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ABSTRACT 

 

This thesis describes preparation and characterisation of a range of novel conducting 

polymer coated textiles, which have potential in applications such as static dissipation, 

EMI shielding, heating elements, composite structures and many military applications.  

 

Conducting polypyrrole coated textiles such as nylon Lycra and polyester fabrics have 

been synthesised using different approaches (Chapter 3). The present study concentrates 

on preparation of conducting polypyrrole coated textile using an in-situ polymerisation 

method.  A range of characterisation techniques for the inherently conducting polymer 

(ICP) coated fabrics were used: the stability of the surface resistivity, cyclic 

voltammetry, Scanning Electron Microscopy (SEM), UV-Vis spectroscopy and 

Thermogravimetric analysis (TGA). It was found that the PPy-coated nylon Lycra fabric 

could be used as a wearable strain gauge. The strain gauge characteristics have been 

investigated using both an Instron machine and a “SmartMotor”.  

 

The use of molecular templates to facilitate the polymerisation and the integration of 

inherently conducting polymers (ICPs) into textiles has been investigated (Chapter 4). 

Poly(2-methoxyaniline-5 sulfonic acid) or [PMAS] is a water-soluble, fully sulfonated 

polyaniline that has been used as molecular template. In the first step – “dyeing” of 

PMAS into the textile, the effect of fabric pre-treatment, solution pH as well as solution 

temperature have been investigated. In the second step the effects of the ratio of PMAS 

to aniline, the ratio of aniline to ammonium persulfate and the polymerisation 

temperature on the polymerisation reaction have also been studied. Characterisation of 

the templated polyaniline coated fabric prepared using the above “Two step” process 



 

 

VI

has been undertaken (Chapter 4). The stability of the conductivity, cyclic voltammetry, 

UV-Vis spectra, SEM studies, TGA analysis and strain gauge characteristics have been 

determined. Results indicate that templated PAn-coated wool nylon Lycra can be used 

as the strain gauge as tested with either the Instron machine or “SmartMotor”. 

 

Conducting polymer coated textile fabrics are easily prepared and integrated into truly 

wearable clothing and garments to create strain sensors with a wide dynamic range. 

Functional wearable textile sensing systems can monitor human motion, provide 

immediate bio-feedback to the wearer without changing the properties and functions of 

the fabric material and with no interference to normal human body motion. This 

innovative technique can be widely used for injury prevention, rehabilitation, sport 

technique modification and medical treatment. It will have a number of further potential 

applications to be used for daily living, work and recreation in the future.   
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Pt   platinum 

R   resistance 
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