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Abstract 

First addressed by Beale (1960), the use of curvature measures of nonlinearity 

in nonlinear regression has been elucidated most comprehensively by Bates and 

Watts (1980). They used differential geometric results that exploit features of the 

Euclidean space imposed by the Normality assumption. The partitioning of these 

measures into intrinsic effects (due to the model) and parameter effects (due to 

the form or parameterization of the model) allows a proper assessment of model 

departures from linearity. Indeed, the term 'linear' has become synonymous with 

a lack of both of these effects, since the commonly designated 'linear model' with 

Normal disturbance does not contain either effect. These curvature measures are 

used to unravel the effects of model reformulation on convergence of fitting proce­

dures, and on the appropriateness of confidence regions based on the linearization 

assumption. For model criticism using residual analysis, the presence of intrin­

sic curvature in a nonlinear regression model can distort the visual assessment 

procedures borrowed from linear modelling, since the fundamental basis of these 

procedures can be undermined when the model is nonlinear. 

W h e n the disturbances are non-Normal, the consequent geometry is no longer 

Euclidean, necessitating a different approach, as outlined by Amari (1982a). The 

required approach generalizes the Euclidean inner product to a metric, and the 

ordinary derivative to an a-connection. The concept of these a-connections is 

fundamental to a proper understanding of the role of differential geometry to the 

investigation of estimator behaviour in the case of non-Normal errors. These con­

nections provide the general method for comparing nearby points in the parameter 

x 
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space, for general classes of error distributions. In these cases, such a comparison 

is complicated by the difficulty of the existence of different bases for the neigh­

bouring tangent spaces derived from the likelihood. The exception or special case 

is the linear model with Normal errors, where no such difficulty arises. 

Casting the generalization as being from Normal to non-Normal errors, the 

extension can be considered to cause an 'unbundling' of the statistical properties 

of estimators, which in the case of Normal errors can be enjoyed simultaneously by 

the same estimator. In the general non-Normal case, such behaviour can no longer 

be guaranteed, implying that all properties may need to be considered separately, 

since, in the general case, specific properties of the estimator are associated with 

particular values of a. 

This thesis outlines the fundamentals of the generalization of curvature mea­

sures to models of exponential type, in particular curved exponential families for 

which generalized linear models are an important subclass. This approach is used 

to generate insights into the properties of generalized linear models, with particu­

lar reference to the canonical link function as the non-Normal generalization of a 

linear model with Normal errors. 

Indeed, the underlying 'theme' of this study is the investigation of the gener­

alization of 'linearity' for the Normal error linear model to the non-Normal error 

nonlinear model. The potential simultaneity of estimator properties for the Nor­

mal distribution does not carry over to the generalization from the Normal to the 

non-Normal, since now each property has to be investigated separately, for each 

particular value of a. 

As shown in Chapter 2, this individual treatment involves the statistical inter­

pretation of each a-connection to demonstrate how key values of a are associated 

with estimator properties such as unbiasedness, stability of variance, lack of skew­

ness, 'normal' likelihood and sufficiency. In terms of data analysis, all of these 

investigations need to be performed on the regression coefficients rather than on 

the fitted value (expectation parameter) scale. This requires the use of curved 

exponential families involving an imbedding of the regression coefficients in the 
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original expectation space. 

One of the properties of Normal error linear models is estimator sufficiency, 

which for generalized linear models implies a canonical link function. The associ­

ated a-connection is the exponential or Efron connection. This connection could 

be considered as the springboard for the generalization of Normal error linear mod­

els to non-Normal error nonlinear models, since for generalized linear models it 

mimics the special case of Normal errors, by the conditions under which it vanishes. 

The investigation of this connection and its special relationship with generalized 

linear models has generated in Chapter 2 a test of adequacy for canonical link 

functions, based on the skewness of the regression coefficients. 

The generalization of curvature follows a similar path to the a-connections, 

being a function of them in terms of the expectation parameters. In line with the 

decomposition demonstrated by Bates and Watts (1980) for Normal errors, gener­

alized a-curvature decomposes into intrinsic and parameter-effects curvature;now, 

each particular cn-curvature is associated with individual properties of the model, 

depending on the value of a. The other main change from the curvature measures 

of Bates and Watts is that, in the general case, a contribution to curvature is made 

from the error distribution as well as from the model and its parameterization. A 

major new result in Chapter 3 has been the proof of the invariance of intrinsic 

a-curvature in the general case, using a coordinate based system. A consequence 

of examining the generalization has been to define in Chapter 3 a class of mod­

els, generalized nonlinear models, having a non-Normal error distribution and a 

general nonlinear response function. The relationship of this class with classes 

of known models such as generalized linear models again raises the question of 

what is meant by 'nonlinearity' in general. Several related derivations such as the 

invariance of parameter-effects curvature in generalized linear models, and results 

involving exponential curvature, generalized linear models and generalized nonlin­

ear models verify expected behaviour and highlight the generalizations that are 

possible. 

The generalized curvature measures are shown in Chapter 4 to be related to 



ABSTRACT xiii 

quantities of statistical interest such as the bias and covariance of estimators for 

curved exponential families, mirroring the known situation for nonlinear regression. 

For generalized linear models, alternative link functions to the canonical can be 

chosen on the basis of properties such as variance stabilization, 'normal' likelihood 

and lack of skewness. As expected, these links have been shown in Chapter 4 

to be associated with specific a-connections. A table is presented of those link 

functions that produce the required properties on the expected value scale for each 

error distribution in a generalized linear model. 

The special relationship between curvature measures, nonlinear regression and 

generalized linear models is further demonstrated in Chapter 5 by the use of a new 

method for nonlinear regression based on a second order approximant to the non­

linear function by means of a special generalized linear model. As expected, such 

an approximation follows the true function more closely than linearization;this is 

demonstrated empirically from calculations of leverage, parameter estimates and 

corresponding interval estimation. All these effects are predicted from considera­

tions based on curvature measures, both intrinsic and parameter-effects. 

The effect of replication on curvature is known empirically and theoretically in 

the case of nonlinear regression. In Chapter 5 it is shown that replication has two 

implications for the effects of curvature in a generalized nonlinear model. Firstly, 

the central limit theorem produces convergence to the Normal distribution, so 

that the error contribution to general a-curvature becomes zero asymptotically. 

The effect of replication on the model contribution is less clear, since the general 

limiting case is nonlinear regression if only the error component of a-curvature is 

considered. Locally, the generalized nonlinear model will be well approximated by 

a linear model. Secondly, under some conditions, a generalized nonlinear model 

will converge locally to a generalized linear model with canonical link. However, 

when the error component and the model component are considered, the overall 

effect of intense replication will be to produce locally a linear model with Normal 

errors. 



Chapter 1 

Introduction 

1.1 Background 

Curvature measures were proposed by Beale (1960) to assess the departure of a 

nonlinear regression model from its assumed linear approximation in the neigh­

bourhood of the least squares estimate. The motivation of this analysis was 

the evaluation of the validity of linearization-based confidence regions for model 

parameters in the nonlinear regression model. This method of curvature mea­

surement was formalised by the differential geometric approach of Bates and 

Watts (1980) which refined the measures in such a way that two different types of 

effects were clearly identified; 

1. intrinsic curvature, ie., curvature peculiar to the model and which is un­

changed by the particular parameterization of the model, and 

2. parameter-effects curvature, ie., curvature that is dependent on the form of 

parameterization of the nonlinear model. 

The impact of these two measures on proper construction of confidence re­

gions for nonlinear regression models has been extensively researched (Bates and 

Watts, 1988). In particular, the use of likelihood-based confidence regions with 

those based on the linear approximation has been employed in the construction of 

1 
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practical measures to assess the effect of nonlinearity on these confidence regions. 

These measures(t plots, traces and pair sketches) are based on profile likelihood 

where all parameters except those being considered are estimated. 

Important properties, such as bias and correlation, of estimators in nonlinear 

regression have been shown to be related to these curvature measures. Thus, 

transformations which reduce bias and the absolute value of correlation can be 

found, in agreement with general results from earlier workers such as Box (1971), 

Bartlett (1953b) and Clarke (1980). 

1.2 Rationale for the study 

Several discussants to the paper of Bates and Watts (1980) raised from differing 

viewpoints the question of a non-Normal error distribution. Ross (1980a) was 

interested in the question of parameter transformation for general non-Normal 

errors while Reid (1980) was concerned about the general exponential family of 

models in the context of the measure of statistical curvature defined by Efron 

(1975). McCullagh (1980) queried the extension of the measures to estimation 

for error distributions from the exponential family, in particular generalized linear 

models. As pointed out by the authors, the assumption of a Normal disturbance 

was crucial to the approach, since this assumption implied a Euclidean metric, 

enabling the results of classical differential Euclidean geometry to be exploited. 

The generalization to non-Normal distributions requires a Riemannian metric, and 

the concept of an affine connection. As observed by Kass (1984), the extension 

of the approach of Bates and Watts to generalized linear models (GLMs) requires 

the use of a family of effects related to the one parameter a-connections of Amari 

(1982a), with key values of the parameter a being associated with special features 

of the estimator. A principal function of this thesis is to investigate the suggested 

generalization to G L M s with the purpose of using generalized curvature measures 

to examine the statistical behaviour of estimators in G L M s and associated models, 

especially those related to the exponential family. 
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A brief overview of Amari's a-connections is given in Seber and Wild (1989, 

ppl59-165), with derivations that show the relationship between Amari's theory 

and the definition of statistical curvature given by Efron (1975), as well as results 

due to Kass (1984). The main thrust of their presentation is to demonstrate that 

the general theory of Amari reduces to the curvature measures of Bates and Watts 

for the case of nonlinear regression. 

1.3 Role of Curvature Measures in Nonlinear Re­

gression 

Even before the advent of the digital computer, the underlying nature of some 

regression problems had forced researchers to fit nonlinear models to data. Early 

attempts at solving this problem by using an iterative procedure based on lineariza­

tion of the nonlinear function sometimes ran into difficulties of non-convergence 

and failed initializations. Various techniques can be used to find reasonable start­

ing values (Draper and Smith, 1981). These include grid search, exact solution 

using minimal data and the transformation method in some cases. Some of these 

methods are crude fitting procedures (Sadler, 1975) which are capable of refine­

ment. Modifications of the iterative method for fitting include damping of the 

Gauss-Newton method as per Hartley (1961), procedures based on the Newton-

Raphson method and the Levenberg-Marquardt compromise (Sadler, 1975). All 

these methods can be interpreted in parameter space via the true residual sum 

of squares surface. The working of these adaptations of search procedures can be 

demonstrated in parameter space by viewing the behaviour of the approximate 

residual sum of squares surface (Sadler, 1975), since these adaptations employ a 

quadratic approximation to the true residual sum of squares surface, a linear ap­

proximation to the nonlinear function or a procedure employing both approxima­

tions. A n alternative method of interpretation is to use the sample space (Draper 

and Smith, 1981), which facilitates the presentation of the linearization and hence 
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demonstrates the adequacy (or inadequacy) of the linear approximation to the 

nonlinear function, thus showing the reasons for algorithm failure. This approach 

formed the basis of the expectation surface geometry used by Bates and Watts 

(1980) to analyse in detail the underlying structure of nonlinear regression models. 

The consequent decomposition of nonlinearity into intrinsic and parameter-effects 

curvature enabled a new insight into the interpretation of nonlinear regression mod­

els. Low intrinsic curvature, or minimal bending of the solution locus, is a precon­

dition for 'close to linear' behaviour of a nonlinear regression model (Ratkowsky, 

1983), since a nonlinear regression model that also effectively exhibits a regular grid 

of parameter values along the solution locus mimics the behaviour of a linear model. 

This means that nonlinear regression models of this class can be treated as linear 

for the purposes of parameter interpretation via the desired inferential procedure 

of hypothesis testing or interval estimation (Bates and Watts, 1988). Empirical 

evidence (Bates and Watts, 1980) suggests that parameter-effects curvature tends 

to be the dominant effect in many cases, allowing for the possibility of inducing 

'close to linear' behaviour via suitable reparameterization for a low intrinsic cur­

vature model (Bates and Watts, 1981). In addition, a reduction in parameter bias 

can be effected by reparameterization (Bates and Watts, 1980). In practice, the 

procedures for discovering parameterizations with low parameter-effects curvature 

are most often empirical, such as those due to Ross (1980b), as further detailed in 

Bates and Watts (1981). The choice is between global or automatic methods that 

annihilate parameter-effects curvature and transformations to expected values [or 

'stable ordinates', Ross(1980b)] that can induce low parameter-effects curvature. 

The disadvantages of the automatic method are twofold. The new parameters 

given by the automated procedure may not be easy to interpret in terms of the 

original problem, and they may not exist. The corresponding advantages of the 

expected value method are that the new parameters can be interpreted directly in 

terms of the original response and that they can require less computing subject to 

mild constraints. These constraints can imply equally spaced predictors for some 

models. Of secondary importance is the impact of parameter-effects curvature on 
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convergence of fitting algorithms. Lower parameter-effects curvature can mean 

fewer iterations for convergence to the optimum. Given the current developments 

in computing hardware and statistical software, this is less of a problem than 

inference for parameters. While a low parameter-effects parameterization offers 

advantages for inference statements on model parameters, interpretability of pa­

rameters and their relevance in the original context of the problem are probably of 

more concern to the user. Backtransformation to the original parameters is possi­

ble however, as is approximation to the covariance structure of the parameters on 

the original scale. Thus, model fitting and interpretation can quite satisfactorily 

use separate parameterizations. The effects of curvatures on residuals from nonlin­

ear regression models bears some explanation. Parameter-effects curvature is not 

relevant to discussions about residual analysis, since the fitted value is independent 

of the form of parameterization and is a function solely of the model itself. Only 

intrinsic curvature affects the residual procedures borrowed from linear modelling. 

For a linear model, the residuals and fitted values are approximately uncorrelated, 

and the residuals are centred on zero. For a nonlinear model with non-trivial 

intrinsic curvature, the situation changes. The expected values of the residuals 

are no longer zero, and the residuals and fitted values are no longer uncorrelated, 

resulting in a negative expected slope in the plot of residuals against fitted values. 

This problem of using procedures designed for linear models on nonlinear models 

carries over even to modified residuals that have been proposed for linear models, 

although the projected residuals of Cook and Tsai (1985) appear free from such 

problems. For an overall discussion see Seber and Wild (1989, ppl78-179). 

The above discussion on residuals can be formalised using the concept of lever­

age or potential (Weisberg, 1985, pill). For a linear model, the hat or projection 

matrix H is defined by 

H = X(XJX)~1 XT 

so that 

Y = HY. 
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The term leverage (or potential) is applied to the diagonal terms, since as hti —> 1, 

then & -+ yi. In short, the effect of the ith case will be large if hti is large, subject 

to the nature of the ŷ ; hence the terminology. 

In the nonlinear case, the projection matrix can be similarly defined; however 

the operator H is now a function of the derivative of the nonlinear function with 

respect to the parameters, as described in Seber and Wild (1989, 4.41, pl40, 4.145, 

pl74 and 4.146, pl75). This explains the descriptive results given in the above 

discussion involving intrinsic curvature, since intrinsic curvature is defined in terms 

of such derivatives. 

The concept of influence involves the effect of a particular data point on model 

behaviour, and is typically assessed by systematic deletion of key data points and 

assessment of the corresponding regression diagnostics. Data points (cases) whose 

deletion cause major changes in the resulting diagnostics are called influential. 

Examples of such measures abound, eg., Cook's distance measures (Cook, 1977). 

If a case is deleted then the model is changed, and so the intrinsic curvature 

changes as well as parameter effects. For this reason, influence will not be given 

the attention of other model diagnostics such as leverage. 

1.4 Curvature Measures 

An empirical overview of the interpretation of the curvature measures of Bates 

and Watts (1980) follows. The model describing the response Y given predictors 

X is assumed to be 

Y = f(X;9)+e, e ~ N(0,a2). 

The solution locus in the space of expectations is defined by the set of parametric 

equations 

F(0) = f(X]O). 

Nonlinearity is exhibited in this space of expectations E(Yi\0), i = l,...n,by 

• curvature of the solution locus (intrinsic curvature), and 
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• non-uniformity of the coordinate system along the solution locus (parameter-

effects curvature). 

Operationally, these effects manifest themselves respectively in 

- how well the tangent plane approximates the solution locus locally, and 

- how well a uniform coordinate system on the tangent plane approximates 

the coordinate system on the solution locus. 

(The solution locus is also called the expectation surface.) 

A simple one-parameter example from Ratkowsky (1983) will be used to de­

scribe these two nonlinearity effects. The data for this problem are shown in 

Table 1.1. 

Example 1 

Observation 

Number 

1 

2 

X 

2.0 

3.0 

Y 

2.5 

10.0 

Table 1.1: Illustrative Data Set 

Two competing models are shown, one linear the other non-linear. The prob­

lem is designed so that the non-linear model better fits the data, as shown in 

Figure 1.1, where the curve is 'closer' to the data than the line. In expectation 

space, the single point that represents the data is closer to the solution locus for the 

non-linear (Figure 1.3) than for the linear model (Figure 1.2). The corresponding 

residual sums of squares (deviances) are 2.93 and 12.02, respectively. 

In order to properly gauge these two effects in nonlinear models, their behaviour 

for linear models will be described first. 
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E[Y] = /3X, 0 = 2.6923 

E[Y] =X\9 = 2.0537 

I I i i 

1 2 3 4 5 6 7 X 

Figure 1.1: Ratkowsky Problem. 

1.4.1 Linear Model 

For linear models, both effects disappear, since 

• T(9) — X9, which is a line in the space of expectations, and 

• the solution locus and the tangent plane coincide, so that equal increments 

of 9 along the solution locus correspond to a uniform spacing thereon. The 

parametric equation describing the solution locus is equivalent to the para­

metric equation describing the tangent. 

The linear model E(Y) = X{3 can be demonstrated on the data from Example 

1 (Figure 1.1) with 9 replacing ft. The solution locus for the linear model is shown 
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in Figure 1.2 

1 2 3 4 5 6 7 8 9 10 11 Tx 

Figure 1.2: Solution Locus : Linear Model. 

The parametric equation of the solution locus is : 

{T1,T2) = {Xl9,X29). 

For this model, 

E(Y) =X9 = X/3 

and the intrinsic curvature on the solution locus is zero, as shown in Figure 1.2, 

where there is no 'bending' of the solution locus. The spacings along the solu-
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tion locus between points corresponding to equal spaced values of the parame­

ter are identical, as shown in Figure 1.2. This indicates a constant velocity or 

rate of increase with respect to 9 along the solution locus, ie., no acceleration or 

parameter-effects curvature. 

1.4.2 Non-linear Model 

For the nonlinear model 

Y = f{X-9)+e 

the expectation relation is 

V = f(X;9) 

and so a curve will be generated1. 

The vector formed by the data and least squares solution will be perpendicular 

to the tangent on the curve, as shown in Figure 1.3. The following observations 

can be made : 

• The solution locus is now a curve, in contrast to the line for the linear model. 

• In both cases the vector formed by the data and the least squares solution 

point is perpendicular to the tangent to the expectation surface. 

• Equal increments in 9 correspond to equal step lengths along the expectation 

surface for the linear model E(Y) — X9, but not for the nonlinear model 

E(Y) = Xe. 

Two parameterizations of the nonlinear model are shown in Figure 1.3. 

For the chosen non-linear model, intrinsic curvature (as determined by the 

radius of curvature) appears slight,2 but is precisely the same for both parameteri­

zations of the model, ie., Xe and Xln<f>. That is, the 'bending' of the solution locus 

is the same for these two forms of the same model. In contrast, parameter-effects 

lNote that expectation surface = solution locus. 
2Actually, the inverse of the radius of curvature. In the linear case, r = oo =>• intrinsic 

curvature = 0. 
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Figure 1.3: Solution Locus : Non-linear Model. 

curvature (acceleration or change in speed along the solution locus), is large for 

X9 compared to that for XXn^. Empirical evidence can be given to corroborate 

the visual preference for the second form of the model. Using the linearization 

procedure (Draper and Smith, 1981) from the same starting value for both forms, 

ie., 9 = 0(0 = 1), convergence to the least squares minimum took 9 iterations for 

the first form(0) but 3 iterations for the second(0). 

The utility of model reparameterization is contingent on the intrinsic curvature 

being slight, but fortunately empirical evidence suggests that this is often the state 

3 0009 03254477 2 
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of affairs, as shown by Bates and Watts (1980). 

These non-linear and linear models demonstrate the following : 

(a) Intrinsic curvature can only be changed by changing the model3, as in this 

example from X9 to X9. 

(b) Parameter-effects curvature is conditional on the choice of model, eg., from a 

linear (zero) to a nonlinear model (non-zero). The main determinant for the 

size of parameter-effects curvature is often the choice of parameterization. 

A judicious choice of parameterization, here, Xln(f>, instead of X9, produces 

a locally uniform coordinate system on the solution locus. In general, such a 

judicious choice can render the assumption of a uniform coordinate system 

at least approximately true. If a parameterization can be determined with a 

low parameter-effects curvature, this means any confidence regions based on 

linearization will be close to likelihood based confidence regions. In short, the 

model under that parameterization will behave as a linear model if intrinsic 

curvature is slight. 

The usefulness of this analysis is to separate 'departure from linearity' into : 

• specific model dependent effects (intrinsic curvature), and 

• model representation effects (parameter-effects curvature). 

The latter can be manipulated by the particular formulation that a practitioner 

chooses for a specific model, whereas the former is fixed by the choice of model and 

design points. The results of such manipulation may not always be as predicted 

or expected. 

1.4.3 Higher Dimensions 

In the spirit of the expository example (Example 1, Figure 1.1) from Ratkowsky 

(1983), two additional examples are described to demonstrate the interpretation 

of the expectation surface in higher dimensions. 

3The model is changed even if the X variable is changed, eg., to lnX. 
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Example 2 

The problem shown in Table 1.2 is taken from Draper and Smith (1981, page 517), 

and involves fitting the model Y = e~et + e, to the given data. 

t 

1 

4 

16 

Y 

0.8 

0.45 

0.04 

Table 1.2: Problem A : Draper and Smith (1981) 

The expectation surface (solution locus) can be drawn without knowing the 

observed values for response variable (Y), but the predictor (X), ie., the design 

points, are needed. The following parametric equations define the expectation 

surface 

t = 1 : Fi = e~9 

t = 4 : F2 = e-
46 

t = 16 : F3 = e~m 

so points on the solution locus are given by (e~9, e~A9, e~169) . This space curve is 

shown in Figure 1.4, with the box symbol(n) indicating the data in expectation 

space. 
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0.8-

0.6-

F3 

0.4-

0.2-

0.6 

0.7 
F1 

0.8 

0.9 

0.2 

0.4 

°OoO° 

F2 
0.6 

0.8 

Figure 1.4: Solution Locus : View 1, Example 2. 
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Figure 1.4 shows the intrinsic curvature globally and locally. Overall (globally) 

the space curve bends markedly, whereas locally such curvature can be slight, 

eg, for low expected values. From Figure 1.5 it can be seen that the spacing of 

increments of 9 along the solution locus is reasonably regular for low expected 

values, but not so for higher values. This shows that parameter-effects curvature 

can also vary from the local to the global. In practice, numerical measures are 

required to make a proper judgement of these curvatures. Ratkowksky (1983) 

gives computer code for such numerical measures. 

Example 3 

The model 

E(Y\x) = axp 

is to be fitted to the data shown in Table 1.3 assuming Normal disturbances. 

X 

1 

2 

3 

Y 

1.0 

2.8 

5.2 

Table 1.3: Two Parameter Example. 

The following parametric equations define the expectation surface : 

x = 1 : Fi=a 

x = 2 : F2 = atf 

x = S: F3 = a3" 

The solution locus is thus 

(a,a2p,a3p). 

This surface is shown in Figure 1.6, with the data shown by the box symbol (•). 
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0.6-

Figure 1.5: Solution Locus : View 2, Example 2. 
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Interpretation of the expectation surface can be made by considering level 

curves, ie, the paths traced out by holding a constant and (3 constant. 

For ft constant (= c), the solution locus becomes 

{a, a2c, a3c) 

which describe lines passing through the origin. 

For a constant (= d), the solution locus is defined by 

(d, d2p, dtf) 

constituting 'parallel' curves 'orthogonal' to the lines defined by holding /5 con­

stant. 

The two systems are shown in Figure 1.6, with the lines and curves clearly 

visible. The data are shown by the box symbol (•). This is effectively a one-

parameter problem, with j3 being the nonlinear parameter. The nature of the 

expectation surface confirms that a is really a linear parameter with (3 being 

nonlinear. The sums of squares surface show the nonlinear parameter as being the 

most responsive, as is shown by the results of fitting the model via the statistical 

package G L I M (NAG, 1985). A G L M (generalized linear model) formulation of 

the model 

E(Y) = fj, = aXp = e
lnaep[nX 

gives 

h m = -0.0142 (0.014135) ~> 5 = 0.9859. 

and 

/3= 1.513(0.01425). 

The values for a and (3 used to generate the data were respectively 1.0 and 1.5 

and the quantities given in brackets are the estimated standard errors. 

1.4.4 Practical Considerations 

For ease of estimation and subsequent inference, both intrinsic and parameter-

effects curvature need to be controlled, but experience (Bates and Watts, 1980, 
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10+ 6 
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0.5 
1 

F1 1.5 

Figure 1.6: Solution Locus : Example 3 
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1988), (Ratkowsky, 1983), (Lowry and Morton, 1983) indicates that the latter 

problem appears to dominate4, implying that a proper parameterization may 

alleviate difficulties. For estimation, choosing a parameterization that reduces 

parameter-effects curvature has the effect of reducing bias (Bates and Watts, 

1980). It also has the potential to reduce the amount of calculation performed 

in the fitting process, by substantially reducing the number of iterations, as shown 

in Section 1.4.2. This is of less concern now than in 1980 due to the advances 

in computing hardware and software platforms, which have resulted in great in­

creases in speed of computations. For inference, the operational consideration is 

that a parameterization with low parameter-effects will ensure the validity of the 

uniform coordinate assumption. This is needed for the use of the linear approxima­

tion method of constructing confidence regions. Profile likelihood methods (Bates 

and Watts, 1988) require only the planar assumption, and thus are operationally 

valid for low intrinsic curvature. Thus, the use of such profile methods would have 

appeal, since the user is then able to use the preferred (interpretable) parame­

terization, subject to the proviso of low intrinsic curvature. Such information on 

curvature is imbedded in the profiling methods (Bates and Watts, 1988). 

The curvature measures used in practice represent a compromise between a 

maxi m u m attained value and some averaged effect such as root mean square (RMS) 

curvature. All such curvatures are scaled, avoiding dependencies on the data and 

parameters. The averaged curvatures appear more attractive since the maximum 

measures tend to be pessimistic, being typically of the order of twice the magnitude 

of the average curvatures (Seber and Wild, 1989, pl59). A n additional reason 

for using R M S curvatures is that then magnitude can be gauged by comparison 

with the the desired critical point of the F distribution (Bates and Watts, 1988). 

However, parameter-effects curvature is a valuable tool for measuring the effects of 

reparameterization on bias and the adequacy of the linear approximation assumed 

by the inference procedures. Bates and Watts (1981) used curvature measures to 

determine appropriate transformations (or reparameterizations). 

4This may indicate that only models with low intrinsic curvature have been chosen. 
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Since intrinsic curvature changes with the design as well as with the model, 

optimisation of the placement of design points as well as choice of the model can 

be considered, as in Bates and Watts (1981). 

The rationale for curvature measures claimed by Bates and Watts (1980) is : 

• 'the geometric approach to measuring nonlinearity is ... relatively simple and 

straightforward ...', and 

• 'The concepts and methods of differential geometry ... make the study of 

nonlinearity as geometrically accessible and understandable as linear least 

squares.'5 

A focus of this thesis is to extend this claim to the class of functions defined by 

generalized linear models, and to other models derived from the exponential fam­

ily, along the lines of the suggestions of Kass (1984). This will be attempted by 

generalizing the parameter-effects curvature and intrinsic curvature for each geom­

etry that corresponds to a particular estimator attribute associated with a value 

of a. As shown by Kass (1984, pp90-91), it is necessary to study the reduction 

of parameter-effects curvature not only for the exponential geometry but also for 

all the other geometries (values of a) that correspond to the other key properties 

of estimator behaviour. This expansion is required because all of the properties 

can be satisfied simultaneously by a single transformation for the Normal distri­

bution, since all the a-connections coincide. For other error distributions, the 

a-connections are distinct and so the estimator properties cannot be satisfied by 

a single transformation. Thus each key value of a has to be considered in turn. 

1.5 Generalized Linear Models 

Consider a random sample Yi,..., Yn from a population with pdf f(y; 9). The gen­

eralized linear models (GLMs) defined by McCullagh and Nelder (1989), constitute 

5Bates and Watts (1980, p!4-p!5). 
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a class defined by 

E(Yi) = m 

for which the zth contribution to the log-likelihood can be written as 

Hi = In/(ft; 0f) = ——-^ + c(ft, 0 . 
a(0) 

This class of models was first expounded by Nelder and Wedderburn (1972), and 

is related to the class of curved exponential families defined by Efron (1975). 

This thesis investigates the usefulness of differential geometric measures to 

models having a general error distribution. The family of models studied are of 

exponential type, with particular emphasis on generalised linear models, following 

the suggestions of Kass (1984). The rationale for such curvature measures stems 

from the work of Bates and Watts (1980), as applied to the case of nonlinear 

regression. The work of Efron (1975) on statistical curvature and the geometry of 

exponential families (Efron, 1978) also provides background for the thrust of this 

work, albeit in the one dimensional case. 

The class of generalised linear models can be considered to be a subset of the 

class of models for which 

E(Yi)=^(0). 

So, some of the results obtained for G L M s may extend to this more general class of 

models. Certainly, it can be shown that the IRLS6 algorithm (Green, 1984) for the 

more general problem, is equivalent to the G L I M algorithm for generalised linear 

models. From the user's point of view, however, the relaxing of the requirement 

for starting values is a non-trivial difference between the two approaches. 

1.5.1 Leverage 

The concept of leverage has been introduced for linear models in Section 1.3. For 

G L M s , the hat matrix and its corresponding leverage terms generalize because the 

6IRLS = Iteratively Reweighted Least Squares. 
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GLIM algorithm uses a weighted regression on the working variate z, defined by 

* = '+(y-">($)-

Since there is a 1-to-l mapping between the linear predictor r\ and the fitted 

value fj,, these quantities can be converted back to the original data scale. In the 

general form of the H matrix, X is replaced by Wl/2X, where W is the matrix 

of weights. The resulting hat matrix is 

Ha = W^
2X {XTWX)~1 XTW1'2 

and the weights are defined by 

The function V is the GLM variance function in terms of the mean [i\ 

V = V(fj), where V = b"(9), and fj, = b'(9). 

The model is no longer purely linear, since the Hg operator is now a function of 

the derivatives of the fitted values (via W ) , as in the case of nonlinear regression. 

Using the notation of section 5.1.1, in the nonlinear regression model 

Y = f(X;d)+e, e~7V(0,a2) 

the nonlinear function f(X;0) is replaced by 

to give the linear model 

defined by 

y = zp + e 

V = Y-f0i 



CHAPTER 1. INTRODUCTION 23 

and 

P = e-e0. 

The hat matrix for this linearized model is now 

Ht = Z{Z
TZ)~1ZT 

which gives 

V = Hty. 

From the definition of Z, it can be seen that the matrix Hi is a function of the 

derivative of the fitted values, as for the GLM. See McCullagh and Nelder, (1983, 

Ed. 1, p210) and (1989, Ed. 2, p397 and p405). 

In terms of the data Y and the fitted values /2, the following holds7 for a GLM, 

V1/2 (fi - /,) « HaV-W (Y - n), 

where V = diag (V(/j,i) ), so that Hg measures the impact in standardized units 

of changes in the data on the fitted values. Defining Y8 and Ys by 

Ys = V'
1'2 (Y - y) 

and 

Ys = v-"
2 (A - /x) = V~1'2 (Y - /i) 

gives 

Y8 = HgYs. (1.1) 

In raw terms 

Y = V^HgV'^Y dM UY (1.2) 

where 'H is asymmetric, in general. Both Equation (1.1) and Equation (1.2) can 

be derived from the leverage equation expressed in terms of the weighted working 

variate, ie, 

Wl>2z = HgW
l'2z 

M̂cCullagh and Nelder (1989, 2nd Ed., p397). 
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as demonstrated in Appendix A.l. 

For the case of a linear model with Normal errors, 

rj = // and V = Diag(constant) = constant xJ, which means that W = 

Diag(constant). Thus Hg reduces to 

X (X1X)'1 XT = H 

as defined for linear models with Normal errors in Section 1.3. Since V = Diag(constant), 

then the standardized form [Equation (1.1)] 

V-1'2 (£-/*) = HV1/2 (Y - n) 

gives 

p,-» = H(Y-ii). 

Since it can be shown that y = Hy, then 

Jl = Y = HY. 

