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Abstract

First addressed by Beale (1960), the use of curvature measures of nonlinearity
in nonlinear regression has been elucidated most comprehensively by Bates and
Watts (1980). They used differential geometric results that exploit features of the
Euclidean space imposed by the Normality assumption. The partitioning of these
measures into intrinsic effects (due to the model) and parameter effects (due to
the form or parameterization of the model) allows a proper assessment of model
departures from linearity. Indeed, the term ‘linear’ has become synonymous with
a lack of both of these effects, since the commonly designated ‘linear model’ with
Normal disturbance does not contain either effect. These curvature measures are
used to unravel the effects of model reformulation on convergence of fitting proce-
dures, and on the appropriateness of confidence regions based on the linearization
assumption. For model criticism using residual analysis, the presence of intrin-
sic curvature in a nonlinear regression model can distort the visual assessment
procedures borrowed from linear modelling, since the fundamental basis of these
procedures can be undermined when the model is nonlinear.

When the disturbances are non—-Normal, the consequent geometry is no longer
Euclidean, necessitating a different approach, as outlined by Amari (1982a). The
required approach generalizes the Euclidean inner product to a metric, and the
ordinary derivative to an a—connection. The concept of these a—connections is
fundamental to a proper understanding of the role of differential geometry to the
investigation of estimator behaviour in the case of non-Normal errors. These con-

nections provide the general method for comparing nearby points in the parameter
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space, for general classes of error distributions. In these cases, such a comparison
is complicated by the difficulty of the existence of different bases for the neigh-
bouring tangent spaces derived from the likelihood. The exception or special case
is the linear model with Normal errors, where no such difficulty arises.

Casting the generalization as being from Normal to non-Normal errors, the
extension can be considered to cause an ‘unbundling’ of the statistical properties
of estimators, which in the case of Normal errors can be enjoyed simultaneously by
the same estimator. In the general non—-Normal case, such behaviour can no longer
be guaranteed, implying that all properties may need to be considered separately,
since, in the general case, specific properties of the estimator are associated with
particular values of «.

This thesis outlines the fundamentals of the generalization of curvature mea-
sures to models of exponential type, in particular curved exponential families for
which generalized linear models are an important subclass. This approach is used
to generate insights into the properties of generalized linear models, with particu-
lar reference to the canonical link function as the non—-Normal generalization of a
linear model with Normal errors.

Indeed, the underlying ‘theme’ of this study is the investigation of the gener-
alization of ‘linearity’ for the Normal error linear model to the non-Normal error
nonlinear model. The potential simultaneity of estimator properties for the Nor-
mal distribution does not carry over to the generalization from the Normal to the
non-Normal, since now each property has to be investigated separately, for each
particular value of a.

As shown in Chapter 2, this individual treatment involves the statistical inter-
pretation of each a—connection to demonstrate how key values of « are associated
with estimator properties such as unbiasedness, stability of variance, lack of skew-
ness, ‘normal’ likelihood and sufficiency. In terms of data analysis, all of these
investigations need to be performed on the regression coefficients rather than on
the fitted value (expectation parameter) scale. This requires the use of curved

exponential families involving an imbedding of the regression coefficients in the
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original expectation space.

One of the properties of Normal error linear models is estimator sufficiency,
which for generalized linear models implies a canonical link function. The associ-
ated a—connection is the exponential or Efron connection. This connection could
be considered as the springboard for the generalization of Normal error linear mod-
els to non-Normal error nonlinear models, since for generalized linear models it
mimics the special case of Normal errors, by the conditions under which it vanishes.
The investigation of this connection and its special relationship with generalized
linear models has generated in Chapter 2 a test of adequacy for canonical link
functions, based on the skewness of the regression coefficients.

The generalization of curvature follows a similar path to the a—connections,
being a function of them in terms of the expectation parameters. In line with the
decomposition demonstrated by Bates and Watts (1980) for Normal errors, gener-
alized a—curvature decomposes into intrinsic and parameter—effects curvature;now,
each particular a—curvature is associated with individual properties of the model,
depending on the value of &. The other main change from the curvature measures
of Bates and Watts is that, in the general case, a contribution to curvature is made
from the error distribution as well as from the model and its parameterization. A
major new result in Chapter 3 has been the proof of the invariance of intrinsic
a—curvature in the general case, using a coordinate based system. A consequence
of examining the generalization has been to define in Chapter 3 a class of mod-
els, generalized nonlinear models, having a non-Normal error distribution and a
general nonlinear response function. The relationship of this class with classes
of known models such as generalized linear models again raises the question of
what is meant by ‘nonlinearity’ in general. Several related derivations such as the
invariance of parameter—effects curvature in generalized linear models, and results
involving exponential curvature, generalized linear models and generalized nonlin-
ear models verify expected behaviour and highlight the generalizations that are

possible.

The generalized curvature measures are shown in Chapter 4 to be related to
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quantities of statistical interest such as the bias and covariance of estimators for
curved exponential families, mirroring the known situation for nonlinear regression.
For generalized linear models, alternative link functions to the canonical can be
chosen on the basis of properties such as variance stabilization, ‘normal’ likelihood
and lack of skewness. As expected, these links have been shown in Chapter 4
to be associated with specific a—connections. A table is presented of those link
functions that produce the required properties on the expected value scale for each
error distribution in a generalized linear model.

The special relationship between curvature measures, nonlinear regression and
generalized linear models is further demonstrated in Chapter 5 by the use of a new
method for nonlinear regression based on a second order approximant to the non-
linear function by means of a special generalized linear model. As expected, such
an approximation follows the true function more closely than linearization;this is
demonstrated empirically from calculations of leverage, parameter estimates and
corresponding interval estimation. All these effects are predicted from considera-
tions based on curvature measures, both intrinsic and parameter—effects.

The effect of replication on curvature is known empirically and theoretically in
the case of nonlinear regression. In Chapter 5 it is shown that replication has two
implications for the effects of curvature in a generalized nonlinear model. Firstly,
the central limit theorem produces convergence to the Normal distribution, so
that the error contribution to general a—curvature becomes zero asymptotically.
The effect of replication on the model contribution is less clear, since the general
limiting case is nonlinear regression if only the error component of a~curvature is
considered. Locally, the generalized nonlinear model will be well approximated by
a linear model. Secondly, under some conditions, a generalized nonlinear model
will converge locally to a generalized linear model with canonical link. However,
when the error component and the model component are considered, the overall

effect of intense replication will be to produce locally a linear model with Normal

€rrors.



Chapter 1

Introduction

1.1 Background

Curvature measures were proposed by Beale (1960) to assess the departure of a,
nonlinear regression model from its assumed linear approximation in the neigh-
bourhood of the least squares estimate. The motivation of this analysis was
the evaluation of the validity of linearization—based confidence regions for model
parameters in the nonlinear regression model. This method of curvature mea-
surement was formalised by the differential geometric approach of Bates and
Watts (1980) which refined the measures in such a way that two different types of

effects were clearly identified;

1. intrinsic curvature, ie., curvature peculiar to the model and which is un-

changed by the particular parameterization of the model, and

2. parameter—effects curvature, ie., curvature that is dependent on the form of

parameterization of the nonlinear model.

The impact of these two measures on proper construction of confidence re-
gions for nonlinear regression models has been extensively researched (Bates and
Watts, 1988). In particular, the use of likelihood-based confidence regions with

those based on the linear approximation has been employed in the construction of
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practical measures to assess the effect of nonlinearity on these confidence regions.
These measures(t plots, traces and pair sketches) are based on profile likelihood
where all parameters except those being considered are estimated.

Important properties, such as bias and correlation, of estimators in nonlinear
regression have been shown to be related to these curvature measures. Thus,
transformations which reduce bias and the absolute value of correlation can be
found, in agreement with general results from earlier workers such as Box (1971),

Bartlett (1953b) and Clarke (1980).

1.2 Rationale for the study

Several discussants to the paper of Bates and Watts (1980) raised from differing
viewpoints the question of a non-Normal error distribution. Ross (1980a) was
interested in the question of parameter transformation for general non—Normal
errors while Reid (1980) was concerned about the general exponential family of
models in the context of the measure of statistical curvature defined by Efron
(1975). McCullagh (1980) queried the extension of the measures to estimation
for error distributions from the exponential family, in particular generalized linear
models. As pointed out by the authors, the assumption of a Normal disturbance
was crucial to the approach, since this assumption implied a Euclidean metric,
enabling the results of classical differential Euclidean geometry to be exploited.
The generalization to non—Normal distributions requires a Riemannian metric, and
the concept of an affine connection. As observed by Kass (1984), the extension
of the approach of Bates and Watts to generalized linear models (GLMs) requires
the use of a family of effects related to the one parameter a—connections of Amari
(1982a), with key values of the parameter « being associated with special features
of the estimator. A principal function of this thesis is to investigate the suggested
generalization to GLMs with the purpose of using generalized curvature measures

to examine the statistical behaviour of estimators in GLMs and associated models,

especially those related to the exponential family.
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A brief overview of Amari’s a—connections is given in Seber and Wild (1989,
ppl59-165), with derivations that show the relationship between Amari’s theory
and the definition of statistical curvature given by Efron (1975), as well as results
due to Kass (1984). The main thrust of their presentation is to demonstrate that
the general theory of Amari reduces to the curvature measures of Bates and Watts

for the case of nonlinear regression.

1.3 Role of Curvature Measures in Nonlinear Re-
gression

Even before the advent of the digital computer, the underlying nature of some
regression problems had forced researchers to fit nonlinear models to data. Early
attempts at solving this problem by using an iterative procedure based on lineariza-
tion of the nonlinear function sometimes ran into difficulties of non—convergence
and failed initializations. Various techniques can be used to find reasonable start-
ing values (Draper and Smith, 1981). These include grid search, exact solution
using minimal data and the transformation method in some cases. Some of these
methods are crude fitting procedures (Sadler, 1975) which are capable of refine-
ment. Modifications of the iterative method for fitting include damping of the
Gauss—Newton method as per Hartley (1961), procedures based on the Newton—
Raphson method and the Levenberg—Marquardt compromise (Sadler, 1975). All
these methods can be interpreted in parameter space via the true residual sum
of squares surface. The working of these adaptations of search procedures can be
demonstrated in parameter space by viewing the behaviour of the approximate
residual sum of squares surface (Sadler, 1975), since these adaptations employ a
quadratic approximation to the true residual sum of squares surface, a linear ap-
proximation to the nonlinear function or a procedure employing both approxima-
tions. An alternative method of interpretation is to use the sample space (Draper

and Smith, 1981), which facilitates the presentation of the linearization and hence
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demonstrates the adequacy (or inadequacy) of the linear approximation to the
nonlinear function, thus showing the reasons for algorithm failure. This approach
formed the basis of the expectation surface geometry used by Bates and Watts
(1980) to analyse in detail the underlying structure of nonlinear regression models.
The consequent decomposition of nonlinearity into intrinsic and parameter—effects
curvature enabled a new insight into the interpretation of nonlinear regression mod-
els. Low intrinsic curvature, or minimal bending of the solution locus, is a precon-
dition for ‘close to linear’ behaviour of a nonlinear regression model (Ratkowsky,
1983), since a nonlinear regression model that also effectively exhibits a regular grid
of parameter values along the solution locus mimics the behaviour of a linear model.
This means that nonlinear regression models of this class can be treated as linear
for the purposes of parameter interpretation via the desired inferential procedure
of hypothesis testing or interval estimation (Bates and Watts, 1988). Empirical
evidence (Bates and Watts, 1980) suggests that parameter—effects curvature tends
to be the dominant effect in many cases, allowing for the possibility of inducing
‘close to linear’ behaviour via suitable reparameterization for a low intrinsic cur-
vature model (Bates and Watts, 1981). In addition, a reduction in parameter bias
can be effected by reparameterization (Bates and Watts, 1980). In practice, the
procedures for discovering parameterizations with low parameter—effects curvature
are most often empirical, such as those due to Ross (1980b), as further detailed in
Bates and Watts (1981). The choice is between global or automatic methods that
annihilate parameter—effects curvature and transformations to expected values [or
‘stable ordinates’, Ross(1980b)] that can induce low parameter—effects curvature.
The disadvantages of the automatic method are twofold. The new parameters
given by the automated procedure may not be easy to interpret in terms of the
original problem, and they may not exist. The corresponding advantages of the
expected value method are that the new parameters can be interpreted directly in
terms of the original response and that they can require less computing subject to
mild constraints. These constraints can imply equally spaced predictors for some

models. Of secondary importance is the impact of parameter—effects curvature on
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convergence of fitting algorithms. Lower parameter—effects curvature can mean
fewer iterations for convergence to the optimum. Given the current developments
in computing hardware and statistical software, this is less of a problem than
inference for parameters. While a low parameter—effects parameterization offers
advantages for inference statements on model parameters, interpretability of pa-
rameters and their relevance in the original context of the problem are probably of
more concern to the user. Backtransformation to the original parameters is possi-
ble however, as is approximation to the covariance structure of the parameters on
the original scale. Thus, model fitting and interpretation can quite satisfactorily
use separate parameterizations. The effects of curvatures on residuals from nonlin-
ear regression models bears some explanation. Parameter—effects curvature is not
relevant to discussions about residual analysis, since the fitted value is independent
of the form of parameterization and is a function solely of the model itself. Only
intrinsic curvature affects the residual procedures borrowed from linear modelling.
For a linear model, the residuals and fitted values are approximately uncorrelated,
and the residuals are centred on zero. For a nonlinear model with non-trivial
intrinsic curvature, the situation changes. The expected values of the residuals
are no longer zero, and the residuals and fitted values are no longer uncorrelated,
resulting in a negative expected slope in the plot of residuals against fitted values.
This problem of using procedures designed for linear models on nonlinear models
carries over even to modified residuals that have been proposed for linear models,
although the projected residuals of Cook and Tsai (1985) appear free from such
problems. For an overall discussion see Seber and Wild (1989, pp178-179).

The above discussion on residuals can be formalised using the concept of lever-
age or potential (Weisberg, 1985, p111). For a linear model, the hat or projection
matrix H is defined by

H=X(X'X) X’

so that
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The term leverage (or potential) is applied to the diagonal terms, since as h;; — 1,
then §; — y;. In short, the effect of the ith case will be large if h;; is large, subject
to the nature of the y;; hence the terminology.

In the nonlinear case, the projection matrix can be similarly defined; however
the operator H is now a function of the derivative of the nonlinear function with
respect to the parameters, as described in Seber and Wild (1989, 4.41, p140, 4.145,
pl74 and 4.146, p175). This explains the descriptive results given in the above
discussion involving intrinsic curvature, since intrinsic curvature is defined in terms
of such derivatives.

The concept of influence involves the effect of a particular data point on model
behaviour, and is typically assessed by systematic deletion of key data points and
assessment of the corresponding regression diagnostics. Data points (cases) whose
deletion cause major changes in the resulting diagnostics are called nfluential.
Examples of such measures abound, eg., Cook’s distance measures (Cook, 1977).
If a case is deleted then the model is changed, and so the intrinsic curvature
changes as well as parameter effects. For this reason, influence will not be given

the attention of other model diagnostics such as leverage.

1.4 Curvature Measures

An empirical overview of the interpretation of the curvature measures of Bates
and Watts (1980) follows. The model describing the response Y given predictors

X is assumed to be

Y = f(X;0) +¢, £~ N(0,0%).

The solution locus in the space of expectations is defined by the set of parametric

equations

F(0) = f(X;0).
Nonlinearity is exhibited in this space of expectations E(Y;|6), i =1,...n, by

e curvature of the solution locus (intrinsic curvature), and
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e non-uniformity of the coordinate system along the solution locus (parameter—

effects curvature).
Operationally, these effects manifest themselves respectively in
- how well the tangent plane approximates the solution locus locally, and

— how well a uniform coordinate system on the tangent plane approximates

the coordinate system on the solution locus.
(The solution locus is also called the expectation surface.)
A simple one—parameter example from Ratkowsky (1983) will be used to de-

scribe these two nonlinearity effects. The data for this problem are shown in

Table 1.1.

Example 1
Observation
Number X Y
1 20 25
2 3.0 10.0

Table 1.1: Tllustrative Data Set

Two competing models are shown, one linear the other non-linear. The prob-
lem is designed so that the non-linear model better fits the data, as shown in
Figure 1.1, where the curve is ‘closer’ to the data than the line. In expectation
space, the single point that represents the data is closer to the solution locus for the
non-linear (Figure 1.3) than for the linear model (Figure 1.2). The corresponding
residual sums of squares (deviances) are 2.93 and 12.02, respectively.

In order to properly gauge these two effects in nonlinear models, their behaviour

for linear models will be described first.
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Y
11 L E[Y] = 8X, 3 = 2.6923
10 | .

9 L
8 L
7 L
6 |
5 L ..

4 | i BlY]=X° §=20537
3 L
s | .

1 L

| | | | | | |

Figure 1.1: Ratkowsky Problem.

1.4.1 Linear Model

For linear models, both effects disappear, since
e F(0) = X6, which is a line in the space of expectations, and

e the solution locus and the tangent plane coincide, so that equal increments
of 6 along the solution locus correspond to a uniform spacing thereon. The
parametric equation describing the solution locus is equivalent to the para-

metric equation describing the tangent.

The linear model E(Y) = X/ can be demonstrated on the data from Example

1 (Figure 1.1) with 6 replacing 8. The solution locus for the linear model is shown
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in Figure 1.2
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Figure 1.2: Solution Locus : Linear Model.

The parametric equation of the solution locus is :
(fl,fg) = (Xlg, ng)

For this model,
EY)=X60=Xp

and the intrinsic curvature on the solution locus is zero, as shown in Figure 1.2,

where there is no ‘bending’ of the solution locus. The spacings along the solu-
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tion locus between points corresponding to equal spaced values of the parame-
ter are identical, as shown in Figure 1.2. This indicates a constant velocity or
rate of increase with respect to  along the solution locus, ie., no acceleration or

parameter—effects curvature.

1.4.2 Non-linear Model

For the nonlinear model

Y =f(X;0)+¢

the expectation relation is
p=f(X;0)
and so a curve will be generated®.
The vector formed by the data and least squares solution will be perpendicular

to the tangent on the curve, as shown in Figure 1.3. The following observations

can be made :
e The solution locus is now a curve, in contrast to the line for the linear model.

e In both cases the vector formed by the data and the least squares solution

point is perpendicular to the tangent to the expectation surface.

e Equal increments in 8 correspond to equal step lengths along the expectation
surface for the linear model E(Y) = X6, but not for the nonlinear model

E(Y) = X°.

Two parameterizations of the nonlinear model are shown in Figure 1.3.

For the chosen non-linear model, intrinsic curvature (as determined by the
radius of curvature) appears slight,? but is precisely the same for both parameteri-
zations of the model, ie., X% and X"¢. That is, the ‘bending’ of the solution locus

is the same for these two forms of the same model. In contrast, parameter—effects

!Note that expectation surface = solution locus.
2 Actually, the inverse of the radius of curvature. In the linear case, r = co = intrinsic

curvature = 0.
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Figure 1.3: Solution Locus : Non-linear Model.

curvature (acceleration or change in speed along the solution locus), is large for
X? compared to that for X'"¢. Empirical evidence can be given to corroborate
the visual preference for the second form of the model. Using the linearization
procedure (Draper and Smith, 1981) from the same starting value for both forms,
ie., # = 0(¢ = 1), convergence to the least squares minimum took 9 iterations for
the first form(6) but 3 iterations for the second(¢).

The utility of model reparameterization is contingent on the intrinsic curvature

being slight, but fortunately empirical evidence suggests that this is often the state

3 0009 03254477 2
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of affairs, as shown by Bates and Watts (1980).

These non-linear and linear models demonstrate the following :

(a) Intrinsic curvature can only be changed by changing the model®, as in this

example from X? to X6.

(b) Parameter—effects curvature is conditional on the choice of model, eg., from a
linear (zero) to a nonlinear model (non-zero). The main determinant for the
size of parameter—effects curvature is often the choice of parameterization.
A judicious choice of parameterization, here, X'"¢, instead of X%, produces
a locally uniform coordinate system on the solution locus. In general, such a
judicious choice can render the assumption of a uniform coordinate system
at least approximately true. If a parameterization can be determined with a
low parameter—effects curvature, this means any confidence regions based on
linearization will be close to likelihood based confidence regions. In short, the
model under that parameterization will behave as a linear model if intrinsic

curvature is slight.
The usefulness of this analysis is to separate ‘departure from linearity’ into :

e specific model dependent effects (intrinsic curvature), and

e model representation effects (parameter—effects curvature).

The latter can be manipulated by the particular formulation that a practitioner
chooses for a specific model, whereas the former is fixed by the choice of model and
design points. The results of such manipulation may not always be as predicted

or expected.

1.4.3 Higher Dimensions

In the spirit of the expository example (Example 1, Figure 1.1) from Ratkowsky
(1983), two additional examples are described to demonstrate the interpretation

of the expectation surface in higher dimensions.

3The model is changed even if the X variable is changed, eg., to In X .
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Example 2

The problem shown in Table 1.2 is taken from Draper and Smith (1981, page 517),

and involves fitting the model Y = e7% 4 ¢, to the given data.

t1Y
1]0.8
4 10.45
16 | 0.04

Table 1.2: Problem A : Draper and Smith (1981)

The expectation surface (solution locus) can be drawn without knowing the
observed values for response variable (Y), but the predictor (X), ie., the design
points, are needed. The following parametric equations define the expectation

surface

t=4: Fy=¢ %
t=16: Fy = ¢ 160

so points on the solution locus are given by (e~ e, e~16%) . This space curve is

shown in Figure 1.4, with the box symbol(0O) indicating the data in expectation

space.
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F3

0.4

Figure 1.4: Solution Locus : View 1, Example 2.



CHAPTER 1. INTRODUCTION 15

Figure 1.4 shows the intrinsic curvature globally and locally. Overall (globally)
the space curve bends markedly, whereas locally such curvature can be slight,
eg, for low expected values. From Figure 1.5 it can be seen that the spacing of
increments of 6 along the solution locus is reasonably regular for low expected
values, but not so for higher values. This shows that parameter—effects curvature
can also vary from the local to the global. In practice, numerical measures are
required to make a proper judgement of these curvatures. Ratkowksky (1983)

gives computer code for such numerical measures.

Example 3

The model

E(Y|z) = az”

is to be fitted to the data shown in Table 1.3 assuming Normal disturbances.

z|Y

1110
2128
3|52

Table 1.3: Two Parameter Example.

The following parametric equations define the expectation surface :

$:11F1:a
$=21F2:Oz2ﬁ
r=3: F=a3’

The solution locus is thus

(a, 028, 3°).

This surface is shown in Figure 1.6, with the data shown by the box symbol (0O).
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Figure 1.5: Solution Locus : View 2, Example 2.
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Interpretation of the expectation surface can be made by considering level
curves, ie, the paths traced out by holding « constant and 3 constant.

For 3 constant (= ¢), the solution locus becomes
(o, a2° a3°)

which describe lines passing through the origin.

For o constant (= d), the solution locus is defined by
(d,d2?, d3P)

constituting ‘parallel’ curves ‘orthogonal’ to the lines defined by holding 3 con-
stant. |

The two systems are shown in Figure 1.6, with the lines and curves clearly
visible. The data are shown by the box symbol (O). This is effectively a one-
parameter problem, with § being the nonlinear parameter. The nature of the
expectation surface confirms that « is really a linear parameter with § being
nonlinear. The sums of squares surface show the nonlinear parameter as being the
most responsive, as is shown by the results of fitting the model via the statistical

package GLIM (NAG, 1985). A GLM (generalized linear model) formulation of

the model
EY)=p= aXP = neBflnX
gives
Ina = —0.0142 (0.014135) ~ & = 0.9859.
and

§=1.513 (0.01425).

The values for o and 3 used to generate the data were respectively 1.0 and 1.5

and the quantities given in brackets are the estimated standard errors.

1.4.4 Practical Considerations

For ease of estimation and subsequent inference, both intrinsic and parameter—

effects curvature need to be controlled, but experience (Bates and Watts, 1980,
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: Example 3

1.6: Solution Locus

Figure
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1988), (Ratkowsky, 1983), (Lowry and Morton, 1983) indicates that the latter
problem appears to dominate?, implying that a proper parameterization may
alleviate difficulties. For estimation, choosing a parameterization that reduces
parameter—effects curvature has the effect of reducing bias (Bates and Watts,
1980). It also has the potential to reduce the amount of calculation performed
in the fitting process, by substantially reducing the number of iterations, as shown
in Section 1.4.2. This is of less concern now than in 1980 due to the advances
in computing hardware and software platforms, which have resulted in great in-
creases in speed of computations. For inference, the operational consideration is
that a parameterization with low parameter—effects will ensure the validity of the
uniform coordinate assumption. This is needed for the use of the linear approxima-
tion method of constructing confidence regions. Profile likelihood methods (Bates
and Watts, 1988) require only the planar assumption, and thus are operationally
valid for low intrinsic curvature. Thus, the use of such profile methods would have
appeal, since the user is then able to use the preferred (interpretable) parame-
terization, subject to the proviso of low intrinsic curvature. Such information on
curvature is imbedded in the profiling methods (Bates and Watts, 1988).

The curvature measures used in practice represent a compromise between a
maximum attained value and some averaged effect such as root mean square (RMS)
curvature. All such curvatures are scaled, avoiding dependencies on the data and
parameters. The averaged curvatures appear more attractive since the maximum
measures tend to be pessimistic, being typically of the order of twice the magnitude
of the average curvatures (Seber and Wild, 1989, p159). An additional reason
for using RMS curvatures is that then magnitude can be gauged by comparison
with the the desired critical point of the F' distribution (Bates and Watts, 1988).
However, parameter—effects curvature is a valuable tool for measuring the effects of
reparameterization on bias and the adequacy of the linear approximation assumed
by the inference procedures. Bates and Watts (1981) used curvature measures to

determine appropriate transformations (or reparameterizations).

4This may indicate that only models with low intrinsic curvature have been chosen.
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Since intrinsic curvature changes with the design as well as with the model,
optimisation of the placement of design points as well as choice of the model can
be considered, as in Bates and Watts (1981).

The rationale for curvature measures claimed by Bates and Watts (1980) is :

e ‘the geometric approach to measuring nonlinearity is . . . relatively simple and

straightforward ...’, and

e “The concepts and methods of differential geometry ...make the study of
nonlinearity as geometrically accessible and understandable as linear least

squares.”

A focus of this thesis is to extend this claim to the class of functions defined by
generalized linear models, and to other models derived from the exponential fam-
ily, along the lines of the suggestions of Kass (1984). This will be attempted by
generalizing the parameter—effects curvature and intrinsic curvature for each geom-
etry that corresponds to a particular estimator attribute associated with a value
of a. As shown by Kass (1984, pp90-91), it is necessary to study the reduction
of parameter—effects curvature not only for the exponential geometry but also for
all the other geometries (values of &) that correspond to the other key properties
of estimator behaviour. This expansion is required because all of the properties
can be satisfied simultaneously by a single transformation for the Normal distri-
bution, since all the a—connections coincide. For other error distributions, the
a—connections are distinct and so the estimator properties cannot be satisfied by

a single transformation. Thus each key value of o has to be considered in turn.

1.5 Generalized Linear Models

Consider a random sample Y7, ..., Y, from a population with pdf f(y; ). The gen-
eralized linear models (GLMs) defined by McCullagh and Nelder (1989), constitute

SBates and Watts (1980, p14-p15).
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a class defined by
E(Y) = s
for which the ith contribution to the log-likelihood can be written as

0 % 1y £y 0,) = Y= 00
) =)

This class of models was first expounded by Nelder and Wedderburn (1972), and

+ C(yi) ¢)

is related to the class of curved exponential families defined by Efron (1975).

This thesis investigates the usefulness of differential geometric measures to
models having a general error distribution. The family of models studied are of
exponential type, with particular emphasis on generalised linear models, following
the suggestions of Kass (1984). The rationale for such curvature measures stems
from the work of Bates and Watts (1980), as applied to the case of nonlinear
regression. The work of Efron (1975) on statistical curvature and the geometry of
exponential families (Efron, 1978) also provides background for the thrust of this
work, albeit in the one dimensional case.

The class of generalised linear models can be considered to be a subset of the

class of models for which

E(Y;) = u:(6).
So, some of the results obtained for GLMs may extend to this more general class of
models. Certainly, it can be shown that the IRLS® algorithm (Green, 1984) for the
more general problem, is equivalent to the GLIM algorithm for generalised linear
models. From the user’s point of view, however, the relaxing of the requirement

for starting values is a non—trivial difference between the two approaches.

1.5.1 Leverage

The concept of leverage has been introduced for linear models in Section 1.3. For

GLMs, the hat matrix and its corresponding leverage terms generalize because the

SIRLS = Iteratively Reweighted Least Squares.
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GLIM algorithm uses a weighted regression on the working variate z, defined by

z=n+ (Y — ) (Z—Z)

Since there is a 1-to—-1 mapping between the linear predictor  and the fitted
value p, these quantities can be converted back to the original data scale. In the
general form of the H matrix, X is replaced by W2 X where W is the matrix

of weights. The resulting hat matrix is
H,=W"X (X WX)" X W

and the weights are defined by

L (de)?
=y t{==) .
v (dn>

The function V is the GLM variance function in terms of the mean p;
V =V (u), where V = b"(0), and u = ¥'().

The model is no longer purely linear, since the H, operator is now a function of
the derivatives of the fitted values (via W), as in the case of nonlinear regression.

Using the notation of section 5.1.1, in the nonlinear regression model
Y = f(X;0)+¢€, € ~N(0,0%)

the nonlinear function f(X; @) is replaced by

fo+ %T(e — 6y),
to give the linear model
y=2ZpB+e¢
defined by
y=Y - fo,
7=

00,
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and
,3 == 0 _— 00.
The hat matrix for this linearized model is now
H =Z(Z"Z)"'z"
which gives
y=Hy.

From the definition of Z, it can be seen that the matrix H, is a function of the
derivative of the fitted values, as for the GLM. See McCullagh and Nelder, (1983,
Ed. 1, p210) and (1989, Ed. 2, p397 and p405).

In terms of the data Y and the fitted values fi, the following holds” for a GLM,

V2 (B —p) = HV (Y - p),

where V' = diag (V(w;) ), so that Hy; measures the impact in standardized units

of changes in the data on the fitted values. Defining Y, and 178 by
Y. =V (Y - p)

and

Y=V (a-p)=V"(Y -pu)

gives

Y, = H,Y,. (1.1)

In rew terms
Y = V2H, VY ¥4y (1.2)
where H is asymmetric, in general. Both Equation (1.1) and Equation (1.2) can
be derived from the leverage equation expressed in terms of the weighted working

variate, le,
Wiz = HW'?2

"McCullagh and Nelder (1989, 2nd Ed., p397).
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as demonstrated in Appendix A.1.

For the case of a linear model with Normal errors,

n = p and V = Diag(constant) = constant xJI, which means that W =
Diag(constant). Thus H, reduces to

X(x'X) X =H

as defined for linear models with Normal errors in Section 1.3. Since V' = Diag(constant),

then the standardized form [Equation (1.1)]
V(- p)=HV V(Y - p)

gives
B—p=H(Y —p).

