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A b s t r a c t  
 

 

The mining industry is an immense field with granular flows (e.g. coal) occurring in 

numerous areas. Accordingly there are a significant number of problems that arise, with 

a great number requiring solutions that are difficult to achieve by conventional 

industrial means. The modelling of granular flow using the numerical technique known 

as Distinct Element Method (DEM) has great potential in industry, particularly for 

solving transfer point problems. The advantage of DEM for transfer applications is that 

an entire system can be simulated using the single numerical technique, as opposed to 

the existing situation where a myriad of design techniques are required (e.g. analytical 

solution for one component and graphical solution for another). DEM involves solving 

the equations of motion for the trajectory/rotation/orientation of each particle and 

modelling each collision between particles and between particles and boundary objects. 

 

The research presented a comprehensive overview of all of the available analytical 

processes available to design chute system components, such as material trajectory 

calculations, impact plate models, and gravity flow chute aspects. To the author’s 

knowledge, this was the first such review in the literature. A detailed comparison 

between the most common analytical design methods was conducted, recommendations 

for which method to use were established, and areas of weakness and further study were 

identified. It was found that: most areas apart from the prediction of the initial material 

discharge and trajectory were lacking in design method; often the few available design 

methods for chute components, such as impact plates and gravity flow chutes, were 

lengthy and often difficult to implement. 

 

A computer code was developed during the course of the research to simulate bulk 

material using the Distinct Element Method (DEM). A background into DEM and its 

application to modelling material flow at transfer points was presented. One major 

drawback found in the recent transfer studies was the lack of quantification of the 

velocity distributions obtained using the DEM against existing analytical design 

theories. Contour coloured particulate simulations have also been recently produced by 

a number of companies (e.g. Overland Conveyor Company Inc.) however the flow 
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regimes observed from the relevant simulation screen captures were not adequately 

scrutinised. All the DEM mathematical formulation and numerical methods utilised for 

the current work were comprehensively described and relevant computational aspects 

were also detailed, such as the coding of a pre-processor and post-processor allowing 

animations of the DEM particles. A series of tests was conducted to gauge the validity 

of the computer code, and this produced satisfactory results. 

 

The DEM code was also applied to simulate two separate transfers originally designed 

by The Gulf Group using their EasyFlowTM technology, and currently in operation in 

industry in Lithgow, Australia. By observing animation screen captures the current 

research confirmed the advantage of maintaining particle speed through the system 

when using curved chute elements. Quantitative DEM velocity data were compared to 

the velocities predicted by the most favourable analytical methods. It was found that 

DEM generally produced velocity regimes close to those of the analytical techniques. 

However it also provided the additional benefit of providing data on stream 

characteristics such as impact forces and velocities in the vicinity of the hood and spoon 

elements, which are difficult to examine in detail using analytical methods. An analysis 

of the micro dynamics of individual particles also identified that there are differing 

scales of contact during the flow through a chute. Although the analytical methods do 

not allow closer scrutiny of the flowing stream at the micro scale, they have the 

advantage of providing much faster solutions and are good for chute designs for free 

flowing material transfers. 
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Figure 6.11 Hour-glass with 1nK  = 0
tK  = 1 × 105 Nm-1 at (e) t = 0.40 s; (f) t = 0.50 s 

Figure 6.12 Hour-glass with 1nK  = 0
tK  = 1 × 107 Nm-1 at (e) t = 0.40 s; (f) t = 0.50 s 

Figure 6.13 Hour-glass with ε = 0.9 and µ = 0.1 at (a) t = 0.00 s; (b) t = 0.10 s 

Figure 6.14 Hour-glass with ε = 0.1 and µ = 0.9 at (a) t = 0.00 s; (b) t = 0.10 s 

Figure 6.13 Hour-glass with ε = 0.9 and µ = 0.1 at (c) t = 0.20 s; (d) t = 0.30 s 

Figure 6.14 Hour-glass with ε = 0.1 and µ = 0.9 at (c) t = 0.20 s; (d) t = 0.30 s 

