Discussion on "Spatial prediction in the presence of positional error"



Publication Details

Cressie, N. (2011). Discussion on "Spatial prediction in the presence of positional error". Environmetrics, 22 (2), 125-126.


In the quantitative Geography literature, particularly in Geographical Information Sciences, the concepts of location error and attribute error are firmly established. What to do about these sources of error has often been handled separately and not always statistically. In the geostatistics literature, attribute error is referred to as "regional variability" or "spatial variability," and it is often assumed that there is no location error. The article by Fanshawe and Diggle (hereafter, FD) builds on earlier work by Cressie and others on spatial statistical methods where both spatial variability and location (equivalently, positional) error is modeled. The authors extend that approach, which was based on empirical hierarchical modeling, to Bayesian hierarchical modeling. Suppose Y are data, S is the process (of possibly different dimensions than Y), and 0 are the parameters. The Bayesian hierarchical model (BHM) models the joint distribution

Please refer to publisher version or contact your library.



Link to publisher version (DOI)