Since it can be shown that g = Hpu, then

In raw terms, Equation (1.2) becomes
Y =V?HV'?Y = HY

since V' = Diag(constant).
Thus both the standardized [Equation (1.1)] and raw form [Equation (1.2)] of

the leverage for a GLM reduce to the same leverage form for linear models with

Normal errors.

1.6 Exponential Families

The class of GLMs is a special class of curved exponential families, having natural
parameters that can be related to linear functions of the parameters of interest

(B), via
E(Y)=p=hXp),
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using GLIM notation. In order to develop results for GLMs it is necessary to

establish theory using the general formulation of an exponential family, viz,
In f(y;;0;) = vibs — Wi (6:) + ci(ys)

following notation due to Amari (1982a). For the special case of independently

distributed Y7, ..., Y, we have

In £(4:6) = S wfi ~ U(6) +cly).

If the Einstein tensorial summation convention is used, then
n
Uil Syl = y10y + ..+ Ynbn.
i=1
Most of the theoretical results in this thesis are derived in terms of such a general
exponential family, and the ultimate goal is to not only produce and condense the
approach in terms of the GLM form, but also to determine any simplifications or

special cases that apply for this special subclass of the exponential family.

1.7 Curved Exponential Families
For the general exponential family defined by
(y; 8) = iy — ¥(0) + c(y)

the natural parameter space defined by 6 is the generalization of the Cartesian
coordinate system from Euclidean space.

From a practitioner’s point of view, interest is usually in the subset of pa-
rameters (regression coefficients) which generate the space of expectations (fitted
values) via a parsimonious model. This subset of parameters is generally related to
the natural parameters by a nonlinear function, hence the phrase ‘curved subsets

of a larger parameter exponential family’ or ‘curved exponential family’ (Efron,

1975, page 1192).
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Several examples are given to indicate the subsets of parameters that can arise
in practice (the dimension of the natural space is given by k, while the curved
space dimension is given by p).

The imbedding of the regression coefficient(s) (3) in the space of natural pa-

rameters (0) is given by a (nonlinear) relation
0=0(8).
This relation is shown in the examples.

1. Autoregressive Model - AR(1) : k=2, p=1.
2. Poisson Regression Model : £k =n, p = 1.
3. Nonlinear Regression model : £k =n, p =m.

4. Generalized Linear Model : £k =n, p =m.

In particular, note that the AR(1) model is of exponential type. Most of the
later results of this thesis will apply to such exponential type models, of which

GLMs are an important subset.

Example 1 : Autoregressive Model

The stationary AR(1) model, following Efron (1975, p1194)

Xt=¢Xt_1+Et, t=1...T

is proposed for the time series X ... Xy, with Xo = .
It is assumed that € ~ N(0,1) and that -1 < ¢ < 1.
Using

X — ¢X;_ 1 ~ N(0,1),

the likelihood when written in exponential form yields :

2
01:_1_;¢702:¢a (/6:¢)
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with

— 22 2 —
5] —$0+...+$T_1, y2-$1$0+...$T$T_1,

while the remaining terms are

1
—§x§—1n27r-(T+1)/2.

<
=
I
=
2
&
I

Example 2 : Poisson Regression Model

This example is adapted from Efron (1975, p1193).
Independent Poisson variables X, ..., X, have means A\; = a + 7b; where a
and the b; are known parameters. The parameter 7 is such that a + 7b; > 0 for

1=1...n.From the exponential form of the likelihood
0; =In(a+ 7b;), vi=1zi; (B=7)
with
v () = Zeei, c(y) = Zlnyi! :
Example 3 : Nonlinear Regression Model

The nonlinear regression model can be cast (Amari, 1990, p154) as

Xi = f(ci, B) + &

where the response variable X;, i = 1...n are NIID and &; ~ N(0, 1) without loss
of generality. The nonlinear function f contains predictors c; (known control pa-
rameters) and unknown m-dimensional parameters 3, the regression coefficients.

Casting the resulting likelihood into the exponential form gives

with
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Example 4 : Generalized Linear Model

Independent random variables Y, ..., Y, follow a distribution of exponential type

described by a contribution to the log-likelihood by a single observation y; of

0 =1In f(y;; 6;) = ye#qg(“

Considering such models with a scale parameter of 1, eg, Poisson, Bernoulli or

+ C(yi, ¢)

Exponential errors, gives a(¢) = 1, and so
G =1n f(y:;0;) = yibi — b(6;) + c(vi, ¢).

The log likelihood for the whole sample (¢) is given by
(=>4

due to the assumption of independence (McCullagh and Nelder, 1989, p24). This

gives

0; =6;, vi=y;, ¥(0)= Zb(ei)) c(y) = Zc(yi§ ®).

1

Also, the imbedding of the regression coefficients 3 is denoted by
b; = f(X," )

where Xy;,..., X, are the m predictors at each Y;. The function f results from

the use of the relations
n=XpB, g(u) =nand E(Y;) = u; = '(6;)

as described in Appendix B.7.

1.8 Tensor Notation

The concept of a tensor is fundamental to a differential geometric approach to
statistical distributions. Rather than attempt to define all the terms and outline all

notation in a single section, these will be introduced as needed. Some explanation
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of elementary tensor notation is outlined below with references to texts on the
topic.

There are several accessible references on the topic of the tensor calculus and
its application to differential geometry. A brief but concise overview of tensor
analysis can be found in Spiegel (1990), while a fuller treatment of tensor calculus
with applications to differential geometry is given in Kay (1988). The latter text
also includes a coordinate free approach. Tensor algebra (and related topics) is
neatly expounded in Spain (1960), using the classical coordinate system approach.
Finally, developments such as subspaces of a Riemannian manifold (Lovelock and
Rund, 1989, p267) that are closely allied to statistical developments, will be used

extensively throughout later chapters.

1.8.1 Indexing

Following the approach of Bishop and Goldberg (1980, p20), ‘the customary tensor
indexing of coordinates’ is used hereafter, whereby the index is a superscript not

a power; hence the results of Section 1.6 would be written as
In f(y; 8) = y:6" — ¥(6) + c(y)

since @ = (6*,...,0") is used as a coordinate system.
Powers are shown via the use of brackets, viz, (6°)? or as z?, if this is unam-

biguous.

1.8.2 Summation Convention

The convention used is the sum indez, whereby summation is implied if the index
is repeated, irrespective of location as a superscript or subscript.

A nonsum indez is shown using an upper case index (Bishop and Goldberg,

1980), eg.
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In cases where the upper case index convention is not used, it is sometimes desirable

to use a lower case ‘nonsum’ index as in

a'e; (i not summed)

in which case the explicit parenthetic comment spells this out.

1.8.3 Tensor Laws

A general definition is given for a tensor followed by specific examples.
In particular, transformation laws will be of utmost importance.

Assume a transformation of coordinates from @ to 8, viz,

=4 (0"...0m

and

0 = i(0 ... oM.

General Tensors

A general mixed tensor T or (r, s) tensor is defined by the transformation equation®

o O 0BT 000 005

w1..Ws aehl "'aehr ae_wl "'aéws ky...ks * (13)

An example of the transformation law for a (1,2) tensor is given in Amari (1982a,

p364, equation 2.27).

Contravariant Tensors

A contravariant tensor A or (1,0) tensor is defined as satisfying

At = gszj . (1.4)

8Kay (1988, p29, equation 3.14).
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i
to the curve defined

An example of a contravariant tensor is the tangent
U

by 6* = 6*(u), since if
_op

Ai
ou

then, by the chain rule,

I o6 B 90t 967 B oLk
- Ou 007 du 009

J

as required.

Covariant Tensors

A covariant tensor B or (0,1) tensor is defined by

V'Y,

50¢ J (1 5)
. : . O0f .
An example of a covariant tensor is the gradient 0 since
of
B, = —
06

as required.

1.8.4 Coordinate Free Methods

In his preface, McCullagh (1987) gives a delightful account of the balance between
the ‘coordinate—free’ approach in tensor analysis and the mundane computation
using indices. While the appeal of coordinate-free methods is obvious in the
context of claiming invariance once tensorial behaviour is established, this is not
the approach used in this thesis. Indeed, the very problem of examining the ef-
fects of reparameterization suggests that the pedestrian approach of working from
one coordinate system to another is mandatory for problems in applied statistics.

The proofs of invariance that are established use this very method and establish
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invariance by using scalar forms for the tensorial quantities of interest. Further-
more, since empirical evidence from the nonlinear regression model suggests that
parameter—effects curvature is the dominant effect (Bates and Watts, 1988), the
ultimate question for a particular model in general will be ‘what is the best way
to cast the model?’. Thus, the method of moving from one coordinate system to

another will be preferred in practice.

1.9 The Generalization

This Section is an attempt to provide a non-technical account of the generaliza-
tion of curvature measures from Normal to non-Normal errors, with particular
emphasis on the special case of generalized linear models.

For the most part, the development of curvature measures for non-Normal er-
ror models mirrors the approach used by Bates and Watts (1988) for nonlinear
regression. For example, total curvature is shown to decompose into intrinsic and
parameter—effects curvature as in nonlinear regression. The fundamental difference
is the concept of an a—connection which is vital to a study of estimator behaviour
in general, since key values of « are tied to particular properties of estimators, as
shown in Section 2.10 and Section 2.11. It is possible to describe the key proper-
ties of the estimators (ie, key values of the ) as being ‘unbundled’ in the move
from Normal to non—Normal errors, since all of these properties (unbiasedness,
minimum variance and zero skewness) are satisfied simultaneously in the Normal
case (Hougaard, 1982). This simultaneity is due to all the a—connections being
identical when errors are Normal (Kass, 1984). By contrast, in the non-Normal sit-
uation, not all properties may be guaranteed to be satisfied together in the same
estimator (Hougaard, 1982), since the a—connections are distinct in the general
non-Normal case, as shown by Kass (1984).

Subject to the above caveat about the significance of key values of «, other
facets of curvature measures generalize from the Normal to the non-Normal case.

The decomposition of total curvature into normal and tangential components pro-
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duces intrinsic and parameter—effects curvatures respectively, as for nonlinear re-
gression. Following the suggestions of Kass (1984), there are families of such
curvatures each depending on the chosen value of «, each having a special in-
terpretation for estimator properties. A new feature is that a non—-Normal error
distribution contributes a component to both intrinsic and parameter—effects cur-
vatures, whereas for Normal errors no such contribution is made from the error
distribution. The precise interpretation and use of the curvatures ( for a given « ) is
a topic which is exploited in later developments when special cases are considered,
such as the class of generalized nonlinear models (GNMs) defined in Section 3.6.
The following list of results, proved later in the thesis, shows the application of

these generalized curvatures to specific situations.

Section 3.3.2 intrinsic curvature is invariant (in general).

Section 4.2 parameter—effects curvature is invariant for a generalized linear model

(GLM).

Section 4.3.2 the scalar form of exponential intrinsic curvature for a GLM is
minimal when the link is canonical; this is a generalization of the situation for
nonlinear regression, where the canonical link (identity) yields zero intrinsic

curvature.

Section 4.5 a generalized nonlinear model (GNM) with zero exponential curva-

ture is a GLM with canonical link.

Section 4.7 a zero information connection implies a variance stabilizing link in a

GLM and conversely.

Each of the curvatures, intrinsic and parameter—effects, consists of model and
disturbance effects. Asymptotically and under appropriate replication, any dis-
turbance component (based on the mean) becomes Normal and so the generalized
nonlinear model (GNM) collapses into nonlinear regression. This is effectively the

model proposed by Wei (1994), where the skewness is bounded so that it vanishes
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asymptotically, ensuring Normality in the limit, in line with the result of Kass
(1984). Hence, the question of which a—connection to use for these models be-
comes irrelevant since the error distribution becomes Normal in the limit. This
bounded model of Wei (1994) has been extended (Wei and Zhu, 1997) to a class of
models called ‘exponential family nonlinear regression models’ which are similar to
the generalized nonlinear models(GNMs) described in Section 3.6. A comprehen-
sive exposition of the approach is given in Wei (1998), together with applications
using the construction of confidence regions and regression diagnostics involving
leverage and influence estimates.

With the partitioning of generalized intrinsic curvature into effectively two
components, one due to the model and the other due to the error distribution,
the influence of design points on the curvature measures, and hence estimator be-
haviour, can be investigated. The purpose of such research would be to produce
designed experiments that induce low intrinsic curvature, enabling current ‘close—
to-linear’ methodology (Ratkowsky, 1983) to be employed. This ‘close-to-linear’
label assumes, as a precondition to possible model parameterization, that intrin-
sic curvature is low. Thus, this condition of low intrinsic curvature should be a
feature of design rather than an implicit assumption, even though experimental ev-
idence suggests that many of the models employed in practice exhibit low intrinsic

curvature.



Chapter 2

Differential Geometric Approach

2.1 Preliminaries

Several discussants [Ross (1908a), Reid (1980), Atkinson (1980), and McCul-
lagh (1980)] to the paper by Bates and Watts (1980) raised the question of a
non—Normal error distribution. In particular, McCullagh (1980) noted that nonlin-
ear models were often associated with non—-Normal errors. Under these conditions,
the use of least squares as a criterion for model fitting can give too much weight
to a few outlying observations, so the use of the correct error distribution can be
crucial for proper estimation. Two of the discussants, Reid (1980) and McCullagh
(1980), proposed the exponential family as a model for non-Normality, and the

form of model proposed by Reid (1980) was
p(y; 0) = exp{c(y) + 0'y; — ¥(0)}, (2.1)

for the random variables Y3, ..., Y, with each Y; having probability density function

(pdf) p(yi; 6;). The quantities in bold denote vectors so that
Y= (YY)

and
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The following developments are in terms of a general probability distribution
function p(y; @), but the ultimate goal is to use the general technique in examining
the exponential family. In particular, Generalized Linear Models (GLMs) will be

investigated in detail, leading to other allied models.

2.1.1 Likelihood

Given the random variable y and a set of parameters 6, the distribution of y can

be specified by the pdf p(y; ). The corresponding log-likelihood is specified as

{(y;6) = Inp(y; 0).

2.1.2 Regularity Conditions

Subsequent developments rely on the following regularity conditions
1. p(y;0) > 0.

2. For fixed 6, the functions

80 & %&;9) (i=1...n)

are linearly independent, in that it is assumed that they form a set of basis

vectors to span the tangent space.
3. The moments of ;¢ exist up to required orders.

4. Partial derivatives and integration can always be interchanged, eg.,
9 (] f) = [(&f) -

These conditions will be assumed without being stated throughout the derivations

and working hereafter.
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2.2 Tangent Spaces

Let S be the space defined by the parameters 8 as a coordinate system. The
tangent space Ty is a vector space obtained by a local linearization of S around
0 composed of tangent vectors to the coordinate curves passing through 6. The

space Tg is spanned by the functions e; known as basis vectors, given by

o4
00*

e () = 0,0(y; 0) &

as shown in Figure 2.1.

01

Figure 2.1: The tangent space 7' in parameter space S.

So any tangent vector A € Ty is a linear combination of these basis vectors,

€;, ViZ,

A= A0l = Ale;(0)

as illustrated in Figure 2.2.
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82262

Tg
Figure 2.2: Basis vectors span the tangent space.

Consider a neighbouring point to 8, say 8+d6. The two corresponding tangent

spaces are shown in Figure 2.3, in two dimensions.
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Figure 2.3: Neighbouring tangent spaces.

Now

U(y; 0+ dB) = L(y; 8) + 5:4d0" + . ..
by Taylor’s theorem. This expansion can be recast as
8,0d0* = ((y; 0 + dB) — {(y; 0) = e;dd"

(Amari, 1982a, p359), showing that the linear combination is described by A =

df*, using the vector addition shown in Figure 2.4.
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Figure 2.4: Vector addition for neighbouring parameter spaces.

2.3 Inner Product

Following the development in Barndorff-Nielsen, Cox and Reid (1986), a measure

of the distance between the distributions at 8 and 6 + d@ [due to Jeffreys (1961)]
produces!

ds? = g;;d6*dy’
where

€;-€; = Eg(ﬁzwjﬁ) (%éf 4dis

using the basis vectors defined in the previous Section. Thus, g;; is defined as

an inner product and forms the metric tensor having the statistical interpretation

1A full derivation is given in Appendix B.1.



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 41

of corresponding to the Fisher information matrix. An alternative form for the

tensor describing the information matrix is
9i5 = —E4[0:0;]

following Amari (1990, p29, 2.10). This form is derived in Appendix B.2. Both

forms of the metric will be used extensively.

2.4 Metric Tensor

If P is a point on an n—dimensional surface specified by parameters @ ...,0m),
then the squared distance between P and the nearby point P + dP specified by
(0" +dB,...,0™ + dbm), is given by

g:;d0"d6? (2.2)

using the Einstein summation convention. Note that superscripts are indexes, not

powers.

(i) The terms g;; (g;j = g;i) form the metric tensor, and

(ii) if the quadratic form given by (2.2) is positive definite, the surface forms a
Riemannian manifold. A practical example of such a manifold is the surface
of a sphere, which while being imbedded in Euclidean 3D space, forms a 2D
Riemann manifold (Barndorff-Nielsen, Cox and Reid, 1986, pp83-84).

This metric tensor is the Fisher information matrix, when the distance function
is measuring the infinitesimal distance between distributions.? In terms of the

exponential family previously described we now have

where 0;¢ = %

tensor is given in Appendix B.3. Before presenting the extensions required to

and ¢ = Inp(y; @). * A collection of results involving the metric

2Barndorff-Nielsen, Cox and Reid (1986, pp86-87).
3 Amari, (1982a, p359).
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handle general exponential families, five simple examples are presented, with the

aim of demonstrating the role of the metric tensor in statistical problems.

2.4.1 Example 1, Normal distribution with known variance

Take Yi,...,Y, as a random sample where Y; ~ N(y;, 1), with corresponding

log—likelihood

{=logp = —5{@/1@/1 + ptut = 2yt — §1n 2r =ypt — —p'ut — —In 2w — =y'y’

2 2 2
giving
i i Lo 1 1
6" = u', and U(0) = 50 6" + §ln27r, c(y) = — 5 Yl
and
9i5 = 0:0; ¥ = 4y,
i.e., the Euclidean metric. So, the squared distance between #!,... 6" and 6! +

de, ..., 0" +do™ is
ds® = (d6*)* + ... + (d6™)>.

This demonstrates the correspondence between Normal errors and the Euclidean
metric, when the parameter of interest is the mean of a Normal distribution with

known variance.

2.4.2 Example 2, Normal distribution with known mean

Let Zi, ..., Z, be a random sample where Z; ~ N(0, 0?) giving
¢ =logp =0 + 5_’[‘ In(—26%) + 3 In 27
with*

. 1 . .
v = (%)%, 0" = —ﬁ, U(0) = —§I‘ In(—26") + gln 27, c(y) = 0.

47 is a unit scalar.
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Amari (1982a) puts the constant term with ¥(8) ; it could equally as well go with
c(y). This produces the metric tensor as
0s5 ’

9ij = 2002 2(04)% 635,
a not unexpected result, being proportional to the variance of the sample variance.

So now the distance function is
2(01) (dO")? + ...+ 2(0p) (d6™)?

ie., a non-Euclidean metric. For a non-statistical example of a simple non-

Euclidean metric, see Barndorff-Nielsen, Cox and Reid (1986, p84).

2.4.3 Example 3, Normal distribution

Take X,,..., X, as a random sample where X; ~ N(u;,0?). As the observa-

tions are independently distributed, the log-likelihood is the sum of the individual
terms. Thus the analysis can be undertaken for a single observation (McCullagh
and Nelder, 1983, p17, p20 and p32). Thus the corresponding log-likelihood (con-

tribution) for a single observation is

]. 2 2 1 01 H
l==-(z—p)/o*—Inoc—-In27r , O = = :

This gives

06 =~ o2 T g2
and
5yt — (z —3#)2 _ 1
g g
with )
8,0,4 = _813 and Byl = —° (xaj D (;21)
and
st =21 _ 50
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The contribution to the metric tensor from an individual observation is

01018 D100 | 5 1/0? 2(z —p)/o® 1/0?
82816 82826 2(.’1)—#)/0’3 3(:1;—/*5)2/0-4_1/0-2

See Murray and Rice (1993, p17) and Amari (1990, p29, Example 2.3) for corre-

sponding derivations. For independent observations zi,...,z,, the parameters
become
0, M1
0y op)
0= 05 | =| p
04 02

which makes the metric tensor
9:j(0) = —E(0;0;¢)
a diagonal matrix with the entries grouped in pairs, viz,
Diag[1/c%,2/02,...,1/0%,2/02).

Since g;; # ;;, the geometry is not Euclidean®. If the observations are NIID,

then p; = u and o; = o and the observations become replicates, yielding
Uzxy,. .., z,) = nb(Z)

in a similar vein to the development in Amari (1982a, p372, 4.17). The distribution
can be cast as a member of the exponential family, as defined by Equation (2.1).

Using the likelihood contribution for a single observation

—1
£= —(a® + 4 — 201) /20" - Ino — In(2m)/2 = (5 3)a" + x(%) a
gives

y=1% =z, O'=-1/20° 0°= w/o?,

5The full dimension of g;; is in fact 2n x 2n.
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and
U(0) = —In(—20")/2 + (0%)* /40", c(y) = In(2x)/2

in agreement with Examples 1 and 2. As before, the full n independent observa-

tions will produce 2n parameters for 6.

2.4.4 Example 4, Multinomial distribution

The following discussion is a synthesis of Amari (1990, p12, p24, 2.2 and p31, 2.4),
with corrections and changes in notation where considered necessary. The descrip-
tion of the multinomial distribution is cast in the particular form to highlight that
it is a mixture distribution (Amari, 1990, p40). The pdf and likelihood are quoted
for a single observation.

Let Y be a random variable taking integer values {1,2,3,...,n + 1} with =,
being the probability that y is equal to 4, and

n+1
Zﬂ‘izl, O<m<l,z=1...n+1.

i=1

The probabilities 7; define a multinomial distribution with

Vo)

1 2 1 _ _

0 =7y, 0°=mq,...,0" =7, 0" —7rn+1——1—27ri.
=1

The probability distribution function for a single observation is
p(y;0) = [6(y — )| +6(y—n—-1) (1— 9i>
i=1 =1

where 6(y —4) = 1 when y = 7, and = 0 otherwise, ie., an indicator variable. Thus

n+1

p(y; ) = Z Sy — i)6*

giving® B
fy;0) =Y. 8(y — i) 6’
=1
and so : )
5y — 1) Sy—n-—1
(912 = (9’ + (—1) (9”"'1

6Note the typographical error in Amari (1990, p24).
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since

ot =1-6"... —9"

Calculating 0,0,¢, gives

Ay -9, o dy—-n-1)
alalg (ei)g ( 1) (9n+1)2 ( 1)(—1)
and then”
a,_q_ Sly—-n-1) -
0;0;£ =10 e (=1)(=1), i#7.

The metric tensor is then

9i; = —Eaiajé = — /p aiajé dy = — Zp 818]15

Y

i\ — ].
= §;;(6") ’p; + anﬂ

But p; = m; = #° and so
gij = 015 (m) H 4 (Tpg1) ™
as per Amari (1990, p31). Finally
51']' 1

o= L 4 .
Jis m l—=m... =7y,

The special case of n = 1 gives the Bernoulli distribution
l=nm 6=1-n

yielding

1 1
=i(r) = ——
11— (1l —m)

1
g1 = — +
i

and
gt =vV#E)=n(1-mn)

as expected. The multinomial distribution is an important example of a mizture

distribution. (See Amari, 1990, p43, example 2.6.)

"There is a typographical error in Amari (1990, p31).
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2.4.5 Example 5, Generalized Linear Model

A random sample Yi,...,Y, is taken from a distribution belonging to the spe-
cial class of exponential family models whose individual contribution to the log-

likelihood is given by

_ y8—b(8)
— a(9)

ie., a generalized linear model (GLM). Choose a(¢) = 1 for simplicity, and so

¢ +c(y, ¢)

Blf =Yy —- b'(@), 81818 = —b”(@)

For independent observations 1, ...,¥%,, the GLM form is close to the exponen-
tial family model defined by Equation (2.1) on page 35. Thus the log-likelihood

becomes

7

(y; 0) = By — 3 b(E) + ofu; @) o(w;6) = 3 eluii 0)
with®
i =yi, 0" =0(=6/a(¢)), T()=b(0) = > b(6"), and c(y) = c(y, ).

Now
81;8 =Y — bl(el)
and

81838 - —b” (01)(51]

where I is a nonsum index taking on the same value as 4. This gives the metric

tensor as

gz](e) = —E818]€ = b”(@l)éij

SO
9:;(8) = diag (b"(6"),...,4"(6")),

which reinforces the independence of the assumed sampling regime.

8Technically ¥(8) = b(8)/a(¢).
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2.5 Affine Connection

If Tg and Ty 4 49 are the tangent spaces corresponding to the neighbouring points
6 and 0 + d@, then the affine connection I'%;(0) provides the means of comparing
these two spaces.

A direct comparison of vector components from the two spaces is not possible
since the tangent vectors from each space have differing basis vectors as shown in

Figure 2.5.

_ T9+d9_,..--""':""
0:6(0 + d)

6t + do*

Figure 2.5: The basis vectors for neighbouring tangent spaces.

Even in Euclidean space, the basis vectors differ if the coordinate system is
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curvilinear, eg., for spherical coordinates. The statistical analogue is nonlinear
regression, since then the errors are Normal (implying a Euclidean space), but the
coordinate system (regression parameter space) is curvilinear.

To compare vectors in Tyg with those in Tg | ;9 a mapping between these vec-
tor spaces is needed; such a correspondence is called affine, Bishop and Goldberg
(1980, p220).

Choose a basis vector e;(0 + d@) in Tg , ;9 and consider its corresponding
vector in Ty with respect to e;(@) in Ty, as in the Figure 2.6.

826(9 -+ dO) = 82(9 + d@)

0+ deo /

Figure 2.6: The correspondence between neighbouring basis vector spaces.
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The corresponding vector in Ty 1s

which means that

Jei(8) ~ 0,4(0 + d8) — 5,4(8).

This difference de;(@) can be expressed as
de;(0) = d6’ Te(0),

being the change in the ¢th basis vector while moving from 8 to 8 + d@. The n?
functions I‘;?i are the coefficients of the affine connection, since they determine
the affine correspondence between Ty and Ty 4+ 4o

The coeficient I'%; determines the influence of e; on the change in e when
moving a small distance in the 6/ direction. (Barndorff-Nielsen, Cox and Reid,
1986).°

Taking the inner product gives
em - 0€; = en - d6’ TXey = gem T5d6? =d¢’ T,

using the identity

Liim = T%Gkm
following Kreyszig (1991, pp140-141). The forms I'j; . and I‘;?i are Christoffel
symbols of the first and second kind, having the interpretation of being inner

products when the space is Euclidean.

Since a point P in the vector space is associated with
def
¢(y;0) = In f(y;0)

then
0

= il

9An alternative interpretation of the affine connection using the covariant derivative is given

dil(y; 9) y;0)

in Chapter 3.



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 51

will be associated with TO'

Now
0:l(y; 0 + d8) = 8,L(y; 0) + 0;0:((y; 8)d’

by Taylor’s theorem, but, by virtue of the score statistic
E[0:{(y; 0)] = 0.

Note the discrepancy between Amari (1982a, p361), and Amari (1990, p39), in
the expansion of the derivative of the likelihood. The correct form given here is
equivalent to that of Amari (1990, p39). Thus, any vector £(y) in Ty should
satisfy

E[L(y)] =0
as well.!” To be precise, vectors of type £(y) are contained in the 1-representation

of the tangent space Ty denoted T g) defined by
Ty = {A(y)|Aly) = A'0:0(y; 0)}.
Since
E(8]81£) = —E(&EOJE) = —0j

then 0;0,¢ is not contained in Tg).

Adding 0,0;¢ to g;; and to 0,£0;¢ yields two quantities of type £ € T g).
These two quantities will be denoted respectively by

1 . . ‘
6; (y;0) = de; + g;;d¢’ = 0,0,4d6’ + g;;,d0’

and
bi (y;0) = be; + 0;£0;4d? = 5;0;£d0” + 0;£0;£d6’.

10This notation clarifies a possible misinterpretation of equation (2.16) p361 of Amari (1982a).
The use of the likelihood symbol £ for the expression of vectors in Ty is potentially confusing.

Hence the use of £(y) which corresponds to the A(x) of Amari (1990, pp19-20).
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These two new quantities satisfy the expectation criterion
1 2
Any linear combination of these two new quantities would suffice. Thus the
function

a I+l 1—-a?2
6 £ = 5 ;
2 + 2 0

could be used, where « is the arbitrary constant of combination. Thus there
is no unique affine connection, but a family characterised by the parameter a.

Connections belonging to this family are called a.~connections.

2.6 oa—connections

Taking the inner product as before, but now using the « value to characterize the

connection, yields

eme 0; L= db T, = B[Ol 6; 4]
Thus
o 1
F o = E0nt{ (0,0 + 9) + ~=%(8,0 + ,08,0)}]
which simplifies to
L = E[0;0:0m8) + 2 @ E[;¢8,60,,4] (2.4)

These a—connections provide the means of comparing nearby tangent spaces
that are derived from probability distributions. In short, the a—connection is the

affine connection for a function that is derived from a statistical distribution.

2.7 Statistical Interpretation of a—connections

The one-parameter affine connection (a-connection) can be rewritten as
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F.¢(0) = Bl0.0,0(u; 0)0:(y; ) + ~—~ Bloie(y; 0)0,(u: 0)0kt(y; 0)]  (2.5)

where « is the arbitrary constant of combination.
A statistical interpretation of these a—connections has been derived by Kass ( 1984),
who showed that the parameterisation of one-dimensional non-linear models de-

rived by Hougaard (1982) was related to Amari’s (1982a) a—connections via

5:1—04
2

where the value of § determines the form of parameterisation in the original expo-

nential form
H4(z) ~ x(6)

where
0 =6(5)

and the new parameter 1 = g(£) is determined by solving Hougaard’s equation'?,

d’g/dp? 5d3x do d20\" d?y df do\' d?x db (26
dg/ag ~\'az \ag) " \ap) aprasf [ \\ag) aapj- 9

Kass (1984), by the change of variable technique, was able to show the equivalence

viz

of Amari’s (1982a) definition of an a—connection and Hougaard’s equation'? for
one—dimensional curved exponential families.

Kass (1984) used this demonstrated equivalence between « and ¢ with Hougaard’s
(1982) results for ¢ to provide the statistical interpretation for Amari’s (1982a)
a—connections. The analysis provided below uses the equivalence shown by Kass
(1984), but interprets the a—connections directly, via the equations due to Bartlett

(1953a). This use of Bartlett’s equations and the corresponding derivations are

considered original.

UHougaard (1982, p246, equation 2.1).
12K ass (1984, p92), where equations (3) (Hougaard, 1982) and (6¢c) (Amari, 1982a) are shown

to be equivalent.