Figure 6.13 Hour-glass with ε = 0.9 and µ = 0.1 at (e) t = 0.40 s; (f) t = 0.50 s 

Figure 6.14 Hour-glass with ε = 0.1 and µ = 0.9 at (e) t = 0.40 s; (f) t = 0.50 s 

Figure 6.15 Distribution of particles within rectangular shaped boundary for 

numerical stability checking at times (a) t = 0.0 s (b) t = 0.5 s (c) t = 1.0 s 

(d) t = 1.5 s (e) t = 2.0 s (f) t = 5.0 s 

Figure 6.16 Progressive readings of each of the four system energy components at 

each time step at time intervals of (a) t = 0.0 s – 0.5 s (b) t = 0.5 s – 1.0 s 

(c) t = 1.0 s – 1.5 s (d) t = 1.5 s – 5.0 s 

Figure 6.17 Total energy of the system plus each individual energy component from t 

= 0.0 s to t = 2.0 s 
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Figure 7.1 Image depicting hood-spoon transfer chute system – view one 

Figure 7.2 Image depicting hood-spoon transfer chute system – view two 

Figure 7.3 Image depicting single hood transfer chute system – view one 

Figure 7.4 Image depicting single hood transfer chute system – view two 

Figure 7.5 A schematic of the first transfer to be examined, comprising a hood-

spoon chute system. The heavy dotted lines represent the periodic 

boundaries. 

Figure 7.6 The second transfer to be examined is composed of a single hood to 

redirect material flow. The heavy dotted lines represent the periodic 

boundaries. 

Figure 7.7 Schematic showing the numbering of design areas for hood-spoon 

system 

Figure 7.8 Schematic showing the numbering of design areas for single hood 

system 

Figure 7.9 Particle size distributions for hood-spoon transfer chute and single hood 

transfer chute 

Figure 7.10 (a) Initial spoon location and (b) Final spoon location 

Figure 7.11 Average velocity components in x and y directions for first transfer with 

ε = 0.2 and ε = 0.5 

Figure 7.12 Average velocity components in x and y directions for second transfer 

with ε = 0.2 and ε = 0.5 

Figure 7.13 Average velocities in the x and y directions for ∆t = 1×10-5 s and ∆t = 

1×10-6 s for the first transfer chute system comprising a hood and spoon 

Figure 7.14 Average velocities in the x and y directions for ∆t = 1×10-5 s and ∆t = 

1×10-6 s for the first transfer chute system comprising a single hood 

Figure 7.15 Average velocities of all particles for transfer chute simulation 

comprising hood and spoon, from (a) t = 0.00 s to t = 2.00 s (b) t = 2.00 s 

to t = 5.00 s 

Figure 7.16 Average velocities of all particles for transfer chute simulation 

comprising single hood, from (a) t = 0.00 s to t = 2.00 s (b) t = 2.00 s to t 

= 5.00 s 
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Figure 7.17 Kinetic energy in each transfer chute system from t = 0.0 to t = 5.0 s. The 

terms ‘old’ and ‘new’ in the legend refer to the earlier or latter periodic 

boundary locations used respectively for the first transfer system 

Figure 7.18 Screen captures at (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s 

illustrating the particle size distribution for the first transfer  

Figure 7.19 Screen captures at (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s 

illustrating the particle size distribution for the second transfer 

 

Figure 8.1 Screen captures that show the particulate speed distribution for the first 

transfer system at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) 

t = 5.0 s. 

Figure 8.2 Snapshots of the hood-spoon transfer system showing horizontal velocity 

components at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 

5.0 s. 

Figure 8.3 Snapshots of the hood-spoon transfer system showing vertical velocity 

components at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 

5.0 s. 

Figure 8.4 Screen captures that show the particulate speed distribution for the 

second transfer system at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, 

and (d) t = 5.0 s. 

Figure 8.5 Snapshots of the single hood transfer system showing horizontal velocity 

components at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 

5.0 s. 

