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Abstract

Generalised linear models (GLMs) are a flexible class of non-linear models for non-

normally distributed response data. GLMs encompass models for discrete response

data which takes one of several values rather than being measured on a continuous

scale. Discrete response data is abundant in agricultural and biological research,

for instance, in the mortality of animals and plants (binary/binomial data) and the

scoring of disease (ordinal data).

Generalised linear mixed models (GLMMs) are an extension of GLMs which include

additional random effects in the (conditional) linear predictor. Some examples of

where GLMMs may be useful include the analysis of designed experiments, surveys,

spatial data and longitudinal or repeated measures data.

The fundamental difficulty in using GLMMs is that no closed analytical expression for

the likelihood is available. A variety of approaches have been proposed to circumvent

this difficulty, including approximate likelihood approaches, such as penalized quasi-

likelihood (PQL), numerical approaches, such as Gauss-Hermite quadrature (GHQ),

and approaches based on the use of Monte Carlo methods, such as modern Bayesian

approaches implementing Markov Chain Monte Carlo (MCMC) techniques.

Although in recent years more attention in the literature has been given to Bayesian

approaches and other approaches based on Monte Carlo techniques for GLMMs, there

is still widespread interest amongst practitioners in the use of approximate likelihood

approaches, especially with the work of Lee & Nelder (2001, 2006). The objective

of this PhD is primarily to explore the approximate likelihood approaches, as well

as comparing and contrasting them with numerical and Monte Carlo approaches.
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The most widely known approximate likelihood approach, PQL, is well-known to

give biased estimators of the GLMM parameters for binary grouped data when the

group size is small. However, the other two groups of approaches for GLMMs are

not without problems. Numerical approaches such as GHQ are only suitable for

GLMMs with nested random effects only, and often require very good starting values

to achieve convergence. Approaches based on Monte Carlo techniques can be very

computational intensive and also have convergence problems, as well as being sensitive

to the choice of priors, when used within the Bayesian paradigm. The approximate

likelihood approach of Lee and Nelder is claimed, by its proponents, to enjoy the

computational efficiency of PQL whilst not suffering from the estimation bias issues

that PQL experiences.

A background to the GLMM and inferential issues is provided in Chapter 1, with the-

oretical material and alternative approaches for modelling correlation in non-normal

data, such as the generalized estimating equation (GEE) approach. It is argued that

the GLMM is the most generally applicable model for modelling correlation and clus-

tering in non-normal data available at present. The second chapter reviews the main

estimation approaches for GLMMs, discussing in more detail the issues associated

with each of the approaches already highlighted above.

Chapters 3 and 4 focus on the two most popular approximate likelihood approaches,

PQL and the hierarchical GLM (HGLM) approach of Lee & Nelder (2001, 2006)

respectively. Simulation studies are presented in Chapter 3 for binary and sparse

Poisson data from a range of designs. These studies show that the two main factors

associated with estimation biases are the group sizes and the relative magnitude of

the variance components (as well as the sparcity of the Poisson data). These studies

also suggest that hypothesis testing for fixed effects, against the usual null hypoth-

esis of zero effect, can be reliably conducted using Wald tests using the estimated

variance-covariance matrix of the fixed effects from PQL. Finally, they also indicate

that the first order Laplace approximation may be useful for calculating approximate

likelihood ratio tests for testing variance components. Chapter 4 contains discussion
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of the HGLM approach of Lee and Nelder, which relies on either a first or second

order approximation of the likelihood. Computational issues associated with the use

of the HGLM approach are discussed in the context of a Fortran 90 implementation.

Further simulation studies show that estimation biases for HGLM approaches are

generally much smaller in magnitude than PQL, but the HGLM estimators can also

be unstable for binary models with conditional expectations near 0 or 1. Some heuris-

tic arguments for the relative performance of the HGLM approaches versus PQL are

also presented.

Estimation biases for the PQL and the HGLM approaches are compared with Bayesian

and GHQ approaches in Chapter 5 using a series of case studies. The approxi-

mate likelihood approaches performed reasonably well against Bayesian and GHQ

approaches for all case studies presented, with the exception of the Rodriguez &

Goldman (2001) datasets, with no finite maximum for the likelihood found using the

(second order) HGLM approaches. The second order HGLM approach gave similar

estimates to the Bayesian and GHQ approaches in a paired binary simulation study.

Despite greater estimation biases, the PQL estimators had lower MSE than the GHQ

estimators in a second paired binary (and Poisson) simulation study, in which the

Bayesian estimator, with default priors, suffered estimation bias as well. PQL also

performed relatively well against other approaches in a simulation study involving a

randomised complete block design (RCBD) and in a simulation study involving a spa-

tial GLMM, where PQL was compared with a much more computationally intensive

Bayesian approach. These simulations also showed that the “REML-like” correction

to the likelihood used by the HGLM and Bayesian approaches can give some positive

estimation bias.

Whilst both approximate likelihood approaches had difficulties either in terms of

estimation bias or instability, in general they perform relatively well against the other

approaches and provide a useful and efficient way of fitting a wide variety of GLMMs.

The use of a first or second order HGLM approach is generally preferable to PQL

to achieve lower estimation biases. If PQL is employed, it is suggested that the
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first order Laplace approximation be calculated for approximate testing of variance

components.
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