Publication Details

Sharma, N., Guo, X., Du, G., Guo, Z., Wang, J., Wang, Z. & Peterson, V. K. (2012). Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO 4. Journal of the American Chemical Society, 134 (18), 7867-7873.


Lithium-ion batteries power many portable devices and in the future are likely to play a significant role in sustainable-energy systems for transportation and the electrical grid. LiFePO4 is a candidate cathode material for second-generation lithium-ion batteries, bringing a high rate capability to this technology. LiFePO4 functions as a cathode where delithiation occurs via either a solid-solution or a two-phase mechanism, the pathway taken being influenced by sample preparation and electrochemical conditions. The details of the delithiation pathway and the relationship between the two-phase and solid-solution reactions remain controversial. Here we report, using real-time in situ neutron powder diffraction, the simultaneous occurrence of solid-solution and two-phase reactions after deep discharge in nonequilibrium conditions. This work is an example of the experimental investigation of nonequilibrium states in a commercially available LiFePO4 cathode and reveals the concurrent occurrence of and transition between the solid-solution and two-phase reactions

Grant Number


Included in

Engineering Commons