In raw terms, Equation (1.2) becomes 

Y = V1/2HV~1/2Y = HY 

since V = Diag(constant). 

Thus both the standardized [Equation (1.1)] and raw form [Equation (1.2)] of 

the leverage for a G L M reduce to the same leverage form for linear models with 

Normal errors. 

1.6 Exponential Families 

The class of GLMs is a special class of curved exponential families, having natural 

parameters that can be related to linear functions of the parameters of interest 

(/3), via 

E(Y) = y = h(X(3), 
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using G L I M notation. In order to develop results for G L M s it is necessary to 

establish theory using the general formulation of an exponential family, viz, 

ln/(yi; $i) = yrfi - \E
r
i(^) 4- a(yi) 

following notation due to Amari (1982a). For the special case of independently 

distributed Y\,..., Yn we have 

h/(v;0) = I>0i-*(*) +c(v). 
i=l 

If the Einstein tensorial summation convention is used, then 

n 

ViQ* - J2vfli = vie± + ••• + yn9n-
i=i 

Most of the theoretical results in this thesis are derived in terms of such a general 

exponential family, and the ultimate goal is to not only produce and condense the 

approach in terms of the G L M form, but also to determine any simplifications or 

special cases that apply for this special subclass of the exponential family. 

1.7 Curved Exponential Families 

For the general exponential family defined by 

£(y; 0) = 9iVi - ^{0) + c(y) 

the natural parameter space defined by 0 is the generalization of the Cartesian 

coordinate system from Euclidean space. 

From a practitioner's point of view, interest is usually in the subset of pa­

rameters (regression coefficients) which generate the space of expectations (fitted 

values) via a parsimonious model. This subset of parameters is generally related to 

the natural parameters by a nonlinear function, hence the phrase 'curved subsets 

of a larger parameter exponential family' or 'curved exponential family' (Efron, 

1975, page 1192). 
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Several examples are given to indicate the subsets of parameters that can arise 

in practice (the dimension of the natural space is given by k, while the curved 

space dimension is given by p). 

The imbedding of the regression coefficient(s) (/3) in the space of natural pa­

rameters (0) is given by a (nonlinear) relation 

0 = O((3). 

This relation is shown in the examples. 

1. Autoregressive Model - AR(1) : k = 2, p = 1. 

2. Poisson Regression Model : k = n, p = 1. 

3. Nonlinear Regression model : k = n, p = m. 

4. Generalized Linear Model : k = n, p = m. 

In particular, note that the AR(1) model is of exponential type. Most of the 

later results of this thesis will apply to such exponential type models, of which 

G L M s are an important subset. 

Example 1 : Autoregressive Model 

The stationary AR(1) model, following Efron (1975, pi 194) 

Xt = (f>Xt^ + £t, t=l...T 

is proposed for the time series XQ ... X T , with XQ = £0. 

It is assumed that e ~ N(0,1) and that -1 < 0 < 1. 

Using 

X,-0A:,_1-7V(O,I), 

the likelihood when written in exponential form yields : 

01 = -^T^2=0, (0 = 0 
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with 

yi=xl + ... + x\_x, y2 — xxxQ + ... xTxT-U 

while the remaining terms are 

tf(0)=O, c(y) = -^4-In27r-(r+l)/2. 

Example 2 : Poisson Regression Model 

This example is adapted from Efron (1975, pll93). 

Independent Poisson variables Xi,...,Xn have means Xi — a + rbi where a 

and the bi are known parameters. The parameter r is such that a + rbi > 0 for 

i = 1... n . From the exponential form of the likelihood 

0f = ln(a + rbi), yt = x{, ((3 = r) 

with 

*(*) = !>*» c(2/) = E l n ^ ! -

Example 3 : Nonlinear Regression Model 

The nonlinear regression model can be cast (Amari, 1990, pl54) as 

Xi = f(ci,P)+ei 

where the response variable Xu i = 1... n are NIID and et ~ iV(0,1) without loss 

of generality. The nonlinear function / contains predictors c{ (known control pa­

rameters) and unknown m-dimensional parameters (3, the regression coefficients. 

Casting the resulting likelihood into the exponential form gives 

6i = f(ci,l3)i yi = Xi 

with 
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Example 4 : Generalized Linear Model 

Independent random variables Yu...,Yn follow a distribution of exponential type 

described by a contribution to the log-likelihood by a single observation yt of 

^ = ln/(y,;^) = ^~^)+c(^,0). 

Considering such models with a scale parameter of 1, eg, Poisson, Bernoulli or 

Exponential errors, gives a(0) = 1, and so 

it = In f(yi; OA = yA - b{9i) + c(yh 0). 

The log likelihood for the whole sample (£) is given by 

* = £* 
i 

due to the assumption of independence (McCullagh and Nelder, 1989, p24). This 

gives 

0l = 9i, Vl = yh *(0)=EWi)> c(y) = £c(y<;0). 
i i 

Also, the imbedding of the regression coefficients /3 is denoted by 

0t = fixjp) 

where Xu,... ,Xmi are the m predictors at each Yt. The function f results from 

the use of the relations 

rj = X0, gin) = ry and Eft) =m = b'(9i) 

as described in Appendix B.7. 

1.8 Tensor Notation 

The concept of a tensor is fundamental to a differential geometric approach to 

statistical distributions. Rather than attempt to define all the terms and outline all 

notation in a single section, these will be introduced as needed. Some explanation 
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of elementary tensor notation is outlined below with references to texts on the 

topic. 

There are several accessible references on the topic of the tensor calculus and 

its application to differential geometry. A brief but concise overview of tensor 

analysis can be found in Spiegel (1990), while a fuller treatment of tensor calculus 

with applications to differential geometry is given in Kay (1988). The latter text 

also includes a coordinate free approach. Tensor algebra (and related topics) is 

neatly expounded in Spain (1960), using the classical coordinate system approach. 

Finally, developments such as subspaces of a Riemannian manifold (Lovelock and 

Rund, 1989, p267) that are closely allied to statistical developments, will be used 

extensively throughout later chapters. 

1.8.1 Indexing 

Following the approach of Bishop and Goldberg (1980, p20), 'the customary tensor 

indexing of coordinates' is used hereafter, whereby the index is a superscript not 

a power; hence the results of Section 1.6 would be written as 

ln/(y;0) = y^-tf(0) + c(y) 

since 9 = (01,..., 9n) is used as a coordinate system. 

Powers are shown via the use of brackets, viz, (91)2 or as x\, if this is unam­

biguous. 

1.8.2 Summation Convention 

The convention used is the sum index, whereby summation is implied if the index 

is repeated, irrespective of location as a superscript or subscript. 

A nonsum index is shown using an upper case index (Bishop and Goldberg, 

1980), eg. 

aAeA . 
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In cases where the upper case index convention is not used, it is sometimes desirable 

to use a lower case 'nonsum' index as in 

alei (i not summed) 

in which case the explicit parenthetic comment spells this out. 

1.8.3 Tensor Laws 

A general definition is given for a tensor followed by specific examples. 

In particular, transformation laws will be of utmost importance. 

Assume a transformation of coordinates from 0 to 0, viz, 

Lirai 9l = 4>l(9l ...9n) 

and 

91 = ^{9V ...6n). 

General Tensors 

A general mixed tensor T or (r, s) tensor is defined by the transformation equation8 

QQVi QQVT QQk, QQka 
TU1... VT 

•••^^Tk!"tr- (1-3) 

A n example of the transformation law for a (1,2) tensor is given in Amari (1982a, 

p364, equation 2.27). 

Contravariant Tensors 

A contravariant tensor A or (1,0) tensor is defined as satisfying 

P)fji 

8Kay (1988, p29, equation 3.14). 
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An example of a contravariant tensor is the tangent —— to the curve defined 
du 

by 9% = 0l(w), since if 

then, by the chain rule, 

A1- — 
du 

~ du ~ 89J ~8u~W 

as required. 

Covariant Tensors 

A covariant tensor B or (0,1) tensor is defined by 

89j 

df 
A n example of a covariant tensor is the qradient -r—r since 

y 89* 

1 89* 

hence 

as required. 

£ d/ 8f_8(P_ ^ 

1.8.4 Coordinate Free Methods 

In his preface, McCullagh (1987) gives a delightful account of the balance between 

the 'coordinate-free' approach in tensor analysis and the mundane computation 

using indices. While the appeal of coordinate-free methods is obvious in the 

context of claiming invariance once tensorial behaviour is established, this is not 

the approach used in this thesis. Indeed, the very problem of examining the ef­

fects of reparameterization suggests that the pedestrian approach of working from 

one coordinate system to another is mandatory for problems in applied statistics. 

The proofs of invariance that are established use this very method and establish 
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invariance by using scalar forms for the tensorial quantities of interest. Further­

more, since empirical evidence from the nonlinear regression model suggests that 

parameter-effects curvature is the dominant effect (Bates and Watts, 1988), the 

ultimate question for a particular model in general will be 'what is the best way 

to cast the model?'. Thus, the method of moving from one coordinate system to 

another will be preferred in practice. 

1.9 The Generalization 

This Section is an attempt to provide a non-technical account of the generaliza­

tion of curvature measures from Normal to non-Normal errors, with particular 

emphasis on the special case of generalized linear models. 

For the most part, the development of curvature measures for non-Normal er­

ror models mirrors the approach used by Bates and Watts (1988) for nonlinear 

regression. For example, total curvature is shown to decompose into intrinsic and 

parameter-effects curvature as in nonlinear regression. The fundamental difference 

is the concept of an a-connection which is vital to a study of estimator behaviour 

in general, since key values of a are tied to particular properties of estimators, as 

shown in Section 2.10 and Section 2.11. It is possible to describe the key proper­

ties of the estimators (ie, key values of the a) as being 'unbundled' in the move 

from Normal to non-Normal errors, since all of these properties (unbiasedness, 

minimum variance and zero skewness) are satisfied simultaneously in the Normal 

case (Hougaard, 1982). This simultaneity is due to all the a-connections being 

identical when errors are Normal (Kass, 1984). By contrast, in the non-Normal sit­

uation, not all properties may be guaranteed to be satisfied together in the same 

estimator (Hougaard, 1982), since the a-connections are distinct in the general 

non-Normal case, as shown by Kass (1984). 

Subject to the above caveat about the significance of key values of a, other 

facets of curvature measures generalize from the Normal to the non-Normal case. 

The decomposition of total curvature into normal and tangential components pro-
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duces intrinsic and parameter-effects curvatures respectively, as for nonlinear re­

gression. Following the suggestions of Kass (1984), there are families of such 

curvatures each depending on the chosen value of a, each having a special in­

terpretation for estimator properties. A new feature is that a non-Normal error 

distribution contributes a component to both intrinsic and parameter-effects cur­

vatures, whereas for Normal errors no such contribution is made from the error 

distribution. The precise interpretation and use of the curvatures ( for a given a ) is 

a topic which is exploited in later developments when special cases are considered, 

such as the class of generalized nonlinear models (GNMs) defined in Section 3.6. 

The following list of results, proved later in the thesis, shows the application of 

these generalized curvatures to specific situations. 

Section 3.3.2 intrinsic curvature is invariant (in general). 

Section 4.2 parameter-effects curvature is invariant for a generalized linear model 

(GLM). 

Section 4.3.2 the scalar form of exponential intrinsic curvature for a G L M is 

minimal when the link is canonical; this is a generalization of the situation for 

nonlinear regression, where the canonical link (identity) yields zero intrinsic 

curvature. 

Section 4.5 a generalized nonlinear model ( G N M ) with zero exponential curva­

ture is a G L M with canonical link. 

Section 4.7 a zero information connection implies a variance stabilizing link in a 

G L M and conversely. 

Each of the curvatures, intrinsic and parameter-effects, consists of model and 

disturbance effects. Asymptotically and under appropriate replication, any dis­

turbance component (based on the mean) becomes Normal and so the generalized 

nonlinear model ( G N M ) collapses into nonlinear regression. This is effectively the 

model proposed by Wei (1994), where the skewness is bounded so that it vanishes 
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asymptotically, ensuring Normality in the limit, in line with the result of Kass 

(1984). Hence, the question of which a-connection to use for these models be­

comes irrelevant since the error distribution becomes Normal in the limit. This 

bounded model of Wei (1994) has been extended (Wei and Zhu, 1997) to a class of 

models called 'exponential family nonlinear regression models' which are similar to 

the generalized nonlinear models(GNMs) described in Section 3.6. A comprehen­

sive exposition of the approach is given in Wei (1998), together with applications 

using the construction of confidence regions and regression diagnostics involving 

leverage and influence estimates. 

With the partitioning of generalized intrinsic curvature into effectively two 

components, one due to the model and the other due to the error distribution, 

the influence of design points on the curvature measures, and hence estimator be­

haviour, can be investigated. The purpose of such research would be to produce 

designed experiments that induce low intrinsic curvature, enabling current 'close-

to-linear' methodology (Ratkowsky, 1983) to be employed. This 'close-to-linear' 

label assumes, as a precondition to possible model parameterization, that intrin­

sic curvature is low. Thus, this condition of low intrinsic curvature should be a 

feature of design rather than an implicit assumption, even though experimental ev­

idence suggests that many of the models employed in practice exhibit low intrinsic 

curvature. 
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Differential Geometric Approach 

2.1 Preliminaries 

Several discussants [Ross (1908a), Reid (1980), Atkinson (1980), and McCul-

lagh (1980)] to the paper by Bates and Watts (1980) raised the question of a 

non-Normal error distribution. In particular, McCullagh (1980) noted that nonlin­

ear models were often associated with non-Normal errors. Under these conditions, 

the use of least squares as a criterion for model fitting can give too much weight 

to a few outlying observations, so the use of the correct error distribution can be 

crucial for proper estimation. Two of the discussants, Reid (1980) and McCullagh 

(1980), proposed the exponential family as a model for non-Normality, and the 

form of model proposed by Reid (1980) was 

p(y- 0) = exp{c(y) + 9% - tf (0)}, (2.1) 

for the random variables Y\,..., Yn with each Yi having probability density function 

(pdf) p{yi]0i). The quantifies in bold denote vectors so that 

y = (yi,---,yn)
T 

and 

0 = (#i,... ,9n) . 

35 
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The following developments are in terms of a general probability distribution 

function p(y; 0), but the ultimate goal is to use the general technique in examining 

the exponential family. In particular, Generalized Linear Models (GLMs) will be 

investigated in detail, leading to other allied models. 

2.1.1 Likelihood 

Given the random variable y and a set of parameters 0, the distribution of y can 

be specified by the pdf p(y; 0). The corresponding log-likelihood is specified as 

e(y-0)=lnp(y-0). 

2.1.2 Regularity Conditions 

Subsequent developments rely on the following regularity conditions 

1. p(y;0)>O. 

2. For fixed 0, the functions 

W * M (! = 1...n) 
are linearly independent, in that it is assumed that they form a set of basis 

vectors to span the tangent space. 

3. The moments of 8{£ exist up to required orders. 

4. Partial derivatives and integration can always be interchanged, eg., 

di(ff) = f(dif) . 

These conditions will be assumed without being stated throughout the derivations 

and working hereafter. 



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 37 

2.2 Tangent Spaces 

Let S be the space defined by the parameters 0 as a coordinate system. The 

tangent space T Q is a vector space obtained by a local linearization of S around 

9 composed of tangent vectors to the coordinate curves passing through 0. The 

space TQ is spanned by the functions e$ known as basis vectors, given by 

def d£ 
ei{9) = di£{y- 0) 

89* 

as shown in Figure 2.1. 

82i 

-0i 

-•••./ 9l 

S 

Figure 2.1: The tangent space T in parameter space S. 

So any tangent vector A e T Q is a linear combination of these basis vectors, 

e^, viz, 

A = A%e = A^e) 

as illustrated in Figure 2.2. 
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d2 = e2 

di = ex 

Figure 2.2: Basis vectors span the tangent space. 

Consider a neighbouring point to 0, say 0 + d0. The two corresponding tangent 

spaces are shown in Figure 2.3, in two dimensions. 
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0 + d0 

/ 
0+d0 

d0 / 

/ 

I 

Figure 2.3: Neighbouring tangent spaces. 

Now 

£(y; 0 + d0)= £(y; 0) + d{£d9
{ + ... 

by Taylor's theorem. This expansion can be recast as 

di£d9
i « £(y\ 0 + d0)- £(y\ 0) = e{dd

l 

(Amari, 1982a, p359), showing that the linear combination is described by A1 

d0{, using the vector addition shown in Figure 2.4. 
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Figure 2.4: Vector addition for neighbouring parameter spaces. 

2.3 Inner Product 

Following the development in Barndorff-Nielsen, Cox and Reid (1986), a measure 

of the distance between the distributions at 0 and 0 + d0 [due to Jeffreys (1961)] 

produces1 

ds2 = gijd9
id9j 

where 

e{ • ej = Ee(di£dj£)
 d= pa­

using the basis vectors defined in the previous Section. Thus, ̂  is defined as 

an inner product and forms the metric tensor having the statistical interpretation 

1A full derivation is given in Appendix B.l. 
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of corresponding to the Fisher information matrix. A n alternative form for the 

tensor describing the information matrix is 

gi5 = -Ee[didj£\ 

following Amari (1990, p29, 2.10). This form is derived in Appendix B.2. Both 

forms of the metric will be used extensively. 

2.4 Metric Tensor 

If P is a point on an n-dimensional surface specified by parameters (91,...,9n), 

then the squared distance between P and the nearby point P + dP specified by 

(9l + d9\...,9n + d9n), is given by 

gtjdeW (2.2) 

using the Einstein summation convention. Note that superscripts are indexes, not 

powers. 

(i) The terms gij (̂ - = g^) form the metric tensor, and 

(ii) if the quadratic form given by (2.2) is positive definite, the surface forms a 

Riemannian manifold. A practical example of such a manifold is the surface 

of a sphere, which while being imbedded in Euclidean 3D space, forms a 2D 

Riemann manifold (Barndorff-Nielsen, Cox and Reid, 1986, pp83-84). 

This metric tensor is the Fisher information matrix, when the distance function 

is measuring the infinitesimal distance between distributions.2 In terms of the 

exponential family previously described we now have 

9ij = -E[didji\ = did^(0) (2.3) 

d£ 
where di£ = -^—7 and £ = lnp(y; 0). 3 A collection of results involving the metric 

tensor is given in Appendix B.3. Before presenting the extensions required to 

2Barndorff-Nielsen, Cox and Reid (1986, pp86-87). 
3Amari, (1982a, p359). 
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handle general exponential families, five simple examples are presented, with the 

aim of demonstrating the role of the metric tensor in statistical problems. 

2.4.1 Example 1, Normal distribution with known variance 

Take Yi,... ,Yn as a random sample where Yt ~ JV(/^,1), with corresponding 

log-likelihood 

1 n 1 n I 
£ = logp = --{yiVi + tftf - 2Vip

1} - - In 2TT = Vili
l - -p1^ - - In 2TT - -yY 

giving 
1 • • 7? 1 

P = //, and *(9) = -W + - In 2TT, c(y) = - - j , i y i , 

and 

gy = didjV = c%, 

i.e., the Euclidean metric. So, the squared distance between 91,... ,9n and 01 + 

d0\...,0n + d0nis 

ds2 = (d91)2 + ... + (d9n)2. 

This demonstrates the correspondence between Normal errors and the Euclidean 

metric, when the parameter of interest is the mean of a Normal distribution with 

known variance. 

2.4.2 Example 2, Normal distribution with known mean 

Let Z\,..., Zn be a random sample where Z{ ~ N(0, af) giving 

i n 

£ = logp = yiP + -T ln(-2^) + - In 2TT 

with4 

1 n 

Vi = (Zi)
2, 9l = -sfoM8) = -fMrW) + g ln27r' c^) = °-

4 X is a unit scalar. 
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Amari (1982a) puts the constant term with ty(0) ; it could equally as well go with 

c(y). This produces the metric tensor as 

2(9*)2 9*3 = n(Qi\2 = 2 ( ° r i ) 4 ^ ; 

a not unexpected result, being proportional to the variance of the sample variance. 

So now the distance function is 

±(jan\2 2(a1)\d9
1)2 + ... + 2(an)\d9

n) 

ie., a non-Euclidean metric. For a non-statistical example of a simple non-

Euclidean metric, see Barndorff-Nielsen, Cox and Reid (1986, p84). 

2.4.3 Example 3, Normal distribution 

Take Xi,...,Xn as a random sample where X; ~ N(pi,af). As the observa­

tions are independently distributed, the log-likelihood is the sum of the individual 

terms. Thus the analysis can be undertaken for a single observation (McCullagh 

and Nelder, 1983, pl7, p20 and p32). Thus the corresponding log-likelihood (con­

tribution) for a single observation is 

1 , x2 , 2 • * - - - M l e=-(x-iiy/a2-lna--\n2Tr , 0 = 
9o 

This gives 

and 

dx£ 
a2 { }~ a2 

d2£ = 
(x - M )

2 1 

aJ 

with 

and 

d1d1£ =—r and d2d2£ = 
3(x-tf (-1) 

a' ay a' 

d2d,£ = J^A = dld2£. 
a° 
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The contribution to the metric tensor from an individual observation is 

-E 
dxdx£ dxd2£ 

d2dx£ d2d2£ 
= E 

1/a2 0 

0 2/cr2 

1/a2 2{x - p)/a* 

2{x-p)/a* ?,{x-p)2/a*-l/a2 

See Murray and Rice (1993, pl7) and Amari (1990, p29, Example 2.3) for corre­

sponding derivations. For independent observations x\,...,xn, the parameters 0 

become 

9 = 

(O 
92 

#3 

9, 

V :) 

= 

f,A 
^i 

M2 

0"2 

I ! / 
which makes the metric tensor 

9ij(9) = -E(didj£) 

a diagonal matrix with the entries grouped in pairs, viz, 

Diag[l/al2/a2,...,l/a2n,2/a
2
n}. 

Since gij ^ c%, the geometry is not Euclidean5. If the observations are NIID, 

then pi — p. and Oi = a and the observations become replicates, yielding 

£(xi,...,xn) = n£(x) 

in a similar vein to the development in Amari (1982a, p372, 4.17). The distribution 

can be cast as a member of the exponential family, as defined by Equation (2.1). 

Using the likelihood contribution for a single observation 

£= -(x2 + p2 - 2xp)/2a2 - In a - ln(27r)/2 = {^)x2 + x(^) M 
'2a2 2a2 

gives 

Vi = x
2, y2 = x, 0

1 = -l/2a2, 92 = p/a2, 

5The full dimension of g^ is in fact 2n x 2n. 
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and 

*(6>) = - ln{-291)/2 + {92)2/49\ c{y) = \n(2ir)/2 

in agreement with Examples 1 and 2. As before, the full n independent observa­

tions will produce 2n parameters for 9. 

2.4.4 Example 4, Multinomial distribution 

The following discussion is a synthesis of Amari (1990, pl2, p24, 2.2 and p31, 2.4), 

with corrections and changes in notation where considered necessary. The descrip­

tion of the multinomial distribution is cast in the particular form to highlight that 

it is a mixture distribution (Amari, 1990, p40). The pdf and likelihood are quoted 

for a single observation. 

Let Y be a random variable taking integer values {l,2,3,...,n + 1} with 7Tj 

being the probability that y is equal to i, and 

n+l 
^ 7Tj = 1, 0 < -Ki < 1, i = 1... n + 1. 
«=i 

The probabilities 7T; define a multinomial distribution with 

n 

91 = TTx, 92 = 7T2, . . . ,9
U = 7Tm9

n+1 = 7Tn+1 = 1 - £ > ; . 
i = l 

The probability distribution function for a single observation is 

n ( n \ 

p(y,o) = j:\Hy-iW]+s(y-n-i) (i-En 
i=l \ i=l / 

where J(y - i) = 1 when y = i, and = 0 otherwise, ie., an indicator variable. Thus 

n+l 

P(V, *) = £ S(y - i)9l 
i = l 

giving6 

n+l 

i(y;e) = ^/S(y-i)\n9
i 

i=l 

and so 

y^ - Qi ^ \ L) Qn+1 

6Note the typographical error in Amari (1990, p24). 

file://j:/Hy
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since 

9n+l = i-91...-9T 

Calculating didj£, gives 

and then7 

0-0-1= % ~ V n - s{y~n~1](-i)(-i) 

» V = 0 - ̂ y - 1 ) (-!)(-!), ,^. 

The metric tensor is then 

gij = -Edidj£ = - p d{dj£ dy = - £ p 0;0^ 

(0n+l) 

But pj = 7Tj = 0l and so 

-l , i„ \-i 
9ij = ŷC71"*) + (""n+l) 

as per Amari (1990, p31). Finally 

9a = -r + 
•Ki 1 - 7Ti . . . — 7Tn 

The special case of n = 1 gives the Bernoulli distribution 

01 = TT, 02 = 1 - 7T 

yielding 
1 1 . . . 1 

0n = - + , — = H^) = 7T 1 — 7T 7r(l — 7T) 

and 

g11 = V(7t) = 7T(1 - 7T) 

as expected. The multinomial distribution is an important example of 

distribution. (See Amari, 1990, p43, example 2.6.) 

7There is a typographical error in Amari (1990, p31), 
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2.4.5 Example 5, Generalized Linear Model 

A random sample Y\,..., Yn is taken from a distribution belonging to the spe­

cial class of exponential family models whose individual contribution to the log-

likelihood is given by 

a(<t>) 

ie., a generalized linear model (GLM). Choose a{<j>) = 1 for simplicity, and so 

d1£ = y-b'(9), d1dl£=-b"(9). 

For independent observations yi,-..,yn, the GLM form is close to the exponen­

tial family model defined by Equation (2.1) on page 35. Thus the log-likelihood 

becomes 

n n 

t{v\ o) = o'yi - E K&) + c(y; 0); cte; & = E c(^; ̂)> 
i i 

with8 

n 

yi = yh 9
l = 9i(=9ya(<f>)), *(9) = b(9)d^Ylb(n and c(y) = c(y,<£). 

i 

N o w 

dt£ = Vi- b'(9
{) 

and 

didje=-ti'(0
I)5ij 

where / is a nonsum index taking on the same value as i. This gives the metric 

tensor as 

gij(9) = -Edidj£ = b"(91)5l y 

so 
gij(9)=dmg(b"(9

1),...,b"(9n)), 

which reinforces the independence of the assumed sampling regime. 

technically #(0) = b(0)/a(<f>). 
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2.5 Affine Connection 

48 

If TQ and TQ , ^0 are the tangent spaces corresponding to the neighbouring points 

0 and 0 + d9, then the affine connection 1^(0) provides the means of comparing 

these two spaces. 

A direct comparison of vector components from the two spaces is not possible 

since the tangent vectors from each space have differing basis vectors as shown in 

Figure 2.5. 

s.---

/••-• 

9 + d9^ dj£(9 + dO) 

I 

/ / 

/ 

/ 

d9 I 

I 

I 

I 
s.--

/ 

• - . / 

T, 9+d9 

•• 9{ + d9l 

Figure 2.5: The basis vectors for neighbouring tangent spaces. 

Even in Euclidean space, the basis vectors differ if the coordinate system is 
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curvilinear, eg., for spherical coordinates. The statistical analogue is nonlinear 

regression, since then the errors are Normal (implying a Euclidean space), but the 

coordinate system (regression parameter space) is curvilinear. 

To compare vectors in TQ with those in TQ _J_ ̂ Q a mapping between these vec­

tor spaces is needed; such a correspondence is called affine, Bishop and Goldberg 

(1980, p220). 

Choose a basis vector e»(0 + d0) in TQ _̂_ ̂ Q and consider its corresponding 

vector in TQ with respect to e;(0) in TQ, as in the Figure 2.6. 

^L 

_ di£{0 + dO) = ei(0 + d0) 

dd{0) = ei(0) 

Figure 2.6: The correspondence between neighbouring basis vector spaces. 
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The corresponding vector in TQ is 

di{0)+5ei{0) 

which means that 

5ei(9) « d{£(9 + dO) - 0^(0). 

This difference 5ei{9) can be expressed as 

5ei{9)=d9i r£e*(0), 

being the change in the ith basis vector while moving from 0 to 0 + d9. The n3 

functions T^ are the coefficients of the affine connection, since they determine 

the affine correspondence between TQ and T Q , ^Q. 

The coefficient F^ determines the influence of e$ on the change in ek when 

moving a small distance in the 9j direction. (Barndorff-Nielsen, Cox and Reid, 

1986).9 

Taking the inner product gives 

em • 6ei = em • d9
j T^ek = gkm F^{d9

j = d9j Tjim 

using the identity 

•*- jim ^ ji9km j 

following Kreyszig (1991, ppl40-141). The forms Tjim and T^ are Christoffel 

symbols of the first and second kind, having the interpretation of being inner 

products when the space is Euclidean. 

Since a point P in the vector space is associated with 

%;0)=fln/(y;0) 

then 

my; 0) = -^£{y; 0) 

9 A n alternative interpretation of the affine connection using the covariant derivative is given 

in Chapter 3. 
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will be associated with TQ. 

Now 

di£(y; 9 + d9) = di£{y; 9) + 0j0i£(y; 9)d9
j 

by Taylor's theorem, but, by virtue of the score statistic 

E[di£(y; 0)] = 0. 

Note the discrepancy between Amari (1982a, p361), and Amari (1990, p39), in 

the expansion of the derivative of the likelihood. The correct form given here is 

equivalent to that of Amari (1990, p39). Thus, any vector C(y) in TQ should 

satisfy 

E[£(y)} = 0 

as well.10 To be precise, vectors of type £(y) are contained in the 1-representation 

of the tangent space TQ denoted T^ defined by 

T{e
l) = {A{y)\A{y) = A%£{y]9)}. 

Since 

E{djdil) = -E{di£dj£) = -gjt 

then djdi£ is not contained in TL . 

Adding djdi£ to g^ and to di£dj£ yields two quantities of type C G Tk 

These two quantities will be denoted respectively by 

St (y; 0) = 5ei + gjid9
j = djdi£d9

i + gjid9
j 

and 

S{ (y; 0) = Set + diidjedP = didi£d9
i + di£dj£d9j. 

(i) 

0 

10This notation clarifies a possible misinterpretation of equation (2.16) p361 of Amari (1982a). 

The use of the likelihood symbol £ for the expression of vectors in T Q is potentially confusing. 

Hence the use of C(y) which corresponds to the A(x) of Amari (1990, ppl9-20). 
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These two new quantities satisfy the expectation criterion 

E(C) = E{1) = E(l) = 0. 

Any linear combination of these two new quantities would suffice. Thus the 

function 

° 1 + a i l-a 1 
^ I = ~ y - Si + ^ ~ St 

could be used, where a is the arbitrary constant of combination. Thus there 

is no unique affine connection, but a family characterised by the parameter a. 

Connections belonging to this family are called oj-conneetions. 

2.6 a—connections 

Taking the inner product as before, but now using the a value to characterize the 

connection, yields 

em. I £ = d9i fjim = E[dm£ I £} 

Thus 

TJlm = Eldrnii^—idjdit + 9jl) + -z-id&l + diidjt)}] 

which simplifies to 

a 1 — (y 

r,-m = EldjdddmZ} + -^-Eldjlditdmei (2.4) 

These a-connections provide the means of comparing nearby tangent spaces 

that are derived from probability distributions. In short, the a-connection is the 

affine connection for a function that is derived from a statistical distribution. 

2.7 Statistical Interpretation of a-connections 

The one-parameter affine connection (a-connection) can be rewritten as 
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a 1 — ry 

Tijk(9) = Efad/iy; 9)dk£(y; 9)} + _ £ [ 0 ^ ( y ; 9)dj£(y; 9)dk£(y; 9)] (2.5) 

where a is the arbitrary constant of combination. 

A statistical interpretation of these a-connections has been derived by Kass (1984), 

who showed that the parameterisation of one-dimensional non-linear models de­

rived by Hougaard (1982) was related to Amari's (1982a) a-connections via 

r 1 — a 
o — 

2 
where the value of S determines the form of parameterisation in the original expo­
nential form 

e0't(x) - X(9) 

where 

9 = 9(P) 

and the new parameter -0 = g((3) is determined by solving Hougaard's equation11, 

viz 

d2g/dp2 _\ a?x(d9\ (<to\'*xdO_\ /f(M\£xdO\ (9,, 
dg/d/3 \ d93 \d/3J [dp2) dp2d(3j I \{d/3j d92dp] ' { } 

Kass (1984), by the change of variable technique, was able to show the equivalence 

of Amari's (1982a) definition of an a-connection and Hougaard's equation12 for 

one-dimensional curved exponential families. 

Kass (1984) used this demonstrated equivalence between a and S with Hougaard's 

(1982) results for S to provide the statistical interpretation for Amari's (1982a) 

a-connections. The analysis provided below uses the equivalence shown by Kass 

(1984), but interprets the a-connections directly, via the equations due to Bartlett 

(1953a). This use of Bartlett's equations and the corresponding derivations are 

considered original. 
nHougaard (1982, p246, equation 2.1). 
12Kass (1984, p92), where equations (3) (Hougaard, 1982) and (6c) (Amari, 1982a) are shown 

to be equivalent. 
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The one-dimensional procedure outlined below will be generalized to the multi­

parameter case later. 

