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ABSTRACT

This thesis describes preparation and characterisation of a range of novel conducting
polymer coated textiles, which have potential in applications such as static dissipation,

EMI shielding, heating elements, composite structures and many military applications.

Conducting polypyrrole coated textiles such as nylon Lycra and polyester fabrics have
been synthesised using different approaches (Chapter 3). The present study concentrates
on preparation of conducting polypyrrole coated textile using an in-sifu polymerisation
method. A range of characterisation techniques for the inherently conducting polymer
(ICP) coated fabrics were used: the stability of the surface resistivity, cyclic
voltammetry, Scanning Electron Microscopy (SEM), UV-Vis spectroscopy and
Thermogravimetric analysis (TGA). It was found that the PPy-coated nylon Lycra fabric
could be used as a wearable strain gauge. The strain gauge characteristics have been

investigated using both an Instron machine and a “SmartMotor”.

The use of molecular templates to facilitate the polymerisation and the integration of
inherently conducting polymers (ICPs) into textiles has been investigated (Chapter 4).
Poly(2-methoxyaniline-5 sulfonic acid) or [PMAS] is a water-soluble, fully sulfonated
polyaniline that has been used as molecular template. In the first step — “dyeing” of
PMAS into the textile, the effect of fabric pre-treatment, solution pH as well as solution
temperature have been investigated. In the second step the effects of the ratio of PMAS
to aniline, the ratio of aniline to ammonium persulfate and the polymerisation
temperature on the polymerisation reaction have also been studied. Characterisation of

the templated polyaniline coated fabric prepared using the above “Two step” process



VI

has been undertaken (Chapter 4). The stability of the conductivity, cyclic voltammetry,
UV-Vis spectra, SEM studies, TGA analysis and strain gauge characteristics have been
determined. Results indicate that templated PAn-coated wool nylon Lycra can be used

as the strain gauge as tested with either the Instron machine or “SmartMotor”.

Conducting polymer coated textile fabrics are easily prepared and integrated into truly
wearable clothing and garments to create strain sensors with a wide dynamic range.
Functional wearable textile sensing systems can monitor human motion, provide
immediate bio-feedback to the wearer without changing the properties and functions of
the fabric material and with no interference to normal human body motion. This
innovative technique can be widely used for injury prevention, rehabilitation, sport
technique modification and medical treatment. It will have a number of further potential

applications to be used for daily living, work and recreation in the future.
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