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Abstract

The mining industry is an immense field with granular flows (e.g. coal) occurring in
numerous areas. Accordingly there are a significant number of problems that arise, with
a great number requiring solutions that are difficult to achieve by conventional
industrial means. The modelling of granular flow using the numerical technique known
as Distinct Element Method (DEM) has great potential in industry, particularly for
solving transfer point problems. The advantage of DEM for transfer applications is that
an entire system can be simulated using the single numerical technique, as opposed to
the existing situation where a myriad of design techniques are required (e.g. analytical
solution for one component and graphical solution for another). DEM involves solving
the equations of motion for the trajectory/rotation/orientation of each particle and

modelling each collision between particles and between particles and boundary objects.

The research presented a comprehensive overview of all of the available analytical
processes available to design chute system components, such as material trajectory
calculations, impact plate models, and gravity flow chute aspects. To the author’s
knowledge, this was the first such review in the literature. A detailed comparison
between the most common analytical design methods was conducted, recommendations
for which method to use were established, and areas of weakness and further study were
identified. It was found that: most areas apart from the prediction of the initial material
discharge and trajectory were lacking in design method; often the few available design
methods for chute components, such as impact plates and gravity flow chutes, were

lengthy and often difficult to implement.

A computer code was developed during the course of the research to simulate bulk
material using the Distinct Element Method (DEM). A background into DEM and its
application to modelling material flow at transfer points was presented. One major
drawback found in the recent transfer studies was the lack of quantification of the
velocity distributions obtained using the DEM against existing analytical design
theories. Contour coloured particulate simulations have also been recently produced by

a number of companies (e.g. Overland Conveyor Company Inc.) however the flow
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regimes observed from the relevant simulation screen captures were not adequately
scrutinised. All the DEM mathematical formulation and numerical methods utilised for
the current work were comprehensively described and relevant computational aspects
were also detailed, such as the coding of a pre-processor and post-processor allowing
animations of the DEM particles. A series of tests was conducted to gauge the validity

of the computer code, and this produced satisfactory results.

The DEM code was also applied to simulate two separate transfers originally designed
by The Gulf Group using their EasyFlow ™ technology, and currently in operation in
industry in Lithgow, Australia. By observing animation screen captures the current
research confirmed the advantage of maintaining particle speed through the system
when using curved chute elements. Quantitative DEM velocity data were compared to
the velocities predicted by the most favourable analytical methods. It was found that
DEM generally produced velocity regimes close to those of the analytical techniques.
However it also provided the additional benefit of providing data on stream
characteristics such as impact forces and velocities in the vicinity of the hood and spoon
elements, which are difficult to examine in detail using analytical methods. An analysis
of the micro dynamics of individual particles also identified that there are differing
scales of contact during the flow through a chute. Although the analytical methods do
not allow closer scrutiny of the flowing stream at the micro scale, they have the
advantage of providing much faster solutions and are good for chute designs for free

flowing material transfers.
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system

Particle size distributions for hood-spoon transfer chute and single hood
transfer chute

(a) Initial spoon location and (b) Final spoon location

Average velocity components in x and y directions for first transfer with
e=0.2and £=0.5

Average velocity components in x and y directions for second transfer
with £=0.2 and £=0.5

Average velocities in the x and y directions for Ar = 1x10™ s and Ar =
1x10° s for the first transfer chute system comprising a hood and spoon
Average velocities in the x and y directions for Ar = 1x10” s and Ar =
1x10° s for the first transfer chute system comprising a single hood
Average velocities of all particles for transfer chute simulation
comprising hood and spoon, from (a) #=0.00sto t=2.00s (b) r=2.00 s
tor=5.00s

Average velocities of all particles for transfer chute simulation
comprising single hood, from (a) 1= 0.00 s to #=2.00 s (b) 1 =2.00 s to ¢
=5.00s
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Kinetic energy in each transfer chute system from = 0.0 to t = 5.0 s. The
terms ‘old’ and ‘new’ in the legend refer to the earlier or latter periodic
boundary locations used respectively for the first transfer system

Screen captures at (a) 1 =2.0s,(b)t=3.0s,(c)t=4.0s,and (d)1=5.0s
illustrating the particle size distribution for the first transfer

Screen captures at (a) t=2.0s, (b)t=3.0s,(c)t=4.0s,and (d) r=5.0s
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Snapshots of the hood-spoon transfer system showing horizontal velocity
components at times of (a) t=2.0s, (b)t=3.0s,(c)t=4.0s,and (d) =
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Snapshots of the hood-spoon transfer system showing vertical velocity
components at times of (a) t=2.0s, (b)t=3.0s,(c)t=4.0s,and (d) =
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Screen captures that show the particulate speed distribution for the
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and (d) t=5.0s.

