In this article, we assume that categorical data are distributed according to a multinomial distribution whose probabilities follow a loglinear model. The inference problem we consider is that of hypothesis testing in a loglinear-model setting. The null hypothesis is a composite hypothesis nested within the alternative. Test statistics are chosen from the general class of divergence statistics. This article collects together the operating characteristics of the hypothesis test based on both asymptotic (using large-sample theory) and finite-sample (using a designed simulation study) results. Members of the class of power divergence statistics are compared, and it is found that the Cressie-Read statistic offers an attractive alternative to the Pearson-based and the likelihood ratio-based test statistics, in terms of both exact and asymptotic size and power.