2.7.1 Riemann Christoffel Curvature 

The statistical interpretation of a-connections will be made in terms of those 

properties induced by zeroing the a-connection. The identical vanishing of an a-

connection can be cast in terms of the Riemann Christoffel curvature, as described 

in Appendix B.4. 

The Riemann Christoffel curvature tensor is basic to many of the quantities 

used in the differential geometric treatment of the statistical theory of curved ex­

ponential families. Key treatments are given in Amari (1990, p46), Amari (1982a, 

p365, 3.5), Barndorff-Nielsen, Cox and Reid (1986, p89) and Loveluck and Rund 

(1989, p257, 3.1 and p260, 3.16). 

2.8 Equivalence of a, 5 and c. 

Amari (1982a) derives an a-connection as 

( d2£ 8£\ 1 - a „ ( d£ d£ d£ \ 
riik= E ——-— + —-E ijk \ 89i89] 89kJ 2 V d°i dej d°k 

where £ is the log-likelihood function. 

For a one-dimensional model this reduces to 

f_(8
2£8£\ !-<* (diV 

Using the fact that a = 1 - 25 gives 

a ^(82£8£\ £„(d£\
3 

r°=E{W2d-9)+5E{d-9) 
which is equivalent to (6c) of Kass (1984, p88), in the one-dimensional case. 

DiCiccio (1984) extends the above interpretation of properties associated with 

specific values of Hougaard's (1982) S to a wider class of models in the one param­

eter case. The key variable used by DiCiccio (1984) was designated as c where 

S = (2 - c)/3. 
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a S 

-1 1 

-1/3 2/3 

0 1/2 

1/3 1/3 

1 0 

c 

-1 

0 

1/2 

1 

2 

Parameterisation 

Mean value 

E[d3£/d^j3} = 0 

Canonical 

Transformation 

Bias reducing 

Skewness reducing 

Variance stabilizing 

'Normal likelihood' 

None - identity 

Table 2.1: The interpretation of a, S and c. 

Table 2.1 summarises the special values of a, S and c, together with their corre­

sponding descriptions. These special values of a will be shown in Section 2.10 to 

be connected to special properties of the estimator, as shown under the heading 

'Transformation' in Table 2.1. For example, for a = —1/3 the special property 

associated with choosing a transformation that induces 

-1/3 

r =o 

will be to reduce skewness. The various properties described for each value of a are 

derived in the single and multi-parameter cases in Section 2.10 and Section 2.11, 

respectively. The choice of names (Amari, 1982a) for the connections a = -1, 0 

and 1 as mixture, information and exponential is clear from how Table 2.1 links a, 

5, c, the parameterization and the effect of the corresponding transformation. 

2.9 Bartlett's Equations 

Bartlett's (1953a) used the following notation for one-dimensional models13 

L = lnp(9;x). 

The score statistics and other quantities were defined as 

*='(§ 
13L is the log-likelihood. 
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'82L\ 
L2 = E\ 

\L2 = 

K86
2
y 

8L2 
89 

2 

Repeated operations on the log-likelihood yield the following relations 

Li = 0 (2.7) 

L2 + ^
2) = 0 (2.8) 

L3 + 3(L1L2)+4
3) = 0 (2.9) 

1L2 + 4
3 ) + 2(L1L2) = 0. (2.10) 

The last two Equations [(2.10) and (2.9)] can be combined to give 

L3 + (L1L2)-1L2 = 0. (2.11) 

Subtracting Equation (2.11) from Equation (2.10) gives 

2XL2 + L? + (LXL2) - L3 = 0 

which yields 

[LXL2) + L^= Lz-2XL2. (2.12) 

a 

These equations can now be used to examine Te for the key values of a, via 

r.= (LA) + ^L?> . 

The above results are re-expressions of results derived by Bartlett (1953a). In 

the next section, those properties corresponding to particular values of a will be 

investigated. 
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2.10 Interpretation of a in the one parameter 

case 

The a-connection is now expressed in terms of a transformed parameter ip, as 

determined indirectly by Kass (1984) in the one-parameter case14. In fact, the 

transformation used by Hougaard (1982) was from the imbedded regression coef­

ficient j3 to -0 via 

1> = 9(0) 

rather than from the canonical parameter 9 as used by Wedderburn, as quoted in 

Hougaard (1982). 

The results following have been expressed in terms of this transformed param­

eter %[) to emphasise the interpretation associated with each a-connection via the 

use of equation (4) of Kass (1984), ie., 

a 

r̂ =o. 

So, in general 

T^(LlL2)+
l-^Lf\ 

Each case is now examined in turn, for one-parameter models. 

Some of these results hold not only for curved exponential families but also 

for general likelihoods. The acronyms CEF (Curved Exponential Family) and 

GL (General Likelihood) will be appended to results which hold for each of these 

respective situations. These acronyms are used in Table 2.2 to summarise the 

results for the interpretation of each value of a. 

14Hougaard's (1982) V is the 7 of Kass (1984). 
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2.10.1 Mixture Connection 

<* = -! : (S = 1) (GL) 

Using Equation (2.12) in the form for the (—l)-connection gives 

fi= (L,L2) + L
{? = L3 - 2 XL2 

to give 

^ = ̂  (cv) " % \EW) • 
Compare this with the expansion of Bartlett (1953b), viz15 

So, choosing a parameterization corresponding to S = 1 will reduce asymptotic 
-I 

bias, since this is equivalent to making r^= 0. Hougaard (1982, p248) shows 

that, for the case 6 = 1, the ip parameterization can be estimated with zero bias 

asymptotically in a curved exponential family, viz, 

E$ = ip + Oim'1) 

where m is the number of data points16. In addition, this parameterization (6 = 1) 

minimises mean square error (MSQ) where 

MSQ$) = E$ - i\))2 = E($ - E$)2 + Ety - E$)2 = V(f) + bias2$) 

Since the transformation to ip eliminates bias, it is almost trivial to claim that 

MSQ is minimised as well. This property of minimum MSQ can be demonstrated 

using the results of Hougaard (1982, section 3, p248). 

15Equation (15), p310, with I =-E (d2L/d62) . 
16The usage of O and the term order follow standard numerical analysis terminology, as defined 

in D. Kincaid and W . Cheney (1991, pplO-12). See also Amari (1990, pl59) for a corresponding 

clarification of the term order. 
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A Taylor's series expansion 

<? = 90) = gifi) + 0- M(fi) + 0- P)2g"(P)/2 + ... 

forms the basis for calculating 

E$) = ij> + 0{rrCl) 

to determine the order (m_1) contribution to the bias. This is eliminated by 

choosing 5 = 1 . Now 

MSQ$) = E$ - I/J)2 = V$) + bias2$) 

yielding 

E$ - ip)2 = V$) + m~2 [.. .f 

with the term inside [...] being zero to order (m_1) if the transformation g pro­

duces the solution to Hougaard's (1982) equation with 5 = 1. 

The assertion of asymptotic minimum MSQ and 0(m~l) unbiasedness is thus 

demonstrated. 

2.10.2 Skewness Connection 

a = -1/3 : (5 = 2/3) (CEF) 

The a-connection becomes 

-1/3 /-

r̂  = (LM + §4} 

3 T>3= 3(LiX2) + 2L
{? = L?] - L3 . 

Now K3(dL/dip) = E (dL/dip - E{dL/dip)f = E (dL/dipf = L?\ but the skew­

ness for ip is measured by E{$ - E$)3 (Hougaard 1982, p248). 

Amari (1990, pl32 and pl51) shows that this form of a-connection is directly 

related to the skewness of the parameter (ip) and not the corresponding score 

statistic (0L/0-0). 
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Hougaard (1982, p248) gives a direct calculation in the one-parameter case 

showing that S = 2/3 (a = -1/3) produces K^) = 0 to order (m~l) for a curved 

exponential family. 

2.10.3 Information Connection 

a = 0 : [5 = 1/2) (GL) 

The 0-connection is 

So 

2 T>= 2(LXL2) + 4
3) = -XL2 

r ° - o ^ T - dI - d F(dL)2-n 
rip-0^1L2--—--—E(—) -0 

So the transformation g from /? to if) produces constant variance. Hougaard's 

(1982) derivation uses the variance of a transformed variable, viz, if Y = g(X) 

then Var(Y) = a2(X) [g'{px)] • If ̂  is to have constant variance after the trans­

formation i/> = g(fi) then 

<?'(/?) = || oc v^7 , J = ?(/?)oc^ 

and the results of section 3 part 2 of Hougaard (1982) show that the key value of 

5 that produces the constant variance transformation is S = 1/2, ie. a = 0. 

2.10.4 'Normal' Connection 

a = 1/3 : [5 = 1/3) {GL) 

The a-connection is 

to give 

1/3 /,> 

Tf= (LtL2) + |4
3) , 

V3 c^ 
3 I>= 3(£iL2) + L\

3) = - L 3 
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1/3 

So Tv,= 0 => E (d
3L/dtp3) = 0, implying that the expected third derivative of 

the log likelihood is zero, ie., 'normal likelihood' in the terminology of Hougaard 

(1982, section 3, part 1, p247). 

2.10.5 Exponential Connection 

O = L ! : (6 = 0) (CEF) 

The 1-connection is 
I 

r^= (LiL2), 

but since this corresponds to 5 = 0, the transformation is the identity, ie, the 
I 

canonical parameterisation. In fact r^= 0 simply means that the initial param­

eterisation p (from 9 = 9(/3) in Hougaard's (1982) notation) may have the expo­

nential family distribution in canonical form with respect to /3, since (LXL2) = 0 

for a distribution of the exponential type, in terms of the canonical parameter. 

If the distribution is of the exponential family type in the transformed param-
I 

eter then (L:L2) = 0 which leads to I^= 0. Thus the transformed parameter is 

canonical. 

However, if the transformation induces Ti>= 0 this leads to (LXL2) = 0, but it 

is not necessary in general for the family to be exponential if the 1-connection is 

zero, see Amari (1990, pl52) and Appendix B.5. 

2.10.6 Note 

Clarification of the parameterizations in the above Section is called for. Wedder-

burn's formulation (Hougaard, 1982, p245) of the transformation ijj(9) 

*w=£{iinW'de (2-l4) 
is defined for the one-dimensional family in terms of the natural parameter 9, viz, 

e6t{x)/^(9). 
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A full description of Wedderburn's exponential form is given in Appendix B.6 with 

the cases 6 = 0,1/3,1/2, 2/3 and 1 being shown to have equivalent interpretations, 

albeit for the canonical (natural) parameter. 

The one-dimensional submodel (curved family) is (Hougaard, 1982, p246) 

ee^Tt^/<P{9(P)} 

The parameterization ip = g(/3) for 6 = 0 now becomes the solution for g in 

Hougaard's (1982) equation 

l9/d^ = {5^x(d9_\ (£e\*xM\ /f(M\'£xd6\ 
dg/dp \ d93 [dp J + [dp2 J d/Pdflj J {[dp J d92dp) 

This gives 

d2g/d(32 _ Ud29\'d2Xd9) /l(M\'*xdO\ 
dg/dp ' { [dp2 J dp2 dpj / { [dp J d92 dp) 

but the canonical parameterization implies that tp = 9 = P, so g is the identity, 

ie., g = P since 9 = p. This yields 

d2g/dp2 

dg/dp 

and 

d29 

aW2=° 
which trivially satisfies Hougaard's (1982, p246) equation. 

2.10.7 Summary 

Kass (1984) has demonstrated that the a-connections coincide only in the special 

case of the Normal distribution with known covariance17. This is confirmed by 

Hougaard (1982, p251) : "For the curved exponential family the four parameter­

izations are not identical in general, and you cannot get more than one of the 

properties"18. It follows that in the case of non-Normal errors the above special 

values of a will characterise the properties of the estimator. So, each property of 

17Proposition 2, p90, Kass (1984). 
18The case a = 1 (5 = 0) is excluded as it is the canonical parameterization (the identity!). 
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the estimator has to be considered separately using each key value of a, whereas 

for the Normal case the value of a is irrelevant. For example, if f appears small, 

we might expect that the model will exhibit constant variance with respect to the 

parameter involved. 

The interpretation given to the a-connecfions via Bartlett's equations is quite 

general and does not necessarily require the distribution to be of exponential type. 

So, interpretation of some a-connections could be made for any type of distribu-

tion, since T= 0 implies special features to be associated with the choice of a, 

viz, 

-1 (bias reduced), 0 (constant variance) and 1/3 ('normal likelihood'). 

Table 2.2 presents the values of a and the corresponding conditions under which 

the previous statistical interpretations of a zero a-connection can be made. 

a 

Condition 

-1 

GL 

-1/3 

CEF 

0 

GL 

1/3 

GL 

1 

CEF 

Table 2.2: Conditions for the interpretation of a : single parameter. 

Of course, the problem is to find a parameterization that will zero the a-

connection. Such a parameter can be shown to exist in the one-dimensional case, 

(Amari, 1990, pl52, Corollary). 

Kass (1984) demonstrated the correspondence between parameterizations as 

determined from Hougaard's (1982) equation and Amari's (1982a) a-connections, 

whence the relation a = 1 - 25 is derived. By the use of Bartlett's (1953a) 

equations, the statistical interpretation of a-connections for key values of a has 

been demonstrated directly, corroborating the interpretations made by Kass (1984) 

in appealing to the effect of choosing the corresponding value of 5 in Hougaard's 

(1982) equation. 

Bartlett (1953b) has produced similar equations in the multi-parameter case, 

and similar results follow as a generalization of the one-parameter situation here 

described. These results are corroborated by Amari (1990, ppl50-152), using an 
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entirely different approach. 

2.11 Interpretation of a in the multi-parameter 

case 

When more than one parameter is involved, the general form of a-connection is 

required, viz 

Tijk(0) = Eldidj^y; 0)dk£(y; 0)} + i ^ E [ 0 ^ ( i / ; 9)d3£(y; 9)dk£(y; 0)) . 

The same key values of a are associated with special properties of the esti­

mators as outlined in Amari (1990, ppl50-152). The interpretation in general 

depends on advanced analysis of estimator behaviour, which will be treated in 

later chapters. Some of the properties described using the one-dimensional ap­

proach via Bartlett's (1953a) equations carry over and so will be expounded. The 

generalization of these equations is given in Bartlett (1953b, pp306-307); again 

only the first three derivatives are necessary to produce the multi-dimensional 

analogue of the equations for one parameter models. 

A modification of notation from the one-parameter case is necessary to enable 

similar manipulation of identities as used in the interpretation of a-connections 

for one—parameter models. So, the equations of Bartlett (1953b, pp306-307) are 

represented in the following extended notation 

* = <> 

01 0L 
(L3Lb) - E(WaWb) 

8L8L8L 
(LaLbLc) - E(———) 
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(Labc)" E{d9Mdfc] 

,_F(dL d2L 
(LaLbc)'"E{-dTad9M

] 

aLbc ~ dTa
[Ei8Mfc

)] 

Note that the type used for the subscripts is designed to allow different pa­

rameters to be addressed. In later developments, the subscripts ijk will be used 

to denote natural parameters in an exponential family model, eg., a G L M , while 

subscripts abc will denote regression coefficients contained within those natural 

parameters via the fitted values. The notation used here, viz, abc, is meant to 

show that either set of parameters can be intended, or even a set of transformed 

parameters, as in the one dimensional case. 

Bartlett's (1953b) equations are (in full form) 

F(9LdL)= F( d"L ) 
yd9id9j} Kd9id9j

) 

F(dLdLdL_ _ _F(_J^_^Fi^_^J^xFi^^L^\-E(—-^-\ 
{89id9jd9k

)~ [89id9jd9k
) Vd9%d9id9k

) Kd9jd9id9k
) {d9kd9id9j

) 

where 9i,9j,9k are arbitrary parameters. 

An additional equation is generated by differentiating the second order equa­

tion. The resulting four equations can be combined to obtain another relation 
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used to simplify expressions involving key quantities such as the skewness ten­

sor (LaLbLc). Using the extended notation defined earlier, these five equations 

(Bartlett, 1953b, pp306-307) now become 

La = 0 

(L,Lb) + (Lah) = 0 

{LaLhLc) + (Labc) + (LaLhc) + (LbLac) + (LcLab) = 0 

aLbc + (LaLbLc) + (LabLc) + (LacLb) = 0 

(LaLbLc) = 2(LabLc) — aLbc — bLac — cLab . 

Various adaptations are possible using different combinations of the indices 

abc. 

The a-connection now becomes 

fabc = (LabLc) + i^(LaLbLc). 

The key values of a have the same interpretation as in the single parameter 

case (Amari, 1990, ppl50-152). The full derivation of some of these results depends 

on later developments, but all values of a are reported for completeness. The 

interpretations of the cases a = 0,1/3 and 1 can be derived directly using Bartlett's 

(1953b) equations. 

Similarly to the one parameter case, the solution of the equation 

rabc = o 

will be in terms of transformed parameters in a curved exponential family. Thus 

the subscripts abc will refer to transformed parameters. 
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Again, the term CEF stands for 'Curved Exponential Family', and GL means 

'General Likelihood'. These terms are also used in Table 2.3. 

2.11.1 Mixture Connection 

a = -l : CEF 

The (-l)-connection is 

— 1 j r m 

labc = Fabc = \LabLc) + {LaLbLc) = (Labc) — aLbc — bLac . 

Together with other variations, this equation is a generalization of the connec­

tion from the one-parameter case examined earlier. The corresponding results for 

bias are given in Amari (1990, pl31 and pl50), while the minimum mean square 

error result is given in Amari (1990, pl33 and pl50), with both results being 

written in terms of the mixture connection T 

2.11.2 Skewness Connection 

a = -1/3 : CEF 

The skewness connection is 

-i/3 2 

rabc = (LabLc) + -(LaLbLc). 

-1/3 

The term -3 rabc is shown to be precisely the third cumulant Kabc (Amari, 

1990, pl32), and so the parameterization that zeros the (-l/3)-connection pro­

duces zero asymptotic skewness. 
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2.11.3 Information Connection 

a = 0 : GL 

The O-connection is 

rabc=(LabLc) + i(LaLbLc). 

Thus 
o 

2 rabc
 = 2(LabLc) + (LaLbLc) = cLab — aLcb — bLca . 

Now if 

this implies that 

2 rabc = o 

0 02L 0 d2L 0 82L 

00c 0^a0^b 30a
V 00c00b' 00b

v 00c00a 

Using the other combinations of a, b and c yields similar equations, viz 

a = b + c 

c = a + b 

b = a + c 

where 

a = cLab, b = aLcb, c = bLca. 

The only solution is 

a = b = c = 0 

which implies that the matrix 
02L 

{89a89b
] 

is constant, for arbitrary a and b. So a transformation which zeros the O-connection 

produces constant (co)-variance with respect to the new parameterization. Note 
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that this result does not require that the likelihood be derived from a curved expo­

nential family necessarily, nor that it be exponential in the transformed parameter. 

2.11.4 'Normal' Connection 

<*=l/3 GL 

The normal connection is 

1/3 I 
rabc = [LabLc) + -(LaLbLc) . 

Cycling the indices yields 

1/3 l 

Tbac = (LbaLc) + -(LbLaLc) 

and 
1/3 1 

^cab = (LcaLb) + -(LcLaLb) . 

Summing these three (= S), implies that if the (l/3)-connections are zeroed, then 

E = 0 = {LabLc) + (LbaLc) + (LcaLb) + (LaLbLc) = -(Labc) . 

Invoking the third equation of Bartlett (1953b), viz 

~{LaLbLc) = (Labc) + {LaLbc) + {LbLac) + {LcLab) , 

1/3 

means that if rabc = 0 then (Labc) = 0, to give 

F( d
3L 

K89a89bd9c
s 

Thus, the matrix of expected third derivatives of the log-likelihood is zero, pro­

ducing 'normal' likelihood in the terminology of Hougaard (1982). 

This result holds for general likelihoods, not just for the transformed parameters 

of curved exponential families. 
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2.11.5 Exponential Connection 

a = l CEF 

If the exponential family distribution is canonical in the transformed parameter, 

then 

(LabLc) = 0-+ rabc = o 

1 

If the transformation induces rabc = 0 then (LabLc) = 0, but it is not necessarily 

true that the family be (curved) exponential, as shown in Appendix B.5 and Amari 

(1990, pl52). The same comments applied to the one-parameter case. 

Comments 

It should be noted that in line with the one-parameter case, the cases a = 0 and 

a = 1/3 produce results that hold for general likelihoods. 

Table 2.3 presents the values of a and the corresponding conditions under which 

the previous statistical interpretations of a zero a-connection can be made. 

a 

Condition 

-1 

CEF 

-1/3 

CEF 

0 

GL 

1/3 

GL 

1 

CEF 

Table 2.3: Conditions for the interpretation of a : multi-parameter. 

Of course, the problem is to find a parameterization that will zero the a-

connection. In general, such parameters need not exist. However, local parameter­

izations can be defined that satisfy the conditions required in a small neighbour­

hood of specific values. Thus, any of the given conditions can be fulfilled locally 

by a particular point; see Amari (1990, ppl50-152). 

For example, using Normal errors and a nonlinear response (nonlinear regres­

sion), a Taylor's expansion can produce an approximating model that is linear in 

the parameters with 

Kbc=o • 
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So, in a small neighbourhood of the expansion the parameters are locally canon­

ical (linear). This linearity forms the basis of iterative solutions to the fitting of 

nonlinear regression models to data. 

2.12 Dual Space 

For the general exponential family defined by 

£ = 9*yi - i>{9) + c(y) 

the parameter space defined by 9 is called the natural parameter space. 

The dual space contains the space of expectations; see Amari (1982a, p366). 

This is the space used by Bates and Watts (1980) in examining the differential ge­

ometry of the nonlinear regression model. The expectation surface is characterised 

by 

* = & , • • • , & ) 

with 

{l = Ee(yl)=dii>(9). 

There is a 1-to-l correspondence between £ and 9. The space of expectations is 

exactly the space of fitted values, and is of importance since it is the coordinate 

system in which the Cramer-Rao bound is attained. It has the further property 

of causing the mixture (-l)-connection to vanish in the same way that the expo­

nential (l)-connection vanishes for the natural coordinate system. 

2.13 Generalized Linear Models 

The essential consideration in examining generalized linear models (GLMs) is the 

extension from Normality to statistical distributions of other types. Much effort 

and ingenuity has been expended on Normal linear theory, and the success of G L M s 

has been partly due to many results of Normal linear theory and applications being 

subsumed in the theory of generalized linear models. T w o such examples are the 
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implementation of the G L I M fitting algorithm, and the analysis of deviance of 

sequentially fitted nested models of increasing complexity. 

The differential geometric approach offers a vehicle for expanding the results of 

Normal theory into the non-normal structures of G L M s . Consequently, frequent 

reference to the Normal case will be made as a special example of a G L M . 

For a G L M , the contribution to the log-likelihood £ for a single observation is, 

using the notation of McCullagh and Nelder (1989), 

a(4>) 

A general exponential family is represented by 

£ = c(y) + 9% - 1>{9) 

yielding 

dk£ = yk~ dktp 

and 

d{dj£ = -didjip = -gij 

So, taking expectations gives 

a 1 — ft 

TijkiO) = -Y~E(di£dj£dk£) 

The skewness tensor Tijk can be written as 

Tijk =
f E(di£dj£dk£) = -E&djdd). (2.15) 

from Bartlett (1953b, p306), and Amari (1982a, p365). 

For a G L M with unit scale parameter, {a{4>) = 1), 

gij = b"(9
I)6ij (2.16) 

giving19 

196ij is the Kronecker delta, viz 

Sij = l,i = j 

= 0,i#j. 
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Tijk = b'"(9
K)Eijk (2.17) 

where Eijk is defined by 

Eijk = 1, if i = i = fc, 

= 0 else 

giving 

fy* (*) = ~^Tiik, (2.18) 

where 7 and K are nonsum indices, as described in Section 1.8.2. However, Equa­

tion (2.18) is for the canonical parameter 9. The only G L M s for which these 

canonical parameters are of specific interest are simple analysis of variance mod­

els, ie., models using categorical predictors only20. Usually a transformation to 

the parameters of interest (/3) will be required, assuming 9 = 9(f3), via 77 = X(3 

and the link function g defined by g(pb) = 97. There are various equivalent forms 

for the linear predictor rj , viz, 

r} = XP 

and 

m = g(p%) = Xj{3 = ^XijPj = XijPK 
j 

Any of these forms may be used to describe the linear predictor. 

Note 

The definition of Eijk corresponds to the generalized Kronecker delta 5ij<k of Amari 

(1990, p43). See also McCullagh and Nelder (1983, p237, Appendix D, A.21a) for 

an equivalent definition of the skewness, allowing for differences due to the scale 

parameter. 

2 0 T h e choice of link function is irrelevant as the fitted values are effectively the parameters. 



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 74 

2.13.1 One-dimensional GLMS 

The application of this differential geometric technique to the generalized linear 

models of Nelder and Wedderburn (1972), in the one dimensional case, is now 

investigated. 

In the trivial case of a null model, 0j = 9 \/i so 

« 1-a (d£\3 1-a / d3£\ 1-a l-ab'"(9) 
Te= ~ E [89) = ~ E [-dl3-) = — * = —Iffi 

using the results of the previous section, or Bartlett (1953a, pl3). For example, 

given Normal errors 

Te= 0 V 0, 

since 

9 = p, 6(0) = 02/2 =» b'"(9) = 0. 

This give zero skewness, as is expected for a symmetric distribution. 

The one-dimensional G L M of interest is of course one for which the single regres­

sion parameter (P) produces a 'line of means' p{ = b'(6i) via the link function 

g(pi) = Xjp = rji. 

Such a model is a special case of a curved exponential family, in the terminology 

of Efron (1975). 

2.14 Regression coefficients in GLMs 

For a curved exponential family imbedded in a multi dimensional parameter space, 

the regression coefficients of interest ((3) are imbedded in the space of natural 

parameters (9). For a G L M , the relation describing this imbedding is 

9i=f(Xijpi). 

A full notational description of this relationship and the role played by the linear 

predictor is given in Appendix B.7. Amari (1982a, Theorem 3, 4.6, p370) gives 
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a a 

the mechanism for writing Tp in terms of T^, i? being the natural parameters 

(coordinates).21 This result will be referred to as the 'imbedding theorem', as it 

will be cited frequently.22 

2.14.1 Imbedding 

A set of m regression coefficients (u) is contained within the set of n natural 

parameters (tf) where m < n. So & = &{u) [ 9i = 0*(/3) for a G L M ] . Now 

/(y;u) = /(y;*(ti)) 

and 

a def 9 
= 0W"' tt= 1'2'-'-'m 

giving 

da£(y;u) =Bi(u)di£(y;#(u)) 

where 
dd{ 

B » = s? • 
Subscripts a&c will be associated with u, zj'A; with #. Corresponding G L M relations 

can be written for 9 and (3, using u = j3 and 0 = a{4>)"&. 

2.14.2 Imbedding Theorem 

The expression of the a-connection (ra&c) for the regression coefficients in terms 

of the a-connection {Tijk) of the natural parameters (or coordinates), is given by 

fabc (u) = (0«BS)Bky(0(u)) + BiBjBj fy* (*(«))• (2-19) 

A derivation of this relation is given in Appendix B.8. For a G L M , this relation 

becomes 

Tabc (/3) = {daBl) Big%j{9{P)) + B\B\B
k
c f ijk (0(/3)) (2.20) 

21The variable d will be used for the natural parameter in Amari's (1982a) formulation when 

ambiguity with the canonical G L M parameter 9 arises. 
22Kass (1984, p89) uses the term 'inheritance' relation. 
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as 9 and •d only differ by the scale parameter a(4>), since -d = 0/a{<j>). The terms 

B\ in Equation (2.20) are defined for 9 so that 

Ei _ 99' 

whereas the terms B\ in Equation (2.19) are defined for -d so that 

Bb~Wb 

as given in Section 2.14.1. 

To reconcile Equation (2.20) and Equation (2.19), the expression for an affine 

connection in one coordinate system in terms of the affine connection in another 

coordinate system is invoked (Amari, 1982a, 2.28, p364).23 The transformation 

equation for the a-connection (Amari, 1982a, 2.28, p364) is rearranged to give 

Equation (2.21). The coordinate transformation defined by Amari was 

r, = 77(0) 

with the prime indices being associated with rj. The transformation equation 

(2.28) of Amari (1982a) was 

Ti'j'k' = (pi'B™) Bk,gim + B^B^B^Timn (2.21) 

where 
„i 99l 

Bv - w 
The coordinate transformation from 9 to # implies corresponding indices Imn to 
i'j'k', in the notation of Amari (1982a, p364). The use of the prime indicates 

that the transformation from 9 to tf is 1:1. The 1:1 transformation involved in 

ti = 0(0) is different to the imbedding relation $ = tf(/3), and so Equation (2.21) 

is different to Equation (2.19), even though their forms are similar. For a G L M 

9 = a{<j>)ti 

23The trailing term in equation (2.28) of Amari (1982a, p364) pre-empts this study. 
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giving 

This implies that 

dvBf = 0 

giving the a-connection in terms of -d as 

rw(tf) = B\B«fBlTlmn = a\$)Tlmn{0). 

Metric 

The metric gab for the regression coefficients {u = (3) in terms of the metric g{j for 

the natural parameters "d becomes 

gab(u)=B
i
aB{gij(l}(u)). (2.22) 

The derivation follows from the definition of the metric, namely 

gab((3) = E [da£db£] = E [B^B^] = &aB{E &£%£] = BiBfoy(tf). 

This result will be used later in conjunction with the 'imbedding' theorem. The 

metric for 1? expressed as a function of the metric for 9 is 

gi/j/{'d) = B
kBljlgkl{9) 

where the prime again denotes the # coordinate system. Since 

Bl = £ = «*) 
this gives 

gi>f(#)=a
2{<j))gkl{9). 

Scale Parameter 

Gathering results for the a-connection and the metric gives 

rijk(#) = a
3(t)rijk(0) 
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and 

gij{&) = a
2{<l>)gij{0). (2.23) 

To convert Equation (2.19) to Equation (2.20), it is necessary to convert from ti 

to 0. In Equation (2.19), B\ is 

t = df_ = d&M = 1 , 
6 0/?6 d9Jdph a{(f>) b 

where the index / is nonsum taking the same value as the index i. Continued use 

of this chain rule leads to cancellation of all generated terms in a{<j>), leading to 

Equation (2.20). 

The interpretation of this phenomenon is that the scale parameter affects the 

a-connection for the natural parameters ( T ^ ) , but not the a-connection for the 

regression coefficients (Tabc). This is due to Tijk being a function of derivatives 

of the likelihood with respect to the natural parameters, while Tabc is related to 

derivatives of the likelihood with respect to the regression coefficients, and so Tabc 

is independent of changes of scale in the natural parameters. 

2.14.3 Normal Distribution 

For the Normal distribution, 

9l = p} , b{91) = {9i)2/2 , -+ 6"(0O = 1 , -+ b'"(9i) = 0 . 

This gives the a-connection for the natural parameters as 

Tijk (#) = 0> 

since 

f(0) a b"'(9) 

as given in Equation (2.17). Reworking Equation (2.23), and substituting a(4>) = 

a2 gives 
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So the a-connection for the regression coefficients becomes 

f abc 09) - (0oBj) Bi9ij = (daBl) B{6%JI<J2, 

as in Section 3.5.1. 

2.14.4 Normal Linear Models 

For these models, the link function is the identity and the errors are Normal giving 

0* = At* = X{jp
j . 

In this case the distribution is symmetric, so the skewness tensor Tijk vanishes
24. 

This makes Tijk (0) = 0, as shown in Section 2.14.3. Since a linear model implies 

a canonical link for the Normal distribution, 

, _ 0̂ _ _ d_i_ 
b ~ dPb ~ dpb ~ iJ 

to give 

daB\ = 0 

which gives 

f abc (0) = 0. 

So all the a-connections for (3 vanish, showing that all the conditions associated 

with key values of a such as unbiasedness, zero skewness, constant variance and 

'normal' likelihood hold for the Normal linear model without the need for trans­

formation, as stated in Hougaard (1982, p249). 

2.14.5 Nonlinear Regression 

For the nonlinear regression problem, the mean is a nonlinear function of the 

predictors, giving 

^ = 0* = f(Xi;/3) 

2ididj£ = -Sij => didjdki = o. 
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and 
,_00^ 0f(jr<;/9)dgf 
6 dph dpb ' ib' 

So 

f abc 09) = (aaSj) JB&,- = (0afft)fjA7^ 

even though Tijk (0) = 0, due to the distribution being Normal. As in the Nor-

mal linear case, all the a-connections are identical, since Tabc ((3) is not related 

to a. This of course means that any transformation which zeros one of the a-

connections zeros them for all a. So all the properties corresponding to special val­

ues of a can all be satisfied simultaneously, as shown by Hougaard (1982, p246), 

for one-parameter models. As outlined by Kass (1984), these properties include 

unbiasedness, stability of variance, lack of skewness and normality of likelihood 

(zero expected third derivative of the log-likelihood). 