Snapshots of the single hood transfer system showing horizontal velocity
components at times of (a) t=2.0s, (b) t=3.0s,(c)t=4.0s,and (d) 1=
5.0s.

Snapshots of the single hood transfer system showing vertical velocity
components at times of (a) t=2.0s, (b) t=3.0s,(c)r=4.0s,and (d) =
5.0s.

Particle position and horizontal & vertical components of velocity
calculated using the analytical methods described in Section 7.3.2 for
hood-spoon transfer chute. The numbers correspond to those shown in
Figure 7.7.

Snapshot of particle position, and horizontal and vertical components of
velocity at (a)  =2.00 s and (b) # = 3.00 s for hood-spoon transfer chute
Snapshot of particle position, and horizontal and vertical components of

velocity at (¢) £ =4.00 s and (d) £ = 5.00 s for hood-spoon transfer chute
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Particle position and horizontal & vertical components of velocity
calculated using the analytical methods described in Section 7.3.2 for
single hood transfer chute. The numbers correspond to those in Figure
7.8.

Snapshot of particle position, and horizontal and vertical components of
velocity at (a) £ =2.00 s and (b) = 3.00 s for single hood transfer chute
Snapshot of particle position, and horizontal and vertical components of
velocity at (¢)  =4.00 s and (d) = 5.00 s for single hood transfer chute
Initial positions of selected particles in feeder for (a) hood-spoon transfer
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Two randomly selected particles from the hood-spoon DEM simulation
with positions, and horizontal and vertical velocity components. The
particle numbers examined are (a) i =26 and (b) i=1116

Two randomly selected particles from the single hood DEM simulation
with positions, and horizontal and vertical velocity components. The
particle numbers examined are (a) i = 377 and (b) i = 801

Screen captures that show the elastic potential energy (or strain energy)
possessed by the particles for the first transfer system at times of (a) ¢t =
2.0s,(b)t=3.0s,(c)t=4.0s,and (d)t=5.0s.

Screen captures that show the inter-particle forces (including gravity)
possessed by the particles for the force transfer system at times of (a) ¢ =
2.0s,(b)t=3.0s,(c)t=4.0s,and (d)t=5.0s.

Screen captures that show the torques possessed by the particles for the
first transfer system at times of (a) t=2.0s, (b) t=3.0s,(c) t=4.0s,
and (d) 1=5.0s.

Screen captures that show the elastic potential energy (or strain energy)
possessed by the particles for the second transfer system at times of (a) ¢
=2.0s,(b)t=3.0s,(c)t=4.0s,and (d) r=5.0s.

Screen captures that show the inter-particle forces (including gravity)
possessed by the particles for the second transfer system at times of (a) ¢
=2.0s,(b)t=3.0s,(c)t=4.0s,and (d) r=5.0s.

Screen captures that show the torques possessed by the particles for the
second transfer system at times of (a) t=2.0s, (b) t=3.0s, (c) t=4.0s,
and (d) t=5.0s.
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Nomenclature

The author attempted to use symbols as close to common interpretations as possible in

the thesis (for example, g is frequently used to represent gravitational acceleration and is

therefore used similarly here). However due to this and the number of symbols required,

some overlapping did occur. Therefore in the following nomenclature the symbol {«}

represents the interpretation as used in Chapters Two and Three, and {a} represents the

interpretation as used in Chapters Four and Five.

ARABIC LETTERS

Ao

A

Ap

Apc

ac

{&} Acceleration along the tangent {= § =v } (ms?); {#} Index

allowing for differing loading and unloading paths {NFD model}

Total cross-sectional area of bulk solid in flowing stream (m?)