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 54

The one—dimensional procedure outlined below will be generalized to the multi-

parameter case later.

2.7.1 Riemann Christoffel Curvature

The statistical interpretation of a—connections will be made in terms of those
properties induced by zeroing the a—connection. The identical vanishing of an -
connection can be cast in terms of the Riemann Christoffel curvature, as described
in Appendix B.4.

The Riemann Christoffel curvature tensor is basic to many of the quantities
used in the differential geometric treatment of the statistical theory of curved ex-
ponential families. Key treatments are given in Amari (1990, p46), Amari (1982a,
p365, 3.5), Barndorff-Nielsen, Cox and Reid (1986, p89) and Loveluck and Rund
(1989, p257, 3.1 and p260, 3.16).

2.8 Equivalence of o, § and c.

Amari (1982a) derives an a—connection as
a 0% ¢ l—a [0 00 O
Lijg=E 0 An A
06,086, 00), 2 00, 86, 00,
where £ is the log-likelihood function.

For a one—dimensional model this reduces to

o 82000\ 1-a_ [00\°

Using the fact that o = 1 — 24 gives

a 520 ¢ AN

which is equivalent to (6¢c) of Kass (1984, p88), in the one-dimensional case.

DiCiccio (1984) extends the above interpretation of properties associated with
specific values of Hougaard’s (1982) & to a wider class of models in the one param-

eter case. The key variable used by DiCiccio (1984) was designated as ¢ where

§=(2-¢)/3.
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o ) ¢ | Parameterisation | Transformation
-1 1 -1 | Mean value Bias reducing

-1/3 2/3 0 Skewness reducing
0 1/2 1/2 Variance stabilizing

1/3 1/3 1| E[8%/0y3] =0 | ‘Normal likelihood’

1 0 2 | Canonical None - identity

Table 2.1: The interpretation of «, é and ec.

Table 2.1 summarises the special values of «, ¢ and ¢, together with their corre-
sponding descriptions. These special values of a will be shown in Section 2.10 to
be connected to special properties of the estimator, as shown under the heading
‘Transformation’ in Table 2.1. For example, for & = —1/3 the special property

associated with choosing a transformation that induces

will be to reduce skewness. The various properties described for each value of o are
derived in the single and multi-parameter cases in Section 2.10 and Section 2.11,
respectively. The choice of names (Amari, 1982a) for the connections o = -1, 0
and 1 as mizture, information and ezponential is clear from how Table 2.1 links a,

d, ¢, the parameterization and the effect of the corresponding transformation.

2.9 Bartlett’s Equations
Bartlett’s (1953a) used the following notation for one-dimensional models'®
L =1Inp(f; ).

The score statistics and other quantities were defined as

oL
-

137, is the log-likelihood.
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9L
L,=E|=—

1, =9

00

oOL\”
L(2)E _— =
1 E(é?@) I

(LLy) = E <8L 82L)

86 602
Repeated operations on the log-likelihood yield the following relations

L =0
L,+L¥ =0

Ls + 3(L1Ly) + Li¥ = 0

1Ly + L¥® +2(L,L,) = 0.

The last two Equations [(2.10) and (2.9)] can be combined to give
Ly + (LhLg) — 1L, = 0.
Subtracting Equation (2.11) from Equation (2.10) gives
2L+ L + (L1Ly) — Ly =0

which yields
(LyLy) + L = Ly — 2, L.

56

(2.10)

(2.11)

(2.12)

«
These equations can now be used to examine I'y for the key values of ¢, via

o’ ]l -«
L= (LiLo) + — L.

The above results are re-expressions of results derived by Bartlett (1953a). In

the next section, those properties corresponding to particular values of o will be

investigated.
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2.10 Interpretation of o in the one parameter
case

The a-connection is now expressed in terms of a transformed parameter 1, as
determined indirectly by Kass (1984) in the one-parameter case!*. In fact, the
transformation used by Hougaard (1982) was from the imbedded regression coef-
ficient (3 to ¥ via
= g(8)

rather than from the canonical parameter 6 as used by Wedderburn, as quoted in
Hougaard (1982).

The results following have been expressed in terms of this transformed param-
eter 1 to emphasise the interpretation associated with each a—connection via the

use of equation (4) of Kass (1984), ie.,

F¢:O.

So, in general

1] -« (3)

F¢: (LILQ) + Ll

Each case is now examined in turn, for one—parameter models.

Some of these results hold not only for curved exponential families but also
for general likelihoods. The acronyms CEF (Curved Exponential Family) and
GL (General Likelihood) will be appended to results which hold for each of these
respective situations. These acronyms are used in Table 2.2 to summarise the

results for the interpretation of each value of «.

4Hougaard’s (1982) v is the v of Kass (1984).
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2.10.1 Mixture Connection

a=-1:(=1) (GL)

Using Equation (2.12) in the form for the (—1)-connection gives

—1
F¢: (L1L2) + ng) - L3 -2 1L2

—1 03 L 0 0%L
Lo= & (W) ~ %3 (EW) -

Compare this with the expansion of Bartlett (1953b), viz!®

to give

" 1 6L aI .,

So, choosing a parameterization corresponding to 6 = 1 will reduce asymptotic
—1

bias, since this is equivalent to making I'y= 0. Hougaard (1982, p248) shows

that, for the case § = 1, the ¥ parameterization can be estimated with zero bias

asymptotically in a curved exponential family, viz,
EY)=v¢+0(m™)

where m is the number of data points!®. In addition, this parameterization (§ = 1)

minimises mean square error (MSQ) where

MSQ($) = E(§ — $)? = E() — BEp)? + E(p — Bp)? = V(¥) + bias* ()

Since the transformation to ¢ eliminates bias, it is almost trivial to claim that
MS(Q is minimised as well. This property of minimum M .S can be demonstrated

using the results of Hougaard (1982, section 3, p248).

15Equation (15), p310, with I = —E (6*L/86?) .
16The usage of O and the term order follow standard numerical analysis terminology, as defined

in D. Kincaid and W. Cheney (1991, pp10-12). See also Amari (1990, p159) for a corresponding

clarification of the term order.
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A Taylor’s series expansion

-~

b =g(B) =g(B)+ (8- B)dB)+ (B-B)¢"(8)/2+ ...

forms the basis for calculating
E@) =¢+0(m™)

to determine the order (m™!) contribution to the bias. This is eliminated by

choosing 6 = 1. Now
MSQ(D) = E(¢ — ¢)* = V(¥) + bias* ()

yielding
E@—9)2=V@)+m™2[...]”
with the term inside [...]> being zero to order (m~') if the transformation g pro-
duces the solution to Hougaard’s (1982) equation with ¢ = 1.
The assertion of asymptotic minimum M SQ and O(m~!) unbiasedness is thus

demonstrated.

2.10.2 Skewness Connection

a=—1/3: (6 =2/3) (CEF)

The a—connection becomes

~1/3
Ty = (L1Ly) + 2L

-1/3

3 Ty=3(LiLy)+2L =LP ~ Ly .

Now ks(8L /) = B (L) — E(OL]ow))* = E (L/0y)> = LY, but the skew-
ness for 1 is measured by E (¢ — EzZ)3 (Hougaard 1982, p248).
Amari (1990, p132 and p151) shows that this form of a-connection is directly

related to the skewness of the parameter (¢) and not the corresponding score

statistic (OL/0v).
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Hougaard (1982, p248) gives a direct calculation in the one-parameter case

-~

showing that 6 = 2/3 (a = —1/3) produces x3(1)) = 0 to order (m™!) for a curved

exponential family.

2.10.3 Information Connection

a=0:(0=1/2) (GL)

The 0—connection is
0 3)
2 PwI 2(L1L2) + Ll = —1L2 .

So
ol d _,dL

T

So the transformation g from [ to 1 produces constant variance. Hougaard’s

0
Fy=0= 1L, = )?=0.

(1982) derivation uses the variance of a transformed variable, viz, if ¥ = g(X)
then Var(Y) = 02(X)[¢'(12)]>. If ¥ is to have constant variance after the trans-
formation ¥ = ¢(8) then

g'(ﬁ):%ocﬁ, J=z’<mo<%

and the results of section 3 part 2 of Hougaard (1982) show that the key value of

d that produces the constant variance transformation is 6 = 1/2, ie. o =0.

2.10.4 ‘Normal’ Connection

a=1/3: (6=1/3) (GL)

The a—connection is
1/3 @
Ly= (L1Ly) + £L77,

to give
1/3 (3) _
31,=3(LyLy) + Ly = —Ls .
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1/3
So I'y= 0 = E(8°L/0y®) = 0, implying that the expected third derivative of
the log likelihood is zero, ie., ‘normal likelihood’ in the terminology of Hougaard

(1982, section 3, part 1, p247).

2.10.5 Exponential Connection

a=1:(5=0) (CEF)

The 1-connection is

1
Fd): (LILQ) )

but since this corresponds to § = 0, the transformation is the identity, ie, the
canonical parameterisation. In fact I‘lwz 0 simply means that the initial param-
eterisation § (from ¢ = 6(6) in Hougaard’s (1982) notation) may have the expo-
nential family distribution in canonical form with respect to 3, since (L1Ly) =0
for a distribution of the exponential type, in terms of the canonical parameter.

If the distribution is of the exponential family type in the transformed param-
eter then (L;L,) = 0 which leads to I{,,: 0. Thus the transformed parameter is
canonical.

However, if the transformation induces I‘lwz 0 this leads to (L1Ly) = 0, but it
is not necessary in general for the family to be exponential if the 1-connection is

zero, see Amari (1990, p152) and Appendix B.5.

2.10.6 Note

Clarification of the parameterizations in the above Section is called for. Wedder-

burn’s formulation (Hougaard, 1982, p245) of the transformation (6)

o [ g2 J
1/1(91)2/00 {%mwe)} do (2.14)

is defined for the one—~dimensional family in terms of the natural parameter 6, viz,

") /$(6).
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A full description of Wedderburn’s exponential form is given in Appendix B.6 with
the cases § = 0,1/3,1/2,2/3 and 1 being shown to have equivalent interpretations,
albeit for the canonical (natural) parameter.

The one-dimensional submodel (curved family) is (Hougaard, 1982, p246)

/O [6(6(6))

The parameterization ) = ¢(f) for 6 = 0 now becomes the solution for g in

Hougaard’s (1982) equation
Tl _ (o (18 (L) i) [ ('
dg/dg de’ \ dp dg?) dp?dg %) 89_2@}

This gives
d?g/dB® {(@)’d_?x_@} do\’ d2x do
dg/ds — \\dp?) dp*dp / {(d—ﬂ’) Wd_ﬁ‘}

but the canonical parameterization implies that ¢ = 6 = 3, so g is the identity,

le., g = [ since 8§ = 3. This yields

d2g/d,32 B

dg/df "

and
d%6
“ -0
dg?

which trivially satisfies Hougaard’s (1982, p246) equation.

2.10.7 Summary

Kass (1984) has demonstrated that the a—connections coincide only in the special
case of the Normal distribution with known covariance!”. This is confirmed by
Hougaard (1982, p251) : “For the curved exponential family the four parameter-
izations are not identical in general, and you cannot get more than one of the
properties”!®. It follows that in the case of non—-Normal errors the above special

values of o will characterise the properties of the estimator. So, each property of

17Proposition 2, p90, Kass (1984).
18The case a = 1 (§ = 0) is excluded as it is the canonical parameterization (the identity!).
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the estimator has to be considered separately using each key value of o, whereas
for the Normal case the value of « is irrelevant. For example, if f‘ appears small,
we might expect that the model will exhibit constant variance with respect to the
parameter involved.

The interpretation given to the a—connections via Bartlett’s equations is quite
general and does not necessarily require the distribution to be of exponential type.
So, interpretation of some a—connections could be made for any type of distribu-
tion, since f‘z 0 implies special features to be associated with the choice of ¢,
Viz,

-1 (bias reduced), 0 (constant variance) and 1/3 (‘normal likelihood”).

Table 2.2 presents the values of @ and the corresponding conditions under which

the previous statistical interpretations of a zero a—connection can be made.

o 1 -1/3 0 [1/31
Condition | GL | CEF | GL | GL | CEF

Table 2.2: Conditions for the interpretation of « : single parameter.

Of course, the problem is to find a parameterization that will zero the a-
connection. Such a parameter can be shown to exist in the one-dimensional case,
(Amari, 1990, p152, Corollary).

Kass (1984) demonstrated the correspondence between parameterizations as
determined from Hougaard’s (1982) equation and Amari’s (1982a) a—connections,
whence the relation @ = 1 — 2§ is derived. By the use of Bartlett’s (1953a)
equations, the statistical interpretation of a—connections for key values of o has
been demonstrated directly, corroborating the interpretations made by Kass (1984)
in appealing to the effect of choosing the corresponding value of 6 in Hougaard’s
(1982) equation.

Bartlett (1953b) has produced similar equations in the multi-parameter case,
and similar results follow as a generalization of the one-parameter situation here

described. These results are corroborated by Amari (1990, pp150-152), using an
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entirely different approach.

2.11 Interpretation of o in the multi-parameter
case

When more than one parameter is involved, the general form of a—connection is
required, viz

[k (0) = E[8:0;£(y; 0)8:L(y; 8)] + l—;—QE[&-K(:«;; 6)0;(y; 6)0,L(y; 0)) .

The same key values of « are associated with special properties of the esti-
mators as outlined in Amari (1990, ppl50-152). The interpretation in general
depends on advanced analysis of estimator behaviour, which will be treated in
later chapters. Some of the properties described using the one-dimensional ap-
proach via Bartlett’s (1953a) equations carry over and so will be expounded. The
generalization of these equations is given in Bartlett (1953b, pp306-307); again
only the first three derivatives are necessary to produce the multi-dimensional
analogue of the equations for one parameter models.

A modification of notation from the one-parameter case is necessary to enable
similar manipulation of identities as used in the interpretation of a—connections
for one-parameter models. So, the equations of Bartlett (1953b, pp306-307) are

represented in the following eztended notation

oL

L. = E(z5)

oL oL,
06, 06,

(LaLb) = E(

0*L )
00,004

(Lab) = E(

0L 0L 0L

(LyLpLe) = E(aea 36, 36

)
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3L
(Labe) = E(m)
0L O*L
(LaLpe) = E(c‘?@a m)
Loe= 2825
ambe ™ 50, 90,00,

65

Note that the type used for the subscripts is designed to allow different pa-

rameters to be addressed. In later developments, the subscripts ijk will be used

to denote natural parameters in an exponential family model, eg., a GLM, while

subscripts abc will denote regression coefficients contained within those natural

parameters via the fitted values. The notation used here, viz, abc, is meant to

show that either set of parameters can be intended, or even a set of transformed

parameters, as in the one dimensional case.

Bartlett’s (1953b) equations are (in full form)

oL
Blgg) =0
oL 0L 8*L
E(aeia—eg) - "E(aeiaoj)

0L 0L 0L 0L O*L

&L oL %L
(56, 50- 26, E
90, 00, 90,

where 0;,0;, 0, are arbitrary parameters.

_E(aaiaejaak)' (aa,-aejaek)_ (aTojaaiaak 06, 96;09;

oL &L )

An additional equation is generated by differentiating the second order equa-

tion. The resulting four equations can be combined to obtain another relation
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used to simplify expressions involving key quantities such as the skewness ten-
sor (LaLyLc). Using the extended notation defined earlier, these five equations

(Bartlett, 1953b, pp306-307) now become

L,=0
(LaLy) + (Lap) =0
(LaLwLc) 4+ (Labe) + (LaLbe) + (LoLac) + (LcLap) =0
alve + (LaLlpLc) + (LawLe) + (LacLp) =0

(LaLch) = 2(Lach) - aLbc - bLac - cLab .
Various adaptations are possible using different combinations of the indices
abc.
The a—connection now becomes

a 11—«
[.oe = (LaLe) + T(LaLch) )

abc

The key values of o have the same interpretation as in the single parameter
case (Amari, 1990, pp150-152). The full derivation of some of these results depends
on later developments, but all values of « are reported for completeness. The
interpretations of the cases o = 0,1/3 and 1 can be derived directly using Bartlett’s

(1953b) equations.

Similarly to the one parameter case, the solution of the equation

T =0

abc

will be in terms of transformed parameters in a curved exponential family. Thus

the subscripts abc will refer to transformed parameters.
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Again, the term CEF stands for ‘Curved Exponential Family’, and GL means

‘General Likelihood’. These terms are also used in Table 2.3.

2.11.1 Mixture Connection

a=—1: CEF

The (-1)-connection is

-1

I déf fn = (Lach) + (LaLch) = (Labc) - aLbc - bLac .

abc

Together with other variations, this equation is a generalization of the connec-
tion from the one-parameter case examined earlier. The corresponding results for
bias are given in Amari (1990, p131 and p150), while the minimum mean square
error result is given in Amari (1990, pl33 and pl50), with both results being

written in terms of the mixture connection (?)

2.11.2 Skewness Connection

a=-1/3: CEF

The skewness connection is

-1/3

I

abc

2
= (Lach) + g(LaLch) .

-1/3 :
The term —3 T, is shown to be precisely the third cumulant K. (Amari,

1990, p132), and so the parameterization that zeros the (—1/3)-connection pro-

duces zero asymptotic skewness.
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2.11.3 Information Connection

a=0: GL

The O0—connection is
0 1
I‘abc = (LabLC) + §(L3Lch) .

Thus
0

2 T = 2(Lach) + (LaLch) = cLab - ach - cha .

abc

Now if

this implies that

0 o’L 0 L 0 O*L

E —
56, P 30.06.) ~ a0. P 39,06, * 26, P 56,00,

Using the other combinations of a, b and c yields similar equations, viz

a=b+c¢
c=a+b
b=a—+c

where

a = cLab; b= ach) c= cha-

The only solution is
a=b=c=0
which implies that the matrix
Bt
00,06,

is constant, for arbitrary a and b. So a transformation which zeros the 0—connection

produces constant (co)-variance with respect to the new parameterization. Note
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that this result does not require that the likelihood be derived from a curved expo-

nential family necessarily, nor that it be exponential in the transformed parameter.

2.11.4 ‘Normal’ Connection

a=1/3 GL

The normal connection is

1/3 1
Pabe = (LapLe) + S (LaLuLe) .

abc

Cycling the indices yields
1/3 1
I\bac = (LbaLC) + E(LbLaLc)

and
1/3 i
I\cab = (LcaLb) + E(LCLaLb) .

Summing these three (= X), implies that if the (1/3)-connections are zeroed, then
Y=0= (Lach) + (LbaLc) + (LcaLb) + (LaLch) = _(Labc) .
Invoking the third equation of Bartlett (1953b), viz

_(LaLch) = (Labc) + (LaLbc) + (LbLac) + (LcLab) )

1/3
means that if T',,. =0 then (Lapc) = 0, to give

0L
P onan,00.) ="
Thus, the matrix of expected third derivatives of the log-likelihood is zero, pro-
ducing ‘normal’ likelihood in the terminology of Hougaard (1982).
This result holds for generallikelihoods, not just for the transformed parameters

of curved exponential families.
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2.11.5 Exponential Connection

a=1 CEF

If the exponential family distribution is canonical in the transformed parameter,
then
1
(LapL) =0— T,,.=0

1
If the transformation induces I',,. = 0 then (L.,L.) = 0, but it is not necessarily

true that the family be (curved) exponential, as shown in Appendix B.5 and Amari

(1990, p152). The same comments applied to the one-parameter case.

Comments

It should be noted that in line with the one-parameter case, the cases & = 0 and
a = 1/3 produce results that hold for general likelihoods.
Table 2.3 presents the values of o and the corresponding conditions under which

the previous statistical interpretations of a zero a—connection can be made.

a 1 (-1/3 00 [1/3]1
Condition | CEF | CEF | GL | GL | CEF

Table 2.3: Conditions for the interpretation of & : multi-parameter.

Of course, the problem is to find a parameterization that will zero the a-
connection. In general, such parameters need not exist. However, local parameter-
izations can be defined that satisfy the conditions required in a small neighbour-
hood of specific values. Thus, any of the given conditions can be fulfilled locally
by a particular point; see Amari (1990, pp150-152).

For example, using Normal errors and a nonlinear response (nonlinear regres-
sion), a Taylor’s expansion can produce an approximating model that is linear in
the parameters with

Ly =0

abc
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So, in a small neighbourhood of the expansion the parameters are locally canon-
ical (linear). This linearity forms the basis of iterative solutions to the fitting of

nonlinear regression models to data.

2.12 Dual Space
For the general exponential family defined by
{=0'y; — (8) + c(y)

the parameter space defined by 0 is called the natural parameter space.

The dual space contains the space of expectations; see Amari (1982a, p366).
This is the space used by Bates and Watts (1980) in examining the differential ge-
ometry of the nonlinear regression model. The expectation surface is characterised
by

£ = (51,---,@1)
with
& = Eo(y:) = 9:1(0).
There is a 1-to—1 correspondence between € and 0. The space of expectations is
exactly the space of fitted values, and is of importance since it is the coordinate
system in which the Cramer-Rao bound is attained. It has the further property
of causing the mixture (-1)-connection to vanish in the same way that the expo-

nential (1)-connection vanishes for the natural coordinate system.

2.13 Generalized Linear Models

The essential consideration in examining generalized linear models (GLMs) is the
extension from Normality to statistical distributions of other types. Much effort
and ingenuity has been expended on Normal linear theory, and the success of GLMs
has been partly due to many results of Normal linear theory and applications being

subsumed in the theory of generalized linear models. Two such examples are the
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implementation of the GLIM fitting algorithm, and the analysis of deviance of
sequentially fitted nested models of increasing complexity.

The differential geometric approach offers a vehicle for expanding the results of
Normal theory into the non-normal structures of GLMs. Consequently, frequent
reference to the Normal case will be made as a special example of a GLM.

For a GLM, the contribution to the log—likelihood Z for a single observation is,
using the notation of McCullagh and Nelder (1989),

in f4:6) =

A general exponential family is represented by

+c(y, ¢).

€= c(y) + 0'y; — ()

yielding
Okl = yx — Ok
and
0,0;¢ = —0,0;¢ = —g;;
So, taking expectations gives

o 1l -«
Fijk(e) =

E(0,£0;£0:2)
The skewness tensor T;;; can be written as
Tiw € E(5£0;00:0) = —E(8:0;04¢). (2.15)

from Bartlett (1953b, p306), and Amari (1982a, p365).
For a GLM with unit scale parameter, (a(¢) = 1),

giving!®

195, is the Kronecker delta, viz

I
<

.
RN
.
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Tijx = 0" (0%)Eyj (2.17)

where E;j is defined by
Eijk:17 if ’{,:j:k,

=0 else

giving
e l—«
ik () = —Z—Tijk, (2.18)

where I and K are nonsum indices, as described in Section 1.8.2. However, Equa-
tion (2.18) is for the canonical parameter 6. The only GLMs for which these
canonical parameters are of specific interest are simple analysis of variance mod-
els, ie., models using categorical predictors only?®. Usually a transformation to
the parameters of interest (3) will be required, assuming @ = 6(3), vian = X3
and the link function g defined by g(p) = n. There are various equivalent forms

for the linear predictor 7 , vizg,
n=XpB
and
i = Q(Ni) = XiTﬁ = ZXijﬁj = Xijﬁj-
J

Any of these forms may be used to describe the linear predictor.

Note

The definition of Fj;; corresponds to the generalized Kronecker delta di jx of Amari
(1990, p43). See also McCullagh and Nelder (1983, p237, Appendix D, A.21a) for

an equivalent definition of the skewness, allowing for differences due to the scale

parameter.

20The choice of link function is irrelevant as the fitted values are effectively the parameters.
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2.13.1 One—dimensional GLMS

The application of this differential geometric technique to the generalized linear
models of Nelder and Wedderburn (1972), in the one dimensional case, is now
investigated.

In the trivial case of a null model, 8, = 8 Vi so

« 1-a_[(0\’ 1-a 3¢ e 1—ab”8)
= E{— = — = = —
= (M) 2‘E<am> 2 T T2 alg)

using the results of the previous section, or Bartlett (1953a, p13). For example,

given Normal errors

Tp=0 V0,

since

6 =p, b(6) =622 = b"(9) = 0.

This give zero skewness, as is expected for a symmetric distribution.
The one-dimensional GLM of interest is of course one for which the single regres-

sion parameter () produces a ‘line of means’ y; = b'(6;) via the link function
g(w) = X "B =n;

Such a model is a special case of a curved ezponential family, in the terminology

of Efron (1975).

2.14 Regression coefficients in GLMs

For a curved exponential family imbedded in a multi dimensional parameter space,
the regression coeflicients of interest () are imbedded in the space of natural
parameters (8). For a GLM, the relation describing this imbedding is

0" = £(Xi;8).

A full notational description of this relationship and the role played by the linear
predictor is given in Appendix B.7. Amari (1982a, Theorem 3, 4.6, p370) gives
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[0 [0
the mechanism for writing FB in terms of I';g, ¥ being the natural parameters
(coordinates).?! This result will be referred to as the ‘imbedding theorem’, as it

will be cited frequently.??

2.14.1 Imbedding

A set of m regression coefficients (u) is contained within the set of 7 natural

parameters () where m < n. So 9" = ¥*(u) [ 6 = *(83) for a GLM]. Now

f(y;u) = f(y; 9(u))

and
0
9, & =1,2,...
81[,"’ ? a ]'7 27 ? m
giving
0a£(y; uw) = B (w)0;6(y; 9(u))
where
: o
B = .
)=

Subscripts abc will be associated with u, 15k with 9. Corresponding GLM relations
can be written for 8 and 3, using u = 3 and 8 = a(¢)V.

2.14.2 Imbedding Theorem

-« . a . . .
The expression of the a—connection (T'g.) for the regression coefficients in terms

of the a—connection ((f‘ijk) of the natural parameters (or coordinates), is given by
P (u) = (0.B})Bloy; (9(w)) + ByBIBE Lk (9(u). (2.19)

A derivation of this relation is given in Appendix B.8. For a GLM, this relation

becomes

Pase (8) = (8.B}) Blg;;(0(8)) + BiB}BE T (6(8)) (2.20)

21The variable ¥ will be used for the natural parameter in Amari’s (1982a) formulation when

ambiguity with the canonical GLM parameter 6 arises.
22K ass (1984, p89) uses the term ‘inheritance’ relation.
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as @ and ¥ only differ by the scale parameter a(¢), since ¥ = 6/a(¢). The terms
B} in Equation (2.20) are defined for € so that

. 08"

Bb = a_ﬂb,

whereas the terms B! in Equation (2.19) are defined for 1 so that
B: = @Z
b — 8[3”
as given in Section 2.14.1.

To reconcile Equation (2.20) and Equation (2.19), the expression for an affine
connection in one coordinate system in terms of the affine connection in another
coordinate system is invoked (Amari, 1982a, 2.28, p364).2 The transformation
equation for the a—connection (Amari, 1982a, 2.28, p364) is rearranged to give

Equation (2.21). The coordinate transformation defined by Amari was

n = n(0)

with the prime indices being associated with 7. The transformation equation

(2.28) of Amari (1982a) was

Fi’j'k’ - (81/ B;?) Bi/glm + Bfl B;IIIBZ/Flmn (22]‘)
where
o6
B) = .
(3 8771

The coordinate transformation from € to 9 implies corresponding indices {mn to
'4'k'. in the notation of Amari (1982a, p364). The use of the prime indicates
that the transformation from @ to ¥ is 1:1. The 1:1 transformation involved in
9 = 9(8) is different to the imbedding relation ¥ = ¥(8), and so Equation (2.21)
is different to Equation (2.19), even though their forms are similar. For a GLM

0 = a(¢)V

23The trailing term in equation (2.28) of Amari (1982a, p364) pre-empts this study.
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giving
oLk
B%/ = =5 = .
()
This implies that
Oy B} =0

giving the a—connection in terms of ¥ as

Fi/j/kr(ﬁ) = Bf/B]TBITcL'Flmn = a3(¢)rlmn(9)-

Metric

The metric g,y for the regression coefficients (u = 3) in terms of the metric g;; for

the natural parameters 19 becomes
gas () = BLBlg; (9(w)). (2.2
The derivation follows from the definition of the metric, namely
9a(B) = E[0,00,¢) = E [B.0:(B}0;(] = BLB}E [6:¢0;£] = BiB}gs;(0).

This result will be used later in conjunction with the ‘imbedding’ theorem. The

metric for 9 expressed as a function of the metric for @ is
g¢5(9) = BiBlig(0)

where the prime again denotes the 19 coordinate system. Since

ol
09"

Bf = 2 = al9)

this gives
G5 () = a2(¢)9kl(9)'

Scale Parameter

Gathering results for the a—connection and the metric gives

Fijlc('ﬂ) = a3(¢)rijk(9)
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and

9 (0) = a*(#)g:;(0). (2.23)
To convert Equation (2.19) to Equation (2.20), it is necessary to convert from ¥
to 8. In Equation (2.19), B} is

N & o9 96! 1 -
$= o5 = Ghop  ald)

where the index I is nonsum taking the same value as the index 7. Continued use
of this chain rule leads to cancellation of all generated terms in a(¢), leading to
Equation (2.20).

The interpretation of this phenomenon is that the scale parameter affects the
a—connection for the natural parameters (I';;x), but not the a—connection for the
regression coefficients (I'gp.). This is due to I';;; being a function of derivatives
of the likelihood with respect to the natural parameters, while Iy, is related to
derivatives of the likelihood with respect to the regression coefficients, and so g

is independent of changes of scale in the natural parameters.

2.14.3 Normal Distribution

For the Normal distribution,
6' =it b(f) = (69)2)2, = b'(0) =1, — V" (6") =0.
This gives the a—connection for the natural parameters as
ﬁijk (9) = 0,
since
I (8) o b"(6)

as given in Equation (2.17). Reworking Equation (2.23), and substituting a(¢) =
o? gives

1 1 1 i
9:(0) = ngj(ﬁ) = '0_491']'('(9) = ‘0_4<026ij) = 0—;-
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So the a—connection for the regression coefficients becomes
Tase (8) = (0.B}) Blgi; = (0uB}) Bloi; /o,

as in Section 3.5.1.

2.14.4 Normal Linear Models
For these models, the link function is the identity and the errors are Normal giving
Hi = ,Lti = Xijﬂj .

In this case the distribution is symmetric, so the skewness tensor T}, vanishes®*.
. a . . - . . .
This makes [';;x (8) = 0, as shown in Section 2.14.3. Since a linear model implies

a canonical link for the Normal distribution,

to give
0,B; =0
which gives
lgabc (B) =0

So all the a—connections for 3 vanish, showing that all the conditions associated
with key values of a such as unbiasedness, zero skewness, constant variance and
‘normal’ likelihood hold for the Normal linear model without the need for trans-

formation, as stated in Hougaard (1982, p249).