This simultaneity is a special property of the Normal distribution, which does 

not necessarily hold for general non-normal errors, since Tijk^ 0 in general. For 

corroboration see Amari (1990, pl56), and Kass (1984, p90, Proposition 2). 

Note 

The class of models defined by Wei (1994) are related asymptotically to nonlinear 

regression models. This is due to the constraint imposed by the regularity condition 

[Wei, 1994, p328, (a)], viz, 

\\Lal{9)\\ < M(9)/n 

with 

EM{9) < K 

which imply that the skewness tensor vanishes asymptotically.25 As demonstrated 

by Kass (1984), the only family of distributions for which this occurs are Nor­

mal with known (co)-variance. Hence it would appear that 'close to Normal' 

25In Amari's notation T^k -> 0. 
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families only are being addressed by this class of model. Since asymptotic Nor­

mality is implied, the skewness tensor Tijk vanishes asymptotically and a 'common' 
a 

affine connection is implied, i.e., Tabc is independent of a. So all the properties 

of nonlinear regression models will be inherited asymptotically, see Kass (1984) 

and Amari (1990). Hence the question of which connection to use is irrelevant 

(asymptotically). 

2.14.6 Generalized Linear Models 

A feature of Generalized Linear Models is the factorisation that occurs in B, viz, 

, _ 00* _ df(Xj(3) df(Xijpi) 
6 dpb dpb dpb ib 

and so 
0fi dr\i 0f, 

dr\i dpb dr\i 

The factorisation can be expressed as 

ab ~ o—~Kob ~ a—A/&" 

hb — ^—Alb-

dm 
and is related to simplifications used in the fitting procedure of the G L I M algo­

rithm. To elaborate, fitting general models of the form 

E(Y) = f{9) 

to non-Normal data, as reported in Seber and Wild (1989, p34), can be effected via 

the IRLS (Iteratively Reweighted Least Squares) algorithm due to Green (1984). 

At the core of this method is the factorisation 

d£ d£ df3 
d9{ dfj 89i 

For the G L I M algorithm, the analogous development is to factorise the derivative 

of the log-likelihood as 
8£ 8£_8rl_ 8£ 

dp1 ~ drjiW ~ drfi ij 
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using the notation of McCullagh and Nelder (1989, p41). Further simplification of 

d£/drj leads to the form of estimating equation peculiar to the G L I M algorithm. 

In particular, for canonical links (0 = rj) 

d£ d£_d^_d^_ d£_ 

8~r}i~ dl^dpdrr7- 8& 

leading to a simplification in the Hessian matrix ( matrix of expected second 

derivatives of the log-likelihood with respect to the regression coefficients). 

The a-connection for the regression coefficients (3 is 

f abc 09) = (daBl) Bigtj + BaB{B
k
c Tijk (0). 

The application of the above factorisation to this general form of the a-connection 

for a G L M is further developed in Section 2.15.7. 

The partitioning of model/link effects and distribution effects for a G L M adds 

a layer of complexity on top of that experienced for Normal errors. The error 

distribution affects Tabc via Tijk and the metric ô -. The model/link function 

affects the terms B\ only. Thus, both terms in the a-connection are affected by 

the error distribution and the form of model as determined by the link function. 

Since the first term can be zeroed by choosing a canonical link, it is termed 'model' 

dependent, whereas the second term is deemed to be 'error' dependent since it can 

be zeroed by choosing Normal errors. So the situation for G L M s is an extension 

of Normal error models where intrinsic and parameter-effect curvatures are model 

dependent, but the distributional contribution Tidk is zero. 

2.14.7 Canonical Links 

For a G L M , the link being canonical implies that 

9{ = rf = Xi3P> 

so 

4 _ 00*_ _ drf_ _ dXjjF _ 

*b~dub~dpb~ dPb l6' 
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This implies that 

daB\ = 0, 

giving 

Tabc (/3) = BlaB
3
bBc Tijk (0) = XiaXjbXkc Tijk (0) 

as the expression for the a-connection for the regression coefficients. 

Notes 

• As pointed out by Kass (1984), the 'inheritance' relation, Equation (2.19), is 

true not only for the exponential family of distributions, but also for general 

likelihood functions. 

• The first component in Equation (2.20) is model dependent, since it can be 

zeroed by choosing a canonical link. 

• The second component in Equation (2.20) is distribution dependent, since it 

can be zeroed by choosing Normal errors. 

• A related but not identical relation to Equation (2.19) has been derived 

independently by Kass (1984) for the reparameterization of one-dimensional 

models. In this case the transformation is one-to-one, but as can be seen in 

Appendix B.9, a similar relationship to Amari's (1982a) imbedding theorem 

is obtained. 

2.14.8 Summary 

The general form of the a-connection for the regression coefficients is given by 

f abc 09) = (daBl) Bigij + BaBiB
k
c Tijk (0). 

The form of this a-connection Tabc is given below for several special cases. 

N o r m a l errors (nonlinear regression) 

f abc 09) = {daBl) Bigij = (daBl) B{5lila
2 + 0 
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N o r m a l errors (linear model) 

f abc (/9) = 0 

GLM 

Tabc {(3) = (daBl) ^&"(0%-/afo) + ^BaBiB
k
cb"'{9

K)Ei3k/a(<l>). 

GLM (canonical link) 

Tabc {(3) = 0 + BiB(Bkc Tijk (9) =
 l-^BiaB{B

kb'"(9K)Eijkla(<t>). 

So, both terms in the expression for Tabc contain expressions such as B\ which are 

affected by the model parameterization as determined by the link function. The 

first term can be called 'model' dependent and the second can be termed 'error' 

dependent, due to the conditions that cause them to be zero. 

2.15 Exponential Connection and GLMs 

2.15.1 Theorem 

The exponential connection in terms of the regression coefficients is zero if and 

only if the link function is canonical for a generalized linear model. 

2.15.2 Preliminaries 

The proof is almost trivial in the sense that a canonical link for a G L M implies 

exponentiality with respect to the regression coefficients26. Thus the exponen­

tial connection associated with the regression coefficients must be zero, since the 

distributional form is then of the exponential type with respect to the regression 

coefficients. Following the notation of Amari (1982a) for curved exponential fam­

ilies defined by the distribution function 

f{y\0{u)) 
26 A canonical link also implies sufficiency. 
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with27 

0* = f(A^) 

for a G L M , it follows that u = (3. 

Subscripts abc will be used for the regression coefficients u, 

and subscripts ijk will be used for the natural parameters 0. 

Connections can be defined in terms of the regression coefficients, viz 

f abc(u) = E(dadb£dc£) + 6E(da£db£dc£) 

tabc(u) = E(dadb£dc£) 
m e 

r « 6 » = Tabc(u) + E(da£db£dc£) 
a m e 
r a b » = 6 Tabc(u) + (1-5) Tabc(u). 

2.15.3 Proposition 

The precise mathematical statement of the theorem can now be given as 

1. For a GLM with a canonical link, Tabc(u) = 0. 

e 

2. If Tabc(u) = 0 for a G L M , then the link function is canonical. 

2.15.4 Proof 

1. In terms of the natural parameters 0, 

Tijk{0) = E(didj£dk£) + 5E(di£dj£dk£) 

with 

I V ( 0 ) = Tljk(9) = E(didj£dk£). 

For the exponential family 

£ = c(y) + 9lyi-^{9) 

27 Using the notation Appendix B.7. 
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tjM = E(didj£8k£) = Ei-didjW) = E(-gijdk£) = 0 

by virtue of the score statistic. From the imbedding theorem (Amari 1982a) 

fabc(u) = (daBDBigij + BaB(B
k
c Ti]k(9(u)) 

giving for a = 1 (the exponential connection)28 

fabc(u) = (8aBi)Bigij + BlB(B
k fljk{9(u)). 

Now 

tjk{9) = 0 

for exponential family models, giving 

tabc(u) = (8aB\)Bigl3, 

Since the link is canonical, 

00* __ drf 

d~u~b~~8pb 
Bl ~ ~EJi ~ ^5h ~ Xib 

giving 

Thus 

daBl = 0. 

r a 6 » = 0 

as expected. 

2. If the exponential connection with respect to (3 vanishes, then 

f ^(u) = 0 

implying that 

(8aB\)Bigij + B\B[Bkc tijk(0)=O. 

However 

fy*(0) = 0 

28It is assumed that the scale parameter a(<f>) = 1. 
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since the family is exponential with respect to 0, 

(daBl)Bigi3 = 0. 

Excluding trivial models, this implies that 

daB[ = 0 

ie., Bb is constant. Now
2 9 

6 dpb 'dnI8p
b' 

so 

dUY 
Aib dr\ 

is constant30. 

This implies f oc r\ which defines f as a canonical link, as 9 = f ~» 9 oc n. 

2.15.5 Interpretation 

For exponential families of distributions 

a 1 — ft 

^ijk(0) — — 2 — ^ i j k 

and 

fa6c(n) = {daBl)Bigl3+BaB{B
k Tljk(0). 

The results of the previous Section will now be used to investigate these a-

connections for G L M s . 

29Using the notation of Bishop and Goldberg (1980), a repeated upper case superscript and 

subscript will be taken as a nonsum index. Such an upper case index will take on the same value 

as its lower case counterpart. 

30fi=ff(Xjp). 
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2.15.6 Canonical Link 

If the link is canonical, then 

daB
l
b = 0 

giving 

tbM = BaBlB
k
c6Tljk(0). 

Now in general 
a m e 

rabc(u) = 6 Tabc(u) + (1-6) Tabc(u) 

i.e. 
a m e e 

T a 6 » = S[ Tabc(u) - Tabc(u)} + Tabc(u) = 6Tabc 

where 

Tabc = E(da£db£dc£) = BaBlB
kE(di£d3£dk£) = BaB{B

k
cTl3k. 

So 

f abc(u) = BaBiB
kSTijk(9) = STabc 

and, since the link is canonical, 

fa6c(/3) = ^XiaX^XkcT^). (2 

In agreement with Amari (1982b, p4, 2.10), the following definition is given 

the skewness of the score function 

Tabc~ XiaXjbXkcTijk • \
z 

2.15.7 Non-Canonical Link 

When the link is non-canonical, 

a e 

1 abc ~ O^-abc + *• abc 

fabc = 6BaBlB
kTijk + (daB

j
b)B

kg3k + BaB{B
k Tijk. 

Now / -r \ 

. ^ 0f (Xlfj) _ d^x 
Ba ~ dua dPa dm Ia 
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giving 

f -5T 4-8 (d^X \ dfk X 
labc-d labc +da []f^

xJbJ g^XKc9jk 
e <? 

since Tijk = 0. The skewness Tabc is defined as 

J-abc- BatSbBclijk - AIaXjbXKc-——-~—Tijk = ^—^-^— Tabc (2.26) 
V drudrjjdr/K dru drjj dr}K

 aocJ v ' 
c 
by extending the previous notation for Tabc . The a-connection is now 

f -6dfiX dfjX dhX T -u d (dfAx ®kx 
1 abc ~ %Xladn~J Jbd^ Kctjk + W W J ) Xjbdr^XKc9jk> 

which gives 

f _ l-aX Y X T
 9U ®* 9fk + d (®A XXX 9ik 

abc ~ -T-XjaXjtX^T^ — — — + — ^—J XIaXJbXKc—g3k, 
and, finally 

a 
Fabc(0) — -r~XIaXJbXKcTijk(0) ^-L^L ~— )+XiaXJbXKcg3k -—~—~— 

\dru dr/j dr]K J \drndrjj dnK J 
(2.27) 

2.15.8 Discussion 

The two Sections 2.15.6 and 2.15.7 can now be compared. The following points 

can be made 

• Equation (2.27) reduces to Equation (2.24) when the link is canonical. 

• The second term in Equation (2.27) is independent of a, and is just the 
e 

exponential connection Tabc(/3). 

• Because the second term in Equation (2.27) can be zeroed by choosing a 

canonical link, this term is model dependent. 

• The first term in Equation (2.27) is error dependent, since it can be zeroed 

by choosing Normal errors. This term is proportional to the skewness tensor 

Tabc, and will be exactly equal to the skewness term in Equation (2.24), when 

the link is canonical. 

file:///drndrjj
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The results obtained in Equation (2.24) and Equation (2.27) can be compared 

with those of Pregibon (1980) and Efron (1975). 

1. The a-connections derived in Equation (2.24) and Equation (2.27) form the 

basis of a test of link adequacy, by comparing various link functions with the 

canonical link, which some statistical packages use as the default. Pregibon 

(1980) has proposed a goodness-of-link test that subsumes the 'correct' link 

function into a family of types and compares alternatives via the deviance. 

The proposed test would have a different focus, since it involve comparisons 

of link functions with the default (canonical). The idea for the type of test is 

suggested by the form of the a-connections for canonical and non-canonical 

link as given in Equation (2.24) and Equation (2.27) respectively. As shown 

in Section 2.15.6 and Section 2.15.7, these a-connections are related to the 

skewness of the score function. In particular, the skewness of the score with 

respect to the regression coefficients can be written in terms of the skewness 

with respect to the natural parameters. It is this relationship that forms the 

basis of the test for a canonical link function. The test proceeds by fitting 

the canonical link to subsets of the data to determine if the relation between 

Tabc and Ti3k is linear, as suggested by Equation (2.25). Departure from 

this suggested form, would be taken as evidence of the link function being 

non-canonical. This test is described via examples in Section 2.15.9. 

2. Efron(1975) has defined a measure of statistical curvature that vanishes for 

exponential families. The measure of statistical curvature 70 is defined by 

2 ^02 vlx 

le h 

where 
/02A „(d£\2 

Uo2 = E[W2) ~h 
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and 

TP(d£d
2£\ 

Un = E[d9W2)-
The single parameter of interest is 0. The estimate of statistical curvature jg 

is designed to be a measure of the nearness of the model to an exponential 

family type. Such exponential family models exhibit desirable statistical 

properties such as allowing the application of linear methods, encompassing 

locally most powerful tests and efficient estimation (Seber and Wild, 1989, 

pl60). So, models with low statistical curvature could be expected to behave 

in a similar manner to such exponential family models and to inherit their 

corresponding good statistical properties. For an exponential family, the 

log-likelihood is defined by 

£ = yd - yj){9) = c(y) 

to give 

8£/89 = £ = y- ip'(9) , 82£/892 = £= -ip"(9). 

The square of the statistical curvature 70 becomes 

2 __ ^02 ^11 

le - ~T -3 
h le 

where ig = ip"(9). Since 

u02 = E£
2 -i2B = 0 

and 

un = E££ = -ip"E£ = 0 

by the score statistic, then 79 = 0 for an exponential family. This measure 

of statistical curvature is defined for one parameter models subject to reg­

ularity conditions similar to those described in Section 2.1.2, (Efron, 1975, 

pi 191 and pi 196). One parameter models which are curved subsets of higher 

dimensional exponential families are called 'curved exponential families', as 

defined in Section 1.7. For such models, Efron (1975) showed that the bias 

and asymptotic variance of the M L E contain terms involving 70 and 'naming 
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curvature', so called as it is dependent on the form of model parameteriza­

tion. A n interpretation of jg is that the loss of information due to curvature 

reduces the sample size from n to n - 7 2 , since the M L E extracts all but i0jj 

of the information in the sample. Extension of Efron's curvature to the multi­

parameter case was considered by Reeds (1975), in the discussion of Efron's 

paper. The extension was to multi-parameter curved exponential families. 

Reeds (1975) noted that, in the single parameter case, a transformation can 

always be found that will eliminate naming curvature (parameter-effects cur­

vature), but that this is not necessarily so in the multi-parameter case. This 

transformation feature is reported also by Amari (1990), Kass (1984), and 

Hougaard (1982), for curved exponential families. The measures of statisti­

cal curvature and 'naming curvature' of Efron can be shown to be related 

to those of Bates and Watts (1980), for the case of Normal errors. The 

statistical curvature of Efron then becomes the intrinsic curvature of Bates 

and Watts (1980), as described in Seber and Wild (1989, pl60). The cor­

responding 'naming curvature' becomes the parameter-effects curvature of 

Bates and Watts(1980), as described in Bates and Watts (1981, pll66) and 

Seber and Wild (1989, pl64). 

The acceleration and velocity terms given by Efron (1975, pll96, equation 

4.2) can be used from the general case to verify these assertions for Normal 

Errors. Using the notation of Bates and Watts (1980), the intrinsic curvature 

is 

while the parameter-effects curvature is 

7 W' 
Using the orthogonal decomposition of the acceleration in (4.2) of Efron 

(1975, pi 196) gives 

7 = 1 ^ 1 / * = -372 
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and 

N _ M _^ 
7 = ~ — = le 

i 

as required. A unit scale has been used throughout, since from (4.1) of Efron 

(1975, pll96), £ = I. 

Although Efron's measure of statistical curvature is defined for one-dimensional 

models, several observations can be made that extend to cases of general in­

terest and application. 

• For a GLM that consists of a constant predictor only (the null model), 

0i = 0 V i, the likelihood is 

\nf(yi;9)=yi9-b(9)+c(yi) 

giving v\\ = u02 = 0 to yield 

M» = 
' 2̂0 ^n \ / x 0 

V 0 0 

causing 70 = 0 as expected, since 0 is then the natural (canonical) 

parameter. The form of link function is irrelevant. 

• Consider the Poisson regression problem of Efron (1975, pll93). For 

the stated problem 

-ne = ln(a + 06*) 

where rj is the natural parameter in Efron's notation. If the canonical 

link (log) is chosen, then 

r)Q = a + Pk 

and Me and jg have the same values as the null model, as expected. 

• The one-parameter family described by Efron (1975, pi 194) as 

rje = a + br(9) 
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is a superfamily of one-dimensional G L M s , since for a G L M the natu­

ral parameter n is in linear form ( ie, 'canonical', in G L M terminology) 

as a function of 0.31 Hence the statistical curvature jg is zero. This 

highlights the fact that Efron's (1975) statistical curvature is the expo­

nential curvature, which explains the alternative connotation of 'Efron' 

for the exponential connection, as defined by Dawid (1975). Note that 

rj is the natural parameter in Efron's (1975) notation. 

• In the one dimensional case, the exponential connection is 

e d£ 82f 

where un is as given by (3.21) of Efron (1975, pi 195). Since Te is the 

exponential connection, then un(9) = 0 for exponential family models, 

again reinforcing the name 'Efron' for the exponential connection given 

by Dawid (1975). 

2.15.9 Link Adequacy 

This section describes a test for judging the adequacy of a canonical link in the 

fitting of a G L M to data. From Equation (2.25), the form of the skewness of the 

score function for a G L M with canonical link is 

c 
Tabc= XiaXjbXkcTijk (2.28) 

whereas for a non-canonical link the skewness relation becomes [from Equation (2.26)] 

* _ dUdfj_dfk_T. _dfLdfLdf]LT
c
 (90Qs 

•'•abc— o o a +ijk — ^ Q Q
 1 abc • \&.A\t) 

dr/i dr\j drjK dr\i dr/j dr\K 
So, the rationale of the test is to calculate the L H S in Equation (2.28) from the data 

and to compare this with the R H S in Equation (2.28) as calculated from the data, 

using the form of Tijk suggested by a G L M with canonical link. Departures from a 

linear relation between Tabc and Ti3k will be taken as evidence of the link being non-

canonical, since such a departure is suggested by Equation (2.26). Some recasting 

31 For a GLM, r)e = Q = T(6) and b = -4^. 



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 95 

of Equation (2.28) is needed to allow the calculations to be performed in terms of 

the regression coefficients and not the score function based on those coefficients. 

To simplify this recasting, the calculations will be demonstrated on a G L M with 

Poisson errors, since this allows some simplification over other error types. As the 

test is based on the assumption of the link being canonical, Equation (2.28) will 

be used. A one dimensional derivation will be presented to highlight the approach 

with a minimum of complexity. The first step is to convert from skewness of the 

score function to skewness of the regression coefficients, since 

Tabc = Eda£db£dc£. 

Using a result due to Bartlett (1953a, p315, (27)), 

dL dL d2L 
(P-P) + ... (2.30) 

dp dp dp2 

where L{= £) is the log-likelihood in Bartlett's(1953b) notation, and p and 0 

follow from the formulation of a G L M due to McCullagh and Nelder (1989). This 

gives 
dL d2L /- x 

which becomes 
dL d2L 

(P-P)+... 
dp dp2 

The second derivative can be expressed as 

d2L _0_ (8L\ 8_ (dLd9\ _ _0_ fdL\ d9_ 8L829 

dp2 ~ 8P [dp) ~ dp [d9 dp) ~ dp [d9) dp + d9 dp2 

0 /8L\ 89 89 0L020 c?L_ (89_\2 8L829 

~ d~9 \dd) d~P~dp + ~898~P2 ~~ 992 [dp) + d9 dp2' 

If the link is canonical in the GLM, then 

giving 
dL_ y - b'(9) 

d9 ~ a((f)) 
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and 

with 0 = r/ = XP leading to 

and thus 

Hence 

giving 

So, now 

02L _b"(9) 

~d¥~~~aj$)> 

90 - X 

dp~ 

829 

— = °-dp 

82L _82L b"(9) 

dp2 892 a{<j>) 

w--w<?-)-iB'-v-»' 

giving the skewness as 

Tabc=E{^) =E^~py{^f) x6=i-^i*=i¥'w/fl^3 

using Equation (2.17) in Section 2.13. For Poisson errors, a(</>) = 1 and 6(0) = e6 

yielding 

b'(9) = b"(9) = b'"(9) = 6(0) = A 

where A represents the mean value (fitted value). If this mean is denoted by /, 

then 

E(p-p)3 = X-3r2. (2.31) 

So, a plot of the (raw) skewness against X~3f~2 should be linear if the link is 

canonical. 

Rationale of the Test 

If the link function is canonical, the resulting graph of estimated skewness against 

expected value (of the skewness) should be linear, by virtue of Equation (2.28). 
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If the link function is non-canonical, then the resulting graph will not necessarily 

be linear, as predicted by Equation (2.29). The following set of Examples have 

been chosen to demonstrate these two cases (canonical and non-canonical link) 

empirically. In practice, for a given set of data, various link functions would 

be tried, and the corresponding graphs used to decide on the appropriate link 

function. Ultimately this test judges the link function as being canonical by the 

linearity of the plot of observed versus expected skewness. As the user will not 

know the true link function in reality, another variant of the simulation could fit 

the canonical link function to data generated from a non-canonical link. Likewise, 

a non-canonical link could be fitted to data generated from a canonical link. Both 

of these variants on the simulation would check the ability of the test to determine 

departures from canonicality. 

Test Examples 

Several simulations were run to demonstrate the workings of the approach. The 

examples are adapted from the problem given in Dobson (1993, p42). The same 

experimental design has been used in all the Examples. Simulated data (Y) from 

the Poisson distribution were generated twice at each of 5 levels of the predictor 

variable (X = 1,2,3,4,5), giving 10 observations in all, with different link func­

tions expressing the relation between the expected value of the distribution and 

the predictor, eg, for the identity link, E(Y) = PX. The link functions used in 

each of the examples are given in Table 2.4. 

Example 

1 

2 

3 

4 

Link 

Reciprocal 

Identity 

Logarithm 

Square Root 

Table 2.4: Link functions used in the Examples. 
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A sub-sampling scheme was used whereby 3 data points corresponding to con­

secutive predictor values were used and the known model fitted to the data. This 

was repeated for all possible combinations within each cell of 3 consecutive X val­

ues, generating 8 sets of 3 data points covering X = (1,2, 3), (2,3,4) and (3,4,5). 

The 8 regression coefficients so obtained were used to estimate the skewness of 

the regression coefficient p in 2 lots each based on 4 regression estimates. These 

two skewness estimates were taken as representing the skewness of the regression 

coefficient in the model centred at the median of the spread of predictor values. 

Thus, skewness estimates were obtained for X = 2,3,4. The skewness estimates 

found were plotted against X~3f~2 and the relation judged for linearity. Depar­

ture from linearity in the plot of observed skewness against expected skewness 

should indicate that the link function differs from the canonical. 
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Example 1 

The data given in Table 2.5 were generated from a G L M with reciprocal link and 

Poisson errors. The expected value was given by 

E(Y) = 1/PX, X = l,2,...5 

with P = 0.1. Using the procedure described in 'Test Examples', the skewness 

[/̂ (s)] of the regression coefficients centred on X = 2,3,4 was estimated using 

the statistical package SPSS (Norusis, 1993). These estimates of the skewness are 

given in Table 2.6, together with their standard errors (SE). 

Since this link function was chosen to be unlike the log link (canonical link for 

Poisson errors), it is expected that the plot of observed skewness versus expected 

skewness should be unlike a linear relation. This is verified from the plot given in 

Figure 2.7, where the pattern of response is clearly nonlinear. The label 'skewness' 

refers to observed skewness (standardized in SPSS), while the label 'expected' cor­

responds to X~3f~2. The difference in scale between 'skewness' and 'expected' is 

due to the standardization of observed skewness by SPSS. 

Y 

X 

12,17 

1 

8,6 

2 

4,3 

3 

4,1 

4 

1,3 

5 

Table 2.5: Example 1 : Poisson data with reciprocal link 

X 

2 

0.17 0.13 

0.08 0.07 

3 

0.22 0.25 

0.08 0.09 

4 

0.91 1.01 

0.10 0.11 

Table 2.6: Example 1 : Skewness and the standard error of the coefficients 

This Example has demonstrated empirically the behaviour predicted by Equa­

tion (2.26), ie., the form of skewness for non-canonical link. 



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 100 

Example 2 

The data given in Table 2.7 were generated from a G L M with identity link and 

Poisson errors. The expected value was given by 

E(Y) = PX, X = l,2,...5 

with p = 5. Using the procedure described in 'Test Examples', the skewness 

[K3(s)] of the regression coefficients centred on X = 2,3,4 was estimated using 

the statistical package SPSS (Norusis, 1993). These estimates of the skewness are 

given in Table 2.8, together with their standard errors (SE). 

For this link function, no obvious skewness is present and so a plot is not given. 

It is clear that there is no obvious relation between the skewness and the expected 

value as calculated under the assumption of a canonical link. This link function 

is obviously not similar to the log link, which is the canonical link for the Poisson 

distribution. 

Y 

X 

5,6 

1 

12,11 

2 

15,11 

3 

18,27 

4 

28,24 

5 

Table 2.7: Example 2 : Poisson data with identity link 

X 

2 

-0.001 0.001 

0.40 0.40 

3 

0.000 0.000 

0.63 0.63 

4 

0.000 0.000 

0.47 0.47 

Table 2.8: Example 2 : Skewness and the standard error of the coefficients 

Again, this Example shows that the pattern of skewness for non-canonical 

link as described by Equation (2.26) will be different to that for canonical link as 

described by Equation (2.25). 
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Example 3 

The data given in Table 2.9 were generated from a G L M with log link and Poisson 

errors. The expected value was given by 

E(Y)=e0x, X = l,2,...h 

with P = 1. Using the procedure described in 'Test Examples', the skewness 

[if3(s)] of the regression coefficients centred on X = 2,3,4 was estimated using 

the statistical package SPSS (Norusis, 1993). These estimates of the skewness are 

given in Table 2.10, together with their standard errors (SE). This link (log) is 

the canonical link function for Poisson errors, and so a linear relation between the 

observed skewness and expected skewness should be evident. The plot (Figure 2.8) 

does not show the departure from a linear relation that was shown by the non-

canonical links (reciprocal and identity). The label 'skewness' denotes observed 

skewness (standardized in SPSS), while the label 'expected' denotes X~3f~2. Sev­

eral other plots were produced, some using the unstandardized skewness, but all 

gave similar results. 

Y 

X 

4,5 

1 

5,11 

2 

19,14 

3 

60,52 

4 

139,160 

5 

Table 2.9: Example 3 : Poisson data with log link 

X 

2 

-0.36 -0.36 

0.09 0.09 

3 

-0.11 -0.09 

0.02 0.01 

4 

-0.06 -0.07 

0.01 0.02 

Table 2.10: Example 3 : Skewness and the standard error of the coefficients 

The pattern of skewness for this Example is in line with the predictions of 

Equation (2.25) for a canonical link. 
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Example 4 

The data given in Table 2.11 were generated from a G L M with square root link 

and Poisson errors. The expected value was given by 

E(Y) = (pX)2, X = l,2,...5 

with P = 3. Using the procedure described in 'Test Examples', the skewness 

[K3(s)] of the regression coefficients centred on X = 2,3,4 was estimated using 

the statistical package SPSS (Norusis, 1993). These estimates of the skewness are 

given in Table 2.12, together with their standard errors (SE). 

The plot (Figure 2.9) is qualitatively similar to the log link (Example 3), possi­

bly reflecting similarities between the log and square root functions over some range 

of the X values. The label 'skewness' refers to observed skewness (standardized in 

SPSS), while the label 'expected' gives X^f'2. 

Y 

X 

5,9 

1 

44,34 

2 

89,79 

3 

132,141 

4 

198,220 

5 

Table 2.11: Example 4 : Poisson data with square root link 

X 

2 

-0.08 -0.08 

0.10 0.10 

3 

0.00 -0.03 

0.04 0.04 

4 

-0.02 -0.02 

0.05 0.05 

Table 2.12: Example 4 : Skewness and the standard error of the coefficients 

This Example suggests that this link function (vO is similar to the log link 

which is the canonical link for Poisson errors. 
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C o m m e n t s 

1. The standardized measures of skewness used in statistical packages are vari­

ants of 

K, = E(y-tflo\ 

Since SPSS calculates skewness using standardization, the scales of the ob­

served ('skewness') and the expected ('expected') will be different in the plots 

for Figure 2.7, Figure 2.8 and Figure 2.9. The first two examples showed con­

stant variance and so the effect of using the standardized skewness in place 

of the raw value should be minimal. For Examples 3 and 4 the variance 

of the regression coefficient does not appear to be constant. Since the raw 

form of the skewness gave similar results, a different subsampling could be 

considered. The reason for considering such a scheme is that the applica­

bility of Equation (2.31) is governed by the appropriateness of the Taylor's 

expansion in Equation (2.30). Hence reducing or changing the interval over 

which the observed skewness is calculated could change the relation shown 

in the plot of skewness. The validity of the Taylor's expansion could also 

affect the stability of the variance for the estimated skewness. 

2. The graphic has no obvious meaning for Normal errors, since Ti3k = 0 and 

so no relation would be expected in the plot, as the skewness would be zero. 

3. Overall, the graph of skewness versus expected value for the non-canonical 

links showed a clear departure from a linear relation, whereas the graph for 

the log link (canonical) showed no such departure. This linearity is predicted 

by Equation (2.25) in the case of canonical links. The square root link showed 

similar results to the log link, presumably due to like behaviour of the square 

root function to the log function over the region defined by the design points. 
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2.15.10 Summary 

This analysis of the exponential connection complements that of Kass (1984)32, 

who considered a-connections in the form 

am e 
ra6c = S ^abc + I1 ~ S) Tabc 

m e 

r, = r A-T 
*- nhr •*- nhn ^ -*- O, 

where33 

r, 

abc 1 abc i" -*• abc 

and then showed that the a-connections are identical iffTabc = 0. This is shown 

here by setting Tabc = 0 to give 

a e 

r = r 
a6c abc 

which is then independent of a. 

An alternative form of the a-connection has been used, viz, 

a e 

^ abc = 1 abc + "-'abc 

e 

and the conditions under which the exponential connection ( Tabc) vanishes are 

investigated. For generalized linear models with canonical link function, the ex­

ponential (or 'Efron') connection in terms of the regression coefficients is shown 

to vanish. Conversely, it has been shown that for GLMs a vanishing exponen­

tial connection in terms of the regression coefficients gives the link function as 

canonical. 

32Be aware of the notational differences. 
33Note that 6 = (1 - a)/2. 
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0.0025 0.0030 0.0035 0.0040 

expected 

0.0045 0.0050 

Figure 2.7: Example 1 : Reciprocal Link 
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o 
d 

o 

d 

d 

I? 
CD 
W ID 

C\J 

d 

o 
CO 

CO 

0.0 0.0005 0.0010 0.0015 

expected 

0.0020 

Figure 2.8: Example 3 : Log Link 
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o 
d 

c\i 

o 

CO 
CO 
CD 

c 
CD 
CO 

O 

d 
• 

CD 
O 

CO 

o 

0.0 0.00002 0.00004 0.00006 0.00008 

expected 

Figure 2.9: Example 4 : Square Root Link 



Chapter 3 

a—Curvatures 

3.1 Introduction 

This Chapter outlines the fundamentals of the generalization of curvature mea­

sures for exponential family error models, giving special attention to generalized 

linear models having a unit scale parameter, eg., those with error terms that are 

Bernoulli, Poisson or Exponential. This restriction is made simply to obviate a 

nuisance constant appearing in the relations used. The extension to models having 

scale parameter different to unity can be made by a simple rescaling of the natural 

parameter, as shown in Section 2.14.3. 