Initial cross-sectional area of the flowing stream at the point of entry of
the chute (m?)

Cross-sectional areas {rectangular portion, circular segment} of bulk
solid in flowing stream (m?)

Cross-sectional area of material stream at exit to ‘flow-round’ zone (m?)
Area of trapezoidal {3 idler system} or triangular {2 idler system} area
(m?)

Non-dimensional cross-sectional area factor

Y-axis intercept of the perpendicular to the chord between successive
points on the arc

Cross-sectional area of free-falling stream (m?)

Gradient of the perpendicular to the chord between successive points on
the arc

Cross-sectional area of material stream at entrance to ‘flow-round’ zone
(m?)

Area of segment (m?)

Total area of material on the belt in the troughed portion (m?)
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Ay

A(x)

Dipax
Diin
Dinono
dn
Dyar

Proportionality factor for air drag

Function that describes cross-sectional area of flow stream on impact
plate (m?)

{#%} Width of belt (m); {#} Fixed parameter, often set to 1/3 to agree
with Mindlin’s frictional sphere theory {TFD model}

Width of rectangular chute (m)

Width of entry for converging chute (m)

Mean width of material stream on the belt prior to discharge (m)
Thickness of belt (m)

Width of material on flattened belt {troughed belts only} (m)
{&} Cohesive stress (kNm?); {#} Y-intercept of straight line
Constant of integration

Constants used during calculation of the load cross-sectional area
Distance from belt surface to centre of mass (m)

Inverse velocity Coulomb drag coefficient

Intergranular stress constant (szm'z)

Horizontal distance from discharge point to impact point (m)
Base particle diameter (m)

Sum of contacting sphere radii (m)

Maximum particle diameter (m)

Minimum particle diameter (m)

Mono-sized particle (m)

Displacement between particles (m)

Variance between particle sizes (m)

Horizontal displacement difference between particles (m)
Vertical displacement difference between particles (m)

Young’s modulus (Nm™?)

Equivalent elastic modulus (Nm™)

Total energy of a particle (J)

Parameters in Equation (2.116)

Friction value of motion at the initial point of the chute

Drag force (N)

Normal force in Distinct Element Model (N)
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Fy

max
Fn

Kn2

Normal force in gravity flow chute theory (N)

Maximum force ever experienced by the contact (N)

Tangential force in Distinct Element Model (N)

Value of the tangential force F; whenever the magnitude changes from

increasing to decreasing, or vice versa (N)

Velocity dependent drag force (N)

Friction value of motion at any angle ¢ around chute
Coulomb frictional drag force (N)

Magnitude of tangential force (N)

Horizontal component of tangential force (N)
Horizontal component of unit vector (N)
Vertical component of tangential force (N)
Vertical component of unit vector (N)

Acceleration due to gravity (ms?)

Shear {or rigidity} modulus (Nm™)

Equivalent shear modulus (Nm™)

Material drop height (m)

Flowing stream thickness (m)

Initial stream thickness (m)

Stream thickness {rectangular portion, circular segment} (m)
Thickness of material stream at exit of ‘flow-round’ zone (m)
Thickness of material on belt prior to discharge (m)
Thickness of material stream entering ‘flow-round’ zone (m)
Stream thickness at any angle ¢ around curved chute (m)
Moment of inertia (kgm®)

Constant of proportionality usually between 1.11 — 1.42
Effective linear pressure gradient down the wall surface at zero velocity
Number of particles in contact with particle i

Largest inter-particle spring stiffness (Nm™)

Some normal stiffness coefficient (Nm™)

Normal stiffness coefficients for the (loading stage) (Nm™)

Normal stiffness coefficients for the (unloading stage) (Nm™)
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K, Some tangential stiffness coefficient (Nm™)

K to Initial tangential stiffness (Nm™)

K; Effective incremental tangential stiffness (Nm™)

k, Coefficient relating lateral pressure at the chute wall to the average

normal pressure during flow

L Distance between periodic boundaries (m)

