as GLMMs which modelled

spatial or temporal correlation patterns, which involve non-diagonal covariance struc-

tures for the random effects. They investigated “off the shelf” products such as BUGS

(Spiegelhalter et al., 1995) as well as other MCMC approaches, including slice sam-
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pling, and concluded that BUGS performed relatively favourably. Browne & Draper

(2000, 2006) compared Bayesian approaches empirically to two approximate likeli-

hood techniques, PQL and PQL2, and found that the Bayesian approaches perform

better with respect to both reduced estimation bias and improved 95% confidence

interval coverage.

2.4 Marginal approaches and other approaches

2.4.1 Marginal approaches

As discussed previously in section 1.4.3.1, a marginal model is an alternative to a “con-

ditional” GLMM for modelling correlation or clustering in non-normal data. This sec-

tion examines marginal approaches for solving a (conditional) GLMM, not marginal

models. Two marginal approaches are investigated, the Maximisation-Expectation

(ME) approach and marginal quasi-likelihood (MQL).

2.4.1.1 The Maximisation-Expectation approach

The Maximisation-Expectation (ME) approach (Gilmour, 1983; Gilmour, Anderson

& Rae, 1985) is also often referred to as the GAR approach after its authors. The

basic idea behind the approach is to form the marginal means and variances (and

covariances) and then to use iteratively reweighted least squares (IRLS) as for a

standard GLM.

To illustrate the formation of the marginal moments, consider a binary model with

probit link where the conditional mean, or probability of success, µuij for data yij is

µuij = Φ(xTijτ + ui), i = 1 . . . n, j = 1 . . . m, ui ∼ N
(

0, σ2
)

.

The marginal, or observed, mean, µij, is analytically tractable with a probit link (but
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not with a logit link):

µij = Eu(µuij) =

∫ ∞

−∞

(

∫ xTijτ+ui

−∞

1√
2π
e−t

2/2dt

)

1
√

2πσ2
u

e−u
2/2σ2

udu

= Φ

(

xTijτ
√

1 + σ2
u

)

.

This expression indicates that the marginal mean µij is attenuated towards 0.5 in

comparison with the conditional mean µuij. The marginal covariance, V , is more

complicated, but can derived using

V = var(y) = Eu {var(y|u)} + varu {E(y|u)}

= Eu
{

diag
[

µuij(1− µuij)
]}

+ varu
{

vec
(

µuij

)}

,

as discussed in Trottier (1998). As indicated in Engel et al. (1995), this expression is

analytically tractable for the probit link – in this case, V will be block-diagonal with

non-zero elements being the marginal covariances of observations in the same group,

viz.

cov(yij , yik) = Φ2

(

λxTijτ , λx
T
ikτ ; ρu

)

− pipj ,

where λ =
√

1 + σ2
u, ρ = σ2

u/
(

σ2
u + 1

)

and Φ2(a, b, ρ) is the CDF of the standard

bivariate normal distribution with correlation ρ. Engel et al. (1995) also provides a

Taylor expression (top of p.20) for the double integral in Φ2

(

λxTijτ , λx
T
ikτ ; ρu

)

when

ρ2
u is small. Trottier (1998) also suggested a general approximation to the marginal

variance

V ≈ E (V u) +D−1ZGZTD−1,

where V u = diag
[

µuij(1− µuij)
]

and D = ∂η/∂µ|µ=µ̂. For other types of GLMMs,

the expressions for the marginal moments are generally intractable. Trottier (1998)

suggested first approximating the conditional mean and variance by conditional mo-

ments from which marginal moments can easily be derived, such as for the probit

link.

Once the marginal mean and variance are determined, either exactly or approxi-

59



mately, the IRLS technique can proceed by forming the working variable at the kth

iteration,

ψ
(k)
i = η̂(k−1) +D

(

y − µ̂(k−1)
)

,

where µ̂(k−1) is the estimate of the marginal mean, D = ∂η/∂µ|µ=µ̂(k−1) and η(k−1) =

Xτ (k−1). Note that D is not, in general, a diagonal matrix. Fitting a weighted linear

model

ψ(k) = Xτ +E, (2.10)

where E ∼ (0,DV DT ), results in a weighted generalized least squares solution for

τ at the kth iteration, XTT−1Xτ̂ (k) = XTT−1ψ(k) where T = DVDT . Gilmour

(1983), pp 45-46, showed that this solution for τ is equivalent to forming Henderson-

like mixed model equations for τ and u:







XTWX XTWZ

ZTWX ZTWZ +G−1













τ̂ (i+1)

ũ(i+1)






=







XTWψ(i)

ZTWψ(i)






, (2.11)

where W = DE−1DT , E = E(V u) and V u = diag {aiv(µui )}. Trottier (1998) also

confirmed this solution, arguing that, since V ≈ E+D−1ZGZTD−1 as noted above,

it follows that T = DEDT + ZGZT , and so the solution for τ from (2.10) is also

the solution to (2.11). Estimation of the variance parameters κ can be performed at

each iteration using the REML score equations corresponding to the implicit normal

linear model for the working variate, ψ ∼ N(Xτ ,DV DT ), for instance, as shown in

section 3 of Gilmour et al. (1985).

Therefore, the updating equations for the ME approach take a similar form to those

for PQL. The major difference between the ME and PQL approaches is that the

ME approach requires expressions for the marginal moments, whereas PQL does not.

Gilmour (1983) argued that the ME method should give more stable estimates than

PQL (joint maximisation) when the number of observations per random effect is small,

but will perform less well as the number of observations per random effect increases.

Gilmour et al. (1985) argued that PQL effectively calculates a marginal variance for
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the data on the basis that the random effects are known, resulting in underestimation

of the variance components with small cluster sizes. Simulation results comparing ME

and PQL, demonstrating these effects, may be found in Gilmour et al. (1985) and

Engel et al. (1995).

2.4.1.2 Marginal Quasi-likelihood (MQL)

Marginal quasi-likelihood (MQL) was proposed by Longford (1988) and Goldstein

(1991), but also reviewed by Breslow & Clayton (1993), where the name “marginal

quasi-likelihood” was first coined. An approximate Taylor series expansion of the

data is obtained:

y ≈ µu + e∗ ≈ h(Xτ ) + h′(Xτ )Zu + e∗ = h(Xτ ) + e∗∗,

where h = g−1 is the inverse link function, implying the following marginal moments:

µ = E(y) ≈ h(Xτ )

and

V = var(y) ≈ V u + ∆−1ZGZT∆−1,

where ∆ = diag {g′(µi)}. As for PQL, an iterative process is required. At each

iteration, a working variate is formed,

ψ
(k)
i = η

(k−1)
i + g′

(

µ
(k−1)
i

) (

yi − µ(k−1)
i

)

,

where η
(k−1)
i = xTi τ

(k−1) and µ
(k−1)
i = g−1(η

(k−1)
i ), to which a weighted linear mixed

model is fitted

ψ
(k)
i = xTi τ + zTi u+ ei,

with weights w
(k−1)
i =

{

φaiv
(

µ
(k−1)
i

)

[g′(µ
(k−1)
i )]2

}−1
, or ei ∼ N

(

0, {w(k−1)
i }−1

)

.

This yields updated estimates τ (k) and u(k), and consequently an updated working

variate for the next iteration, as for PQL. This cycle is repeated until convergence.
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The use of marginal quasi-likelihood will result in marginal estimates of the regression

coefficients τ , as for a GEE (section 1.4.3.1). MQL has been shown to give even more

biased estimates of the variance components than PQL for grouped binary data with

small group sizes (e.g. Rodriguez & Goldman, 1995, 2001).

Differences between MQL, ME and PQL are discussed in Engel & Keen (1996). All

three approaches share a commonality in iteratively fitting a weighted linear mixed

model to a working variate. The working variate used for ME and MQL is similar, as

both are marginal approaches. However, there are differences in the weights between

the two methods, as shown in Engel & Keen (1996) in the case of a probit link.

2.4.2 Non-parametric GLMM – Aitkin (1999)

Aitkin (1999) considered a non-parametric approach, which utilizes the GHQ approx-

imation to the likelihood but makes no distributional assumption about the random

effects. For simplicity of exposition, a simple GLMM for data yij , i = 1 . . . m,

j = 1 . . . ni is assumed, where g(µij) = xTijτ + ui, τ is a vector of fixed effects of

length p and ui ∼ N(0, γ1). Letting υi = ui/γ1 ∼ N(0, 1), the likelihood can be

approximated using standard m-point GHQ ,

ℓ(τ , γ1) = log

(

∏

i

∫

[

∏

i

fy|u(yij ; τ , γ1, υi)

]

fυ(υi)dυi

)

≈ log





∏

i

m
∑

q=1

wq
∏

j

fy|u(yij ; τ , γ1, ξq)





=
∑

i

log

(

∑

q

wqfiq

)

, (2.12)

with weights and nodes wq and ξq respectively and fiq =
∏

j fy|u(yij; τ , γ1, ξq). The

score equations for τ and γ1 are weighted sums of standard GLM-like score equations.

For instance, for τl, l = 1, . . . , p, the score is

∂ℓ

∂τl
=
∑

i

∑

q

wiqsiq(τl),
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where each GLM-like score equation is

siq(τl) = ∂ log fiq/∂τl =
∑

j

(yij − µijq)xijl/v(µijq)g
′ (µijq) ,

and where g(µijq) = xTijτ + γξq and v(·) is the variance function. The corresponding

weights are wiq = wqfiq/
∑

r wrfir. An EM algorithm can be used to estimate τ and

γ, alternating between the estimation of the weights wiq and the estimation of τ and

γ.

Aitkin’s innovation is to utilize the GHQ-approximated expression for the likelihood

in (2.12), but to let the scaled GHQ nodes αq = γξq, and their corresponding weights

wq, be unknown parameters rather than fixed values. The likelihood now corresponds

to that of a discrete mixture model, and can be readily maximised for τ , αq and wq

for any given number of quadrature points m. To choose the appropriate number

of quadrature points m, Aitkin suggests running separate analyses with increasing

values of m, m = 3, 4, 5, . . . , and stopping when there is a suitably small change in

the deviance between successive values of m.

Aitkin’s approach is appropriate where the focus is the estimation of τ – the variance

component γ1 is no longer estimated, and the ξq and wq are essentially nuisance

parameters. His approach is readily applicable to GLMMs with either independent

nested random effects or specific types of correlated nested random effects such as

random coefficient models. However, Aitkin acknowledges that the approach would

require more methodological development to apply it to other types of GLMMs, such

as those with spatially or temporally correlated random effects.

2.4.3 Modified EM approach – Steele (1996)

Steele (1996) outlined a modified EM algorithm where the E-step,
∫

ℓJfU |Y du, is

approximated using a version of the Laplace approximation developed by Tierney

et al. (1989). He noted that his first-order approximation yields the same score

equations for τ and u when a canonical link is used.
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2.5 Discussion

A number of alternative approaches for estimation in GLMMs have been discussed

in this chapter. The two approximate likelihood approaches described above, PQL

and HGLM approaches, appear to be the most useful and flexible approaches for

fitting a broad range of GLMMs at present. The other approaches discussed in

this chapter are either limited in the possible GLMMs they can fit, or appear to be

potentially computationally intensive. For instance, numerical approaches, such as

GHQ, are effectively limited to the subset of GLMMs involving nested random terms.

Also, approaches based on Monte Carlo methods, including Bayesian approaches, are

widely considered to be very computationally intensive.

As indicated above, approximate likelihood approaches are well-known to suffer from

estimation bias problems in some cases, especially PQL. In the next chapter, the

estimation biases for PQL will be explored, in order to try to determine under what

conditions the estimation biases will be a significant problem for inference. In ad-

dition, other inferential issues using PQL, such as hypothesis testing, will also be

examined. In Chapter 4, the HGLM approach of Lee & Nelder (2001) will be ex-

plored, and compared against PQL, especially with regard to estimation bias.
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Chapter 3

The use of PQL for GLMMs

This chapter investigates the use of penalized quasi-likelihood (PQL) for GLMMs.

PQL is the most well-known approximate likelihood approach for GLMMs. It is con-

sidered to be a computationally efficient way of fitting a wide variety of GLMMs.

The biggest known problem with the PQL approach, highlighted in previous litera-

ture, is the potential for large estimation biases for some GLMMs, such as for binary

grouped data with small group sizes. However, in GLMMs with general designs, it is

still not entirely clear under what conditions PQL can reliably be used in practice.

To help determine some guidelines in this area, the studies in this chapter explore

the magnitude of the estimation biases for a variety of designs, and with changing

design parameters, for binary and Poisson data. The chapter also looks at the issue

of hypothesis testing of variance components and fixed effects when using PQL.

3.1 Factors affecting estimation bias

3.1.1 Background

Large estimation biases for PQL when fitting some GLMMs have been reported in

previous studies in the literature. These previous studies mainly considered binary

GLMMs for grouped data where the group size is relatively small. Two of the most
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important papers investigating PQL estimation bias are Breslow & Lin (1995) (and se-

quel, Lin & Breslow (1996)), who devised an approximate correction (section 2.1.1.2),

and Rodriguez & Goldman (2001), who demonstrated how large the PQL estimation

biases can be for nested two-way (or “three level”) binary data with small group sizes

at each level of classification. These and other studies showed that estimation biases

can be especially large (over 50%) for the variance parameter estimators. However,

under other conditions, the PQL approach has been reported to provide adequate

estimators, giving similar results to GHQ and Bayesian approaches, such as in the

examples in Breslow & Clayton (1993).

Despite the knowledge that PQL estimation biases will be severe for binary grouped

data with small group sizes, it is not immediately clear under what conditions PQL

estimation biases will be severe for GLMMs in general. PQL is still attractive to

practitioners due to its general availability, ease of use and computational efficiency.

It would be desirable to be able to offer some guidelines on when PQL can be reliably

used, that is, for what types of data, and designs, will the estimation biases be small

enough to be of no consequence. Breslow (2003) tried to offer a general rule of thumb.

He suggested that PQL will fail to provide reliable estimators when the conditional

PDF of the data given the random effects, fY |U , is far from normality. His rule of

thumb is therefore similar to the rule of thumb used to judge the adequacy of the

χ2 distributional approximation of the goodness of fit statistic for contingency table

data. For binomial data, he suggested that, for PQL to provide adequate estimators,

both the (conditional) expected numbers of successes and failures should be generally

greater than 5, and for Poisson data he likewise suggested that the conditional means

should be generally greater than 5.

Lee & Nelder (1996) argued that PQL-like estimators are consistent when the diagonal

elements of the inverse of the second derivative of the joint likelihood with respect

to u,
(

∂lJ/∂u∂u
T
)−1

, are O(n−1), where n is the number of observations in the

dataset. This condition corresponds to the situation when the sample size n goes to

infinity, but the number of random effects b remains constant. However, Jiang (1998),
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and discussants to Lee & Nelder (1996), indicated that PQL-like estimators were not

consistent in cases where b was also going to infinity.

3.1.2 Aims

The assertions of Breslow (2003) and Lee & Nelder (1996) offer an explanation of the

PQL estimation bias problems for binary grouped data with small group sizes. But

neither assertion has been explored for GLMMs in general.

Critical examination of these assertions, or development of a new rule of thumb, could

be done either analytically or empirically, or using a combination of these. The use

of an analytical approach appears to be unpromising. As indicated in section 2.1, the

PQL approach does not maximise a fixed criterion such as a log-likelihood, or even

an approximate log-likelihood (such as the Laplace approximation to the likelihood),

and so it is difficult to find an analytic expression for the bias. Attempting to use

the iterative formulae quickly becomes unmanageable, as seen in Engel (1998) for

a simple one-way classification. Breslow & Lin (1995) and Lin & Breslow (1996)

attempted to determine general analytic expressions for the bias, but these were

based on approximate expansions around γ = 0 and for designs where the group

sizes were small. Lin & Breslow (1996) demonstrated that their correction formulae,

based on these analytic expressions, worked poorly in some cases. In any case, if

a general basis or rule of thumb could be devised by analytic means, it would be

desirable to validate such a rule using Monte Carlo simulation studies.

It was therefore decided to proceed on an empirical basis, using Monte Carlo simu-

lation to examine the estimation biases for a range of simple designs for binary and

Poisson data. For each design, the design parameters were varied to determine which

design parameters had the most influence on the estimation bias. If patterns emerged

in the dependence of the estimation biases on the design parameters across designs,

this would allow the extrapolation of these patterns to more complex GLMMs, and

provide a basis for establishing general guidelines for when PQL is adequate or not.

To our best knowledge, such an empirical approach for exploring PQL estimation
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biases has not been performed before: previous simulation studies in the literature

have dealt with specific designs and specific parameter values, rather than exploring

a variety of designs with varying parameters as done here.

The designs considered range from the very simplest, the one-way classification, to

designs involving nested, crossed or correlated random effects. In each design, the

parameters of the model are varied in a factorial arrangement in order to allow for

the detection of possible interaction effects on the estimation bias. For instance, in

the one-way classification model (equation 3.1.4.1), the design parameters included

the number of groups (denoted bg), the number of observations per group (denoted

mg) and the variance component relating to group effects (denoted γ1). The choice

of design parameter values was, in part, guided by previous literature, in that some

parameter values were chosen to be those which were known to result in large PQL

estimation biases. For instance, large numbers of groups with relatively small group

sizes were chosen, given the previous literature findings on high estimation bias un-

der these conditions. Given the use of a factorial structure, the results of each of

these simulation studies could have been analysed using a formal analysis of vari-

ance (ANOVA): however, the majority of interactions were found to be statistically

significant, up to five-way interactions. Attempting to describe all the statistically

significant interactions would have obscured the salient factors affecting the estima-

tion bias. Therefore, for each design, an exploratory analysis of the simulation results

was conducted to highlight the main contributing factors to the magnitude of the

estimation biases.

It is important to note here that we are considering estimation bias in a relative

sense. Therefore, the bias for each parameter estimator was calculated relative to the

magnitude of the parameter, that is, the bias for parameter θ was estimated as

̂Bias for θ̂T =

(

θ̂T − θT
)

θT
,

where θT is the true value for parameter θ and θ̂T is the average estimate for θ, for

a given subset of simulation datasets from the total set of datasets where θ = θT .
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The use of relative estimation bias appears to be intuitively sensible, since it reflects

the importance of the estimation bias in a practical sense: a relative estimation bias

of less than 5% in absolute value might be considered ignorable, say, but a relative

estimation bias of over 50% in absolute value would definitely be considered severe,

no matter how small the parameter’s true value was.

3.1.3 Methodology

Some of the methodological details in common to all the Monte Carlo simulations are

as follows.

In each design, the data either represents binary or Poisson data, with the corre-

sponding link function g being either the logit and logarithmic function respectively.

The simulated datasets were analysed according to the same model that generated

the data. For all simulations, the linear mixed model package ASReml version 2.0

(Gilmour et al., 2006) was used. Results for simulated datasets where ASReml re-

ported non-convergence or singularities were omitted in the calculation of estima-

tion biases. These represented a very small fraction (<0.1%) of the total number

of datasets in most cases. For each design, 200 simulations were conducted for each

combination of simulation parameters in each model. The starting values for variance

components were either set to be 0.1 or 0.00001 for the binary and Poisson models

respectively in each design, with the latter chosen to reduce divergence problems for

the Poisson models. However, apart from this divergence problem, preliminary simu-

lations suggested that the estimates were not affected by the choice of starting values

for any of these models.

It should be noted that estimates of variance parameters, apart from the correlation

parameter γρ in the correlated and random coefficient models, were constrained to

be positive, since this was the default setting of ASReml. Even though many current

linear mixed model and GLMM implementations like ASReml do restrict variance

components to take positive values by default, it may have been more correct, in

hindsight, to have allowed at least some of the estimated variance components to
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take any negative or positive value. For instance, Nelder (1954) discussed the inter-

pretation of negative variance components in the context of the analysis of designed

experiments, making the case that estimated variance components should always be

allowed to take negative values. (However, as Jiang pointed out in the discussion to

Lee & Nelder (2004), the Genstat HGLM implementation, which Nelder himself was

involved in developing, only allows positive variance components, at least at present.)

Therefore negative biases of the variance components reported in the simulation stud-

ies below may be considered under-estimates of the potential negative biases, although

the magnitude of this underestimation is probably not large. It is important to note

that when allowing for negative variance component estimates, the BLUPs for the

associated random effects do not exist. Another issue with the design-based approach

in Nelder (1954, 1965b,a) is that it implies an analysis of the response as a normal

random variable. It is unclear how to extend Nelder’s design-based approach to allow

for the analysis of the response as a non-normal random variable, such as in a GLMM.

Also, it should be noted that the estimation biases of the variance estimates (i.e.

γ̂) are investigated, rather than the corresponding standard deviations
√
γ̂, despite

some authors who prefer the latter, such as Yun & Lee (2004), who argued that the

distribution of the standard deviation estimate
√
γ̂ is more symmetrical.

To conduct the simulations, Fortran 90 code was written for each design, which,

for each combination of simulation parameter values, generated a simulated dataset,

called ASReml to analyse it, and then parsed the ASReml output to obtain the PQL

estimates, which it then wrote to an output file. All random variables were generated

by calling routines in the Fortran 90 version of the randlib library, freely available

on the internet1. The barossa machine on the NSW academic ac3 system2 was used

remotely to perform most of the simulations.

1http://biostatistics.mdanderson.org/SoftwareDownload/
2http://www.ac3.edu.au/
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3.1.4 Designs with independent random effects

The designs considered in this section all have independent random effects, that is,

the variance matrix of the random effects, G(γ), is diagonal.

3.1.4.1 One-way classification

We begin with the simplest GLMM, the one-way classification, and consider scenarios

where the number of observations per group is small. Let yij, i = 1, . . . , bg, j =

1, . . . ,mg, (the sub-script g here indicating “group”) represent the jth observation

from the ith group, generated from a model for the conditional mean µuij = E(yij |ui)

given by

g(µuij) = τ0 + τ1x1ij + τ2x2ij + ui, (3.1)

where ui ∼ N(0, γ1). The covariates x1ij = 2(j − 1)/(mg − 1) − 1 and x2ij =

2(i − 1)/(bg − 1)− 1 take values between -1 and 1, and their values vary within and

between groups respectively. The values of the simulation parameters used in the

study are given in Table 3.1.

Parameter Binary model Poisson model
bg 50, 100, 200, 500, 1000 ...
mg 2, 4, 8, 16, 32, 64 ...
γ1 0.25, 1, 4 ...
τ0 0, 2 0.1, 1
τ1, τ2 0, 2 0, 1

Table 3.1: Values of the simulation parameters used for binary and Poisson models
for the one-way classification study (3.1). The use of ... in the 3rd (Poisson model)
column indicates the same values were used as for the binary model.

The rationale for the parameter settings given in Table 3.1 was as follows. The values

for bg and mg were chosen, on the basis of previous literature, as those in which high

levels of PQL estimation bias would be expected, as indicated earlier. The values

of γ1 chosen here represent data with relatively small, medium and large variation

between groups. For the binary model, the two values of τi, i = 0, 1, 2, were selected

sufficiently widely apart to reasonably determine whether changing that parameter
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had any effect on the bias. For the Poisson model, the values of τ0 were selected to

represent sparse Poisson data with low average rates (τ0 = 0.1 rather than 0, was

selected so that relative bias could be calculated). Without loss of generality, only

positive values of τi, i = 0, 1, 2, were examined. That is, there would be no reason to

expect, because of the symmetry around 0.5 on the probability scale, that the bias

for τ0 = −2 for the binary model should not be exactly the same as that for τ0 = 2.

For Poisson data, selecting τ0 < 0 would have resulted in Poisson data which was

unrealistically sparse. For i = 1 and 2, the choice of τi = −2 for either binary or

Poisson models would have been resulted in data from the same distribution as for

τi = 2, because the covariates x1ij and x2ij were centered around 0.

For the binary model, the average estimation biases for all parameter estimators

were, almost always, negative. These estimation biases varied considerably with the

group size mg and the variance component γ1, with the negative bias increasing with

increasing γ1 but decreasing with increasing mg (Figure 3.1). For the biases of τ̂i,

i = 0, 1, 2, a multiplicative interaction is also apparent between mg and γ1 – that is,

there was little effect of mg on the biases when γ1 = 0.25, but a large decrease in the

negative biases with mg when γ1 = 4. Note that the bias for each τ̂i is shown only

where τi = 2, since there was no apparent bias of τ̂i when τi = 0. The bias for γ̂1

was much greater in magnitude than for each τ̂i across the range of parameter values.

This was to be expected, since the τ̂i are naturally constrained to be at least as great

as the GLM or “marginal” estimates (where γ̂1 = 0), whereas values of γ̂1 were only

constrained to be greater than 0. The absolute biases for τ̂i were less than 5% when

γ1 = 0.25, even for small mg. There were similar biases for each τ̂i, i = 0, 1, 2, when

mg = 2, but the bias for τ̂1 decreased more rapidly with increasing mg than did the

biases for τ̂0 or τ̂2. The effects of other simulation parameters on the biases were either

less pronounced, or only occurred under certain combinations of the other simulation

parameter values. For instance, the biases for γ̂1 tended to increase with the number

of groups bg, but this was only really noticeable where both mg and γ1 were small,

and was relatively modest in other cases (Figure 3.2). Two other influences on the

biases noted here are an increase in the bias with τ0 (for instance, by -4% for γ̂1 from
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τ0 = 0 to τ0 = 2) and with τ1 where mg = 2 and τ0 = 2 (Figure 3.3). Note that the

biases for γ1 are positive for γ1 = 0.25 and mg = 2 in Figure 3.2 and 3.3.
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Figure 3.1: Biases in the binary one-way classification model (3.1): the interactions
between the effects of mg and γ1 on the biases for γ̂1 and τ̂i (when τi=2), i = 0, 1, 2.
(γ1=0.25: solid, 1: dashed, 4: dotted). Note that these biases are calculated where
bg=1000. (Error bars are ±2SE.)

For the Poisson model, there were sizeable estimation biases for γ̂1, τ̂0 and τ̂2, but

little, if any, evidence of bias for τ̂1 (Figure 3.4). The biases for γ̂1 and τ̂2 were

always negative, similar to the biases for these parameters in the binary model, but

the bias for τ̂0 was always positive. As for the binary model, the biases for γ̂1, τ̂0 and

τ̂2 varied considerably with mg and γ1, increasing with increasing γ1 and decreasing

with increasing mg. However, the bias also varied considerably with the intercept τ0,

decreasing with increasing τ0.

In summary, this simulation study confirmed that the estimation biases for GLMMs
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Figure 3.2: Biases in the binary one-way classification model (3.1): the interac-
tion between the effects of bg and γ1 on the biases for γ̂1 for mg = 2 and mg = 4
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Figure 3.3: Biases in the binary one-way classification model (3.1): the interaction
between the effects of τ1, bg and γ1 on the bias of γ̂1 at mg = 2 and τ0 = 2. (τ1 = 0:
solid, 2: dashed). (Error bars are ±2SE.)
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Figure 3.4: Biases in the Poisson one-way classification model (3.1): the interaction
between the effects of mg, γ1 and τ0 on the biases for γ̂1, τ̂1 (τ1 = 1) and τ̂2 (τ2 = 1).
(γ1=0.25: solid, 1: dashed, 4: dotted). (Error bars are ±2SE.)

in simple grouped data increase markedly with decreasing group size mg for both

binary and sparse Poisson models. As already discussed, this result has been shown

empirically in the literature for binary data, but not for sparse Poisson data, although

the Breslow (2003) rule of thumb anticipated higher levels of estimation bias for sparse

Poisson data..

The study also demonstrated that the estimation biases also increase markedly with

the between group heterogeneity, that is, with the magnitude of the true variance

component γ1, for both binary and Poisson models. This effect of γ1 on the biases
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Figure 3.5: Biases in the Poisson one-way classification model (3.1): the interaction
between the effects of mg, γ1 and τ0 on the biases for τ̂0. (γ1=0.25: solid, 1: dashed,
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has been less well identified in the literature than the effect of group size mg. This

effect also suggests that Breslow (2003)’s hypothesis, concerning the adequacy of

PQL, may be deficient. Breslow’s hypothesis is based solely upon the conditional

PDF of the data given the random effects, fY |U , that is, he asserts that PQL will

fail when fY |U is far from normality. However, the dependence of the estimation

biases on γ1 in this study shows that the magnitude of the estimation biases, and

the determination of when PQL will “fail”, cannot be predicted on the conditional

PDF fY |U alone, since fY |U is not a function of γ. This issue is discussed further

below. Similarly, both the hypothesis of Lee & Nelder (1996) and the corrected PQL

technique of Breslow & Lin (1995) and Lin & Breslow (1996) also ignore the potential

influence of γ on the biases. For the corrected PQL technique, the correction factors

given for the variance parameters are independent of γ̂, and therefore do not take

into account increasing estimation bias with γ – see, for instance, the formula for a

single variance component γ1, reproduced in section 2.1.1.2.