Figure 8.6 Snapshots of the single hood transfer system showing vertical velocity 

components at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 

5.0 s. 

Figure 8.7 Particle position and horizontal & vertical components of velocity 

calculated using the analytical methods described in Section 7.3.2 for 

hood-spoon transfer chute. The numbers correspond to those shown in 

Figure 7.7. 

Figure 8.8 Snapshot of particle position, and horizontal and vertical components of 

velocity at (a) t = 2.00 s and (b) t = 3.00 s for hood-spoon transfer chute 

Figure 8.8 Snapshot of particle position, and horizontal and vertical components of 

velocity at (c) t = 4.00 s and (d) t = 5.00 s for hood-spoon transfer chute 
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Figure 8.9 Particle position and horizontal & vertical components of velocity 

calculated using the analytical methods described in Section 7.3.2 for 

single hood transfer chute. The numbers correspond to those in Figure 

7.8. 

Figure 8.10 Snapshot of particle position, and horizontal and vertical components of 

velocity at (a) t = 2.00 s and (b) t = 3.00 s for single hood transfer chute 

Figure 8.10 Snapshot of particle position, and horizontal and vertical components of 

velocity at (c) t = 4.00 s and (d) t = 5.00 s for single hood transfer chute 

Figure 8.11 Initial positions of selected particles in feeder for (a) hood-spoon transfer 

and (b) single hood transfer 

Figure 8.12 Two randomly selected particles from the hood-spoon DEM simulation 

with positions, and horizontal and vertical velocity components. The 

particle numbers examined are (a) i = 26 and (b) i = 1116 

Figure 8.13 Two randomly selected particles from the single hood DEM simulation 

with positions, and horizontal and vertical velocity components. The 

particle numbers examined are (a) i = 377 and (b) i = 801 

Figure 8.14 Screen captures that show the elastic potential energy (or strain energy) 

possessed by the particles for the first transfer system at times of (a) t = 

2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s. 

Figure 8.15 Screen captures that show the inter-particle forces (including gravity) 

possessed by the particles for the force transfer system at times of (a) t = 

2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s. 

Figure 8.16 Screen captures that show the torques possessed by the particles for the 

first transfer system at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, 

and (d) t = 5.0 s. 

Figure 8.17 Screen captures that show the elastic potential energy (or strain energy) 

possessed by the particles for the second transfer system at times of (a) t 

= 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s. 

Figure 8.18 Screen captures that show the inter-particle forces (including gravity) 

possessed by the particles for the second transfer system at times of (a) t 

= 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, and (d) t = 5.0 s. 

Figure 8.19 Screen captures that show the torques possessed by the particles for the 

second transfer system at times of (a) t = 2.0 s, (b) t = 3.0 s, (c) t = 4.0 s, 

and (d) t = 5.0 s. 
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Figure I.1 Initial Gantt Chart 

Figure I.2 Final Gantt Chart 

 

Figure II.1 Direction change of tangential force (adapted from Vu-Quoc et al. 2000) 

Figure II.2 Decomposition of the incremental tangential displacement N
tδ∆  at time 

tN (adapted from Vu-Quoc et al. (2000)) 

 

Figure IV.1 Image depicting hood-spoon transfer chute system 

Figure IV.2 Image depicting hood-spoon transfer chute system 

Figure IV.3 Image depicting hood-spoon transfer chute system 

Figure IV.4 Image depicting hood-spoon transfer chute system 

Figure IV.5 Image depicting hood-spoon transfer chute system 

Figure IV.6 Image depicting single hood transfer chute system 

Figure IV.7 Image depicting single hood transfer chute system 

Figure IV.8 Image depicting single hood transfer chute system 

Figure IV.9 Image depicting single hood transfer chute system 

Figure IV.10 Assembly drawing for hood-spoon transfer chute 

Figure IV.11 Assembly drawing for single hood transfer chute 

 

Figure V.1 Capture of entire calculation space for first transfer taken at t = 2.0 s 

Figure V.2 Capture of entire calculation space for first transfer taken at t = 3.0 s 