Lpc Contact perimeter of material burden on discharging belt (m)

m Particle mass (kg) / gradient of straight line

m Mass flow rate of material (kgs'l)

mi; Effective mass of particles i and j acting in series (kg)

Mopin Mass of smallest particle in system (kg)

n Parameter that is a function of the total number of particles in the system
N Number of particle in system

Ngria User defined term that specifies the maximum number of particles to be

allowed in one cell

Hg Number of time steps between searches

P, Pressure in normal direction (kPa)

On Flowrate (th™)

r Non-dimensional parameter representing ratio between outside and

central idler contact

R {#} Pulley radius; radius of curvature of curved chute (m); {#} Radius
of sphere (m)

Ro Radius of the conveying stream midpoint at the start of the chute (m)

7| Radius of interior sphere in Verlet neighbour list (m)

r Radius of exterior sphere in Verlet neighbour list (m)

Ry Distance from centre of discharge pulley to outer surface of belt (m)

R, Radius of curvature of discharge trajectory (m)

R. Distance from discharge pulley centre to material centre of mass (m)

R Radius of the ‘flow-round’ zone (m)

R; Relative contact curvature (m)

R Distance from centre of pulley to top of material upon belt (m)

Roin Radius of smallest sized particle in the system (m)

R, Radius of curved impact plate (m)
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Sﬂowround
SP

Sy

t

Umax

Vo

Vo,s

Va
Vb
Ve
Vd
Ve
Vo
Vi

Vi

Vi
v(K)
v(y)

Voo

Displacement along tangent (m)

{%} Distance between end of ‘flow-round zone’ and bottom of the plate
(m); {#} An empirically determined model parameter

Portion of curved impact plate in contact with material stream (m)
Length of impact plate {flat or curved} (m)

Vertical fall distance (m)

Time (s)

Maximum particle velocity (ms™)

Velocity {= §} (ms™)

{%} Initial velocity of the flowing stream at the point of entry of the
chute (ms™); {#} Relative velocity of approach (ms™)

Velocity of stream parallel to chute surface after impact (ms™)

Velocity of stream before impact (ms™)
Velocity of stream after the first deflection (ms™)
Velocity of stream after second deflection (ms™)

Velocity of stream after impact for a single deflection (ms™)

Exit velocity of material leaving ‘flow-round’ zone (ms™)
Conveyor belt velocity (ms™)

Critical velocity (ms™)

Discharge velocity (ms™)

Exit velocity from bottom of flat impact plate (ms™)
Vertical component of bulk solid discharging velocity (ms™)
Velocity of impact with the curved chute (ms™)

Velocity of stream before impact (ms™)

Material velocity at entrance to ‘flow-round’ zone (ms™)
Tangential velocity; velocity of load stream centre (ms™)
Velocity of stream at angle « in ‘flow-round’ zone (ms™)
Discharge velocity at angle y (ms™)

Terminal velocity (ms™)

General x-coordinate (m)

Velocity in x-direction (ms™)

Acceleration in x-direction (ms™)
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x1
X1,2,3,4
x2
x3
x4
Xc
Xh

)(len

y(x)

Z1,2,3,4

First x-coordinate of line / arc (m)
Four x-coordinates representing a boundary (m)
Second x-coordinate of line / arc (m)
Third x-coordinate of line / arc (m)
Fourth x-coordinate of line / arc (m)
X-coordinate of arc centre (m)
Height of material bed on belt (m)
Width of calculation space (m)
General y-coordinate (m)

Velocity in y-direction (ms™)
Acceleration in y-direction (ms™)
First y-coordinate of line / arc (m)

Four y-coordinates representing a boundary (m)

Second y-coordinate of line / arc (m)
Third y-coordinate of line / arc (m)
Fourth y-coordinate of line / arc (m)

Y-coordinate of arc centre (m)

Height of calculation space (m)

Function that describes the trajectory of free fall (m)

Four z-coordinates representing a boundary (m)

GREEK LETTERS

p
(2Z]

ez

Bi
B
Am

Angle of convergence for chute side walls (°)

Conveyor belt inclination angle before discharge (°)
Bulk solid stream discharge angle measured from the vertical (°)

Angle at which material starts to slip on discharge pulley (°)

