Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks

RIS ID

27195

Publication Details

Spicer, P. T., Pratsinis, S. E., Raper, J. A., Amal, R., Bushell, G. & Meesters, G. (1998). Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technology, 26-34.

Abstract

The effect of shear history on the evolution of the polystyrene—alum floc size, density, and structure is investigated by small-angle light scattering during cycled-shear and tapered-shearflocculation in a stirredtank using a Rushton impeller. First, various sampling schemes are experimentally evaluated. The floc structure is characterized by the mass fractal dimension, Df, and the relative floc density. During turbulent shearflocculation, small floc structures are shown to be more open (Df = 2.1) than larger floc structures (Df = 2.5) as a result of shear-induced restructuring during steady state attainment. Flocs produced by cycled-shearflocculation are grown at shear rate G-50 s−1 for 30 min, are fragmented at Gb = 100, 300, or 500 s−1 for one minute, and then are regrown at G = 50 s−1. This shearschedule decreases the floc size but compacts the floc structure. When flocs are produced by gradual reduction of the shear rate from G-300 to 50 s−1 (tapered-shearflocculation), smaller though equally dense flocs are produced compared with cycled-shearflocculation. The cycled-shearflocculation method produces the largest flocs with the highest potential for sedimentation when the fragmentation shear rate is Gb = 300 s−1.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/S0032-5910(97)03389-5