RIS ID

58331

Publication Details

Teh, L. H. & Clements, D. D. A. (2012). Tension capacity of staggered bolted connections in Cold-Reduced Steel Sheets. Australian Journal of Structural Engineering, 138 (6), 769-776.

Abstract

This paper examines the assumption implicit in Cochrane’s formula that stresses are uniformly distributed across the net section of a staggered bolted connection. The assumption was found to be overoptimistic for connections in steel having low ductility, leading to unconservative estimates for the tension capacity if the in-plane shear lag is not accounted for. The reduction factor of 0.9 specified in the North American specification for cold-formed steel structures partially but not wholly addresses the problems inherent in the code equations. This paper points out that the “simplification” of Cochrane’s original formula into the standard formula used in steel design codes worldwide can lead to additional design capacity that may not be justified. It proposes an equation that accounts for the in-plane shear lag and incorporates Cochrane’s original formula for determining the net section area. The proposed equation is demonstrated through laboratory tests on 74 staggered bolted connection specimens in 1.5 mm and 3.0 mm G450 sheet steel to be more accurate and consistent than the code equations in predicting the net section tension capacity.

Included in

Engineering Commons

Share

COinS