The models considered address bivariate data (Xj,Yj , i = l...n). These 

models are of the type 

r j — f-li -j- £i 

where fj. is a deterministic function of the predictors X, eg.,1 

IM = f(Xi3pi) (3.1) 

and e is a disturbance describing the random behaviour of the response Y. 

For a generalized linear model ( G L M ) , using the notation of McCullagh and 

xThe Einstein convention is used whereby a repeated index implies summation over that 

index. 

108 
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Nelder (1989), the contribution to the log-likelihood for an observation is 

\nf(y-6) = ye-W)+c(y,<j>). 

Models with unit scale parameter, a(4>) = 1, correspond to the general form for an 

exponential family with log-likelihood 

£ = c(y) + 9^-^(0) 

following Amari (1982a, 2.20, p362). The canonical (or natural) parameters 0 are 

related to the space of expectations // via 

IH = E(Yi) = 8^(0) 

and the response Yi is modelled as 

I { — fj/i -7- £{. 

The deterministic component is /^ and the disturbance is Si. In practice, the regres­

sion coefficients u that relate the expectation of the response Yi to the predictors 

Xi are of interest, so 0 is a function of u, viz 

0 = 0(u). 

This explains the term curved exponential family, since even though the original 

form is exponential in terms of 0,2 it may not be exponential in terms of u. The 

dimension of the regression parameter space of u is less than that of the natural 

parameter space of 0. For a G L M in McCullagh and Nelder's (1989) notation 

u = (3 

giving 

P = f(Xi3pi) 

using the notation of Appendix B.7. The restriction to G L M s with unit scale 

parameter avoids the notational inconvenience of the canonical parameter 0 having 

2This implies that the form in the exponent is linear in 9. 
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a slightly different meaning in Amari's (1982a) notation to that of McCullagh 

and Nelder (1989). The restriction is made to save recurring constants appearing 

throughout the following discussion, and so 0 = a(0)$ = # since a(4>) = 1, from 

Section 2.14.1. This restriction to unit scale parameter is not critical, as similar 

results follow for an arbitrary valued scale parameter, as shown in Section 2.14.3. 

3.1.1 Transformation Rule (r) 

A reparameterization of the regression coefficients from /3 to TS implies a 1:1 trans­

formation from u = (ua) to v = (va ). The a-connection with respect to the 

regression coefficients then transforms according to 

fVb'c' = BadByB
c
dTabc + B

a
e \daiBb,j gab , (3.2) 

where a' is associated with B, and a is associated with (3. So in general an affine 

connection is not a tensor, due to the presence of the second term. A general 

definition of tensors via coordinate transformation is given in Section 1.8.3. Note 

that the rule as stated by Amari (1982a, p364, 2.28), refers to natural parameters 

rather than regression coefficients, but the required relation is equivalent. A n 

alternative treatment is given by Lovelock and Rund (1989, p79, 5.16). This 

transformation rule will be used later when examining properties of parameter-

effects curvatures. 

3.2 Curvatures 

The imbedding 9(u) defines a subspace Tu of the tangent space TQ. This subspace 

is defined by the regression coefficients u and so is spanned by the vectors Bla. The 

curvature of a subspace is defined by the intrinsic change in the tangent (or normal) 

directions of the subspace. The tangent direction will generally be used. 
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3.2.1 Derivation 

Following a similar argument to that used in the derivation of an a-connection 

in Chapter 2, the rate of change in the tangent direction from Bb(u) at u to 

Bb(u + du) at u + du is given by 

Bb(u + du) - Bb(u) « 
hm — ^ ^ V a Bb 
du-^O d,Ua 

ie., the covariant derivative of the vector field B.3 This yields 

Hib(u) = 8aBl(u) + T)k Bl(u) B
k(u) (3.3) 

as the definition of a-curvature. Note that the contravariant (upper index) version 

is described. A full derivation from first principles is given in Appendix C.l. 

Note 

a 

A n a-curvature Labi can also be defined in the normal direction. This definition 

coincides with the covariant form of the tangential a-curvature4 if 

• a = 0, i.e., when the information connection is used, or 

• Tijk — E (8i£8j£8k£) = 0, i.e., errors are Gaussian <=> skewness tensor Ti3k 

is zero. 

The L form is appropriate if expectation rather than canonical parameters are of 

interest, due to the duality between these two parameter spaces. The imbedded 

space of regression coefficients is the target. So it is of no real concern whether the 

tangential or normal form is used. For a full derivation, see Amari (1982a, p370, 

4.9 and 4.10). Hereafter, all references to a-curvature will be to the contravariant 

or upper index form in the tangential direction, ie., Hlab. 

3Since nearby tangent spaces are compared, this derivative (curvature) must involve an affine 

connection (a-connection). 

4That is, Labi = Hau = H%bgki. 
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3.2.2 Transformation Rule (H) 

If the coordinate system is changed from u = (ua) to v = (va>) via reparameteri­

zation, then, a-curvature transforms according to 

a a 

Hla'b> = B2,Bb,Hab + B
l
b8a'Bb, (3.4) 

The derivation of this relation is given in Appendix C.2. The presence of the 

second term means that in general the a-curvature is not a tensor, since the 

transformation law for a (0,2) tensor is 

Shk = B3hBkSji 

following Lovelock and Rund (1989, p60, 2.9), and Section 1.8.3. Special cases 

of this transformation rule will be used to identify intrinsic and parameter-effects 

curvatures. 

3.3 Projections 

In the case of nonlinear regression, Bates and Watts (1980) decomposed acceler­

ation into components normal and tangential to the solution locus (expectation 

surface). For general exponential family error models, the analogue of this accel­

eration is a-curvature, which can similarly be decomposed into normal and tan­

gential components. Below is a description of the projection of a-curvature onto 

these orthogonal subspaces. For brevity, the 'normal component of a-curvature' 

will be called the 'normal a-curvature', likewise the 'tangential component of a-

curvature' will become 'tangential a-curvature'. 

3.3.1 Normal Component 

If the projection operator onto the normal subspace is Nlj then the normal com­

ponent of a-curvature is denoted by 

Mab = NiHit 
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where A] is the projection operator onto the normal subspace of imbedded param­

eters (/3), ie, the regression coefficients. 

The projection operator Nj is derived as5 

N*- = 6i - P{ 
3 3 3 

where Pj is the projection operator onto the tangential subspace of imbedded 

parameters, ie., as per Amari (1990, pl56), viz 

Pj = 9abBlBkgk3 . 

Rewriting the operator as 

P) = (BkgabBl) gk3 

shows that the term inside the braces can be recognised as an ordinary projection; 

see Morgan (1993, p44) and Seber and Wild (1989, p683, A11.4.) Now 

Kb = N]Hib= [6)-Pf) Hlb 

a a a 
fji pi TJ3 uri T-I „cd rji 

~ nab _ / j Hab ~ Uab ~1 abc9 &d 

since 

P] H{b = tabcg^Bi 

from Section 3.3.3. Thus 

Kb = daB\ + T)kBiB
k - Tabc9

cdBd (3.5) 

is the final general form for intrinsic curvature. This derivation agrees with the 

results of Amari (1990, p241), and Lovelock and Rund (1989, p269, 4.16). 

Note 

While this result is not new, it has not been described previously in detail. W h e n 

the a-curvature is projected onto the normal subspace, the non-tensorial terms 

5See Seber and Wild (1989, p691, B3.3). 



CHAPTER 3. a-CURVATURES 114 

vanish, leaving normal components of a-curvature that form a tensor. The van­

ishing of the non-tensorial terms in the transformation of a-curvature is shown in 

Appendix C.3. These normal components that form a tensor represent the intrin­

sic curvature of the imbedded subspace of regression coefficients. Following the 

definitions of Bates and Watts (1980), and the approach of Amari (1990, pl56), 

the scalar measure of intrinsic curvature is derived in general. It will be shown 

that this measure is invariant under 1:1 transformations of the parameter space. 

The derivation of the scalar form of intrinsic curvature requires some fundamental 

results from Riemannian geometry.6 

3.3.2 The Invariance of Intrinsic Curvature 

This derivation deals with a-curvature, but the generic term 'curvature' will stand 

for a-curvature. Hence the use of the notation Af will imply normal a-curvature 
a 

A/*, that is the normal component of a-curvature. 

Prelude 

Define the curve 9J = 93(s) parametrically in terms of the arc length s. A line 

element on this curve is given by 

ds2 = ghjd9
hd9j . 

The tangent vector 9'3 = d9J/ds is a unit vector, since 

9hj0'hO'j = 1 • 

Thus, covariant differentation yields 

6When the metric is positive definite, as here, the term pseudo-Riemannian is sometimes 

used. 
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D9'j 

showing that the vector — — is normal to the tangent vector 9'3.7 If the length of 

this normal vector is defined as 

D9lj 1 

P Ds 

then p~l can be interpreted as the curvature of the curve. (Lovelock and Rund, 

1989, pp250-252.) 

Derivation 

If the parameterization is such that 

9j = 9j(Pa(s)) = 9j(ua(s)) 

then 

Ds ~ *"> +B" Ds 

where 

u" = ^ 
8s 

The first term depends at each point P only on the coordinates Pa, and components 

u'a of the unit tangent vector at P. This term is therefore identical for all curves 

of the tangent subspace which pass through P and have common tangent u'a. 
Du'a 

A geodesic T through P having the tangent u'a is defined by — — = 0, yielding Ds 

(£)r=*l«v. 
From the definition of curvatures of curves, (Lovelock and Rund, 1989, p272) 

and (Stoker, 1969), the curvature of T is 

fe)2 = * (S)r (£), - * K^)«^) (
3'6> 

This quantity depends only on P and the direction u'a at P. This 'normal curva­

ture' is the scalar form of intrinsic curvature , (Lovelock and Rund, 1989, pp267-

273). 

7The operator D is defined by -^=—r = VjX\ (Appendix C.l). 
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T h e invariance of scalar intrinsic curvature can n o w be demonstrated. 

If the reparameterization is from (3 to B, viz, a to a' in terms of indices, then 

in terms of B, intrinsic curvature becomes 

~) = 9ki (Mkb,u'«'u*') (A4V
e>') 

8Ba' 
where u'a> = — — . The unit tangent vector can be written as 

l_8u^du°L_ ,8u« __ , 
U ~ 8u« ds -Ba~d7~B"U 

From Appendix C.3, the tensorial law for the normal component of curvature gives 

Na>b> =
 Ba> Bb' Na*b* 

and so 

but 

giving 

Nkb,u'
au'b = B i E ^ M ^ (BiBtu'«ulb) 

K> Baa = Bl 

So 

Mkb,u>
a'u'b' = (B?Bl*AfaKb.) u'«u'

b = Afkbu'
au'b 

L)2 = 9ki {Kkbu'
au'b) «u'V) = (f)\ 

\Pr>. 

Thus invariance is satisfied. 

Note 

This new result is quite general. It is not required that the family be curved expo­

nential; a parameter subspace derived from any likelihood function would suffice. 

The result is a generalization of the proof of invariance in the case of nonlinear 

regression, given by Seber and Wild (1989, B5, pp692-694), using a Taylor's series 

expansion, following a reparameterization. The scalar form of intrinsic curvature 
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as derived above is a generalization of that due to Amari (1990, pl56), given in the 

nonlinear regression case. This intrinsic component corresponds to those effects 

that are unchanged by reparameterization of the model. The normal component 

will only change if the 'model' is changed. In the model formulation, 

Yi = & + Si , /Ji = f(XijPJ) 

a change of intrinsic curvature can only occur if 

• The deterministic function f is changed, eg, for a G L M , by changing the link 

function, or if 

• the error distribution e is changed, eg, from say Poisson to Negative Binomial. 

These observations follow from inspection of the form of the normal component 

of a-curvature, viz, 

kb= daBl + T)kB{Bl - Tabc9
cdBd 

which shows that a change in the deterministic function f or the error distribution 

e will affect intrinsic curvature, since the first term can be removed by choosing 

a canonical link in a G L M , and the second term is zero for Gaussian errors. The 

components of the last term are also affected by the deterministic function and 

the error distribution, in general since 

rl= (8aB\)B{gij + BaB{B
k
c T^ . 

3.3.3 Tangential Component 

The projection of a-curvature onto the tangent subspace Tu yields an affine con­

nection. The projection operator onto Tu is 

P] = 9abBiBkgkj , 

following Amari (1990, pl56) and Seber and Wild (1989, pp690-691). Applying 
a 

the projection operator P] to the a-curvature Hjab yields the tangential component 

TU = P)hb = g^BlBfajHit = Tabc9cdBd. 
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Proof 

The projection of a-curvature onto the tangent subspace gives 

•i def 
Tab = P]H\b = 8aBl + T{kB\B

k P] 

8aBl + T\kBaB
k gcdBdB

l
c9l3 

{daBl) B[9lj + T{kBiB
kBlc9lj 9 Bd 

(daBi) B
l
c9lj + T{kgijBaB

kB, „cdr>i 
9 Bd 

hence 

(8aBi) B
l
cgij + TiklBiB

k
bBt r-Cdrji 9 Bd, 

Tab = Tabc9
cdBid (3.7) 

in agreement with Amari (1990, pl56, 5.26). The tangential component of a-
Q. a 

curvature (Tab) is thus related to the a-connection (Tabc)- This tangential com­

ponent is the generalization of 'parameter-effects' curvature from the nonlinear 

regression case, as defined by Bates and Watts (1980). In the general case, this 

measure will correspond to effects due to reparameterization of the deterministic 

function in the model. 

This known result has not previously been derived in detail. 

3.3.4 Scalar Parameter-effects Curvature 

From the derivation of scalar intrinsic curvature the scalar form of generalized 

parameter-effects curvature can be defined. Instead of choosing a geodesic to 

create 
'a Du 

~Ds~ 
= 0, 
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any arbitrary curve in the regression parameter subspace can be used. This defines 

another scalar curvature, called the 'geodesic curvature',8 

/ 1 \ 2 (Du'a\ (Du'b\ 

U ) = 9"6 {-DT) {-DS-) ' (3-8) 

ie, the 'parameter-effects' curvature, so called since it is dependent on the choice of 

curve in the tangent subspace. The term 'geodesic' can be applied to parameter-

effects curvature, since this quantity can be zeroed by choosing the arbitrary curve 

as a geodesic. The term 'tangential' curvature is used synonymously with 'geodesic' 

curvature by Struik (1988, p74 and pl27). 

3.4 Decomposition 

For the nonlinear regression model, Bates and Watts (1980) showed that the nor­

mal and tangential components represented intrinsic and parameter-effects cur­

vature respectively. In general exponential family error models, a-curvature can 

similarly be decomposed into normal and tangential components which have analo­

gous interpretations. Using the notation for the normal and tangential components 

of a-curvature, the decomposition becomes 

Nab + ru = H^ (3.9) 

in agreement with Amari (1990, pl56, 5.27).9 These components were described 

by Amari (1982a), but were not explicitly derived for the general case. 

The model proposed by Wei (1994) shows a similar form of decomposition of 

curvature into tangential and normal components. Using the notation of Wei (1994, 

pp329-330) the acceleration (W) is related to U by U = HTWH and 

U = [Q][A*\ + [NU1] = [Q)[QTi}[U] + [N}[NTz][U] 

= {PT} [U] + {PN} [U] 

8See Lovelock and Rund (1989, p272, 4.29). 
9Amari (1990, pl54) describes the nonlinear regression case. 
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where PT and PN are projection operators onto the tangential and normal spaces 

respectively. This decomposition is in line with Bates and Watts (1980) and 

Amari (1982a). 

3.4.1 Decomposition of Scalar Curvature 

A corresponding decomposition of the scalar form of curvature also holds, which 

generalizes the scalar decomposition described in Seber and Wild (1989, pl31). 

This decomposition of scalar curvature into the normal (intrinsic) and tangen­

tial (parameter-effects) is described below. Note that the term 'geodesic' is syn­

onymous with tangential or parameter-effects. 

The curve 9j = 9j(s) is defined parametrically in terms of the arc length s. In 

terms of the operator D, the vector 

D0 
Ds 

is normal to the tangent vector 9,j. The length of this normal vector 

\D9'j 

| Ds 

can be used to form total scalar curvature, viz 

1\2 /£>#'* \ fD0' 
9ij 

\p) aj \Ds j \Ds J 
as the form of generalized scalar curvature. If the parameterization is such that 

9j = 9j(pa(s)) = 9j(ua(s)) 

then 
DQ'3 • t . Dii'a 
U V - K[3 la lb , R T

U U 

Ds ~ *abU U +Ba Ds 
where 

ds 

Total scalar curvature becomes 

G)'-*(£) (3 -»(**"+*£) {***+*%) 
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= gjh (A/>'V
b) (Kh9uV) 

, , Du'e . Du'a Dn'a T)nt'e 

+gjhXlbu'°u'
bBhe^ + gj^uVBl^ + 9jhBiB^^-

Application of the Lemma (Appendix C.4) removes the middle terms, and since 

9jhB{B
h
e = gae 

then 
'lV ( 1 \2 (Du'a\ (Du'e\ 

ae U/ ={7r) +9-\DsJKDSJ 

~ \Pr) \Pg) 

This demonstrates the decomposition of total scalar curvature into scalar intrinsic 

and scalar parameter-effects curvature. The subscript T is associated with intrinsic 

curvature and the subscript g is associated with parameter-effects curvature. For 

formal derivations, see Lovelock and Rund (1989, pp267-273), and Struik (1988, 

p69). 

3.5 Examples 

The general results obtained for a-curvature and its components are now illus­

trated in specific situations. 

3.5.1 Nonlinear Regression 

The a-curvature degenerates to the curvature measures of Bates and Watts (1980), 

for the nonlinear regression model. 

Considering the a-curvature 

H\b(u) = 8aBi(u) + T)k B{(u) B
k(u) 

= daBl + Tjkn9
mBkbB{. 
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But, all the a-connections with respect to the natural parameters are zero for the 

Gaussian distribution, so the a-curvature becomes 

hb(u) = 8aBl(u). 

For the nonlinear regression model, 

Y{ = ^ + ei = f(Xn (3) + e^ Si ~ 7V(0, a
2) 

with 

Bi = Q_i_ j * , 
b 8ub dpb ib' 

In the notation of Equation (3.1), f = / for Normal errors since 9l = //. This 

gives the a-curvature as 

Hab = daf'ib = -^p-bf(Xi-,(3) , 

ie., the acceleration term of Bates and Watts (1988); see Seber and Wild (1989, 

ppl29-133). The decomposition of this term into the normal and tangential com­

ponents for the nonlinear regression model is seen as a special case of the de­

composition of a-curvature. The behaviour of these components as intrinsic and 

parameter-effects is simplified by the disappearance of any error effect due to the 
a 

disturbance law, since Tijk = 0 for Gaussian errors. 

The generalized curvature H is independent of a for the nonlinear regression 

model. 

Intrinsic Curvature 

Intrinsic curvature for nonlinear regression has already been covered in the de­

scription of the normal component of a-curvature. The invariance of intrinsic 

curvature (Section 3.3.2) has been established in the general case as an extension 

of the result given in Seber and Wild (1989, B5), for nonlinear regression. This 

intrinsic curvature is a measure of model departure from a linear response, since 

the normal component of a-curvature vanishes, ie., 

A 4 = daBl- r l g
cdBd = o 
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for a linear model. The linear model is defined by 

IM = f{Xi]0) = Xll3 = XijP 

giving 

Bb = W = Xib ~" daB> = °' 
which in turn annihilates parameter-effects curvature, since 

rl= (aaBj) £&,- = 0. 
a 

Hence, A/"4= 0, as stipulated. 

Parameter-Effects Curvature 

Since the errors are Gaussian, the error effect vanishes, viz, fijk(9) = 0 giving 

r l (ii) = (8aBl)B{6ijla
2 

a 

which implies that Tabc is independent of a. Since the tangential component of a-

curvature is effectively the a-connection, this leads to the description of 'parameter-

effects' by a common affine connection, since the above shows that all the a-

connections are the same for Gaussian Errors. Each of a number of key values of 

a is associated with desirable properties of estimators, such as unbiasedness, mini­

m u m variance etc; see Amari (1990, pl52) and Kass (1984). Since the parameter-

effects curvature is independent of a, this implies that all of these properties can 

be satisfied by a single parameterization,10 for a given model and data set. So this 

parameterization could produce an estimator which is simultaneously unbiased, 

has minimum variance and zero skewness as well as other properties as detailed in 

Amari (1990, pl52). 

3.5.2 Generalized Linear Models 

Generalized Linear Models (GLMs) were defined by Nelder and Wedderburn (1972). 

For a G L M with unit scale parameter, ie. with a(<f>) = 1, the canonical or natural 

10See Amari (1990, pl56). 
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parameter is 

9{ = f (Xi3P
j) = U 

and the tangent vector becomes 

d& __ dU _ dfj dry _ Aft fa) 

8ua 8pa dr/jdp* dr/, ' 

Furthermore, 

d ™ _ dBj _ 8% _ 8 (dfjfa) \ _ 8%^) 
°a*b ~ du- ~ dp«dP» ~ dp- { dry Alb) ~ ~dv~dnJXjaXlb ' 

thus Bla and daB\ do not involve P, but are functions of the linear predictor n. 

Since the a-connection in terms of the regression coefficients (3 will be 

r l = (daB\)B{gij + BaB{B
k Tiik, 

this implies that this a-connection can be written as a function of n without 

explicit reference to /?, a result that will be used later in examining parameter-

effects curvature. For a non-Gaussian G L M , the a-connections are distinct (Kass 
a 

1984), since in general Tijk is non zero, in contrast to the common connection for 

Gaussian errors, as in nonlinear regression. Hence a separate treatment is required 

for each of the key values of a (—1, —|, 0, |, and 1) that are associated with special 

properties of the estimators. Kass (1984) suggests the use of the mixture (a = —1) 

and exponential (a = 1) connections in assessing curvature effects, but since the 

constant of combination is arbitrary (see Section 2.5), an infinity of combinations 

is possible. Hence a desired statistical property of the estimator can be directly 

associated with a specific value of a. For example, zero skewness is related to 

a = -1/3, while a = -1 corresponds to unbiasedness. A n assessment of each 

set of curvatures is required for each value of a, depending on which statistical 

property of the estimator is of interest. 

The decomposition into tangential and normal components will be used, as 

generalizations of the curvatures used in nonlinear regression. The normal (intrin­

sic) and tangential (parameter-effects) components of curvature for a G L M will 

be considered in turn. 
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Intrinisic Curvature 

The intrinsic component of curvature, i.e., 

Kb= daBl + T)kBiB
k - Tabc9cdBd 

measures departures from exponentiality. This means departure from canonicality 

in a G L M since 

daB\ = 0 

for a G L M with a canonical link defined by 

81 
9i = rH = ii ̂ B\ = -±XIb = Xib. 

The choice of the link function as canonical also affects both remaining terms in 

the normal component of curvature. 

Parameter-Effects Curvature 

The general form of tangential (parameter-effects) curvature is given by 

°i a cd i 
Tab = Tabc9° B\. 

a 

For a G L M , Tab can be shown to form a tensor with respect to i, since if the 

reparameterization is from ua to va' then 

a a 

Ta'b' = B^ByTab + (da'Byj PI, 

from Appendix C.5. Since, for a G L M Bb, is a matrix of constants (Section 4.1), 

then 

da,B
b
v=0. 

Thus, for a G L M , the tangential component of curvature obeys the tensorial law 

for a (0,2) tensor, viz, 

Ti Dfl r>b <-r"< 

a'b' — -Da
/i: 5b' I 

a 

ab-

Consequently, the a-connection is a tensor for a G L M (Section 4.1), implying that 

the tangential component of a-curvature must also be a tensor. 
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However the scalar form of tangential curvature 

is not necessarily an invariant (Section 3.3.3), in general. The transformation to a 

new parameterization for a G L M will always be linear, inducing a change of scale 

rather than a distortion (Section 4.2). 

Investigation of parameter-effects curvature for a G L M in Chapter 4 will use 

the fact that the tangential component of a-curvature forms as tensor for a G L M . 

The form of parameter-effects a-curvature used in Chapter 4 will be scalar a-

curvature. 

3.6 Generalized Nonlinear Models 

3.6.1 Definition 

These models can be extended from generalized linear models and nonlinear re­

gression models by defining 

0i = f{Xi;0) 

with 

* i — Hi + ̂ i 

where E{ is from a distribution belonging to the exponential family, defined by 

£ = c(y)+9iyi-^(9). 

This is indeed a generalisation from G L M s with unit scale parameter, since 

Hi = E(Y{) = 8^(9) = 84 {f(X<; £)} = PW; 0) (3-10) 

giving 84 as the identity function for nonlinear regression. The parameter 9l is 

the natural parameter in the exponential family model, while the function f relates 
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these natural parameters 9 to the predictors X and their corresponding regression 

coefficients (3. A natural function q suggests itself, such that 

q(Hi) = 9i = {(X;(3) 

ie, 

q = W)-1. 

The interpretation of this function q is that qp is the scale on which local sufficiency 

for /3 is assured by linearization. 

For example, with Poisson errors and the response defined by 

the Michaelis-Menten model (Michaelis and Menten, 1913) as reported in Bates 

and Watts (1988, p33), 

9 = \n(n) =qp = ln(PlX) - ln(& + x) = f 

'A , 
can be determined via ft 

gives the scale on which local sufficiency for (3 = 

linearization. 

For Normal errors, q is the identity and so local sufficiency via linearization is 

obtained directly on the scale of fitted values H without transformation. 

For a G L M 

V = q(Hi) = f(XiT3) 

and so 

T1q(/ii) = g(Hi) = Xi
T(3 = r\{ 

where g is the link function. If the link g is canonical, then f is the identity, giving 

f(X;T/3) = XiTj3 = Vl 

which leads to 

P = TH 
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£i 

Normal 

Poisson 

Bernoulli 

Exponential 

P(0 

f 

/ 

ef/(l + ef) 

r1 

q 

identity 

logarithm 

logit 

reciprocal 

Table 3.1: The functions p and q for generalized nonlinear models. 

as required for a canonical link. Table 3.1 shows p as a function of f, together with 

the description of the natural function q for generalized nonlinear models (GNMs) 

with unit scale parameter. 

The restriction to a unit scale parameter is simply to eliminate messy constants 

from the theoretical discussions. Results in the case of a non-unit scale parameter 

are similar to the above, as may be shown using arguments analogous to those in 

Section 2.14.1. 

Thus, a generalized nonlinear model ( G N M ) can be seen to be a generalization 

of a generalized linear model (GLM) and a nonlinear regression model. 

Wei and Zhu (1997, pl30) have described an equivalent class of models that, 

by including a scale parameter, subsume the G N M s defined here. The exclusion 

of a scale parameter in the definition of G N M s is merely a theoretical conve­

nience rather than an insurmountable restriction, as has been demonstrated in 

Section 2.14.2 for general curved exponential families. Consequently, the criticism 

by Wei (1998, pl6) of the apparent restriction to a unit scale parameter in the 

curved exponential family model seems unwarranted, given the analysis of Sec­

tion 2.14.2, where such models were shown to be able to incorporate an arbitrary 

scale parameter by a simple redefinition of the canonical parameter. 
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3.6.2 Curvatures 

The general form of a-curvature for G N M s is given by 

a Q2r a 
TTi _ V >l p j fl rt 

dPadpb jk jakb 

This can be seen to reduce to that given for nonlinear regression, since the a-

connection with respect to the natural parameters vanishes for Gaussian errors. 

Intrinsic curvature remains invariant (by definition), but for G N M s tangential 

or parameter-effects curvature no longer forms a tensor since the reparameteriza­

tion cannot be guaranteed to be always linear. So, not surprisingly, G N M s inherit 

both the features of G L M s and nonlinear regression, ie., 

• The choice of a is determined by the feature of the estimator that is of 

interest, and 

• parameter-effects curvature will be a function of the chosen parameterization 

of the model. 

So the model and its form will affect estimation, and key features of the esti­

mator will have to be investigated separately, by using special values of a. 

Generalized curvature measures have been defined for curved exponential fam­

ilies. A decomposition of these a-curvatures into normal (intrinsic) and tangential 

(parameter-effects) components has been described, generalizing the situation for 

nonlinear regression. These curvature measures have been examined for general­

ized linear models and generalized nonlinear models. In the general case, contri­

butions to curvature come from the Error distribution and from the deterministic 

component in the model. The contribution from the Error disturbance is zero for 

Normal Errors, and the contribution from the deterministic component will be 

zero for a G L M with canonical link.11 Given that key values of a are associated 

11A canonical link implies exponentiality and hence sufficiency with respect to the regression 

coefficients for a GLM. 
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with specific features of the estimators as described in Kass (1984), and Hougaard 

(1982), three aspects need to be considered in general 

• the Error distribution, 

• the form of the deterministic response, eg., the type of link for a G L M , 

and 

• the property of the estimator that is of interest, ie., the choice of the value 

of a.12 

All three of these influence the components of curvature. 'Nonlinearity' can be 

interpreted in the case of a G L M as a departure from canonical link, ie., a departure 

from exponentiality in terms of the regression coefficients. For Normal Errors, 

since the canonical link is the identity, the term 'nonlinear' is precise. For a 

generalized nonlinear model, an extended interpretation of 'nonlinearity' is not so 

forthcoming. The term 'linear' can also refer to the form of the response function. 

For a G L M , this simply means that the model is some function of a linear model 

of the regression coefficients. The interpretation described here extends another 

feature of Normal error linear models. This is the sufficiency of the estimators 

of the regression coefficients resulting from the implied exponential form of the 

resulting likelihood. For general models, some term such as 'non-sufficient' (or 

'non-exponential') in place of 'non-linear' should be used to avoid confusion when 

describing the above extension. 

3.6.3 Note 

The generalized nonlinear models (GNMs) described in Section 3.6 should be dis­

tinguished from those models described in McCullagh and Nelder (1989, p379) 

where nonlinear parameters in the covariates were introduced. Such mildly non­

linear models are also called 'generalized nonlinear models' in the software imple­

mentation of G E N S T A T 5, Release 3.2 ( G E N S T A T 5, 1993). The following extract 

12To quote Hougaard (1982),' .. .if you choose one, you (may) miss the others'. 
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from Genstat News of May 12, 1995 defines these models : 'The regression sec­

tion now caters for " generalized nonlinear models". These are models that include 

some nonlinear parameters, but are otherwise in the form of generalized linear 

models. Such models are fitted relatively efficiently by fitting a standard g.l.m. at 

each stage of an iterative search for optimum values of the nonlinear parameters. 

One example is the model for probit analysis with unknown control mortality.' 

The following description of the procedure given in McCullagh and Nelder (1989) 

uses slightly different notation to avoid conflicting with similar usage elsewhere in 

this thesis. The usual linear component PX is replaced by a nonlinear covariate 

PG(X;Q), with © unknown. Choosing a trial value Oo the function G(X;Q) is 

replaced by 

G(X;Go) + (e-e0)[dG/de}Qo 

and so PG(X; O) is replaced by 

pu + ^v 

where 

U = G(X;G0), V = dG/dOQ 

and 

7 = /?(0-O o). 

In the iterative process, the new value for O becomes 

e1 = eQ + *r/p. 

The method is best for at most a few nonlinear parameters, due to the possibility 

of correlations amongst the parameter estimates. 

Generalized nonlinear models (GNMs) are fundamentally different to the 'gen­

eralized nonlinear models' described in Genstat News (1995, May 12), since the 

linear predictor in such 'generalized nonlinear models' contains linear and nonlin­

ear covariates, while a generalized nonlinear model (GNM) contains an arbitrary 

nonlinear function of the predictors and parameters. 
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The extension of 'non-linearity' in G L M s can be defined in terms of the variance 

function, the link function as well as for terms in the linear predictor, as described 

in McCullagh and Nelder (1989, pp372-378). 

Other extensions of G L M s have been proposed by Jorgensen (1983); these allow 

correlated errors and nonlinear models for the expectation. For this 'extended 

class of generalized linear models' (Jorgensen, 1983, p20) it is no longer assumed 

that the density belongs to the exponential family. Also, the G L M restriction of 

the expected response being a function of a linear combination of the predictors 

has been relaxed, leading to the expected response being fully nonlinear. An 

unappealing consequence of the subsequent nonlinearity is that the simple G L M 

method for initiating the iterative fitting procedure, ie, the data, has been lost 

and starting values are required in general. The same criticism applies to G N M s . 

The general concepts of a-connections and a-curvatures in the extended case 

defined by Jorgensen (1983) can be applied as noted by Kass (1984, p89), and so 

the exponential family is not the only case covered by the differential geometric 

approach outlined in Chapter 2. The results of Chapter 2 can thus be applied to 

any non-Gaussian model. 