For the Poisson model, the size of the intercept τ0 also contributed strongly to the

magnitude of the estimation bias, which was to be expected since it reflects the spar-
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sity of the Poisson data and is consistent with Breslow’s hypothesis. It is interesting

that, despite the sparcity of the Poisson data examined here, there is no indication

of bias for the estimate of the coefficient β̂1, which corresponds to the covariate x1ij

which changed within groups. Lower levels of bias were also observed for β̂1 than

either β̂0 or β̂2 in the binary model.

Testing Breslow’s hypothesis We consider Breslow’s hypothesis in the light of

the above results, restricting discussion to the binary case for simplicity.

As noted above, the hypothesis of Breslow (2003) concerning the adequacy of PQL,

is that PQL will fail when the conditional distribution fY |U is far from normality.

Since fY |U is not a function of γ1, this hypothesis does not account for the effects

of γ1 on the magnitude of the estimation bias demonstrated in the one-way classifi-

cation study above. However, changes to the variance component γ1 will affect the

marginal, or observed, distribution of the data. Increasing γ1 should increase the

marginal probability of having a more “extreme” observation, that is, the probability

of observing a low number of successes or failures in a group. One could therefore

argue that increasing γ1 increases the estimation bias because it increases the prob-

ability of observing a low number of successes and failures in a group. Breslow’s rule

of thumb, that PQL is adequate when the expected number of successes or failures is

generally greater than 5, may consequently have some justification.

The aim of this section is to test whether Breslow’s rule of thumb is adequate, by com-

paring the probabilities of observing a low number of successes or failures in a group

with the corresponding estimation biases for some selected simulation parameter val-

ues. Consider the binary one-way classification model (3.1), but with no covariates,

where

logit(µuij) = τ0 + ui. (3.2)

Since the number of successes Yi. =
∑

j Yij in a group is conditionally binomial,

Yi.|ui ∼ Binomial (mg, µ
u
i ) ,
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where µui = logit−1(τ0 + ui), the marginal probability of having less than c successes

in a group is defined as

P (Yi. ≤ c) =

∫

P (Yi. ≤ c|ui) f(ui)du

where P (Yi. ≤ c|ui) is the binomial CDF with parameters mg and µui , and f(ui) is a

normal PDF where the corresponding distribution has variance γ1. The probability

of less than c failures, P ({mg − Yi.} ≤ c), is defined similarly. Like the GLMM like-

lihood, both of these probabilities have no closed analytical form. However, they can

be approximated using standard GHQ, that is,

∫

P (Yi. ≤ c|ui)P (ui)du =
k
∑

j=1

wj,kP (Yi. ≤ c|ξj,k)

where k is the number of quadrature points (e.g. 20), and the wj,k and ξj,k are

the scaled weights and nodes for k−point GHQ (section 2.2.3). Let Pc = P (Yi. ≤

c)+P ({mg − Yi.} ≤ c) denote the probability of having a low number of successes or

failures.

Table 3.2 shows the probability Pc where c = 5 and the corresponding estimation

bias for four combinations of γ1 and τ0, γ1 × τ0 = (1, 4) × (1, 2), where the other

parameters are set at mg = 32 and bg = 500. Note that, although the probability

of having a low number of successes or failures for (γ1, τ0) = (1, 2), Pc = 0.65, is

higher than for (γ1, τ0) = (4, 1), where Pc = 0.48, the magnitude of the PQL biases

are larger in the latter. Therefore a higher probability of observing a low numbers

of successes or failures does not appear to imply a larger PQL bias, and so Breslow’s

rule of thumb appears to be deficient.

The greater bias experienced when (γ1, τ0) = (4, 1), than when (γ1, τ0) = (1, 2), must

therefore be related to some difference in the marginal distributions of the data,

P (Yi. = c), that is not encapsulated by Breslow’s rule of thumb. The two marginal

distributions are plotted in Figure 3.6. It can be seen that the latter, (γ1, τ0) = (1, 2),

has the more “normal-like” distribution of the two distributions, in that it has a
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distinct “peak” near c = 30, whereas the other distribution does not have such a

peak.

PQL Bias (%)
γ1 τ0 P (Yi. < 5) P ({mg − Yi.} < 5) γ̂1 τ̂0

1 1 0.0057 0.30 -9.5±0.2 -4.1±0.1
1 2 0.00028 0.65 -14.8±0.2 -5.2±0.1
4 1 0.088 0.39 -17.8±0.1 -8.9±0.2
4 2 0.032 0.58 -23.6±0.1 -10.2±0.1

Table 3.2: Illustrating the deficiency of Breslow (2003)’s hypothesis using a binary
one-way classification model (equation 3.2) for four combinations γ1 × τ0 = (1, 4) ×
(1, 2) where mg = 32 and bg = 500.
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Figure 3.6: Marginal probability distributions P (Yi. = c) where Yi. =
∑

Yij in model
3.2 for (γ1, τ0) = (4, 1) (solid line) and (γ1, τ0) = (1, 2) (dotted line).

3.1.4.2 Nested two-way classification

A nested two-way classification is now considered. Data yijk, i = 1, . . . , bg, j =

1, . . . ,mg, k = 1, . . . ,ms, were generated, and analysed, according to the following
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model for the conditional mean µuijk = E(yijk|u1i, u2ij),

g(µuijk) = τ0 + u1i + u2ij , u1i ∼ N(0, γ1), u2ij ∼ N(0, γ2), (3.3)

with parameter values given in Table 3.3.

Parameter Binary model Poisson model
bg 50, 100, 200, 500 ...
mg, ms 2, 4, 8, 16 ...
γ1, γ2 0, 4 ...
τ0 0, 2 0.1, 1

Table 3.3: Values of the simulation parameters used for the nested two-way classifi-
cation study (3.3). The use of ... in the 3rd (Poisson model) column indicates the
same values were used as for the binary model.

For the binary model, the average estimation biases for γ̂1 ,γ̂2 and τ̂0 are only shown

where γ1 = 2, γ2 = 2 and τ0 = 2 respectively. As for the one-way classification,

negative estimation biases were observed for all parameters. The magnitude of the

negative bias for γ̂1 increased with increasing γ1 but decreased with increasing mg

and ms (Figure 3.7), which was consistent with the one-way classification results

above. The bias for γ̂2, when γ1 = 0, was of a similar magnitude to the bias for

γ1 in the one-way classification for each value of ms (corresponding to mg for the

one-way classification). However, the bias for γ̂2 was larger when γ1 = 2 than when

γ1 = 0. The magnitude of the negative bias for τ̂0 (τ0=2) increased more rapidly with

increasing γ2 than with increasing γ1.

For the Poisson model, increasing γ2 increased the magnitude of the estimation bias

for γ̂1, however, in contrast, increasing γ1 tended to reduce the magnitude of the bias

for γ̂2 (Figure 3.8). Both of these effects were similar for both τ0 = 0.1 and τ0 = 1.

The magnitude of the bias for τ̂0 increased more with increasing γ2 than increasing

γ1 (Figure 3.9).

Even greater negative biases were observed in this study than in the one-way clas-

sification models, which is perhaps to be expected since there are two sources of

heterogeneity, not one. The results of this simulation study were consistent with the
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Figure 3.7: Biases in the binary nested two-way model (3.3) : interactions of the
effects of mg, ms, γ1, γ2 on the biases for γ̂1, γ̂2 and τ̂0. ((γ1, γ2) = (4, 4): dot-dashed,
(4, 0): dashed; (0, 4): dotted). (Error bars are ±2SE.)

results of the previous one-way classification – the group sizes ms (for γ2) and msmg

(for γ1) and the variance components γ1 and γ2 were the main factors determining

the magnitude of the estimation bias. The magnitude of the variance component at

the lower level, γ2, had more influence on the magnitude of the biases than that at

the higher level of aggregation, γ1. This also is to be expected since the effective

group size ms for γ2 is lower than the group size mgms for γ1. Similarly, increasing

ms reduced the magnitude of the biases more than increasing mg.

3.1.4.3 Crossed two-way classification

A crossed two-way classification is now considered. Data yijk was generated, and anal-

ysed, according to the following model for the conditional mean µuijk = E(yijk|u1i, u2j):

g(µuijk) = τ0 + u1i + u2j , i = 1 . . . b1, j = 1 . . . b2, k = 1 . . . ms (3.4)

u1i ∼ N(0, γ1), u2j ∼ N(0, γ2).
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Figure 3.8: Biases for the Poisson nested two-way model (3.3): interactions of the
effects of mg, ms, γ1, γ2 and τ0 on the biases for γ̂1 and γ̂2. ((γ1, γ2) = (4, 4):
dot-dashed, (4, 0): dashed; (0, 4): dotted). (Error bars are ±2SE.)

The simulation parameter values used are given in Table 3.4. The values of the

parameters b1 and b2 were chosen so that the variance component γ1 represents vari-

ation between groups which are large in number but small in size and, conversely, γ2

represents variation between groups which are small in number but large in size.

Parameter Binary model Poisson model
b1 50, 100, 200 ...
b2 3, 10, 25 ...
ms 1, 2, 4 ...
γ1, γ2 0, 4 ...
τ0 0, 2 0.1, 1

Table 3.4: Values of the simulation parameters used for the crossed two-way classi-
fication study (3.3). The use of ... in the 3rd (Poisson model) column indicates the
same values were used as for the binary model.
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effects of mg, ms, γ1, γ2 and τ0 on the biases for τ̂0 . ((γ1, γ2) = (4, 4): dot-dashed,
(4, 0): dashed; (0, 4): dotted). (Error bars are ±2SE.)

For the binary model, the biases for γ̂1, where γ1 = 4, were consistent with the

one-way classification results (Figure 3.10). For both γ̂2 and τ̂0, where γ2 = 4 and

τ0 = 2 respectively, there was considerable negative bias when γ1 = 4 but minimal

bias when γ1 = 0. For the Poisson model, the biases for γ̂1 were consistent with the

Poisson one-way classification model (Figure 3.11). There was no evidence of bias for

γ̂2 (Figure 3.11), but there was positive bias for τ̂0 when γ1 = 4 (Figure 3.12).

As for the nested two-way classification, the biases in this study are consistent with

those from the one-way classification. The effects on the estimation biases of the

group size and variance component corresponding to the smaller groups, that is, b2

and γ1, are stronger than the ones corresponding to the larger groups (b1 and γ2).

3.1.4.4 Designs with many fixed effects for binary data

For all the previous designs above with binary data, negative biases are consistently

seen for each of the variance parameters γi. A common feature of all these designs is

a limited number of fixed effects. However, Engel & Buist (1998) reported positive

bias for the variance parameter in their simulation study, which used a design with
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(τ0 = 2). ((γ1,ms) = (4, 4): dot-dashed, (4, 1): dashed, (1, 4): dotted, (1, 1): solid).
(Error bars are ±2SE.)

many fixed effects. They claimed that such a design is common, for instance, in the

analysis of breeding trials. An auxiliary simulation study was performed to validate

their finding.

The following two designs were examined:

• a crossed two-way design where data yijk, i = 1 . . . p, j = 1 . . . b, k = 1 . . .ms,

is generated, and analysed, from the following model for µuijk = E(yijk|uj),

logit(µuijk) = τ0 + τi + uj, (3.5)

where τi = στΦ
−1 ((i− 0.5)/p) are the quantiles from a N

(

0, σ2
τ

)

distribution

and uj ∼ N (0, γ1).

• nested two-way design where data yijk, i = 1 . . . p, j = 1 . . . bs, k = 1 . . . ms, is

generated, and analysed, from the following model for µuijk = E(yijk|uij),

logit(µuijk) = τ0 + τi + uij, (3.6)
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(4, 1): dashed, (1, 4): dotted, (1, 1): solid). (Error bars are ±2SE.)

with τi = στΦ
−1 ((i− 0.5)/p) and uij ∼ N (0, γ1).

In the analysis of each simulated dataset from each design, the τi were fitted as fixed

effects, and the ui, or uij, were treated as random effects. The values of the simulation

parameters used for each design are given in Table 3.5. The values of p, b (or bs), σ
2
τ

and γ1 were arbitrarily chosen to get a good spread of different conditions.

For the crossed model, where there were relatively few random effects (b = 10), a

positive bias for γ̂1 was observed (Figure 3.13). Increasing the number of fixed effects

p from 10 to 200 increased this positive bias, and also reduced the negative bias for

γ̂1 where b = 200. Increasing the variability of fixed effects, στ , also increased the

positive bias. Conversely, when the number of fixed effects was small (p = 10) and
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Parameter Crossed model Nested model
p 10, 50, 200 20, 50, 100, 200
b or bs 10, 50, 200 2, 4, 8, 16
ms 1, 4 2, 4, 8, 16
σ2
τ , γ1 0, 4 ...
τ0 0 ...

Table 3.5: Values of the simulation parameters used for the crossed (3.5) and nested
(3.6) binary models with many fixed effects. The use of ... in the 3rd (nested model)
column indicates the same values were used as for the binary model.

the number of random effects was large (b = 200), the bias was negative, as for the

previous simulation studies in this chapter. Increasing the number of replicates, ms,

reduced the magnitude of the bias in all cases.

For the nested model, negative biases increased with bs, which here represented the

ratio of the number of random effects to the number of fixed effects (Figure 3.13,

where ms = 1). Where γ1 = 0, large positive biases for γ1 were also observed in the

nested model; these biases decreased with increasing bs (Figure 3.14).

Therefore, this study confirms the results of Engel & Buist (1998), showing that

increasing the number of fixed effects in the model may serve to reduce the magnitude
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of the negative biases for binary GLMMs, and even induce positive biases. The

reduction in the negative bias with an increasing number of fixed effects may be

related to the inconsistency of maximum likelihood estimation with a large number

of “nuisance” effects (section 1.1.3.3). For instance, consider the binary matched pairs
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data Yij, i = 1, . . . , bg, j = 1, 2, where µij = E(yij), and the following GLM for µij,

logit(µij) = τ0 + τi + τbg+1xij ,

where xij is 1 if j = 2 or 0 if j = 1. It is well-known that the expectation of the

ML estimator of τbg+1 is equal to 2τbg+1 (Andersen, 1973). Similarly, the inclusion

of many fixed effects into the GLMM, as in the studies in this section, may induce

positive bias which offsets the negative bias induced by using PQL.

3.1.5 Designs with correlated random effects

The following designs involve correlated random effects, that is, where the variance

covariance matrix of the random effects, G, is non-diagonal. In the context of PQL

estimation biases, these designs have been less explored in the literature than models

with independent random effects.

3.1.5.1 Random coefficients design

A simple random coefficients design is examined here. Data yij, i = 1, . . . , bg, j =

1, . . . ,mg, were generated, and analysed, according to the following model for the

conditional mean µuij = E(yij|u1i, u2i):

g(µuij) = τ0 + τ1xij + u1i + xiju2i, (3.7)

where xij = (j − 1)/(mg − 1) − 1 is a covariate which varies within groups and

(u1i, u2i)
T ∼ N (0,D) where

D =







γ1 γρ
√
γ1γ2

γρ
√
γ1γ2 γ2






.

The simulation parameter values chosen are given in Table 3.6.

For the binary model, simulations where either ASReml reported non-convergence

or where the parameter estimates diverged (τ̂i > 1000, or γ̂i > 105, i = 1, 2) were
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Parameter Binary model Poisson model
bg 50, 100, 200, 500 ...
mg 2, 4, 8, 16 ...
(γ1, γ2) (0,4), (4,0), (4,4) ...
γρ -0.7, 0, 0.7 ...
τ0 0, 2 0.1, 1
τ1 0, 2 0, 1

Table 3.6: Values of the simulation parameters used for the random coefficients model
(3.7) . The use of ... in the 3rd (Poisson model) column indicates the same values
were used as for the binary model.

discarded. Across all simulations, only 0.6% of simulations were discarded. However,

almost all the discarded simulations had simulation parameter values of mg = 2,

τ0 = 2 and τ1 = 2, and the proportion of discarded simulations was higher at low

bg. Instead of reporting the bias for the correlation estimator γ̂ρ, which is well-known

to be too unstable, even for normal linear mixed models (Brian Cullis, personal

communication), the bias is reported for the covariance estimator γ̂12, where γ12 =

γρ
√
γ1γ2.

For the binary model, the biases for γ̂1 (γ1 = 4) and γ̂2 (γ2 = 4) were strongly

negative, and increased in magnitude with increasing γ2 and γ1 respectively (Figure

3.15). The bias for the covariance estimator γ̂12 was also strongly negative. The

biases for τ̂0 (τ0 = 2) and τ̂1(τ1 = 2) were also negative, and increased in magnitude

with γ1 and γ2, but more so with increasing γ1 (Figure 3.16). When τi = 2, i = 1, 2,

γ1 = 4 and γ2 = 4 and γρ 6= 0, the biases for τ̂i were smaller in magnitude when

γρ = −0.7 but larger when γρ = 0.7. There were also non-negligible biases for τ̂i

when τi = 0 and γρ 6= 0, with positive bias observed when γρ = −0.7 and negative

bias when γρ = 0.7 (Figure 3.17).

For the Poisson model, an unanticipated trend in the bias was observed – the mag-

nitude of the negative bias for γ̂1 (γ1 = 4) decreased with increasing γ2 from 0 to

4 (Figure 3.18, left plot). Closer inspection of the results for the case when γ1 = 4

and γ2 = 0 revealed that, in over 80% of cases, the estimate γ̂1 was less than 0.1 (in

contrast,when γ1 = γ2 = 4, less than 0.01% of γ̂1 values were less than 1). Therefore,

when γ1 = 4 and γ2 = 0, PQL very often failed to provide meaningful estimates of
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((γ1, γ2) = (4, 4): dot-dashed; (4, 0): dashed; (0, 4): dotted). (Error bars are ±2SE.)

γ1; even at higher values of mg, the estimates did not improve. In contrast, the bias

for γ̂2 (γ2 = 4), as expected, increased with increasing γ1 (middle plot). For both γ̂1

and γ̂2, the magnitude of the negative bias decreased slightly with increasing τ0. The

magnitude of the negative bias for γ̂12 (γ12 > 0) decreased with increasing τ0 (right

plot), also as expected.

Referring now to the biases for τ̂i, i = 1, 2, the negative bias for τ̂0 was largest where

γ1 = 4 and γ2 = 0, most likely associated with the corresponding high negative bias

for γ̂1 at these values of γ1 and γ2 (Figure 3.19). There was little or no bias for τ̂1

(τ1 = 1) when γ1 = 0, and only negative bias when γ1 = 4 (Figure 3.20). Bias for

τ̂1 (τ1 = 1) also varied with γρ, with higher and lower levels of negative bias when

γρ = −0.7 and 0.7 respectively.

As for the previous studies in this chapter, this study showed that there were strong

effects of the group size mg on the biases. This study also shows that increasing either

of the variance parameters, γ1 or γ2, leads to an increase in the biases, consistent with

previous studies. For the Poisson model, the effect of the intercept τ0 on the biases
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Figure 3.16: Biases for the binary random coefficients model (3.7): interactions be-
tween the effects of

(a) mg and γ1 and γ2 where γρ = 0 (Left-column)
((γ1, γ2) = (4, 4): dot-dashed, (4, 0): dashed, (0, 4): dotted, (0, 0): solid.)

(b) mg and γρ where τi = 2 (i = 0, 1) and γj = 2 (j = 0, 1) (Right-column)
(γρ = 0: solid; 0.7: dotted; −0.7: dashed).

on the biases for τ̂0 (τ0 = 2) and τ̂1 (τ1 = 2). (Error bars are ±2SE.)

was also present, as in previous studies. The effects of the correlation parameter

γρ on the biases for τ̂i cannot be related to the results of the previous studies, but

a probable reason for this effect is as follows. Since the estimates of the variance

parameters γρ, γ1 and γ2 are negatively biased, the estimates of the fixed parameter

estimates τi are attenuated towards the estimates of τi from fitting a corresponding
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GLM, that is, model (3.7) without the random effects u1i and u2ij . A bias is observed

when τi = 0 and γρ 6= 0, since the expected value of the GLM estimates of τi in this

case are not 0.

The complete failure of PQL for some of the Poisson simulations, where γ1 = 4 and

γ2 = 0, is perhaps not simply a problem with PQL, but rather with the nature of

the data generated and the model being fitted. One of the simulated datasets using

these parameters was captured; the other parameter value settings for this simu-

lated dataset were (bg,mg, γρ, τ1, τ2) = (50, 16,−0.7, 0.1, 0). The variance parameter

estimates for this dataset were (γ̂1, γ̂ρ, γ̂2) = (0.012, 0, 0). We also tried to anal-

yse this dataset, using the same model (3.7), with adaptive GHQ, as implemented

in SAS’s NLMIXED procedure (section 2.2.3). However, all attempts at fitting this

dataset using NLMIXED resulted in non-convergence (error message: “optimisation

cannot improve the function value”), even when overly generous starting values

of (γ1, γρ, γ2) = (4, 0.1, 0.1) were used. However, refitting this dataset in ASReml,

but using a simpler model which ignored γρ, that is, model (3.7) with no correlation

between u1i and u2i, where

D =







γ1 0

0 γ2






,

gave much more credible answers of (γ̂1, γ̂2) = (3.49, 0).

3.1.5.2 Design with auto-regressive correlated errors

A simple model with autoregressive correlated errors within groups is examined, cor-

responding to repeated measures data, or data with spatial dependence in only one

direction. Let data Yij, i = 1 . . . bg, j = 1 . . . mg, be generated, and analysed, from

the following model for the conditional mean µuij = E(yij |uij),

g(µuij) = τ0 + uij , (3.8)

where uij ∼ N(0, γ1) is a Gaussian process with cov (uij , uik) = γ1γ
|k−j|
ρ . The simu-

lation parameter values are shown in Table 3.7.
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Parameter Binary model Poisson model
bg 50, 100, 200, 500 ...
mg 2, 4, 8, 16, 32, 64 ...
γ1 1, 4 ...
γρ 0.5, 0.8 ...
τ0 0, 2 0.1, 1

Table 3.7: Values of the simulation parameters used for the correlated AR model
(3.8) . The use of ... in the 3rd (Poisson model) column indicates the same values
were used as for the binary model.

For the binary model, there were negative biases for γ̂1 and τ̂0 (Figure 3.21) and pos-

itive biases for γ̂ρ (Figure 3.22). The biases for all three parameters were excessively

large at all values of mg, although less so at γρ = 0.8 than at γρ = 0.5 for γ̂1 and γ̂ρ.

As for the one-way classification, there was no evidence of bias for τ̂0 when τ0 = 0,

so only biases for τ̂0 at τ0 = 2 are shown. For the Poisson model, there were large

negative and positive biases for γ̂1 and τ̂0 respectively, and the magnitude of these

biases increased with γ1 but decreased with γρ and τ0 (Figures 3.23 and 3.24). There

was little or no evidence of bias for γ̂ρ.

In this study, the effects of the variance parameter γ1, and the effects of τ0 for Poisson

data, were consistent with the results for the one-way classification (section 3.1.4.1).

The one-way classification model (3.1) can be considered a special case of the corre-

lated AR model (3.8) where γρ = 1, that is, perfect correlation between units in a

group, and so uij = ui. The main difference between the results for this study, com-

pared to the one-way classification results, is that the magnitude of the bias does not

reduce much with increasing group size mg. To understand why the group size mg

makes so little difference to the bias in this study, one might consider an “effective”

group size, that is, the number of units per independent random effect. For instance,

a correlation of γρ = 1 corresponds to the one-way classification, where the “effective”

group size is mg. At the other extreme, a correlation of γρ = 0 corresponds to the

situation where all the uij are independent and the “effective” group size is 1.

Values of γρ between these two extremes, such as γρ = 0.5 and 0.8, should therefore

result in effective group sizes lying between 1 and mg. One approach to determining
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Figure 3.21: Biases for the binary AR correlated model (3.8): interactions between
the effects of mg, γ1 and γρ on the biases for γ̂1 and τ̂0 (γ1 = 1: solid; 4: dotted).
(Error bars are ±2SE.)

an effective group size is to calculate the number of independent random effects per

group using elementary time series theory. The random effects in group i can be

generated using the following model,

uij = γρui,j−1 + eij ,

where eij ∼ N
(

0, γ2
1(1− γ2

ρ)
)

. Therefore, the first random effect, ui1, contributes

1 “independent” random effect, and each subsequent random effect uij, j > 1, con-
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tributes an additional “independent” (1−γ2
ρ) of a random effect. So the total number

of independent random effects in a group is 1 + (mg − 1)(1 − γ2
ρ), and therefore the

effective group size is me = mg/
[

1 + (mg − 1)(1 − γ2
ρ)
]

. For mg = 64, this gives

effective group sizes of 1.3 and 2.7 for γρ = 0.5 and 0.8 respectively. Comparing

the biases for γ1 in Figure 3.21 at mg = 64 against the biases for γ1 in the one-way

classification (Figure 3.1) for mg = 2 and 4 respectively shows that this rule appears

to work reasonably well.

3.1.6 Discussion

The simulation studies in this section explored the effects of design parameters on

the PQL estimation biases for relatively simple GLMMs. As already indicated, some

of the parameter settings used in these simulations, such as the group size mg, were

chosen based on previous literature to induce large PQL estimation biases. Therefore,

it is expected that the large magnitudes of the estimation biases shown here will

generally not be indicative or representative of the estimation biases arising in the
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Figure 3.23: Biases for the Poisson AR correlated model (3.8): interactions between
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analysis of “real data” .

The two major influences on the estimation biases, across all simulation studies re-

ported here, are the magnitude of the variance parameters and the group sizes. For

designs with independent random effects, negative estimation biases were recorded for

the variance parameter estimators for both binary and Poisson models, with generally

negative estimation biases for the fixed effect estimators as well (the main exception

being the intercept parameter estimator in the Poisson models, which invariably had

positive estimation biases). These negative estimation biases increased in magnitude
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with the magnitude of each of the variance parameters and as each of the group

sizes decreased. This was demonstrated for the one-way classification study (section

3.1.4.1), and confirmed for the nested and crossed two-way classification studies. In

both the two-way studies, there are multiple levels of grouping, and it was the group

size at the lowest level of aggregation, and the magnitude of the corresponding vari-

ance parameter, which has the most impact on the the biases. The effect of having

a large number of fixed effects in the model (section 3.1.4.4), on reducing and over-

compensating the biases for the binary model, may be related to the inconsistency of

the ML estimator for some GLMs where there are many fixed effects in the models.

As shown at the end of the one-way classification results (section 3.1.4.1), the rule

of thumb proposed by Breslow (2003), regarding when PQL can be considered “ade-

quate”, has scope for improvement. That is, whether the data generally has counts

of successes or failures above 5 for binomial data, or has rates generally above 5 for

Poisson data, may not necessarily indicate that estimation biases will be small and

ignorable, and vice versa. Breslow’s hypothesis, that PQL will “fail” when the con-
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ditional PDF of the data given the random effects fY |U is far from normal, ignores

the influence of the variance parameters on the bias. The assertion of Lee & Nelder

(1996), presented at the start of this chapter, similarly ignores the effects of variance

parameters on the biases, as do the CPQL correction factors presented in section

2.1.1.2.

For designs with correlated random effects, similar trends were observed as for de-

signs with independent random effects. However, the results of the correlated AR

study (section 3.1.5.2) were somewhat different, with little reduction in the bias with

increasing group size. In this case, it is more appropriate to consider an “effective”

group size, representing the “information” available for estimating a single random

effect. A rule for calculating an “effective” group size, in the case of correlated AR1

errors, has been given at the end of section 3.1.5.2. This result suggests that relatively

larger biases may be expected in GLMMs where correlated random effects were used.

3.1.7 Case study : Beitler-Landis dataset

A case study in Breslow (2003) is used to demonstrate effects of the design param-

eters on the estimation bias. The Beitler & Landis (1985) multi-centre clinical trial

on topical cream effectiveness was used in Breslow (2003) to demonstrate how well

PQL can perform in a binomial example. The data are reproduced in Table 3.8 for

convenience.

Treated Control
Clinic Success Total % Success Total %

1 11 36 31 10 37 27
2 16 20 80 22 32 69
3 14 19 74 7 19 37
4 2 16 13 1 17 6
5 6 17 35 0 12 0
6 1 11 9 0 10 0
7 1 5 20 1 9 11
8 4 6 67 6 7 86

Table 3.8: The Beitler & Landis (1985) dataset used in Breslow (2003).

The first model proposed by Breslow (2003) will be explored, ignoring the need to
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allow for possible treatment by clinic interactions. Let µij = E(yij |ui) be the condi-

tional mean for Yij, the jth observation within the ith clinic, with model

logit(µij) = τ0 + xijτ1 + ui, i = 1, . . . , 8, j = 1, 2 (3.9)

where ui ∼ N(0, γ1) are the random clinic effects, τ0 is the intercept and τ1 is the effect

of treatment corresponding to a centred covariate xij = −0.5 where j = 1 (control)

and xij = 0.5 where j = 2 (treatment). Estimates from PQL and adaptive GHQ

(AGHQ), using the SAS NLMIXED procedure (Wolfinger, 1999) with default options,

are reproduced in Table 3.9. In addition, estimates (posterior means) from using a

Bayesian approach are also shown. (The Bayesian approach was implemented using

the classic BUGS (Spiegelhalter et al., 1995) program using 20,000 samples from the

Gibbs sampler after a 2,000 sample burn-in, with an Inverse Gamma (IG) prior for

γ1, and IG parameter settings µ = 0.001 and r = 0.001.) As Breslow (2003) noted,

there is remarkable concordance between the PQL and GHQ estimates, showing no

evidence of PQL bias, which he also confirms using simulations based on this design.