Figure V.3 Capture of entire calculation space for first transfer taken at t = 4.0 s 

Figure V.4 Capture of entire calculation space for first transfer taken at t = 5.0 s 

Figure V.5 Capture of entire calculation space for second transfer taken at t = 2.0 s 

Figure V.6 Capture of entire calculation space for second transfer taken at t = 3.0 s 

Figure V.7 Capture of entire calculation space for second transfer taken at t = 4.0 s 

Figure V.8 Capture of entire calculation space for second transfer taken at t = 5.0 s 

 

 



N o m e n c l a t u r e  
 

 

The author attempted to use symbols as close to common interpretations as possible in 

the thesis (for example, g is frequently used to represent gravitational acceleration and is 

therefore used similarly here). However due to this and the number of symbols required, 

some overlapping did occur. Therefore in the following nomenclature the symbol {♣} 

represents the interpretation as used in Chapters Two and Three, and {♠} represents the 

interpretation as used in Chapters Four and Five. 

 

 

A R A B I C  L E T T E R S  
 

a {♣} Acceleration along the tangent {= vs &&& = } (ms-2); {♠} Index 

allowing for differing loading and unloading paths {NFD model} 

A  Total cross-sectional area of bulk solid in flowing stream (m2) 

A0 Initial cross-sectional area of the flowing stream at the point of entry of 

the chute (m2) 

A1,2 Cross-sectional areas {rectangular portion, circular segment} of bulk 

solid in flowing stream (m2) 

Aa Cross-sectional area of material stream at exit to ‘flow-round’ zone (m2) 

Ab Area of trapezoidal {3 idler system} or triangular {2 idler system} area 

(m2) 

ABC  Non-dimensional cross-sectional area factor 

ac Y-axis intercept of the perpendicular to the chord between successive 

points on the arc 

Ai  Cross-sectional area of free-falling stream (m2) 

am Gradient of the perpendicular to the chord between successive points on 

the arc 

Ap Cross-sectional area of material stream at entrance to ‘flow-round’ zone 

(m2) 

As  Area of segment (m2) 

AT  Total area of material on the belt in the troughed portion (m2) 
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aw  Proportionality factor for air drag 

A(κ) Function that describes cross-sectional area of flow stream on impact 

plate (m2) 

b {♣} Width of belt (m); {♠} Fixed parameter, often set to 1/3 to agree 

with Mindlin’s frictional sphere theory {TFD model} 

B  Width of rectangular chute (m) 

B0  Width of entry for converging chute (m) 

bs  Mean width of material stream on the belt prior to discharge (m) 

bt  Thickness of belt (m) 

bw2  Width of material on flattened belt {troughed belts only} (m) 

c {♣} Cohesive stress (kNm2); {♠} Y-intercept of straight line 

C  Constant of integration 

C1,2&3  Constants used during calculation of the load cross-sectional area 

Cgrav  Distance from belt surface to centre of mass (m) 

Cl  Inverse velocity Coulomb drag coefficient 

Cs  Intergranular stress constant (s2m-2) 

D  Horizontal distance from discharge point to impact point (m) 

Dbase  Base particle diameter (m) 

dij  Sum of contacting sphere radii (m) 

Dmax  Maximum particle diameter (m) 

Dmin  Minimum particle diameter (m) 

Dmono  Mono-sized particle (m) 

dn  Displacement between particles (m) 

Dvar  Variance between particle sizes (m) 

dx  Horizontal displacement difference between particles (m) 

dy  Vertical displacement difference between particles (m) 

E  Young’s modulus (Nm-2) 

Eij  Equivalent elastic modulus (Nm-2) 

ET  Total energy of a particle (J) 

E1,2  Parameters in Equation (2.116) 

f0  Friction value of motion at the initial point of the chute 

FD  Drag force (N) 

Fn  Normal force in Distinct Element Model (N) 
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FN  Normal force in gravity flow chute theory (N) 
max

nF   Maximum force ever experienced by the contact (N) 

