Automatic morphology control of liquid metal using a combined electrochemical and feedback control approach

RIS ID

146026

Publication Details

Li, M., Anver, H., Zhang, Y., Tang, S. & Li, W. (2019). Automatic morphology control of liquid metal using a combined electrochemical and feedback control approach. Micromachines, 10 (3),

Abstract

© 2019 by the authors. Gallium-based liquid metal alloys have been attracting attention from both industry and academia as soft, deformable, reconfigurable and multifunctional materials in microfluidic, electronic and electromagnetic devices. Although various technologies have been explored to control the morphology of liquid metals, there is still a lack of methods that can achieve precise morphological control over a free-standing liquid metal droplet without the use of mechanical confinement. Electrochemical manipulation can be relatively easy to apply to liquid metals, but there is a need for techniques that can enable automatic and precise control. Here, we investigate the use of an electrochemical technique combined with a feedback control system to automatically and precisely control the morphology of a free-standing liquid metal droplet in a sodium hydroxide solution. We establish a proof-of-concept platform controlled by a microcontroller to demonstrate the reconfiguration of a liquid metal droplet to desired patterns. We expect that this method will be further developed to realize future reconfigurable liquid metal-enabled soft robots.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.3390/mi10030209