Impact plate inclination angle (°)
Angle of idler roll (°)
Viscous drag coefficient (s™)

Elementary mass of bulk solid (kg)
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o)
At
At,
40
A0x,

45y,

= &

N
¥

S

Normal overlap {relative displacement of the centres of the two spheres}
(m)

Rate of change of the distance between centres of the colliding particles
(ms™)

Residual displacement after complete unloading {the value where the
unloading curve goes to zero} (m)

Residual tangential displacement (m)

Horizontal component of change in relative position vector (m)

Vertical component of change in relative position vector (m)

Tangential overlap between particles (m)
Time step (s)
Critical time step (s)

Incremental tangential displacement (m)
Horizontal component of relative surface displacement vector (m)
Vertical component of relative surface displacement vector (m)

Coefficient of restitution

{#} Wall friction angle used in gravity flow chute work {= tan’ u} (°);
{a} Angle from horizontal {line} / angle from horizontal of the
perpendicular to the chord between successive points {arc} (°)

Poisson’s ratio (v) dependent parameter for Rayleigh Wave speed critical
time step determination

Angle of the particle with reference to the arc during contact (°)
Kinematic angle of wall friction between material and conveyor belt (°)
Specific weight of the material being conveyed {= pg} (kNm™)

Start angle of an arc (°)

Finish angle of an arc (°)

Damping constant

Chute slope angle for Korzen’s work {= 90 — 6}(°)

Angle of chute to horizontal at impact (°)

Angle of impact to horizontal {for flat plates}; angle the tangent to the

end of the plate makes with the horizontal {for curved plates} (°)
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A
Zbottom

U

HE
Hie
Hs

Angle of surcharge of material (°)

Angle tangent to end of curved plate makes with the vertical (°)

{#} Coefficient of internal friction used in flat impact plate model {=
tan(}; coefficient of wall friction used in gravity flow chute work {=
tang}; {a} Coefficient of friction

Equivalent coefficient of friction

Kinematic friction coefficient between material and belt {= tang,}

Static friction coefficient

Poisson’s ratio

{#%} Chute slope angle for Roberts’ work {= dy/dx} (°); {#} General
rotation (radians)

Angular velocity (rads™)

Angular acceleration (rads™)

Angle of incoming stream relative to chute surface (°)

Angle after impact of material stream relative to chute surface (°)

Angle of incoming stream relative to chute surface {for double deflection
of material stream} (°)

Angle from horizontal made by incoming material stream to impact plate
)

Corrected angle of entry of material on a curved impact plate (°)
Optimum cutoff angle for curved chute (°)

Limiting angle for maintenance of ‘fast’ flow (°)

Instantaneous angle of impact (°)

Angle opposite arc length Spowrouna (°)

{%} Bulk density (kgm™); {a} Particle density (kgm™)

Normal stress corresponding to conditions on the belt prior to discharge
(kPa)

Adhesive stress (kPa)

Shear stress (kPa)

Angular velocity

{#} Percentage admissible relative deviation for the estimation of the k-

th value of v, {impact plate model}; tolerated relative deviation for the
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XXX

estimation of the k-th value of v(@) {gravity flow chute model}; {a}

Percentage overlap or overlap ratio of two contacting particles

7% Wrap angle around discharge pulley (°)
- Effective angle of internal friction (°)
SUBSCRIPTS

i Particle number i
Jj Particle / boundary number j

| Denotes parallel component

L Denotes perpendicular component
old Denotes previous time step
SUPERSCRIPTS

N Time 7"

N+1 Time /"'

N-1 Time /!

N+1/2 Time /"

N-1/2 Time £

line Represents line

arc Represents arc

VECTOR QUANTITIES

F,
F,

Normal contact force
Tangential contact force
Gravitational vector
Denotes x-direction

Denotes y-direction



Nomenclature

XXX

Denotes z-direction
Unit vector in normal direction between particles

Position vector for a particle

Relative position vector between two particles
Radius vector

Unit vector in the direction of the virgin loading
Torque

Velocity vector for a particle

Velocity vector in x-direction

Velocity vector in y-direction

Change in the relative position vector during the last time step

Relative surface displacement vector
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