2.14.5 Nonlinear Regression

For the nonlinear regression problem, the mean is a nonlinear function of the

predictors, giving
Mi =0 = f(X5;8)

24(91’(9][ = _(Sij = 8¢8j8k£ =0.
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and

i o' 3f(Xi;ﬁ) def
Bb = 8/817 - 8/61) = f;ﬂb'

So
f‘abc (8) = (@Bg) ngij = (3af;b)f;'c5ij/02

even though ﬁ'jk (@) = 0, due to the distribution being Normal. As in the Nor-
mal linear case, all the a—connections are identical, since f‘abc () is not related
to a. This of course means that any transformation which zeros one of the a—~
connections zeros them for all o.. So all the properties corresponding to special val-
ues of o can all be satisfied simultaneously, as shown by Hougaard (1982, p246),
for one-parameter models. As outlined by Kass (1984), these properties include
unbiasedness, stability of variance, lack of skewness and normality of likelihood
(zero expected third derivative of the log-likelihood).

This simultaneity is a special property of the Normal distribution, which does
not necessarily hold for general non—normal errors, since ﬁ-jk# 0 in general. For

corroboration see Amari (1990, p156), and Kass (1984, p90, Proposition 2).

Note

The class of models defined by Wei (1994) are related asymptotically to nonlinear
regression models. This is due to the constraint imposed by the regularity condition

[Wei, 1994, p328, (a)], viz,

1LEL@)] < M(0)/n

abc
with
EM(0) < K
which imply that the skewness tensor vanishes asymptotically.?> As demonstrated

by Kass (1984), the only family of distributions for which this occurs are Nor-

mal with known (co)-variance. Hence it would appear that ‘close to Normal’

23In Amari’s notation Tjj; — 0.
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families only are being addressed by this class of model. Since asymptotic Nor-
mality is implied, the skewness tensor T;j;; vanishes asymptotically and a ‘common’
affine connection is implied, i.e., fabc is independent of . So all the properties
of nonlinear regression models will be inherited asymptotically, see Kass (1984)
and Amari(1990). Hence the question of which connection to use is irrelevant

(asymptotically).

2.14.6 Generalized Linear Models

A feature of Generalized Linear Models is the factorisation that occurs in B, viz,

;000 Of(X]B)  Of(Xyp)
Bb = b = b pennd 5 = f;b
a3 s ap
and so
Bi . afz 87}1 . afz le.

. ong 0p°  ony
The factorisation can be expressed as

o,

fl =
1/ anl

X1

and is related to simplifications used in the fitting procedure of the GLIM algo-

rithm. To elaborate, fitting general models of the form

to non—Normal data, as reported in Seber and Wild (1989, p34), can be effected via
the IRLS (Iteratively Reweighted Least Squares) algorithm due to Green (1984).

At the core of this method is the factorisation

a¢ 0 b5
00: ~ Bf, 06"

For the GLIM algorithm, the analogous development is to factorise the derivative

of the log-likelihood as _
ot ot onp C%X--
opi O 9Bt omit Y
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using the notation of McCullagh and Nelder (1989, p41). Further simplification of
0¢/0n leads to the form of estimating equation peculiar to the GLIM algorithm.

In particular, for canonical links (6 = 7)

oe  0¢ do’ du? ¢
o~ 069 dp? dn? ~ 969

leading to a simplification in the Hessian matrix ( matrix of expected second
derivatives of the log-likelihood with respect to the regression coefficients).

The a—connection for the regression coefficients 3 is
Fabc (:3) = (aaBz) nglj + B(ZngBf f‘ijk (9)

The application of the above factorisation to this general form of the a—connection
for a GLM is further developed in Section 2.15.7.

The partitioning of model/link effects and distribution effects for a GLM adds
a layer of complexity on top of that experienced for Normal errors. The error
distribution affects I'yp. via I';j and the metric g;;. The model/link function
affects the terms B} only. Thus, both terms in the a—connection are affected by
the error distribution and the form of model as determined by the link function.
Since the first term can be zeroed by choosing a canonical link, it is termed ‘model’
dependent, whereas the second term is deemed to be ‘error’ dependent since it can
be zeroed by choosing Normal errors. So the situation for GLMs is an extension
of Normal error models where intrinsic and parameter—effect curvatures are model

dependent, but the distributional contribution I';;; is zero.

2.14.7 Canonical Links

For a GLM, the link being canonical implies that
0" = 77i = Xz'jﬁj

SO

T ouwb T 9Bt 8t

B; ib-
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This implies that
0.8} =0,

giving
lq‘abc (B) = BiBng lq‘ijk (0) = Xia X6 Xke lq‘ijk (9)

as the expression for the a—connection for the regression coefficients.

Notes

e As pointed out by Kass (1984), the ‘inheritance’ relation, Equation (2.19), is
true not only for the exponential family of distributions, but also for general

likelihood functions.

e The first component in Equation (2.20) is model dependent, since it can be

zeroed by choosing a canonical link.

e The second component in Equation (2.20) is distribution dependent, since it

can be zeroed by choosing Normal errors.

e A related but not identical relation to Equation (2.19) has been derived
independently by Kass (1984) for the reparameterization of one-dimensional
models. In this case the transformation is one—to—one, but as can be seen in
Appendix B.9, a similar relationship to Amari’s (1982a) imbedding theorem

is obtained.

2.14.8 Summary

The general form of the a—connection for the regression coeflicients is given by
a . . i . [o%
Tase (8) = (8uB}) Blgs; + BiB} B¢ Tiji: (6).

The form of this a—connection 'y, is given below for several special cases.

Normal errors (nonlinear regression)

]-q‘abc (:8) = (aaBz) ngz] = (&sz) Bgdi]‘/UQ + 0
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Normal errors (linear model)

[abe (/8) =0

GLM

2

Tate (8) = (0uB}) BV (67)6:3/a(6) + —— BLB] BEY" (9%) Eyyefa(9).

GLM (canonical link)

a j 111
5 B B} BV (8%) Eyj[a(9).

Fase (8) =0+ BBIBF [y (0) =

So, both terms in the expression for I'y;, contain expressions such as B} which are
affected by the model parameterization as determined by the link function. The
first term can be called ‘model’ dependent and the second can be termed ‘error’

dependent, due to the conditions that cause them to be zero.

2.15 Exponential Connection and GLMs

2.15.1 Theorem

The exponential connection in terms of the regression coefficients is zero if and

only if the link function is canonical for a generalized linear model.

2.15.2 Preliminaries

The proof is almost trivial in the sense that a canonical link for a GLM implies
exponentiality with respect to the regression coefficients?®. Thus the exponen-
tial connection associated with the regression coefficients must be zero, since the
distributional form is then of the exponential type with respect to the regression

coefficients. Following the notation of Amari (1982a) for curved exponential fam-

ilies defined by the distribution function

f(y; 0(u))

26 A canonical link also implies sufficiency.
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with?7
b = HX7)
for a GLM, it follows that u = 3.
Subscripts abc will be used for the regression coefficients u,

and subscripts 77k will be used for the natural parameters 6.

Connections can be defined in terms of the regression coefficients, viz
T (w) = B(8,05£0,8) + S E(8,£0,00,0)

T, () = E(8,0,0,0)

m

Toe(t) = Ty (u) + E(8,£05£0,0)

m

Fope(w) = 6 Topo(w) + (1 = 8) Ty (u).

2.15.3 Proposition
The precise mathematical statement of the theorem can now be given as
1. For a GLM with a canonical link, lgabc(u) = 0.

2. If f‘abc(u) = 0 for a GLM, then the link function is canonical.

2.15.4 Proof

1. In terms of the natural parameters 8,
[,,4(8) = E(8,0,£0:) + 6 B(8:£0,£0,.)

with
€ 1
Fz’jk(e) = Fijk(e) = E(aic’?jlfaké).

For the exponential family

0= cly) + 0y — ¥(0)

27Using the notation Appendix B.7.
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[x(8) = E(8,0,00,8) = E(=3:0;00k8) = E(—g5,04¢) = 0
by virtue of the score statistic. From the imbedding theorem (Amari 1982a)
Cuse(w) = (0.3) Blg,, + BLBIBE T,,.(0(w)
giving for oo = 1 (the exponential connection)??
Fuse(w) = (0.5}) Blgy; + BLBIBE Ty,(60(u)).

Now
e

Fijk(e) =0

for exponential family models, giving
Lose(u) = (8.B;) Blgy;.

Since the link is canonical,

2 = gzb = g—gb = Xi
glving |
0,B; = 0.
Thus
o) = 0

as expected.
2. If the exponential connection with respect to B vanishes, then
[
1'_\abc(u') =0

implying that
(8aB;)ngij + BlBng f\ijk(e) =0.

However
Fijk(e) =0

28Tt is assumed that the scale parameter a(¢) = 1.
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since the family is exponential with respect to 6,
(8aB})Blgi; = 0.
Excluding trivial models, this implies that
0.B; =0

ie., B} is constant. Now?

of (XiTﬁ) _ of; on;

Bt = -
’ 0 Oy 8°’

SO

of;
ony

X1

is constant?0.

This implies f oc 7 which defines f as a canonical link, as § = f ~» 6 7.

2.15.5 Interpretation

For exponential families of distributions
o l-«a
Fijk(e) = TTijk
and
Lape(u) = (8.B}) Blyi; + BLB]Bf Lk ().
The results of the previous Section will now be used to investigate these a-

connections for GLMs.
29Using the notation of Bishop and Goldberg (1980), a repeated upper case superscript and

subscript will be taken as a nonsum index. Such an upper case index will take on the same value

as its lower case counterpart.

sog, g xT3).
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2.15.6 Canonical Link

If the link is canonical, then
0.8 =0
giving
[ue(w) = BLBIBLOT,j4(6).
Now in general

P (w) =0 Top(te) + (1= 6) Tyelw)

1.e.
Popew) = 6] Tapelw) = Lopolw)] + Loeltw) = 6T
where
Tove = E(0,00,00.0) = B B} B*E(0,£9;£0,¢) = B.B] B} Tjx.
So

B (u) = BB B 6T;;(8) = 6T

and, since the link is canonical,

o l-«a
Lwe(B) = 5 Xia X 6 Xk i (0). (2.24)

In agreement with Amari (1982b, p4, 2.10), the following definition is given for

the skewness of the score function

c
Tove= XiaXjpXecTijk - (2.25)

2.15.7 Non—Canonical Link

When the link is non—canonical,

ﬁ == 5Tabc + fabc

abc
ﬁabc = 5BZLBZB§T;]I€ + (aaBg)Bfg]k + B;BIJ)Bf Fijk'

Now
i 0F O (x78) of,

= Xra
ou® op° ony !
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giving

4 8f Ofy
r be = 8 Tyope +0, (8 JXJb> 877 Xchyk

e ¢
since [';; = 0. The skewness Ty, is defined as

¢ o of; of; of, of, of; of
Toe= B:B!B*T;; <:X XX geor 2L Tk~ k
b b ik S e v L By B0, Bnr Tabc (2.26)

c
by extending the previous notation for T,;, . The a—connection is now

£ of; of; o 0 <8f ) o

=6—Xp,—1X Xk
abc — 81 IaJ JbaK KTJk 8ﬂa 877 Xch]k)

which gives

o f. . .
Lope = 52X 10 X o Xk Tiji of: Of; O 0 <8f] ) O

+
On; Ony Ok~ Ony
and, finally

of; of; ofk
ony 377J Onk

£ e(B) = 552 X10 X0 X0 T4(6) (

0%,  Of
) XIaXJbXch]k< : _L)

Onrony Onk
(2.27)

2.15.8 Discussion

The two Sections 2.15.6 and 2.15.7 can now be compared. The following points

can be made
e Equation (2.27) reduces to Equation (2.24) when the link is canonical.

e The second term in Equation (2.27) is independent of «, and is just the

€
exponential connection I',.(3).

e Because the second term in Equation (2.27) can be zeroed by choosing a

canonical link, this term is model dependent.

e The first term in Equation (2.27) is error dependent, since it can be zeroed
by choosing Normal errors. This term is proportional to the skewness tensor

¢ : .
Tobe, and will be exactly equal to the skewness term in Equation (2.24), when

the link is canonical.
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The results obtained in Equation (2.24) and Equation (2.27) can be compared
with those of Pregibon (1980) and Efron (1975).

1. The a—connections derived in Equation (2.24) and Equation (2.27) form the
basis of a test of link adequacy, by comparing various link functions with the
canonical link, which some statistical packages use as the default. Pregibon
(1980) has proposed a goodness—of-link test that subsumes the ‘correct’ link
function into a family of types and compares alternatives via the deviance.
The proposed test would have a different focus, since it involve comparisons
of link functions with the default (canonical). The idea for the type of test is
suggested by the form of the a—connections for canonical and non—canonical
link as given in Equation (2.24) and Equation (2.27) respectively. As shown
in Section 2.15.6 and Section 2.15.7, these a—connections are related to the
skewness of the score function. In particular, the skewness of the score with
respect to the regression coefficients can be written in terms of the skewness
with respect to the natural parameters. It is this relationship that forms the
basis of the test for a canonical link function. The test proceeds by fitting
the canonical link to subsets of the data to determine if the relation between
Tuse and T is linear, as suggested by Equation (2.25). Departure from
this suggested form, would be taken as evidence of the link function being

non—canonical. This test is described via examples in Section 2.15.9.

2. Efron(1975) has defined a measure of statistical curvature that vanishes for

exponential families. The measure of statistical curvature 7y is defined by

72 _ Vo2 Vp
9= 5 T T3
g g

where

, %4 o\’
0=-5(5) (%)

o20\°
V02=E(@) — i
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and

o0 9%¢
=g (5@%) -

The single parameter of interest is #. The estimate of statistical curvature -y,
is designed to be a measure of the nearness of the model to an exponential
family type. Such exponential family models exhibit desirable statistical
properties such as allowing the application of linear methods, encompassing
locally most powerful tests and efficient estimation (Seber and Wild, 1989,
p160). So, models with low statistical curvature could be expected to behave
in a similar manner to such exponential family models and to inherit their
corresponding good statistical properties. For an exponential family, the

log-likelihood is defined by
£=yb —(0) = c(y)

to give

80/00 = b =y —'(0), 8°/36° = £ = —"(8).

The square of the statistical curvature 7, becomes

’YZ Vo2 Vn
9= 5 — —3

%ot
where ig = 9"”(6). Since

VOQZEéQ_ig:O

and
vy = Bl = —"E£=0

by the score statistic, then vy = 0 for an exponential family. This measure
of statistical curvature is defined for one parameter models subject to reg-
ularity conditions similar to those described in Section 2.1.2, (Efron, 1975,
p1191 and p1196). One parameter models which are curved subsets of higher
dimensional exponential families are called ‘curved exponential families’, as
defined in Section 1.7. For such models, Efron (1975) showed that the bias

and asymptotic variance of the MLE contain terms involving 7y and ‘naming
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curvature’, so called as it is dependent on the form of model parameteriza-
tion. An interpretation of 7y is that the loss of information due to curvature
reduces the sample size from n to n—~~7 , since the MLE extracts all but 792
of the information in the sample. Extension of Efron’s curvature to the multi—
parameter case was considered by Reeds (1975), in the discussion of Efron’s
paper. The extension was to multi-parameter curved exponential families.
Reeds (1975) noted that, in the single parameter case, a transformation can
always be found that will eliminate naming curvature (parameter—effects cur-
vature), but that this is not necessarily so in the multi-parameter case. This
transformation feature is reported also by Amari (1990), Kass (1984), and
Hougaard (1982), for curved exponential families. The measures of statisti-
cal curvature and ‘naming curvature’ of Efron can be shown to be related
to those of Bates and Watts (1980), for the case of Normal errors. The
statistical curvature of Efron then becomes the intrinsic curvature of Bates
and Watts (1980), as described in Seber and Wild (1989, pl160). The cor-
responding ‘naming curvature’ becomes the parameter—effects curvature of
Bates and Watts(1980), as described in Bates and Watts (1981, p1166) and
Seber and Wild (1989, p164).

The acceleration and velocity terms given by Efron (1975, p1196, equation
4.2) can be used from the general case to verify these assertions for Normal
Errors. Using the notation of Bates and Watts (1980), the intrinsic curvature
is
N _ |77 |
12

while the parameter—effects curvature is

T _ ‘77 | '
172
Using the orthogonal decomposition of the acceleration in (4.2) of Efron
(1975, p1196) gives

140 1481

= | hi= 2
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and
,YN |i’Y |

1

as required. A unit scale has been used throughout, since from (4.1) of Efron

(1975, p1196), & = I.

Although Efron’s measure of statistical curvature is defined for one-dimensional
models, several observations can be made that extend to cases of general in-

terest and application.

e For a GLM that consists of a constant predictor only (the null model),

0; = 8 V 1, the likelihood is
In f(y;;6) = y;60 — b(6) + c(vs)

giving v1; = gz = 0 to yield

Ma _ Vay V11 = x 0
V11 Vo2 0 0
causing 75 = 0 as expected, since § is then the natural (canonical)

parameter. The form of link function is irrelevant.

e Consider the Poisson regression problem of Efron (1975, p1193). For

the stated problem
ng = In(a + 6b;)

where 7 is the natural parameter in Efron’s notation. If the canonical

link (log) is chosen, then
ng = a + B

and M, and 7, have the same values as the null model, as expected.

o The one-parameter family described by Efron (1975, p1194) as

ng=a+bT(9)
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is a superfamily of one-dimensional GLMs, since for a GLM the natu-
ral parameter 7 is in linear form ( ie, ‘canonical’, in GLM terminology)
as a function of 6.3} Hence the statistical curvature Y6 1s zero. This
highlights the fact that Efron’s (1975) statistical curvature is the expo-
nential curvature, which explains the alternative connotation of ‘Efron’
for the exponential connection, as defined by Dawid (1975). Note that

n is the natural parameter in Efron’s (1975) notation.

e In the one dimensional case, the exponential connection is

e ot . 0%
IVES E(@)(@;) = v11(0)

where vy is as given by (3.21) of Efron (1975, p1195). Since Ie‘g is the
exponential connection, then v1;(€) = 0 for exponential family models,
again reinforcing the name ‘Efron’ for the exponential connection given

by Dawid (1975).

2.15.9 Link Adequacy

This section describes a test for judging the adequacy of a canonical link in the
fitting of a GLM to data. From Equation (2.25), the form of the skewness of the

score function for a GLM with canonical link is
c
Tope= XioXjpXicTijk (2.28)

whereas for a non—canonical link the skewness relation becomes [from Equation (2.26)]

4 of, of; Ofy of, of; of, _C
Top= 2% S p 95 Tk p 9.29
= By Ony Onx 7F T B Oy o~ (2.29)

So, the rationale of the test is to calculate the LHS in Equation (2.28) from the data
and to compare this with the RHS in Equation (2.28) as calculated from the data,
using the form of T, suggested by a GLM with canonical link. Departures from a
linear relation between Ty, and T, will be taken as evidence of the link being non—

canonical, since such a departure is suggested by Equation (2.26). Some recasting

31For a GLM, np =0 = 7(6) and b = 567)
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of Equation (2.28) is needed to allow the calculations to be performed in terms of
the regression coefficients and not the score function based on those coefficients.
To simplify this recasting, the calculations will be demonstrated on a GLM with
Poisson errors, since this allows some simplification over other error types. As the
test is based on the assumption of the link being canonical, Equation (2.28) will
be used. A one dimensional derivation will be presented to highlight the approach
with a minimum of complexity. The first step is to convert from skewness of the

score function to skewness of the regression coefficients, since
Tope = E0,£0,£0.4.

Using a result due to Bartlett (1953a, p315, (27)),

0L 0L 02
o5 op &52

where L(= /) is the log-likelihood in Bartlett’s(1953b) notation, and 8 and 6
follow from the formulation of a GLM due to McCullagh and Nelder (1989). This

(B-8)+. (2.30)

gives 7
OL 0
0= 3ﬁ 0ﬁ2 (ﬂ )+ >

which becomes
oL 2L
08  9B?

The second derivative can be expressed as

L 8 (0L>_ 9 (azzae)_ 8 (a )ae dL %0

(6-8)+

opr op\as) 0p\dgaop) o o " 80 9p*

NALT T Y A

~ 99 a8 aﬂ 00 052 062 \ 98 90 632
If the link is canonical in the GLM, then

y6 — b(0)
L="+1""+...
a(¢)
giving
oL y—1V(9)

00— a(9)
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and
0L _ _b”(@)
002 a(¢)’
with § = n = X leading to
00
% == X
and thus
0%0 0
0—132 = U.
Hence
82_L _ 0L, o b"(0)
o7~ o T alg)
giving
oL  0°L ;- _b"(e) -~
55~ o P P) =g X (B-5).
So, now
OLN> (O s 5 3
5(55) =) -9

giving the skewness as

oL\° R LN
Tope =E (%) =K (ﬂ - ﬂ)g (a((gzﬁ))> X = XX p X Tige = X°0"(0) /a(8)?

using Equation (2.17) in Section 2.13. For Poisson errors, a(¢) = 1 and b(f) = €’

yielding
b'(0) =b"(0) =b"(9) =b(0) = A

where A represents the mean value (fitted value). If this mean is denoted by f,

then
E(f-p) =xf (2.31)

So, a plot of the (raw) skewness against X3 f~2 should be linear if the link is

canonical.

Rationale of the Test

If the link function is canonical, the resulting graph of estimated skewness against

expected value (of the skewness) should be linear, by virtue of Equation (2.28).
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If the link function is non—canonical, then the resulting graph will not necessarily
be linear, as predicted by Equation (2.29). The following set of Examples have
been chosen to demonstrate these two cases (canonical and non-canonical link)
empirically. In practice, for a given set of data, various link functions would
be tried, and the corresponding graphs used to decide on the appropriate link
function. Ultimately this test judges the link function as being canonical by the
linearity of the plot of observed versus expected skewness. As the user will not
know the true link function in reality, another variant of the simulation could fit
the canonical link function to data generated from a non—canonical link. Likewise,
a non—canonical link could be fitted to data generated from a canonical link. Both
of these variants on the simulation would check the ability of the test to determine

departures from canonicality.

Test Examples

Several simulations were run to demonstrate the workings of the approach. The
examples are adapted from the problem given in Dobson (1993, p42). The same
experimental design has been used in all the Examples. Simulated data (Y) from
the Poisson distribution were generated twice at each of 5 levels of the predictor
variable (X = 1,2,3,4,5), giving 10 observations in all, with different link func-
tions expressing the relation between the expected value of the distribution and
the predictor, eg, for the identity link, E(Y) = SX. The link functions used in

each of the examples are given in Table 2.4.

Example Link

Reciprocal
Identity
Logarithm

(> OV N R )

Square Root

Table 2.4: Link functions used in the Examples.
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A sub-sampling scheme was used whereby 3 data points corresponding to con-
secutive predictor values were used and the known model fitted to the data. This
was repeated for all possible combinations within each cell of 3 consecutive X val-
ues, generating 8 sets of 3 data points covering X = (1,2,3), (2,3,4) and (3,4, 5).
The 8 regression coefficients so obtained were used to estimate the skewness of
the regression coefficient ,3 in 2 lots each based on 4 regression estimates. These
two skewness estimates were taken as representing the skewness of the regression
coefficient in the model centred at the median of the spread of predictor values.
Thus, skewness estimates were obtained for X = 2 3,4. The skewness estimates
found were plotted against X ~°f~2? and the relation judged for linearity. Depar-
ture from linearity in the plot of observed skewness against expected skewness

should indicate that the link function differs from the canonical.
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Example 1

The data given in Table 2.5 were generated from a GLM with reciprocal link and

Poisson errors. The expected value was given by
EY)=1/8X, X=1,2,...5

with § = 0.1. Using the procedure described in ‘Test Examples’, the skewness
[K3(s)] of the regression coefficients centred on X = 2, 3,4 was estimated using
the statistical package SPSS (Norusis, 1993). These estimates of the skewness are
given in Table 2.6, together with their standard errors (SE).

Since this link function was chosen to be unlike the log link (canonical link for
Poisson errors), it is expected that the plot of observed skewness versus expected
skewness should be unlike a linear relation. This is verified from the plot given in
Figure 2.7, where the pattern of response is clearly nonlinear. The label ‘skewness’
refers to observed skewness(standardized in SPSS), while the label ‘expected’ cor-
responds to X 3f~2. The difference in scale between ‘skewness’ and ‘expected’ is

due to the standardization of observed skewness by SPSS.

Y | 12,17 1 8,6 | 43|41 |13
X 1 2 3 1 4|5

Table 2.5: Example 1 : Poisson data with reciprocal link

X
2 3 4
Ki(s) | 0.17 013|022 025 091 1.01
SE | 0.08 0.07 | 0.08 0.09 |0.10 0.11

Table 2.6: Example 1 : Skewness and the standard error of the coefficients

This Example has demonstrated empirically the behaviour predicted by Equa-

tion (2.26), ie., the form of skewness for non-canonical link.
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Example 2

The data given in Table 2.7 were generated from a GLM with identity link and

Poisson errors. The expected value was given by
EY)=p0X, X=1,2,...5

with § = 5. Using the procedure described in ‘Test Examples’, the skewness
[K3(s)] of the regression coefficients centred on X = 2,3 4 was estimated using
the statistical package SPSS (Norusis, 1993). These estimates of the skewness are
given in Table 2.8, together with their standard errors (SE).

For this link function, no obvious skewness is present and so a plot is not given.
It is clear that there is no obvious relation between the skewness and the expected
value as calculated under the assumption of a canonical link. This link function
is obviously not similar to the log link, which is the canonical link for the Poisson

distribution.

Y (56| 12,11 | 15,11 | 18,27 | 28,24
X1 1| 2 3 4 5

Table 2.7 Example 2 : Poisson data with identity link

X
2 3 4
K3(s) | -0.001 0.001 | 0.000 0.000 | 0.000 0.000
SE| 040 040 | 0.63 0.63 | 047 0.47

Table 2.8: Example 2 : Skewness and the standard error of the coefficients

Again, this Example shows that the pattern of skewness for non-canonical

link as described by Equation (2.26) will be different to that for canonical link as

described by Equation (2.25).
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Example 3

The data given in Table 2.9 were generated from a GLM with log link and Poisson

errors. The expected value was given by
EY)=¢ X=1,2,...5

with 3 = 1. Using the procedure described in ‘Test Examples’, the skewness
[K3(s)] of the regression coefficients centred on X = 2,3,4 was estimated using
the statistical package SPSS (Norusis, 1993). These estimates of the skewness are
given in Table 2.10, together with their standard errors (SE). This link (log) is
the canonical link function for Poisson errors, and so a linear relation between the
observed skewness and expected skewness should be evident. The plot (Figure 2.8)
does not show the departure from a linear relation that was shown by the non-
canonical links (reciprocal and identity). The label ‘skewness’ denotes observed
skewness(standardized in SPSS), while the label ‘expected’ denotes X —3f~2. Sev-
eral other plots were produced, some using the unstandardized skewness, but all

gave similar results.

4,5 | 5,11 | 19,14 | 60,52
X1 2 3 4 3

139,160

Table 2.9: Example 3 : Poisson data with log link

X

K3(8)
SE

3

4

-0.36

-0.36

-0.11

-0.09

-0.06

-0.07

0.09

0.09

0.02

0.01

0.01

0.02

Table 2.10: Example 3 : Skewness and the standard error of the coefficients

The pattern of skewness for this Example is in line with the predictions of

Equation (2.25) for a canonical link.
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Example 4

The data given in Table 2.11 were generated from a GLM with square root link

and Poisson errors. The expected value was given by

=1,2

E(Y)=(8X)?, X=1,2,...5

with § = 3. Using the procedure described in ‘Test Examples’, the skewness
[K3(s)] of the regression coeflicients centred on X = 2,3,4 was estimated using
the statistical package SPSS (Norusis, 1993). These estimates of the skewness are
given in Table 2.12, together with their standard errors (SE).

The plot (Figure 2.9) is qualitatively similar to the log link (Example 3), possi-
bly reflecting similarities between the log and square root functions over some range
of the X values. The label ‘skewness’ refers to observed skewness(standardized in

SPSS), while the label ‘expected’ gives X 22,

Y |59
X1

44,34
2

89,79
3

132,141
4

198,220
5

Table 2.11: Example 4 : Poisson data with square root link

X

K3(8)
SE

3

4

-0.08

-0.08

0.00

-0.03

-0.02

-0.02

0.10

0.10

0.04 0.04

0.05

0.05

Table 2.12: Example 4 : Skewness and the standard error of the coefficients

This Example suggests that this link function (/) is similar to the log link

which is the canonical link for Poisson errors.
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Comments

1. The standardized measures of skewness used in statistical packages are vari-

ants of

K3 = E(y — p)’/o°.

Since SPSS calculates skewness using standardization, the scales of the ob-
served (‘skewness’) and the expected (‘expected’) will be different in the plots
for Figure 2.7, Figure 2.8 and Figure 2.9. The first two examples showed con-
stant variance and so the effect of using the standardized skewness in place
of the raw value should be minimal. For Examples 3 and 4 the variance
of the regression coefficient does not appear to be constant. Since the raw
form of the skewness gave similar results, a different subsampling could be
considered. The reason for considering such a scheme is that the applica-
bility of Equation (2.31) is governed by the appropriateness of the Taylor’s
expansion in Equation (2.30). Hence reducing or changing the interval over
which the observed skewness is calculated could change the relation shown
in the plot of skewness. The validity of the Taylor’s expansion could also

affect the stability of the variance for the estimated skewness.

2. The graphic has no obvious meaning for Normal errors, since T;;x = 0 and

so no relation would be expected in the plot, as the skewness would be zero.

3. Overall, the graph of skewness versus expected value for the non-canonical
links showed a clear departure from a linear relation, whereas the graph for
the log link (canonical) showed no such departure. This linearity is predicted
by Equation (2.25) in the case of canonical links. The square root link showed
similar results to the log link, presumably due to like behaviour of the square

root function to the log function over the region defined by the design points.
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2.15.10 Summary

This analysis of the exponential connection complements that of Kass (1984)%2,

who considered a—connections in the form
(87 m e

1—\abczé 1_\abc_'_(]‘—_é) 1_\abc

where33
m

e
1_\abc = Fav,bc + Tabc

and then showed that the a—connections are identical iff Ty, = 0. This is shown

here by setting T,,. = 0 to give

e
o

abe abc

which is then independent of a.

An alternative form of the a—connection has been used, viz,

@ e
Lape = Tape + 0Tbe

and the conditions under which the exponential connection ( r .be) Vanishes are
investigated. For generalized linear models with canonical link function, the ex-
ponential (or ‘Efron’) connection in terms of the regression coefficients is shown
to vanish. Conversely, it has been shown that for GLMs a vanishing exponen-
tial connection in terms of the regression coefficients gives the link function as

canonical.