Note that the Bayesian estimate (posterior mean) of γ1 is noticeably different from the

others, with a relatively high SE associated with it. However, further examination of

Bayesian estimation, including the exploration of alternative priors, will be deferred

until chapter 5.

τ̂0 τ̂1 γ̂1 LRT γ̂1

PQL -0.784 ± 0.537 0.724 ± 0.296 2.033 ± 1.250 50.4
GHQ -0.828 ± 0.533 0.739 ± 0.300 1.960 ± 1.190 55.4
Bayes -0.828 ± 0.636 0.753 ± 0.303 3.248 ± 2.751

Table 3.9: Estimates of the parameters in (3.9) for the analysis of the Beitler & Landis
(1985) dataset using PQL, GHQ and Bayesian approaches.

To verify that the concordance between GHQ and PQL estimates was not a “fluke”,

1000 simulated datasets were generated from the design. The true value of each

parameter was set equal to the PQL estimates in Table 3.9. The results (line 1,

Table 3.10) show that PQL estimation biases are minor. The results of the one-way

classification simulation study would suggest that these low biases can be attributed
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to this design having both a small number of groups (clinics) and a relatively large

average group size (patients per clinic).

However, if the simulation study is repeated with 32 clinics instead of 8, negative

biases are now observed (scenario 2, Table 3.10). Similarly, repeating the study

with each of the binomial denominators reduced to one fourth of their magnitude

(rounded up to the nearest integer) results in slight negative biases (scenario 3).

Finally, repeating the simulation study with both these changes results in the worst

estimation biases (scenario 4). Therefore, increasing the number of groups (clinics)

or decreasing the group size (patients per clinic) both increase the magnitude of the

estimation biases, in line with the results of the earlier simulation studies.

Scenario τ̂0 (-0.784) τ̂1 (0.724) γ̂1 (2.033)
(1): Original design -0.731 ± 0.016 0.724 ± 0.010 2.046 ± 0.039
(2): (1) with 32 clusters -0.750 ± 0.008 0.706 ± 0.005 1.840 ± 0.017
(3): (1) with denoms/4 -0.709 ± 0.018 0.722 ± 0.019 1.957 ± 0.047
(4): (2) and (3) -0.703 ± 0.009 0.664 ± 0.008 1.574 ± 0.018

Table 3.10: Average parameter estimates from simulations conducted using the
Beitler/Landis dataset (3.9) as the design.

3.2 Other statistical inference using PQL

This section will consider other statistical inference using PQL. In some cases, the

primary aim may be to test whether an effect is non-zero, with the precise estimate

of the effect being of secondary importance.

3.2.1 Inference concerning variance components

In normal linear mixed models, testing of variance components is generally performed

either with a likelihood ratio test (LRT) or a Wald test, the latter using the estimated

variance-covariance matrix of the variance parameter estimates. However, the use of

a Wald test for testing variance components is generally not recommended, since the

distributions of variance component estimators are not symmetric.
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This study therefore only examines the use of a LRT for testing variance components

in GLMMs. Only tests of single variance components, that is, hypothesis tests with

null hypothesis

H0 : γi = 0, i ∈ 1, . . . , q,

are considered here. In order to apply a LRT, a likelihood calculation is required, with

the analytical intractability of the likelihood an obvious hindrance. Since PQL does

not maximise a likelihood or a fixed criterion, a first order Laplace approximation

to the likelihood is proposed. The first order Laplace approximation can be readily

calculated at the PQL estimates of γ, τ and u.

Binary or Poisson data were generated from a null model for data Yij, i = 1, . . . , bg,

j = 1, . . . ,mg, where the model for the conditional mean µuij = E(yij |ui) was

g(µuij) = τ0. (3.10)

The link function g was the logit or log function for binary and Poisson data respec-

tively. The parameter settings are given in Table 3.11.

Parameter Binary Model Poisson model
bg 50, 100, 200, 500, 1000 ...
mg 2, 4, 8, 16 ...
τ0 0, 0.5, 1, 1.5 ...

Table 3.11: Values of the simulation parameters used for data generation in model
(3.10) for testing a single variance component in the one-way classification model
(3.11) using PQL. The use of ... in the 3rd (Poisson model) column indicates the
same values were used as for the binary model.

To calculate an LRT, both the data generation model (3.10) and an alternative model

g(µuij) = τ0 + ui, ui ∼ N(0, γ1), (3.11)

were fitted using PQL. The LRT statistic was calculated as 2(ℓA − ℓN ), where ℓN =

log fY is the GLM likelihood for the null model and ℓA is the Laplace approximation
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to the likelihood for the alternative model. If h = log fY,U , then

ℓA =

{

h− 1

2
log

∣

∣

∣
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∣
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∣

∣
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}

τ̂0,ũ
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1

2
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∑
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(mŵi + σ̂−2)

}

τ̂0,ũ

,

where ŵi = µ̂i(1 − µ̂i) is the estimated GLM weight for the ith group, i = 1, . . . , n,

given PQL estimates γ̂1 and τ̂0 and predictions ũ. Note that ℓA omits a REML-

like correction, but since there is only one fixed effect in the model, this correction

should be negligible. The estimated variance component was restricted to be positive

in the alternative model. For linear mixed models where the variance component is

restricted to be positive, Stram & Lee (1994) suggested a critical value for the LRT

is χ2
1;0.9, the 95% quantile of a 50:50 mixture of the χ2

0 and χ2
1 distributions, and this

will be applied here.

The use of the LRT based on the Laplace approximation for the binary model resulted

in conservative tests, particularly as m decreased and as τ0 increased (Table 3.12). For

the Poisson model, the effects of τ0 and m were less apparent. The conservativeness

of these tests most likely resulted from the PQL estimation biases, which is supported

by the fact that the LRT was less conservative for the Poisson model.

m Mean Type I (%) τ0 Mean Type I (%)
2 0.24 (0.41) 1.1 (3.9) 0 0.38 (0.41) 3.6 (4.2)
4 0.34 (0.41) 2.5 (3.7) 0.5 0.35 (0.43) 2.6 (3.8)
8 0.38 (0.44) 3.2 (4.3) 1 0.34 (0.41) 2.5 (3.9)
16 0.41 (0.44) 4.3 (4.4) 1.5 0.31 (0.44) 2.4 (4.4)

Table 3.12: Means of the LRT statistic and the estimated Type I error rates for
testing H0 : γ1 = 0 in (3.11) from simulations for the binary model (Poisson in
brackets) (3.10). The LRT is calculated using a Laplace approximation and estimates
from PQL.

Note that the efficient score approach of Lin (1997) is an alternative, and possibly

better, approach for testing variance parameters which has not been examined here.

This approach also suffers from conservative tests in the case of multiple variance

components because it relies on the application of a first order Laplace approximation.

Engel & Buist (1996) and Engel & Keen (1996) also suggest an approach based on the

working variate likelihood, that is, the REML likelihood based on the working variate
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as shown in (2.5), but with a REML correction added. They suggest the addition of

a further “REML” step after convergence of the PQL algorithm, where the working

variate and weights are held constant. This technique has not been investigated.

3.2.2 Inference concerning the fixed effects

For inference concerning fixed effects, a by-product of the PQL estimation algorithm

is an estimate of the variance-covariance matrix of the fixed effect estimate τ̂ ,

var(τ̂ ) =
(

XTV −1X
)−1

,

where V = W−1 + ZGZT and W is the diagonal matrix of GLM weights. In

this study, the application of a Wald test to test a single fixed effect, using the test

statistic τ̂i/SE(τ̂i), was examined. An approximate critical value of 2 was used for

the application of a 95% two-sided Wald test. (The choice of 2, corresponding to

the 97.5% cutoff point for a t100 distribution, is slightly more conservative than the

standard normal 1.96 critical value.) This study estimates the Type I error rate,

Pr
(

τ̂i/ŜE(τ̂i) > 2|τi = 0
)

, from the results of each of the simulation studies above.

This, of course, only uses the simulations where the fixed parameter concerned was

zero, that is, τi = 0.

In addition, the estimated SE(τ̂i) were compared with the true Monte Carlo estimates

of SE(τ̂i) from the results of each of the simulation studies above. This was performed

by plotting/regressing the Monte Carlo SE estimates, calculated for each combination

of simulation parameters, against their corresponding average estimated SE.

3.2.2.1 Type I error rates

The simulation parameters generally had little effect on the average Type I error

rates for each study, apart from the random coefficient models. Therefore, Type I

error rates calculated across all values of the simulation parameters in each study are

shown in Table 3.13. For the binary one-way classification, the Wald test was slightly
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conservative for all parameters. For τ1, however, the Type I error rates were even

more conservative at low mg and large γ1, as low as 1.37% for mg = 2 and γ1 = 4.

For the nested and crossed two-way classifications (the latter where mg = 25), and

the correlated AR model, the Type I error rates were also conservative (although

less so for γ1 = 4 for the nested two-way classification or where γ1 = 0 and γ2 = 4

in the crossed classification). Note that setting the critical value to tn−1;0.975 for

τ0, instead of 2, would have resulted in anti-conservative tests where bg > 200 (and

tn−1;0.975 < 2). For the Poisson one-way classification, the test statistics for τ1 and

τ2 were also slightly conservative (with a minor increase in Type I error rate with bg

for τ1).

Binary Poisson
One-way model Other models (τ0) One-way
τ0 τ1 τ2 Nest Cross (mg = 25) Corr τ1 τ2

4.65 3.74 4.56 4.24 4.75 4.37 4.55 4.80

Table 3.13: Average type I error rates, expressed as percentages, for testing H0 : τi =
0 using |τ̂i/SE(τ̂i)| > 2 as rejection region. (One-way=one-way classification (3.1),
Nest=two-way nested model (3.3), Cross=two-way crossed model (3.4), Corr=AR
Correlated model (3.8), RC=random coefficient model (3.7).)

For the random coefficient models (3.7), there were some noticeable effects of the

simulation parameters on the average type I error rates (Table 3.14). For the binary

random coefficient model, the type I error rates for τ0 were conservative where either

γ1 or γ2 were equal to 0, but when γ1 = γ2 = 4 the type I error rates increased

over their nominal rates as mg decreased. For τ1, the type I error rates were also

conservative when either γ1 or γ2 equaled 0, but were well over the nominal rate

when γ1 = γ2 = 4 and τ1 = 1. For the Poisson random coefficient model, the type I

error rates for τ1 were conservative, except when γ1 = 4 and γ2 = 0.

3.2.2.2 Estimated versus Monte Carlo SEs

For the one-way classification, the average estimated SEs predicted the true Monte

Carlo SEs extremely well: there was little or no evidence that the relation between

the average estimated SEs and the true Monte Carlo SEs for τi varied from a one-one
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(a) τ0 (binary)
γ1 = 0 or γ1 = 4 and γ2 = 4, by mg

γ2 = 0 mg =2 mg = 4 mg = 8 mg = 16

4.06 42.2 17.3 8.42 5.67

(b) τ1 (binary) by (γ1, γ2)

(0, 0) (0, 4) (4, 0) (4, 4) (τ0 = 0) (4, 4) (τ0 = 1)

4.04 5.60 2.60 4.22 33.4

(c) τ1 (Poisson) by (γ1, γ2)

(0,0) (4, 0) (0, 4) (mg = 2) (0, 4) (mg > 2) (4, 4)

4.21 10.9 7.77 4.93 4.42

Table 3.14: Average type I error rates for random coefficients model (3.7) using
|τ̂i/SE(τ̂i)| > 2 as rejection region:
(a) the effect of m on the Type I error rates for τ0 for the binary model
(b) effects of γ1 and γ2 on the Type I error rates for τ1 for the binary model
(c) effects of γ1 and γ2 on the Type I error rates for τ1 for the Poisson model.

relationship for either the binary (Figure 3.25) or Poisson (Figure 3.26) models.
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Figure 3.25: Average estimated SEs versus Monte Carlo SEs for each of the fixed
parameters τ̂i, i = 0, 1, 2, in the binary one-way classification model. (Note: log scale
used for both axes.)

For the nested two-way, correlated AR and crossed two-way models, the average

estimated SEs also predicted the true Monte Carlo SEs for τ0 very well for both the

binary (Figure 3.27) and Poisson models (Figure 3.28). There are a large number of

points for the correlated AR Poisson model (Figure 3.28) where the Monte Carlo SEs
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Figure 3.26: Average estimated SEs versus Monte Carlo SEs for all combinations of
simulation parameters for the Poisson one-way classification model (3.1). (Note: log
scale used for both axes.)

exceeded the estimated SEs. These correspond to mg = 2, more so when γ1 = 4 than

γ1 = 0.
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Figure 3.27: Average estimated SEs versus Monte Carlo SEs for all combinations
of simulation parameters for the binary nested two way (3.3), crossed two-way (3.4),
and AR correlated (3.8) models. (Note: log scale used for both axes.)
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Figure 3.28: Average estimated SEs versus Monte Carlo SEs for all combinations of
simulation parameters for the Poisson nested two way (3.3), crossed two-way (3.4),
and AR correlated (3.8) models. (Note: log scale used for both axes.)

For the binary random coefficient model, the estimated SEs appeared generally ad-

equate (Figure 3.29). For the Poisson random coefficients model, the estimated SEs

were generally adequate, except when γ1 = 4 and γ2 = 0, where they severely under-

estimated the Monte Carlo SEs (Figure 3.30). This corresponded to the case where

PQL estimation failed, as already discussed in section 3.1.5.1.

Hypothesis testing of fixed effects could also be performed using a likelihood ratio test,

where the Laplace approximation is used to form a likelihood, as was done for testing

the variance parameters. Lee & Nelder (1996) suggest the use of the h-likelihood,

h = log fY,U , for testing fixed effects, which ignores a correction term in the Laplace

approximation. This has not been explored here.

3.3 Discussion

As already indicated, the large estimation biases in these simulation studies are not

representative of estimation biases to be expected in the analysis of any real-life

datasets. The two main factors affecting the estimation biases throughout these
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Figure 3.29: Average estimated SEs versus Monte Carlo SEs for τi for all combinations
of simulation parameters for the binary random coefficients model (3.7). (Note: log
scale used for both axes.)

studies are the group size(s) and the magnitude of the variance parameters. The

rule of thumb proposed by Breslow (2003) to indicate whether PQL provides “reli-

able” estimation appears to be inadequate, as discussed earlier. For auto-regressively

correlated data, increasing the group size has much less effect on the bias since the

“effective” group size does not increase at the same rate. With respect to hypothesis

testing and estimation of SEs for fixed effects, PQL appears to do reasonably well,

even when there are strong estimation biases. PQL may be adequate for hypothesis

testing of fixed effects against a null hypothesis of H0 : τi = 0. In the analysis of

experimental data, the detection of treatment differences is often the main focus, and

so PQL could be useful in this regard. One caveat of the simulation studies performed

in this chapter is that, for all designs, equal group sizes were used: clearly, in real-

life datasets, especially observational studies, group sizes would often not be equal.

However, it is anticipated that the estimation biases seen here, for a given design and

group size, would generally reflect the estimation biases one would expect from an

equivalent design with unequal group sizes, but with an average group size equal to

the given group size.
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Figure 3.30: Average estimated SEs versus Monte Carlo SEs for τi for all combinations
of simulation parameters for the Poisson random coefficients model (3.7), by γ1 and
γ2. (Note: log scale used for both axes.)

It might be useful to speculate on where PQL may be adequate, with respect to

estimation bias, in an agricultural and/or biological applications. Firstly, consider

the analysis of non-normal data from an RCBD design in an agricultural setting,

where there are less than 20 blocks and greater than 5 treatments, say. Owing to

the small number of groups (blocks) and not too small group size (block size or

number of treatments), it is expected that PQL estimation biases will not be large,

even for sparse Poisson data or binomial data with small denominators. This is

actually demonstrated in a later chapter (section 5.2.5) using a simulation study with
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10 blocks and 5 treatments. For a complete block design, treatment contrasts are

“within-group” comparisons. In the one-way classification model (3.1), the bias for the

within-group coefficient β1 was less than the between-group coefficient β2 in the binary

model, and was negligible in the Poisson model. Therefore, it may be expected that

estimation of treatment contrasts will be less affected by bias than estimation of the

overall mean. In the case of incomplete block or other unbalanced designs, treatment

contrasts do involve between-group comparisons, and so may incur greater estimation

bias than treatment contrasts for complete block designs. This interpretation of the

results, however, needs to be qualified by the fact that a GLMM is a non-linear model,

and therefore orthogonality of parameters with respect to design, such as between

treatments and blocks in a randomised complete block design, does not equate to

orthogonality between the respective parameter estimates. For experimental designs

with multiple strata, and where the average number of units per strata is not too

small (e.g. >10), PQL may still provide adequate estimators, provided the variance

components are not too large (e.g. γi < 1).

For the analysis of simple experimental designs, the estimation of variance parame-

ters associated with design strata is often not of direct interest. However, analysis of

repeated measures data and allowing for spatial trends requires the fitting of corre-

lated random effects. Given the results of the correlated AR study in section 3.1.5.2,

there may be more significant estimation biases incurred by PQL for such analyses,

especially where the correlations between random effects are low. As discussed at

the end of section 3.1.5.2, as the correlation between random effects decreases, the

“effective” group size tends to an extreme of 1. The fitting of cubic smoothing splines

to model trends using a linear mixed model (Verbyla et al., 1999), not investigated in

this chapter, may also be expected to incur estimation bias problems, since such mod-

els often involve fitting a large number of random effects, and hence few observations

per random effect.

Given the PQL bias problems in under-estimating the variance parameters, it is

expected that PQL will be often inadequate where the main objective is estimating
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variance components or functions of the variance components. Such a case is in

the analysis of breeding data, with the dual problems of a small average group size

(offspring per sire), and a large variance component relating to groups (sires). The

biases would be especially severe for binomial data with small denominators or sparse

Poisson data. The heritabilities will be under-estimated in general, although, as in

Engel & Buist (1998) and the simulation study of section 3.1.4.4, the PQL negative

bias may be offset by a positive bias induced by having a large number of fixed

effects in the model. Where the prediction of random effects was of interest, such

as in the prediction of spatial or temporal trends, the underestimation of variance

parameters would also lead to under-estimation of the random effects. Although in

section 3.1.5.2, the spatial correlation parameter γρ was less affected by bias than the

spatial variance γ1, so under- or over-smoothing of spatial or temporal trends may

not be a large issue.

For a final assessment of the benefits and risks in using PQL for fitting GLMMs, it is

critical to compare the performance of PQL against other GLMM approaches. This

is deferred to Chapter 5, where it is considered using a series of case studies.
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Chapter 4

The HGLM approach of Lee and

Nelder

This chapter discusses the use of the approximate likelihood methodology of Lee &

Nelder (2001, 2006) for HGLMs. HGLMs include GLMMs as a special case where

the random effects are normally distributed. Lee & Nelder argue that their HGLM

approach performs better for GLMMs than PQL, with respect to lower estimation

biases. Like PQL, their HGLM approach is an approximate likelihood approach which

is based on the Laplace approximation. This chapter examines their HGLM approach,

including an examination of computational aspects as well as simulation studies to

compare the estimation biases of the HGLM approach against PQL.

4.1 Review of the HGLM methodology, and comparison

with PQL

The HGLM approach of Lee & Nelder, in the context of GLMMs, has already been

outlined in section 2.1.2. This section reviews the key formulae and contrasts the

HGLM approach to PQL.

The so-called “h-likelihood”, h = log fY,U , is the cornerstone of inference using the

HGLM methodology. Two likelihood expressions, derived from the h-likelihood, are
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proposed for making inference concerning the fixed effects τ and the variance param-

eters γ.

For inference concerning τ given γ, the HGLM approach uses the following (first

order) Laplace approximation (section 1.3.2.1) to approximate the true likelihood ℓ:

pu(h) =

(
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where W is a diagonal matrix of GLM weights, ũτ,γ is the mode of h given τ and

γ, and b = dim(u). Note that there is no closed expression for ũτ,γ , but it can be

found iteratively using Fisher scoring, for instance. In contrast, PQL uses h alone

for inference concerning τ , which assumes that W varies little with τ and so the

log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ term can be ignored. Note that an approximation sign ≈ has

been used on the second line of (4.1) since, in general, ∂2h/∂u∂uT = ZTWZ +

G−1 +R, where

R =
∑

(yi − µi) zi
∂

∂u

(

1

φaiv(µi)g′(µi)

)

is a remainder term, and is only equal to 0 for canonical links, but otherwise has

expectation 0.

For inference concerning γ, the HGLM approach uses a similar Laplace-type approx-

imation as the one for τ :

pβ(h) =

(

h− 1

2
log

∣

∣

∣

∣

∣

− 1

2π

∂2h

∂β∂βT

∣

∣

∣

∣

∣

)

β̃γ

(4.2)

≈
(

h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣− 1

2
log

∣

∣

∣XTV −1X
∣

∣

∣+
p+ b

2
log 2π

)

β̃γ

,

where β = (τT ,uT )T , V = ZGZT +W−1 and p = dim(τ ). The vector β̃γ equals

(τ̂Tγ , ũ
T
τ,γ)T , where τ̂Tγ satisfies ∂pu(h)/∂τ = 0. In contrast, PQL uses some further

approximations and assumptions to form a likelihood criterion for γ:

1. Firstly, the conditional likelihood 2 log fY |U can be replaced by the Pearson
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chi-squared statistic,
∑

i(yi − µi)2/V (µi).

2. If −1/2 log |W | is then added , an expression corresponding to the likelihood

based on the working variate ψ = (ψ1 . . . ψn)T , where ψi = g(µi)+g
′(µi)(yi−µi),

is obtained,

− 1

2
log |V | − 1

2
(ψ −Xτ )TV −1(ψ −Xτ )− 1

2
log

∣

∣

∣XTV −1X
∣

∣

∣ , (4.3)

where V = ZGZT +W−1.

3. The expression in (4.3) has the form of a REML likelihood for a normally

distributed working variate ψ with mean 0 and variance V = ZGZT +W−1.

To derive updating equations, it is further assumed that W is not a function

of γ, which enables the use of standard updating equations for a linear mixed

model.

The two HGLM likelihoods above, (4.1) and (4.2), correspond to first order approxi-

mations. In some cases, a second order approximation is required for ℓ:

psu(h) = pu(h)− F/24,

with the same correction for pβ(h),

psβ(h) = pβ(h) − F/24,

where −F/24 represents the additional second order correction factor, described in

section 4.3.1 below.

As part of their HGLM approach, and implemented in the HG-system of the GenStat

statistical package (Payne et al., 2006), Lee & Nelder (2001, 2006) define different

levels of approximation for inference concerning τ and γ. These are denoted HG(m,d),

where m,d = 0, 1, 2, m ≤ d, where m and d indicate the level of approximation for

inference concerning τ and γ respectively. These are shown in Table 4.1. For instance,

HG(0,0) corresponds to a PQL approach, HG(0,1) uses h for inference concerning τ ,
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like PQL, but uses pβ(h) for inference concerning γ, and so on. Noh & Lee (2007)

provide details of the updating equations required to apply an iterative solution for

each level of approximation. The iterative solution they propose requires alternate

estimation of β and γ, similar to an EM approach for PQL.

Approximation Likelihood for τ Likelihood for γ

HG(0,0) h PQL∗

HG(0,1) h pβ(h)
HG(0,2) h psβ(h)

HG(1,1) pu(h) pβ(h)
HG(1,2) pu(h) psβ(h)

HG(2,2) psu(h) psβ(h)

Table 4.1: The different levels of approximate inference in the HGLM approach pro-
posed by Lee & Nelder (2001, 2006), with the corresponding (approximate) likelihood
expressions for fixed effects τ and variance components γ. (*: Note that there is no
explicit expression for the likelihood associated with PQL; only the score equations
at each iteration are defined.)

Note also that the functions pβ(h) and pu(h) can be derived as approximations of the

posterior distributions for τ and γ, but only if the prior densities of the fixed effects τ

and variance parameters γ are flat. For instance, consider the posterior distribution

of γ. Assuming that the prior fγ(γ) ∝ 1, the posterior distribution of γ simplifies to

fγ|Y (γ|y) ∝ fY |γ(y|γ)fγ(γ) = fY |γ(y|γ).

If the conditional prior fτ |γ(τ |γ) ∝ 1, then this further simplifies to the expression

which pβ(h) is approximating, viz.

fY |γ(y|γ) =

∫

fY |β,γ(y|β,γ)fβ|γ(β|γ)dβ

=

∫

fY |β,γ(y|β,γ)fU |γ(u|γ)fτ (τ )dβ

=

∫

fY |β,γ(y|β,γ)fU |γ(u|γ)dβ.
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4.2 First order HGLM approaches

This section discusses the implementation and performance of the first order HGLM

approaches, that is, the approximations HG(i,1) where i ≤ 1. Firstly, an implemen-

tation in Fortran 90 using quasi-Newton optimisation with numerical derivatives is

described. Secondly, results of selected simulation studies to compare the magnitude

of the estimation biases against PQL are shown. Finally, the calculation of the ana-

lytical derivatives are presented, along with the corresponding updating equations.

4.2.1 A Fortran 90 implementation with numerical derivatives

An implementation of the HGLM approach for GLMMs was written in Fortran 90,

since the current GenStat implementation was found to be too slow for performing

extensive simulations. Initially, this Fortran code only implemented the first-order

HGLM approaches, however, additional code was added later which implemented the

second-order approaches described in the next section (section 4.3.1).

As noted above, Noh & Lee (2007) presented updating equations for implementing

the HGLM approach with GLMMs for the approximations listed in table 4.1 . The

expressions for derivatives and updating equations presented in this paper were dif-

ficult to follow (using a draft version of this paper kindly supplied by Dr. Noh), as

discussed below (section 4.2.3). Alternative techniques for optimising the likelihood

criteria, which did not require analytical derivatives, were considered. Initially the

Nelder & Mead (1964) simplex optimisation technique was used, as implemented in

Alan Miller’s Fortran 90 code1. However, this optimisation technique was found to

be unduly slow, and so was replaced by a quasi-Newton approach called L-BFGS-B

(Zhu et al., 1997)2. The L-BFGS-B approach required expressions for both the likeli-

hood and its first order derivatives. The latter were calculated using finite differences.

That is, if a criterion f(x) was to be optimised over a parameter x, then the first

derivative was calculated as f ′(x) = {f(x+ c)− f(x)} /c, with an increment c chosen

1Available from http://users.bigpond.net.au/amiller/minim.f90
2Available from http://www.ece.northwestern.edu/~nocedal/lbfgsb.html
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empirically as 10−5 (the often recommended value for finite difference derivatives, the

squareroot of machine precision, was found to be too small here).

To implement the HG(0,1) approximation, the likelihood criterion pβ(h) was max-

imised over γ using the L-BFGS-B optimisation approach (with numerical derivatives,

as above). To calculate pβ(h) at a given value of γ, the estimates τ̂γ and ũτ,γ were

required, and were determined by repeatedly forming and solving the mixed model

equations,







XTWX XTWZ

ZTWX ZTWZ +G−1













τ̂

ũ






=







XTWψ

ZTWψ






, (4.4)

until convergence of τ̂ and ũ, with τ̂γ and ũτ,γ being the final values of τ̂ and ũ

at convergence. Here, ψ = (ψ1, . . . , ψn)T is the “working variate” with elements

ψi = ηi + g′(µi)(yi − µi). The formation of these mixed model equations, at each

iteration, required the recalculation of the quantities ψ andW , as well as ηi = g−1(µi)

and µi, i = 1 . . . n, using the current estimates τ̂ and ũ. Initial values of τ̂ = 0, ũ = 0

and γi = 0.1, i = 1, . . . , q, were used. Good initial values of µi, i = 1, . . . , n, were

also required to achieve convergence, and were derived based on the recommendations

given in McCullagh & Nelder (1989).

For the HG(1,1) approximation, a two stage approach was required. As for HG(0,1),

the likelihood criterion pβ(h) was maximised over γ using L-BFGS-B with numerical

derivatives. As for HG(0,1), the estimate τ̂γ was required to calculate pβ(h) at a

given γ. However, for this approximation, τ̂γ was the maximum of the criterion pu(h)

with respect for τ , for given γ. Hence, for a given value of γ, the criterion pu(h) was

maximised with respect to τ , also using L-BFGS-B with numerical derivatives. The

calculation of pu(h) and pβ(h) required, at a given τ and γ, an estimate ũτ,γ , which

was calculated from repeated evaluation of

ũ =
(

ZTWZ +G−1
)−1

ZTW (ψ −Xτ )

until convergence, where ũτ,γ = ũ at convergence. The quantities ψ, ηi, µi , i =
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1 . . . n, and W are as given above, and were re-calculated at each re-evaluation of ũ.