3.7 Expected and Observed Geometries 

So far, all the analysis has been in terms of expected geometries. There is a corre­

sponding observed geometry, involving observed rather than expected information 

and an auxiliary statistic, Barndorff-Nielsen (1987, pl35). This observed geom­

etry is endowed with a full set of connections and tensors that mirror those in 

the expected geometry. The terminology used by Barndorff-Nielsen to denote the 

observed quantities is a slash. Thus if f is the a-connection in the expected geom-

etry, then the corresponding connection in the observed geometry is denoted by P. 

In terms of natural parameters [a (k, k) exponential model in Barndorff-Nielsen's 

notation], the observed and expected properties coincide, since no auxiliary statis­

tic is involved due to the sufficiency of the natural parameters. So for example, 
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a a 

P = T, and j- = i (i is the expected information matrix, while j- is the observed 

information matrix). 

For a curved exponential family [a (k, d) exponential model],13 asymptotic ex­

pansion of observed quantities such as the information and skewness tensor gives 

the corresponding expected quantities as the first term. Higher order terms in the 

metric tensor can be shown to disappear for zero exponential curvature (Barndorff-

Nielsen, 1987, pl39). In terms of G L M s , this indicates that the expected and 

observed metric tensors coincide for canonical links. Thus, expected and observed 

information coincide for G L M s with canonical links, in line with the observations 

of McCullagh and Nelder (1989, p43) and Aitkin, Anderson, Francis and Hinde 

(1989, p326). 

The number of data points is k and the number of regression coefficients is d, for say a G L M . 
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Applications 

The theory of generalized curvature will now be applied to generalized linear mod­

els and allied models with the purpose of extending results from Normal error 

linear models. 

4.1 Tensorial a-connections and GLMs 

Under the reparameterization from ua to va', the a-connection transforms to : 

f U v = Baa,B
b,Bcc,rabc + B

a
c, (daiB

b) gab . 

For a G L M , the response Y is defined by 

E(Y) = n = h(X(3). 

If the intrinsic curvature is to be unchanged, the model must remain the same. 

This means that the link function g must be unchanged and so the inverse function 

h will be unchanged. However since fi = h(X(3) = h(rj) then the only form of 

reparameterization for a G L M is a linear transformation. Thus the linear predictor 

can be written as 

r) = Xf3 = xB 

where the reparameterization is from u to v. This reparameterization 

j3 = u, B = v 

134 
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gives 

with 

Thus 

becomes 

Tvfl_ vT, X(3 = xB -» X ' X(3 = X ' zS 

0 = (XTX) ^ z S . 

^'"oV 7 

So £$ will always be a matrix of constants for a G L M , giving 

da'B
b,=0, 

which implies that 

>a no DC Ta'Vc' = Baa,BblB
c
dTabc (4.1) 

a 

i-e., Ta6c behaves as a (0,3) tensor for a G L M . Thus the a-connection is a tensor 

for a generalized linear model. 

Note 

A precondition for establishing invariance of a quantity is to show that the quantity 

is a tensor (Bishop and Goldberg, 1980, p85). The above result must hold before 

scalar parameter-effects curvature can be shown to be invariant for a GLM. 

4.1.1 Example 

For a G L M with an arbitrary Error distribution and a specified link function, the 

linear predictor is 

r) = X(3 = xB 

with 

(3 = u, B = v. 
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The 'One Way Analysis of Variance' is a procedure applied to a simple model where 

the predictor X represents categories or grouping. The example given has 3 levels, 

ie., there are 3 groups. The parameterization v corresponds to estimates of group 

means Ti,r2 and r3, whereas the u form is the default chosen by the computer 

package GLIM, ie., the corner-point parameterization, (Dobson, 1993, p89). 

This parameterization estimates a base line (T\ ~> group mean 1), and departures 

from that base line, viz, 

T2 — T\ ~~> mean2 — meani 

and 

73 — TL ~» mean3 — mean^ 

Table 4.1 shows the correspondence between the two forms of the same model, 

ie., the u and v parameterizations. 

PARAMETERIZATION 

Corner-point Group means 

Tl 

Wi 

7"2' ~T\ 

U2 

T3 -Ti 

W3 

Tl 

Vy 

r2 

v2> 

T3 

Vy 

Table 4.1: The corner—point and group means parameterizations. 

The Jacobian of the transformation from v to u is 

pa 
a' ~ dva' 

ie., 
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Baa, 
Vl 

v2 

V3 

Ui 

1 

0 

0 

u2 

-1 

1 

0 

u3 

-1 

0 

1 

which is indeed a matrix of constants, as claimed. Hence 

da/B
b
bl = 0 

inducing the tensorial law for the a-connection [Equation (4.1)]. So the invariance 

of parameter-effects curvature can n o w be established, since tensorial behaviour 

is a precondition to the establishment of invariance. 

4.2 Invariance of Parameter—Effects Curvature 

It has been demonstrated in Section 4.1 that the a-connection with respect to the 

regression coefficients forms a tensor for generalized linear models. The decom­

position of scalar curvature into scalar intrinsic and scalar geodesic curvature has 

been described in Section 3.4.1. A consequent result, that scalar parameter-effects 

is invariant for a G L M , follows. 

4.2.1 Theorem 

Scalar parameter-effects curvature is an invariant for a generalized linear model. 

Proof 

T h e scalar form of parameter-effects curvature1 is 

2 (DulaX /n-"J 1 V (Du,a\ (Du 
Ds 

^lso known as geodesic or tangential curvature. 
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with definitions and notation from Section 3.3.3. To establish invariance, consider 

a reparameterization from (3 to B, i.e., ua to va'. In the new parameterization, 

scalar parameter-effects curvature becomes 

( 1 \2 (Dv'a'\ (Dv'b'\ 
9a'b 

\Pg>J \ Ds ) \ Ds J 

V, la' dBa' T • 

where v'fl = -^— . It is required to show that 

\Pg'J ~ \Pg) 

in order to establish parameter-effects curvature as invariant. 

The covariant differential is defined by 

DXj = dXj + TlkX
hdxk. 

In terms of the original parameters ua = pa this becomes 

Du'a = du'a + Tb
a
cu

lbduc 

and in terms of the transformed coefficients va> = Ba> 

Dv'a' = dv'a' + T£cv'
bdvc. 

These equations convert to 

D^ _fv^ dv^dv^ _ dv^ /b /c 

Ds ~ ds2 + bcds ds ~ ds + bcU U 

and 

Ds - ds +lbcV V 

as per Lovelock and Rund (1989, p254, 2.21). From the va' parameterization, the 

scalar parameter-effects curvature is calculated as 

\Pg'J 

in terms of the original parameterization ua. The indices abc, a-b-c- are associated 

with ua = /3a, while a'b'c', abc relate to va' = Ba'. 
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Scalar parameter-effects curvature is now 

' 1 \2 (Dv'a'\ (Dv 
= 9a'b 

,Pg'J 

ib' 

Ds \ Ds 

which becomes 

— = 9a'b' 

,Pg'J 

dv la' 

ds 
+rjyv 

dv ib' 

ds 
+ r*yV 

and, from Section 3.3.2, 

v'a' = Ba'u'a. 

So 
dv'a' d 

= T. (*«" ds ds 

d rBiu,Y
U" 

dub ds 

db(Bi)u'
a + Bl 

idu la-

dub u 
Ib 

Following Section 4.1, 
rw 9va 

Ba„ = dua 

and Ba' is a matrix of constants for a GLM, yielding 

W ) = o= 
and so 

The scalar curvature becomes 

2 

dv la' a' (£> „,ia\n.ib 

ds 
= Baa.(dbu'

a)u 

J = 9a'V Bi (dbu
,a-)u'b + r £ y V c ] [Bbb. (ddu

,b-)u,d + ii 

Now 

and 

v'b = Bbu'b' 

v'c = Bccu'
c-
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From the Lemma on page 141 

~pa D O pa' 
1 be ~ Da-l be 

yielding 

I^t/V5 = BiTahcB
bu'b-Blu'* = Baa[ 

Dv'b' 

nb nc jia-
BbMcl be u'

bu'c- = Ba'Tl\.ulbu'c\ a- x b-c-

and similarly for the second term — — , in Equation (4.2). Thus Equation (4.3) 

becomes 

,Pg' 
— 9a'b' 

Ds 

Baa. (dhu'
a-)u'b + Baa. T

a
b;cu'

bu'c- Bb. (ddu'
b-)u'd + Bb'Tbd.e.u'

du'' 

a' nb' = 9a'b'Bl.Bh. 
du ia-

ds 
+ Tab;c.u'

b-u'* 
du'"' 

~8s~ 
+ Tb-.u'du'e-d-e-

— 9a- b-
'Dula\ (Du'b- ) = fiV 
Ds J \ Ds J \PgJ 

and invariance of parameter-effects curvature for a G L M is established. 

Note 

In the special case of Normal errors, the above result has already been demon­

strated, albeit indirectly, by Seber and Wild (1989, ppl39-141). Consider linear 

transformations of the parameters. The transformations are 

<f> = R9 or 9 = K(j> 

where 0 is associated with tangential scalar curvature T j and 9 has tangential 

scalar curvature y%, in their notation. It is shown that 

Even though these are relative curvatures, the same result follows for scalar ab­

solute curvatures. Due to typographical errors in their derivation (pl41), a short 

synopsis is given below, using their notation 
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rTd=P-
\d'GT.d\ 

WG.dW2 

II -Til 

= PU- 112 
Md 2 

II ••Tu 

^11.-. 12 
1̂ 1 

l/l'̂ /il 

\Fh\ 

T 

and so invariance is established under a linear reparameterization. Note that this 

result applies to a G L M with Normal errors and general link function. 

Lemma 

pa pa pa-
1 be - nal be 

Proof 

Since Tabc is a tensor for a GLM, 

^bc ~ ^bcd9 ° 

= BadThcag
da' 

~ &d l bc9aa-9 

Va- nda' r>a 
— l bc9 9aa-£>d 
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From Lovelock and Rund (1989, p268, 4.9), 

ga£gh3B
h
e = Bf 

and so 

•pa' -pa- no' 
1 be ~ i bc-^a- • 

4.2.2 Short Form of Proof 

A condensed form of proof using statistical arguments can be invoked if results 

from previous sections can be combined with known relations from other sources. 

Outline 

a 

The parameter-effects curvature (tangential component) Tab is given by 

ai a cd i 

Tab = TabCg
C B\ . 

For a GLM, 

Bd = Xid 

and the metric tensor g is a function of the Error distribution, since 

9ab = BlaB
3
hgi3(= XiaXjbgi3) 

from Amari (1982a, 4.5, p370), and from 

gi3 = 6"(0% 

in Section 2.13, again with upper case indices being nonsum. The form of the 

a-connection with respect to (3 is given by Equation (2.27) of Section 2.15.7, viz 

where 

9{ = 1(XijPj) = U . 
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The form of these expressions for the metric tensor g and the a-connection T 

indicate that parameter-effects curvature is a function of the linear predictor r/, 

the function f and associated derivatives such as df/dr/. The regression coefficients 
a 

P do not appear explicitly in any of the formulae for g and T, indicating that 

changes in the parameterization of a G L M will leave these quantities unaltered 

and hence parameter-effects T will be invariant to parameter transformation as 

previously shown. 

4.3 Exponential Curvature 

In the case of the exponential connection (a = 1), the 'exponential' curvature ( or 

1-curvature) has been defined by Amari (1990, pi 14), and Amari (1987, p31). 

4.3.1 Preamble 

Following Kass (1984), a table of key values of a can be constructed ( Table 4.2). In 

Table 4.2 a symbol has been designated as an additional identifier for the statistical 

interpretation of particular values of a. 

a Value 

-1 

-1/3 

0 

1/3 

1 

Interpretation 

Mean value (or Mixture) connection 

Skewness reducing 

Information (or metric) connection 

E (83£/dip3) = 0 ; 'Normal likelihood' 

Exponential (or Efron) connection 

Symbol 

m 

s 

i 

n 

e 

Table 4.2: Alternative symbols for the key values of a. 

It should be noted that all quantities that are derived from a-connections 
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import the statistical interpretation peculiar to the specific value of a. Indeed, as 

remarked by Kass (1984, p87), ("In all other exponential families (other than the 

Normal) there are many 'parameter-effects' arrays"), an entire suite of curvatures 

is so generated. Key values of a have special connotations, but the 'exponential' 

(or Efron) connection (a = 1) is the one often (implicitly) invoked, eg., Efron 

(1975), since this connection measures departure from the exponential form of 

distribution. The other main connection of interest is the information (or metric) 

connection (a = 0), being a measure of departure from constant (co)-variance, as 

per Amari (1990). 

4.3.2 Canonical Links in GLMs 

The invariance of scalar intrinsic (a) curvature was established in Section 3.3.2. 

The following theorem holds for a particular value of a, [a = 1 (e)], corresponding 

to the exponential connection and to exponential curvature. The result quoted 

holds for a G L M with canonical link. 

Theorem 

The scalar form of exponential intrinsic curvature for a G L M is minimal when the 

link is canonical. 

Proof 

The scalar form of intrinsic curvature as defined in Equation (3.6) is 

a 

where u'a = -~, with s being the arc length. The Normal component of a-
ds 

curvature is defined as 

Kb= daB\ + T)kBiB
k - Tabc9cdBd. 
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Consider the exponential (or Efron) connection, corresponding to a = 1. The 

scalar form of intrinsic e-curvature (1-curvature) becomes 

e 

i ) = (Ulb u'
au'^ fe5 U'°UA gjh 

with 

Nlb= daB\ + T)kBiB
k - Tabc9cdBd 

As a G L M is considered, and a = e, then 

e 

Tijk = 0 

since the model is then from the exponential family, and further 

e 

Tabc = o 

for the resulting curved exponential family, as already shown in Section 2.15.4. 

Thus 

Kb= daBl, 

but for a G L M with canonical link 

8^_ 

8~Ph 
Bl='-—-b=Xib^daBi = 0. 

This gives 
e 

which in turn means that 

This is a minimum, since the scalar form is positive definite. 

Comment 

The above result can be considered a generalisation of the Normal error/linear 

model combination, where the scalar intrinsic curvature is minimal (zero) for the 

canonical link which is the identity function, ie., a linear model. 
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4.4 The exponential form of a-curvature 

In general, a-curvature is 

HL = daBl + B{B
kT)k = H

l
ab + B{B

kT)k 

e e 

since Hlab = daB\ as T
l
jk = 0 for an exponential family model. Thus the leading 

term in a-curvature is simply the exponential curvature. 

Since 

ji jimil 

then 

This gives 

P-7 _ r n
mi 

jk *- jkmii 

a 
mi Bab = H

l
ab + B

3
aBb Tjkm9 

e . • j. 1 — a 

= Hab + BaBb —-—Tjkmg
r 

and finally 

Hib = H\b + BiBk^T)k 
1 - a_-

2 

where Txjk is the skewness tensor (contravariant form). 

The following observations can be made. 

• If errors are Normal, then 

a e 

Bab = Hab = daB\ 

since the skewness tensor Tijk is then zero, as the distribution is symmetric 

(Kass, 1984). 

• For a GLM, 

e 

Hab = daB
l
b 
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and further 

hb = o 

for a canonical link. 

• If the link is canonical in a GLM, or if daBb = 0 

a \ — ni 
TJ% r>j nk " rp% 
Hab - B

J
aBb —^—±3k. 

4.5 Generalized Nonlinear Models 

The following result can be given for Generalized Nonlinear Models (GNMs). 

Theorem 

Zeroing the first term in a-curvature in a GNM implies that the GNM is a GLM 

(special case) and that the link is canonical. 

Proof 

The condition 

kb = daBt = 0 

implies that Bb is constant since 

Bt-

This in turn means that for a GNM 

dU(X;(3) 

dPb 

d& 

8Pb 

= constant 



CHAPTER 4. APPLICATIONS 148 

which implies that 

9i = fi(X;(3) = constant x 0 

ie., a G L M with canonical link, since 9 = rj, the linear predictor. 

The result can be thus stated. 

A GNM with zero exponential curvature must be a GLM with canonical link. 

4.6 Bias and Covariance of Estimators 

Various workers have addressed the question of bias and (co)-variance of estima­

tors, especially for models belonging to the curved exponential family. Key authors 

include Box (1971), Efron (1975), Clarke (1980), Bates and Watts (1980), Amari 

(1982a, 1990) and Corderio and McCullagh (1991). The two issues are bias and 

(co)-variance of estimators. 

The first order (o(A"_1)) term in the bias can be removed by an adjustment as 

given in Amari (1982a, p381) and Efron (1975, pl214, remark 11). This adjustment 

is a function of the mixture connection and mixture curvature of the ancillary 

subspace. See Section 2.10 and for the one-dimensional and Section 2.11 for the 

multi-dimensional case. The second order (o(N~2)) terms in the squared error of 

this corrected estimator become sums of squares of three terms, as given in Amari 

(1990, pl33, Theorem 5.4) and Amari (1982a, p381).2 These three components 

are sums of squares of the 

1. mixture connection 

2. exponential curvature, and 

2Note the difference in treatment by a factor of N, viz, (5.29) of p381 Amari (1982a) versus 

(5.4) of pl31 and (5.11) of pl33 Amari (1990). 
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3. mixture connection of the ancillary subspace. 

The first term depends on the parameterization, and so, in theory, could be 

eliminated by choice of parameter. This is called naming curvature or parameter-

effects curvature. The second term is related to the exponential curvature which 

is known from the previous section to disappear for models such as G L M s with 

canonical link, and so is model dependent. The last term will be zero if the 

estimator is the M L E . 

So, it can be seen from this breakdown that curvatures and connections feature 

in the assessment of properties of estimators. 

In particular, it should be noted that for a G L M the parameter-effects curva­

ture is invariant, and so this component of squared error could not be removed by 

parameter transformation, since the only possible transformations in a G L M are 

linear. 

4.7 Variance Stabilizing Link Function 

The constant information scale is used in model checking, as for example in Mc­

Cullagh and Nelder (1989, p398), where the variance stabilizing transformation 

is listed for each error distribution that defines a G L M . The constant informa­

tion scale has another interpretation as producing a link function that is variance 

stabilizing. According to Kass and Smyth (1990), this link function is the most 

frequent choice after the canonical. Choosing such a link zeros the O-connection3 

(a special case of Section 2.10.3). A zero O-connection implies that the link is 

variance stabilizing, ie., the link corresponds to the transformations given on page 

398 of McCullagh and Nelder(1989, ed 2). Table 4.3 reproduces these constant-

information transformations (link functions). 

This condition (zero O-connection) can be manipulated to produce an imbedded 

application of the elementary formula for the variance of a transformed random 

variable as given in Section 2.10.3. 

3Also called the Riemannian connection. 
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Function 

M 

2^/Ji 

2 sin-1 yfji 

2 In// 

-2/VM 

Error 

Normal 

Poisson 

Binomial 

G a m m a 

Inverse Gaussian 

Table 4.3: Constant information link functions. 

The functions given in Table 4.3 can be obtained from the change of variable 

relation for the transformation Y = g(X), ie, 

V(Y) = V(g(X))K(g'(lT))
2V(X) 

via Taylor's theorem applied on 

Y = g(X)=g(^) + g'(n)(X-p) + ... 

to give 

E[Y-g(ti? = [g>(tifE(X-tf + ... 

ie, 

V(Y)K(g'(»))2V(X). 

In terms of the O-connection, the choice of a particular link function is equivalent 

to a 1:1 transformation of the natural parameters. Under such a transformation 

the O-connection on the new scale ( £) in terms of the old (0) is given by a 

transformation rule as given by Equation (3.2). What is required is a O-connection 

for the fitted value scale (£ = /x) rather than the regression coefficients as given 

in Equation (3.2). The formulae are similar, but the parameters addressed are 
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different. To this end the required transformation rule is closer in notation to 

Amari (1982a, p364, 2.28), and Appendix C.l. 

In this Section, the new scale (due to the link function) will be denoted by 

indices i' j' k' whereas the original scale of natural coordinates will be denoted by 

i j k as usual. 

The scale of fitted values is also called the space of expectations, as described 

in Section 2.12 where the space of expectations is shown to be dual to the space 

of natural parameters, hence the use of the notation £ for the fitted values. 

For a G L M with non canonical link, the information connection in terms of the 

new scale is 

4'*(*) = B* 0 4 ) 9ij + B\B),Bkk, Tijk 

A slight modification of previous notation is required to incorporate the effect of 

the choice of link function. In the notation of McCullagh and Nelder (1989), the 

link function g is defined by 

g{fj) = r] = g{£) 

and so 

Noting that 

it follows that 

Bi = — - dfi dm = — G -, 
%' d£i> drndiv dr/T 

g(p) = v = g(0 

drj L = 9'(ri=9'(0 = Gn, 
dii 

The information connection on the new scale is then 

^i'j'k'd) = \GiVGjj,GKk<Tijk(Q) l^^^yGIVGj3lGKk>g3k ( ^ ; ^ J 

and so the zeroing of this quantity can be examined to find the transformation 

which induces stable variance for a particular error distribution. For a G L M in 

general the following relations hold 

9H = b"(91)S, V 
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and 

T^k = b (9 )Ei3k, 

with an upper case index being nonsum. 

It can be shown that the previous link functions given in Table 4.3 induce stable 

variance for each error distribution as shown. In order to verify these results, a 

table of b(9) and its derivatives will be required. These are given in Table 4.4 in 

the notation of McCullagh and Nelder (1989). 

E R R O R 

Normal 

Poisson 

Binomial 

Gamma 

Inverse Gaussian 

b(9) 

92/2 

ee 

ln(l + ee) 

-\n(-9) 

-(-29fl2 

b'(9) 

9 

ee 

ee/(l + ee) 

-1/9 

(-29)'1'2 

b"(9) 

1 

ee 

ee/(l + ee)2 

1/92 

(-29)-*l2 

b'"(9) 

0 

ee 

e9(l-ee)/(l + eef 

-2/93 

3(_2^)-5/2 

Table 4.4: The canonical parameter function b(9) and its derivatives. 

For each of the distributions given in Table 4.3 and Table 4.4 it can be shown 

that choice of the nominated link function will zero the information connection, 

due to cancellation of terms in the given O-connection. For example, in the case 

of Normal errors, Ti3k(d) oc b'"(G) = 0 giving 

^'Mi) = GIVGj3,GKk,gjk ^-gj-^JLJ . 

The variance stabilizing link from Table 4.3 is the identity, and since the identity 

is the canonical link for normal errors, 

61 = 77 = M = f 

giving 
d2i j _ 

dr/idr], 
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This gives 

Fi'j'k'(£) — 0 

as expected for the Normal distribution. 

Marginally more involved derivations are needed for other error distributions. 

General Case 

Examining the general form of the O-connection under a transformation will show 

the general conditions under which this connection can be zeroed, and so induce 

constant variance on the scale of fitted values. 

Using the form of the skewness tensor and information metric for a G L M gives 

the information connection as 

^i'3'k'(i) = BI, (dvB]) gi3 + &vB),B
k
k, Tljk(6) 

to become 

I W O = Bl {dvB]) [&"(*%•] + Bi,Bj,B
k, [b"'(9K)Ei3k] /2 

since 
o 1 
1 ijk = y-Lijk-

This gives 

4'*(0 « 2B« fa4) h " ^ ) ^ + B\lB]lB
k
lb'"(9

K)Eijk 

d_ 
9jkBjiBk, 

d_ 

d& [9 
j'k' 

So, if the O-connection with respect to £ vanishes, ie, 

o 
^i'j'k' (€) — o 

this implies that 

9j'k' = constant. 

That is, a constant information metric with respect to £ (the scale of fitted values) 

is implied by the choice of link function. 
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Proof 

Starting with 
8 d x • 

— 1 [9j'k'} = ^ 7 - gjkB),Bkkl 

b"(9J)6jkBJ
i,Bk, 

By ™ J d^ 
_d_ 

= V"{BI)EijkB}lB>,Bi, + b"(9
J)6jk (di,B]) B

k, + b"(9J)8jkBj, ($,£*) 

which becomes 

= V(eI)EijkBi,B>,B
k
k, + 2b"(9

J)5jk [dvB]) B
k, 

by permuting the indices j and k. Since the indices ijk are arbitrary this gives 

the required result. 

4.7.1 Other Link Functions 

In the previous section, the relation between the information connection (O-connection) 

and the choice of the link function as being variance stabilizing was investigated. 

There are other link functions that can be associated with key values of a and 

the corresponding a-connection. As expected, these link functions induce those 

properties associated with the particular value of a. For example, the case of 

a = 1/3, produces a 'normal' likelihood by zeroing the expected third derivative 

of the log-likelihood. Following Aitkin, Anderson, Francis and Hinde (1989), the 

corresponding link function for the Binomial would be an incomplete beta func­

tion, while for the Poisson the 'normal' link function is the cube root, as described 

in McCullagh and Nelder (1989, pl98). The link functions corresponding to each 

of the key values of a are given in Table 4.5, together with their corresponding 

property. 

The signed constants are included merely for completeness with the table ex­

tracted from McCullagh and Nelder (1989, p398), as reproduced in Table 4.3. 

For Binomial errors, the link functions for a = ±1/3 are given in terms of the 

incomplete beta function (Kendall and Buckland, 1971) 



CHAPTER 4. APPLICATIONS 155 

a 

5 

Normal 

Poisson 

Binomial 

Gamma 

Inverse 

Gaussian 

Mean (= //) 

- 1 

1 

9 

ee 

ee/(l + ee) 

-1/9 

(-20)-1/2 

Canonical 

1 

0 

9 = // 

0 = ln/i 

9 = ln[///(l - //)] 

9 = -1/fM 

9 = l/2fi2 

Constant Var. 

0 

1/2 

P 

2VP 

2 sin-1 y/JL 

2 In// 

'Normal' £ 

1/3 

1/3 

A* 

3^u 

JM^3'3^ 

- 3 A * " 1 / 3 

Skewness I 

-1/3 

2/3 

3„2/3 
2fJ, 

I i2- Z) 

-3^/3 

ln/t 

Table 4.5: Link functions for key values of a(5). 

/ (a, 6) = r * xa~x(l - x)b'ldx, a,b>0, 0 < x < 1. 
•/o 

The special cases for G L M s shown in Table 4.5 have parallels in the choice of 

transformations for general models. Box and Cox (1964) introduced a family 

of transformations using the likelihood to best select transformations satisfying 

optimality criteria. Anscombe (1948) considered the choice of transformations for 

non-Normal distributions. The choices given in Table 4.5 show the possibilities for 

choice of link function against desirable properties. In practice, the data should 

decide which link functions are appropriate. 



CHAPTER 4. APPLICATIONS 156 

Note 

For the special case a = 1 (5 = 0) the exponential (or Efron) connection recovers 

the canonical form with implied sufficiency. In this case 

' ~C C C a ^ dh 

fk, - GU'Gj3lGKklg3k [ Q ^ - ^ 
^i'j'k' ~ Gn'Gj3'GKk'9jk 

and 

(J% 
drudrjj 

ri'j'k' = 0 ^ gjk [ ̂  ^ J = 0 

which in turn implies 

L\iyL\^i — 0. 

This condition holds if the family is exponential in the parameter, ie, canonical in 

the parameter represented by the parameterization. In this case the corresponding 

link function is the canonical link function for the error distribution involved. 



Chapter 5 

Extensions and Conclusion 

In this chapter several allied problems are examined in detail to demonstrate the 

utility of generalized curvature measures in the statistical approach to data anal­

ysis. Finally an overview of the thesis highlights is presented with concluding 

remarks. 

5.1 Extensions 

Two related areas are studied to demonstrate the use of generalized curvature 

measures both directly and indirectly in analysing statistical problems. The use 

of these curvature measures will be non-technical in order to give a raison d'etre 

for such measures without lengthy algebraic discourses. 

5.1.1 Leverage in Nonlinear Regression 

In the spirit of Bates and Watts (1981), a reformulation of the local Taylor's series 

approximation to the nonlinear regression problem converts it to a G L M using 

square root link and an offset. As for the Bates and Watts quadratic form, the 

G L M local approximation of the solution locus provides a better local approxima­

tion than linearization, although strange behaviour can occur far away from the 

final value, as shown in Figure 5.1. The rationale for this approach is in considering 

157 
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estimates of leverage. The linearization and the G L M must give differing leverages 

since they are effectively different approximants to the true nonlinear model, as 

can be seen from the diagram (Figure 5.1) of the solution locus for Test Problem 1. 

Of course, the two methods will give identical results at the optimum, ie, the least 

squares solution. The point of including this G L M algorithm for general nonlinear 

regression is to demonstrate implicitly the effect of curvature on leverage by ap­

proximating the same nonlinear regression model by two different approximants, 

linearization and the G L M quadratic approximation. As the two approximants of 

the same nonlinear regression function have different intrinsic curvatures (zero for 

linearization and non-zero for the G L M with square root link), then the leverages 

must be different (see Test Problem 2). Correspondingly parameter-effects curva­

ture would be zero for the linearization approximation, and non-zero but invariant 

for the G L M . Given the nature of the G L M approximant, the G L M parameter-

effects would be expected to be closer to that of the nonlinear regression model 

than the nil estimate from linearization. 

The Problem 

The nonlinear regression problem can be stated as the estimation of 0 given data 

(Yi, Xi), i = 1... n. The general form of model to be fitted to the data is 

Y = f(X; 9) + e, e~ NIW(0, a2) 

For a linear model 

f(X;O) = X0 

meaning that the derivative 

df/dO = X 

is independent of 0. A nonlinear model is one where the derivative 

df/dO = F(0) 
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depends on 0. A special case of a nonlinear model is a Generalized Linear 

Model (GLM) for which 

f(X;0) = f(X0). 

Using the criterion of Least Squares, the minimum of the function 

S = ^[y-f(X;0)}2 

corresponds to the solution of the normal equations 

| = 2E[y-/(x;e)][-|] = o. 

Only for linear models do these equations have an analytic solution, so alterna­

tive methods of estimation are used. All of these methods attempt to solve the 

minimisation problem 

T E [Y ~ f{X;0)f . 

Two of these methods are described briefly, viz, 

1. Linearization (Gauss-Newton), and 

2. Newton-Raphson. 

Linearization 

The nonlinear function is approximated by a linear model using the Taylor's ex­

pansion on 

Y = f(X;0) + E 

to give 
dfT 

f(X;0)*f(X;0o) + -^ (0 - 0Q) + ... 

which becomes 
df T 

Y-fo~jJr (0-0o) + e-

Converting the problem to Ordinary Least Squares (OLS) yields 

y = Z(3 + e 
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where 

y 

z 

/3 

= 

= 

Y -
df 
d0o 
0-

-h 

0Q 

The fitting algorithm becomes 

• Choose 0Q. 

• Regress y on Z to get (3, i.e., ^mE(y ~ Z(3)2. 

• 0 = J3 + 0Q 

• Iterate until (3 is trivial. 

Newton-Raphson Method 

This quadratic method expands the function 

S(0)=Yl[Y-f(X;0)}2 

in a Taylor's series 

d 9 T 82 9 
S(0) = S(80) + WQ (0-0o) + \(0 - 0o)

T^(0 - 9 

dS n 8S d
2S,n „ . n 

g + Hf3 = Q^^ = -Hlg 

In general 

802 ~ 80 d0 [ ~T) d02 

ie., the first term corresponds to linearization. 
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GLM Variant 

The nonlinear function / in 

Y = f(X;0)+e 

is approximated by 

YXf0 + §L{e^o) + \^{e-eof 
'0 

to become 

where 

y = Y-fQ = Z(3 + \(3
[H(3 + 

H=U=VTV 
and 

(3 = 0 - 0O 

as for linearization. Completing the square gives 

y = Z(3 + \(3TVTV(3 

= (A+^/3)T(A+5/3)-ATA 
where 

ZV~l 

The GLM approximant is then 

Y-f0 + A0
TAo = Uo + ¥=fi\ Uo + ^P) 

ie., the response is Y — f0 + Ao
TAo, and the predictor is ^=, with Ao an offset in 

GLIM parlance. The link function is the square root. 
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Test Problem 1 

The data used in this test problem is from Table 1.1 as shown in Figure 1.1 

three GLIM outputs given in Appendix D.l show 

• a one-step implementation of the GLM variant, 

• the iterative form of the G L M variant, and 

• a linearization procedure (one-step) for comparison with the G L M variant. 

The GLIM variant and linearization concur at the optimum value for the pa­

rameter estimate, as shown in Table 5.1. 

GLM NLR 

9 2.0537 2.0537 

SE(9) 0.1573 0.1575 

Deviance 2.9334 2.9334 

Residuals (-1.652, 0.453) 

Table 5.1: Summary output : Test problem 1 

Figure 5.1 shows the solution locus as the solid curve (with circles at 9 = 0,1, 2), 

the tangent to the solution locus at 90 = 0, and 9 = 2 being in the top right hand 

corner of the graph. The G L M approximant to the solution locus is also pivoted 

at #0 = 0 and is shown by crosses (+), while the data are shown by the box(D). 

Globally, neither the tangent nor the G L M approximant capture the full nature of 

the solution locus. However, in the neighbourhood of the final estimate (9 = 2), 

the G L M variant is closer to the solution locus than the tangent produced by the 

linearization method. The quadratic nature of the G L M approximant is clearly 

demonstrated. 