Ft  Tangential force in Distinct Element Model (N) 
∗

tF  Value of the tangential force Ft whenever the magnitude changes from 

increasing to decreasing, or vice versa (N) 

Fv  Velocity dependent drag force (N) 

fϕ   Friction value of motion at any angle ϕ around chute 

Fµ  Coulomb frictional drag force (N) 

tF_mag  Magnitude of tangential force (N) 

tF_x   Horizontal component of tangential force (N) 

u,tF_x   Horizontal component of unit vector (N) 

tF_y   Vertical component of tangential force (N) 

u,tF_y   Vertical component of unit vector (N) 

g  Acceleration due to gravity (ms-2) 

G  Shear {or rigidity} modulus (Nm-2) 

Gij  Equivalent shear modulus (Nm-2) 

h  Material drop height (m) 

H  Flowing stream thickness (m) 

H0  Initial stream thickness (m) 

H1,2  Stream thickness {rectangular portion, circular segment} (m) 

ha  Thickness of material stream at exit of ‘flow-round’ zone (m) 

hb  Thickness of material on belt prior to discharge (m) 

hp  Thickness of material stream entering ‘flow-round’ zone (m) 

hϕ  Stream thickness at any angle ϕ around curved chute (m) 

I  Moment of inertia (kgm2) 

K  Constant of proportionality usually between 1.11 – 1.42 

kEO Effective linear pressure gradient down the wall surface at zero velocity 

ki  Number of particles in contact with particle i 

kmax  Largest inter-particle spring stiffness (Nm-1) 

Kn  Some normal stiffness coefficient (Nm-1) 

Kn1  Normal stiffness coefficients for the (loading stage) (Nm-1) 

Kn2  Normal stiffness coefficients for the (unloading stage) (Nm-1) 
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Kt  Some tangential stiffness coefficient (Nm-1) 
0
tK   Initial tangential stiffness (Nm-1) 

TK   Effective incremental tangential stiffness (Nm-1) 

kv Coefficient relating lateral pressure at the chute wall to the average 

normal pressure during flow 

L  Distance between periodic boundaries (m) 

LBC  Contact perimeter of material burden on discharging belt (m) 

m  Particle mass (kg) / gradient of straight line 

m&   Mass flow rate of material (kgs-1) 

mij  Effective mass of particles i and j acting in series (kg) 

mmin  Mass of smallest particle in system (kg) 

n  Parameter that is a function of the total number of particles in the system 

N  Number of particle in system 

Ngrid User defined term that specifies the maximum number of particles to be 

allowed in one cell 

ns  Number of time steps between searches 

Pn  Pressure in normal direction (kPa) 

Qm  Flowrate (th-1) 

r Non-dimensional parameter representing ratio between outside and 

central idler contact 

R {♣} Pulley radius; radius of curvature of curved chute (m); {♠} Radius 

of sphere (m) 

R0  Radius of the conveying stream midpoint at the start of the chute (m) 

r1  Radius of interior sphere in Verlet neighbour list (m) 

r2  Radius of exterior sphere in Verlet neighbour list (m) 

Rb Distance from centre of discharge pulley to outer surface of belt (m) 

Rc  Radius of curvature of discharge trajectory (m) 

Re Distance from discharge pulley centre to material centre of mass (m) 

Rfz  Radius of the ‘flow-round’ zone (m) 

Rij  Relative contact curvature (m) 

Rm  Distance from centre of pulley to top of material upon belt (m) 

Rmin  Radius of smallest sized particle in the system (m) 

Rp  Radius of curved impact plate (m) 
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s  Displacement along tangent (m) 

S {♣} Distance between end of ‘flow-round zone’ and bottom of the plate 

(m); {♠} An empirically determined model parameter 

Sflowround Portion of curved impact plate in contact with material stream (m) 

Sp  Length of impact plate {flat or curved} (m) 

sv  Vertical fall distance (m) 

t  Time (s) 