Initial values were as for the HG(0,1) approximation.

The exercise of writing computationally efficient code in a lower level language, such

as Fortran, made apparent the need to decompose mathematical expressions, partic-

ularly those involving matrices, into simple floating point scalar calculations. Initial

code was written using “dense” matrix operations: that is, matrices such as Z were

stored as written, and computations were performed using Fortran 90’s matrix capa-

bilities. However, it was soon realized that this wasted a great deal of computational

resources, so much so that the program was much slower to run than notoriously

computational intensive MCMC approaches. The code was subsequently revised to

implement sparse matrix calculations: only the non-zero elements of large sparse ma-

trices such as Z were stored, and their sparcity was exploited in the required matrix

multiplications, such as in the calculation of ZTWZ. Inversion and calculation of

log-determinants of the square matrix

C =







XTWX XTWZ

ZTWX ZTWZ +G−1







and its RHS lower block component, C22 = ZTWZ + G−1, were performed using

the public domain sparse matrix library of Misztal (1999)3.

Cross-checking of the estimates obtained from the above Fortran 90 implementation

for some simulated datasets, with those obtained using the current GenStat implemen-

tation, showed some stark differences, particularly for simulated datasets generated

for nested two-way classification designs (section 4.2.2.2). Fortunately, other GLMM

approaches were available, such as the lmer function in the lme4 R package (Bates,

2007), which also maximised a first order Laplace approximation to the likelihood,

similar to the HGLM approach described above, but with no REML-like correction.

The use of these other GLMM approaches on the simulated datasets allowed us to

verify that our estimates were correct. Further, by constructing a profile likelihood for

3This library is available from http://nce.ads.uga.edu/~ignacy/newprograms.html
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γ using the GenStat implementation, it was shown that GenStat was not optimising

the approximate likelihood pβ(h) that it was reporting. At the time of writing, the

reason for the GenStat estimation problem has not been resolved, but it presumably

indicates a problem with the computations of the likelihood derivatives and updating

equations. A derivation of these updating equations, not yet implemented in code, is

presented below in section 4.2.3. The problem has also been reported to the GenStat

developers.

4.2.2 Performance in simulation studies compared to PQL

Two of the designs used for the simulation studies in Chapter 3 are re-examined,

to compare the estimation biases of the first order HGLM approaches, HG(0,1) and

HG(1,1), with PQL.

As in Chapter 3, 200 simulated datasets were generated and analysed according to

the respective model for each combination of simulated parameter values. The link

function g represented the logit and logarithmic link for binary and Poisson data

respectively. PQL was implemented using ASReml version 2 (Gilmour et al., 2006).

In keeping with the simulation studies conducted in Chapter 3, the estimates of the

variance parameters were constrained to be positive.

4.2.2.1 One-way classification design

The one-way classification design (3.1) for binary or Poisson data yij was re-examined,

minus the covariates, where µij = E(yij |ui), i = 1 . . . bg, j = 1 . . . mg and

g(µij) = τ0 + ui, ui ∼ N(0, γ1). (4.5)

The simulated parameter values used are shown in Table 4.2.

For the binary model, the negative biases for γ̂1 for the HG(0,1) and HG(1,1) ap-

proximations were smaller in magnitude than the corresponding biases for PQL for all

values of mg, γ1 and τ0 (Figure 4.1). As with PQL, the negative bias for γ̂1 decreased
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Parameter Binary model Poisson model
bg 50, 100, 200, 500 ...
mg 2, 4, 8, 16 ...
γ1 0.25, 1, 4, 9 ...
τ0 0, 1 ...

Table 4.2: Values of the simulation parameters used for binary and Poisson models
for the one-way classification study (4.5) comparing first order HGLM approaches
and PQL. The use of ... in the 3rd (Poisson model) column indicates the same values
were used as for the binary model.

in magnitude with increasing mg. However, in contrast to PQL, the negative bias for

γ̂1 did not increase with γ1 for either of the HGLM approximations. The absolute

magnitude of the bias of γ̂1 for either HGLM approximation was never more than

50%, in contrast to PQL, where the absolute bias exceeded 80% when γ1 = 9. When

τ0 = 0, there was negligible difference in the bias between the HG(0,1) and HG(1,1)

estimators, and only a slight difference when τ0 = 1 and m ≤ 4. There was also a

noticeable increase in the magnitude of the negative bias with bg (not shown) for the

HG(i,1) approximations, although this had generally flattened out by bg = 500. The

increase in the negative bias with bg reflected positive skewness of the distribution of

γ̂1 at lower bg, hence bg = 500 was chosen in Figure 4.1 as an approximation of the

asymptotic biases (bg →∞).

Figure 4.2 shows the biases for τ̂0 in the binary model where τ0 = 1 (there was no

apparent bias for any HGLM approach when τ0 = 0). Note that there is a distinct

difference between HG(0,1) and HG(1,1) approximations: the biases for HG(1,1) are

negligible, whereas the negative bias for HG(0,1) increases with increasing γ1, as for

PQL.

For the Poisson model, like the binary model, the negative bias for γ̂1 for either

HGLM approximation did not increase in magnitude with γ1 either, and was less

than 5% at bg = 500 and τ0 = 0 (Figure 4.3). The positive bias for τ̂0 (τ0 = 0) for

HG(0,1) was slightly smaller than that of PQL, but the bias of τ̂0 for HG(1,1) was

almost negligible (Figure 4.4). (The biases at τ0 = 1 were similar to those shown for

τ0 = 0, but less pronounced.)
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Figure 4.1: Interactions of the effects of mg, γ1 and τ0 on the biases for γ̂1 for the
binary one-way classification model (4.5) for bg = 500 for PQL and first-order HGLM
approximations. (PQL: solid; HG(0,1): dashed; HG(1,1): dotted) Error bars are
±2SE.

In their papers, Lee & Nelder assert that the use of a first order approximation

is adequate for estimating fixed effects, and second order approximations are only

required for estimating variance parameters. The results of this study support their

assertion, with low or negligible biases for the estimation of τ0 for both binary and
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Figure 4.2: Interactions of the effects of mg and γ1 on the biases for τ̂0 for the binary
one-way classification model (4.5) for bg = 500 for PQL and the first order HGLM
approximations. (PQL: solid; HG(0,1): dashed; HG(1,1): dotted). Error bars are
±2SE.

Poisson data. For the Poisson model, the use of HG(1,1) reduces the magnitude of the

bias for the variance component γ̂1 to an adequately low level as well. It is important

to note that the magnitude of the negative bias for the variance parameter estimator

γ̂1 does not increase with γ1 for either HGLM approach, although the negative (or

positive for Poisson) bias for the intercept τ̂0 does increase with γ1 using HG(0,1) for

either the binary or Poisson models.

It might be useful to consider the differences in the biases between PQL and the

HGLM approximations in the light of their different likelihood criteria shown in Table

4.1. Firstly, consider the differences between the biases of PQL versus the biases of

HG(0,1). As Table 4.1 shows, the only difference between PQL and the HG(0,1) is in
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Figure 4.3: Interactions of the effects of mg and γ1 on the biases for γ̂1 for the
Poisson one-way classification model (4.5) for bg = 500 and τ0 = 0 for PQL and the
first order HGLM approximations. (PQL: solid; HG(0,1): dashed; HG(1,1): dotted).
Error bars are ±2SE.

the estimation of γ. For HG(0,1), pβ(h) is maximised with respect to γ, whereas for

PQL an approximation to pβ(h), at each iteration, is maximised instead, as described

in points 1-3 on page 115. This approximation incurs additional negative bias, as

seen by comparing the biases for γ̂1 for PQL against HG(0,1) in Figures 4.1 (binary)

and 4.3 (Poisson). In addition, these figures show that this additional negative bias

increases with the magnitude of the variance parameter γ1. A reason for this increase

in the bias with γ1, or with γ for a general GLMM design, is given below in section

4.2.3.4.

Secondly, consider the differences in the biases between HG(0,1) and HG(1,1) ap-

proaches. As in Table 4.1, the only difference between HG(0,1) and HG(1,1) is in the
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Figure 4.4: Interactions of the effects of mg and γ1 on the biases for τ̂0 for the Poisson
one-way classification model (4.5) for bg = 500 and τ0 = 0 for PQL and the first order
HGLM approximations. (PQL: solid; HG(0,1): dashed; HG(1,1): dotted). Error bars
are ±2SE.

estimation of τ (given γ). For HG(1,1), the criterion pu(h) is maximised with respect

to τ whereas, for HG(0,1), h is maximised instead, ignoring the−1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣

term. By comparing the biases for τ̂0 for HG(0,1) against HG(1,1) in Figures 4.2 (bi-

nary) and 4.4 (Poisson), it is seen that the difference between the biases for both

approximations increases with γ1. This suggests that the importance of the ignored

term, −1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣, increases with γ1. For the one-way classification

model with no covariates, (4.5), the conditional means are equal for all units in a

group, that is, µij = µi. Therefore, this term simplifies to

−1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ = −1/2
∑

i

log
(

mgwi + γ−1
1

)

,
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where wi = g′(µi)
−2V (µi)

−1 are the GLM weights. Note that

lim
γ1→0

log
(

mgwi + γ−1
1

)

= log
(

γ−1
1

)

,

which is independent of τ0. So this term will change relatively little with τ0 when

γ1 is small, and so ignoring this term will make little difference to the estimate of τ0

when γ1 is small. Conversely,

lim
γ1→∞

log
(

mgwi + γ−1
1

)

= log (mgwi) ,

which obviously does depend on τ0 via the GLM weights wi. Therefore, as γ1 in-

creases, the change of −1/2
∑

i log
(

mgwi + γ−1
1

)

with τ0 will be larger in magnitude.

For the binary logit model, where wi = µi(1−µi), smaller values of τ0 in absolute value

will be favoured by HG(0,1) compared to HG(1,1), since 1/2
∑

i log
(

mgwi + γ−1
1

)

is a

decreasing function of |τ0|. For the Poisson log model, where wi = µi, higher values of

τ0 will be favoured by HG(0,1) compared to HG(1,1), since 1/2
∑

i log
(

mgwi + γ−1
1

)

is an increasing function of τ0.

This intuition should apply generally for GLMMs in the estimation of τ . As γ

decreases, G−1 → ∞, and so −1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ → −1/2 log
∣

∣G−1
∣

∣. As γ

increases, G−1 → 0 and so −1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ → −1/2 log
∣

∣

∣ZTWZ
∣

∣

∣, and

therefore this term becomes increasingly important.

One-way classification for binary-logit data with τ0 = 2: A further set of

simulations was conducted with the one-way classification (4.5) using τ0 = 2, with

the same values of all the other simulation parameters as given in Table 4.2.

The estimation biases for the HG(0,1) approximation were similar to those observed

when τ0 = 0 or 1 (Figure 4.5). However, the estimation biases for HG(1,1) when

mg = 2 were unexpectedly large and positive. Inspection of the individual estimates

showed that the HG(1,1) approximation had high rates of divergence in these cases,

that is, the HG(1,1) estimates of γ1 and τ0 took unexpectedly high values, well above
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the HG(0,1) estimates and the true value of γ1. For instance, when γ1 = 9 and

mg = 2, divergence of the HG(1,1) estimator was observed in about 50% of cases,

where the HG(1,1) estimates of γ1 were between 50 and 100, well above the true

value of 9. A sample of the datasets where the HG(1,1) estimates diverged were

examined more closely. For each dataset, the profile likelihood pβ(h) was plotted

with respect to γ1 for a range of values around the HG(1,1) estimate, and it was

found that the HG(1,1) estimate corresponded with the observed mode of pβ(h) with

respect to γ1. This confirmed that there was a finite maximum of pβ(h) with respect

to γ1 for these datasets, and so presumably one could infer that this was true for all

datasets where the HG(1,1) estimates diverged. The high rate of divergence observed

here where τ0 = 2, however, is in line with the expected instability of the first order

Laplace approximation in the extreme regions of the binary parameter space, noted

by Breslow & Lin (1995) (see figure 2 on page 89 of Breslow & Lin (1995), and the

associated description on page 88 of their paper).

Note that the HGLM approximations incorporate a REML-like correction in the

likelihood criterion for γ1, pβ(h). Using pu(h) as the criterion for γ1 instead provides

a “non-REML” version. In order to test whether the divergence problem resulted

from the inclusion of the REML-like correction, a non-REML HG(1,1) approximation

was also implemented (which required a simple modification of the Fortran 90 code).

A sample of simulated datasets where divergence occurred were examined, and it

was found that the removal of the REML-like correction made little difference to

the estimates, and so the problem with divergence remained. Using the non-REML

version of HG(1,1) also allowed us to verify our estimates against estimates from

other GLMM implementations. As noted earlier, other GLMM applications also

use a Laplace approximation to the likelihood, but with no REML-like correction,

and include the lmer and glmmadmb functions, in the packages lme4 and glmmadmb

respectively, for the R statistical package (R Development Core Team, 2008). The

non-REML HG(1,1) estimates obtained using the modified Fortran implementation

agreed with these other Laplace-based GLMM applications, lmer and glmmadmb, for

both datasets where the HG(1,1) diverged and where it did not diverge.
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Figure 4.5: Interactions of the effects of mg and γ1 on average biases for γ̂1 and τ̂0

for the binary one-way classification model (4.5) where τ0 = 2 and bg = 500. (PQL:
solid; HG(0,1): dashed; HG(1,1): dotted) (Error bars are ±2SE.)

The divergence of the HG(1,1) estimates observed here contradict some extraordi-

narily good simulation results reported in Noh et al. (2005) for a similar binary

logit one-way classification model. Their “full sample” model (ignoring the ascertain-

ment issue) for binary data yij corresponds to equation (4.5) above, where τ0 = −5,

γ1 = 4.5, bg = 100, 000 and mg = 5. It appears that a first order HG(1,1) approxima-
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tion was used in this paper. We replicated their simulation study with bg = 10, 000

(to reduce computational time), and similar divergence problems were found, as for

τ0 = 2 simulations above.

4.2.2.2 Nested two-way classification model (binary data only)

The nested two-way classification design from the previous chapter (section 3.1.4.2)

is examined for binary data only, since the magnitude of the biases for Poisson data

were much smaller.

Binary data yijk, i = 1 . . . bg, j = 1 . . . mg, k = 1 . . .ms were generated, and analysed,

according to the model for the conditional mean µuijk = E(yijk|u1i, u2ij):

logit(µuijk) = τ0 + u1i + u2ij , u1i ∼ N(0, γ1), u2ij ∼ N(0, γ2). (4.6)

The values of the simulation parameters are given in Table 4.3.

Parameter Binary model Poisson model
bg 50, 100, 200 ...
mg, ms 2, 4, 8 ...
γ1, γ2 1, 4 ...
τ0 0, 1 ...

Table 4.3: Values of the simulation parameters used for the nested two-way classifi-
cation study (4.6) to compare first order HGLM approaches against PQL. The use of
... in the 3rd (Poisson model) column indicates the same values were used as for the
binary model.

Figure 4.6 shows that the negative bias for γ̂1 was substantially lower in magnitude for

both HGLM approximations compared with that for PQL, with negligible difference

between HG(0,1) and HG(1,1) approximations . It is also noticeable that the negative

bias for γ̂1 is larger when (γ1, γ2) = (1, 4) than when (γ1, γ2) = (4, 1) for both PQL

and the HGLM approximations. However, for γ̂2, the bias was still substantial when

ms = 2 for both HGLM approximations. Surprisingly, the negative bias of γ̂2 for the

HGLM approximations was larger in magnitude when γ2 = 1, where the bias was

over 60% when ms = 2, than when γ2 = 4. The negative bias of τ̂0 for HG(0,1) was

similar to that of PQL, but the bias of τ̂0 for HG(1,1) appeared to be negligible.
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Figure 4.6: Interactions of the effects of mg, ms, γ1 and γ2 on average biases for γ̂1,
γ̂2 and τ̂0 for the binary nested two-way classification model (4.6) where bg = 200
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dashed; HG(1,1): dotted) Error bars are ±2SE.
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This simulation study, like the previous one-way classification study, demonstrated

that the estimation biases of the fixed parameter estimator τ̂0 using the HG(1,1)

approximation were small and, for practical purposes, virtually ignorable. However,

there are still significant biases for the variance parameters γ̂1 and γ̂2 using HG(1,1).

It will be of interest to see whether the use of the second order HGLM approximations

remove this bias, which will be explored later in the chapter.

4.2.3 Analytical expressions for the score equations

In this section the score equations for first order HG(i,1) approaches, i = 0, 1, are

derived. As noted previously, these score equations were not used in the Fortran 90

implementation described in section 4.2.1, which used numerical derivatives based on

finite differencing. It is assumed here that a canonical link is being used, so that

− ∂2h

∂u∂uT
=
∣

∣

∣ZTWZ +G−1
∣

∣

∣ .

For HG(1,1), derivatives of

ℓ ≈ pu(h) =

(

h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣+
b

2
log 2π

)

ũτ,γ

with respect to τ are presented, as well as derivatives of

pβ(h) ≈
(

h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣− 1

2
log

∣

∣

∣XTV −1X
∣

∣

∣+
p+ b

2
log 2π

)

β̂γ

,

with respect to γ, where β =
(

τT ,uT
)T

as before. Let the h-likelihood be written

as

h ∝ −1

2

n
∑

i=1

di(yi;µ
u
i )− 1

2
uTG−1u− 1

2
log |G| ,

where

di(y, µ) = −2

∫ µ

y

y − ν
aiv(ν)

dν,

and v(·) is the variance function corresponding to the GLM or quasi-likelihood dis-
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tribution of fY |U , with the ai being known constants.

4.2.3.1 Score equations for the fixed effects using HG(1,1)

We require ∂pu(h)/∂τ . Let h̃ = h|u=ũτ,γ
. Firstly, note that

∂h̃

∂τ
=

∂h

∂τ

∣

∣

∣

∣

ũτ,γ

+
∂h

∂u

∣

∣

∣

∣

ũτ,γ

∂ũτ,γ
∂τ

∣

∣

∣

∣

ũτ,γ

=
∂h

∂τ

∣

∣

∣

∣

ũτ,γ

,

since ∂h/∂u|ũτ,γ = 0, by the definition of ũτ,γ . So

∂pu(h)

∂τ
=

∂h

∂τ

∣

∣

∣

∣

ũτ,γ

− 1

2

∂

∂τ

(

log
∣

∣

∣ZTW̃Z +G−1
∣

∣

∣

)

,

where W̃ = W |u=ũτ.γ and

∂h

∂τ
=
∑ (yi − µi)

aiv(µi)

xi
g′(µi)

.

Now, for j ∈ {1, . . . , p},

∂

∂τj

(

log
∣

∣

∣ZTW̃Z +G−1
∣

∣

∣

)

= trace

{

(

ZTW̃Z +G−1
)−1

ZT ∂W̃

∂τj
Z

}

.

Let w̃i be the ith diagonal of W̃ . Then

∂w̃i
∂τj

=
∂wi
∂τj

∣

∣

∣

∣

∣

ũτ,γ

+
∂wi
∂u

∣

∣

∣

∣

ũτ,γ

∂ũτ,γ
∂τj

.

Using implicit differentiation, with the knowledge that ∂h/∂u|ũτ,γ = 0, it can be

shown (Appendix A.1) that

∂ũτ,γ
∂τj

= −
(

ZTW̃Z +G−1
)−1

ZTW̃x.,j,
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where x.,j is the jth column of X. Therefore

∂w̃i
∂τj

=
∂wi
∂ηi

∂ηi
∂τj

∣

∣

∣

∣

∣

ũτ,γ

+
∂wi
∂ηi

∂ηi
∂u

∣

∣

∣

∣

ũτ,γ

∂ũτ,γ
∂τj

= w̃′i

(

xij − zTi
(

ZTW̃Z +G−1
)−1

ZTW̃x.,j

)

,

where w̃′i = ∂wi/∂ηi|ũτ,γ and zTi is the ith row of Z. Therefore

∂W̃

∂τj
= W̃ ′

(

Xj −Z
(

ZTW̃Z +G−1
)−1

ZTW̃Xj

)

,

where W̃ ′ = diag {w̃′i} and Xj = diag {xij}. So

∂

∂τj

(

log
∣

∣

∣ZTW̃Z +G−1
∣

∣

∣

)

= trace

{

Z
(

ZTW̃Z +G−1
)−1

ZT ∂W̃

∂τj

}

=
∑

i,k,l

zikd̃klzilw̃
′
i

(

xij −
∑

m,n

zimd̃mnzinw̃ixij

)

=
∑

i

w̃′ixij ξ̃i
(

1− w̃iξ̃i
)

,

where ξ̃i =
∑

k,l zikd̃klzil and d̃kl is the (k,l)th element of the matrix
(

ZTW̃Z +G−1
)−1

.

Correction to the mixed model equations for HG(1,1) As noted in section

4.2.1, the joint solutions βγ =
(

τ̂Tγ , ũ
T
τ,γ

)T
of ∂h/∂β = 0, for fixed γ, can be found

by repeatedly solving the linear set of equations







XTWX XTWZ

ZTWX ZTWZ +G−1













τ̂

ũ






=







XTWψ

ZTWψ






(4.7)

for τ̂ and ũ until convergence, and τ̂γ = τ̂ and ũτ,γ = ũ at convergence. The

vector ψ = (ψ1 . . . ψn)T has elements ψi = ηi + g′(µi)(yi − µi), ηi = g−1(µi) and µi ,

i = 1 . . . n, and W are evaluated at the current estimates τ̂ and ũ, as before.

To solve the score equations ∂pu(h)/∂τ for τ , required for the HG(1,1) approximation,
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the RHS of (4.7) can be replaced by







XTWψ − ζ

ZTWψ






,

where ζ = (ζ1, . . . , ζp)
T and

ζj =
∂

∂τj

(

log
∣

∣

∣ZTW̃Z +G−1
∣

∣

∣

)

=
∑

i

w′ixijξi (1− wiξi) . (4.8)

Here, w′i = ∂wi/∂ηi and ξi =
∑

k,l zikdklzil, where dkl is the (k, l)th element of D =
(

ZTWZ +G−1
)−1

. (Note that, for simplicity of notation, the tilde ·̃ notation used

previously has been dropped – all quantities are calculated at the current estimates

of τ and u.)

Note that Noh & Lee (2007) assume that no change to the LHS of (4.7) is required

to implement HG(1,1). Therefore the updating equations use the same information

matrix for Fisher scoring as for HG(0,1), that is,

−E

{

∂2h

∂β∂βT

}

=







XTWX XTWZ

ZTWX ZTWZ +G−1






,

where β = (τT ,uT )T . This ignores the complication arising from the fact that there

are two separate likelihood criteria for maximising τ and u, pu(h) and h respectively.

Fortran-style pseudo-code to compute ζ, is shown in Table 4.4. This pseudocode

assumes that Z is stored sparsely with non-zero elements z = (z1 . . . znsp)
T and

corresponding row and column positions r = (r1 . . . rnsp)
T and c = (c1 . . . cnsp)

T . It

also assumes that z, r and c are stored in row-order, that is, the non-zero elements

of the first row from left to right, then the non-zero elements of the second row etc.

Note that the variable xi represents ξi, i = 1, . . . , n, and the variable zt(j) represent

ζj , j = 1, . . . , p.
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xi=0

starte=1

i=r(1)

xi = z(1)**2*D(c(1),c(1))

do j=2,nsp

newrow=r(j)

! accumulate contributions from row j of Z to zeta_i’s

if(newrow/=i.or.j==nsp) then

temp= e3(i)*xi*(1-wt(i)*xi)

do l=1,p

zt(l) = zt(l) + temp*X(i,l)

enddo

starte=j ! only search from elements of z(starte:...on)....

i=newrow

xi = z(j)**2*D(c(j),c(j))

endif

if(j>starte) then

zj=z(j) ! store zj, cj in cache

cj=c(j)

do k=starte,j-1

xi = xi + 2*zj*z(k)*D(cj,c(k))

enddo

xi = xi + zj**2*D(cj,cj)

endif

enddo

Table 4.4: Fortran-style pseudo-code required to compute the adjustment ζ (4.8) to
the mixed model equations (4.7) for using the HG(1,j) approaches (j ≥ 1).

4.2.3.2 Score equations for the variance components

To derive score equations for γ, let β = (τT ,uT )T as before and

pβ(h) =

(

h− 1

2
log

∣

∣

∣

∣

∣

− 1

2π

∂2h

∂β∂βT

∣

∣

∣

∣

∣

)

β̃γ

(4.9)

=

(

h− 1

2
log |C|+ p+ b

2
log 2π

)

β̃γ

,

where

C =







XTWX XTWZ

ZTWX ZTWZ +G−1






. (4.10)
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Let

pβ = h− 1

2
log |C|+ p+ b

2
log 2π,

pu = h− 1

2
log

∣

∣

∣ZTWZ +G−1
∣

∣

∣+
b

2
log 2π.

Let the vector β̃γ equal (τ̂Tγ , ũ
T
τ,γ)T , where τ̂Tγ either satisfies ∂h/∂τ = 0 for HG(0,1)

or ∂pu(h)/∂τ = 0 for HG(1,1). Then, for HG(1,1),

∂pβ(h)

∂γ
=

∂pβ
∂γ

∣

∣

∣

∣

β̂γ

+
∂pβ
∂τ

∣

∣

∣

∣

β̂γ

∂τ̂γ
∂γ

+
∂pβ
∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γ

=
∂pβ
∂γ

∣

∣

∣

∣

β̂γ

+

(

∂pu
∂τ

∣

∣

∣

∣

β̂γ

+
∂(pβ − pu)

∂τ

∣

∣

∣

∣

β̂γ

)

∂τ̂γ
∂γ

+

(

∂h

∂u

∣

∣

∣

∣

β̂γ

+
∂(pβ − h)

∂u

∣

∣

∣

∣

β̂γ

)

∂ûτ,γ
∂γ

=
∂pβ
∂γ

∣

∣

∣

∣

β̂γ

+
∂(pβ − pu)

∂τ

∣

∣

∣

∣

β̂γ

∂τ̂γ
∂γ

+
∂(pβ − h)

∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γ

,

since ∂pu/∂τ |β̂γ = 0 and ∂h/∂u|β̂γ = 0 by definition. Similarly, for HG(0,1),

∂pβ(h)

∂γ
=
∂pβ
∂γ

∣

∣

∣

∣

β̂γ

+
∂(pβ − h)

∂τ

∣

∣

∣

∣

β̂γ

∂τ̂γ
∂γ

+
∂(pβ − h)

∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γ

,

since ∂h/∂τ |β̂γ = 0 by definition. Note that pβ − h ∝ −1/2 log |C| and pβ − pu ∝

−1/2 log
∣

∣

∣XTV −1X
∣

∣

∣, where V = W−1 + ZGZT . As in Noh & Lee (2007) and Lee

& Nelder (2001), the dependence of τ̂γ on γ is ignored, so that

∂pβ(h)

∂γ
≃ ∂pβ

∂γ

∣

∣

∣

∣

β̂γ

+
∂(pβ − h)

∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γ

=
∂h

∂γ
− 1

2

∂ log |C|
∂γ

∣

∣

∣

∣

β̂γ

− 1

2

∂ log |C|
∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γ

for both HG(0,1) and HG(1,1). Ignoring the dependence of τ̂γ on γ tacitly assumes

that τ and γ are independent, which, Lee & Nelder (2001) argued, is a reasonable

assumption. It may be useful to explore whether this assumption is valid, but this

has not been done here.
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We will now consider the score equation for single variance component, ∂pβ(h)/∂γi,

∂pβ(h)

∂γj
≃ ∂h

∂γj
− 1

2

∂ log |C|
∂γj

∣

∣

∣

∣

∣

β̂γ

− 1

2

∂ log |C|
∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γj

. (4.11)

Note that

∂h

∂γj
= −1

2

{

uTG−1 ∂G

∂γj
G−1u+ trace

(

G−1 ∂G

∂γj

)}

. (4.12)

Let

T =







X Z

0 I






, Wa =







W 0

0 G−1






,

as in Lee & Nelder (2001) and Noh & Lee (2007), and so C = T TWaT . Let

C−1 =







C11 C12

C21 C22






.