162 
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Figure 5.1: Solution Locus (solid curve), Tangent (line) and G L M approxi­

mant (crosses [+] ). The data are shown by the box(Q). 
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Test Problem 2 

The following data are from Draper and Smith (1981, p517, Exercise B). 

t 

0.5 

1 

2 

4 

8 

16 

Y 

0.96,0.91 

0.86,0.79 

0.63,0.62 

0.48,0.42 

0.17,0.21 

0.03,0.05 

Table 5.2: Data Set with replication 

The model to be fitted is 

E(Y) = e~6t 

assuming Normal errors. In the treatment that follows, the G L M variant on non­

linear regression is contrasted with linearization, at parameter values away from 

the optimum (mle). In particular, leverages are obtained (by use of the G E N S T A T 

5 package), initially at the optimum parameter value, and then at parameter val­

ues two standard deviations away from the optimum value. The corresponding 

computer outputs are given in Appendix D.2. 

The key results of these three sets of calculations are summarised in Table 5.3. 

The 'Interval' quoted in Table 5.3 is simply two standard errors. 
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Observed Estimate 

GLM Linearization 

Upper 0.01618 0.01672 

Lower - 0.01623 - 0.01547 

Interval = 0.01618 = 2 • 0.00809 

Standard Error 

GLM Linearization 

Upper 0.00812 0.00873 

Lower 0.00813 0.00746 

SE(optimum) = 0.00809 

Table 5.3: Results summary : Data Set with re 
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The corresponding leverages are reproduced in Table 5.4. 

Optimum + 2 SEs - 2 SEs 

G L M / N L R G L M N L R G L M N L R 

0.012 0.012 0.014 0.012 0.011 

0.012 0.012 0.014 0.012 0.011 

0.040 0.040 0.045 0.040 0.035 

0.040 0.040 0.045 0.040 0.035 

0.105 0.105 0.114 0.106 0.095 

0.105 0.105 0.114 0.106 0.095 

0.183 0.184 0.187 0.184 0.177 

0.183 0.184 0.187 0.184 0.177 

0.140 0.139 0.126 0.139 0.154 

0.140 0.139 0.126 0.139 0.154 

0.020 0.019 0.014 0.019 0.029 

0.020 0.019 0.014 0.019 0.029 

Table 5.4: Leverages summary : Data set with replication 

The following observations can now be made. 

1. The leverages for the G L M variant at parameter values two standard devia­

tions above and below the optimum are closer to their values at the optimum 

than are the corresponding leverages values for linearization, by inspection 

of the final column in each output. 
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2. The G L M regression estimates at the extremities are closer to the interval de­

fined by two standard errors than are the corresponding regression estimates 

from linearization. 

3. The standard errors for linearization at the extremities appear more variable 

than the G L M variant. 

Given that the GLM variant is expected in theory to approximate the solution 

locus better than linearization, all these results are to be expected. These empirical 

results confirm the suggestion that the G L M variant will better approximate the 

nonlinear regression model than will a simple linear expansion. 

5.1.2 Replication and Curvature 

The question of replication in observational studies and experimental designs has 

been addressed by many workers, such as Draper and Smith (1981), Seber and 

Wild (1989) and Weisberg (1985). The statistical benefits of replication include 

increased precision of estimates, an independent measure of error, and the ability 

to test for interaction, as well as allowing for lack of fit tests. Bates and Watts 

(1980, p5, 2.2.1) considered the effect of replication on estimates of curvature for 

the nonlinear regression model. A n r-fold replication reduces all curvatures by 

a factor of Jl/r, following the arguments of Bates and Watts (1980) and Seber 

and Wild (1989). The explanation proceeds by observing that with replication the 

problem of fitting a model to the data reduces to fitting to the means, Seber and 

Wild (1989, P31)1. Thus the expected value for each replicate observation holds a 

carbon copy of the fitted values using the means as data. So having two replicates 

at each of three design points gives 

Ai = (P>I,PI) 

'•The replication is assumed to be the same at each design point. This restriction is not 

necessary, but it helps to simplify the discussion. 
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M2 = {ihith) 

/is = {ih,ih) 

or 

A = (£,A) 

where the notation // refers to the fitted value obtained by regression using means 

rather than all the observations. In the notation of Seber and Wild (1989, pl46, 

4.2.5), curvature is 

HAH = v̂ HAll = llAll ^ % 
lh H A H 2 2||A||2 v/2||All2 y/2 

As stated earlier, under replication the estimation problem is tantamount to re­

gressing on the means (Seber and Wild, 1989, p31), and the within replication 

variability is used to obtain an estimate of pure error. Switching to a regres­

sion based on the means induces a scale factor of 1/y/r since V(x) = V(x)/r, in 

agreement with the above analysis. 

These developments are mirrored in the modifications due to Amari (1982a, 

p372, 4.3 and p376, 5.2) for the metric, affine connection and skewness tensor in 

the case of replicated observations in the general case. For example, the metric 

tensors are related by 

N9ij = 9ij 

where gi3 is the metric tensor for the problem cast in terms of fitting to the data 

from N replicate observations, and gtj is the metric tensor for the variable on the 

original (single observation) scale. 

Example 

To demonstrate the effect of increased levels of replication, the following simple 

experiment was conducted. For the one-parameter model E(Y) = y/x, the data 

points shown in Table 5.5 were chosen. 
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X 

1 

4 

9 

E(Y) 

1 

2 

3 

Table 5.5: Square root model - replication experiment 

For sample sizes of 1, 2, 5 and 100 at each level ol x, noise was generated from 

the Uniform distribution between -1 and 1. To emulate the effect of increasing 

replication, this noise was averaged and then added to the E(Y) value. For each 

sample size, this procedure was repeated 100 times using different simulated data 

each time. A sample of generated data is shown in Table 5.6, being the last data 

set out of the 100 generated for each value of N. These are the data sets that are 

described in the series of plots that follow. 

N 

1 

2 

5 

100 

yi 

1.245 960 

0.783 352 

1.327 645 

1.050 385 

V2 

2.584 084 

2.094 020 

1.991 387 

2.015 503 

ys 

3.865 286 

2.953 216 

3.005 948 

2.979 930 

Table 5.6: 'Typical' data generated for the replication experiment 

The function E(Y) = xe was fitted to each of these 100 data sets, assuming 

Normal errors. The average results for the 100 simulation are shown in Table 5.7. 

In order to display the 'typical' results, the sum of squares was plotted against 

the parameter value. The plot was centred on the final estimate, using a width of 
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N 9 (average) Standard Error 

1 0.492 832 0.078 655 

2 0.495 235 0.053 578 

5 0.498 038 0.031 646 

100 0.500 015 0.007 610 

Table 5.7: Results (averages) for the simulation replication experiments 

two standard errors on either side of the final estimate. These final estimates and 

their standard errors were obtained from fitting the model to the representative 

data given in Table 5.6. These estimates and standard errors (SE) are shown 

in Table 5.8 which shows the estimates and their corresponding standard errors 

for the last data set in each of the 100 simulations using increasing replication 

(N =1,2,5,100). 

N Estimate SE 

1 0.6245 0.0252 

2 0.4991 0.0238 

5 0.5003 0.0324 

100 0.4983 0.0055 

Table 5.8: Results for the 'typical' data 

These plots are shown in Figures 5.2, 5.3, 5.4 and 5.5. For each graph the 

sum of squares function (SoS) based on the nonlinear model is shown by the solid 

line, while the sum of squares function based on the linear approximation centred 
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at the final estimate is shown by the curve using circles. The scale for the last 

graph(Af = 100) is different to the remainder^ = 1, 2, 5). 

The effect of increasing replication is twofold. The approximation of the sum 

of squares surface based on the linearization around the final parameter estimate 

improves with increasing replication, and the change in the sum of squares sur­

face for both the 'true' value (based on the nonlinear function) and that based 

on the linear approximation decreases relatively with increasing replication. The 

second effect will correspond to decreasing curvatures, or to use the terminology of 

Ratkowsky (1983), being 'close to linear'. In expectation space, the corresponding 

solution locus for the model appears as a space curve, which can be displayed in 3 

dimensions by using the means as expectation coordinates as in Figure 5.6. The 

solution locus as shown in Figure 5.6 is centred on the true value of 9 = 0.5 with the 

thin line corresponding to the range of parameter values from —1/2 and 1, while 

the thick line gives the confidence interval expected with replication (N = 2). No 

data point is shown since the solution locus is representative of all simulations 

described in Table 5.8. The 'close-to-linear' behaviour is clearly exhibited, in the 

straightness of the solution locus near the optimum. 

General Notation 

Following the developments in Seber and Wild (1989, pp30-32), the replication 

problem could be cast in terms of the means at each replicate point. However, 

as shown in Appendix D.3, the metric tensor and related functions such as the 

a-connection can be written as multiples of the corresponding functions in the 

single observation case. This result holds for the problem cast in terms of the 

replicate observations or in terms of the means, but the former tends to be used 

most often. Following Amari (1990), the notation g will be used to denote the 

metric tensor based on N replicates. The corresponding a-connection for the 
a 

replicate observations will be denoted by T. This terminology is not to be confused 

with (f = f ) which is used for the information (Riemannian) connection. See 

Lauritzen (1987). Some basic results for metric tensors, a-connections and other 
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quantities are given in Appendix D.3, which also contains an explanation of some 

results collected from various sources which elucidate the relations used later. 

Briefly, using the notation above and definitions from Appendix D.3, 

gi3 = Edi£(y; 0)83£(y; 0) = £ E8i£83£ = Ngl3 

and 
9L a 

*• ijk— •* » 1 ijk 

for the replicate data. So all subsequent discussions could proceed in terms of the 

single observation scale if desired. 

Asymptotics 

The form of the Central Limit Theorem given in Amari (1982a, p376, 5.2) shows 

the effect of increased levels of replication, since effectively foiN = r 

9ij = Ngi3. 

In the limit, for the nonlinear regression model, high levels of replication mean 

that the nonlinear model behaves locally as a linear model as both intrinsic and 

parameter-effects will converge to zero. The local linear approximation to the 

nonlinear function will be excellent, with the means mapping out the deterministic 

component precisely, and the population error will be known without measurement 

error. These features are exploited in the lack of fit test, used not only for testing a 

linear model, but also for testing a nonlinear response function, (Seber and Wild, 

1989, p32). 

To study the general case, the imbedding theorem needs to be invoked. This 
a 

theorem expresses the a-connection for the regression coefficients ra6c in terms 
a 

of the a-connection of the natural parameters Tijk, namely 

Tabc (u) = (8aB\)Bigij + BaBlB
k Tijk (0(u)) . 
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Using the bar notation already described, this relation can now be written in 

terms of means rather than individual data points. 

rabc= (daBi)Bigi3 + BaB{B
k
c Tljk . (5.1) 

Writing the results (5.2) of Amari (1982a) in the notation of this thesis, the 

Central Limit Theorem gives the distribution of the data y as asymptotically 

normal, 

y~N{fi,gij/r). 

Examination of the imbedding theorem, Equation (5.1), now yields two distinct 

possibilities 

a 

(i) Ti3k^ 0, and/or 

(ii) 8aBl -> 0 

as r —> oo. 

The first case (i) implies that, as all error distributions converge to the Normal 

under intensive replication, all such models will become nonlinear regression mod-
a 

els, if only the error distribution is considered. This is due to Ti3k= 0 in the case 

of Normal errors. As the intrinsic curvature also goes to zero under high levels of 

replication, the nonlinear regression model will be locally well approximated by a 

linear model. 

In the second case (ii), the exponential connection becomes 

fabc= (daBi)Bi-9lj + BaB{B
k Tijk 

e e 
but Tijk= N Tijk= 0 by definition for an exponential family model. Thus if 

e 

8aBl -> 0 then Tabc-+ 0 implying that a generalized nonlinear model ( G N M ) will 

be a local exponential family model in terms of the regression coefficients, ie., a 
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G L M with canonical link. Sufficiency of the particular parameters follows as a 

local property in the limit2. 

The two conditions are connected by the Central Limit Theorem. The sub­

suming case is nonlinear regression. Furthermore, as Af -» oo the means end up 

on the solution locus, and the linear model approximates the nonlinear model well 

in a local sense. In differential geometric terms, the expectation surface becomes 

'locally Euclidean'. For the general case, ie, a G N M , this implies (in the notation 

of Section 3.6) 

p(X; (3) KPO(X; (30) + J | [^ ((3 - (30) 

But the natural parameters are given by 

0,- = f(X;/3) 

and p ^ f for Normal errors, giving 

E>h = 
8Pb dp 

The Taylor's expansion for f gives 

df 
f = f o + 3/3 (30 (0 ~ A.) 

which means that 

leading to 

B\ = constant 

daBl = 0. 

This means that the G N M will be locally approximated by a G L M with canonical 

link. However the same conditions that could cause this to happen would also 

mean that the G N M would become a nonlinear regression model in the limit. 

2A11 that can be inferred for general likelihood models using (ii) alone is that local sufficiency 

holds for the (imbedded) regression parameters. 
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5.2 Overall Results 

The following results are not entirely original but are derived in detail using pro­

cedures not presented elsewhere. 

• The use of Bartlett's equations in the interpretation of a-connections. 

• The projection of normal and tangential components of a-curvature. 

• The decomposition of (scalar) a-curvature. 

• Zero 1-connections and exponential families. 

• Wedderburn's exponential form. 

• For GLMs, an expanded table of link functions corresponding to transfor­

mation properties. 

The following is a summary of points that are considered to be original. 

• The a-connections in the multi-parameter case are interpreted, especially 

for a equal to zero, 1/3 and 1. 

• The Exponential connection is zero iff the link function is canonical in a 

GLM. 

• A test for canonical link adequacy in G L M s has been derived from the skew­

ness tensor as imbedded in the a-connection for the regression coefficients. 

• The invariance of intrinsic curvature is proved for the general case of non-

Normal errors. 

• Parameter-effects curvature is shown to be invariant for a G L M ; (long and 

short forms). 

• The scalar form of exponential intrinsic curvature for a G L M is minimal 

when the link is canonical. 
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• A generalized nonlinear model ( G N M ) with zero exponential curvature is a 

G L M with canonical link. 

• A zero information connection implies a variance stabilizing link in a G L M 

and conversely. 

• A n improved leverage estimator in nonlinear regression can be obtained via 

a G L M approximant to the nonlinear function. 

5.2.1 Summary 

Some of the results obtained using the methodology of differential geometry and 

tensor algebra represent known results in a new light. However this in itself could 

prove worthwhile as being a new way of viewing established relations, as stated in 

Kass(1989). For example, the statistical interpretation of a-connections joined 

the differential geometric methods of Amari (1982a) to the approach used by 

Bartlett (1953a). In the multi-parameter case discussion of the interpretation 

of these connections required the Bartlett notation to be modified and extended. 

Other key results that have been reported elsewhere are the projection of a-

curvature(Amari, 1982a, p371), and its decomposition into normal and tangential 

components (Amari, 1990, pl56). While these results have been quoted previously, 

a full derivation and explanation appears not to have been given, as has been done 

here. The decomposition of a-curvature has also been derived in scalar terms as 

well. 

Considering the new results, the invariance of intrinsic a-curvature may be 

expected to hold, but it is claimed that the method of proof using differential 

geometric arguments with tensors has not previously been demonstrated. Likewise 

the invariance of parameter-effects curvature for a G L M is an expected result, but 

the proof using the methods of Section 3.3.3 is claimed as original. Certainly 

the invariance of intrinsic curvature in general and parameter-effects for a G L M 

are both generalizations of results in special cases (Normal errors and/or linear 

models), as shown in the body of the thesis. 
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A major thrust of the investigation centred on the curved exponential family 

and in particular generalized linear models as an important subclass of such fami­

lies. Some of these new results obtained using the differential geometric approach 

are necessarily cast in terms of the apparatus peculiar to the consequent view of 

statistical distributions, such as a-connections. Thus the specialised results for 

the exponential connection and canonical link in G L M s may seem abstract, but 

proper interpretation of this result requires a full appreciation of the role of affine 

connections in statistical distributions. To this extent this result could be viewed 

as defining the role of the exponential connection in G L M s . These investigations 

have led to the formulation of a new test for canonical link adequacy in G L M s by 

employing the consequent relation for skewness of regression coefficients in G L M s , 

as determined from the a-connection and the imbedding theorem. Likewise, in­

terpreting the minimality of scalar exponential intrinsic curvature for a G L M with 

canonical link requires an understanding of a-curvature. However, this result can 

also be seen as a generalization of the zero intrinsic curvature for linear models 

under Normal errors. 

A new class of models, generalized nonlinear models (GNMs), has been defined 

as the generalization of the nonlinear regression model in the case of Normal errors. 

These models inherit features of G L M s and the nonlinear regression model. In fact 

G N M s and G L M s are related families of models since it has been shown that a 

G N M with zero exponential curvature is a G L M with canonical link. 

Considering link functions other than the canonical in G L M s , the most popular 

link function after the canonical (Kass and Smyth, 1990) is the variance stabiliz­

ing link function. This constant information scale link implies a zero information 

connection and conversely. While this result is hardly surprising, again the de­

velopment in terms of the a-connection requires the ability to manipulate and 

interpret these affine connections. This type of result could also be used as an 

interpretation of the a-connection itself in the case of a G L M . By considering 

other estimator properties such as 'normal' likelihood and skewness reduction, an 

expanded set of link functions has been determined, giving the user further options 
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for the choice of link function over the canonical and the variance stabilizing. 

Finally the concept of curvature has been used in demonstrating an improved 

method of estimating leverages in nonlinear regression, and the effects of replica­

tion on curvature have been examined, with a view to investigating asymptotic 

behaviour, ie, the results of intense replication at the design points. The conse­

quent behaviour confirms the expected results for increasing sample sizes at each 

replicated design point, in terms of local approximation by a linear model based 

on Normal errors. 

Conclusion 

This thesis has presented a generalization of curvature measures for non-normal 

error models by continued analogy with the nonlinear regression model. This 

generalization and its subsequent interpretations have been shown to reduce to 

the known results for Normal errors, where the differential geometry is Euclidean 

rather than Riemannian as in the general case. In addition, the generalization 

to non-Normal models of effects of curvature on model behaviour has been ex­

pounded. A particular class of curved exponential family models, generalized lin­

ear models, has been the special topic of consideration, with attention being given 

to the canonical link. As this link function is the non-Normal analogue of the 

linear model for Normal errors, it has been constantly been used as the reference 

point for investigating differential geometric quantities such as a-connections and 

a-curvatures, with a view to generating interpretations of such quantities in the 

general case. This strategy has proved most fruitful in investigating the behaviour 

of generalized nonlinear models and generalized a-curvature for such models. The 

'theme' of contrasting the canonical link with the non-canonical link in G L M s has 

been employed in the development of an empirical test of link adequacy and has 

also resulted in the classification of alternative link functions to the canonical in 

G L M s . In essence, this thesis has extended the differential geometric approach 

from Normal to non-Normal error models, not only for generalized linear models 

but also for models having a general response function. 
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Figure 5.2: Sum of squares plotted against the parameter 9 : N = 1 
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(Ch. 1) 

A.l The Hat Matrix for GLMs 

The derivations below give the generalized forms of the leverage equation for GLMs 

which maps the data into the fitted values. Both forms are derived from the basic 

mapping equation for the working variate z from the GLIM algorithm, ie, 

.-,+ (J)<r-,o. 
Since the predictors X are regressed onto z using weights W, the equation in­

volving the hat matrix for a G L M is 

Wl/2z = HgW
l/2z 

where 

Hg = W
l/2X (xTWXyl XTWl/2. 

The scalar form for the weight function is 

A. 1.1 Standardized Form 

The working variate z (scalar) can be written as 

z = rj + W-1/2V-1'2 (Y - n) 

184 
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which becomes (in vector form) 

W1'2 (z-rj) = V'1'2 {Y-n). 

Pre-multiplying by Hg gives 

HgW
1/2 (z-r]) = HgV'

1'2 (Y - M) 

The LHS becomes 

HgW^z - HgW^r, = W1/2z - W1^ 

using r? = X(3 and the leverage equation Wl'2z = HgW
l'2z. This leads to 

W1/2 (z-rl) = HgV-
1'2 (Y-fi). 

But, the expected working variate is 

z = rj + W^V-1'2 (Y - ix) 

since rj and fj, are fixed for each iteration, and thus 

W112 (z-rj) = Wll2W-ll2V~1'2 {Y-»)= HgV^2 (Y - /i). 

Finally 

V-1'2 (Y-fi)= V-1'2 (A - /*) = HgV'1'2 (Y - n) 

as quoted. 

A. 1.2 Raw Form 

Substituting the expansions for the working variate z in the leverage equation 

W1/2z = HgW
1,2z 

yields 

W1'2 (r) + W'1/2V-1/2(Y - //)) = HgW1'2 (r, + W-1'2V-1'2(Y - M)) . 
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Since HgW^rj = W^rj, this becomes 

V~1'2 (X - /*) = HgV'1'2 (Y - „). 

Since V'1'2 oc W1'2 then it follows that 

V'^r, = HgV-^rj 

leading to 

V-1'2H = HgV-
1l2H 

due to the 1:1 correspondence between r, and M via the link function. This leads 

to 

V~X'2Y = HgV
l/2Y 

which converts to 

Y = V1l2HgV
1l2Y = UY 

as expected. 
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(Ch. 2) 

B.l Jeffreys' distance measure 

The measure of the distance between two distributions at 0 and 0 + d0 is given 

by 

ds2 = gijd9
id9j. 

B.l.l Preamble 

A measure of the 'distance' between two distributions [due to Jeffreys(1961)] is 

reported in Barndorff-Neilsen, Cox and Reid (1986, pp86-87). The definition is 

given in Cox and Hinkley (1982, pl30), and the explanation and derivation are 

in Cox and Hinkley (1978, pp51-52, problem 4.16). Here the term 'distance' 

is reported as not being quite accurate due to the metric in general not being 

Euclidean and the triangle inequality being violated. The derivation is given in 

terms of the notation of this thesis. 

B.l.2 Derivation 

The symmetric 'distance' measure is defined as 

ds2 = / in (p(p(y.^
g)-) (pfa °+dd) - p(v> *)) dv-

187 
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Now 

p(y; 0 + d0)= p(y; 0) + ̂ j^dP + 
89% 

by a Taylor's expansion. So 

*,-/h(1+?S*,+-)(S*'+-)* 

Since 

then 

lnp = £ 

ds2 = d9id9jE(di£dj£) = gijd9
id9j. 

B.2 Metric Tensor : alternative form 

The alternative form for the information matrix (metric tensor) is 

gi3 = -Ee(did3£). 

B.2.1 Derivation 

Now 

pdidji = pd{ ' ' ' ' 
P 

since 

Hence 

£ = In p. 

pdidji = p(didjp) -+pi — A dipdjp 

= didjp -P^^R = 8idjP - pdiidji. 
p p 
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Thus 

J pdidji = f didjP - J pdidji 

giving 

E(didj£) = fdld3p-gi3. 

Now 

J didjP = J di(pdj lnp) = dt jpdji 

but 

jpdji=0 

being the score statistic, so 

/ didjp = 0 

giving 

E(didji) = -gi3. 

B.3 Metric Tensor : results 

The results below using the metric tensor are used throughout the thesis. 

B.3.1 Metric tensor 

9ij9lk = tf 

189 

9lj = 9lk9jmgkm 

B.3.2 Affine connection 

r = r* n 
x jim *- jiiikm 

Tk= T- ar 
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B.3.3 General tensors 

Note the errors in Amari (1982a, p364 and p367). The correct tensor forms are 

Ci _ o nml 

°jk ~ °mjk9 

and 

qij _ on Jinmin 
°k ~ ^lm9 9 9nk 

respectively. See Kay (1988, p55, sec. 5.4) for other examples. 

B.3.4 Imbedding 

The imbedding of regression coefficients (3 in the natural coordinates 0 is given by 

O = 0((3). 

The metric tensor gab of the imbedded regression coefficients /3 in terms of the 

metric tensor g{j of the natural parameters 0 is given by 

gah = BaB
3
bgij 

where 

A de' a dpa 

and 

Bb~dP»-

B.4 Riemann Christoffel Curvature Tensor 

A space with an affine connection is flat when the Riemann Christoffel curvature 

tensor 

Rijki = fa Tsjk - 8j T
s
ikj gsl + Tirl T

r
jk - Tjrl T

r
ik 

vanishes identically. Then there exists an affine coordinate system such that 

Tijk = 0' 
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If the space is not curvature free (R ^ 0), no global affine coordinate system exists. 

At any point 0Q however, there exists a coordinate system where the coefficients 

of the affine connection and its derivatives vanish, viz, 

Tijk(0a) = O, ,8mTijk(0Q) = O, ... 

This creates a natural (local) coordinate system at 0O, as described by Amari 

(1990, pp47-48). 

Statistically, a model has an associated one parameter family of affine con­

nections, ie., the a-connections. The corresponding Riemann Christoffel (RC) 

curvature tensor is Rijkl with f replacing T in the previous definition of R, see 

Lauritzen (1987). The following statements are given as definitions of terms used 

in statistical applications. 

• A statistical manifold S is a-flat when it is flat under the a-connection. 

• W h e n the manifold S is a-flat, there exists coordinates 9{ such that 

rW*) = o 

identically. The parameters 0 then form the a-affine coordinate system. 

For a curved exponential family, the R C curvature tensor becomes 

a 1 — or 
Rijkl = ~ J- km[iJ- j}ln9 

where the operation [ij] is defined by1 

rp rp -L kmi-L jln J-kmjJ-iln 
J- km[iJ- j]ln 7j • 

Thus the R C curvature tensor is a function of the skewness tensor, and since the 

a-connection is a function of the skewness tensor, then the a-flatness of the space 

is purely related to the solution of 

a 

r=o 
as per Kass (1984, p87, 4). 

1Note the typographical error in Amari (1982a, p365). 
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B.5 Exponential Families and 1-connections 

The condition r= 0 does not necessarily imply that the parent family distribution 

is of exponential type. 

one dimensional case 

The condition T^ = 0 implies that (L,L2) = 0, but since 

L = i = lnp(y;9)=lnf(y;9) 

this becomes 

which reduces to 

Jd9^d9fdy = 0 

f( l (df\\^f\dhifJ 

Jy-Jldi) +d^Hrdy = °- (B-i) 
The condition 

f [del + d92~u 

implies a canonical exponential family, but this condition is too stringent. 

The original implied condition, Equation (B.l), can be construed as 
2 

df\d9) 

which is satisfied by a general canonical exponential family, but there may 

be other solutions. 

multidimensional case 

l 

The condition Tabc = 0 implies that (LabLc) = 0, which becomes 

8i d2£ f d£ dL£ . , 

JdTcd9M
fdy = ° 

to give 

/ ( • 

1 8f 8f jPf_\ ain/ , n 

f89a89b 89a89b d9c 
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Imposing the constraint 

193 

1 df df + d2f = Q 

f89a89b 86a89b 

as in the 1 D case implies a canonical exponential family, but in general there 

may be other solutions to the integration condition. 

B.6 Wedderburn's Exponential Form 

A description of the results reported in Hougaard (1982) for Wedderburn's expo­

nential form is given. The notation used is that of Hougaard (1982). Wedderburn's 

one dimensional exponential family for the iid random variables Xx,..., Xn is 

f(x;9) = e9t(x)/<j>(9)-

The parameterizations given by 

m) = fe 
0i (d2 

In 0(9) \ d9 
% \d92 

are characterized by the key values of 6 as given in Table B.l. 

Value of 5 

0 

1/3 

1/2 

2/3 

1 

Induced Property 

canonical parameter 

'normal likelihood' 

stable variance 

zero asymptotic skewness 

mean value parameter 

Table B.l: Key values of 5. 
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1. The case 6 = 0 reproduces the canonical parameter 9 vi 

194 

fp{0i) = 0i-0o 

which gives 1>{6) = 9, ie., the natural (canonical) parameter 0. 

So the transformation ip is the identity. 

2. The case 6=1 gives 

vw = ̂ M(*) 
0i 

= In' 4>(9i) - constant 

But 

and 

with 

giving 

£ = 9t(x)-In 0(9) 

di 

d9 = t{x)-\ri</>{6) 

di 
Ed9=° 

Et(x)= ln'0(0)^r(0) 

ie., the mean value parameter, since r(0) = ^(0). 

3. The value 6 = 1/2 yields 

/•0i f rf2 ^ 1/2 

^ 1 ) = ̂  l ^ W ( 0 ) f rf0. /0O Id02 

' 

From the likelihood 

an 
d92 

=-In" 0(9) 

and transformation ip(0) produces 

di di d9 d9 

giving 

#i_ 
d^2 

. ... .. = [t(x) - In'0(9)] -
dip d9dip L v J Yy n dtp 

= -^(J)'+N-^i({) 
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Since V(ip) = -Ed2£/dip2, then a constant variance parameterization will 

induce 

+ + (<®\
2, l, .,ns r,,d£,d (d0\ 

constant = — In 6(9) - E(—)~ — 
{dtp J ^y ' Kd9>d9 \di))' For the score statistic 

producing 

In standardized form 

and finally 

4. For 6 = 1/3, 

EdT9=° 

'f\«wm-

fe=Wm}
1'2 

ip(9) = J{\n"0(9)}1/2d9. 

d3£ _ d (d2£\ __ d (d2£ fd9\2 d£ d29\ d9 

dip3 " dip [dip2J ~~~~ d9 {dtP [dip) + ~dla\j^) 'dip 

_fi(d9\3 d2£ U9\2 d d9 | d
2£ d29 d9 | d£ d d

29 d9 

~~ d93 [dip) + d92 [dtp) d9^di\) + d92 dip2 dip + d9 d9^dip2*dip 

Setting the expected third derivative of the log likelihood to zero gives 

••4"-^SH"0,i'J^«») d_ d9_ 1 d9_ 
So 

-sK)')-
This becomes 

( i n \ 3 

— ) = constant 

ie., g 

if) «'•'*« 
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which leads to 

^ = {in<>«>)}
1/3. 

This gives 

tP(9) = j {\n" 0(9)}1/3 d9. 

Aitkin, Anderson, Francis and Hinde (1989, p327), give a parallel develop­

ment for a G L M form of an exponential family with unit scale parameter. 

The transformation for the Binomial distribution is a function of the in­

complete beta function, whereas the transformation for Poisson is the cube 

root. 

5. Zero asymptotic skewness is produced for 6 = 2/3 via Wedderburn's equation 

A ( d2 1 2/3 

tw-hlw1**®} de-
This result can be verified by using the results of Hougaard (1982, p248) by 

setting 

iP = tp(p) = tp(9) 

via 

B(P) =P = 9. 

Note that g = tp and x(0) = In 0(9), using Hougaard's notation. The skew­

ness for ip is now 

E(tp-Etpf = '^^{-»S(I)-»(S)'SS}+^ 
Now g = ip and x(0) = ln0(9), with 

d2£ „ d2X 

So, zeroing the skewness gives 

E{tp-Etpy = 0 
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which produces 

iP'(9) J-3 {-2 In'" 0 - 3(0)} + 3tP"'(9)J-2 + ... = 0. 

This reduces to 

-2iP'(9)\n'"0 + 3iP"(9)ln"0 = O 

which can be written as 

»(SH<^+»g<^>-(3)'-* 
This becomes 

giving 

(In" </>)-2 f - | J = constant. 

This produces 

to give 

3 - < ^ 
which converts to 

^ In 0(0) J d». 

This is Wedderburn's equation with 6 = 2/3. 

Alternatively, the result can be determined directly by expanding 

E^-Eipf 

in terms of 0 by use of Taylor's expansions, on Etp. 
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B.7 GLM Notation 

Notation is presented which defines the relation between the natural parameters 

and the imbedded regression parameters for a generalized linear model. 

Using the notation of McCullagh and Nelder (1989) for a G L M 

9{lH) = m 

with 

in = Km) 
Now 

E(Yi) = b'(9i) =^ = h(Vi) 

This relation can be defined as 

Wi) = h(Vi) 

So 

0, = rf-1^)] & f(Vi) = f(X,
T/3) = ^Xl3Pj) = f(Xl3pi) 

j 

If the canonical link is defined as c then d = c"1 so if the link is chosen as canonical 

then 

9i = d-1lh(rh)} = c[c-
1(Vl)] = rH 

as expected. In general, however 

9i = d-1[h(Th)] = c[h(r]l)}^r]i. 

For example, d is 

the identity function for the Normal distribution, and 

the exponential function for the Poisson distribution. 

B.8 Derivation of the Imbedding Theorem 

The a-connection for the regression coefficients ra6c in terms of the a-connection 
a 

for the natural parameters Tijk is given by 

^(u) = (daBl)Bigij + BiBiB
k T*jk (#(u)) 
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B.8.1 Proof 

1 — a 
Tijk(#) = E(8i8j£8k£) + -^±E(8i£8j£8k£) 

and 

where 

Now 

1 — a 
Tabc(u) = E(8a8b£8c£) +—^E(8a£8b£8c£) 

d& 
8ai = B\8ii, B\ = ^— and 0 = 0(u). 

