Document Type

Journal Article


The ‘‘hash–sign–switch” paradigm was firstly proposed by Shamir and Tauman with the aim to design an efficient on-line/off-line signature scheme. Nonetheless, all existing online/ off-line signature schemes based on this paradigm suffer from the key exposure problem of chameleon hashing. To avoid this problem, the signer should pre-compute and store a plenty of different chameleon hash values and the corresponding signatures on the hash values in the off-line phase, and send the collision and the signature for a certain hash value in the on-line phase. Hence, the computation and storage cost for the off-line phase and the communication cost for t0he on-line phase in Shamir–Tauman’s signature scheme are still a little more overload. In this paper, we first introduce a special double-trapdoor hash family based on the discrete logarithm assumption and then incorporate it to construct a more efficient generic on-line/off-line signature scheme without key exposure. Furthermore, we also present the first key-exposure-free generic on-line/off-line threshold signature scheme without a trusted dealer. Additionally, we prove that the proposed schemes have achieved the desired security requirements.