32Be aware of the notational differences.
33Note that § = (1 — a)/2.
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0.8

0.6

skewness

0.4

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050
expected

Figure 2.7: Example 1 : Reciprocal Link



CHAPTER 2. DIFFERENTIAL GEOMETRIC APPROACH 106

skewness
-0.20 -0.15 -0.10 -0.05

-0.25

-0.30

-0.35

T

0.0 0.0005 0.0010 0.0015 0.0020
expected

Figure 2.8: Example 3 : Log Link
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-0.02 0.0

skewness
-0.04

-0.06

-0.08

1

0.0 0.00002 0.00004 0.00006 0.00008
expected

Figure 2.9: Example 4 : Square Root Link



Chapter 3

a—Curvatures

3.1 Introduction

This Chapter outlines the fundamentals of the generalization of curvature mea-
sures for exponential family error models, giving special attention to generalized
linear models having a unit scale parameter, eg., those with error terms that are
Bernoulli, Poisson or Exponential. This restriction is made simply to obviate a
nuisance constant appearing in the relations used. The extension to models having
scale parameter different to unity can be made by a simple rescaling of the natural
parameter, as shown in Section 2.14.3.

The models considered address bivariate data (X;,Y; , 1 = 1...n). These
models are of the type

Y= pi + &

where p is a deterministic function of the predictors X, eg.,!
pi = f(Xy0) (3.1)

and € is a disturbance describing the random behaviour of the response Y .

For a generalized linear model (GLM), using the notation of McCullagh and

1The Einstein convention is used whereby a repeated index implies summation over that

index.

108
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Nelder (1989), the contribution to the log-likelihood for an observation is

mﬂwﬂzg%%gl

Models with unit scale parameter, a(¢) = 1, correspond to the general form for an

+ cy, 8).

exponential family with log-likelihood

¢ = c(y) + 0'y; — ¥(0)

following Amari (1982a, 2.20, p362). The canonical (or natural) parameters 6 are

related to the space of expectations p via
My = E(Yz) = 5i¢(9)
and the response Y; is modelled as
Y = ps + e

The deterministic component is £4; and the disturbance is €;. In practice, the regres-
sion coefficients u that relate the expectation of the response Y; to the predictors

X are of interest, so 8 is a function of u, viz
0 =0(u).

This explains the term curved exponential family, since even though the original
form is exponential in terms of 6,2 it may not be exponential in terms of w. The
dimension of the regression parameter space of u is less than that of the natural

parameter space of 8. For a GLM in McCullagh and Nelder’s (1989) notation
u=/0
giving
0" = f(X;7)

using the notation of Appendix B.7. The restriction to GLMs with unit scale

parameter avoids the notational inconvenience of the canonical parameter 8 having

2This implies that the form in the exponent is linear in 4.
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a slightly different meaning in Amari’s (1982a) notation to that of McCullagh
and Nelder (1989). The restriction is made to save recurring constants appearing
throughout the following discussion, and so 8 = a(¢)d = 9 since a(¢p) = 1, from
Section 2.14.1. This restriction to unit scale parameter is not critical, as similar

results follow for an arbitrary valued scale parameter, as shown in Section 2.14.3.

3.1.1 Transformation Rule (I)

A reparameterization of the regression coefficients from @ to B implies a 1:1 trans-
formation from u = (u®) to v = (v*). The a~connection with respect to the

regression coefficients then transforms according to
o3 [0
Lwye = By By BSTase + BE (00 BY) gab (3.2)

where o’ is associated with B, and a is associated with 8. So in general an affine
connection is not a tensor, due to the presence of the second term. A general
definition of tensors via coordinate transformation is given in Section 1.8.3. Note
that the rule as stated by Amari (1982a, p364, 2.28), refers to natural parameters
rather than regression coeflicients, but the required relation is equivalent. An
alternative treatment is given by Lovelock and Rund (1989, p79, 5.16). This
transformation rule will be used later when examining properties of parameter—

effects curvatures.

3.2 Curvatures

The imbedding 6(w) defines a subspace T, of the tangent space 7. This subspace
is defined by the regression coefficients % and so is spanned by the vectors BZ. The
curvature of a subspace is defined by the intrinsic change in the tangent (or normal)

directions of the subspace. The tangent direction will generally be used.



CHAPTER 3. a—CURVATURES 111

3.2.1 Derivation

Following a similar argument to that used in the derivation of an a—connection
in Chapter 2, the rate of change in the tangent direction from Bji(u) at u to
Bi(u + du) at u + du is given by

lim Bb(u + dU) — Bb(u)

a
du—0 due ~ Va Bb

ie., the covariant derivative of the vector field B.® This yields
Hy(u) = 8,Bi(w) + I Bl(u) Bf(u) (3.3)
as the definition of a—curvature. Note that the contravariant (upper index) version

is described. A full derivation from first principles is given in Appendix C.1.

Note

[a]
An a—curvature [,; can also be defined in the normal direction. This definition

coincides with the covariant form of the tangential a—curvature?* if

e o =0, i.e., when the information connection is used, or

def . .
o T, = E(0,£0;£0;€) = 0, i.e., errors are Gaussian <= skewness tensor Tijk

1S zero.

The L form is appropriate if expectation rather than canonical parameters are of
interest, due to the duality between these two parameter spaces. The imbedded
space of regression coeflicients is the target. So it is of no real concern whether the
tangential or normal form is used. For a full derivation, see Amari (1982a, p370,
4.9 and 4.10). Hereafter, all references to o--curvature will be to the contravariant

a .
or upper index form in the tangential direction, ie., Hgy.

3Since nearby tangent spaces are compared, this derivative (curvature) must involve an affine

connection (a—connection).
[0

4 - o &
That is, Lati = Habi = HasGki-
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3.2.2 Transformation Rule (H)

If the coordinate system is changed from u = (u®) to v = (v%) via reparameteri-

zation, then, a—curvature transforms according to

« «

Hiwy = B%BY H:y + Bi0y B}, (3.4)
The derivation of this relation is given in Appendix C.2. The presence of the
second term means that in general the a—curvature is not a tensor, since the

transformation law for a (0,2) tensor is
Sk = B} BL.Sj

following Lovelock and Rund (1989, p60, 2.9), and Section 1.8.3. Special cases
of this transformation rule will be used to identify intrinsic and parameter—effects

curvatures.

3.3 Projections

In the case of nonlinear regression, Bates and Watts (1980) decomposed acceler-
ation into components normal and tangential to the solution locus (expectation
surface). For general exponential family error models, the analogue of this accel-
eration is a—curvature, which can similarly be decomposed into normal and tan-
gential components. Below is a description of the projection of a—curvature onto
these orthogonal subspaces. For brevity, the ‘normal component of a—curvature’
will be called the ‘normal a—curvature’, likewise the ‘tangential component of a—

curvature’ will become ‘tangential a—curvature’.

3.3.1 Normal Component

If the projection operator onto the normal subspace is N;f then the normal com-

ponent of a—curvature is denoted by

(%

a
T 1 ]
ab — Nnglb
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where N;-' is the projection operator onto the normal subspace of imbedded param-
eters (), ie, the regression coefficients.

The projection operator N} is derived as®

Nj= 5P

where P; is the projection operator onto the tangential subspace of imbedded

parameters, ie., as per Amari (1990, p156), viz
Pi = g BiBtg,, .

Rewriting the operator as
P = (5"53) 0
shows that the term inside the braces can be recognised as an ordinary projection;

see Morgan (1993, p44) and Seber and Wild (1989, p683, A11.4.) Now

sz = N; Hgb = (5; - P;) I;gb

= H, —FP; Hy, = Hy, —Tasg** By

7 Qa

since
[0

P; H]b - PabchdBfi

Q

from Section 3.3.3. Thus
N, = 8,Bi + I BIBE — Toyog®Bi (3.5)

is the final general form for intrinsic curvature. This derivation agrees with the

results of Amari (1990, p241), and Lovelock and Rund (1989, p269, 4.16).

Note

While this result is not new, it has not been described previously in detail. When

the a—curvature is projected onto the normal subspace, the non-tensorial terms

5See Seber and Wild (1989, p691, B3.3).
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vanish, leaving normal components of a—curvature that form a tensor. The van-
ishing of the non-tensorial terms in the transformation of a~curvature is shown in
Appendix C.3. These normal components that form a tensor represent the intrin-
sic curvature of the imbedded subspace of regression coeflicients. Following the
definitions of Bates and Watts (1980), and the approach of Amari (1990, p156),
the scalar measure of intrinsic curvature is derived in general. It will be shown
that this measure is invariant under 1:1 transformations of the parameter space.
The derivation of the scalar form of intrinsic curvature requires some fundamental

results from Riemannian geometry.®

3.3.2 The Invariance of Intrinsic Curvature

This derivation deals with a—curvature, but the generic term ‘curvature’ will stand
for a—curvature. Hence the use of the notation A will imply normal a—curvature

[0
N, that is the normal component of a—curvature.

Prelude

Define the curve ¢7 = 67(s) parametrically in terms of the arc length s. A line

element on this curve is given by
ds® = gn;d0"df’ .
The tangent vector 8”7 = df?/ds is a unit vector, since
gn0"07 =1,

Thus, covariant differentation yields

D D@
" Ds Ds

6When the metric is positive definite, as here, the term pseudo-Riemannian is sometimes

0 (ghjglhelj) = Q!thglh

used.
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1

showing that the vector is normal to the tangent vector 6"7.7 If the length of

s
this normal vector is defined as

1

i

D'
Ds

1

then p™ can be interpreted as the curvature of the curve. (Lovelock and Rund,

1989, pp250-252.)

Derivation

If the parameterization is such that

07 = 07(%(s)) = 0" (u’(s))

then
Do , -Du'®
— NI, e, b J
Ds Nabu v’ + B D
where
ula . 8130,
~ 9s

The first term depends at each point P only on the coordinates 3%, and components
u'® of the unit tangent vector at P. This term is therefore identical for all curves

of the tangent subspace which pass through P and have common tangent u'®.
la,

D
A geodesic I" through P having the tangent u'® is defined by s = 0, yielding

Do’ e
(DS )F :Ngbu Ub.

From the definition of curvatures of curves, (Lovelock and Rund, 1989, p272)

S

and (Stoker, 1969), the curvature of I is
2 .
1 D" Do'n i e b e 1g
(E) = Gjh ( Ds )r ( Ds )r = gjh( abth U )(Neg“ u ) (3.6)

This quantity depends only on P and the direction u'* at P. This ‘normal curva-

ture’ is the scalar form of intrinsic curvature , (Lovelock and Rund, 1989, pp267-

273).

DX ) .
"The operator D is defined by Do~ V; X% (Appendix C.1).
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The invariance of scalar intrinsic curvature can now be demonstrated.

If the reparameterization is from B to B, viz, a to a’ in terms of indices, then,

in terms of B, intrinsic curvature becomes

2
() bty

Pr
,  oB” ,
where ¢'* = 5 The unit tangent vector can be written as
s
u,a/ _ ous ou _ BZ’I ou® _ B:/ula
oue 0s Os

From Appendix C.3, the tensorial law for the normal component of curvature gives

N%, = B% BY NE,.

and so

»* * I 7

N ;b/u/aulb = BZ/ BII))/ N’a/lc*b* (BZ Bg Ulaulb)

but

a* pa __ pa*

a’ Ba - Ba
giving

NE ' o (B“ By N’.b*) oy = NEuu"®

So

() =) )= ()

P

Thus invariance is satisfied.

Note

This new result is quite general. It is not required that the family be curved expo-
nential; a parameter subspace derived from any likelihood function would suffice.
The result is a generalization of the proof of invariance in the case of nonlinear
regression, given by Seber and Wild (1989, B5, pp692-694), using a Taylor’s series

expansion, following a reparameterization. The scalar form of intrinsic curvature
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as derived above is a generalization of that due to Amari (1990, p156), given in the
nonlinear regression case. This intrinsic component corresponds to those effects
that are unchanged by reparameterization of the model. The normal component

will only change if the ‘model’ is changed. In the model formulation,
Yi=p+e , w=f(X50)
a change of intrinsic curvature can only occur if

e The deterministic function f is changed, eg, for a GLM, by changing the link

function, or if

e the error distribution € is changed, eg, from say Poisson to Negative Binomial.

These observations follow from inspection of the form of the normal component

of a—curvature, viz,

OL

i = 9,8 + F wBIBY — Tupeg®BY

which shows that a change in the deterministic function f or the error distribution
e will affect intrinsic curvature, since the first term can be removed by choosing
a canonical link in a GLM, and the second term is zero for Gaussian errors. The
components of the last term are also affected by the deterministic function and

the error distribution, in general since
C!
Tuse= (0,B:)Blg;; + B BJB’C Fl]k

3.3.3 Tangential Component

The projection of a—curvature onto the tangent subspace Ty, yields an affine con-

nection. The projection operator onto Ty, 18
Pf = g BBy gx; ,
following Amari (1990, p156) and Seber and Wild (1989, pp690-691). Applying

the projection operator PZ to the a—curvature H 7, yields the tangential component

C!

ab = P Hab - CdB:iBfgijzzb = PabCQCdB:i‘
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Proof

The projection of a~curvature onto the tangent subspace gives

a. - o . - a. . .
T PUHI, = (aaBg + rﬂikB;Bf) P

- (8aBg + P%ka;Bé“) 9°*By By

= (&;Bg) Blg; + PjikBiBlﬁcBéQZjJ 9“B;,

= |(0.B]) Blgy; + 1“J;-,CgljB}'J.%,’;BﬁJ g% B

= [(8,13,{) Bégzj + ﬁleéBché QCdBcii’

hence
(e

Th = Topeg™ B, (3.7)

in agreement with Amari (1990, pl156, 5.26). The tangential component of o—
curvature ( aflb) is thus related to the a—connection (f‘abc). This tangential com-
ponent is the generalization of ‘parameter—effects’ curvature from the nonlinear
regression case, as defined by Bates and Watts (1980). In the general case, this
measure will correspond to effects due to reparameterization of the deterministic

function in the model.

This known result has not previously been derived in detail.

3.3.4 Scalar Parameter—effects Curvature

From the derivation of scalar intrinsic curvature the scalar form of generalized

parameter—effects curvature can be defined. Instead of choosing a geodesic to

create
Duy'e

=0
Ds ’
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any arbitrary curve in the regression parameter subspace can be used. This defines

another scalar curvature, called the ‘geodesic curvature’

) == (5 () 63

ie, the ‘parameter—effects’ curvature, so called since it is dependent on the choice of

curve in the tangent subspace. The term ‘geodesic’ can be applied to parameter—
effects curvature, since this quantity can be zeroed by choosing the arbitrary curve
as a geodesic. The term ‘tangential’ curvature is used synonymously with ‘geodesic’

curvature by Struik (1988, p74 and pl27).

3.4 Decomposition

For the nonlinear regression model, Bates and Watts (1980) showed that the nor-
mal and tangential components represented intrinsic and parameter—effects cur-
vature respectively. In general exponential family error models, a—curvature can
similarly be decomposed into normal and tangential components which have analo-
gous interpretations. Using the notation for the normal and tangential components

of a—curvature, the decomposition becomes

a

o+ T = wa (3.9)

a

in agreement with Amari (1990, p156, 5.27).° These components were described
by Amari (1982a), but were not explicitly derived for the general case.

The model proposed by Wei (1994) shows a similar form of decomposition of
curvature into tangential and normal components. Using the notation of Wei (1994,

pp329-330) the acceleration (W) is related to U by U = H'WH and
U = [QIL47] + [N = [QIIQTIIU] + IMINTd[U]

= {Pr} U]+ {Pn} U]

8See Lovelock and Rund (1989, p272, 4.29).
® Amari (1990, p154) describes the nonlinear regression case.
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where Pr and Py are projection operators onto the tangential and normal spaces
respectively. This decomposition is in line with Bates and Watts (1980) and
Amari (1982a).

3.4.1 Decomposition of Scalar Curvature

A corresponding decomposition of the scalar form of curvature also holds, which
generalizes the scalar decomposition described in Seber and Wild (1989, p131).
This decomposition of scalar curvature into the normal (intrinsic) and tangen-
tial (parameter—effects) is described below. Note that the term ‘geodesic’ is syn-
onymous with tangential or parameter—effects.

The curve 67 = 67(s) is defined parametrically in terms of the arc length s. In
terms of the operator D, the vector

D@’
Ds

is normal to the tangent vector #7. The length of this normal vector

Dei| 1

Ds —;

can be used to form total scalar curvature, viz

1\* _ (De"\ (D8’
P ~ i Ds Ds

as the form of generalized scalar curvature. If the parameterization is such that

07 = 07(6%(s)) = 07 (u’(s))

then
D@ i ra b - Dy'e
- oy 4 BIZ
DS Nabu U+ a DS
where
ula, — 8[6&
Os

Total scalar curvature becomes

2 ; / le
1 De7\ (Do P o W A o)
ED — g, ‘ B
(p) _g]h<Ds)<Ds) gf"( a0+ B ) | Nea™? ¥ Be g
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— gjh, ( djbulaulb) (Ne};uleulg)
Du’e . Dy’ - Du'® Dy'e
+ ginN? W9 BY . BJ Bh
Ds | 9ihVeg 2 ps T ImBaBe B

Application of the Lemma (Appendix C.4) removes the middle terms, and since

7 1a, b h
+g;nN,u'*u" B,

gthng}; = Gae

then

Pr Pg
This demonstrates the decomposition of total scalar curvature into scalar intrinsic
and scalar parameter—effects curvature. The subscript I' is associated with intrinsic
curvature and the subscript g is associated with parameter—effects curvature. For

formal derivations, see Lovelock and Rund (1989, pp267-273), and Struik (1988,
p69).

3.5 Examples

The general results obtained for a—curvature and its components are now illus-

trated in specific situations.

3.5.1 Nonlinear Regression

The a—curvature degenerates to the curvature measures of Bates and Watts (1980),
for the nonlinear regression model.

Considering the a—curvature

o

Hip(uw) = 8,Bi(u) + T Bl (u) By (u)

= 0,B! + D'jing™ BB,
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But, all the a—connections with respect to the natural parameters are zero for the

Gaussian distribution, so the a—curvature becomes

(47

Zb(U) = GaBg(u).
For the nonlinear regression model,
YVi=p+e=f(X;;8)+e;, &~ N(0,0%)
with
;06" O
7T Gub T 9B b

In the notation of Equation (3.1), f = f for Normal errors since #* = y*. This

gives the a—curvature as

o , 82
ab — aafib = W

ie., the acceleration term of Bates and Watts (1988); see Seber and Wild (1989,

pp129-133). The decomposition of this term into the normal and tangential com-
ponents for the nonlinear regression model is seen as a special case of the de-
composition of a—curvature. The behaviour of these components as intrinsic and
parameter—effects is simplified by the disappearance of any error effect due to the
disturbance law, since f‘ijk = 0 for Gaussian errors.

The generalized curvature H is independent of « for the nonlinear regression

model.

Intrinsic Curvature

Intrinsic curvature for nonlinear regression has already been covered in the de-
scription of the normal component of a—curvature. The invariance of intrinsic
curvature (Section 3.3.2) has been established in the general case as an extension
of the result given in Seber and Wild (1989, B5), for nonlinear regression. This
intrinsic curvature is a measure of model departure from a linear response, since

the normal component of a—curvature vanishes, ie.,

Ni= 0,Bi— Toe g*BY = 0
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for a linear model. The linear model is defined by

pi =f(Xi;8) = XzT:B = Xz'jﬁj
giving
Op
opP

which in turn annihilates parameter—effects curvature, since

By = - = Xy — 0,8} =0,

Tue= (8.B}) Blgis = 0.

a.
Hence, N}= 0, as stipulated.

Parameter—Effects Curvature
Since the errors are Gaussian, the error effect vanishes, viz, (Il‘ijk(()) =0 giving
o . .
Fabc (’U,) = (aaBg)Bg(sij/O'Q

which implies that ﬁbc is independent of a. Since the tangential component of o
curvature is effectively the a~connection, this leads to the description of ‘parameter-
effects’ by a common affine connection, since the above shows that all the a—
connections are the same for Gaussian Errors. Each of a number of key values of
o 1s associated with desirable properties of estimators, such as unbiasedness, mini-
mum variance etc; see Amari (1990, p152) and Kass (1984). Since the parameter—
effects curvature is independent of ¢, this implies that all of these properties can
be satisfied by a single parameterization,!® for a given model and data set. So this
parameterization could produce an estimator which is simultaneously unbiased,
has minimum variance and zero skewness as well as other properties as detailed in

Amari (1990, p152).

3.5.2 Generalized Linear Models

Generalized Linear Models (GLMs) were defined by Nelder and Wedderburn (1972).

For a GLM with unit scale parameter, ie. with a(¢) = 1, the canonical or natural

10See Amari (1990, p156).
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parameter is

6" = f(Xi8) =1,
and the tangent vector becomes

Bl = = = ! - !
“ Que T 9B an B oy, Xta.

Furthermore,

. B 2f. . 2¢.
9, B! = 0B} 0 0 (Bfl(nI)XIb> _ 0*fi(n,)

dua  9peopt  ape \ A
thus B and 8,B; do not involve 3, but are functions of the linear predictor 7.

Since the a—connection in terms of the regression coefficients 3 will be
01 i . . . k 01
Lape= (8aBb)ngij + B;Bch Fijk’

this implies that this a—connection can be written as a function of n without
explicit reference to 3, a result that will be used later in examining parameter—
effects curvature. For a non-Gaussian GLM, the a—connections are distinct (Kass

[¢]

1984), since in general T, is non zero, in contrast to the common connection for

ijk
Gaussian errors, as in nonlinear regression. Hence a separate treatment is required
for each of the key values of & (=1, ~3,0, 3, and 1) that are associated with special
properties of the estimators. Kass (1984) suggests the use of the mixture (o = —1)
and exponential (o = 1) connections in assessing curvature effects, but since the
constant of combination is arbitrary (see Section 2.5), an infinity of combinations
is possible. Hence a desired statistical property of the estimator can be directly
associated with a specific value of «. For example, zero skewness is related to
a = —1/3, while & = —1 corresponds to unbiasedness. An assessment of each
set of curvatures is required for each value of «, depending on which statistical
property of the estimator is of interest.

The decomposition into tangential and normal components will be used, as

generalizations of the curvatures used in nonlinear regression. The normal (intrin-

sic) and tangential (parameter—effects) components of curvature for a GLM will

be considered in turn.
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Intrinisic Curvature

The intrinsic component of curvature, i.e.,

= 0By + T5B) By — Tabeg™Bj
measures departures from exponentiality. This means departure from canonicality
in a GLM since

0,B; =0

for a GLM with a canonical link defined by

of;
on,

HZZ’mIfZ =>Bz= X[bI—‘Xib.

The choice of the link function as canonical also affects both remaining terms in

the normal component of curvature.

Parameter—Effects Curvature

The general form of tangential (parameter—effects) curvature is given by
7-1ab = Fabcgc B(li
a.
For a GLM, 7% can be shown to form a tensor with respect to i, since if the

. . . !
reparameterization is from u® to v® then

e 23 )
Ty = ByB)T'w + (00 B}) P,
from Appendix C.5. Since, for a GLM B} is a matrix of constants (Section 4.1),
then
&1/ Bg/ == 0
Thus, for a GLM, the tangential component of curvature obeys the tensorial law

for a (0,2) tensor, viz,
oS o

Ty = BEBYT wp.

Consequently, the a—connection is a tensor for a GLM (Section 4.1), implying that

the tangential component of a—curvature must also be a tensor.
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However the scalar form of tangential curvature

112
()
is not necessarily an invariant (Section 3.3.3), in general. The transformation to a
new parameterization for a GLM will always be linear, inducing a change of scale
rather than a distortion (Section 4.2).
Investigation of parameter—effects curvature for a GLM in Chapter 4 will use
the fact that the tangential component of a—curvature forms as tensor for a GLM.

The form of parameter—effects a—curvature used in Chapter 4 will be scalar o~

curvature.

3.6 Generalized Nonlinear Models

3.6.1 Definition

These models can be extended from generalized linear models and nonlinear re-

gression models by defining

0" = f(Xy;8)

with
Yi = pi+ e

where ¢; is from a distribution belonging to the exponential family, defined by

¢ = c(y) + 0'y; — ¥(0).
This is indeed a generalisation from GLMs with unit scale parameter, since
i = E(Y:) = 0:(0) = 8 {f(X::8)} < p(X; 8) (3.10)

giving 0;% as the identity function for nonlinear regression. The parameter gt is

the natural parameter in the exponential family model, while the function f relates
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these natural parameters 6 to the predictors X and their corresponding regression

coefficients 3. A natural function q suggests itself, such that
() = 6 =1(X; 8)
ie,
a=(0¥)~".
The interpretation of this function q is that qp is the scale on which local sufficiency
for 3 is assured by linearization.
For example, with Poisson errors and the response defined by

_ . . 5133
u—mXﬁ%~@+f

the Michaelis-Menten model (Michaelis and Menten, 1913) as reported in Bates
and Watts (1988, p33),

6 =In(p) =qp=In(fiz) —In(fo+2z)=f

1 ) )
) can be determined via

gives the scale on which local sufficiency for 3 = (
5

linearization. _
For Normal errors, q is the identity and so local sufficiency via linearization is
obtained directly on the scale of fitted values p without transformation.
For a GLM
0" = q(w) = f(Xi'B)

and so
flq(m) = g(w) = Xi " B=mn

where g is the link function. If the link ¢ is canonical, then f is the identity, giving
f(XiT,B) = XiT,B =T

which leads to
0 = Ni
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€ p(f) q
Normal f identity
Poisson ef logarithm

Bernoulli ef/ (1+ ef) logit

Exponential | f reciprocal

Table 3.1: The functions p and q for generalized nonlinear models.

as required for a canonical link. Table 3.1 shows p as a function of f, together with
the description of the natural function q for generalized nonlinear models (GNMs)
with unit scale parameter.

The restriction to a unit scale parameter is simply to eliminate messy constants
from the theoretical discussions. Results in the case of a non—unit scale parameter
are similar to the above, as may be shown using arguments analogous to those in
Section 2.14.1.

Thus, a generalized nonlinear model (GNM) can be seen to be a generalization
of a generalized linear model (GLM) and a nonlinear regression model.

Wei and Zhu (1997, p130) have described an equivalent class of models that,
by including a scale parameter, subsume the GNMs defined here. The exclusion
of a scale parameter in the definition of GNMs is merely a theoretical conve-
nience rather than an insurmountable restriction, as has been demonstrated in
Section 2.14.2 for general curved exponential families. Consequently, the criticism
by Wei (1998, p16) of the apparent restriction to a unit scale parameter in the
curved exponential family model seems unwarranted, given the analysis of Sec-
tion 2.14.2, where such models were shown to be able to incorporate an arbitrary

scale parameter by a simple redefinition of the canonical parameter.
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3.6.2 Curvatures

The general form of a—curvature for GNMs is given by

a 82&

1

Hy = 7
" 98098

This can be seen to reduce to that given for nonlinear regression, since the o~

(o3
i ! gl
+ ik T0fks

connection with respect to the natural parameters vanishes for Gaussian errors.
Intrinsic curvature remains invariant (by definition), but for GNMs tangential

or parameter—effects curvature no longer forms a tensor since the reparameteriza-

tion cannot be guaranteed to be always linear. So, not surprisingly, GNMs inherit

both the features of GLMs and nonlinear regression, ie.,

e The choice of « is determined by the feature of the estimator that is of

interest, and

o parameter—effects curvature will be a function of the chosen parameterization

of the model.

So the model and its form will affect estimation, and key features of the esti-
mator will have to be investigated separately, by using special values of a.

Generalized curvature measures have been defined for curved exponential fam-
ilies. A decomposition of these a—curvatures into normal (intrinsic) and tangential
(parameter—effects) components has been described, generalizing the situation for
nonlinear regression. These curvature measures have been examined for general-
ized linear models and generalized nonlinear models. In the general case, contri-
butions to curvature come from the Error distribution and from the deterministic
component in the model. The contribution from the Error disturbance is zero for
Normal Errors, and the contribution from the deterministic component will be

zero for a GLM with canonical link.!! Given that key values of « are associated

1A canonical link implies exponentiality and hence sufficiency with respect to the regression

coefficients for a GLM.
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with specific features of the estimators as described in Kass (1984), and Hougaard

(1982), three aspects need to be considered in general
e the Error distribution,

e the form of the deterministic response, eg., the type of link for a GLM,

and

e the property of the estimator that is of interest, ie., the choice of the value

of .12

All three of these influence the components of curvature. ‘Nonlinearity’ can be
interpreted in the case of a GLM as a departure from canonical link, ie., a departure
from exponentiality in terms of the regression coefficients. For Normal Errors,
since the canonical link is the identity, the term ‘nonlinear’ is precise. For a
generalized nonlinear model, an extended interpretation of ‘nonlinearity’ is not so
forthcoming. The term ‘linear’ can also refer to the form of the response function.
For a GLM, this simply means that the model is some function of a linear model
of the regression coefficients. The interpretation described here extends another
feature of Normal error linear models. This is the sufficiency of the estimators
of the regression coefficients resulting from the implied exponential form of the
resulting likelihood. For general models, some term such as ‘non-sufficient’ (or
‘non—exponential’) in place of ‘non-linear’ should be used to avoid confusion when

describing the above extension.

3.6.3 Note

The generalized nonlinear models (GNMs) described in Section 3.6 should be dis-
tinguished from those models described in McCullagh and Nelder (1989, p379)
where nonlinear parameters in the covariates were introduced. Such mildly non-
linear models are also called ‘generalized nonlinear models’ in the software imple-

mentation of GENSTAT 5, Release 3.2 (GENSTAT 5, 1993). The following extract

12Ty quote Hougaard (1982),° ...if you choose one, you (may) miss the others’.
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from Genstat News of May 12, 1995 defines these models : ‘The regression sec-
tion now caters for ”generalized nonlinear models”. These are models that include
some nonlinear parameters, but are otherwise in the form of generalized linear
models. Such models are fitted relatively efliciently by fitting a standard g.l.m. at
each stage of an iterative search for optimum values of the nonlinear parameters.
One example is the model for probit analysis with unknown control mortality.’
The following description of the procedure given in McCullagh and Nelder (1989)
uses slightly different notation to avoid conflicting with similar usage elsewhere in
this thesis. The usual linear component FX is replaced by a nonlinear covariate
BG(X;0), with © unknown. Choosing a trial value ©q the function G(X;0) is

replaced by
G(X;00) + (0 — ©0) [0G/00)]¢,

and so BG(X;0) is replaced by
gU +~+V

where

U=G(X;00), V =08G/d6,

and

v = B(0 ~ Oy).

In the iterative process, the new value for © becomes
0: =0 +7/0.

The method is best for at most a few nonlinear parameters, due to the possibility
of correlations amongst the parameter estimates.

Generalized nonlinear models (GNMs) are fundamentally different to the ‘gen-
eralized nonlinear models’ described in Genstat News (1995, May 12), since the
linear predictor in such ‘generalized nonlinear models’ contains linear and nonlin-
ear covariates, while a generalized nonlinear model (GNM) contains an arbitrary

nonlinear function of the predictors and parameters.
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The extension of ‘non-linearity’ in GLMs can be defined in terms of the variance
function, the link function as well as for terms in the linear predictor, as described
in McCullagh and Nelder (1989, pp372-378).

