Predicting partners' behaviours in negotiation by using regression analysis



Publication Details

Zhang, M. & Ren, F. 2007, ''Predicting partners'' behaviours in negotiation by using regression analysis'', in International Conference on Knowledge Science, Engineering and Management, 28-30 November, Melbourne, Lecture Notes in Computer Science, vol. 4798, pp. 165-176.


Prediction partners’ behaviors in negotiation has been an active research direction in recent years. By employing the estimation results, agents can modify their own ways in order to achieve an agreement much quicker or to look after much higher benefits for themselves. Some of estimation strategies have been proposed by researchers to predict agents’ behaviors, and most of them are based on machine learning mechanisms. However, when the application domains become open and dynamic, and agent relationships are complicated, it is difficult to train data which can be used to predict all potential behaviors of all agents in a multi-agent system. Furthermore because the estimation results may have errors, a single result maybe not accurate and practical enough in most situations. In order to address these issues mentioned above, we propose a power regression analysis mechanism to predict partners’ behaviors in this paper. The proposed approach is based only on the history of the offers during the current negotiation and does not require any training process in advance. This approach can not only estimate a particular behavior, but also an interval of behaviors according to an accuracy requirement. The experimental results illustrate that by employing the proposed approach, agents can gain more accurate estimation results on partners’ behaviors by comparing with other two estimation functions.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)