Then

∂

∂γj
(log |C|) = trace

{

C−1

(

T T
∂Wa

∂γj
T

)}

= −trace

{

C22

(

G−1 ∂G

∂γj
G−1

)}

. (4.13)

Now consider the kth element of ∂ (log |C|) /∂u,

∂ log |C|
∂uk

= trace

{

C−1
(

T T
∂Wa

∂uk
T

)}

= trace











C
−1













XT

ZT







∂W

∂uk

[

X Z

]

















, (4.14)

where the ith diagonal element of W ′
k = ∂W /∂uk is

∂wi
∂uk

=
∂wi
∂ηi

∂ηi
∂uk

=
∂wi
∂ηi

zij .
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Using implicit differentiation, it can be shown that (Appendix A.1)

∂ũτ,γ
∂γj

=
(

ZTW̃Z +G−1
)−1

G−1 ∂G

∂γj
G−1ũτ,γ . (4.15)

So, combining (4.11) with its components (4.12), (4.13), (4.14) and (4.15), we obtain

∂pβ(h)

∂γj
≃ ∂h

∂γj
− 1

2

∂ log |C|
∂γj

∣

∣

∣

∣

∣

β̂γ

− 1

2

∂ log |C|
∂u

∣

∣

∣

∣

β̂γ

∂ûτ,γ
∂γj

= −1

2
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uTG−1 ∂G
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G−1u+ trace

(

G−1 ∂G

∂γj

)}∣

∣
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∣
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β̂γ

+
1

2
trace

{

C22

(

G−1 ∂G

∂γj
G−1

)}∣

∣
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∣
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−1
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∑
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trace
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
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



C
−1


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


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
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∂uk

[

X Z

]

















∣

∣

∣

∣

∣

∣

∣

β̂γ
{

(

ZTW̃Z +G−1
)−1

G−1 ∂G

∂γj
G−1ũτ,γ

}

.

4.2.3.3 Use of the score equations

Note that the analytic expressions for the derivatives derived above, ∂pu(h)/∂τ and

∂pβ(h)/∂γ, could be used to replace the finite difference derivative calculations in

the current Fortran 90 implementation (section 4.2.1). Alternatively, the derivatives

∂pu(h)/∂τ could be incorporated into the mixed model equations, as outlined at the

end of section 4.2.3.1. For computational speed and efficiency, the implementation

of the analytic derivatives ∂pu(h)/∂τ would take higher priority over the implemen-

tation of ∂pβ(h)/∂γ, since the updated estimates of τ , given γ, are generated more

frequently than the estimates of γ themselves.

Further analytical work could be undertaken to determine expressions for the expec-

tations of the second derivatives, −E
{

∂2pu(h)/∂τ∂τT
}

and −E
{

∂2pβ(h)/∂γ∂γT
}

.

The derivation of the latter information matrix would enable the direct application of

Fisher scoring for finding the maximum of pβ(h) with respect to γ, and would obviate

the current need for using a quasi-Newton approach like L-BFGS-B. This option has

139



not been explored.

4.2.3.4 Differences between the HGLM and PQL score equations

As noted in section 4.2.2, an intuitive explanation for why the estimation biases for

γ̂ increased with the magnitude of γ for PQL, but did not do so for either HGLM

approximation, is developed in this sub-section.

The difference between HG(0,1) and HG(1,1), with respect to the magnitude of the

biases for τ̂ , was already discussed in section 4.2.2.1. An intuitive explanation was

provided for why the magnitude of the bias for HG(0,1) increased in magnitude

with γ, whereas the bias for HG(1,1) did not increase with γ. A summary of this

argument is as follows. The HG(0,1) approximation uses h for inference concerning

τ , whereas HG(1,1) uses pu(h). The difference between the two criteria, pu(h) −

h = −1/2 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣, increases with γ since limγ→0 log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ =

log
∣

∣G−1
∣

∣ and limγ→∞ log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ = log
∣

∣

∣ZTWZ
∣

∣

∣. Therefore, the change in

log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ with τ is ignorable when γ is small, but becomes more important

as γ increases.

Now the difference between PQL and HG(0,1) will be explored. The difference be-

tween these two approaches is in the estimation of γ, with HG(0,1) using pβ(h) and

PQL using an approximation to pβ(h). The score equations for γ when HG(0,1) is

used, as in section 4.2.3.2, are

∂pβ(h)

∂γ
=

∂pβ
∂γ

∣

∣

∣

∣

β̂γ

+
∂(pβ − h)

∂β

∣

∣

∣

∣

β̂γ

∂β̂γ
∂γ

=
∂h

∂γ
+
∂ (pβ − h)

∂γ

∣

∣

∣

∣

β̂γ

+
∂(pβ − h)

∂β

∣

∣

∣

∣

β̂γ

∂β̂γ
∂γ

. (4.16)

As before, β =
(

τT ,uT
)T

, pβ ∝ h− log |C|/2, C is the matrix defined in (4.10) and

h, the h-likelihood, can be written as

h ∝ −1

2

n
∑

i=1

di(yi;µ
u
i )− 1

2
uTG−1u− 1

2
log |G| .
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Firstly, note that (4.16) shows that the dependence of terms in h on γ, through β̂γ ,

can be ignored. We briefly review the approximations to pβ(h) used for implementing

PQL.

Firstly, twice the conditional likelihood, 2fY |U = −2
∑n
i=1 di(yi;µ

u
i ), is replaced by

the Pearson χ2 statistic,
∑

(yi − µi)2 /V (µi). Since the conditional likelihood fY |U

is only dependent of γ through β̂γ , this change makes no difference to inference for

γ, as in (4.16). Secondly, an additional −1/2 log |W | is added. These two changes

create a modified PQL “likelihood”, which resembles a normal LMM likelihood for

a “working” variate ψ. However, in exploiting this resemblance, the corresponding

PQL score equations ignore the dependence of W on γ, and so ignore terms in the

last component of (4.16). Specifically, it ignores the difference

∂(pβ − h)

∂β
= −1

2







∂ log
∣

∣

∣ZTWZ +G−1
∣

∣

∣

∂β
+
∂ log

∣

∣

∣XTV −1X
∣

∣

∣

∂β







,

where V = ZGZT + W−1. We assume now that log
∣

∣

∣XTV −1X
∣

∣

∣ is “small”. (For

most of the simulation studies in chapter 3, this is valid since there were few fixed

effects.)

The reason for the increase in the magnitude of the bias of γ̂ with γ when using PQL,

but not HG(0,1), can now be seen to be due to the fact that limγ→∞ log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ =

log
∣

∣

∣ZTWZ
∣

∣

∣. Therefore, the size of the component omitted by PQL, ∂(pβ − h)/∂β,

increases with γ.

For the binary logit model, increasing γ results in increases in the absolute values of

both the fixed and random effect estimates, |τ̂i|, i = 1, . . . , p, and |ûj|, j = 1, . . . , b

respectively, and so a decrease in the weights wi = µi(1 − µi), and, subsequently, a

decrease in log
∣

∣

∣ZTWZ
∣

∣

∣. So the omission of log
∣

∣

∣ZTWZ +G−1
∣

∣

∣ in PQL would cause

PQL to favour lower estimates of γ relative to the HG(0,1) approach. For Poisson log

models, increasing γ results in increasing |uj| but decreasing τi, and the net result

is, as for the binary model, also a decrease in log
∣

∣

∣ZTWZ
∣

∣

∣. Therefore, the negative

biases for γ̂ will increase with increasing γ when using PQL for either binary and
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Poisson models, but not using either of the HGLM approximations.

4.2.4 Adequacy of the (first order) Laplace approximation

The first order HGLM approaches are based on the (first order) Laplace approxima-

tion of the likelihood. Some intuition for the performance of the first order HGLM

approaches in the simulation studies above may be gained by consideration of the

one-way classification model (4.5).The contribution to the likelihood from the ith

group is

Li =

∫ mg
∏

j=1

fy|u(yij|ui)fu(ui)dui, (4.17)

where fy||u(yij |ui) is the conditional PDF of the data yij given ui and fu(ui) =

(2πγ1)−1/2 exp
(

−u2
i /2γ1

)

is the normal PDF for ui. For binary data with a logit

link,
mg
∏

j=1

fy|u(yij |ui) =

mg
∏

j=1

exp
[

∑

yij (τ0 + ui)
]

[1 + exp(τ0 + ui)]
−mg ,

and for Poisson data with a logarithmic link,

mg
∏

j=1

fy|u(yij|ui) ∝
mg
∏

j=1

exp [−mg exp (τ0 + ui)] exp
[

∑

yij (τ0 + ui)
]

.

The first order Laplace approximation involves approximating the logarithm of the

integrand, the ith component of the h-likelihood,

hi = log







mg
∏

j=1

fyj |u(yij |ui)fu(ui)







,

in (4.17) with a quadratic approximation around the mode, that is,

hi ≈ hi|ui=ũi +
1

2

∂2hi
du2

i

∣

∣

∣

∣

∣

ui=ũi

(ui − ũi)2 .

We can compare the true log-integrand, hi, against its quadratic approximation at

the mode, for given values of τ0 and γ1, and for given data yij, j = 1, . . . ,mg. For
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instance, for paired binary data (mg = 2), ignoring terms not involving ui,

hi =





2
∑

j=1

yij



 (τ0 + ui)− 2 log (1 + exp [τ0 + ui])−
1

2γ1
u2
i ,

with second derivative

∂2hi
∂u2

i

= −2 exp (τ0 + ui) / (1 + exp [τ0 + ui])
2 − 1

γ1
.

When yij = 1, j = 1, 2, γ1 = 4 and τ0 = 0, the quadratic approximation at the mode

tends to under-estimate the true hi away from the mode ũi (Figure 4.7a), since ũi is

close to the point of maximum curvature of hi (Figure 4.7b), and so the curvature of

hi is over-estimated. Therefore, the Laplace approximation will under-estimate the

contribution to the likelihood for γ1 = 4 and τ0 = 0 where yij = 1, j = 1, 2. By

contrast, where τ0 = 4, and yij and γ1 are as before, the quadratic approximation

will over-estimate the true hi (Figure 4.8a), since ũi is far from the point of maximum

curvature (Figure 4.8b).

It is the relative under- or over-estimation of the Laplace approximation for differ-

ent values of τ0 and γ1 which determines its adequacy. For instance, if the Laplace

approximation under-estimated the true likelihood contribution Li by a constant pro-

portion across all possible values of τ0 and γ1 and data yij, then the estimates derived

using the Laplace approximated likelihood would be equal to the true maximum like-

lihood estimates. This is clearly not the case, as shown in Figures 4.7 and 4.8 for two

different values of τ0. The latter plot also suggests that the Laplace approximation

may over-estimate the true likelihood where γ1 and τ0 are both increasing, and so

might explain the divergence of the Laplace approximation seen in the simulations of

section 4.2.2.1 where τ0 = 2.

Figures 4.7 and 4.8 also suggest that the reason why the Laplace approximation has

difficulty with paired binary data is that the second derivative of hi has a pronounced

peak, in this case at ui = −τ0. So the difference between the true hi and its Laplace

approximation will depend on the proximity of ũi to −τ0. Other GLMMs may not
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Figure 4.7: The Laplace approximation for a single group i in binary logit one-way
classification (4.5) where mg = 2, τ0 = 0, γ1 = 4 and yij = 1, j = 1, 2
(a) The true log-integrand hi of the contribution to the likelihood (4.17) versus ui
(solid). The quadratic approximation of hi around the mode is superimposed (dot-
ted).
(b) The curvature of hi versus ui. The position of the mode of hi, ũi = 1.48, is shown
as a dotted line.
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Figure 4.8: As for Figure 4.7, but where τ0 = 4.

have such a pronounced peak. For instance, for paired Poisson data with log link,
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and ignoring terms not involving ui,

hi =





2
∑

j=1

yij



 (τ0 + ui)− 2 exp (τ0 + ui)−
1

2γ1
u2
i ,

with a monotically increasing second derivative with respect to ui,

∂2hi
∂u2

i

= −2 exp(τ0 + ui)−
1

γ1
.

The absence of a pronounced peak in the second derivative may explain the better

performance of the Laplace approximation for Poisson data (compared to binary).

For instance, Figure 4.9 shows the corresponding plots for yij = 0, τ0 = 0 and γ1 = 4.
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Figure 4.9: As for Figure 4.7, but for the Poisson log one-way classification where
mg = 2, τ0 = 0, γ1 = 4 and yij = 0, j = 1, 2.

4.3 Second order HGLM approaches

This section discusses the implementation of the second order HGLM approaches

HG(i,2), i = 0, 1, 2. Firstly, the calculations required to form the correction term in

the second order Laplace approximation, denoted as −F/24 in Lee & Nelder (2001),

will be shown. Secondly, the computation of this term is shown, with some Fortran

style pseudo-code and suggestions on how it can be more efficiently computed. Fi-
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nally, simulation studies, using the binary one-way classification and nested two-way

classification designs, are presented.

4.3.1 An expression for the second order Laplace correction term

A second order Laplace approximation for the true likelihood ℓ is required to imple-

ment methods HG(i,2), i = 0, 1, 2 in Table 4.1:

psu(h) = pu(h)− F/24, (4.18)

where −F/24 represents the difference between a first and second order Laplace ap-

proximation. Lee and Nelder’s −F/24 notation is retained, however, it remains un-

known what “F” refers to and why Lee & Nelder (2001) use “−F/24” instead of

simply “F”. The article by Reid (1991), that they cite with regard to this formula,

does not allude to this notation. To add further confusion, Noh & Lee (2007) use

trace(F )/24 instead of F/24, turning F into a matrix instead of a scalar.

The expression for F given in Lee & Nelder (2001, p. 996) and Noh & Lee (2007,

p.898) is, using their own notation,

F = trace

[

−
{

3
∂4h

∂υ4
+ 5

∂3h

∂υ3
D(h, υ)−1 ∂

3h

∂υ3

}

D(h, υ)−2

]

υ=υ̂

where (again in their notation) D(h, υ) = −∂2h/∂υ2, and υ represents the random

effects on the scale of the linear predictor. This expression is a heuristic univariate

style expression, and it is difficult to see exactly what calculations are required. For

instance, since the higher order derivatives ∂3h/∂υ3 and ∂4h/∂υ4 are not intrinsically

matrices, it is unclear what elements of these derivatives are being multiplied. How-

ever, result 1 in Noh & Lee (2007, p. 898) is more helpful, but it is overly complicated

as described below.

A second order Laplace approximation of an integral can be created by extending

the first order Laplace approximation, as presented in section 1.3.2.1, and taking

higher order terms in the Taylor series expansion of the log of the integrand (see
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Appendix A.2 for the derivation in the case of a univariate integral). This results in

an expression for the correction factor −F/24:

− F/24 =
1

8

∑

j,k,l,m

h
(4)
jklmgjkglm (4.19)

+
1

2





1

4

∑

j,k,l,r,s,t

h
(3)
jklh

(3)
rstgjkglrgst +

1

6

∑

j,k,l,r,s,t

h
(3)
jklh

(3)
rstgjrgksglt



 ,

where

gjk =

{

− ∂2h

∂u∂uT

}−1

jk

≈
{

ZTWZ +G−1
}−1

jk
, (4.20)

h
(3)
jkl =

∂3h

∂uj∂uk∂ul
=
∑

i

∂3h

∂η3
i

zijzikzil,

h
(4)
jklm =

∂4h

∂uj∂uk∂ul∂um
=
∑

i

∂4h

∂η4
i

zijzikzilzim.

The second order Laplace approximation can also be expressed in matrix form as in

Raudenbush et al. (2000), or using tensor notation as in Shun & McCullagh (1995),

but the above univariate expression is the most convenient for computational pur-

poses.

Noh & Lee (2007, p. 899) suggest a formulation of the term −F/24 which eliminates

some of the unnecessary calculations, such as those involving zero cells. However,

their formulation is based on their vector/matrix formulation, given in result 1 of

their paper (p. 898 of Noh & Lee, 2007). This formulation suggests the need to

calculate intermediary results, denoted C1i and C2i,i′ using Kronecker multiplications

involving vectors R(i,j). (Note that there is an error in their formula for C2i,i′ . The

term R(i,i) ⊗ R(i,i′) ⊗ R(i,i′)/8 should be R(i,i) ⊗ R(i,i′) ⊗ R(i′,i′)/8.) However, their

formulation is overly complex, since it apparently ignores a simple result concerning

Kronecker multiplication of vectors: if a = (a1 . . . an)T and b = (b1 . . . bm)T are both

vectors and 1nm is the vector of length nm consisting of 1s, then

(a⊗ b)T 1nm =

(

n
∑

i=1

ai

)





m
∑

j=1

bj



 .
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The expression for the second order Laplace approximation in (4.19) above can be

further simplified. Let Ri,i′ =
∑

j,k zijzi′kgjk, e3i = ∂4h/∂η3
i and e4i = ∂4h/∂η4

i .

Combining (4.19) with (4.20) gives

∑

j,k,l,m

h
(4)
jklmgjkglm =

∑

j,k,l,m

(

∑

i

∂4h

∂η4
i

zijzikzilzim

)

gjkglm

=
∑

i

∂4h

∂η4
i





∑

j,k

zijzikgjk





2

=
∑

i

e4iR
2
i,i.

In addition,

∑

j,k,l,r,s,t

h
(3)
jklh

(3)
rstgjkglrgst

=
∑

j,k,l,r,s,t

(

∑

i

∂3h

∂η3
i

zijzikzil

)(

∑

i′

∂3h

∂η3
i′
zi′rzi′szi′t

)

gjkglrgst

=
∑

i,i′

(

∂3h

∂η3
i

)(

∂3h

∂η3
i′

)





∑

j,k

zijzikgjk









∑

l,r

zilzi′rglr





(

∑

s.t

zi′szi′tgst

)

=
∑

i,i′

e3ie3i′Ri,iRi,i′Ri′i′ =
∑

i

e2
3iR

3
i,i + 2

∑

i′<i

e3ie3i′Ri,iRi,i′Ri′,i′ ,

and similarly

∑

j,k,l,r,s,t

h
(3)
jklh

(3)
rstgjrgksglt

=
∑

i,i′

(

∂3h

∂η3
i

)(

∂3h

∂η3
i′

)





∑

j,r

zijzi′rgjr









∑

k,s

zikzi′sgks





(

∑

l.t

zilzi′tglt

)

=
∑

i,i′

e3ie3i′Ri,i′Ri,i′Ri,i′ =
∑

i

e2
3iR

3
i,i + 2

∑

i′<i

e3ie3i′Ri,i′Ri,i′Ri,i′ .

Therefore the resultant expression is

− F/24 =
∑

i

{

R2
i,i

(

1

8
e4i +

5

24
e2

3iRi,i

)

(4.21)

+
∑

i′:i′<i

e3ie3i′

(

1

4
Ri,iRi,i′Ri′,i′ +

1

6
Ri,i′Ri,i′Ri,i′

)

}

.
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4.3.2 Computation of the second order Laplace correction term

Fortran 90 style pseudo-code to compute the second order Laplace correction factor in

(4.21) is given in Table 4.5, assuming that Z is stored sparsely with non-zero elements

z = (z1 . . . znsp)
T and corresponding row and column positions r = (r1 . . . rnsp)

T and

c = (c1 . . . cnsp)
T . The code assumes that the elements in z, r and c are ordered by

column within row. Define the matrix D =
(

ZTWZ +G−1
)−1

so that djk is the

(j,k)th element of D. Let Rd = (R1,1, R2,2, . . . Rn,n)T be the “diagonal” elements

where i = i′. The pseudo-code calculates −F/24 by proceeding row by row through

Z, with i storing the current row of Z and Rn = (Ri,1 . . . Ri,i−1)T . Note that the

Ri,i′ , i
′ < i only need to be stored until contributions to F/24 of the current row are

accumulated (that is, when we move to the next row of Z, where newrow!=i in the

pseudo-code).

Some modifications were made to the first order Fortran 90 code discussed in section

4.2.1 to implement the second order approximations HG(i,2), i = 0, 1, 2. Despite

the use of sparse matrix techniques, the resulting implementation of the second order

HGLM approaches was still rather slow, when combined with the two-stage numerical

derivative approach required to implement HG(i, j) approximations where i ≥ 1.

There may, however, be further efficiencies to be made in the calculation of R(i,i′), by

creating a matrix/table of indices of z or D that need to be multiplied in the first

iteration. This would avoid the need in subsequent iterations to doubly traverse z,

as is done in the above pseudocode. This has not been implemented.

4.3.3 Performance in simulation studies

The simulation studies conducted for the first order HGLM approximations (section

4.2.2) were repeated using the second order HGLM approximations, HG(i,2), i =

0, 1, 2, but for binary data only, since the first order HGLM approaches appeared to

be adequate for the Poisson models.
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Rd=0; Rn=0;

i=r(1)

Rd(i) = z(1)**2*D(c(1),c(1))

do j=2,nsp

newrow=r(j)

! accumulate contributions from row j of Z to F24

if(newrow!=i) then

F24 = F24 + Rd(i)*Rd(i)* (e4(i)/8+5*(e3(i)**2)*Rd(i)/24)

if(i>1) then

do l=1,i-1

temp1 = Rd(i)*Rn(l)*Rd(l)/4

temp2 = Rn(l)*Rn(l)*Rn(l)/6

F24 = F24 + e3(i)*e3(l)*(temp1+temp2)

enddo

endif

Rn=0 !reset Rn for the next row of Z

i=newrow

endif

zj=z(j) ! save as scalars (in cache) instead of

cj=c(j) ! looking up z(j),c(j) for each k=1,j-1

do k=1,j-1

ip=r(k)

if(ip==i) Rd(i) = Rd(i) + 2*zj*z(k)*D(cj,c(k))

if(ip!=i) Rn(ip) = Rn(ip) + 2*zj*z(k)*D(cj,c(k))

enddo

Rd(i) = Rd(i) + zj**2*D(cj,cj)

enddo

Table 4.5: Fortran style pseudo-code required to compute the correction term (4.21)
for the second order Laplace approximation.

4.3.3.1 One way classification (binary data only)

The one way classification model (4.5) is again considered, using the simulation pa-

rameter values given in Table 4.6.

Parameter Binary model
bg 50, 100, 200, 500
mg 2, 4, 8, 16
γ1 0.25, 1, 4, 9
τ0 0, 2

Table 4.6: Values of the simulation parameters for the one-way classification study
(4.5) comparing second order HGLM approaches and PQL.

Biases for γ̂1 are shown in Figure 4.10 for bg = 500. Surprisingly, all second order
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HGLM approximations performed better when τ0 = 2 than when τ0 = 0, in contrast

to the performance of the first order approximations (section 4.2.2). For τ0 = 0, all the

second order HGLM approximations gave similar average biases, and large positive

biases for γ̂1 were observed when mg = 2 or γ1 = 9, probably due to diverging, or

unusually high, estimates for some datasets (similar to the HG(1,1) approximation

when τ0 = 2). When τ0 = 2, the HG(0,2) approximation was little better than PQL

for small mg. However, HG(1,2) and HG(2,2) estimators both had little or no bias,

except where mg = 2 or γ1 = 9. For τ̂0, the use of HG(1,2) and HG(2,2) also generally

resulted in little bias, except when γ1 = 9, where some positive bias of the HG(2,2)

(and HG(0,2)) estimators is observed (Figure 4.11).

4.3.3.2 Nested two-way classification model (binary data only)

Simulations using the nested two-way classification model (4.6) were also performed.

Owing to the current computational slowness of the second order HGLM implemen-

tation, only the combinations (mg,ms) = (2, 2), (2,4) and (4,2) were explored, with

the remaining parameter value settings as given in Table 4.3.

Figure 4.12 shows the estimation biases for the second order HGLM approximations

against PQL. The second order HGLM approximations generally had low estimation

biases, except when γ1 = 1 and γ2 = 4, where there was strong negative and positive

bias for γ̂1 and γ̂2 respectively. Further examination of these simulated datasets in this

case showed that there were many simulations where γ̂1 went to 0 and the estimate

of γ̂2 diverged.

4.4 Discussion

The simulation studies in this chapter show that first order HGLM approaches gen-

erally do better than PQL with respect to having estimation biases of smaller mag-

nitude. One major difference in the estimation biases between PQL and first order

HGLM approaches is that the magnitude of the biases for PQL increase markedly
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Figure 4.10: Interactions of the effects of mg and γ1 on average biases for γ̂1 for
the binary one way classification model (4.5) where bg = 500. (PQL: solid; HG(0,2):
dashed; HG(1,2): dotted; HG(2,2): dot-dashed). Error bars are ±2SE.

with the magnitude of the variance component, γ, whereas the biases for HG(1,1),

and HG(0,1) for γ̂, are stable across values of γ. An explanation for the increase in

the biases with γ for PQL has been provided in section 4.2.3.4. It would be appear

that using the first order HGLM approaches would be much more preferable to PQL

when the variance components are expected to be large. However, some caution is
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advised when dealing with binary data, or binomial data with low denominators,

given the instability of the HG(1,1) estimators for the binary one-way classification

when τ0 = 2 and mg ≤ 4 (Figure 4.5 and accompanying text). Binary models in

general with low group sizes and average probabilities well away from 0.5 may also

be susceptible to this instability. The intuitive arguments given in section 4.2.4 sug-

gest that this instability may be restricted to binary models (or binomial with low

denominators), where the curvature or second derivative of the likelihood integrand

with respect to a random effect, i.e. −∂2h/∂u2
i , has a sharp peak.

For HG(1,1), the biases for τ̂0, for both binary and Poisson one way classification and

the nested two way binary model, are relatively small in magnitude. Therefore, it

appears that the first order Laplace approximation may be adequate for estimation of
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fixed coefficients in GLMMs. However, the accuracy of the estimated variances and

SEs of the fixed coefficients, and the use of approximate Wald tests for hypothesis

testing of fixed coefficients, have not been examined here.

Although first order HGLM approaches might be adequate for estimation of the fixed

coefficients, and for estimating the variance components in Poisson models, it appears

second order approaches are still required for estimating the variance parameters in

binary models. The two simulation studies in section 4.3.3 show that second order

approaches can substantially reduce the biases for the variance parameter estimators,

but at the cost of instability and divergence (where unusually large estimates of the

parameters were found) in some cases. More work is required to establish when second

order approaches are preferable over first order approaches, and whether this added

instability and divergence negates the beneficial decreases in the magnitude of the

estimation biases.

Comparison to other approaches for GLMMs, such as GHQ and Bayesian MCMC

approaches, is necessary to determine the relative merits of approximate likelihood

approaches such as PQL and the HGLM approach. This will be explored in the next

chapter, using a series of case studies.
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Chapter 5

Case studies

Chapters 3 and 4 explored two approximate likelihood approaches, PQL and HGLM

approaches, especially with respect to problems with estimation biases. However,

a fuller assessment of the merits of using these approximate likelihood approaches

requires comparison to other alternative GLMM approaches. In this chapter, such

comparisons will be endeavoured against two prominent alternatives, Gauss-Hermite

quadrature (GHQ) and Bayesian approaches, using a select group of case studies.

5.1 Preliminaries

5.1.1 Review of alternative approaches

A review of some key issues concerning the use of each of the alternatives to ap-

proximation likelihood approaches for GLMMs, GHQ and Bayesian approaches, is

presented in this section.

5.1.1.1 Gauss-Hermite Quadrature

As outlined in the background theory of section 2.2, Gauss-Hermite quadrature

(GHQ) is a numerical integration approach for evaluating the GLMM likelihood ex-

pression. The major disadvantage of GHQ, as noted in section 2.2, is that it is only
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feasible for GLMMs involving nested random effects. In addition, most current imple-

mentations of GHQ only cater for, at most, two-way nested random effects models,

such as the nested two-way classification (3.3). This severely restricts the utility

of GHQ for agricultural and biological data, where multiple, and often non-nested,

sources of variation are present.

Of the two forms of GHQ, standard and adaptive, the adaptive version is now strongly

preferred in the literature. Standard GHQ can suffer appreciably from numerical

instability (Rabe-Hesketh et al., 2005). This has been demonstrated in the case of

grouped data when the group sizes are large – in order for GHQ to converge in these

cases, good starting values close to the optimum values are often required. Rabe-

Hesketh et al. (2005) argued that, in general, standard GHQ will have difficulty in

situations where there is ample “information” concerning each random effect, giving a

very “peaked” integrand in the expression for the GLMM likelihood (1.9). Lesaffre &

Spiessens (2001) illustrated the numerical problems associated with GHQ for a simple

grouped GLMM, and demonstrated the superiority of adaptive GHQ, which had less

numerical instability using fewer quadrature points. It is interesting to note here

that, in contrast to standard GHQ, approximate likelihood techniques perform better

when there is ample information per random effect (as confirmed in the simulation

studies of Chapter 3). Despite the benefits of using adaptive GHQ over standard

GHQ, however, there are relatively few implementations of adaptive GHQ at present.

Two implementations of adaptive GHQ are the NLMIXED subroutine (Wolfinger, 1999)

in the SAS statistical package (SAS Institute Inc., 2000) and the gllamm suite of

functions (Rabe-Hesketh et al., 2001) in the Stata statistical package (StataCorp,

2007). Of the two, only the gllamm implementation caters for GLMMs with more

than one level of nested random classification. The current lack of implementations

catering for GLMMs with multiple random classifications may be a consequence of

the difficulties in implementation for such GLMMs, as discussed in Rabe-Hesketh

et al. (2002, 2005).
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5.1.1.2 Bayesian/MCMC approaches

Background theory in the use of full Bayesian approaches for GLMMs has been pro-

vided in section 2.3.2. The application of full Bayesian, and other MCMC, approaches

to inference for GLMMs has been popular in recent years in the research literature.

