Publication Details

This paper was originally published as Treweek, TM, Ecroyd, H, Williams, DM, Meehan, S, Carter, JA and Walker, MJ, Site-directed mutations in the C-terminal extension of human αB-crystallin affect chaperone function and block amyloid fibril formation, PLoS ONE 2(10), 2007. Journal article available online here.


Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including αBcrystallin, play a role in the prevention of protein deposition. A series of site-directed mutants of the human molecular chaperone, αB-crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of αB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of αB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. Together, our results highlight the important role of the C-terminal region of αB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify αB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation.



Link to publisher version (DOI)