8u° 

Tabc(u) = E\da(B{d3£)B
kdk£ 

l-a„ 
+ —^-£ 

Bidi£Bidj£Bkdk£ 

= E 

= E 

B{da(d3i)B
kdk£ + da(Bi)dj£B

kdk£ + l-^B\BiBkcE(di£dj£dk£) 

B{B\didj£Bkdk£ + da(Bt)B
kdj£dk£\ + BiaB{B

k)^E(di£dj£dk£) 

da(Bl)B
kE(dj£dk£) + BlBlBi i t)3 r*k 

c E(didj£dk£) +
 l~-^E(dl£dj£8k£) 

Tahc (u) = da(B\)B{E(di£dj£) + B\B{B
k
c Y%k (0(u)) 

= da(B\)Bigi3 + BiB{B
k Ti3k (ti(u)) 

as required. 

B. 9 Equivalence 

The equivalence of Equation (A.2) of Kass (1984, p92) to (4.6) of Amari (1982a, 

p370) is now demonstrated. 

Equation (A.2) of Kass (1984, p92) is 

Examining the transformation 7 =>- 0 : and defining B = dj/d9 yields 

a a 
Te = r7 B

6 + (l/B)i(9)d9B. 
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Since 
2 

B~2 *(7) = <?7 = »(0) f ~ j = ^ 
then 

ft = (deB)Bg7 + B*f7 

in line with Amari (1982a, 4.6, p370). 

Alternatively, the back transformation 0 => 7 : yields 

and 

*-'•(*)'-'<)&/(£)' 
Defining £?* = d9/d^ gives 

r^r;(B-f-,B^/(g)
3 

But 

rf27 _ d fdy\ = d A M 0(7 ^fcWy1^ Zd9_y2f9_dj 
d92 " d9 {do) ~ dy \dd) d9 ~ dj {dj) d9 ~ " {dj) d^2d9 

This gives 

d92 ~~ d7
2 j {dj) ^ d92 j {do) ~ dj2 

.-. f7 = Te (B*)
3 + geB* (^pj = (d7B*) B*ge + (B*)

3 fe 

in line with (4.6) of Amari (1982a, p370), ie., the 'imbedding theorem'. 
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C.l The derivation of a-curvature 

The general definition of a covariant derivative with respect to a vector field X(0) 

is1 

So 

VjX
i = — + TijkX

k(0). 

f)f)i 

V3Bl(u) = -^ + T)kB
k 

but 8/8ua is required. Therefore, using the chain rule 

a a / 8B
i a \ dQi 8Bi a 

B{ V,Bj = HL = Bi[-gg + Bfck) = —-jJL + BiBlr,k. 

a a 

=> Hlab = 8aB
l
b + B

J
aBb T

ljk. 

Alternatively, using ua directly, 

a a fljDi a a 

Htb =VaBl = ^ + KkBk = 8aB\ + Takn9
inBk 

If an original coordinate system is taken as being indexed by l,k,n and the resul­

tant system as being indexed by a, k, n, then the a-connection transforms accord­

ing to equation (2.28) of Amari (1982a, p364) , viz, 

Takn = B\BkBlTikn + Blk (daB
k
k) glk 

xSee Lovelock and Rund (1989, p76, 5.4). 

201 
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8aB
k = 0 ^Takn = B

l
afikn. 

This gives 

202 

Hab = 8aB\ + B
l
aTlkng

inBk = 8aB\ + BlV\kB
k 

= ^ k b = 8aBl + BiT3kB
k. 

C.2 The transformation rule for a-curvature 

If the coordinate system is changed from u = (ua) to v = (va>) then 

Hialb,=B
a
a,B

b
b,H

i
ab + BidalB

b,, 

after Amari (1982a, p371, 4.4). 

C.2.1 Proof 

Hi>b>=da,Bi,+T3kBi,B
k 

8va' Jk8va' 8vb' 
8B^_ Z 89j 89k 

a' 

8BI 8ua • 89j 8ua 89k 8ub b' ~~ _|_ p» _ 
8ua 8va' Jk 8ua 8va' 8ub 8vb' 

8 (89i 8ub\ 
= B*dtf {d^W) + rikB{BiB%]% 

hv = Baa,da {BlB
b) + T)kBiB

kBaa,B
b, 

= Baa,B
b,daBi + B

a
alB

b
b>rjkBiB

k + Baa,da (B
b,) B\ 

a a 
zji no Tjb Tji , oin TDb 
tia'b' — ^a'^b

,J:lab + JobCfaitiv. 
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a 

So H\b is in general not a tensor, due to the presence of the second term. 

Note that the transformation law for a (0,2) tensor is 

Shk = BiB
l
kSjt 

following Lovelock and Rund (1989, 2.9, p60). 

C.3 Tensorial normal a-curvature 

The transformation rule for a-curvature is 

Hi>v=Baa,B
b
b,Hib + BidalB

b
bl. 

To prove this tensorial assertion, it is sufficient to show that under the projection 

Nj, the second term in the transformation rule, ie.; 

Blda<Bb, 

vanishes.2 

C.3.1 Proof 

The normal projection of the alleged non-tensorial term is 

N)B{ddB
b
v = (6)-Pf)B{da,B

b
l 

The L.H.S. becomes 

(8)Bl - FJB{) da,B
b, 

giving 

(Bl-!f*B
i
flB

k
agkjBi)da,B

b
v 

The second term gives 

4 (ga0BkBigk3) 

2See Amari (1982a, p371). 
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The result from Lovelock and Rund (1989, p268, 4.10) can be stated 

204 

as 

g^BkBlgkj = Si 

Hence 

This gives 

PJBlda,B
b
v = B ^ B l , = B\da,Bl 

N\BldalB
b = 0. "j^b^a'^b' 

Hence, the normal components of a-curvature form a (0,2) tensor with respect to 

i, since 

(N}H^ = N; (B^HLJ = Bl,Bb, [N\HC) , 
to give the tensorial law 

Jh>v = Baa,B
b
b,Mab . 

C.3.2 Alternative Derivation 

Under the reparameterization defined by ua -» va', ie., (3 

components of a-curvature become 

B, the tangential 

M\iy = da,B\, + T)kBl,B
k - Ta*b>c9

cdBi ^cd -oi 
d 

= Baa,da (B\B
b
b) + T3kBiBl,B

kBbbl - [B
a
a,B

b,Tabc + B« (da,B
b) gab 

since, under the transformation rule for an affine connection 

9 Bd 

a 
Ta'b'c Ba'BblB

c
cTabc + B% \da'BvJ gab. 

This gives Af^y as 

= Baa, (daBl) B
b,+BaalBidaB

b
a>+B

a
a>B

b
blrjkBiB

k- feBb,Ia6c<T% + B
a
c (da,B

b) gabB^
d 
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= BJBJ [daBl + T)kBiB
k - fabcf

dBdyB:,BldaB
b
bl-(daB

b) *• (g^gabBf) Bd 

From Lovelock and Rund (1989, p268, 4.9) 

9mghiB* = Bf 

then 

9dc9abBac = B
d
b 

with 

h>v = ^Bjj5i» + Ba
Q,i%£6

6, - Ba
a, (da£6

6,) B-BJ 

but 

# £$ = 5j 

giving 
a a 

Mla>v = B
a
a,Bb,N

l
ab . 

So the 'normal components with respect to i form a tensor ...', Amari (1982a, 

p371). 

Note 

This alternative derivation verifies the form of the projection operators. 

C.4 Lemma 

The vectors Af1 normal to the imbedded tangent subspace Tu spanned by the 

vectors Bla satisfy 

9hiBheM\b = 0. 

This is merely a restatement of the orthogonality results of Lovelock and Rund (1989, 

p270, 4.21), and Amari (1982a, p370, 4.7). 
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C.4.1 Proof 

The normal component of a-curvature is 

Kb = daB\ + T)kB{B
k - Tabc9cdB 

206 

So 

Kb 9hiBhe = ldaBl + T)kB{B
k - f abc9cdBd) ghiB

h
e 

= (daBl) ghiB
h
e + T)kB{B

k
b9hiB

h
e - Tabcg

cdBd9hiB
h
e 

= (daBl) B
h
e9hi + BiB

k
bB

h
egJ)k - Tabcg

cdBdB^gM 

= (daBl) B
h
eghi + BiB

kBhefjkh - TabA 

Thus, 

9hiBeM
l
ab — Tabe ~ Tabe = 0. 

a 

This result reinforces the definition of N*b as being the Normal component of a-

curvature. The fact that Af*b as a vector with respect to i is normal to the tangent 

subspace Tu is also verified. This orthogonality is fundamental in establishing the 

decomposition of total scalar curvature. 

C.5 Non—tensorial tangential a—curvature 

The projection of a-curvature onto the tangent subspace gives the tangential com-
a 

ponent of a-curvature Tlab as 

T\b = P\B\b = (daBl + ThBiB') P] 

to become 

T\b = Tabc9 Bd 
a a 

cd r>i 

in agreement with Amari (1990, pl56, 5.26). 
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C.5.1 Proof 

Under a reparameterization ua to va', the tangential component with respect to 

the new parameters va' is 
Q. a 

Tla'b' = Ta'Vcg
0 Bd. 

The transformation rule for an affine connection is 

ta'b'c = Baa,B
b,Bf abc + B

a
c (da,B

b) gab, 

from Appendix C.l (alternative derivation), giving 

7~W = cd rti 9caB BaalB
b,BlTabc + Bac(da,B

b)gab 

= Baa,B
b,Tabcg

cdBd + dalB
b, (gcdBdB

a
cgab) . 

Finally, 
a a 

T W = Baa,BblT
lab + {pa>Bb,j PI, 

using the projection operator from Section 3.3.1. Thus, in general, the tangential 

component is not a tensor, due to the presence of the second term. So the tangen­

tial component will be subject to changes under reparameterization. Hence the 

connotation 'parameter-effects' is justified. 



Appendix D 

(Ch. 5) 

D.l GLIM Output : Test Problem 1 

G L M variant : one-step implementation 

>] GLIM 3.77 
.] $units 2$ 
.] $data x y 
.] $read 
.] 2 2.5 
.] 3 10.0 
.] $calc y.t = 
J $calc fO = 
.] Scale fl = 
.] Scale f2 = 
.] Scale v = 
] Scale aO = 
] Scale q = 
.] Slook q$ 

] Q 

updatel (copyrig 

= 2.0537$ 
= x**°/.t$ 
= f0*°/0log(x)$ 

= fl*°/„log(x)$ 

'/.sqrt(f2/2)$ 
= fl/(2*v)$ 

y - fO + a0*a0$ 

] 1 0.4242 
] 2 5.2265 
] Syvar q$ 
] Slink s$ 
] Soffset a0$ 
] $f it v - 1$ 
] deviance = 
] d.f. = 

J 
] Sdis erm$ 

= 2.9334 at cycle 

= 1 

208 
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[o] estimate s.e. parameter 
[o] 1 5.650e-06 0.1573 V 

[o] scale parameter taken as 2.933 

Co] 

[o] unit observed fitted residual 

[o] 1 0.4242 2.0759 -1.652 

[o] 2 5.2265 4.7735 0.453 
[o] 

[o] Current model: 
[o] 

[o] number of units is 2 
[o] 

[o] y-variate Q 
[o] weight * 

[o] offset A0 

[o] 

[o] probability distribution is NORMAL 

[o] link function is SQUARE ROOT 

[o] scale parameter is to be estimated by the mean deviance 
[o] 

[o] terms = V 

GLM variant : iterative form 

[o] GLIM 3.77 updatel (copyright)1985 Royal Statistical Society, London 

[i] Sunits 2$ 

[i] Sdata x y$ 

[i] Sread 

[i] 2 2.5 

[i] 3 10.0 

[i] Saccuracy 6$ 

[i] Scale '/,a=l$ 

[i] Scale °/,i=0$ 

[i] Scale °/.t = 1.0$ 

[i] Smacro fit 

[i] Scale fO = x**°/.t$ 

[i] Scale fl = f0*7.1og(x)$ 
[i] Scale f2 = fl*°/.log(x)$ 

[i] Scale v = °/„sqrt(f2/2)$ 

[i] Scale aO = fl/(2*v)$ 
[i] Scale q = y - fO + a0*a0$ 

[i] Syvar q$ 

[i] Slink s$ 

[i] Soffset a0$ 
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[i] Sfit v - 1$ 

[i] $extract °/,pe$ 

[i] $calc °/.a=0/0gt(
0/ope*°/.pe,0.0000001)$ 

[i] Scale °/,t=°/0pe + °/,t$ 
[i] Slook %t$ 

[i] Scale °/,i=0/,i+l$ 

[i] Sendmac 

[i] Swhile °/„a fit$ 

[o] deviance = 3.605425 at cycle 3 
[o] d.f. = 1 
[o] 

[o] 2.17870 

[o] deviance = 2.930771 at cycle 3 
[o] d.f. = 1 
[o] 

[o] 2.05302 

[o] deviance = 2.933361 at cycle 3 
[o] d.f. = 1 
Co] 

Co] 2.05371 

Co] deviance = 2.933361 at cycle 3 
Co] d.f. = 1 
Co] 

Co] 2.05371 

Ci] Slook °/„t$ 

Co] 2.05371 

Ci] Scale fv=x**°/.t$ 

Ci] Scale res=y-fv$ 

Ci] Slook x y fv res$ 

Co] X Y FV RES 

Co] 1 2.00000 2.50000 4.15171 -1.651710 

Co] 2 3.00000 10.00000 9.54699 0.453007 
Ci] Slook '/,i$ 

Co] 4.00000 

Linearization method 

Co] GLIM 3.77 updatel (copyright)1985 Royal Statistical Society, London 
Ci] Sunits 2$ 

Ci] Sdata x y 

Ci] Sread 

Ci] 2 2.5 

Ci] 3 10.0 
Ci] Scale '/„t = 2.0537$ 
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Ci] Scale fO = x**°/„t$ 

Ci] Scale fl = fO*'/.log(x)$ 
Ci] $calc p = y - fO $ 

Ci] Syvar p$ 

Ci] $fit fl - 1$ 

Co] deviance = 2.9334 
Co] d.f. = 1 

Co] 

Ci] $dis erm$ 

Co] estimate s.e. parameter 
Co] 1 -1.023e-05 0.1575 Fl 

Co] scale parameter taken as 2.933 
Co] 

Co] unit observed fitted residual 

Co] 1 -1.6517 -0.0000 -1.652 

Co] 2 0.4531 -0.0001 0.453 
Co] 

Co] Current model: 
Co] 

Co] number of units is 2 
Co] 

Co] y-variate P 

Co] weight * 

Co] offset * 

Co] 

Co] probability distribution is NORMAL 

Co] link function is IDENTITY 

Co] scale parameter is to be estimated by the mean deviance 
Co] 

Co] terms = Fl 

Co] 

Ci] $calc fv=x**°/,t$ 

Ci] $calc res=y-fv$ 

Ci] Slook x y fv res$ 

Co] X Y FV RES 
Co] 1 2.000 2.500 4.152 -1.6517 

Co] 2 3.000 10.000 9.547 0.4531 
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D.2 GENSTAT Output : Test Problem 2 

Optimum value for the parameter 9. 

Genstat 5 Release 3.2 (IBM-PC 80386/DOS) 02 April 1998 99-cA.cn 
Copyright 1995, Lawes Agricultural Trust (Rothamsted S p ^ T s S t ! ^ 0 

1 JOB "ds" 

2 UNITS CNVALUES=12] 
3 READ time, y 

Identifier Minimum Mean Maximum Values Missing 
time 0.500 5.250 16.000 12 0 

y 0.0300 0.5108 0.9600 12 fj 

17 CALC t = -0.2069 

18 CALC fO = exp(time*t) 

19 CALC fl = f0*(time) 
20 CALC f2 = fl*time 

21 CALC v = sqrt(f2/2) 
22 CALC aO = fl/(2*v) 

23 CALC q = y - fO + a0*a0 

24 MODEL C0FFSET=a0 ; LINK=squareroot] q 

25 FIT CC0NSTANT=omit; PRINT=model,summary,estimates,fittedvalues] v 

25. 

***** Regression Analysis ***** 

Response variate: q 

Link function: Square root 
Offset variate: aO 

Fitted terms: v 

*** Summary of analysis *** 

Regression 

Residual 

Total 

d.f. 

1 
11 
12 

s.s. 
* 

0.01202 

0.00814 

m.s. 
* 

0.001093 
0.000678 

v.r. 
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Residual variance exceeds variance of Y variate 

Standard error of observations is estimated to be 0.0331 
* MESSAGE: The following units have high leverage: 

7 0.183 

8 0.183 

*** Estimates of regression coefficients *** 

estimate s.e. t(ll) 
v -0.00001 0.00809 0.00 

*** Fitted values and residuals *** 

Standardized 
Response Fitted value residual Leverage Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Respon 

0.5091 
0.4591 
0.4534 

0.3834 
0.2994 

0.2894 

0.2615 

0.2015 

0.0745 
0.1145 

0.0117 
0.0317 

0.4509 
0.4509 

0.4065 
0.4065 
0.3305 

0.3305 
0.2185 

0.2185 
0.0955 
0.0955 

0.0182 
0.0182 

1.77 
0.25 

1.45 
-0.71 
-0.99 

-1.31 
1.44 

-0.57 

-0.69 
0.62 

-0.20 

0.41 

0.012 
0.012 

0.040 
0.040 
0.105 

0.105 
0.183 

0.183 
0.140 
0.140 

0.020 
0.020 

Mean 0.2574 0.2534 0.12 0.083 

26 CALC p = y - fO 

27 MODEL p 

28 FIT CC0NSTANT=omit; PRINT=model,summary,estimates,fittedvalues] fl 

28. 

***** Regression Analysis ***** 

Response variate: p 

Fitted terms: fl 
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*** Summary of analysis *** 

Regression 
Residual 

Total 

d.f. 

1 
11 
12 

s.s. 

0.00000 
0.01202 

0.01202 

m.s. 

0.000000 

0.001093 

0.001002 

v.r. 

0.00 

Residual variance exceeds variance of Y variate 

Standard error of observations is estimated to be 0.0331 

* MESSAGE: The following units have high leverage: 

7 0.183 

8 0.183 

*** Estimates of regression coefficients *** 

fl 
estimate 
-0.00001 

s.e. 
0.00809 

t(ll) 
0.00 

*** Fitted values and residuals *** 

Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Response 
0.0583 

0.0083 

0.0469 

-0.0231 

-0.0311 

-0.0411 
0.0429 

-0.0171 

-0.0211 

0.0189 

-0.0065 

0.0135 

Fitted value 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 

Standardized 
residual 

1.77 

0.25 

1.45 
-0.71 

-0.99 

-1.31 
1.44 

-0.57 
-0.69 

0.62 

-0.20 

0.41 

Leverage 
0.012 
0.012 

0.040 
0.040 

0.105 

0.105 
0.183 

0.183 
0.140 
0.140 

0.020 

0.020 

Mean 0.0041 0.0000 0.12 0.083 

Two standard deviations above the optimum value. 

Genstat 5 Release 3.2 (IBM-PC 80386/D0S) 02 April 1998 22:56:20 
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Copyright 1995, Lawes Agricultural Trust (Rothamsted Experimental Station) 

1 JOB "ds" 

2 UNITS CNVALUES=12] 
3 READ time, y 

Identifier Minimum Mean Maximum 

17 
18 
19 
20 
21 
22 
23 
24 

25 

time 0.500 5.250 16.000 

y 0.0300 0.5108 0.9600 

CALC t = -0.22308 

CALC fO = exp(time*t) 

CALC fl = f0*(time) 

CALC f2 = fl*time 

CALC v = sqrt(f2/2) 
CALC aO = fl/(2*v) 

CALC q = y - fO + aO*aO 

MODEL COFFSET=aO ; LINK=squareroot] q 

FIT [CONSTANT=omit; PRINT=niodel, summary, 

Values Missing 
12 0 

12 0 

,estimates,fittedvalues] v 

25 

***** Regression Analysis ***** 

Response variate: q 

Link function: Square root 
Offset variate: aO 

Fitted terms: v 

*** Summary of analysis *** 

Regression 

Residual 
Total 

d.f. 
1 
11 
12 

s.s. 
* 

0.01202 

0.00822 

m.s. 
* 

0.001093 

0.000685 

v.r. 

Residual variance exceeds variance of Y variate 

Standard error of observations is estimated to be 0.0331 

* MESSAGE: The following units have high leverage: 

7 0.184 

8 0.184 
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*** Estimates of regression coefficients *** 

estimate s.e. t(ll) 
v 0.01618 0.00812 1.99 

*** Fitted values and residuals *** 

Standardized 
Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Response 

0.5128 

0.4628 
0.4600 

0.3900 

0.3100 
0.3000 

0.2751 
0.2151 

0.0861 
0.1261 

0.0159 

0.0359 

Fitted value 

0.4545 

0.4545 
0.4131 
0.4131 

0.3411 
0.3411 

0.2322 

0.2322 
0.1071 

0.1071 

0.0223 
0.0223 

residual 

1.77 

0.25 
1.45 

-0.71 

-1.00 
-1.32 

1.44 

-0.57 

-0.68 
0.62 
-0.20 

0.42 

Leverage 

0.012 
0.012 
0.040 

0.040 
0.105 
0.105 

0.184 
0.184 

0.139 
0.139 
0.019 
0.019 

Mean 0.2658 0.2617 0.12 0.083 

26 CALC p = y - fO 

27 MODEL p 

28 FIT CC0NSTANT=omit; PRINT=model,summary,estimates,fittedvalues] fl 

28 

***** Regression Analysis ***** 

Response variate: p 

Fitted terms: fl 

*** Summary of analysis *** 

Regression 

Residual 

d.f. 

1 
11 

s.s. 
0.00401 

0.01204 

m.s. 
0.004009 
0.001094 

v.r. 
3.66 
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Total 12 0.01605 0.001337 

Residual variance exceeds variance of Y variate 

Standard error of observations is estimated to be 0.0331 
* MESSAGE: The following units have high leverage: 

7 0.187 
8 0.187 

*** Estimates of regression coefficients *** 

fl 
estimate 

0.01672 
s.e. 

0.00873 
t(ll) 

1.91 

*** Fitted values and residuals *** 

Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Response 
0.0655 

0.0155 
0.0599 

-0.0101 

-0.0101 

-0.0201 

0.0703 
0.0103 

0.0021 
0.0421 

0.0018 

0.0218 

Fitted value 

0.0075 
0.0075 
0.0134 

0.0134 

0.0214 

0.0214 

0.0274 
0.0274 

0.0225 

0.0225 
0.0075 

0.0075 

Standardized 
residual 

1.77 
0.25 
1.44 

-0.72 
-1.01 

-1.33 
1.44 

-0.57 

-0.66 
0.64 

-0.17 

0.43 

Leverage 
0.014 
0.014 
0.045 

0.045 

0.114 

0.114 
0.187 
0.187 

0.126 
0.126 
0.014 

0.014 

Mean 0.0208 0.0166 0.12 0.083 

T w o standard deviations below the optimum value. 

Genstat 5 Release 3.2 (IBM-PC 80386/DOS) 30 March 1998 21:32:55 
Copyright 1995, Lawes Agricultural Trust (Rothamsted Experimental Station) 

1 JOB "ds" 

2 UNITS CNVALUES=12] 

3 READ time, y 



APPENDIX D. (CH. 5) 218 

Identifier Minimum Mean Maximum 

17 
18 
19 
20 
21 
22 
23 
24 
25 

5. . 

time 0.500 5.250 16.000 

y 0.0300 0.5108 0.9600 

CALC t = -0.19072 

CALC fO = exp(time*t) 

CALC fl = f0*(time) 

CALC f2 = fl*time 

CALC v = sqrt(f2/2) 

CALC aO = fl/(2*v) 

CALC q = y - fO + aO*aO 

MODEL COFFSET=aO ; LINK=squareroot] q 

FIT CCONSTANT=omit; PRINT=model,summary, 

Values 

12 
12 

.estimates 

Missing 

0 
0 

,fittedvalues] v 

***** Regression Analysis ***** 

Response variate: q 

Link function: Square root 

Offset variate: aO 

Fitted terms: v 

*** Summary of analysis *** 

Regression 

Residual 

Total 

d.f. 

1 
11 
12 

s.s. 
* 

0.01202 

0.01069 

m.s. 
* 

0.001092 

0.000890 

v.r. 

Percentage variance accounted for 20.8 
Standard error of observations is estimated to be 0.0331 

* MESSAGE: The following units have high leverage: 

7 0.184 

8 0.184 

*** Estimates of regression coefficients *** 

estimate s.e. t(ll) 

-0.01623 0.00813 -2.00 
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*** Fitted values and residuals *** 

Unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Response 

0.5055 

0.4555 

0.4468 

0.3768 

0.2886 
0.2786 

0.2468 

0.1868 

0.0613 
0.1013 
0.0064 

0.0264 

Fitted value 

0.4472 

0.4472 

0.3999 

0.3999 

0.3196 

0.3196 

0.2039 

0.2039 

0.0823 

0.0823 

0.0130 
0.0130 

Standardized 

residual 
1.77 

0.25 

1.45 

-0.71 
-0.99 

-1.31 
1.44 

-0.57 

-0.69 
0.62 

-0.20 

0.41 

Leverage 
0.012 

0.012 
0.040 

0.040 
0.106 

0.106 
0.184 

0.184 

0.139 

0.139 
0.019 

0.019 

Mean 0.2484 0.2443 0.12 0.083 

26 CALC p = y - fO 

27 MODEL p 

28 FIT CCONSTANT=omit; PRlNT=model,summary,estimates,fittedvalues] fl 

28. 

***** Regression Analysis ***** 

Response variate: p 

Fitted terms: fl 

*** Summary of analysis *** 

Regression 

Residual 

Total 

d.f. 
1 
11 
12 

s.s. 
0.00471 
0.01204 

0.01675 

m.s. 
0.004705 
0.001095 

0.001396 

v.r. 
4.30 

Percentage variance accounted for 16.2 
Standard error of observations is estimated to be 0.0331 

* MESSAGE: The following units have high leverage: 

7 0.177 
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8 0.177 

*** Estimates of regression coefficients *** 

estimate s.e. t(ll) 
fl -0.01547 0.00746 -2.07 

*** Fitted values and residuals *** 

Standardized 
Unit Response Fitted value residual Leverage 

1 0.0510 -0.0070 1.76 0.011 

2 0.0010 -0.0070 0.24 0.011 
3 0.0336 -0.0128 1.43 0.035 

4 -0.0364 -0.0128 -0.73 0.035 

5 -0.0529 -0.0211 -1.01 0.095 

6 -0.0629 -0.0211 -1.33 0.095 

7 0.0137 -0.0289 1.42 0.177 
8 -0.0463 -0.0289 -0.58 0.177 

9 -0.0475 -0.0269 -0.68 0.154 
10 -0.0075 -0.0269 0.64 0.154 
11 -0.0173 -0.0117 -0.17 0.029 

12 0.0027 -0.0117 0.44 0.029 

Mean -0.0141 -0.0181 0.12 0.083 
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D.3 Replication results 

This section reports some basic results for differential geometric quantities such as 

the metric tensor and a-connection for replicated data, as used in Section 5.1.2. 

The sources for each results are shown at the start of each subsection. These 

sources do not always present a detailed argument, so the derivations given show 

the required working. 

D.3.1 Introduction 

Let y,... ,y be N independent observations from the same distribution, ie, repli-

cates. The quantity y stands for the kth replicate of the response y where 

yT — (y\-,y2i- • • iVn)- Thus, if there are N replicates, the subscript n stands 

for the dimensionality of the response variable y, while N in simply the number 

of replications. Then the joint pdf of y,..., y is 
1 N 

N 

to give the log-likelihood 

p(y,...,yr;0) = l[p(y) 
i=i 

£=ilnp=f:£(y) 

and so 

dji = d3i(y,...,%) = 52dji(y;0). 
N 

i=l 

D.3.2 Metric tensor 

(Amari, 1990, pll5) 

The metric tensor based on the iV replicate observations is 

def gi3 =
x E(diid3i) = E EWE^(y) 

ie, 

= E 
r N 

I 
k=\ 

ZM(y){dAy) + --- + dA%)} = E[di£(y)d3£(y) + ... + dl£^)d3£^) 



APPENDIX D. (CH. 5) 
222 

since y,..., jt/ are independent. The metric tensor becomes 

N 

9ij = E dAyW(y) = Araâ a,-* = N9ij 
fc—l 

since y,..., ̂  are identically distributed. 

D.3.3 a-connection 

(Amari, 1990, pi 16) 

The a-connection using the replicate data is 

r —f z? 
l ijk — tii 

didjldkl+ L^Ldiedjdk$ 

= E ^[£9Ay))[EWy) + 
1 — a 

5>%) (EV(v)J E W 

1 — a 

= £ [(<W(</) + ... + 8idji(^)(dki(y) + ... + dki(^) 

+^(dii(y) + ... + dii(y)(dji(y) + ... + dji(y)(dki(y) + ... + dki(y) 

= E [(didj£(y)dk£(y) + ... + didj£(i,)dk£(y)) 

+~^T {dAyW(y)dki(y) + ... + dd(y )dji(y)dki(yN)) 

since y,...,y are independent. Thus 

N 

^ijk- E Edidjidki+
l--^Ediidjidki 

m=\ L 

a 

= NT-ijk 

since y,... ,y are identically distributed. 

Quote 

The following quote (Amari, 1990, pi 16) sums up these results. 

'This shows that the metric tensor and the a-connection based on N 

independent observations are N times those based on one observation. 

Hence the two geometric structures are similar, and it is not necessary 

to study them separately.' 
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D.3.4 Exponential family 

For replicates y,. ., y independently and identically distributed with pdf p(y- 0), 

their joint pdf is 

P(^---,y;0) = Hp(y). 

The log-likelihood becomes 

N 

n 
k=i 

i(y,...,y)=lnp = J2e(y;0). 
i=k 

The general exponential family has pdf 

P{v,O) = 0iVi-*{e) + c{y) 

which gives 

N N 

t=E {Vvj*{0) + c(y)) = N (9% - V(0)) + £ c(y) 
k=l k=i k 

where 

yi = (yi + yi + --- + yi) /N. 
M 2 N ' 

Note that yt is the kth replicate of the zth component of the response y where 

VT = (Vi, 92, • • •, Vn)- If c(y) = constant (possibly zero), then 

i = N(0iyi-*(6J) 

since then c can be absorbed into the definition of \I>. An example where this 

occurs would be the full representation of the Normal distribution, as given in 

Section 2.4.3. Only in such cases can the result of Amari (1990, pi 16), viz, 

£ = N£(y) 

be invoked. For such models, it can be said that the log-likelihood based on JV 

replicates is A^ times the log-likelihood based on their mean. For the more familiar 

exponential family models such as G L M s where the scale parameter is taken as a 

constant, this relation does not hold, due to the presence of the term c(y). 
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Since then i and Ni(y) differ only by a constant in general then 

di£ = Ndi£(y) 

and so 

dAy) = Vi- *'{o) = o 

to give 

Em = y'(0) 

as for the single observation case. 

Metric tensor 

As in Section D.3.2, the metric tensor for replicate data from general exponential 

families is 

9ij = Edi£dj£ = N
2E(yt - *'(0)) % - #'(0)) = N

2Cov(yi,y3) = Ngij = Ndtd3^. 

This gives 

a-connection 

The a-connection for an exponential family model becomes 

Tijk= N Tijk= -^NEdddj£dk£ 

since diidji = —didj^ and Edki = 0 being the score statistic. Thus 

hjk= 1-^-NTijk =
 ]~^Ndidjdk^(0). 

D.3.5 Curved exponential family 

The imbedded regression coefficients (3 are defined by 

u = (3 = fi(0)=u(0), 
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so the joint pdf for the replicate data becomes 

q(y; u) = p(y; 0(u)).p(y; 0(u)) ...p(y; 0(u)). 

The same caveat applies to curved exponential families as in Section D.3.4, namely 

that the form of likelihood described in Amari (1987, p39) and Amari (1990, pi 17), 

whereby 

q = \p(y-Mu)]N = eN{°ly-^{e)) 

only applies to exponential family models for which c(y) = 0 in the pdf 

p(y;0) = 9^-^(0) + ^). 

For either form, the differential geometric quantities in terms of the regression 

coefficients can be obtained for the replicate data. 

Metric tensor 

The metric tensor for the replicates is 

gab = E (daidbi) = E [BadilB{djt) = B
i
aBiE(diidji) 

9ab = BaB{gij = BaB{Ngij = NBaBigij = Ngab 

a—connection 

The a-connection for the regression coefficients based on the replicate data is 

rl = da(Bl)Bigi3 + B\B{B
k
c f£fc 

= N(da(Bi)Bigij + BaBiB
kTijk) 

to give 
a a 

t abc= ™ 1 ijk • 

Thus, the quote at the end of Section D.3.3 applies equally to curved exponential 

families. 
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