For instance, Rodriguez & Goldman (2001) and Browne & Draper (2006) demon-

strated the superiority of full Bayesian approaches over PQL for their simulation

studies, in terms of both reduced estimation bias and providing 95% coverage inter-

vals which are closer to the nominal coverage rates. However, despite their apparent

popularity in the research literature, the use of full Bayesian approaches for GLMMs

in applied statistical work still appears to be limited, possibly due to inertia, percep-

tions of difficulty and/or perceptions regarding the influence of the priors on inference.

Some of this perception is well-founded, since the use of Bayesian approaches requires

some additional user expertise not required when using likelihood-based approaches,

for instance, in choosing appropriate priors and monitoring convergence. Another

impediment to the adoption of Bayesian approaches is the current lack of available

“off the shelf” software, apart from WinBUGS (Spiegelhalter et al., 1995).

There are important methodological issues in using Bayesian approaches which are

still being resolved. For instance, the influence of the Inverse Gaussian prior for vari-

ance parameters, which is the standard prior used for variance parameters, has been

recently questioned (Gelman, 2005). However, Browne & Draper (2006) showed that

the impact of the prior choice appeared to be minor in their simulations, especially

when compared to the large estimation biases associated with PQL.

5.1.2 Software used in these case studies

The software used in the case studies which follow, and some implementational issues

associated with their use, are discussed in this section.
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5.1.2.1 Approximate likelihood approaches

As in previous chapters, PQL was implemented using ASReml version 2.0 (Gilmour

et al., 2006).

The HGLM approaches were implemented using the Fortran 90 code outlined in the

previous chapter. In addition, non-REML versions of the HGLM approximations are

also examined, that is, with the REML-like correction removed, in order to examine

the importance of this correction to the estimation of γ. For instance, the first order

approximation HG(1,1) uses pβ(h) (4.2) as the likelihood criterion for γ. A non-

REML version of HG(1,1) uses pu(h) (4.1) as the likelihood criterion for γ instead,

which is also the likelihood criterion for τ . The non-REML versions also shared

more similarity with the GHQ approach, in that the GHQ approach does not apply

a REML-like correction either. It should be noted that other implementations of

the first order Laplace approximation for GLMMs also use no REML-like correction,

such as the glmmadmb and lmer functions in the R statistical package. Similarly, non-

REML versions of the second order approximations are examined where the likelihood

criterion for γ is psu(h) instead of psβ(h). To implement in the non-REML versions of

the HGLM approximations in the Fortran 90 implementation (section 4.2.1), a simple

modification of the code was required.

In addition, a simple implementation of PQL was implemented in Fortran 90, in

addition to ASReml. This implementation used an estimation scheme which alter-

nated between estimation of the variance parameters γ and estimation of the fixed

and random effects τ and u. It used the same matrix libraries as for the Fortran 90

implementation of the HGLM approach, as described in section 4.2.1. The develop-

ment of this PQL implementation also allowed us to create a non-REML version of

PQL, similar to the non-REML versions of HGLM described above. This non-REML

version of PQL is used in the RCBD case study (section 5.2.5).
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5.1.2.2 Bayesian/MCMC

For the full Bayesian approaches, the classic BUGS program1 was used in preference to

WinBUGS, since it could be called non-interactively using a script on a Unix system.

(At the time of performing simulations, the newer OpenBUGS program2 appeared to

be quite unstable and prone to give erroneous results.)

Standard priors were used for the parameters in the model, as used in the library

of examples included with the BUGS software. For fixed coefficients τi, normal priors

with large variance (10,000) were used. For the variance parameters, the standard

Inverse Gamma prior (IG) was used, where the prior for the reciprocal of the variance

parameter was a gamma distribution,

f(x; r, µ) =
µrxr−1e−ux

Γ(r)
.

The Inverse Gamma prior for the variance parameter is subsequently denoted IG(r,

µ). The parameter settings r = 0.001, µ = 0.001 were used by default, but in some

studies, alternative settings r = 0.1, µ = 0.1 were also examined, to test the robust-

ness of the estimates to the choice of r and µ. Initial values for the parameters were 1

for variance parameters and 0 for fixed coefficients and random effects. Experimenta-

tion with different initial values for some sample datasets generated in these studies

showed that there was no dependence of the generated posterior distributions on the

initial values chosen. The choice of the number of samples using the Gibbs sampler,

including the number of “burn-in” samples, was made informally via examination of

trace plots for a few of the simulated datasets in each study. However, for some stud-

ies, as noted below, the number of samples was increased by 50 or 100% to determine

whether there was any change in the average (posterior) estimates. Unless otherwise

stated, the estimators from the Bayesian approach are the means of the respective

posterior distributions, however, in most cases the posterior medians are presented

as well, for reasons to be discussed.

1http://www.mrc-bsu.cam.ac.uk/bugs/classic/contents.shtml
2http://www.mathstat.helsinki.fi/openbugs/
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In recent years, the routine use of the Inverse Gamma prior as an “uninformative”

prior for a variance parameter has been questioned, and other diffuse priors have

been suggested. Gelman (2005) suggests the use of either a Uniform(0,A) prior on

the squareroot of the variance parameter (i.e. the standard deviation), or using a

prior in the “half-t” family. Preliminary investigations of these priors showed that

the Uniform prior fared more poorly with respect to bias than the Inverse Gamma

prior, with the results being highly dependent on the choice of the upper limit A.

(A report on one investigation is available from the author.) However, an alternative

“half-Cauchy” prior, from the half-t family, has been investigated for some of the

simulation studies here, where the prior distribution is

f(x;A) ∝
(

1 +
x

A2

)−1

.

BUGS code to implement this prior is given in the appendix of Gelman (2005). Two

arbitrary values of A, 3 and 30, were chosen, to examine the sensitivity of the results

to the setting of this parameter. These two priors are denoted HC(3) and HC(30)

respectively.

5.1.2.3 Quadrature

For GHQ approaches, SAS’s NLMIXED procedure (Wolfinger, 1999) was used. This

procedure implemented adaptive GHQ (AGHQ). By default, the NLMIXED procedure

automatically determines an “appropriate” number of quadrature points based on the

data. However, the user can also specify the number of quadrature points in the call to

NLMIXED. NLMIXED only allows for non-nested grouped data, and so could not be used

for a nested two-way classification model, such as used for the Rodriguez-Goldman

datasets examined in section 5.2.4. For these models, the software AML (Lillard &

Panis, 2003) was used, which implements standard (non-adaptive) quadrature.
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5.1.2.4 Other notes

As for simulation studies of previous chapters, the estimates of the variance parame-

ters were constrained to be positive, unless the variance parameter was a correlation

coefficient. This was required here anyway, since most of the software implementa-

tions above did not allow negative variance parameter estimates.

5.2 Simple comparisons

5.2.1 The Beitler-Landis dataset

We return to the Beitler & Landis (1985) dataset (3.9) given in section 3.1.7. As

already noted in section 3.1.7, there is a good level of agreement between the PQL

and AGHQ estimates (see Table 5.1). The test statistics for testing H0 : γ1 = 0

(last column of Table 5.1) are also remarkably similar between PQL and AGHQ.

However the Bayesian approach using BUGS gives very different estimates, and much

wider SEs. (Here, 20,000 iterations of the Gibbs sampler were used to calculate the

posterior distributions, after a 2,000 iteration burn-in. A IG(0.1,0.1) prior was also

tried, but resulted in negligible change to the estimates using the IG(.001,.001) prior.

Finally, an alternative HC(3) prior was also tried, but this resulted in a somewhat

higher posterior mean for γ1 of 3.565.

τ̂0 τ̂1 γ̂1 LRT
H0 : γ1 = 0

PQL (ASReml) -0.784 ± 0.537 0.724 ± 0.296 2.033 ± 1.250 50.4
AGHQ (NLMixed) -0.828 ± 0.533 0.739 ± 0.300 1.960 ± 1.190 55.4
Bayes (BUGS) -0.828 ± 0.636 0.753 ± 0.303 3.248 ± 2.751

Table 5.1: Estimates from the analysis of Beitler/Landis data (table 3.8, model 3.9)
using PQL, adaptive GHQ and Bayesian approaches.

An explanation for the difference between the Bayesian and the other estimates may

be found in the (estimated) profile likelihoods for γ1. The estimated profile likelihoods

for γ1 (Figure 5.1) using AGHQ, HG(0,1) (pβ(h)) and PQL likelihoods are reasonably

similar, with similar modes (AGHQ≈ 2.0, HG(0,1)≈2.3, PQL≈1.5). Each profile
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likelihood is relatively flat with respect to γ1 for values greater than the mode. Thus,

there is little change in the likelihood between the Bayesian estimate and the two

other estimates. The Bayesian estimates presented in Table 5.1 were the means of

the respective posterior distributions. The median of the posterior distribution for γ1

(2.44) was much more similar to the other non-Bayesian estimates. This median was

also consistent with the mode of the HG(1,2) likelihood (2.48) (for simplicity, this

profile likelihood is omitted from Figure 5.1).

In addition, the mode for the HG(0,1) likelihood, or HG(0,1) estimate, is greater (2.3)

than that for AGHQ (2.0). The difference between the two modes could be due to

the fact that HG(0,1) has an (approximate) REML-like correction in the likelihood

for γ, whereas AGHQ does not. If a non-REML HG(0,1) is used, with the REML-

like correction is omitted, as discussed in section 5.1.2.1, the mode of the non-REML

HG(0,1) likelihood is similar to the AGHQ mode (1.9). Also, note that the PQL

estimate of 2.03 is not the mode of the PQL profile likelihood (1.5), since the PQL

approach does not maximise its own likelihood. However, the PQL profile likelihood

has a similar shape to AGHQ likelihood, and so the LRT statistic calculated from

the PQL profile likelihood for testing H0 : γ1 = 0 in Table 5.1 is also similar to the

LRT statistic calculated from the AGHQ likelihood.

5.2.2 A paired binary simulation study

A paired binary example was used to compare the different GLMM approaches. As

discussed in chapter 3, the paired binary case is a well-known example where PQL

exhibits significant estimation biases, and so this was seen as a suitably challenging

comparison of the different approaches. A total of 200 simulated datasets was gen-

erated from the following model for data yij, i = 1 . . . 100, j = 1, 2, with conditional

mean µij = E(yij |ui):

logit(µij) = τ0 + τ1x1ij + τ2x2ij + ui, (5.1)
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Figure 5.1: Profile likelihoods of γ1 in the Landis-Beitler model (3.9) for AGHQ, PQL
and HG(0,1) approaches (AGHQ: solid; HG(0,1): dashed; PQL: dotted) (A constant
of 29 has been added to the PQL profile likelihood.)

and ui ∼ N(0, γ1), (τ0, τ1, τ2)T = (1.5, 1.0, 0.01)T , and γ1 = 2.25. Each of the co-

variates, x1ij = (i − 50.5) and x2ij = 2(j − 1.5), were centred, that is,
∑

i,j xkij = 0,

for k = 1, 2, and their values varied between and within pairs respectively. Each

of these 200 simulated datasets was analysed according to (5.1) using PQL, HGLM

approaches, Bayesian (BUGS) and AGHQ (NLMIXED) approaches, with the average

estimates from each approach presented in Table 5.2. For the Bayesian (BUGS) ap-

proach, 20,000 samples were generated to calculate the posterior distributions, after

a 2,000 iteration burn-in.

Of the 200 simulations, only 196 converged for Bayesian and AGHQ approaches (the

latter using the default NLMIXED calculation of quadrature points). For the other

four simulations, BUGS reported “sing error” and gave estimates of γ1 over 10,000.

Results are reported for the remaining 196 simulations. Of the HGLM approaches,

the HG(0,2), HG(2,2) and HG(1,1) approaches also had divergence problems with a

large number of simulated datasets (>10), where the estimates of γ1 greatly exceeded

the true value of 2.25, and so for brevity are omitted.

As expected from previous simulation studies, the PQL estimator for each of the
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parameters exhibited very large negative biases, especially for γ̂1. The biases for

the HG(0,1) estimators were also negative, but considerably smaller than PQL for

γ̂1. The Bayesian (posterior mean) and HG(1,2) estimators both had positive biases

for each of the parameters. For the Bayesian approaches, the median of the poste-

rior distribution had less positive bias than the posterior mean. Using an IG(0.1,

0.1) prior, instead of the default IG(.001, .001) prior, only exacerbated the positive

biases, and so are not presented. The use of either a HC(3) or HC(30) prior also

exacerbated the positive biases – for instance, for the HC(3) prior resulted in average

estimates for γ1 of 4.924±0.285 for the posterior mean and 3.997±0.222 for the pos-

terior median, with the HC(30) average estimates even higher still. Using a longer

Gibbs sampler chain was also investigated, but made little difference to the average

estimates, and so also are not presented. The default AGHQ estimator appeared

to be slightly negatively biased for γ1. Further investigation showed that NLMIXED

had used only 3 quadrature points for each dataset (as noted above in section 5.1.2,

NLMIXED automatically determines a suitable number of quadrature points to use).

Repeating the AGHQ analyses with 9 quadrature points for each dataset resulted in

non-trivial changes to the average estimates, indicating that the default choice of 3

quadrature points was too small. The use of non-REML versions of the HG(0,1) and

HG(1,2) approximations reduced the average estimate of γ1 for both HG(0,1) and

HG(1,2). These reductions in the average estimates lead to greater negative bias for

γ1 for the non-REML version of HG(0,1) than for the standard HG(0,1) approxima-

tion, but lower positive bias in the non-REML HG(1,2) approximation than for the

standard HG(1,2) approximation. The average HG(1,2) estimates were more similar

to the average Bayesian (posterior median) estimates than with the average AGHQ

estimates, whereas the average non-REML HG(1,2) estimates were more similar to

the average AGHQ estimates.

To illustrate some of the differences between the AGHQ estimates and the other

estimates for γ1, Figure 5.2 shows scatterplots of the 200 estimates of γ1 for PQL,

Bayesian, HG(1,2) and non-REML HG(1,2) approaches plotted against the corre-

sponding 200 AGHQ estimates. The scatterplot of the PQL vs AGHQ estimates (top
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γ1 (2.25) τ0 (1.5) τ1 (1) τ2 (0.01)

PQL 0.696 ± 0.021 1.157 ± 0.015 0.793 ± 0.012 0.008 ± 0.000

HG(0,1) 1.476 ± 0.075 1.213 ± 0.016 0.840 ± 0.013 0.008 ± 0.001

HG(0,1) (noREML) 1.062 ± 0.051 1.185 ± 0.015 0.815 ± 0.012 0.008 ± 0.000

Bayesian (mean) 4.375 ± 0.308 1.730 ± 0.040 1.157 ± 0.028 0.012 ± 0.001

Bayesian (median) 3.358 ± 0.238 1.659 ± 0.037 1.124 ± 0.026 0.011 ± 0.001

AGHQ (default) 2.171 ± 0.094 1.510 ± 0.024 1.031 ± 0.019 0.010 ± 0.001

AGHQ (points=9) 2.668 ± 0.133 1.577 ± 0.028 1.062 ± 0.020 0.011 ± 0.001

HG(1,2) 3.824 ± 0.174 1.798 ± 0.033 1.167 ± 0.024 0.012 ± 0.001

HG(1,2) (noREML) 2.774 ± 0.126 1.646 ± 0.028 1.083 ± 0.020 0.011 ± 0.001

Table 5.2: Average estimates (±SE) for 196 simulations from (5.1) using the PQL,
Bugs, AGHQ and HGLM approaches.

left in Figure 5.2) suggests that a non-linear correction to the PQL estimates would

be required to correct the PQL bias (assuming the AGHQ estimates represent the

“gold standard”), that is, the negative PQL bias appears to increase in magnitude

with the AGHQ estimate of γ1. The plots of the Bayesian (posterior mean) and

HG(1,2) estimates against AGHQ show that both the Bayesian and HG(1,2) esti-

mates increasingly diverge from the AGHQ estimates as the AGHQ estimate of γ1

increases. The non-REML HG(1,2) estimates appear to have good consistency with

the AGHQ estimates across the entire range of AGHQ estimates for γ1.

5.2.3 Further paired binary (and Poisson) simulation studies

A further paired data simulation study was performed, using a simpler design with no

covariates. Both Poisson and binary data were generated and analysed in this study.

A total of 200 datasets were simulated from the following model for the conditional

mean µij = E(yij |ui) of data yij , i = 1, . . . , 100, j = 1, 2,

g(µij) = τ0 + ui, (5.2)

where ui ∼ N(0, γ1). The link function g(·) was the logit and logarithmic link for

binary and Poisson data respectively. The settings τ0 = 0 and γ1 = 0.80 were

chosen. Each dataset was analysed using PQL (ASReml), Bayesian (BUGS), AGHQ

(NLMIXED), HG(1,1) and HG(1,2) approaches, along with non-REML versions of the
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Figure 5.2: AGHQ estimates of γ1 from 196 simulations of (5.1) versus those from
PQL, Bayesian (mean), HG(1,2) and HG(1,2) (no REML correction) approaches.
The one to one line is shown on each plot.

HG(1,1) and HG(1,2) approaches. For the Bayesian (BUGS) approach, 10,000 samples

were generated to calculate the posterior distributions, after a 1,000 iteration burn-in.

Average estimates for each approach are shown in Table 5.3. As for the previous

simulation study, the PQL estimator for γ1 showed strong negative bias in the binary

case, and also negative bias in the Poisson case, but to a much lesser extent than

the binary case. For the binary case, both the standard and non-REML HG(1,1)

estimators were also negatively biased for γ1, but these estimators showed little ap-

parent bias in the Poisson case. Both standard and non-REML HG(1,2) estimators,

by contrast, exhibited positive bias for γ1 in the binary case, but, like the HG(1,1)

estimators, had no apparent bias in the Poisson case. The AGHQ estimator was pos-

itively biased for γ1 in the binary case, though less so than the HG(1,2) estimators,

but had no apparent bias in the Poisson case.

For the binary case, the Bayesian estimator for γ1 (using an IG(0.001,0.001) prior)
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was also negatively biased. Increasing the number of samples of the Gibbs sampler

to 20,000 (with 2,000 sample burnin) had little effect on the average estimates. Using

an IG(0.1,0..1) prior instead resulted in some positive bias, although the median of

this posterior distribution did not appear to be biased. These biases were somewhat

surprising, and may suggest that the influence of the choice of prior is greater when

the variance parameter is relatively small. The use of a HC(3) or HC(30) prior also

resulted in positive biases – for instance, the average estimates for γ1 using the HC(3)

prior were 1.178±0.058 for the posterior mean and 0.990±0.055 for the posterior

median, with even higher average estimates using a HC(30) prior. An interesting

aspect of the results in this study is that, despite the large negative bias of the PQL

estimator of γ1 for the binary case study, it nevertheless had a lower MSE than the

AGHQ estimator of γ1, which can be readily seen by comparing the boxplots of the

200 estimates for each estimator presented in Figure 5.3. Other estimators for γ1 in

this study, such as the HG(1,2) estimators, also have a higher MSE than PQL. The

boxplots in Figure 5.3 also shows some skewness in the distribution of the AGHQ

estimates, perhaps explaining why the AGHQ estimator is positively biased. Callens

& Croux (2005) also showed that PQL performs better than AGHQ, with respect to

the MSE, across a range of parameter values in their simulation studies.

Binary Poisson
γ̂1 (0.80) τ̂0 (0) γ̂1 (0.80) τ̂0 (0)

PQL 0.354 ± 0.016 0.025 ± 0.011 0.671 ± 0.010 0.165 ± 0.008
HG(1,1) 0.526 ± 0.031 0.028 ± 0.012 0.796 ± 0.013 0.005 ± 0.009
HG(1,1) (no
REML)

0.469 ± 0.028 0.027 ± 0.012 0.780 ± 0.013 0.009 ± 0.009

Bayes IG(.001) 0.659 ± 0.028 0.027 ± 0.012 0.843 ± 0.014 0.000 ± 0.009
Bayes IG(0.1)
(mean)

1.032 ± 0.050 0.028 ± 0.013 0.844 ± 0.014 0.000 ± 0.009

Bayes IG(0.1)
(median)

0.844 ± 0.046 0.028 ± 0.012 0.818 ± 0.014 0.004 ± 0.009

HG(1,2) 1.184 ± 0.067 0.030 ± 0.013 0.822 ± 0.014 -0.002 ± 0.009
HG(1,2) (no
REML)

1.045 ± 0.061 0.030 ± 0.013 0.805 ± 0.014 0.003 ± 0.009

AGHQ 0.865 ± 0.046 0.028 ± 0.013 0.799 ± 0.013 0.008 ± 0.009

Table 5.3: Average estimates (±SE) for 200 simulated datasets from (5.2) using PQL,
Bayesian, AGHQ and HGLM approaches.
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Figure 5.3: Box plots of the estimates of γ1 for PQL and AGHQ for the binary logit
model in (5.2). The true value (γ1 = 0.80) is shown as a dotted line.

5.2.4 The Rodriguez-Goldman datasets

Rodriguez & Goldman (2001) analyse two datasets, from the 1987 National Survey of

Maternal Health in Guatemala, to illustrate the use of a variety of GLMM approaches.

Both datasets have a binary response with a multi-level structure; that is, data was

collected on children within families within communities, with a very low average

number of children per family (<2) in each. The binary response in the first dataset

recorded whether or not complete immunisation had been performed for the child,

and for the second dataset recorded whether or not modern prenatal care had been

used for the child. The first dataset consisted of records for each of 2159 children

within 1595 families within 161 communities, with the second dataset similarly having

2449 children within 1558 families within 160 communities. There were 15 and 21

covariates for the first and second datasets respectively. The list of covariates and the

estimates for different GLMM approaches are shown in Tables 2 and 3 of Rodriguez

& Goldman (2001).

For each dataset, the model for the conditional mean µijk = E(yijk|ui, vij) for the

kth child within the jth family within the ith community was

logit(µijk) = xTijkβ + u1i + u2ij , (5.3)
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where the vector xijk represents the set of covariates for the child, with associated

coefficients β, and u1i ∼ N(0, γC ) and u2ij ∼ N(0, γF ) were family and community

effects respectively. An analysis of these datasets was conducted using the HGLM

approaches, as well as verifying the PQL, GHQ (maximum likelihood) and Bayesian

(Gibbs) estimates that Rodriguez & Goldman (2001) present, using ASReml, AML and

BUGS respectively.

Results for the estimation of the variance components γF and γC for the two datasets

are shown in Table 5.4. Firstly, note that Rodriguez & Goldman (2001) presented

estimates of the standard deviations,
√
γF and

√
γC , whereas here estimates of the

variance components, γC and γF , are shown.

The PQL estimates generated from ASReml are equivalent to those in Rodriguez &

Goldman (2001), and took less than 1 second to produce for each model. The GHQ

results for the first dataset were reproduced exactly using AML with only 10 quadrature

points, whereas 20 points were required according to Rodriguez & Goldman (2001).

However, 20 quadrature points were required for the second dataset, as Rodriguez &

Goldman (2001) noted. The settings used for the BUGS analysis were as described in

Rodriguez & Goldman (2001), with an IG(.1,.1) prior used for both γC and γF , and

a total of 5,000 iterations of the Gibbs sampler after a 200 iteration burnin. Note

that the differences between the GHQ and Bayesian estimators reflect the lack of any

implicit REML-type correction in the former.

Since the datasets are moderately large, it is interesting to make some comparisons

in the time taken for each approach, also shown in Table 5.4. All timings shown here

were for Pentium II computer. The PQL approach in ASReml took less than 1 second

for each model. The GHQ approach were relatively fast as well, taking 13 seconds for

the first dataset. For the Bayesian approach, the time taken to fit the first dataset

was relatively modest (7 minutes), compared to the time quoted in Rodriguez &

Goldman (2001) (5 hours), suggesting that their criticisms regarding the slowness of

the Bayesian approach are somewhat outdated with advances in computational speed.

(For the second dataset, the time taken (12.5 minutes) is also for 5200 iterations,
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since increasing the number of iterations to 11000 resulted in negligible change to the

estimates.)

The HGLM estimators performed relatively poorly for these datasets compared to

Bayesian or GHQ approaches. For the first dataset, both the HG(0,1) and HG(1,1)

estimators of γF and γC appear to have significant negative bias (>50%) compared

with the Bayesian or GHQ approaches. This is probably to be expected, given the

large negative biases of the first order HGLM approaches for the variance param-

eters in the binary nested two-way classification model (section 4.2.2.2) when the

lower-level group size (children per family) was small . For the second dataset, the

HG(1,1) estimator for γF was strongly positively biased, even after removing the

REML correction. This is another case where the HG(1,1) estimator “diverges” to a

very large estimate, similar to the divergence seen for the one-way classification study

(4.5) where τ0 = 2. In addition, the HG(1,1) approach, as implemented in Fortran,

was relatively slow, possibly due to the two-stage numerical optimisation required,

in addition to a relatively large number of fixed effects being estimated. The second

order HGLM approaches fared no better, with none of these approaches achieving a

finite maximum to the likelihood for either dataset – that is, the second order approx-

imated likelihood psβ(h) increased monotonically with both γF and γC . One possible

explanation for this lack of a solution may be as follows. Based on the magnitudes of

the Bayesian and GHQ estimates, the “true” value of γF appears to be much larger

than γC for both datasets. In the nested two-way nested classification study of the

previous chapter (section 4.3.3.2), divergence of the second order HGLM estimators

was also apparent when the lower level variance component, γ2, was larger than the

higher level variance component, γ1. Therefore, the second order approaches may

be more prone to instability when the variance component at the lower level, γF in

this case, is relatively large compared to the higher level variance component, γc, as

appears to be the case for the both these datasets here. The profile likelihoods for

γF × γC for the first data for the GHQ and the non-REML HG(1,2) approaches are

provided in Figure 5.4. It shows that the profile likelihood for non-REML HG(1,2)

bears some resemblance to the “true” GHQ profile likelihood, with an apparent local
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minimum at the AML estimate (marked “X”).

In summary, the results are quite disappointing for both the first and second or-

der HGLM approaches, and the GHQ or Bayesian approaches both appeared to be

adequate with respect to computational speed.

Immunisation Pre-natal care
γF γC Run-time γF γC Run-time

PQL (ASReml) 0.584 0.335 <1 sec 1.640 0.787 1 sec
PQL2 3.063 0.706 - 7.563 2.924 -
PQLB (Kuk’s) 7.236 1.124 - 44.35 12.11 -
GHQ/ML (AML) 5.427 1.056 13 secs 53.85 13.76 77 secs
Bayesian (mean) 6.926 1.316 7 mins 104.7 28.68 12.5 mins
Bayesian (median) 6.587 1.256 ... 101.8 27.45 ...
HG(0,1) 1.27 0.57 17 secs 14.81 5.620 34 secs
HG(1,1) 1.62 0.61 3 mins 331.3 5.892 2 hr 20m
HG(1,1) (noREML) 214.0 5.109 ...
HG(1,2) NA – no maximum NA – no maximum

Table 5.4: Estimates of variance parameters for the Rodriguez & Goldman (2001)
datasets (5.3) using PQL, Bayesian, GHQ and HGLM approaches.
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Figure 5.4: Profile likelihoods for γF × γG from the GHQ and non-REML HG(1,2)
approaches for the first Rodriguez-Goldman dataset (5.3). The GHQ estimate is
shown as a cross in both. (Profile likelihoods were generated on a grid γF × γC =
(0.1, 0.6, . . . , 6.6)2 using the R contour function with default settings.)
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5.2.5 Simulation study using a “typical” RCBD

This simulation study used a randomised complete block design (RCBD), with set-

tings that may be similar to those in some agricultural experiments.

Data Yij, i = 1, . . . , b, j = 1, . . . , p were simulated with conditional mean µij =

E(yij |ui) where

g(µijk) = τt(i,j) + ui, (5.4)

The parameters τt = σtΦ
−1 ((t− 0.5) /p), t = 1, . . . , p, represented the “treatment”

effects, and the ui ∼ N (0, γ1) represented “block” effects. The data yij were generated

as either binary, Poisson or Binomial data (with a denominator of 4), with the link

functions g(·) being logit, logarithmic and logit link respectively. It was decided to

use b = 10 and p = 5, the number of “blocks” and “treatments” respectively, since

these might be considered somewhat typical of a small agricultural experiment. The

parameters σ2
t and γ1 were both arbitrarily set to 1. A total of 200 simulated datasets

were generated and analysed according to (5.4). In the analysis of each simulated

dataset, the “treatment” parameters τi were estimated as fixed parameters, whereas

the block parameters ui were estimated as random effects.

