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Abstract

Fast, high precision and automated optical noncontact surface profile and shape mea-
surement has been an extensively studied research area due to the diversity of potential
application which extends to a variety of fields including but not limited to industrial
monitoring, computer vision, virtual reality and medicine. Among others, structured light
Fringe Projection approaches have proven to be one of the most promising techniques.
Traditionally, the typical approach to Fringe Projection 3D sensing involves generating
fringe images via interferometric procedures, however, more recent developments in the
area of digital display have seen researchers adopting Digital Video Projection (DVP)
technology for the task of fringe manufacture. The ongoing and extensive exploitation
of DVP for Fringe Projection 3D sensing is derived from a number of key incentives
the projection technology presents relative to the more traditional forms of projection.
More specifically, DVP allows for the ability to accurately control various attributes of the
projected fringe image at high speed in software, along with the capabilities to develop
multi-channel techniques via colour projection. Furthermore, considering the typical DVP
source is capable of projecting a standard 24 bit bitmap computer generated image, when
interfaced to a personal computer, DVP makes for a very affordable projection source.
However, despite the aforementioned incentives, in contrast to the more traditional meth-
ods of generating fringe images, the digitally projected fringe signal presents a number
of shortcomings which ultimately hinder the effective application of the technology for
Fringe Projection 3D sensing.

This thesis aims to improve the effectiveness of the deployment of DVP technology for
Fringe Projection 3D sensing approaches. The proposed initiative is facilitated through
extensive analysis of the application of DVP technology for fringe processing, and fur-
thermore by the proposal of new digital fringe calibration procedures.

Firstly, this work demonstrates a comprehensive survey of current Fringe Projection
3D sensing approaches including an introductory review of the rudimentary notion of pro-
jecting fringes for 3D data acquisition. The survey also provides a thorough description

of the evolution of the three major forms of fringe processing i.e. Fringe Phase Stepping,



Fourier Fringe analysis and Direct Detection.

The limitations of DVP for Fringe Projection are demonstrated through the develop-
ment of a novel fringe phase emulation approach. The phase emulation approach is sub-
sequently employed to establish empirical insight into the application of DVP technology
for Fringe Projection. More specifically, the preliminary empirical analysis is used to test
the veracity of the application of the two chief DVP technologies (Liquid Crystal Dis-
play, LCD and Digital Light Processing, DLP, Texas Instruments) for Fringe Projection.
Through this study the camera / projector non-linear intensity response is shown to be the
single most significant shortcoming inherent to DVP based Fringe Projection implemen-
tations.

Following the findings of the preliminary empirical analysis the influence of the Dis-
play Gamma attributes of the projection system is extensively investigated. The harmonic
structure of a typical digitally projected fringe signal is examined and an approximate
analysis framework proposed. The framework is subsequently utilised to form a set of
equations defining the truesensitivity of a range of highly exploited fringe processing
techniques. The approximate analysis is later verified and the practical significance of the
findings demonstrated. Through this study the true nature of the Display Gamma related
phase measuring residual error is revealed.

With the aid of a verified framework, investigations into additional Display Gamma
related Fringe Projection phenomena is undertaken. More specifically, the optimisation of
digitally projected fringes by fringe parameter manipulation is demonstrated. The tempo-
ral nature of digitally projected fringe images is studied for the well exploited single shot
Fourier Transform Profilometry technique and the digital fringe harmonic dependence on
the projector optical modulation transfer function is revealed. Subsequently, the elimi-
nation of Display Gamma related Fringe Projection phase measuring residual error for
phase stepping techniques by projector defocus optimisation is shown.

Finally, a novel digital fringe calibration approach ideal for minimum shot fringe pro-
cessing techniques is proposed. The calibration procedure is centered on the application
of Artificial Neural Networks (ANNS) to correct the non-linear intensity distortion asso-
ciated with the camera / projector system. Unlike previously proposed gamma correction

techniques, the neural fringe calibration technique requires no additional data acquisi-



tion with effective calibration requiring no more than a single cross-section of a reference
fringe. The neural network fringe calibration approach is also shown to significantly out-
perform simple filter based techniques of similar computational complexity. Given the
reduced data requirements for the neural approach its application for multi-channel fringe

calibration is also considered.
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