Other extensions of GLMs have been proposed by Jorgensen (1983); these allow
correlated errors and nonlinear models for the expectation. For this ‘extended
class of generalized linear models’ (Jorgensen, 1983, p20) it is no longer assumed
that the density belongs to the exponential family. Also, the GLM restriction of
the expected response being a function of a linear combination of the predictors
has been relaxed, leading to the expected response being fully nonlinear. An
unappealing consequence of the subsequent nonlinearity is that the simple GLM
method for initiating the iterative fitting procedure, ie, the data, has been lost
and starting values are required in general. The same criticism applies to GNMs.
The general concepts of a—connections and a—curvatures in the extended case
defined by Jorgensen (1983) can be applied as noted by Kass (1984, p89), and so
the exponential family is not the only case covered by the differential geometric
approach outlined in Chapter 2. The results of Chapter 2 can thus be applied to

any non—Gaussian model.

3.7 Expected and Observed Geometries

So far, all the analysis has been in terms of ezpected geometries. There is a corre-
sponding observed geometry, involving observed rather than expected information
and an auxiliary statistic, Barndorff-Nielsen (1987, p135). This observed geom-
etry is endowed with a full set of connections and tensors that mirror those in
the expected geometry. The terminology used by Barndorff-Nielsen to denote the
observed quantities is a slash. Thus if % is the a—connection in the expected geom-
etry, then the corresponding connection in the observed geometry is denoted by 1%
In terms of natural parameters [a (k, k) exponential model in Barndorfi-Nielsen’s
notation], the observed and expected properties coincide, since no auxiliary statis-

tic is involved due to the sufficiency of the natural parameters. So for example,
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1% = 12’ and 5 =1 (i is the expected information matrix, while 4 1s the observed

information matrix).

For a curved exponential family [a (k, d) exponential model],'® asymptotic ex-
pansion of observed quantities such as the information and skewness tensor gives
the corresponding expected quantities as the first term. Higher order terms in the
metric tensor can be shown to disappear for zero exponential curvature (Barndorff-
Nielsen, 1987, p139). In terms of GLMs, this indicates that the expected and
observed metric tensors coincide for canonical links. Thus, expected and observed
information coincide for GLMs with canonical links, in line with the observations
of McCullagh and Nelder (1989, p43) and Aitkin, Anderson, Francis and Hinde
(1989, p326).

13The number of data points is k and the number of regression coeflicients is d, for say a GLM.



Chapter 4

Applications

The theory of generalized curvature will now be applied to generalized linear mod-
els and allied models with the purpose of extending results from Normal error

linear models.

4.1 Tensorial a—connections and GLMs

Under the reparameterization from u® to v*, the a—connection transforms to :
Pae = BYBYBSTase + B (00 BY) gas -
For a GLM, the response Y is defined by
EY)=p=hXp).

If the intrinsic curvature is to be unchanged, the model must remain the same.
This means that the link function g must be unchanged and so the inverse function

h will be unchanged. However since pp = h(X3) = h(n) then the only form of

reparameterization for a GLM is a linear transformation. Thus the linear predictor

can be written as
n=Xpg=xzB

where the reparameterization is from w to v. This reparameterization

B=u, B=wv
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gives
XB=zB—-X'X3=X"zB
with
B=(X"X)" XTzB.
Thus
oub
b
o =5
becomes
OB [T \"! T
B = (X X) Xz

So Bf will always be a matrix of constants for a GLM, giving
80/ Bll))/ == O,
which implies that
f_[‘alb;cl = BZ/Bg/Bg/f‘abc (41)

ie., f‘abc behaves as a (0,3) tensor for a GLM. Thus the a—connection is a tensor

for a generalized linear model.

Note

A precondition for establishing invariance of a quantity is to show that the quantity
is a tensor (Bishop and Goldberg, 1980, p85). The above result must hold before

scalar parameter—effects curvature can be shown to be invariant for a GLM.

4.1.1 Example

For a GLM with an arbitrary Error distribution and a specified link function, the

linear predictor is

n=X@=xB

with
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The ‘One Way Analysis of Variance’ is a procedure applied to a simple model where
the predictor X represents categories or grouping. The example given has 3 levels,
ie., there are 3 groups. The parameterization v corresponds to estimates of group
means 71,7, and 73, whereas the u form is the default chosen by the computer
package GLIM, ie., the corner—point parameterization, (Dobson, 1993, p89).
This parameterization estimates a base line (7; ~» group mean 1), and departures

from that base line, viz,

Ty — 71 ~ IMeany — mean;

and

T3 — T1 ~ INeans — mean;.

Table 4.1 shows the correspondence between the two forms of the same model,

ie., the u and v parameterizations.

PARAMETERIZATION

Corner—point Group means

T1 T2—T1 T3—T1 | T1 T2 T3

Ui U2 Uz | vy Uy Uy

Table 4.1: The corner—point and group means parameterizations.

The Jacobian of the transformation from v to u is

a
. ou
¢ By

ie.,
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Uy Uz Us

vp| 1 =1 -1
Vo 0 1 0
Vs 0 0 1

which is indeed a matrix of constants, as claimed. Hence
OuBY =0

inducing the tensorial law for the a—connection [Equation (4.1)]. So the invariance
of parameter—effects curvature can now be established, since tensorial behaviour

is a precondition to the establishment of invariance.

4.2 Invariance of Parameter—Effects Curvature

It has been demonstrated in Section 4.1 that the a—connection with respect to the
regression coeflicients forms a tensor for generalized linear models. The decom-
position of scalar curvature into scalar intrinsic and scalar geodesic curvature has
been described in Section 3.4.1. A consequent result, that scalar parameter—effects

is invariant for a GLM, follows.

4.2.1 Theorem

Scalar parameter—effects curvature is an invariant for a generalized linear model.

Proof

The scalar form of parameter—effects curvature! is

1 2_ Du'*\ [ Du'
E ~ et | pg Ds

1 Also known as geodesic or tangential curvature.




CHAPTER 4. APPLICATIONS 138

with definitions and notation from Section 3.3.3. To establish invariance, consider
a reparameterization from 8 to B, i.e., u% to v*. In the new parameterization,

scalar parameter—effects curvature becomes

( : >2 <Dvlal> (Dvlb,>
= Ga'¥
Pg' Ds Ds

. It is required to show that

) -G

in order to establish parameter-effects curvature as invariant.

al

0s

!
where v'* =

The covariant differential is defined by
DX’ = dX7 + ], X"dz*.
In terms of the original parameters u® = 8¢ this becomes

Du'® = du'* + [2u"du®

7

and in terms of the transformed coefficients v¢ = B°
Dv' = dv'® 4+ T v"dve.

These equations convert to

Du'*  d’u®  _ dubdu®  du®

+ — + Fa ulbulc
Ds ds? e ds ds ds be

and , ,
D' dv'® )
Ds _ ds + Tie™"

as per Lovelock and Rund (1989, p254, 2.21). From the v* parameterization, the

scalar parameter—effects curvature is calculated as

)

in terms of the original parameterization ©®. The indicesabc, a-b-¢- are associated

with u® = 8%, while ¢’ ¢/, abc relate to v* = B®.
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Scalar parameter—effects curvature is now

—1— 2_ D,U/a’ Dy i
Pg — v\ "Ds Ds (4:2)

2 ’ /
1 dv'® ) dv”® )
(70;) = Go'v/ [_Zs + I"gcv/bvlc:l [ ;)S + Pgevldvle:| (43)

which becomes

and, from Section 3.3.2,

So

dub \" ¢ ds
o a o du'“' b
= ‘:85(Ba )UI + Ba dub :| UI
Following Section 4.1,
N
B! =
¢ Que

and Bg' is a matrix of constants for a GLM, yielding
ab(Bg[) =0,

and so
dv'®

—— = B (0w )u”

The scalar curvature becomes
2
1 I I / 7
<—,0—) = o'y [Bg (8bu’a')u'b + Fﬁcv’bfu'c] [Bf,’ (adu’b')u'd + Fgev’dv'e] .
g/
Now

,U/b — Bgu/b-

and

V"¢ = BSuC.
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From the Lemma on page 141
I = By Tg
yielding
f,lc'u'bv'c = B% ¢ BPy'" BSu/'® = BY [BE,BE_ ‘g'c] w ' = BETE o/,

1w
Us , in Equation (4.2). Thus Equation (4.3)

and similarly for the second term

becomes

2

]. 7 7 ! !

(p ) = guy |BY (O™ )u® + BETE w/w] [BY (0w + BY T u/* ']
g€

P | Ou'Y o't
= ga’b'B;Bl{))- I:?S— __’_I‘g'.-c-ulb.ulc.:l [79? +P2'_e_’u,ld"u,le':l

Du'*\ ( Du'* 1\?
= Ga-b- D D =\
S S Pg

and invariance of parameter—effects curvature for a GLM is established.

Note

In the special case of Normal errors, the above result has already been demon-
strated, albeit indirectly, by Seber and Wild (1989, pp139-141). Consider linear

transformations of the parameters. The transformations are

¢p=RbOorf =Ko
where ¢ is associated with tangential scalar curvature I') and 6 has tangential
scalar curvature +f, in their notation. It is shown that
T T
Ia ="

Even though these are relative curvatures, the same result follows for scalar ab-
solute curvatures. Due to typographical errors in their derivation (p141), a short

synopsis is given below, using their notation



CHAPTER 4. APPLICATIONS 141

1d'G..d|
M7 =p——
G d|[?

i

__ T
= Yh>

and so invariance is established under a linear reparameterization. Note that this

result applies to a GLM with Normal errors and general link function.

Lemma
Fa’ _ Ba’ a
bec =™ ~a-* be

Proof

Since 'y, is a tensor for a GLM,

/ da’
[2e = Ibeag

= BSFbcagdal

= Bj Fg'cgaa.gda

_ a- .da’ a
- bcg gaa-Bd -
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From Lovelock and Rund (1989, p268, 4.9),

9% gn;B; = B
and so

o' _ 1a nd
bc—Fcha- .

4.2,.2 Short Form of Proof

A condensed form of proof using statistical arguments can be invoked if results

from previous sections can be combined with known relations from other sources.

Outline

«
The parameter—effects curvature (tangential component) T%; is given by

(¢

T =T abchdBé .

For a GLM,

B! = X;q4

and the metric tensor g is a function of the Error distribution, since

g = BiBgij (= XiaXjo9:;)
from Amari (1982a, 4.5, p370), and from
gi; = 0" (616

in Section 2.13, again with upper case indices being nonsum. The form of the

a—connection with respect to 3 is given by Equation (2.27) of Section 2.15.7, viz
o*;  ofy )

Onrons Onk

[0

of; of; of
Fabc(la) = 1__TO‘)(Ia.)(JI))(KcT;jk(9) ( Tl

onr 0ny Onk

) + X1 X 76 X kcGjk (

where

0" =f(X,;0) =1, .
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The form of these expressions for the metric tensor g and the a—connection f‘
indicate that parameter—effects curvature is a function of the linear predictor 7,
the function f and associated derivatives such as 0f/0n. The regression coefficients
B do not appear explicitly in any of the formulae for ¢ and f‘, indicating that
changes in the parameterization of a GLM will leave these quantities unaltered
and hence parameter—effects 7 will be invariant to parameter transformation as

previously shown.

4.3 Exponential Curvature

In the case of the exponential connection (o = 1), the ‘exponential’ curvature ( or

l-curvature) has been defined by Amari (1990, p114), and Amari (1987, p31).

4.3.1 Preamble

Following Kass (1984), a table of key values of o can be constructed ( Table 4.2). In
Table 4.2 a symbol has been designated as an additional identifier for the statistical

interpretation of particular values of «.

« Value | Interpretation Symbol
-1 Mean value (or Mixture) connection m
-1/3 | Skewness reducing s
0 Information (or metric) connection i

1/3 | E(8%¢/0vy?) = 0 ; ‘Normal likelihood’ n

1 Exponential (or Efron) connection e

Table 4.2: Alternative symbols for the key values of «.

It should be noted that all quantities that are derived from a-connections
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import the statistical interpretation peculiar to the specific value of «. Indeed, as
remarked by Kass (1984, p87), (“In all other exponential families (other than the
Normal) there are many ‘parameter—effects’ arrays”), an entire suite of curvatures
is so generated. Key values of o have special connotations, but the ‘exponential’
(or Efron) connection (o = 1) is the one often (implicitly) invoked, eg., Efron
(1975), since this connection measures departure from the exponential form of
distribution. The other main connection of interest is the information (or metric)
connection (& = 0), being a measure of departure from constant (co)-variance, as

per Amari (1990).

4.3.2 Canonical Links in GLMs

The invariance of scalar intrinsic («) curvature was established in Section 3.3.2.
The following theorem holds for a particular value of «, [ = 1 (e)], corresponding
to the exponential connection and to exponential curvature. The result quoted

holds for a GLM with canonical link.

Theorem

The scalar form of exponential intrinsic curvature for a GLM is minimal when the

link is canonical.

Proof

The scalar form of intrinsic curvature as defined in Equation (3.6) is

2
1 . «
( ) ( ajb U,’ u"b) (A/eg uleul ) th
Pr
a

where v/* = op , with s being the arc length. The Normal component of a-

curvature is defined as

o4

t = 0,BL + T BIBf — Taseg™ By
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Consider the exponential (or Efron) connection, corresponding to o = 1. The

scalar form of intrinsic e-curvature (1-curvature) becomes

€
2
1 e- ;
(p_) — (N;b u/au/b) (Ne}; uleulg) gjh
r

€ €

. . . . é .
= 0,8} + 5, BI Bf — Typeg®* B

with

As a GLM is considered, and o = e, then
r ik =0

since the model is then from the exponential family, and further
Tabe = 0

for the resulting curved exponential family, as already shown in Section 2.15.4.
Thus

e

;b: aaBZa
but for a GLM with canonical link

.o
Bb = a/Bb

= Xib i aaBZ = 0.
This gives
;b: 0

which in turn means that .

iy

This is a minimum, since the scalar form is positive definite.

Comment

The above result can be considered a generalisation of the Normal error/linear
model combination, where the scalar intrinsic curvature is minimal (zero) for the

canonical link which is the identity function, ie., a linear model.
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4.4 The exponential form of a—curvature

In general, a~curvature is

@

ab —_— 8 Bb +B]Bb ]k —_ sz +B]Bb ;k

[

since HYy = 0,B;} as I, = 0 for an exponential family model. Thus the leading

term in a—curvature is simply the exponential curvature.

Since
Pfi = Pjimg
then
ng = ijmgmi
This gives
Hiy = Hiy + BIBl g™
— Hi,+ BIB} 5 A Tjimg™
and finally

[0 4

1 -
Hiy = Hiy + BIBF 2 —— T,

where T7, is the skewness tensor (contravariant form)

The following observations can be made.

o If errors are Normal, then
43 [+

Hiy = Hip = 0.8,

since the skewness tensor Ty is then zero, as the distribution is symmetric

(Kass, 1984).

e For a GLM,
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and further
Hi =0

for a canonical link.

e If the link is canonical in a GLM, or if §,B; = 0

a 11—«

Hyy = BIBf ———T7,.

2

4.5 Generalized Nonlinear Models

The following result can be given for Generalized Nonlinear Models (GNMs).

Theorem

147

Zeroing the first term in a—curvature in a GNM implies that the GNM is a GLM

(special case) and that the link is canonical.

Proof
The condition

e

21) - aaBz =0
implies that Bj is constant since
Gk
Bi=22
opb

This in turn means that for a GNM

5fz'(X; ﬂ)
op°

= constant
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which implies that
' = f;(X;3) = constant x 3

ie., a GLM with canonical link, since 6 = 7, the linear predictor.

The result can be thus stated.

A GNM with zero exponential curvature must be a GLM with canonical link.

4.6 Bias and Covariance of Estimators

Various workers have addressed the question of bias and (co)-variance of estima-
tors, especially for models belonging to the curved exponential family. Key authors
include Box (1971), Efron (1975), Clarke (1980), Bates and Watts (1980), Amari
(1982a, 1990) and Corderio and McCullagh (1991). The two issues are bias and
(co)—variance of estimators.

The first order (o(N~!)) term in the bias can be removed by an adjustment as
given in Amari (1982a, p381) and Efron (1975, p1214, remark 11). This adjustment
is a function of the mixture connection and mixture curvature of the ancillary
subspace. See Section 2.10 and for the one-dimensional and Section 2.11 for the
multi-dimensional case. The second order (o(N~2)) terms in the squared error of
this corrected estimator become sums of squares of three terms, as given in Amari
(1990, p133, Theorem 5.4) and Amari (1982a, p381).2 These three components

are sums of squares of the

1. mixture connection

2. exponential curvature, and

2Note the difference in treatment by a factor of N, viz, (5.29) of p381 Amari (1982a) versus
(5.4) of p131 and (5.11) of p133 Amari (1990).
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3. mixture connection of the ancillary subspace.

The first term depends on the parameterization, and so, in theory, could be
eliminated by choice of parameter. This is called naming curvature or parameter—
effects curvature. The second term is related to the exponential curvature which
is known from the previous section to disappear for models such as GLMs with
canonical link, and so is model dependent. The last term will be zero if the
estimator is the MLE.

So, it can be seen from this breakdown that curvatures and connections feature
in the assessment of properties of estimators.

In particular, it should be noted that for a GLM the parameter—effects curva-
ture is invariant, and so this component of squared error could not be removed by
parameter transformation, since the only possible transformations in a GLM are

linear.

4.7 Variance Stabilizing Link Function

The constant information scale is used in model checking, as for example in Mc-
Cullagh and Nelder (1989, p398), where the variance stabilizing transformation
is listed for each error distribution that defines a GLM. The constant informa-
tion scale has another interpretation as producing a link function that is variance
stabilizing. According to Kass and Smyth (1990), this link function is the most
frequent choice after the canonical. Choosing such a link zeros the 0-connection®
(a special case of Section 2.10.3). A zero O—connection implies that the link is
variance stabilizing, ie., the link corresponds to the transformations given on page
398 of McCullagh and Nelder(1989, ed 2). Table 4.3 reproduces these constant—
information transformations (link functions).

This condition (zero O—connection) can be manipulated to produce an imbedded
application of the elementary formula for the variance of a transformed random

variable as given in Section 2.10.3.

3Also called the Riemannian connection.
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Function Error

7 Normal
2/ Poisson
2sin™! \/f | Binomial

2lnp Gamma

—2/\/l Inverse Gaussian J

Table 4.3: Constant information link functions.

The functions given in Table 4.3 can be obtained from the change of variable

relation for the transformation ¥ = g(X), ie,

via Taylor’s theorem applied on

YV=g(X)=9g(w)+g (X —p)+...

to give

ie,

In terms of the O—connection, the choice of a particular link function is equivalent
to a 1:1 transformation of the natural parameters. Under such a transformation
the O-connection on the new scale ( €) in terms of the old (8) is given by a
transformation rule as given by Equation (3.2). What is required is a 0-connection
for the fitted value scale (§ = p) rather than the regression coefficients as given

in Equation (3.2). The formulae are similar, but the parameters addressed are
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different. To this end the required transformation rule is closer in notation to
Amari (1982a, p364, 2.28), and Appendix C.1.

In this Section, the new scale (due to the link function) will be denoted by
indices ¢’ j' k" whereas the original scale of natural coordinates will be denoted by
1 7 k as usual.

The scale of fitted values is also called the space of expectations, as described
in Section 2.12 where the space of expectations is shown to be dual to the space
of natural parameters, hence the use of the notation £ for the fitted values.

For a GLM with non canonical link, the information connection in terms of the

new scale is

y i i i pi gk D
Fi/j/k/(s) = Bk/ (al’B]/) 97'.7 + Bi'Bj'Bk' Fl]k

A slight modification of previous notation is required to incorporate the effect of

the choice of link function. In the notation of McCullagh and Nelder (1989), the
link function g is defined by

and so
afi i afl 87’]1 . afl

B = = —
Y06 Onr o0& Ony

GI‘L’ .

Noting that
g(p) =n=g(£)

it follows that

a ! ! €
N — g =96 % G

o
The information connection on the new scale is then
0 of, of; Ofy 0%  Of:
TSN = 1 i i1 LS AL G i/G 'IG Y4 " P
Fz] k (5) 2G“ GJJ Gk Tijk(e) (87’]1 aT]J 8771{) TG Gy G ke ik (anlanj Ik

and so the zeroing of this quantity can be examined to find the transformation

which induces stable variance for a particular error distribution. For a GLM in

general the following relations hold

g9i; = b"(07)d,;
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and
Tije = 0" (0%)Ei,
with an upper case index being nonsum.
It can be shown that the previous link functions given in Table 4.3 induce stable
variance for each error distribution as shown. In order to verify these results, a

table of b(¢) and its derivatives will be required. These are given in Table 4.4 in

the notation of McCullagh and Nelder (1989).

ERROR b(6) b(0) b (6) b (6)

Normal 62/2 6 1 0

Poisson e’ e’ e’ e’

Binomial In(14¢% |e?/(1+€) | /(14 €)% | (1 —e)/(1+ €8
Gamma —In(-6) | -1/6 1/6% —2/6°

Inverse Gaussian | —(—26)/2 | (—=20)7Y/2 | (=26)73/2 | 3(~24)5/

Table 4.4: The canonical parameter function b(#) and its derivatives.

For each of the distributions given in Table 4.3 and Table 4.4 it can be shown
that choice of the nominated link function will zero the information connection,
due to cancellation of terms in the given 0—connection. For example, in the case

of Normal errors, T;;x(6) o< b"'(8) = 0 giving

0 o%;  Ofy
Fi'j/k/(ﬁ) = GrvG 1y Grr Gik (man—x) .

The variance stabilizing link from Table 4.3 is the identity, and since the identity

is the canonical link for normal errors,

giving
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This gives
0
Filjlkl(&) = O

as expected for the Normal distribution.

Marginally more involved derivations are needed for other error distributions.

General Case

Examining the general form of the O—connection under a transformation will show
the general conditions under which this connection can be zeroed, and so induce
constant variance on the scale of fitted values.

Using the form of the skewness tensor and information metric for a GLM gives

the information connection as

Uy (€) = Bl (80 B2) gy + BLBLBE T,(6)
15 k' - k! i 5’ glj g 251 L 1 15k

to become
0 7 7 1ol i »J ok [ inK
since
0 1
Ligr = 5 Lisk:
This gives

y i i\ pt gl 1 I Rk pK
Fi’j’k’ (6) X 2Bk’ <8ZIBJ/) b (9 )51J + B’L"Bj’Bk’b (0 )Eljk

0 : 0
= a—&l— [gjkB;lBlfl] = 8—&, [gj’lc’]'

So, if the 0—connection with respect to § vanishes, ie,

0
]‘_‘i’j’k'(é) = O

this implies that

gk = constant.

That is, a constant information metric with respect to § (the scale of fitted values)

is implied by the choice of link function.
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Proof

Starting with

0 0 ;
—a—é? [gjlkl] = E |:g]kB]]/B]]:/]
0

= 36 [t"(67)6;.B] B |

_ b’"(@l)Eijka/B;/BZ/ + b”(@‘])(sjk (3i/ B]]:/) B]]:/ + b'/(@J)(SjkB;/ (ai/ B]]:;:l)
which becomes
= b"(0") By B} BS B, + 2b"(67)6;,. (0, BY) B,

by permuting the indices j and k. Since the indices ijk are arbitrary this gives

the required result.

4.7.1 Other Link Functions

In the previous section, the relation between the information connection (0—connection)
and the choice of the link function as being variance stabilizing was investigated.
There are other link functions that can be associated with key values of o and
the corresponding a—connection. As expected, these link functions induce those
properties associated with the particular value of «. For example, the case of
a = 1/3, produces a ‘normal’ likelihood by zeroing the expected third derivative
of the log-likelihood. Following Aitkin, Anderson, Francis and Hinde (1989), the
corresponding link function for the Binomial would be an incomplete beta func-
tion, while for the Poisson the ‘normal’ link function is the cube root, as described
in McCullagh and Nelder (1989, p198). The link functions corresponding to each
of the key values of a are given in Table 4.5, together with their corresponding
property.

The signed constants are included merely for completeness with the table ex-
tracted from McCullagh and Nelder (1989, p398), as reproduced in Table 4.3.
For Binomial errors, the link functions for & = £1/3 are given in terms of the

incomplete beta function (Kendall and Buckland, 1971)
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Mean (= u) | Canonical Constant Var. | ‘Normal’ ¢ | Skewness |
o -1 1 0 1/3 -1/3
5 1 0 1/2 1/3 2/3
Normal |6 0 =u n I L
Poisson | e’ 0=1Inpu 2/l 3YL 3213
Binomial | ? /(1 + ?9) 0 =In[p/(1—p)] | 2sin™" /z 1.(3,3) I(3,%)
Gamma | —1/6 6=—-1/pu 21n p —3u~3 | =33
Inverse | (—=20)"Y2 | §=1/2u° —~2/\/I —1/¢n In u
Gaussian

Table 4.5: Link functions for key values of a(4).

p=m
I(a,b) = /0 297 (1 — )" dz, a,6>0,0< 7 < 1.

The special cases for GLMs shown in Table 4.5 have parallels in the choice of
transformations for general models. Box and Cox (1964) introduced a family
of transformations using the likelihood to best select transformations satisfying
optimality criteria. Anscombe (1948) considered the choice of transformations for
non-Normal distributions. The choices given in Table 4.5 show the possibilities for
choice of link function against desirable properties. In practice, the data should

decide which link functions are appropriate.
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Note

For the special case o =1 (8 = 0) the exponential (or Efron) connection recovers

the canonical form with implied sufficiency. In this case

1 o*, of
Dyiw = GroGrypGrrgix ( ’ : )

Onrons Onx

and

1 &1,
F'/ TR O 1 J - O
U5k ~ Gjk (87]167]])

which in turn implies

Ly Lie = 0.

This condition holds if the family is exponential in the parameter, ie, canonical in
the parameter represented by the parameterization. In this case the corresponding

link function is the canonical link function for the error distribution involved.
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Extensions and Conclusion

In this chapter several allied problems are examined in detail to demonstrate the
utility of generalized curvature measures in the statistical approach to data anal-
ysis. Finally an overview of the thesis highlights is presented with concluding

remarks.

5.1 Extensions

Two related areas are studied to demonstrate the use of generalized curvature
measures both directly and indirectly in analysing statistical problems. The use
of these curvature measures will be non—technical in order to give a raison d’étre

for such measures without lengthy algebraic discourses.

5.1.1 Leverage in Nonlinear Regression

In the spirit of Bates and Watts (1981), a reformulation of the local Taylor’s series
approximation to the nonlinear regression problem converts it to a GLM using
square root link and an offset. As for the Bates and Watts quadratic form, the
GLM local approximation of the solution locus provides a better local approxima-
tion than linearization, although strange behaviour can occur far away from the

final value, as shown in Figure 5.1. The rationale for this approach is in considering

157
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estimates of leverage. The linearization and the GLM must give differing leverages
since they are effectively different approximants to the true nonlinear model, as
can be seen from the diagram (Figure 5.1) of the solution locus for Test Problem 1.
Of course, the two methods will give identical results at the optimum, ie, the least
squares solution. The point of including this GLM algorithm for general nonlinear
regression is to demonstrate implicitly the effect of curvature on leverage by ap-
proximating the same nonlinear regression model by two different approximants,
linearization and the GLM quadratic approximation. As the two approximants of
the same nonlinear regression function have different intrinsic curvatures (zero for
linearization and non-zero for the GLM with square root link), then the leverages
must be different (see Test Problem 2). Correspondingly parameter—effects curva-
ture would be zero for the linearization approximation, and non-zero but invariant
for the GLM. Given the nature of the GLM approximant, the GLM parameter—
effects would be expected to be closer to that of the nonlinear regression model

than the nil estimate from linearization.

The Problem

The nonlinear regression problem can be stated as the estimation of 8 given data

(i, Xi), i =1...n. The general form of model to be fitted to the data is
Y = f(X;0) +e, e ~ NIID(0,0%)

For a linear model

f(X;0)=X0

meaning that the derivative

0f/00 = X

is independent of 8. A nonlinear model is one where the derivative

8f/06 = F(6)
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depends on #. A special case of a nonlinear model is a Generalized Linear
Model (GLM) for which
f(X;0) = f(X0).

Using the criterion of Least Squares, the minimum of the function
S=3IY - f(X;0)

corresponds to the solution of the normal equations

dS e Bf
=2V~ (XG0 [ 551 =0

Only for linear models do these equations have an analytic solution, so alterna-
tive methods of estimation are used. All of these methods attempt to solve the

minimisation problem
LY - f(X; 0.
Two of these methods are described briefly, viz,

1. Linearization (Gauss-Newton), and

2. Newton-Raphson.

Linearization

The nonlinear function is approximated by a linear model using the Taylor’s ex-

pansion on
Y =/(X;0)+¢
to give
of "
f(X;O)f”vf(X;Oo)‘Fa—e‘ (6 —6o)+ ...
which becomes
of T
Y‘—for@— (0“00)‘“6

00,
Converting the problem to Ordinary Least Squares (OLS) yields

y=2p+e¢
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where

y = Y-~/
of

VA _J_
00,

B = 0-6

The fitting algorithm becomes

e Choose 8.

e Regress y on Z to get 3, ie., %i“ >(y — ZB)%
e 6=058+6,

e [terate until ,B is trivial.

Newton—Raphson Method

This quadratic method expands the function

S(0) =3[y - f(X;0)

in a Taylor’s series

oS T )
S(0) =5(0g) + = (0—0p) +1(0—600)"—5(0—86;)+...
( ) ( 0) 80() ( 0) ( 0) 803( O)
aS oS  9*S
== = 4+ (-6, =0
50~ 0 7 59, " 5g20 ~ %)

g+HB=0—-8=-H"yg

In general . )
0928 af ' of +0°f
90" = %56 36 Y ~T) G2

ie., the first term corresponds to linearization.
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GLM Variant

The nonlinear function f in

Y =f(X;0)+¢
is approximated by
of 10%f
Y ~ — (6 — 22 (0 —6,)°
to become
y=Y - f,=ZB8+ 18" HB+...
where
02 f
H=—"=V'V
062
and
B=6-6

as for linearization. Completing the square gives

1
y=28+38'V'Vp

o () (3
vV

- (Ao + EB)T (Ao + %ﬂ) ~ Ay " Ao

where
zZv!

.A()Z \/§

The GLM approximant is then

vV \' 1
Y—fo+AoT.Ao= (AO_*_%B) (A0+7§,B>

ie., the response is Y — f, + Ao " Ay, and the predictor is %, with Ag an offset in

GLIM parlance. The link function is the square root.
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Test Problem 1

The data used in this test problem is from Table 1.1 as shown in Figure 1.1. The
three GLIM outputs given in Appendix D.1 show

e a one-step implementation of the GLM variant,
e the iterative form of the GLM variant, and

e a linearization procedure (one-step) for comparison with the GLM variant.

The GLIM variant and linearization concur at the optimum value for the pa-

rameter estimate, as shown in Table 5.1.