Note that, initially, a simulation study involving a split-plot design was planned, to

give a more challenging comparison between the different approaches. The split-plot

design is the equivalent of a nested two-way classification design (sections 3.1.4.2 and

4.2.2.2), but with additional fixed (treatment) effects. Such a design would have

required the use of a standard GHQ package such as AML, as NLMIXED cannot analyse

GLMMs with more than one level of random classification. Before proceeding with

such a simulation study, a few preliminary datasets were generated using a sample

split-plot design and analysed using the same model in AML. However, regardless

of the settings and the starting values chosen, it was not possible to get AML to

converge to a solution for any of these preliminary datasets. Note also that, even for

simulated datasets using the simpler RCBD design (5.4) above, convergence for GHQ

was only achievable if the ASReml estimates were used as starting values, and even
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then convergence was not always guaranteed. However, the AGHQ program NLMIXED

could be used for the RCBD design instead, and it was found that it always converged

for these datasets without the need of specifying good starting values. This exercise

highlighted the instability of the standard GHQ approach for some GLMMs, and the

advantage of using adaptive GHQ, as was already discussed in section 5.1.1.1.

Returning to the RCBD design (5.4), mean estimates for τ1, τ3, τ5 and γ1 for a range

of approaches are shown in Table 5.5. For the Poisson case, estimates for 3 of the

200 simulations did not converge for most approaches, and so were excluded. For

the binary case, both PQL and AGHQ were positively biased, with, surprisingly,

larger positive bias for AGHQ. For the Poisson and binomial cases, the estimation

biases for PQL and AGHQ were much smaller in magnitude, with some negative

bias apparent for both estimators in the Poisson case and no apparent bias for either

in the binomial case. For both Poisson and binomial cases, the average PQL and

AGHQ estimates were similar. Plotting the individual estimates from PQL against

the AGHQ estimates for the 200 simulated datasets (not shown) confirmed a very

high level of concordance between the two estimators. The smaller biases observed

here for PQL are in stark contrast to the large estimation biases observed in the

simulation studies of Chapter 3.

For the binomial and Poisson cases, the average estimates from Bayesian and HGLM

approaches are also presented. For the Bayesian approach, 5,000 samples of the Gibbs

sampler were taken, with a 1,000 sample burn-in (and an IG(0.001,0.001) prior for γ1,

as in previous studies). It was decided to only present the median of the posterior dis-

tributions in this case, since the posterior means displayed a greater degree of positive

bias. For the binomial case, both the Bayesian (median) and the HGLM approaches

gave positively biased estimators, similar to the paired binary example of section 5.2.2.

The use of other priors only exacerbated the positive bias for the Bayesian estimator:

for instance, using a HC(3) prior gave an average posterior median of 1.548±0.082 for

γ1. However, the non-REML versions of the HGLM approaches provided estimators

with no apparent bias for the binomial case, and similar to PQL and AGHQ. For the

174



Poisson case, however, both the Bayesian (median) and standard HGLM approaches

had no apparent negative bias, unlike the PQL and AGHQ estimators.

The relatively good performance of PQL here can probably be attributed to the

relatively small number of groups (blocks), and perhaps also to having a greater

number of fixed effects compared to the simulation studes in chapter 3, where large

negative estimation biases were observed. As seen in section 3.1.4.4, the negative

biases of PQL for binary GLMMs can be offset in designs with many fixed effects. The

reason why the inclusion of many fixed effects offsets the negative bias, and sometimes

leads to positive bias, may be related to the inconsistency of ML estimation in the

binary matched-paired problems where pair effects are fitted as fixed effects, as shown

in Andersen, 1973. Like the HGLM approaches, an implicit REML-like correction is

also incorporated in the PQL estimate. A non-REML version of the PQL approach

can also be used, as discussed in section 5.1.2.1, and also shown in Table 5.5 for the

Poisson and binomial cases. Comparison of the average PQL and non-REML PQL

estimates in Table 5.5 shows the large impact of the REML-like correction for PQL

in this case.

5.2.6 The Salamander dataset

The “salamander dataset” was originally presented in McCullagh & Nelder (1989) and

has become a standard dataset to test GLMM approaches. It has been presented and

analysed in, amongst many others, Drum & McCullagh (1993), Schall (1991), Bres-

low & Clayton (1993), Karim & Zeger (1992), Shun (1997) and Noh & Lee (2007). It

has attracted interest due to the crossed design which renders numerical integration

approaches such as GHQ impractical. In summary, the dataset consists of repeated

matings of female and male salamanders from two populations, Roughbutt (R) and

Whiteside (W). The dataset consists of three experiments, with one conducted in the

summer and the other two in following autumn. In each experiment, 10 salamanders

from each population and sex were used. The experimental design was such that

each salamander was mated with six salamanders of the opposite sex, being three
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τ̂1(-1.28) τ̂3(0) τ̂5 (1.28) γ̂1 (1)

Binary

PQL -1.571 ± 0.132 -0.116 ± 0.061 2.205 ± 0.203 1.486 ± 0.112

AGHQ -1.646 ± 0.193 1.453 ± 0.202 4.341 ± 0.367 2.358 ± 0.294

Poisson

PQL -1.370 ± 0.042 0.055 ± 0.026 1.352 ± 0.022 0.946 ± 0.041

AGHQ -1.433 ± 0.042 -0.008 ± 0.027 1.289 ± 0.023 0.931 ± 0.043

Bayesian (median) -1.575 ± 0.048 -0.042 ± 0.028 1.281 ± 0.024 1.162 ± 0.056

HG(1,1) -1.450 ± 0.042 -0.025 ± 0.027 1.272 ± 0.024 1.068 ± 0.051

HG(1,2) -1.452 ± 0.042 -0.027 ± 0.027 1.270 ± 0.024 1.086 ± 0.052

HG(1,1) (nonREML) -1.433 ± 0.042 -0.008 ± 0.027 1.289 ± 0.023 0.921 ± 0.043

HG(1,2) (nonREML) -1.435 ± 0.042 -0.009 ± 0.027 1.288 ± 0.023 0.934 ± 0.044

PQL (nonREML) -1.358 ± 0.042 0.068 ± 0.026 1.365 ± 0.022 0.823 ± 0.036

Binomial (denom=4)

PQL -1.259 ± 0.038 -0.011 ± 0.031 1.354 ± 0.034 1.084 ± 0.054

AGHQ -1.304 ± 0.039 -0.011 ± 0.032 1.405 ± 0.035 1.047 ± 0.060

Bayesian (median) -1.334 ± 0.041 -0.004 ± 0.033 1.451 ± 0.037 1.350 ± 0.081

HG(1,1) -1.321 ± 0.040 -0.010 ± 0.033 1.423 ± 0.036 1.303 ± 0.072

HG(1,2) -1.325 ± 0.040 -0.010 ± 0.033 1.428 ± 0.036 1.376 ± 0.076

HG(1,1) (nonREML) -1.303 ± 0.039 -0.011 ± 0.032 1.403 ± 0.035 1.048 ± 0.057

HG(1,2) (nonREML) -1.308 ± 0.040 -0.011 ± 0.032 1.408 ± 0.035 1.107 ± 0.060

PQL (nonREML) -1.248 ± 0.037 -0.011 ± 0.030 1.342 ± 0.034 0.924 ± 0.047

Table 5.5: Average estimates of τ̂1, τ̂3, τ̂5 and γ1 for 200 simulated datasets from an
RCBD design (5.4) using PQL, Bayesian, GHQ and HGLM approaches.

salamanders from each population. Each experiment comprised 120 observations,

and so there are a total of 360 observations in total. Further details on the design can

be obtained in McCullagh & Nelder (1989). The primary objective of the study was

to determine whether there were differences in mating success between the four pop-

ulation by sex combinations, allowing for differences between individual salamanders

in their mating success. Here, we use the dataset simply to demonstrate similarities

and differences between the estimates from Bayesian and HGLM approaches.

We follow Noh & Lee (2007) in presenting the results of both the summer (120

observations, 40 salamanders) and the pooled salamander dataset (360 observations,

120 salamanders). The model for the (conditional) probability of mating success µijk

between the ith female and jth male in experiment k is

logit (µijk) = τ0 + τ1xF ik + τ2xMjk + τ3xCijk + uF ik + uMjk, (5.5)

176



where xF ik = I(ith female of the kth experiment is Whitehead), xF ik = I(jth male

of the kth experiment is Whitehead), xCijk = xF ik × xMjk and I(·) is the indicator

function. The uF ik ∼ N(0, γF ) and uMjk ∼ N(0, γM ) are random effects pertaining

to the ith female and jth male in the kth experiment respectively.

Estimates from PQL, Bayesian and HGLM approaches are presented in Table 5.6.

For comparison, the MCEM estimates and estimates from Drum & McCullagh (1993)

(D&M) are taken from Noh & Lee (2007) for comparison. (Note that Noh & Lee

(2007) present the variance parameters as standard deviations, that is,
√
γF and

√
γM .) The MCEM estimates can be considered maximum likelihood (ML) estimates,

in place of GHQ estimates which cannot be obtained here due to the crossed design.

To demonstrate the influence of the prior distribution, four prior distributions have

been used, the Inverse Gamma priors IG(.001,0.001) and IG(0.1,0.1), and the Half

Cauchy priors HC(3) and HC(30). A total of 10,000 samples of the Gibbs sampler

were taken for each, with a 1,000 sample burn-in. Posterior medians are presented

in all cases. For both datasets, the PQL estimates of all parameters are consistently

lower than the rest. There is some variation in the Bayesian estimates between

the different priors, in particular there are higher estimates of all parameters for

the Half-Cauchy priors than Inverse Gamma priors. This is more evident for the

summer dataset, which is to be expected, since the choice of prior would have more

influence when there are fewer datapoints. For both datasets, the HG(1,2) estimates

are similar to the Bayesian estimates, and the HG(1,2) “non-REML” estimates are

similar to the MCEM estimates (the latter which are ML, not REML estimates, as

already indicated). The concordance of the HG(1,2) estimates with Bayesian and ML

estimates is similar to the concordance noted in the paired binary study in section

5.2.2.

Finally, it should also be noted that the HGLM estimates presented in Table 5.6

are different from the ones presented in Table 2 of Noh & Lee (2007), which can be

obtained from the (current) Genstat HGLM implementation. The latter estimates are

also shown in Table 5.6, marked (Noh/Lee). The difference between the estimates
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from the Fortran 90 implementation, which is used here, to the current Genstat

implementation has already been discussed in section 4.2.1.

τ̂0 τ̂1 τ̂2 τ̂3 γ̂F γ̂M
Summer

PQL 1.16 -2.57 -0.38 2.81 1.42 0.09
Bayes IG(.001) 1.40 -3.15 -0.44 3.51 2.40 0.052
Bayes IG(.1) 1.56 -3.44 -0.51 3.74 2.50 0.049
Bayes HC(3) 1.61 -3.63 -0.56 3.92 2.93 0.058
Bayes HC(30) 1.62 -3.67 -0.57 4.07 3.23 0.076
HG(1,1) 1.48 -3.26 -0.48 3.53 2.31 0.30
HG(1,2) 1.57 -3.45 -0.53 3.74 2.71 0.52
HG(1,1) (nonREML) 1.34 -2.94 -0.42 3.18 1.57 0.07
HG(1,2) (nonREML) 1.39 -3.07 -0.45 3.32 1.78 0.19
MCEM * 1.38 -3.04 -0.45 3.29 1.74 0.23
D&M * 1.42 -3.08 -0.47 3.30 1.69 0.34
HG(1,1) (Noh/Lee)* 1.45 -3.19 -0.48 3.48 2.22 0.25
HG(1,2) (Noh/Lee)* 1.39 -3.05 -0.42 3.25 1.77 0.22

Pooled
PQL 0.79 -2.29 -0.54 2.82 0.72 0.63
Bayes IG(.001) 1.05 -3.05 -0.073 3.75 1.55 1.38
Bayes IG(.1) 1.04 -3.03 -0.071 3.75 1.53 1.37
Bayes HC(3) 1.06 -3.10 -0.072 3.80 1.69 1.51
Bayes HC(30) 1.04 -3.08 -0.072 3.81 1.73 1.53
HG(1,1) 1.05 -3.01 -0.73 3.72 1.39 1.22
HG(1,2) 1.09 -3.15 -0.77 3.89 1.66 1.49
HG(1,1) (nonREML) 1.01 -2.90 -0.70 3.59 1.17 1.04
HG(1,2) (nonREML) 1.05 -3.03 -0.74 3.75 1.41 1.27
MCEM * 1.02 -2.96 -0.70 3.63 1.39 1.23
D&M * 1.06 -3.05 -0.72 3.77 1.66 1.49
HG(1,1) (Noh/Lee)* 1.04 -2.98 -0.74 3.71 1.37 1.21
HG(1,2) (Noh/Lee)* 1.02 -2.97 -0.72 3.66 1.39 1.21

Table 5.6: Estimates for the summer and pooled salamander datasets from model
(5.5) using PQL, Bayesian and HGLM approaches. The MCEM, D&M, HG(1,1)
(Noh/Lee) and HG(1,2) (Noh/Lee) estimates (starred) are taken from Noh & Lee
(2007).

5.3 A simulation study using spatially correlated errors

The modelling of spatially correlated data is an important application of GLMMs.

Several papers endorse the use of PQL for fitting GLMMs to spatially correlated
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data (e.g. Kneib & Fahrmeir (2004); Paciorek (2007); Ainsworth & Dean (2006)),

especially in comparison to Bayesian approaches. The simulation study presented

here compared a Bayesian implementation in the R function geoRglm (Christensen &

Ribeiro Jr., 2002) against PQL, as implemented in ASReml, for data generated using

a Matérn correlation function, as suggested by Stein (1999).

5.3.1 Methods

Data Yi ∼ Poisson(µi), i = 1 . . . 400, was generated on a 20×20 grid where

log(µi) = ηi = τ0 + S(ℓi), (5.6)

and ℓi denoted a two-dimensional location . The S(ℓi) represented a Gaussian process

with mean 0 and covariance function

cov (S(ℓi), S(ℓj)) = γ1ρ(dij) = γ1ρ(dij),

where dij =‖ ℓi − ℓj ‖ is the Euclidean distance between locations ℓi and ℓj. The

function ρ(·) was the Matérn correlation function with range γφ and smoothness γν

(also referred to as κ). When γν = 1.5, the Matérn correlation function is

ρ(d) =

(

1 +
d

γφ

)

e−d/γφ ,

which is shown in Figure 5.5b where γφ = 2.

The parameter settings chosen in this study used were τ0 = 0, γ1 = 1, γφ=2 and

γν = 1.5. A total of 200 simulated datasets were generated from model (5.6). Each

dataset was analysed according to the same model which generated the data, using

PQL as implemented in ASReml (version 1.63) and geoRglm (version 0.8-11). Since

the current version of geoRglm could not estimate the smoothness parameter γν , it

was fixed at γν = 1.5 in both the geoRglm and ASReml analyses. The fixing of the

smoothness parameter also removed the need to have some of the design points ℓi at
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closer proximities, which would have been required if the smoothness parameter was

to be estimated (Stein, 1999).

As well as comparing the two methods in the estimation of the parameters γφ,

γ1 and τ0, it was also deemed important to measure how well each method pre-

dicted the spatial trend and the coverage of 95% confidence intervals for the spa-

tial predictions. An additional 25 points ℓ401, . . . , ℓ425 were generated at positions

(0.5, 4.5, 8.5, 12.5, 16.5) × (0.5, 4.5, 8.5, 12.5, 16.5) as shown in Figure 5.5a. Let S =

(S(ℓ1), . . . , S(ℓ400))T , η = (η1, . . . , η400)T , S∗ = (S(ℓ401), . . . , S(ℓ425))T and η∗ =

(η401, . . . , η425)T . The “delta” method of Ainsworth & Dean (2006) was used for cal-

culating the standard errors and confidence intervals of the predicted trend η∗, and

is described in Appendix A.3.
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Figure 5.5: (a) The 20×20 grid of sampled locations (filled dots) and the 25 locations
to predict at (triangles) for the spatial case study (5.6) (b) the Matérn correlation
function with γφ = 2 and γν = 1.5.

5.3.1.1 Implementation of Bayesian approach using geoRGLM

The settings used for the R package geoRglm were chosen according to the recom-

mended settings specified in the geoRGLM documentation. Letting π(·) denote the

prior PDF for the relevant parameter, these settings were:
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• a uniform prior for τ0. (Note that this is different from the standard recom-

mendation for location parameters, which is a normal prior with zero mean and

very large variance.)

• a squared reciprocal prior for γφ, π(γφ) = 1/γ2
φ. This was also recommended in

Diggle et al. (2002).

• a scaled inverse chisquared prior for γ1,

π(γ1; ν, σ2) =

(

0.5σ2ν
)v/2

Γ(ν/2)

exp
(

−νσ2/2γ1

)

γ
1+ν/2
1

,

where ν and σ2 are the “degrees of freedom” and “scale” parameters respectively.

Settings of ν = σ2 = 1 were selected to obtain an uninformative prior.

• A burn-in of 10,000 samples was used. After the burn-in, another 100,000

samples were generated, but only every 1,000th sample was retained to estimate

the posterior distributions.

The geoRGLM package implemented the alternate use of random walk sampling of the

conditional distribution of γφ and Metropolis-Hastings sampling of the conditional

distribution of γ1. Sampling of S and τ0 was performed in a separate later stage.

The geoRglm documentation recommended acceptance rates are ∼23% for γφ and

∼60% for γ1. Preliminary analysis on a few simulated datasets was used to select

initial proposal variances for γφ and γ1 to achieve these recommended acceptance

rates, which were then used for all simulated datasets. However, it was found that the

acceptance rates still varied considerably between simulations, and so the proposal

variances were set separately for each simulated dataset, based on the acceptance

rate for the dataset obtained in the first run. For most simulated datasets, the final

acceptance rates were not too far away from the recommended rates (γφ: 0.253, SE

0.035; γ1: 0.656, SE 0.076). Mixing was relatively poor for some simulations, but this

appeared to be unrelated to the achieved acceptance rate.

Estimates and 95% confidence intervals for µ̂i, or Yi, were obtained from the poste-

rior distributions produced by geoRglm. The median, rather than the mean, of the
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posterior distribution was used as a point estimate, µ̂i.

It should be noted that geoRglm was very computationally intensive. The analysis for

each simulation took over 30 minutes to run, and required over 500MB RAM during

processing on a Pentium class computer. In contrast, PQL using ASReml took only

about 5 minutes per simulation, with 11MB RAM required during processing.

5.3.1.2 Estimation and prediction error

For both PQL and Bayesian approaches, two measures of error were determined,

denoted here as “estimation error” and “prediction error”. For each simulation, the

“estimation error” measured the average log-proportional error of predicting the un-

derlying trend µ∗i , i = 401 . . . 425, for each of the 25 additional points,

Estimation error =

√

√

√

√

1

25

425
∑

i=401

{

log

(

µ̂∗i
µ∗i

)}2

=

√

√

√

√

1

25

425
∑

i=401

{log (µ̂∗i )− log (µ∗i )}2.

A visual demonstration of this calculation for one simulation is shown in Figure 5.6.

The prediction error was defined similarly, but measured the error in predicting the

generated data Yi, i = 401, . . . , 425, and only for non-zero Yi,

Prediction error =

√

√

√

√

√

1
(

∑425
i=401 Ni

)

425
∑

i=401

Ni

{

log

(

Yi
µ̂∗i

)}2

=

√

√

√

√

√

1
(

∑425
i=401 Ni

)

425
∑

i=401

Ni {log (µ̂∗i )− log (Yi)}2,

where Ni = I(Yi > 0) and I(·) is the indicator function.

5.3.2 Results

Both methods gave similar average estimates of the parameters (Table 5.7). The use

of PQL resulted in some underestimation of the spatial variance γ1, whilst the use of

geoRglm resulted in some underestimation of the Matérn range, γφ. The two methods
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Figure 5.6: A scatterplot of the true rates, µi, against the predicted rates, µ̂400+i,
i = 1, . . . , 25, for PQL (left plot) and Bayesian (right plot) approaches, for the 25
additional points in one simulated dataset. The log-log scale is used in both plots. A
one-one line is also shown (solid). Observations where the true rate fell outside of its
respective 95% confidence interval are circled.
(The PQL estimates for this dataset were (γ̂φ, γ̂1, τ̂0)T = (1.81, 0.59, 0.23)T ,

with 58.4% estimation error, and the Bayesian estimates were (γ̂φ, γ̂1, τ̂0)T =
(1.82, 0.72, 0.15)T , with 58.7% estimation error. The achieved acceptance rates were
0.281 and 0.601 for γφ and γ1 respectively.)

were very similar in both the average estimation and prediction errors. The similarity

between the PQL and Bayesian predictions of µ̂i can be seen in Figure 5.6 for one

simulated dataset. The coverage of the prediction intervals for PQL, however, tended

to be conservative.

γ1 (1) γφ (2) Error(%) Coverage
Est (RMSE) Est (RMSE) Est Pred Est Pred

PQL (ASReml) 0.94 (0.064) 2.01 (0.037) 42.8 71 99 97
Bayesian (geoRGLM) 1.02 (0.036) 1.91 (0.095) 42.5 75 95 68

Table 5.7: Average estimates of parameters (RMSE in brackets), average estimation
and prediction errors, and true coverage rates of the 95% confidence intervals of the
rates µi and realized values yi for PQL and Bayesian approaches for the spatial case
study (5.6).
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5.4 A “real-life” dataset with an ordinal response

A supplementary study is presented here, examining the performance of the PQL

approach in the analysis of a “real-life” ordinal disease dataset with spatial correlation

and the use of an XFA factor analytic variance structure (Thompson et al., 2003).

One aim of this study was to examine PQL estimation biases associated with ordinal

data for a “real-life” design, and compare them to the estimation biases observed for

PQL in earlier studies. A supplementary objective was to examine the use of the

(first order) Laplace approximation for hypothesis testing of variance parameters, in

combination with PQL estimation, as a follow-up to the study in chapter 3 (section

3.2.1).

5.4.1 Description of the dataset

The dataset was kindly provided by Steven Harden, biometrician at NSW DPI, Tam-

worth. The data arise from a chickpea variety trial conducted using three standard

varieties (Howzat, Jimbour and Tyson) and 179 new varieties. During the course of

the trial phytophera root damage was visually assessed on four occasions for each plot.

The objective is to rate the chickpea varieties in their susceptibility to phytophera

disease.

The trial area consisted of a 24×40 grid of plots divided into 4 replicates of 6×40

plots as shown in Figure . The three standard varieties (Howzat, Jimbour and Tyson),

were replicated 77, 80 and 141 times respectively, and the remaining 179 varieties were

replicated between 2 and 4 times. Phytophera damage was visually assessed on a 9

point scale where 1=no damage, 3=0-10% dead, 5=20-40% dead, 7=60-80% dead,

9= all plants dead (2,4,6,8 were intermediary values). Some missing values were also

present due to misadventure.

184



 Rep 1  Rep 2  Rep 3  Rep 4 

Figure 5.7: Design of the phytophera trial. A 24×40 grid of plots was divided into
4 replicates each of 6×40 plots as shown.

5.4.2 Analysis of the “real-life” dataset

5.4.2.1 Methods

For simplicity, an analysis of the first measurement in time is conducted.

Using the framework for accounting for natural spatial variation in field trials set out

in Gilmour et al. (1997), a suitable model for a normally distributed response ψij for

the ith, jth plot would be

ψij = τ0 + uV m(i,j) + uRn(i,j) + S (ℓij) + uOij (5.7)

where variety, replicate and unit effects are assumed to be random, that is, uV m ∼

N(0, γv), m = 1, . . . , 182, uRn ∼ N(0, γr), n = 1, . . . , 4 and uOij ∼ N(0, γu). The

term S (ℓij) represents a Gaussian process at location ℓij having a separable auto-
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regressive correlation structure in each direction, that is,

cov {S (ℓij) , S (ℓkl)} = γSγ
|j−l|
ρR γ

|k−i|
ρC ,

where γS is the spatial variance, and γρR and γρC are the spatial correlations along

rows and columns respectively. The addition of uoij allows for non-spatial variation,

such as measurement error. A natural extension of this model to the ordinal case is

to assume the ordinal response represents grouped normal data. That is, there is a

latent normally distributed variable ψij with expectation, without loss of generality,

E
(

ψij |τ0, uV m(i,j), uRn(i,j), S (ℓij) , uOij
)

= uV m(i,j) + uRn(i,j) + S (ℓij) + uOij

and a residual variance of 1. An ordinal response yij can been generated by cate-

gorising ψij using cut-points τ1, τ2, . . . , τ8, that is,

yij = 1 +
∑

k

I(ψij > τk),

and so the ordinal response falls in one of nine ordered classes, yij ∈ {1, . . . , 9}. If this

generation model is assumed, an ordinal-probit model for yij is appropriate, where the

model for the cumulative probabilities µijk = P (yij ≤ k|uvm(i,j), urn(i,j), S(ℓij), uoij),

k = 1, . . . , 8, is

Φ−1 (µijk) = τk − uV m(i,j) − uRn(i,j) − S (ℓij) . (5.8)

Note that the uoij term has now been removed from this model, since it is completely

confounded with the residual variation and cannot be estimated. In the absense

of software to fit the ordinal mixed model (5.8), the equivalent normal linear mixed

model (5.7) may be adequate, especially as the number of levels in the ordinal response

increases. The fitting a normal linear mixed model to an ordinal response treats

the ordinal classes {1,. . .,9} as numerical scores, or otherwise equidistant. As an

interesting aside, it was decided to fit the normal linear mixed model (5.7), as well as

the ordinal model (5.8), to the ordinal response to determine if there is any difference
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in this particular case.

The ordinal model (5.8) above assumes the cutpoints τk are invariant with respect

to the other factors in the model. This assumption could be relaxed, although the

interpretation of the ordinal data as grouped normal data would no longer hold. One

possible extension is to assume that the cutpoints vary between varieties in some

systematic way, so extending 5.8 as

Φ−1 (µijk) = τk − uRn(i,j) − uV km(i,j) − S (ℓij) , (5.9)

where uV km ∼ N(0, γvt) are random cutpoints for each variety. To impose a system-

atic constraint on the uV km effects, a first order factor-analytic structure was used

(Thompson et al., 2003), that is,

uV km = λku
∗
Vm,

where λk are the factor loadings, and represent variance components to be estimated,

and u∗vm ∼ N(0, 1). In order to determine whether there was a significant improve-

ment in the likelihood between models (5.8) and (5.9), a likelihood ratio test (LRT)

was conducted, using the first-order Laplace approximation of the likelihood calcu-

lated at the PQL estimates of each model. The formulae to determine the first order

Laplace approximation for each model is given in Appendix A.4. The use of a first or-

der Laplace approximation, in conjunction with PQL estimation for testing variance

components, has already been shown to give conservative tests for a one-way classi-

fication model in section 3.2.1. The null distribution of the Laplace approximation

will be determined in the simulation study below.

All models were fitted using the beta version of ASReml version 3, which can fit

ordinal models. More information about the use of factor analytic structures to

parsimoniously parametrize variance structures is given in Thompson et al. (2003).
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5.4.2.2 Results

The results for fitting the normal (5.7) and ordinal (5.8) models are shown in table

5.8. The estimates of the variance components are not directly comparable, being on

different scales. However, there is a reasonable level of consistency in the estimates

of the spatial correlations γρR and γρC between the two models. In addition, the

ratio of the variance component over its estimated standard error (shown in brack-

ets, also produced in ASReml) is also reasonably consistent between both models for

all parameters. The additional measurement error in the ordinal scoring process is

effectively absorbed as the measurement error variance γu in the normal model. So it

appears that the treatment of the ordinal data as equidistant scores, as assumed by

fitting a normal linear mixed model (5.7) to the data, may not to be an unreasonable

assumption in this example. However, in general, the use of a normal linear mixed

model for fitting ordinal score data is a dangerous practise and should be not con-

doned, especially when the scores regularly take high or low values, since the model

does not allow for non-linearity or variance heterogeneity.

The deviance for the ordinal model (5.8), −2
∑

i,j log(µ̂ijyij), is 2197.7 with 950 de-

grees of freedom, suggesting the possibility of some lack of fit. The estimates for the

alternative ordinal model (5.9) are also shown in Table 5.8. The alternative ordinal

model (5.9) gives similar estimates of the replicate and spatial variance parameters as

the original ordinal model (5.8). The estimates of the factor loadings λk, k = 1, . . . , 8,

(Table 5.9) shown an almost linear decline with cutoff k. The deviance for (5.9) is

2110.07 , a reduction of 77.7 from (5.8). The calculation of the first order Laplace

likelihood for each model, using the calculations given in Appendix A.4, also sug-

gested the inclusion of the cutoff by variety interaction was highly significant, with a

likelihood ratio test statistic of 2× (−1413.6 − (−1459.4)) = 91.6.

