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SUMMARY 

Granular filters are used in embankment dams to protect the dam core material from 

internal erosion, while draining seepage water to prevent saturation of the downstream 

embankment. In this thesis, a mathematical model is developed to describe the time-

dependent processes of filtration of non-cohesive base soils, modelling the rate of erosion 

and transport of particles into the filter. As particles are captured within the filter, they in-

tum are able to retain progressively finer base soil particles until a self-filtration zone 

forms that is able to prevent any further erosion. The model predictions are verified with 

a series of laboratory tests in newly constructed, large scale filtration equipment, the 

largest of its kind in Australia. 

Erosion and filtration of a crack through a cohesive dam core is described by analytical 

modelling. The processes of erosion of the crack walls, transport of particles through the 

crack, and capture of the particles within the filter are combined to produce a time-

dependent model describing the sealing of a cracked core as a filter cake forms. The 

model is able to predict crack erosion for various filters and hydraulic conditions, and has 

been applied to several case studies to identify practical uses of the model. 

Extensive laboratory work examining erosion and filtration of cohesive base soils 

provides an improved understanding of the filtration process. Particles eroded from the 

walls of a pinhole were shown to be coarser than the original base soil particles, and these 

coarser particles influence filtration. Based on the experimental data, a new design 

procedure for broadly graded base soils, called the Reduced PSD method, is developed. 
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