GLM NLR

7] 2.0537 2.0537
SE(6) 0.1573 0.1575

Deviance 2.9334 2.9334

Residuals (-1.652, 0.453)

Table 5.1: Summary output : Test problem 1

Figure 5.1 shows the solution locus as the solid curve (with circlesat § = 0,1, 2),
the tangent to the solution locus at 6y = 0, and # = 2 being in the top right hand
corner of the graph. The GLM approximant to the solution locus is also pivoted
at p = 0 and is shown by crosses (+), while the data are shown by the box(0).
Globally, neither the tangent nor the GLM approximant capture the full nature of
the solution locus. However, in the neighbourhood of the final estimate (6 = 2),
the GLM variant is closer to the solution locus than the tangent produced by the

linearization method. The quadratic nature of the GLM approximant is clearly

demonstrated.
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1OJ1— 0

F2

Figure 5.1: Solution Locus (solid curve), Tangent (line) and GLM approxi-

mant (crosses [+] ). The data are shown by the box(0).

o
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Test Problem 2

The following data are from Draper and Smith (1981, p517, Exercise B).

t Y
0.5 0.96,0.91
1 0.86,0.79
2 0.63,0.62
4 0.48,0.42
8 0.17,0.21
16 0.03,0.05

Table 5.2: Data Set with replication

The model to be fitted is
EY)=e?

assuming Normal errors. In the treatment that follows, the GLM variant on non-
linear regression is contrasted with linearization, at parameter values away from
the optimum (mle). In particular, leverages are obtained (by use of the GENSTAT
5 package), initially at the optimum parameter value, and then at parameter val-
ues two standard deviations away from the optimum value. The corresponding
computer outputs are given in Appendix D.2.

The key results of these three sets of calculations are summarised in Table 5.3.

The ‘Interval’ quoted in Table 5.3 is simply two standard errors.
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Observed Estimate

GLM Linearization

Upper 0.01618 0.01672

Lower - 0.01623 - 0.01547

Interval = 0.01618 = 2 - 0.00809

Standard Error

GLM Linearization

Upper 0.00812 0.00873

Lower 0.00813 0.00746

SE(optimum) = 0.00809

Table 5.3: Results summary : Data Set with replication
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The corresponding leverages are reproduced in Table 5.4.

Optimum + 2 SEs - 2 SEs

GLM/NLR GLM NLR GLM NLR
0.012 0.012 0.014 0.012 0.011
0.012 0.012 0.014 0.012 0.011
0.040 0.040 0.045 0.040 0.035
0.040 0.040 0.045 0.040 0.035
0.105 0.105 0.114 0.106 0.095
0.105 0.105 0.114 0.106 0.095
0.183 0.184 0.187 0.184 0.177
0.183 0.184 0.187 0.184 0.177
0.140 0.139 0.126 0.139 0.154
0.140 0.139 0.126 0.139 0.154
0.020 0.019 0.014 0.019 0.029
0.020 0.019 0.014 0.019 0.029

Table 5.4: Leverages summary : Data set with replication

The following observations can now be made.

166

1. The leverages for the GLM variant at parameter values two standard devia-

tions above and below the optimum are closer to their values at the optimum

than are the corresponding leverages values for linearization, by inspection

of the final column in each output.



CHAPTER 5. EXTENSIONS AND CONCLUSION 167

2. The GLM regression estimates at the extremities are closer to the interval de-
fined by two standard errors than are the corresponding regression estimates

from linearization.

3. The standard errors for linearization at the extremities appear more variable

than the GLM variant.

Given that the GLM variant is expected in theory to approximate the solution
locus better than linearization, all these results are to be expected. These empirical
results confirm the suggestion that the GLM variant will better approximate the

nonlinear regression model than will a simple linear expansion.

5.1.2 Replication and Curvature

The question of replication in observational studies and experimental designs has
been addressed by many workers, such as Draper and Smith (1981), Seber and
Wild (1989) and Weisberg (1985). The statistical benefits of replication include
increased precision of estimates, an independent measure of error, and the ability
to test for interaction, as well as allowing for lack of fit tests. Bates and Watts
(1980, p5, 2.2.1) considered the effect of replication on estimates of curvature for
the nonlinear regression model. An r—fold replication reduces all curvatures by
a factor of /1/r, following the arguments of Bates and Watts (1980) and Seber
and Wild (1989). The explanation proceeds by observing that with replication the
problem of fitting a model to the data reduces to fitting to the means, Seber and
Wild (1989, p31)!. Thus the expected value for each replicate observation holds a
carbon copy of the fitted values using the means as data. So having two replicates

at each of three design points gives

/11 = (ﬁufﬁ)

1The replication is assumed to be the same at each design point. This restriction is not

necessary, but it helps to simplify the discussion.
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po = (ﬁzaﬁz)
ps = (ﬁmﬁs)

or
o= (o, )

where the notation [ refers to the fitted value obtained by regression using means
rather than all the observations. In the notation of Seber and Wild (1989, p146,

4.2.5), curvature is

el veilel el e

YW= T = aanz = T =
el = 2flell®  vellallr V2

As stated earlier, under replication the estimation problem is tantamount to re-

gressing on the means (Seber and Wild, 1989, p31), and the within replication
variability is used to obtain an estimate of pure error. Switching to a regres-
sion based on the means induces a scale factor of 1/4/7 since V(z) = V(z)/r, in
agreement with the above analysis.

These developments are mirrored in the modifications due to Amari (1982a,
p372, 4.3 and p376, 5.2) for the metric, affine connection and skewness tensor in
the case of replicated observations in the general case. For example, the metric
tensors are related by

Ngij = Gij
where g;; is the metric tensor for the problem cast in terms of fitting to the data
from N replicate observations, and g;; is the metric tensor for the variable on the

original (single observation) scale.

Example

To demonstrate the effect of increased levels of replication, the following simple
experiment was conducted. For the one-parameter model £ (Y) = /z, the data

points shown in Table 5.5 were chosen.
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z EY)
1 1
4 2
9 3

Table 5.5: Square root model — replication experiment

For sample sizes of 1, 2, 5 and 100 at each level of z, noise was generated from
the Uniform distribution between -1 and 1. To emulate the effect of increasing
replication, this noise was averaged and then added to the F(Y’) value. For each
sample size, this procedure was repeated 100 times using different simulated data
each time. A sample of generated data is shown in Table 5.6, being the last data
set out of the 100 generated for each value of N. These are the data sets that are

described in the series of plots that follow.

N % Y2 Y3
1] 1.245 960 | 2.584 084 | 3.865 286
2 | 0.783 352 | 2.094 020 | 2.953 216
5| 1.327 645 | 1.991 387 | 3.005 948
100 || 1.050 385 | 2.015 503 | 2.979 930

Table 5.6: ‘Typical’ data generated for the replication experiment

The function E(Y) = 2% was fitted to each of these 100 data sets, assuming
Normal errors. The average results for the 100 simulation are shown in Table 5.7.
In order to display the ‘typical’ results, the sum of squares was plotted against

the parameter value. The plot was centred on the final estimate, using a width of
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o~

N 0 (average) Standard Error

1 0.492 832  0.078 655

2 0.495 235  0.053 578

3 0.498 038  0.031 646

100 0.500 015  0.007 610

Table 5.7: Results(averages) for the simulation replication experiments

two standard errors on either side of the final estimate. These final estimates and
their standard errors were obtained from fitting the model to the representative
data given in Table 5.6. These estimates and standard errors (SE) are shown
in Table 5.8 which shows the estimates and their corresponding standard errors
for the last data set in each of the 100 simulations using increasing replication

(N =1,2,5,100).

N Estimate SE

1 0.6245 0.0252

2 0.4991 0.0238

3 0.5003 0.0324

100 0.4983 0.0035

Table 5.8: Results for the ‘typical’ data

These plots are shown in Figures 5.2, 5.3, 5.4 and 5.5. For each graph the
sum of squares function (SoS) based on the nonlinear model is shown by the solid

line, while the sum of squares function based on the linear approximation centred
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at the final estimate is shown by the curve using circles. The scale for the last
graph(N = 100) is different to the remainder(N = 1,2,5).

The effect of increasing replication is twofold. The approximation of the sum
of squares surface based on the linearization around the final parameter estimate
improves with increasing replication, and the change in the sum of squares sur-
face for both the ‘true’ value (based on the nonlinear function) and that based
on the linear approximation decreases relatively with increasing replication. The
second effect will correspond to decreasing curvatures, or to use the terminology of
Ratkowsky (1983), being ‘close to linear’. In expectation space, the corresponding
solution locus for the model appears as a space curve, which can be displayed in 3
dimensions by using the means as expectation coordinates as in Figure 5.6. The
solution locus as shown in Figure 5.6 is centred on the true value of § = 0.5 with the
thin line corresponding to the range of parameter values from —1/2 and 1, while
the thick line gives the confidence interval expected with replication (VN = 2). No
data point is shown since the solution locus is representative of all simulations
described in Table 5.8. The ‘close-to-linear’ behaviour is clearly exhibited, in the

straightness of the solution locus near the optimum.

General Notation

Following the developments in Seber and Wild (1989, pp30-32), the replication
problem could be cast in terms of the means at each replicate point. However,
as shown in Appendix D.3, the metric tensor and related functions such as the
a—connection can be written as multiples of the corresponding functions in the
single observation case. This result holds for the problem cast in terms of the
replicate observations or in terms of the means, but the former tends to be used
most often. Following Amari (1990), the notation g will be used to denote the
metric tensor based on N replicates. The corresponding a—connection for the
replicate observations will be denoted by lg‘ This terminology is not to be confused
with (T Ef‘) which is used for the information (Riemannian) connection. See

Lauritzen (1987). Some basic results for metric tensors, a—connections and other
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quantities are given in Appendix D.3, which also contains an explanation of some
results collected from various sources which elucidate the relations used later.

Briefly, using the notation above and definitions from Appendix D.3,

and

Q

= ¢

Iije= N Tk
for the replicate data. So all subsequent discussions could proceed in terms of the

single observation scale if desired.

Asymptotics

The form of the Central Limit Theorem given in Amari (1982a, p376, 5.2) shows

the effect of increased levels of replication, since effectively for N = r

0i; = Ngy;.

In the limit, for the nonlinear regression model, high levels of replication mean
that the nonlinear model behaves locally as a linear model as both intrinsic and
parameter—effects will converge to zero. The local linear approximation to the
nonlinear function will be excellent, with the means mapping out the deterministic
component precisely, and the population error will be known without measurement
error. These features are exploited in the lack of fit test, used not only for testing a
linear model, but also for testing a nonlinear response function, (Seber and Wild,
1989, p32).

To study the general case, the imbedding theorem needs to be invoked. This
theorem expresses the a-connection for the regression coefficients Igabc in terms

83
of the a—connection of the natural parameters I';;;, namely

P (w) = (8.8 Blg,; + BiBIB* Tiji (6(w)) .
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Using the bar notation already described, this relation can now be written in

terms of means rather than individual data points.

a o . @
[abe= (0o B})Blgs; + BB Bf T'ijy. . (5.1)
Writing the results (5.2) of Amari (1982a) in the notation of this thesis, the

Central Limit Theorem gives the distribution of the data g as asymptotically

normal,

Yy~ N(#’) gij/r)'
Examination of the imbedding theorem, Equation (5.1), now yields two distinct

possibilities
(l) f‘ijk—-) 0, and/or
(ii) 9,B; - 0

as r — oo.

The first case (i) implies that, as all error distributions converge to the Normal
under intensive replication, all such models will become nonlinear regression mod-
els, if only the error distribution is considered. This is due to %ijkz 0 in the case
of Normal errors. As the intrinsic curvature also goes to zero under high levels of
replication, the nonlinear regression model will be locally well approximated by a

linear model.

In the second case (ii), the exponential connection becomes
¢ o NN
Lase= (0 By) BLsj + B, By B: T'iji

but Tyx= N Ie‘ijk: 0 by definition for an exponential family model. Thus if
0,B} — 0 then Tz~ 0 implying that a generalized nonlinear model (GNM) will

be a local exponential family model in terms of the regression coefficients, ie., a
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GLM with canonical link. Sufficiency of the particular parameters follows as a
local property in the limit?.

The two conditions are connected by the Central Limit Theorem. The sub-
suming case is nonlinear regression. Furthermore, as N — oo the means end up
on the solution locus, and the linear model approximates the nonlinear model well
in a local sense. In differential geometric terms, the expectation surface becomes
‘locally Euclidean’. For the general case, ie, a GNM, this implies (in the notation
of Section 3.6)

p(X;8) ~ po(X; By) + 22 |5 (8- 8o)

23 8o

But the natural parameters are given by

0, = 1(X;B)
and p ~ f for Normal errors, giving

;00" o,

bosr 9B
The Taylor’s expansion for f gives

of
Zfo-i‘ag— 3, (B - Bo)

which means that

B; = constant
leading to
8,B; = 0.

This means that the GNM will be locally approximated by a GLM with canonical
link. However the same conditions that could cause this to happen would also

mean that the GNM would become a nonlinear regression model in the limit.

2All that can be inferred for general likelihood models using (ii) alone is that local sufficiency

holds for the (imbedded) regression parameters.



CHAPTER 5. EXTENSIONS AND CONCLUSION 175

5.2 Overall Results

The following results are not entirely original but are derived in detail using pro-

cedures not presented elsewhere.

e The use of Bartlett’s equations in the interpretation of a—connections.

The projection of normal and tangential components of a—curvature.

The decomposition of (scalar) a—curvature.

Zero 1-connections and exponential families.

Wedderburn’s exponential form.

For GLMs, an expanded table of link functions corresponding to transfor-

mation properties.
The following is a summary of points that are considered to be original.

e The a—connections in the multi-parameter case are interpreted, especially

for o equal to zero, 1/3 and 1.

e The Exponential connection is zero iff the link function is canonical in a

GLM.

e A test for canonical link adequacy in GLMs has been derived from the skew-

ness tensor as imbedded in the a—connection for the regression coefficients.

e The invariance of intrinsic curvature is proved for the general case of non-

Normal errors.

e Parameter-effects curvature is shown to be invariant for a GLM ; (long and

short forms).

e The scalar form of exponential intrinsic curvature for a GLM is minimal

when the link is canonical.



CHAPTER 5. EXTENSIONS AND CONCLUSION 176

e A generalized nonlinear model (GNM) with zero exponential curvature is a

GLM with canonical link.

e A zero information connection implies a variance stabilizing link in a GLM

and conversely.

e An improved leverage estimator in nonlinear regression can be obtained via

a GLM approximant to the nonlinear function.

5.2.1 Summary

Some of the results obtained using the methodology of differential geometry and
tensor algebra represent known results in a new light. However this in itself could
prove worthwhile as being a new way of viewing established relations, as stated in
Kass(1989). For example, the statistical interpretation of a—connections joined
the differential geometric methods of Amari (1982a) to the approach used by
Bartlett (1953a). In the multi-parameter case discussion of the interpretation
of these connections required the Bartlett notation to be modified and extended.
Other key results that have been reported elsewhere are the projection of a-
curvature(Amari, 1982a, p371), and its decomposition into normal and tangential
components (Amari, 1990, p156). While these results have been quoted previously,
a full derivation and explanation appears not to have been given, as has been done
here. The decomposition of a—curvature has also been derived in scalar terms as
well.

Considering the new results, the invariance of intrinsic a—curvature may be
expected to hold, but it is claimed that the method of proof using differential
geometric arguments with tensors has not previously been demonstrated. Likewise
the invariance of parameter—effects curvature for a GLM is an expected result, but
the proof using the methods of Section 3.3.3 is claimed as original. Certainly
the invariance of intrinsic curvature in general and parameter—effects for a GLM
are both generalizations of results in special cases (Normal errors and/or linear

models), as shown in the body of the thesis.
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A major thrust of the investigation centred on the curved exponential family
and in particular generalized linear models as an important subclass of such fami-
lies. Some of these new results obtained using the differential geometric approach
are necessarily cast in terms of the apparatus peculiar to the consequent view of
statistical distributions, such as a—connections. Thus the specialised results for
the exponential connection and canonical link in GLMs may seem abstract, but
proper interpretation of this result requires a full appreciation of the role of affine
connections in statistical distributions. To this extent this result could be viewed
as defining the role of the exponential connection in GLMs. These investigations
have led to the formulation of a new test for canonical link adequacy in GLMs by
employing the consequent relation for skewness of regression coefficients in GLMs,
as determined from the a—connection and the imbedding theorem. Likewise, in-
terpreting the minimality of scalar exponential intrinsic curvature for a GLM with
canonical link requires an understanding of a—curvature. However, this result can
also be seen as a generalization of the zero intrinsic curvature for linear models
under Normal errors.

A new class of models, generalized nonlinear models (GNMs), has been defined
as the generalization of the nonlinear regression model in the case of Normal errors.
These models inherit features of GLMs and the nonlinear regression model. In fact
GNMs and GLMs are related families of models since it has been shown that a
GNM with zero exponential curvature is a GLM with canonical link.

Considering link functions other than the canonical in GLMs, the most popular
link function after the canonical (Kass and Smyth, 1990) is the variance stabiliz-
ing link function. This constant information scale link implies a zero information
connection and conversely. While this result is hardly surprising, again the de-
velopment in terms of the a—connection requires the ability to manipulate and
interpret these affine connections. This type of result could also be used as an
interpretation of the a—connection itself in the case of a GLM. By considering
other estimator properties such as ‘normal’ likelihood and skewness reduction, an

expanded set of link functions has been determined, giving the user further options
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for the choice of link function over the canonical and the variance stabilizing.
Finally the concept of curvature has been used in demonstrating an improved
method of estimating leverages in nonlinear regression, and the effects of replica-
tion on curvature have been examined, with a view to investigating asymptotic
behaviour, ie, the results of intense replication at the design points. The conse-
quent behaviour confirms the expected results for increasing sample sizes at each
replicated design point, in terms of local approximation by a linear model based

on Normal errors.

Conclusion

This thesis has presented a generalization of curvature measures for non—normal
error models by continued analogy with the nonlinear regression model. This
generalization and its subsequent interpretations have been shown to reduce to
the known results for Normal errors, where the differential geometry is Euclidean
rather than Riemannian as in the general case. In addition, the generalization
to non-Normal models of effects of curvature on model behaviour has been ex-
pounded. A particular class of curved exponential family models, generalized lin-
ear models, has been the special topic of consideration, with attention being given
to the canonical link. As this link function is the non-Normal analogue of the
linear model for Normal errors, it has been constantly been used as the reference
point for investigating differential geometric quantities such as a—connections and
a—curvatures, with a view to generating interpretations of such quantities in the
general case. This strategy has proved most fruitful in investigating the behaviour
of generalized nonlinear models and generalized a—curvature for such models. The
‘theme’ of contrasting the canonical link with the non—canonical link in GLMs has
been employed in the development of an empirical test of link adequacy and has
also resulted in the classification of alternative link functions to the canonical in
GLMs. In essence, this thesis has extended the differential geometric approach
from Normal to non—Normal error models, not only for generalized linear models

but also for models having a general response function.
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Figure 5.2: Sum of squares plotted against the parameter 6 : N =1
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Figure 5.3: Sum of squares plotted against the parameter 6 : N = 2
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Figure 5.4: Sum of squares plotted against the parameter 6 : N =5
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Figure 5.5: Sum of squares plotted against the parameter 6: N =100



CHAPTER 5. EXTENSIONS AND CONCLUSION 183

B I
—+—
[o2]

Figure 5.6: Solution locus : replication experiment



Appendix A

(Ch. 1)

A.1 The Hat Matrix for GLMs

The derivations below give the generalized forms of the leverage equation for GLMs
which maps the data into the fitted values. Both forms are derived from the basic

mapping equation for the working variate z from the GLIM algorithm, ie,

z=n+<%) Y —p).

Since the predictors X are regressed onto z using weights W, the equation in-

volving the hat matrix for a GLM is
w2z = H W',

where
H,= WX (XTWX) X W

The scalar form for the weight function is

du 2
_ -t
W=V (dﬂ> :

A.1.1 Standardized Form
The working variate z (scalar) can be written as
z=n+ WYY — )

184
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which becomes (in vector form)

W' (z =) = V(Y - ).
Pre-multiplying by H gives

H WY (z — ) = HV~YV2(Y — p)
The LHS becomes
HW!'Y?z - HW'*n =Wz - W'’y
using 7 = X 3 and the leverage equation Wiz = H9W1/2z. This leads to
WY2(z —n) = HV Y2 (Y — p).

But, the expected working variate is

Z=n+ w2y -1/2 (’}7 _ N)
since n and p are fixed for each iteration, and thus

wl/2 (z-1n)= wlltw-1/2y-1/2 (? _ N) _ HgV—1/2 Y — p).

Finally
V(T - ) = VG ) = BV Y

as quoted.

A.1.2 Raw Form

Substituting the expansions for the working variate z in the leverage equation

Wiz = HW'/ 2

yields

W (1 + WYY - ) = HW (n+ W2V — w).
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Since HgWWn = Wl/Qn, this becomes
V-2 (? ~ u) =H V' (y _ Ne
Since V=12 o« W/2 then it follows that
VY2 H,V-'y

leading to
V_1/2[1, — HgV_l/2u

due to the 1:1 correspondence between n and p via the link function. This leads

to

VY = H vy

which converts to

Y =VVH, VY — 5y

as expected.



Appendix B

(Ch. 2)

B.1 Jeffreys’ distance measure

The measure of the distance between two distributions at 8 and 6 + d is given
by
ds? = gi;d0°d8’.

B.1.1 Preamble

A measure of the ‘distance’ between two distributions [due to Jeffreys(1961)] is
reported in Barndorff-Neilsen, Cox and Reid (1986, pp86-87). The definition is
given in Cox and Hinkley (1982, p130), and the explanation and derivation are
in Cox and Hinkley (1978, pp51-52, problem 4.16). Here the term ‘distance’
is reported as not being quite accurate due to the metric in general not being

Euclidean and the triangle inequality being violated. The derivation is given in

terms of the notation of this thesis.

B.1.2 Derivation

The symmetric ‘distance’ measure is defined as

ds® = /ln( y’0+d0)> (p(y; @ + dB) — p(y; 0)) dy.
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Now

Op(y; @
p(y; 0 + df) = p(y; 0) + g";z ) a6 +

by a Taylor’s expansion. So

— 2 8]) ]
ds* = [1In <1+5801d0 )(E,@deu...)dy

1 |
:/—8pd018pd07dy+...

p oGt 0fI
Olnpdlnp o
= . —pdydf*de’
50 aijydﬁdﬁ
Since
Inp=1/¢
then

ds® = d*d6’ E(0,0;£) = gi;d6'd6’.

B.2 Metric Tensor : alternative form

The alternative form for the information matrix (metric tensor) is
= —F(0,0;4).

B.2.1 Derivation

Now

paiajg = p0o; (%)

since

{=lnp.

Hence
1 1
pc')ié’jé =p (818];0) » +p ( p ) azpa]p

0;p 0,
= @ajp — p-p—p—;Tp = 3i8jp - p&ﬁajﬁ

188
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Thus
[ poid;t = [ b0 - JECEY.
giving
E0:0;0) = [ 0,0, - g3,
Now
/ d:0;p = / 8;(pd; Inp) = 5, / PO,

but

/pc?jé =0
being the score statistic, so

/ d,0;p = 0

giving

E(aza]é) = —G.

B.3 Metric Tensor : results

The results below using the metric tensor are used throughout the thesis.

B.3.1 Metric tensor
gijgik = 5;-0
97 = 9* 9" gkm

B.3.2 Affine connection

1_‘jim = P;'Cigkm

k
F;'Ci = g™
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B.3.3 General tensors

Note the errors in Amari (1982a, p364 and p367). The correct tensor forms are

S]l:k = Smjkgml

and

S =Sl g g™ gk

respectively. See Kay (1988, p55, sec. 5.4) for other examples.

B.3.4 Imbedding

The imbedding of regression coefficients 3 in the natural coordinates @ is given by
6 =6(8).

The metric tensor g, of the imbedded regression coeflicients 3 in terms of the

metric tensor g;; of the natural parameters 8 is given by

Gab = B,iBZgij

where _
i oo

B, = 950

and .
P VK

B.4 Riemann Christoffel Curvature Tensor

A space with an affine connection is flat when the Riemann Christoffel curvature

tensor
Rijr = (81- Il — 95 ka) g+ Dy T — Ty Ty

vanishes identically. Then there exists an affine coordinate system such that

Fijk =0.
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If the space is not curvature free (R # 0), no global affine coordinate system exists.
At any point 6y however, there exists a coordinate system where the coefficients

of the affine connection and its derivatives vanish, viz,
Fijk(HO) == 0, ,8mFijk(90) = 0, e

This creates a natural (local) coordinate system at 6, as described by Amari
(1990, pp47-48).

Statistically, a model has an associated one parameter family of affine con-
nections, le., the a-connections. The corresponding Riemann Christoffel (RC)
curvature tensor is j.zijkl with 12 replacing I' in the previous definition of R, see
Lauritzen (1987). The following statements are given as definitions of terms used

in statistical applications.
o A statistical manifold S is a—flat when it is flat under the a—connection.
e When the manifold S is a—flat, there exists coordinates 6* such that
(2
r ijk(a) =0
identically. The parameters @ then form the a—affine coordinate system.

For a curved exponential family, the RC curvature tensor becomes
@ 1—a?
Rijr = —Q—Tkm{iﬂ]zngmn

where the operation [ij] is defined by’

1) miT'ln - Tkm'Tiln
T Tijpn = — 20—

Thus the RC curvature tensor is a function of the skewness tensor, and since the

a—connection is a function of the skewness tensor, then the a—flatness of the space

is purely related to the solution of

iR
fl
o

as per Kass (1984, p87, 4).
1Note the typographical error in Amari (1982a, p365).
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B.5 Exponential Families and 1—connections

. . 1 . .
The condition I'= 0 does not necessarily imply that the parent family distribution

is of exponential type.

one dimensional case

1
The condition I‘¢ = 0 implies that (L1Ly) = 0, but since

L=/{=1Inp(y;0) =1n f(y;6)

this becomes

d?¢ de
a5 ag” % =0
which reduces to
1 (df\*  d2f)\ dln f
/ (—}* <£) + W Wdy = (. (Bl)
The condition )
1/d 2
B ' R
f \do do?

implies a canonical exponential family, but this condition is too stringent.

The original implied condition, Equation (B.1), can be construed as

d (dlnf\*
o7 () =0

which is satisfied by a general canonical exponential family, but there may

be other solutions.

multidimensional case

1
The condition I',,. = 0 implies that (L,,L.) = 0, which becomes

oL U
90. 06,006,

fdy=0

to give

19f af #f \Olnf
—— =0
/ ( f 86, 06, * 26,00, ) 08,
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Imposing the constraint

Lofor & _
f00,00, 00,00,

0

as in the 1 D case implies a canonical exponential family, but in general there

may be other solutions to the integration condition.

B.6 Wedderburn’s Exponential Form

A description of the results reported in Hougaard (1982) for Wedderburn’s expo-
nential form is given. The notation used is that of Hougaard (1982). Wedderburn’s

one dimensional exponential family for the iid random variables X7, . .. , Xp 18

f(;0) = 91®) 15(0).

The parameterizations given by

6, d? J
vo= | {Wms(e)} 0

are characterized by the key values of ¢ as given in Table B.1.

Value of § | Induced Property

0 canonical parameter

1/3 ‘normal likelihood’

1/2 stable variance

2/3 zero asymptotic skewness
1 mean value parameter

Table B.1: Key values of ¢.
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1. The case § = 0 reproduces the canonical parameter 6 via
W(01) =6, — 6,

which gives () = 6, ie., the natural (canonical) parameter 6.

So the transformation v is the identity.

2. The case § = 1 gives

6
Y(0;) = [3—0 In ¢(0)J = In’ ¢(6;) — constant

8o
But
{=6t(z) — Ing(d)
and
dl ,
=) ~ I’ 4(6)
with
dl
E@ =0
glving

Et(z) =1In' ¢(6) ¥ 7(9)
ie., the mean value parameter, since 7(6) = ¢(0).

3. The value § = 1/2 yields

O ( g2 1/2
o) = |, {Wlnqsw)} @
From the likelihood

d?¢ "
i In" ¢(6)

and transformation () produces

de de do o dp
b ddp [t(z) — In" $(8)] —

giving )
d?¢ Y do , d (d
i —In" ¢(6) (%) + [t(z) — I’ ¢(9)] 20 <@> :
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Since V(9) = —Ed*¢/dy?, then a constant variance parameterization will
induce ,
A dt.d [do
constant = [ — | 1 0) - E(—)— | —
(dzp) o) - E(G) g (dw>'
For the score statistic
d?
BL _
do 0
producing
ap\*

In standardized form
dy _ " 1/2

and finally
W(0) = [ (" ()} ab.

4. For § =1/3,
Pe_d (@O _d (&) ) do
dyd  dy \dy?)  df \ do? \dy dé diy? | di

_ (N LN d ) Led0dd ded @, df
ded \dy do? \dy /) df dy’  do?dy?dy  dOdE dy?’ dy
Setting the expected third derivative of the log likelihood to zero gives

3¢ AN do\* d  do d df.] do

— -7 - "t 7 _21 I 9 s _____1 " 9 Rl dhetd 0.

0= B = - o(6) (§2 ) -2 o(0) () G550 e0) | (G50 So0

So

oo (O (0N d df
o= —w" o) (57) ~3m"e0) (G5 ) G505

_ 8 (s
_Eé<ln(dw))'

3
In" ¢(8) (%) = constant

3
(%) o In" ¢(6)

This becomes

ie.,
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which leads to

d
= g(6)}

This gives
v(6) = [ {in" (0)}" o

Aitkin, Anderson, Francis and Hinde (1989, p327), give a parallel develop-
ment for a GLM form of an exponential family with unit scale parameter.
The transformation for the Binomial distribution is a function of the in-
complete beta function, whereas the transformation for Poisson is the cube

root.

5. Zero asymptotic skewness is produced for § = 2/3 via Wedderburn’s equation

b1 (g2 2/3
w(0)) = /Hol{@lnmm} o,

This result can be verified by using the results of Hougaard (1982, p248) by

setting

via
6(6) =0 =¢6.
Note that ¢ = 7 and x(f) = ln ¢(8), using Hougaard’s notation. The skew-

ness for 1Z is now
- o d3x [ df 420\ d%y db I

E (1/) ~ Eu))?’ =... {g (B)J 3 {'2W (35) -3 (d—ﬂ2> WEB} +3¢"(8)J 2]+...

Now g = 1 and x(#) = In ¢(), with

2 d2
J—_p%t_ In” ¢ = 2X

So, zeroing the skewness gives

E(d-Bd) =0
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which produces
¥'(0)J7° {—21n" ¢ — 3(0)} + 39" (0) J 2 + ... = 0.
This reduces to
—2¢'(0) In"" ¢ + 39" (0) In" ¢ = 0

which can be written as

dy ’ " " o\— d’ w N2 [d ’
—9 (@) In" ¢ (In" ¢) 3+3dT‘,f(1n 9) 2(%) ~ 0.