5.4.3 Simulation study

A simulation study was conducted using the ordinal model (5.8) as the design, with

true parameter settings being the PQL estimates in Table 5.8. The objectives of
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γR γV γS γρR γρC
Normal (5.7) 0.54 (1.08) 1.32 (7.51) 0.44 (3.90) 0.70 (6.51) 0.88 (19.5)
Ordinal (5.8) 0.23 (0.80) 2.19 (7.53) 0.58 (2.69) 0.84 (11.2) 0.94 (33.7)
Ordinal FA (5.9) 0.41 (0.96) – 0.50 (2.94) 0.77 (8.13) 0.92 (29.6)

γu
Normal (5.7) 1.01 (14.6)
Ordinal (5.8) –
Ordinal FA (5.9) –

Table 5.8: Estimates of variance components from fitting models (5.7), (5.8) and
(5.9) to the phytophera dataset using PQL. The ratio of the estimate divided by its
SE, also reported in ASReml, is shown in brackets.

λ1 λ2 λ3 λ4

2.38 (14.17) 1.58 (13.45) 1.15 (12.50) 0.86 (13.02)
λ5 λ6 λ7 λ8

0.57 (7.19) 0.45 (4.59) 0.14 (1.18) -0.16 (-0.90)

Table 5.9: Estimates of the variance components λi, i = 1, . . . , 8, associated with
the factor-analytic ordinal model (5.9) to the phytophera data using PQL. The ratio
of the estimate divided by its SE, also reported in ASReml, is shown in brackets.

the simulation study were two-fold. The first objective was to examine estimation

biases associated with this ordinal model and design, and compare them to the PQL

estimation biases in previous studies. The second objective was to determine the

null distribution of the likelihood ratio test (LRT), generated using the first order

Laplace approximation, for testing the alternative ordinal model (5.9) against the

ordinal model (5.8) from which the data was generated. Model (5.8) can be viewed

as a nested version of (5.9) where all the factor loadings are equal, λk =
√
γV , and,

since there are no constraints on the λk in (5.9), the LRT here should approximate a

χ2
7 distribution.

A total of 500 datasets were generated from model (5.8) and analysed using PQL with

the uoij removed, since the estimate of γo was 0. For comparison of the estimation

biases, simulated data Yij ∼ Binomial(m,µij) was generated using an equivalent

model for µij,

logit(µij) = vv(i,j) + rr(i,j) + S(ℓij) (5.10)

and where the denominator m was either 4 or 32. In contrast to previous simulation
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studies reported in this thesis, PQL (as implemented currently in ASReml) did exhibit

some dependence on the starting values for some simulated datasets, especially for

the spatial correlation parameters, γρR and γρC , which tended to hit the boundary at

1 whenever poor starting values were chosen, with the corresponding spatial variance

γS going to infinity. To maximise the convergence rate, it was decided to use starting

values of γρR = γρC = 0.8 for the spatial correlation parameters, λi = 1.0, i = 1, . . . , 8

for the XFA parameters, and γV = γR = 0.1 for the other two variance parameters. In

addition, to also improve convergence, a “!step 0.01” qualifier was used in ASReml

to reduce the update step sizes for the first few iterations. For the ordinal simulations,

convergence was determined on the basis of change of the parameter values from the

previous iteration, as reported by ASReml – only 432 of the 500 simulations where

the combined change of parameter values was <10% were retained.

5.4.3.1 Estimation biases

Table 5.10 shows the average estimates of the variance components for the ordinal

and binomial models. There is some estimation biases for the ordinal model, but less

than for the binomial model with a denominator of m = 4. Estimation biases for

γR and γV for all three models were negative, which is as expected from the results

of previous simulation studies in this thesis. In contrast, estimation biases for the

components associated with the spatial trend, γS , γρR and γρC , tended to be positively

biased. The estimates for the spatial variance γS are somewhat positively biased for

the ordinal models due to the convergence problem with spatial correlations γρR and

γρC noted above (estimates for the binary m = 4 model are also affected, resulting in

apparently lower bias for the spatial parameters than for the m = 32 model). This

positive bias thus resulted from a problem with the default modified Fisher scoring

algorithm implemented in ASReml, rather than a problem with PQL – possibly, the

use of EM updates of the spatial parameters would have removed this convergence

problem, but this was not tested.
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γR (0.23) γV (2.19) γS (0.58) γρR (0.84) γρC (0.94)
Ordinal 0.203±0.011 1.951±0.015 1.021±0.161 0.839±0.005 0.935±0.003
Bin (4) 0.189±0.009 1.525±0.008 0.589±0.052 0.849±0.003 0.942±0.001
Bin (32) 0.223±0.010 1.934±0.009 0.555±0.006 0.834±0.001 0.934±0.001

Table 5.10: Average estimates of variance components from 500 simulations from the
ordinal model (5.8) and the corresponding binomial model (5.10) with denominator
m = 4 and 32 respectively.

5.4.3.2 Use of Laplace approximation with PQL estimation for an ap-

proximate LRT

As noted above, the second aim of the simulation study was to determine the null

distribution of the (first order) Laplace approximation using the PQL estimates, for

testing the alternative ordinal model (5.9) against the generative ordinal model (5.8).

The details of the calculation of the Laplace approximation for each model is given

in the Appendix A.4.

Using the 431 simulations which “converged”, the distribution of the LRT was very

similar to a χ2
7 distribution, as shown by the quantiles in Table 5.11.

Mean 5% 25% 50% 75% 95%
Laplace LRT 6.846 1.881 3.96 5.805 8.234 14.18
True χ2

7 7 2.167 4.255 6.346 9.037 14.07

Table 5.11: Mean and sample quantiles of the Laplace approximated LRT compared
against the corresponding true quantities for a χ2

7 distribution.

5.5 Discussion

The studies in this chapter show that, with respect to estimation biases, the relative

performance of the approximate likelihood approaches against two prominent alter-

native approaches, Bayesian and GHQ approaches, was mixed. However, there are

some interesting trends and issues revealed by these case studies.

Firstly, we summarise the relative performance of the different approaches for each

case study in turn. For the paired binary simulation study (section 5.2.2), the sec-

ond order HGLM approaches performed as well as Bayesian and AGHQ approaches,
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and PQL performed poorly as expected. For the extra paired binary and Poisson

examples (section 5.2.3), where the variance component was smaller, some negative

estimation bias for the Bayesian approach was also found.. In this case, the variance

of the AGHQ estimator was higher than PQL, and it consequently had a larger MSE,

despite the estimation bias of PQL. For the Rodriguez/Goldman examples (section

5.2.4), the Bayesian and GHQ estimators clearly performed better than either PQL

or HGLM approaches, with the HGLM approaches performing especially poorly, with

no finite maximum found using the second order approaches. However, for the spa-

tial case study (section 5.3), the PQL approach performed as equally well as the

Bayesian geoRglm approach with much smaller computational requirements. And for

the RCBD case study, PQL surprisingly performed equally well as for the AGHQ

approach, despite the poor performance of PQL demonstrated in chapter 3, and the

HGLM and Bayesian approaches showed some positive biases.

Apart from the expected estimation bias problems for the other studies, PQL per-

formed well for the Landis case study, the spatial case study and the RCBD simulation

study. For the Landis dataset (section 5.2.1), the group (clinic) sizes were relatively

large and there was a small number of groups (clinics), both of which conditions me-

diated towards lower biases, compared to simulation studies in Chapter 3 and other

studies of this chapter. For the spatial case study (section 5.3), there was some bias

observable for one of the variance parameters, but the Bayesian approach also suf-

fered from similar estimation bias as well. Finally, for the RCBD study (section 5.2.5),

where, like the Landis dataset, the group size was not too small and the number of

groups small, the PQL approach gave very similar estimates to the GHQ approach.

This similarity was perhaps somewhat of a fluke, since it appears that the positive

correction to the estimates from using the REML-like correction in PQL offset the

negative bias of the PQL approach in this case, as can be seen by comparing to the

non-REML PQL estimators. Nevertheless, PQL performed relatively well in this sim-

ulation study compared to the other approaches, regardless of whether a REML-like

correction was used or not. For the ordinal case study (section 5.4), PQL estima-

tion biases were not severe either, and the use of a Laplace approximation to enable
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likelihood-ratio testing of variance parameters appears promising.

The performance of the HGLM approaches was somewhat disappointing in these

studies. As noted above, the second order approaches performed well for the first

paired binary simulation study (section 5.2.2), but quite as well in the second paired

study (section 5.2.3). The divergence problem for the Rodriguez-Goldman datasets

for the second order approaches was disappointing.

It was interesting to note the concordance between the (second order) HGLM and

Bayesian estimators of the variance components in both the first paired binary sim-

ulation study (section 5.2.2) and in the RCBD example (section 5.2.5). Similarly,

there was a concordance between the non-REML (second order) HGLM estimators

and GHQ estimators in both studies. The non-REML and GHQ estimators, which

don’t include a REML-like correction, performed better in both studies than the stan-

dard HGLM or Bayesian approaches. This possibly suggests that the generalization

of a REML-like correction to GLMMs may lead to overcorrection of the biases for the

variance parameters.
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Chapter 6

Conclusions

Examples of non-normal data with clustering or other sources of correlation are abun-

dant in the agricultural and biological sciences. GLMMs offer an appealing way of

modelling multiple sources of clustering and correlation for non-normal data in a

probabilistic framework, unlike marginal approaches such as GEEs (section 1.4.3.1).

One disadvantage of the GLMM framework is the assumption of normally distributed

random effects, however the normality assumption is probably a sensible choice as a

default distribution for random effects, since the random effects are on the scale of the

linear predictor, unless the data provides sufficient evidence otherwise. Alternatives

to the normality assumption include the generalisation to non-normal random effects

as in the HGLMs of Lee & Nelder (1996) or using a nonparametric distribution for the

random effects, like Aitkin (1999). However, Aitkin’s approach removes the ability to

make predictions involving the random effects, which can be important, especially for

estimating spatial trends. Therefore, GLMMs have some appealing advantages over

competing techniques for modelling clustering and correlation for non-normal data.

The intractability of the expression for the GLMM likelihood (section 1.4.2) has moti-

vated a variety of alternative approaches for inference. In this thesis, these approaches

have broadly been divided into approximate likelihood approaches (section 2.1), in-

cluding PQL and the HGLM approaches, and other approaches, of which the most

prominent are Bayesian approaches (section 2.3.2) and Gauss-Hermite quadrature
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(GHQ, section 2.2).

The most well-known approximate likelihood approach is penalized quasi-likelihood

(PQL). The main appeal of the PQL approach, and one that is often re-iterated in

the literature, is that it can fit virtually any type of GLMM with relatively light com-

putational requirements. (However, as indicated in the computational issues of the

HGLM (section 4.2.1), it is necessary that sparse matrix techniques are employed for

PQL to have light computational requirements for larger models.) However, PQL can

suffer from severe estimation biases, as demonstrated in previous literature and re-

viewed in the simulations of Chapter 3. This was particularly true for binary GLMMs,

confirming results of previous literature, but was also found for sparse Poisson data

with low average rates, the latter which have been less explored. Estimation biases

were generally much larger in magnitude for the variance components than for the

fixed effects. However, fixed effects and variance components which are “orthogonal”

to the random effects, such as fixed effects corresponding to covariates varying within

groups (e.g. β1 in the model of section 3.1.4.1) and correlation parameters (e.g. ρ

in the correlated AR model of section 3.1.5.2), may be subject to less bias. Despite

the estimation bias problems, the simulation studies of section 3.2.2 suggest PQL

performs adequately for hypothesis testing of fixed effects when the null hypothesis is

a zero effect (which is the null hypothesis most commonly of interest). PQL can also

be used to test variance components if the (first order) Laplace approximation is com-

puted, however the test is expected to be generally conservative since the estimation

biases for variance components are generally negative (section 3.2.1). Despite this

conservativeness, it is recommended that PQL applications calculate and produce

the (first order) Laplace approximation to allow the user to conduct approximate

testing of variance components.

The HGLM approach of Lee and Nelder (chapter 4) is another prominent approxi-

mate likelihood approach. Its proponents claim it admits the best of both worlds, in

reducing the estimation biases suffered by PQL whilst enjoying the relatively light

computational requirements of PQL. Simulation studies in section 4.2.2 showed the

195



first order HGLM approaches did have lower magnitudes of estimation bias compared

to PQL, and appeared to provide adequate estimators, that is estimators with min-

imal estimation bias, for sparse Poisson data and for the fixed coefficients of binary

models. One important advantage of using the first order HGLM approaches, com-

pared to PQL, was that the estimation biases did not increase with the magnitude

of the variance components. However, for binary data with proportions well away

from 0.5, the HGLM first order estimators were unstable, and diverged for many of

the simulated datasets, that is, converged to unusually high values. Some intuitive

arguments in section 4.2.4 suggest that these divergence problems may be restricted

to binary GLMMs, or perhaps binomial GLMMs with small denominators. Since the

use of first order HGLM approaches resulted in non-trivial estimation biases for the

variance components in binary models, second order HGLM approaches were exam-

ined. Further simulation studies (section 4.3.1) showed that the use of second order

HGLM approaches generally resulted in small estimation bias for the variance param-

eters in the binary one-way classification, but there were still some estimation biases

for the nested two-way classification, with instability and divergence also a problem.

Both the PQL and the HGLM approaches are compared with Bayesian and GHQ

approaches for studies in chapter 5. The relative performance of PQL and HGLM

approaches is mixed. For the infamous Rodriguez-Goldman dataset (section 5.2.4)

both PQL and HGLM approaches performed badly. However, for the other case

studies, the approximate likelihood techniques performed reasonably well. The second

order HGLM approaches had little or no bias in the paired binary study (section

5.2.2). Although the PQL approach incurred non-trivial estimation bias for the extra

paired binary and Poisson examples (section 5.2.3), it performed better with respect

to the MSE than GHQ for these examples. PQL also performed very well for the

RCBD simulation study (section 5.2.5) relative to GHQ and Bayesian approaches.

In some of these case studies, for instance, the paired binary study of section 5.2.2,

both the Bayesian and HGLM estimators of the variance component were positively

biased, whereas the GHQ estimator, and the non-REML HGLM estimator, was not.

This may suggest that a generalization of REML to non-normal models may not work
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well in general.

Some broad recommendations on the use of approximate likelihood approaches will

be ventured. It is clear that approximate likelihood techniques will probably be

less suitable for GLMMs where estimation of the variance components is the main

interest, especially in cases where estimation bias issues are likely to be prominent.

The most obvious application where estimation of variance components is important

is in quantitative genetics or breeding studies, where the variance components are

required to estimate heritability of traits in populations. Although the use of HGLM

approaches can significantly reduce the biases, they could be prone to instability for

binary GLMMs as shown in the studies of chapters 4 and 5.

Where prediction of random effects is the main interest, such as in spatial modelling,

estimation biases may also be a problem. In the spatial case study of section 5.3,

however, PQL performed well with respect to prediction error against a much more

computationally intensive Bayesian approach. In many agricultural studies, especially

data arising from designed experiments, the fixed effects are often of most interest,

representing, for instance, the treatment factors in the study. Since PQL appears

to be adequate for the hypothesis testing of fixed effects, it is probably adequate for

detecting treatment differences and contrasts in data from designed experiments.

Note that the studies in this thesis only examined the most prominent GLMM ap-

proaches, PQL, HGLM approaches, GHQ and Bayesian approaches. Other GLMM

approaches may be no less worthy of attention, but were not examined here, particu-

larly because little “off the shelf” implementations of these were available. However,

many GLMM approaches simply cannot fit the broad range of GLMMs that ap-

proximate approaches like PQL can. In particular, a number of relatively new and

promising approaches have not been explored, , such as the stochastic EM approach

of Delyon et al. (1999) and the quasi-Monte Carlo (QMC) approach ( Pan & Thomp-

son, 2000, Kuo et al., 2008). . They both are Monte Carlo based approaches, and so

would not appear to be prone to estimation bias problems that approximate likeli-

hood approaches have, but appear to require lighter computational requirements than
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standard Monte Carlo approaches. In addition, instability problems with the second

order HGLM approach could be alleviated by using an even higher order Laplace

approximation, such as in Raudenbush et al. (2000). Finally, one could pursue hy-

brid approaches, using a combination of the Laplace approximation and Monte Carlo

approaches, such as described in Kuk (1999) or Lai & Shih (2003).

This thesis has concentrated on estimation methods for GLMMs. Other important

issues relevant for the application of GLMMs to applied work have not been inves-

tigated, such as model fitting and diagnostics. Extensions to GLMMs, such as the

HGLM and DHGLM models discussed in Lee & Nelder (2006), or a factor analytical

extension to GLMMs called GLLAMMs, were outside the scope of this thesis but

appear to be also very useful extensions and worthy of further investigation.
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Appendix A

Appendix

A.1 Expressions for implicit differentiation

The following uses the notation of section 4.2.3.

Since no closed form expression for ũτ,γ is available, the derivatives ∂ũτ,γ/∂τ and

∂ũτ,γ/∂γ are obtained using implicit differentiation. In the following, ũ = ũτ,γ .

Knowing that

0 =
∂h

∂u

∣

∣

∣

∣

ũ

=
∑

(yi − µ̃i)zi −G−1ũ

and µ̃i = µi |ũ, then

0 =
∂2h

∂u∂τj

∣

∣

∣

∣

∣

ũ

= −ZTW̃ (xj +Z
∂ũ

∂τj
)−G−1 ∂ũ

∂τj
,

where xj is the jth column of X and so

∂ũ

∂τj
= −

(

ZTW̃Z +G−1
)−1

ZTW̃xj.
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Assuming G = G(γ), then

0 =
∂2h

∂u∂γj

∣

∣

∣

∣

∣

ũ

= −ZTW̃Z
∂ũ

∂γj
−G−1 ∂ũ

∂γj
+G−1 ∂G

∂γj
G−1ũ,

and so

∂ũ

∂γj
=
(

ZTW̃Z +G−1
)−1

G−1 ∂G

∂γj
G−1ũ.

A.2 The second order Laplace approximation of an in-

tegral

The second order Laplace approximation will be derived for a univariate integral for

simplicity.

A.2.1 Higher order Laplace approximations for a univariate integral

As in section 1.3.2.1, the integral to be approximated is
∫∞
−∞ exp {g(x)} dx.

A Taylor series expansion around the mode of g(x), x̂, gives

∫ ∞

−∞
exp {g(x)} dx

≈
∫ ∞

−∞
exp

{

g(x̂) + g′(x̂)(x− x̂) + g′′(x̂)(x− x̂)2/2 +
∞
∑

i=3

g(i)(x)(x− x̂)i/i!

}

dx

= exp {g(x̂)}
∫ ∞

−∞
exp

{

g′′(x̂)(x− x̂)2/2
}

exp

{

∞
∑

i=3

g(i)(x̂)(x− x̂)i/i!

}

dx

where g(i)(x̂) = ∂ig/dxi
∣

∣

x=x̂, i = 3, . . . are the higher order derivatives of g evaluated

at x̂, and g′(x̂) = 0 since x̂ is the mode. Using

exp

{

∞
∑

i=3

g(i)(x̂)(x− x̂)i/i!

}

≈ 1 +
∞
∑

i=3

g(i)(x̂)(x− x̂)i/i! +

(

∞
∑

i=3

g(i)(x̂)(x− x̂)i/i!

)2

/2,
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the expression becomes

. . . ≈ exp {g(x̂)}
∫ ∞

−∞
exp

{

g′′(x̂)(x− x̂)2/2
}

+ exp
{

g′′(x̂)(x− x̂)2/2
}

{

G(3+)(x) +
[

G(3+)(x)
]2
/2

}

dx

where

G(3+)(x) =
∞
∑

i=3

g(i)(x̂)(x− x̂)i/i!.

Substituting
∫ ∞

−∞
exp

{

g′′(x̂)(x− x̂)2/2
}

dx =

√

2π

−g′′(x̂)

gives

. . . = exp {g(x̂)}
√

2π

g′′(x̂)


1 +

∫ ∞

−∞

√

−g′′(x̂)

2π
eg
′′(x̂)(x−x̂)2/2

{

G(3+)(x) +
[

G(3+)(x)
]2
/2

}

dx





The terms remaining within the integral represent expectations of the functionG(3+)(x)+
[

G(3+)(x)
]2
/2 over a normal distributed variable x ∼ N(x̂, 1/ − g′′(x̂)), and so the

approximation can be written

∫

exp {g(x)} dx ≈ exp {g(x̂)}
√

2π

−g′′(x̂)

[

1 +Ex
{

G(3+)(x)
}

+ Ex

{

[

G(3+)(x)
]2
/2

}]

.

(A.1)

The expectations of the terms in Ex
{

G(3+)(x)
}

can be shown to be

E
{

g(k)(x̂)(x− x̂)k/k!
}

=











0, if k is odd

(k−1)(k−3)...3
k!

gk(x̂)
(−g′′(x̂))k/2 , if k is even

.
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Similarly for components of E

{

[

G(3+)(x)
]2
/2

}

, the expectations are

Ex
{

g(k)(x̂)(x− x̂)kg(l)(x̂)(x− x̂)l/k!l!
}

=











0, if (k + l) is odd

(k+l−1)(k+l−3)...3
k!l!

gk(x̂)gl(x̂)

(−g′′(x̂))(k+l)/2 , if (k + l) is even
.

A.2.2 The “second order” Laplace approximation

The first order Laplace approximation (section 1.3.2.1) is defined as

∫

exp {g(x)} dx = exp {g(x̂)}
√

2π

−g′′(x̂)
+O(n−1).

Inclusion of the next two lowest order terms in (A.1) gives a “second order” Laplace

approximation,

∫

exp {g(x)} dx = exp {g(x̂)}
√

2π

−g′′(x̂)
[

1 + Ex
{

g(4)(x̂)(x− x̂)4/4!
}

+
1

2
Ex
{

g(3)(x̂)(x− x̂)3/3!
}2
]

+O
(

n−2
)

.

Applying the approximation 1 +R ≈ exp(R) to the terms in square brackets gives

exp {g(x̂)}
√

2π

g′′(x̂)

[

1 + Ex
{

g(4)(x̂)(x− x̂)4/4!
}

+
1

2
Ex
{

g(3)(x̂)(x− x̂)3/3!
}2
]

≈

eg(x̂)

√

2π

g′′(x̂)
exp

[

3

4!

g(4)(x̂)

g′′(x̂)2
+

5× 3× (g(3)(x̂))2

2!3!3!g′′(x̂)3

]

(A.2)

This is the univariate form of the expression that is used by Lee & Nelder (2001,

2006) for the second order Laplace approximation. Note that others have different

definitions of a “second order” Laplace approximation. Breslow & Lin (1995), for

instance, omit Ex
{

g(3)(x̂)(x− x̂)3/3!
}2

. What Raudenbush et al. (2000) call a “sixth

order” Laplace approximation is, in fact, only a third order Laplace approximation,

with the addition of the subsequent term Ex
{

g(6)(x̂)(x− x̂)6/6!
}

.
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A.3 Delta method of calculating SEs for PQL spatial

predictions

This material outlines the “delta method” used in the spatial case study of section

5.3.

The “delta” method of Ainsworth & Dean (2006) was used for calculating the standard

errors and confidence intervals of the predicted trend η∗ . Let G = cov(S) and

ψ̂ = (ψ̂1 . . . ψ̂400)′ be the estimated working variable ψ̂i = log(µ̂i) + (yi − µ̂i)/µ̂i.

Then Σ = ”var(ψ̂)” = W−1 + G where W is a diagonal matrix of GLM weights

with ith diagonal entry wi = 1/µi = exp(−β − S(ℓi)).

Let V12 = cov(S,S∗). The conditional density of the spatial trend η∗ given the

parameters is

η∗|ψ, β, σ2, ρ ∼ N
(

β + V ′12Σ−1(ψ − β),V22 − V ′12Σ−1V12

)

Accordingly, the predictions for the extra locations were calculated using the standard

kriging formula

η̂∗ = β̂ + V̂12Σ̂−1(ψ̂ − β̂).

As in Ainsworth & Dean (2006) and letting δ = (β, σ2, ρ)′,

var (η̂∗) = E
{

var
(

η̂∗|δ̂
)}

+ var
{

E
(

η̂∗|δ̂
)}

= E
(

V̂22 − V̂ ′12Σ̂−1V̂12

)

+ var (η̂∗)

≃ V̂22 − V̂ ′12Σ̂−1V̂12 +

(

∂η̂∗

∂δ̂

)′

var(δ̂)

(

∂η̂∗

∂δ̂

)

where

∂η̂∗/∂β̂ = 1 + V̂12Σ̂−1,

∂η̂∗

∂σ̂2
≃
{

(

V̂12/σ̂
2
)′

Σ̂−1 − V̂12Σ̂−1(V11/σ̂
2)Σ̂−1

}

(ψ̂ − β̂),

∂η̂∗

∂φ̂
=

{(

∂V̂12

∂φ̂

)

Σ̂−1 − V̂12Σ̂−1

(

∂V̂11

∂φ̂

)

Σ̂−1

}

(ψ̂ − β̂),
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where the ith, jth element of ∂V̂12/∂φ̂ and ∂V̂11/∂φ̂, i = 1 . . . 400, j = 1 . . . 425 are

−σ2
(

dij
φ2

)

e−dij/φ − σ2

(

d2
ij

φ3

)

e−dij/φ.

The 95% confidence intervals for µ̂∗i = exp (η̂∗i ) were calculated using a simple back-

transformation as

(

exp

{

η̂∗i − 2
√

var (η̂∗i )

}

, exp

{

η̂∗i + 2
√

var (η̂∗i )

})

.

A.4 Laplace approximations for the ordinal (5.8) and or-

dinal factor analytic (5.9) models

Since the only fixed effects in models (5.8) and (5.9) are the thresholds τk, the REML

correction is ignored. The first order Laplace approximation of the likelihood for a

GLMM is

pu(h) =

(

h− 1

2
log

∣

∣

∣

∣

∣

− ∂h2

∂u∂uT

∣

∣

∣

∣

∣

)

ûτ,γ

where

h = log fY |U + log fU =
∑

i

∑

j

yij log (µij − µi,j−1)− 1

2
log |G| − 1

2
uTG−1u

for both models and yi,j = I(yi = j) and I(·) is the indicator function. As usual,

u represents the vector of random effects in the model – for model (5.8), u =

[uv1, . . . , uv182, ur1, . . . ut4, S (ℓ11) , . . . , S (ℓ24,40)]T , and ũτ,γ is the mode of h with

respect to u for given γ and τ .

An expression for the
∣

∣

∣−∂h2/∂u∂uT
∣

∣

∣ is therefore required for both models. Now

∂h2

∂u∂uT
=
∂2hY |U
∂u∂uT

+G−1

where hY |U = log fY |U =
∑

i

∑

j yij log (µij − µi,j−1). Let µ′ij = ∂µij/∂ηij = φ(ηij)

and µ′′ij = ∂2µij/∂η
2
ij = −ηijφ(ηij), and zis be the i, sth element of Z.

221



We consider ∂h2/∂u∂uT for model (5.8) first. For this model,

∂2hY |U
∂us∂ut

=
∑

i

∑

j

yij







(µij − µij−1)
(

µ′′ij − µ′′ij−1

)

−
(

µ′ij − µ′i,j−1

)2

(µij − µi,j−1)2






ziszit

= ZTW1Z

for s, t ∈ [1, . . . ,dim(u)], where W1 is an n × n diagonal matrix with ith diagonal

element

∑

j

yij







(µij − µij−1)
(

µ′′ij − µ′′ij−1

)

−
(

µ′ij − µ′i,j−1

)2

(µij − µi,j−1)2






.

For the XFA model (5.9), a singular G is obtained which cannot be inverted. The

solution adopted here is to absorb the factor loadings λk into Z. Let

u1 = [uR1, . . . uR4, S (ℓ11) , . . . , S (ℓ24,40)]T

be the non-variety random effects and u2 = [u∗V 1, . . . , u
∗
V 182]T be the variety factor

scores. Let Z1 be the corresponding design matrix corresponding to u1 with i, kth

element z1ik for the ith observation and kth random effect and Z2 for u2 with i, j, kth

element z2ijk = λj for the ith observation, jth cutoff (j = 1, . . . , 8) and kth random

effect. The second derivatives are

∂2hY |U

∂u1s∂u1t
=
∑

i

∑

j

yij







(µij − µij−1)
(

µ′′ij − µ′′ij−1

)

−
(

µ′ij − µ′i,j−1

)2

(µij − µi,j−1)2






z1isz1it,

∂2hY |U
∂u1s∂u2t

=
∑

i

∑

j

yij

(

(µij − µij−1)
(

µ′′ijz2ijt − µ′′ij−1z2i,j−1,t

)

(µij − µi,j−1)2

−

(

µ′ijz2ijt − µ′i,j−1z2i,j−1,t

) (

µ′ij − µ′i,j−1

)

(µij − µi,j−1)2

)

z1is,

222



and

∂2hY |U

∂u2s∂u2t
=

∑

i

∑

j

yij

(

(µij − µij−1)
(

µ′′ijz2ijsz2ijt − µ′′ij−1z2i,j−1,sz2i,j−1,t

)

(µij − µi,j−1)2

−

(

µ′ijz2ijs − µ′i,j−1z2i,j−1,s

)(

µ′ijz2ijt − µ′i,j−1z2i,j−1,t

)

(µij − µi,j−1)2

)

.
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