Umax  Maximum particle velocity (ms-1) 

v  Velocity {= s& } (ms-1) 

v0 {♣} Initial velocity of the flowing stream at the point of entry of the 

chute (ms-1); {♠} Relative velocity of approach (ms-1) 

v0,S  Velocity of stream parallel to chute surface after impact (ms-1) 
∗
1v   Velocity of stream before impact (ms-1) 

∗
2v   Velocity of stream after the first deflection (ms-1) 

∗
3v   Velocity of stream after second deflection (ms-1) 

∗
4v   Velocity of stream after impact for a single deflection (ms-1) 

va  Exit velocity of material leaving ‘flow-round’ zone (ms-1) 

vb  Conveyor belt velocity (ms-1) 

vc  Critical velocity (ms-1) 

vd  Discharge velocity (ms-1) 

ve  Exit velocity from bottom of flat impact plate (ms-1) 

vf0  Vertical component of bulk solid discharging velocity (ms-1) 

vi  Velocity of impact with the curved chute (ms-1) 

v1  Velocity of stream before impact (ms-1) 

vp  Material velocity at entrance to ‘flow-round’ zone (ms-1) 

vt  Tangential velocity; velocity of load stream centre (ms-1) 

v(κ)  Velocity of stream at angle κ in ‘flow-round’ zone (ms-1) 

v(ψ)  Discharge velocity at angle ψ (ms-1) 

v∞  Terminal velocity (ms-1) 

x  General x-coordinate (m) 

x&   Velocity in x-direction (ms-1) 

x&&   Acceleration in x-direction (ms-2) 
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1x   First x-coordinate of line / arc (m) 

x1,2,3,4  Four x-coordinates representing a boundary (m) 

2x   Second x-coordinate of line / arc (m) 

3x   Third x-coordinate of line / arc (m) 

4x   Fourth x-coordinate of line / arc (m) 

Xc  X-coordinate of arc centre (m) 

xh  Height of material bed on belt (m) 

Xlen  Width of calculation space (m) 

y  General y-coordinate (m) 

y&   Velocity in y-direction (ms-1) 

y&&   Acceleration in y-direction (ms-2) 

1y   First y-coordinate of line / arc (m) 

y1,2,3,4  Four y-coordinates representing a boundary (m) 

2y   Second y-coordinate of line / arc (m) 

3y   Third y-coordinate of line / arc (m) 

4y   Fourth y-coordinate of line / arc (m) 

Yc  Y-coordinate of arc centre (m) 

Ylen  Height of calculation space (m) 

y(x)  Function that describes the trajectory of free fall (m) 

z1,2,3,4  Four z-coordinates representing a boundary (m) 

 

 

G R E E K  L E T T E R S  
 

α  Angle of convergence for chute side walls (°) 

αb  Conveyor belt inclination angle before discharge (°) 

αd  Bulk solid stream discharge angle measured from the vertical (°) 

αr  Angle at which material starts to slip on discharge pulley (°) 

β  Impact plate inclination angle (°) 

βi  Angle of idler roll (°) 

βv  Viscous drag coefficient (s-1) 

∆m  Elementary mass of bulk solid (kg) 
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δn Normal overlap {relative displacement of the centres of the two spheres} 

(m) 

nδ&  Rate of change of the distance between centres of the colliding particles 

(ms-1) 

δn0 Residual displacement after complete unloading {the value where the 

unloading curve goes to zero} (m) 

δr  Residual tangential displacement (m) 

x_r∆   Horizontal component of change in relative position vector (m) 

y_r∆   Vertical component of change in relative position vector (m) 

δt  Tangential overlap between particles (m) 

∆t  Time step (s) 

∆tc  Critical time step (s) 

tδ∆   Incremental tangential displacement (m) 

t∆δx   Horizontal component of relative surface displacement vector (m) 

t∆δy   Vertical component of relative surface displacement vector (m) 

ε  Coefficient of restitution 

φ {♣} Wall friction angle used in gravity flow chute work {= tan-1µ} (°); 