This becomes

& (an" o (%) 3) =
giving
(In" ¢)~? (2—?)3 = constant.
This produces ,
(%) = sy
to give
o = gy

which converts to
d2

2/3
»(0) = / <d02 In ¢(9)) dé.
This is Wedderburn’s equation with § = 2/3.

Alternatively, the result can be determined directly by expanding
-~ ~ 3
E (4 - EY)

in terms of # by use of Taylor’s expansions, on EgZ
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B.7 GLM Notation

Notation is presented which defines the relation between the natural parameters
and the imbedded regression parameters for a generalized linear model.

Using the notation of McCullagh and Nelder (1989) for a GLM
9(ps) = n;

with
i = h(n;)

Now

So
0; = d7'[h(n)] ¥ f(n,) = f(X,"8) = f(Z XiiB;) = f(Xi;8)

If the canonical link is defined as ¢ then d = ¢! so if the link is chosen as canonical

then

as expected. In general, however
0; = d~'[h(m)] = c[h(m)] # mi.

For example, d is
the identity function for the Normal distribution, and

the exponential function for the Poisson distribution.

B.8 Derivation of the Imbedding Theorem

[0
The a—connection for the regression coefficients ['g;. in terms of the a—connection

Q
for the natural parameters I[';;; is given by

Tope () = (8uBI)Blgi; + BLBIB* Iy (9(w))



APPENDIX B. (CH. 2) 199

B.8.1 Proof

]_ —_
T (9) = E(aiajeakewT“E(aieajeake)

and
a 1 —
Tope (0) = E(8,8,£0,0) + TO‘E(aaeabeaCE)
where
0.0 = B:9,4, B: = 09 and 9 =9 (u).
ou®
Now

1— . .
5 = [B6:itB]0;¢BFd,(]

(o]

Tase (u) = E[0a(B]0;¢)BE0s¢] +

1—
2

= L [B]0.(0;0) B0t + 0,(B])0;¢B58,¢] + ~— = BiB] B E (8,40;00,0)
— E|B{B.0,0;(B50:¢+ 0,(Bj )BED;t0xt| + BLB] Bfl_TaE(aieajeake)
= 0,(B])B*E(8;¢6,¢) + B.B!B* [E(aiajeaka + I_TO‘E(aieajeakE)
Tase (w) = 0,(B{)BIE(0:49;¢) + BLB]BE Ty (9(w))
= 0.(B})Blgy; + BiBB! T (9(u)

as required.

B.9 Equivalence

The equivalence of Equation (A.2) of Kass (1984, p92) to (4.6) of Amari (1982a,
p370) is now demonstrated.

Equation (A.2) of Kass (1984, p92) is

3 -1
a a (dy dry o oody
=T, | = — 0)—-.
by = I (d@) * (d@) 10 3
Examining the transformation v = 0 : and defining B = dvy/d#f yields

Ty = T B+ (1/B)i(6)3B.
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Since

then
L'y

Il
S
%
uy)
$
+
%,
Qﬂg

in line with Amari (1982a, 4.6, p370).

Alternatively, the back transformation § = ~ : yields

d\’ e o [dO\ .  d’y
(@) & = - (3) iz
a o (do\° do\ d>y /[dv\*
T, = bl I el R A A )
=0 (5) o (2) @/ (3)
Defining B* = df/dvy gives

o a d? dv\°

and

do?
But

Py _d(dy\_d (d\dy _ d (d\Tdy__(d6\T ddy
de? ~ de\db)  dy\do)do — dy\dv) d6  \dv) d2db

This gives
dy_ 0 [(d6\" _ vy [(dr)’ _ &
0>~ dv2 / \dy do? / \do) ~ dy?
o [ 13 " d29 * * 3

in line with (4.6) of Amari (1982a, p370), ie., the ‘imbedding theorem’.
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(Ch. 3)

C.1 The derivation of a—curvature

The general definition of a covariant derivative with respect to a vector field X (8)

ist

So
; OB} ;
V,;Bi(u) = Wf + 1%, By

but 9/0u® is required. Therefore, using the chain rule

52 ¥, B = s = B (Gt + BT ) = S50+ BLBT
— 13;,, = 0,B; + BIBy a;ik.
Alternatively, using u® directly,
Hiy =%, 5 = 92 4 T3l = 0,5} + Purag™ B}

If an original coordinate system is taken as being indexed by [, k,n and the resul-

tant system as being indexed by a, k,7n, then the a—connection transforms accord-

ing to equation (2.28) of Amari (1982a, p364) , viz,

%akn = BiBfBgf‘zkn + B;lc (aaB;f) Jik

1See Lovelock and Rund (1989, p76, 5.4).

201
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aaB,l: - 0 = f‘akn_ = Bif‘lkn'
This gives
& = 0uB} + B'Tung™BY = 8,Bi + BT, BE.

= Hg, = 0,B; + BII'BF.
C.2 The transformation rule for a-curvature
If the coordinate system is changed from u = (u®) to v = (v*) then
Hyy = B BL HYy + Bidy BY,

after Amari (1982a, p371, 4.4).

C.2.1 Proof

« [0
;  def ; ; j
H:]:/bl = 80.' Blz), + F;kBg'/ Bll;/

1
_ e
ov? s T 4

i a i Apk
_ 0By & 00 09

_ OB}, Ou® . 067 du® 96% oub
~ Bue e & due ou?’ Gub Hv’

— B¢

7
¢ Que

0 (89i oub

5o (%b,) + I, B!B; B% B},

Hiy = B%0, (B;By) + I, BIB} BS B,

= B% BY0. B} + BS By, BIBf + B30, (B}) B;

@ @ .
= Hly = B4BLHY + B0, B}.
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a .
So H%, is in general not a tensor, due to the presence of the second term.

Note that the transformation law for a (0,2) tensor is
Shk == B,JLBILCSJI

following Lovelock and Rund (1989, 2.9, p60).

C.3 Tensorial normal a—curvature

The transformation rule for a—curvature is

(o]

Hyy = BBy HYy + Bidy B .

To prove this tensorial assertion, it is sufficient to show that under the projection

N}, the second term in the transformation rule, ie.,
B;aa’ Bg[

vanishes.?

C.3.1 Proof
The normal projection of the alleged non-tensorial term is
N;B{dyBY = (8i — P!) B]oy B},

The L.H.S. becomes
(6iB] — PIB]) 0 B}
giving
(B; — 9*° By Bt gi;B] ) 0w BY

The second term gives
Bf-; (gaﬂBﬁBngg‘)

2See Amari (1982a, p371).
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The result from Lovelock and Rund (1989, p268, 4.10) can be stated as
9°°ByBlgr; = 6.
Hence
P; B}y B, = B46f 9y B, = Bioy B,

This gives
N;Bioy B} = 0.

Hence, the normal components of a—curvature form a (0,2) tensor with respect to
1, since
. a . . a . - a .
(N]’-H{l/b/) = N; (B;%B,’,’,H{lb) = B By, (N;Hg,,) ,

to give the tensorial law
a

a
Ny = BLBLNG, .

C.3.2 Alternative Derivation

Under the reparameterization defined by u® — v%,ie., 3 — B, the tangential

components of a—curvature become

[¢]

. ) a . a .
Nzlb’ = 6G,IB;’ + F;kBZ/B[I;/ - FalbICngB(;

— B2d. (BBY) + 'xBiBLBB) - [ & BY s + B2 (3B gabJ B!
since, under the transformation rule for an affine connection
a
Tave = BBy BT ae + BE (0w BY) gas
a .
This gives Ny as

= By (BGBZ) BIIJH‘BZ’ BgaaB3/+Bg/ B{,’,Fg-kBZBf— [ o B(I;' Fabchng + B; (6a’ BII))’) gabB(ing]
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:;M(%%H%%%—HMW@+%%@%{@%ﬂﬁWEmQ&.
From Lovelock and Rund (1989, p268, 4.9)

9%9n; Bl = BY

then
9%ga B¢ = Bf
with
e (e 28 . )
Nm:gwm@+m£@m_BH@%ﬁmﬁ
but
ByB} = B}
giving
a . a .
Ny = BLBULN,
So the ‘normal components with respect to i form a tensor ...7, Amari (1982a,
p371).
Note

This alternative derivation verifies the form of the projection operators.

C.4 Lemma

The vectors N* normal to the imbedded tangent subspace 7, spanned by the

vectors B! satisfy

9niBINw = 0.
This is merely a restatement of the orthogonality results of Lovelock and Rund (1989,

p270, 4.21), and Amari (1982a, p370, 4.7).
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C.4.1 Proof

The normal component of a—curvature is

(1. . a. . (03 .
Nap = 0.By + T BIBf — T g™ B}

So
sz ghiBg = (aaBll; + FljkBiBll;c - %abcgaiBji> ghiBg
= (Z%B};) gri B + F@-kBZB{fghiBZ - %abchdBéghiBZ
= (aaBi;) Blgn: + B! BBl g T — f‘abcng(iinghi
= (Ban;) Bl + BZBfBZ%jkh - %abc(sg :
Thus,

hori 2 &
ghiBeNab = labe — Labe = 0.
a.
This result reinforces the definition of N7, as being the Normal component of a-
o3
curvature. The fact that NV}, as a vector with respect to ¢ is normal to the tangent
subspace T, is also verified. This orthogonality is fundamental in establishing the

decomposition of total scalar curvature.

C.5 Non—tensorial tangential a—curvature

The projection of a—curvature onto the tangent subspace gives the tangential com-
&

ponent of a—curvature 7% as
a. d f . a . . a. . B
- P}H]ab = (aaBg + F]ikB}lB{f> P}

to become
(o]

Ty = Tuncg“* By

in agreement with Amari (1990, p156, 5.26).
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C.5.1 Proof

207

Under a reparameterization u® to v®, the tangential component with respect to

I
the new parameters v® is
e

. Q .
’Tza’b’ = Ez’b’cng(lj-

The transformation rule for an affine connection is
F'yye = B%BL BT, + B (8, B
e — Dy Dy cPabc + c a’ b’) Gab,

from Appendix C.1 (alternative derivation), giving
a

7-1('“)/ = BZ/Bg'Bgﬁabc + Bg (aa’ Bg’) gab] ngBji

[0 . .
= B ByTabeg™B: + 0y By (gch;nga,,) :

Finally,

2 2

Ty = BYB)T'w + (0uB}) P,

using the projection operator from Section 3.3.1. Thus, in general, the tangential

component is not a tensor, due to the presence of the second term. So the tangen-

tial component will be subject to changes under reparameterization. Hence the

connotation ‘parameter—effects’ is justified.
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D.1 GLIM Output : Test Problem 1

GLM variant : one-step implementation

[o] GLIM 3.77 updatel (copyright)1985 Royal Statistical Society, London
[i] $units 2%
[i] $data x y

[i] $read

[i] 2 2.5

[i] 3 10.0

[i] $calc %t = 2.0537$

[i] $calc fO = xxx/t$

[i] $calc f1 = f0*%log(x)$
[i] $calc f2 = f1x)log(x)$

[i] $calc v = Ysqrt(£2/2)$
[i] $calc a0 = f1/(2%v)$

[i] $calc q = y - fO + a0xal$
[i] $look q$

[o] Q

[o] 1 0.4242

[o] 2 5.2265

[i] $yvar g$

[i] $1ink s$

[i] $offset al$

[i] $fit v - 1%

[0o] deviance
(o] d.f.
[o]

[i] $dis erm$

2.9334 at cycle 3
1

208
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[o] estimate s.e. parameter
[o] 1 5.650e-06 0.1573 '

(o] scale parameter taken as 2.933

[o]

[o] unit observed fitted residual

[o] 1 0.4242 2.0759 -1.652

[o] 2 5.2265 4.7735 0.453

[o]

[o] Current model:

[o]

[o] number of units is 2

[o]

[o] y-variate Q

[o] weight *

[o] offset A0

[o]

[o] probability distribution is NORMAL

[o] link function is SQUARE ROOT
[o] scale parameter is to be estimated by the mean deviance
[o]

[o] terms = V

GLM variant : iterative form

[o] GLIM 3.77 updatel (copyright)1985 Royal Statistical Society, London
[1] $units 2%

[i] $data x y$

[1] $read

[i] 2 2.5

[i] 3 10.0

[i] $accuracy 6%

[1] $calc %a=1%

[i] $calc %i=0%$

[i] $calc %t = 1.0$

[1] $macro fit

[i] $calc fO = x*xJt$

[i] $calc f1 = fO*x%log(x)$
[i] $calc f2 = f1x)log(x)$
[i] $calc v = %sqrt(£f2/2)$
[i] $calc a0 = f1/(2*v)$

[i] $calc q = y - fO + a0*a0$
[i] $yvar q$

[i] $1link s$

[i] $offset al$
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[i] $fit v - 13

[i] $extract Ype$

[i] $calc ha=l%gt (Yipex¥pe,0.0000001) ¢
[i] $calc %t=Ype + %t$

[i] $look %t$

[i] $calc %i=%i+1$

[i] $endmac

[i] $while %a fit$

[o] deviance = 3.605425 at cycle 3
[o] d.f. =1

[o]

(o] 2.17870

[o] deviance
[o] d.f.
[o]

[o] 2.056302

[o] deviance = 2.933361 at cycle 3

[o] d.f. =1

[o]

[o] 2.05371

[o] deviance = 2.933361 at cycle 3

[o] d.f. =1

[o]

[o] 2.06371

[i] $look %t$

[o] 2.06371

[i] $calc fv=x*xYt$

[i] $calc res=y-fv$

[i] $look x y fv res$

[o] X Y FV RES
[o] 1 2.00000 2.50000 4.15171 -1.651710
[o] 2 3.00000 10.00000 9.54699 0.453007
[i] $look %i$

[o] 4.00000

2.930771 at cycle 3
1

Linearization method

[o] GLIM 3.77 updatel (copyright)1985 Royal Statistical Society, London

[i] $units 2%

[i] $data x y

[i] $read

[i] 2 2.5

[i] 3 10.0

[i] $calc %t = 2.0537$
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[i] $calc fO = x**%t$

[i] $calc f1 = fOx%log(x)$
[i] $calc p=y - f0 §

[i] $yvar p$

[i] $fit f1 - 1$

[o] deviance = 2.9334

[o] d.f. =1
[o]

[i] $dis erm$

[o] estimate s.e. parameter
[o] 1 -1.023e-05 0.1575 F1

[o] scale parameter taken as 2.933

[o]

(o] unit observed fitted residual

[o] 1 -1.6517 -0.0000 -1.652

[o] 2 0.4531  -0.0001 0.453

[o]

[o] Current model:

[o]

[o] number of units is 2

[o]

[ol] y-variate P

[o] weight *

[o] offset *

[o]

[o] probability distribution is NORMAL

[o] link function is IDENTITY

[o] scale parameter is to be estimated by the mean deviance
[o]

[o] terms = F1

[o]

[i] $calc fv=x*x}t$

[i] $calc res=y-fv$

[i] $look x y fv res$

[o] X Y FV RES
o] 1 2.000 2.500 4.152 -1.6517
[o] 2 3.000 10.000 9.547 0.4531
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D.2 GENSTAT Output : Test Problem 2

Optimum value for the parameter 4.

Genstat 5 Release 3.2 (IBM-PC 80386/D0S) 02 April 1998 22:54:50
Copyright 1995, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 JOB "ds"
UNITS [NVALUES=12]
3 READ time, y

Identifier Minimum Mean  Maximum Values Missing
time 0.500 5.250 16.000 12 0
y 0.0300 0.5108 0.9600 12 0

17 CALC t = -0.2069

18 CALC fO = exp(timex*t)
19 CALC f1 = fO*(time)
20 CALC f2 = fixtime

21 CALC v = sqrt(£2/2)

22 CALC a0 = f1/(2+v)

23 CALC q =y - f0O + a0*a0

24 MODEL [OFFSET=a0 ; LINK=squareroot] q

25 FIT [CONSTANT=omit; PRINT=mode1,summary,estimates,fittedvalues] v

25
*okok kK Regression Analysis skxkx
Response variate: q
Link function: Square root
Offset variate: a0
Fitted terms: v
*okok Summary of analysis *x*x
d.f. S.S. m.s. v.r.
Regression 1 * *
Residual 11 0.01202 0.001093

Total 12 0.00814 0.000678
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Residual variance exceeds variance of Y variate
Standard error of observations is estimated to be 0.0331
* MESSAGE: The following units have high leverage:
7 0.183
8 0.183
KoKk Estimates of regression coefficients *xx
estimate s.e. t(11)
v -0.00001 0.00809 0.00
*okk Fitted values and residuals *xx
Standardized
Unit Response Fitted value residual Leverage
1 0.5091 0.4509 1.77 0.012
2 0.4591 0.4509 0.25 0.012
3 0.4534 0.4065 1.45 0.040
4 0.3834 0.4065 -0.71 0.040
5 0.2994 0.3305 -0.99 0.105
6 0.289%4 0.3305 -1.31 0.105
7 0.2615 0.2185 1.44 0.183
8 0.2015 0.2185 -0.57 0.183
9 0.0745 0.0955 -0.69 0.140
10 0.1145 0.0955 0.62 0.140
11 0.0117 0.0182 -0.20 0.020
12 0.0317 0.0182 0.41 0.020
Mean 0.2574 0.2534 0.12 0.083

26 CALC p = y - £0

27 MODEL p
28 FIT [CONSTANT=omit; PRINT=model,summary,estimates,fittedvalues] f1

Hok ok k Regression Analysis **kxx

Response variate: p
Fitted terms: f1
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kok ok Summary of analysis **x
d.f. S.S. m.s. v.Tr.
Regression 1 0.00000 0.000000 0.00
Residual 11 0.01202 0.001093
Total 12 0.01202 0.001002
Residual variance exceeds variance of Y variate
Standard error of observations is estimated to be 0.0331
* MESSAGE: The following units have high leverage:
7 0.183
8 0.183
*okok Estimates of regression coefficients #*x
estimate S.e. t(11)
f1 -0.00001 0.00809 0.00
%ok Fitted values and residuals *x*x
Standardized
Unit Response Fitted value residual Leverage
1 0.0583 0.0000 1.77 0.012
2 0.0083 0.0000 0.25 0.012
3 0.0469 0.0000 1.45 0.040
4 -0.0231 0.0000 -0.71 0.040
5 -0.0311 0.0000 -0.99 0.105
6 -0.0411 0.0000 -1.31 0.105
7 0.0429 0.0000 1.44 0.183
8 -0.0171 0.0000 -0.57 0.183
9 -0.0211 0.0000 -0.69 0.140
10 0.0189 0.0000 0.62 0.140
11 -0.0065 0.0000 -0.20 0.020
12 0.0135 0.0000 0.41 0.020
Mean 0.0041 0.0000 0.12 0.083

Two standard deviations above the optimum value.

Genstat 5 Release 3.2 (IBM-PC 80386/D0S) 02 April 1998 22:56:20
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Copyright 1995, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 JOB "ds"
2 UNITS [NVALUES=12]
3 READ time, y

Identifier Minimum Mean  Maximum Values Missing
time 0.500 5.250 16.000 12 0
y 0.0300 0.5108 0.9600 12 0

17 CALC t = -0.22308

18 CALC f0 = exp(timext)
19 CALC f1 = fO*(time)
20 CALC f2 = filx*time

21 CALC v = sqrt(f2/2)

22 CALC a0 = f1/(2*v)

23 CALC q =y - fO + a0*a0

24 MODEL [OFFSET=a0 ; LINK=squareroot] q

25 FIT [CONSTANT=omit; PRINT=mode1,summary,estimates,fittedvalues] v

2
okok ok ok Regression Analysis ***x
Response variate: g
Link function: Square root
Offset variate: a0
Fitted terms: v
KKk Summary of analysis *xx*
d.f. S.8. m.s. v.r.
Regression 1 * *
Residual 11 0.01202 0.001093
Total 12 0.00822 0.000685
Residual variance exceeds variance of Y variate
Standard error of observations is estimated to be 0.0331
* MESSAGE: The following units have high leverage:
7 0.184

8 0.184
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* oKk Estimates of regression coefficients #xx
estimate s.e. t(11)
v 0.01618 0.00812 1.99
kKoK Fitted values and residuals #**x
Standardized
Unit Response Fitted value residual Leverage
1 0.5128 0.4545 1.77 0.012
2 0.4628 0.4545 0.25 0.012
3 0.4600 0.4131 1.45 0.040
4 0.3900 0.4131 -0.71 0.040
5 0.3100 0.3411 -1.00 0.105
6 0.3000 0.3411 -1.32 0.105
7 0.2751 0.2322 1.44 0.184
8 0.2151 0.2322 -0.57 0.184
9 0.0861 0.1071 -0.68 0.139
10 0.1261 0.1071 0.62 0.139
11 0.0159 0.0223 -0.20 0.019
12 0.0359 0.0223 0.42 0.019
Mean 0.2658 0.2617 0.12 0.083

26 CALC p =y - £0
27 MODEL p
28 FIT [CONSTANT=omit; PRINT=model,summary,estimates,fittedvalues] f1

**xkx Regression Analysis *kkik

Response variate: p
Fitted terms: fl

*4x Summary of analysis *xx

d.f. S.S. m.s. v.r.
Regression 1 0.00401 0.004009 3.66
Residual 11 0.01204 0.001094
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Total 12 0.01605 0.001337

Residual variance exceeds variance of Y variate

217

Standard error of observations is estimated to be 0.0331

* MESSAGE: The following units have high leverage:

7 0.187
8 0.187

*** Estimates of regression coefficients **x
estimate s.e. t(11)

f1 0.01672 0.00873 1.91

**%*% Fitted values and residuals **x

Standardized
Unit Response Fitted value residual Leverage
1 0.0655 0.0075 1.77 0.014
2 0.0155 0.0075 0.25 0.014
3 0.0699 0.0134 1.44 0.045
4 -0.0101 0.0134 -0.72 0.045
5 -0.0101 0.0214 -1.01 0.114
6 -0.0201 0.0214 -1.33 0.114
7 0.0703 0.0274 1.44 0.187
8 0.0103 0.0274 -0.57 0.187
9 0.0021 0.0225 -0.66 0.126
10 0.0421 0.0225 0.64 0.126
11 0.0018 0.0075 -0.17 0.014
12 0.0218 0.0075 0.43 0.014
Mean 0.0208 0.0166 0.12 0.083

Two standard deviations below the optimum value.

Genstat 5 Release 3.2 (IBM-PC 80386/D0S)

30 March 1998 21:32:55

Copyright 1995, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 JOB "ds"
2 UNITS [NVALUES=12]
3 READ time, y
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Identifier Minimum Mean  Maximum Values  Missing
time 0.500 5.250 16.000 12 0
y 0.0300 0.5108 0.9600 12 0

17 CALC t = -0.19072

18 CALC f0 = exp(timex*t)
19 CALC f1 = fOx(time)
20 CALC f2 = flxtime

21 CALC v = sqrt(f2/2)

22 CALC a0 = f1/(2*v)

23 CALC q = y - f0 + a0xa0

24 MODEL [OFFSET=a0 ; LINK=squareroot] q

25 FIT [CONSTANT=omit; PRINT=model,summary,estimates,fittedvalues] v

*kkkx Regression Analysis *kkkx

Response variate: q
Link function: Square root

Offset variate: a0

Fitted terms: v

*xx Summary of analysis ***

d.f. S.s. m.s. vV.r.
Regression 1 * *
Residual 11 0.01202 0.001092
Total 12 0.01069 0.000890

Percentage variance accounted for 20.8
Standard error of observations is estimated to be 0.0331
* MESSAGE: The following units have high leverage:

7 0.184

8 0.184

*xx* Estimates of regression coefficients ***

estimate s.e. t(11)
v -0.01623 0.00813 -2.00



APPENDIX D. (CH. 5) 219

**xx Fitted values and residuals *x*x

Standardized

Unit Response Fitted value residual Leverage
1 0.5055 0.4472 1.77 0.012

2 0.45585 0.4472 0.25 0.012

3 0.4468 0.3999 1.45 0.040

4 0.3768 0.3999 -0.71 0.040

5 0.2886 0.3196 -0.99 0.106

6 0.2786 0.3196 -1.31 0.106

7 0.2468 0.2039 1.44 0.184

8 0.1868 0.2039 -0.57 0.184

9 0.0613 0.0823 -0.69 0.139

10 0.1013 0.0823 0.62 0.139
11 0.0064 0.0130 -0.20 0.019
12 0.0264 0.0130 0.41 0.019
Mean 0.2484 0.2443 0.12 0.083

26 CALC p = y - £0
27 MODEL p
28 FIT [CONSTANT=omit; PRINT=model,summary,estimates,fittedvalues] f1

*kkkk Regression Analysis *¥kxx

Response variate: p
Fitted terms: f1

*xxx Summary of analysis ok

d.f. s.S. m.s. vV.T.
Regression 1 0.00471 0.004705 4.30
Residual 11 0.01204 0.001095
Total 12 0.01675 0.001396

Percentage variance accounted for 16.2
Standard error of observations is estimated to be 0.0331
* MESSAGE: The following units have high leverage:

7 0.177
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8 0.177
*** Estimates of regression coefficients *#x
estimate S.e. t(11)

f1 -0.01547 0.00746 -2.07

**%*% Fitted values and residuals ***

Standardized

Unit Response Fitted value residual Leverage
1 0.0510 -0.0070 1.76 0.011

2 0.0010 -0.0070 0.24 0.011

3 0.0336 -0.0128 1.43 0.035

4 -0.0364 -0.0128 -0.73 0.035

5 -0.0529 -0.0211 -1.01 0.095

6 -0.0629 -0.0211 -1.33 0.095

7 0.0137 -0.0289 1.42 0.177

8 -0.0463 -0.0289 -0.58 0.177

9 -0.0475 -0.0269 -0.68 0.154

10 ~-0.0075 -0.0269 0.64 0.154
1 -0.0173 -0.0117 -0.17 0.029
12 0.0027 -0.0117 0.44 0.029
Mean -0.0141 -0.0181 0.12 0.083

220
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D.3 Replication results

This section reports some basic results for differential geometric quantities such as
the metric tensor and o—connection for replicated data, as used in Section 5.1.2.
The sources for each results are shown at the start of each subsection. These
sources do not always present a detailed argument, so the derivations given show

the required working.

D.3.1 Introduction

Let Yoy be N independent observations from the same distribution, ie, repli-

cates. The quantity y stands for the kth replicate of the response y where

y" = (y1,Y2,...,Yn). Thus, if there are N replicates, the subscript n stands

for the dimensionality of the response variable y, while /V in simply the number

of replications. Then the joint pdf of Y.y is

to give the log-likelihood

and so

D.3.2 Metric tensor

(Amari, 1990, p115)

The metric tensor based on the IV replicate observations is
7 & E(0,£0;0) = {Zae Zae }
ie,

_ B[S aew) (o) + .+aje(y)}}=E[a¢<ywe<y> o+ byl

k
k=1
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since y, ... ., y are independent. The metric tensor becomes

N
9i; =Y 81'5(%/)8][(%1) = NEJ£0;t = Ny,
k=1

since Y.,y are identically distributed.

D.3.3 a—connection

(Amari, 1990, p116)

The a—connection using the replicate data is

e - = 1 - T T 7
Il B [aiajeake + —z%ieajeakeJ

=E [ai (; aje(y)) (; ake(g)) + 1—;9‘— (; 8%(;,/)) (; 6’]'4(%/)) (Z 6’k€(y))J

—E [(aiaje(gl,) o 00 Y) (Oul(y) + -+ Belly)

+2 ; a((’?iﬁ(y) o+ 8l(y)(0L(y) + .. + 0;(y) (Out(y) + ... + 8,66(%)}
= B [(0:0,¢(y)0:t(y) + ... + B:0;t(y)akt(y )
+252 (0ot atly) + ..+ 0.y )0;t(y)otly))|
since Y.,y are independent. Thus
Tyspm ;VV: {Eaiajeake + 1—;9Eaieajeake] = N

m=1

since y, . . . Y are identically distributed.
1

Quote

The following quote (Amari, 1990, p116) sums up these results.

“This shows that the metric tensor and the a—connection based on N
independent observations are N times those based on one observation.

Hence the two geometric structures are similar, and it is not necessary

to study them separately.’
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D.3.4 Exponential family

For replicates Y-y independently and identically distributed with pdf p(y; 0),
their joint pdf is

N
Py, y:0) = [ n(y)
k=1
The log-likelihood becomes
N
{y,-..y) =Inp=3"ly;6)
1=k

The general exponential family has pdf

p(y;0) = 'y, — ¥(0) + c(y)

which gives

where
Ui = (ZJll-f-yzl-f-—I-yAZ])/N
Note that y; is the kth replicate of the ith component of the response y where
k

y" = (y1,Y2,---,Yn)- If c(y) = constant (possibly zero), then
k
{=N (65— ¥(6))

since then ¢ can be absorbed into the definition of ¥. An example where this
occurs would be the full representation of the Normal distribution, as given in

Section 2.4.3. Only in such cases can the result of Amari (1990, p116), viz,
L= Ny)

be invoked. For such models, it can be said that the log-likelihood based on N
replicates is NV times the log-likelihood based on their mean. For the more familiar
exponential family models such as GLMs where the scale parameter is taken as a

constant, this relation does not hold, due to the presence of the term c(y).
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Since then £ and N{(g) differ only by a constant in general then
8¢ = No(iy)

and so

to give

Ej; = U'(0)

as for the single observation case.

Metric tensor

As in Section D.3.2, the metric tensor for replicate data from general exponential

families is
9 = E0,£0;,0 = N*E (; — V'(8)) (3; — V'(9)) = N2 Cou(g;, ¥;) = Ngy = N9,0; V.

This gives

a—connection

The a—connection for an exponential family model becomes

R

f‘ijk: N lq‘ijk: 1—;—aNE81€8]€8k€

since 0;,£0;¢ = —0;0;¥ and E0xf = 0 being the score statistic. Thus

a — 1—
Liji= '1—22NTijk = TaNc')i@jc')k\I/(G).

D.3.5 Curved exponential family

The imbedded regression coefficients 3 are defined by

u=p0=06(0)=u(9),
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so the joint pdf for the replicate data becomes

a(yu) = p(y; 0(w)-ply; O(w)) ... p(y; B(w)).

The same caveat applies to curved exponential families as in Section D.3.4, namely
that the form of likelihood described in Amari (1987, p39) and Amari (1990, p117),

whereby
7 = [p(; 0(w))" = V(6% — (6))

)

only applies to exponential family models for which c(y) = 0 in the pdf

p(y; 8) = 6'y; — T (6) + c(y).

For either form, the differential geometric quantities in terms of the regression

coefficients can be obtained for the replicate data.

Metric tensor

The metric tensor for the replicates is
Jor = E (00,0) = E (Bé@ifBgajZ) — B! B £(6,40,7)

Jab = Bnggij = BiBZNgij = NB;ngij = Ngab

a—connection

The a—connection for the regression coeflicients based on the replicate data is

a _a

Tue = 0.(By)Blg;; + BiB]BF Ty
=N (@(Bg)ngu + B:B{Bf Pz‘jk)

to give

o

[0
LCave= N Tije -
Thus, the quote at the end of Section D.3.3 applies equally to curved exponential

families.
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