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Abstract 

Nitrous oxide is the third most important anthropogenic greenhouse gas after CO2 and 
CH4 and contributes 6% of the total terrestrial radiative forcing due to greenhouse gases. 
It is closely involved in the depletion of stratospheric ozone by providing one of the 
main sources of NO radicals. Biological processes such as nitrification and 
denitrification are primarily responsible for N2O production. Despite its importance and 
years of research, the estimates of the global size of N2O sources and sinks remain 
highly uncertain, and its budget is not yet fully balanced. 

Analysis of N2O isotopes can aid in reducing the large uncertainties in source and sink 
estimates by providing information that is complementary to the N2O mixing ratio. 
Analysis of the mean 5'^N and mean 5^^0 has already lead to some insight on the N2O 
budget. Until very recently the intramolecular ^̂ N positional isotopes ^'^N'^N'^O and 

N N O were not measurable by any analytical technique. The intramolecular 
difference 5 'V^N '^O-S '^N '^ 'N '^O is an additional isotopic discriminator than the mean 
5 N alone, as it directly describes the processes forming the N-N bond in N2O 
production processes such as nitrification and denitrification. 

This thesis describes the development of a high resolution Fourier transform infrared 
technique for the measurement of the N2O isotopomers ^ % ' ^ N ' ^ O , '^N'^N^^O, 
I ^ N ' V ' ^ O and '^N'^N^^O. The FTIR technique utilises 0.012 cm"' resolution FTIR 
spectroscopy, a 2.4 m optical pathlength, 120 mL sample cell, with precise control of 
sample temperature and pressure. The typical analytical precision of the N ' ^ N ' ^ 0 and 
' ^ N ' % ' ^ 0 isotopomers is of the order of 1-2 %o, and approximately 3-4 %o for the 
oxygen isotopomers ' ' ' N ' % ' ^ 0 and ''^N'^'N'^O. TWO independent chemometric 
multivariate analytical methods were developed for determination of high resolution 
N2O spectra: multi-micro-window classical least squares, and non-linear least squares. 
The strengths and limitations of the FTIR technique are analysed and compared to those 
of the complementary isotope ratio mass spectrometry technique. The FTIR technique 
is analj^ically robust and serves as an independent and complementary technique to 
N2O analysis by isotope ratio mass spectrometry. 

The FTIR technique was used to analyse N2O from several contexts. The isotopic 
fractionation factors in the laboratory photolysis of N2O at three wavelengths were 
determined by analysis of the unphotolysed N2O fraction. Samples of nitrous oxide 
were extracted from whole air at an urban location over the period of approximately one 
year and isotopically characterised. The emissions of N2O from a pig effluent fertilised 
crop field have been isotopically characterised. In each of the three contexts, results are 
interpreted in relation to the processes involved. 
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