{♠} Angle from horizontal {line} / angle from horizontal of the 

perpendicular to the chord between successive points {arc} (°) 

Φ Poisson’s ratio (ν) dependent parameter for Rayleigh Wave speed critical 

time step determination 

Φij  Angle of the particle with reference to the arc during contact (°) 

φw Kinematic angle of wall friction between material and conveyor belt (°) 

γ  Specific weight of the material being conveyed {= ρg} (kNm-3) 

γ1  Start angle of an arc (°) 

γ2  Finish angle of an arc (°) 

γn  Damping constant 

ϕ  Chute slope angle for Korzen’s work {= 90 – θ}(°) 

ϕ0  Angle of chute to horizontal at impact (°) 

κ Angle of impact to horizontal {for flat plates}; angle the tangent to the 

end of the plate makes with the horizontal {for curved plates} (°) 
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λ  Angle of surcharge of material (°) 

λbottom  Angle tangent to end of curved plate makes with the vertical (°) 

µ {♣} Coefficient of internal friction used in flat impact plate model {= 

tanζ}; coefficient of wall friction used in gravity flow chute work {= 

tanφ}; {♠} Coefficient of friction 

µE  Equivalent coefficient of friction 

µk  Kinematic friction coefficient between material and belt {= tanφw} 

µs  Static friction coefficient 

ν  Poisson’s ratio 

θ {♣} Chute slope angle for Roberts’ work {= dy/dx} (°); {♠} General 

rotation (radians) 

θ&   Angular velocity (rads-1) 

θ&&   Angular acceleration (rads-2) 

θ1  Angle of incoming stream relative to chute surface (°) 

θ2  Angle after impact of material stream relative to chute surface (°) 

θ3 Angle of incoming stream relative to chute surface {for double deflection 

of material stream} (°) 

θa Angle from horizontal made by incoming material stream to impact plate 

(°) 

θc  Corrected angle of entry of material on a curved impact plate (°) 

θco  Optimum cutoff angle for curved chute (°) 

θf  Limiting angle for maintenance of ‘fast’ flow (°) 

θi  Instantaneous angle of impact (°) 

θs  Angle opposite arc length Sflowround (°) 

ρ {♣} Bulk density (kgm-3); {♠} Particle density (kgm-3) 

σ1 Normal stress corresponding to conditions on the belt prior to discharge 

(kPa) 

σa  Adhesive stress (kPa) 

τ  Shear stress (kPa) 

ω  Angular velocity 

ξ {♣} Percentage admissible relative deviation for the estimation of the k-

th value of va {impact plate model}; tolerated relative deviation for the 
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estimation of the k-th value of v(ϕ) {gravity flow chute model}; {♠} 

Percentage overlap or overlap ratio of two contacting particles 

ψ  Wrap angle around discharge pulley (°) 

ζ  Effective angle of internal friction (°) 

 

 

S U B S C R I P T S  
 

i  Particle number i 

j  Particle / boundary number j 

||  Denotes parallel component 

⊥  Denotes perpendicular component 

old  Denotes previous time step 

 

 

S U P E R S C R I P T S  
 

N  Time tN 

N+1  Time tN+1 

N-1  Time tN-1 

N+1/2  Time tN+1/2 

N-1/2  Time tN-1/2 

line  Represents line 

arc  Represents arc 

 

 

V E C T O R  Q U A N T I T I E S  
 

Fn  Normal contact force 

Ft  Tangential contact force 

g  Gravitational vector 

i  Denotes x-direction 

j  Denotes y-direction 
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k  Denotes z-direction 

ijk̂   Unit vector in normal direction between particles 

r  Position vector for a particle 

ijr   Relative position vector between two particles 

R  Radius vector 

ijt̂   Unit vector in the direction of the virgin loading 

Tij  Torque 

v  Velocity vector for a particle 

x&   Velocity vector in x-direction 

y&   Velocity vector in y-direction 

ijr∆   Change in the relative position vector during the last time step 

τδ∆   Relative surface displacement vector 
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